1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 libbpf_mode = mode; 160 return 0; 161 } 162 163 __u32 libbpf_major_version(void) 164 { 165 return LIBBPF_MAJOR_VERSION; 166 } 167 168 __u32 libbpf_minor_version(void) 169 { 170 return LIBBPF_MINOR_VERSION; 171 } 172 173 const char *libbpf_version_string(void) 174 { 175 #define __S(X) #X 176 #define _S(X) __S(X) 177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 178 #undef _S 179 #undef __S 180 } 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN_VAR, 187 RELO_EXTERN_FUNC, 188 RELO_SUBPROG_ADDR, 189 RELO_CORE, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 union { 196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 197 struct { 198 int map_idx; 199 int sym_off; 200 }; 201 }; 202 }; 203 204 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 205 enum sec_def_flags { 206 SEC_NONE = 0, 207 /* expected_attach_type is optional, if kernel doesn't support that */ 208 SEC_EXP_ATTACH_OPT = 1, 209 /* legacy, only used by libbpf_get_type_names() and 210 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 211 * This used to be associated with cgroup (and few other) BPF programs 212 * that were attachable through BPF_PROG_ATTACH command. Pretty 213 * meaningless nowadays, though. 214 */ 215 SEC_ATTACHABLE = 2, 216 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 217 /* attachment target is specified through BTF ID in either kernel or 218 * other BPF program's BTF object */ 219 SEC_ATTACH_BTF = 4, 220 /* BPF program type allows sleeping/blocking in kernel */ 221 SEC_SLEEPABLE = 8, 222 /* allow non-strict prefix matching */ 223 SEC_SLOPPY_PFX = 16, 224 /* BPF program support non-linear XDP buffer */ 225 SEC_XDP_FRAGS = 32, 226 /* deprecated sec definitions not supposed to be used */ 227 SEC_DEPRECATED = 64, 228 }; 229 230 struct bpf_sec_def { 231 char *sec; 232 enum bpf_prog_type prog_type; 233 enum bpf_attach_type expected_attach_type; 234 long cookie; 235 int handler_id; 236 237 libbpf_prog_setup_fn_t prog_setup_fn; 238 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 239 libbpf_prog_attach_fn_t prog_attach_fn; 240 }; 241 242 /* 243 * bpf_prog should be a better name but it has been used in 244 * linux/filter.h. 245 */ 246 struct bpf_program { 247 const struct bpf_sec_def *sec_def; 248 char *sec_name; 249 size_t sec_idx; 250 /* this program's instruction offset (in number of instructions) 251 * within its containing ELF section 252 */ 253 size_t sec_insn_off; 254 /* number of original instructions in ELF section belonging to this 255 * program, not taking into account subprogram instructions possible 256 * appended later during relocation 257 */ 258 size_t sec_insn_cnt; 259 /* Offset (in number of instructions) of the start of instruction 260 * belonging to this BPF program within its containing main BPF 261 * program. For the entry-point (main) BPF program, this is always 262 * zero. For a sub-program, this gets reset before each of main BPF 263 * programs are processed and relocated and is used to determined 264 * whether sub-program was already appended to the main program, and 265 * if yes, at which instruction offset. 266 */ 267 size_t sub_insn_off; 268 269 char *name; 270 /* name with / replaced by _; makes recursive pinning 271 * in bpf_object__pin_programs easier 272 */ 273 char *pin_name; 274 275 /* instructions that belong to BPF program; insns[0] is located at 276 * sec_insn_off instruction within its ELF section in ELF file, so 277 * when mapping ELF file instruction index to the local instruction, 278 * one needs to subtract sec_insn_off; and vice versa. 279 */ 280 struct bpf_insn *insns; 281 /* actual number of instruction in this BPF program's image; for 282 * entry-point BPF programs this includes the size of main program 283 * itself plus all the used sub-programs, appended at the end 284 */ 285 size_t insns_cnt; 286 287 struct reloc_desc *reloc_desc; 288 int nr_reloc; 289 290 /* BPF verifier log settings */ 291 char *log_buf; 292 size_t log_size; 293 __u32 log_level; 294 295 struct { 296 int nr; 297 int *fds; 298 } instances; 299 bpf_program_prep_t preprocessor; 300 301 struct bpf_object *obj; 302 void *priv; 303 bpf_program_clear_priv_t clear_priv; 304 305 bool load; 306 bool mark_btf_static; 307 enum bpf_prog_type type; 308 enum bpf_attach_type expected_attach_type; 309 int prog_ifindex; 310 __u32 attach_btf_obj_fd; 311 __u32 attach_btf_id; 312 __u32 attach_prog_fd; 313 void *func_info; 314 __u32 func_info_rec_size; 315 __u32 func_info_cnt; 316 317 void *line_info; 318 __u32 line_info_rec_size; 319 __u32 line_info_cnt; 320 __u32 prog_flags; 321 }; 322 323 struct bpf_struct_ops { 324 const char *tname; 325 const struct btf_type *type; 326 struct bpf_program **progs; 327 __u32 *kern_func_off; 328 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 329 void *data; 330 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 331 * btf_vmlinux's format. 332 * struct bpf_struct_ops_tcp_congestion_ops { 333 * [... some other kernel fields ...] 334 * struct tcp_congestion_ops data; 335 * } 336 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 337 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 338 * from "data". 339 */ 340 void *kern_vdata; 341 __u32 type_id; 342 }; 343 344 #define DATA_SEC ".data" 345 #define BSS_SEC ".bss" 346 #define RODATA_SEC ".rodata" 347 #define KCONFIG_SEC ".kconfig" 348 #define KSYMS_SEC ".ksyms" 349 #define STRUCT_OPS_SEC ".struct_ops" 350 351 enum libbpf_map_type { 352 LIBBPF_MAP_UNSPEC, 353 LIBBPF_MAP_DATA, 354 LIBBPF_MAP_BSS, 355 LIBBPF_MAP_RODATA, 356 LIBBPF_MAP_KCONFIG, 357 }; 358 359 struct bpf_map { 360 char *name; 361 /* real_name is defined for special internal maps (.rodata*, 362 * .data*, .bss, .kconfig) and preserves their original ELF section 363 * name. This is important to be be able to find corresponding BTF 364 * DATASEC information. 365 */ 366 char *real_name; 367 int fd; 368 int sec_idx; 369 size_t sec_offset; 370 int map_ifindex; 371 int inner_map_fd; 372 struct bpf_map_def def; 373 __u32 numa_node; 374 __u32 btf_var_idx; 375 __u32 btf_key_type_id; 376 __u32 btf_value_type_id; 377 __u32 btf_vmlinux_value_type_id; 378 void *priv; 379 bpf_map_clear_priv_t clear_priv; 380 enum libbpf_map_type libbpf_type; 381 void *mmaped; 382 struct bpf_struct_ops *st_ops; 383 struct bpf_map *inner_map; 384 void **init_slots; 385 int init_slots_sz; 386 char *pin_path; 387 bool pinned; 388 bool reused; 389 bool skipped; 390 __u64 map_extra; 391 }; 392 393 enum extern_type { 394 EXT_UNKNOWN, 395 EXT_KCFG, 396 EXT_KSYM, 397 }; 398 399 enum kcfg_type { 400 KCFG_UNKNOWN, 401 KCFG_CHAR, 402 KCFG_BOOL, 403 KCFG_INT, 404 KCFG_TRISTATE, 405 KCFG_CHAR_ARR, 406 }; 407 408 struct extern_desc { 409 enum extern_type type; 410 int sym_idx; 411 int btf_id; 412 int sec_btf_id; 413 const char *name; 414 bool is_set; 415 bool is_weak; 416 union { 417 struct { 418 enum kcfg_type type; 419 int sz; 420 int align; 421 int data_off; 422 bool is_signed; 423 } kcfg; 424 struct { 425 unsigned long long addr; 426 427 /* target btf_id of the corresponding kernel var. */ 428 int kernel_btf_obj_fd; 429 int kernel_btf_id; 430 431 /* local btf_id of the ksym extern's type. */ 432 __u32 type_id; 433 /* BTF fd index to be patched in for insn->off, this is 434 * 0 for vmlinux BTF, index in obj->fd_array for module 435 * BTF 436 */ 437 __s16 btf_fd_idx; 438 } ksym; 439 }; 440 }; 441 442 static LIST_HEAD(bpf_objects_list); 443 444 struct module_btf { 445 struct btf *btf; 446 char *name; 447 __u32 id; 448 int fd; 449 int fd_array_idx; 450 }; 451 452 enum sec_type { 453 SEC_UNUSED = 0, 454 SEC_RELO, 455 SEC_BSS, 456 SEC_DATA, 457 SEC_RODATA, 458 }; 459 460 struct elf_sec_desc { 461 enum sec_type sec_type; 462 Elf64_Shdr *shdr; 463 Elf_Data *data; 464 }; 465 466 struct elf_state { 467 int fd; 468 const void *obj_buf; 469 size_t obj_buf_sz; 470 Elf *elf; 471 Elf64_Ehdr *ehdr; 472 Elf_Data *symbols; 473 Elf_Data *st_ops_data; 474 size_t shstrndx; /* section index for section name strings */ 475 size_t strtabidx; 476 struct elf_sec_desc *secs; 477 int sec_cnt; 478 int maps_shndx; 479 int btf_maps_shndx; 480 __u32 btf_maps_sec_btf_id; 481 int text_shndx; 482 int symbols_shndx; 483 int st_ops_shndx; 484 }; 485 486 struct bpf_object { 487 char name[BPF_OBJ_NAME_LEN]; 488 char license[64]; 489 __u32 kern_version; 490 491 struct bpf_program *programs; 492 size_t nr_programs; 493 struct bpf_map *maps; 494 size_t nr_maps; 495 size_t maps_cap; 496 497 char *kconfig; 498 struct extern_desc *externs; 499 int nr_extern; 500 int kconfig_map_idx; 501 502 bool loaded; 503 bool has_subcalls; 504 bool has_rodata; 505 506 struct bpf_gen *gen_loader; 507 508 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 509 struct elf_state efile; 510 /* 511 * All loaded bpf_object are linked in a list, which is 512 * hidden to caller. bpf_objects__<func> handlers deal with 513 * all objects. 514 */ 515 struct list_head list; 516 517 struct btf *btf; 518 struct btf_ext *btf_ext; 519 520 /* Parse and load BTF vmlinux if any of the programs in the object need 521 * it at load time. 522 */ 523 struct btf *btf_vmlinux; 524 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 525 * override for vmlinux BTF. 526 */ 527 char *btf_custom_path; 528 /* vmlinux BTF override for CO-RE relocations */ 529 struct btf *btf_vmlinux_override; 530 /* Lazily initialized kernel module BTFs */ 531 struct module_btf *btf_modules; 532 bool btf_modules_loaded; 533 size_t btf_module_cnt; 534 size_t btf_module_cap; 535 536 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 537 char *log_buf; 538 size_t log_size; 539 __u32 log_level; 540 541 void *priv; 542 bpf_object_clear_priv_t clear_priv; 543 544 int *fd_array; 545 size_t fd_array_cap; 546 size_t fd_array_cnt; 547 548 char path[]; 549 }; 550 551 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 552 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 553 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 554 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 555 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 556 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 557 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 558 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 559 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 560 561 void bpf_program__unload(struct bpf_program *prog) 562 { 563 int i; 564 565 if (!prog) 566 return; 567 568 /* 569 * If the object is opened but the program was never loaded, 570 * it is possible that prog->instances.nr == -1. 571 */ 572 if (prog->instances.nr > 0) { 573 for (i = 0; i < prog->instances.nr; i++) 574 zclose(prog->instances.fds[i]); 575 } else if (prog->instances.nr != -1) { 576 pr_warn("Internal error: instances.nr is %d\n", 577 prog->instances.nr); 578 } 579 580 prog->instances.nr = -1; 581 zfree(&prog->instances.fds); 582 583 zfree(&prog->func_info); 584 zfree(&prog->line_info); 585 } 586 587 static void bpf_program__exit(struct bpf_program *prog) 588 { 589 if (!prog) 590 return; 591 592 if (prog->clear_priv) 593 prog->clear_priv(prog, prog->priv); 594 595 prog->priv = NULL; 596 prog->clear_priv = NULL; 597 598 bpf_program__unload(prog); 599 zfree(&prog->name); 600 zfree(&prog->sec_name); 601 zfree(&prog->pin_name); 602 zfree(&prog->insns); 603 zfree(&prog->reloc_desc); 604 605 prog->nr_reloc = 0; 606 prog->insns_cnt = 0; 607 prog->sec_idx = -1; 608 } 609 610 static char *__bpf_program__pin_name(struct bpf_program *prog) 611 { 612 char *name, *p; 613 614 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 615 name = strdup(prog->name); 616 else 617 name = strdup(prog->sec_name); 618 619 if (!name) 620 return NULL; 621 622 p = name; 623 624 while ((p = strchr(p, '/'))) 625 *p = '_'; 626 627 return name; 628 } 629 630 static bool insn_is_subprog_call(const struct bpf_insn *insn) 631 { 632 return BPF_CLASS(insn->code) == BPF_JMP && 633 BPF_OP(insn->code) == BPF_CALL && 634 BPF_SRC(insn->code) == BPF_K && 635 insn->src_reg == BPF_PSEUDO_CALL && 636 insn->dst_reg == 0 && 637 insn->off == 0; 638 } 639 640 static bool is_call_insn(const struct bpf_insn *insn) 641 { 642 return insn->code == (BPF_JMP | BPF_CALL); 643 } 644 645 static bool insn_is_pseudo_func(struct bpf_insn *insn) 646 { 647 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 648 } 649 650 static int 651 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 652 const char *name, size_t sec_idx, const char *sec_name, 653 size_t sec_off, void *insn_data, size_t insn_data_sz) 654 { 655 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 656 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 657 sec_name, name, sec_off, insn_data_sz); 658 return -EINVAL; 659 } 660 661 memset(prog, 0, sizeof(*prog)); 662 prog->obj = obj; 663 664 prog->sec_idx = sec_idx; 665 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 666 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 667 /* insns_cnt can later be increased by appending used subprograms */ 668 prog->insns_cnt = prog->sec_insn_cnt; 669 670 prog->type = BPF_PROG_TYPE_UNSPEC; 671 prog->load = true; 672 673 prog->instances.fds = NULL; 674 prog->instances.nr = -1; 675 676 /* inherit object's log_level */ 677 prog->log_level = obj->log_level; 678 679 prog->sec_name = strdup(sec_name); 680 if (!prog->sec_name) 681 goto errout; 682 683 prog->name = strdup(name); 684 if (!prog->name) 685 goto errout; 686 687 prog->pin_name = __bpf_program__pin_name(prog); 688 if (!prog->pin_name) 689 goto errout; 690 691 prog->insns = malloc(insn_data_sz); 692 if (!prog->insns) 693 goto errout; 694 memcpy(prog->insns, insn_data, insn_data_sz); 695 696 return 0; 697 errout: 698 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 699 bpf_program__exit(prog); 700 return -ENOMEM; 701 } 702 703 static int 704 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 705 const char *sec_name, int sec_idx) 706 { 707 Elf_Data *symbols = obj->efile.symbols; 708 struct bpf_program *prog, *progs; 709 void *data = sec_data->d_buf; 710 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 711 int nr_progs, err, i; 712 const char *name; 713 Elf64_Sym *sym; 714 715 progs = obj->programs; 716 nr_progs = obj->nr_programs; 717 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 718 sec_off = 0; 719 720 for (i = 0; i < nr_syms; i++) { 721 sym = elf_sym_by_idx(obj, i); 722 723 if (sym->st_shndx != sec_idx) 724 continue; 725 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 726 continue; 727 728 prog_sz = sym->st_size; 729 sec_off = sym->st_value; 730 731 name = elf_sym_str(obj, sym->st_name); 732 if (!name) { 733 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 734 sec_name, sec_off); 735 return -LIBBPF_ERRNO__FORMAT; 736 } 737 738 if (sec_off + prog_sz > sec_sz) { 739 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 740 sec_name, sec_off); 741 return -LIBBPF_ERRNO__FORMAT; 742 } 743 744 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 745 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 746 return -ENOTSUP; 747 } 748 749 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 750 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 751 752 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 753 if (!progs) { 754 /* 755 * In this case the original obj->programs 756 * is still valid, so don't need special treat for 757 * bpf_close_object(). 758 */ 759 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 760 sec_name, name); 761 return -ENOMEM; 762 } 763 obj->programs = progs; 764 765 prog = &progs[nr_progs]; 766 767 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 768 sec_off, data + sec_off, prog_sz); 769 if (err) 770 return err; 771 772 /* if function is a global/weak symbol, but has restricted 773 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 774 * as static to enable more permissive BPF verification mode 775 * with more outside context available to BPF verifier 776 */ 777 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 778 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 779 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 780 prog->mark_btf_static = true; 781 782 nr_progs++; 783 obj->nr_programs = nr_progs; 784 } 785 786 return 0; 787 } 788 789 __u32 get_kernel_version(void) 790 { 791 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 792 * but Ubuntu provides /proc/version_signature file, as described at 793 * https://ubuntu.com/kernel, with an example contents below, which we 794 * can use to get a proper LINUX_VERSION_CODE. 795 * 796 * Ubuntu 5.4.0-12.15-generic 5.4.8 797 * 798 * In the above, 5.4.8 is what kernel is actually expecting, while 799 * uname() call will return 5.4.0 in info.release. 800 */ 801 const char *ubuntu_kver_file = "/proc/version_signature"; 802 __u32 major, minor, patch; 803 struct utsname info; 804 805 if (access(ubuntu_kver_file, R_OK) == 0) { 806 FILE *f; 807 808 f = fopen(ubuntu_kver_file, "r"); 809 if (f) { 810 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 811 fclose(f); 812 return KERNEL_VERSION(major, minor, patch); 813 } 814 fclose(f); 815 } 816 /* something went wrong, fall back to uname() approach */ 817 } 818 819 uname(&info); 820 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 821 return 0; 822 return KERNEL_VERSION(major, minor, patch); 823 } 824 825 static const struct btf_member * 826 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 827 { 828 struct btf_member *m; 829 int i; 830 831 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 832 if (btf_member_bit_offset(t, i) == bit_offset) 833 return m; 834 } 835 836 return NULL; 837 } 838 839 static const struct btf_member * 840 find_member_by_name(const struct btf *btf, const struct btf_type *t, 841 const char *name) 842 { 843 struct btf_member *m; 844 int i; 845 846 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 847 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 848 return m; 849 } 850 851 return NULL; 852 } 853 854 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 855 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 856 const char *name, __u32 kind); 857 858 static int 859 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 860 const struct btf_type **type, __u32 *type_id, 861 const struct btf_type **vtype, __u32 *vtype_id, 862 const struct btf_member **data_member) 863 { 864 const struct btf_type *kern_type, *kern_vtype; 865 const struct btf_member *kern_data_member; 866 __s32 kern_vtype_id, kern_type_id; 867 __u32 i; 868 869 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 870 if (kern_type_id < 0) { 871 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 872 tname); 873 return kern_type_id; 874 } 875 kern_type = btf__type_by_id(btf, kern_type_id); 876 877 /* Find the corresponding "map_value" type that will be used 878 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 879 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 880 * btf_vmlinux. 881 */ 882 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 883 tname, BTF_KIND_STRUCT); 884 if (kern_vtype_id < 0) { 885 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 886 STRUCT_OPS_VALUE_PREFIX, tname); 887 return kern_vtype_id; 888 } 889 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 890 891 /* Find "struct tcp_congestion_ops" from 892 * struct bpf_struct_ops_tcp_congestion_ops { 893 * [ ... ] 894 * struct tcp_congestion_ops data; 895 * } 896 */ 897 kern_data_member = btf_members(kern_vtype); 898 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 899 if (kern_data_member->type == kern_type_id) 900 break; 901 } 902 if (i == btf_vlen(kern_vtype)) { 903 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 904 tname, STRUCT_OPS_VALUE_PREFIX, tname); 905 return -EINVAL; 906 } 907 908 *type = kern_type; 909 *type_id = kern_type_id; 910 *vtype = kern_vtype; 911 *vtype_id = kern_vtype_id; 912 *data_member = kern_data_member; 913 914 return 0; 915 } 916 917 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 918 { 919 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 920 } 921 922 /* Init the map's fields that depend on kern_btf */ 923 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 924 const struct btf *btf, 925 const struct btf *kern_btf) 926 { 927 const struct btf_member *member, *kern_member, *kern_data_member; 928 const struct btf_type *type, *kern_type, *kern_vtype; 929 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 930 struct bpf_struct_ops *st_ops; 931 void *data, *kern_data; 932 const char *tname; 933 int err; 934 935 st_ops = map->st_ops; 936 type = st_ops->type; 937 tname = st_ops->tname; 938 err = find_struct_ops_kern_types(kern_btf, tname, 939 &kern_type, &kern_type_id, 940 &kern_vtype, &kern_vtype_id, 941 &kern_data_member); 942 if (err) 943 return err; 944 945 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 946 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 947 948 map->def.value_size = kern_vtype->size; 949 map->btf_vmlinux_value_type_id = kern_vtype_id; 950 951 st_ops->kern_vdata = calloc(1, kern_vtype->size); 952 if (!st_ops->kern_vdata) 953 return -ENOMEM; 954 955 data = st_ops->data; 956 kern_data_off = kern_data_member->offset / 8; 957 kern_data = st_ops->kern_vdata + kern_data_off; 958 959 member = btf_members(type); 960 for (i = 0; i < btf_vlen(type); i++, member++) { 961 const struct btf_type *mtype, *kern_mtype; 962 __u32 mtype_id, kern_mtype_id; 963 void *mdata, *kern_mdata; 964 __s64 msize, kern_msize; 965 __u32 moff, kern_moff; 966 __u32 kern_member_idx; 967 const char *mname; 968 969 mname = btf__name_by_offset(btf, member->name_off); 970 kern_member = find_member_by_name(kern_btf, kern_type, mname); 971 if (!kern_member) { 972 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 973 map->name, mname); 974 return -ENOTSUP; 975 } 976 977 kern_member_idx = kern_member - btf_members(kern_type); 978 if (btf_member_bitfield_size(type, i) || 979 btf_member_bitfield_size(kern_type, kern_member_idx)) { 980 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 981 map->name, mname); 982 return -ENOTSUP; 983 } 984 985 moff = member->offset / 8; 986 kern_moff = kern_member->offset / 8; 987 988 mdata = data + moff; 989 kern_mdata = kern_data + kern_moff; 990 991 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 992 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 993 &kern_mtype_id); 994 if (BTF_INFO_KIND(mtype->info) != 995 BTF_INFO_KIND(kern_mtype->info)) { 996 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 997 map->name, mname, BTF_INFO_KIND(mtype->info), 998 BTF_INFO_KIND(kern_mtype->info)); 999 return -ENOTSUP; 1000 } 1001 1002 if (btf_is_ptr(mtype)) { 1003 struct bpf_program *prog; 1004 1005 prog = st_ops->progs[i]; 1006 if (!prog) 1007 continue; 1008 1009 kern_mtype = skip_mods_and_typedefs(kern_btf, 1010 kern_mtype->type, 1011 &kern_mtype_id); 1012 1013 /* mtype->type must be a func_proto which was 1014 * guaranteed in bpf_object__collect_st_ops_relos(), 1015 * so only check kern_mtype for func_proto here. 1016 */ 1017 if (!btf_is_func_proto(kern_mtype)) { 1018 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1019 map->name, mname); 1020 return -ENOTSUP; 1021 } 1022 1023 prog->attach_btf_id = kern_type_id; 1024 prog->expected_attach_type = kern_member_idx; 1025 1026 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1027 1028 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1029 map->name, mname, prog->name, moff, 1030 kern_moff); 1031 1032 continue; 1033 } 1034 1035 msize = btf__resolve_size(btf, mtype_id); 1036 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1037 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1038 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1039 map->name, mname, (ssize_t)msize, 1040 (ssize_t)kern_msize); 1041 return -ENOTSUP; 1042 } 1043 1044 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1045 map->name, mname, (unsigned int)msize, 1046 moff, kern_moff); 1047 memcpy(kern_mdata, mdata, msize); 1048 } 1049 1050 return 0; 1051 } 1052 1053 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1054 { 1055 struct bpf_map *map; 1056 size_t i; 1057 int err; 1058 1059 for (i = 0; i < obj->nr_maps; i++) { 1060 map = &obj->maps[i]; 1061 1062 if (!bpf_map__is_struct_ops(map)) 1063 continue; 1064 1065 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1066 obj->btf_vmlinux); 1067 if (err) 1068 return err; 1069 } 1070 1071 return 0; 1072 } 1073 1074 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1075 { 1076 const struct btf_type *type, *datasec; 1077 const struct btf_var_secinfo *vsi; 1078 struct bpf_struct_ops *st_ops; 1079 const char *tname, *var_name; 1080 __s32 type_id, datasec_id; 1081 const struct btf *btf; 1082 struct bpf_map *map; 1083 __u32 i; 1084 1085 if (obj->efile.st_ops_shndx == -1) 1086 return 0; 1087 1088 btf = obj->btf; 1089 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1090 BTF_KIND_DATASEC); 1091 if (datasec_id < 0) { 1092 pr_warn("struct_ops init: DATASEC %s not found\n", 1093 STRUCT_OPS_SEC); 1094 return -EINVAL; 1095 } 1096 1097 datasec = btf__type_by_id(btf, datasec_id); 1098 vsi = btf_var_secinfos(datasec); 1099 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1100 type = btf__type_by_id(obj->btf, vsi->type); 1101 var_name = btf__name_by_offset(obj->btf, type->name_off); 1102 1103 type_id = btf__resolve_type(obj->btf, vsi->type); 1104 if (type_id < 0) { 1105 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1106 vsi->type, STRUCT_OPS_SEC); 1107 return -EINVAL; 1108 } 1109 1110 type = btf__type_by_id(obj->btf, type_id); 1111 tname = btf__name_by_offset(obj->btf, type->name_off); 1112 if (!tname[0]) { 1113 pr_warn("struct_ops init: anonymous type is not supported\n"); 1114 return -ENOTSUP; 1115 } 1116 if (!btf_is_struct(type)) { 1117 pr_warn("struct_ops init: %s is not a struct\n", tname); 1118 return -EINVAL; 1119 } 1120 1121 map = bpf_object__add_map(obj); 1122 if (IS_ERR(map)) 1123 return PTR_ERR(map); 1124 1125 map->sec_idx = obj->efile.st_ops_shndx; 1126 map->sec_offset = vsi->offset; 1127 map->name = strdup(var_name); 1128 if (!map->name) 1129 return -ENOMEM; 1130 1131 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1132 map->def.key_size = sizeof(int); 1133 map->def.value_size = type->size; 1134 map->def.max_entries = 1; 1135 1136 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1137 if (!map->st_ops) 1138 return -ENOMEM; 1139 st_ops = map->st_ops; 1140 st_ops->data = malloc(type->size); 1141 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1142 st_ops->kern_func_off = malloc(btf_vlen(type) * 1143 sizeof(*st_ops->kern_func_off)); 1144 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1145 return -ENOMEM; 1146 1147 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1148 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1149 var_name, STRUCT_OPS_SEC); 1150 return -EINVAL; 1151 } 1152 1153 memcpy(st_ops->data, 1154 obj->efile.st_ops_data->d_buf + vsi->offset, 1155 type->size); 1156 st_ops->tname = tname; 1157 st_ops->type = type; 1158 st_ops->type_id = type_id; 1159 1160 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1161 tname, type_id, var_name, vsi->offset); 1162 } 1163 1164 return 0; 1165 } 1166 1167 static struct bpf_object *bpf_object__new(const char *path, 1168 const void *obj_buf, 1169 size_t obj_buf_sz, 1170 const char *obj_name) 1171 { 1172 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1173 struct bpf_object *obj; 1174 char *end; 1175 1176 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1177 if (!obj) { 1178 pr_warn("alloc memory failed for %s\n", path); 1179 return ERR_PTR(-ENOMEM); 1180 } 1181 1182 strcpy(obj->path, path); 1183 if (obj_name) { 1184 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1185 } else { 1186 /* Using basename() GNU version which doesn't modify arg. */ 1187 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1188 end = strchr(obj->name, '.'); 1189 if (end) 1190 *end = 0; 1191 } 1192 1193 obj->efile.fd = -1; 1194 /* 1195 * Caller of this function should also call 1196 * bpf_object__elf_finish() after data collection to return 1197 * obj_buf to user. If not, we should duplicate the buffer to 1198 * avoid user freeing them before elf finish. 1199 */ 1200 obj->efile.obj_buf = obj_buf; 1201 obj->efile.obj_buf_sz = obj_buf_sz; 1202 obj->efile.maps_shndx = -1; 1203 obj->efile.btf_maps_shndx = -1; 1204 obj->efile.st_ops_shndx = -1; 1205 obj->kconfig_map_idx = -1; 1206 1207 obj->kern_version = get_kernel_version(); 1208 obj->loaded = false; 1209 1210 INIT_LIST_HEAD(&obj->list); 1211 if (!strict) 1212 list_add(&obj->list, &bpf_objects_list); 1213 return obj; 1214 } 1215 1216 static void bpf_object__elf_finish(struct bpf_object *obj) 1217 { 1218 if (!obj->efile.elf) 1219 return; 1220 1221 if (obj->efile.elf) { 1222 elf_end(obj->efile.elf); 1223 obj->efile.elf = NULL; 1224 } 1225 obj->efile.symbols = NULL; 1226 obj->efile.st_ops_data = NULL; 1227 1228 zfree(&obj->efile.secs); 1229 obj->efile.sec_cnt = 0; 1230 zclose(obj->efile.fd); 1231 obj->efile.obj_buf = NULL; 1232 obj->efile.obj_buf_sz = 0; 1233 } 1234 1235 static int bpf_object__elf_init(struct bpf_object *obj) 1236 { 1237 Elf64_Ehdr *ehdr; 1238 int err = 0; 1239 Elf *elf; 1240 1241 if (obj->efile.elf) { 1242 pr_warn("elf: init internal error\n"); 1243 return -LIBBPF_ERRNO__LIBELF; 1244 } 1245 1246 if (obj->efile.obj_buf_sz > 0) { 1247 /* 1248 * obj_buf should have been validated by 1249 * bpf_object__open_buffer(). 1250 */ 1251 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1252 } else { 1253 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1254 if (obj->efile.fd < 0) { 1255 char errmsg[STRERR_BUFSIZE], *cp; 1256 1257 err = -errno; 1258 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1259 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1260 return err; 1261 } 1262 1263 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1264 } 1265 1266 if (!elf) { 1267 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1268 err = -LIBBPF_ERRNO__LIBELF; 1269 goto errout; 1270 } 1271 1272 obj->efile.elf = elf; 1273 1274 if (elf_kind(elf) != ELF_K_ELF) { 1275 err = -LIBBPF_ERRNO__FORMAT; 1276 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1277 goto errout; 1278 } 1279 1280 if (gelf_getclass(elf) != ELFCLASS64) { 1281 err = -LIBBPF_ERRNO__FORMAT; 1282 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1283 goto errout; 1284 } 1285 1286 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1287 if (!obj->efile.ehdr) { 1288 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1289 err = -LIBBPF_ERRNO__FORMAT; 1290 goto errout; 1291 } 1292 1293 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1294 pr_warn("elf: failed to get section names section index for %s: %s\n", 1295 obj->path, elf_errmsg(-1)); 1296 err = -LIBBPF_ERRNO__FORMAT; 1297 goto errout; 1298 } 1299 1300 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1301 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1302 pr_warn("elf: failed to get section names strings from %s: %s\n", 1303 obj->path, elf_errmsg(-1)); 1304 err = -LIBBPF_ERRNO__FORMAT; 1305 goto errout; 1306 } 1307 1308 /* Old LLVM set e_machine to EM_NONE */ 1309 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1310 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1311 err = -LIBBPF_ERRNO__FORMAT; 1312 goto errout; 1313 } 1314 1315 return 0; 1316 errout: 1317 bpf_object__elf_finish(obj); 1318 return err; 1319 } 1320 1321 static int bpf_object__check_endianness(struct bpf_object *obj) 1322 { 1323 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1324 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1325 return 0; 1326 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1327 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1328 return 0; 1329 #else 1330 # error "Unrecognized __BYTE_ORDER__" 1331 #endif 1332 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1333 return -LIBBPF_ERRNO__ENDIAN; 1334 } 1335 1336 static int 1337 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1338 { 1339 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1340 * go over allowed ELF data section buffer 1341 */ 1342 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1343 pr_debug("license of %s is %s\n", obj->path, obj->license); 1344 return 0; 1345 } 1346 1347 static int 1348 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1349 { 1350 __u32 kver; 1351 1352 if (size != sizeof(kver)) { 1353 pr_warn("invalid kver section in %s\n", obj->path); 1354 return -LIBBPF_ERRNO__FORMAT; 1355 } 1356 memcpy(&kver, data, sizeof(kver)); 1357 obj->kern_version = kver; 1358 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1359 return 0; 1360 } 1361 1362 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1363 { 1364 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1365 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1366 return true; 1367 return false; 1368 } 1369 1370 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1371 { 1372 Elf_Data *data; 1373 Elf_Scn *scn; 1374 1375 if (!name) 1376 return -EINVAL; 1377 1378 scn = elf_sec_by_name(obj, name); 1379 data = elf_sec_data(obj, scn); 1380 if (data) { 1381 *size = data->d_size; 1382 return 0; /* found it */ 1383 } 1384 1385 return -ENOENT; 1386 } 1387 1388 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1389 { 1390 Elf_Data *symbols = obj->efile.symbols; 1391 const char *sname; 1392 size_t si; 1393 1394 if (!name || !off) 1395 return -EINVAL; 1396 1397 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1398 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1399 1400 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL || 1401 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1402 continue; 1403 1404 sname = elf_sym_str(obj, sym->st_name); 1405 if (!sname) { 1406 pr_warn("failed to get sym name string for var %s\n", name); 1407 return -EIO; 1408 } 1409 if (strcmp(name, sname) == 0) { 1410 *off = sym->st_value; 1411 return 0; 1412 } 1413 } 1414 1415 return -ENOENT; 1416 } 1417 1418 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1419 { 1420 struct bpf_map *new_maps; 1421 size_t new_cap; 1422 int i; 1423 1424 if (obj->nr_maps < obj->maps_cap) 1425 return &obj->maps[obj->nr_maps++]; 1426 1427 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1428 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1429 if (!new_maps) { 1430 pr_warn("alloc maps for object failed\n"); 1431 return ERR_PTR(-ENOMEM); 1432 } 1433 1434 obj->maps_cap = new_cap; 1435 obj->maps = new_maps; 1436 1437 /* zero out new maps */ 1438 memset(obj->maps + obj->nr_maps, 0, 1439 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1440 /* 1441 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1442 * when failure (zclose won't close negative fd)). 1443 */ 1444 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1445 obj->maps[i].fd = -1; 1446 obj->maps[i].inner_map_fd = -1; 1447 } 1448 1449 return &obj->maps[obj->nr_maps++]; 1450 } 1451 1452 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1453 { 1454 long page_sz = sysconf(_SC_PAGE_SIZE); 1455 size_t map_sz; 1456 1457 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1458 map_sz = roundup(map_sz, page_sz); 1459 return map_sz; 1460 } 1461 1462 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1463 { 1464 char map_name[BPF_OBJ_NAME_LEN], *p; 1465 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1466 1467 /* This is one of the more confusing parts of libbpf for various 1468 * reasons, some of which are historical. The original idea for naming 1469 * internal names was to include as much of BPF object name prefix as 1470 * possible, so that it can be distinguished from similar internal 1471 * maps of a different BPF object. 1472 * As an example, let's say we have bpf_object named 'my_object_name' 1473 * and internal map corresponding to '.rodata' ELF section. The final 1474 * map name advertised to user and to the kernel will be 1475 * 'my_objec.rodata', taking first 8 characters of object name and 1476 * entire 7 characters of '.rodata'. 1477 * Somewhat confusingly, if internal map ELF section name is shorter 1478 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1479 * for the suffix, even though we only have 4 actual characters, and 1480 * resulting map will be called 'my_objec.bss', not even using all 15 1481 * characters allowed by the kernel. Oh well, at least the truncated 1482 * object name is somewhat consistent in this case. But if the map 1483 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1484 * (8 chars) and thus will be left with only first 7 characters of the 1485 * object name ('my_obje'). Happy guessing, user, that the final map 1486 * name will be "my_obje.kconfig". 1487 * Now, with libbpf starting to support arbitrarily named .rodata.* 1488 * and .data.* data sections, it's possible that ELF section name is 1489 * longer than allowed 15 chars, so we now need to be careful to take 1490 * only up to 15 first characters of ELF name, taking no BPF object 1491 * name characters at all. So '.rodata.abracadabra' will result in 1492 * '.rodata.abracad' kernel and user-visible name. 1493 * We need to keep this convoluted logic intact for .data, .bss and 1494 * .rodata maps, but for new custom .data.custom and .rodata.custom 1495 * maps we use their ELF names as is, not prepending bpf_object name 1496 * in front. We still need to truncate them to 15 characters for the 1497 * kernel. Full name can be recovered for such maps by using DATASEC 1498 * BTF type associated with such map's value type, though. 1499 */ 1500 if (sfx_len >= BPF_OBJ_NAME_LEN) 1501 sfx_len = BPF_OBJ_NAME_LEN - 1; 1502 1503 /* if there are two or more dots in map name, it's a custom dot map */ 1504 if (strchr(real_name + 1, '.') != NULL) 1505 pfx_len = 0; 1506 else 1507 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1508 1509 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1510 sfx_len, real_name); 1511 1512 /* sanitise map name to characters allowed by kernel */ 1513 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1514 if (!isalnum(*p) && *p != '_' && *p != '.') 