1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef EM_BPF 59 #define EM_BPF 247 60 #endif 61 62 #ifndef BPF_FS_MAGIC 63 #define BPF_FS_MAGIC 0xcafe4a11 64 #endif 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static const struct btf_type * 77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 78 79 static int __base_pr(enum libbpf_print_level level, const char *format, 80 va_list args) 81 { 82 if (level == LIBBPF_DEBUG) 83 return 0; 84 85 return vfprintf(stderr, format, args); 86 } 87 88 static libbpf_print_fn_t __libbpf_pr = __base_pr; 89 90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 91 { 92 libbpf_print_fn_t old_print_fn = __libbpf_pr; 93 94 __libbpf_pr = fn; 95 return old_print_fn; 96 } 97 98 __printf(2, 3) 99 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 100 { 101 va_list args; 102 103 if (!__libbpf_pr) 104 return; 105 106 va_start(args, format); 107 __libbpf_pr(level, format, args); 108 va_end(args); 109 } 110 111 static void pr_perm_msg(int err) 112 { 113 struct rlimit limit; 114 char buf[100]; 115 116 if (err != -EPERM || geteuid() != 0) 117 return; 118 119 err = getrlimit(RLIMIT_MEMLOCK, &limit); 120 if (err) 121 return; 122 123 if (limit.rlim_cur == RLIM_INFINITY) 124 return; 125 126 if (limit.rlim_cur < 1024) 127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 128 else if (limit.rlim_cur < 1024*1024) 129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 130 else 131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 132 133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 134 buf); 135 } 136 137 #define STRERR_BUFSIZE 128 138 139 /* Copied from tools/perf/util/util.h */ 140 #ifndef zfree 141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 142 #endif 143 144 #ifndef zclose 145 # define zclose(fd) ({ \ 146 int ___err = 0; \ 147 if ((fd) >= 0) \ 148 ___err = close((fd)); \ 149 fd = -1; \ 150 ___err; }) 151 #endif 152 153 static inline __u64 ptr_to_u64(const void *ptr) 154 { 155 return (__u64) (unsigned long) ptr; 156 } 157 158 enum kern_feature_id { 159 /* v4.14: kernel support for program & map names. */ 160 FEAT_PROG_NAME, 161 /* v5.2: kernel support for global data sections. */ 162 FEAT_GLOBAL_DATA, 163 /* BTF support */ 164 FEAT_BTF, 165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 166 FEAT_BTF_FUNC, 167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 168 FEAT_BTF_DATASEC, 169 /* BTF_FUNC_GLOBAL is supported */ 170 FEAT_BTF_GLOBAL_FUNC, 171 /* BPF_F_MMAPABLE is supported for arrays */ 172 FEAT_ARRAY_MMAP, 173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 174 FEAT_EXP_ATTACH_TYPE, 175 /* bpf_probe_read_{kernel,user}[_str] helpers */ 176 FEAT_PROBE_READ_KERN, 177 __FEAT_CNT, 178 }; 179 180 static bool kernel_supports(enum kern_feature_id feat_id); 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN, 187 }; 188 189 struct reloc_desc { 190 enum reloc_type type; 191 int insn_idx; 192 int map_idx; 193 int sym_off; 194 bool processed; 195 }; 196 197 struct bpf_sec_def; 198 199 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 200 struct bpf_program *prog); 201 202 struct bpf_sec_def { 203 const char *sec; 204 size_t len; 205 enum bpf_prog_type prog_type; 206 enum bpf_attach_type expected_attach_type; 207 bool is_exp_attach_type_optional; 208 bool is_attachable; 209 bool is_attach_btf; 210 bool is_sleepable; 211 attach_fn_t attach_fn; 212 }; 213 214 /* 215 * bpf_prog should be a better name but it has been used in 216 * linux/filter.h. 217 */ 218 struct bpf_program { 219 const struct bpf_sec_def *sec_def; 220 char *sec_name; 221 size_t sec_idx; 222 /* this program's instruction offset (in number of instructions) 223 * within its containing ELF section 224 */ 225 size_t sec_insn_off; 226 /* number of original instructions in ELF section belonging to this 227 * program, not taking into account subprogram instructions possible 228 * appended later during relocation 229 */ 230 size_t sec_insn_cnt; 231 /* Offset (in number of instructions) of the start of instruction 232 * belonging to this BPF program within its containing main BPF 233 * program. For the entry-point (main) BPF program, this is always 234 * zero. For a sub-program, this gets reset before each of main BPF 235 * programs are processed and relocated and is used to determined 236 * whether sub-program was already appended to the main program, and 237 * if yes, at which instruction offset. 238 */ 239 size_t sub_insn_off; 240 241 char *name; 242 /* sec_name with / replaced by _; makes recursive pinning 243 * in bpf_object__pin_programs easier 244 */ 245 char *pin_name; 246 247 /* instructions that belong to BPF program; insns[0] is located at 248 * sec_insn_off instruction within its ELF section in ELF file, so 249 * when mapping ELF file instruction index to the local instruction, 250 * one needs to subtract sec_insn_off; and vice versa. 251 */ 252 struct bpf_insn *insns; 253 /* actual number of instruction in this BPF program's image; for 254 * entry-point BPF programs this includes the size of main program 255 * itself plus all the used sub-programs, appended at the end 256 */ 257 size_t insns_cnt; 258 259 struct reloc_desc *reloc_desc; 260 int nr_reloc; 261 int log_level; 262 263 struct { 264 int nr; 265 int *fds; 266 } instances; 267 bpf_program_prep_t preprocessor; 268 269 struct bpf_object *obj; 270 void *priv; 271 bpf_program_clear_priv_t clear_priv; 272 273 bool load; 274 enum bpf_prog_type type; 275 enum bpf_attach_type expected_attach_type; 276 int prog_ifindex; 277 __u32 attach_btf_id; 278 __u32 attach_prog_fd; 279 void *func_info; 280 __u32 func_info_rec_size; 281 __u32 func_info_cnt; 282 283 void *line_info; 284 __u32 line_info_rec_size; 285 __u32 line_info_cnt; 286 __u32 prog_flags; 287 }; 288 289 struct bpf_struct_ops { 290 const char *tname; 291 const struct btf_type *type; 292 struct bpf_program **progs; 293 __u32 *kern_func_off; 294 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 295 void *data; 296 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 297 * btf_vmlinux's format. 298 * struct bpf_struct_ops_tcp_congestion_ops { 299 * [... some other kernel fields ...] 300 * struct tcp_congestion_ops data; 301 * } 302 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 303 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 304 * from "data". 305 */ 306 void *kern_vdata; 307 __u32 type_id; 308 }; 309 310 #define DATA_SEC ".data" 311 #define BSS_SEC ".bss" 312 #define RODATA_SEC ".rodata" 313 #define KCONFIG_SEC ".kconfig" 314 #define KSYMS_SEC ".ksyms" 315 #define STRUCT_OPS_SEC ".struct_ops" 316 317 enum libbpf_map_type { 318 LIBBPF_MAP_UNSPEC, 319 LIBBPF_MAP_DATA, 320 LIBBPF_MAP_BSS, 321 LIBBPF_MAP_RODATA, 322 LIBBPF_MAP_KCONFIG, 323 }; 324 325 static const char * const libbpf_type_to_btf_name[] = { 326 [LIBBPF_MAP_DATA] = DATA_SEC, 327 [LIBBPF_MAP_BSS] = BSS_SEC, 328 [LIBBPF_MAP_RODATA] = RODATA_SEC, 329 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 330 }; 331 332 struct bpf_map { 333 char *name; 334 int fd; 335 int sec_idx; 336 size_t sec_offset; 337 int map_ifindex; 338 int inner_map_fd; 339 struct bpf_map_def def; 340 __u32 numa_node; 341 __u32 btf_var_idx; 342 __u32 btf_key_type_id; 343 __u32 btf_value_type_id; 344 __u32 btf_vmlinux_value_type_id; 345 void *priv; 346 bpf_map_clear_priv_t clear_priv; 347 enum libbpf_map_type libbpf_type; 348 void *mmaped; 349 struct bpf_struct_ops *st_ops; 350 struct bpf_map *inner_map; 351 void **init_slots; 352 int init_slots_sz; 353 char *pin_path; 354 bool pinned; 355 bool reused; 356 }; 357 358 enum extern_type { 359 EXT_UNKNOWN, 360 EXT_KCFG, 361 EXT_KSYM, 362 }; 363 364 enum kcfg_type { 365 KCFG_UNKNOWN, 366 KCFG_CHAR, 367 KCFG_BOOL, 368 KCFG_INT, 369 KCFG_TRISTATE, 370 KCFG_CHAR_ARR, 371 }; 372 373 struct extern_desc { 374 enum extern_type type; 375 int sym_idx; 376 int btf_id; 377 int sec_btf_id; 378 const char *name; 379 bool is_set; 380 bool is_weak; 381 union { 382 struct { 383 enum kcfg_type type; 384 int sz; 385 int align; 386 int data_off; 387 bool is_signed; 388 } kcfg; 389 struct { 390 unsigned long long addr; 391 } ksym; 392 }; 393 }; 394 395 static LIST_HEAD(bpf_objects_list); 396 397 struct bpf_object { 398 char name[BPF_OBJ_NAME_LEN]; 399 char license[64]; 400 __u32 kern_version; 401 402 struct bpf_program *programs; 403 size_t nr_programs; 404 struct bpf_map *maps; 405 size_t nr_maps; 406 size_t maps_cap; 407 408 char *kconfig; 409 struct extern_desc *externs; 410 int nr_extern; 411 int kconfig_map_idx; 412 413 bool loaded; 414 bool has_subcalls; 415 416 /* 417 * Information when doing elf related work. Only valid if fd 418 * is valid. 419 */ 420 struct { 421 int fd; 422 const void *obj_buf; 423 size_t obj_buf_sz; 424 Elf *elf; 425 GElf_Ehdr ehdr; 426 Elf_Data *symbols; 427 Elf_Data *data; 428 Elf_Data *rodata; 429 Elf_Data *bss; 430 Elf_Data *st_ops_data; 431 size_t shstrndx; /* section index for section name strings */ 432 size_t strtabidx; 433 struct { 434 GElf_Shdr shdr; 435 Elf_Data *data; 436 } *reloc_sects; 437 int nr_reloc_sects; 438 int maps_shndx; 439 int btf_maps_shndx; 440 __u32 btf_maps_sec_btf_id; 441 int text_shndx; 442 int symbols_shndx; 443 int data_shndx; 444 int rodata_shndx; 445 int bss_shndx; 446 int st_ops_shndx; 447 } efile; 448 /* 449 * All loaded bpf_object is linked in a list, which is 450 * hidden to caller. bpf_objects__<func> handlers deal with 451 * all objects. 452 */ 453 struct list_head list; 454 455 struct btf *btf; 456 /* Parse and load BTF vmlinux if any of the programs in the object need 457 * it at load time. 458 */ 459 struct btf *btf_vmlinux; 460 struct btf_ext *btf_ext; 461 462 void *priv; 463 bpf_object_clear_priv_t clear_priv; 464 465 char path[]; 466 }; 467 #define obj_elf_valid(o) ((o)->efile.elf) 468 469 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 470 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 471 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 472 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 473 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 474 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 475 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 476 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 477 size_t off, __u32 sym_type, GElf_Sym *sym); 478 479 void bpf_program__unload(struct bpf_program *prog) 480 { 481 int i; 482 483 if (!prog) 484 return; 485 486 /* 487 * If the object is opened but the program was never loaded, 488 * it is possible that prog->instances.nr == -1. 489 */ 490 if (prog->instances.nr > 0) { 491 for (i = 0; i < prog->instances.nr; i++) 492 zclose(prog->instances.fds[i]); 493 } else if (prog->instances.nr != -1) { 494 pr_warn("Internal error: instances.nr is %d\n", 495 prog->instances.nr); 496 } 497 498 prog->instances.nr = -1; 499 zfree(&prog->instances.fds); 500 501 zfree(&prog->func_info); 502 zfree(&prog->line_info); 503 } 504 505 static void bpf_program__exit(struct bpf_program *prog) 506 { 507 if (!prog) 508 return; 509 510 if (prog->clear_priv) 511 prog->clear_priv(prog, prog->priv); 512 513 prog->priv = NULL; 514 prog->clear_priv = NULL; 515 516 bpf_program__unload(prog); 517 zfree(&prog->name); 518 zfree(&prog->sec_name); 519 zfree(&prog->pin_name); 520 zfree(&prog->insns); 521 zfree(&prog->reloc_desc); 522 523 prog->nr_reloc = 0; 524 prog->insns_cnt = 0; 525 prog->sec_idx = -1; 526 } 527 528 static char *__bpf_program__pin_name(struct bpf_program *prog) 529 { 530 char *name, *p; 531 532 name = p = strdup(prog->sec_name); 533 while ((p = strchr(p, '/'))) 534 *p = '_'; 535 536 return name; 537 } 538 539 static bool insn_is_subprog_call(const struct bpf_insn *insn) 540 { 541 return BPF_CLASS(insn->code) == BPF_JMP && 542 BPF_OP(insn->code) == BPF_CALL && 543 BPF_SRC(insn->code) == BPF_K && 544 insn->src_reg == BPF_PSEUDO_CALL && 545 insn->dst_reg == 0 && 546 insn->off == 0; 547 } 548 549 static int 550 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 551 const char *name, size_t sec_idx, const char *sec_name, 552 size_t sec_off, void *insn_data, size_t insn_data_sz) 553 { 554 int i; 555 556 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 557 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 558 sec_name, name, sec_off, insn_data_sz); 559 return -EINVAL; 560 } 561 562 memset(prog, 0, sizeof(*prog)); 563 prog->obj = obj; 564 565 prog->sec_idx = sec_idx; 566 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 567 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 568 /* insns_cnt can later be increased by appending used subprograms */ 569 prog->insns_cnt = prog->sec_insn_cnt; 570 571 prog->type = BPF_PROG_TYPE_UNSPEC; 572 prog->load = true; 573 574 prog->instances.fds = NULL; 575 prog->instances.nr = -1; 576 577 prog->sec_name = strdup(sec_name); 578 if (!prog->sec_name) 579 goto errout; 580 581 prog->name = strdup(name); 582 if (!prog->name) 583 goto errout; 584 585 prog->pin_name = __bpf_program__pin_name(prog); 586 if (!prog->pin_name) 587 goto errout; 588 589 prog->insns = malloc(insn_data_sz); 590 if (!prog->insns) 591 goto errout; 592 memcpy(prog->insns, insn_data, insn_data_sz); 593 594 for (i = 0; i < prog->insns_cnt; i++) { 595 if (insn_is_subprog_call(&prog->insns[i])) { 596 obj->has_subcalls = true; 597 break; 598 } 599 } 600 601 return 0; 602 errout: 603 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 604 bpf_program__exit(prog); 605 return -ENOMEM; 606 } 607 608 static int 609 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 610 const char *sec_name, int sec_idx) 611 { 612 struct bpf_program *prog, *progs; 613 void *data = sec_data->d_buf; 614 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 615 int nr_progs, err; 616 const char *name; 617 GElf_Sym sym; 618 619 progs = obj->programs; 620 nr_progs = obj->nr_programs; 621 sec_off = 0; 622 623 while (sec_off < sec_sz) { 624 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 625 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 626 sec_name, sec_off); 627 return -LIBBPF_ERRNO__FORMAT; 628 } 629 630 prog_sz = sym.st_size; 631 632 name = elf_sym_str(obj, sym.st_name); 633 if (!name) { 634 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 635 sec_name, sec_off); 636 return -LIBBPF_ERRNO__FORMAT; 637 } 638 639 if (sec_off + prog_sz > sec_sz) { 640 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 641 sec_name, sec_off); 642 return -LIBBPF_ERRNO__FORMAT; 643 } 644 645 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 646 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 647 648 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 649 if (!progs) { 650 /* 651 * In this case the original obj->programs 652 * is still valid, so don't need special treat for 653 * bpf_close_object(). 654 */ 655 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 656 sec_name, name); 657 return -ENOMEM; 658 } 659 obj->programs = progs; 660 661 prog = &progs[nr_progs]; 662 663 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 664 sec_off, data + sec_off, prog_sz); 665 if (err) 666 return err; 667 668 nr_progs++; 669 obj->nr_programs = nr_progs; 670 671 sec_off += prog_sz; 672 } 673 674 return 0; 675 } 676 677 static __u32 get_kernel_version(void) 678 { 679 __u32 major, minor, patch; 680 struct utsname info; 681 682 uname(&info); 683 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 684 return 0; 685 return KERNEL_VERSION(major, minor, patch); 686 } 687 688 static const struct btf_member * 689 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 690 { 691 struct btf_member *m; 692 int i; 693 694 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 695 if (btf_member_bit_offset(t, i) == bit_offset) 696 return m; 697 } 698 699 return NULL; 700 } 701 702 static const struct btf_member * 703 find_member_by_name(const struct btf *btf, const struct btf_type *t, 704 const char *name) 705 { 706 struct btf_member *m; 707 int i; 708 709 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 710 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 711 return m; 712 } 713 714 return NULL; 715 } 716 717 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 718 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 719 const char *name, __u32 kind); 720 721 static int 722 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 723 const struct btf_type **type, __u32 *type_id, 724 const struct btf_type **vtype, __u32 *vtype_id, 725 const struct btf_member **data_member) 726 { 727 const struct btf_type *kern_type, *kern_vtype; 728 const struct btf_member *kern_data_member; 729 __s32 kern_vtype_id, kern_type_id; 730 __u32 i; 731 732 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 733 if (kern_type_id < 0) { 734 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 735 tname); 736 return kern_type_id; 737 } 738 kern_type = btf__type_by_id(btf, kern_type_id); 739 740 /* Find the corresponding "map_value" type that will be used 741 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 742 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 743 * btf_vmlinux. 744 */ 745 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 746 tname, BTF_KIND_STRUCT); 747 if (kern_vtype_id < 0) { 748 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 749 STRUCT_OPS_VALUE_PREFIX, tname); 750 return kern_vtype_id; 751 } 752 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 753 754 /* Find "struct tcp_congestion_ops" from 755 * struct bpf_struct_ops_tcp_congestion_ops { 756 * [ ... ] 757 * struct tcp_congestion_ops data; 758 * } 759 */ 760 kern_data_member = btf_members(kern_vtype); 761 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 762 if (kern_data_member->type == kern_type_id) 763 break; 764 } 765 if (i == btf_vlen(kern_vtype)) { 766 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 767 tname, STRUCT_OPS_VALUE_PREFIX, tname); 768 return -EINVAL; 769 } 770 771 *type = kern_type; 772 *type_id = kern_type_id; 773 *vtype = kern_vtype; 774 *vtype_id = kern_vtype_id; 775 *data_member = kern_data_member; 776 777 return 0; 778 } 779 780 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 781 { 782 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 783 } 784 785 /* Init the map's fields that depend on kern_btf */ 786 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 787 const struct btf *btf, 788 const struct btf *kern_btf) 789 { 790 const struct btf_member *member, *kern_member, *kern_data_member; 791 const struct btf_type *type, *kern_type, *kern_vtype; 792 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 793 struct bpf_struct_ops *st_ops; 794 void *data, *kern_data; 795 const char *tname; 796 int err; 797 798 st_ops = map->st_ops; 799 type = st_ops->type; 800 tname = st_ops->tname; 801 err = find_struct_ops_kern_types(kern_btf, tname, 802 &kern_type, &kern_type_id, 803 &kern_vtype, &kern_vtype_id, 804 &kern_data_member); 805 if (err) 806 return err; 807 808 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 809 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 810 811 map->def.value_size = kern_vtype->size; 812 map->btf_vmlinux_value_type_id = kern_vtype_id; 813 814 st_ops->kern_vdata = calloc(1, kern_vtype->size); 815 if (!st_ops->kern_vdata) 816 return -ENOMEM; 817 818 data = st_ops->data; 819 kern_data_off = kern_data_member->offset / 8; 820 kern_data = st_ops->kern_vdata + kern_data_off; 821 822 member = btf_members(type); 823 for (i = 0; i < btf_vlen(type); i++, member++) { 824 const struct btf_type *mtype, *kern_mtype; 825 __u32 mtype_id, kern_mtype_id; 826 void *mdata, *kern_mdata; 827 __s64 msize, kern_msize; 828 __u32 moff, kern_moff; 829 __u32 kern_member_idx; 830 const char *mname; 831 832 mname = btf__name_by_offset(btf, member->name_off); 833 kern_member = find_member_by_name(kern_btf, kern_type, mname); 834 if (!kern_member) { 835 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 836 map->name, mname); 837 return -ENOTSUP; 838 } 839 840 kern_member_idx = kern_member - btf_members(kern_type); 841 if (btf_member_bitfield_size(type, i) || 842 btf_member_bitfield_size(kern_type, kern_member_idx)) { 843 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 844 map->name, mname); 845 return -ENOTSUP; 846 } 847 848 moff = member->offset / 8; 849 kern_moff = kern_member->offset / 8; 850 851 mdata = data + moff; 852 kern_mdata = kern_data + kern_moff; 853 854 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 855 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 856 &kern_mtype_id); 857 if (BTF_INFO_KIND(mtype->info) != 858 BTF_INFO_KIND(kern_mtype->info)) { 859 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 860 map->name, mname, BTF_INFO_KIND(mtype->info), 861 BTF_INFO_KIND(kern_mtype->info)); 862 return -ENOTSUP; 863 } 864 865 if (btf_is_ptr(mtype)) { 866 struct bpf_program *prog; 867 868 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 869 kern_mtype = skip_mods_and_typedefs(kern_btf, 870 kern_mtype->type, 871 &kern_mtype_id); 872 if (!btf_is_func_proto(mtype) || 873 !btf_is_func_proto(kern_mtype)) { 874 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 875 map->name, mname); 876 return -ENOTSUP; 877 } 878 879 prog = st_ops->progs[i]; 880 if (!prog) { 881 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 882 map->name, mname); 883 continue; 884 } 885 886 prog->attach_btf_id = kern_type_id; 887 prog->expected_attach_type = kern_member_idx; 888 889 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 890 891 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 892 map->name, mname, prog->name, moff, 893 kern_moff); 894 895 continue; 896 } 897 898 msize = btf__resolve_size(btf, mtype_id); 899 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 900 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 901 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 902 map->name, mname, (ssize_t)msize, 903 (ssize_t)kern_msize); 904 return -ENOTSUP; 905 } 906 907 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 908 map->name, mname, (unsigned int)msize, 909 moff, kern_moff); 910 memcpy(kern_mdata, mdata, msize); 911 } 912 913 return 0; 914 } 915 916 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 917 { 918 struct bpf_map *map; 919 size_t i; 920 int err; 921 922 for (i = 0; i < obj->nr_maps; i++) { 923 map = &obj->maps[i]; 924 925 if (!bpf_map__is_struct_ops(map)) 926 continue; 927 928 err = bpf_map__init_kern_struct_ops(map, obj->btf, 929 obj->btf_vmlinux); 930 if (err) 931 return err; 932 } 933 934 return 0; 935 } 936 937 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 938 { 939 const struct btf_type *type, *datasec; 940 const struct btf_var_secinfo *vsi; 941 struct bpf_struct_ops *st_ops; 942 const char *tname, *var_name; 943 __s32 type_id, datasec_id; 944 const struct btf *btf; 945 struct bpf_map *map; 946 __u32 i; 947 948 if (obj->efile.st_ops_shndx == -1) 949 return 0; 950 951 btf = obj->btf; 952 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 953 BTF_KIND_DATASEC); 954 if (datasec_id < 0) { 955 pr_warn("struct_ops init: DATASEC %s not found\n", 956 STRUCT_OPS_SEC); 957 return -EINVAL; 958 } 959 960 datasec = btf__type_by_id(btf, datasec_id); 961 vsi = btf_var_secinfos(datasec); 962 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 963 type = btf__type_by_id(obj->btf, vsi->type); 964 var_name = btf__name_by_offset(obj->btf, type->name_off); 965 966 type_id = btf__resolve_type(obj->btf, vsi->type); 967 if (type_id < 0) { 968 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 969 vsi->type, STRUCT_OPS_SEC); 970 return -EINVAL; 971 } 972 973 type = btf__type_by_id(obj->btf, type_id); 974 tname = btf__name_by_offset(obj->btf, type->name_off); 975 if (!tname[0]) { 976 pr_warn("struct_ops init: anonymous type is not supported\n"); 977 return -ENOTSUP; 978 } 979 if (!btf_is_struct(type)) { 980 pr_warn("struct_ops init: %s is not a struct\n", tname); 981 return -EINVAL; 982 } 983 984 map = bpf_object__add_map(obj); 985 if (IS_ERR(map)) 986 return PTR_ERR(map); 987 988 map->sec_idx = obj->efile.st_ops_shndx; 989 map->sec_offset = vsi->offset; 990 map->name = strdup(var_name); 991 if (!map->name) 992 return -ENOMEM; 993 994 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 995 map->def.key_size = sizeof(int); 996 map->def.value_size = type->size; 997 map->def.max_entries = 1; 998 999 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1000 if (!map->st_ops) 1001 return -ENOMEM; 1002 st_ops = map->st_ops; 1003 st_ops->data = malloc(type->size); 1004 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1005 st_ops->kern_func_off = malloc(btf_vlen(type) * 1006 sizeof(*st_ops->kern_func_off)); 1007 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1008 return -ENOMEM; 1009 1010 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1011 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1012 var_name, STRUCT_OPS_SEC); 1013 return -EINVAL; 1014 } 1015 1016 memcpy(st_ops->data, 1017 obj->efile.st_ops_data->d_buf + vsi->offset, 1018 type->size); 1019 st_ops->tname = tname; 1020 st_ops->type = type; 1021 st_ops->type_id = type_id; 1022 1023 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1024 tname, type_id, var_name, vsi->offset); 1025 } 1026 1027 return 0; 1028 } 1029 1030 static struct bpf_object *bpf_object__new(const char *path, 1031 const void *obj_buf, 1032 size_t obj_buf_sz, 1033 const char *obj_name) 1034 { 1035 struct bpf_object *obj; 1036 char *end; 1037 1038 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1039 if (!obj) { 1040 pr_warn("alloc memory failed for %s\n", path); 1041 return ERR_PTR(-ENOMEM); 1042 } 1043 1044 strcpy(obj->path, path); 1045 if (obj_name) { 1046 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1047 obj->name[sizeof(obj->name) - 1] = 0; 1048 } else { 1049 /* Using basename() GNU version which doesn't modify arg. */ 1050 strncpy(obj->name, basename((void *)path), 1051 sizeof(obj->name) - 1); 1052 end = strchr(obj->name, '.'); 1053 if (end) 1054 *end = 0; 1055 } 1056 1057 obj->efile.fd = -1; 1058 /* 1059 * Caller of this function should also call 1060 * bpf_object__elf_finish() after data collection to return 1061 * obj_buf to user. If not, we should duplicate the buffer to 1062 * avoid user freeing them before elf finish. 1063 */ 1064 obj->efile.obj_buf = obj_buf; 1065 obj->efile.obj_buf_sz = obj_buf_sz; 1066 obj->efile.maps_shndx = -1; 1067 obj->efile.btf_maps_shndx = -1; 1068 obj->efile.data_shndx = -1; 1069 obj->efile.rodata_shndx = -1; 1070 obj->efile.bss_shndx = -1; 1071 obj->efile.st_ops_shndx = -1; 1072 obj->kconfig_map_idx = -1; 1073 1074 obj->kern_version = get_kernel_version(); 1075 obj->loaded = false; 1076 1077 INIT_LIST_HEAD(&obj->list); 1078 list_add(&obj->list, &bpf_objects_list); 1079 return obj; 1080 } 1081 1082 static void bpf_object__elf_finish(struct bpf_object *obj) 1083 { 1084 if (!obj_elf_valid(obj)) 1085 return; 1086 1087 if (obj->efile.elf) { 1088 elf_end(obj->efile.elf); 1089 obj->efile.elf = NULL; 1090 } 1091 obj->efile.symbols = NULL; 1092 obj->efile.data = NULL; 1093 obj->efile.rodata = NULL; 1094 obj->efile.bss = NULL; 1095 obj->efile.st_ops_data = NULL; 1096 1097 zfree(&obj->efile.reloc_sects); 1098 obj->efile.nr_reloc_sects = 0; 1099 zclose(obj->efile.fd); 1100 obj->efile.obj_buf = NULL; 1101 obj->efile.obj_buf_sz = 0; 1102 } 1103 1104 /* if libelf is old and doesn't support mmap(), fall back to read() */ 1105 #ifndef ELF_C_READ_MMAP 1106 #define ELF_C_READ_MMAP ELF_C_READ 1107 #endif 1108 1109 static int bpf_object__elf_init(struct bpf_object *obj) 1110 { 1111 int err = 0; 1112 GElf_Ehdr *ep; 1113 1114 if (obj_elf_valid(obj)) { 1115 pr_warn("elf: init internal error\n"); 1116 return -LIBBPF_ERRNO__LIBELF; 1117 } 1118 1119 if (obj->efile.obj_buf_sz > 0) { 1120 /* 1121 * obj_buf should have been validated by 1122 * bpf_object__open_buffer(). 1123 */ 1124 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1125 obj->efile.obj_buf_sz); 1126 } else { 1127 obj->efile.fd = open(obj->path, O_RDONLY); 1128 if (obj->efile.fd < 0) { 1129 char errmsg[STRERR_BUFSIZE], *cp; 1130 1131 err = -errno; 1132 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1133 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1134 return err; 1135 } 1136 1137 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1138 } 1139 1140 if (!obj->efile.elf) { 1141 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1142 err = -LIBBPF_ERRNO__LIBELF; 1143 goto errout; 1144 } 1145 1146 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1147 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1148 err = -LIBBPF_ERRNO__FORMAT; 1149 goto errout; 1150 } 1151 ep = &obj->efile.ehdr; 1152 1153 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1154 pr_warn("elf: failed to get section names section index for %s: %s\n", 1155 obj->path, elf_errmsg(-1)); 1156 err = -LIBBPF_ERRNO__FORMAT; 1157 goto errout; 1158 } 1159 1160 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1161 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1162 pr_warn("elf: failed to get section names strings from %s: %s\n", 1163 obj->path, elf_errmsg(-1)); 1164 return -LIBBPF_ERRNO__FORMAT; 1165 } 1166 1167 /* Old LLVM set e_machine to EM_NONE */ 1168 if (ep->e_type != ET_REL || 1169 (ep->e_machine && ep->e_machine != EM_BPF)) { 1170 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1171 err = -LIBBPF_ERRNO__FORMAT; 1172 goto errout; 1173 } 1174 1175 return 0; 1176 errout: 1177 bpf_object__elf_finish(obj); 1178 return err; 1179 } 1180 1181 static int bpf_object__check_endianness(struct bpf_object *obj) 1182 { 1183 #if __BYTE_ORDER == __LITTLE_ENDIAN 1184 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1185 return 0; 1186 #elif __BYTE_ORDER == __BIG_ENDIAN 1187 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1188 return 0; 1189 #else 1190 # error "Unrecognized __BYTE_ORDER__" 1191 #endif 1192 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1193 return -LIBBPF_ERRNO__ENDIAN; 1194 } 1195 1196 static int 1197 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1198 { 1199 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1200 pr_debug("license of %s is %s\n", obj->path, obj->license); 1201 return 0; 1202 } 1203 1204 static int 1205 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1206 { 1207 __u32 kver; 1208 1209 if (size != sizeof(kver)) { 1210 pr_warn("invalid kver section in %s\n", obj->path); 1211 return -LIBBPF_ERRNO__FORMAT; 1212 } 1213 memcpy(&kver, data, sizeof(kver)); 1214 obj->kern_version = kver; 1215 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1216 return 0; 1217 } 1218 1219 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1220 { 1221 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1222 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1223 return true; 1224 return false; 1225 } 1226 1227 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1228 __u32 *size) 1229 { 1230 int ret = -ENOENT; 1231 1232 *size = 0; 1233 if (!name) { 1234 return -EINVAL; 1235 } else if (!strcmp(name, DATA_SEC)) { 1236 if (obj->efile.data) 1237 *size = obj->efile.data->d_size; 1238 } else if (!strcmp(name, BSS_SEC)) { 1239 if (obj->efile.bss) 1240 *size = obj->efile.bss->d_size; 1241 } else if (!strcmp(name, RODATA_SEC)) { 1242 if (obj->efile.rodata) 1243 *size = obj->efile.rodata->d_size; 1244 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1245 if (obj->efile.st_ops_data) 1246 *size = obj->efile.st_ops_data->d_size; 1247 } else { 1248 Elf_Scn *scn = elf_sec_by_name(obj, name); 1249 Elf_Data *data = elf_sec_data(obj, scn); 1250 1251 if (data) { 1252 ret = 0; /* found it */ 1253 *size = data->d_size; 1254 } 1255 } 1256 1257 return *size ? 0 : ret; 1258 } 1259 1260 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1261 __u32 *off) 1262 { 1263 Elf_Data *symbols = obj->efile.symbols; 1264 const char *sname; 1265 size_t si; 1266 1267 if (!name || !off) 1268 return -EINVAL; 1269 1270 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1271 GElf_Sym sym; 1272 1273 if (!gelf_getsym(symbols, si, &sym)) 1274 continue; 1275 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1276 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1277 continue; 1278 1279 sname = elf_sym_str(obj, sym.st_name); 1280 if (!sname) { 1281 pr_warn("failed to get sym name string for var %s\n", 1282 name); 1283 return -EIO; 1284 } 1285 if (strcmp(name, sname) == 0) { 1286 *off = sym.st_value; 1287 return 0; 1288 } 1289 } 1290 1291 return -ENOENT; 1292 } 1293 1294 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1295 { 1296 struct bpf_map *new_maps; 1297 size_t new_cap; 1298 int i; 1299 1300 if (obj->nr_maps < obj->maps_cap) 1301 return &obj->maps[obj->nr_maps++]; 1302 1303 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1304 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1305 if (!new_maps) { 1306 pr_warn("alloc maps for object failed\n"); 1307 return ERR_PTR(-ENOMEM); 1308 } 1309 1310 obj->maps_cap = new_cap; 1311 obj->maps = new_maps; 1312 1313 /* zero out new maps */ 1314 memset(obj->maps + obj->nr_maps, 0, 1315 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1316 /* 1317 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1318 * when failure (zclose won't close negative fd)). 1319 */ 1320 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1321 obj->maps[i].fd = -1; 1322 obj->maps[i].inner_map_fd = -1; 1323 } 1324 1325 return &obj->maps[obj->nr_maps++]; 1326 } 1327 1328 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1329 { 1330 long page_sz = sysconf(_SC_PAGE_SIZE); 1331 size_t map_sz; 1332 1333 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1334 map_sz = roundup(map_sz, page_sz); 1335 return map_sz; 1336 } 1337 1338 static char *internal_map_name(struct bpf_object *obj, 1339 enum libbpf_map_type type) 1340 { 1341 char map_name[BPF_OBJ_NAME_LEN], *p; 1342 const char *sfx = libbpf_type_to_btf_name[type]; 1343 int sfx_len = max((size_t)7, strlen(sfx)); 1344 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1345 strlen(obj->name)); 1346 1347 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1348 sfx_len, libbpf_type_to_btf_name[type]); 1349 1350 /* sanitise map name to characters allowed by kernel */ 1351 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1352 if (!isalnum(*p) && *p != '_' && *p != '.') 