1515 *p = '_'; 1516 1517 return strdup(map_name); 1518 } 1519 1520 static int 1521 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1522 const char *real_name, int sec_idx, void *data, size_t data_sz) 1523 { 1524 struct bpf_map_def *def; 1525 struct bpf_map *map; 1526 int err; 1527 1528 map = bpf_object__add_map(obj); 1529 if (IS_ERR(map)) 1530 return PTR_ERR(map); 1531 1532 map->libbpf_type = type; 1533 map->sec_idx = sec_idx; 1534 map->sec_offset = 0; 1535 map->real_name = strdup(real_name); 1536 map->name = internal_map_name(obj, real_name); 1537 if (!map->real_name || !map->name) { 1538 zfree(&map->real_name); 1539 zfree(&map->name); 1540 return -ENOMEM; 1541 } 1542 1543 def = &map->def; 1544 def->type = BPF_MAP_TYPE_ARRAY; 1545 def->key_size = sizeof(int); 1546 def->value_size = data_sz; 1547 def->max_entries = 1; 1548 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1549 ? BPF_F_RDONLY_PROG : 0; 1550 def->map_flags |= BPF_F_MMAPABLE; 1551 1552 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1553 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1554 1555 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1556 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1557 if (map->mmaped == MAP_FAILED) { 1558 err = -errno; 1559 map->mmaped = NULL; 1560 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1561 map->name, err); 1562 zfree(&map->real_name); 1563 zfree(&map->name); 1564 return err; 1565 } 1566 1567 if (data) 1568 memcpy(map->mmaped, data, data_sz); 1569 1570 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1571 return 0; 1572 } 1573 1574 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1575 { 1576 struct elf_sec_desc *sec_desc; 1577 const char *sec_name; 1578 int err = 0, sec_idx; 1579 1580 /* 1581 * Populate obj->maps with libbpf internal maps. 1582 */ 1583 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1584 sec_desc = &obj->efile.secs[sec_idx]; 1585 1586 switch (sec_desc->sec_type) { 1587 case SEC_DATA: 1588 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1589 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1590 sec_name, sec_idx, 1591 sec_desc->data->d_buf, 1592 sec_desc->data->d_size); 1593 break; 1594 case SEC_RODATA: 1595 obj->has_rodata = true; 1596 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1597 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1598 sec_name, sec_idx, 1599 sec_desc->data->d_buf, 1600 sec_desc->data->d_size); 1601 break; 1602 case SEC_BSS: 1603 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1604 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1605 sec_name, sec_idx, 1606 NULL, 1607 sec_desc->data->d_size); 1608 break; 1609 default: 1610 /* skip */ 1611 break; 1612 } 1613 if (err) 1614 return err; 1615 } 1616 return 0; 1617 } 1618 1619 1620 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1621 const void *name) 1622 { 1623 int i; 1624 1625 for (i = 0; i < obj->nr_extern; i++) { 1626 if (strcmp(obj->externs[i].name, name) == 0) 1627 return &obj->externs[i]; 1628 } 1629 return NULL; 1630 } 1631 1632 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1633 char value) 1634 { 1635 switch (ext->kcfg.type) { 1636 case KCFG_BOOL: 1637 if (value == 'm') { 1638 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1639 ext->name, value); 1640 return -EINVAL; 1641 } 1642 *(bool *)ext_val = value == 'y' ? true : false; 1643 break; 1644 case KCFG_TRISTATE: 1645 if (value == 'y') 1646 *(enum libbpf_tristate *)ext_val = TRI_YES; 1647 else if (value == 'm') 1648 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1649 else /* value == 'n' */ 1650 *(enum libbpf_tristate *)ext_val = TRI_NO; 1651 break; 1652 case KCFG_CHAR: 1653 *(char *)ext_val = value; 1654 break; 1655 case KCFG_UNKNOWN: 1656 case KCFG_INT: 1657 case KCFG_CHAR_ARR: 1658 default: 1659 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1660 ext->name, value); 1661 return -EINVAL; 1662 } 1663 ext->is_set = true; 1664 return 0; 1665 } 1666 1667 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1668 const char *value) 1669 { 1670 size_t len; 1671 1672 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1673 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1674 return -EINVAL; 1675 } 1676 1677 len = strlen(value); 1678 if (value[len - 1] != '"') { 1679 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1680 ext->name, value); 1681 return -EINVAL; 1682 } 1683 1684 /* strip quotes */ 1685 len -= 2; 1686 if (len >= ext->kcfg.sz) { 1687 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1688 ext->name, value, len, ext->kcfg.sz - 1); 1689 len = ext->kcfg.sz - 1; 1690 } 1691 memcpy(ext_val, value + 1, len); 1692 ext_val[len] = '\0'; 1693 ext->is_set = true; 1694 return 0; 1695 } 1696 1697 static int parse_u64(const char *value, __u64 *res) 1698 { 1699 char *value_end; 1700 int err; 1701 1702 errno = 0; 1703 *res = strtoull(value, &value_end, 0); 1704 if (errno) { 1705 err = -errno; 1706 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1707 return err; 1708 } 1709 if (*value_end) { 1710 pr_warn("failed to parse '%s' as integer completely\n", value); 1711 return -EINVAL; 1712 } 1713 return 0; 1714 } 1715 1716 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1717 { 1718 int bit_sz = ext->kcfg.sz * 8; 1719 1720 if (ext->kcfg.sz == 8) 1721 return true; 1722 1723 /* Validate that value stored in u64 fits in integer of `ext->sz` 1724 * bytes size without any loss of information. If the target integer 1725 * is signed, we rely on the following limits of integer type of 1726 * Y bits and subsequent transformation: 1727 * 1728 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1729 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1730 * 0 <= X + 2^(Y-1) < 2^Y 1731 * 1732 * For unsigned target integer, check that all the (64 - Y) bits are 1733 * zero. 1734 */ 1735 if (ext->kcfg.is_signed) 1736 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1737 else 1738 return (v >> bit_sz) == 0; 1739 } 1740 1741 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1742 __u64 value) 1743 { 1744 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1745 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1746 ext->name, (unsigned long long)value); 1747 return -EINVAL; 1748 } 1749 if (!is_kcfg_value_in_range(ext, value)) { 1750 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1751 ext->name, (unsigned long long)value, ext->kcfg.sz); 1752 return -ERANGE; 1753 } 1754 switch (ext->kcfg.sz) { 1755 case 1: *(__u8 *)ext_val = value; break; 1756 case 2: *(__u16 *)ext_val = value; break; 1757 case 4: *(__u32 *)ext_val = value; break; 1758 case 8: *(__u64 *)ext_val = value; break; 1759 default: 1760 return -EINVAL; 1761 } 1762 ext->is_set = true; 1763 return 0; 1764 } 1765 1766 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1767 char *buf, void *data) 1768 { 1769 struct extern_desc *ext; 1770 char *sep, *value; 1771 int len, err = 0; 1772 void *ext_val; 1773 __u64 num; 1774 1775 if (!str_has_pfx(buf, "CONFIG_")) 1776 return 0; 1777 1778 sep = strchr(buf, '='); 1779 if (!sep) { 1780 pr_warn("failed to parse '%s': no separator\n", buf); 1781 return -EINVAL; 1782 } 1783 1784 /* Trim ending '\n' */ 1785 len = strlen(buf); 1786 if (buf[len - 1] == '\n') 1787 buf[len - 1] = '\0'; 1788 /* Split on '=' and ensure that a value is present. */ 1789 *sep = '\0'; 1790 if (!sep[1]) { 1791 *sep = '='; 1792 pr_warn("failed to parse '%s': no value\n", buf); 1793 return -EINVAL; 1794 } 1795 1796 ext = find_extern_by_name(obj, buf); 1797 if (!ext || ext->is_set) 1798 return 0; 1799 1800 ext_val = data + ext->kcfg.data_off; 1801 value = sep + 1; 1802 1803 switch (*value) { 1804 case 'y': case 'n': case 'm': 1805 err = set_kcfg_value_tri(ext, ext_val, *value); 1806 break; 1807 case '"': 1808 err = set_kcfg_value_str(ext, ext_val, value); 1809 break; 1810 default: 1811 /* assume integer */ 1812 err = parse_u64(value, &num); 1813 if (err) { 1814 pr_warn("extern (kcfg) %s=%s should be integer\n", 1815 ext->name, value); 1816 return err; 1817 } 1818 err = set_kcfg_value_num(ext, ext_val, num); 1819 break; 1820 } 1821 if (err) 1822 return err; 1823 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1824 return 0; 1825 } 1826 1827 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1828 { 1829 char buf[PATH_MAX]; 1830 struct utsname uts; 1831 int len, err = 0; 1832 gzFile file; 1833 1834 uname(&uts); 1835 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1836 if (len < 0) 1837 return -EINVAL; 1838 else if (len >= PATH_MAX) 1839 return -ENAMETOOLONG; 1840 1841 /* gzopen also accepts uncompressed files. */ 1842 file = gzopen(buf, "r"); 1843 if (!file) 1844 file = gzopen("/proc/config.gz", "r"); 1845 1846 if (!file) { 1847 pr_warn("failed to open system Kconfig\n"); 1848 return -ENOENT; 1849 } 1850 1851 while (gzgets(file, buf, sizeof(buf))) { 1852 err = bpf_object__process_kconfig_line(obj, buf, data); 1853 if (err) { 1854 pr_warn("error parsing system Kconfig line '%s': %d\n", 1855 buf, err); 1856 goto out; 1857 } 1858 } 1859 1860 out: 1861 gzclose(file); 1862 return err; 1863 } 1864 1865 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1866 const char *config, void *data) 1867 { 1868 char buf[PATH_MAX]; 1869 int err = 0; 1870 FILE *file; 1871 1872 file = fmemopen((void *)config, strlen(config), "r"); 1873 if (!file) { 1874 err = -errno; 1875 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1876 return err; 1877 } 1878 1879 while (fgets(buf, sizeof(buf), file)) { 1880 err = bpf_object__process_kconfig_line(obj, buf, data); 1881 if (err) { 1882 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1883 buf, err); 1884 break; 1885 } 1886 } 1887 1888 fclose(file); 1889 return err; 1890 } 1891 1892 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1893 { 1894 struct extern_desc *last_ext = NULL, *ext; 1895 size_t map_sz; 1896 int i, err; 1897 1898 for (i = 0; i < obj->nr_extern; i++) { 1899 ext = &obj->externs[i]; 1900 if (ext->type == EXT_KCFG) 1901 last_ext = ext; 1902 } 1903 1904 if (!last_ext) 1905 return 0; 1906 1907 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1908 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1909 ".kconfig", obj->efile.symbols_shndx, 1910 NULL, map_sz); 1911 if (err) 1912 return err; 1913 1914 obj->kconfig_map_idx = obj->nr_maps - 1; 1915 1916 return 0; 1917 } 1918 1919 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1920 { 1921 Elf_Data *symbols = obj->efile.symbols; 1922 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1923 Elf_Data *data = NULL; 1924 Elf_Scn *scn; 1925 1926 if (obj->efile.maps_shndx < 0) 1927 return 0; 1928 1929 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 1930 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 1931 return -EOPNOTSUPP; 1932 } 1933 1934 if (!symbols) 1935 return -EINVAL; 1936 1937 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1938 data = elf_sec_data(obj, scn); 1939 if (!scn || !data) { 1940 pr_warn("elf: failed to get legacy map definitions for %s\n", 1941 obj->path); 1942 return -EINVAL; 1943 } 1944 1945 /* 1946 * Count number of maps. Each map has a name. 1947 * Array of maps is not supported: only the first element is 1948 * considered. 1949 * 1950 * TODO: Detect array of map and report error. 1951 */ 1952 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1953 for (i = 0; i < nr_syms; i++) { 1954 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1955 1956 if (sym->st_shndx != obj->efile.maps_shndx) 1957 continue; 1958 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1959 continue; 1960 nr_maps++; 1961 } 1962 /* Assume equally sized map definitions */ 1963 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1964 nr_maps, data->d_size, obj->path); 1965 1966 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1967 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1968 obj->path); 1969 return -EINVAL; 1970 } 1971 map_def_sz = data->d_size / nr_maps; 1972 1973 /* Fill obj->maps using data in "maps" section. */ 1974 for (i = 0; i < nr_syms; i++) { 1975 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1976 const char *map_name; 1977 struct bpf_map_def *def; 1978 struct bpf_map *map; 1979 1980 if (sym->st_shndx != obj->efile.maps_shndx) 1981 continue; 1982 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1983 continue; 1984 1985 map = bpf_object__add_map(obj); 1986 if (IS_ERR(map)) 1987 return PTR_ERR(map); 1988 1989 map_name = elf_sym_str(obj, sym->st_name); 1990 if (!map_name) { 1991 pr_warn("failed to get map #%d name sym string for obj %s\n", 1992 i, obj->path); 1993 return -LIBBPF_ERRNO__FORMAT; 1994 } 1995 1996 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 1997 1998 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 1999 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2000 return -ENOTSUP; 2001 } 2002 2003 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2004 map->sec_idx = sym->st_shndx; 2005 map->sec_offset = sym->st_value; 2006 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2007 map_name, map->sec_idx, map->sec_offset); 2008 if (sym->st_value + map_def_sz > data->d_size) { 2009 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2010 obj->path, map_name); 2011 return -EINVAL; 2012 } 2013 2014 map->name = strdup(map_name); 2015 if (!map->name) { 2016 pr_warn("map '%s': failed to alloc map name\n", map_name); 2017 return -ENOMEM; 2018 } 2019 pr_debug("map %d is \"%s\"\n", i, map->name); 2020 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2021 /* 2022 * If the definition of the map in the object file fits in 2023 * bpf_map_def, copy it. Any extra fields in our version 2024 * of bpf_map_def will default to zero as a result of the 2025 * calloc above. 2026 */ 2027 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2028 memcpy(&map->def, def, map_def_sz); 2029 } else { 2030 /* 2031 * Here the map structure being read is bigger than what 2032 * we expect, truncate if the excess bits are all zero. 2033 * If they are not zero, reject this map as 2034 * incompatible. 2035 */ 2036 char *b; 2037 2038 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2039 b < ((char *)def) + map_def_sz; b++) { 2040 if (*b != 0) { 2041 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2042 obj->path, map_name); 2043 if (strict) 2044 return -EINVAL; 2045 } 2046 } 2047 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2048 } 2049 } 2050 return 0; 2051 } 2052 2053 const struct btf_type * 2054 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2055 { 2056 const struct btf_type *t = btf__type_by_id(btf, id); 2057 2058 if (res_id) 2059 *res_id = id; 2060 2061 while (btf_is_mod(t) || btf_is_typedef(t)) { 2062 if (res_id) 2063 *res_id = t->type; 2064 t = btf__type_by_id(btf, t->type); 2065 } 2066 2067 return t; 2068 } 2069 2070 static const struct btf_type * 2071 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2072 { 2073 const struct btf_type *t; 2074 2075 t = skip_mods_and_typedefs(btf, id, NULL); 2076 if (!btf_is_ptr(t)) 2077 return NULL; 2078 2079 t = skip_mods_and_typedefs(btf, t->type, res_id); 2080 2081 return btf_is_func_proto(t) ? t : NULL; 2082 } 2083 2084 static const char *__btf_kind_str(__u16 kind) 2085 { 2086 switch (kind) { 2087 case BTF_KIND_UNKN: return "void"; 2088 case BTF_KIND_INT: return "int"; 2089 case BTF_KIND_PTR: return "ptr"; 2090 case BTF_KIND_ARRAY: return "array"; 2091 case BTF_KIND_STRUCT: return "struct"; 2092 case BTF_KIND_UNION: return "union"; 2093 case BTF_KIND_ENUM: return "enum"; 2094 case BTF_KIND_FWD: return "fwd"; 2095 case BTF_KIND_TYPEDEF: return "typedef"; 2096 case BTF_KIND_VOLATILE: return "volatile"; 2097 case BTF_KIND_CONST: return "const"; 2098 case BTF_KIND_RESTRICT: return "restrict"; 2099 case BTF_KIND_FUNC: return "func"; 2100 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2101 case BTF_KIND_VAR: return "var"; 2102 case BTF_KIND_DATASEC: return "datasec"; 2103 case BTF_KIND_FLOAT: return "float"; 2104 case BTF_KIND_DECL_TAG: return "decl_tag"; 2105 case BTF_KIND_TYPE_TAG: return "type_tag"; 2106 default: return "unknown"; 2107 } 2108 } 2109 2110 const char *btf_kind_str(const struct btf_type *t) 2111 { 2112 return __btf_kind_str(btf_kind(t)); 2113 } 2114 2115 /* 2116 * Fetch integer attribute of BTF map definition. Such attributes are 2117 * represented using a pointer to an array, in which dimensionality of array 2118 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2119 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2120 * type definition, while using only sizeof(void *) space in ELF data section. 2121 */ 2122 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2123 const struct btf_member *m, __u32 *res) 2124 { 2125 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2126 const char *name = btf__name_by_offset(btf, m->name_off); 2127 const struct btf_array *arr_info; 2128 const struct btf_type *arr_t; 2129 2130 if (!btf_is_ptr(t)) { 2131 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2132 map_name, name, btf_kind_str(t)); 2133 return false; 2134 } 2135 2136 arr_t = btf__type_by_id(btf, t->type); 2137 if (!arr_t) { 2138 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2139 map_name, name, t->type); 2140 return false; 2141 } 2142 if (!btf_is_array(arr_t)) { 2143 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2144 map_name, name, btf_kind_str(arr_t)); 2145 return false; 2146 } 2147 arr_info = btf_array(arr_t); 2148 *res = arr_info->nelems; 2149 return true; 2150 } 2151 2152 static int build_map_pin_path(struct bpf_map *map, const char *path) 2153 { 2154 char buf[PATH_MAX]; 2155 int len; 2156 2157 if (!path) 2158 path = "/sys/fs/bpf"; 2159 2160 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2161 if (len < 0) 2162 return -EINVAL; 2163 else if (len >= PATH_MAX) 2164 return -ENAMETOOLONG; 2165 2166 return bpf_map__set_pin_path(map, buf); 2167 } 2168 2169 int parse_btf_map_def(const char *map_name, struct btf *btf, 2170 const struct btf_type *def_t, bool strict, 2171 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2172 { 2173 const struct btf_type *t; 2174 const struct btf_member *m; 2175 bool is_inner = inner_def == NULL; 2176 int vlen, i; 2177 2178 vlen = btf_vlen(def_t); 2179 m = btf_members(def_t); 2180 for (i = 0; i < vlen; i++, m++) { 2181 const char *name = btf__name_by_offset(btf, m->name_off); 2182 2183 if (!name) { 2184 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2185 return -EINVAL; 2186 } 2187 if (strcmp(name, "type") == 0) { 2188 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2189 return -EINVAL; 2190 map_def->parts |= MAP_DEF_MAP_TYPE; 2191 } else if (strcmp(name, "max_entries") == 0) { 2192 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2193 return -EINVAL; 2194 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2195 } else if (strcmp(name, "map_flags") == 0) { 2196 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2197 return -EINVAL; 2198 map_def->parts |= MAP_DEF_MAP_FLAGS; 2199 } else if (strcmp(name, "numa_node") == 0) { 2200 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2201 return -EINVAL; 2202 map_def->parts |= MAP_DEF_NUMA_NODE; 2203 } else if (strcmp(name, "key_size") == 0) { 2204 __u32 sz; 2205 2206 if (!get_map_field_int(map_name, btf, m, &sz)) 2207 return -EINVAL; 2208 if (map_def->key_size && map_def->key_size != sz) { 2209 pr_warn("map '%s': conflicting key size %u != %u.\n", 2210 map_name, map_def->key_size, sz); 2211 return -EINVAL; 2212 } 2213 map_def->key_size = sz; 2214 map_def->parts |= MAP_DEF_KEY_SIZE; 2215 } else if (strcmp(name, "key") == 0) { 2216 __s64 sz; 2217 2218 t = btf__type_by_id(btf, m->type); 2219 if (!t) { 2220 pr_warn("map '%s': key type [%d] not found.\n", 2221 map_name, m->type); 2222 return -EINVAL; 2223 } 2224 if (!btf_is_ptr(t)) { 2225 pr_warn("map '%s': key spec is not PTR: %s.\n", 2226 map_name, btf_kind_str(t)); 2227 return -EINVAL; 2228 } 2229 sz = btf__resolve_size(btf, t->type); 2230 if (sz < 0) { 2231 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2232 map_name, t->type, (ssize_t)sz); 2233 return sz; 2234 } 2235 if (map_def->key_size && map_def->key_size != sz) { 2236 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2237 map_name, map_def->key_size, (ssize_t)sz); 2238 return -EINVAL; 2239 } 2240 map_def->key_size = sz; 2241 map_def->key_type_id = t->type; 2242 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2243 } else if (strcmp(name, "value_size") == 0) { 2244 __u32 sz; 2245 2246 if (!get_map_field_int(map_name, btf, m, &sz)) 2247 return -EINVAL; 2248 if (map_def->value_size && map_def->value_size != sz) { 2249 pr_warn("map '%s': conflicting value size %u != %u.\n", 2250 map_name, map_def->value_size, sz); 2251 return -EINVAL; 2252 } 2253 map_def->value_size = sz; 2254 map_def->parts |= MAP_DEF_VALUE_SIZE; 2255 } else if (strcmp(name, "value") == 0) { 2256 __s64 sz; 2257 2258 t = btf__type_by_id(btf, m->type); 2259 if (!t) { 2260 pr_warn("map '%s': value type [%d] not found.\n", 2261 map_name, m->type); 2262 return -EINVAL; 2263 } 2264 if (!btf_is_ptr(t)) { 2265 pr_warn("map '%s': value spec is not PTR: %s.\n", 2266 map_name, btf_kind_str(t)); 2267 return -EINVAL; 2268 } 2269 sz = btf__resolve_size(btf, t->type); 2270 if (sz < 0) { 2271 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2272 map_name, t->type, (ssize_t)sz); 2273 return sz; 2274 } 2275 if (map_def->value_size && map_def->value_size != sz) { 2276 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2277 map_name, map_def->value_size, (ssize_t)sz); 2278 return -EINVAL; 2279 } 2280 map_def->value_size = sz; 2281 map_def->value_type_id = t->type; 2282 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2283 } 2284 else if (strcmp(name, "values") == 0) { 2285 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2286 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2287 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2288 char inner_map_name[128]; 2289 int err; 2290 2291 if (is_inner) { 2292 pr_warn("map '%s': multi-level inner maps not supported.\n", 2293 map_name); 2294 return -ENOTSUP; 2295 } 2296 if (i != vlen - 1) { 2297 pr_warn("map '%s': '%s' member should be last.\n", 2298 map_name, name); 2299 return -EINVAL; 2300 } 2301 if (!is_map_in_map && !is_prog_array) { 2302 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2303 map_name); 2304 return -ENOTSUP; 2305 } 2306 if (map_def->value_size && map_def->value_size != 4) { 2307 pr_warn("map '%s': conflicting value size %u != 4.\n", 2308 map_name, map_def->value_size); 2309 return -EINVAL; 2310 } 2311 map_def->value_size = 4; 2312 t = btf__type_by_id(btf, m->type); 2313 if (!t) { 2314 pr_warn("map '%s': %s type [%d] not found.\n", 2315 map_name, desc, m->type); 2316 return -EINVAL; 2317 } 2318 if (!btf_is_array(t) || btf_array(t)->nelems) { 2319 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2320 map_name, desc); 2321 return -EINVAL; 2322 } 2323 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2324 if (!btf_is_ptr(t)) { 2325 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2326 map_name, desc, btf_kind_str(t)); 2327 return -EINVAL; 2328 } 2329 t = skip_mods_and_typedefs(btf, t->type, NULL); 2330 if (is_prog_array) { 2331 if (!btf_is_func_proto(t)) { 2332 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2333 map_name, btf_kind_str(t)); 2334 return -EINVAL; 2335 } 2336 continue; 2337 } 2338 if (!btf_is_struct(t)) { 2339 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2340 map_name, btf_kind_str(t)); 2341 return -EINVAL; 2342 } 2343 2344 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2345 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2346 if (err) 2347 return err; 2348 2349 map_def->parts |= MAP_DEF_INNER_MAP; 2350 } else if (strcmp(name, "pinning") == 0) { 2351 __u32 val; 2352 2353 if (is_inner) { 2354 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2355 return -EINVAL; 2356 } 2357 if (!get_map_field_int(map_name, btf, m, &val)) 2358 return -EINVAL; 2359 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2360 pr_warn("map '%s': invalid pinning value %u.\n", 2361 map_name, val); 2362 return -EINVAL; 2363 } 2364 map_def->pinning = val; 2365 map_def->parts |= MAP_DEF_PINNING; 2366 } else if (strcmp(name, "map_extra") == 0) { 2367 __u32 map_extra; 2368 2369 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2370 return -EINVAL; 2371 map_def->map_extra = map_extra; 2372 map_def->parts |= MAP_DEF_MAP_EXTRA; 2373 } else { 2374 if (strict) { 2375 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2376 return -ENOTSUP; 2377 } 2378 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2379 } 2380 } 2381 2382 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2383 pr_warn("map '%s': map type isn't specified.\n", map_name); 2384 return -EINVAL; 2385 } 2386 2387 return 0; 2388 } 2389 2390 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2391 { 2392 map->def.type = def->map_type; 2393 map->def.key_size = def->key_size; 2394 map->def.value_size = def->value_size; 2395 map->def.max_entries = def->max_entries; 2396 map->def.map_flags = def->map_flags; 2397 map->map_extra = def->map_extra; 2398 2399 map->numa_node = def->numa_node; 2400 map->btf_key_type_id = def->key_type_id; 2401 map->btf_value_type_id = def->value_type_id; 2402 2403 if (def->parts & MAP_DEF_MAP_TYPE) 2404 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2405 2406 if (def->parts & MAP_DEF_KEY_TYPE) 2407 pr_debug("map '%s': found key [%u], sz = %u.\n", 2408 map->name, def->key_type_id, def->key_size); 2409 else if (def->parts & MAP_DEF_KEY_SIZE) 2410 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2411 2412 if (def->parts & MAP_DEF_VALUE_TYPE) 2413 pr_debug("map '%s': found value [%u], sz = %u.\n", 2414 map->name, def->value_type_id, def->value_size); 2415 else if (def->parts & MAP_DEF_VALUE_SIZE) 2416 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2417 2418 if (def->parts & MAP_DEF_MAX_ENTRIES) 2419 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2420 if (def->parts & MAP_DEF_MAP_FLAGS) 2421 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2422 if (def->parts & MAP_DEF_MAP_EXTRA) 2423 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2424 (unsigned long long)def->map_extra); 2425 if (def->parts & MAP_DEF_PINNING) 2426 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2427 if (def->parts & MAP_DEF_NUMA_NODE) 2428 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2429 2430 if (def->parts & MAP_DEF_INNER_MAP) 2431 pr_debug("map '%s': found inner map definition.\n", map->name); 2432 } 2433 2434 static const char *btf_var_linkage_str(__u32 linkage) 2435 { 2436 switch (linkage) { 2437 case BTF_VAR_STATIC: return "static"; 2438 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2439 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2440 default: return "unknown"; 2441 } 2442 } 2443 2444 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2445 const struct btf_type *sec, 2446 int var_idx, int sec_idx, 2447 const Elf_Data *data, bool strict, 2448 const char *pin_root_path) 2449 { 2450 struct btf_map_def map_def = {}, inner_def = {}; 2451 const struct btf_type *var, *def; 2452 const struct btf_var_secinfo *vi; 2453 const struct btf_var *var_extra; 2454 const char *map_name; 2455 struct bpf_map *map; 2456 int err; 2457 2458 vi = btf_var_secinfos(sec) + var_idx; 2459 var = btf__type_by_id(obj->btf, vi->type); 2460 var_extra = btf_var(var); 2461 map_name = btf__name_by_offset(obj->btf, var->name_off); 2462 2463 if (map_name == NULL || map_name[0] == '\0') { 2464 pr_warn("map #%d: empty name.\n", var_idx); 2465 return -EINVAL; 2466 } 2467 if ((__u64)vi->offset + vi->size > data->d_size) { 2468 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2469 return -EINVAL; 2470 } 2471 if (!btf_is_var(var)) { 2472 pr_warn("map '%s': unexpected var kind %s.\n", 2473 map_name, btf_kind_str(var)); 2474 return -EINVAL; 2475 } 2476 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2477 pr_warn("map '%s': unsupported map linkage %s.\n", 2478 map_name, btf_var_linkage_str(var_extra->linkage)); 2479 return -EOPNOTSUPP; 2480 } 2481 2482 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2483 if (!btf_is_struct(def)) { 2484 pr_warn("map '%s': unexpected def kind %s.\n", 2485 map_name, btf_kind_str(var)); 2486 return -EINVAL; 2487 } 2488 if (def->size > vi->size) { 2489 pr_warn("map '%s': invalid def size.\n", map_name); 2490 return -EINVAL; 2491 } 2492 2493 map = bpf_object__add_map(obj); 2494 if (IS_ERR(map)) 2495 return PTR_ERR(map); 2496 map->name = strdup(map_name); 2497 if (!map->name) { 2498 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2499 return -ENOMEM; 2500 } 2501 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2502 map->def.type = BPF_MAP_TYPE_UNSPEC; 2503 map->sec_idx = sec_idx; 2504 map->sec_offset = vi->offset; 2505 map->btf_var_idx = var_idx; 2506 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2507 map_name, map->sec_idx, map->sec_offset); 2508 2509 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2510 if (err) 2511 return err; 2512 2513 fill_map_from_def(map, &map_def); 2514 2515 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2516 err = build_map_pin_path(map, pin_root_path); 2517 if (err) { 2518 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2519 return err; 2520 } 2521 } 2522 2523 if (map_def.parts & MAP_DEF_INNER_MAP) { 2524 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2525 if (!map->inner_map) 2526 return -ENOMEM; 2527 map->inner_map->fd = -1; 2528 map->inner_map->sec_idx = sec_idx; 2529 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2530 if (!map->inner_map->name) 2531 return -ENOMEM; 2532 sprintf(map->inner_map->name, "%s.inner", map_name); 2533 2534 fill_map_from_def(map->inner_map, &inner_def); 2535 } 2536 2537 return 0; 2538 } 2539 2540 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2541 const char *pin_root_path) 2542 { 2543 const struct btf_type *sec = NULL; 2544 int nr_types, i, vlen, err; 2545 const struct btf_type *t; 2546 const char *name; 2547 Elf_Data *data; 2548 Elf_Scn *scn; 2549 2550 if (obj->efile.btf_maps_shndx < 0) 2551 return 0; 2552 2553 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2554 data = elf_sec_data(obj, scn); 2555 if (!scn || !data) { 2556 pr_warn("elf: failed to get %s map definitions for %s\n", 2557 MAPS_ELF_SEC, obj->path); 2558 return -EINVAL; 2559 } 2560 2561 nr_types = btf__type_cnt(obj->btf); 2562 for (i = 1; i < nr_types; i++) { 2563 t = btf__type_by_id(obj->btf, i); 2564 if (!btf_is_datasec(t)) 2565 continue; 2566 name = btf__name_by_offset(obj->btf, t->name_off); 2567 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2568 sec = t; 2569 obj->efile.btf_maps_sec_btf_id = i; 2570 break; 2571 } 2572 } 2573 2574 if (!sec) { 2575 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2576 return -ENOENT; 2577 } 2578 2579 vlen = btf_vlen(sec); 2580 for (i = 0; i < vlen; i++) { 2581 err = bpf_object__init_user_btf_map(obj, sec, i, 2582 obj->efile.btf_maps_shndx, 2583 data, strict, 2584 pin_root_path); 2585 if (err) 2586 return err; 2587 } 2588 2589 return 0; 2590 } 2591 2592 static int bpf_object__init_maps(struct bpf_object *obj, 2593 const struct bpf_object_open_opts *opts) 2594 { 2595 const char *pin_root_path; 2596 bool strict; 2597 int err; 2598 2599 strict = !OPTS_GET(opts, relaxed_maps, false); 2600 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2601 2602 err = bpf_object__init_user_maps(obj, strict); 2603 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2604 err = err ?: bpf_object__init_global_data_maps(obj); 2605 err = err ?: bpf_object__init_kconfig_map(obj); 2606 err = err ?: bpf_object__init_struct_ops_maps(obj); 2607 2608 return err; 2609 } 2610 2611 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2612 { 2613 Elf64_Shdr *sh; 2614 2615 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2616 if (!sh) 2617 return false; 2618 2619 return sh->sh_flags & SHF_EXECINSTR; 2620 } 2621 2622 static bool btf_needs_sanitization(struct bpf_object *obj) 2623 { 2624 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2625 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2626 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2627 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2628 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2629 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2630 2631 return !has_func || !has_datasec || !has_func_global || !has_float || 2632 !has_decl_tag || !has_type_tag; 2633 } 2634 2635 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2636 { 2637 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2638 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2639 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2640 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2641 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2642 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2643 struct btf_type *t; 2644 int i, j, vlen; 2645 2646 for (i = 1; i < btf__type_cnt(btf); i++) { 2647 t = (struct btf_type *)btf__type_by_id(btf, i); 2648 2649 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2650 /* replace VAR/DECL_TAG with INT */ 2651 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2652 /* 2653 * using size = 1 is the safest choice, 4 will be too 2654 * big and cause kernel BTF validation failure if 2655 * original variable took less than 4 bytes 2656 */ 2657 t->size = 1; 2658 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2659 } else if (!has_datasec && btf_is_datasec(t)) { 2660 /* replace DATASEC with STRUCT */ 2661 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2662 struct btf_member *m = btf_members(t); 2663 struct btf_type *vt; 2664 char *name; 2665 2666 name = (char *)btf__name_by_offset(btf, t->name_off); 2667 while (*name) { 2668 if (*name == '.') 2669 *name = '_'; 2670 name++; 2671 } 2672 2673 vlen = btf_vlen(t); 2674 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2675 for (j = 0; j < vlen; j++, v++, m++) { 2676 /* order of field assignments is important */ 2677 m->offset = v->offset * 8; 2678 m->type = v->type; 2679 /* preserve variable name as member name */ 2680 vt = (void *)btf__type_by_id(btf, v->type); 2681 m->name_off = vt->name_off; 2682 } 2683 } else if (!has_func && btf_is_func_proto(t)) { 2684 /* replace FUNC_PROTO with ENUM */ 2685 vlen = btf_vlen(t); 2686 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2687 t->size = sizeof(__u32); /* kernel enforced */ 2688 } else if (!has_func && btf_is_func(t)) { 2689 /* replace FUNC with TYPEDEF */ 2690 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2691 } else if (!has_func_global && btf_is_func(t)) { 2692 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2693 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2694 } else if (!has_float && btf_is_float(t)) { 2695 /* replace FLOAT with an equally-sized empty STRUCT; 2696 * since C compilers do not accept e.g. "float" as a 2697 * valid struct name, make it anonymous 2698 */ 2699 t->name_off = 0; 2700 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2701 } else if (!has_type_tag && btf_is_type_tag(t)) { 2702 /* replace TYPE_TAG with a CONST */ 2703 t->name_off = 0; 2704 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2705 } 2706 } 2707 } 2708 2709 static bool libbpf_needs_btf(const struct bpf_object *obj) 2710 { 2711 return obj->efile.btf_maps_shndx >= 0 || 2712 obj->efile.st_ops_shndx >= 0 || 2713 obj->nr_extern > 0; 2714 } 2715 2716 static bool kernel_needs_btf(const struct bpf_object *obj) 2717 { 2718 return obj->efile.st_ops_shndx >= 0; 2719 } 2720 2721 static int bpf_object__init_btf(struct bpf_object *obj, 2722 Elf_Data *btf_data, 2723 Elf_Data *btf_ext_data) 2724 { 2725 int err = -ENOENT; 2726 2727 if (btf_data) { 2728 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2729 err = libbpf_get_error(obj->btf); 2730 if (err) { 2731 obj->btf = NULL; 2732 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2733 goto out; 2734 } 2735 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2736 btf__set_pointer_size(obj->btf, 8); 2737 } 2738 if (btf_ext_data) { 2739 if (!obj->btf) { 2740 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2741 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2742 goto out; 2743 } 2744 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2745 err = libbpf_get_error(obj->btf_ext); 2746 if (err) { 2747 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2748 BTF_EXT_ELF_SEC, err); 2749 obj->btf_ext = NULL; 2750 goto out; 2751 } 2752 } 2753 out: 2754 if (err && libbpf_needs_btf(obj)) { 2755 pr_warn("BTF is required, but is missing or corrupted.\n"); 2756 return err; 2757 } 2758 return 0; 2759 } 2760 2761 static int compare_vsi_off(const void *_a, const void *_b) 2762 { 2763 const struct btf_var_secinfo *a = _a; 2764 const struct btf_var_secinfo *b = _b; 2765 2766 return a->offset - b->offset; 2767 } 2768 2769 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2770 struct btf_type *t) 2771 { 2772 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2773 const char *name = btf__name_by_offset(btf, t->name_off); 2774 const struct btf_type *t_var; 2775 struct btf_var_secinfo *vsi; 2776 const struct btf_var *var; 2777 int ret; 2778 2779 if (!name) { 2780 pr_debug("No name found in string section for DATASEC kind.\n"); 2781 return -ENOENT; 2782 } 2783 2784 /* .extern datasec size and var offsets were set correctly during 2785 * extern collection step, so just skip straight to sorting variables 2786 */ 2787 if (t->size) 2788 goto sort_vars; 2789 2790 ret = find_elf_sec_sz(obj, name, &size); 2791 if (ret || !size) { 2792 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2793 return -ENOENT; 2794 } 2795 2796 t->size = size; 2797 2798 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2799 t_var = btf__type_by_id(btf, vsi->type); 2800 if (!t_var || !btf_is_var(t_var)) { 2801 pr_debug("Non-VAR type seen in section %s\n", name); 2802 return -EINVAL; 2803 } 2804 2805 var = btf_var(t_var); 2806 if (var->linkage == BTF_VAR_STATIC) 2807 continue; 2808 2809 name = btf__name_by_offset(btf, t_var->name_off); 2810 if (!name) { 2811 pr_debug("No name found in string section for VAR kind\n"); 2812 return -ENOENT; 2813 } 2814 2815 ret = find_elf_var_offset(obj, name, &off); 2816 if (ret) { 2817 pr_debug("No offset found in symbol table for VAR %s\n", 2818 name); 2819 return -ENOENT; 2820 } 2821 2822 vsi->offset = off; 2823 } 2824 2825 sort_vars: 2826 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2827 return 0; 2828 } 2829 2830 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2831 { 2832 int err = 0; 2833 __u32 i, n = btf__type_cnt(btf); 2834 2835 for (i = 1; i < n; i++) { 2836 struct btf_type *t = btf_type_by_id(btf, i); 2837 2838 /* Loader needs to fix up some of the things compiler 2839 * couldn't get its hands on while emitting BTF. This 2840 * is section size and global variable offset. We use 2841 * the info from the ELF itself for this purpose. 2842 */ 2843 if (btf_is_datasec(t)) { 2844 err = btf_fixup_datasec(obj, btf, t); 2845 if (err) 2846 break; 2847 } 2848 } 2849 2850 return libbpf_err(err); 2851 } 2852 2853 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2854 { 2855 return btf_finalize_data(obj, btf); 2856 } 2857 2858 static int bpf_object__finalize_btf(struct bpf_object *obj) 2859 { 2860 int err; 2861 2862 if (!obj->btf) 2863 return 0; 2864 2865 err = btf_finalize_data(obj, obj->btf); 2866 if (err) { 2867 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2868 return err; 2869 } 2870 2871 return 0; 2872 } 2873 2874 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2875 { 2876 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2877 prog->type == BPF_PROG_TYPE_LSM) 2878 return true; 2879 2880 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2881 * also need vmlinux BTF 2882 */ 2883 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2884 return true; 2885 2886 return false; 2887 } 2888 2889 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2890 { 2891 struct bpf_program *prog; 2892 int i; 2893 2894 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2895 * is not specified 2896 */ 2897 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2898 return true; 2899 2900 /* Support for typed ksyms needs kernel BTF */ 2901 for (i = 0; i < obj->nr_extern; i++) { 2902 const struct extern_desc *ext; 2903 2904 ext = &obj->externs[i]; 2905 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2906 return true; 2907 } 2908 2909 bpf_object__for_each_program(prog, obj) { 2910 if (!prog->load) 2911 continue; 2912 if (prog_needs_vmlinux_btf(prog)) 2913 return true; 2914 } 2915 2916 return false; 2917 } 2918 2919 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2920 { 2921 int err; 2922 2923 /* btf_vmlinux could be loaded earlier */ 2924 if (obj->btf_vmlinux || obj->gen_loader) 2925 return 0; 2926 2927 if (!force && !obj_needs_vmlinux_btf(obj)) 2928 return 0; 2929 2930 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2931 err = libbpf_get_error(obj->btf_vmlinux); 2932 if (err) { 2933 pr_warn("Error loading vmlinux BTF: %d\n", err); 2934 obj->btf_vmlinux = NULL; 2935 return err; 2936 } 2937 return 0; 2938 } 2939 2940 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2941 { 2942 struct btf *kern_btf = obj->btf; 2943 bool btf_mandatory, sanitize; 2944 int i, err = 0; 2945 2946 if (!obj->btf) 2947 return 0; 2948 2949 if (!kernel_supports(obj, FEAT_BTF)) { 2950 if (kernel_needs_btf(obj)) { 2951 err = -EOPNOTSUPP; 2952 goto report; 2953 } 2954 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2955 return 0; 2956 } 2957 2958 /* Even though some subprogs are global/weak, user might prefer more 2959 * permissive BPF verification process that BPF verifier performs for 2960 * static functions, taking into account more context from the caller 2961 * functions. In such case, they need to mark such subprogs with 2962 * __attribute__((visibility("hidden"))) and libbpf will adjust 2963 * corresponding FUNC BTF type to be marked as static and trigger more 2964 * involved BPF verification process. 2965 */ 2966 for (i = 0; i < obj->nr_programs; i++) { 2967 struct bpf_program *prog = &obj->programs[i]; 2968 struct btf_type *t; 2969 const char *name; 2970 int j, n; 2971 2972 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2973 continue; 2974 2975 n = btf__type_cnt(obj->btf); 2976 for (j = 1; j < n; j++) { 2977 t = btf_type_by_id(obj->btf, j); 2978 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2979 continue; 2980 2981 name = btf__str_by_offset(obj->btf, t->name_off); 2982 if (strcmp(name, prog->name) != 0) 2983 continue; 2984 2985 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2986 break; 2987 } 2988 } 2989 2990 sanitize = btf_needs_sanitization(obj); 2991 if (sanitize) { 2992 const void *raw_data; 2993 __u32 sz; 2994 2995 /* clone BTF to sanitize a copy and leave the original intact */ 2996 raw_data = btf__raw_data(obj->btf, &sz); 2997 kern_btf = btf__new(raw_data, sz); 2998 err = libbpf_get_error(kern_btf); 2999 if (err) 3000 return err; 3001 3002 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3003 btf__set_pointer_size(obj->btf, 8); 3004 bpf_object__sanitize_btf(obj, kern_btf); 3005 } 3006 3007 if (obj->gen_loader) { 3008 __u32 raw_size = 0; 3009 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3010 3011 if (!raw_data) 3012 return -ENOMEM; 3013 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3014 /* Pretend to have valid FD to pass various fd >= 0 checks. 3015 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3016 */ 3017 btf__set_fd(kern_btf, 0); 3018 } else { 3019 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3020 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3021 obj->log_level ? 1 : 0); 3022 } 3023 if (sanitize) { 3024 if (!err) { 3025 /* move fd to libbpf's BTF */ 3026 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3027 btf__set_fd(kern_btf, -1); 3028 } 3029 btf__free(kern_btf); 3030 } 3031 report: 3032 if (err) { 3033 btf_mandatory = kernel_needs_btf(obj); 3034 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3035 btf_mandatory ? "BTF is mandatory, can't proceed." 