1353 *p = '_'; 1354 1355 return strdup(map_name); 1356 } 1357 1358 static int 1359 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1360 int sec_idx, void *data, size_t data_sz) 1361 { 1362 struct bpf_map_def *def; 1363 struct bpf_map *map; 1364 int err; 1365 1366 map = bpf_object__add_map(obj); 1367 if (IS_ERR(map)) 1368 return PTR_ERR(map); 1369 1370 map->libbpf_type = type; 1371 map->sec_idx = sec_idx; 1372 map->sec_offset = 0; 1373 map->name = internal_map_name(obj, type); 1374 if (!map->name) { 1375 pr_warn("failed to alloc map name\n"); 1376 return -ENOMEM; 1377 } 1378 1379 def = &map->def; 1380 def->type = BPF_MAP_TYPE_ARRAY; 1381 def->key_size = sizeof(int); 1382 def->value_size = data_sz; 1383 def->max_entries = 1; 1384 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1385 ? BPF_F_RDONLY_PROG : 0; 1386 def->map_flags |= BPF_F_MMAPABLE; 1387 1388 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1389 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1390 1391 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1392 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1393 if (map->mmaped == MAP_FAILED) { 1394 err = -errno; 1395 map->mmaped = NULL; 1396 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1397 map->name, err); 1398 zfree(&map->name); 1399 return err; 1400 } 1401 1402 if (data) 1403 memcpy(map->mmaped, data, data_sz); 1404 1405 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1406 return 0; 1407 } 1408 1409 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1410 { 1411 int err; 1412 1413 /* 1414 * Populate obj->maps with libbpf internal maps. 1415 */ 1416 if (obj->efile.data_shndx >= 0) { 1417 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1418 obj->efile.data_shndx, 1419 obj->efile.data->d_buf, 1420 obj->efile.data->d_size); 1421 if (err) 1422 return err; 1423 } 1424 if (obj->efile.rodata_shndx >= 0) { 1425 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1426 obj->efile.rodata_shndx, 1427 obj->efile.rodata->d_buf, 1428 obj->efile.rodata->d_size); 1429 if (err) 1430 return err; 1431 } 1432 if (obj->efile.bss_shndx >= 0) { 1433 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1434 obj->efile.bss_shndx, 1435 NULL, 1436 obj->efile.bss->d_size); 1437 if (err) 1438 return err; 1439 } 1440 return 0; 1441 } 1442 1443 1444 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1445 const void *name) 1446 { 1447 int i; 1448 1449 for (i = 0; i < obj->nr_extern; i++) { 1450 if (strcmp(obj->externs[i].name, name) == 0) 1451 return &obj->externs[i]; 1452 } 1453 return NULL; 1454 } 1455 1456 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1457 char value) 1458 { 1459 switch (ext->kcfg.type) { 1460 case KCFG_BOOL: 1461 if (value == 'm') { 1462 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1463 ext->name, value); 1464 return -EINVAL; 1465 } 1466 *(bool *)ext_val = value == 'y' ? true : false; 1467 break; 1468 case KCFG_TRISTATE: 1469 if (value == 'y') 1470 *(enum libbpf_tristate *)ext_val = TRI_YES; 1471 else if (value == 'm') 1472 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1473 else /* value == 'n' */ 1474 *(enum libbpf_tristate *)ext_val = TRI_NO; 1475 break; 1476 case KCFG_CHAR: 1477 *(char *)ext_val = value; 1478 break; 1479 case KCFG_UNKNOWN: 1480 case KCFG_INT: 1481 case KCFG_CHAR_ARR: 1482 default: 1483 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1484 ext->name, value); 1485 return -EINVAL; 1486 } 1487 ext->is_set = true; 1488 return 0; 1489 } 1490 1491 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1492 const char *value) 1493 { 1494 size_t len; 1495 1496 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1497 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1498 return -EINVAL; 1499 } 1500 1501 len = strlen(value); 1502 if (value[len - 1] != '"') { 1503 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1504 ext->name, value); 1505 return -EINVAL; 1506 } 1507 1508 /* strip quotes */ 1509 len -= 2; 1510 if (len >= ext->kcfg.sz) { 1511 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1512 ext->name, value, len, ext->kcfg.sz - 1); 1513 len = ext->kcfg.sz - 1; 1514 } 1515 memcpy(ext_val, value + 1, len); 1516 ext_val[len] = '\0'; 1517 ext->is_set = true; 1518 return 0; 1519 } 1520 1521 static int parse_u64(const char *value, __u64 *res) 1522 { 1523 char *value_end; 1524 int err; 1525 1526 errno = 0; 1527 *res = strtoull(value, &value_end, 0); 1528 if (errno) { 1529 err = -errno; 1530 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1531 return err; 1532 } 1533 if (*value_end) { 1534 pr_warn("failed to parse '%s' as integer completely\n", value); 1535 return -EINVAL; 1536 } 1537 return 0; 1538 } 1539 1540 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1541 { 1542 int bit_sz = ext->kcfg.sz * 8; 1543 1544 if (ext->kcfg.sz == 8) 1545 return true; 1546 1547 /* Validate that value stored in u64 fits in integer of `ext->sz` 1548 * bytes size without any loss of information. If the target integer 1549 * is signed, we rely on the following limits of integer type of 1550 * Y bits and subsequent transformation: 1551 * 1552 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1553 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1554 * 0 <= X + 2^(Y-1) < 2^Y 1555 * 1556 * For unsigned target integer, check that all the (64 - Y) bits are 1557 * zero. 1558 */ 1559 if (ext->kcfg.is_signed) 1560 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1561 else 1562 return (v >> bit_sz) == 0; 1563 } 1564 1565 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1566 __u64 value) 1567 { 1568 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1569 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1570 ext->name, (unsigned long long)value); 1571 return -EINVAL; 1572 } 1573 if (!is_kcfg_value_in_range(ext, value)) { 1574 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1575 ext->name, (unsigned long long)value, ext->kcfg.sz); 1576 return -ERANGE; 1577 } 1578 switch (ext->kcfg.sz) { 1579 case 1: *(__u8 *)ext_val = value; break; 1580 case 2: *(__u16 *)ext_val = value; break; 1581 case 4: *(__u32 *)ext_val = value; break; 1582 case 8: *(__u64 *)ext_val = value; break; 1583 default: 1584 return -EINVAL; 1585 } 1586 ext->is_set = true; 1587 return 0; 1588 } 1589 1590 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1591 char *buf, void *data) 1592 { 1593 struct extern_desc *ext; 1594 char *sep, *value; 1595 int len, err = 0; 1596 void *ext_val; 1597 __u64 num; 1598 1599 if (strncmp(buf, "CONFIG_", 7)) 1600 return 0; 1601 1602 sep = strchr(buf, '='); 1603 if (!sep) { 1604 pr_warn("failed to parse '%s': no separator\n", buf); 1605 return -EINVAL; 1606 } 1607 1608 /* Trim ending '\n' */ 1609 len = strlen(buf); 1610 if (buf[len - 1] == '\n') 1611 buf[len - 1] = '\0'; 1612 /* Split on '=' and ensure that a value is present. */ 1613 *sep = '\0'; 1614 if (!sep[1]) { 1615 *sep = '='; 1616 pr_warn("failed to parse '%s': no value\n", buf); 1617 return -EINVAL; 1618 } 1619 1620 ext = find_extern_by_name(obj, buf); 1621 if (!ext || ext->is_set) 1622 return 0; 1623 1624 ext_val = data + ext->kcfg.data_off; 1625 value = sep + 1; 1626 1627 switch (*value) { 1628 case 'y': case 'n': case 'm': 1629 err = set_kcfg_value_tri(ext, ext_val, *value); 1630 break; 1631 case '"': 1632 err = set_kcfg_value_str(ext, ext_val, value); 1633 break; 1634 default: 1635 /* assume integer */ 1636 err = parse_u64(value, &num); 1637 if (err) { 1638 pr_warn("extern (kcfg) %s=%s should be integer\n", 1639 ext->name, value); 1640 return err; 1641 } 1642 err = set_kcfg_value_num(ext, ext_val, num); 1643 break; 1644 } 1645 if (err) 1646 return err; 1647 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1648 return 0; 1649 } 1650 1651 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1652 { 1653 char buf[PATH_MAX]; 1654 struct utsname uts; 1655 int len, err = 0; 1656 gzFile file; 1657 1658 uname(&uts); 1659 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1660 if (len < 0) 1661 return -EINVAL; 1662 else if (len >= PATH_MAX) 1663 return -ENAMETOOLONG; 1664 1665 /* gzopen also accepts uncompressed files. */ 1666 file = gzopen(buf, "r"); 1667 if (!file) 1668 file = gzopen("/proc/config.gz", "r"); 1669 1670 if (!file) { 1671 pr_warn("failed to open system Kconfig\n"); 1672 return -ENOENT; 1673 } 1674 1675 while (gzgets(file, buf, sizeof(buf))) { 1676 err = bpf_object__process_kconfig_line(obj, buf, data); 1677 if (err) { 1678 pr_warn("error parsing system Kconfig line '%s': %d\n", 1679 buf, err); 1680 goto out; 1681 } 1682 } 1683 1684 out: 1685 gzclose(file); 1686 return err; 1687 } 1688 1689 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1690 const char *config, void *data) 1691 { 1692 char buf[PATH_MAX]; 1693 int err = 0; 1694 FILE *file; 1695 1696 file = fmemopen((void *)config, strlen(config), "r"); 1697 if (!file) { 1698 err = -errno; 1699 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1700 return err; 1701 } 1702 1703 while (fgets(buf, sizeof(buf), file)) { 1704 err = bpf_object__process_kconfig_line(obj, buf, data); 1705 if (err) { 1706 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1707 buf, err); 1708 break; 1709 } 1710 } 1711 1712 fclose(file); 1713 return err; 1714 } 1715 1716 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1717 { 1718 struct extern_desc *last_ext = NULL, *ext; 1719 size_t map_sz; 1720 int i, err; 1721 1722 for (i = 0; i < obj->nr_extern; i++) { 1723 ext = &obj->externs[i]; 1724 if (ext->type == EXT_KCFG) 1725 last_ext = ext; 1726 } 1727 1728 if (!last_ext) 1729 return 0; 1730 1731 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1732 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1733 obj->efile.symbols_shndx, 1734 NULL, map_sz); 1735 if (err) 1736 return err; 1737 1738 obj->kconfig_map_idx = obj->nr_maps - 1; 1739 1740 return 0; 1741 } 1742 1743 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1744 { 1745 Elf_Data *symbols = obj->efile.symbols; 1746 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1747 Elf_Data *data = NULL; 1748 Elf_Scn *scn; 1749 1750 if (obj->efile.maps_shndx < 0) 1751 return 0; 1752 1753 if (!symbols) 1754 return -EINVAL; 1755 1756 1757 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1758 data = elf_sec_data(obj, scn); 1759 if (!scn || !data) { 1760 pr_warn("elf: failed to get legacy map definitions for %s\n", 1761 obj->path); 1762 return -EINVAL; 1763 } 1764 1765 /* 1766 * Count number of maps. Each map has a name. 1767 * Array of maps is not supported: only the first element is 1768 * considered. 1769 * 1770 * TODO: Detect array of map and report error. 1771 */ 1772 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1773 for (i = 0; i < nr_syms; i++) { 1774 GElf_Sym sym; 1775 1776 if (!gelf_getsym(symbols, i, &sym)) 1777 continue; 1778 if (sym.st_shndx != obj->efile.maps_shndx) 1779 continue; 1780 nr_maps++; 1781 } 1782 /* Assume equally sized map definitions */ 1783 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1784 nr_maps, data->d_size, obj->path); 1785 1786 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1787 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1788 obj->path); 1789 return -EINVAL; 1790 } 1791 map_def_sz = data->d_size / nr_maps; 1792 1793 /* Fill obj->maps using data in "maps" section. */ 1794 for (i = 0; i < nr_syms; i++) { 1795 GElf_Sym sym; 1796 const char *map_name; 1797 struct bpf_map_def *def; 1798 struct bpf_map *map; 1799 1800 if (!gelf_getsym(symbols, i, &sym)) 1801 continue; 1802 if (sym.st_shndx != obj->efile.maps_shndx) 1803 continue; 1804 1805 map = bpf_object__add_map(obj); 1806 if (IS_ERR(map)) 1807 return PTR_ERR(map); 1808 1809 map_name = elf_sym_str(obj, sym.st_name); 1810 if (!map_name) { 1811 pr_warn("failed to get map #%d name sym string for obj %s\n", 1812 i, obj->path); 1813 return -LIBBPF_ERRNO__FORMAT; 1814 } 1815 1816 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1817 map->sec_idx = sym.st_shndx; 1818 map->sec_offset = sym.st_value; 1819 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1820 map_name, map->sec_idx, map->sec_offset); 1821 if (sym.st_value + map_def_sz > data->d_size) { 1822 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1823 obj->path, map_name); 1824 return -EINVAL; 1825 } 1826 1827 map->name = strdup(map_name); 1828 if (!map->name) { 1829 pr_warn("failed to alloc map name\n"); 1830 return -ENOMEM; 1831 } 1832 pr_debug("map %d is \"%s\"\n", i, map->name); 1833 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1834 /* 1835 * If the definition of the map in the object file fits in 1836 * bpf_map_def, copy it. Any extra fields in our version 1837 * of bpf_map_def will default to zero as a result of the 1838 * calloc above. 1839 */ 1840 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1841 memcpy(&map->def, def, map_def_sz); 1842 } else { 1843 /* 1844 * Here the map structure being read is bigger than what 1845 * we expect, truncate if the excess bits are all zero. 1846 * If they are not zero, reject this map as 1847 * incompatible. 1848 */ 1849 char *b; 1850 1851 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1852 b < ((char *)def) + map_def_sz; b++) { 1853 if (*b != 0) { 1854 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1855 obj->path, map_name); 1856 if (strict) 1857 return -EINVAL; 1858 } 1859 } 1860 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1861 } 1862 } 1863 return 0; 1864 } 1865 1866 static const struct btf_type * 1867 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1868 { 1869 const struct btf_type *t = btf__type_by_id(btf, id); 1870 1871 if (res_id) 1872 *res_id = id; 1873 1874 while (btf_is_mod(t) || btf_is_typedef(t)) { 1875 if (res_id) 1876 *res_id = t->type; 1877 t = btf__type_by_id(btf, t->type); 1878 } 1879 1880 return t; 1881 } 1882 1883 static const struct btf_type * 1884 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1885 { 1886 const struct btf_type *t; 1887 1888 t = skip_mods_and_typedefs(btf, id, NULL); 1889 if (!btf_is_ptr(t)) 1890 return NULL; 1891 1892 t = skip_mods_and_typedefs(btf, t->type, res_id); 1893 1894 return btf_is_func_proto(t) ? t : NULL; 1895 } 1896 1897 static const char *btf_kind_str(const struct btf_type *t) 1898 { 1899 switch (btf_kind(t)) { 1900 case BTF_KIND_UNKN: return "void"; 1901 case BTF_KIND_INT: return "int"; 1902 case BTF_KIND_PTR: return "ptr"; 1903 case BTF_KIND_ARRAY: return "array"; 1904 case BTF_KIND_STRUCT: return "struct"; 1905 case BTF_KIND_UNION: return "union"; 1906 case BTF_KIND_ENUM: return "enum"; 1907 case BTF_KIND_FWD: return "fwd"; 1908 case BTF_KIND_TYPEDEF: return "typedef"; 1909 case BTF_KIND_VOLATILE: return "volatile"; 1910 case BTF_KIND_CONST: return "const"; 1911 case BTF_KIND_RESTRICT: return "restrict"; 1912 case BTF_KIND_FUNC: return "func"; 1913 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1914 case BTF_KIND_VAR: return "var"; 1915 case BTF_KIND_DATASEC: return "datasec"; 1916 default: return "unknown"; 1917 } 1918 } 1919 1920 /* 1921 * Fetch integer attribute of BTF map definition. Such attributes are 1922 * represented using a pointer to an array, in which dimensionality of array 1923 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1924 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1925 * type definition, while using only sizeof(void *) space in ELF data section. 1926 */ 1927 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1928 const struct btf_member *m, __u32 *res) 1929 { 1930 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1931 const char *name = btf__name_by_offset(btf, m->name_off); 1932 const struct btf_array *arr_info; 1933 const struct btf_type *arr_t; 1934 1935 if (!btf_is_ptr(t)) { 1936 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1937 map_name, name, btf_kind_str(t)); 1938 return false; 1939 } 1940 1941 arr_t = btf__type_by_id(btf, t->type); 1942 if (!arr_t) { 1943 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1944 map_name, name, t->type); 1945 return false; 1946 } 1947 if (!btf_is_array(arr_t)) { 1948 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1949 map_name, name, btf_kind_str(arr_t)); 1950 return false; 1951 } 1952 arr_info = btf_array(arr_t); 1953 *res = arr_info->nelems; 1954 return true; 1955 } 1956 1957 static int build_map_pin_path(struct bpf_map *map, const char *path) 1958 { 1959 char buf[PATH_MAX]; 1960 int len; 1961 1962 if (!path) 1963 path = "/sys/fs/bpf"; 1964 1965 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1966 if (len < 0) 1967 return -EINVAL; 1968 else if (len >= PATH_MAX) 1969 return -ENAMETOOLONG; 1970 1971 return bpf_map__set_pin_path(map, buf); 1972 } 1973 1974 1975 static int parse_btf_map_def(struct bpf_object *obj, 1976 struct bpf_map *map, 1977 const struct btf_type *def, 1978 bool strict, bool is_inner, 1979 const char *pin_root_path) 1980 { 1981 const struct btf_type *t; 1982 const struct btf_member *m; 1983 int vlen, i; 1984 1985 vlen = btf_vlen(def); 1986 m = btf_members(def); 1987 for (i = 0; i < vlen; i++, m++) { 1988 const char *name = btf__name_by_offset(obj->btf, m->name_off); 1989 1990 if (!name) { 1991 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 1992 return -EINVAL; 1993 } 1994 if (strcmp(name, "type") == 0) { 1995 if (!get_map_field_int(map->name, obj->btf, m, 1996 &map->def.type)) 1997 return -EINVAL; 1998 pr_debug("map '%s': found type = %u.\n", 1999 map->name, map->def.type); 2000 } else if (strcmp(name, "max_entries") == 0) { 2001 if (!get_map_field_int(map->name, obj->btf, m, 2002 &map->def.max_entries)) 2003 return -EINVAL; 2004 pr_debug("map '%s': found max_entries = %u.\n", 2005 map->name, map->def.max_entries); 2006 } else if (strcmp(name, "map_flags") == 0) { 2007 if (!get_map_field_int(map->name, obj->btf, m, 2008 &map->def.map_flags)) 2009 return -EINVAL; 2010 pr_debug("map '%s': found map_flags = %u.\n", 2011 map->name, map->def.map_flags); 2012 } else if (strcmp(name, "numa_node") == 0) { 2013 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2014 return -EINVAL; 2015 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2016 } else if (strcmp(name, "key_size") == 0) { 2017 __u32 sz; 2018 2019 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2020 return -EINVAL; 2021 pr_debug("map '%s': found key_size = %u.\n", 2022 map->name, sz); 2023 if (map->def.key_size && map->def.key_size != sz) { 2024 pr_warn("map '%s': conflicting key size %u != %u.\n", 2025 map->name, map->def.key_size, sz); 2026 return -EINVAL; 2027 } 2028 map->def.key_size = sz; 2029 } else if (strcmp(name, "key") == 0) { 2030 __s64 sz; 2031 2032 t = btf__type_by_id(obj->btf, m->type); 2033 if (!t) { 2034 pr_warn("map '%s': key type [%d] not found.\n", 2035 map->name, m->type); 2036 return -EINVAL; 2037 } 2038 if (!btf_is_ptr(t)) { 2039 pr_warn("map '%s': key spec is not PTR: %s.\n", 2040 map->name, btf_kind_str(t)); 2041 return -EINVAL; 2042 } 2043 sz = btf__resolve_size(obj->btf, t->type); 2044 if (sz < 0) { 2045 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2046 map->name, t->type, (ssize_t)sz); 2047 return sz; 2048 } 2049 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2050 map->name, t->type, (ssize_t)sz); 2051 if (map->def.key_size && map->def.key_size != sz) { 2052 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2053 map->name, map->def.key_size, (ssize_t)sz); 2054 return -EINVAL; 2055 } 2056 map->def.key_size = sz; 2057 map->btf_key_type_id = t->type; 2058 } else if (strcmp(name, "value_size") == 0) { 2059 __u32 sz; 2060 2061 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2062 return -EINVAL; 2063 pr_debug("map '%s': found value_size = %u.\n", 2064 map->name, sz); 2065 if (map->def.value_size && map->def.value_size != sz) { 2066 pr_warn("map '%s': conflicting value size %u != %u.\n", 2067 map->name, map->def.value_size, sz); 2068 return -EINVAL; 2069 } 2070 map->def.value_size = sz; 2071 } else if (strcmp(name, "value") == 0) { 2072 __s64 sz; 2073 2074 t = btf__type_by_id(obj->btf, m->type); 2075 if (!t) { 2076 pr_warn("map '%s': value type [%d] not found.\n", 2077 map->name, m->type); 2078 return -EINVAL; 2079 } 2080 if (!btf_is_ptr(t)) { 2081 pr_warn("map '%s': value spec is not PTR: %s.\n", 2082 map->name, btf_kind_str(t)); 2083 return -EINVAL; 2084 } 2085 sz = btf__resolve_size(obj->btf, t->type); 2086 if (sz < 0) { 2087 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2088 map->name, t->type, (ssize_t)sz); 2089 return sz; 2090 } 2091 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2092 map->name, t->type, (ssize_t)sz); 2093 if (map->def.value_size && map->def.value_size != sz) { 2094 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2095 map->name, map->def.value_size, (ssize_t)sz); 2096 return -EINVAL; 2097 } 2098 map->def.value_size = sz; 2099 map->btf_value_type_id = t->type; 2100 } 2101 else if (strcmp(name, "values") == 0) { 2102 int err; 2103 2104 if (is_inner) { 2105 pr_warn("map '%s': multi-level inner maps not supported.\n", 2106 map->name); 2107 return -ENOTSUP; 2108 } 2109 if (i != vlen - 1) { 2110 pr_warn("map '%s': '%s' member should be last.\n", 2111 map->name, name); 2112 return -EINVAL; 2113 } 2114 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2115 pr_warn("map '%s': should be map-in-map.\n", 2116 map->name); 2117 return -ENOTSUP; 2118 } 2119 if (map->def.value_size && map->def.value_size != 4) { 2120 pr_warn("map '%s': conflicting value size %u != 4.\n", 2121 map->name, map->def.value_size); 2122 return -EINVAL; 2123 } 2124 map->def.value_size = 4; 2125 t = btf__type_by_id(obj->btf, m->type); 2126 if (!t) { 2127 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2128 map->name, m->type); 2129 return -EINVAL; 2130 } 2131 if (!btf_is_array(t) || btf_array(t)->nelems) { 2132 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2133 map->name); 2134 return -EINVAL; 2135 } 2136 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2137 NULL); 2138 if (!btf_is_ptr(t)) { 2139 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2140 map->name, btf_kind_str(t)); 2141 return -EINVAL; 2142 } 2143 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2144 if (!btf_is_struct(t)) { 2145 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2146 map->name, btf_kind_str(t)); 2147 return -EINVAL; 2148 } 2149 2150 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2151 if (!map->inner_map) 2152 return -ENOMEM; 2153 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2154 map->inner_map->name = malloc(strlen(map->name) + 2155 sizeof(".inner") + 1); 2156 if (!map->inner_map->name) 2157 return -ENOMEM; 2158 sprintf(map->inner_map->name, "%s.inner", map->name); 2159 2160 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2161 true /* is_inner */, NULL); 2162 if (err) 2163 return err; 2164 } else if (strcmp(name, "pinning") == 0) { 2165 __u32 val; 2166 int err; 2167 2168 if (is_inner) { 2169 pr_debug("map '%s': inner def can't be pinned.\n", 2170 map->name); 2171 return -EINVAL; 2172 } 2173 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2174 return -EINVAL; 2175 pr_debug("map '%s': found pinning = %u.\n", 2176 map->name, val); 2177 2178 if (val != LIBBPF_PIN_NONE && 2179 val != LIBBPF_PIN_BY_NAME) { 2180 pr_warn("map '%s': invalid pinning value %u.\n", 2181 map->name, val); 2182 return -EINVAL; 2183 } 2184 if (val == LIBBPF_PIN_BY_NAME) { 2185 err = build_map_pin_path(map, pin_root_path); 2186 if (err) { 2187 pr_warn("map '%s': couldn't build pin path.\n", 2188 map->name); 2189 return err; 2190 } 2191 } 2192 } else { 2193 if (strict) { 2194 pr_warn("map '%s': unknown field '%s'.\n", 2195 map->name, name); 2196 return -ENOTSUP; 2197 } 2198 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2199 map->name, name); 2200 } 2201 } 2202 2203 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2204 pr_warn("map '%s': map type isn't specified.\n", map->name); 2205 return -EINVAL; 2206 } 2207 2208 return 0; 2209 } 2210 2211 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2212 const struct btf_type *sec, 2213 int var_idx, int sec_idx, 2214 const Elf_Data *data, bool strict, 2215 const char *pin_root_path) 2216 { 2217 const struct btf_type *var, *def; 2218 const struct btf_var_secinfo *vi; 2219 const struct btf_var *var_extra; 2220 const char *map_name; 2221 struct bpf_map *map; 2222 2223 vi = btf_var_secinfos(sec) + var_idx; 2224 var = btf__type_by_id(obj->btf, vi->type); 2225 var_extra = btf_var(var); 2226 map_name = btf__name_by_offset(obj->btf, var->name_off); 2227 2228 if (map_name == NULL || map_name[0] == '\0') { 2229 pr_warn("map #%d: empty name.\n", var_idx); 2230 return -EINVAL; 2231 } 2232 if ((__u64)vi->offset + vi->size > data->d_size) { 2233 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2234 return -EINVAL; 2235 } 2236 if (!btf_is_var(var)) { 2237 pr_warn("map '%s': unexpected var kind %s.\n", 2238 map_name, btf_kind_str(var)); 2239 return -EINVAL; 2240 } 2241 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2242 var_extra->linkage != BTF_VAR_STATIC) { 2243 pr_warn("map '%s': unsupported var linkage %u.\n", 2244 map_name, var_extra->linkage); 2245 return -EOPNOTSUPP; 2246 } 2247 2248 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2249 if (!btf_is_struct(def)) { 2250 pr_warn("map '%s': unexpected def kind %s.\n", 2251 map_name, btf_kind_str(var)); 2252 return -EINVAL; 2253 } 2254 if (def->size > vi->size) { 2255 pr_warn("map '%s': invalid def size.\n", map_name); 2256 return -EINVAL; 2257 } 2258 2259 map = bpf_object__add_map(obj); 2260 if (IS_ERR(map)) 2261 return PTR_ERR(map); 2262 map->name = strdup(map_name); 2263 if (!map->name) { 2264 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2265 return -ENOMEM; 2266 } 2267 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2268 map->def.type = BPF_MAP_TYPE_UNSPEC; 2269 map->sec_idx = sec_idx; 2270 map->sec_offset = vi->offset; 2271 map->btf_var_idx = var_idx; 2272 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2273 map_name, map->sec_idx, map->sec_offset); 2274 2275 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2276 } 2277 2278 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2279 const char *pin_root_path) 2280 { 2281 const struct btf_type *sec = NULL; 2282 int nr_types, i, vlen, err; 2283 const struct btf_type *t; 2284 const char *name; 2285 Elf_Data *data; 2286 Elf_Scn *scn; 2287 2288 if (obj->efile.btf_maps_shndx < 0) 2289 return 0; 2290 2291 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2292 data = elf_sec_data(obj, scn); 2293 if (!scn || !data) { 2294 pr_warn("elf: failed to get %s map definitions for %s\n", 2295 MAPS_ELF_SEC, obj->path); 2296 return -EINVAL; 2297 } 2298 2299 nr_types = btf__get_nr_types(obj->btf); 2300 for (i = 1; i <= nr_types; i++) { 2301 t = btf__type_by_id(obj->btf, i); 2302 if (!btf_is_datasec(t)) 2303 continue; 2304 name = btf__name_by_offset(obj->btf, t->name_off); 2305 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2306 sec = t; 2307 obj->efile.btf_maps_sec_btf_id = i; 2308 break; 2309 } 2310 } 2311 2312 if (!sec) { 2313 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2314 return -ENOENT; 2315 } 2316 2317 vlen = btf_vlen(sec); 2318 for (i = 0; i < vlen; i++) { 2319 err = bpf_object__init_user_btf_map(obj, sec, i, 2320 obj->efile.btf_maps_shndx, 2321 data, strict, 2322 pin_root_path); 2323 if (err) 2324 return err; 2325 } 2326 2327 return 0; 2328 } 2329 2330 static int bpf_object__init_maps(struct bpf_object *obj, 2331 const struct bpf_object_open_opts *opts) 2332 { 2333 const char *pin_root_path; 2334 bool strict; 2335 int err; 2336 2337 strict = !OPTS_GET(opts, relaxed_maps, false); 2338 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2339 2340 err = bpf_object__init_user_maps(obj, strict); 2341 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2342 err = err ?: bpf_object__init_global_data_maps(obj); 2343 err = err ?: bpf_object__init_kconfig_map(obj); 2344 err = err ?: bpf_object__init_struct_ops_maps(obj); 2345 if (err) 2346 return err; 2347 2348 return 0; 2349 } 2350 2351 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2352 { 2353 GElf_Shdr sh; 2354 2355 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2356 return false; 2357 2358 return sh.sh_flags & SHF_EXECINSTR; 2359 } 2360 2361 static bool btf_needs_sanitization(struct bpf_object *obj) 2362 { 2363 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2364 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2365 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2366 2367 return !has_func || !has_datasec || !has_func_global; 2368 } 2369 2370 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2371 { 2372 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2373 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2374 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2375 struct btf_type *t; 2376 int i, j, vlen; 2377 2378 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2379 t = (struct btf_type *)btf__type_by_id(btf, i); 2380 2381 if (!has_datasec && btf_is_var(t)) { 2382 /* replace VAR with INT */ 2383 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2384 /* 2385 * using size = 1 is the safest choice, 4 will be too 2386 * big and cause kernel BTF validation failure if 2387 * original variable took less than 4 bytes 2388 */ 2389 t->size = 1; 2390 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2391 } else if (!has_datasec && btf_is_datasec(t)) { 2392 /* replace DATASEC with STRUCT */ 2393 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2394 struct btf_member *m = btf_members(t); 2395 struct btf_type *vt; 2396 char *name; 2397 2398 name = (char *)btf__name_by_offset(btf, t->name_off); 2399 while (*name) { 2400 if (*name == '.') 2401 *name = '_'; 2402 name++; 2403 } 2404 2405 vlen = btf_vlen(t); 2406 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2407 for (j = 0; j < vlen; j++, v++, m++) { 2408 /* order of field assignments is important */ 2409 m->offset = v->offset * 8; 2410 m->type = v->type; 2411 /* preserve variable name as member name */ 2412 vt = (void *)btf__type_by_id(btf, v->type); 2413 m->name_off = vt->name_off; 2414 } 2415 } else if (!has_func && btf_is_func_proto(t)) { 2416 /* replace FUNC_PROTO with ENUM */ 2417 vlen = btf_vlen(t); 2418 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2419 t->size = sizeof(__u32); /* kernel enforced */ 2420 } else if (!has_func && btf_is_func(t)) { 2421 /* replace FUNC with TYPEDEF */ 2422 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2423 } else if (!has_func_global && btf_is_func(t)) { 2424 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2425 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2426 } 2427 } 2428 } 2429 2430 static bool libbpf_needs_btf(const struct bpf_object *obj) 2431 { 2432 return obj->efile.btf_maps_shndx >= 0 || 2433 obj->efile.st_ops_shndx >= 0 || 2434 obj->nr_extern > 0; 2435 } 2436 2437 static bool kernel_needs_btf(const struct bpf_object *obj) 2438 { 2439 return obj->efile.st_ops_shndx >= 0; 2440 } 2441 2442 static int bpf_object__init_btf(struct bpf_object *obj, 2443 Elf_Data *btf_data, 2444 Elf_Data *btf_ext_data) 2445 { 2446 int err = -ENOENT; 2447 2448 if (btf_data) { 2449 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2450 if (IS_ERR(obj->btf)) { 2451 err = PTR_ERR(obj->btf); 2452 obj->btf = NULL; 2453 pr_warn("Error loading ELF section %s: %d.\n", 2454 BTF_ELF_SEC, err); 2455 goto out; 2456 } 2457 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2458 btf__set_pointer_size(obj->btf, 8); 2459 err = 0; 2460 } 2461 if (btf_ext_data) { 2462 if (!obj->btf) { 2463 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2464 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2465 goto out; 2466 } 2467 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2468 btf_ext_data->d_size); 2469 if (IS_ERR(obj->btf_ext)) { 2470 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2471 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2472 obj->btf_ext = NULL; 2473 goto out; 2474 } 2475 } 2476 out: 2477 if (err && libbpf_needs_btf(obj)) { 2478 pr_warn("BTF is required, but is missing or corrupted.\n"); 2479 return err; 2480 } 2481 return 0; 2482 } 2483 2484 static int bpf_object__finalize_btf(struct bpf_object *obj) 2485 { 2486 int err; 2487 2488 if (!obj->btf) 2489 return 0; 2490 2491 err = btf__finalize_data(obj, obj->btf); 2492 if (err) { 2493 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2494 return err; 2495 } 2496 2497 return 0; 2498 } 2499 2500 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2501 { 2502 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2503 prog->type == BPF_PROG_TYPE_LSM) 2504 return true; 2505 2506 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2507 * also need vmlinux BTF 2508 */ 2509 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2510 return true; 2511 2512 return false; 2513 } 2514 2515 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2516 { 2517 bool need_vmlinux_btf = false; 2518 struct bpf_program *prog; 2519 int err; 2520 2521 /* CO-RE relocations need kernel BTF */ 2522 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2523 need_vmlinux_btf = true; 2524 2525 bpf_object__for_each_program(prog, obj) { 2526 if (!prog->load) 2527 continue; 2528 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2529 need_vmlinux_btf = true; 2530 break; 2531 } 2532 } 2533 2534 if (!need_vmlinux_btf) 2535 return 0; 2536 2537 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2538 if (IS_ERR(obj->btf_vmlinux)) { 2539 err = PTR_ERR(obj->btf_vmlinux); 2540 pr_warn("Error loading vmlinux BTF: %d\n", err); 2541 obj->btf_vmlinux = NULL; 2542 return err; 2543 } 2544 return 0; 2545 } 2546 2547 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2548 { 2549 struct btf *kern_btf = obj->btf; 2550 bool btf_mandatory, sanitize; 2551 int err = 0; 2552 2553 if (!obj->btf) 2554 return 0; 2555 2556 if (!kernel_supports(FEAT_BTF)) { 2557 if (kernel_needs_btf(obj)) { 2558 err = -EOPNOTSUPP; 2559 goto report; 2560 } 2561 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2562 return 0; 2563 } 2564 2565 sanitize = btf_needs_sanitization(obj); 2566 if (sanitize) { 2567 const void *raw_data; 2568 __u32 sz; 2569 2570 /* clone BTF to sanitize a copy and leave the original intact */ 2571 raw_data = btf__get_raw_data(obj->btf, &sz); 2572 kern_btf = btf__new(raw_data, sz); 2573 if (IS_ERR(kern_btf)) 2574 return PTR_ERR(kern_btf); 2575 2576 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2577 btf__set_pointer_size(obj->btf, 8); 2578 bpf_object__sanitize_btf(obj, kern_btf); 2579 } 2580 2581 err = btf__load(kern_btf); 2582 if (sanitize) { 2583 if (!err) { 2584 /* move fd to libbpf's BTF */ 2585 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2586 btf__set_fd(kern_btf, -1); 2587 } 2588 btf__free(kern_btf); 2589 } 2590 report: 2591 if (err) { 2592 btf_mandatory = kernel_needs_btf(obj); 2593 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2594 btf_mandatory ? "BTF is mandatory, can't proceed." 