3036 : "BTF is optional, ignoring."); 3037 if (!btf_mandatory) 3038 err = 0; 3039 } 3040 return err; 3041 } 3042 3043 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3044 { 3045 const char *name; 3046 3047 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3048 if (!name) { 3049 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3050 off, obj->path, elf_errmsg(-1)); 3051 return NULL; 3052 } 3053 3054 return name; 3055 } 3056 3057 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3058 { 3059 const char *name; 3060 3061 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3062 if (!name) { 3063 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3064 off, obj->path, elf_errmsg(-1)); 3065 return NULL; 3066 } 3067 3068 return name; 3069 } 3070 3071 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3072 { 3073 Elf_Scn *scn; 3074 3075 scn = elf_getscn(obj->efile.elf, idx); 3076 if (!scn) { 3077 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3078 idx, obj->path, elf_errmsg(-1)); 3079 return NULL; 3080 } 3081 return scn; 3082 } 3083 3084 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3085 { 3086 Elf_Scn *scn = NULL; 3087 Elf *elf = obj->efile.elf; 3088 const char *sec_name; 3089 3090 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3091 sec_name = elf_sec_name(obj, scn); 3092 if (!sec_name) 3093 return NULL; 3094 3095 if (strcmp(sec_name, name) != 0) 3096 continue; 3097 3098 return scn; 3099 } 3100 return NULL; 3101 } 3102 3103 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3104 { 3105 Elf64_Shdr *shdr; 3106 3107 if (!scn) 3108 return NULL; 3109 3110 shdr = elf64_getshdr(scn); 3111 if (!shdr) { 3112 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3113 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3114 return NULL; 3115 } 3116 3117 return shdr; 3118 } 3119 3120 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3121 { 3122 const char *name; 3123 Elf64_Shdr *sh; 3124 3125 if (!scn) 3126 return NULL; 3127 3128 sh = elf_sec_hdr(obj, scn); 3129 if (!sh) 3130 return NULL; 3131 3132 name = elf_sec_str(obj, sh->sh_name); 3133 if (!name) { 3134 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3135 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3136 return NULL; 3137 } 3138 3139 return name; 3140 } 3141 3142 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3143 { 3144 Elf_Data *data; 3145 3146 if (!scn) 3147 return NULL; 3148 3149 data = elf_getdata(scn, 0); 3150 if (!data) { 3151 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3152 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3153 obj->path, elf_errmsg(-1)); 3154 return NULL; 3155 } 3156 3157 return data; 3158 } 3159 3160 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3161 { 3162 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3163 return NULL; 3164 3165 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3166 } 3167 3168 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3169 { 3170 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3171 return NULL; 3172 3173 return (Elf64_Rel *)data->d_buf + idx; 3174 } 3175 3176 static bool is_sec_name_dwarf(const char *name) 3177 { 3178 /* approximation, but the actual list is too long */ 3179 return str_has_pfx(name, ".debug_"); 3180 } 3181 3182 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3183 { 3184 /* no special handling of .strtab */ 3185 if (hdr->sh_type == SHT_STRTAB) 3186 return true; 3187 3188 /* ignore .llvm_addrsig section as well */ 3189 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3190 return true; 3191 3192 /* no subprograms will lead to an empty .text section, ignore it */ 3193 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3194 strcmp(name, ".text") == 0) 3195 return true; 3196 3197 /* DWARF sections */ 3198 if (is_sec_name_dwarf(name)) 3199 return true; 3200 3201 if (str_has_pfx(name, ".rel")) { 3202 name += sizeof(".rel") - 1; 3203 /* DWARF section relocations */ 3204 if (is_sec_name_dwarf(name)) 3205 return true; 3206 3207 /* .BTF and .BTF.ext don't need relocations */ 3208 if (strcmp(name, BTF_ELF_SEC) == 0 || 3209 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3210 return true; 3211 } 3212 3213 return false; 3214 } 3215 3216 static int cmp_progs(const void *_a, const void *_b) 3217 { 3218 const struct bpf_program *a = _a; 3219 const struct bpf_program *b = _b; 3220 3221 if (a->sec_idx != b->sec_idx) 3222 return a->sec_idx < b->sec_idx ? -1 : 1; 3223 3224 /* sec_insn_off can't be the same within the section */ 3225 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3226 } 3227 3228 static int bpf_object__elf_collect(struct bpf_object *obj) 3229 { 3230 struct elf_sec_desc *sec_desc; 3231 Elf *elf = obj->efile.elf; 3232 Elf_Data *btf_ext_data = NULL; 3233 Elf_Data *btf_data = NULL; 3234 int idx = 0, err = 0; 3235 const char *name; 3236 Elf_Data *data; 3237 Elf_Scn *scn; 3238 Elf64_Shdr *sh; 3239 3240 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3241 * section. e_shnum does include sec #0, so e_shnum is the necessary 3242 * size of an array to keep all the sections. 3243 */ 3244 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3245 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3246 if (!obj->efile.secs) 3247 return -ENOMEM; 3248 3249 /* a bunch of ELF parsing functionality depends on processing symbols, 3250 * so do the first pass and find the symbol table 3251 */ 3252 scn = NULL; 3253 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3254 sh = elf_sec_hdr(obj, scn); 3255 if (!sh) 3256 return -LIBBPF_ERRNO__FORMAT; 3257 3258 if (sh->sh_type == SHT_SYMTAB) { 3259 if (obj->efile.symbols) { 3260 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3261 return -LIBBPF_ERRNO__FORMAT; 3262 } 3263 3264 data = elf_sec_data(obj, scn); 3265 if (!data) 3266 return -LIBBPF_ERRNO__FORMAT; 3267 3268 idx = elf_ndxscn(scn); 3269 3270 obj->efile.symbols = data; 3271 obj->efile.symbols_shndx = idx; 3272 obj->efile.strtabidx = sh->sh_link; 3273 } 3274 } 3275 3276 if (!obj->efile.symbols) { 3277 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3278 obj->path); 3279 return -ENOENT; 3280 } 3281 3282 scn = NULL; 3283 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3284 idx = elf_ndxscn(scn); 3285 sec_desc = &obj->efile.secs[idx]; 3286 3287 sh = elf_sec_hdr(obj, scn); 3288 if (!sh) 3289 return -LIBBPF_ERRNO__FORMAT; 3290 3291 name = elf_sec_str(obj, sh->sh_name); 3292 if (!name) 3293 return -LIBBPF_ERRNO__FORMAT; 3294 3295 if (ignore_elf_section(sh, name)) 3296 continue; 3297 3298 data = elf_sec_data(obj, scn); 3299 if (!data) 3300 return -LIBBPF_ERRNO__FORMAT; 3301 3302 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3303 idx, name, (unsigned long)data->d_size, 3304 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3305 (int)sh->sh_type); 3306 3307 if (strcmp(name, "license") == 0) { 3308 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3309 if (err) 3310 return err; 3311 } else if (strcmp(name, "version") == 0) { 3312 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3313 if (err) 3314 return err; 3315 } else if (strcmp(name, "maps") == 0) { 3316 obj->efile.maps_shndx = idx; 3317 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3318 obj->efile.btf_maps_shndx = idx; 3319 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3320 if (sh->sh_type != SHT_PROGBITS) 3321 return -LIBBPF_ERRNO__FORMAT; 3322 btf_data = data; 3323 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3324 if (sh->sh_type != SHT_PROGBITS) 3325 return -LIBBPF_ERRNO__FORMAT; 3326 btf_ext_data = data; 3327 } else if (sh->sh_type == SHT_SYMTAB) { 3328 /* already processed during the first pass above */ 3329 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3330 if (sh->sh_flags & SHF_EXECINSTR) { 3331 if (strcmp(name, ".text") == 0) 3332 obj->efile.text_shndx = idx; 3333 err = bpf_object__add_programs(obj, data, name, idx); 3334 if (err) 3335 return err; 3336 } else if (strcmp(name, DATA_SEC) == 0 || 3337 str_has_pfx(name, DATA_SEC ".")) { 3338 sec_desc->sec_type = SEC_DATA; 3339 sec_desc->shdr = sh; 3340 sec_desc->data = data; 3341 } else if (strcmp(name, RODATA_SEC) == 0 || 3342 str_has_pfx(name, RODATA_SEC ".")) { 3343 sec_desc->sec_type = SEC_RODATA; 3344 sec_desc->shdr = sh; 3345 sec_desc->data = data; 3346 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3347 obj->efile.st_ops_data = data; 3348 obj->efile.st_ops_shndx = idx; 3349 } else { 3350 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3351 idx, name); 3352 } 3353 } else if (sh->sh_type == SHT_REL) { 3354 int targ_sec_idx = sh->sh_info; /* points to other section */ 3355 3356 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3357 targ_sec_idx >= obj->efile.sec_cnt) 3358 return -LIBBPF_ERRNO__FORMAT; 3359 3360 /* Only do relo for section with exec instructions */ 3361 if (!section_have_execinstr(obj, targ_sec_idx) && 3362 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3363 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3364 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3365 idx, name, targ_sec_idx, 3366 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3367 continue; 3368 } 3369 3370 sec_desc->sec_type = SEC_RELO; 3371 sec_desc->shdr = sh; 3372 sec_desc->data = data; 3373 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3374 sec_desc->sec_type = SEC_BSS; 3375 sec_desc->shdr = sh; 3376 sec_desc->data = data; 3377 } else { 3378 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3379 (size_t)sh->sh_size); 3380 } 3381 } 3382 3383 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3384 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3385 return -LIBBPF_ERRNO__FORMAT; 3386 } 3387 3388 /* sort BPF programs by section name and in-section instruction offset 3389 * for faster search */ 3390 if (obj->nr_programs) 3391 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3392 3393 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3394 } 3395 3396 static bool sym_is_extern(const Elf64_Sym *sym) 3397 { 3398 int bind = ELF64_ST_BIND(sym->st_info); 3399 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3400 return sym->st_shndx == SHN_UNDEF && 3401 (bind == STB_GLOBAL || bind == STB_WEAK) && 3402 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3403 } 3404 3405 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3406 { 3407 int bind = ELF64_ST_BIND(sym->st_info); 3408 int type = ELF64_ST_TYPE(sym->st_info); 3409 3410 /* in .text section */ 3411 if (sym->st_shndx != text_shndx) 3412 return false; 3413 3414 /* local function */ 3415 if (bind == STB_LOCAL && type == STT_SECTION) 3416 return true; 3417 3418 /* global function */ 3419 return bind == STB_GLOBAL && type == STT_FUNC; 3420 } 3421 3422 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3423 { 3424 const struct btf_type *t; 3425 const char *tname; 3426 int i, n; 3427 3428 if (!btf) 3429 return -ESRCH; 3430 3431 n = btf__type_cnt(btf); 3432 for (i = 1; i < n; i++) { 3433 t = btf__type_by_id(btf, i); 3434 3435 if (!btf_is_var(t) && !btf_is_func(t)) 3436 continue; 3437 3438 tname = btf__name_by_offset(btf, t->name_off); 3439 if (strcmp(tname, ext_name)) 3440 continue; 3441 3442 if (btf_is_var(t) && 3443 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3444 return -EINVAL; 3445 3446 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3447 return -EINVAL; 3448 3449 return i; 3450 } 3451 3452 return -ENOENT; 3453 } 3454 3455 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3456 const struct btf_var_secinfo *vs; 3457 const struct btf_type *t; 3458 int i, j, n; 3459 3460 if (!btf) 3461 return -ESRCH; 3462 3463 n = btf__type_cnt(btf); 3464 for (i = 1; i < n; i++) { 3465 t = btf__type_by_id(btf, i); 3466 3467 if (!btf_is_datasec(t)) 3468 continue; 3469 3470 vs = btf_var_secinfos(t); 3471 for (j = 0; j < btf_vlen(t); j++, vs++) { 3472 if (vs->type == ext_btf_id) 3473 return i; 3474 } 3475 } 3476 3477 return -ENOENT; 3478 } 3479 3480 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3481 bool *is_signed) 3482 { 3483 const struct btf_type *t; 3484 const char *name; 3485 3486 t = skip_mods_and_typedefs(btf, id, NULL); 3487 name = btf__name_by_offset(btf, t->name_off); 3488 3489 if (is_signed) 3490 *is_signed = false; 3491 switch (btf_kind(t)) { 3492 case BTF_KIND_INT: { 3493 int enc = btf_int_encoding(t); 3494 3495 if (enc & BTF_INT_BOOL) 3496 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3497 if (is_signed) 3498 *is_signed = enc & BTF_INT_SIGNED; 3499 if (t->size == 1) 3500 return KCFG_CHAR; 3501 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3502 return KCFG_UNKNOWN; 3503 return KCFG_INT; 3504 } 3505 case BTF_KIND_ENUM: 3506 if (t->size != 4) 3507 return KCFG_UNKNOWN; 3508 if (strcmp(name, "libbpf_tristate")) 3509 return KCFG_UNKNOWN; 3510 return KCFG_TRISTATE; 3511 case BTF_KIND_ARRAY: 3512 if (btf_array(t)->nelems == 0) 3513 return KCFG_UNKNOWN; 3514 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3515 return KCFG_UNKNOWN; 3516 return KCFG_CHAR_ARR; 3517 default: 3518 return KCFG_UNKNOWN; 3519 } 3520 } 3521 3522 static int cmp_externs(const void *_a, const void *_b) 3523 { 3524 const struct extern_desc *a = _a; 3525 const struct extern_desc *b = _b; 3526 3527 if (a->type != b->type) 3528 return a->type < b->type ? -1 : 1; 3529 3530 if (a->type == EXT_KCFG) { 3531 /* descending order by alignment requirements */ 3532 if (a->kcfg.align != b->kcfg.align) 3533 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3534 /* ascending order by size, within same alignment class */ 3535 if (a->kcfg.sz != b->kcfg.sz) 3536 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3537 } 3538 3539 /* resolve ties by name */ 3540 return strcmp(a->name, b->name); 3541 } 3542 3543 static int find_int_btf_id(const struct btf *btf) 3544 { 3545 const struct btf_type *t; 3546 int i, n; 3547 3548 n = btf__type_cnt(btf); 3549 for (i = 1; i < n; i++) { 3550 t = btf__type_by_id(btf, i); 3551 3552 if (btf_is_int(t) && btf_int_bits(t) == 32) 3553 return i; 3554 } 3555 3556 return 0; 3557 } 3558 3559 static int add_dummy_ksym_var(struct btf *btf) 3560 { 3561 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3562 const struct btf_var_secinfo *vs; 3563 const struct btf_type *sec; 3564 3565 if (!btf) 3566 return 0; 3567 3568 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3569 BTF_KIND_DATASEC); 3570 if (sec_btf_id < 0) 3571 return 0; 3572 3573 sec = btf__type_by_id(btf, sec_btf_id); 3574 vs = btf_var_secinfos(sec); 3575 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3576 const struct btf_type *vt; 3577 3578 vt = btf__type_by_id(btf, vs->type); 3579 if (btf_is_func(vt)) 3580 break; 3581 } 3582 3583 /* No func in ksyms sec. No need to add dummy var. */ 3584 if (i == btf_vlen(sec)) 3585 return 0; 3586 3587 int_btf_id = find_int_btf_id(btf); 3588 dummy_var_btf_id = btf__add_var(btf, 3589 "dummy_ksym", 3590 BTF_VAR_GLOBAL_ALLOCATED, 3591 int_btf_id); 3592 if (dummy_var_btf_id < 0) 3593 pr_warn("cannot create a dummy_ksym var\n"); 3594 3595 return dummy_var_btf_id; 3596 } 3597 3598 static int bpf_object__collect_externs(struct bpf_object *obj) 3599 { 3600 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3601 const struct btf_type *t; 3602 struct extern_desc *ext; 3603 int i, n, off, dummy_var_btf_id; 3604 const char *ext_name, *sec_name; 3605 Elf_Scn *scn; 3606 Elf64_Shdr *sh; 3607 3608 if (!obj->efile.symbols) 3609 return 0; 3610 3611 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3612 sh = elf_sec_hdr(obj, scn); 3613 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3614 return -LIBBPF_ERRNO__FORMAT; 3615 3616 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3617 if (dummy_var_btf_id < 0) 3618 return dummy_var_btf_id; 3619 3620 n = sh->sh_size / sh->sh_entsize; 3621 pr_debug("looking for externs among %d symbols...\n", n); 3622 3623 for (i = 0; i < n; i++) { 3624 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3625 3626 if (!sym) 3627 return -LIBBPF_ERRNO__FORMAT; 3628 if (!sym_is_extern(sym)) 3629 continue; 3630 ext_name = elf_sym_str(obj, sym->st_name); 3631 if (!ext_name || !ext_name[0]) 3632 continue; 3633 3634 ext = obj->externs; 3635 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3636 if (!ext) 3637 return -ENOMEM; 3638 obj->externs = ext; 3639 ext = &ext[obj->nr_extern]; 3640 memset(ext, 0, sizeof(*ext)); 3641 obj->nr_extern++; 3642 3643 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3644 if (ext->btf_id <= 0) { 3645 pr_warn("failed to find BTF for extern '%s': %d\n", 3646 ext_name, ext->btf_id); 3647 return ext->btf_id; 3648 } 3649 t = btf__type_by_id(obj->btf, ext->btf_id); 3650 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3651 ext->sym_idx = i; 3652 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3653 3654 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3655 if (ext->sec_btf_id <= 0) { 3656 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3657 ext_name, ext->btf_id, ext->sec_btf_id); 3658 return ext->sec_btf_id; 3659 } 3660 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3661 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3662 3663 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3664 if (btf_is_func(t)) { 3665 pr_warn("extern function %s is unsupported under %s section\n", 3666 ext->name, KCONFIG_SEC); 3667 return -ENOTSUP; 3668 } 3669 kcfg_sec = sec; 3670 ext->type = EXT_KCFG; 3671 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3672 if (ext->kcfg.sz <= 0) { 3673 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3674 ext_name, ext->kcfg.sz); 3675 return ext->kcfg.sz; 3676 } 3677 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3678 if (ext->kcfg.align <= 0) { 3679 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3680 ext_name, ext->kcfg.align); 3681 return -EINVAL; 3682 } 3683 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3684 &ext->kcfg.is_signed); 3685 if (ext->kcfg.type == KCFG_UNKNOWN) { 3686 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3687 return -ENOTSUP; 3688 } 3689 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3690 ksym_sec = sec; 3691 ext->type = EXT_KSYM; 3692 skip_mods_and_typedefs(obj->btf, t->type, 3693 &ext->ksym.type_id); 3694 } else { 3695 pr_warn("unrecognized extern section '%s'\n", sec_name); 3696 return -ENOTSUP; 3697 } 3698 } 3699 pr_debug("collected %d externs total\n", obj->nr_extern); 3700 3701 if (!obj->nr_extern) 3702 return 0; 3703 3704 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3705 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3706 3707 /* for .ksyms section, we need to turn all externs into allocated 3708 * variables in BTF to pass kernel verification; we do this by 3709 * pretending that each extern is a 8-byte variable 3710 */ 3711 if (ksym_sec) { 3712 /* find existing 4-byte integer type in BTF to use for fake 3713 * extern variables in DATASEC 3714 */ 3715 int int_btf_id = find_int_btf_id(obj->btf); 3716 /* For extern function, a dummy_var added earlier 3717 * will be used to replace the vs->type and 3718 * its name string will be used to refill 3719 * the missing param's name. 3720 */ 3721 const struct btf_type *dummy_var; 3722 3723 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3724 for (i = 0; i < obj->nr_extern; i++) { 3725 ext = &obj->externs[i]; 3726 if (ext->type != EXT_KSYM) 3727 continue; 3728 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3729 i, ext->sym_idx, ext->name); 3730 } 3731 3732 sec = ksym_sec; 3733 n = btf_vlen(sec); 3734 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3735 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3736 struct btf_type *vt; 3737 3738 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3739 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3740 ext = find_extern_by_name(obj, ext_name); 3741 if (!ext) { 3742 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3743 btf_kind_str(vt), ext_name); 3744 return -ESRCH; 3745 } 3746 if (btf_is_func(vt)) { 3747 const struct btf_type *func_proto; 3748 struct btf_param *param; 3749 int j; 3750 3751 func_proto = btf__type_by_id(obj->btf, 3752 vt->type); 3753 param = btf_params(func_proto); 3754 /* Reuse the dummy_var string if the 3755 * func proto does not have param name. 3756 */ 3757 for (j = 0; j < btf_vlen(func_proto); j++) 3758 if (param[j].type && !param[j].name_off) 3759 param[j].name_off = 3760 dummy_var->name_off; 3761 vs->type = dummy_var_btf_id; 3762 vt->info &= ~0xffff; 3763 vt->info |= BTF_FUNC_GLOBAL; 3764 } else { 3765 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3766 vt->type = int_btf_id; 3767 } 3768 vs->offset = off; 3769 vs->size = sizeof(int); 3770 } 3771 sec->size = off; 3772 } 3773 3774 if (kcfg_sec) { 3775 sec = kcfg_sec; 3776 /* for kcfg externs calculate their offsets within a .kconfig map */ 3777 off = 0; 3778 for (i = 0; i < obj->nr_extern; i++) { 3779 ext = &obj->externs[i]; 3780 if (ext->type != EXT_KCFG) 3781 continue; 3782 3783 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3784 off = ext->kcfg.data_off + ext->kcfg.sz; 3785 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3786 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3787 } 3788 sec->size = off; 3789 n = btf_vlen(sec); 3790 for (i = 0; i < n; i++) { 3791 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3792 3793 t = btf__type_by_id(obj->btf, vs->type); 3794 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3795 ext = find_extern_by_name(obj, ext_name); 3796 if (!ext) { 3797 pr_warn("failed to find extern definition for BTF var '%s'\n", 3798 ext_name); 3799 return -ESRCH; 3800 } 3801 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3802 vs->offset = ext->kcfg.data_off; 3803 } 3804 } 3805 return 0; 3806 } 3807 3808 struct bpf_program * 3809 bpf_object__find_program_by_title(const struct bpf_object *obj, 3810 const char *title) 3811 { 3812 struct bpf_program *pos; 3813 3814 bpf_object__for_each_program(pos, obj) { 3815 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3816 return pos; 3817 } 3818 return errno = ENOENT, NULL; 3819 } 3820 3821 static bool prog_is_subprog(const struct bpf_object *obj, 3822 const struct bpf_program *prog) 3823 { 3824 /* For legacy reasons, libbpf supports an entry-point BPF programs 3825 * without SEC() attribute, i.e., those in the .text section. But if 3826 * there are 2 or more such programs in the .text section, they all 3827 * must be subprograms called from entry-point BPF programs in 3828 * designated SEC()'tions, otherwise there is no way to distinguish 3829 * which of those programs should be loaded vs which are a subprogram. 3830 * Similarly, if there is a function/program in .text and at least one 3831 * other BPF program with custom SEC() attribute, then we just assume 3832 * .text programs are subprograms (even if they are not called from 3833 * other programs), because libbpf never explicitly supported mixing 3834 * SEC()-designated BPF programs and .text entry-point BPF programs. 3835 */ 3836 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3837 } 3838 3839 struct bpf_program * 3840 bpf_object__find_program_by_name(const struct bpf_object *obj, 3841 const char *name) 3842 { 3843 struct bpf_program *prog; 3844 3845 bpf_object__for_each_program(prog, obj) { 3846 if (prog_is_subprog(obj, prog)) 3847 continue; 3848 if (!strcmp(prog->name, name)) 3849 return prog; 3850 } 3851 return errno = ENOENT, NULL; 3852 } 3853 3854 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3855 int shndx) 3856 { 3857 switch (obj->efile.secs[shndx].sec_type) { 3858 case SEC_BSS: 3859 case SEC_DATA: 3860 case SEC_RODATA: 3861 return true; 3862 default: 3863 return false; 3864 } 3865 } 3866 3867 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3868 int shndx) 3869 { 3870 return shndx == obj->efile.maps_shndx || 3871 shndx == obj->efile.btf_maps_shndx; 3872 } 3873 3874 static enum libbpf_map_type 3875 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3876 { 3877 if (shndx == obj->efile.symbols_shndx) 3878 return LIBBPF_MAP_KCONFIG; 3879 3880 switch (obj->efile.secs[shndx].sec_type) { 3881 case SEC_BSS: 3882 return LIBBPF_MAP_BSS; 3883 case SEC_DATA: 3884 return LIBBPF_MAP_DATA; 3885 case SEC_RODATA: 3886 return LIBBPF_MAP_RODATA; 3887 default: 3888 return LIBBPF_MAP_UNSPEC; 3889 } 3890 } 3891 3892 static int bpf_program__record_reloc(struct bpf_program *prog, 3893 struct reloc_desc *reloc_desc, 3894 __u32 insn_idx, const char *sym_name, 3895 const Elf64_Sym *sym, const Elf64_Rel *rel) 3896 { 3897 struct bpf_insn *insn = &prog->insns[insn_idx]; 3898 size_t map_idx, nr_maps = prog->obj->nr_maps; 3899 struct bpf_object *obj = prog->obj; 3900 __u32 shdr_idx = sym->st_shndx; 3901 enum libbpf_map_type type; 3902 const char *sym_sec_name; 3903 struct bpf_map *map; 3904 3905 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3906 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3907 prog->name, sym_name, insn_idx, insn->code); 3908 return -LIBBPF_ERRNO__RELOC; 3909 } 3910 3911 if (sym_is_extern(sym)) { 3912 int sym_idx = ELF64_R_SYM(rel->r_info); 3913 int i, n = obj->nr_extern; 3914 struct extern_desc *ext; 3915 3916 for (i = 0; i < n; i++) { 3917 ext = &obj->externs[i]; 3918 if (ext->sym_idx == sym_idx) 3919 break; 3920 } 3921 if (i >= n) { 3922 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3923 prog->name, sym_name, sym_idx); 3924 return -LIBBPF_ERRNO__RELOC; 3925 } 3926 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3927 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3928 if (insn->code == (BPF_JMP | BPF_CALL)) 3929 reloc_desc->type = RELO_EXTERN_FUNC; 3930 else 3931 reloc_desc->type = RELO_EXTERN_VAR; 3932 reloc_desc->insn_idx = insn_idx; 3933 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3934 return 0; 3935 } 3936 3937 /* sub-program call relocation */ 3938 if (is_call_insn(insn)) { 3939 if (insn->src_reg != BPF_PSEUDO_CALL) { 3940 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3941 return -LIBBPF_ERRNO__RELOC; 3942 } 3943 /* text_shndx can be 0, if no default "main" program exists */ 3944 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3945 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3946 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3947 prog->name, sym_name, sym_sec_name); 3948 return -LIBBPF_ERRNO__RELOC; 3949 } 3950 if (sym->st_value % BPF_INSN_SZ) { 3951 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3952 prog->name, sym_name, (size_t)sym->st_value); 3953 return -LIBBPF_ERRNO__RELOC; 3954 } 3955 reloc_desc->type = RELO_CALL; 3956 reloc_desc->insn_idx = insn_idx; 3957 reloc_desc->sym_off = sym->st_value; 3958 return 0; 3959 } 3960 3961 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3962 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3963 prog->name, sym_name, shdr_idx); 3964 return -LIBBPF_ERRNO__RELOC; 3965 } 3966 3967 /* loading subprog addresses */ 3968 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3969 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3970 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3971 */ 3972 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3973 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3974 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3975 return -LIBBPF_ERRNO__RELOC; 3976 } 3977 3978 reloc_desc->type = RELO_SUBPROG_ADDR; 3979 reloc_desc->insn_idx = insn_idx; 3980 reloc_desc->sym_off = sym->st_value; 3981 return 0; 3982 } 3983 3984 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3985 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3986 3987 /* generic map reference relocation */ 3988 if (type == LIBBPF_MAP_UNSPEC) { 3989 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3990 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3991 prog->name, sym_name, sym_sec_name); 3992 return -LIBBPF_ERRNO__RELOC; 3993 } 3994 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3995 map = &obj->maps[map_idx]; 3996 if (map->libbpf_type != type || 3997 map->sec_idx != sym->st_shndx || 3998 map->sec_offset != sym->st_value) 3999 continue; 4000 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4001 prog->name, map_idx, map->name, map->sec_idx, 4002 map->sec_offset, insn_idx); 4003 break; 4004 } 4005 if (map_idx >= nr_maps) { 4006 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4007 prog->name, sym_sec_name, (size_t)sym->st_value); 4008 return -LIBBPF_ERRNO__RELOC; 4009 } 4010 reloc_desc->type = RELO_LD64; 4011 reloc_desc->insn_idx = insn_idx; 4012 reloc_desc->map_idx = map_idx; 4013 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4014 return 0; 4015 } 4016 4017 /* global data map relocation */ 4018 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4019 pr_warn("prog '%s': bad data relo against section '%s'\n", 4020 prog->name, sym_sec_name); 4021 return -LIBBPF_ERRNO__RELOC; 4022 } 4023 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4024 map = &obj->maps[map_idx]; 4025 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4026 continue; 4027 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4028 prog->name, map_idx, map->name, map->sec_idx, 4029 map->sec_offset, insn_idx); 4030 break; 4031 } 4032 if (map_idx >= nr_maps) { 4033 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4034 prog->name, sym_sec_name); 4035 return -LIBBPF_ERRNO__RELOC; 4036 } 4037 4038 reloc_desc->type = RELO_DATA; 4039 reloc_desc->insn_idx = insn_idx; 4040 reloc_desc->map_idx = map_idx; 4041 reloc_desc->sym_off = sym->st_value; 4042 return 0; 4043 } 4044 4045 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4046 { 4047 return insn_idx >= prog->sec_insn_off && 4048 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4049 } 4050 4051 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4052 size_t sec_idx, size_t insn_idx) 4053 { 4054 int l = 0, r = obj->nr_programs - 1, m; 4055 struct bpf_program *prog; 4056 4057 while (l < r) { 4058 m = l + (r - l + 1) / 2; 4059 prog = &obj->programs[m]; 4060 4061 if (prog->sec_idx < sec_idx || 4062 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4063 l = m; 4064 else 4065 r = m - 1; 4066 } 4067 /* matching program could be at index l, but it still might be the 4068 * wrong one, so we need to double check conditions for the last time 4069 */ 4070 prog = &obj->programs[l]; 4071 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4072 return prog; 4073 return NULL; 4074 } 4075 4076 static int 4077 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4078 { 4079 const char *relo_sec_name, *sec_name; 4080 size_t sec_idx = shdr->sh_info, sym_idx; 4081 struct bpf_program *prog; 4082 struct reloc_desc *relos; 4083 int err, i, nrels; 4084 const char *sym_name; 4085 __u32 insn_idx; 4086 Elf_Scn *scn; 4087 Elf_Data *scn_data; 4088 Elf64_Sym *sym; 4089 Elf64_Rel *rel; 4090 4091 if (sec_idx >= obj->efile.sec_cnt) 4092 return -EINVAL; 4093 4094 scn = elf_sec_by_idx(obj, sec_idx); 4095 scn_data = elf_sec_data(obj, scn); 4096 4097 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4098 sec_name = elf_sec_name(obj, scn); 4099 if (!relo_sec_name || !sec_name) 4100 return -EINVAL; 4101 4102 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4103 relo_sec_name, sec_idx, sec_name); 4104 nrels = shdr->sh_size / shdr->sh_entsize; 4105 4106 for (i = 0; i < nrels; i++) { 4107 rel = elf_rel_by_idx(data, i); 4108 if (!rel) { 4109 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4110 return -LIBBPF_ERRNO__FORMAT; 4111 } 4112 4113 sym_idx = ELF64_R_SYM(rel->r_info); 4114 sym = elf_sym_by_idx(obj, sym_idx); 4115 if (!sym) { 4116 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4117 relo_sec_name, sym_idx, i); 4118 return -LIBBPF_ERRNO__FORMAT; 4119 } 4120 4121 if (sym->st_shndx >= obj->efile.sec_cnt) { 4122 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4123 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4124 return -LIBBPF_ERRNO__FORMAT; 4125 } 4126 4127 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4128 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4129 relo_sec_name, (size_t)rel->r_offset, i); 4130 return -LIBBPF_ERRNO__FORMAT; 4131 } 4132 4133 insn_idx = rel->r_offset / BPF_INSN_SZ; 4134 /* relocations against static functions are recorded as 4135 * relocations against the section that contains a function; 4136 * in such case, symbol will be STT_SECTION and sym.st_name 4137 * will point to empty string (0), so fetch section name 4138 * instead 4139 */ 4140 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4141 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4142 else 4143 sym_name = elf_sym_str(obj, sym->st_name); 4144 sym_name = sym_name ?: "<?"; 4145 4146 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4147 relo_sec_name, i, insn_idx, sym_name); 4148 4149 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4150 if (!prog) { 4151 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4152 relo_sec_name, i, sec_name, insn_idx); 4153 continue; 4154 } 4155 4156 relos = libbpf_reallocarray(prog->reloc_desc, 4157 prog->nr_reloc + 1, sizeof(*relos)); 4158 if (!relos) 4159 return -ENOMEM; 4160 prog->reloc_desc = relos; 4161 4162 /* adjust insn_idx to local BPF program frame of reference */ 4163 insn_idx -= prog->sec_insn_off; 4164 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4165 insn_idx, sym_name, sym, rel); 4166 if (err) 4167 return err; 4168 4169 prog->nr_reloc++; 4170 } 4171 return 0; 4172 } 4173 4174 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4175 { 4176 struct bpf_map_def *def = &map->def; 4177 __u32 key_type_id = 0, value_type_id = 0; 4178 int ret; 4179 4180 /* if it's BTF-defined map, we don't need to search for type IDs. 4181 * For struct_ops map, it does not need btf_key_type_id and 4182 * btf_value_type_id. 4183 */ 4184 if (map->sec_idx == obj->efile.btf_maps_shndx || 4185 bpf_map__is_struct_ops(map)) 4186 return 0; 4187 4188 if (!bpf_map__is_internal(map)) { 4189 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4190 #pragma GCC diagnostic push 4191 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4192 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4193 def->value_size, &key_type_id, 4194 &value_type_id); 4195 #pragma GCC diagnostic pop 4196 } else { 4197 /* 4198 * LLVM annotates global data differently in BTF, that is, 4199 * only as '.data', '.bss' or '.rodata'. 4200 */ 4201 ret = btf__find_by_name(obj->btf, map->real_name); 4202 } 4203 if (ret < 0) 4204 return ret; 4205 4206 map->btf_key_type_id = key_type_id; 4207 map->btf_value_type_id = bpf_map__is_internal(map) ? 4208 ret : value_type_id; 4209 return 0; 4210 } 4211 4212 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4213 { 4214 char file[PATH_MAX], buff[4096]; 4215 FILE *fp; 4216 __u32 val; 4217 int err; 4218 4219 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4220 memset(info, 0, sizeof(*info)); 4221 4222 fp = fopen(file, "r"); 4223 if (!fp) { 4224 err = -errno; 4225 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4226 err); 4227 return err; 4228 } 4229 4230 while (fgets(buff, sizeof(buff), fp)) { 4231 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4232 info->type = val; 4233 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4234 info->key_size = val; 4235 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4236 info->value_size = val; 4237 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4238 info->max_entries = val; 4239 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4240 info->map_flags = val; 4241 } 4242 4243 fclose(fp); 4244 4245 return 0; 4246 } 4247 4248 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4249 { 4250 struct bpf_map_info info = {}; 4251 __u32 len = sizeof(info); 4252 int new_fd, err; 4253 char *new_name; 4254 4255 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4256 if (err && errno == EINVAL) 4257 err = bpf_get_map_info_from_fdinfo(fd, &info); 4258 if (err) 4259 return libbpf_err(err); 4260 4261 new_name = strdup(info.name); 4262 if (!new_name) 4263 return libbpf_err(-errno); 4264 4265 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4266 if (new_fd < 0) { 4267 err = -errno; 4268 goto err_free_new_name; 4269 } 4270 4271 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4272 if (new_fd < 0) { 4273 err = -errno; 4274 goto err_close_new_fd; 4275 } 4276 4277 err = zclose(map->fd); 4278 if (err) { 4279 err = -errno; 4280 goto err_close_new_fd; 4281 } 4282 free(map->name); 4283 4284 map->fd = new_fd; 4285 map->name = new_name; 4286 map->def.type = info.type; 4287 map->def.key_size = info.key_size; 4288 map->def.value_size = info.value_size; 4289 map->def.max_entries = info.max_entries; 4290 map->def.map_flags = info.map_flags; 4291 map->btf_key_type_id = info.btf_key_type_id; 4292 map->btf_value_type_id = info.btf_value_type_id; 4293 map->reused = true; 4294 map->map_extra = info.map_extra; 4295 4296 return 0; 4297 4298 err_close_new_fd: 4299 close(new_fd); 4300 err_free_new_name: 4301 free(new_name); 4302 return libbpf_err(err); 4303 } 4304 4305 __u32 bpf_map__max_entries(const struct bpf_map *map) 4306 { 4307 return map->def.max_entries; 4308 } 4309 4310 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4311 { 4312 if (!bpf_map_type__is_map_in_map(map->def.type)) 4313 return errno = EINVAL, NULL; 4314 4315 return map->inner_map; 4316 } 4317 4318 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4319 { 4320 if (map->fd >= 0) 4321 return libbpf_err(-EBUSY); 4322 map->def.max_entries = max_entries; 4323 return 0; 4324 } 4325 4326 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4327 { 4328 if (!map || !max_entries) 4329 return libbpf_err(-EINVAL); 4330 4331 return bpf_map__set_max_entries(map, max_entries); 4332 } 4333 4334 static int 4335 bpf_object__probe_loading(struct bpf_object *obj) 4336 { 4337 char *cp, errmsg[STRERR_BUFSIZE]; 4338 struct bpf_insn insns[] = { 4339 BPF_MOV64_IMM(BPF_REG_0, 0), 4340 BPF_EXIT_INSN(), 4341 }; 4342 int ret, insn_cnt = ARRAY_SIZE(insns); 4343 4344 if (obj->gen_loader) 4345 return 0; 4346 4347 ret = bump_rlimit_memlock(); 4348 if (ret) 4349 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4350 4351 /* make sure basic loading works */ 4352 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4353 if (ret < 0) 4354 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4355 if (ret < 0) { 4356 ret = errno; 4357 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4358 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4359 "program. Make sure your kernel supports BPF " 4360 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4361 "set to big enough value.