2595 : "BTF is optional, ignoring."); 2596 if (!btf_mandatory) 2597 err = 0; 2598 } 2599 return err; 2600 } 2601 2602 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2603 { 2604 const char *name; 2605 2606 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2607 if (!name) { 2608 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2609 off, obj->path, elf_errmsg(-1)); 2610 return NULL; 2611 } 2612 2613 return name; 2614 } 2615 2616 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2617 { 2618 const char *name; 2619 2620 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2621 if (!name) { 2622 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2623 off, obj->path, elf_errmsg(-1)); 2624 return NULL; 2625 } 2626 2627 return name; 2628 } 2629 2630 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2631 { 2632 Elf_Scn *scn; 2633 2634 scn = elf_getscn(obj->efile.elf, idx); 2635 if (!scn) { 2636 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2637 idx, obj->path, elf_errmsg(-1)); 2638 return NULL; 2639 } 2640 return scn; 2641 } 2642 2643 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2644 { 2645 Elf_Scn *scn = NULL; 2646 Elf *elf = obj->efile.elf; 2647 const char *sec_name; 2648 2649 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2650 sec_name = elf_sec_name(obj, scn); 2651 if (!sec_name) 2652 return NULL; 2653 2654 if (strcmp(sec_name, name) != 0) 2655 continue; 2656 2657 return scn; 2658 } 2659 return NULL; 2660 } 2661 2662 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2663 { 2664 if (!scn) 2665 return -EINVAL; 2666 2667 if (gelf_getshdr(scn, hdr) != hdr) { 2668 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2669 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2670 return -EINVAL; 2671 } 2672 2673 return 0; 2674 } 2675 2676 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2677 { 2678 const char *name; 2679 GElf_Shdr sh; 2680 2681 if (!scn) 2682 return NULL; 2683 2684 if (elf_sec_hdr(obj, scn, &sh)) 2685 return NULL; 2686 2687 name = elf_sec_str(obj, sh.sh_name); 2688 if (!name) { 2689 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2690 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2691 return NULL; 2692 } 2693 2694 return name; 2695 } 2696 2697 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2698 { 2699 Elf_Data *data; 2700 2701 if (!scn) 2702 return NULL; 2703 2704 data = elf_getdata(scn, 0); 2705 if (!data) { 2706 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2707 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2708 obj->path, elf_errmsg(-1)); 2709 return NULL; 2710 } 2711 2712 return data; 2713 } 2714 2715 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2716 size_t off, __u32 sym_type, GElf_Sym *sym) 2717 { 2718 Elf_Data *symbols = obj->efile.symbols; 2719 size_t n = symbols->d_size / sizeof(GElf_Sym); 2720 int i; 2721 2722 for (i = 0; i < n; i++) { 2723 if (!gelf_getsym(symbols, i, sym)) 2724 continue; 2725 if (sym->st_shndx != sec_idx || sym->st_value != off) 2726 continue; 2727 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2728 continue; 2729 return 0; 2730 } 2731 2732 return -ENOENT; 2733 } 2734 2735 static bool is_sec_name_dwarf(const char *name) 2736 { 2737 /* approximation, but the actual list is too long */ 2738 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2739 } 2740 2741 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2742 { 2743 /* no special handling of .strtab */ 2744 if (hdr->sh_type == SHT_STRTAB) 2745 return true; 2746 2747 /* ignore .llvm_addrsig section as well */ 2748 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */) 2749 return true; 2750 2751 /* no subprograms will lead to an empty .text section, ignore it */ 2752 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2753 strcmp(name, ".text") == 0) 2754 return true; 2755 2756 /* DWARF sections */ 2757 if (is_sec_name_dwarf(name)) 2758 return true; 2759 2760 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2761 name += sizeof(".rel") - 1; 2762 /* DWARF section relocations */ 2763 if (is_sec_name_dwarf(name)) 2764 return true; 2765 2766 /* .BTF and .BTF.ext don't need relocations */ 2767 if (strcmp(name, BTF_ELF_SEC) == 0 || 2768 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2769 return true; 2770 } 2771 2772 return false; 2773 } 2774 2775 static int cmp_progs(const void *_a, const void *_b) 2776 { 2777 const struct bpf_program *a = _a; 2778 const struct bpf_program *b = _b; 2779 2780 if (a->sec_idx != b->sec_idx) 2781 return a->sec_idx < b->sec_idx ? -1 : 1; 2782 2783 /* sec_insn_off can't be the same within the section */ 2784 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2785 } 2786 2787 static int bpf_object__elf_collect(struct bpf_object *obj) 2788 { 2789 Elf *elf = obj->efile.elf; 2790 Elf_Data *btf_ext_data = NULL; 2791 Elf_Data *btf_data = NULL; 2792 int idx = 0, err = 0; 2793 const char *name; 2794 Elf_Data *data; 2795 Elf_Scn *scn; 2796 GElf_Shdr sh; 2797 2798 /* a bunch of ELF parsing functionality depends on processing symbols, 2799 * so do the first pass and find the symbol table 2800 */ 2801 scn = NULL; 2802 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2803 if (elf_sec_hdr(obj, scn, &sh)) 2804 return -LIBBPF_ERRNO__FORMAT; 2805 2806 if (sh.sh_type == SHT_SYMTAB) { 2807 if (obj->efile.symbols) { 2808 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2809 return -LIBBPF_ERRNO__FORMAT; 2810 } 2811 2812 data = elf_sec_data(obj, scn); 2813 if (!data) 2814 return -LIBBPF_ERRNO__FORMAT; 2815 2816 obj->efile.symbols = data; 2817 obj->efile.symbols_shndx = elf_ndxscn(scn); 2818 obj->efile.strtabidx = sh.sh_link; 2819 } 2820 } 2821 2822 scn = NULL; 2823 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2824 idx++; 2825 2826 if (elf_sec_hdr(obj, scn, &sh)) 2827 return -LIBBPF_ERRNO__FORMAT; 2828 2829 name = elf_sec_str(obj, sh.sh_name); 2830 if (!name) 2831 return -LIBBPF_ERRNO__FORMAT; 2832 2833 if (ignore_elf_section(&sh, name)) 2834 continue; 2835 2836 data = elf_sec_data(obj, scn); 2837 if (!data) 2838 return -LIBBPF_ERRNO__FORMAT; 2839 2840 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2841 idx, name, (unsigned long)data->d_size, 2842 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2843 (int)sh.sh_type); 2844 2845 if (strcmp(name, "license") == 0) { 2846 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2847 if (err) 2848 return err; 2849 } else if (strcmp(name, "version") == 0) { 2850 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2851 if (err) 2852 return err; 2853 } else if (strcmp(name, "maps") == 0) { 2854 obj->efile.maps_shndx = idx; 2855 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2856 obj->efile.btf_maps_shndx = idx; 2857 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2858 btf_data = data; 2859 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2860 btf_ext_data = data; 2861 } else if (sh.sh_type == SHT_SYMTAB) { 2862 /* already processed during the first pass above */ 2863 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2864 if (sh.sh_flags & SHF_EXECINSTR) { 2865 if (strcmp(name, ".text") == 0) 2866 obj->efile.text_shndx = idx; 2867 err = bpf_object__add_programs(obj, data, name, idx); 2868 if (err) 2869 return err; 2870 } else if (strcmp(name, DATA_SEC) == 0) { 2871 obj->efile.data = data; 2872 obj->efile.data_shndx = idx; 2873 } else if (strcmp(name, RODATA_SEC) == 0) { 2874 obj->efile.rodata = data; 2875 obj->efile.rodata_shndx = idx; 2876 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2877 obj->efile.st_ops_data = data; 2878 obj->efile.st_ops_shndx = idx; 2879 } else { 2880 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2881 idx, name); 2882 } 2883 } else if (sh.sh_type == SHT_REL) { 2884 int nr_sects = obj->efile.nr_reloc_sects; 2885 void *sects = obj->efile.reloc_sects; 2886 int sec = sh.sh_info; /* points to other section */ 2887 2888 /* Only do relo for section with exec instructions */ 2889 if (!section_have_execinstr(obj, sec) && 2890 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2891 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2892 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2893 idx, name, sec, 2894 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2895 continue; 2896 } 2897 2898 sects = libbpf_reallocarray(sects, nr_sects + 1, 2899 sizeof(*obj->efile.reloc_sects)); 2900 if (!sects) 2901 return -ENOMEM; 2902 2903 obj->efile.reloc_sects = sects; 2904 obj->efile.nr_reloc_sects++; 2905 2906 obj->efile.reloc_sects[nr_sects].shdr = sh; 2907 obj->efile.reloc_sects[nr_sects].data = data; 2908 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2909 obj->efile.bss = data; 2910 obj->efile.bss_shndx = idx; 2911 } else { 2912 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2913 (size_t)sh.sh_size); 2914 } 2915 } 2916 2917 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2918 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2919 return -LIBBPF_ERRNO__FORMAT; 2920 } 2921 2922 /* sort BPF programs by section name and in-section instruction offset 2923 * for faster search */ 2924 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2925 2926 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2927 } 2928 2929 static bool sym_is_extern(const GElf_Sym *sym) 2930 { 2931 int bind = GELF_ST_BIND(sym->st_info); 2932 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2933 return sym->st_shndx == SHN_UNDEF && 2934 (bind == STB_GLOBAL || bind == STB_WEAK) && 2935 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2936 } 2937 2938 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2939 { 2940 const struct btf_type *t; 2941 const char *var_name; 2942 int i, n; 2943 2944 if (!btf) 2945 return -ESRCH; 2946 2947 n = btf__get_nr_types(btf); 2948 for (i = 1; i <= n; i++) { 2949 t = btf__type_by_id(btf, i); 2950 2951 if (!btf_is_var(t)) 2952 continue; 2953 2954 var_name = btf__name_by_offset(btf, t->name_off); 2955 if (strcmp(var_name, ext_name)) 2956 continue; 2957 2958 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2959 return -EINVAL; 2960 2961 return i; 2962 } 2963 2964 return -ENOENT; 2965 } 2966 2967 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 2968 const struct btf_var_secinfo *vs; 2969 const struct btf_type *t; 2970 int i, j, n; 2971 2972 if (!btf) 2973 return -ESRCH; 2974 2975 n = btf__get_nr_types(btf); 2976 for (i = 1; i <= n; i++) { 2977 t = btf__type_by_id(btf, i); 2978 2979 if (!btf_is_datasec(t)) 2980 continue; 2981 2982 vs = btf_var_secinfos(t); 2983 for (j = 0; j < btf_vlen(t); j++, vs++) { 2984 if (vs->type == ext_btf_id) 2985 return i; 2986 } 2987 } 2988 2989 return -ENOENT; 2990 } 2991 2992 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 2993 bool *is_signed) 2994 { 2995 const struct btf_type *t; 2996 const char *name; 2997 2998 t = skip_mods_and_typedefs(btf, id, NULL); 2999 name = btf__name_by_offset(btf, t->name_off); 3000 3001 if (is_signed) 3002 *is_signed = false; 3003 switch (btf_kind(t)) { 3004 case BTF_KIND_INT: { 3005 int enc = btf_int_encoding(t); 3006 3007 if (enc & BTF_INT_BOOL) 3008 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3009 if (is_signed) 3010 *is_signed = enc & BTF_INT_SIGNED; 3011 if (t->size == 1) 3012 return KCFG_CHAR; 3013 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3014 return KCFG_UNKNOWN; 3015 return KCFG_INT; 3016 } 3017 case BTF_KIND_ENUM: 3018 if (t->size != 4) 3019 return KCFG_UNKNOWN; 3020 if (strcmp(name, "libbpf_tristate")) 3021 return KCFG_UNKNOWN; 3022 return KCFG_TRISTATE; 3023 case BTF_KIND_ARRAY: 3024 if (btf_array(t)->nelems == 0) 3025 return KCFG_UNKNOWN; 3026 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3027 return KCFG_UNKNOWN; 3028 return KCFG_CHAR_ARR; 3029 default: 3030 return KCFG_UNKNOWN; 3031 } 3032 } 3033 3034 static int cmp_externs(const void *_a, const void *_b) 3035 { 3036 const struct extern_desc *a = _a; 3037 const struct extern_desc *b = _b; 3038 3039 if (a->type != b->type) 3040 return a->type < b->type ? -1 : 1; 3041 3042 if (a->type == EXT_KCFG) { 3043 /* descending order by alignment requirements */ 3044 if (a->kcfg.align != b->kcfg.align) 3045 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3046 /* ascending order by size, within same alignment class */ 3047 if (a->kcfg.sz != b->kcfg.sz) 3048 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3049 } 3050 3051 /* resolve ties by name */ 3052 return strcmp(a->name, b->name); 3053 } 3054 3055 static int find_int_btf_id(const struct btf *btf) 3056 { 3057 const struct btf_type *t; 3058 int i, n; 3059 3060 n = btf__get_nr_types(btf); 3061 for (i = 1; i <= n; i++) { 3062 t = btf__type_by_id(btf, i); 3063 3064 if (btf_is_int(t) && btf_int_bits(t) == 32) 3065 return i; 3066 } 3067 3068 return 0; 3069 } 3070 3071 static int bpf_object__collect_externs(struct bpf_object *obj) 3072 { 3073 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3074 const struct btf_type *t; 3075 struct extern_desc *ext; 3076 int i, n, off; 3077 const char *ext_name, *sec_name; 3078 Elf_Scn *scn; 3079 GElf_Shdr sh; 3080 3081 if (!obj->efile.symbols) 3082 return 0; 3083 3084 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3085 if (elf_sec_hdr(obj, scn, &sh)) 3086 return -LIBBPF_ERRNO__FORMAT; 3087 3088 n = sh.sh_size / sh.sh_entsize; 3089 pr_debug("looking for externs among %d symbols...\n", n); 3090 3091 for (i = 0; i < n; i++) { 3092 GElf_Sym sym; 3093 3094 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3095 return -LIBBPF_ERRNO__FORMAT; 3096 if (!sym_is_extern(&sym)) 3097 continue; 3098 ext_name = elf_sym_str(obj, sym.st_name); 3099 if (!ext_name || !ext_name[0]) 3100 continue; 3101 3102 ext = obj->externs; 3103 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3104 if (!ext) 3105 return -ENOMEM; 3106 obj->externs = ext; 3107 ext = &ext[obj->nr_extern]; 3108 memset(ext, 0, sizeof(*ext)); 3109 obj->nr_extern++; 3110 3111 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3112 if (ext->btf_id <= 0) { 3113 pr_warn("failed to find BTF for extern '%s': %d\n", 3114 ext_name, ext->btf_id); 3115 return ext->btf_id; 3116 } 3117 t = btf__type_by_id(obj->btf, ext->btf_id); 3118 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3119 ext->sym_idx = i; 3120 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3121 3122 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3123 if (ext->sec_btf_id <= 0) { 3124 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3125 ext_name, ext->btf_id, ext->sec_btf_id); 3126 return ext->sec_btf_id; 3127 } 3128 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3129 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3130 3131 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3132 kcfg_sec = sec; 3133 ext->type = EXT_KCFG; 3134 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3135 if (ext->kcfg.sz <= 0) { 3136 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3137 ext_name, ext->kcfg.sz); 3138 return ext->kcfg.sz; 3139 } 3140 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3141 if (ext->kcfg.align <= 0) { 3142 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3143 ext_name, ext->kcfg.align); 3144 return -EINVAL; 3145 } 3146 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3147 &ext->kcfg.is_signed); 3148 if (ext->kcfg.type == KCFG_UNKNOWN) { 3149 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3150 return -ENOTSUP; 3151 } 3152 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3153 const struct btf_type *vt; 3154 3155 ksym_sec = sec; 3156 ext->type = EXT_KSYM; 3157 3158 vt = skip_mods_and_typedefs(obj->btf, t->type, NULL); 3159 if (!btf_is_void(vt)) { 3160 pr_warn("extern (ksym) '%s' is not typeless (void)\n", ext_name); 3161 return -ENOTSUP; 3162 } 3163 } else { 3164 pr_warn("unrecognized extern section '%s'\n", sec_name); 3165 return -ENOTSUP; 3166 } 3167 } 3168 pr_debug("collected %d externs total\n", obj->nr_extern); 3169 3170 if (!obj->nr_extern) 3171 return 0; 3172 3173 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3174 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3175 3176 /* for .ksyms section, we need to turn all externs into allocated 3177 * variables in BTF to pass kernel verification; we do this by 3178 * pretending that each extern is a 8-byte variable 3179 */ 3180 if (ksym_sec) { 3181 /* find existing 4-byte integer type in BTF to use for fake 3182 * extern variables in DATASEC 3183 */ 3184 int int_btf_id = find_int_btf_id(obj->btf); 3185 3186 for (i = 0; i < obj->nr_extern; i++) { 3187 ext = &obj->externs[i]; 3188 if (ext->type != EXT_KSYM) 3189 continue; 3190 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3191 i, ext->sym_idx, ext->name); 3192 } 3193 3194 sec = ksym_sec; 3195 n = btf_vlen(sec); 3196 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3197 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3198 struct btf_type *vt; 3199 3200 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3201 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3202 ext = find_extern_by_name(obj, ext_name); 3203 if (!ext) { 3204 pr_warn("failed to find extern definition for BTF var '%s'\n", 3205 ext_name); 3206 return -ESRCH; 3207 } 3208 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3209 vt->type = int_btf_id; 3210 vs->offset = off; 3211 vs->size = sizeof(int); 3212 } 3213 sec->size = off; 3214 } 3215 3216 if (kcfg_sec) { 3217 sec = kcfg_sec; 3218 /* for kcfg externs calculate their offsets within a .kconfig map */ 3219 off = 0; 3220 for (i = 0; i < obj->nr_extern; i++) { 3221 ext = &obj->externs[i]; 3222 if (ext->type != EXT_KCFG) 3223 continue; 3224 3225 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3226 off = ext->kcfg.data_off + ext->kcfg.sz; 3227 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3228 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3229 } 3230 sec->size = off; 3231 n = btf_vlen(sec); 3232 for (i = 0; i < n; i++) { 3233 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3234 3235 t = btf__type_by_id(obj->btf, vs->type); 3236 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3237 ext = find_extern_by_name(obj, ext_name); 3238 if (!ext) { 3239 pr_warn("failed to find extern definition for BTF var '%s'\n", 3240 ext_name); 3241 return -ESRCH; 3242 } 3243 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3244 vs->offset = ext->kcfg.data_off; 3245 } 3246 } 3247 return 0; 3248 } 3249 3250 struct bpf_program * 3251 bpf_object__find_program_by_title(const struct bpf_object *obj, 3252 const char *title) 3253 { 3254 struct bpf_program *pos; 3255 3256 bpf_object__for_each_program(pos, obj) { 3257 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3258 return pos; 3259 } 3260 return NULL; 3261 } 3262 3263 static bool prog_is_subprog(const struct bpf_object *obj, 3264 const struct bpf_program *prog) 3265 { 3266 return prog->sec_idx == obj->efile.text_shndx && obj->has_subcalls; 3267 } 3268 3269 struct bpf_program * 3270 bpf_object__find_program_by_name(const struct bpf_object *obj, 3271 const char *name) 3272 { 3273 struct bpf_program *prog; 3274 3275 bpf_object__for_each_program(prog, obj) { 3276 if (prog_is_subprog(obj, prog)) 3277 continue; 3278 if (!strcmp(prog->name, name)) 3279 return prog; 3280 } 3281 return NULL; 3282 } 3283 3284 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3285 int shndx) 3286 { 3287 return shndx == obj->efile.data_shndx || 3288 shndx == obj->efile.bss_shndx || 3289 shndx == obj->efile.rodata_shndx; 3290 } 3291 3292 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3293 int shndx) 3294 { 3295 return shndx == obj->efile.maps_shndx || 3296 shndx == obj->efile.btf_maps_shndx; 3297 } 3298 3299 static enum libbpf_map_type 3300 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3301 { 3302 if (shndx == obj->efile.data_shndx) 3303 return LIBBPF_MAP_DATA; 3304 else if (shndx == obj->efile.bss_shndx) 3305 return LIBBPF_MAP_BSS; 3306 else if (shndx == obj->efile.rodata_shndx) 3307 return LIBBPF_MAP_RODATA; 3308 else if (shndx == obj->efile.symbols_shndx) 3309 return LIBBPF_MAP_KCONFIG; 3310 else 3311 return LIBBPF_MAP_UNSPEC; 3312 } 3313 3314 static int bpf_program__record_reloc(struct bpf_program *prog, 3315 struct reloc_desc *reloc_desc, 3316 __u32 insn_idx, const char *sym_name, 3317 const GElf_Sym *sym, const GElf_Rel *rel) 3318 { 3319 struct bpf_insn *insn = &prog->insns[insn_idx]; 3320 size_t map_idx, nr_maps = prog->obj->nr_maps; 3321 struct bpf_object *obj = prog->obj; 3322 __u32 shdr_idx = sym->st_shndx; 3323 enum libbpf_map_type type; 3324 const char *sym_sec_name; 3325 struct bpf_map *map; 3326 3327 reloc_desc->processed = false; 3328 3329 /* sub-program call relocation */ 3330 if (insn->code == (BPF_JMP | BPF_CALL)) { 3331 if (insn->src_reg != BPF_PSEUDO_CALL) { 3332 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3333 return -LIBBPF_ERRNO__RELOC; 3334 } 3335 /* text_shndx can be 0, if no default "main" program exists */ 3336 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3337 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3338 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3339 prog->name, sym_name, sym_sec_name); 3340 return -LIBBPF_ERRNO__RELOC; 3341 } 3342 if (sym->st_value % BPF_INSN_SZ) { 3343 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3344 prog->name, sym_name, (size_t)sym->st_value); 3345 return -LIBBPF_ERRNO__RELOC; 3346 } 3347 reloc_desc->type = RELO_CALL; 3348 reloc_desc->insn_idx = insn_idx; 3349 reloc_desc->sym_off = sym->st_value; 3350 return 0; 3351 } 3352 3353 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 3354 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3355 prog->name, sym_name, insn_idx, insn->code); 3356 return -LIBBPF_ERRNO__RELOC; 3357 } 3358 3359 if (sym_is_extern(sym)) { 3360 int sym_idx = GELF_R_SYM(rel->r_info); 3361 int i, n = obj->nr_extern; 3362 struct extern_desc *ext; 3363 3364 for (i = 0; i < n; i++) { 3365 ext = &obj->externs[i]; 3366 if (ext->sym_idx == sym_idx) 3367 break; 3368 } 3369 if (i >= n) { 3370 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3371 prog->name, sym_name, sym_idx); 3372 return -LIBBPF_ERRNO__RELOC; 3373 } 3374 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3375 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3376 reloc_desc->type = RELO_EXTERN; 3377 reloc_desc->insn_idx = insn_idx; 3378 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3379 return 0; 3380 } 3381 3382 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3383 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3384 prog->name, sym_name, shdr_idx); 3385 return -LIBBPF_ERRNO__RELOC; 3386 } 3387 3388 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3389 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3390 3391 /* generic map reference relocation */ 3392 if (type == LIBBPF_MAP_UNSPEC) { 3393 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3394 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3395 prog->name, sym_name, sym_sec_name); 3396 return -LIBBPF_ERRNO__RELOC; 3397 } 3398 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3399 map = &obj->maps[map_idx]; 3400 if (map->libbpf_type != type || 3401 map->sec_idx != sym->st_shndx || 3402 map->sec_offset != sym->st_value) 3403 continue; 3404 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3405 prog->name, map_idx, map->name, map->sec_idx, 3406 map->sec_offset, insn_idx); 3407 break; 3408 } 3409 if (map_idx >= nr_maps) { 3410 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3411 prog->name, sym_sec_name, (size_t)sym->st_value); 3412 return -LIBBPF_ERRNO__RELOC; 3413 } 3414 reloc_desc->type = RELO_LD64; 3415 reloc_desc->insn_idx = insn_idx; 3416 reloc_desc->map_idx = map_idx; 3417 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3418 return 0; 3419 } 3420 3421 /* global data map relocation */ 3422 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3423 pr_warn("prog '%s': bad data relo against section '%s'\n", 3424 prog->name, sym_sec_name); 3425 return -LIBBPF_ERRNO__RELOC; 3426 } 3427 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3428 map = &obj->maps[map_idx]; 3429 if (map->libbpf_type != type) 3430 continue; 3431 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3432 prog->name, map_idx, map->name, map->sec_idx, 3433 map->sec_offset, insn_idx); 3434 break; 3435 } 3436 if (map_idx >= nr_maps) { 3437 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3438 prog->name, sym_sec_name); 3439 return -LIBBPF_ERRNO__RELOC; 3440 } 3441 3442 reloc_desc->type = RELO_DATA; 3443 reloc_desc->insn_idx = insn_idx; 3444 reloc_desc->map_idx = map_idx; 3445 reloc_desc->sym_off = sym->st_value; 3446 return 0; 3447 } 3448 3449 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3450 { 3451 return insn_idx >= prog->sec_insn_off && 3452 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3453 } 3454 3455 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3456 size_t sec_idx, size_t insn_idx) 3457 { 3458 int l = 0, r = obj->nr_programs - 1, m; 3459 struct bpf_program *prog; 3460 3461 while (l < r) { 3462 m = l + (r - l + 1) / 2; 3463 prog = &obj->programs[m]; 3464 3465 if (prog->sec_idx < sec_idx || 3466 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3467 l = m; 3468 else 3469 r = m - 1; 3470 } 3471 /* matching program could be at index l, but it still might be the 3472 * wrong one, so we need to double check conditions for the last time 3473 */ 3474 prog = &obj->programs[l]; 3475 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3476 return prog; 3477 return NULL; 3478 } 3479 3480 static int 3481 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3482 { 3483 Elf_Data *symbols = obj->efile.symbols; 3484 const char *relo_sec_name, *sec_name; 3485 size_t sec_idx = shdr->sh_info; 3486 struct bpf_program *prog; 3487 struct reloc_desc *relos; 3488 int err, i, nrels; 3489 const char *sym_name; 3490 __u32 insn_idx; 3491 GElf_Sym sym; 3492 GElf_Rel rel; 3493 3494 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3495 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3496 if (!relo_sec_name || !sec_name) 3497 return -EINVAL; 3498 3499 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3500 relo_sec_name, sec_idx, sec_name); 3501 nrels = shdr->sh_size / shdr->sh_entsize; 3502 3503 for (i = 0; i < nrels; i++) { 3504 if (!gelf_getrel(data, i, &rel)) { 3505 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3506 return -LIBBPF_ERRNO__FORMAT; 3507 } 3508 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3509 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3510 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3511 return -LIBBPF_ERRNO__FORMAT; 3512 } 3513 if (rel.r_offset % BPF_INSN_SZ) { 3514 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3515 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3516 return -LIBBPF_ERRNO__FORMAT; 3517 } 3518 3519 insn_idx = rel.r_offset / BPF_INSN_SZ; 3520 /* relocations against static functions are recorded as 3521 * relocations against the section that contains a function; 3522 * in such case, symbol will be STT_SECTION and sym.st_name 3523 * will point to empty string (0), so fetch section name 3524 * instead 3525 */ 3526 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3527 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3528 else 3529 sym_name = elf_sym_str(obj, sym.st_name); 3530 sym_name = sym_name ?: "<?"; 3531 3532 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3533 relo_sec_name, i, insn_idx, sym_name); 3534 3535 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3536 if (!prog) { 3537 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3538 relo_sec_name, i, sec_name, insn_idx); 3539 return -LIBBPF_ERRNO__RELOC; 3540 } 3541 3542 relos = libbpf_reallocarray(prog->reloc_desc, 3543 prog->nr_reloc + 1, sizeof(*relos)); 3544 if (!relos) 3545 return -ENOMEM; 3546 prog->reloc_desc = relos; 3547 3548 /* adjust insn_idx to local BPF program frame of reference */ 3549 insn_idx -= prog->sec_insn_off; 3550 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3551 insn_idx, sym_name, &sym, &rel); 3552 if (err) 3553 return err; 3554 3555 prog->nr_reloc++; 3556 } 3557 return 0; 3558 } 3559 3560 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3561 { 3562 struct bpf_map_def *def = &map->def; 3563 __u32 key_type_id = 0, value_type_id = 0; 3564 int ret; 3565 3566 /* if it's BTF-defined map, we don't need to search for type IDs. 3567 * For struct_ops map, it does not need btf_key_type_id and 3568 * btf_value_type_id. 3569 */ 3570 if (map->sec_idx == obj->efile.btf_maps_shndx || 3571 bpf_map__is_struct_ops(map)) 3572 return 0; 3573 3574 if (!bpf_map__is_internal(map)) { 3575 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3576 def->value_size, &key_type_id, 3577 &value_type_id); 3578 } else { 3579 /* 3580 * LLVM annotates global data differently in BTF, that is, 3581 * only as '.data', '.bss' or '.rodata'. 3582 */ 3583 ret = btf__find_by_name(obj->btf, 3584 libbpf_type_to_btf_name[map->libbpf_type]); 3585 } 3586 if (ret < 0) 3587 return ret; 3588 3589 map->btf_key_type_id = key_type_id; 3590 map->btf_value_type_id = bpf_map__is_internal(map) ? 3591 ret : value_type_id; 3592 return 0; 3593 } 3594 3595 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3596 { 3597 struct bpf_map_info info = {}; 3598 __u32 len = sizeof(info); 3599 int new_fd, err; 3600 char *new_name; 3601 3602 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3603 if (err) 3604 return err; 3605 3606 new_name = strdup(info.name); 3607 if (!new_name) 3608 return -errno; 3609 3610 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3611 if (new_fd < 0) { 3612 err = -errno; 3613 goto err_free_new_name; 3614 } 3615 3616 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3617 if (new_fd < 0) { 3618 err = -errno; 3619 goto err_close_new_fd; 3620 } 3621 3622 err = zclose(map->fd); 3623 if (err) { 3624 err = -errno; 3625 goto err_close_new_fd; 3626 } 3627 free(map->name); 3628 3629 map->fd = new_fd; 3630 map->name = new_name; 3631 map->def.type = info.type; 3632 map->def.key_size = info.key_size; 3633 map->def.value_size = info.value_size; 3634 map->def.max_entries = info.max_entries; 3635 map->def.map_flags = info.map_flags; 3636 map->btf_key_type_id = info.btf_key_type_id; 3637 map->btf_value_type_id = info.btf_value_type_id; 3638 map->reused = true; 3639 3640 return 0; 3641 3642 err_close_new_fd: 3643 close(new_fd); 3644 err_free_new_name: 3645 free(new_name); 3646 return err; 3647 } 3648 3649 __u32 bpf_map__max_entries(const struct bpf_map *map) 3650 { 3651 return map->def.max_entries; 3652 } 3653 3654 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3655 { 3656 if (map->fd >= 0) 3657 return -EBUSY; 3658 map->def.max_entries = max_entries; 3659 return 0; 3660 } 3661 3662 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3663 { 3664 if (!map || !max_entries) 3665 return -EINVAL; 3666 3667 return bpf_map__set_max_entries(map, max_entries); 3668 } 3669 3670 static int 3671 bpf_object__probe_loading(struct bpf_object *obj) 3672 { 3673 struct bpf_load_program_attr attr; 3674 char *cp, errmsg[STRERR_BUFSIZE]; 3675 struct bpf_insn insns[] = { 3676 BPF_MOV64_IMM(BPF_REG_0, 0), 3677 BPF_EXIT_INSN(), 3678 }; 3679 int ret; 3680 3681 /* make sure basic loading works */ 3682 3683 memset(&attr, 0, sizeof(attr)); 3684 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3685 attr.insns = insns; 3686 attr.insns_cnt = ARRAY_SIZE(insns); 3687 attr.license = "GPL"; 3688 3689 ret = bpf_load_program_xattr(&attr, NULL, 0); 3690 if (ret < 0) { 3691 ret = errno; 3692 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3693 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3694 "program. Make sure your kernel supports BPF " 3695 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3696 "set to big enough value.\n", __func__, cp, ret); 3697 return -ret; 3698 } 3699 close(ret); 3700 3701 return 0; 3702 } 3703 3704 static int probe_fd(int fd) 3705 { 3706 if (fd >= 0) 3707 close(fd); 3708 return fd >= 0; 3709 } 3710 3711 static int probe_kern_prog_name(void) 3712 { 3713 struct bpf_load_program_attr attr; 3714 struct bpf_insn insns[] = { 3715 BPF_MOV64_IMM(BPF_REG_0, 0), 3716 BPF_EXIT_INSN(), 3717 }; 3718 int ret; 3719 3720 /* make sure loading with name works */ 3721 3722 memset(&attr, 0, sizeof(attr)); 3723 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3724 attr.insns = insns; 3725 attr.insns_cnt = ARRAY_SIZE(insns); 3726 attr.license = "GPL"; 3727 attr.name = "test"; 3728 ret = bpf_load_program_xattr(&attr, NULL, 0); 3729 return probe_fd(ret); 3730 } 3731 3732 static int probe_kern_global_data(void) 3733 { 3734 struct bpf_load_program_attr prg_attr; 3735 struct bpf_create_map_attr map_attr; 3736 char *cp, errmsg[STRERR_BUFSIZE]; 3737 struct bpf_insn insns[] = { 3738 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3739 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3740 BPF_MOV64_IMM(BPF_REG_0, 0), 3741 BPF_EXIT_INSN(), 3742 }; 3743 int ret, map; 3744 3745 memset(&map_attr, 0, sizeof(map_attr)); 3746 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3747 map_attr.key_size = sizeof(int); 3748 map_attr.value_size = 32; 3749 map_attr.max_entries = 1; 3750 3751 map = bpf_create_map_xattr(&map_attr); 3752 if (map < 0) { 3753 ret = -errno; 3754 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3755 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3756 __func__, cp, -ret); 3757 return ret; 3758 } 3759 3760 insns[0].imm = map; 3761 3762 memset(&prg_attr, 0, sizeof(prg_attr)); 3763 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3764 prg_attr.insns = insns; 3765 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3766 prg_attr.license = "GPL"; 3767 3768 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3769 close(map); 3770 return probe_fd(ret); 3771 } 3772 3773 static int probe_kern_btf(void) 3774 { 3775 static const char strs[] = "\0int"; 3776 __u32 types[] = { 3777 /* int */ 3778 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3779 }; 3780 3781 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3782 strs, sizeof(strs))); 3783 } 3784 3785 static int probe_kern_btf_func(void) 3786 { 3787 static const char strs[] = "\0int\0x\0a"; 3788 /* void x(int a) {} */ 3789 __u32 types[] = { 3790 /* int */ 3791 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3792 /* FUNC_PROTO */ /* [2] */ 3793 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3794 BTF_PARAM_ENC(7, 1), 3795 /* FUNC x */ /* [3] */ 3796 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3797 }; 3798 3799 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3800 strs, sizeof(strs))); 3801 } 3802 3803 static int probe_kern_btf_func_global(void) 3804 { 3805 static const char strs[] = "\0int\0x\0a"; 3806 /* static void x(int a) {} */ 3807 __u32 types[] = { 3808 /* int */ 3809 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3810 /* FUNC_PROTO */ /* [2] */ 3811 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3812 BTF_PARAM_ENC(7, 1), 3813 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3814 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3815 }; 3816 3817 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3818 strs, sizeof(strs))); 3819 } 3820 3821 static int probe_kern_btf_datasec(void) 3822 { 3823 static const char strs[] = "\0x\0.data"; 3824 /* static int a; */ 3825 __u32 types[] = { 3826 /* int */ 3827 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3828 /* VAR x */ /* [2] */ 3829 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3830 BTF_VAR_STATIC, 3831 /* DATASEC val */ /* [3] */ 3832 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3833 BTF_VAR_SECINFO_ENC(2, 0, 4), 3834 }; 3835 3836 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3837 strs, sizeof(strs))); 3838 } 3839 3840 static int probe_kern_array_mmap(void) 3841 { 3842 struct bpf_create_map_attr attr = { 3843 .map_type = BPF_MAP_TYPE_ARRAY, 3844 .map_flags = BPF_F_MMAPABLE, 3845 .key_size = sizeof(int), 3846 .value_size = sizeof(int), 3847 .max_entries = 1, 3848 }; 3849 3850 return probe_fd(bpf_create_map_xattr(&attr)); 3851 } 3852 3853 static int probe_kern_exp_attach_type(void) 3854 { 3855 struct bpf_load_program_attr attr; 3856 struct bpf_insn insns[] = { 3857 BPF_MOV64_IMM(BPF_REG_0, 0), 3858 BPF_EXIT_INSN(), 3859 }; 3860 3861 memset(&attr, 0, sizeof(attr)); 3862 /* use any valid combination of program type and (optional) 3863 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3864 * to see if kernel supports expected_attach_type field for 3865 * BPF_PROG_LOAD command 3866 */ 3867 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3868 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3869 attr.insns = insns; 3870 attr.insns_cnt = ARRAY_SIZE(insns); 3871 attr.license = "GPL"; 3872 3873 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3874 } 3875 3876 static int probe_kern_probe_read_kernel(void) 3877 { 3878 struct bpf_load_program_attr attr; 3879 struct bpf_insn insns[] = { 3880 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 3881 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 3882 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 3883 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 3884 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 3885 BPF_EXIT_INSN(), 3886 }; 3887 3888 memset(&attr, 0, sizeof(attr)); 3889 attr.prog_type = BPF_PROG_TYPE_KPROBE; 3890 attr.insns = insns; 3891 attr.insns_cnt = ARRAY_SIZE(insns); 3892 attr.license = "GPL"; 3893 3894 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3895 } 3896 3897 enum kern_feature_result { 3898 FEAT_UNKNOWN = 0, 3899 FEAT_SUPPORTED = 1, 3900 FEAT_MISSING = 2, 3901 }; 3902 3903 typedef int (*feature_probe_fn)(void); 3904 3905 static struct kern_feature_desc { 3906 const char *desc; 3907 feature_probe_fn probe; 3908 enum kern_feature_result res; 3909 } feature_probes[__FEAT_CNT] = { 3910 [FEAT_PROG_NAME] = { 3911 "BPF program name", probe_kern_prog_name, 3912 }, 3913 [FEAT_GLOBAL_DATA] = { 3914 "global variables", probe_kern_global_data, 3915 }, 3916 [FEAT_BTF] = { 3917 "minimal BTF", probe_kern_btf, 3918 }, 3919 [FEAT_BTF_FUNC] = { 3920 "BTF functions", probe_kern_btf_func, 3921 }, 3922 [FEAT_BTF_GLOBAL_FUNC] = { 3923 "BTF global function", probe_kern_btf_func_global, 3924 }, 3925 [FEAT_BTF_DATASEC] = { 3926 "BTF data section and variable", probe_kern_btf_datasec, 3927 }, 3928 [FEAT_ARRAY_MMAP] = { 3929 "ARRAY map mmap()", probe_kern_array_mmap, 3930 }, 3931 [FEAT_EXP_ATTACH_TYPE] = { 3932 "BPF_PROG_LOAD expected_attach_type attribute", 3933 probe_kern_exp_attach_type, 3934 }, 3935 [FEAT_PROBE_READ_KERN] = { 3936 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 3937 } 3938 }; 3939 3940 static bool kernel_supports(enum kern_feature_id feat_id) 3941 { 3942 struct kern_feature_desc *feat = &feature_probes[feat_id]; 3943 int ret; 3944 3945 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 3946 ret = feat->probe(); 3947 if (ret > 0) { 3948 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 3949 } else if (ret == 0) { 3950 WRITE_ONCE(feat->res, FEAT_MISSING); 3951 } else { 3952 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 3953 WRITE_ONCE(feat->res, FEAT_MISSING); 3954 } 3955 } 3956 3957 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 3958 } 3959 3960 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 3961 { 3962 struct bpf_map_info map_info = {}; 3963 char msg[STRERR_BUFSIZE]; 3964 __u32 map_info_len; 3965 3966 map_info_len = sizeof(map_info); 3967 3968 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 3969 pr_warn("failed to get map info for map FD %d: %s\n", 3970 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 3971 return false; 3972 } 3973 3974 return (map_info.type == map->def.type && 3975 map_info.key_size == map->def.key_size && 3976 map_info.value_size == map->def.value_size && 3977 map_info.max_entries == map->def.max_entries && 3978 map_info.map_flags == map->def.map_flags); 3979 } 3980 3981 static int 3982 bpf_object__reuse_map(struct bpf_map *map) 3983 { 3984 char *cp, errmsg[STRERR_BUFSIZE]; 3985 int err, pin_fd; 3986 3987 pin_fd = bpf_obj_get(map->pin_path); 3988 if (pin_fd < 0) { 3989 err = -errno; 3990 if (err == -ENOENT) { 3991 pr_debug("found no pinned map to reuse at '%s'\n", 3992 map->pin_path); 3993 return 0; 3994 } 3995 3996 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 3997 pr_warn("couldn't retrieve pinned map '%s': %s\n", 3998 map->pin_path, cp); 3999 return err; 4000 } 4001 4002 if (!map_is_reuse_compat(map, pin_fd)) { 4003 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4004 map->pin_path); 4005 close(pin_fd); 4006 return -EINVAL; 4007 } 4008 4009 err = bpf_map__reuse_fd(map, pin_fd); 4010 if (err) { 4011 close(pin_fd); 4012 return err; 4013 } 4014 map->pinned = true; 4015 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4016 4017 return 0; 4018 } 4019 4020 static int 4021 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4022 { 4023 enum libbpf_map_type map_type = map->libbpf_type; 4024 char *cp, errmsg[STRERR_BUFSIZE]; 4025 int err, zero = 0; 4026 4027 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4028 if (err) { 4029 err = -errno; 4030 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4031 pr_warn("Error setting initial map(%s) contents: %s\n", 4032 map->name, cp); 4033 return err; 4034 } 4035 4036 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4037 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4038 err = bpf_map_freeze(map->fd); 4039 if (err) { 4040 err = -errno; 4041 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4042 pr_warn("Error freezing map(%s) as read-only: %s\n", 4043 map->name, cp); 4044 return err; 4045 } 4046 } 4047 return 0; 4048 } 4049 4050 static void bpf_map__destroy(struct bpf_map *map); 4051 4052 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4053 { 4054 struct bpf_create_map_attr create_attr; 4055 struct bpf_map_def *def = &map->def; 4056 4057 memset(&create_attr, 0, sizeof(create_attr)); 4058 4059 if (kernel_supports(FEAT_PROG_NAME)) 4060 create_attr.name = map->name; 4061 create_attr.map_ifindex = map->map_ifindex; 4062 create_attr.map_type = def->type; 4063 create_attr.map_flags = def->map_flags; 4064 create_attr.key_size = def->key_size; 4065 create_attr.value_size = def->value_size; 4066 create_attr.numa_node = map->numa_node; 4067 4068 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4069 int nr_cpus; 4070 4071 nr_cpus = libbpf_num_possible_cpus(); 4072 if (nr_cpus < 0) { 4073 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4074 map->name, nr_cpus); 4075 return nr_cpus; 4076 } 4077 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4078 create_attr.max_entries = nr_cpus; 4079 } else { 4080 create_attr.max_entries = def->max_entries; 4081 } 4082 4083 if (bpf_map__is_struct_ops(map)) 4084 create_attr.btf_vmlinux_value_type_id = 4085 map->btf_vmlinux_value_type_id; 4086 4087 create_attr.btf_fd = 0; 4088 create_attr.btf_key_type_id = 0; 4089 create_attr.btf_value_type_id = 0; 4090 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4091 create_attr.btf_fd = btf__fd(obj->btf); 4092 create_attr.btf_key_type_id = map->btf_key_type_id; 4093 create_attr.btf_value_type_id = map->btf_value_type_id; 4094 } 4095 4096 if (bpf_map_type__is_map_in_map(def->type)) { 4097 if (map->inner_map) { 4098 int err; 4099 4100 err = bpf_object__create_map(obj, map->inner_map); 4101 if (err) { 4102 pr_warn("map '%s': failed to create inner map: %d\n", 4103 map->name, err); 4104 return err; 4105 } 4106 map->inner_map_fd = bpf_map__fd(map->inner_map); 4107 } 4108 if (map->inner_map_fd >= 0) 4109 create_attr.inner_map_fd = map->inner_map_fd; 4110 } 4111 4112 map->fd = bpf_create_map_xattr(&create_attr); 4113 if (map->fd < 0 && (create_attr.btf_key_type_id || 4114 create_attr.btf_value_type_id)) { 4115 char *cp, errmsg[STRERR_BUFSIZE]; 4116 int err = -errno; 4117 4118 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4119 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4120 map->name, cp, err); 4121 create_attr.btf_fd = 0; 4122 create_attr.btf_key_type_id = 0; 4123 create_attr.btf_value_type_id = 0; 4124 map->btf_key_type_id = 0; 4125 map->btf_value_type_id = 0; 4126 map->fd = bpf_create_map_xattr(&create_attr); 4127 } 4128 4129 if (map->fd < 0) 4130 return -errno; 4131 4132 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4133 bpf_map__destroy(map->inner_map); 4134 zfree(&map->inner_map); 4135 } 4136 4137 return 0; 4138 } 4139 4140 static int 4141 bpf_object__create_maps(struct bpf_object *obj) 4142 { 4143 struct bpf_map *map; 4144 char *cp, errmsg[STRERR_BUFSIZE]; 4145 unsigned int i, j; 4146 int err; 4147 4148 for (i = 0; i < obj->nr_maps; i++) { 4149 map = &obj->maps[i]; 4150 4151 if (map->pin_path) { 4152 err = bpf_object__reuse_map(map); 4153 if (err) { 4154 pr_warn("map '%s': error reusing pinned map\n", 4155 map->name); 4156 goto err_out; 4157 } 4158 } 4159 4160 if (map->fd >= 0) { 4161 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4162 map->name, map->fd); 4163 continue; 4164 } 4165 4166 err = bpf_object__create_map(obj, map); 4167 if (err) 4168 goto err_out; 4169 4170 pr_debug("map '%s': created successfully, fd=%d\n", map->name, 4171 map->fd); 4172 4173 if (bpf_map__is_internal(map)) { 4174 err = bpf_object__populate_internal_map(obj, map); 4175 if (err < 0) { 4176 zclose(map->fd); 4177 goto err_out; 4178 } 4179 } 4180 4181 if (map->init_slots_sz) { 4182 for (j = 0; j < map->init_slots_sz; j++) { 4183 const struct bpf_map *targ_map; 4184 int fd; 4185 4186 if (!map->init_slots[j]) 4187 continue; 4188 4189 targ_map = map->init_slots[j]; 4190 fd = bpf_map__fd(targ_map); 4191 err = bpf_map_update_elem(map->fd, &j, &fd, 0); 4192 if (err) { 4193 err = -errno; 4194 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4195 map->name, j, targ_map->name, 4196 fd, err); 4197 goto err_out; 4198 } 4199 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4200 map->name, j, targ_map->name, fd); 4201 } 4202 zfree(&map->init_slots); 4203 map->init_slots_sz = 0; 4204 } 4205 4206 if (map->pin_path && !map->pinned) { 4207 err = bpf_map__pin(map, NULL); 4208 if (err) { 4209 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4210 map->name, map->pin_path, err); 4211 zclose(map->fd); 4212 goto err_out; 4213 } 4214 } 4215 } 4216 4217 return 0; 4218 4219 err_out: 4220 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4221 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4222 pr_perm_msg(err); 4223 for (j = 0; j < i; j++) 4224 zclose(obj->maps[j].fd); 4225 return err; 4226 } 4227 4228 #define BPF_CORE_SPEC_MAX_LEN 64 4229 4230 /* represents BPF CO-RE field or array element accessor */ 4231 struct bpf_core_accessor { 4232 __u32 type_id; /* struct/union type or array element type */ 4233 __u32 idx; /* field index or array index */ 4234 const char *name; /* field name or NULL for array accessor */ 4235 }; 4236 4237 struct bpf_core_spec { 4238 const struct btf *btf; 4239 /* high-level spec: named fields and array indices only */ 4240 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4241 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4242 __u32 root_type_id; 4243 /* CO-RE relocation kind */ 4244 enum bpf_core_relo_kind relo_kind; 4245 /* high-level spec length */ 4246 int len; 4247 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4248 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4249 /* raw spec length */ 4250 int raw_len; 4251 /* field bit offset represented by spec */ 4252 __u32 bit_offset; 4253 }; 4254 4255 static bool str_is_empty(const char *s) 4256 { 4257 return !s || !s[0]; 4258 } 4259 4260 static bool is_flex_arr(const struct btf *btf, 4261 const struct bpf_core_accessor *acc, 4262 const struct btf_array *arr) 4263 { 4264 const struct btf_type *t; 4265 4266 /* not a flexible array, if not inside a struct or has non-zero size */ 4267 if (!acc->name || arr->nelems > 0) 4268 return false; 4269 4270 /* has to be the last member of enclosing struct */ 4271 t = btf__type_by_id(btf, acc->type_id); 4272 return acc->idx == btf_vlen(t) - 1; 4273 } 4274 4275 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4276 { 4277 switch (kind) { 4278 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4279 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4280 case BPF_FIELD_EXISTS: return "field_exists"; 4281 case BPF_FIELD_SIGNED: return "signed"; 4282 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4283 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4284 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4285 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4286 case BPF_TYPE_EXISTS: return "type_exists"; 4287 case BPF_TYPE_SIZE: return "type_size"; 4288 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4289 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4290 default: return "unknown"; 4291 } 4292 } 4293 4294 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4295 { 4296 switch (kind) { 4297 case BPF_FIELD_BYTE_OFFSET: 4298 case BPF_FIELD_BYTE_SIZE: 4299 case BPF_FIELD_EXISTS: 4300 case BPF_FIELD_SIGNED: 4301 case BPF_FIELD_LSHIFT_U64: 4302 case BPF_FIELD_RSHIFT_U64: 4303 return true; 4304 default: 4305 return false; 4306 } 4307 } 4308 4309 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4310 { 4311 switch (kind) { 4312 case BPF_TYPE_ID_LOCAL: 4313 case BPF_TYPE_ID_TARGET: 4314 case BPF_TYPE_EXISTS: 4315 case BPF_TYPE_SIZE: 4316 return true; 4317 default: 4318 return false; 4319 } 4320 } 4321 4322 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4323 { 4324 switch (kind) { 4325 case BPF_ENUMVAL_EXISTS: 4326 case BPF_ENUMVAL_VALUE: 4327 return true; 4328 default: 4329 return false; 4330 } 4331 } 4332 4333 /* 4334 * Turn bpf_core_relo into a low- and high-level spec representation, 4335 * validating correctness along the way, as well as calculating resulting 4336 * field bit offset, specified by accessor string. Low-level spec captures 4337 * every single level of nestedness, including traversing anonymous 4338 * struct/union members. High-level one only captures semantically meaningful 4339 * "turning points": named fields and array indicies. 4340 * E.g., for this case: 4341 * 4342 * struct sample { 4343 * int __unimportant; 4344 * struct { 4345 * int __1; 4346 * int __2; 4347 * int a[7]; 4348 * }; 4349 * }; 4350 * 4351 * struct sample *s = ...; 4352 * 4353 * int x = &s->a[3]; // access string = '0:1:2:3' 4354 * 4355 * Low-level spec has 1:1 mapping with each element of access string (it's 4356 * just a parsed access string representation): [0, 1, 2, 3]. 4357 * 4358 * High-level spec will capture only 3 points: 4359 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4360 * - field 'a' access (corresponds to '2' in low-level spec); 4361 * - array element #3 access (corresponds to '3' in low-level spec). 4362 * 4363 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4364 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4365 * spec and raw_spec are kept empty. 4366 * 4367 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4368 * string to specify enumerator's value index that need to be relocated. 4369 */ 4370 static int bpf_core_parse_spec(const struct btf *btf, 4371 __u32 type_id, 4372 const char *spec_str, 4373 enum bpf_core_relo_kind relo_kind, 4374 struct bpf_core_spec *spec) 4375 { 4376 int access_idx, parsed_len, i; 4377 struct bpf_core_accessor *acc; 4378 const struct btf_type *t; 4379 const char *name; 4380 __u32 id; 4381 __s64 sz; 4382 4383 if (str_is_empty(spec_str) || *spec_str == ':') 4384 return -EINVAL; 4385 4386 memset(spec, 0, sizeof(*spec)); 4387 spec->btf = btf; 4388 spec->root_type_id = type_id; 4389 spec->relo_kind = relo_kind; 4390 4391 /* type-based relocations don't have a field access string */ 4392 if (core_relo_is_type_based(relo_kind)) { 4393 if (strcmp(spec_str, "0")) 4394 return -EINVAL; 4395 return 0; 4396 } 4397 4398 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4399 while (*spec_str) { 4400 if (*spec_str == ':') 4401 ++spec_str; 4402 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4403 return -EINVAL; 4404 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4405 return -E2BIG; 4406 spec_str += parsed_len; 4407 spec->raw_spec[spec->raw_len++] = access_idx; 4408 } 4409 4410 if (spec->raw_len == 0) 4411 return -EINVAL; 4412 4413 t = skip_mods_and_typedefs(btf, type_id, &id); 4414 if (!t) 4415 return -EINVAL; 4416 4417 access_idx = spec->raw_spec[0]; 4418 acc = &spec->spec[0]; 4419 acc->type_id = id; 4420 acc->idx = access_idx; 4421 spec->len++; 4422 4423 if (core_relo_is_enumval_based(relo_kind)) { 4424 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4425 return -EINVAL; 4426 4427 /* record enumerator name in a first accessor */ 4428 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4429 return 0; 4430 } 4431 4432 if (!core_relo_is_field_based(relo_kind)) 4433 return -EINVAL; 4434 4435 sz = btf__resolve_size(btf, id); 4436 if (sz < 0) 4437 return sz; 4438 spec->bit_offset = access_idx * sz * 8; 4439 4440 for (i = 1; i < spec->raw_len; i++) { 4441 t = skip_mods_and_typedefs(btf, id, &id); 4442 if (!t) 4443 return -EINVAL; 4444 4445 access_idx = spec->raw_spec[i]; 4446 acc = &spec->spec[spec->len]; 4447 4448 if (btf_is_composite(t)) { 4449 const struct btf_member *m; 4450 __u32 bit_offset; 4451 4452 if (access_idx >= btf_vlen(t)) 4453 return -EINVAL; 4454 4455 bit_offset = btf_member_bit_offset(t, access_idx); 4456 spec->bit_offset += bit_offset; 4457 4458 m = btf_members(t) + access_idx; 4459 if (m->name_off) { 4460 name = btf__name_by_offset(btf, m->name_off); 4461 if (str_is_empty(name)) 4462 return -EINVAL; 4463 4464 acc->type_id = id; 4465 acc->idx = access_idx; 4466 acc->name = name; 4467 spec->len++; 4468 } 4469 4470 id = m->type; 4471 } else if (btf_is_array(t)) { 4472 const struct btf_array *a = btf_array(t); 4473 bool flex; 4474 4475 t = skip_mods_and_typedefs(btf, a->type, &id); 4476 if (!t) 4477 return -EINVAL; 4478 4479 flex = is_flex_arr(btf, acc - 1, a); 4480 if (!flex && access_idx >= a->nelems) 4481 return -EINVAL; 4482 4483 spec->spec[spec->len].type_id = id; 4484 spec->spec[spec->len].idx = access_idx; 4485 spec->len++; 4486 4487 sz = btf__resolve_size(btf, id); 4488 if (sz < 0) 4489 return sz; 4490 spec->bit_offset += access_idx * sz * 8; 4491 } else { 4492 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4493 type_id, spec_str, i, id, btf_kind_str(t)); 4494 return -EINVAL; 4495 } 4496 } 4497 4498 return 0; 4499 } 4500 4501 static bool bpf_core_is_flavor_sep(const char *s) 4502 { 4503 /* check X___Y name pattern, where X and Y are not underscores */ 4504 return s[0] != '_' && /* X */ 4505 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4506 s[4] != '_'; /* Y */ 4507 } 4508 4509 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4510 * before last triple underscore. Struct name part after last triple 4511 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4512 */ 4513 static size_t bpf_core_essential_name_len(const char *name) 4514 { 4515 size_t n = strlen(name); 4516 int i; 4517 4518 for (i = n - 5; i >= 0; i--) { 4519 if (bpf_core_is_flavor_sep(name + i)) 4520 return i + 1; 4521 } 4522 return n; 4523 } 4524 4525 /* dynamically sized list of type IDs */ 4526 struct ids_vec { 4527 __u32 *data; 4528 int len; 4529 }; 4530 4531 static void bpf_core_free_cands(struct ids_vec *cand_ids) 4532 { 4533 free(cand_ids->data); 4534 free(cand_ids); 4535 } 4536 4537 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 4538 __u32 local_type_id, 4539 const struct btf *targ_btf) 4540 { 4541 size_t local_essent_len, targ_essent_len; 4542 const char *local_name, *targ_name; 4543 const struct btf_type *t, *local_t; 4544 struct ids_vec *cand_ids; 4545 __u32 *new_ids; 4546 int i, err, n; 4547 4548 local_t = btf__type_by_id(local_btf, local_type_id); 4549 if (!local_t) 4550 return ERR_PTR(-EINVAL); 4551 4552 local_name = btf__name_by_offset(local_btf, local_t->name_off); 4553 if (str_is_empty(local_name)) 4554 return ERR_PTR(-EINVAL); 4555 local_essent_len = bpf_core_essential_name_len(local_name); 4556 4557 cand_ids = calloc(1, sizeof(*cand_ids)); 4558 if (!cand_ids) 4559 return ERR_PTR(-ENOMEM); 4560 4561 n = btf__get_nr_types(targ_btf); 4562 for (i = 1; i <= n; i++) { 4563 t = btf__type_by_id(targ_btf, i); 4564 if (btf_kind(t) != btf_kind(local_t)) 4565 continue; 4566 4567 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4568 if (str_is_empty(targ_name)) 4569 continue; 4570 4571 targ_essent_len = bpf_core_essential_name_len(targ_name); 4572 if (targ_essent_len != local_essent_len) 4573 continue; 4574 4575 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 4576 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n", 4577 local_type_id, btf_kind_str(local_t), 4578 local_name, i, btf_kind_str(t), targ_name); 4579 new_ids = libbpf_reallocarray(cand_ids->data, 4580 cand_ids->len + 1, 4581 sizeof(*cand_ids->data)); 4582 if (!new_ids) { 4583 err = -ENOMEM; 4584 goto err_out; 4585 } 4586 cand_ids->data = new_ids; 4587 cand_ids->data[cand_ids->len++] = i; 4588 } 4589 } 4590 return cand_ids; 4591 err_out: 4592 bpf_core_free_cands(cand_ids); 4593 return ERR_PTR(err); 4594 } 4595 4596 /* Check two types for compatibility for the purpose of field access 4597 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 4598 * are relocating semantically compatible entities: 4599 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4600 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4601 * - any two PTRs are always compatible; 4602 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4603 * least one of enums should be anonymous; 4604 * - for ENUMs, check sizes, names are ignored; 4605 * - for INT, size and signedness are ignored; 4606 * - for ARRAY, dimensionality is ignored, element types are checked for 4607 * compatibility recursively; 4608 * - everything else shouldn't be ever a target of relocation. 4609 * These rules are not set in stone and probably will be adjusted as we get 4610 * more experience with using BPF CO-RE relocations. 4611 */ 4612 static int bpf_core_fields_are_compat(const struct btf *local_btf, 4613 __u32 local_id, 4614 const struct btf *targ_btf, 4615 __u32 targ_id) 4616 { 4617 const struct btf_type *local_type, *targ_type; 4618 4619 recur: 4620 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4621 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4622 if (!local_type || !targ_type) 4623 return -EINVAL; 4624 4625 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4626 return 1; 4627 if (btf_kind(local_type) != btf_kind(targ_type)) 4628 return 0; 4629 4630 switch (btf_kind(local_type)) { 4631 case BTF_KIND_PTR: 4632 return 1; 4633 case BTF_KIND_FWD: 4634 case BTF_KIND_ENUM: { 4635 const char *local_name, *targ_name; 4636 size_t local_len, targ_len; 4637 4638 local_name = btf__name_by_offset(local_btf, 4639 local_type->name_off); 4640 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4641 local_len = bpf_core_essential_name_len(local_name); 4642 targ_len = bpf_core_essential_name_len(targ_name); 4643 /* one of them is anonymous or both w/ same flavor-less names */ 4644 return local_len == 0 || targ_len == 0 || 4645 (local_len == targ_len && 4646 strncmp(local_name, targ_name, local_len) == 0); 4647 } 4648 case BTF_KIND_INT: 4649 /* just reject deprecated bitfield-like integers; all other 4650 * integers are by default compatible between each other 4651 */ 4652 return btf_int_offset(local_type) == 0 && 4653 btf_int_offset(targ_type) == 0; 4654 case BTF_KIND_ARRAY: 4655 local_id = btf_array(local_type)->type; 4656 targ_id = btf_array(targ_type)->type; 4657 goto recur; 4658 default: 4659 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 4660 btf_kind(local_type), local_id, targ_id); 4661 return 0; 4662 } 4663 } 4664 4665 /* 4666 * Given single high-level named field accessor in local type, find 4667 * corresponding high-level accessor for a target type. Along the way, 4668 * maintain low-level spec for target as well. Also keep updating target 4669 * bit offset. 4670 * 4671 * Searching is performed through recursive exhaustive enumeration of all 4672 * fields of a struct/union. If there are any anonymous (embedded) 4673 * structs/unions, they are recursively searched as well. If field with 4674 * desired name is found, check compatibility between local and target types, 4675 * before returning result. 4676 * 4677 * 1 is returned, if field is found. 4678 * 0 is returned if no compatible field is found. 4679 * <0 is returned on error. 4680 */ 4681 static int bpf_core_match_member(const struct btf *local_btf, 4682 const struct bpf_core_accessor *local_acc, 4683 const struct btf *targ_btf, 4684 __u32 targ_id, 4685 struct bpf_core_spec *spec, 4686 __u32 *next_targ_id) 4687 { 4688 const struct btf_type *local_type, *targ_type; 4689 const struct btf_member *local_member, *m; 4690 const char *local_name, *targ_name; 4691 __u32 local_id; 4692 int i, n, found; 4693 4694 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4695 if (!targ_type) 4696 return -EINVAL; 4697 if (!btf_is_composite(targ_type)) 4698 return 0; 4699 4700 local_id = local_acc->type_id; 4701 local_type = btf__type_by_id(local_btf, local_id); 4702 local_member = btf_members(local_type) + local_acc->idx; 4703 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4704 4705 n = btf_vlen(targ_type); 4706 m = btf_members(targ_type); 4707 for (i = 0; i < n; i++, m++) { 4708 __u32 bit_offset; 4709 4710 bit_offset = btf_member_bit_offset(targ_type, i); 4711 4712 /* too deep struct/union/array nesting */ 4713 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4714 return -E2BIG; 4715 4716 /* speculate this member will be the good one */ 4717 spec->bit_offset += bit_offset; 4718 spec->raw_spec[spec->raw_len++] = i; 4719 4720 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4721 if (str_is_empty(targ_name)) { 4722 /* embedded struct/union, we need to go deeper */ 4723 found = bpf_core_match_member(local_btf, local_acc, 4724 targ_btf, m->type, 4725 spec, next_targ_id); 4726 if (found) /* either found or error */ 4727 return found; 4728 } else if (strcmp(local_name, targ_name) == 0) { 4729 /* matching named field */ 4730 struct bpf_core_accessor *targ_acc; 4731 4732 targ_acc = &spec->spec[spec->len++]; 4733 targ_acc->type_id = targ_id; 4734 targ_acc->idx = i; 4735 targ_acc->name = targ_name; 4736 4737 *next_targ_id = m->type; 4738 found = bpf_core_fields_are_compat(local_btf, 4739 local_member->type, 4740 targ_btf, m->type); 4741 if (!found) 4742 spec->len--; /* pop accessor */ 4743 return found; 4744 } 4745 /* member turned out not to be what we looked for */ 4746 spec->bit_offset -= bit_offset; 4747 spec->raw_len--; 4748 } 4749 4750 return 0; 4751 } 4752 4753 /* Check local and target types for compatibility. This check is used for 4754 * type-based CO-RE relocations and follow slightly different rules than 4755 * field-based relocations. This function assumes that root types were already 4756 * checked for name match. Beyond that initial root-level name check, names 4757 * are completely ignored. Compatibility rules are as follows: 4758 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 4759 * kind should match for local and target types (i.e., STRUCT is not 4760 * compatible with UNION); 4761 * - for ENUMs, the size is ignored; 4762 * - for INT, size and signedness are ignored; 4763 * - for ARRAY, dimensionality is ignored, element types are checked for 4764 * compatibility recursively; 4765 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 4766 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 4767 * - FUNC_PROTOs are compatible if they have compatible signature: same 4768 * number of input args and compatible return and argument types. 4769 * These rules are not set in stone and probably will be adjusted as we get 4770 * more experience with using BPF CO-RE relocations. 4771 */ 4772 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 4773 const struct btf *targ_btf, __u32 targ_id) 4774 { 4775 const struct btf_type *local_type, *targ_type; 4776 int depth = 32; /* max recursion depth */ 4777 4778 /* caller made sure that names match (ignoring flavor suffix) */ 4779 local_type = btf__type_by_id(local_btf, local_id); 4780 targ_type = btf__type_by_id(targ_btf, targ_id); 4781 if (btf_kind(local_type) != btf_kind(targ_type)) 4782 return 0; 4783 4784 recur: 4785 depth--; 4786 if (depth < 0) 4787 return -EINVAL; 4788 4789 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4790 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4791 if (!local_type || !targ_type) 4792 return -EINVAL; 4793 4794 if (btf_kind(local_type) != btf_kind(targ_type)) 4795 return 0; 4796 4797 switch (btf_kind(local_type)) { 4798 case BTF_KIND_UNKN: 4799 case BTF_KIND_STRUCT: 4800 case BTF_KIND_UNION: 4801 case BTF_KIND_ENUM: 4802 case BTF_KIND_FWD: 4803 return 1; 4804 case BTF_KIND_INT: 4805 /* just reject deprecated bitfield-like integers; all other 4806 * integers are by default compatible between each other 4807 */ 4808 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 4809 case BTF_KIND_PTR: 4810 local_id = local_type->type; 4811 targ_id = targ_type->type; 4812 goto recur; 4813 case BTF_KIND_ARRAY: 4814 local_id = btf_array(local_type)->type; 4815 targ_id = btf_array(targ_type)->type; 4816 goto recur; 4817 case BTF_KIND_FUNC_PROTO: { 4818 struct btf_param *local_p = btf_params(local_type); 4819 struct btf_param *targ_p = btf_params(targ_type); 4820 __u16 local_vlen = btf_vlen(local_type); 4821 __u16 targ_vlen = btf_vlen(targ_type); 4822 int i, err; 4823 4824 if (local_vlen != targ_vlen) 4825 return 0; 4826 4827 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 4828 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 4829 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 4830 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 4831 if (err <= 0) 4832 return err; 4833 } 4834 4835 /* tail recurse for return type check */ 4836 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 4837 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 4838 goto recur; 4839 } 4840 default: 4841 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 4842 btf_kind_str(local_type), local_id, targ_id); 4843 return 0; 4844 } 4845 } 4846 4847 /* 4848 * Try to match local spec to a target type and, if successful, produce full 4849 * target spec (high-level, low-level + bit offset). 4850 */ 4851 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 4852 const struct btf *targ_btf, __u32 targ_id, 4853 struct bpf_core_spec *targ_spec) 4854 { 4855 const struct btf_type *targ_type; 4856 const struct bpf_core_accessor *local_acc; 4857 struct bpf_core_accessor *targ_acc; 4858 int i, sz, matched; 4859 4860 memset(targ_spec, 0, sizeof(*targ_spec)); 4861 targ_spec->btf = targ_btf; 4862 targ_spec->root_type_id = targ_id; 4863 targ_spec->relo_kind = local_spec->relo_kind; 4864 4865 if (core_relo_is_type_based(local_spec->relo_kind)) { 4866 return bpf_core_types_are_compat(local_spec->btf, 4867 local_spec->root_type_id, 4868 targ_btf, targ_id); 4869 } 4870 4871 local_acc = &local_spec->spec[0]; 4872 targ_acc = &targ_spec->spec[0]; 4873 4874 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 4875 size_t local_essent_len, targ_essent_len; 4876 const struct btf_enum *e; 4877 const char *targ_name; 4878 4879 /* has to resolve to an enum */ 4880 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 4881 if (!btf_is_enum(targ_type)) 4882 return 0; 4883 4884 local_essent_len = bpf_core_essential_name_len(local_acc->name); 4885 4886 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 4887 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 4888 targ_essent_len = bpf_core_essential_name_len(targ_name); 4889 if (targ_essent_len != local_essent_len) 4890 continue; 4891 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 4892 targ_acc->type_id = targ_id; 4893 targ_acc->idx = i; 4894 targ_acc->name = targ_name; 4895 targ_spec->len++; 4896 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 4897 targ_spec->raw_len++; 4898 return 1; 4899 } 4900 } 4901 return 0; 4902 } 4903 4904 if (!core_relo_is_field_based(local_spec->relo_kind)) 4905 return -EINVAL; 4906 4907 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 4908 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 4909 &targ_id); 4910 if (!targ_type) 4911 return -EINVAL; 4912 4913 if (local_acc->name) { 4914 matched = bpf_core_match_member(local_spec->btf, 4915 local_acc, 4916 targ_btf, targ_id, 4917 targ_spec, &targ_id); 4918 if (matched <= 0) 4919 return matched; 4920 } else { 4921 /* for i=0, targ_id is already treated as array element 4922 * type (because it's the original struct), for others 4923 * we should find array element type first 4924 */ 4925 if (i > 0) { 4926 const struct btf_array *a; 4927 bool flex; 4928 4929 if (!btf_is_array(targ_type)) 4930 return 0; 4931 4932 a = btf_array(targ_type); 4933 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 4934 if (!flex && local_acc->idx >= a->nelems) 4935 return 0; 4936 if (!skip_mods_and_typedefs(targ_btf, a->type, 4937 &targ_id)) 4938 return -EINVAL; 4939 } 4940 4941 /* too deep struct/union/array nesting */ 4942 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4943 return -E2BIG; 4944 4945 targ_acc->type_id = targ_id; 4946 targ_acc->idx = local_acc->idx; 4947 targ_acc->name = NULL; 4948 targ_spec->len++; 4949 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 4950 targ_spec->raw_len++; 4951 4952 sz = btf__resolve_size(targ_btf, targ_id); 4953 if (sz < 0) 4954 return sz; 4955 targ_spec->bit_offset += local_acc->idx * sz * 8; 4956 } 4957 } 4958 4959 return 1; 4960 } 4961 4962 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 4963 const struct bpf_core_relo *relo, 4964 const struct bpf_core_spec *spec, 4965 __u32 *val, bool *validate) 4966 { 4967 const struct bpf_core_accessor *acc; 4968 const struct btf_type *t; 4969 __u32 byte_off, byte_sz, bit_off, bit_sz; 4970 const struct btf_member *m; 4971 const struct btf_type *mt; 4972 bool bitfield; 4973 __s64 sz; 4974 4975 if (relo->kind == BPF_FIELD_EXISTS) { 4976 *val = spec ? 1 : 0; 4977 return 0; 4978 } 4979 4980 if (!spec) 4981 return -EUCLEAN; /* request instruction poisoning */ 4982 4983 acc = &spec->spec[spec->len - 1]; 4984 t = btf__type_by_id(spec->btf, acc->type_id); 4985 4986 /* a[n] accessor needs special handling */ 4987 if (!acc->name) { 4988 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 4989 *val = spec->bit_offset / 8; 4990 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 4991 sz = btf__resolve_size(spec->btf, acc->type_id); 4992 if (sz < 0) 4993 return -EINVAL; 4994 *val = sz; 4995 } else { 4996 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 4997 prog->name, relo->kind, relo->insn_off / 8); 4998 return -EINVAL; 4999 } 5000 if (validate) 5001 *validate = true; 5002 return 0; 5003 } 5004 5005 m = btf_members(t) + acc->idx; 5006 mt = skip_mods_and_typedefs(spec->btf, m->type, NULL); 5007 bit_off = spec->bit_offset; 5008 bit_sz = btf_member_bitfield_size(t, acc->idx); 5009 5010 bitfield = bit_sz > 0; 5011 if (bitfield) { 5012 byte_sz = mt->size; 5013 byte_off = bit_off / 8 / byte_sz * byte_sz; 5014 /* figure out smallest int size necessary for bitfield load */ 5015 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5016 if (byte_sz >= 8) { 5017 /* bitfield can't be read with 64-bit read */ 5018 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5019 prog->name, relo->kind, relo->insn_off / 8); 5020 return -E2BIG; 5021 } 5022 byte_sz *= 2; 5023 byte_off = bit_off / 8 / byte_sz * byte_sz; 5024 } 5025 } else { 5026 sz = btf__resolve_size(spec->btf, m->type); 5027 if (sz < 0) 5028 return -EINVAL; 5029 byte_sz = sz; 5030 byte_off = spec->bit_offset / 8; 5031 bit_sz = byte_sz * 8; 5032 } 5033 5034 /* for bitfields, all the relocatable aspects are ambiguous and we 5035 * might disagree with compiler, so turn off validation of expected 5036 * value, except for signedness 5037 */ 5038 if (validate) 5039 *validate = !bitfield; 5040 5041 switch (relo->kind) { 5042 case BPF_FIELD_BYTE_OFFSET: 5043 *val = byte_off; 5044 break; 5045 case BPF_FIELD_BYTE_SIZE: 5046 *val = byte_sz; 5047 break; 5048 case BPF_FIELD_SIGNED: 5049 /* enums will be assumed unsigned */ 5050 *val = btf_is_enum(mt) || 5051 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5052 if (validate) 5053 *validate = true; /* signedness is never ambiguous */ 5054 break; 5055 case BPF_FIELD_LSHIFT_U64: 5056 #if __BYTE_ORDER == __LITTLE_ENDIAN 5057 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5058 #else 5059 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5060 #endif 5061 break; 5062 case BPF_FIELD_RSHIFT_U64: 5063 *val = 64 - bit_sz; 5064 if (validate) 5065 *validate = true; /* right shift is never ambiguous */ 5066 break; 5067 case BPF_FIELD_EXISTS: 5068 default: 5069 return -EOPNOTSUPP; 5070 } 5071 5072 return 0; 5073 } 5074 5075 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5076 const struct bpf_core_spec *spec, 5077 __u32 *val) 5078 { 5079 __s64 sz; 5080 5081 /* type-based relos return zero when target type is not found */ 5082 if (!spec) { 5083 *val = 0; 5084 return 0; 5085 } 5086 5087 switch (relo->kind) { 5088 case BPF_TYPE_ID_TARGET: 5089 *val = spec->root_type_id; 5090 break; 5091 case BPF_TYPE_EXISTS: 5092 *val = 1; 5093 break; 5094 case BPF_TYPE_SIZE: 5095 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5096 if (sz < 0) 5097 return -EINVAL; 5098 *val = sz; 5099 break; 5100 case BPF_TYPE_ID_LOCAL: 5101 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5102 default: 5103 return -EOPNOTSUPP; 5104 } 5105 5106 return 0; 5107 } 5108 5109 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5110 const struct bpf_core_spec *spec, 5111 __u32 *val) 5112 { 5113 const struct btf_type *t; 5114 const struct btf_enum *e; 5115 5116 switch (relo->kind) { 5117 case BPF_ENUMVAL_EXISTS: 5118 *val = spec ? 1 : 0; 5119 break; 5120 case BPF_ENUMVAL_VALUE: 5121 if (!spec) 5122 return -EUCLEAN; /* request instruction poisoning */ 5123 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5124 e = btf_enum(t) + spec->spec[0].idx; 5125 *val = e->val; 5126 break; 5127 default: 5128 return -EOPNOTSUPP; 5129 } 5130 5131 return 0; 5132 } 5133 5134 struct bpf_core_relo_res 5135 { 5136 /* expected value in the instruction, unless validate == false */ 5137 __u32 orig_val; 5138 /* new value that needs to be patched up to */ 5139 __u32 new_val; 5140 /* relocation unsuccessful, poison instruction, but don't fail load */ 5141 bool poison; 5142 /* some relocations can't be validated against orig_val */ 5143 bool validate; 5144 }; 5145 5146 /* Calculate original and target relocation values, given local and target 5147 * specs and relocation kind. These values are calculated for each candidate. 5148 * If there are multiple candidates, resulting values should all be consistent 5149 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5150 * If instruction has to be poisoned, *poison will be set to true. 5151 */ 5152 static int bpf_core_calc_relo(const struct bpf_program *prog, 5153 const struct bpf_core_relo *relo, 5154 int relo_idx, 5155 const struct bpf_core_spec *local_spec, 5156 const struct bpf_core_spec *targ_spec, 5157 struct bpf_core_relo_res *res) 5158 { 5159 int err = -EOPNOTSUPP; 5160 5161 res->orig_val = 0; 5162 res->new_val = 0; 5163 res->poison = false; 5164 res->validate = true; 5165 5166 if (core_relo_is_field_based(relo->kind)) { 5167 err = bpf_core_calc_field_relo(prog, relo, local_spec, &res->orig_val, &res->validate); 5168 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, &res->new_val, NULL); 5169 } else if (core_relo_is_type_based(relo->kind)) { 5170 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5171 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5172 } else if (core_relo_is_enumval_based(relo->kind)) { 5173 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5174 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5175 } 5176 5177 if (err == -EUCLEAN) { 5178 /* EUCLEAN is used to signal instruction poisoning request */ 5179 res->poison = true; 5180 err = 0; 5181 } else if (err == -EOPNOTSUPP) { 5182 /* EOPNOTSUPP means unknown/unsupported relocation */ 5183 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5184 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5185 relo->kind, relo->insn_off / 8); 5186 } 5187 5188 return err; 5189 } 5190 5191 /* 5192 * Turn instruction for which CO_RE relocation failed into invalid one with 5193 * distinct signature. 5194 */ 5195 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5196 int insn_idx, struct bpf_insn *insn) 5197 { 5198 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5199 prog->name, relo_idx, insn_idx); 5200 insn->code = BPF_JMP | BPF_CALL; 5201 insn->dst_reg = 0; 5202 insn->src_reg = 0; 5203 insn->off = 0; 5204 /* if this instruction is reachable (not a dead code), 5205 * verifier will complain with the following message: 5206 * invalid func unknown#195896080 5207 */ 5208 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5209 } 5210 5211 static bool is_ldimm64(struct bpf_insn *insn) 5212 { 5213 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 5214 } 5215 5216 /* 5217 * Patch relocatable BPF instruction. 5218 * 5219 * Patched value is determined by relocation kind and target specification. 5220 * For existence relocations target spec will be NULL if field/type is not found. 5221 * Expected insn->imm value is determined using relocation kind and local 5222 * spec, and is checked before patching instruction. If actual insn->imm value 5223 * is wrong, bail out with error. 5224 * 5225 * Currently three kinds of BPF instructions are supported: 5226 * 1. rX = <imm> (assignment with immediate operand); 5227 * 2. rX += <imm> (arithmetic operations with immediate operand); 5228 * 3. rX = <imm64> (load with 64-bit immediate value). 