\n", __func__, cp, ret); 4362 return -ret; 4363 } 4364 close(ret); 4365 4366 return 0; 4367 } 4368 4369 static int probe_fd(int fd) 4370 { 4371 if (fd >= 0) 4372 close(fd); 4373 return fd >= 0; 4374 } 4375 4376 static int probe_kern_prog_name(void) 4377 { 4378 struct bpf_insn insns[] = { 4379 BPF_MOV64_IMM(BPF_REG_0, 0), 4380 BPF_EXIT_INSN(), 4381 }; 4382 int ret, insn_cnt = ARRAY_SIZE(insns); 4383 4384 /* make sure loading with name works */ 4385 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4386 return probe_fd(ret); 4387 } 4388 4389 static int probe_kern_global_data(void) 4390 { 4391 char *cp, errmsg[STRERR_BUFSIZE]; 4392 struct bpf_insn insns[] = { 4393 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4394 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4395 BPF_MOV64_IMM(BPF_REG_0, 0), 4396 BPF_EXIT_INSN(), 4397 }; 4398 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4399 4400 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4401 if (map < 0) { 4402 ret = -errno; 4403 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4404 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4405 __func__, cp, -ret); 4406 return ret; 4407 } 4408 4409 insns[0].imm = map; 4410 4411 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4412 close(map); 4413 return probe_fd(ret); 4414 } 4415 4416 static int probe_kern_btf(void) 4417 { 4418 static const char strs[] = "\0int"; 4419 __u32 types[] = { 4420 /* int */ 4421 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4422 }; 4423 4424 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4425 strs, sizeof(strs))); 4426 } 4427 4428 static int probe_kern_btf_func(void) 4429 { 4430 static const char strs[] = "\0int\0x\0a"; 4431 /* void x(int a) {} */ 4432 __u32 types[] = { 4433 /* int */ 4434 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4435 /* FUNC_PROTO */ /* [2] */ 4436 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4437 BTF_PARAM_ENC(7, 1), 4438 /* FUNC x */ /* [3] */ 4439 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4440 }; 4441 4442 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4443 strs, sizeof(strs))); 4444 } 4445 4446 static int probe_kern_btf_func_global(void) 4447 { 4448 static const char strs[] = "\0int\0x\0a"; 4449 /* static void x(int a) {} */ 4450 __u32 types[] = { 4451 /* int */ 4452 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4453 /* FUNC_PROTO */ /* [2] */ 4454 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4455 BTF_PARAM_ENC(7, 1), 4456 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4457 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4458 }; 4459 4460 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4461 strs, sizeof(strs))); 4462 } 4463 4464 static int probe_kern_btf_datasec(void) 4465 { 4466 static const char strs[] = "\0x\0.data"; 4467 /* static int a; */ 4468 __u32 types[] = { 4469 /* int */ 4470 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4471 /* VAR x */ /* [2] */ 4472 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4473 BTF_VAR_STATIC, 4474 /* DATASEC val */ /* [3] */ 4475 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4476 BTF_VAR_SECINFO_ENC(2, 0, 4), 4477 }; 4478 4479 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4480 strs, sizeof(strs))); 4481 } 4482 4483 static int probe_kern_btf_float(void) 4484 { 4485 static const char strs[] = "\0float"; 4486 __u32 types[] = { 4487 /* float */ 4488 BTF_TYPE_FLOAT_ENC(1, 4), 4489 }; 4490 4491 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4492 strs, sizeof(strs))); 4493 } 4494 4495 static int probe_kern_btf_decl_tag(void) 4496 { 4497 static const char strs[] = "\0tag"; 4498 __u32 types[] = { 4499 /* int */ 4500 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4501 /* VAR x */ /* [2] */ 4502 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4503 BTF_VAR_STATIC, 4504 /* attr */ 4505 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4506 }; 4507 4508 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4509 strs, sizeof(strs))); 4510 } 4511 4512 static int probe_kern_btf_type_tag(void) 4513 { 4514 static const char strs[] = "\0tag"; 4515 __u32 types[] = { 4516 /* int */ 4517 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4518 /* attr */ 4519 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4520 /* ptr */ 4521 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4522 }; 4523 4524 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4525 strs, sizeof(strs))); 4526 } 4527 4528 static int probe_kern_array_mmap(void) 4529 { 4530 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4531 int fd; 4532 4533 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4534 return probe_fd(fd); 4535 } 4536 4537 static int probe_kern_exp_attach_type(void) 4538 { 4539 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4540 struct bpf_insn insns[] = { 4541 BPF_MOV64_IMM(BPF_REG_0, 0), 4542 BPF_EXIT_INSN(), 4543 }; 4544 int fd, insn_cnt = ARRAY_SIZE(insns); 4545 4546 /* use any valid combination of program type and (optional) 4547 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4548 * to see if kernel supports expected_attach_type field for 4549 * BPF_PROG_LOAD command 4550 */ 4551 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4552 return probe_fd(fd); 4553 } 4554 4555 static int probe_kern_probe_read_kernel(void) 4556 { 4557 struct bpf_insn insns[] = { 4558 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4559 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4560 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4561 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4562 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4563 BPF_EXIT_INSN(), 4564 }; 4565 int fd, insn_cnt = ARRAY_SIZE(insns); 4566 4567 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4568 return probe_fd(fd); 4569 } 4570 4571 static int probe_prog_bind_map(void) 4572 { 4573 char *cp, errmsg[STRERR_BUFSIZE]; 4574 struct bpf_insn insns[] = { 4575 BPF_MOV64_IMM(BPF_REG_0, 0), 4576 BPF_EXIT_INSN(), 4577 }; 4578 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4579 4580 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4581 if (map < 0) { 4582 ret = -errno; 4583 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4584 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4585 __func__, cp, -ret); 4586 return ret; 4587 } 4588 4589 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4590 if (prog < 0) { 4591 close(map); 4592 return 0; 4593 } 4594 4595 ret = bpf_prog_bind_map(prog, map, NULL); 4596 4597 close(map); 4598 close(prog); 4599 4600 return ret >= 0; 4601 } 4602 4603 static int probe_module_btf(void) 4604 { 4605 static const char strs[] = "\0int"; 4606 __u32 types[] = { 4607 /* int */ 4608 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4609 }; 4610 struct bpf_btf_info info; 4611 __u32 len = sizeof(info); 4612 char name[16]; 4613 int fd, err; 4614 4615 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4616 if (fd < 0) 4617 return 0; /* BTF not supported at all */ 4618 4619 memset(&info, 0, sizeof(info)); 4620 info.name = ptr_to_u64(name); 4621 info.name_len = sizeof(name); 4622 4623 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4624 * kernel's module BTF support coincides with support for 4625 * name/name_len fields in struct bpf_btf_info. 4626 */ 4627 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4628 close(fd); 4629 return !err; 4630 } 4631 4632 static int probe_perf_link(void) 4633 { 4634 struct bpf_insn insns[] = { 4635 BPF_MOV64_IMM(BPF_REG_0, 0), 4636 BPF_EXIT_INSN(), 4637 }; 4638 int prog_fd, link_fd, err; 4639 4640 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4641 insns, ARRAY_SIZE(insns), NULL); 4642 if (prog_fd < 0) 4643 return -errno; 4644 4645 /* use invalid perf_event FD to get EBADF, if link is supported; 4646 * otherwise EINVAL should be returned 4647 */ 4648 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4649 err = -errno; /* close() can clobber errno */ 4650 4651 if (link_fd >= 0) 4652 close(link_fd); 4653 close(prog_fd); 4654 4655 return link_fd < 0 && err == -EBADF; 4656 } 4657 4658 enum kern_feature_result { 4659 FEAT_UNKNOWN = 0, 4660 FEAT_SUPPORTED = 1, 4661 FEAT_MISSING = 2, 4662 }; 4663 4664 typedef int (*feature_probe_fn)(void); 4665 4666 static struct kern_feature_desc { 4667 const char *desc; 4668 feature_probe_fn probe; 4669 enum kern_feature_result res; 4670 } feature_probes[__FEAT_CNT] = { 4671 [FEAT_PROG_NAME] = { 4672 "BPF program name", probe_kern_prog_name, 4673 }, 4674 [FEAT_GLOBAL_DATA] = { 4675 "global variables", probe_kern_global_data, 4676 }, 4677 [FEAT_BTF] = { 4678 "minimal BTF", probe_kern_btf, 4679 }, 4680 [FEAT_BTF_FUNC] = { 4681 "BTF functions", probe_kern_btf_func, 4682 }, 4683 [FEAT_BTF_GLOBAL_FUNC] = { 4684 "BTF global function", probe_kern_btf_func_global, 4685 }, 4686 [FEAT_BTF_DATASEC] = { 4687 "BTF data section and variable", probe_kern_btf_datasec, 4688 }, 4689 [FEAT_ARRAY_MMAP] = { 4690 "ARRAY map mmap()", probe_kern_array_mmap, 4691 }, 4692 [FEAT_EXP_ATTACH_TYPE] = { 4693 "BPF_PROG_LOAD expected_attach_type attribute", 4694 probe_kern_exp_attach_type, 4695 }, 4696 [FEAT_PROBE_READ_KERN] = { 4697 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4698 }, 4699 [FEAT_PROG_BIND_MAP] = { 4700 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4701 }, 4702 [FEAT_MODULE_BTF] = { 4703 "module BTF support", probe_module_btf, 4704 }, 4705 [FEAT_BTF_FLOAT] = { 4706 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4707 }, 4708 [FEAT_PERF_LINK] = { 4709 "BPF perf link support", probe_perf_link, 4710 }, 4711 [FEAT_BTF_DECL_TAG] = { 4712 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4713 }, 4714 [FEAT_BTF_TYPE_TAG] = { 4715 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4716 }, 4717 [FEAT_MEMCG_ACCOUNT] = { 4718 "memcg-based memory accounting", probe_memcg_account, 4719 }, 4720 }; 4721 4722 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4723 { 4724 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4725 int ret; 4726 4727 if (obj && obj->gen_loader) 4728 /* To generate loader program assume the latest kernel 4729 * to avoid doing extra prog_load, map_create syscalls. 4730 */ 4731 return true; 4732 4733 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4734 ret = feat->probe(); 4735 if (ret > 0) { 4736 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4737 } else if (ret == 0) { 4738 WRITE_ONCE(feat->res, FEAT_MISSING); 4739 } else { 4740 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4741 WRITE_ONCE(feat->res, FEAT_MISSING); 4742 } 4743 } 4744 4745 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4746 } 4747 4748 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4749 { 4750 struct bpf_map_info map_info = {}; 4751 char msg[STRERR_BUFSIZE]; 4752 __u32 map_info_len; 4753 int err; 4754 4755 map_info_len = sizeof(map_info); 4756 4757 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4758 if (err && errno == EINVAL) 4759 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4760 if (err) { 4761 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4762 libbpf_strerror_r(errno, msg, sizeof(msg))); 4763 return false; 4764 } 4765 4766 return (map_info.type == map->def.type && 4767 map_info.key_size == map->def.key_size && 4768 map_info.value_size == map->def.value_size && 4769 map_info.max_entries == map->def.max_entries && 4770 map_info.map_flags == map->def.map_flags && 4771 map_info.map_extra == map->map_extra); 4772 } 4773 4774 static int 4775 bpf_object__reuse_map(struct bpf_map *map) 4776 { 4777 char *cp, errmsg[STRERR_BUFSIZE]; 4778 int err, pin_fd; 4779 4780 pin_fd = bpf_obj_get(map->pin_path); 4781 if (pin_fd < 0) { 4782 err = -errno; 4783 if (err == -ENOENT) { 4784 pr_debug("found no pinned map to reuse at '%s'\n", 4785 map->pin_path); 4786 return 0; 4787 } 4788 4789 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4790 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4791 map->pin_path, cp); 4792 return err; 4793 } 4794 4795 if (!map_is_reuse_compat(map, pin_fd)) { 4796 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4797 map->pin_path); 4798 close(pin_fd); 4799 return -EINVAL; 4800 } 4801 4802 err = bpf_map__reuse_fd(map, pin_fd); 4803 if (err) { 4804 close(pin_fd); 4805 return err; 4806 } 4807 map->pinned = true; 4808 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4809 4810 return 0; 4811 } 4812 4813 static int 4814 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4815 { 4816 enum libbpf_map_type map_type = map->libbpf_type; 4817 char *cp, errmsg[STRERR_BUFSIZE]; 4818 int err, zero = 0; 4819 4820 if (obj->gen_loader) { 4821 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4822 map->mmaped, map->def.value_size); 4823 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4824 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4825 return 0; 4826 } 4827 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4828 if (err) { 4829 err = -errno; 4830 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4831 pr_warn("Error setting initial map(%s) contents: %s\n", 4832 map->name, cp); 4833 return err; 4834 } 4835 4836 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4837 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4838 err = bpf_map_freeze(map->fd); 4839 if (err) { 4840 err = -errno; 4841 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4842 pr_warn("Error freezing map(%s) as read-only: %s\n", 4843 map->name, cp); 4844 return err; 4845 } 4846 } 4847 return 0; 4848 } 4849 4850 static void bpf_map__destroy(struct bpf_map *map); 4851 4852 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4853 { 4854 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4855 struct bpf_map_def *def = &map->def; 4856 const char *map_name = NULL; 4857 int err = 0; 4858 4859 if (kernel_supports(obj, FEAT_PROG_NAME)) 4860 map_name = map->name; 4861 create_attr.map_ifindex = map->map_ifindex; 4862 create_attr.map_flags = def->map_flags; 4863 create_attr.numa_node = map->numa_node; 4864 create_attr.map_extra = map->map_extra; 4865 4866 if (bpf_map__is_struct_ops(map)) 4867 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4868 4869 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4870 create_attr.btf_fd = btf__fd(obj->btf); 4871 create_attr.btf_key_type_id = map->btf_key_type_id; 4872 create_attr.btf_value_type_id = map->btf_value_type_id; 4873 } 4874 4875 if (bpf_map_type__is_map_in_map(def->type)) { 4876 if (map->inner_map) { 4877 err = bpf_object__create_map(obj, map->inner_map, true); 4878 if (err) { 4879 pr_warn("map '%s': failed to create inner map: %d\n", 4880 map->name, err); 4881 return err; 4882 } 4883 map->inner_map_fd = bpf_map__fd(map->inner_map); 4884 } 4885 if (map->inner_map_fd >= 0) 4886 create_attr.inner_map_fd = map->inner_map_fd; 4887 } 4888 4889 switch (def->type) { 4890 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4891 case BPF_MAP_TYPE_CGROUP_ARRAY: 4892 case BPF_MAP_TYPE_STACK_TRACE: 4893 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4894 case BPF_MAP_TYPE_HASH_OF_MAPS: 4895 case BPF_MAP_TYPE_DEVMAP: 4896 case BPF_MAP_TYPE_DEVMAP_HASH: 4897 case BPF_MAP_TYPE_CPUMAP: 4898 case BPF_MAP_TYPE_XSKMAP: 4899 case BPF_MAP_TYPE_SOCKMAP: 4900 case BPF_MAP_TYPE_SOCKHASH: 4901 case BPF_MAP_TYPE_QUEUE: 4902 case BPF_MAP_TYPE_STACK: 4903 case BPF_MAP_TYPE_RINGBUF: 4904 create_attr.btf_fd = 0; 4905 create_attr.btf_key_type_id = 0; 4906 create_attr.btf_value_type_id = 0; 4907 map->btf_key_type_id = 0; 4908 map->btf_value_type_id = 0; 4909 default: 4910 break; 4911 } 4912 4913 if (obj->gen_loader) { 4914 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4915 def->key_size, def->value_size, def->max_entries, 4916 &create_attr, is_inner ? -1 : map - obj->maps); 4917 /* Pretend to have valid FD to pass various fd >= 0 checks. 4918 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4919 */ 4920 map->fd = 0; 4921 } else { 4922 map->fd = bpf_map_create(def->type, map_name, 4923 def->key_size, def->value_size, 4924 def->max_entries, &create_attr); 4925 } 4926 if (map->fd < 0 && (create_attr.btf_key_type_id || 4927 create_attr.btf_value_type_id)) { 4928 char *cp, errmsg[STRERR_BUFSIZE]; 4929 4930 err = -errno; 4931 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4932 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4933 map->name, cp, err); 4934 create_attr.btf_fd = 0; 4935 create_attr.btf_key_type_id = 0; 4936 create_attr.btf_value_type_id = 0; 4937 map->btf_key_type_id = 0; 4938 map->btf_value_type_id = 0; 4939 map->fd = bpf_map_create(def->type, map_name, 4940 def->key_size, def->value_size, 4941 def->max_entries, &create_attr); 4942 } 4943 4944 err = map->fd < 0 ? -errno : 0; 4945 4946 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4947 if (obj->gen_loader) 4948 map->inner_map->fd = -1; 4949 bpf_map__destroy(map->inner_map); 4950 zfree(&map->inner_map); 4951 } 4952 4953 return err; 4954 } 4955 4956 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 4957 { 4958 const struct bpf_map *targ_map; 4959 unsigned int i; 4960 int fd, err = 0; 4961 4962 for (i = 0; i < map->init_slots_sz; i++) { 4963 if (!map->init_slots[i]) 4964 continue; 4965 4966 targ_map = map->init_slots[i]; 4967 fd = bpf_map__fd(targ_map); 4968 4969 if (obj->gen_loader) { 4970 bpf_gen__populate_outer_map(obj->gen_loader, 4971 map - obj->maps, i, 4972 targ_map - obj->maps); 4973 } else { 4974 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4975 } 4976 if (err) { 4977 err = -errno; 4978 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4979 map->name, i, targ_map->name, fd, err); 4980 return err; 4981 } 4982 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4983 map->name, i, targ_map->name, fd); 4984 } 4985 4986 zfree(&map->init_slots); 4987 map->init_slots_sz = 0; 4988 4989 return 0; 4990 } 4991 4992 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 4993 { 4994 const struct bpf_program *targ_prog; 4995 unsigned int i; 4996 int fd, err; 4997 4998 if (obj->gen_loader) 4999 return -ENOTSUP; 5000 5001 for (i = 0; i < map->init_slots_sz; i++) { 5002 if (!map->init_slots[i]) 5003 continue; 5004 5005 targ_prog = map->init_slots[i]; 5006 fd = bpf_program__fd(targ_prog); 5007 5008 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5009 if (err) { 5010 err = -errno; 5011 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5012 map->name, i, targ_prog->name, fd, err); 5013 return err; 5014 } 5015 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5016 map->name, i, targ_prog->name, fd); 5017 } 5018 5019 zfree(&map->init_slots); 5020 map->init_slots_sz = 0; 5021 5022 return 0; 5023 } 5024 5025 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5026 { 5027 struct bpf_map *map; 5028 int i, err; 5029 5030 for (i = 0; i < obj->nr_maps; i++) { 5031 map = &obj->maps[i]; 5032 5033 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5034 continue; 5035 5036 err = init_prog_array_slots(obj, map); 5037 if (err < 0) { 5038 zclose(map->fd); 5039 return err; 5040 } 5041 } 5042 return 0; 5043 } 5044 5045 static int map_set_def_max_entries(struct bpf_map *map) 5046 { 5047 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5048 int nr_cpus; 5049 5050 nr_cpus = libbpf_num_possible_cpus(); 5051 if (nr_cpus < 0) { 5052 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5053 map->name, nr_cpus); 5054 return nr_cpus; 5055 } 5056 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5057 map->def.max_entries = nr_cpus; 5058 } 5059 5060 return 0; 5061 } 5062 5063 static int 5064 bpf_object__create_maps(struct bpf_object *obj) 5065 { 5066 struct bpf_map *map; 5067 char *cp, errmsg[STRERR_BUFSIZE]; 5068 unsigned int i, j; 5069 int err; 5070 bool retried; 5071 5072 for (i = 0; i < obj->nr_maps; i++) { 5073 map = &obj->maps[i]; 5074 5075 /* To support old kernels, we skip creating global data maps 5076 * (.rodata, .data, .kconfig, etc); later on, during program 5077 * loading, if we detect that at least one of the to-be-loaded 5078 * programs is referencing any global data map, we'll error 5079 * out with program name and relocation index logged. 5080 * This approach allows to accommodate Clang emitting 5081 * unnecessary .rodata.str1.1 sections for string literals, 5082 * but also it allows to have CO-RE applications that use 5083 * global variables in some of BPF programs, but not others. 5084 * If those global variable-using programs are not loaded at 5085 * runtime due to bpf_program__set_autoload(prog, false), 5086 * bpf_object loading will succeed just fine even on old 5087 * kernels. 5088 */ 5089 if (bpf_map__is_internal(map) && 5090 !kernel_supports(obj, FEAT_GLOBAL_DATA)) { 5091 map->skipped = true; 5092 continue; 5093 } 5094 5095 err = map_set_def_max_entries(map); 5096 if (err) 5097 goto err_out; 5098 5099 retried = false; 5100 retry: 5101 if (map->pin_path) { 5102 err = bpf_object__reuse_map(map); 5103 if (err) { 5104 pr_warn("map '%s': error reusing pinned map\n", 5105 map->name); 5106 goto err_out; 5107 } 5108 if (retried && map->fd < 0) { 5109 pr_warn("map '%s': cannot find pinned map\n", 5110 map->name); 5111 err = -ENOENT; 5112 goto err_out; 5113 } 5114 } 5115 5116 if (map->fd >= 0) { 5117 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5118 map->name, map->fd); 5119 } else { 5120 err = bpf_object__create_map(obj, map, false); 5121 if (err) 5122 goto err_out; 5123 5124 pr_debug("map '%s': created successfully, fd=%d\n", 5125 map->name, map->fd); 5126 5127 if (bpf_map__is_internal(map)) { 5128 err = bpf_object__populate_internal_map(obj, map); 5129 if (err < 0) { 5130 zclose(map->fd); 5131 goto err_out; 5132 } 5133 } 5134 5135 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5136 err = init_map_in_map_slots(obj, map); 5137 if (err < 0) { 5138 zclose(map->fd); 5139 goto err_out; 5140 } 5141 } 5142 } 5143 5144 if (map->pin_path && !map->pinned) { 5145 err = bpf_map__pin(map, NULL); 5146 if (err) { 5147 zclose(map->fd); 5148 if (!retried && err == -EEXIST) { 5149 retried = true; 5150 goto retry; 5151 } 5152 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5153 map->name, map->pin_path, err); 5154 goto err_out; 5155 } 5156 } 5157 } 5158 5159 return 0; 5160 5161 err_out: 5162 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5163 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5164 pr_perm_msg(err); 5165 for (j = 0; j < i; j++) 5166 zclose(obj->maps[j].fd); 5167 return err; 5168 } 5169 5170 static bool bpf_core_is_flavor_sep(const char *s) 5171 { 5172 /* check X___Y name pattern, where X and Y are not underscores */ 5173 return s[0] != '_' && /* X */ 5174 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5175 s[4] != '_'; /* Y */ 5176 } 5177 5178 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5179 * before last triple underscore. Struct name part after last triple 5180 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5181 */ 5182 size_t bpf_core_essential_name_len(const char *name) 5183 { 5184 size_t n = strlen(name); 5185 int i; 5186 5187 for (i = n - 5; i >= 0; i--) { 5188 if (bpf_core_is_flavor_sep(name + i)) 5189 return i + 1; 5190 } 5191 return n; 5192 } 5193 5194 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5195 { 5196 if (!cands) 5197 return; 5198 5199 free(cands->cands); 5200 free(cands); 5201 } 5202 5203 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5204 size_t local_essent_len, 5205 const struct btf *targ_btf, 5206 const char *targ_btf_name, 5207 int targ_start_id, 5208 struct bpf_core_cand_list *cands) 5209 { 5210 struct bpf_core_cand *new_cands, *cand; 5211 const struct btf_type *t, *local_t; 5212 const char *targ_name, *local_name; 5213 size_t targ_essent_len; 5214 int n, i; 5215 5216 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5217 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5218 5219 n = btf__type_cnt(targ_btf); 5220 for (i = targ_start_id; i < n; i++) { 5221 t = btf__type_by_id(targ_btf, i); 5222 if (btf_kind(t) != btf_kind(local_t)) 5223 continue; 5224 5225 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5226 if (str_is_empty(targ_name)) 5227 continue; 5228 5229 targ_essent_len = bpf_core_essential_name_len(targ_name); 5230 if (targ_essent_len != local_essent_len) 5231 continue; 5232 5233 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5234 continue; 5235 5236 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5237 local_cand->id, btf_kind_str(local_t), 5238 local_name, i, btf_kind_str(t), targ_name, 5239 targ_btf_name); 5240 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5241 sizeof(*cands->cands)); 5242 if (!new_cands) 5243 return -ENOMEM; 5244 5245 cand = &new_cands[cands->len]; 5246 cand->btf = targ_btf; 5247 cand->id = i; 5248 5249 cands->cands = new_cands; 5250 cands->len++; 5251 } 5252 return 0; 5253 } 5254 5255 static int load_module_btfs(struct bpf_object *obj) 5256 { 5257 struct bpf_btf_info info; 5258 struct module_btf *mod_btf; 5259 struct btf *btf; 5260 char name[64]; 5261 __u32 id = 0, len; 5262 int err, fd; 5263 5264 if (obj->btf_modules_loaded) 5265 return 0; 5266 5267 if (obj->gen_loader) 5268 return 0; 5269 5270 /* don't do this again, even if we find no module BTFs */ 5271 obj->btf_modules_loaded = true; 5272 5273 /* kernel too old to support module BTFs */ 5274 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5275 return 0; 5276 5277 while (true) { 5278 err = bpf_btf_get_next_id(id, &id); 5279 if (err && errno == ENOENT) 5280 return 0; 5281 if (err) { 5282 err = -errno; 5283 pr_warn("failed to iterate BTF objects: %d\n", err); 5284 return err; 5285 } 5286 5287 fd = bpf_btf_get_fd_by_id(id); 5288 if (fd < 0) { 5289 if (errno == ENOENT) 5290 continue; /* expected race: BTF was unloaded */ 5291 err = -errno; 5292 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5293 return err; 5294 } 5295 5296 len = sizeof(info); 5297 memset(&info, 0, sizeof(info)); 5298 info.name = ptr_to_u64(name); 5299 info.name_len = sizeof(name); 5300 5301 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5302 if (err) { 5303 err = -errno; 5304 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5305 goto err_out; 5306 } 5307 5308 /* ignore non-module BTFs */ 5309 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5310 close(fd); 5311 continue; 5312 } 5313 5314 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5315 err = libbpf_get_error(btf); 5316 if (err) { 5317 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5318 name, id, err); 5319 goto err_out; 5320 } 5321 5322 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5323 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5324 if (err) 5325 goto err_out; 5326 5327 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5328 5329 mod_btf->btf = btf; 5330 mod_btf->id = id; 5331 mod_btf->fd = fd; 5332 mod_btf->name = strdup(name); 5333 if (!mod_btf->name) { 5334 err = -ENOMEM; 5335 goto err_out; 5336 } 5337 continue; 5338 5339 err_out: 5340 close(fd); 5341 return err; 5342 } 5343 5344 return 0; 5345 } 5346 5347 static struct bpf_core_cand_list * 5348 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5349 { 5350 struct bpf_core_cand local_cand = {}; 5351 struct bpf_core_cand_list *cands; 5352 const struct btf *main_btf; 5353 const struct btf_type *local_t; 5354 const char *local_name; 5355 size_t local_essent_len; 5356 int err, i; 5357 5358 local_cand.btf = local_btf; 5359 local_cand.id = local_type_id; 5360 local_t = btf__type_by_id(local_btf, local_type_id); 5361 if (!local_t) 5362 return ERR_PTR(-EINVAL); 5363 5364 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5365 if (str_is_empty(local_name)) 5366 return ERR_PTR(-EINVAL); 5367 local_essent_len = bpf_core_essential_name_len(local_name); 5368 5369 cands = calloc(1, sizeof(*cands)); 5370 if (!cands) 5371 return ERR_PTR(-ENOMEM); 5372 5373 /* Attempt to find target candidates in vmlinux BTF first */ 5374 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5375 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5376 if (err) 5377 goto err_out; 5378 5379 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5380 if (cands->len) 5381 return cands; 5382 5383 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5384 if (obj->btf_vmlinux_override) 5385 return cands; 5386 5387 /* now look through module BTFs, trying to still find candidates */ 5388 err = load_module_btfs(obj); 5389 if (err) 5390 goto err_out; 5391 5392 for (i = 0; i < obj->btf_module_cnt; i++) { 5393 err = bpf_core_add_cands(&local_cand, local_essent_len, 5394 obj->btf_modules[i].btf, 5395 obj->btf_modules[i].name, 5396 btf__type_cnt(obj->btf_vmlinux), 5397 cands); 5398 if (err) 5399 goto err_out; 5400 } 5401 5402 return cands; 5403 err_out: 5404 bpf_core_free_cands(cands); 5405 return ERR_PTR(err); 5406 } 5407 5408 /* Check local and target types for compatibility. This check is used for 5409 * type-based CO-RE relocations and follow slightly different rules than 5410 * field-based relocations. This function assumes that root types were already 5411 * checked for name match. Beyond that initial root-level name check, names 5412 * are completely ignored. Compatibility rules are as follows: 5413 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5414 * kind should match for local and target types (i.e., STRUCT is not 5415 * compatible with UNION); 5416 * - for ENUMs, the size is ignored; 5417 * - for INT, size and signedness are ignored; 5418 * - for ARRAY, dimensionality is ignored, element types are checked for 5419 * compatibility recursively; 5420 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5421 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5422 * - FUNC_PROTOs are compatible if they have compatible signature: same 5423 * number of input args and compatible return and argument types. 5424 * These rules are not set in stone and probably will be adjusted as we get 5425 * more experience with using BPF CO-RE relocations. 5426 */ 5427 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5428 const struct btf *targ_btf, __u32 targ_id) 5429 { 5430 const struct btf_type *local_type, *targ_type; 5431 int depth = 32; /* max recursion depth */ 5432 5433 /* caller made sure that names match (ignoring flavor suffix) */ 5434 local_type = btf__type_by_id(local_btf, local_id); 5435 targ_type = btf__type_by_id(targ_btf, targ_id); 5436 if (btf_kind(local_type) != btf_kind(targ_type)) 5437 return 0; 5438 5439 recur: 5440 depth--; 5441 if (depth < 0) 5442 return -EINVAL; 5443 5444 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5445 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5446 if (!local_type || !targ_type) 5447 return -EINVAL; 5448 5449 if (btf_kind(local_type) != btf_kind(targ_type)) 5450 return 0; 5451 5452 switch (btf_kind(local_type)) { 5453 case BTF_KIND_UNKN: 5454 case BTF_KIND_STRUCT: 5455 case BTF_KIND_UNION: 5456 case BTF_KIND_ENUM: 5457 case BTF_KIND_FWD: 5458 return 1; 5459 case BTF_KIND_INT: 5460 /* just reject deprecated bitfield-like integers; all other 5461 * integers are by default compatible between each other 5462 */ 5463 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5464 case BTF_KIND_PTR: 5465 local_id = local_type->type; 5466 targ_id = targ_type->type; 5467 goto recur; 5468 case BTF_KIND_ARRAY: 5469 local_id = btf_array(local_type)->type; 5470 targ_id = btf_array(targ_type)->type; 5471 goto recur; 5472 case BTF_KIND_FUNC_PROTO: { 5473 struct btf_param *local_p = btf_params(local_type); 5474 struct btf_param *targ_p = btf_params(targ_type); 5475 __u16 local_vlen = btf_vlen(local_type); 5476 __u16 targ_vlen = btf_vlen(targ_type); 5477 int i, err; 5478 5479 if (local_vlen != targ_vlen) 5480 return 0; 5481 5482 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5483 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5484 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5485 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5486 if (err <= 0) 5487 return err; 5488 } 5489 5490 /* tail recurse for return type check */ 5491 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5492 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5493 goto recur; 5494 } 5495 default: 5496 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5497 btf_kind_str(local_type), local_id, targ_id); 5498 return 0; 5499 } 5500 } 5501 5502 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5503 { 5504 return (size_t)key; 5505 } 5506 5507 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5508 { 5509 return k1 == k2; 5510 } 5511 5512 static void *u32_as_hash_key(__u32 x) 5513 { 5514 return (void *)(uintptr_t)x; 5515 } 5516 5517 static int record_relo_core(struct bpf_program *prog, 5518 const struct bpf_core_relo *core_relo, int insn_idx) 5519 { 5520 struct reloc_desc *relos, *relo; 5521 5522 relos = libbpf_reallocarray(prog->reloc_desc, 5523 prog->nr_reloc + 1, sizeof(*relos)); 5524 if (!relos) 5525 return -ENOMEM; 5526 relo = &relos[prog->nr_reloc]; 5527 relo->type = RELO_CORE; 5528 relo->insn_idx = insn_idx; 5529 relo->core_relo = core_relo; 5530 prog->reloc_desc = relos; 5531 prog->nr_reloc++; 5532 return 0; 5533 } 5534 5535 static int bpf_core_resolve_relo(struct bpf_program *prog, 5536 const struct bpf_core_relo *relo, 5537 int relo_idx, 5538 const struct btf *local_btf, 5539 struct hashmap *cand_cache, 5540 struct bpf_core_relo_res *targ_res) 5541 { 5542 struct bpf_core_spec specs_scratch[3] = {}; 5543 const void *type_key = u32_as_hash_key(relo->type_id); 5544 struct bpf_core_cand_list *cands = NULL; 5545 const char *prog_name = prog->name; 5546 const struct btf_type *local_type; 5547 const char *local_name; 5548 __u32 local_id = relo->type_id; 5549 int err; 5550 5551 local_type = btf__type_by_id(local_btf, local_id); 5552 if (!local_type) 5553 return -EINVAL; 5554 5555 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5556 if (!local_name) 5557 return -EINVAL; 5558 5559 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5560 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5561 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5562 if (IS_ERR(cands)) { 5563 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5564 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5565 local_name, PTR_ERR(cands)); 5566 return PTR_ERR(cands); 5567 } 5568 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5569 if (err) { 5570 bpf_core_free_cands(cands); 5571 return err; 5572 } 5573 } 5574 5575 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5576 targ_res); 5577 } 5578 5579 static int 5580 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5581 { 5582 const struct btf_ext_info_sec *sec; 5583 struct bpf_core_relo_res targ_res; 5584 const struct bpf_core_relo *rec; 5585 const struct btf_ext_info *seg; 5586 struct hashmap_entry *entry; 5587 struct hashmap *cand_cache = NULL; 5588 struct bpf_program *prog; 5589 struct bpf_insn *insn; 5590 const char *sec_name; 5591 int i, err = 0, insn_idx, sec_idx; 5592 5593 if (obj->btf_ext->core_relo_info.len == 0) 5594 return 0; 5595 5596 if (targ_btf_path) { 5597 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5598 err = libbpf_get_error(obj->btf_vmlinux_override); 5599 if (err) { 5600 pr_warn("failed to parse target BTF: %d\n", err); 5601 return err; 5602 } 5603 } 5604 5605 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5606 if (IS_ERR(cand_cache)) { 5607 err = PTR_ERR(cand_cache); 5608 goto out; 5609 } 5610 5611 seg = &obj->btf_ext->core_relo_info; 5612 for_each_btf_ext_sec(seg, sec) { 5613 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5614 if (str_is_empty(sec_name)) { 5615 err = -EINVAL; 5616 goto out; 5617 } 5618 /* bpf_object's ELF is gone by now so it's not easy to find 5619 * section index by section name, but we can find *any* 5620 * bpf_program within desired section name and use it's 5621 * prog->sec_idx to do a proper search by section index and 5622 * instruction offset 5623 */ 5624 prog = NULL; 5625 for (i = 0; i < obj->nr_programs; i++) { 5626 prog = &obj->programs[i]; 5627 if (strcmp(prog->sec_name, sec_name) == 0) 5628 break; 5629 } 5630 if (!prog) { 5631 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5632 return -ENOENT; 5633 } 5634 sec_idx = prog->sec_idx; 5635 5636 pr_debug("sec '%s': found %d CO-RE relocations\n", 5637 sec_name, sec->num_info); 5638 5639 for_each_btf_ext_rec(seg, sec, i, rec) { 5640 if (rec->insn_off % BPF_INSN_SZ) 5641 return -EINVAL; 5642 insn_idx = rec->insn_off / BPF_INSN_SZ; 5643 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5644 if (!prog) { 5645 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5646 sec_name, insn_idx, i); 5647 err = -EINVAL; 5648 goto out; 5649 } 5650 /* no need to apply CO-RE relocation if the program is 5651 * not going to be loaded 5652 */ 5653 if (!prog->load) 5654 continue; 5655 5656 /* adjust insn_idx from section frame of reference to the local 5657 * program's frame of reference; (sub-)program code is not yet 5658 * relocated, so it's enough to just subtract in-section offset 5659 */ 5660 insn_idx = insn_idx - prog->sec_insn_off; 5661 if (insn_idx >= prog->insns_cnt) 5662 return -EINVAL; 5663 insn = &prog->insns[insn_idx]; 5664 5665 if (prog->obj->gen_loader) { 5666 err = record_relo_core(prog, rec, insn_idx); 5667 if (err) { 5668 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5669 prog->name, i, err); 5670 goto out; 5671 } 5672 continue; 5673 } 5674 5675 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5676 if (err) { 5677 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5678 prog->name, i, err); 5679 goto out; 5680 } 5681 5682 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5683 if (err) { 5684 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5685 prog->name, i, insn_idx, err); 5686 goto out; 5687 } 5688 } 5689 } 5690 5691 out: 5692 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5693 btf__free(obj->btf_vmlinux_override); 5694 obj->btf_vmlinux_override = NULL; 5695 5696 if (!IS_ERR_OR_NULL(cand_cache)) { 5697 hashmap__for_each_entry(cand_cache, entry, i) { 5698 bpf_core_free_cands(entry->value); 5699 } 5700 hashmap__free(cand_cache); 5701 } 5702 return err; 5703 } 5704 5705 /* Relocate data references within program code: 5706 * - map references; 5707 * - global variable references; 5708 * - extern references. 5709 */ 5710 static int 5711 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5712 { 5713 int i; 5714 5715 for (i = 0; i < prog->nr_reloc; i++) { 5716 struct reloc_desc *relo = &prog->reloc_desc[i]; 5717 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5718 struct extern_desc *ext; 5719 5720 switch (relo->type) { 5721 case RELO_LD64: 5722 if (obj->gen_loader) { 5723 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5724 insn[0].imm = relo->map_idx; 5725 } else { 5726 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5727 insn[0].imm = obj->maps[relo->map_idx].fd; 5728 } 5729 break; 5730 case RELO_DATA: 5731 insn[1].imm = insn[0].imm + relo->sym_off; 5732 if (obj->gen_loader) { 5733 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5734 insn[0].imm = relo->map_idx; 5735 } else { 5736 const struct bpf_map *map = &obj->maps[relo->map_idx]; 5737 5738 if (map->skipped) { 5739 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n", 5740 prog->name, i); 5741 return -ENOTSUP; 5742 } 5743 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5744 insn[0].imm = obj->maps[relo->map_idx].fd; 5745 } 5746 break; 5747 case RELO_EXTERN_VAR: 5748 ext = &obj->externs[relo->sym_off]; 5749 if (ext->type == EXT_KCFG) { 5750 if (obj->gen_loader) { 5751 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5752 insn[0].imm = obj->kconfig_map_idx; 5753 } else { 5754 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5755 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5756 } 5757 insn[1].imm = ext->kcfg.data_off; 5758 } else /* EXT_KSYM */ { 5759 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5760 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5761 insn[0].imm = ext->ksym.kernel_btf_id; 5762 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5763 } else { /* typeless ksyms or unresolved typed ksyms */ 5764 insn[0].imm = (__u32)ext->ksym.addr; 5765 insn[1].imm = ext->ksym.addr >> 32; 5766 } 5767 } 5768 break; 5769 case RELO_EXTERN_FUNC: 5770 ext = &obj->externs[relo->sym_off]; 5771 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5772 if (ext->is_set) { 5773 insn[0].imm = ext->ksym.kernel_btf_id; 5774 insn[0].off = ext->ksym.btf_fd_idx; 5775 } else { /* unresolved weak kfunc */ 5776 insn[0].imm = 0; 5777 insn[0].off = 0; 5778 } 5779 break; 5780 case RELO_SUBPROG_ADDR: 5781 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5782 pr_warn("prog '%s': relo #%d: bad insn\n", 5783 prog->name, i); 5784 return -EINVAL; 5785 } 5786 /* handled already */ 5787 break; 5788 case RELO_CALL: 5789 /* handled already */ 5790 break; 5791 case RELO_CORE: 5792 /* will be handled by bpf_program_record_relos() */ 5793 break; 5794 default: 5795 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5796 prog->name, i, relo->type); 5797 return -EINVAL; 5798 } 5799 } 5800 5801 return 0; 5802 } 5803 5804 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5805 const struct bpf_program *prog, 5806 const struct btf_ext_info *ext_info, 5807 void **prog_info, __u32 *prog_rec_cnt, 5808 __u32 *prog_rec_sz) 5809 { 5810 void *copy_start = NULL, *copy_end = NULL; 5811 void *rec, *rec_end, *new_prog_info; 5812 const struct btf_ext_info_sec *sec; 5813 size_t old_sz, new_sz; 5814 const char *sec_name; 5815 int i, off_adj; 5816 5817 for_each_btf_ext_sec(ext_info, sec) { 5818 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5819 if (!sec_name) 5820 return -EINVAL; 5821 if (strcmp(sec_name, prog->sec_name) != 0) 5822 continue; 5823 5824 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5825 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5826 5827 if (insn_off < prog->sec_insn_off) 5828 continue; 5829 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5830 break; 5831 5832 if (!copy_start) 5833 copy_start = rec; 5834 copy_end = rec + ext_info->rec_size; 5835 } 5836 5837 if (!copy_start) 5838 return -ENOENT; 5839 5840 /* append func/line info of a given (sub-)program to the main 5841 * program func/line info 5842 */ 5843 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5844 new_sz = old_sz + (copy_end - copy_start); 5845 new_prog_info = realloc(*prog_info, new_sz); 5846 if (!new_prog_info) 5847 return -ENOMEM; 5848 *prog_info = new_prog_info; 5849 *prog_rec_cnt = new_sz / ext_info->rec_size; 5850 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5851 5852 /* Kernel instruction offsets are in units of 8-byte 5853 * instructions, while .BTF.ext instruction offsets generated 5854 * by Clang are in units of bytes. So convert Clang offsets 5855 * into kernel offsets and adjust offset according to program 5856 * relocated position. 