5229 */ 5230 static int bpf_core_patch_insn(struct bpf_program *prog, 5231 const struct bpf_core_relo *relo, 5232 int relo_idx, 5233 const struct bpf_core_relo_res *res) 5234 { 5235 __u32 orig_val, new_val; 5236 struct bpf_insn *insn; 5237 int insn_idx; 5238 __u8 class; 5239 5240 if (relo->insn_off % BPF_INSN_SZ) 5241 return -EINVAL; 5242 insn_idx = relo->insn_off / BPF_INSN_SZ; 5243 /* adjust insn_idx from section frame of reference to the local 5244 * program's frame of reference; (sub-)program code is not yet 5245 * relocated, so it's enough to just subtract in-section offset 5246 */ 5247 insn_idx = insn_idx - prog->sec_insn_off; 5248 insn = &prog->insns[insn_idx]; 5249 class = BPF_CLASS(insn->code); 5250 5251 if (res->poison) { 5252 /* poison second part of ldimm64 to avoid confusing error from 5253 * verifier about "unknown opcode 00" 5254 */ 5255 if (is_ldimm64(insn)) 5256 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5257 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5258 return 0; 5259 } 5260 5261 orig_val = res->orig_val; 5262 new_val = res->new_val; 5263 5264 switch (class) { 5265 case BPF_ALU: 5266 case BPF_ALU64: 5267 if (BPF_SRC(insn->code) != BPF_K) 5268 return -EINVAL; 5269 if (res->validate && insn->imm != orig_val) { 5270 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5271 prog->name, relo_idx, 5272 insn_idx, insn->imm, orig_val, new_val); 5273 return -EINVAL; 5274 } 5275 orig_val = insn->imm; 5276 insn->imm = new_val; 5277 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5278 prog->name, relo_idx, insn_idx, 5279 orig_val, new_val); 5280 break; 5281 case BPF_LDX: 5282 case BPF_ST: 5283 case BPF_STX: 5284 if (res->validate && insn->off != orig_val) { 5285 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5286 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5287 return -EINVAL; 5288 } 5289 if (new_val > SHRT_MAX) { 5290 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5291 prog->name, relo_idx, insn_idx, new_val); 5292 return -ERANGE; 5293 } 5294 orig_val = insn->off; 5295 insn->off = new_val; 5296 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5297 prog->name, relo_idx, insn_idx, orig_val, new_val); 5298 break; 5299 case BPF_LD: { 5300 __u64 imm; 5301 5302 if (!is_ldimm64(insn) || 5303 insn[0].src_reg != 0 || insn[0].off != 0 || 5304 insn_idx + 1 >= prog->insns_cnt || 5305 insn[1].code != 0 || insn[1].dst_reg != 0 || 5306 insn[1].src_reg != 0 || insn[1].off != 0) { 5307 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5308 prog->name, relo_idx, insn_idx); 5309 return -EINVAL; 5310 } 5311 5312 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5313 if (res->validate && imm != orig_val) { 5314 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5315 prog->name, relo_idx, 5316 insn_idx, (unsigned long long)imm, 5317 orig_val, new_val); 5318 return -EINVAL; 5319 } 5320 5321 insn[0].imm = new_val; 5322 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5323 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5324 prog->name, relo_idx, insn_idx, 5325 (unsigned long long)imm, new_val); 5326 break; 5327 } 5328 default: 5329 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5330 prog->name, relo_idx, insn_idx, insn->code, 5331 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5332 return -EINVAL; 5333 } 5334 5335 return 0; 5336 } 5337 5338 /* Output spec definition in the format: 5339 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5340 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5341 */ 5342 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5343 { 5344 const struct btf_type *t; 5345 const struct btf_enum *e; 5346 const char *s; 5347 __u32 type_id; 5348 int i; 5349 5350 type_id = spec->root_type_id; 5351 t = btf__type_by_id(spec->btf, type_id); 5352 s = btf__name_by_offset(spec->btf, t->name_off); 5353 5354 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5355 5356 if (core_relo_is_type_based(spec->relo_kind)) 5357 return; 5358 5359 if (core_relo_is_enumval_based(spec->relo_kind)) { 5360 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5361 e = btf_enum(t) + spec->raw_spec[0]; 5362 s = btf__name_by_offset(spec->btf, e->name_off); 5363 5364 libbpf_print(level, "::%s = %u", s, e->val); 5365 return; 5366 } 5367 5368 if (core_relo_is_field_based(spec->relo_kind)) { 5369 for (i = 0; i < spec->len; i++) { 5370 if (spec->spec[i].name) 5371 libbpf_print(level, ".%s", spec->spec[i].name); 5372 else if (i > 0 || spec->spec[i].idx > 0) 5373 libbpf_print(level, "[%u]", spec->spec[i].idx); 5374 } 5375 5376 libbpf_print(level, " ("); 5377 for (i = 0; i < spec->raw_len; i++) 5378 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5379 5380 if (spec->bit_offset % 8) 5381 libbpf_print(level, " @ offset %u.%u)", 5382 spec->bit_offset / 8, spec->bit_offset % 8); 5383 else 5384 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5385 return; 5386 } 5387 } 5388 5389 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5390 { 5391 return (size_t)key; 5392 } 5393 5394 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5395 { 5396 return k1 == k2; 5397 } 5398 5399 static void *u32_as_hash_key(__u32 x) 5400 { 5401 return (void *)(uintptr_t)x; 5402 } 5403 5404 /* 5405 * CO-RE relocate single instruction. 5406 * 5407 * The outline and important points of the algorithm: 5408 * 1. For given local type, find corresponding candidate target types. 5409 * Candidate type is a type with the same "essential" name, ignoring 5410 * everything after last triple underscore (___). E.g., `sample`, 5411 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5412 * for each other. Names with triple underscore are referred to as 5413 * "flavors" and are useful, among other things, to allow to 5414 * specify/support incompatible variations of the same kernel struct, which 5415 * might differ between different kernel versions and/or build 5416 * configurations. 5417 * 5418 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5419 * converter, when deduplicated BTF of a kernel still contains more than 5420 * one different types with the same name. In that case, ___2, ___3, etc 5421 * are appended starting from second name conflict. But start flavors are 5422 * also useful to be defined "locally", in BPF program, to extract same 5423 * data from incompatible changes between different kernel 5424 * versions/configurations. For instance, to handle field renames between 5425 * kernel versions, one can use two flavors of the struct name with the 5426 * same common name and use conditional relocations to extract that field, 5427 * depending on target kernel version. 5428 * 2. For each candidate type, try to match local specification to this 5429 * candidate target type. Matching involves finding corresponding 5430 * high-level spec accessors, meaning that all named fields should match, 5431 * as well as all array accesses should be within the actual bounds. Also, 5432 * types should be compatible (see bpf_core_fields_are_compat for details). 5433 * 3. It is supported and expected that there might be multiple flavors 5434 * matching the spec. As long as all the specs resolve to the same set of 5435 * offsets across all candidates, there is no error. If there is any 5436 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 5437 * imprefection of BTF deduplication, which can cause slight duplication of 5438 * the same BTF type, if some directly or indirectly referenced (by 5439 * pointer) type gets resolved to different actual types in different 5440 * object files. If such situation occurs, deduplicated BTF will end up 5441 * with two (or more) structurally identical types, which differ only in 5442 * types they refer to through pointer. This should be OK in most cases and 5443 * is not an error. 5444 * 4. Candidate types search is performed by linearly scanning through all 5445 * types in target BTF. It is anticipated that this is overall more 5446 * efficient memory-wise and not significantly worse (if not better) 5447 * CPU-wise compared to prebuilding a map from all local type names to 5448 * a list of candidate type names. It's also sped up by caching resolved 5449 * list of matching candidates per each local "root" type ID, that has at 5450 * least one bpf_core_relo associated with it. This list is shared 5451 * between multiple relocations for the same type ID and is updated as some 5452 * of the candidates are pruned due to structural incompatibility. 5453 */ 5454 static int bpf_core_apply_relo(struct bpf_program *prog, 5455 const struct bpf_core_relo *relo, 5456 int relo_idx, 5457 const struct btf *local_btf, 5458 const struct btf *targ_btf, 5459 struct hashmap *cand_cache) 5460 { 5461 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 5462 const void *type_key = u32_as_hash_key(relo->type_id); 5463 struct bpf_core_relo_res cand_res, targ_res; 5464 const struct btf_type *local_type; 5465 const char *local_name; 5466 struct ids_vec *cand_ids; 5467 __u32 local_id, cand_id; 5468 const char *spec_str; 5469 int i, j, err; 5470 5471 local_id = relo->type_id; 5472 local_type = btf__type_by_id(local_btf, local_id); 5473 if (!local_type) 5474 return -EINVAL; 5475 5476 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5477 if (!local_name) 5478 return -EINVAL; 5479 5480 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5481 if (str_is_empty(spec_str)) 5482 return -EINVAL; 5483 5484 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 5485 if (err) { 5486 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 5487 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5488 str_is_empty(local_name) ? "<anon>" : local_name, 5489 spec_str, err); 5490 return -EINVAL; 5491 } 5492 5493 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 5494 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5495 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 5496 libbpf_print(LIBBPF_DEBUG, "\n"); 5497 5498 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 5499 if (relo->kind == BPF_TYPE_ID_LOCAL) { 5500 targ_res.validate = true; 5501 targ_res.poison = false; 5502 targ_res.orig_val = local_spec.root_type_id; 5503 targ_res.new_val = local_spec.root_type_id; 5504 goto patch_insn; 5505 } 5506 5507 /* libbpf doesn't support candidate search for anonymous types */ 5508 if (str_is_empty(spec_str)) { 5509 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 5510 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5511 return -EOPNOTSUPP; 5512 } 5513 5514 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 5515 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 5516 if (IS_ERR(cand_ids)) { 5517 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld", 5518 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5519 local_name, PTR_ERR(cand_ids)); 5520 return PTR_ERR(cand_ids); 5521 } 5522 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 5523 if (err) { 5524 bpf_core_free_cands(cand_ids); 5525 return err; 5526 } 5527 } 5528 5529 for (i = 0, j = 0; i < cand_ids->len; i++) { 5530 cand_id = cand_ids->data[i]; 5531 err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec); 5532 if (err < 0) { 5533 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 5534 prog->name, relo_idx, i); 5535 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 5536 libbpf_print(LIBBPF_WARN, ": %d\n", err); 5537 return err; 5538 } 5539 5540 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 5541 relo_idx, err == 0 ? "non-matching" : "matching", i); 5542 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 5543 libbpf_print(LIBBPF_DEBUG, "\n"); 5544 5545 if (err == 0) 5546 continue; 5547 5548 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 5549 if (err) 5550 return err; 5551 5552 if (j == 0) { 5553 targ_res = cand_res; 5554 targ_spec = cand_spec; 5555 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 5556 /* if there are many field relo candidates, they 5557 * should all resolve to the same bit offset 5558 */ 5559 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 5560 prog->name, relo_idx, cand_spec.bit_offset, 5561 targ_spec.bit_offset); 5562 return -EINVAL; 5563 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 5564 /* all candidates should result in the same relocation 5565 * decision and value, otherwise it's dangerous to 5566 * proceed due to ambiguity 5567 */ 5568 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 5569 prog->name, relo_idx, 5570 cand_res.poison ? "failure" : "success", cand_res.new_val, 5571 targ_res.poison ? "failure" : "success", targ_res.new_val); 5572 return -EINVAL; 5573 } 5574 5575 cand_ids->data[j++] = cand_spec.root_type_id; 5576 } 5577 5578 /* 5579 * For BPF_FIELD_EXISTS relo or when used BPF program has field 5580 * existence checks or kernel version/config checks, it's expected 5581 * that we might not find any candidates. In this case, if field 5582 * wasn't found in any candidate, the list of candidates shouldn't 5583 * change at all, we'll just handle relocating appropriately, 5584 * depending on relo's kind. 5585 */ 5586 if (j > 0) 5587 cand_ids->len = j; 5588 5589 /* 5590 * If no candidates were found, it might be both a programmer error, 5591 * as well as expected case, depending whether instruction w/ 5592 * relocation is guarded in some way that makes it unreachable (dead 5593 * code) if relocation can't be resolved. This is handled in 5594 * bpf_core_patch_insn() uniformly by replacing that instruction with 5595 * BPF helper call insn (using invalid helper ID). If that instruction 5596 * is indeed unreachable, then it will be ignored and eliminated by 5597 * verifier. If it was an error, then verifier will complain and point 5598 * to a specific instruction number in its log. 5599 */ 5600 if (j == 0) { 5601 pr_debug("prog '%s': relo #%d: no matching targets found\n", 5602 prog->name, relo_idx); 5603 5604 /* calculate single target relo result explicitly */ 5605 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 5606 if (err) 5607 return err; 5608 } 5609 5610 patch_insn: 5611 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 5612 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 5613 if (err) { 5614 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 5615 prog->name, relo_idx, relo->insn_off, err); 5616 return -EINVAL; 5617 } 5618 5619 return 0; 5620 } 5621 5622 static int 5623 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5624 { 5625 const struct btf_ext_info_sec *sec; 5626 const struct bpf_core_relo *rec; 5627 const struct btf_ext_info *seg; 5628 struct hashmap_entry *entry; 5629 struct hashmap *cand_cache = NULL; 5630 struct bpf_program *prog; 5631 struct btf *targ_btf; 5632 const char *sec_name; 5633 int i, err = 0, insn_idx, sec_idx; 5634 5635 if (obj->btf_ext->core_relo_info.len == 0) 5636 return 0; 5637 5638 if (targ_btf_path) 5639 targ_btf = btf__parse_elf(targ_btf_path, NULL); 5640 else 5641 targ_btf = obj->btf_vmlinux; 5642 if (IS_ERR_OR_NULL(targ_btf)) { 5643 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 5644 return PTR_ERR(targ_btf); 5645 } 5646 5647 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5648 if (IS_ERR(cand_cache)) { 5649 err = PTR_ERR(cand_cache); 5650 goto out; 5651 } 5652 5653 seg = &obj->btf_ext->core_relo_info; 5654 for_each_btf_ext_sec(seg, sec) { 5655 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5656 if (str_is_empty(sec_name)) { 5657 err = -EINVAL; 5658 goto out; 5659 } 5660 /* bpf_object's ELF is gone by now so it's not easy to find 5661 * section index by section name, but we can find *any* 5662 * bpf_program within desired section name and use it's 5663 * prog->sec_idx to do a proper search by section index and 5664 * instruction offset 5665 */ 5666 prog = NULL; 5667 for (i = 0; i < obj->nr_programs; i++) { 5668 prog = &obj->programs[i]; 5669 if (strcmp(prog->sec_name, sec_name) == 0) 5670 break; 5671 } 5672 if (!prog) { 5673 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5674 return -ENOENT; 5675 } 5676 sec_idx = prog->sec_idx; 5677 5678 pr_debug("sec '%s': found %d CO-RE relocations\n", 5679 sec_name, sec->num_info); 5680 5681 for_each_btf_ext_rec(seg, sec, i, rec) { 5682 insn_idx = rec->insn_off / BPF_INSN_SZ; 5683 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5684 if (!prog) { 5685 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5686 sec_name, insn_idx, i); 5687 err = -EINVAL; 5688 goto out; 5689 } 5690 5691 err = bpf_core_apply_relo(prog, rec, i, obj->btf, 5692 targ_btf, cand_cache); 5693 if (err) { 5694 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5695 prog->name, i, err); 5696 goto out; 5697 } 5698 } 5699 } 5700 5701 out: 5702 /* obj->btf_vmlinux is freed at the end of object load phase */ 5703 if (targ_btf != obj->btf_vmlinux) 5704 btf__free(targ_btf); 5705 if (!IS_ERR_OR_NULL(cand_cache)) { 5706 hashmap__for_each_entry(cand_cache, entry, i) { 5707 bpf_core_free_cands(entry->value); 5708 } 5709 hashmap__free(cand_cache); 5710 } 5711 return err; 5712 } 5713 5714 /* Relocate data references within program code: 5715 * - map references; 5716 * - global variable references; 5717 * - extern references. 5718 */ 5719 static int 5720 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5721 { 5722 int i; 5723 5724 for (i = 0; i < prog->nr_reloc; i++) { 5725 struct reloc_desc *relo = &prog->reloc_desc[i]; 5726 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5727 struct extern_desc *ext; 5728 5729 switch (relo->type) { 5730 case RELO_LD64: 5731 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5732 insn[0].imm = obj->maps[relo->map_idx].fd; 5733 relo->processed = true; 5734 break; 5735 case RELO_DATA: 5736 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5737 insn[1].imm = insn[0].imm + relo->sym_off; 5738 insn[0].imm = obj->maps[relo->map_idx].fd; 5739 relo->processed = true; 5740 break; 5741 case RELO_EXTERN: 5742 ext = &obj->externs[relo->sym_off]; 5743 if (ext->type == EXT_KCFG) { 5744 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5745 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5746 insn[1].imm = ext->kcfg.data_off; 5747 } else /* EXT_KSYM */ { 5748 insn[0].imm = (__u32)ext->ksym.addr; 5749 insn[1].imm = ext->ksym.addr >> 32; 5750 } 5751 relo->processed = true; 5752 break; 5753 case RELO_CALL: 5754 /* will be handled as a follow up pass */ 5755 break; 5756 default: 5757 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5758 prog->name, i, relo->type); 5759 return -EINVAL; 5760 } 5761 } 5762 5763 return 0; 5764 } 5765 5766 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5767 const struct bpf_program *prog, 5768 const struct btf_ext_info *ext_info, 5769 void **prog_info, __u32 *prog_rec_cnt, 5770 __u32 *prog_rec_sz) 5771 { 5772 void *copy_start = NULL, *copy_end = NULL; 5773 void *rec, *rec_end, *new_prog_info; 5774 const struct btf_ext_info_sec *sec; 5775 size_t old_sz, new_sz; 5776 const char *sec_name; 5777 int i, off_adj; 5778 5779 for_each_btf_ext_sec(ext_info, sec) { 5780 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5781 if (!sec_name) 5782 return -EINVAL; 5783 if (strcmp(sec_name, prog->sec_name) != 0) 5784 continue; 5785 5786 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5787 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5788 5789 if (insn_off < prog->sec_insn_off) 5790 continue; 5791 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5792 break; 5793 5794 if (!copy_start) 5795 copy_start = rec; 5796 copy_end = rec + ext_info->rec_size; 5797 } 5798 5799 if (!copy_start) 5800 return -ENOENT; 5801 5802 /* append func/line info of a given (sub-)program to the main 5803 * program func/line info 5804 */ 5805 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5806 new_sz = old_sz + (copy_end - copy_start); 5807 new_prog_info = realloc(*prog_info, new_sz); 5808 if (!new_prog_info) 5809 return -ENOMEM; 5810 *prog_info = new_prog_info; 5811 *prog_rec_cnt = new_sz / ext_info->rec_size; 5812 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5813 5814 /* Kernel instruction offsets are in units of 8-byte 5815 * instructions, while .BTF.ext instruction offsets generated 5816 * by Clang are in units of bytes. So convert Clang offsets 5817 * into kernel offsets and adjust offset according to program 5818 * relocated position. 5819 */ 5820 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5821 rec = new_prog_info + old_sz; 5822 rec_end = new_prog_info + new_sz; 5823 for (; rec < rec_end; rec += ext_info->rec_size) { 5824 __u32 *insn_off = rec; 5825 5826 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5827 } 5828 *prog_rec_sz = ext_info->rec_size; 5829 return 0; 5830 } 5831 5832 return -ENOENT; 5833 } 5834 5835 static int 5836 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5837 struct bpf_program *main_prog, 5838 const struct bpf_program *prog) 5839 { 5840 int err; 5841 5842 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5843 * supprot func/line info 5844 */ 5845 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 5846 return 0; 5847 5848 /* only attempt func info relocation if main program's func_info 5849 * relocation was successful 5850 */ 5851 if (main_prog != prog && !main_prog->func_info) 5852 goto line_info; 5853 5854 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5855 &main_prog->func_info, 5856 &main_prog->func_info_cnt, 5857 &main_prog->func_info_rec_size); 5858 if (err) { 5859 if (err != -ENOENT) { 5860 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5861 prog->name, err); 5862 return err; 5863 } 5864 if (main_prog->func_info) { 5865 /* 5866 * Some info has already been found but has problem 5867 * in the last btf_ext reloc. Must have to error out. 5868 */ 5869 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5870 return err; 5871 } 5872 /* Have problem loading the very first info. Ignore the rest. */ 5873 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5874 prog->name); 5875 } 5876 5877 line_info: 5878 /* don't relocate line info if main program's relocation failed */ 5879 if (main_prog != prog && !main_prog->line_info) 5880 return 0; 5881 5882 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5883 &main_prog->line_info, 5884 &main_prog->line_info_cnt, 5885 &main_prog->line_info_rec_size); 5886 if (err) { 5887 if (err != -ENOENT) { 5888 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5889 prog->name, err); 5890 return err; 5891 } 5892 if (main_prog->line_info) { 5893 /* 5894 * Some info has already been found but has problem 5895 * in the last btf_ext reloc. Must have to error out. 5896 */ 5897 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5898 return err; 5899 } 5900 /* Have problem loading the very first info. Ignore the rest. */ 5901 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5902 prog->name); 5903 } 5904 return 0; 5905 } 5906 5907 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5908 { 5909 size_t insn_idx = *(const size_t *)key; 5910 const struct reloc_desc *relo = elem; 5911 5912 if (insn_idx == relo->insn_idx) 5913 return 0; 5914 return insn_idx < relo->insn_idx ? -1 : 1; 5915 } 5916 5917 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5918 { 5919 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5920 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5921 } 5922 5923 static int 5924 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5925 struct bpf_program *prog) 5926 { 5927 size_t sub_insn_idx, insn_idx, new_cnt; 5928 struct bpf_program *subprog; 5929 struct bpf_insn *insns, *insn; 5930 struct reloc_desc *relo; 5931 int err; 5932 5933 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 5934 if (err) 5935 return err; 5936 5937 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 5938 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5939 if (!insn_is_subprog_call(insn)) 5940 continue; 5941 5942 relo = find_prog_insn_relo(prog, insn_idx); 5943 if (relo && relo->type != RELO_CALL) { 5944 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 5945 prog->name, insn_idx, relo->type); 5946 return -LIBBPF_ERRNO__RELOC; 5947 } 5948 if (relo) { 5949 /* sub-program instruction index is a combination of 5950 * an offset of a symbol pointed to by relocation and 5951 * call instruction's imm field; for global functions, 5952 * call always has imm = -1, but for static functions 5953 * relocation is against STT_SECTION and insn->imm 5954 * points to a start of a static function 5955 */ 5956 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 5957 } else { 5958 /* if subprogram call is to a static function within 5959 * the same ELF section, there won't be any relocation 5960 * emitted, but it also means there is no additional 5961 * offset necessary, insns->imm is relative to 5962 * instruction's original position within the section 5963 */ 5964 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 5965 } 5966 5967 /* we enforce that sub-programs should be in .text section */ 5968 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 5969 if (!subprog) { 5970 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 5971 prog->name); 5972 return -LIBBPF_ERRNO__RELOC; 5973 } 5974 5975 /* if it's the first call instruction calling into this 5976 * subprogram (meaning this subprog hasn't been processed 5977 * yet) within the context of current main program: 5978 * - append it at the end of main program's instructions blog; 5979 * - process is recursively, while current program is put on hold; 5980 * - if that subprogram calls some other not yet processes 5981 * subprogram, same thing will happen recursively until 5982 * there are no more unprocesses subprograms left to append 5983 * and relocate. 5984 */ 5985 if (subprog->sub_insn_off == 0) { 5986 subprog->sub_insn_off = main_prog->insns_cnt; 5987 5988 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 5989 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 5990 if (!insns) { 5991 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 5992 return -ENOMEM; 5993 } 5994 main_prog->insns = insns; 5995 main_prog->insns_cnt = new_cnt; 5996 5997 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 5998 subprog->insns_cnt * sizeof(*insns)); 5999 6000 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6001 main_prog->name, subprog->insns_cnt, subprog->name); 6002 6003 err = bpf_object__reloc_code(obj, main_prog, subprog); 6004 if (err) 6005 return err; 6006 } 6007 6008 /* main_prog->insns memory could have been re-allocated, so 6009 * calculate pointer again 6010 */ 6011 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6012 /* calculate correct instruction position within current main 6013 * prog; each main prog can have a different set of 6014 * subprograms appended (potentially in different order as 6015 * well), so position of any subprog can be different for 6016 * different main programs */ 6017 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6018 6019 if (relo) 6020 relo->processed = true; 6021 6022 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6023 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6024 } 6025 6026 return 0; 6027 } 6028 6029 /* 6030 * Relocate sub-program calls. 6031 * 6032 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6033 * main prog) is processed separately. For each subprog (non-entry functions, 6034 * that can be called from either entry progs or other subprogs) gets their 6035 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6036 * hasn't been yet appended and relocated within current main prog. Once its 6037 * relocated, sub_insn_off will point at the position within current main prog 6038 * where given subprog was appended. This will further be used to relocate all 6039 * the call instructions jumping into this subprog. 6040 * 6041 * We start with main program and process all call instructions. If the call 6042 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6043 * is zero), subprog instructions are appended at the end of main program's 6044 * instruction array. Then main program is "put on hold" while we recursively 6045 * process newly appended subprogram. If that subprogram calls into another 6046 * subprogram that hasn't been appended, new subprogram is appended again to 6047 * the *main* prog's instructions (subprog's instructions are always left 6048 * untouched, as they need to be in unmodified state for subsequent main progs 6049 * and subprog instructions are always sent only as part of a main prog) and 6050 * the process continues recursively. Once all the subprogs called from a main 6051 * prog or any of its subprogs are appended (and relocated), all their 6052 * positions within finalized instructions array are known, so it's easy to 6053 * rewrite call instructions with correct relative offsets, corresponding to 6054 * desired target subprog. 6055 * 6056 * Its important to realize that some subprogs might not be called from some 6057 * main prog and any of its called/used subprogs. Those will keep their 6058 * subprog->sub_insn_off as zero at all times and won't be appended to current 6059 * main prog and won't be relocated within the context of current main prog. 6060 * They might still be used from other main progs later. 6061 * 6062 * Visually this process can be shown as below. Suppose we have two main 6063 * programs mainA and mainB and BPF object contains three subprogs: subA, 6064 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6065 * subC both call subB: 6066 * 6067 * +--------+ +-------+ 6068 * | v v | 6069 * +--+---+ +--+-+-+ +---+--+ 6070 * | subA | | subB | | subC | 6071 * +--+---+ +------+ +---+--+ 6072 * ^ ^ 6073 * | | 6074 * +---+-------+ +------+----+ 6075 * | mainA | | mainB | 6076 * +-----------+ +-----------+ 6077 * 6078 * We'll start relocating mainA, will find subA, append it and start 6079 * processing sub A recursively: 6080 * 6081 * +-----------+------+ 6082 * | mainA | subA | 6083 * +-----------+------+ 6084 * 6085 * At this point we notice that subB is used from subA, so we append it and 6086 * relocate (there are no further subcalls from subB): 6087 * 6088 * +-----------+------+------+ 6089 * | mainA | subA | subB | 6090 * +-----------+------+------+ 6091 * 6092 * At this point, we relocate subA calls, then go one level up and finish with 6093 * relocatin mainA calls. mainA is done. 6094 * 6095 * For mainB process is similar but results in different order. We start with 6096 * mainB and skip subA and subB, as mainB never calls them (at least 6097 * directly), but we see subC is needed, so we append and start processing it: 6098 * 6099 * +-----------+------+ 6100 * | mainB | subC | 6101 * +-----------+------+ 6102 * Now we see subC needs subB, so we go back to it, append and relocate it: 6103 * 6104 * +-----------+------+------+ 6105 * | mainB | subC | subB | 6106 * +-----------+------+------+ 6107 * 6108 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6109 */ 6110 static int 6111 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6112 { 6113 struct bpf_program *subprog; 6114 int i, j, err; 6115 6116 /* mark all subprogs as not relocated (yet) within the context of 6117 * current main program 6118 */ 6119 for (i = 0; i < obj->nr_programs; i++) { 6120 subprog = &obj->programs[i]; 6121 if (!prog_is_subprog(obj, subprog)) 6122 continue; 6123 6124 subprog->sub_insn_off = 0; 6125 for (j = 0; j < subprog->nr_reloc; j++) 6126 if (subprog->reloc_desc[j].type == RELO_CALL) 6127 subprog->reloc_desc[j].processed = false; 6128 } 6129 6130 err = bpf_object__reloc_code(obj, prog, prog); 6131 if (err) 6132 return err; 6133 6134 6135 return 0; 6136 } 6137 6138 static int 6139 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6140 { 6141 struct bpf_program *prog; 6142 size_t i; 6143 int err; 6144 6145 if (obj->btf_ext) { 6146 err = bpf_object__relocate_core(obj, targ_btf_path); 6147 if (err) { 6148 pr_warn("failed to perform CO-RE relocations: %d\n", 6149 err); 6150 return err; 6151 } 6152 } 6153 /* relocate data references first for all programs and sub-programs, 6154 * as they don't change relative to code locations, so subsequent 6155 * subprogram processing won't need to re-calculate any of them 6156 */ 6157 for (i = 0; i < obj->nr_programs; i++) { 6158 prog = &obj->programs[i]; 6159 err = bpf_object__relocate_data(obj, prog); 6160 if (err) { 6161 pr_warn("prog '%s': failed to relocate data references: %d\n", 6162 prog->name, err); 6163 return err; 6164 } 6165 } 6166 /* now relocate subprogram calls and append used subprograms to main 6167 * programs; each copy of subprogram code needs to be relocated 6168 * differently for each main program, because its code location might 6169 * have changed 6170 */ 6171 for (i = 0; i < obj->nr_programs; i++) { 6172 prog = &obj->programs[i]; 6173 /* sub-program's sub-calls are relocated within the context of 6174 * its main program only 6175 */ 6176 if (prog_is_subprog(obj, prog)) 6177 continue; 6178 6179 err = bpf_object__relocate_calls(obj, prog); 6180 if (err) { 6181 pr_warn("prog '%s': failed to relocate calls: %d\n", 6182 prog->name, err); 6183 return err; 6184 } 6185 } 6186 /* free up relocation descriptors */ 6187 for (i = 0; i < obj->nr_programs; i++) { 6188 prog = &obj->programs[i]; 6189 zfree(&prog->reloc_desc); 6190 prog->nr_reloc = 0; 6191 } 6192 return 0; 6193 } 6194 6195 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6196 GElf_Shdr *shdr, Elf_Data *data); 6197 6198 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6199 GElf_Shdr *shdr, Elf_Data *data) 6200 { 6201 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6202 int i, j, nrels, new_sz; 6203 const struct btf_var_secinfo *vi = NULL; 6204 const struct btf_type *sec, *var, *def; 6205 const struct btf_member *member; 6206 struct bpf_map *map, *targ_map; 6207 const char *name, *mname; 6208 Elf_Data *symbols; 6209 unsigned int moff; 6210 GElf_Sym sym; 6211 GElf_Rel rel; 6212 void *tmp; 6213 6214 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6215 return -EINVAL; 6216 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6217 if (!sec) 6218 return -EINVAL; 6219 6220 symbols = obj->efile.symbols; 6221 nrels = shdr->sh_size / shdr->sh_entsize; 6222 for (i = 0; i < nrels; i++) { 6223 if (!gelf_getrel(data, i, &rel)) { 6224 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6225 return -LIBBPF_ERRNO__FORMAT; 6226 } 6227 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6228 pr_warn(".maps relo #%d: symbol %zx not found\n", 6229 i, (size_t)GELF_R_SYM(rel.r_info)); 6230 return -LIBBPF_ERRNO__FORMAT; 6231 } 6232 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6233 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6234 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6235 i, name); 6236 return -LIBBPF_ERRNO__RELOC; 6237 } 6238 6239 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6240 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6241 (size_t)rel.r_offset, sym.st_name, name); 6242 6243 for (j = 0; j < obj->nr_maps; j++) { 6244 map = &obj->maps[j]; 6245 if (map->sec_idx != obj->efile.btf_maps_shndx) 6246 continue; 6247 6248 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6249 if (vi->offset <= rel.r_offset && 6250 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6251 break; 6252 } 6253 if (j == obj->nr_maps) { 6254 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6255 i, name, (size_t)rel.r_offset); 6256 return -EINVAL; 6257 } 6258 6259 if (!bpf_map_type__is_map_in_map(map->def.type)) 6260 return -EINVAL; 6261 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6262 map->def.key_size != sizeof(int)) { 6263 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6264 i, map->name, sizeof(int)); 6265 return -EINVAL; 6266 } 6267 6268 targ_map = bpf_object__find_map_by_name(obj, name); 6269 if (!targ_map) 6270 return -ESRCH; 6271 6272 var = btf__type_by_id(obj->btf, vi->type); 6273 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6274 if (btf_vlen(def) == 0) 6275 return -EINVAL; 6276 member = btf_members(def) + btf_vlen(def) - 1; 6277 mname = btf__name_by_offset(obj->btf, member->name_off); 6278 if (strcmp(mname, "values")) 6279 return -EINVAL; 6280 6281 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6282 if (rel.r_offset - vi->offset < moff) 6283 return -EINVAL; 6284 6285 moff = rel.r_offset - vi->offset - moff; 6286 /* here we use BPF pointer size, which is always 64 bit, as we 6287 * are parsing ELF that was built for BPF target 6288 */ 6289 if (moff % bpf_ptr_sz) 6290 return -EINVAL; 6291 moff /= bpf_ptr_sz; 6292 if (moff >= map->init_slots_sz) { 6293 new_sz = moff + 1; 6294 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6295 if (!tmp) 6296 return -ENOMEM; 6297 map->init_slots = tmp; 6298 memset(map->init_slots + map->init_slots_sz, 0, 6299 (new_sz - map->init_slots_sz) * host_ptr_sz); 6300 map->init_slots_sz = new_sz; 6301 } 6302 map->init_slots[moff] = targ_map; 6303 6304 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6305 i, map->name, moff, name); 6306 } 6307 6308 return 0; 6309 } 6310 6311 static int cmp_relocs(const void *_a, const void *_b) 6312 { 6313 const struct reloc_desc *a = _a; 6314 const struct reloc_desc *b = _b; 6315 6316 if (a->insn_idx != b->insn_idx) 6317 return a->insn_idx < b->insn_idx ? -1 : 1; 6318 6319 /* no two relocations should have the same insn_idx, but ... */ 6320 if (a->type != b->type) 6321 return a->type < b->type ? -1 : 1; 6322 6323 return 0; 6324 } 6325 6326 static int bpf_object__collect_relos(struct bpf_object *obj) 6327 { 6328 int i, err; 6329 6330 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6331 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6332 Elf_Data *data = obj->efile.reloc_sects[i].data; 6333 int idx = shdr->sh_info; 6334 6335 if (shdr->sh_type != SHT_REL) { 6336 pr_warn("internal error at %d\n", __LINE__); 6337 return -LIBBPF_ERRNO__INTERNAL; 6338 } 6339 6340 if (idx == obj->efile.st_ops_shndx) 6341 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6342 else if (idx == obj->efile.btf_maps_shndx) 6343 err = bpf_object__collect_map_relos(obj, shdr, data); 6344 else 6345 err = bpf_object__collect_prog_relos(obj, shdr, data); 6346 if (err) 6347 return err; 6348 } 6349 6350 for (i = 0; i < obj->nr_programs; i++) { 6351 struct bpf_program *p = &obj->programs[i]; 6352 6353 if (!p->nr_reloc) 6354 continue; 6355 6356 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6357 } 6358 return 0; 6359 } 6360 6361 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6362 { 6363 if (BPF_CLASS(insn->code) == BPF_JMP && 6364 BPF_OP(insn->code) == BPF_CALL && 6365 BPF_SRC(insn->code) == BPF_K && 6366 insn->src_reg == 0 && 6367 insn->dst_reg == 0) { 6368 *func_id = insn->imm; 6369 return true; 6370 } 6371 return false; 6372 } 6373 6374 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6375 { 6376 struct bpf_insn *insn = prog->insns; 6377 enum bpf_func_id func_id; 6378 int i; 6379 6380 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6381 if (!insn_is_helper_call(insn, &func_id)) 6382 continue; 6383 6384 /* on kernels that don't yet support 6385 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6386 * to bpf_probe_read() which works well for old kernels 6387 */ 6388 switch (func_id) { 6389 case BPF_FUNC_probe_read_kernel: 6390 case BPF_FUNC_probe_read_user: 6391 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6392 insn->imm = BPF_FUNC_probe_read; 6393 break; 6394 case BPF_FUNC_probe_read_kernel_str: 6395 case BPF_FUNC_probe_read_user_str: 6396 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6397 insn->imm = BPF_FUNC_probe_read_str; 6398 break; 6399 default: 6400 break; 6401 } 6402 } 6403 return 0; 6404 } 6405 6406 static int 6407 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6408 char *license, __u32 kern_version, int *pfd) 6409 { 6410 struct bpf_load_program_attr load_attr; 6411 char *cp, errmsg[STRERR_BUFSIZE]; 6412 size_t log_buf_size = 0; 6413 char *log_buf = NULL; 6414 int btf_fd, ret; 6415 6416 if (!insns || !insns_cnt) 6417 return -EINVAL; 6418 6419 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 6420 load_attr.prog_type = prog->type; 6421 /* old kernels might not support specifying expected_attach_type */ 6422 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 6423 prog->sec_def->is_exp_attach_type_optional) 6424 load_attr.expected_attach_type = 0; 6425 else 6426 load_attr.expected_attach_type = prog->expected_attach_type; 6427 if (kernel_supports(FEAT_PROG_NAME)) 6428 load_attr.name = prog->name; 6429 load_attr.insns = insns; 6430 load_attr.insns_cnt = insns_cnt; 6431 load_attr.license = license; 6432 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 6433 prog->type == BPF_PROG_TYPE_LSM) { 6434 load_attr.attach_btf_id = prog->attach_btf_id; 6435 } else if (prog->type == BPF_PROG_TYPE_TRACING || 6436 prog->type == BPF_PROG_TYPE_EXT) { 6437 load_attr.attach_prog_fd = prog->attach_prog_fd; 6438 load_attr.attach_btf_id = prog->attach_btf_id; 6439 } else { 6440 load_attr.kern_version = kern_version; 6441 load_attr.prog_ifindex = prog->prog_ifindex; 6442 } 6443 /* specify func_info/line_info only if kernel supports them */ 6444 btf_fd = bpf_object__btf_fd(prog->obj); 6445 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 6446 load_attr.prog_btf_fd = btf_fd; 6447 load_attr.func_info = prog->func_info; 6448 load_attr.func_info_rec_size = prog->func_info_rec_size; 6449 load_attr.func_info_cnt = prog->func_info_cnt; 6450 load_attr.line_info = prog->line_info; 6451 load_attr.line_info_rec_size = prog->line_info_rec_size; 6452 load_attr.line_info_cnt = prog->line_info_cnt; 6453 } 6454 load_attr.log_level = prog->log_level; 6455 load_attr.prog_flags = prog->prog_flags; 6456 6457 retry_load: 6458 if (log_buf_size) { 6459 log_buf = malloc(log_buf_size); 6460 if (!log_buf) 6461 return -ENOMEM; 6462 6463 *log_buf = 0; 6464 } 6465 6466 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 6467 6468 if (ret >= 0) { 6469 if (log_buf && load_attr.log_level) 6470 pr_debug("verifier log:\n%s", log_buf); 6471 *pfd = ret; 6472 ret = 0; 6473 goto out; 6474 } 6475 6476 if (!log_buf || errno == ENOSPC) { 6477 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6478 log_buf_size << 1); 6479 6480 free(log_buf); 6481 goto retry_load; 6482 } 6483 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6484 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6485 pr_warn("load bpf program failed: %s\n", cp); 6486 pr_perm_msg(ret); 6487 6488 if (log_buf && log_buf[0] != '\0') { 6489 ret = -LIBBPF_ERRNO__VERIFY; 6490 pr_warn("-- BEGIN DUMP LOG ---\n"); 6491 pr_warn("\n%s\n", log_buf); 6492 pr_warn("-- END LOG --\n"); 6493 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 6494 pr_warn("Program too large (%zu insns), at most %d insns\n", 6495 load_attr.insns_cnt, BPF_MAXINSNS); 6496 ret = -LIBBPF_ERRNO__PROG2BIG; 6497 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6498 /* Wrong program type? */ 6499 int fd; 6500 6501 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6502 load_attr.expected_attach_type = 0; 6503 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 6504 if (fd >= 0) { 6505 close(fd); 6506 ret = -LIBBPF_ERRNO__PROGTYPE; 6507 goto out; 6508 } 6509 } 6510 6511 out: 6512 free(log_buf); 6513 return ret; 6514 } 6515 6516 static int libbpf_find_attach_btf_id(struct bpf_program *prog); 6517 6518 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6519 { 6520 int err = 0, fd, i, btf_id; 6521 6522 if (prog->obj->loaded) { 6523 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6524 return -EINVAL; 6525 } 6526 6527 if ((prog->type == BPF_PROG_TYPE_TRACING || 6528 prog->type == BPF_PROG_TYPE_LSM || 6529 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6530 btf_id = libbpf_find_attach_btf_id(prog); 6531 if (btf_id <= 0) 6532 return btf_id; 6533 prog->attach_btf_id = btf_id; 6534 } 6535 6536 if (prog->instances.nr < 0 || !prog->instances.fds) { 6537 if (prog->preprocessor) { 6538 pr_warn("Internal error: can't load program '%s'\n", 6539 prog->name); 6540 return -LIBBPF_ERRNO__INTERNAL; 6541 } 6542 6543 prog->instances.fds = malloc(sizeof(int)); 6544 if (!prog->instances.fds) { 6545 pr_warn("Not enough memory for BPF fds\n"); 6546 return -ENOMEM; 6547 } 6548 prog->instances.nr = 1; 6549 prog->instances.fds[0] = -1; 6550 } 6551 6552 if (!prog->preprocessor) { 6553 if (prog->instances.nr != 1) { 6554 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6555 prog->name, prog->instances.nr); 6556 } 6557 err = load_program(prog, prog->insns, prog->insns_cnt, 6558 license, kern_ver, &fd); 6559 if (!err) 6560 prog->instances.fds[0] = fd; 6561 goto out; 6562 } 6563 6564 for (i = 0; i < prog->instances.nr; i++) { 6565 struct bpf_prog_prep_result result; 6566 bpf_program_prep_t preprocessor = prog->preprocessor; 6567 6568 memset(&result, 0, sizeof(result)); 6569 err = preprocessor(prog, i, prog->insns, 6570 prog->insns_cnt, &result); 6571 if (err) { 6572 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6573 i, prog->name); 6574 goto out; 6575 } 6576 6577 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6578 pr_debug("Skip loading the %dth instance of program '%s'\n", 6579 i, prog->name); 6580 prog->instances.fds[i] = -1; 6581 if (result.pfd) 6582 *result.pfd = -1; 6583 continue; 6584 } 6585 6586 err = load_program(prog, result.new_insn_ptr, 6587 result.new_insn_cnt, license, kern_ver, &fd); 6588 if (err) { 6589 pr_warn("Loading the %dth instance of program '%s' failed\n", 6590 i, prog->name); 6591 goto out; 6592 } 6593 6594 if (result.pfd) 6595 *result.pfd = fd; 6596 prog->instances.fds[i] = fd; 6597 } 6598 out: 6599 if (err) 6600 pr_warn("failed to load program '%s'\n", prog->name); 6601 zfree(&prog->insns); 6602 prog->insns_cnt = 0; 6603 return err; 6604 } 6605 6606 static int 6607 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6608 { 6609 struct bpf_program *prog; 6610 size_t i; 6611 int err; 6612 6613 for (i = 0; i < obj->nr_programs; i++) { 6614 prog = &obj->programs[i]; 6615 err = bpf_object__sanitize_prog(obj, prog); 6616 if (err) 6617 return err; 6618 } 6619 6620 for (i = 0; i < obj->nr_programs; i++) { 6621 prog = &obj->programs[i]; 6622 if (prog_is_subprog(obj, prog)) 6623 continue; 6624 if (!prog->load) { 6625 pr_debug("prog '%s': skipped loading\n", prog->name); 6626 continue; 6627 } 6628 prog->log_level |= log_level; 6629 err = bpf_program__load(prog, obj->license, obj->kern_version); 6630 if (err) 6631 return err; 6632 } 6633 return 0; 6634 } 6635 6636 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6637 6638 static struct bpf_object * 6639 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6640 const struct bpf_object_open_opts *opts) 6641 { 6642 const char *obj_name, *kconfig; 6643 struct bpf_program *prog; 6644 struct bpf_object *obj; 6645 char tmp_name[64]; 6646 int err; 6647 6648 if (elf_version(EV_CURRENT) == EV_NONE) { 6649 pr_warn("failed to init libelf for %s\n", 6650 path ? : "(mem buf)"); 6651 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6652 } 6653 6654 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6655 return ERR_PTR(-EINVAL); 6656 6657 obj_name = OPTS_GET(opts, object_name, NULL); 6658 if (obj_buf) { 6659 if (!obj_name) { 6660 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6661 (unsigned long)obj_buf, 6662 (unsigned long)obj_buf_sz); 6663 obj_name = tmp_name; 6664 } 6665 path = obj_name; 6666 pr_debug("loading object '%s' from buffer\n", obj_name); 6667 } 6668 6669 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 6670 if (IS_ERR(obj)) 6671 return obj; 6672 6673 kconfig = OPTS_GET(opts, kconfig, NULL); 6674 if (kconfig) { 6675 obj->kconfig = strdup(kconfig); 6676 if (!obj->kconfig) 6677 return ERR_PTR(-ENOMEM); 6678 } 6679 6680 err = bpf_object__elf_init(obj); 6681 err = err ? : bpf_object__check_endianness(obj); 6682 err = err ? : bpf_object__elf_collect(obj); 6683 err = err ? : bpf_object__collect_externs(obj); 6684 err = err ? : bpf_object__finalize_btf(obj); 6685 err = err ? : bpf_object__init_maps(obj, opts); 6686 err = err ? : bpf_object__collect_relos(obj); 6687 if (err) 6688 goto out; 6689 bpf_object__elf_finish(obj); 6690 6691 bpf_object__for_each_program(prog, obj) { 6692 prog->sec_def = find_sec_def(prog->sec_name); 6693 if (!prog->sec_def) 6694 /* couldn't guess, but user might manually specify */ 6695 continue; 6696 6697 if (prog->sec_def->is_sleepable) 6698 prog->prog_flags |= BPF_F_SLEEPABLE; 6699 bpf_program__set_type(prog, prog->sec_def->prog_type); 6700 bpf_program__set_expected_attach_type(prog, 6701 prog->sec_def->expected_attach_type); 6702 6703 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6704 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6705 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6706 } 6707 6708 return obj; 6709 out: 6710 bpf_object__close(obj); 6711 return ERR_PTR(err); 6712 } 6713 6714 static struct bpf_object * 6715 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 6716 { 6717 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6718 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 6719 ); 6720 6721 /* param validation */ 6722 if (!attr->file) 6723 return NULL; 6724 6725 pr_debug("loading %s\n", attr->file); 6726 return __bpf_object__open(attr->file, NULL, 0, &opts); 6727 } 6728 6729 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 6730 { 6731 return __bpf_object__open_xattr(attr, 0); 6732 } 6733 6734 struct bpf_object *bpf_object__open(const char *path) 6735 { 6736 struct bpf_object_open_attr attr = { 6737 .file = path, 6738 .prog_type = BPF_PROG_TYPE_UNSPEC, 6739 }; 6740 6741 return bpf_object__open_xattr(&attr); 6742 } 6743 6744 struct bpf_object * 6745 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 6746 { 6747 if (!path) 6748 return ERR_PTR(-EINVAL); 6749 6750 pr_debug("loading %s\n", path); 6751 6752 return __bpf_object__open(path, NULL, 0, opts); 6753 } 6754 6755 struct bpf_object * 6756 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 6757 const struct bpf_object_open_opts *opts) 6758 { 6759 if (!obj_buf || obj_buf_sz == 0) 6760 return ERR_PTR(-EINVAL); 6761 6762 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 6763 } 6764 6765 struct bpf_object * 6766 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 6767 const char *name) 6768 { 6769 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6770 .object_name = name, 6771 /* wrong default, but backwards-compatible */ 6772 .relaxed_maps = true, 6773 ); 6774 6775 /* returning NULL is wrong, but backwards-compatible */ 6776 if (!obj_buf || obj_buf_sz == 0) 6777 return NULL; 6778 6779 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 6780 } 6781 6782 int bpf_object__unload(struct bpf_object *obj) 6783 { 6784 size_t i; 6785 6786 if (!obj) 6787 return -EINVAL; 6788 6789 for (i = 0; i < obj->nr_maps; i++) { 6790 zclose(obj->maps[i].fd); 6791 if (obj->maps[i].st_ops) 6792 zfree(&obj->maps[i].st_ops->kern_vdata); 6793 } 6794 6795 for (i = 0; i < obj->nr_programs; i++) 6796 bpf_program__unload(&obj->programs[i]); 6797 6798 return 0; 6799 } 6800 6801 static int bpf_object__sanitize_maps(struct bpf_object *obj) 6802 { 6803 struct bpf_map *m; 6804 6805 bpf_object__for_each_map(m, obj) { 6806 if (!bpf_map__is_internal(m)) 6807 continue; 6808 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 6809 pr_warn("kernel doesn't support global data\n"); 6810 return -ENOTSUP; 6811 } 6812 if (!kernel_supports(FEAT_ARRAY_MMAP)) 6813 m->def.map_flags ^= BPF_F_MMAPABLE; 6814 } 6815 6816 return 0; 6817 } 6818 6819 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 6820 { 6821 char sym_type, sym_name[500]; 6822 unsigned long long sym_addr; 6823 struct extern_desc *ext; 6824 int ret, err = 0; 6825 FILE *f; 6826 6827 f = fopen("/proc/kallsyms", "r"); 6828 if (!f) { 6829 err = -errno; 6830 pr_warn("failed to open /proc/kallsyms: %d\n", err); 6831 return err; 6832 } 6833 6834 while (true) { 6835 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 6836 &sym_addr, &sym_type, sym_name); 6837 if (ret == EOF && feof(f)) 6838 break; 6839 if (ret != 3) { 6840 pr_warn("failed to read kallsyms entry: %d\n", ret); 6841 err = -EINVAL; 6842 goto out; 6843 } 6844 6845 ext = find_extern_by_name(obj, sym_name); 6846 if (!ext || ext->type != EXT_KSYM) 6847 continue; 6848 6849 if (ext->is_set && ext->ksym.addr != sym_addr) { 6850 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 6851 sym_name, ext->ksym.addr, sym_addr); 6852 err = -EINVAL; 6853 goto out; 6854 } 6855 if (!ext->is_set) { 6856 ext->is_set = true; 6857 ext->ksym.addr = sym_addr; 6858 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 6859 } 6860 } 6861 6862 out: 6863 fclose(f); 6864 return err; 6865 } 6866 6867 static int bpf_object__resolve_externs(struct bpf_object *obj, 6868 const char *extra_kconfig) 6869 { 6870 bool need_config = false, need_kallsyms = false; 6871 struct extern_desc *ext; 6872 void *kcfg_data = NULL; 6873 int err, i; 6874 6875 if (obj->nr_extern == 0) 6876 return 0; 6877 6878 if (obj->kconfig_map_idx >= 0) 6879 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 6880 6881 for (i = 0; i < obj->nr_extern; i++) { 6882 ext = &obj->externs[i]; 6883 6884 if (ext->type == EXT_KCFG && 6885 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 6886 void *ext_val = kcfg_data + ext->kcfg.data_off; 6887 __u32 kver = get_kernel_version(); 6888 6889 if (!kver) { 6890 pr_warn("failed to get kernel version\n"); 6891 return -EINVAL; 6892 } 6893 err = set_kcfg_value_num(ext, ext_val, kver); 6894 if (err) 6895 return err; 6896 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 6897 } else if (ext->type == EXT_KCFG && 6898 strncmp(ext->name, "CONFIG_", 7) == 0) { 6899 need_config = true; 6900 } else if (ext->type == EXT_KSYM) { 6901 need_kallsyms = true; 6902 } else { 6903 pr_warn("unrecognized extern '%s'\n", ext->name); 6904 return -EINVAL; 6905 } 6906 } 6907 if (need_config && extra_kconfig) { 6908 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 6909 if (err) 6910 return -EINVAL; 6911 need_config = false; 6912 for (i = 0; i < obj->nr_extern; i++) { 6913 ext = &obj->externs[i]; 6914 if (ext->type == EXT_KCFG && !ext->is_set) { 6915 need_config = true; 6916 break; 6917 } 6918 } 6919 } 6920 if (need_config) { 6921 err = bpf_object__read_kconfig_file(obj, kcfg_data); 6922 if (err) 6923 return -EINVAL; 6924 } 6925 if (need_kallsyms) { 6926 err = bpf_object__read_kallsyms_file(obj); 6927 if (err) 6928 return -EINVAL; 6929 } 6930 for (i = 0; i < obj->nr_extern; i++) { 6931 ext = &obj->externs[i]; 6932 6933 if (!ext->is_set && !ext->is_weak) { 6934 pr_warn("extern %s (strong) not resolved\n", ext->name); 6935 return -ESRCH; 6936 } else if (!ext->is_set) { 6937 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 6938 ext->name); 6939 } 6940 } 6941 6942 return 0; 6943 } 6944 6945 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 6946 { 6947 struct bpf_object *obj; 6948 int err, i; 6949 6950 if (!attr) 6951 return -EINVAL; 6952 obj = attr->obj; 6953 if (!obj) 6954 return -EINVAL; 6955 6956 if (obj->loaded) { 6957 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 6958 return -EINVAL; 6959 } 6960 6961 err = bpf_object__probe_loading(obj); 6962 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 6963 err = err ? : bpf_object__sanitize_and_load_btf(obj); 6964 err = err ? : bpf_object__sanitize_maps(obj); 6965 err = err ? : bpf_object__load_vmlinux_btf(obj); 6966 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 6967 err = err ? : bpf_object__create_maps(obj); 6968 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 6969 err = err ? : bpf_object__load_progs(obj, attr->log_level); 6970 6971 btf__free(obj->btf_vmlinux); 6972 obj->btf_vmlinux = NULL; 6973 6974 obj->loaded = true; /* doesn't matter if successfully or not */ 6975 6976 if (err) 6977 goto out; 6978 6979 return 0; 6980 out: 6981 /* unpin any maps that were auto-pinned during load */ 6982 for (i = 0; i < obj->nr_maps; i++) 6983 if (obj->maps[i].pinned && !obj->maps[i].reused) 6984 bpf_map__unpin(&obj->maps[i], NULL); 6985 6986 bpf_object__unload(obj); 6987 pr_warn("failed to load object '%s'\n", obj->path); 6988 return err; 6989 } 6990 6991 int bpf_object__load(struct bpf_object *obj) 6992 { 6993 struct bpf_object_load_attr attr = { 6994 .obj = obj, 6995 }; 6996 6997 return bpf_object__load_xattr(&attr); 6998 } 6999 7000 static int make_parent_dir(const char *path) 7001 { 7002 char *cp, errmsg[STRERR_BUFSIZE]; 7003 char *dname, *dir; 7004 int err = 0; 7005 7006 dname = strdup(path); 7007 if (dname == NULL) 7008 return -ENOMEM; 7009 7010 dir = dirname(dname); 7011 if (mkdir(dir, 0700) && errno != EEXIST) 7012 err = -errno; 7013 7014 free(dname); 7015 if (err) { 7016 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7017 pr_warn("failed to mkdir %s: %s\n", path, cp); 7018 } 7019 return err; 7020 } 7021 7022 static int check_path(const char *path) 7023 { 7024 char *cp, errmsg[STRERR_BUFSIZE]; 7025 struct statfs st_fs; 7026 char *dname, *dir; 7027 int err = 0; 7028 7029 if (path == NULL) 7030 return -EINVAL; 7031 7032 dname = strdup(path); 7033 if (dname == NULL) 7034 return -ENOMEM; 7035 7036 dir = dirname(dname); 7037 if (statfs(dir, &st_fs)) { 7038 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7039 pr_warn("failed to statfs %s: %s\n", dir, cp); 7040 err = -errno; 7041 } 7042 free(dname); 7043 7044 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7045 pr_warn("specified path %s is not on BPF FS\n", path); 7046 err = -EINVAL; 7047 } 7048 7049 return err; 7050 } 7051 7052 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7053 int instance) 7054 { 7055 char *cp, errmsg[STRERR_BUFSIZE]; 7056 int err; 7057 7058 err = make_parent_dir(path); 7059 if (err) 7060 return err; 7061 7062 err = check_path(path); 7063 if (err) 7064 return err; 7065 7066 if (prog == NULL) { 7067 pr_warn("invalid program pointer\n"); 7068 return -EINVAL; 7069 } 7070 7071 if (instance < 0 || instance >= prog->instances.nr) { 7072 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7073 instance, prog->name, prog->instances.nr); 7074 return -EINVAL; 7075 } 7076 7077 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7078 err = -errno; 7079 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7080 pr_warn("failed to pin program: %s\n", cp); 7081 return err; 7082 } 7083 pr_debug("pinned program '%s'\n", path); 7084 7085 return 0; 7086 } 7087 7088 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7089 int instance) 7090 { 7091 int err; 7092 7093 err = check_path(path); 7094 if (err) 7095 return err; 7096 7097 if (prog == NULL) { 7098 pr_warn("invalid program pointer\n"); 7099 return -EINVAL; 7100 } 7101 7102 if (instance < 0 || instance >= prog->instances.nr) { 7103 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7104 instance, prog->name, prog->instances.nr); 7105 return -EINVAL; 7106 } 7107 7108 err = unlink(path); 7109 if (err != 0) 7110 return -errno; 7111 pr_debug("unpinned program '%s'\n", path); 7112 7113 return 0; 7114 } 7115 7116 int bpf_program__pin(struct bpf_program *prog, const char *path) 7117 { 7118 int i, err; 7119 7120 err = make_parent_dir(path); 7121 if (err) 7122 return err; 7123 7124 err = check_path(path); 7125 if (err) 7126 return err; 7127 7128 if (prog == NULL) { 7129 pr_warn("invalid program pointer\n"); 7130 return -EINVAL; 7131 } 7132 7133 if (prog->instances.nr <= 0) { 7134 pr_warn("no instances of prog %s to pin\n", prog->name); 7135 return -EINVAL; 7136 } 7137 7138 if (prog->instances.nr == 1) { 7139 /* don't create subdirs when pinning single instance */ 7140 return bpf_program__pin_instance(prog, path, 0); 7141 } 7142 7143 for (i = 0; i < prog->instances.nr; i++) { 7144 char buf[PATH_MAX]; 7145 int len; 7146 7147 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7148 if (len < 0) { 7149 err = -EINVAL; 7150 goto err_unpin; 7151 } else if (len >= PATH_MAX) { 7152 err = -ENAMETOOLONG; 7153 goto err_unpin; 7154 } 7155 7156 err = bpf_program__pin_instance(prog, buf, i); 7157 if (err) 7158 goto err_unpin; 7159 } 7160 7161 return 0; 7162 7163 err_unpin: 7164 for (i = i - 1; i >= 0; i--) { 7165 char buf[PATH_MAX]; 7166 int len; 7167 7168 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7169 if (len < 0) 7170 continue; 7171 else if (len >= PATH_MAX) 7172 continue; 7173 7174 bpf_program__unpin_instance(prog, buf, i); 7175 } 7176 7177 rmdir(path); 7178 7179 return err; 7180 } 7181 7182 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7183 { 7184 int i, err; 7185 7186 err = check_path(path); 7187 if (err) 7188 return err; 7189 7190 if (prog == NULL) { 7191 pr_warn("invalid program pointer\n"); 7192 return -EINVAL; 7193 } 7194 7195 if (prog->instances.nr <= 0) { 7196 pr_warn("no instances of prog %s to pin\n", prog->name); 7197 return -EINVAL; 7198 } 7199 7200 if (prog->instances.nr == 1) { 7201 /* don't create subdirs when pinning single instance */ 7202 return bpf_program__unpin_instance(prog, path, 0); 7203 } 7204 7205 for (i = 0; i < prog->instances.nr; i++) { 7206 char buf[PATH_MAX]; 7207 int len; 7208 7209 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7210 if (len < 0) 7211 return -EINVAL; 7212 else if (len >= PATH_MAX) 7213 return -ENAMETOOLONG; 7214 7215 err = bpf_program__unpin_instance(prog, buf, i); 7216 if (err) 7217 return err; 7218 } 7219 7220 err = rmdir(path); 7221 if (err) 7222 return -errno; 7223 7224 return 0; 7225 } 7226 7227 int bpf_map__pin(struct bpf_map *map, const char *path) 7228 { 7229 char *cp, errmsg[STRERR_BUFSIZE]; 7230 int err; 7231 7232 if (map == NULL) { 7233 pr_warn("invalid map pointer\n"); 7234 return -EINVAL; 7235 } 7236 7237 if (map->pin_path) { 7238 if (path && strcmp(path, map->pin_path)) { 7239 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7240 bpf_map__name(map), map->pin_path, path); 7241 return -EINVAL; 7242 } else if (map->pinned) { 7243 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7244 bpf_map__name(map), map->pin_path); 7245 return 0; 7246 } 7247 } else { 7248 if (!path) { 7249 pr_warn("missing a path to pin map '%s' at\n", 7250 bpf_map__name(map)); 7251 return -EINVAL; 7252 } else if (map->pinned) { 7253 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7254 return -EEXIST; 7255 } 7256 7257 map->pin_path = strdup(path); 7258 if (!map->pin_path) { 7259 err = -errno; 7260 goto out_err; 7261 } 7262 } 7263 7264 err = make_parent_dir(map->pin_path); 7265 if (err) 7266 return err; 7267 7268 err = check_path(map->pin_path); 7269 if (err) 7270 return err; 7271 7272 if (bpf_obj_pin(map->fd, map->pin_path)) { 7273 err = -errno; 7274 goto out_err; 7275 } 7276 7277 map->pinned = true; 7278 pr_debug("pinned map '%s'\n", map->pin_path); 7279 7280 return 0; 7281 7282 out_err: 7283 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7284 pr_warn("failed to pin map: %s\n", cp); 7285 return err; 7286 } 7287 7288 int bpf_map__unpin(struct bpf_map *map, const char *path) 7289 { 7290 int err; 7291 7292 if (map == NULL) { 7293 pr_warn("invalid map pointer\n"); 7294 return -EINVAL; 7295 } 7296 7297 if (map->pin_path) { 7298 if (path && strcmp(path, map->pin_path)) { 7299 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7300 bpf_map__name(map), map->pin_path, path); 7301 return -EINVAL; 7302 } 7303 path = map->pin_path; 7304 } else if (!path) { 7305 pr_warn("no path to unpin map '%s' from\n", 7306 bpf_map__name(map)); 7307 return -EINVAL; 7308 } 7309 7310 err = check_path(path); 7311 if (err) 7312 return err; 7313 7314 err = unlink(path); 7315 if (err != 0) 7316 return -errno; 7317 7318 map->pinned = false; 7319 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7320 7321 return 0; 7322 } 7323 7324 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7325 { 7326 char *new = NULL; 7327 7328 if (path) { 7329 new = strdup(path); 7330 if (!new) 7331 return -errno; 7332 } 7333 7334 free(map->pin_path); 7335 map->pin_path = new; 7336 return 0; 7337 } 7338 7339 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7340 { 7341 return map->pin_path; 7342 } 7343 7344 bool bpf_map__is_pinned(const struct bpf_map *map) 7345 { 7346 return map->pinned; 7347 } 7348 7349 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7350 { 7351 struct bpf_map *map; 7352 int err; 7353 7354 if (!obj) 7355 return -ENOENT; 7356 7357 if (!obj->loaded) { 7358 pr_warn("object not yet loaded; load it first\n"); 7359 return -ENOENT; 7360 } 7361 7362 bpf_object__for_each_map(map, obj) { 7363 char *pin_path = NULL; 7364 char buf[PATH_MAX]; 7365 7366 if (path) { 7367 int len; 7368 7369 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7370 bpf_map__name(map)); 7371 if (len < 0) { 7372 err = -EINVAL; 7373 goto err_unpin_maps; 7374 } else if (len >= PATH_MAX) { 7375 err = -ENAMETOOLONG; 7376 goto err_unpin_maps; 7377 } 7378 pin_path = buf; 7379 } else if (!map->pin_path) { 7380 continue; 7381 } 7382 7383 err = bpf_map__pin(map, pin_path); 7384 if (err) 7385 goto err_unpin_maps; 7386 } 7387 7388 return 0; 7389 7390 err_unpin_maps: 7391 while ((map = bpf_map__prev(map, obj))) { 7392 if (!map->pin_path) 7393 continue; 7394 7395 bpf_map__unpin(map, NULL); 7396 } 7397 7398 return err; 7399 } 7400 7401 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7402 { 7403 struct bpf_map *map; 7404 int err; 7405 7406 if (!obj) 7407 return -ENOENT; 7408 7409 bpf_object__for_each_map(map, obj) { 7410 char *pin_path = NULL; 7411 char buf[PATH_MAX]; 7412 7413 if (path) { 7414 int len; 7415 7416 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7417 bpf_map__name(map)); 7418 if (len < 0) 7419 return -EINVAL; 7420 else if (len >= PATH_MAX) 7421 return -ENAMETOOLONG; 7422 pin_path = buf; 7423 } else if (!map->pin_path) { 7424 continue; 7425 } 7426 7427 err = bpf_map__unpin(map, pin_path); 7428 if (err) 7429 return err; 7430 } 7431 7432 return 0; 7433 } 7434 7435 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7436 { 7437 struct bpf_program *prog; 7438 int err; 7439 7440 if (!obj) 7441 return -ENOENT; 7442 7443 if (!obj->loaded) { 7444 pr_warn("object not yet loaded; load it first\n"); 7445 return -ENOENT; 7446 } 7447 7448 bpf_object__for_each_program(prog, obj) { 7449 char buf[PATH_MAX]; 7450 int len; 7451 7452 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7453 prog->pin_name); 7454 if (len < 0) { 7455 err = -EINVAL; 7456 goto err_unpin_programs; 7457 } else if (len >= PATH_MAX) { 7458 err = -ENAMETOOLONG; 7459 goto err_unpin_programs; 7460 } 7461 7462 err = bpf_program__pin(prog, buf); 7463 if (err) 7464 goto err_unpin_programs; 7465 } 7466 7467 return 0; 7468 7469 err_unpin_programs: 7470 while ((prog = bpf_program__prev(prog, obj))) { 7471 char buf[PATH_MAX]; 7472 int len; 7473 7474 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7475 prog->pin_name); 7476 if (len < 0) 7477 continue; 7478 else if (len >= PATH_MAX) 7479 continue; 7480 7481 bpf_program__unpin(prog, buf); 7482 } 7483 7484 return err; 7485 } 7486 7487 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 7488 { 7489 struct bpf_program *prog; 7490 int err; 7491 7492 if (!obj) 7493 return -ENOENT; 7494 7495 bpf_object__for_each_program(prog, obj) { 7496 char buf[PATH_MAX]; 7497 int len; 7498 7499 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7500 prog->pin_name); 7501 if (len < 0) 7502 return -EINVAL; 7503 else if (len >= PATH_MAX) 7504 return -ENAMETOOLONG; 7505 7506 err = bpf_program__unpin(prog, buf); 7507 if (err) 7508 return err; 7509 } 7510 7511 return 0; 7512 } 7513 7514 int bpf_object__pin(struct bpf_object *obj, const char *path) 7515 { 7516 int err; 7517 7518 err = bpf_object__pin_maps(obj, path); 7519 if (err) 7520 return err; 7521 7522 err = bpf_object__pin_programs(obj, path); 7523 if (err) { 7524 bpf_object__unpin_maps(obj, path); 7525 return err; 7526 } 7527 7528 return 0; 7529 } 7530 7531 static void bpf_map__destroy(struct bpf_map *map) 7532 { 7533 if (map->clear_priv) 7534 map->clear_priv(map, map->priv); 7535 map->priv = NULL; 7536 map->clear_priv = NULL; 7537 7538 if (map->inner_map) { 7539 bpf_map__destroy(map->inner_map); 7540 zfree(&map->inner_map); 7541 } 7542 7543 zfree(&map->init_slots); 7544 map->init_slots_sz = 0; 7545 7546 if (map->mmaped) { 7547 munmap(map->mmaped, bpf_map_mmap_sz(map)); 7548 map->mmaped = NULL; 7549 } 7550 7551 if (map->st_ops) { 7552 zfree(&map->st_ops->data); 7553 zfree(&map->st_ops->progs); 7554 zfree(&map->st_ops->kern_func_off); 7555 zfree(&map->st_ops); 7556 } 7557 7558 zfree(&map->name); 7559 zfree(&map->pin_path); 7560 7561 if (map->fd >= 0) 7562 zclose(map->fd); 7563 } 7564 7565 void bpf_object__close(struct bpf_object *obj) 7566 { 7567 size_t i; 7568 7569 if (IS_ERR_OR_NULL(obj)) 7570 return; 7571 7572 if (obj->clear_priv) 7573 obj->clear_priv(obj, obj->priv); 7574 7575 bpf_object__elf_finish(obj); 7576 bpf_object__unload(obj); 7577 btf__free(obj->btf); 7578 btf_ext__free(obj->btf_ext); 7579 7580 for (i = 0; i < obj->nr_maps; i++) 7581 bpf_map__destroy(&obj->maps[i]); 7582 7583 zfree(&obj->kconfig); 7584 zfree(&obj->externs); 7585 obj->nr_extern = 0; 7586 7587 zfree(&obj->maps); 7588 obj->nr_maps = 0; 7589 7590 if (obj->programs && obj->nr_programs) { 7591 for (i = 0; i < obj->nr_programs; i++) 7592 bpf_program__exit(&obj->programs[i]); 7593 } 7594 zfree(&obj->programs); 7595 7596 list_del(&obj->list); 7597 free(obj); 7598 } 7599 7600 struct bpf_object * 7601 bpf_object__next(struct bpf_object *prev) 7602 { 7603 struct bpf_object *next; 7604 7605 if (!prev) 7606 next = list_first_entry(&bpf_objects_list, 7607 struct bpf_object, 7608 list); 7609 else 7610 next = list_next_entry(prev, list); 7611 7612 /* Empty list is noticed here so don't need checking on entry. */ 7613 if (&next->list == &bpf_objects_list) 7614 return NULL; 7615 7616 return next; 7617 } 7618 7619 const char *bpf_object__name(const struct bpf_object *obj) 7620 { 7621 return obj ? obj->name : ERR_PTR(-EINVAL); 7622 } 7623 7624 unsigned int bpf_object__kversion(const struct bpf_object *obj) 7625 { 7626 return obj ? obj->kern_version : 0; 7627 } 7628 7629 struct btf *bpf_object__btf(const struct bpf_object *obj) 7630 { 7631 return obj ? obj->btf : NULL; 7632 } 7633 7634 int bpf_object__btf_fd(const struct bpf_object *obj) 7635 { 7636 return obj->btf ? btf__fd(obj->btf) : -1; 7637 } 7638 7639 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 7640 bpf_object_clear_priv_t clear_priv) 7641 { 7642 if (obj->priv && obj->clear_priv) 7643 obj->clear_priv(obj, obj->priv); 7644 7645 obj->priv = priv; 7646 obj->clear_priv = clear_priv; 7647 return 0; 7648 } 7649 7650 void *bpf_object__priv(const struct bpf_object *obj) 7651 { 7652 return obj ? obj->priv : ERR_PTR(-EINVAL); 7653 } 7654 7655 static struct bpf_program * 7656 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 7657 bool forward) 7658 { 7659 size_t nr_programs = obj->nr_programs; 7660 ssize_t idx; 7661 7662 if (!nr_programs) 7663 return NULL; 7664 7665 if (!p) 7666 /* Iter from the beginning */ 7667 return forward ? &obj->programs[0] : 7668 &obj->programs[nr_programs - 1]; 7669 7670 if (p->obj != obj) { 7671 pr_warn("error: program handler doesn't match object\n"); 7672 return NULL; 7673 } 7674 7675 idx = (p - obj->programs) + (forward ? 1 : -1); 7676 if (idx >= obj->nr_programs || idx < 0) 7677 return NULL; 7678 return &obj->programs[idx]; 7679 } 7680 7681 struct bpf_program * 7682 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 7683 { 7684 struct bpf_program *prog = prev; 7685 7686 do { 7687 prog = __bpf_program__iter(prog, obj, true); 7688 } while (prog && prog_is_subprog(obj, prog)); 7689 7690 return prog; 7691 } 7692 7693 struct bpf_program * 7694 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 7695 { 7696 struct bpf_program *prog = next; 7697 7698 do { 7699 prog = __bpf_program__iter(prog, obj, false); 7700 } while (prog && prog_is_subprog(obj, prog)); 7701 7702 return prog; 7703 } 7704 7705 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 7706 bpf_program_clear_priv_t clear_priv) 7707 { 7708 if (prog->priv && prog->clear_priv) 7709 prog->clear_priv(prog, prog->priv); 7710 7711 prog->priv = priv; 7712 prog->clear_priv = clear_priv; 7713 return 0; 7714 } 7715 7716 void *bpf_program__priv(const struct bpf_program *prog) 7717 { 7718 return prog ? prog->priv : ERR_PTR(-EINVAL); 7719 } 7720 7721 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 7722 { 7723 prog->prog_ifindex = ifindex; 7724 } 7725 7726 const char *bpf_program__name(const struct bpf_program *prog) 7727 { 7728 return prog->name; 7729 } 7730 7731 const char *bpf_program__section_name(const struct bpf_program *prog) 7732 { 7733 return prog->sec_name; 7734 } 7735 7736 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 7737 { 7738 const char *title; 7739 7740 title = prog->sec_name; 7741 if (needs_copy) { 7742 title = strdup(title); 7743 if (!title) { 7744 pr_warn("failed to strdup program title\n"); 7745 return ERR_PTR(-ENOMEM); 7746 } 7747 } 7748 7749 return title; 7750 } 7751 7752 bool bpf_program__autoload(const struct bpf_program *prog) 7753 { 7754 return prog->load; 7755 } 7756 7757 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 7758 { 7759 if (prog->obj->loaded) 7760 return -EINVAL; 7761 7762 prog->load = autoload; 7763 return 0; 7764 } 7765 7766 int bpf_program__fd(const struct bpf_program *prog) 7767 { 7768 return bpf_program__nth_fd(prog, 0); 7769 } 7770 7771 size_t bpf_program__size(const struct bpf_program *prog) 7772 { 7773 return prog->insns_cnt * BPF_INSN_SZ; 7774 } 7775 7776 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 7777 bpf_program_prep_t prep) 7778 { 7779 int *instances_fds; 7780 7781 if (nr_instances <= 0 || !prep) 7782 return -EINVAL; 7783 7784 if (prog->instances.nr > 0 || prog->instances.fds) { 7785 pr_warn("Can't set pre-processor after loading\n"); 7786 return -EINVAL; 7787 } 7788 7789 instances_fds = malloc(sizeof(int) * nr_instances); 7790 if (!instances_fds) { 7791 pr_warn("alloc memory failed for fds\n"); 7792 return -ENOMEM; 7793 } 7794 7795 /* fill all fd with -1 */ 7796 memset(instances_fds, -1, sizeof(int) * nr_instances); 7797 7798 prog->instances.nr = nr_instances; 7799 prog->instances.fds = instances_fds; 7800 prog->preprocessor = prep; 7801 return 0; 7802 } 7803 7804 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 7805 { 7806 int fd; 7807 7808 if (!prog) 7809 return -EINVAL; 7810 7811 if (n >= prog->instances.nr || n < 0) { 7812 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 7813 n, prog->name, prog->instances.nr); 7814 return -EINVAL; 7815 } 7816 7817 fd = prog->instances.fds[n]; 7818 if (fd < 0) { 7819 pr_warn("%dth instance of program '%s' is invalid\n", 7820 n, prog->name); 7821 return -ENOENT; 7822 } 7823 7824 return fd; 7825 } 7826 7827 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 7828 { 7829 return prog->type; 7830 } 7831 7832 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 7833 { 7834 prog->type = type; 7835 } 7836 7837 static bool bpf_program__is_type(const struct bpf_program *prog, 7838 enum bpf_prog_type type) 7839 { 7840 return prog ? (prog->type == type) : false; 7841 } 7842 7843 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 7844 int bpf_program__set_##NAME(struct bpf_program *prog) \ 7845 { \ 7846 if (!prog) \ 7847 return -EINVAL; \ 7848 bpf_program__set_type(prog, TYPE); \ 7849 return 0; \ 7850 } \ 7851 \ 7852 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 7853 { \ 7854 return bpf_program__is_type(prog, TYPE); \ 7855 } \ 7856 7857 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 7858 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 7859 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 7860 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 7861 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 7862 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 7863 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 7864 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 7865 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 7866 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 7867 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 7868 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 7869 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 7870 7871 enum bpf_attach_type 7872 bpf_program__get_expected_attach_type(struct bpf_program *prog) 7873 { 7874 return prog->expected_attach_type; 7875 } 7876 7877 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 7878 enum bpf_attach_type type) 7879 { 7880 prog->expected_attach_type = type; 7881 } 7882 7883 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 7884 attachable, attach_btf) \ 7885 { \ 7886 .sec = string, \ 7887 .len = sizeof(string) - 1, \ 7888 .prog_type = ptype, \ 7889 .expected_attach_type = eatype, \ 7890 .is_exp_attach_type_optional = eatype_optional, \ 7891 .is_attachable = attachable, \ 7892 .is_attach_btf = attach_btf, \ 7893 } 7894 7895 /* Programs that can NOT be attached. */ 7896 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 7897 7898 /* Programs that can be attached. */ 7899 #define BPF_APROG_SEC(string, ptype, atype) \ 7900 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 7901 7902 /* Programs that must specify expected attach type at load time. */ 7903 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 7904 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 7905 7906 /* Programs that use BTF to identify attach point */ 7907 #define BPF_PROG_BTF(string, ptype, eatype) \ 7908 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 7909 7910 /* Programs that can be attached but attach type can't be identified by section 7911 * name. Kept for backward compatibility. 