5857 */ 5858 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5859 rec = new_prog_info + old_sz; 5860 rec_end = new_prog_info + new_sz; 5861 for (; rec < rec_end; rec += ext_info->rec_size) { 5862 __u32 *insn_off = rec; 5863 5864 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5865 } 5866 *prog_rec_sz = ext_info->rec_size; 5867 return 0; 5868 } 5869 5870 return -ENOENT; 5871 } 5872 5873 static int 5874 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5875 struct bpf_program *main_prog, 5876 const struct bpf_program *prog) 5877 { 5878 int err; 5879 5880 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5881 * supprot func/line info 5882 */ 5883 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5884 return 0; 5885 5886 /* only attempt func info relocation if main program's func_info 5887 * relocation was successful 5888 */ 5889 if (main_prog != prog && !main_prog->func_info) 5890 goto line_info; 5891 5892 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5893 &main_prog->func_info, 5894 &main_prog->func_info_cnt, 5895 &main_prog->func_info_rec_size); 5896 if (err) { 5897 if (err != -ENOENT) { 5898 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5899 prog->name, err); 5900 return err; 5901 } 5902 if (main_prog->func_info) { 5903 /* 5904 * Some info has already been found but has problem 5905 * in the last btf_ext reloc. Must have to error out. 5906 */ 5907 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5908 return err; 5909 } 5910 /* Have problem loading the very first info. Ignore the rest. */ 5911 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5912 prog->name); 5913 } 5914 5915 line_info: 5916 /* don't relocate line info if main program's relocation failed */ 5917 if (main_prog != prog && !main_prog->line_info) 5918 return 0; 5919 5920 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5921 &main_prog->line_info, 5922 &main_prog->line_info_cnt, 5923 &main_prog->line_info_rec_size); 5924 if (err) { 5925 if (err != -ENOENT) { 5926 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5927 prog->name, err); 5928 return err; 5929 } 5930 if (main_prog->line_info) { 5931 /* 5932 * Some info has already been found but has problem 5933 * in the last btf_ext reloc. Must have to error out. 5934 */ 5935 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5936 return err; 5937 } 5938 /* Have problem loading the very first info. Ignore the rest. */ 5939 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5940 prog->name); 5941 } 5942 return 0; 5943 } 5944 5945 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5946 { 5947 size_t insn_idx = *(const size_t *)key; 5948 const struct reloc_desc *relo = elem; 5949 5950 if (insn_idx == relo->insn_idx) 5951 return 0; 5952 return insn_idx < relo->insn_idx ? -1 : 1; 5953 } 5954 5955 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5956 { 5957 if (!prog->nr_reloc) 5958 return NULL; 5959 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5960 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5961 } 5962 5963 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5964 { 5965 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5966 struct reloc_desc *relos; 5967 int i; 5968 5969 if (main_prog == subprog) 5970 return 0; 5971 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5972 if (!relos) 5973 return -ENOMEM; 5974 if (subprog->nr_reloc) 5975 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5976 sizeof(*relos) * subprog->nr_reloc); 5977 5978 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5979 relos[i].insn_idx += subprog->sub_insn_off; 5980 /* After insn_idx adjustment the 'relos' array is still sorted 5981 * by insn_idx and doesn't break bsearch. 5982 */ 5983 main_prog->reloc_desc = relos; 5984 main_prog->nr_reloc = new_cnt; 5985 return 0; 5986 } 5987 5988 static int 5989 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5990 struct bpf_program *prog) 5991 { 5992 size_t sub_insn_idx, insn_idx, new_cnt; 5993 struct bpf_program *subprog; 5994 struct bpf_insn *insns, *insn; 5995 struct reloc_desc *relo; 5996 int err; 5997 5998 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 5999 if (err) 6000 return err; 6001 6002 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6003 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6004 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6005 continue; 6006 6007 relo = find_prog_insn_relo(prog, insn_idx); 6008 if (relo && relo->type == RELO_EXTERN_FUNC) 6009 /* kfunc relocations will be handled later 6010 * in bpf_object__relocate_data() 6011 */ 6012 continue; 6013 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6014 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6015 prog->name, insn_idx, relo->type); 6016 return -LIBBPF_ERRNO__RELOC; 6017 } 6018 if (relo) { 6019 /* sub-program instruction index is a combination of 6020 * an offset of a symbol pointed to by relocation and 6021 * call instruction's imm field; for global functions, 6022 * call always has imm = -1, but for static functions 6023 * relocation is against STT_SECTION and insn->imm 6024 * points to a start of a static function 6025 * 6026 * for subprog addr relocation, the relo->sym_off + insn->imm is 6027 * the byte offset in the corresponding section. 6028 */ 6029 if (relo->type == RELO_CALL) 6030 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6031 else 6032 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6033 } else if (insn_is_pseudo_func(insn)) { 6034 /* 6035 * RELO_SUBPROG_ADDR relo is always emitted even if both 6036 * functions are in the same section, so it shouldn't reach here. 6037 */ 6038 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6039 prog->name, insn_idx); 6040 return -LIBBPF_ERRNO__RELOC; 6041 } else { 6042 /* if subprogram call is to a static function within 6043 * the same ELF section, there won't be any relocation 6044 * emitted, but it also means there is no additional 6045 * offset necessary, insns->imm is relative to 6046 * instruction's original position within the section 6047 */ 6048 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6049 } 6050 6051 /* we enforce that sub-programs should be in .text section */ 6052 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6053 if (!subprog) { 6054 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6055 prog->name); 6056 return -LIBBPF_ERRNO__RELOC; 6057 } 6058 6059 /* if it's the first call instruction calling into this 6060 * subprogram (meaning this subprog hasn't been processed 6061 * yet) within the context of current main program: 6062 * - append it at the end of main program's instructions blog; 6063 * - process is recursively, while current program is put on hold; 6064 * - if that subprogram calls some other not yet processes 6065 * subprogram, same thing will happen recursively until 6066 * there are no more unprocesses subprograms left to append 6067 * and relocate. 6068 */ 6069 if (subprog->sub_insn_off == 0) { 6070 subprog->sub_insn_off = main_prog->insns_cnt; 6071 6072 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6073 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6074 if (!insns) { 6075 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6076 return -ENOMEM; 6077 } 6078 main_prog->insns = insns; 6079 main_prog->insns_cnt = new_cnt; 6080 6081 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6082 subprog->insns_cnt * sizeof(*insns)); 6083 6084 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6085 main_prog->name, subprog->insns_cnt, subprog->name); 6086 6087 /* The subprog insns are now appended. Append its relos too. */ 6088 err = append_subprog_relos(main_prog, subprog); 6089 if (err) 6090 return err; 6091 err = bpf_object__reloc_code(obj, main_prog, subprog); 6092 if (err) 6093 return err; 6094 } 6095 6096 /* main_prog->insns memory could have been re-allocated, so 6097 * calculate pointer again 6098 */ 6099 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6100 /* calculate correct instruction position within current main 6101 * prog; each main prog can have a different set of 6102 * subprograms appended (potentially in different order as 6103 * well), so position of any subprog can be different for 6104 * different main programs */ 6105 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6106 6107 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6108 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6109 } 6110 6111 return 0; 6112 } 6113 6114 /* 6115 * Relocate sub-program calls. 6116 * 6117 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6118 * main prog) is processed separately. For each subprog (non-entry functions, 6119 * that can be called from either entry progs or other subprogs) gets their 6120 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6121 * hasn't been yet appended and relocated within current main prog. Once its 6122 * relocated, sub_insn_off will point at the position within current main prog 6123 * where given subprog was appended. This will further be used to relocate all 6124 * the call instructions jumping into this subprog. 6125 * 6126 * We start with main program and process all call instructions. If the call 6127 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6128 * is zero), subprog instructions are appended at the end of main program's 6129 * instruction array. Then main program is "put on hold" while we recursively 6130 * process newly appended subprogram. If that subprogram calls into another 6131 * subprogram that hasn't been appended, new subprogram is appended again to 6132 * the *main* prog's instructions (subprog's instructions are always left 6133 * untouched, as they need to be in unmodified state for subsequent main progs 6134 * and subprog instructions are always sent only as part of a main prog) and 6135 * the process continues recursively. Once all the subprogs called from a main 6136 * prog or any of its subprogs are appended (and relocated), all their 6137 * positions within finalized instructions array are known, so it's easy to 6138 * rewrite call instructions with correct relative offsets, corresponding to 6139 * desired target subprog. 6140 * 6141 * Its important to realize that some subprogs might not be called from some 6142 * main prog and any of its called/used subprogs. Those will keep their 6143 * subprog->sub_insn_off as zero at all times and won't be appended to current 6144 * main prog and won't be relocated within the context of current main prog. 6145 * They might still be used from other main progs later. 6146 * 6147 * Visually this process can be shown as below. Suppose we have two main 6148 * programs mainA and mainB and BPF object contains three subprogs: subA, 6149 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6150 * subC both call subB: 6151 * 6152 * +--------+ +-------+ 6153 * | v v | 6154 * +--+---+ +--+-+-+ +---+--+ 6155 * | subA | | subB | | subC | 6156 * +--+---+ +------+ +---+--+ 6157 * ^ ^ 6158 * | | 6159 * +---+-------+ +------+----+ 6160 * | mainA | | mainB | 6161 * +-----------+ +-----------+ 6162 * 6163 * We'll start relocating mainA, will find subA, append it and start 6164 * processing sub A recursively: 6165 * 6166 * +-----------+------+ 6167 * | mainA | subA | 6168 * +-----------+------+ 6169 * 6170 * At this point we notice that subB is used from subA, so we append it and 6171 * relocate (there are no further subcalls from subB): 6172 * 6173 * +-----------+------+------+ 6174 * | mainA | subA | subB | 6175 * +-----------+------+------+ 6176 * 6177 * At this point, we relocate subA calls, then go one level up and finish with 6178 * relocatin mainA calls. mainA is done. 6179 * 6180 * For mainB process is similar but results in different order. We start with 6181 * mainB and skip subA and subB, as mainB never calls them (at least 6182 * directly), but we see subC is needed, so we append and start processing it: 6183 * 6184 * +-----------+------+ 6185 * | mainB | subC | 6186 * +-----------+------+ 6187 * Now we see subC needs subB, so we go back to it, append and relocate it: 6188 * 6189 * +-----------+------+------+ 6190 * | mainB | subC | subB | 6191 * +-----------+------+------+ 6192 * 6193 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6194 */ 6195 static int 6196 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6197 { 6198 struct bpf_program *subprog; 6199 int i, err; 6200 6201 /* mark all subprogs as not relocated (yet) within the context of 6202 * current main program 6203 */ 6204 for (i = 0; i < obj->nr_programs; i++) { 6205 subprog = &obj->programs[i]; 6206 if (!prog_is_subprog(obj, subprog)) 6207 continue; 6208 6209 subprog->sub_insn_off = 0; 6210 } 6211 6212 err = bpf_object__reloc_code(obj, prog, prog); 6213 if (err) 6214 return err; 6215 6216 6217 return 0; 6218 } 6219 6220 static void 6221 bpf_object__free_relocs(struct bpf_object *obj) 6222 { 6223 struct bpf_program *prog; 6224 int i; 6225 6226 /* free up relocation descriptors */ 6227 for (i = 0; i < obj->nr_programs; i++) { 6228 prog = &obj->programs[i]; 6229 zfree(&prog->reloc_desc); 6230 prog->nr_reloc = 0; 6231 } 6232 } 6233 6234 static int cmp_relocs(const void *_a, const void *_b) 6235 { 6236 const struct reloc_desc *a = _a; 6237 const struct reloc_desc *b = _b; 6238 6239 if (a->insn_idx != b->insn_idx) 6240 return a->insn_idx < b->insn_idx ? -1 : 1; 6241 6242 /* no two relocations should have the same insn_idx, but ... */ 6243 if (a->type != b->type) 6244 return a->type < b->type ? -1 : 1; 6245 6246 return 0; 6247 } 6248 6249 static void bpf_object__sort_relos(struct bpf_object *obj) 6250 { 6251 int i; 6252 6253 for (i = 0; i < obj->nr_programs; i++) { 6254 struct bpf_program *p = &obj->programs[i]; 6255 6256 if (!p->nr_reloc) 6257 continue; 6258 6259 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6260 } 6261 } 6262 6263 static int 6264 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6265 { 6266 struct bpf_program *prog; 6267 size_t i, j; 6268 int err; 6269 6270 if (obj->btf_ext) { 6271 err = bpf_object__relocate_core(obj, targ_btf_path); 6272 if (err) { 6273 pr_warn("failed to perform CO-RE relocations: %d\n", 6274 err); 6275 return err; 6276 } 6277 if (obj->gen_loader) 6278 bpf_object__sort_relos(obj); 6279 } 6280 6281 /* Before relocating calls pre-process relocations and mark 6282 * few ld_imm64 instructions that points to subprogs. 6283 * Otherwise bpf_object__reloc_code() later would have to consider 6284 * all ld_imm64 insns as relocation candidates. That would 6285 * reduce relocation speed, since amount of find_prog_insn_relo() 6286 * would increase and most of them will fail to find a relo. 6287 */ 6288 for (i = 0; i < obj->nr_programs; i++) { 6289 prog = &obj->programs[i]; 6290 for (j = 0; j < prog->nr_reloc; j++) { 6291 struct reloc_desc *relo = &prog->reloc_desc[j]; 6292 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6293 6294 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6295 if (relo->type == RELO_SUBPROG_ADDR) 6296 insn[0].src_reg = BPF_PSEUDO_FUNC; 6297 } 6298 } 6299 6300 /* relocate subprogram calls and append used subprograms to main 6301 * programs; each copy of subprogram code needs to be relocated 6302 * differently for each main program, because its code location might 6303 * have changed. 6304 * Append subprog relos to main programs to allow data relos to be 6305 * processed after text is completely relocated. 6306 */ 6307 for (i = 0; i < obj->nr_programs; i++) { 6308 prog = &obj->programs[i]; 6309 /* sub-program's sub-calls are relocated within the context of 6310 * its main program only 6311 */ 6312 if (prog_is_subprog(obj, prog)) 6313 continue; 6314 if (!prog->load) 6315 continue; 6316 6317 err = bpf_object__relocate_calls(obj, prog); 6318 if (err) { 6319 pr_warn("prog '%s': failed to relocate calls: %d\n", 6320 prog->name, err); 6321 return err; 6322 } 6323 } 6324 /* Process data relos for main programs */ 6325 for (i = 0; i < obj->nr_programs; i++) { 6326 prog = &obj->programs[i]; 6327 if (prog_is_subprog(obj, prog)) 6328 continue; 6329 if (!prog->load) 6330 continue; 6331 err = bpf_object__relocate_data(obj, prog); 6332 if (err) { 6333 pr_warn("prog '%s': failed to relocate data references: %d\n", 6334 prog->name, err); 6335 return err; 6336 } 6337 } 6338 if (!obj->gen_loader) 6339 bpf_object__free_relocs(obj); 6340 return 0; 6341 } 6342 6343 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6344 Elf64_Shdr *shdr, Elf_Data *data); 6345 6346 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6347 Elf64_Shdr *shdr, Elf_Data *data) 6348 { 6349 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6350 int i, j, nrels, new_sz; 6351 const struct btf_var_secinfo *vi = NULL; 6352 const struct btf_type *sec, *var, *def; 6353 struct bpf_map *map = NULL, *targ_map = NULL; 6354 struct bpf_program *targ_prog = NULL; 6355 bool is_prog_array, is_map_in_map; 6356 const struct btf_member *member; 6357 const char *name, *mname, *type; 6358 unsigned int moff; 6359 Elf64_Sym *sym; 6360 Elf64_Rel *rel; 6361 void *tmp; 6362 6363 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6364 return -EINVAL; 6365 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6366 if (!sec) 6367 return -EINVAL; 6368 6369 nrels = shdr->sh_size / shdr->sh_entsize; 6370 for (i = 0; i < nrels; i++) { 6371 rel = elf_rel_by_idx(data, i); 6372 if (!rel) { 6373 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6374 return -LIBBPF_ERRNO__FORMAT; 6375 } 6376 6377 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6378 if (!sym) { 6379 pr_warn(".maps relo #%d: symbol %zx not found\n", 6380 i, (size_t)ELF64_R_SYM(rel->r_info)); 6381 return -LIBBPF_ERRNO__FORMAT; 6382 } 6383 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6384 6385 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6386 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6387 (size_t)rel->r_offset, sym->st_name, name); 6388 6389 for (j = 0; j < obj->nr_maps; j++) { 6390 map = &obj->maps[j]; 6391 if (map->sec_idx != obj->efile.btf_maps_shndx) 6392 continue; 6393 6394 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6395 if (vi->offset <= rel->r_offset && 6396 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6397 break; 6398 } 6399 if (j == obj->nr_maps) { 6400 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6401 i, name, (size_t)rel->r_offset); 6402 return -EINVAL; 6403 } 6404 6405 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6406 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6407 type = is_map_in_map ? "map" : "prog"; 6408 if (is_map_in_map) { 6409 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6410 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6411 i, name); 6412 return -LIBBPF_ERRNO__RELOC; 6413 } 6414 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6415 map->def.key_size != sizeof(int)) { 6416 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6417 i, map->name, sizeof(int)); 6418 return -EINVAL; 6419 } 6420 targ_map = bpf_object__find_map_by_name(obj, name); 6421 if (!targ_map) { 6422 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6423 i, name); 6424 return -ESRCH; 6425 } 6426 } else if (is_prog_array) { 6427 targ_prog = bpf_object__find_program_by_name(obj, name); 6428 if (!targ_prog) { 6429 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6430 i, name); 6431 return -ESRCH; 6432 } 6433 if (targ_prog->sec_idx != sym->st_shndx || 6434 targ_prog->sec_insn_off * 8 != sym->st_value || 6435 prog_is_subprog(obj, targ_prog)) { 6436 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6437 i, name); 6438 return -LIBBPF_ERRNO__RELOC; 6439 } 6440 } else { 6441 return -EINVAL; 6442 } 6443 6444 var = btf__type_by_id(obj->btf, vi->type); 6445 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6446 if (btf_vlen(def) == 0) 6447 return -EINVAL; 6448 member = btf_members(def) + btf_vlen(def) - 1; 6449 mname = btf__name_by_offset(obj->btf, member->name_off); 6450 if (strcmp(mname, "values")) 6451 return -EINVAL; 6452 6453 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6454 if (rel->r_offset - vi->offset < moff) 6455 return -EINVAL; 6456 6457 moff = rel->r_offset - vi->offset - moff; 6458 /* here we use BPF pointer size, which is always 64 bit, as we 6459 * are parsing ELF that was built for BPF target 6460 */ 6461 if (moff % bpf_ptr_sz) 6462 return -EINVAL; 6463 moff /= bpf_ptr_sz; 6464 if (moff >= map->init_slots_sz) { 6465 new_sz = moff + 1; 6466 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6467 if (!tmp) 6468 return -ENOMEM; 6469 map->init_slots = tmp; 6470 memset(map->init_slots + map->init_slots_sz, 0, 6471 (new_sz - map->init_slots_sz) * host_ptr_sz); 6472 map->init_slots_sz = new_sz; 6473 } 6474 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6475 6476 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6477 i, map->name, moff, type, name); 6478 } 6479 6480 return 0; 6481 } 6482 6483 static int bpf_object__collect_relos(struct bpf_object *obj) 6484 { 6485 int i, err; 6486 6487 for (i = 0; i < obj->efile.sec_cnt; i++) { 6488 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6489 Elf64_Shdr *shdr; 6490 Elf_Data *data; 6491 int idx; 6492 6493 if (sec_desc->sec_type != SEC_RELO) 6494 continue; 6495 6496 shdr = sec_desc->shdr; 6497 data = sec_desc->data; 6498 idx = shdr->sh_info; 6499 6500 if (shdr->sh_type != SHT_REL) { 6501 pr_warn("internal error at %d\n", __LINE__); 6502 return -LIBBPF_ERRNO__INTERNAL; 6503 } 6504 6505 if (idx == obj->efile.st_ops_shndx) 6506 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6507 else if (idx == obj->efile.btf_maps_shndx) 6508 err = bpf_object__collect_map_relos(obj, shdr, data); 6509 else 6510 err = bpf_object__collect_prog_relos(obj, shdr, data); 6511 if (err) 6512 return err; 6513 } 6514 6515 bpf_object__sort_relos(obj); 6516 return 0; 6517 } 6518 6519 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6520 { 6521 if (BPF_CLASS(insn->code) == BPF_JMP && 6522 BPF_OP(insn->code) == BPF_CALL && 6523 BPF_SRC(insn->code) == BPF_K && 6524 insn->src_reg == 0 && 6525 insn->dst_reg == 0) { 6526 *func_id = insn->imm; 6527 return true; 6528 } 6529 return false; 6530 } 6531 6532 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6533 { 6534 struct bpf_insn *insn = prog->insns; 6535 enum bpf_func_id func_id; 6536 int i; 6537 6538 if (obj->gen_loader) 6539 return 0; 6540 6541 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6542 if (!insn_is_helper_call(insn, &func_id)) 6543 continue; 6544 6545 /* on kernels that don't yet support 6546 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6547 * to bpf_probe_read() which works well for old kernels 6548 */ 6549 switch (func_id) { 6550 case BPF_FUNC_probe_read_kernel: 6551 case BPF_FUNC_probe_read_user: 6552 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6553 insn->imm = BPF_FUNC_probe_read; 6554 break; 6555 case BPF_FUNC_probe_read_kernel_str: 6556 case BPF_FUNC_probe_read_user_str: 6557 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6558 insn->imm = BPF_FUNC_probe_read_str; 6559 break; 6560 default: 6561 break; 6562 } 6563 } 6564 return 0; 6565 } 6566 6567 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6568 int *btf_obj_fd, int *btf_type_id); 6569 6570 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6571 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6572 struct bpf_prog_load_opts *opts, long cookie) 6573 { 6574 enum sec_def_flags def = cookie; 6575 6576 /* old kernels might not support specifying expected_attach_type */ 6577 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6578 opts->expected_attach_type = 0; 6579 6580 if (def & SEC_SLEEPABLE) 6581 opts->prog_flags |= BPF_F_SLEEPABLE; 6582 6583 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6584 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6585 6586 if (def & SEC_DEPRECATED) 6587 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6588 prog->sec_name); 6589 6590 if ((prog->type == BPF_PROG_TYPE_TRACING || 6591 prog->type == BPF_PROG_TYPE_LSM || 6592 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6593 int btf_obj_fd = 0, btf_type_id = 0, err; 6594 const char *attach_name; 6595 6596 attach_name = strchr(prog->sec_name, '/') + 1; 6597 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6598 if (err) 6599 return err; 6600 6601 /* cache resolved BTF FD and BTF type ID in the prog */ 6602 prog->attach_btf_obj_fd = btf_obj_fd; 6603 prog->attach_btf_id = btf_type_id; 6604 6605 /* but by now libbpf common logic is not utilizing 6606 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6607 * this callback is called after opts were populated by 6608 * libbpf, so this callback has to update opts explicitly here 6609 */ 6610 opts->attach_btf_obj_fd = btf_obj_fd; 6611 opts->attach_btf_id = btf_type_id; 6612 } 6613 return 0; 6614 } 6615 6616 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6617 struct bpf_insn *insns, int insns_cnt, 6618 const char *license, __u32 kern_version, 6619 int *prog_fd) 6620 { 6621 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6622 const char *prog_name = NULL; 6623 char *cp, errmsg[STRERR_BUFSIZE]; 6624 size_t log_buf_size = 0; 6625 char *log_buf = NULL, *tmp; 6626 int btf_fd, ret, err; 6627 bool own_log_buf = true; 6628 __u32 log_level = prog->log_level; 6629 6630 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6631 /* 6632 * The program type must be set. Most likely we couldn't find a proper 6633 * section definition at load time, and thus we didn't infer the type. 6634 */ 6635 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6636 prog->name, prog->sec_name); 6637 return -EINVAL; 6638 } 6639 6640 if (!insns || !insns_cnt) 6641 return -EINVAL; 6642 6643 load_attr.expected_attach_type = prog->expected_attach_type; 6644 if (kernel_supports(obj, FEAT_PROG_NAME)) 6645 prog_name = prog->name; 6646 load_attr.attach_prog_fd = prog->attach_prog_fd; 6647 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6648 load_attr.attach_btf_id = prog->attach_btf_id; 6649 load_attr.kern_version = kern_version; 6650 load_attr.prog_ifindex = prog->prog_ifindex; 6651 6652 /* specify func_info/line_info only if kernel supports them */ 6653 btf_fd = bpf_object__btf_fd(obj); 6654 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6655 load_attr.prog_btf_fd = btf_fd; 6656 load_attr.func_info = prog->func_info; 6657 load_attr.func_info_rec_size = prog->func_info_rec_size; 6658 load_attr.func_info_cnt = prog->func_info_cnt; 6659 load_attr.line_info = prog->line_info; 6660 load_attr.line_info_rec_size = prog->line_info_rec_size; 6661 load_attr.line_info_cnt = prog->line_info_cnt; 6662 } 6663 load_attr.log_level = log_level; 6664 load_attr.prog_flags = prog->prog_flags; 6665 load_attr.fd_array = obj->fd_array; 6666 6667 /* adjust load_attr if sec_def provides custom preload callback */ 6668 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6669 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6670 if (err < 0) { 6671 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6672 prog->name, err); 6673 return err; 6674 } 6675 } 6676 6677 if (obj->gen_loader) { 6678 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6679 license, insns, insns_cnt, &load_attr, 6680 prog - obj->programs); 6681 *prog_fd = -1; 6682 return 0; 6683 } 6684 6685 retry_load: 6686 /* if log_level is zero, we don't request logs initiallly even if 6687 * custom log_buf is specified; if the program load fails, then we'll 6688 * bump log_level to 1 and use either custom log_buf or we'll allocate 6689 * our own and retry the load to get details on what failed 6690 */ 6691 if (log_level) { 6692 if (prog->log_buf) { 6693 log_buf = prog->log_buf; 6694 log_buf_size = prog->log_size; 6695 own_log_buf = false; 6696 } else if (obj->log_buf) { 6697 log_buf = obj->log_buf; 6698 log_buf_size = obj->log_size; 6699 own_log_buf = false; 6700 } else { 6701 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6702 tmp = realloc(log_buf, log_buf_size); 6703 if (!tmp) { 6704 ret = -ENOMEM; 6705 goto out; 6706 } 6707 log_buf = tmp; 6708 log_buf[0] = '\0'; 6709 own_log_buf = true; 6710 } 6711 } 6712 6713 load_attr.log_buf = log_buf; 6714 load_attr.log_size = log_buf_size; 6715 load_attr.log_level = log_level; 6716 6717 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6718 if (ret >= 0) { 6719 if (log_level && own_log_buf) { 6720 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6721 prog->name, log_buf); 6722 } 6723 6724 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6725 struct bpf_map *map; 6726 int i; 6727 6728 for (i = 0; i < obj->nr_maps; i++) { 6729 map = &prog->obj->maps[i]; 6730 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6731 continue; 6732 6733 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6734 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6735 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6736 prog->name, map->real_name, cp); 6737 /* Don't fail hard if can't bind rodata. */ 6738 } 6739 } 6740 } 6741 6742 *prog_fd = ret; 6743 ret = 0; 6744 goto out; 6745 } 6746 6747 if (log_level == 0) { 6748 log_level = 1; 6749 goto retry_load; 6750 } 6751 /* On ENOSPC, increase log buffer size and retry, unless custom 6752 * log_buf is specified. 6753 * Be careful to not overflow u32, though. Kernel's log buf size limit 6754 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6755 * multiply by 2 unless we are sure we'll fit within 32 bits. 6756 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6757 */ 6758 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6759 goto retry_load; 6760 6761 ret = -errno; 6762 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6763 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6764 pr_perm_msg(ret); 6765 6766 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6767 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6768 prog->name, log_buf); 6769 } 6770 if (insns_cnt >= BPF_MAXINSNS) { 6771 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n", 6772 prog->name, insns_cnt, BPF_MAXINSNS); 6773 } 6774 6775 out: 6776 if (own_log_buf) 6777 free(log_buf); 6778 return ret; 6779 } 6780 6781 static int bpf_program_record_relos(struct bpf_program *prog) 6782 { 6783 struct bpf_object *obj = prog->obj; 6784 int i; 6785 6786 for (i = 0; i < prog->nr_reloc; i++) { 6787 struct reloc_desc *relo = &prog->reloc_desc[i]; 6788 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6789 6790 switch (relo->type) { 6791 case RELO_EXTERN_VAR: 6792 if (ext->type != EXT_KSYM) 6793 continue; 6794 bpf_gen__record_extern(obj->gen_loader, ext->name, 6795 ext->is_weak, !ext->ksym.type_id, 6796 BTF_KIND_VAR, relo->insn_idx); 6797 break; 6798 case RELO_EXTERN_FUNC: 6799 bpf_gen__record_extern(obj->gen_loader, ext->name, 6800 ext->is_weak, false, BTF_KIND_FUNC, 6801 relo->insn_idx); 6802 break; 6803 case RELO_CORE: { 6804 struct bpf_core_relo cr = { 6805 .insn_off = relo->insn_idx * 8, 6806 .type_id = relo->core_relo->type_id, 6807 .access_str_off = relo->core_relo->access_str_off, 6808 .kind = relo->core_relo->kind, 6809 }; 6810 6811 bpf_gen__record_relo_core(obj->gen_loader, &cr); 6812 break; 6813 } 6814 default: 6815 continue; 6816 } 6817 } 6818 return 0; 6819 } 6820 6821 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6822 const char *license, __u32 kern_ver) 6823 { 6824 int err = 0, fd, i; 6825 6826 if (obj->loaded) { 6827 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6828 return libbpf_err(-EINVAL); 6829 } 6830 6831 if (prog->instances.nr < 0 || !prog->instances.fds) { 6832 if (prog->preprocessor) { 6833 pr_warn("Internal error: can't load program '%s'\n", 6834 prog->name); 6835 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6836 } 6837 6838 prog->instances.fds = malloc(sizeof(int)); 6839 if (!prog->instances.fds) { 6840 pr_warn("Not enough memory for BPF fds\n"); 6841 return libbpf_err(-ENOMEM); 6842 } 6843 prog->instances.nr = 1; 6844 prog->instances.fds[0] = -1; 6845 } 6846 6847 if (!prog->preprocessor) { 6848 if (prog->instances.nr != 1) { 6849 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6850 prog->name, prog->instances.nr); 6851 } 6852 if (obj->gen_loader) 6853 bpf_program_record_relos(prog); 6854 err = bpf_object_load_prog_instance(obj, prog, 6855 prog->insns, prog->insns_cnt, 6856 license, kern_ver, &fd); 6857 if (!err) 6858 prog->instances.fds[0] = fd; 6859 goto out; 6860 } 6861 6862 for (i = 0; i < prog->instances.nr; i++) { 6863 struct bpf_prog_prep_result result; 6864 bpf_program_prep_t preprocessor = prog->preprocessor; 6865 6866 memset(&result, 0, sizeof(result)); 6867 err = preprocessor(prog, i, prog->insns, 6868 prog->insns_cnt, &result); 6869 if (err) { 6870 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6871 i, prog->name); 6872 goto out; 6873 } 6874 6875 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6876 pr_debug("Skip loading the %dth instance of program '%s'\n", 6877 i, prog->name); 6878 prog->instances.fds[i] = -1; 6879 if (result.pfd) 6880 *result.pfd = -1; 6881 continue; 6882 } 6883 6884 err = bpf_object_load_prog_instance(obj, prog, 6885 result.new_insn_ptr, result.new_insn_cnt, 6886 license, kern_ver, &fd); 6887 if (err) { 6888 pr_warn("Loading the %dth instance of program '%s' failed\n", 6889 i, prog->name); 6890 goto out; 6891 } 6892 6893 if (result.pfd) 6894 *result.pfd = fd; 6895 prog->instances.fds[i] = fd; 6896 } 6897 out: 6898 if (err) 6899 pr_warn("failed to load program '%s'\n", prog->name); 6900 return libbpf_err(err); 6901 } 6902 6903 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 6904 { 6905 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 6906 } 6907 6908 static int 6909 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6910 { 6911 struct bpf_program *prog; 6912 size_t i; 6913 int err; 6914 6915 for (i = 0; i < obj->nr_programs; i++) { 6916 prog = &obj->programs[i]; 6917 err = bpf_object__sanitize_prog(obj, prog); 6918 if (err) 6919 return err; 6920 } 6921 6922 for (i = 0; i < obj->nr_programs; i++) { 6923 prog = &obj->programs[i]; 6924 if (prog_is_subprog(obj, prog)) 6925 continue; 6926 if (!prog->load) { 6927 pr_debug("prog '%s': skipped loading\n", prog->name); 6928 continue; 6929 } 6930 prog->log_level |= log_level; 6931 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 6932 if (err) 6933 return err; 6934 } 6935 if (obj->gen_loader) 6936 bpf_object__free_relocs(obj); 6937 return 0; 6938 } 6939 6940 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6941 6942 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6943 { 6944 struct bpf_program *prog; 6945 int err; 6946 6947 bpf_object__for_each_program(prog, obj) { 6948 prog->sec_def = find_sec_def(prog->sec_name); 6949 if (!prog->sec_def) { 6950 /* couldn't guess, but user might manually specify */ 6951 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6952 prog->name, prog->sec_name); 6953 continue; 6954 } 6955 6956 bpf_program__set_type(prog, prog->sec_def->prog_type); 6957 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6958 6959 #pragma GCC diagnostic push 6960 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6961 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6962 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6963 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6964 #pragma GCC diagnostic pop 6965 6966 /* sec_def can have custom callback which should be called 6967 * after bpf_program is initialized to adjust its properties 6968 */ 6969 if (prog->sec_def->prog_setup_fn) { 6970 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 6971 if (err < 0) { 6972 pr_warn("prog '%s': failed to initialize: %d\n", 6973 prog->name, err); 6974 return err; 6975 } 6976 } 6977 } 6978 6979 return 0; 6980 } 6981 6982 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6983 const struct bpf_object_open_opts *opts) 6984 { 6985 const char *obj_name, *kconfig, *btf_tmp_path; 6986 struct bpf_object *obj; 6987 char tmp_name[64]; 6988 int err; 6989 char *log_buf; 6990 size_t log_size; 6991 __u32 log_level; 6992 6993 if (elf_version(EV_CURRENT) == EV_NONE) { 6994 pr_warn("failed to init libelf for %s\n", 6995 path ? : "(mem buf)"); 6996 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6997 } 6998 6999 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7000 return ERR_PTR(-EINVAL); 7001 7002 obj_name = OPTS_GET(opts, object_name, NULL); 7003 if (obj_buf) { 7004 if (!obj_name) { 7005 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7006 (unsigned long)obj_buf, 7007 (unsigned long)obj_buf_sz); 7008 obj_name = tmp_name; 7009 } 7010 path = obj_name; 7011 pr_debug("loading object '%s' from buffer\n", obj_name); 7012 } 7013 7014 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7015 log_size = OPTS_GET(opts, kernel_log_size, 0); 7016 log_level = OPTS_GET(opts, kernel_log_level, 0); 7017 if (log_size > UINT_MAX) 7018 return ERR_PTR(-EINVAL); 7019 if (log_size && !log_buf) 7020 return ERR_PTR(-EINVAL); 7021 7022 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7023 if (IS_ERR(obj)) 7024 return obj; 7025 7026 obj->log_buf = log_buf; 7027 obj->log_size = log_size; 7028 obj->log_level = log_level; 7029 7030 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7031 if (btf_tmp_path) { 7032 if (strlen(btf_tmp_path) >= PATH_MAX) { 7033 err = -ENAMETOOLONG; 7034 goto out; 7035 } 7036 obj->btf_custom_path = strdup(btf_tmp_path); 7037 if (!obj->btf_custom_path) { 7038 err = -ENOMEM; 7039 goto out; 7040 } 7041 } 7042 7043 kconfig = OPTS_GET(opts, kconfig, NULL); 7044 if (kconfig) { 7045 obj->kconfig = strdup(kconfig); 7046 if (!obj->kconfig) { 7047 err = -ENOMEM; 7048 goto out; 7049 } 7050 } 7051 7052 err = bpf_object__elf_init(obj); 7053 err = err ? : bpf_object__check_endianness(obj); 7054 err = err ? : bpf_object__elf_collect(obj); 7055 err = err ? : bpf_object__collect_externs(obj); 7056 err = err ? : bpf_object__finalize_btf(obj); 7057 err = err ? : bpf_object__init_maps(obj, opts); 7058 err = err ? : bpf_object_init_progs(obj, opts); 7059 err = err ? : bpf_object__collect_relos(obj); 7060 if (err) 7061 goto out; 7062 7063 bpf_object__elf_finish(obj); 7064 7065 return obj; 7066 out: 7067 bpf_object__close(obj); 7068 return ERR_PTR(err); 7069 } 7070 7071 static struct bpf_object * 7072 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7073 { 7074 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7075 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7076 ); 7077 7078 /* param validation */ 7079 if (!attr->file) 7080 return NULL; 7081 7082 pr_debug("loading %s\n", attr->file); 7083 return bpf_object_open(attr->file, NULL, 0, &opts); 7084 } 7085 7086 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7087 { 7088 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7089 } 7090 7091 struct bpf_object *bpf_object__open(const char *path) 7092 { 7093 struct bpf_object_open_attr attr = { 7094 .file = path, 7095 .prog_type = BPF_PROG_TYPE_UNSPEC, 7096 }; 7097 7098 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7099 } 7100 7101 struct bpf_object * 7102 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7103 { 7104 if (!path) 7105 return libbpf_err_ptr(-EINVAL); 7106 7107 pr_debug("loading %s\n", path); 7108 7109 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7110 } 7111 7112 struct bpf_object * 7113 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7114 const struct bpf_object_open_opts *opts) 7115 { 7116 if (!obj_buf || obj_buf_sz == 0) 7117 return libbpf_err_ptr(-EINVAL); 7118 7119 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7120 } 7121 7122 struct bpf_object * 7123 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7124 const char *name) 7125 { 7126 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7127 .object_name = name, 7128 /* wrong default, but backwards-compatible */ 7129 .relaxed_maps = true, 7130 ); 7131 7132 /* returning NULL is wrong, but backwards-compatible */ 7133 if (!obj_buf || obj_buf_sz == 0) 7134 return errno = EINVAL, NULL; 7135 7136 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7137 } 7138 7139 static int bpf_object_unload(struct bpf_object *obj) 7140 { 7141 size_t i; 7142 7143 if (!obj) 7144 return libbpf_err(-EINVAL); 7145 7146 for (i = 0; i < obj->nr_maps; i++) { 7147 zclose(obj->maps[i].fd); 7148 if (obj->maps[i].st_ops) 7149 zfree(&obj->maps[i].st_ops->kern_vdata); 7150 } 7151 7152 for (i = 0; i < obj->nr_programs; i++) 7153 bpf_program__unload(&obj->programs[i]); 7154 7155 return 0; 7156 } 7157 7158 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7159 7160 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7161 { 7162 struct bpf_map *m; 7163 7164 bpf_object__for_each_map(m, obj) { 7165 if (!bpf_map__is_internal(m)) 7166 continue; 7167 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7168 m->def.map_flags ^= BPF_F_MMAPABLE; 7169 } 7170 7171 return 0; 7172 } 7173 7174 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7175 { 7176 char sym_type, sym_name[500]; 7177 unsigned long long sym_addr; 7178 const struct btf_type *t; 7179 struct extern_desc *ext; 7180 int ret, err = 0; 7181 FILE *f; 7182 7183 f = fopen("/proc/kallsyms", "r"); 7184 if (!f) { 7185 err = -errno; 7186 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7187 return err; 7188 } 7189 7190 while (true) { 7191 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7192 &sym_addr, &sym_type, sym_name); 7193 if (ret == EOF && feof(f)) 7194 break; 7195 if (ret != 3) { 7196 pr_warn("failed to read kallsyms entry: %d\n", ret); 7197 err = -EINVAL; 7198 goto out; 7199 } 7200 7201 ext = find_extern_by_name(obj, sym_name); 7202 if (!ext || ext->type != EXT_KSYM) 7203 continue; 7204 7205 t = btf__type_by_id(obj->btf, ext->btf_id); 7206 if (!btf_is_var(t)) 7207 continue; 7208 7209 if (ext->is_set && ext->ksym.addr != sym_addr) { 7210 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7211 sym_name, ext->ksym.addr, sym_addr); 7212 err = -EINVAL; 7213 goto out; 7214 } 7215 if (!ext->is_set) { 7216 ext->is_set = true; 7217 ext->ksym.addr = sym_addr; 7218 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7219 } 7220 } 7221 7222 out: 7223 fclose(f); 7224 return err; 7225 } 7226 7227 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7228 __u16 kind, struct btf **res_btf, 7229 struct module_btf **res_mod_btf) 7230 { 7231 struct module_btf *mod_btf; 7232 struct btf *btf; 7233 int i, id, err; 7234 7235 btf = obj->btf_vmlinux; 7236 mod_btf = NULL; 7237 id = btf__find_by_name_kind(btf, ksym_name, kind); 7238 7239 if (id == -ENOENT) { 7240 err = load_module_btfs(obj); 7241 if (err) 7242 return err; 7243 7244 for (i = 0; i < obj->btf_module_cnt; i++) { 7245 /* we assume module_btf's BTF FD is always >0 */ 7246 mod_btf = &obj->btf_modules[i]; 7247 btf = mod_btf->btf; 7248 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7249 if (id != -ENOENT) 7250 break; 7251 } 7252 } 7253 if (id <= 0) 7254 return -ESRCH; 