7912 */ 7913 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 7914 7915 #define SEC_DEF(sec_pfx, ptype, ...) { \ 7916 .sec = sec_pfx, \ 7917 .len = sizeof(sec_pfx) - 1, \ 7918 .prog_type = BPF_PROG_TYPE_##ptype, \ 7919 __VA_ARGS__ \ 7920 } 7921 7922 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 7923 struct bpf_program *prog); 7924 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 7925 struct bpf_program *prog); 7926 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 7927 struct bpf_program *prog); 7928 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 7929 struct bpf_program *prog); 7930 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 7931 struct bpf_program *prog); 7932 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 7933 struct bpf_program *prog); 7934 7935 static const struct bpf_sec_def section_defs[] = { 7936 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 7937 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 7938 SEC_DEF("kprobe/", KPROBE, 7939 .attach_fn = attach_kprobe), 7940 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 7941 SEC_DEF("kretprobe/", KPROBE, 7942 .attach_fn = attach_kprobe), 7943 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 7944 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 7945 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 7946 SEC_DEF("tracepoint/", TRACEPOINT, 7947 .attach_fn = attach_tp), 7948 SEC_DEF("tp/", TRACEPOINT, 7949 .attach_fn = attach_tp), 7950 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 7951 .attach_fn = attach_raw_tp), 7952 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 7953 .attach_fn = attach_raw_tp), 7954 SEC_DEF("tp_btf/", TRACING, 7955 .expected_attach_type = BPF_TRACE_RAW_TP, 7956 .is_attach_btf = true, 7957 .attach_fn = attach_trace), 7958 SEC_DEF("fentry/", TRACING, 7959 .expected_attach_type = BPF_TRACE_FENTRY, 7960 .is_attach_btf = true, 7961 .attach_fn = attach_trace), 7962 SEC_DEF("fmod_ret/", TRACING, 7963 .expected_attach_type = BPF_MODIFY_RETURN, 7964 .is_attach_btf = true, 7965 .attach_fn = attach_trace), 7966 SEC_DEF("fexit/", TRACING, 7967 .expected_attach_type = BPF_TRACE_FEXIT, 7968 .is_attach_btf = true, 7969 .attach_fn = attach_trace), 7970 SEC_DEF("fentry.s/", TRACING, 7971 .expected_attach_type = BPF_TRACE_FENTRY, 7972 .is_attach_btf = true, 7973 .is_sleepable = true, 7974 .attach_fn = attach_trace), 7975 SEC_DEF("fmod_ret.s/", TRACING, 7976 .expected_attach_type = BPF_MODIFY_RETURN, 7977 .is_attach_btf = true, 7978 .is_sleepable = true, 7979 .attach_fn = attach_trace), 7980 SEC_DEF("fexit.s/", TRACING, 7981 .expected_attach_type = BPF_TRACE_FEXIT, 7982 .is_attach_btf = true, 7983 .is_sleepable = true, 7984 .attach_fn = attach_trace), 7985 SEC_DEF("freplace/", EXT, 7986 .is_attach_btf = true, 7987 .attach_fn = attach_trace), 7988 SEC_DEF("lsm/", LSM, 7989 .is_attach_btf = true, 7990 .expected_attach_type = BPF_LSM_MAC, 7991 .attach_fn = attach_lsm), 7992 SEC_DEF("lsm.s/", LSM, 7993 .is_attach_btf = true, 7994 .is_sleepable = true, 7995 .expected_attach_type = BPF_LSM_MAC, 7996 .attach_fn = attach_lsm), 7997 SEC_DEF("iter/", TRACING, 7998 .expected_attach_type = BPF_TRACE_ITER, 7999 .is_attach_btf = true, 8000 .attach_fn = attach_iter), 8001 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8002 BPF_XDP_DEVMAP), 8003 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8004 BPF_XDP_CPUMAP), 8005 BPF_EAPROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8006 BPF_XDP), 8007 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8008 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8009 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8010 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8011 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8012 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8013 BPF_CGROUP_INET_INGRESS), 8014 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8015 BPF_CGROUP_INET_EGRESS), 8016 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8017 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8018 BPF_CGROUP_INET_SOCK_CREATE), 8019 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8020 BPF_CGROUP_INET_SOCK_RELEASE), 8021 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8022 BPF_CGROUP_INET_SOCK_CREATE), 8023 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8024 BPF_CGROUP_INET4_POST_BIND), 8025 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8026 BPF_CGROUP_INET6_POST_BIND), 8027 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8028 BPF_CGROUP_DEVICE), 8029 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8030 BPF_CGROUP_SOCK_OPS), 8031 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8032 BPF_SK_SKB_STREAM_PARSER), 8033 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8034 BPF_SK_SKB_STREAM_VERDICT), 8035 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8036 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8037 BPF_SK_MSG_VERDICT), 8038 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8039 BPF_LIRC_MODE2), 8040 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8041 BPF_FLOW_DISSECTOR), 8042 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8043 BPF_CGROUP_INET4_BIND), 8044 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8045 BPF_CGROUP_INET6_BIND), 8046 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8047 BPF_CGROUP_INET4_CONNECT), 8048 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8049 BPF_CGROUP_INET6_CONNECT), 8050 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8051 BPF_CGROUP_UDP4_SENDMSG), 8052 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8053 BPF_CGROUP_UDP6_SENDMSG), 8054 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8055 BPF_CGROUP_UDP4_RECVMSG), 8056 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8057 BPF_CGROUP_UDP6_RECVMSG), 8058 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8059 BPF_CGROUP_INET4_GETPEERNAME), 8060 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8061 BPF_CGROUP_INET6_GETPEERNAME), 8062 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8063 BPF_CGROUP_INET4_GETSOCKNAME), 8064 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8065 BPF_CGROUP_INET6_GETSOCKNAME), 8066 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8067 BPF_CGROUP_SYSCTL), 8068 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8069 BPF_CGROUP_GETSOCKOPT), 8070 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8071 BPF_CGROUP_SETSOCKOPT), 8072 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8073 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8074 BPF_SK_LOOKUP), 8075 }; 8076 8077 #undef BPF_PROG_SEC_IMPL 8078 #undef BPF_PROG_SEC 8079 #undef BPF_APROG_SEC 8080 #undef BPF_EAPROG_SEC 8081 #undef BPF_APROG_COMPAT 8082 #undef SEC_DEF 8083 8084 #define MAX_TYPE_NAME_SIZE 32 8085 8086 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8087 { 8088 int i, n = ARRAY_SIZE(section_defs); 8089 8090 for (i = 0; i < n; i++) { 8091 if (strncmp(sec_name, 8092 section_defs[i].sec, section_defs[i].len)) 8093 continue; 8094 return §ion_defs[i]; 8095 } 8096 return NULL; 8097 } 8098 8099 static char *libbpf_get_type_names(bool attach_type) 8100 { 8101 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8102 char *buf; 8103 8104 buf = malloc(len); 8105 if (!buf) 8106 return NULL; 8107 8108 buf[0] = '\0'; 8109 /* Forge string buf with all available names */ 8110 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8111 if (attach_type && !section_defs[i].is_attachable) 8112 continue; 8113 8114 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8115 free(buf); 8116 return NULL; 8117 } 8118 strcat(buf, " "); 8119 strcat(buf, section_defs[i].sec); 8120 } 8121 8122 return buf; 8123 } 8124 8125 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8126 enum bpf_attach_type *expected_attach_type) 8127 { 8128 const struct bpf_sec_def *sec_def; 8129 char *type_names; 8130 8131 if (!name) 8132 return -EINVAL; 8133 8134 sec_def = find_sec_def(name); 8135 if (sec_def) { 8136 *prog_type = sec_def->prog_type; 8137 *expected_attach_type = sec_def->expected_attach_type; 8138 return 0; 8139 } 8140 8141 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8142 type_names = libbpf_get_type_names(false); 8143 if (type_names != NULL) { 8144 pr_debug("supported section(type) names are:%s\n", type_names); 8145 free(type_names); 8146 } 8147 8148 return -ESRCH; 8149 } 8150 8151 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8152 size_t offset) 8153 { 8154 struct bpf_map *map; 8155 size_t i; 8156 8157 for (i = 0; i < obj->nr_maps; i++) { 8158 map = &obj->maps[i]; 8159 if (!bpf_map__is_struct_ops(map)) 8160 continue; 8161 if (map->sec_offset <= offset && 8162 offset - map->sec_offset < map->def.value_size) 8163 return map; 8164 } 8165 8166 return NULL; 8167 } 8168 8169 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8170 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8171 GElf_Shdr *shdr, Elf_Data *data) 8172 { 8173 const struct btf_member *member; 8174 struct bpf_struct_ops *st_ops; 8175 struct bpf_program *prog; 8176 unsigned int shdr_idx; 8177 const struct btf *btf; 8178 struct bpf_map *map; 8179 Elf_Data *symbols; 8180 unsigned int moff, insn_idx; 8181 const char *name; 8182 __u32 member_idx; 8183 GElf_Sym sym; 8184 GElf_Rel rel; 8185 int i, nrels; 8186 8187 symbols = obj->efile.symbols; 8188 btf = obj->btf; 8189 nrels = shdr->sh_size / shdr->sh_entsize; 8190 for (i = 0; i < nrels; i++) { 8191 if (!gelf_getrel(data, i, &rel)) { 8192 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8193 return -LIBBPF_ERRNO__FORMAT; 8194 } 8195 8196 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8197 pr_warn("struct_ops reloc: symbol %zx not found\n", 8198 (size_t)GELF_R_SYM(rel.r_info)); 8199 return -LIBBPF_ERRNO__FORMAT; 8200 } 8201 8202 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8203 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8204 if (!map) { 8205 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8206 (size_t)rel.r_offset); 8207 return -EINVAL; 8208 } 8209 8210 moff = rel.r_offset - map->sec_offset; 8211 shdr_idx = sym.st_shndx; 8212 st_ops = map->st_ops; 8213 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8214 map->name, 8215 (long long)(rel.r_info >> 32), 8216 (long long)sym.st_value, 8217 shdr_idx, (size_t)rel.r_offset, 8218 map->sec_offset, sym.st_name, name); 8219 8220 if (shdr_idx >= SHN_LORESERVE) { 8221 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8222 map->name, (size_t)rel.r_offset, shdr_idx); 8223 return -LIBBPF_ERRNO__RELOC; 8224 } 8225 if (sym.st_value % BPF_INSN_SZ) { 8226 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8227 map->name, (unsigned long long)sym.st_value); 8228 return -LIBBPF_ERRNO__FORMAT; 8229 } 8230 insn_idx = sym.st_value / BPF_INSN_SZ; 8231 8232 member = find_member_by_offset(st_ops->type, moff * 8); 8233 if (!member) { 8234 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8235 map->name, moff); 8236 return -EINVAL; 8237 } 8238 member_idx = member - btf_members(st_ops->type); 8239 name = btf__name_by_offset(btf, member->name_off); 8240 8241 if (!resolve_func_ptr(btf, member->type, NULL)) { 8242 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8243 map->name, name); 8244 return -EINVAL; 8245 } 8246 8247 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8248 if (!prog) { 8249 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8250 map->name, shdr_idx, name); 8251 return -EINVAL; 8252 } 8253 8254 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 8255 const struct bpf_sec_def *sec_def; 8256 8257 sec_def = find_sec_def(prog->sec_name); 8258 if (sec_def && 8259 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 8260 /* for pr_warn */ 8261 prog->type = sec_def->prog_type; 8262 goto invalid_prog; 8263 } 8264 8265 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 8266 prog->attach_btf_id = st_ops->type_id; 8267 prog->expected_attach_type = member_idx; 8268 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 8269 prog->attach_btf_id != st_ops->type_id || 8270 prog->expected_attach_type != member_idx) { 8271 goto invalid_prog; 8272 } 8273 st_ops->progs[member_idx] = prog; 8274 } 8275 8276 return 0; 8277 8278 invalid_prog: 8279 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8280 map->name, prog->name, prog->sec_name, prog->type, 8281 prog->attach_btf_id, prog->expected_attach_type, name); 8282 return -EINVAL; 8283 } 8284 8285 #define BTF_TRACE_PREFIX "btf_trace_" 8286 #define BTF_LSM_PREFIX "bpf_lsm_" 8287 #define BTF_ITER_PREFIX "bpf_iter_" 8288 #define BTF_MAX_NAME_SIZE 128 8289 8290 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8291 const char *name, __u32 kind) 8292 { 8293 char btf_type_name[BTF_MAX_NAME_SIZE]; 8294 int ret; 8295 8296 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8297 "%s%s", prefix, name); 8298 /* snprintf returns the number of characters written excluding the 8299 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8300 * indicates truncation. 8301 */ 8302 if (ret < 0 || ret >= sizeof(btf_type_name)) 8303 return -ENAMETOOLONG; 8304 return btf__find_by_name_kind(btf, btf_type_name, kind); 8305 } 8306 8307 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name, 8308 enum bpf_attach_type attach_type) 8309 { 8310 int err; 8311 8312 if (attach_type == BPF_TRACE_RAW_TP) 8313 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 8314 BTF_KIND_TYPEDEF); 8315 else if (attach_type == BPF_LSM_MAC) 8316 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 8317 BTF_KIND_FUNC); 8318 else if (attach_type == BPF_TRACE_ITER) 8319 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 8320 BTF_KIND_FUNC); 8321 else 8322 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8323 8324 if (err <= 0) 8325 pr_warn("%s is not found in vmlinux BTF\n", name); 8326 8327 return err; 8328 } 8329 8330 int libbpf_find_vmlinux_btf_id(const char *name, 8331 enum bpf_attach_type attach_type) 8332 { 8333 struct btf *btf; 8334 int err; 8335 8336 btf = libbpf_find_kernel_btf(); 8337 if (IS_ERR(btf)) { 8338 pr_warn("vmlinux BTF is not found\n"); 8339 return -EINVAL; 8340 } 8341 8342 err = __find_vmlinux_btf_id(btf, name, attach_type); 8343 btf__free(btf); 8344 return err; 8345 } 8346 8347 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8348 { 8349 struct bpf_prog_info_linear *info_linear; 8350 struct bpf_prog_info *info; 8351 struct btf *btf = NULL; 8352 int err = -EINVAL; 8353 8354 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8355 if (IS_ERR_OR_NULL(info_linear)) { 8356 pr_warn("failed get_prog_info_linear for FD %d\n", 8357 attach_prog_fd); 8358 return -EINVAL; 8359 } 8360 info = &info_linear->info; 8361 if (!info->btf_id) { 8362 pr_warn("The target program doesn't have BTF\n"); 8363 goto out; 8364 } 8365 if (btf__get_from_id(info->btf_id, &btf)) { 8366 pr_warn("Failed to get BTF of the program\n"); 8367 goto out; 8368 } 8369 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8370 btf__free(btf); 8371 if (err <= 0) { 8372 pr_warn("%s is not found in prog's BTF\n", name); 8373 goto out; 8374 } 8375 out: 8376 free(info_linear); 8377 return err; 8378 } 8379 8380 static int libbpf_find_attach_btf_id(struct bpf_program *prog) 8381 { 8382 enum bpf_attach_type attach_type = prog->expected_attach_type; 8383 __u32 attach_prog_fd = prog->attach_prog_fd; 8384 const char *name = prog->sec_name; 8385 int i, err; 8386 8387 if (!name) 8388 return -EINVAL; 8389 8390 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8391 if (!section_defs[i].is_attach_btf) 8392 continue; 8393 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8394 continue; 8395 if (attach_prog_fd) 8396 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 8397 attach_prog_fd); 8398 else 8399 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 8400 name + section_defs[i].len, 8401 attach_type); 8402 return err; 8403 } 8404 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 8405 return -ESRCH; 8406 } 8407 8408 int libbpf_attach_type_by_name(const char *name, 8409 enum bpf_attach_type *attach_type) 8410 { 8411 char *type_names; 8412 int i; 8413 8414 if (!name) 8415 return -EINVAL; 8416 8417 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8418 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8419 continue; 8420 if (!section_defs[i].is_attachable) 8421 return -EINVAL; 8422 *attach_type = section_defs[i].expected_attach_type; 8423 return 0; 8424 } 8425 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 8426 type_names = libbpf_get_type_names(true); 8427 if (type_names != NULL) { 8428 pr_debug("attachable section(type) names are:%s\n", type_names); 8429 free(type_names); 8430 } 8431 8432 return -EINVAL; 8433 } 8434 8435 int bpf_map__fd(const struct bpf_map *map) 8436 { 8437 return map ? map->fd : -EINVAL; 8438 } 8439 8440 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 8441 { 8442 return map ? &map->def : ERR_PTR(-EINVAL); 8443 } 8444 8445 const char *bpf_map__name(const struct bpf_map *map) 8446 { 8447 return map ? map->name : NULL; 8448 } 8449 8450 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 8451 { 8452 return map->def.type; 8453 } 8454 8455 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 8456 { 8457 if (map->fd >= 0) 8458 return -EBUSY; 8459 map->def.type = type; 8460 return 0; 8461 } 8462 8463 __u32 bpf_map__map_flags(const struct bpf_map *map) 8464 { 8465 return map->def.map_flags; 8466 } 8467 8468 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 8469 { 8470 if (map->fd >= 0) 8471 return -EBUSY; 8472 map->def.map_flags = flags; 8473 return 0; 8474 } 8475 8476 __u32 bpf_map__numa_node(const struct bpf_map *map) 8477 { 8478 return map->numa_node; 8479 } 8480 8481 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 8482 { 8483 if (map->fd >= 0) 8484 return -EBUSY; 8485 map->numa_node = numa_node; 8486 return 0; 8487 } 8488 8489 __u32 bpf_map__key_size(const struct bpf_map *map) 8490 { 8491 return map->def.key_size; 8492 } 8493 8494 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 8495 { 8496 if (map->fd >= 0) 8497 return -EBUSY; 8498 map->def.key_size = size; 8499 return 0; 8500 } 8501 8502 __u32 bpf_map__value_size(const struct bpf_map *map) 8503 { 8504 return map->def.value_size; 8505 } 8506 8507 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 8508 { 8509 if (map->fd >= 0) 8510 return -EBUSY; 8511 map->def.value_size = size; 8512 return 0; 8513 } 8514 8515 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 8516 { 8517 return map ? map->btf_key_type_id : 0; 8518 } 8519 8520 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 8521 { 8522 return map ? map->btf_value_type_id : 0; 8523 } 8524 8525 int bpf_map__set_priv(struct bpf_map *map, void *priv, 8526 bpf_map_clear_priv_t clear_priv) 8527 { 8528 if (!map) 8529 return -EINVAL; 8530 8531 if (map->priv) { 8532 if (map->clear_priv) 8533 map->clear_priv(map, map->priv); 8534 } 8535 8536 map->priv = priv; 8537 map->clear_priv = clear_priv; 8538 return 0; 8539 } 8540 8541 void *bpf_map__priv(const struct bpf_map *map) 8542 { 8543 return map ? map->priv : ERR_PTR(-EINVAL); 8544 } 8545 8546 int bpf_map__set_initial_value(struct bpf_map *map, 8547 const void *data, size_t size) 8548 { 8549 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 8550 size != map->def.value_size || map->fd >= 0) 8551 return -EINVAL; 8552 8553 memcpy(map->mmaped, data, size); 8554 return 0; 8555 } 8556 8557 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 8558 { 8559 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 8560 } 8561 8562 bool bpf_map__is_internal(const struct bpf_map *map) 8563 { 8564 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 8565 } 8566 8567 __u32 bpf_map__ifindex(const struct bpf_map *map) 8568 { 8569 return map->map_ifindex; 8570 } 8571 8572 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 8573 { 8574 if (map->fd >= 0) 8575 return -EBUSY; 8576 map->map_ifindex = ifindex; 8577 return 0; 8578 } 8579 8580 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 8581 { 8582 if (!bpf_map_type__is_map_in_map(map->def.type)) { 8583 pr_warn("error: unsupported map type\n"); 8584 return -EINVAL; 8585 } 8586 if (map->inner_map_fd != -1) { 8587 pr_warn("error: inner_map_fd already specified\n"); 8588 return -EINVAL; 8589 } 8590 map->inner_map_fd = fd; 8591 return 0; 8592 } 8593 8594 static struct bpf_map * 8595 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 8596 { 8597 ssize_t idx; 8598 struct bpf_map *s, *e; 8599 8600 if (!obj || !obj->maps) 8601 return NULL; 8602 8603 s = obj->maps; 8604 e = obj->maps + obj->nr_maps; 8605 8606 if ((m < s) || (m >= e)) { 8607 pr_warn("error in %s: map handler doesn't belong to object\n", 8608 __func__); 8609 return NULL; 8610 } 8611 8612 idx = (m - obj->maps) + i; 8613 if (idx >= obj->nr_maps || idx < 0) 8614 return NULL; 8615 return &obj->maps[idx]; 8616 } 8617 8618 struct bpf_map * 8619 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 8620 { 8621 if (prev == NULL) 8622 return obj->maps; 8623 8624 return __bpf_map__iter(prev, obj, 1); 8625 } 8626 8627 struct bpf_map * 8628 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 8629 { 8630 if (next == NULL) { 8631 if (!obj->nr_maps) 8632 return NULL; 8633 return obj->maps + obj->nr_maps - 1; 8634 } 8635 8636 return __bpf_map__iter(next, obj, -1); 8637 } 8638 8639 struct bpf_map * 8640 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 8641 { 8642 struct bpf_map *pos; 8643 8644 bpf_object__for_each_map(pos, obj) { 8645 if (pos->name && !strcmp(pos->name, name)) 8646 return pos; 8647 } 8648 return NULL; 8649 } 8650 8651 int 8652 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 8653 { 8654 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 8655 } 8656 8657 struct bpf_map * 8658 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 8659 { 8660 return ERR_PTR(-ENOTSUP); 8661 } 8662 8663 long libbpf_get_error(const void *ptr) 8664 { 8665 return PTR_ERR_OR_ZERO(ptr); 8666 } 8667 8668 int bpf_prog_load(const char *file, enum bpf_prog_type type, 8669 struct bpf_object **pobj, int *prog_fd) 8670 { 8671 struct bpf_prog_load_attr attr; 8672 8673 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 8674 attr.file = file; 8675 attr.prog_type = type; 8676 attr.expected_attach_type = 0; 8677 8678 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 8679 } 8680 8681 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 8682 struct bpf_object **pobj, int *prog_fd) 8683 { 8684 struct bpf_object_open_attr open_attr = {}; 8685 struct bpf_program *prog, *first_prog = NULL; 8686 struct bpf_object *obj; 8687 struct bpf_map *map; 8688 int err; 8689 8690 if (!attr) 8691 return -EINVAL; 8692 if (!attr->file) 8693 return -EINVAL; 8694 8695 open_attr.file = attr->file; 8696 open_attr.prog_type = attr->prog_type; 8697 8698 obj = bpf_object__open_xattr(&open_attr); 8699 if (IS_ERR_OR_NULL(obj)) 8700 return -ENOENT; 8701 8702 bpf_object__for_each_program(prog, obj) { 8703 enum bpf_attach_type attach_type = attr->expected_attach_type; 8704 /* 8705 * to preserve backwards compatibility, bpf_prog_load treats 8706 * attr->prog_type, if specified, as an override to whatever 8707 * bpf_object__open guessed 8708 */ 8709 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 8710 bpf_program__set_type(prog, attr->prog_type); 8711 bpf_program__set_expected_attach_type(prog, 8712 attach_type); 8713 } 8714 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 8715 /* 8716 * we haven't guessed from section name and user 8717 * didn't provide a fallback type, too bad... 8718 */ 8719 bpf_object__close(obj); 8720 return -EINVAL; 8721 } 8722 8723 prog->prog_ifindex = attr->ifindex; 8724 prog->log_level = attr->log_level; 8725 prog->prog_flags |= attr->prog_flags; 8726 if (!first_prog) 8727 first_prog = prog; 8728 } 8729 8730 bpf_object__for_each_map(map, obj) { 8731 if (!bpf_map__is_offload_neutral(map)) 8732 map->map_ifindex = attr->ifindex; 8733 } 8734 8735 if (!first_prog) { 8736 pr_warn("object file doesn't contain bpf program\n"); 8737 bpf_object__close(obj); 8738 return -ENOENT; 8739 } 8740 8741 err = bpf_object__load(obj); 8742 if (err) { 8743 bpf_object__close(obj); 8744 return err; 8745 } 8746 8747 *pobj = obj; 8748 *prog_fd = bpf_program__fd(first_prog); 8749 return 0; 8750 } 8751 8752 struct bpf_link { 8753 int (*detach)(struct bpf_link *link); 8754 int (*destroy)(struct bpf_link *link); 8755 char *pin_path; /* NULL, if not pinned */ 8756 int fd; /* hook FD, -1 if not applicable */ 8757 bool disconnected; 8758 }; 8759 8760 /* Replace link's underlying BPF program with the new one */ 8761 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 8762 { 8763 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 8764 } 8765 8766 /* Release "ownership" of underlying BPF resource (typically, BPF program 8767 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 8768 * link, when destructed through bpf_link__destroy() call won't attempt to 8769 * detach/unregisted that BPF resource. This is useful in situations where, 8770 * say, attached BPF program has to outlive userspace program that attached it 8771 * in the system. Depending on type of BPF program, though, there might be 8772 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 8773 * exit of userspace program doesn't trigger automatic detachment and clean up 8774 * inside the kernel. 8775 */ 8776 void bpf_link__disconnect(struct bpf_link *link) 8777 { 8778 link->disconnected = true; 8779 } 8780 8781 int bpf_link__destroy(struct bpf_link *link) 8782 { 8783 int err = 0; 8784 8785 if (IS_ERR_OR_NULL(link)) 8786 return 0; 8787 8788 if (!link->disconnected && link->detach) 8789 err = link->detach(link); 8790 if (link->destroy) 8791 link->destroy(link); 8792 if (link->pin_path) 8793 free(link->pin_path); 8794 free(link); 8795 8796 return err; 8797 } 8798 8799 int bpf_link__fd(const struct bpf_link *link) 8800 { 8801 return link->fd; 8802 } 8803 8804 const char *bpf_link__pin_path(const struct bpf_link *link) 8805 { 8806 return link->pin_path; 8807 } 8808 8809 static int bpf_link__detach_fd(struct bpf_link *link) 8810 { 8811 return close(link->fd); 8812 } 8813 8814 struct bpf_link *bpf_link__open(const char *path) 8815 { 8816 struct bpf_link *link; 8817 int fd; 8818 8819 fd = bpf_obj_get(path); 8820 if (fd < 0) { 8821 fd = -errno; 8822 pr_warn("failed to open link at %s: %d\n", path, fd); 8823 return ERR_PTR(fd); 8824 } 8825 8826 link = calloc(1, sizeof(*link)); 8827 if (!link) { 8828 close(fd); 8829 return ERR_PTR(-ENOMEM); 8830 } 8831 link->detach = &bpf_link__detach_fd; 8832 link->fd = fd; 8833 8834 link->pin_path = strdup(path); 8835 if (!link->pin_path) { 8836 bpf_link__destroy(link); 8837 return ERR_PTR(-ENOMEM); 8838 } 8839 8840 return link; 8841 } 8842 8843 int bpf_link__detach(struct bpf_link *link) 8844 { 8845 return bpf_link_detach(link->fd) ? -errno : 0; 8846 } 8847 8848 int bpf_link__pin(struct bpf_link *link, const char *path) 8849 { 8850 int err; 8851 8852 if (link->pin_path) 8853 return -EBUSY; 8854 err = make_parent_dir(path); 8855 if (err) 8856 return err; 8857 err = check_path(path); 8858 if (err) 8859 return err; 8860 8861 link->pin_path = strdup(path); 8862 if (!link->pin_path) 8863 return -ENOMEM; 8864 8865 if (bpf_obj_pin(link->fd, link->pin_path)) { 8866 err = -errno; 8867 zfree(&link->pin_path); 8868 return err; 8869 } 8870 8871 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 8872 return 0; 8873 } 8874 8875 int bpf_link__unpin(struct bpf_link *link) 8876 { 8877 int err; 8878 8879 if (!link->pin_path) 8880 return -EINVAL; 8881 8882 err = unlink(link->pin_path); 8883 if (err != 0) 8884 return -errno; 8885 8886 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 8887 zfree(&link->pin_path); 8888 return 0; 8889 } 8890 8891 static int bpf_link__detach_perf_event(struct bpf_link *link) 8892 { 8893 int err; 8894 8895 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 8896 if (err) 8897 err = -errno; 8898 8899 close(link->fd); 8900 return err; 8901 } 8902 8903 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 8904 int pfd) 8905 { 8906 char errmsg[STRERR_BUFSIZE]; 8907 struct bpf_link *link; 8908 int prog_fd, err; 8909 8910 if (pfd < 0) { 8911 pr_warn("prog '%s': invalid perf event FD %d\n", 8912 prog->name, pfd); 8913 return ERR_PTR(-EINVAL); 8914 } 8915 prog_fd = bpf_program__fd(prog); 8916 if (prog_fd < 0) { 8917 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 8918 prog->name); 8919 return ERR_PTR(-EINVAL); 8920 } 8921 8922 link = calloc(1, sizeof(*link)); 8923 if (!link) 8924 return ERR_PTR(-ENOMEM); 8925 link->detach = &bpf_link__detach_perf_event; 8926 link->fd = pfd; 8927 8928 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 8929 err = -errno; 8930 free(link); 8931 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 8932 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 8933 if (err == -EPROTO) 8934 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 8935 prog->name, pfd); 8936 return ERR_PTR(err); 8937 } 8938 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 8939 err = -errno; 8940 free(link); 8941 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 8942 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 8943 return ERR_PTR(err); 8944 } 8945 return link; 8946 } 8947 8948 /* 8949 * this function is expected to parse integer in the range of [0, 2^31-1] from 8950 * given file using scanf format string fmt. If actual parsed value is 8951 * negative, the result might be indistinguishable from error 8952 */ 8953 static int parse_uint_from_file(const char *file, const char *fmt) 8954 { 8955 char buf[STRERR_BUFSIZE]; 8956 int err, ret; 8957 FILE *f; 8958 8959 f = fopen(file, "r"); 8960 if (!f) { 8961 err = -errno; 8962 pr_debug("failed to open '%s': %s\n", file, 8963 libbpf_strerror_r(err, buf, sizeof(buf))); 8964 return err; 8965 } 8966 err = fscanf(f, fmt, &ret); 8967 if (err != 1) { 8968 err = err == EOF ? -EIO : -errno; 8969 pr_debug("failed to parse '%s': %s\n", file, 8970 libbpf_strerror_r(err, buf, sizeof(buf))); 8971 fclose(f); 8972 return err; 8973 } 8974 fclose(f); 8975 return ret; 8976 } 8977 8978 static int determine_kprobe_perf_type(void) 8979 { 8980 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 8981 8982 return parse_uint_from_file(file, "%d\n"); 8983 } 8984 8985 static int determine_uprobe_perf_type(void) 8986 { 8987 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 8988 8989 return parse_uint_from_file(file, "%d\n"); 8990 } 8991 8992 static int determine_kprobe_retprobe_bit(void) 8993 { 8994 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 8995 8996 return parse_uint_from_file(file, "config:%d\n"); 8997 } 8998 8999 static int determine_uprobe_retprobe_bit(void) 9000 { 9001 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9002 9003 return parse_uint_from_file(file, "config:%d\n"); 9004 } 9005 9006 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9007 uint64_t offset, int pid) 9008 { 9009 struct perf_event_attr attr = {}; 9010 char errmsg[STRERR_BUFSIZE]; 9011 int type, pfd, err; 9012 9013 type = uprobe ? determine_uprobe_perf_type() 9014 : determine_kprobe_perf_type(); 9015 if (type < 0) { 9016 pr_warn("failed to determine %s perf type: %s\n", 9017 uprobe ? "uprobe" : "kprobe", 9018 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9019 return type; 9020 } 9021 if (retprobe) { 9022 int bit = uprobe ? determine_uprobe_retprobe_bit() 9023 : determine_kprobe_retprobe_bit(); 9024 9025 if (bit < 0) { 9026 pr_warn("failed to determine %s retprobe bit: %s\n", 9027 uprobe ? "uprobe" : "kprobe", 9028 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9029 return bit; 9030 } 9031 attr.config |= 1 << bit; 9032 } 9033 attr.size = sizeof(attr); 9034 attr.type = type; 9035 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9036 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9037 9038 /* pid filter is meaningful only for uprobes */ 9039 pfd = syscall(__NR_perf_event_open, &attr, 9040 pid < 0 ? -1 : pid /* pid */, 9041 pid == -1 ? 