7255 7256 *res_btf = btf; 7257 *res_mod_btf = mod_btf; 7258 return id; 7259 } 7260 7261 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7262 struct extern_desc *ext) 7263 { 7264 const struct btf_type *targ_var, *targ_type; 7265 __u32 targ_type_id, local_type_id; 7266 struct module_btf *mod_btf = NULL; 7267 const char *targ_var_name; 7268 struct btf *btf = NULL; 7269 int id, err; 7270 7271 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7272 if (id < 0) { 7273 if (id == -ESRCH && ext->is_weak) 7274 return 0; 7275 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7276 ext->name); 7277 return id; 7278 } 7279 7280 /* find local type_id */ 7281 local_type_id = ext->ksym.type_id; 7282 7283 /* find target type_id */ 7284 targ_var = btf__type_by_id(btf, id); 7285 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7286 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7287 7288 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7289 btf, targ_type_id); 7290 if (err <= 0) { 7291 const struct btf_type *local_type; 7292 const char *targ_name, *local_name; 7293 7294 local_type = btf__type_by_id(obj->btf, local_type_id); 7295 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7296 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7297 7298 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7299 ext->name, local_type_id, 7300 btf_kind_str(local_type), local_name, targ_type_id, 7301 btf_kind_str(targ_type), targ_name); 7302 return -EINVAL; 7303 } 7304 7305 ext->is_set = true; 7306 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7307 ext->ksym.kernel_btf_id = id; 7308 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7309 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7310 7311 return 0; 7312 } 7313 7314 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7315 struct extern_desc *ext) 7316 { 7317 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7318 struct module_btf *mod_btf = NULL; 7319 const struct btf_type *kern_func; 7320 struct btf *kern_btf = NULL; 7321 int ret; 7322 7323 local_func_proto_id = ext->ksym.type_id; 7324 7325 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7326 if (kfunc_id < 0) { 7327 if (kfunc_id == -ESRCH && ext->is_weak) 7328 return 0; 7329 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7330 ext->name); 7331 return kfunc_id; 7332 } 7333 7334 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7335 kfunc_proto_id = kern_func->type; 7336 7337 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7338 kern_btf, kfunc_proto_id); 7339 if (ret <= 0) { 7340 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7341 ext->name, local_func_proto_id, kfunc_proto_id); 7342 return -EINVAL; 7343 } 7344 7345 /* set index for module BTF fd in fd_array, if unset */ 7346 if (mod_btf && !mod_btf->fd_array_idx) { 7347 /* insn->off is s16 */ 7348 if (obj->fd_array_cnt == INT16_MAX) { 7349 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7350 ext->name, mod_btf->fd_array_idx); 7351 return -E2BIG; 7352 } 7353 /* Cannot use index 0 for module BTF fd */ 7354 if (!obj->fd_array_cnt) 7355 obj->fd_array_cnt = 1; 7356 7357 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7358 obj->fd_array_cnt + 1); 7359 if (ret) 7360 return ret; 7361 mod_btf->fd_array_idx = obj->fd_array_cnt; 7362 /* we assume module BTF FD is always >0 */ 7363 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7364 } 7365 7366 ext->is_set = true; 7367 ext->ksym.kernel_btf_id = kfunc_id; 7368 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7369 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7370 ext->name, kfunc_id); 7371 7372 return 0; 7373 } 7374 7375 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7376 { 7377 const struct btf_type *t; 7378 struct extern_desc *ext; 7379 int i, err; 7380 7381 for (i = 0; i < obj->nr_extern; i++) { 7382 ext = &obj->externs[i]; 7383 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7384 continue; 7385 7386 if (obj->gen_loader) { 7387 ext->is_set = true; 7388 ext->ksym.kernel_btf_obj_fd = 0; 7389 ext->ksym.kernel_btf_id = 0; 7390 continue; 7391 } 7392 t = btf__type_by_id(obj->btf, ext->btf_id); 7393 if (btf_is_var(t)) 7394 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7395 else 7396 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7397 if (err) 7398 return err; 7399 } 7400 return 0; 7401 } 7402 7403 static int bpf_object__resolve_externs(struct bpf_object *obj, 7404 const char *extra_kconfig) 7405 { 7406 bool need_config = false, need_kallsyms = false; 7407 bool need_vmlinux_btf = false; 7408 struct extern_desc *ext; 7409 void *kcfg_data = NULL; 7410 int err, i; 7411 7412 if (obj->nr_extern == 0) 7413 return 0; 7414 7415 if (obj->kconfig_map_idx >= 0) 7416 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7417 7418 for (i = 0; i < obj->nr_extern; i++) { 7419 ext = &obj->externs[i]; 7420 7421 if (ext->type == EXT_KCFG && 7422 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7423 void *ext_val = kcfg_data + ext->kcfg.data_off; 7424 __u32 kver = get_kernel_version(); 7425 7426 if (!kver) { 7427 pr_warn("failed to get kernel version\n"); 7428 return -EINVAL; 7429 } 7430 err = set_kcfg_value_num(ext, ext_val, kver); 7431 if (err) 7432 return err; 7433 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7434 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7435 need_config = true; 7436 } else if (ext->type == EXT_KSYM) { 7437 if (ext->ksym.type_id) 7438 need_vmlinux_btf = true; 7439 else 7440 need_kallsyms = true; 7441 } else { 7442 pr_warn("unrecognized extern '%s'\n", ext->name); 7443 return -EINVAL; 7444 } 7445 } 7446 if (need_config && extra_kconfig) { 7447 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7448 if (err) 7449 return -EINVAL; 7450 need_config = false; 7451 for (i = 0; i < obj->nr_extern; i++) { 7452 ext = &obj->externs[i]; 7453 if (ext->type == EXT_KCFG && !ext->is_set) { 7454 need_config = true; 7455 break; 7456 } 7457 } 7458 } 7459 if (need_config) { 7460 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7461 if (err) 7462 return -EINVAL; 7463 } 7464 if (need_kallsyms) { 7465 err = bpf_object__read_kallsyms_file(obj); 7466 if (err) 7467 return -EINVAL; 7468 } 7469 if (need_vmlinux_btf) { 7470 err = bpf_object__resolve_ksyms_btf_id(obj); 7471 if (err) 7472 return -EINVAL; 7473 } 7474 for (i = 0; i < obj->nr_extern; i++) { 7475 ext = &obj->externs[i]; 7476 7477 if (!ext->is_set && !ext->is_weak) { 7478 pr_warn("extern %s (strong) not resolved\n", ext->name); 7479 return -ESRCH; 7480 } else if (!ext->is_set) { 7481 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7482 ext->name); 7483 } 7484 } 7485 7486 return 0; 7487 } 7488 7489 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7490 { 7491 int err, i; 7492 7493 if (!obj) 7494 return libbpf_err(-EINVAL); 7495 7496 if (obj->loaded) { 7497 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7498 return libbpf_err(-EINVAL); 7499 } 7500 7501 if (obj->gen_loader) 7502 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7503 7504 err = bpf_object__probe_loading(obj); 7505 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7506 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7507 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7508 err = err ? : bpf_object__sanitize_maps(obj); 7509 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7510 err = err ? : bpf_object__create_maps(obj); 7511 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7512 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7513 err = err ? : bpf_object_init_prog_arrays(obj); 7514 7515 if (obj->gen_loader) { 7516 /* reset FDs */ 7517 if (obj->btf) 7518 btf__set_fd(obj->btf, -1); 7519 for (i = 0; i < obj->nr_maps; i++) 7520 obj->maps[i].fd = -1; 7521 if (!err) 7522 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7523 } 7524 7525 /* clean up fd_array */ 7526 zfree(&obj->fd_array); 7527 7528 /* clean up module BTFs */ 7529 for (i = 0; i < obj->btf_module_cnt; i++) { 7530 close(obj->btf_modules[i].fd); 7531 btf__free(obj->btf_modules[i].btf); 7532 free(obj->btf_modules[i].name); 7533 } 7534 free(obj->btf_modules); 7535 7536 /* clean up vmlinux BTF */ 7537 btf__free(obj->btf_vmlinux); 7538 obj->btf_vmlinux = NULL; 7539 7540 obj->loaded = true; /* doesn't matter if successfully or not */ 7541 7542 if (err) 7543 goto out; 7544 7545 return 0; 7546 out: 7547 /* unpin any maps that were auto-pinned during load */ 7548 for (i = 0; i < obj->nr_maps; i++) 7549 if (obj->maps[i].pinned && !obj->maps[i].reused) 7550 bpf_map__unpin(&obj->maps[i], NULL); 7551 7552 bpf_object_unload(obj); 7553 pr_warn("failed to load object '%s'\n", obj->path); 7554 return libbpf_err(err); 7555 } 7556 7557 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7558 { 7559 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7560 } 7561 7562 int bpf_object__load(struct bpf_object *obj) 7563 { 7564 return bpf_object_load(obj, 0, NULL); 7565 } 7566 7567 static int make_parent_dir(const char *path) 7568 { 7569 char *cp, errmsg[STRERR_BUFSIZE]; 7570 char *dname, *dir; 7571 int err = 0; 7572 7573 dname = strdup(path); 7574 if (dname == NULL) 7575 return -ENOMEM; 7576 7577 dir = dirname(dname); 7578 if (mkdir(dir, 0700) && errno != EEXIST) 7579 err = -errno; 7580 7581 free(dname); 7582 if (err) { 7583 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7584 pr_warn("failed to mkdir %s: %s\n", path, cp); 7585 } 7586 return err; 7587 } 7588 7589 static int check_path(const char *path) 7590 { 7591 char *cp, errmsg[STRERR_BUFSIZE]; 7592 struct statfs st_fs; 7593 char *dname, *dir; 7594 int err = 0; 7595 7596 if (path == NULL) 7597 return -EINVAL; 7598 7599 dname = strdup(path); 7600 if (dname == NULL) 7601 return -ENOMEM; 7602 7603 dir = dirname(dname); 7604 if (statfs(dir, &st_fs)) { 7605 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7606 pr_warn("failed to statfs %s: %s\n", dir, cp); 7607 err = -errno; 7608 } 7609 free(dname); 7610 7611 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7612 pr_warn("specified path %s is not on BPF FS\n", path); 7613 err = -EINVAL; 7614 } 7615 7616 return err; 7617 } 7618 7619 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7620 { 7621 char *cp, errmsg[STRERR_BUFSIZE]; 7622 int err; 7623 7624 err = make_parent_dir(path); 7625 if (err) 7626 return libbpf_err(err); 7627 7628 err = check_path(path); 7629 if (err) 7630 return libbpf_err(err); 7631 7632 if (prog == NULL) { 7633 pr_warn("invalid program pointer\n"); 7634 return libbpf_err(-EINVAL); 7635 } 7636 7637 if (instance < 0 || instance >= prog->instances.nr) { 7638 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7639 instance, prog->name, prog->instances.nr); 7640 return libbpf_err(-EINVAL); 7641 } 7642 7643 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7644 err = -errno; 7645 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7646 pr_warn("failed to pin program: %s\n", cp); 7647 return libbpf_err(err); 7648 } 7649 pr_debug("pinned program '%s'\n", path); 7650 7651 return 0; 7652 } 7653 7654 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7655 { 7656 int err; 7657 7658 err = check_path(path); 7659 if (err) 7660 return libbpf_err(err); 7661 7662 if (prog == NULL) { 7663 pr_warn("invalid program pointer\n"); 7664 return libbpf_err(-EINVAL); 7665 } 7666 7667 if (instance < 0 || instance >= prog->instances.nr) { 7668 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7669 instance, prog->name, prog->instances.nr); 7670 return libbpf_err(-EINVAL); 7671 } 7672 7673 err = unlink(path); 7674 if (err != 0) 7675 return libbpf_err(-errno); 7676 7677 pr_debug("unpinned program '%s'\n", path); 7678 7679 return 0; 7680 } 7681 7682 __attribute__((alias("bpf_program_pin_instance"))) 7683 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7684 7685 __attribute__((alias("bpf_program_unpin_instance"))) 7686 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7687 7688 int bpf_program__pin(struct bpf_program *prog, const char *path) 7689 { 7690 int i, err; 7691 7692 err = make_parent_dir(path); 7693 if (err) 7694 return libbpf_err(err); 7695 7696 err = check_path(path); 7697 if (err) 7698 return libbpf_err(err); 7699 7700 if (prog == NULL) { 7701 pr_warn("invalid program pointer\n"); 7702 return libbpf_err(-EINVAL); 7703 } 7704 7705 if (prog->instances.nr <= 0) { 7706 pr_warn("no instances of prog %s to pin\n", prog->name); 7707 return libbpf_err(-EINVAL); 7708 } 7709 7710 if (prog->instances.nr == 1) { 7711 /* don't create subdirs when pinning single instance */ 7712 return bpf_program_pin_instance(prog, path, 0); 7713 } 7714 7715 for (i = 0; i < prog->instances.nr; i++) { 7716 char buf[PATH_MAX]; 7717 int len; 7718 7719 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7720 if (len < 0) { 7721 err = -EINVAL; 7722 goto err_unpin; 7723 } else if (len >= PATH_MAX) { 7724 err = -ENAMETOOLONG; 7725 goto err_unpin; 7726 } 7727 7728 err = bpf_program_pin_instance(prog, buf, i); 7729 if (err) 7730 goto err_unpin; 7731 } 7732 7733 return 0; 7734 7735 err_unpin: 7736 for (i = i - 1; i >= 0; i--) { 7737 char buf[PATH_MAX]; 7738 int len; 7739 7740 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7741 if (len < 0) 7742 continue; 7743 else if (len >= PATH_MAX) 7744 continue; 7745 7746 bpf_program_unpin_instance(prog, buf, i); 7747 } 7748 7749 rmdir(path); 7750 7751 return libbpf_err(err); 7752 } 7753 7754 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7755 { 7756 int i, err; 7757 7758 err = check_path(path); 7759 if (err) 7760 return libbpf_err(err); 7761 7762 if (prog == NULL) { 7763 pr_warn("invalid program pointer\n"); 7764 return libbpf_err(-EINVAL); 7765 } 7766 7767 if (prog->instances.nr <= 0) { 7768 pr_warn("no instances of prog %s to pin\n", prog->name); 7769 return libbpf_err(-EINVAL); 7770 } 7771 7772 if (prog->instances.nr == 1) { 7773 /* don't create subdirs when pinning single instance */ 7774 return bpf_program_unpin_instance(prog, path, 0); 7775 } 7776 7777 for (i = 0; i < prog->instances.nr; i++) { 7778 char buf[PATH_MAX]; 7779 int len; 7780 7781 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7782 if (len < 0) 7783 return libbpf_err(-EINVAL); 7784 else if (len >= PATH_MAX) 7785 return libbpf_err(-ENAMETOOLONG); 7786 7787 err = bpf_program_unpin_instance(prog, buf, i); 7788 if (err) 7789 return err; 7790 } 7791 7792 err = rmdir(path); 7793 if (err) 7794 return libbpf_err(-errno); 7795 7796 return 0; 7797 } 7798 7799 int bpf_map__pin(struct bpf_map *map, const char *path) 7800 { 7801 char *cp, errmsg[STRERR_BUFSIZE]; 7802 int err; 7803 7804 if (map == NULL) { 7805 pr_warn("invalid map pointer\n"); 7806 return libbpf_err(-EINVAL); 7807 } 7808 7809 if (map->pin_path) { 7810 if (path && strcmp(path, map->pin_path)) { 7811 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7812 bpf_map__name(map), map->pin_path, path); 7813 return libbpf_err(-EINVAL); 7814 } else if (map->pinned) { 7815 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7816 bpf_map__name(map), map->pin_path); 7817 return 0; 7818 } 7819 } else { 7820 if (!path) { 7821 pr_warn("missing a path to pin map '%s' at\n", 7822 bpf_map__name(map)); 7823 return libbpf_err(-EINVAL); 7824 } else if (map->pinned) { 7825 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7826 return libbpf_err(-EEXIST); 7827 } 7828 7829 map->pin_path = strdup(path); 7830 if (!map->pin_path) { 7831 err = -errno; 7832 goto out_err; 7833 } 7834 } 7835 7836 err = make_parent_dir(map->pin_path); 7837 if (err) 7838 return libbpf_err(err); 7839 7840 err = check_path(map->pin_path); 7841 if (err) 7842 return libbpf_err(err); 7843 7844 if (bpf_obj_pin(map->fd, map->pin_path)) { 7845 err = -errno; 7846 goto out_err; 7847 } 7848 7849 map->pinned = true; 7850 pr_debug("pinned map '%s'\n", map->pin_path); 7851 7852 return 0; 7853 7854 out_err: 7855 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7856 pr_warn("failed to pin map: %s\n", cp); 7857 return libbpf_err(err); 7858 } 7859 7860 int bpf_map__unpin(struct bpf_map *map, const char *path) 7861 { 7862 int err; 7863 7864 if (map == NULL) { 7865 pr_warn("invalid map pointer\n"); 7866 return libbpf_err(-EINVAL); 7867 } 7868 7869 if (map->pin_path) { 7870 if (path && strcmp(path, map->pin_path)) { 7871 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7872 bpf_map__name(map), map->pin_path, path); 7873 return libbpf_err(-EINVAL); 7874 } 7875 path = map->pin_path; 7876 } else if (!path) { 7877 pr_warn("no path to unpin map '%s' from\n", 7878 bpf_map__name(map)); 7879 return libbpf_err(-EINVAL); 7880 } 7881 7882 err = check_path(path); 7883 if (err) 7884 return libbpf_err(err); 7885 7886 err = unlink(path); 7887 if (err != 0) 7888 return libbpf_err(-errno); 7889 7890 map->pinned = false; 7891 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7892 7893 return 0; 7894 } 7895 7896 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7897 { 7898 char *new = NULL; 7899 7900 if (path) { 7901 new = strdup(path); 7902 if (!new) 7903 return libbpf_err(-errno); 7904 } 7905 7906 free(map->pin_path); 7907 map->pin_path = new; 7908 return 0; 7909 } 7910 7911 __alias(bpf_map__pin_path) 7912 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7913 7914 const char *bpf_map__pin_path(const struct bpf_map *map) 7915 { 7916 return map->pin_path; 7917 } 7918 7919 bool bpf_map__is_pinned(const struct bpf_map *map) 7920 { 7921 return map->pinned; 7922 } 7923 7924 static void sanitize_pin_path(char *s) 7925 { 7926 /* bpffs disallows periods in path names */ 7927 while (*s) { 7928 if (*s == '.') 7929 *s = '_'; 7930 s++; 7931 } 7932 } 7933 7934 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7935 { 7936 struct bpf_map *map; 7937 int err; 7938 7939 if (!obj) 7940 return libbpf_err(-ENOENT); 7941 7942 if (!obj->loaded) { 7943 pr_warn("object not yet loaded; load it first\n"); 7944 return libbpf_err(-ENOENT); 7945 } 7946 7947 bpf_object__for_each_map(map, obj) { 7948 char *pin_path = NULL; 7949 char buf[PATH_MAX]; 7950 7951 if (map->skipped) 7952 continue; 7953 7954 if (path) { 7955 int len; 7956 7957 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7958 bpf_map__name(map)); 7959 if (len < 0) { 7960 err = -EINVAL; 7961 goto err_unpin_maps; 7962 } else if (len >= PATH_MAX) { 7963 err = -ENAMETOOLONG; 7964 goto err_unpin_maps; 7965 } 7966 sanitize_pin_path(buf); 7967 pin_path = buf; 7968 } else if (!map->pin_path) { 7969 continue; 7970 } 7971 7972 err = bpf_map__pin(map, pin_path); 7973 if (err) 7974 goto err_unpin_maps; 7975 } 7976 7977 return 0; 7978 7979 err_unpin_maps: 7980 while ((map = bpf_object__prev_map(obj, map))) { 7981 if (!map->pin_path) 7982 continue; 7983 7984 bpf_map__unpin(map, NULL); 7985 } 7986 7987 return libbpf_err(err); 7988 } 7989 7990 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7991 { 7992 struct bpf_map *map; 7993 int err; 7994 7995 if (!obj) 7996 return libbpf_err(-ENOENT); 7997 7998 bpf_object__for_each_map(map, obj) { 7999 char *pin_path = NULL; 8000 char buf[PATH_MAX]; 8001 8002 if (path) { 8003 int len; 8004 8005 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8006 bpf_map__name(map)); 8007 if (len < 0) 8008 return libbpf_err(-EINVAL); 8009 else if (len >= PATH_MAX) 8010 return libbpf_err(-ENAMETOOLONG); 8011 sanitize_pin_path(buf); 8012 pin_path = buf; 8013 } else if (!map->pin_path) { 8014 continue; 8015 } 8016 8017 err = bpf_map__unpin(map, pin_path); 8018 if (err) 8019 return libbpf_err(err); 8020 } 8021 8022 return 0; 8023 } 8024 8025 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8026 { 8027 struct bpf_program *prog; 8028 int err; 8029 8030 if (!obj) 8031 return libbpf_err(-ENOENT); 8032 8033 if (!obj->loaded) { 8034 pr_warn("object not yet loaded; load it first\n"); 8035 return libbpf_err(-ENOENT); 8036 } 8037 8038 bpf_object__for_each_program(prog, obj) { 8039 char buf[PATH_MAX]; 8040 int len; 8041 8042 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8043 prog->pin_name); 8044 if (len < 0) { 8045 err = -EINVAL; 8046 goto err_unpin_programs; 8047 } else if (len >= PATH_MAX) { 8048 err = -ENAMETOOLONG; 8049 goto err_unpin_programs; 8050 } 8051 8052 err = bpf_program__pin(prog, buf); 8053 if (err) 8054 goto err_unpin_programs; 8055 } 8056 8057 return 0; 8058 8059 err_unpin_programs: 8060 while ((prog = bpf_object__prev_program(obj, prog))) { 8061 char buf[PATH_MAX]; 8062 int len; 8063 8064 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8065 prog->pin_name); 8066 if (len < 0) 8067 continue; 8068 else if (len >= PATH_MAX) 8069 continue; 8070 8071 bpf_program__unpin(prog, buf); 8072 } 8073 8074 return libbpf_err(err); 8075 } 8076 8077 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8078 { 8079 struct bpf_program *prog; 8080 int err; 8081 8082 if (!obj) 8083 return libbpf_err(-ENOENT); 8084 8085 bpf_object__for_each_program(prog, obj) { 8086 char buf[PATH_MAX]; 8087 int len; 8088 8089 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8090 prog->pin_name); 8091 if (len < 0) 8092 return libbpf_err(-EINVAL); 8093 else if (len >= PATH_MAX) 8094 return libbpf_err(-ENAMETOOLONG); 8095 8096 err = bpf_program__unpin(prog, buf); 8097 if (err) 8098 return libbpf_err(err); 8099 } 8100 8101 return 0; 8102 } 8103 8104 int bpf_object__pin(struct bpf_object *obj, const char *path) 8105 { 8106 int err; 8107 8108 err = bpf_object__pin_maps(obj, path); 8109 if (err) 8110 return libbpf_err(err); 8111 8112 err = bpf_object__pin_programs(obj, path); 8113 if (err) { 8114 bpf_object__unpin_maps(obj, path); 8115 return libbpf_err(err); 8116 } 8117 8118 return 0; 8119 } 8120 8121 static void bpf_map__destroy(struct bpf_map *map) 8122 { 8123 if (map->clear_priv) 8124 map->clear_priv(map, map->priv); 8125 map->priv = NULL; 8126 map->clear_priv = NULL; 8127 8128 if (map->inner_map) { 8129 bpf_map__destroy(map->inner_map); 8130 zfree(&map->inner_map); 8131 } 8132 8133 zfree(&map->init_slots); 8134 map->init_slots_sz = 0; 8135 8136 if (map->mmaped) { 8137 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8138 map->mmaped = NULL; 8139 } 8140 8141 if (map->st_ops) { 8142 zfree(&map->st_ops->data); 8143 zfree(&map->st_ops->progs); 8144 zfree(&map->st_ops->kern_func_off); 8145 zfree(&map->st_ops); 8146 } 8147 8148 zfree(&map->name); 8149 zfree(&map->real_name); 8150 zfree(&map->pin_path); 8151 8152 if (map->fd >= 0) 8153 zclose(map->fd); 8154 } 8155 8156 void bpf_object__close(struct bpf_object *obj) 8157 { 8158 size_t i; 8159 8160 if (IS_ERR_OR_NULL(obj)) 8161 return; 8162 8163 if (obj->clear_priv) 8164 obj->clear_priv(obj, obj->priv); 8165 8166 bpf_gen__free(obj->gen_loader); 8167 bpf_object__elf_finish(obj); 8168 bpf_object_unload(obj); 8169 btf__free(obj->btf); 8170 btf_ext__free(obj->btf_ext); 8171 8172 for (i = 0; i < obj->nr_maps; i++) 8173 bpf_map__destroy(&obj->maps[i]); 8174 8175 zfree(&obj->btf_custom_path); 8176 zfree(&obj->kconfig); 8177 zfree(&obj->externs); 8178 obj->nr_extern = 0; 8179 8180 zfree(&obj->maps); 8181 obj->nr_maps = 0; 8182 8183 if (obj->programs && obj->nr_programs) { 8184 for (i = 0; i < obj->nr_programs; i++) 8185 bpf_program__exit(&obj->programs[i]); 8186 } 8187 zfree(&obj->programs); 8188 8189 list_del(&obj->list); 8190 free(obj); 8191 } 8192 8193 struct bpf_object * 8194 bpf_object__next(struct bpf_object *prev) 8195 { 8196 struct bpf_object *next; 8197 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8198 8199 if (strict) 8200 return NULL; 8201 8202 if (!prev) 8203 next = list_first_entry(&bpf_objects_list, 8204 struct bpf_object, 8205 list); 8206 else 8207 next = list_next_entry(prev, list); 8208 8209 /* Empty list is noticed here so don't need checking on entry. */ 8210 if (&next->list == &bpf_objects_list) 8211 return NULL; 8212 8213 return next; 8214 } 8215 8216 const char *bpf_object__name(const struct bpf_object *obj) 8217 { 8218 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8219 } 8220 8221 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8222 { 8223 return obj ? obj->kern_version : 0; 8224 } 8225 8226 struct btf *bpf_object__btf(const struct bpf_object *obj) 8227 { 8228 return obj ? obj->btf : NULL; 8229 } 8230 8231 int bpf_object__btf_fd(const struct bpf_object *obj) 8232 { 8233 return obj->btf ? btf__fd(obj->btf) : -1; 8234 } 8235 8236 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8237 { 8238 if (obj->loaded) 8239 return libbpf_err(-EINVAL); 8240 8241 obj->kern_version = kern_version; 8242 8243 return 0; 8244 } 8245 8246 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8247 bpf_object_clear_priv_t clear_priv) 8248 { 8249 if (obj->priv && obj->clear_priv) 8250 obj->clear_priv(obj, obj->priv); 8251 8252 obj->priv = priv; 8253 obj->clear_priv = clear_priv; 8254 return 0; 8255 } 8256 8257 void *bpf_object__priv(const struct bpf_object *obj) 8258 { 8259 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8260 } 8261 8262 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8263 { 8264 struct bpf_gen *gen; 8265 8266 if (!opts) 8267 return -EFAULT; 8268 if (!OPTS_VALID(opts, gen_loader_opts)) 8269 return -EINVAL; 8270 gen = calloc(sizeof(*gen), 1); 8271 if (!gen) 8272 return -ENOMEM; 8273 gen->opts = opts; 8274 obj->gen_loader = gen; 8275 return 0; 8276 } 8277 8278 static struct bpf_program * 8279 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8280 bool forward) 8281 { 8282 size_t nr_programs = obj->nr_programs; 8283 ssize_t idx; 8284 8285 if (!nr_programs) 8286 return NULL; 8287 8288 if (!p) 8289 /* Iter from the beginning */ 8290 return forward ? &obj->programs[0] : 8291 &obj->programs[nr_programs - 1]; 8292 8293 if (p->obj != obj) { 8294 pr_warn("error: program handler doesn't match object\n"); 8295 return errno = EINVAL, NULL; 8296 } 8297 8298 idx = (p - obj->programs) + (forward ? 1 : -1); 8299 if (idx >= obj->nr_programs || idx < 0) 8300 return NULL; 8301 return &obj->programs[idx]; 8302 } 8303 8304 struct bpf_program * 8305 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8306 { 8307 return bpf_object__next_program(obj, prev); 8308 } 8309 8310 struct bpf_program * 8311 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8312 { 8313 struct bpf_program *prog = prev; 8314 8315 do { 8316 prog = __bpf_program__iter(prog, obj, true); 8317 } while (prog && prog_is_subprog(obj, prog)); 8318 8319 return prog; 8320 } 8321 8322 struct bpf_program * 8323 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8324 { 8325 return bpf_object__prev_program(obj, next); 8326 } 8327 8328 struct bpf_program * 8329 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8330 { 8331 struct bpf_program *prog = next; 8332 8333 do { 8334 prog = __bpf_program__iter(prog, obj, false); 8335 } while (prog && prog_is_subprog(obj, prog)); 8336 8337 return prog; 8338 } 8339 8340 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8341 bpf_program_clear_priv_t clear_priv) 8342 { 8343 if (prog->priv && prog->clear_priv) 8344 prog->clear_priv(prog, prog->priv); 8345 8346 prog->priv = priv; 8347 prog->clear_priv = clear_priv; 8348 return 0; 8349 } 8350 8351 void *bpf_program__priv(const struct bpf_program *prog) 8352 { 8353 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8354 } 8355 8356 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8357 { 8358 prog->prog_ifindex = ifindex; 8359 } 8360 8361 const char *bpf_program__name(const struct bpf_program *prog) 8362 { 8363 return prog->name; 8364 } 8365 8366 const char *bpf_program__section_name(const struct bpf_program *prog) 8367 { 8368 return prog->sec_name; 8369 } 8370 8371 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8372 { 8373 const char *title; 8374 8375 title = prog->sec_name; 8376 if (needs_copy) { 8377 title = strdup(title); 8378 if (!title) { 8379 pr_warn("failed to strdup program title\n"); 8380 return libbpf_err_ptr(-ENOMEM); 8381 } 8382 } 8383 8384 return title; 8385 } 8386 8387 bool bpf_program__autoload(const struct bpf_program *prog) 8388 { 8389 return prog->load; 8390 } 8391 8392 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8393 { 8394 if (prog->obj->loaded) 8395 return libbpf_err(-EINVAL); 8396 8397 prog->load = autoload; 8398 return 0; 8399 } 8400 8401 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8402 8403 int bpf_program__fd(const struct bpf_program *prog) 8404 { 8405 return bpf_program_nth_fd(prog, 0); 8406 } 8407 8408 size_t bpf_program__size(const struct bpf_program *prog) 8409 { 8410 return prog->insns_cnt * BPF_INSN_SZ; 8411 } 8412 8413 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8414 { 8415 return prog->insns; 8416 } 8417 8418 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8419 { 8420 return prog->insns_cnt; 8421 } 8422 8423 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8424 bpf_program_prep_t prep) 8425 { 8426 int *instances_fds; 8427 8428 if (nr_instances <= 0 || !prep) 8429 return libbpf_err(-EINVAL); 8430 8431 if (prog->instances.nr > 0 || prog->instances.fds) { 8432 pr_warn("Can't set pre-processor after loading\n"); 8433 return libbpf_err(-EINVAL); 8434 } 8435 8436 instances_fds = malloc(sizeof(int) * nr_instances); 8437 if (!instances_fds) { 8438 pr_warn("alloc memory failed for fds\n"); 8439 return libbpf_err(-ENOMEM); 8440 } 8441 8442 /* fill all fd with -1 */ 8443 memset(instances_fds, -1, sizeof(int) * nr_instances); 8444 8445 prog->instances.nr = nr_instances; 8446 prog->instances.fds = instances_fds; 8447 prog->preprocessor = prep; 8448 return 0; 8449 } 8450 8451 __attribute__((alias("bpf_program_nth_fd"))) 8452 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8453 8454 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8455 { 8456 int fd; 8457 8458 if (!prog) 8459 return libbpf_err(-EINVAL); 8460 8461 if (n >= prog->instances.nr || n < 0) { 8462 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8463 n, prog->name, prog->instances.nr); 8464 return libbpf_err(-EINVAL); 8465 } 8466 8467 fd = prog->instances.fds[n]; 8468 if (fd < 0) { 8469 pr_warn("%dth instance of program '%s' is invalid\n", 8470 n, prog->name); 8471 return libbpf_err(-ENOENT); 8472 } 8473 8474 return fd; 8475 } 8476 8477 __alias(bpf_program__type) 8478 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8479 8480 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8481 { 8482 return prog->type; 8483 } 8484 8485 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8486 { 8487 prog->type = type; 8488 } 8489 8490 static bool bpf_program__is_type(const struct bpf_program *prog, 8491 enum bpf_prog_type type) 8492 { 8493 return prog ? (prog->type == type) : false; 8494 } 8495 8496 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8497 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8498 { \ 8499 if (!prog) \ 8500 return libbpf_err(-EINVAL); \ 8501 bpf_program__set_type(prog, TYPE); \ 8502 return 0; \ 8503 } \ 8504 \ 8505 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8506 { \ 8507 return bpf_program__is_type(prog, TYPE); \ 8508 } \ 8509 8510 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8511 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8512 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8513 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8514 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8515 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8516 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8517 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8518 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8519 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8520 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8521 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8522 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8523 8524 __alias(bpf_program__expected_attach_type) 8525 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8526 8527 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8528 { 8529 return prog->expected_attach_type; 8530 } 8531 8532 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8533 enum bpf_attach_type type) 8534 { 8535 prog->expected_attach_type = type; 8536 } 8537 8538 __u32 bpf_program__flags(const struct bpf_program *prog) 8539 { 8540 return prog->prog_flags; 8541 } 8542 8543 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8544 { 8545 if (prog->obj->loaded) 8546 return libbpf_err(-EBUSY); 8547 8548 prog->prog_flags = flags; 8549 return 0; 8550 } 8551 8552 __u32 bpf_program__log_level(const struct bpf_program *prog) 8553 { 8554 return prog->log_level; 8555 } 8556 8557 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8558 { 8559 if (prog->obj->loaded) 8560 return libbpf_err(-EBUSY); 8561 8562 prog->log_level = log_level; 8563 return 0; 8564 } 8565 8566 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8567 { 8568 *log_size = prog->log_size; 8569 return prog->log_buf; 8570 } 8571 8572 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8573 { 8574 if (log_size && !log_buf) 8575 return -EINVAL; 8576 if (prog->log_size > UINT_MAX) 8577 return -EINVAL; 8578 if (prog->obj->loaded) 8579 return -EBUSY; 8580 8581 prog->log_buf = log_buf; 8582 prog->log_size = log_size; 8583 return 0; 8584 } 8585 8586 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8587 .sec = (char *)sec_pfx, \ 8588 .prog_type = BPF_PROG_TYPE_##ptype, \ 8589 .expected_attach_type = atype, \ 8590 .cookie = (long)(flags), \ 8591 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8592 __VA_ARGS__ \ 8593 } 8594 8595 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8596 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8597 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8598 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8599 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8600 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8601 8602 static const struct bpf_sec_def section_defs[] = { 8603 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8604 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8605 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8606 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8607 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8608 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8609 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8610 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8611 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 8612 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8613 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8614 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8615 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8616 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8617 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8618 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8619 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8620 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8621 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8622 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8623 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8624 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8625 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8626 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8627 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8628 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8629 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8630 SEC_DEF("iter.s/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8631 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8632 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8633 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8634 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8635 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8636 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8637 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8638 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8639 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8640 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8641 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8642 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8643 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8644 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8645 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8646 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8647 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8648 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8649 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8650 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8651 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8652 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8653 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8654 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8655 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8656 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8657 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8658 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8659 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8660 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8661 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8662 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8663 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8664 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8665 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8666 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8667 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8668 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8669 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8670 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8671 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8672 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8673 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8674 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8675 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8676 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8677 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8678 }; 8679 8680 static size_t custom_sec_def_cnt; 8681 static struct bpf_sec_def *custom_sec_defs; 8682 static struct bpf_sec_def custom_fallback_def; 8683 static bool has_custom_fallback_def; 8684 8685 static int last_custom_sec_def_handler_id; 8686 8687 int libbpf_register_prog_handler(const char *sec, 8688 enum bpf_prog_type prog_type, 8689 enum bpf_attach_type exp_attach_type, 8690 const struct libbpf_prog_handler_opts *opts) 8691 { 8692 struct bpf_sec_def *sec_def; 8693 8694 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8695 return libbpf_err(-EINVAL); 8696 8697 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8698 return libbpf_err(-E2BIG); 8699 8700 if (sec) { 8701 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8702 sizeof(*sec_def)); 8703 if (!sec_def) 8704 return libbpf_err(-ENOMEM); 8705 8706 custom_sec_defs = sec_def; 8707 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8708 } else { 8709 if (has_custom_fallback_def) 8710 return libbpf_err(-EBUSY); 8711 8712 sec_def = &custom_fallback_def; 8713 } 8714 8715 sec_def->sec = sec ? strdup(sec) : NULL; 8716 if (sec && !sec_def->sec) 8717 return libbpf_err(-ENOMEM); 8718 8719 sec_def->prog_type = prog_type; 8720 sec_def->expected_attach_type = exp_attach_type; 8721 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8722 8723 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8724 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8725 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8726 8727 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8728 8729 if (sec) 8730 custom_sec_def_cnt++; 8731 else 8732 has_custom_fallback_def = true; 8733 8734 return sec_def->handler_id; 8735 } 8736 8737 int libbpf_unregister_prog_handler(int handler_id) 8738 { 8739 struct bpf_sec_def *sec_defs; 8740 int i; 8741 8742 if (handler_id <= 0) 8743 return libbpf_err(-EINVAL); 8744 8745 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8746 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8747 has_custom_fallback_def = false; 8748 return 0; 8749 } 8750 8751 for (i = 0; i < custom_sec_def_cnt; i++) { 8752 if (custom_sec_defs[i].handler_id == handler_id) 8753 break; 8754 } 8755 8756 if (i == custom_sec_def_cnt) 8757 return libbpf_err(-ENOENT); 8758 8759 free(custom_sec_defs[i].sec); 8760 for (i = i + 1; i < custom_sec_def_cnt; i++) 8761 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8762 custom_sec_def_cnt--; 8763 8764 /* try to shrink the array, but it's ok if we couldn't */ 8765 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8766 if (sec_defs) 8767 custom_sec_defs = sec_defs; 8768 8769 return 0; 8770 } 8771 8772 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name, 8773 bool allow_sloppy) 8774 { 8775 size_t len = strlen(sec_def->sec); 8776 8777 /* "type/" always has to have proper SEC("type/extras") form */ 8778 if (sec_def->sec[len - 1] == '/') { 8779 if (str_has_pfx(sec_name, sec_def->sec)) 8780 return true; 8781 return false; 8782 } 8783 8784 /* "type+" means it can be either exact SEC("type") or 8785 * well-formed SEC("type/extras") with proper '/' separator 8786 */ 8787 if (sec_def->sec[len - 1] == '+') { 8788 len--; 8789 /* not even a prefix */ 8790 if (strncmp(sec_name, sec_def->sec, len) != 0) 8791 return false; 8792 /* exact match or has '/' separator */ 8793 if (sec_name[len] == '\0' || sec_name[len] == '/') 8794 return true; 8795 return false; 8796 } 8797 8798 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8799 * matches, unless strict section name mode 8800 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8801 * match has to be exact. 8802 */ 8803 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec)) 8804 return true; 8805 8806 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8807 * SEC("syscall")) are exact matches in both modes. 8808 */ 8809 return strcmp(sec_name, sec_def->sec) == 0; 8810 } 8811 8812 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8813 { 8814 const struct bpf_sec_def *sec_def; 8815 int i, n; 8816 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy; 8817 8818 n = custom_sec_def_cnt; 8819 for (i = 0; i < n; i++) { 8820 sec_def = &custom_sec_defs[i]; 8821 if (sec_def_matches(sec_def, sec_name, false)) 8822 return sec_def; 8823 } 8824 8825 n = ARRAY_SIZE(section_defs); 8826 for (i = 0; i < n; i++) { 8827 sec_def = §ion_defs[i]; 8828 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict; 8829 if (sec_def_matches(sec_def, sec_name, allow_sloppy)) 8830 return sec_def; 8831 } 8832 8833 if (has_custom_fallback_def) 8834 return &custom_fallback_def; 8835 8836 return NULL; 8837 } 8838 8839 #define MAX_TYPE_NAME_SIZE 32 8840 8841 static char *libbpf_get_type_names(bool attach_type) 8842 { 8843 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8844 char *buf; 8845 8846 buf = malloc(len); 8847 if (!buf) 8848 return NULL; 8849 8850 buf[0] = '\0'; 8851 /* Forge string buf with all available names */ 8852 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8853 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8854 8855 if (attach_type) { 8856 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8857 continue; 8858 8859 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8860 continue; 8861 } 8862 8863 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8864 free(buf); 8865 return NULL; 8866 } 8867 strcat(buf, " "); 8868 strcat(buf, section_defs[i].sec); 8869 } 8870 8871 return buf; 8872 } 8873 8874 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8875 enum bpf_attach_type *expected_attach_type) 8876 { 8877 const struct bpf_sec_def *sec_def; 8878 char *type_names; 8879 8880 if (!name) 8881 return libbpf_err(-EINVAL); 8882 8883 sec_def = find_sec_def(name); 8884 if (sec_def) { 8885 *prog_type = sec_def->prog_type; 8886 *expected_attach_type = sec_def->expected_attach_type; 8887 return 0; 8888 } 8889 8890 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8891 type_names = libbpf_get_type_names(false); 8892 if (type_names != NULL) { 8893 pr_debug("supported section(type) names are:%s\n", type_names); 8894 free(type_names); 8895 } 8896 8897 return libbpf_err(-ESRCH); 8898 } 8899 8900 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8901 size_t offset) 8902 { 8903 struct bpf_map *map; 8904 size_t i; 8905 8906 for (i = 0; i < obj->nr_maps; i++) { 8907 map = &obj->maps[i]; 8908 if (!bpf_map__is_struct_ops(map)) 8909 continue; 8910 if (map->sec_offset <= offset && 8911 offset - map->sec_offset < map->def.value_size) 8912 return map; 8913 } 8914 8915 return NULL; 8916 } 8917 8918 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8919 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8920 Elf64_Shdr *shdr, Elf_Data *data) 8921 { 8922 const struct btf_member *member; 8923 struct bpf_struct_ops *st_ops; 8924 struct bpf_program *prog; 8925 unsigned int shdr_idx; 8926 const struct btf *btf; 8927 struct bpf_map *map; 8928 unsigned int moff, insn_idx; 8929 const char *name; 8930 __u32 member_idx; 8931 Elf64_Sym *sym; 8932 Elf64_Rel *rel; 8933 int i, nrels; 8934 8935 btf = obj->btf; 8936 nrels = shdr->sh_size / shdr->sh_entsize; 8937 for (i = 0; i < nrels; i++) { 8938 rel = elf_rel_by_idx(data, i); 8939 if (!rel) { 8940 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8941 return -LIBBPF_ERRNO__FORMAT; 8942 } 8943 8944 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8945 if (!sym) { 8946 pr_warn("struct_ops reloc: symbol %zx not found\n", 8947 (size_t)ELF64_R_SYM(rel->r_info)); 8948 return -LIBBPF_ERRNO__FORMAT; 8949 } 8950 8951 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8952 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8953 if (!map) { 8954 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8955 (size_t)rel->r_offset); 8956 return -EINVAL; 8957 } 8958 8959 moff = rel->r_offset - map->sec_offset; 8960 shdr_idx = sym->st_shndx; 8961 st_ops = map->st_ops; 8962 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8963 map->name, 8964 (long long)(rel->r_info >> 32), 8965 (long long)sym->st_value, 8966 shdr_idx, (size_t)rel->r_offset, 8967 map->sec_offset, sym->st_name, name); 8968 8969 if (shdr_idx >= SHN_LORESERVE) { 8970 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8971 map->name, (size_t)rel->r_offset, shdr_idx); 8972 return -LIBBPF_ERRNO__RELOC; 8973 } 8974 if (sym->st_value % BPF_INSN_SZ) { 8975 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8976 map->name, (unsigned long long)sym->st_value); 8977 return -LIBBPF_ERRNO__FORMAT; 8978 } 8979 insn_idx = sym->st_value / BPF_INSN_SZ; 8980 8981 member = find_member_by_offset(st_ops->type, moff * 8); 8982 if (!member) { 8983 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8984 map->name, moff); 8985 return -EINVAL; 8986 } 8987 member_idx = member - btf_members(st_ops->type); 8988 name = btf__name_by_offset(btf, member->name_off); 8989 8990 if (!resolve_func_ptr(btf, member->type, NULL)) { 8991 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8992 map->name, name); 8993 return -EINVAL; 8994 } 8995 8996 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8997 if (!prog) { 8998 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8999 map->name, shdr_idx, name); 9000 return -EINVAL; 9001 } 9002 9003 /* prevent the use of BPF prog with invalid type */ 9004 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9005 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9006 map->name, prog->name); 9007 return -EINVAL; 9008 } 9009 9010 /* if we haven't yet processed this BPF program, record proper 9011 * attach_btf_id and member_idx 9012 */ 9013 if (!prog->attach_btf_id) { 9014 prog->attach_btf_id = st_ops->type_id; 9015 prog->expected_attach_type = member_idx; 9016 } 9017 9018 /* struct_ops BPF prog can be re-used between multiple 9019 * .struct_ops as long as it's the same struct_ops struct 9020 * definition and the same function pointer field 9021 */ 9022 if (prog->attach_btf_id != st_ops->type_id || 9023 prog->expected_attach_type != member_idx) { 9024 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9025 map->name, prog->name, prog->sec_name, prog->type, 9026 prog->attach_btf_id, prog->expected_attach_type, name); 9027 return -EINVAL; 9028 } 9029 9030 st_ops->progs[member_idx] = prog; 9031 } 9032 9033 return 0; 9034 } 9035 9036 #define BTF_TRACE_PREFIX "btf_trace_" 9037 #define BTF_LSM_PREFIX "bpf_lsm_" 9038 #define BTF_ITER_PREFIX "bpf_iter_" 9039 #define BTF_MAX_NAME_SIZE 128 9040 9041 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9042 const char **prefix, int *kind) 9043 { 9044 switch (attach_type) { 9045 case BPF_TRACE_RAW_TP: 9046 *prefix = BTF_TRACE_PREFIX; 9047 *kind = BTF_KIND_TYPEDEF; 9048 break; 9049 case BPF_LSM_MAC: 9050 *prefix = BTF_LSM_PREFIX; 9051 *kind = BTF_KIND_FUNC; 9052 break; 9053 case BPF_TRACE_ITER: 9054 *prefix = BTF_ITER_PREFIX; 9055 *kind = BTF_KIND_FUNC; 9056 break; 9057 default: 9058 *prefix = ""; 9059 *kind = BTF_KIND_FUNC; 9060 } 9061 } 9062 9063 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9064 const char *name, __u32 kind) 9065 { 9066 char btf_type_name[BTF_MAX_NAME_SIZE]; 9067 int ret; 9068 9069 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9070 "%s%s", prefix, name); 9071 /* snprintf returns the number of characters written excluding the 9072 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9073 * indicates truncation. 9074 */ 9075 if (ret < 0 || ret >= sizeof(btf_type_name)) 9076 return -ENAMETOOLONG; 9077 return btf__find_by_name_kind(btf, btf_type_name, kind); 9078 } 9079 9080 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9081 enum bpf_attach_type attach_type) 9082 { 9083 const char *prefix; 9084 int kind; 9085 9086 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9087 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9088 } 9089 9090 int libbpf_find_vmlinux_btf_id(const char *name, 9091 enum bpf_attach_type attach_type) 9092 { 9093 struct btf *btf; 9094 int err; 9095 9096 btf = btf__load_vmlinux_btf(); 9097 err = libbpf_get_error(btf); 9098 if (err) { 9099 pr_warn("vmlinux BTF is not found\n"); 9100 return libbpf_err(err); 9101 } 9102 9103 err = find_attach_btf_id(btf, name, attach_type); 9104 if (err <= 0) 9105 pr_warn("%s is not found in vmlinux BTF\n", name); 9106 9107 btf__free(btf); 9108 return libbpf_err(err); 9109 } 9110 9111 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9112 { 9113 struct bpf_prog_info info = {}; 9114 __u32 info_len = sizeof(info); 9115 struct btf *btf; 9116 int err; 9117 9118 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9119 if (err) { 9120 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9121 attach_prog_fd, err); 9122 return err; 9123 } 9124 9125 err = -EINVAL; 9126 if (!info.btf_id) { 9127 pr_warn("The target program doesn't have BTF\n"); 9128 goto out; 9129 } 9130 btf = btf__load_from_kernel_by_id(info.btf_id); 9131 err = libbpf_get_error(btf); 9132 if (err) { 9133 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9134 goto out; 9135 } 9136 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9137 btf__free(btf); 9138 if (err <= 0) { 9139 pr_warn("%s is not found in prog's BTF\n", name); 9140 goto out; 9141 } 9142 out: 9143 return err; 9144 } 9145 9146 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9147 enum bpf_attach_type attach_type, 9148 int *btf_obj_fd, int *btf_type_id) 9149 { 9150 int ret, i; 9151 9152 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9153 if (ret > 0) { 9154 *btf_obj_fd = 0; /* vmlinux BTF */ 9155 *btf_type_id = ret; 9156 return 0; 9157 } 9158 if (ret != -ENOENT) 9159 return ret; 9160 9161 ret = load_module_btfs(obj); 9162 if (ret) 9163 return ret; 9164 9165 for (i = 0; i < obj->btf_module_cnt; i++) { 9166 const struct module_btf *mod = &obj->btf_modules[i]; 9167 9168 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9169 if (ret > 0) { 9170 *btf_obj_fd = mod->fd; 9171 *btf_type_id = ret; 9172 return 0; 9173 } 9174 if (ret == -ENOENT) 9175 continue; 9176 9177 return ret; 9178 } 9179 9180 return -ESRCH; 9181 } 9182 9183 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9184 int *btf_obj_fd, int *btf_type_id) 9185 { 9186 enum bpf_attach_type attach_type = prog->expected_attach_type; 9187 __u32 attach_prog_fd = prog->attach_prog_fd; 9188 int err = 0; 9189 9190 /* BPF program's BTF ID */ 9191 if (attach_prog_fd) { 9192 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9193 if (err < 0) { 9194 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9195 attach_prog_fd, attach_name, err); 9196 return err; 9197 } 9198 *btf_obj_fd = 0; 9199 *btf_type_id = err; 9200 return 0; 9201 } 9202 9203 /* kernel/module BTF ID */ 9204 if (prog->obj->gen_loader) { 9205 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9206 *btf_obj_fd = 0; 9207 *btf_type_id = 1; 9208 } else { 9209 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9210 } 9211 if (err) { 9212 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9213 return err; 9214 } 9215 return 0; 9216 } 9217 9218 int libbpf_attach_type_by_name(const char *name, 9219 enum bpf_attach_type *attach_type) 9220 { 9221 char *type_names; 9222 const struct bpf_sec_def *sec_def; 9223 9224 if (!name) 9225 return libbpf_err(-EINVAL); 9226 9227 sec_def = find_sec_def(name); 9228 if (!sec_def) { 9229 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9230 type_names = libbpf_get_type_names(true); 9231 if (type_names != NULL) { 9232 pr_debug("attachable section(type) names are:%s\n", type_names); 9233 free(type_names); 9234 } 9235 9236 return libbpf_err(-EINVAL); 9237 } 9238 9239 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9240 return libbpf_err(-EINVAL); 9241 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9242 return libbpf_err(-EINVAL); 9243 9244 *attach_type = sec_def->expected_attach_type; 9245 return 0; 9246 } 9247 9248 int bpf_map__fd(const struct bpf_map *map) 9249 { 9250 return map ? map->fd : libbpf_err(-EINVAL); 9251 } 9252 9253 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9254 { 9255 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9256 } 9257 9258 static bool map_uses_real_name(const struct bpf_map *map) 9259 { 9260 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9261 * their user-visible name differs from kernel-visible name. Users see 9262 * such map's corresponding ELF section name as a map name. 9263 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9264 * maps to know which name has to be returned to the user. 9265 */ 9266 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9267 return true; 9268 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9269 return true; 9270 return false; 9271 } 9272 9273 const char *bpf_map__name(const struct bpf_map *map) 9274 { 9275 if (!map) 9276 return NULL; 9277 9278 if (map_uses_real_name(map)) 9279 return map->real_name; 9280 9281 return map->name; 9282 } 9283 9284 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9285 { 9286 return map->def.type; 9287 } 9288 9289 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9290 { 9291 if (map->fd >= 0) 9292 return libbpf_err(-EBUSY); 9293 map->def.type = type; 9294 return 0; 9295 } 9296 9297 __u32 bpf_map__map_flags(const struct bpf_map *map) 9298 { 9299 return map->def.map_flags; 9300 } 9301 9302 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9303 { 9304 if (map->fd >= 0) 9305 return libbpf_err(-EBUSY); 9306 map->def.map_flags = flags; 9307 return 0; 9308 } 9309 9310 __u64 bpf_map__map_extra(const struct bpf_map *map) 9311 { 9312 return map->map_extra; 9313 } 9314 9315 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9316 { 9317 if (map->fd >= 0) 9318 return libbpf_err(-EBUSY); 9319 map->map_extra = map_extra; 9320 return 0; 9321 } 9322 9323 __u32 bpf_map__numa_node(const struct bpf_map *map) 9324 { 9325 return map->numa_node; 9326 } 9327 9328 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9329 { 9330 if (map->fd >= 0) 9331 return libbpf_err(-EBUSY); 9332 map->numa_node = numa_node; 9333 return 0; 9334 } 9335 9336 __u32 bpf_map__key_size(const struct bpf_map *map) 9337 { 9338 return map->def.key_size; 9339 } 9340 9341 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9342 { 9343 if (map->fd >= 0) 9344 return libbpf_err(-EBUSY); 9345 map->def.key_size = size; 9346 return 0; 9347 } 9348 9349 __u32 bpf_map__value_size(const struct bpf_map *map) 9350 { 9351 return map->def.value_size; 9352 } 9353 9354 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9355 { 9356 if (map->fd >= 0) 9357 return libbpf_err(-EBUSY); 9358 map->def.value_size = size; 9359 return 0; 9360 } 9361 9362 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9363 { 9364 return map ? map->btf_key_type_id : 0; 9365 } 9366 9367 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9368 { 9369 return map ? map->btf_value_type_id : 0; 9370 } 9371 9372 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9373 bpf_map_clear_priv_t clear_priv) 9374 { 9375 if (!map) 9376 return libbpf_err(-EINVAL); 9377 9378 if (map->priv) { 9379 if (map->clear_priv) 9380 map->clear_priv(map, map->priv); 9381 } 9382 9383 map->priv = priv; 9384 map->clear_priv = clear_priv; 9385 return 0; 9386 } 9387 9388 void *bpf_map__priv(const struct bpf_map *map) 9389 { 9390 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9391 } 9392 9393 int bpf_map__set_initial_value(struct bpf_map *map, 9394 const void *data, size_t size) 9395 { 9396 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9397 size != map->def.value_size || map->fd >= 0) 9398 return libbpf_err(-EINVAL); 9399 9400 memcpy(map->mmaped, data, size); 9401 return 0; 9402 } 9403 9404 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9405 { 9406 if (!map->mmaped) 9407 return NULL; 9408 *psize = map->def.value_size; 9409 return map->mmaped; 9410 } 9411 9412 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9413 { 9414 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9415 } 9416 9417 bool bpf_map__is_internal(const struct bpf_map *map) 9418 { 9419 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9420 } 9421 9422 __u32 bpf_map__ifindex(const struct bpf_map *map) 9423 { 9424 return map->map_ifindex; 9425 } 9426 9427 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9428 { 9429 if (map->fd >= 0) 9430 return libbpf_err(-EBUSY); 9431 map->map_ifindex = ifindex; 9432 return 0; 9433 } 9434 9435 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9436 { 9437 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9438 pr_warn("error: unsupported map type\n"); 9439 return libbpf_err(-EINVAL); 9440 } 9441 if (map->inner_map_fd != -1) { 9442 pr_warn("error: inner_map_fd already specified\n"); 9443 return libbpf_err(-EINVAL); 9444 } 9445 if (map->inner_map) { 9446 bpf_map__destroy(map->inner_map); 9447 zfree(&map->inner_map); 9448 } 9449 map->inner_map_fd = fd; 9450 return 0; 9451 } 9452 9453 static struct bpf_map * 9454 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9455 { 9456 ssize_t idx; 9457 struct bpf_map *s, *e; 9458 9459 if (!obj || !obj->maps) 9460 return errno = EINVAL, NULL; 9461 9462 s = obj->maps; 9463 e = obj->maps + obj->nr_maps; 9464 9465 if ((m < s) || (m >= e)) { 9466 pr_warn("error in %s: map handler doesn't belong to object\n", 9467 __func__); 9468 return errno = EINVAL, NULL; 9469 } 9470 9471 idx = (m - obj->maps) + i; 9472 if (idx >= obj->nr_maps || idx < 0) 9473 return NULL; 9474 return &obj->maps[idx]; 9475 } 9476 9477 struct bpf_map * 9478 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9479 { 9480 return bpf_object__next_map(obj, prev); 9481 } 9482 9483 struct bpf_map * 9484 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9485 { 9486 if (prev == NULL) 9487 return obj->maps; 9488 9489 return __bpf_map__iter(prev, obj, 1); 9490 } 9491 9492 struct bpf_map * 9493 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9494 { 9495 return bpf_object__prev_map(obj, next); 9496 } 9497 9498 struct bpf_map * 9499 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9500 { 9501 if (next == NULL) { 9502 if (!obj->nr_maps) 9503 return NULL; 9504 return obj->maps + obj->nr_maps - 1; 9505 } 9506 9507 return __bpf_map__iter(next, obj, -1); 9508 } 9509 9510 struct bpf_map * 9511 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9512 { 9513 struct bpf_map *pos; 9514 9515 bpf_object__for_each_map(pos, obj) { 9516 /* if it's a special internal map name (which always starts 9517 * with dot) then check if that special name matches the 9518 * real map name (ELF section name) 9519 */ 9520 if (name[0] == '.') { 9521 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9522 return pos; 9523 continue; 9524 } 9525 /* otherwise map name has to be an exact match */ 9526 if (map_uses_real_name(pos)) { 9527 if (strcmp(pos->real_name, name) == 0) 9528 return pos; 9529 continue; 9530 } 9531 if (strcmp(pos->name, name) == 0) 9532 return pos; 9533 } 9534 return errno = ENOENT, NULL; 9535 } 9536 9537 int 9538 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9539 { 9540 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9541 } 9542 9543 struct bpf_map * 9544 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9545 { 9546 return libbpf_err_ptr(-ENOTSUP); 9547 } 9548 9549 long libbpf_get_error(const void *ptr) 9550 { 9551 if (!IS_ERR_OR_NULL(ptr)) 9552 return 0; 9553 9554 if (IS_ERR(ptr)) 9555 errno = -PTR_ERR(ptr); 9556 9557 /* If ptr == NULL, then errno should be already set by the failing 9558 * API, because libbpf never returns NULL on success and it now always 9559 * sets errno on error. So no extra errno handling for ptr == NULL 9560 * case. 9561 */ 9562 return -errno; 9563 } 9564 9565 __attribute__((alias("bpf_prog_load_xattr2"))) 9566 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9567 struct bpf_object **pobj, int *prog_fd); 9568 9569 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9570 struct bpf_object **pobj, int *prog_fd) 9571 { 9572 struct bpf_object_open_attr open_attr = {}; 9573 struct bpf_program *prog, *first_prog = NULL; 9574 struct bpf_object *obj; 9575 struct bpf_map *map; 9576 int err; 9577 9578 if (!attr) 9579 return libbpf_err(-EINVAL); 9580 if (!attr->file) 9581 return libbpf_err(-EINVAL); 9582 9583 open_attr.file = attr->file; 9584 open_attr.prog_type = attr->prog_type; 9585 9586 obj = __bpf_object__open_xattr(&open_attr, 0); 9587 err = libbpf_get_error(obj); 9588 if (err) 9589 return libbpf_err(-ENOENT); 9590 9591 bpf_object__for_each_program(prog, obj) { 9592 enum bpf_attach_type attach_type = attr->expected_attach_type; 9593 /* 9594 * to preserve backwards compatibility, bpf_prog_load treats 9595 * attr->prog_type, if specified, as an override to whatever 9596 * bpf_object__open guessed 9597 */ 9598 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9599 bpf_program__set_type(prog, attr->prog_type); 9600 bpf_program__set_expected_attach_type(prog, 9601 attach_type); 9602 } 9603 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 9604 /* 9605 * we haven't guessed from section name and user 9606 * didn't provide a fallback type, too bad... 9607 */ 9608 bpf_object__close(obj); 9609 return libbpf_err(-EINVAL); 9610 } 9611 9612 prog->prog_ifindex = attr->ifindex; 9613 prog->log_level = attr->log_level; 9614 prog->prog_flags |= attr->prog_flags; 9615 if (!first_prog) 9616 first_prog = prog; 9617 } 9618 9619 bpf_object__for_each_map(map, obj) { 9620 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9621 map->map_ifindex = attr->ifindex; 9622 } 9623 9624 if (!first_prog) { 9625 pr_warn("object file doesn't contain bpf program\n"); 9626 bpf_object__close(obj); 9627 return libbpf_err(-ENOENT); 9628 } 9629 9630 err = bpf_object__load(obj); 9631 if (err) { 9632 bpf_object__close(obj); 9633 return libbpf_err(err); 9634 } 9635 9636 *pobj = obj; 9637 *prog_fd = bpf_program__fd(first_prog); 9638 return 0; 9639 } 9640 9641 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9642 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9643 struct bpf_object **pobj, int *prog_fd) 9644 { 9645 struct bpf_prog_load_attr attr; 9646 9647 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9648 attr.file = file; 9649 attr.prog_type = type; 9650 attr.expected_attach_type = 0; 9651 9652 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9653 } 9654 9655 struct bpf_link { 9656 int (*detach)(struct bpf_link *link); 9657 void (*dealloc)(struct bpf_link *link); 9658 char *pin_path; /* NULL, if not pinned */ 9659 int fd; /* hook FD, -1 if not applicable */ 9660 bool disconnected; 9661 }; 9662 9663 /* Replace link's underlying BPF program with the new one */ 9664 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9665 { 9666 int ret; 9667 9668 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9669 return libbpf_err_errno(ret); 9670 } 9671 9672 /* Release "ownership" of underlying BPF resource (typically, BPF program 9673 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9674 * link, when destructed through bpf_link__destroy() call won't attempt to 9675 * detach/unregisted that BPF resource. This is useful in situations where, 9676 * say, attached BPF program has to outlive userspace program that attached it 9677 * in the system. Depending on type of BPF program, though, there might be 9678 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9679 * exit of userspace program doesn't trigger automatic detachment and clean up 9680 * inside the kernel. 9681 */ 9682 void bpf_link__disconnect(struct bpf_link *link) 9683 { 9684 link->disconnected = true; 9685 } 9686 9687 int bpf_link__destroy(struct bpf_link *link) 9688 { 9689 int err = 0; 9690 9691 if (IS_ERR_OR_NULL(link)) 9692 return 0; 9693 9694 if (!link->disconnected && link->detach) 9695 err = link->detach(link); 9696 if (link->pin_path) 9697 free(link->pin_path); 9698 if (link->dealloc) 9699 link->dealloc(link); 9700 else 9701 free(link); 9702 9703 return libbpf_err(err); 9704 } 9705 9706 int bpf_link__fd(const struct bpf_link *link) 9707 { 9708 return link->fd; 9709 } 9710 9711 const char *bpf_link__pin_path(const struct bpf_link *link) 9712 { 9713 return link->pin_path; 9714 } 9715 9716 static int bpf_link__detach_fd(struct bpf_link *link) 9717 { 9718 return libbpf_err_errno(close(link->fd)); 9719 } 9720 9721 struct bpf_link *bpf_link__open(const char *path) 9722 { 9723 struct bpf_link *link; 9724 int fd; 9725 9726 fd = bpf_obj_get(path); 9727 if (fd < 0) { 9728 fd = -errno; 9729 pr_warn("failed to open link at %s: %d\n", path, fd); 9730 return libbpf_err_ptr(fd); 9731 } 9732 9733 link = calloc(1, sizeof(*link)); 9734 if (!link) { 9735 close(fd); 9736 return libbpf_err_ptr(-ENOMEM); 9737 } 9738 link->detach = &bpf_link__detach_fd; 9739 link->fd = fd; 9740 9741 link->pin_path = strdup(path); 9742 if (!link->pin_path) { 9743 bpf_link__destroy(link); 9744 return libbpf_err_ptr(-ENOMEM); 9745 } 9746 9747 return link; 9748 } 9749 9750 int bpf_link__detach(struct bpf_link *link) 9751 { 9752 return bpf_link_detach(link->fd) ? -errno : 0; 9753 } 9754 9755 int bpf_link__pin(struct bpf_link *link, const char *path) 9756 { 9757 int err; 9758 9759 if (link->pin_path) 9760 return libbpf_err(-EBUSY); 9761 err = make_parent_dir(path); 9762 if (err) 9763 return libbpf_err(err); 9764 err = check_path(path); 9765 if (err) 9766 return libbpf_err(err); 9767 9768 link->pin_path = strdup(path); 9769 if (!link->pin_path) 9770 return libbpf_err(-ENOMEM); 9771 9772 if (bpf_obj_pin(link->fd, link->pin_path)) { 9773 err = -errno; 9774 zfree(&link->pin_path); 9775 return libbpf_err(err); 9776 } 9777 9778 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9779 return 0; 9780 } 9781 9782 int bpf_link__unpin(struct bpf_link *link) 9783 { 9784 int err; 9785 9786 if (!link->pin_path) 9787 return libbpf_err(-EINVAL); 9788 9789 err = unlink(link->pin_path); 9790 if (err != 0) 9791 return -errno; 9792 9793 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9794 zfree(&link->pin_path); 9795 return 0; 9796 } 9797 9798 struct bpf_link_perf { 9799 struct bpf_link link; 9800 int perf_event_fd; 9801 /* legacy kprobe support: keep track of probe identifier and type */ 9802 char *legacy_probe_name; 9803 bool legacy_is_kprobe; 9804 bool legacy_is_retprobe; 9805 }; 9806 9807 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9808 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9809 9810 static int bpf_link_perf_detach(struct bpf_link *link) 9811 { 9812 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9813 int err = 0; 9814 9815 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9816 err = -errno; 9817 9818 if (perf_link->perf_event_fd != link->fd) 9819 close(perf_link->perf_event_fd); 9820 close(link->fd); 9821 9822 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9823 if (perf_link->legacy_probe_name) { 9824 if (perf_link->legacy_is_kprobe) { 9825 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9826 perf_link->legacy_is_retprobe); 9827 } else { 9828 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9829 perf_link->legacy_is_retprobe); 9830 } 9831 } 9832 9833 return err; 9834 } 9835 9836 static void bpf_link_perf_dealloc(struct bpf_link *link) 9837 { 9838 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9839 9840 free(perf_link->legacy_probe_name); 9841 free(perf_link); 9842 } 9843 9844 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9845 const struct bpf_perf_event_opts *opts) 9846 { 9847 char errmsg[STRERR_BUFSIZE]; 9848 struct bpf_link_perf *link; 9849 int prog_fd, link_fd = -1, err; 9850 9851 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9852 return libbpf_err_ptr(-EINVAL); 9853 9854 if (pfd < 0) { 9855 pr_warn("prog '%s': invalid perf event FD %d\n", 9856 prog->name, pfd); 9857 return libbpf_err_ptr(-EINVAL); 9858 } 9859 prog_fd = bpf_program__fd(prog); 9860 if (prog_fd < 0) { 9861 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9862 prog->name); 9863 return libbpf_err_ptr(-EINVAL); 9864 } 9865 9866 link = calloc(1, sizeof(*link)); 9867 if (!link) 9868 return libbpf_err_ptr(-ENOMEM); 9869 link->link.detach = &bpf_link_perf_detach; 9870 link->link.dealloc = &bpf_link_perf_dealloc; 9871 link->perf_event_fd = pfd; 9872 9873 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9874 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9875 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9876 9877 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9878 if (link_fd < 0) { 9879 err = -errno; 9880 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9881 prog->name, pfd, 9882 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9883 goto err_out; 9884 } 9885 link->link.fd = link_fd; 9886 } else { 9887 if (OPTS_GET(opts, bpf_cookie, 0)) { 9888 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9889 err = -EOPNOTSUPP; 9890 goto err_out; 9891 } 9892 9893 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9894 err = -errno; 9895 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9896 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9897 if (err == -EPROTO) 9898 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9899 prog->name, pfd); 9900 goto err_out; 9901 } 9902 link->link.fd = pfd; 9903 } 9904 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9905 err = -errno; 9906 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9907 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9908 goto err_out; 9909 } 9910 9911 return &link->link; 9912 err_out: 9913 if (link_fd >= 0) 9914 close(link_fd); 9915 free(link); 9916 return libbpf_err_ptr(err); 9917 } 9918 9919 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9920 { 9921 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9922 } 9923 9924 /* 9925 * this function is expected to parse integer in the range of [0, 2^31-1] from 9926 * given file using scanf format string fmt. If actual parsed value is 9927 * negative, the result might be indistinguishable from error 9928 */ 9929 static int parse_uint_from_file(const char *file, const char *fmt) 9930 { 9931 char buf[STRERR_BUFSIZE]; 9932 int err, ret; 9933 FILE *f; 9934 9935 f = fopen(file, "r"); 9936 if (!f) { 9937 err = -errno; 9938 pr_debug("failed to open '%s': %s\n", file, 9939 libbpf_strerror_r(err, buf, sizeof(buf))); 9940 return err; 9941 } 9942 err = fscanf(f, fmt, &ret); 9943 if (err != 1) { 9944 err = err == EOF ? -EIO : -errno; 9945 pr_debug("failed to parse '%s': %s\n", file, 9946 libbpf_strerror_r(err, buf, sizeof(buf))); 9947 fclose(f); 9948 return err; 9949 } 9950 fclose(f); 9951 return ret; 9952 } 9953 9954 static int determine_kprobe_perf_type(void) 9955 { 9956 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9957 9958 return parse_uint_from_file(file, "%d\n"); 9959 } 9960 9961 static int determine_uprobe_perf_type(void) 9962 { 9963 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9964 9965 return parse_uint_from_file(file, "%d\n"); 9966 } 9967 9968 static int determine_kprobe_retprobe_bit(void) 9969 { 9970 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9971 9972 return parse_uint_from_file(file, "config:%d\n"); 9973 } 9974 9975 static int determine_uprobe_retprobe_bit(void) 9976 { 9977 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9978 9979 return parse_uint_from_file(file, "config:%d\n"); 9980 } 9981 9982 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9983 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9984 9985 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9986 uint64_t offset, int pid, size_t ref_ctr_off) 9987 { 9988 struct perf_event_attr attr = {}; 9989 char errmsg[STRERR_BUFSIZE]; 9990 int type, pfd, err; 9991 9992 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9993 return -EINVAL; 9994 9995 type = uprobe ? determine_uprobe_perf_type() 9996 : determine_kprobe_perf_type(); 9997 if (type < 0) { 9998 pr_warn("failed to determine %s perf type: %s\n", 9999 uprobe ? "uprobe" : "kprobe", 10000 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10001 return type; 10002 } 10003 if (retprobe) { 10004 int bit = uprobe ? determine_uprobe_retprobe_bit() 10005 : determine_kprobe_retprobe_bit(); 10006 10007 if (bit < 0) { 10008 pr_warn("failed to determine %s retprobe bit: %s\n", 10009 uprobe ? "uprobe" : "kprobe", 10010 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10011 return bit; 10012 } 10013 attr.config |= 1 << bit; 10014 } 10015 attr.size = sizeof(attr); 10016 attr.type = type; 10017 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10018 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10019 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10020 10021 /* pid filter is meaningful only for uprobes */ 10022 pfd = syscall(__NR_perf_event_open, &attr, 10023 pid < 0 ? -1 : pid /* pid */, 10024 pid == -1 ? 0 : -1 /* cpu */, 10025 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10026 if (pfd < 0) { 10027 err = -errno; 10028 pr_warn("%s perf_event_open() failed: %s\n", 10029 uprobe ? "uprobe" : "kprobe", 10030 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10031 return err; 10032 } 10033 return pfd; 10034 } 10035 10036 static int append_to_file(const char *file, const char *fmt, ...) 10037 { 10038 int fd, n, err = 0; 10039 va_list ap; 10040 10041 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10042 if (fd < 0) 10043 return -errno; 10044 10045 va_start(ap, fmt); 10046 n = vdprintf(fd, fmt, ap); 10047 va_end(ap); 10048 10049 if (n < 0) 10050 err = -errno; 10051 10052 close(fd); 10053 return err; 10054 } 10055 10056 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10057 const char *kfunc_name, size_t offset) 10058 { 10059 static int index = 0; 10060 10061 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10062 __sync_fetch_and_add(&index, 1)); 10063 } 10064 10065 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10066 const char *kfunc_name, size_t offset) 10067 { 10068 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10069 10070 return append_to_file(file, "%c:%s/%s %s+0x%zx", 10071 retprobe ? 'r' : 'p', 10072 retprobe ? "kretprobes" : "kprobes", 10073 probe_name, kfunc_name, offset); 10074 } 10075 10076 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10077 { 10078 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10079 10080 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 10081 } 10082 10083 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10084 { 10085 char file[256]; 10086 10087 snprintf(file, sizeof(file), 10088 "/sys/kernel/debug/tracing/events/%s/%s/id", 10089 retprobe ? "kretprobes" : "kprobes", probe_name); 10090 10091 return parse_uint_from_file(file, "%d\n"); 10092 } 10093 10094 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10095 const char *kfunc_name, size_t offset, int pid) 10096 { 10097 struct perf_event_attr attr = {}; 10098 char errmsg[STRERR_BUFSIZE]; 10099 int type, pfd, err; 10100 10101 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10102 if (err < 0) { 10103 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10104 kfunc_name, offset, 10105 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10106 return err; 10107 } 10108 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10109 if (type < 0) { 10110 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10111 kfunc_name, offset, 10112 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10113 return type; 10114 } 10115 attr.size = sizeof(attr); 10116 attr.config = type; 10117 attr.type = PERF_TYPE_TRACEPOINT; 10118 10119 pfd = syscall(__NR_perf_event_open, &attr, 10120 pid < 0 ? -1 : pid, /* pid */ 10121 pid == -1 ? 0 : -1, /* cpu */ 10122 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10123 if (pfd < 0) { 10124 err = -errno; 10125 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10126 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10127 return err; 10128 } 10129 return pfd; 10130 } 10131 10132 struct bpf_link * 10133 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10134 const char *func_name, 10135 const struct bpf_kprobe_opts *opts) 10136 { 10137 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10138 char errmsg[STRERR_BUFSIZE]; 10139 char *legacy_probe = NULL; 10140 struct bpf_link *link; 10141 size_t offset; 10142 bool retprobe, legacy; 10143 int pfd, err; 10144 10145 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10146 return libbpf_err_ptr(-EINVAL); 10147 10148 retprobe = OPTS_GET(opts, retprobe, false); 10149 offset = OPTS_GET(opts, offset, 0); 10150 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10151 10152 legacy = determine_kprobe_perf_type() < 0; 10153 if (!legacy) { 10154 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10155 func_name, offset, 10156 -1 /* pid */, 0 /* ref_ctr_off */); 10157 } else { 10158 char probe_name[256]; 10159 10160 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10161 func_name, offset); 10162 10163 legacy_probe = strdup(probe_name); 10164 if (!legacy_probe) 10165 return libbpf_err_ptr(-ENOMEM); 10166 10167 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10168 offset, -1 /* pid */); 10169 } 10170 if (pfd < 0) { 10171 err = -errno; 10172 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10173 prog->name, retprobe ? "kretprobe" : "kprobe", 10174 func_name, offset, 10175 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10176 goto err_out; 10177 } 10178 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10179 err = libbpf_get_error(link); 10180 if (err) { 10181 close(pfd); 10182 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10183 prog->name, retprobe ? "kretprobe" : "kprobe", 10184 func_name, offset, 10185 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10186 goto err_out; 10187 } 10188 if (legacy) { 10189 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10190 10191 perf_link->legacy_probe_name = legacy_probe; 10192 perf_link->legacy_is_kprobe = true; 10193 perf_link->legacy_is_retprobe = retprobe; 10194 } 10195 10196 return link; 10197 err_out: 10198 free(legacy_probe); 10199 return libbpf_err_ptr(err); 10200 } 10201 10202 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10203 bool retprobe, 10204 const char *func_name) 10205 { 10206 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10207 .retprobe = retprobe, 10208 ); 10209 10210 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10211 } 10212 10213 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10214 { 10215 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10216 unsigned long offset = 0; 10217 const char *func_name; 10218 char *func; 10219 int n; 10220 10221 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10222 if (opts.retprobe) 10223 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10224 else 10225 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10226 10227 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10228 if (n < 1) { 10229 pr_warn("kprobe name is invalid: %s\n", func_name); 10230 return -EINVAL; 10231 } 10232 if (opts.retprobe && offset != 0) { 10233 free(func); 10234 pr_warn("kretprobes do not support offset specification\n"); 10235 return -EINVAL; 10236 } 10237 10238 opts.offset = offset; 10239 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10240 free(func); 10241 return libbpf_get_error(*link); 10242 } 10243 10244 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10245 const char *binary_path, uint64_t offset) 10246 { 10247 int i; 10248 10249 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10250 10251 /* sanitize binary_path in the probe name */ 10252 for (i = 0; buf[i]; i++) { 10253 if (!isalnum(buf[i])) 10254 buf[i] = '_'; 10255 } 10256 } 10257 10258 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10259 const char *binary_path, size_t offset) 10260 { 10261 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10262 10263 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10264 retprobe ? 'r' : 'p', 10265 retprobe ? "uretprobes" : "uprobes", 10266 probe_name, binary_path, offset); 10267 } 10268 10269 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10270 { 10271 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10272 10273 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10274 } 10275 10276 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10277 { 10278 char file[512]; 10279 10280 snprintf(file, sizeof(file), 10281 "/sys/kernel/debug/tracing/events/%s/%s/id", 10282 retprobe ? "uretprobes" : "uprobes", probe_name); 10283 10284 return parse_uint_from_file(file, "%d\n"); 10285 } 10286 10287 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10288 const char *binary_path, size_t offset, int pid) 10289 { 10290 struct perf_event_attr attr; 10291 int type, pfd, err; 10292 10293 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10294 if (err < 0) { 10295 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10296 binary_path, (size_t)offset, err); 10297 return err; 10298 } 10299 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10300 if (type < 0) { 10301 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10302 binary_path, offset, err); 10303 return type; 10304 } 10305 10306 memset(&attr, 0, sizeof(attr)); 10307 attr.size = sizeof(attr); 10308 attr.config = type; 10309 attr.type = PERF_TYPE_TRACEPOINT; 10310 10311 pfd = syscall(__NR_perf_event_open, &attr, 10312 pid < 0 ? -1 : pid, /* pid */ 10313 pid == -1 ? 