0 : -1 /* cpu */, 9042 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9043 if (pfd < 0) { 9044 err = -errno; 9045 pr_warn("%s perf_event_open() failed: %s\n", 9046 uprobe ? "uprobe" : "kprobe", 9047 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9048 return err; 9049 } 9050 return pfd; 9051 } 9052 9053 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9054 bool retprobe, 9055 const char *func_name) 9056 { 9057 char errmsg[STRERR_BUFSIZE]; 9058 struct bpf_link *link; 9059 int pfd, err; 9060 9061 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9062 0 /* offset */, -1 /* pid */); 9063 if (pfd < 0) { 9064 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9065 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9066 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9067 return ERR_PTR(pfd); 9068 } 9069 link = bpf_program__attach_perf_event(prog, pfd); 9070 if (IS_ERR(link)) { 9071 close(pfd); 9072 err = PTR_ERR(link); 9073 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9074 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9075 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9076 return link; 9077 } 9078 return link; 9079 } 9080 9081 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9082 struct bpf_program *prog) 9083 { 9084 const char *func_name; 9085 bool retprobe; 9086 9087 func_name = prog->sec_name + sec->len; 9088 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9089 9090 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9091 } 9092 9093 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9094 bool retprobe, pid_t pid, 9095 const char *binary_path, 9096 size_t func_offset) 9097 { 9098 char errmsg[STRERR_BUFSIZE]; 9099 struct bpf_link *link; 9100 int pfd, err; 9101 9102 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9103 binary_path, func_offset, pid); 9104 if (pfd < 0) { 9105 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9106 prog->name, retprobe ? "uretprobe" : "uprobe", 9107 binary_path, func_offset, 9108 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9109 return ERR_PTR(pfd); 9110 } 9111 link = bpf_program__attach_perf_event(prog, pfd); 9112 if (IS_ERR(link)) { 9113 close(pfd); 9114 err = PTR_ERR(link); 9115 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9116 prog->name, retprobe ? "uretprobe" : "uprobe", 9117 binary_path, func_offset, 9118 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9119 return link; 9120 } 9121 return link; 9122 } 9123 9124 static int determine_tracepoint_id(const char *tp_category, 9125 const char *tp_name) 9126 { 9127 char file[PATH_MAX]; 9128 int ret; 9129 9130 ret = snprintf(file, sizeof(file), 9131 "/sys/kernel/debug/tracing/events/%s/%s/id", 9132 tp_category, tp_name); 9133 if (ret < 0) 9134 return -errno; 9135 if (ret >= sizeof(file)) { 9136 pr_debug("tracepoint %s/%s path is too long\n", 9137 tp_category, tp_name); 9138 return -E2BIG; 9139 } 9140 return parse_uint_from_file(file, "%d\n"); 9141 } 9142 9143 static int perf_event_open_tracepoint(const char *tp_category, 9144 const char *tp_name) 9145 { 9146 struct perf_event_attr attr = {}; 9147 char errmsg[STRERR_BUFSIZE]; 9148 int tp_id, pfd, err; 9149 9150 tp_id = determine_tracepoint_id(tp_category, tp_name); 9151 if (tp_id < 0) { 9152 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9153 tp_category, tp_name, 9154 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9155 return tp_id; 9156 } 9157 9158 attr.type = PERF_TYPE_TRACEPOINT; 9159 attr.size = sizeof(attr); 9160 attr.config = tp_id; 9161 9162 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9163 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9164 if (pfd < 0) { 9165 err = -errno; 9166 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9167 tp_category, tp_name, 9168 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9169 return err; 9170 } 9171 return pfd; 9172 } 9173 9174 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 9175 const char *tp_category, 9176 const char *tp_name) 9177 { 9178 char errmsg[STRERR_BUFSIZE]; 9179 struct bpf_link *link; 9180 int pfd, err; 9181 9182 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9183 if (pfd < 0) { 9184 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9185 prog->name, tp_category, tp_name, 9186 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9187 return ERR_PTR(pfd); 9188 } 9189 link = bpf_program__attach_perf_event(prog, pfd); 9190 if (IS_ERR(link)) { 9191 close(pfd); 9192 err = PTR_ERR(link); 9193 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9194 prog->name, tp_category, tp_name, 9195 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9196 return link; 9197 } 9198 return link; 9199 } 9200 9201 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9202 struct bpf_program *prog) 9203 { 9204 char *sec_name, *tp_cat, *tp_name; 9205 struct bpf_link *link; 9206 9207 sec_name = strdup(prog->sec_name); 9208 if (!sec_name) 9209 return ERR_PTR(-ENOMEM); 9210 9211 /* extract "tp/<category>/<name>" */ 9212 tp_cat = sec_name + sec->len; 9213 tp_name = strchr(tp_cat, '/'); 9214 if (!tp_name) { 9215 link = ERR_PTR(-EINVAL); 9216 goto out; 9217 } 9218 *tp_name = '\0'; 9219 tp_name++; 9220 9221 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9222 out: 9223 free(sec_name); 9224 return link; 9225 } 9226 9227 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 9228 const char *tp_name) 9229 { 9230 char errmsg[STRERR_BUFSIZE]; 9231 struct bpf_link *link; 9232 int prog_fd, pfd; 9233 9234 prog_fd = bpf_program__fd(prog); 9235 if (prog_fd < 0) { 9236 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9237 return ERR_PTR(-EINVAL); 9238 } 9239 9240 link = calloc(1, sizeof(*link)); 9241 if (!link) 9242 return ERR_PTR(-ENOMEM); 9243 link->detach = &bpf_link__detach_fd; 9244 9245 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9246 if (pfd < 0) { 9247 pfd = -errno; 9248 free(link); 9249 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9250 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9251 return ERR_PTR(pfd); 9252 } 9253 link->fd = pfd; 9254 return link; 9255 } 9256 9257 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9258 struct bpf_program *prog) 9259 { 9260 const char *tp_name = prog->sec_name + sec->len; 9261 9262 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9263 } 9264 9265 /* Common logic for all BPF program types that attach to a btf_id */ 9266 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 9267 { 9268 char errmsg[STRERR_BUFSIZE]; 9269 struct bpf_link *link; 9270 int prog_fd, pfd; 9271 9272 prog_fd = bpf_program__fd(prog); 9273 if (prog_fd < 0) { 9274 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9275 return ERR_PTR(-EINVAL); 9276 } 9277 9278 link = calloc(1, sizeof(*link)); 9279 if (!link) 9280 return ERR_PTR(-ENOMEM); 9281 link->detach = &bpf_link__detach_fd; 9282 9283 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9284 if (pfd < 0) { 9285 pfd = -errno; 9286 free(link); 9287 pr_warn("prog '%s': failed to attach: %s\n", 9288 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9289 return ERR_PTR(pfd); 9290 } 9291 link->fd = pfd; 9292 return (struct bpf_link *)link; 9293 } 9294 9295 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 9296 { 9297 return bpf_program__attach_btf_id(prog); 9298 } 9299 9300 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 9301 { 9302 return bpf_program__attach_btf_id(prog); 9303 } 9304 9305 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9306 struct bpf_program *prog) 9307 { 9308 return bpf_program__attach_trace(prog); 9309 } 9310 9311 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9312 struct bpf_program *prog) 9313 { 9314 return bpf_program__attach_lsm(prog); 9315 } 9316 9317 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9318 struct bpf_program *prog) 9319 { 9320 return bpf_program__attach_iter(prog, NULL); 9321 } 9322 9323 static struct bpf_link * 9324 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, 9325 const char *target_name) 9326 { 9327 enum bpf_attach_type attach_type; 9328 char errmsg[STRERR_BUFSIZE]; 9329 struct bpf_link *link; 9330 int prog_fd, link_fd; 9331 9332 prog_fd = bpf_program__fd(prog); 9333 if (prog_fd < 0) { 9334 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9335 return ERR_PTR(-EINVAL); 9336 } 9337 9338 link = calloc(1, sizeof(*link)); 9339 if (!link) 9340 return ERR_PTR(-ENOMEM); 9341 link->detach = &bpf_link__detach_fd; 9342 9343 attach_type = bpf_program__get_expected_attach_type(prog); 9344 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, NULL); 9345 if (link_fd < 0) { 9346 link_fd = -errno; 9347 free(link); 9348 pr_warn("prog '%s': failed to attach to %s: %s\n", 9349 prog->name, target_name, 9350 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9351 return ERR_PTR(link_fd); 9352 } 9353 link->fd = link_fd; 9354 return link; 9355 } 9356 9357 struct bpf_link * 9358 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 9359 { 9360 return bpf_program__attach_fd(prog, cgroup_fd, "cgroup"); 9361 } 9362 9363 struct bpf_link * 9364 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 9365 { 9366 return bpf_program__attach_fd(prog, netns_fd, "netns"); 9367 } 9368 9369 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 9370 { 9371 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 9372 return bpf_program__attach_fd(prog, ifindex, "xdp"); 9373 } 9374 9375 struct bpf_link * 9376 bpf_program__attach_iter(struct bpf_program *prog, 9377 const struct bpf_iter_attach_opts *opts) 9378 { 9379 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 9380 char errmsg[STRERR_BUFSIZE]; 9381 struct bpf_link *link; 9382 int prog_fd, link_fd; 9383 __u32 target_fd = 0; 9384 9385 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 9386 return ERR_PTR(-EINVAL); 9387 9388 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 9389 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 9390 9391 prog_fd = bpf_program__fd(prog); 9392 if (prog_fd < 0) { 9393 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9394 return ERR_PTR(-EINVAL); 9395 } 9396 9397 link = calloc(1, sizeof(*link)); 9398 if (!link) 9399 return ERR_PTR(-ENOMEM); 9400 link->detach = &bpf_link__detach_fd; 9401 9402 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 9403 &link_create_opts); 9404 if (link_fd < 0) { 9405 link_fd = -errno; 9406 free(link); 9407 pr_warn("prog '%s': failed to attach to iterator: %s\n", 9408 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9409 return ERR_PTR(link_fd); 9410 } 9411 link->fd = link_fd; 9412 return link; 9413 } 9414 9415 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 9416 { 9417 const struct bpf_sec_def *sec_def; 9418 9419 sec_def = find_sec_def(prog->sec_name); 9420 if (!sec_def || !sec_def->attach_fn) 9421 return ERR_PTR(-ESRCH); 9422 9423 return sec_def->attach_fn(sec_def, prog); 9424 } 9425 9426 static int bpf_link__detach_struct_ops(struct bpf_link *link) 9427 { 9428 __u32 zero = 0; 9429 9430 if (bpf_map_delete_elem(link->fd, &zero)) 9431 return -errno; 9432 9433 return 0; 9434 } 9435 9436 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 9437 { 9438 struct bpf_struct_ops *st_ops; 9439 struct bpf_link *link; 9440 __u32 i, zero = 0; 9441 int err; 9442 9443 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 9444 return ERR_PTR(-EINVAL); 9445 9446 link = calloc(1, sizeof(*link)); 9447 if (!link) 9448 return ERR_PTR(-EINVAL); 9449 9450 st_ops = map->st_ops; 9451 for (i = 0; i < btf_vlen(st_ops->type); i++) { 9452 struct bpf_program *prog = st_ops->progs[i]; 9453 void *kern_data; 9454 int prog_fd; 9455 9456 if (!prog) 9457 continue; 9458 9459 prog_fd = bpf_program__fd(prog); 9460 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 9461 *(unsigned long *)kern_data = prog_fd; 9462 } 9463 9464 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 9465 if (err) { 9466 err = -errno; 9467 free(link); 9468 return ERR_PTR(err); 9469 } 9470 9471 link->detach = bpf_link__detach_struct_ops; 9472 link->fd = map->fd; 9473 9474 return link; 9475 } 9476 9477 enum bpf_perf_event_ret 9478 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 9479 void **copy_mem, size_t *copy_size, 9480 bpf_perf_event_print_t fn, void *private_data) 9481 { 9482 struct perf_event_mmap_page *header = mmap_mem; 9483 __u64 data_head = ring_buffer_read_head(header); 9484 __u64 data_tail = header->data_tail; 9485 void *base = ((__u8 *)header) + page_size; 9486 int ret = LIBBPF_PERF_EVENT_CONT; 9487 struct perf_event_header *ehdr; 9488 size_t ehdr_size; 9489 9490 while (data_head != data_tail) { 9491 ehdr = base + (data_tail & (mmap_size - 1)); 9492 ehdr_size = ehdr->size; 9493 9494 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 9495 void *copy_start = ehdr; 9496 size_t len_first = base + mmap_size - copy_start; 9497 size_t len_secnd = ehdr_size - len_first; 9498 9499 if (*copy_size < ehdr_size) { 9500 free(*copy_mem); 9501 *copy_mem = malloc(ehdr_size); 9502 if (!*copy_mem) { 9503 *copy_size = 0; 9504 ret = LIBBPF_PERF_EVENT_ERROR; 9505 break; 9506 } 9507 *copy_size = ehdr_size; 9508 } 9509 9510 memcpy(*copy_mem, copy_start, len_first); 9511 memcpy(*copy_mem + len_first, base, len_secnd); 9512 ehdr = *copy_mem; 9513 } 9514 9515 ret = fn(ehdr, private_data); 9516 data_tail += ehdr_size; 9517 if (ret != LIBBPF_PERF_EVENT_CONT) 9518 break; 9519 } 9520 9521 ring_buffer_write_tail(header, data_tail); 9522 return ret; 9523 } 9524 9525 struct perf_buffer; 9526 9527 struct perf_buffer_params { 9528 struct perf_event_attr *attr; 9529 /* if event_cb is specified, it takes precendence */ 9530 perf_buffer_event_fn event_cb; 9531 /* sample_cb and lost_cb are higher-level common-case callbacks */ 9532 perf_buffer_sample_fn sample_cb; 9533 perf_buffer_lost_fn lost_cb; 9534 void *ctx; 9535 int cpu_cnt; 9536 int *cpus; 9537 int *map_keys; 9538 }; 9539 9540 struct perf_cpu_buf { 9541 struct perf_buffer *pb; 9542 void *base; /* mmap()'ed memory */ 9543 void *buf; /* for reconstructing segmented data */ 9544 size_t buf_size; 9545 int fd; 9546 int cpu; 9547 int map_key; 9548 }; 9549 9550 struct perf_buffer { 9551 perf_buffer_event_fn event_cb; 9552 perf_buffer_sample_fn sample_cb; 9553 perf_buffer_lost_fn lost_cb; 9554 void *ctx; /* passed into callbacks */ 9555 9556 size_t page_size; 9557 size_t mmap_size; 9558 struct perf_cpu_buf **cpu_bufs; 9559 struct epoll_event *events; 9560 int cpu_cnt; /* number of allocated CPU buffers */ 9561 int epoll_fd; /* perf event FD */ 9562 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 9563 }; 9564 9565 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 9566 struct perf_cpu_buf *cpu_buf) 9567 { 9568 if (!cpu_buf) 9569 return; 9570 if (cpu_buf->base && 9571 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 9572 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 9573 if (cpu_buf->fd >= 0) { 9574 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 9575 close(cpu_buf->fd); 9576 } 9577 free(cpu_buf->buf); 9578 free(cpu_buf); 9579 } 9580 9581 void perf_buffer__free(struct perf_buffer *pb) 9582 { 9583 int i; 9584 9585 if (IS_ERR_OR_NULL(pb)) 9586 return; 9587 if (pb->cpu_bufs) { 9588 for (i = 0; i < pb->cpu_cnt; i++) { 9589 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 9590 9591 if (!cpu_buf) 9592 continue; 9593 9594 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 9595 perf_buffer__free_cpu_buf(pb, cpu_buf); 9596 } 9597 free(pb->cpu_bufs); 9598 } 9599 if (pb->epoll_fd >= 0) 9600 close(pb->epoll_fd); 9601 free(pb->events); 9602 free(pb); 9603 } 9604 9605 static struct perf_cpu_buf * 9606 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 9607 int cpu, int map_key) 9608 { 9609 struct perf_cpu_buf *cpu_buf; 9610 char msg[STRERR_BUFSIZE]; 9611 int err; 9612 9613 cpu_buf = calloc(1, sizeof(*cpu_buf)); 9614 if (!cpu_buf) 9615 return ERR_PTR(-ENOMEM); 9616 9617 cpu_buf->pb = pb; 9618 cpu_buf->cpu = cpu; 9619 cpu_buf->map_key = map_key; 9620 9621 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 9622 -1, PERF_FLAG_FD_CLOEXEC); 9623 if (cpu_buf->fd < 0) { 9624 err = -errno; 9625 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 9626 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9627 goto error; 9628 } 9629 9630 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 9631 PROT_READ | PROT_WRITE, MAP_SHARED, 9632 cpu_buf->fd, 0); 9633 if (cpu_buf->base == MAP_FAILED) { 9634 cpu_buf->base = NULL; 9635 err = -errno; 9636 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 9637 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9638 goto error; 9639 } 9640 9641 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9642 err = -errno; 9643 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 9644 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9645 goto error; 9646 } 9647 9648 return cpu_buf; 9649 9650 error: 9651 perf_buffer__free_cpu_buf(pb, cpu_buf); 9652 return (struct perf_cpu_buf *)ERR_PTR(err); 9653 } 9654 9655 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 9656 struct perf_buffer_params *p); 9657 9658 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 9659 const struct perf_buffer_opts *opts) 9660 { 9661 struct perf_buffer_params p = {}; 9662 struct perf_event_attr attr = { 0, }; 9663 9664 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 9665 attr.type = PERF_TYPE_SOFTWARE; 9666 attr.sample_type = PERF_SAMPLE_RAW; 9667 attr.sample_period = 1; 9668 attr.wakeup_events = 1; 9669 9670 p.attr = &attr; 9671 p.sample_cb = opts ? opts->sample_cb : NULL; 9672 p.lost_cb = opts ? opts->lost_cb : NULL; 9673 p.ctx = opts ? opts->ctx : NULL; 9674 9675 return __perf_buffer__new(map_fd, page_cnt, &p); 9676 } 9677 9678 struct perf_buffer * 9679 perf_buffer__new_raw(int map_fd, size_t page_cnt, 9680 const struct perf_buffer_raw_opts *opts) 9681 { 9682 struct perf_buffer_params p = {}; 9683 9684 p.attr = opts->attr; 9685 p.event_cb = opts->event_cb; 9686 p.ctx = opts->ctx; 9687 p.cpu_cnt = opts->cpu_cnt; 9688 p.cpus = opts->cpus; 9689 p.map_keys = opts->map_keys; 9690 9691 return __perf_buffer__new(map_fd, page_cnt, &p); 9692 } 9693 9694 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 9695 struct perf_buffer_params *p) 9696 { 9697 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 9698 struct bpf_map_info map; 9699 char msg[STRERR_BUFSIZE]; 9700 struct perf_buffer *pb; 9701 bool *online = NULL; 9702 __u32 map_info_len; 9703 int err, i, j, n; 9704 9705 if (page_cnt & (page_cnt - 1)) { 9706 pr_warn("page count should be power of two, but is %zu\n", 9707 page_cnt); 9708 return ERR_PTR(-EINVAL); 9709 } 9710 9711 /* best-effort sanity checks */ 9712 memset(&map, 0, sizeof(map)); 9713 map_info_len = sizeof(map); 9714 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 9715 if (err) { 9716 err = -errno; 9717 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 9718 * -EBADFD, -EFAULT, or -E2BIG on real error 9719 */ 9720 if (err != -EINVAL) { 9721 pr_warn("failed to get map info for map FD %d: %s\n", 9722 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 9723 return ERR_PTR(err); 9724 } 9725 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 9726 map_fd); 9727 } else { 9728 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 9729 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 9730 map.name); 9731 return ERR_PTR(-EINVAL); 9732 } 9733 } 9734 9735 pb = calloc(1, sizeof(*pb)); 9736 if (!pb) 9737 return ERR_PTR(-ENOMEM); 9738 9739 pb->event_cb = p->event_cb; 9740 pb->sample_cb = p->sample_cb; 9741 pb->lost_cb = p->lost_cb; 9742 pb->ctx = p->ctx; 9743 9744 pb->page_size = getpagesize(); 9745 pb->mmap_size = pb->page_size * page_cnt; 9746 pb->map_fd = map_fd; 9747 9748 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 9749 if (pb->epoll_fd < 0) { 9750 err = -errno; 9751 pr_warn("failed to create epoll instance: %s\n", 9752 libbpf_strerror_r(err, msg, sizeof(msg))); 9753 goto error; 9754 } 9755 9756 if (p->cpu_cnt > 0) { 9757 pb->cpu_cnt = p->cpu_cnt; 9758 } else { 9759 pb->cpu_cnt = libbpf_num_possible_cpus(); 9760 if (pb->cpu_cnt < 0) { 9761 err = pb->cpu_cnt; 9762 goto error; 9763 } 9764 if (map.max_entries && map.max_entries < pb->cpu_cnt) 9765 pb->cpu_cnt = map.max_entries; 9766 } 9767 9768 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 9769 if (!pb->events) { 9770 err = -ENOMEM; 9771 pr_warn("failed to allocate events: out of memory\n"); 9772 goto error; 9773 } 9774 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 9775 if (!pb->cpu_bufs) { 9776 err = -ENOMEM; 9777 pr_warn("failed to allocate buffers: out of memory\n"); 9778 goto error; 9779 } 9780 9781 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 9782 if (err) { 9783 pr_warn("failed to get online CPU mask: %d\n", err); 9784 goto error; 9785 } 9786 9787 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 9788 struct perf_cpu_buf *cpu_buf; 9789 int cpu, map_key; 9790 9791 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 9792 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 9793 9794 /* in case user didn't explicitly requested particular CPUs to 9795 * be attached to, skip offline/not present CPUs 9796 */ 9797 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 9798 continue; 9799 9800 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 9801 if (IS_ERR(cpu_buf)) { 9802 err = PTR_ERR(cpu_buf); 9803 goto error; 9804 } 9805 9806 pb->cpu_bufs[j] = cpu_buf; 9807 9808 err = bpf_map_update_elem(pb->map_fd, &map_key, 9809 &cpu_buf->fd, 0); 9810 if (err) { 9811 err = -errno; 9812 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 9813 cpu, map_key, cpu_buf->fd, 9814 libbpf_strerror_r(err, msg, sizeof(msg))); 9815 goto error; 9816 } 9817 9818 pb->events[j].events = EPOLLIN; 9819 pb->events[j].data.ptr = cpu_buf; 9820 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 9821 &pb->events[j]) < 0) { 9822 err = -errno; 9823 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 9824 cpu, cpu_buf->fd, 9825 libbpf_strerror_r(err, msg, sizeof(msg))); 9826 goto error; 9827 } 9828 j++; 9829 } 9830 pb->cpu_cnt = j; 9831 free(online); 9832 9833 return pb; 9834 9835 error: 9836 free(online); 9837 if (pb) 9838 perf_buffer__free(pb); 9839 return ERR_PTR(err); 9840 } 9841 9842 struct perf_sample_raw { 9843 struct perf_event_header header; 9844 uint32_t size; 9845 char data[]; 9846 }; 9847 9848 struct perf_sample_lost { 9849 struct perf_event_header header; 9850 uint64_t id; 9851 uint64_t lost; 9852 uint64_t sample_id; 9853 }; 9854 9855 static enum bpf_perf_event_ret 9856 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 9857 { 9858 struct perf_cpu_buf *cpu_buf = ctx; 9859 struct perf_buffer *pb = cpu_buf->pb; 9860 void *data = e; 9861 9862 /* user wants full control over parsing perf event */ 9863 if (pb->event_cb) 9864 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 9865 9866 switch (e->type) { 9867 case PERF_RECORD_SAMPLE: { 9868 struct perf_sample_raw *s = data; 9869 9870 if (pb->sample_cb) 9871 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 9872 break; 9873 } 9874 case PERF_RECORD_LOST: { 9875 struct perf_sample_lost *s = data; 9876 9877 if (pb->lost_cb) 9878 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 9879 break; 9880 } 9881 default: 9882 pr_warn("unknown perf sample type %d\n", e->type); 9883 return LIBBPF_PERF_EVENT_ERROR; 9884 } 9885 return LIBBPF_PERF_EVENT_CONT; 9886 } 9887 9888 static int perf_buffer__process_records(struct perf_buffer *pb, 9889 struct perf_cpu_buf *cpu_buf) 9890 { 9891 enum bpf_perf_event_ret ret; 9892 9893 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 9894 pb->page_size, &cpu_buf->buf, 9895 &cpu_buf->buf_size, 9896 perf_buffer__process_record, cpu_buf); 9897 if (ret != LIBBPF_PERF_EVENT_CONT) 9898 return ret; 9899 return 0; 9900 } 9901 9902 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 9903 { 9904 return pb->epoll_fd; 9905 } 9906 9907 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 9908 { 9909 int i, cnt, err; 9910 9911 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 9912 for (i = 0; i < cnt; i++) { 9913 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 9914 9915 err = perf_buffer__process_records(pb, cpu_buf); 9916 if (err) { 9917 pr_warn("error while processing records: %d\n", err); 9918 return err; 9919 } 9920 } 9921 return cnt < 0 ? -errno : cnt; 9922 } 9923 9924 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 9925 * manager. 9926 */ 9927 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 9928 { 9929 return pb->cpu_cnt; 9930 } 9931 9932 /* 9933 * Return perf_event FD of a ring buffer in *buf_idx* slot of 9934 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 9935 * select()/poll()/epoll() Linux syscalls. 9936 */ 9937 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 9938 { 9939 struct perf_cpu_buf *cpu_buf; 9940 9941 if (buf_idx >= pb->cpu_cnt) 9942 return -EINVAL; 9943 9944 cpu_buf = pb->cpu_bufs[buf_idx]; 9945 if (!cpu_buf) 9946 return -ENOENT; 9947 9948 return cpu_buf->fd; 9949 } 9950 9951 /* 9952 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 9953 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 9954 * consume, do nothing and return success. 9955 * Returns: 9956 * - 0 on success; 9957 * - <0 on failure. 9958 */ 9959 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 9960 { 9961 struct perf_cpu_buf *cpu_buf; 9962 9963 if (buf_idx >= pb->cpu_cnt) 9964 return -EINVAL; 9965 9966 cpu_buf = pb->cpu_bufs[buf_idx]; 9967 if (!cpu_buf) 9968 return -ENOENT; 9969 9970 return perf_buffer__process_records(pb, cpu_buf); 9971 } 9972 9973 int perf_buffer__consume(struct perf_buffer *pb) 9974 { 9975 int i, err; 9976 9977 for (i = 0; i < pb->cpu_cnt; i++) { 9978 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 9979 9980 if (!cpu_buf) 9981 continue; 9982 9983 err = perf_buffer__process_records(pb, cpu_buf); 9984 if (err) { 9985 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 9986 return err; 9987 } 9988 } 9989 return 0; 9990 } 9991 9992 struct bpf_prog_info_array_desc { 9993 int array_offset; /* e.g. offset of jited_prog_insns */ 9994 int count_offset; /* e.g. offset of jited_prog_len */ 9995 int size_offset; /* > 0: offset of rec size, 9996 * < 0: fix size of -size_offset 9997 */ 9998 }; 9999 10000 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10001 [BPF_PROG_INFO_JITED_INSNS] = { 10002 offsetof(struct bpf_prog_info, jited_prog_insns), 10003 offsetof(struct bpf_prog_info, jited_prog_len), 10004 -1, 10005 }, 10006 [BPF_PROG_INFO_XLATED_INSNS] = { 10007 offsetof(struct bpf_prog_info, xlated_prog_insns), 10008 offsetof(struct bpf_prog_info, xlated_prog_len), 10009 -1, 10010 }, 10011 [BPF_PROG_INFO_MAP_IDS] = { 10012 offsetof(struct bpf_prog_info, map_ids), 10013 offsetof(struct bpf_prog_info, nr_map_ids), 10014 -(int)sizeof(__u32), 10015 }, 10016 [BPF_PROG_INFO_JITED_KSYMS] = { 10017 offsetof(struct bpf_prog_info, jited_ksyms), 10018 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10019 -(int)sizeof(__u64), 10020 }, 10021 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10022 offsetof(struct bpf_prog_info, jited_func_lens), 10023 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10024 -(int)sizeof(__u32), 10025 }, 10026 [BPF_PROG_INFO_FUNC_INFO] = { 10027 offsetof(struct bpf_prog_info, func_info), 10028 offsetof(struct bpf_prog_info, nr_func_info), 10029 offsetof(struct bpf_prog_info, func_info_rec_size), 10030 }, 10031 [BPF_PROG_INFO_LINE_INFO] = { 10032 offsetof(struct bpf_prog_info, line_info), 10033 offsetof(struct bpf_prog_info, nr_line_info), 10034 offsetof(struct bpf_prog_info, line_info_rec_size), 10035 }, 10036 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10037 offsetof(struct bpf_prog_info, jited_line_info), 10038 offsetof(struct bpf_prog_info, nr_jited_line_info), 10039 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10040 }, 10041 [BPF_PROG_INFO_PROG_TAGS] = { 10042 offsetof(struct bpf_prog_info, prog_tags), 10043 offsetof(struct bpf_prog_info, nr_prog_tags), 10044 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10045 }, 10046 10047 }; 10048 10049 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10050 int offset) 10051 { 10052 __u32 *array = (__u32 *)info; 10053 10054 if (offset >= 0) 10055 return array[offset / sizeof(__u32)]; 10056 return -(int)offset; 10057 } 10058 10059 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10060 int offset) 10061 { 10062 __u64 *array = (__u64 *)info; 10063 10064 if (offset >= 0) 10065 return array[offset / sizeof(__u64)]; 10066 return -(int)offset; 10067 } 10068 10069 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10070 __u32 val) 10071 { 10072 __u32 *array = (__u32 *)info; 10073 10074 if (offset >= 0) 10075 array[offset / sizeof(__u32)] = val; 10076 } 10077 10078 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10079 __u64 val) 10080 { 10081 __u64 *array = (__u64 *)info; 10082 10083 if (offset >= 0) 10084 array[offset / sizeof(__u64)] = val; 10085 } 10086 10087 struct bpf_prog_info_linear * 10088 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10089 { 10090 struct bpf_prog_info_linear *info_linear; 10091 struct bpf_prog_info info = {}; 10092 __u32 info_len = sizeof(info); 10093 __u32 data_len = 0; 10094 int i, err; 10095 void *ptr; 10096 10097 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10098 return ERR_PTR(-EINVAL); 10099 10100 /* step 1: get array dimensions */ 10101 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10102 if (err) { 10103 pr_debug("can't get prog info: %s", strerror(errno)); 10104 return ERR_PTR(-EFAULT); 10105 } 10106 10107 /* step 2: calculate total size of all arrays */ 10108 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10109 bool include_array = (arrays & (1UL << i)) > 0; 10110 struct bpf_prog_info_array_desc *desc; 10111 __u32 count, size; 10112 10113 desc = bpf_prog_info_array_desc + i; 10114 10115 /* kernel is too old to support this field */ 10116 if (info_len < desc->array_offset + sizeof(__u32) || 10117 info_len < desc->count_offset + sizeof(__u32) || 10118 (desc->size_offset > 0 && info_len < desc->size_offset)) 10119 include_array = false; 10120 10121 if (!include_array) { 10122 arrays &= ~(1UL << i); /* clear the bit */ 10123 continue; 10124 } 10125 10126 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10127 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10128 10129 data_len += count * size; 10130 } 10131 10132 /* step 3: allocate continuous memory */ 10133 data_len = roundup(data_len, sizeof(__u64)); 10134 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10135 if (!info_linear) 10136 return ERR_PTR(-ENOMEM); 10137 10138 /* step 4: fill data to info_linear->info */ 10139 info_linear->arrays = arrays; 10140 memset(&info_linear->info, 0, sizeof(info)); 10141 ptr = info_linear->data; 10142 10143 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10144 struct bpf_prog_info_array_desc *desc; 10145 __u32 count, size; 10146 10147 if ((arrays & (1UL << i)) == 0) 10148 continue; 10149 10150 desc = bpf_prog_info_array_desc + i; 10151 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10152 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10153 bpf_prog_info_set_offset_u32(&info_linear->info, 10154 desc->count_offset, count); 10155 bpf_prog_info_set_offset_u32(&info_linear->info, 10156 desc->size_offset, size); 10157 bpf_prog_info_set_offset_u64(&info_linear->info, 10158 desc->array_offset, 10159 ptr_to_u64(ptr)); 10160 ptr += count * size; 10161 } 10162 10163 /* step 5: call syscall again to get required arrays */ 10164 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10165 if (err) { 10166 pr_debug("can't get prog info: %s", strerror(errno)); 10167 free(info_linear); 10168 return ERR_PTR(-EFAULT); 10169 } 10170 10171 /* step 6: verify the data */ 10172 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10173 struct bpf_prog_info_array_desc *desc; 10174 __u32 v1, v2; 10175 10176 if ((arrays & (1UL << i)) == 0) 10177 continue; 10178 10179 desc = bpf_prog_info_array_desc + i; 10180 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10181 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10182 desc->count_offset); 10183 if (v1 != v2) 10184 pr_warn("%s: mismatch in element count\n", __func__); 10185 10186 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10187 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10188 desc->size_offset); 10189 if (v1 != v2) 10190 pr_warn("%s: mismatch in rec size\n", __func__); 10191 } 10192 10193 /* step 7: update info_len and data_len */ 10194 info_linear->info_len = sizeof(struct bpf_prog_info); 10195 info_linear->data_len = data_len; 10196 10197 return info_linear; 10198 } 10199 10200 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10201 { 10202 int i; 10203 10204 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10205 struct bpf_prog_info_array_desc *desc; 10206 __u64 addr, offs; 10207 10208 if ((info_linear->arrays & (1UL << i)) == 0) 10209 continue; 10210 10211 desc = bpf_prog_info_array_desc + i; 10212 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10213 desc->array_offset); 10214 offs = addr - ptr_to_u64(info_linear->data); 10215 bpf_prog_info_set_offset_u64(&info_linear->info, 10216 desc->array_offset, offs); 10217 } 10218 } 10219 10220 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10221 { 10222 int i; 10223 10224 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10225 struct bpf_prog_info_array_desc *desc; 10226 __u64 addr, offs; 10227 10228 if ((info_linear->arrays & (1UL << i)) == 0) 10229 continue; 10230 10231 desc = bpf_prog_info_array_desc + i; 10232 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10233 desc->array_offset); 10234 addr = offs + ptr_to_u64(info_linear->data); 10235 bpf_prog_info_set_offset_u64(&info_linear->info, 10236 desc->array_offset, addr); 10237 } 10238 } 10239 10240 int bpf_program__set_attach_target(struct bpf_program *prog, 10241 int attach_prog_fd, 10242 const char *attach_func_name) 10243 { 10244 int btf_id; 10245 10246 if (!prog || attach_prog_fd < 0 || !attach_func_name) 10247 return -EINVAL; 10248 10249 if (attach_prog_fd) 10250 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10251 attach_prog_fd); 10252 else 10253 btf_id = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 10254 attach_func_name, 10255 prog->expected_attach_type); 10256 10257 if (btf_id < 0) 10258 return btf_id; 10259 10260 prog->attach_btf_id = btf_id; 10261 prog->attach_prog_fd = attach_prog_fd; 10262 return 0; 10263 } 10264 10265 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 10266 { 10267 int err = 0, n, len, start, end = -1; 10268 bool *tmp; 10269 10270 *mask = NULL; 10271 *mask_sz = 0; 10272 10273 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 10274 while (*s) { 10275 if (*s == ',' || *s == '\n') { 10276 s++; 10277 continue; 10278 } 10279 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 10280 if (n <= 0 || n > 2) { 10281 pr_warn("Failed to get CPU range %s: %d\n", s, n); 10282 err = -EINVAL; 10283 goto cleanup; 10284 } else if (n == 1) { 10285 end = start; 10286 } 10287 if (start < 0 || start > end) { 10288 pr_warn("Invalid CPU range [%d,%d] in %s\n", 10289 start, end, s); 10290 err = -EINVAL; 10291 goto cleanup; 10292 } 10293 tmp = realloc(*mask, end + 1); 10294 if (!tmp) { 10295 err = -ENOMEM; 10296 goto cleanup; 10297 } 10298 *mask = tmp; 10299 memset(tmp + *mask_sz, 0, start - *mask_sz); 10300 memset(tmp + start, 1, end - start + 1); 10301 *mask_sz = end + 1; 10302 s += len; 10303 } 10304 if (!*mask_sz) { 10305 pr_warn("Empty CPU range\n"); 10306 return -EINVAL; 10307 } 10308 return 0; 10309 cleanup: 10310 free(*mask); 10311 *mask = NULL; 10312 return err; 10313 } 10314 10315 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 10316 { 10317 int fd, err = 0, len; 10318 char buf[128]; 10319 10320 fd = open(fcpu, O_RDONLY); 10321 if (fd < 0) { 10322 err = -errno; 10323 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 10324 return err; 10325 } 10326 len = read(fd, buf, sizeof(buf)); 10327 close(fd); 10328 if (len <= 0) { 10329 err = len ? -errno : -EINVAL; 10330 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 10331 return err; 10332 } 10333 if (len >= sizeof(buf)) { 10334 pr_warn("CPU mask is too big in file %s\n", fcpu); 10335 return -E2BIG; 10336 } 10337 buf[len] = '\0'; 10338 10339 return parse_cpu_mask_str(buf, mask, mask_sz); 10340 } 10341 10342 int libbpf_num_possible_cpus(void) 10343 { 10344 static const char *fcpu = "/sys/devices/system/cpu/possible"; 10345 static int cpus; 10346 int err, n, i, tmp_cpus; 10347 bool *mask; 10348 10349 tmp_cpus = READ_ONCE(cpus); 10350 if (tmp_cpus > 0) 10351 return tmp_cpus; 10352 10353 err = parse_cpu_mask_file(fcpu, &mask, &n); 10354 if (err) 10355 return err; 10356 10357 tmp_cpus = 0; 10358 for (i = 0; i < n; i++) { 10359 if (mask[i]) 10360 tmp_cpus++; 10361 } 10362 free(mask); 10363 10364 WRITE_ONCE(cpus, tmp_cpus); 10365 return tmp_cpus; 10366 } 10367 10368 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 10369 const struct bpf_object_open_opts *opts) 10370 { 10371 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 10372 .object_name = s->name, 10373 ); 10374 struct bpf_object *obj; 10375 int i; 10376 10377 /* Attempt to preserve opts->object_name, unless overriden by user 10378 * explicitly. Overwriting object name for skeletons is discouraged, 10379 * as it breaks global data maps, because they contain object name 10380 * prefix as their own map name prefix. When skeleton is generated, 10381 * bpftool is making an assumption that this name will stay the same. 10382 */ 10383 if (opts) { 10384 memcpy(&skel_opts, opts, sizeof(*opts)); 10385 if (!opts->object_name) 10386 skel_opts.object_name = s->name; 10387 } 10388 10389 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 10390 if (IS_ERR(obj)) { 10391 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 10392 s->name, PTR_ERR(obj)); 10393 return PTR_ERR(obj); 10394 } 10395 10396 *s->obj = obj; 10397 10398 for (i = 0; i < s->map_cnt; i++) { 10399 struct bpf_map **map = s->maps[i].map; 10400 const char *name = s->maps[i].name; 10401 void **mmaped = s->maps[i].mmaped; 10402 10403 *map = bpf_object__find_map_by_name(obj, name); 10404 if (!*map) { 10405 pr_warn("failed to find skeleton map '%s'\n", name); 10406 return -ESRCH; 10407 } 10408 10409 /* externs shouldn't be pre-setup from user code */ 10410 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 10411 *mmaped = (*map)->mmaped; 10412 } 10413 10414 for (i = 0; i < s->prog_cnt; i++) { 10415 struct bpf_program **prog = s->progs[i].prog; 10416 const char *name = s->progs[i].name; 10417 10418 *prog = bpf_object__find_program_by_name(obj, name); 10419 if (!*prog) { 10420 pr_warn("failed to find skeleton program '%s'\n", name); 10421 return -ESRCH; 10422 } 10423 } 10424 10425 return 0; 10426 } 10427 10428 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 10429 { 10430 int i, err; 10431 10432 err = bpf_object__load(*s->obj); 10433 if (err) { 10434 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 10435 return err; 10436 } 10437 10438 for (i = 0; i < s->map_cnt; i++) { 10439 struct bpf_map *map = *s->maps[i].map; 10440 size_t mmap_sz = bpf_map_mmap_sz(map); 10441 int prot, map_fd = bpf_map__fd(map); 10442 void **mmaped = s->maps[i].mmaped; 10443 10444 if (!mmaped) 10445 continue; 10446 10447 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 10448 *mmaped = NULL; 10449 continue; 10450 } 10451 10452 if (map->def.map_flags & BPF_F_RDONLY_PROG) 10453 prot = PROT_READ; 10454 else 10455 prot = PROT_READ | PROT_WRITE; 10456 10457 /* Remap anonymous mmap()-ed "map initialization image" as 10458 * a BPF map-backed mmap()-ed memory, but preserving the same 10459 * memory address. This will cause kernel to change process' 10460 * page table to point to a different piece of kernel memory, 10461 * but from userspace point of view memory address (and its 10462 * contents, being identical at this point) will stay the 10463 * same. This mapping will be released by bpf_object__close() 10464 * as per normal clean up procedure, so we don't need to worry 10465 * about it from skeleton's clean up perspective. 10466 */ 10467 *mmaped = mmap(map->mmaped, mmap_sz, prot, 10468 MAP_SHARED | MAP_FIXED, map_fd, 0); 10469 if (*mmaped == MAP_FAILED) { 10470 err = -errno; 10471 *mmaped = NULL; 10472 pr_warn("failed to re-mmap() map '%s': %d\n", 10473 bpf_map__name(map), err); 10474 return err; 10475 } 10476 } 10477 10478 return 0; 10479 } 10480 10481 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 10482 { 10483 int i; 10484 10485 for (i = 0; i < s->prog_cnt; i++) { 10486 struct bpf_program *prog = *s->progs[i].prog; 10487 struct bpf_link **link = s->progs[i].link; 10488 const struct bpf_sec_def *sec_def; 10489 10490 if (!prog->load) 10491 continue; 10492 10493 sec_def = find_sec_def(prog->sec_name); 10494 if (!sec_def || !sec_def->attach_fn) 10495 continue; 10496 10497 *link = sec_def->attach_fn(sec_def, prog); 10498 if (IS_ERR(*link)) { 10499 pr_warn("failed to auto-attach program '%s': %ld\n", 10500 bpf_program__name(prog), PTR_ERR(*link)); 10501 return PTR_ERR(*link); 10502 } 10503 } 10504 10505 return 0; 10506 } 10507 10508 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 10509 { 10510 int i; 10511 10512 for (i = 0; i < s->prog_cnt; i++) { 10513 struct bpf_link **link = s->progs[i].link; 10514 10515 bpf_link__destroy(*link); 10516 *link = NULL; 10517 } 10518 } 10519 10520 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 10521 { 10522 if (s->progs) 10523 bpf_object__detach_skeleton(s); 10524 if (s->obj) 10525 bpf_object__close(*s->obj); 10526 free(s->maps); 10527 free(s->progs); 10528 free(s); 10529 } 10530