0 : -1, /* cpu */ 10314 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10315 if (pfd < 0) { 10316 err = -errno; 10317 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10318 return err; 10319 } 10320 return pfd; 10321 } 10322 10323 LIBBPF_API struct bpf_link * 10324 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10325 const char *binary_path, size_t func_offset, 10326 const struct bpf_uprobe_opts *opts) 10327 { 10328 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10329 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10330 struct bpf_link *link; 10331 size_t ref_ctr_off; 10332 int pfd, err; 10333 bool retprobe, legacy; 10334 10335 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10336 return libbpf_err_ptr(-EINVAL); 10337 10338 retprobe = OPTS_GET(opts, retprobe, false); 10339 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10340 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10341 10342 legacy = determine_uprobe_perf_type() < 0; 10343 if (!legacy) { 10344 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10345 func_offset, pid, ref_ctr_off); 10346 } else { 10347 char probe_name[512]; 10348 10349 if (ref_ctr_off) 10350 return libbpf_err_ptr(-EINVAL); 10351 10352 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10353 binary_path, func_offset); 10354 10355 legacy_probe = strdup(probe_name); 10356 if (!legacy_probe) 10357 return libbpf_err_ptr(-ENOMEM); 10358 10359 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10360 binary_path, func_offset, pid); 10361 } 10362 if (pfd < 0) { 10363 err = -errno; 10364 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10365 prog->name, retprobe ? "uretprobe" : "uprobe", 10366 binary_path, func_offset, 10367 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10368 goto err_out; 10369 } 10370 10371 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10372 err = libbpf_get_error(link); 10373 if (err) { 10374 close(pfd); 10375 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10376 prog->name, retprobe ? "uretprobe" : "uprobe", 10377 binary_path, func_offset, 10378 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10379 goto err_out; 10380 } 10381 if (legacy) { 10382 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10383 10384 perf_link->legacy_probe_name = legacy_probe; 10385 perf_link->legacy_is_kprobe = false; 10386 perf_link->legacy_is_retprobe = retprobe; 10387 } 10388 return link; 10389 err_out: 10390 free(legacy_probe); 10391 return libbpf_err_ptr(err); 10392 10393 } 10394 10395 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10396 bool retprobe, pid_t pid, 10397 const char *binary_path, 10398 size_t func_offset) 10399 { 10400 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10401 10402 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10403 } 10404 10405 static int determine_tracepoint_id(const char *tp_category, 10406 const char *tp_name) 10407 { 10408 char file[PATH_MAX]; 10409 int ret; 10410 10411 ret = snprintf(file, sizeof(file), 10412 "/sys/kernel/debug/tracing/events/%s/%s/id", 10413 tp_category, tp_name); 10414 if (ret < 0) 10415 return -errno; 10416 if (ret >= sizeof(file)) { 10417 pr_debug("tracepoint %s/%s path is too long\n", 10418 tp_category, tp_name); 10419 return -E2BIG; 10420 } 10421 return parse_uint_from_file(file, "%d\n"); 10422 } 10423 10424 static int perf_event_open_tracepoint(const char *tp_category, 10425 const char *tp_name) 10426 { 10427 struct perf_event_attr attr = {}; 10428 char errmsg[STRERR_BUFSIZE]; 10429 int tp_id, pfd, err; 10430 10431 tp_id = determine_tracepoint_id(tp_category, tp_name); 10432 if (tp_id < 0) { 10433 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10434 tp_category, tp_name, 10435 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10436 return tp_id; 10437 } 10438 10439 attr.type = PERF_TYPE_TRACEPOINT; 10440 attr.size = sizeof(attr); 10441 attr.config = tp_id; 10442 10443 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10444 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10445 if (pfd < 0) { 10446 err = -errno; 10447 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10448 tp_category, tp_name, 10449 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10450 return err; 10451 } 10452 return pfd; 10453 } 10454 10455 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10456 const char *tp_category, 10457 const char *tp_name, 10458 const struct bpf_tracepoint_opts *opts) 10459 { 10460 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10461 char errmsg[STRERR_BUFSIZE]; 10462 struct bpf_link *link; 10463 int pfd, err; 10464 10465 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10466 return libbpf_err_ptr(-EINVAL); 10467 10468 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10469 10470 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10471 if (pfd < 0) { 10472 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10473 prog->name, tp_category, tp_name, 10474 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10475 return libbpf_err_ptr(pfd); 10476 } 10477 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10478 err = libbpf_get_error(link); 10479 if (err) { 10480 close(pfd); 10481 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10482 prog->name, tp_category, tp_name, 10483 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10484 return libbpf_err_ptr(err); 10485 } 10486 return link; 10487 } 10488 10489 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10490 const char *tp_category, 10491 const char *tp_name) 10492 { 10493 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10494 } 10495 10496 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10497 { 10498 char *sec_name, *tp_cat, *tp_name; 10499 10500 sec_name = strdup(prog->sec_name); 10501 if (!sec_name) 10502 return -ENOMEM; 10503 10504 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10505 if (str_has_pfx(prog->sec_name, "tp/")) 10506 tp_cat = sec_name + sizeof("tp/") - 1; 10507 else 10508 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10509 tp_name = strchr(tp_cat, '/'); 10510 if (!tp_name) { 10511 free(sec_name); 10512 return -EINVAL; 10513 } 10514 *tp_name = '\0'; 10515 tp_name++; 10516 10517 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10518 free(sec_name); 10519 return libbpf_get_error(*link); 10520 } 10521 10522 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10523 const char *tp_name) 10524 { 10525 char errmsg[STRERR_BUFSIZE]; 10526 struct bpf_link *link; 10527 int prog_fd, pfd; 10528 10529 prog_fd = bpf_program__fd(prog); 10530 if (prog_fd < 0) { 10531 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10532 return libbpf_err_ptr(-EINVAL); 10533 } 10534 10535 link = calloc(1, sizeof(*link)); 10536 if (!link) 10537 return libbpf_err_ptr(-ENOMEM); 10538 link->detach = &bpf_link__detach_fd; 10539 10540 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10541 if (pfd < 0) { 10542 pfd = -errno; 10543 free(link); 10544 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10545 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10546 return libbpf_err_ptr(pfd); 10547 } 10548 link->fd = pfd; 10549 return link; 10550 } 10551 10552 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10553 { 10554 static const char *const prefixes[] = { 10555 "raw_tp/", 10556 "raw_tracepoint/", 10557 "raw_tp.w/", 10558 "raw_tracepoint.w/", 10559 }; 10560 size_t i; 10561 const char *tp_name = NULL; 10562 10563 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10564 if (str_has_pfx(prog->sec_name, prefixes[i])) { 10565 tp_name = prog->sec_name + strlen(prefixes[i]); 10566 break; 10567 } 10568 } 10569 if (!tp_name) { 10570 pr_warn("prog '%s': invalid section name '%s'\n", 10571 prog->name, prog->sec_name); 10572 return -EINVAL; 10573 } 10574 10575 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 10576 return libbpf_get_error(link); 10577 } 10578 10579 /* Common logic for all BPF program types that attach to a btf_id */ 10580 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 10581 { 10582 char errmsg[STRERR_BUFSIZE]; 10583 struct bpf_link *link; 10584 int prog_fd, pfd; 10585 10586 prog_fd = bpf_program__fd(prog); 10587 if (prog_fd < 0) { 10588 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10589 return libbpf_err_ptr(-EINVAL); 10590 } 10591 10592 link = calloc(1, sizeof(*link)); 10593 if (!link) 10594 return libbpf_err_ptr(-ENOMEM); 10595 link->detach = &bpf_link__detach_fd; 10596 10597 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10598 if (pfd < 0) { 10599 pfd = -errno; 10600 free(link); 10601 pr_warn("prog '%s': failed to attach: %s\n", 10602 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10603 return libbpf_err_ptr(pfd); 10604 } 10605 link->fd = pfd; 10606 return (struct bpf_link *)link; 10607 } 10608 10609 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 10610 { 10611 return bpf_program__attach_btf_id(prog); 10612 } 10613 10614 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 10615 { 10616 return bpf_program__attach_btf_id(prog); 10617 } 10618 10619 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10620 { 10621 *link = bpf_program__attach_trace(prog); 10622 return libbpf_get_error(*link); 10623 } 10624 10625 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10626 { 10627 *link = bpf_program__attach_lsm(prog); 10628 return libbpf_get_error(*link); 10629 } 10630 10631 static struct bpf_link * 10632 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 10633 const char *target_name) 10634 { 10635 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10636 .target_btf_id = btf_id); 10637 enum bpf_attach_type attach_type; 10638 char errmsg[STRERR_BUFSIZE]; 10639 struct bpf_link *link; 10640 int prog_fd, link_fd; 10641 10642 prog_fd = bpf_program__fd(prog); 10643 if (prog_fd < 0) { 10644 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10645 return libbpf_err_ptr(-EINVAL); 10646 } 10647 10648 link = calloc(1, sizeof(*link)); 10649 if (!link) 10650 return libbpf_err_ptr(-ENOMEM); 10651 link->detach = &bpf_link__detach_fd; 10652 10653 attach_type = bpf_program__expected_attach_type(prog); 10654 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10655 if (link_fd < 0) { 10656 link_fd = -errno; 10657 free(link); 10658 pr_warn("prog '%s': failed to attach to %s: %s\n", 10659 prog->name, target_name, 10660 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10661 return libbpf_err_ptr(link_fd); 10662 } 10663 link->fd = link_fd; 10664 return link; 10665 } 10666 10667 struct bpf_link * 10668 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 10669 { 10670 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10671 } 10672 10673 struct bpf_link * 10674 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 10675 { 10676 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10677 } 10678 10679 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 10680 { 10681 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10682 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10683 } 10684 10685 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 10686 int target_fd, 10687 const char *attach_func_name) 10688 { 10689 int btf_id; 10690 10691 if (!!target_fd != !!attach_func_name) { 10692 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10693 prog->name); 10694 return libbpf_err_ptr(-EINVAL); 10695 } 10696 10697 if (prog->type != BPF_PROG_TYPE_EXT) { 10698 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10699 prog->name); 10700 return libbpf_err_ptr(-EINVAL); 10701 } 10702 10703 if (target_fd) { 10704 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10705 if (btf_id < 0) 10706 return libbpf_err_ptr(btf_id); 10707 10708 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10709 } else { 10710 /* no target, so use raw_tracepoint_open for compatibility 10711 * with old kernels 10712 */ 10713 return bpf_program__attach_trace(prog); 10714 } 10715 } 10716 10717 struct bpf_link * 10718 bpf_program__attach_iter(const struct bpf_program *prog, 10719 const struct bpf_iter_attach_opts *opts) 10720 { 10721 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10722 char errmsg[STRERR_BUFSIZE]; 10723 struct bpf_link *link; 10724 int prog_fd, link_fd; 10725 __u32 target_fd = 0; 10726 10727 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10728 return libbpf_err_ptr(-EINVAL); 10729 10730 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10731 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10732 10733 prog_fd = bpf_program__fd(prog); 10734 if (prog_fd < 0) { 10735 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10736 return libbpf_err_ptr(-EINVAL); 10737 } 10738 10739 link = calloc(1, sizeof(*link)); 10740 if (!link) 10741 return libbpf_err_ptr(-ENOMEM); 10742 link->detach = &bpf_link__detach_fd; 10743 10744 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10745 &link_create_opts); 10746 if (link_fd < 0) { 10747 link_fd = -errno; 10748 free(link); 10749 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10750 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10751 return libbpf_err_ptr(link_fd); 10752 } 10753 link->fd = link_fd; 10754 return link; 10755 } 10756 10757 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10758 { 10759 *link = bpf_program__attach_iter(prog, NULL); 10760 return libbpf_get_error(*link); 10761 } 10762 10763 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 10764 { 10765 struct bpf_link *link = NULL; 10766 int err; 10767 10768 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 10769 return libbpf_err_ptr(-EOPNOTSUPP); 10770 10771 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 10772 if (err) 10773 return libbpf_err_ptr(err); 10774 10775 /* When calling bpf_program__attach() explicitly, auto-attach support 10776 * is expected to work, so NULL returned link is considered an error. 10777 * This is different for skeleton's attach, see comment in 10778 * bpf_object__attach_skeleton(). 10779 */ 10780 if (!link) 10781 return libbpf_err_ptr(-EOPNOTSUPP); 10782 10783 return link; 10784 } 10785 10786 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10787 { 10788 __u32 zero = 0; 10789 10790 if (bpf_map_delete_elem(link->fd, &zero)) 10791 return -errno; 10792 10793 return 0; 10794 } 10795 10796 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10797 { 10798 struct bpf_struct_ops *st_ops; 10799 struct bpf_link *link; 10800 __u32 i, zero = 0; 10801 int err; 10802 10803 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10804 return libbpf_err_ptr(-EINVAL); 10805 10806 link = calloc(1, sizeof(*link)); 10807 if (!link) 10808 return libbpf_err_ptr(-EINVAL); 10809 10810 st_ops = map->st_ops; 10811 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10812 struct bpf_program *prog = st_ops->progs[i]; 10813 void *kern_data; 10814 int prog_fd; 10815 10816 if (!prog) 10817 continue; 10818 10819 prog_fd = bpf_program__fd(prog); 10820 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10821 *(unsigned long *)kern_data = prog_fd; 10822 } 10823 10824 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10825 if (err) { 10826 err = -errno; 10827 free(link); 10828 return libbpf_err_ptr(err); 10829 } 10830 10831 link->detach = bpf_link__detach_struct_ops; 10832 link->fd = map->fd; 10833 10834 return link; 10835 } 10836 10837 static enum bpf_perf_event_ret 10838 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10839 void **copy_mem, size_t *copy_size, 10840 bpf_perf_event_print_t fn, void *private_data) 10841 { 10842 struct perf_event_mmap_page *header = mmap_mem; 10843 __u64 data_head = ring_buffer_read_head(header); 10844 __u64 data_tail = header->data_tail; 10845 void *base = ((__u8 *)header) + page_size; 10846 int ret = LIBBPF_PERF_EVENT_CONT; 10847 struct perf_event_header *ehdr; 10848 size_t ehdr_size; 10849 10850 while (data_head != data_tail) { 10851 ehdr = base + (data_tail & (mmap_size - 1)); 10852 ehdr_size = ehdr->size; 10853 10854 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10855 void *copy_start = ehdr; 10856 size_t len_first = base + mmap_size - copy_start; 10857 size_t len_secnd = ehdr_size - len_first; 10858 10859 if (*copy_size < ehdr_size) { 10860 free(*copy_mem); 10861 *copy_mem = malloc(ehdr_size); 10862 if (!*copy_mem) { 10863 *copy_size = 0; 10864 ret = LIBBPF_PERF_EVENT_ERROR; 10865 break; 10866 } 10867 *copy_size = ehdr_size; 10868 } 10869 10870 memcpy(*copy_mem, copy_start, len_first); 10871 memcpy(*copy_mem + len_first, base, len_secnd); 10872 ehdr = *copy_mem; 10873 } 10874 10875 ret = fn(ehdr, private_data); 10876 data_tail += ehdr_size; 10877 if (ret != LIBBPF_PERF_EVENT_CONT) 10878 break; 10879 } 10880 10881 ring_buffer_write_tail(header, data_tail); 10882 return libbpf_err(ret); 10883 } 10884 10885 __attribute__((alias("perf_event_read_simple"))) 10886 enum bpf_perf_event_ret 10887 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10888 void **copy_mem, size_t *copy_size, 10889 bpf_perf_event_print_t fn, void *private_data); 10890 10891 struct perf_buffer; 10892 10893 struct perf_buffer_params { 10894 struct perf_event_attr *attr; 10895 /* if event_cb is specified, it takes precendence */ 10896 perf_buffer_event_fn event_cb; 10897 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10898 perf_buffer_sample_fn sample_cb; 10899 perf_buffer_lost_fn lost_cb; 10900 void *ctx; 10901 int cpu_cnt; 10902 int *cpus; 10903 int *map_keys; 10904 }; 10905 10906 struct perf_cpu_buf { 10907 struct perf_buffer *pb; 10908 void *base; /* mmap()'ed memory */ 10909 void *buf; /* for reconstructing segmented data */ 10910 size_t buf_size; 10911 int fd; 10912 int cpu; 10913 int map_key; 10914 }; 10915 10916 struct perf_buffer { 10917 perf_buffer_event_fn event_cb; 10918 perf_buffer_sample_fn sample_cb; 10919 perf_buffer_lost_fn lost_cb; 10920 void *ctx; /* passed into callbacks */ 10921 10922 size_t page_size; 10923 size_t mmap_size; 10924 struct perf_cpu_buf **cpu_bufs; 10925 struct epoll_event *events; 10926 int cpu_cnt; /* number of allocated CPU buffers */ 10927 int epoll_fd; /* perf event FD */ 10928 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10929 }; 10930 10931 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10932 struct perf_cpu_buf *cpu_buf) 10933 { 10934 if (!cpu_buf) 10935 return; 10936 if (cpu_buf->base && 10937 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10938 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10939 if (cpu_buf->fd >= 0) { 10940 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10941 close(cpu_buf->fd); 10942 } 10943 free(cpu_buf->buf); 10944 free(cpu_buf); 10945 } 10946 10947 void perf_buffer__free(struct perf_buffer *pb) 10948 { 10949 int i; 10950 10951 if (IS_ERR_OR_NULL(pb)) 10952 return; 10953 if (pb->cpu_bufs) { 10954 for (i = 0; i < pb->cpu_cnt; i++) { 10955 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10956 10957 if (!cpu_buf) 10958 continue; 10959 10960 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10961 perf_buffer__free_cpu_buf(pb, cpu_buf); 10962 } 10963 free(pb->cpu_bufs); 10964 } 10965 if (pb->epoll_fd >= 0) 10966 close(pb->epoll_fd); 10967 free(pb->events); 10968 free(pb); 10969 } 10970 10971 static struct perf_cpu_buf * 10972 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10973 int cpu, int map_key) 10974 { 10975 struct perf_cpu_buf *cpu_buf; 10976 char msg[STRERR_BUFSIZE]; 10977 int err; 10978 10979 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10980 if (!cpu_buf) 10981 return ERR_PTR(-ENOMEM); 10982 10983 cpu_buf->pb = pb; 10984 cpu_buf->cpu = cpu; 10985 cpu_buf->map_key = map_key; 10986 10987 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10988 -1, PERF_FLAG_FD_CLOEXEC); 10989 if (cpu_buf->fd < 0) { 10990 err = -errno; 10991 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10992 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10993 goto error; 10994 } 10995 10996 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10997 PROT_READ | PROT_WRITE, MAP_SHARED, 10998 cpu_buf->fd, 0); 10999 if (cpu_buf->base == MAP_FAILED) { 11000 cpu_buf->base = NULL; 11001 err = -errno; 11002 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11003 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11004 goto error; 11005 } 11006 11007 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11008 err = -errno; 11009 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11010 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11011 goto error; 11012 } 11013 11014 return cpu_buf; 11015 11016 error: 11017 perf_buffer__free_cpu_buf(pb, cpu_buf); 11018 return (struct perf_cpu_buf *)ERR_PTR(err); 11019 } 11020 11021 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11022 struct perf_buffer_params *p); 11023 11024 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 11025 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 11026 perf_buffer_sample_fn sample_cb, 11027 perf_buffer_lost_fn lost_cb, 11028 void *ctx, 11029 const struct perf_buffer_opts *opts) 11030 { 11031 struct perf_buffer_params p = {}; 11032 struct perf_event_attr attr = {}; 11033 11034 if (!OPTS_VALID(opts, perf_buffer_opts)) 11035 return libbpf_err_ptr(-EINVAL); 11036 11037 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11038 attr.type = PERF_TYPE_SOFTWARE; 11039 attr.sample_type = PERF_SAMPLE_RAW; 11040 attr.sample_period = 1; 11041 attr.wakeup_events = 1; 11042 11043 p.attr = &attr; 11044 p.sample_cb = sample_cb; 11045 p.lost_cb = lost_cb; 11046 p.ctx = ctx; 11047 11048 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11049 } 11050 11051 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 11052 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 11053 const struct perf_buffer_opts *opts) 11054 { 11055 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 11056 opts ? opts->sample_cb : NULL, 11057 opts ? opts->lost_cb : NULL, 11058 opts ? opts->ctx : NULL, 11059 NULL); 11060 } 11061 11062 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 11063 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 11064 struct perf_event_attr *attr, 11065 perf_buffer_event_fn event_cb, void *ctx, 11066 const struct perf_buffer_raw_opts *opts) 11067 { 11068 struct perf_buffer_params p = {}; 11069 11070 if (!attr) 11071 return libbpf_err_ptr(-EINVAL); 11072 11073 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11074 return libbpf_err_ptr(-EINVAL); 11075 11076 p.attr = attr; 11077 p.event_cb = event_cb; 11078 p.ctx = ctx; 11079 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11080 p.cpus = OPTS_GET(opts, cpus, NULL); 11081 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11082 11083 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11084 } 11085 11086 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 11087 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 11088 const struct perf_buffer_raw_opts *opts) 11089 { 11090 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 11091 .cpu_cnt = opts->cpu_cnt, 11092 .cpus = opts->cpus, 11093 .map_keys = opts->map_keys, 11094 ); 11095 11096 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 11097 opts->event_cb, opts->ctx, &inner_opts); 11098 } 11099 11100 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11101 struct perf_buffer_params *p) 11102 { 11103 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11104 struct bpf_map_info map; 11105 char msg[STRERR_BUFSIZE]; 11106 struct perf_buffer *pb; 11107 bool *online = NULL; 11108 __u32 map_info_len; 11109 int err, i, j, n; 11110 11111 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11112 pr_warn("page count should be power of two, but is %zu\n", 11113 page_cnt); 11114 return ERR_PTR(-EINVAL); 11115 } 11116 11117 /* best-effort sanity checks */ 11118 memset(&map, 0, sizeof(map)); 11119 map_info_len = sizeof(map); 11120 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11121 if (err) { 11122 err = -errno; 11123 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11124 * -EBADFD, -EFAULT, or -E2BIG on real error 11125 */ 11126 if (err != -EINVAL) { 11127 pr_warn("failed to get map info for map FD %d: %s\n", 11128 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11129 return ERR_PTR(err); 11130 } 11131 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11132 map_fd); 11133 } else { 11134 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11135 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11136 map.name); 11137 return ERR_PTR(-EINVAL); 11138 } 11139 } 11140 11141 pb = calloc(1, sizeof(*pb)); 11142 if (!pb) 11143 return ERR_PTR(-ENOMEM); 11144 11145 pb->event_cb = p->event_cb; 11146 pb->sample_cb = p->sample_cb; 11147 pb->lost_cb = p->lost_cb; 11148 pb->ctx = p->ctx; 11149 11150 pb->page_size = getpagesize(); 11151 pb->mmap_size = pb->page_size * page_cnt; 11152 pb->map_fd = map_fd; 11153 11154 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11155 if (pb->epoll_fd < 0) { 11156 err = -errno; 11157 pr_warn("failed to create epoll instance: %s\n", 11158 libbpf_strerror_r(err, msg, sizeof(msg))); 11159 goto error; 11160 } 11161 11162 if (p->cpu_cnt > 0) { 11163 pb->cpu_cnt = p->cpu_cnt; 11164 } else { 11165 pb->cpu_cnt = libbpf_num_possible_cpus(); 11166 if (pb->cpu_cnt < 0) { 11167 err = pb->cpu_cnt; 11168 goto error; 11169 } 11170 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11171 pb->cpu_cnt = map.max_entries; 11172 } 11173 11174 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11175 if (!pb->events) { 11176 err = -ENOMEM; 11177 pr_warn("failed to allocate events: out of memory\n"); 11178 goto error; 11179 } 11180 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11181 if (!pb->cpu_bufs) { 11182 err = -ENOMEM; 11183 pr_warn("failed to allocate buffers: out of memory\n"); 11184 goto error; 11185 } 11186 11187 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11188 if (err) { 11189 pr_warn("failed to get online CPU mask: %d\n", err); 11190 goto error; 11191 } 11192 11193 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11194 struct perf_cpu_buf *cpu_buf; 11195 int cpu, map_key; 11196 11197 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11198 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11199 11200 /* in case user didn't explicitly requested particular CPUs to 11201 * be attached to, skip offline/not present CPUs 11202 */ 11203 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11204 continue; 11205 11206 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11207 if (IS_ERR(cpu_buf)) { 11208 err = PTR_ERR(cpu_buf); 11209 goto error; 11210 } 11211 11212 pb->cpu_bufs[j] = cpu_buf; 11213 11214 err = bpf_map_update_elem(pb->map_fd, &map_key, 11215 &cpu_buf->fd, 0); 11216 if (err) { 11217 err = -errno; 11218 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11219 cpu, map_key, cpu_buf->fd, 11220 libbpf_strerror_r(err, msg, sizeof(msg))); 11221 goto error; 11222 } 11223 11224 pb->events[j].events = EPOLLIN; 11225 pb->events[j].data.ptr = cpu_buf; 11226 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11227 &pb->events[j]) < 0) { 11228 err = -errno; 11229 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11230 cpu, cpu_buf->fd, 11231 libbpf_strerror_r(err, msg, sizeof(msg))); 11232 goto error; 11233 } 11234 j++; 11235 } 11236 pb->cpu_cnt = j; 11237 free(online); 11238 11239 return pb; 11240 11241 error: 11242 free(online); 11243 if (pb) 11244 perf_buffer__free(pb); 11245 return ERR_PTR(err); 11246 } 11247 11248 struct perf_sample_raw { 11249 struct perf_event_header header; 11250 uint32_t size; 11251 char data[]; 11252 }; 11253 11254 struct perf_sample_lost { 11255 struct perf_event_header header; 11256 uint64_t id; 11257 uint64_t lost; 11258 uint64_t sample_id; 11259 }; 11260 11261 static enum bpf_perf_event_ret 11262 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11263 { 11264 struct perf_cpu_buf *cpu_buf = ctx; 11265 struct perf_buffer *pb = cpu_buf->pb; 11266 void *data = e; 11267 11268 /* user wants full control over parsing perf event */ 11269 if (pb->event_cb) 11270 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11271 11272 switch (e->type) { 11273 case PERF_RECORD_SAMPLE: { 11274 struct perf_sample_raw *s = data; 11275 11276 if (pb->sample_cb) 11277 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11278 break; 11279 } 11280 case PERF_RECORD_LOST: { 11281 struct perf_sample_lost *s = data; 11282 11283 if (pb->lost_cb) 11284 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11285 break; 11286 } 11287 default: 11288 pr_warn("unknown perf sample type %d\n", e->type); 11289 return LIBBPF_PERF_EVENT_ERROR; 11290 } 11291 return LIBBPF_PERF_EVENT_CONT; 11292 } 11293 11294 static int perf_buffer__process_records(struct perf_buffer *pb, 11295 struct perf_cpu_buf *cpu_buf) 11296 { 11297 enum bpf_perf_event_ret ret; 11298 11299 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11300 pb->page_size, &cpu_buf->buf, 11301 &cpu_buf->buf_size, 11302 perf_buffer__process_record, cpu_buf); 11303 if (ret != LIBBPF_PERF_EVENT_CONT) 11304 return ret; 11305 return 0; 11306 } 11307 11308 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11309 { 11310 return pb->epoll_fd; 11311 } 11312 11313 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11314 { 11315 int i, cnt, err; 11316 11317 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11318 if (cnt < 0) 11319 return -errno; 11320 11321 for (i = 0; i < cnt; i++) { 11322 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11323 11324 err = perf_buffer__process_records(pb, cpu_buf); 11325 if (err) { 11326 pr_warn("error while processing records: %d\n", err); 11327 return libbpf_err(err); 11328 } 11329 } 11330 return cnt; 11331 } 11332 11333 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11334 * manager. 11335 */ 11336 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11337 { 11338 return pb->cpu_cnt; 11339 } 11340 11341 /* 11342 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11343 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11344 * select()/poll()/epoll() Linux syscalls. 11345 */ 11346 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11347 { 11348 struct perf_cpu_buf *cpu_buf; 11349 11350 if (buf_idx >= pb->cpu_cnt) 11351 return libbpf_err(-EINVAL); 11352 11353 cpu_buf = pb->cpu_bufs[buf_idx]; 11354 if (!cpu_buf) 11355 return libbpf_err(-ENOENT); 11356 11357 return cpu_buf->fd; 11358 } 11359 11360 /* 11361 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11362 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11363 * consume, do nothing and return success. 11364 * Returns: 11365 * - 0 on success; 11366 * - <0 on failure. 11367 */ 11368 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11369 { 11370 struct perf_cpu_buf *cpu_buf; 11371 11372 if (buf_idx >= pb->cpu_cnt) 11373 return libbpf_err(-EINVAL); 11374 11375 cpu_buf = pb->cpu_bufs[buf_idx]; 11376 if (!cpu_buf) 11377 return libbpf_err(-ENOENT); 11378 11379 return perf_buffer__process_records(pb, cpu_buf); 11380 } 11381 11382 int perf_buffer__consume(struct perf_buffer *pb) 11383 { 11384 int i, err; 11385 11386 for (i = 0; i < pb->cpu_cnt; i++) { 11387 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11388 11389 if (!cpu_buf) 11390 continue; 11391 11392 err = perf_buffer__process_records(pb, cpu_buf); 11393 if (err) { 11394 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11395 return libbpf_err(err); 11396 } 11397 } 11398 return 0; 11399 } 11400 11401 struct bpf_prog_info_array_desc { 11402 int array_offset; /* e.g. offset of jited_prog_insns */ 11403 int count_offset; /* e.g. offset of jited_prog_len */ 11404 int size_offset; /* > 0: offset of rec size, 11405 * < 0: fix size of -size_offset 11406 */ 11407 }; 11408 11409 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 11410 [BPF_PROG_INFO_JITED_INSNS] = { 11411 offsetof(struct bpf_prog_info, jited_prog_insns), 11412 offsetof(struct bpf_prog_info, jited_prog_len), 11413 -1, 11414 }, 11415 [BPF_PROG_INFO_XLATED_INSNS] = { 11416 offsetof(struct bpf_prog_info, xlated_prog_insns), 11417 offsetof(struct bpf_prog_info, xlated_prog_len), 11418 -1, 11419 }, 11420 [BPF_PROG_INFO_MAP_IDS] = { 11421 offsetof(struct bpf_prog_info, map_ids), 11422 offsetof(struct bpf_prog_info, nr_map_ids), 11423 -(int)sizeof(__u32), 11424 }, 11425 [BPF_PROG_INFO_JITED_KSYMS] = { 11426 offsetof(struct bpf_prog_info, jited_ksyms), 11427 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11428 -(int)sizeof(__u64), 11429 }, 11430 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11431 offsetof(struct bpf_prog_info, jited_func_lens), 11432 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11433 -(int)sizeof(__u32), 11434 }, 11435 [BPF_PROG_INFO_FUNC_INFO] = { 11436 offsetof(struct bpf_prog_info, func_info), 11437 offsetof(struct bpf_prog_info, nr_func_info), 11438 offsetof(struct bpf_prog_info, func_info_rec_size), 11439 }, 11440 [BPF_PROG_INFO_LINE_INFO] = { 11441 offsetof(struct bpf_prog_info, line_info), 11442 offsetof(struct bpf_prog_info, nr_line_info), 11443 offsetof(struct bpf_prog_info, line_info_rec_size), 11444 }, 11445 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11446 offsetof(struct bpf_prog_info, jited_line_info), 11447 offsetof(struct bpf_prog_info, nr_jited_line_info), 11448 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11449 }, 11450 [BPF_PROG_INFO_PROG_TAGS] = { 11451 offsetof(struct bpf_prog_info, prog_tags), 11452 offsetof(struct bpf_prog_info, nr_prog_tags), 11453 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11454 }, 11455 11456 }; 11457 11458 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11459 int offset) 11460 { 11461 __u32 *array = (__u32 *)info; 11462 11463 if (offset >= 0) 11464 return array[offset / sizeof(__u32)]; 11465 return -(int)offset; 11466 } 11467 11468 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11469 int offset) 11470 { 11471 __u64 *array = (__u64 *)info; 11472 11473 if (offset >= 0) 11474 return array[offset / sizeof(__u64)]; 11475 return -(int)offset; 11476 } 11477 11478 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11479 __u32 val) 11480 { 11481 __u32 *array = (__u32 *)info; 11482 11483 if (offset >= 0) 11484 array[offset / sizeof(__u32)] = val; 11485 } 11486 11487 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11488 __u64 val) 11489 { 11490 __u64 *array = (__u64 *)info; 11491 11492 if (offset >= 0) 11493 array[offset / sizeof(__u64)] = val; 11494 } 11495 11496 struct bpf_prog_info_linear * 11497 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11498 { 11499 struct bpf_prog_info_linear *info_linear; 11500 struct bpf_prog_info info = {}; 11501 __u32 info_len = sizeof(info); 11502 __u32 data_len = 0; 11503 int i, err; 11504 void *ptr; 11505 11506 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11507 return libbpf_err_ptr(-EINVAL); 11508 11509 /* step 1: get array dimensions */ 11510 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11511 if (err) { 11512 pr_debug("can't get prog info: %s", strerror(errno)); 11513 return libbpf_err_ptr(-EFAULT); 11514 } 11515 11516 /* step 2: calculate total size of all arrays */ 11517 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11518 bool include_array = (arrays & (1UL << i)) > 0; 11519 struct bpf_prog_info_array_desc *desc; 11520 __u32 count, size; 11521 11522 desc = bpf_prog_info_array_desc + i; 11523 11524 /* kernel is too old to support this field */ 11525 if (info_len < desc->array_offset + sizeof(__u32) || 11526 info_len < desc->count_offset + sizeof(__u32) || 11527 (desc->size_offset > 0 && info_len < desc->size_offset)) 11528 include_array = false; 11529 11530 if (!include_array) { 11531 arrays &= ~(1UL << i); /* clear the bit */ 11532 continue; 11533 } 11534 11535 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11536 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11537 11538 data_len += count * size; 11539 } 11540 11541 /* step 3: allocate continuous memory */ 11542 data_len = roundup(data_len, sizeof(__u64)); 11543 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11544 if (!info_linear) 11545 return libbpf_err_ptr(-ENOMEM); 11546 11547 /* step 4: fill data to info_linear->info */ 11548 info_linear->arrays = arrays; 11549 memset(&info_linear->info, 0, sizeof(info)); 11550 ptr = info_linear->data; 11551 11552 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11553 struct bpf_prog_info_array_desc *desc; 11554 __u32 count, size; 11555 11556 if ((arrays & (1UL << i)) == 0) 11557 continue; 11558 11559 desc = bpf_prog_info_array_desc + i; 11560 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11561 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11562 bpf_prog_info_set_offset_u32(&info_linear->info, 11563 desc->count_offset, count); 11564 bpf_prog_info_set_offset_u32(&info_linear->info, 11565 desc->size_offset, size); 11566 bpf_prog_info_set_offset_u64(&info_linear->info, 11567 desc->array_offset, 11568 ptr_to_u64(ptr)); 11569 ptr += count * size; 11570 } 11571 11572 /* step 5: call syscall again to get required arrays */ 11573 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11574 if (err) { 11575 pr_debug("can't get prog info: %s", strerror(errno)); 11576 free(info_linear); 11577 return libbpf_err_ptr(-EFAULT); 11578 } 11579 11580 /* step 6: verify the data */ 11581 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11582 struct bpf_prog_info_array_desc *desc; 11583 __u32 v1, v2; 11584 11585 if ((arrays & (1UL << i)) == 0) 11586 continue; 11587 11588 desc = bpf_prog_info_array_desc + i; 11589 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11590 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11591 desc->count_offset); 11592 if (v1 != v2) 11593 pr_warn("%s: mismatch in element count\n", __func__); 11594 11595 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11596 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11597 desc->size_offset); 11598 if (v1 != v2) 11599 pr_warn("%s: mismatch in rec size\n", __func__); 11600 } 11601 11602 /* step 7: update info_len and data_len */ 11603 info_linear->info_len = sizeof(struct bpf_prog_info); 11604 info_linear->data_len = data_len; 11605 11606 return info_linear; 11607 } 11608 11609 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11610 { 11611 int i; 11612 11613 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11614 struct bpf_prog_info_array_desc *desc; 11615 __u64 addr, offs; 11616 11617 if ((info_linear->arrays & (1UL << i)) == 0) 11618 continue; 11619 11620 desc = bpf_prog_info_array_desc + i; 11621 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11622 desc->array_offset); 11623 offs = addr - ptr_to_u64(info_linear->data); 11624 bpf_prog_info_set_offset_u64(&info_linear->info, 11625 desc->array_offset, offs); 11626 } 11627 } 11628 11629 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11630 { 11631 int i; 11632 11633 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11634 struct bpf_prog_info_array_desc *desc; 11635 __u64 addr, offs; 11636 11637 if ((info_linear->arrays & (1UL << i)) == 0) 11638 continue; 11639 11640 desc = bpf_prog_info_array_desc + i; 11641 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11642 desc->array_offset); 11643 addr = offs + ptr_to_u64(info_linear->data); 11644 bpf_prog_info_set_offset_u64(&info_linear->info, 11645 desc->array_offset, addr); 11646 } 11647 } 11648 11649 int bpf_program__set_attach_target(struct bpf_program *prog, 11650 int attach_prog_fd, 11651 const char *attach_func_name) 11652 { 11653 int btf_obj_fd = 0, btf_id = 0, err; 11654 11655 if (!prog || attach_prog_fd < 0) 11656 return libbpf_err(-EINVAL); 11657 11658 if (prog->obj->loaded) 11659 return libbpf_err(-EINVAL); 11660 11661 if (attach_prog_fd && !attach_func_name) { 11662 /* remember attach_prog_fd and let bpf_program__load() find 11663 * BTF ID during the program load 11664 */ 11665 prog->attach_prog_fd = attach_prog_fd; 11666 return 0; 11667 } 11668 11669 if (attach_prog_fd) { 11670 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11671 attach_prog_fd); 11672 if (btf_id < 0) 11673 return libbpf_err(btf_id); 11674 } else { 11675 if (!attach_func_name) 11676 return libbpf_err(-EINVAL); 11677 11678 /* load btf_vmlinux, if not yet */ 11679 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11680 if (err) 11681 return libbpf_err(err); 11682 err = find_kernel_btf_id(prog->obj, attach_func_name, 11683 prog->expected_attach_type, 11684 &btf_obj_fd, &btf_id); 11685 if (err) 11686 return libbpf_err(err); 11687 } 11688 11689 prog->attach_btf_id = btf_id; 11690 prog->attach_btf_obj_fd = btf_obj_fd; 11691 prog->attach_prog_fd = attach_prog_fd; 11692 return 0; 11693 } 11694 11695 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11696 { 11697 int err = 0, n, len, start, end = -1; 11698 bool *tmp; 11699 11700 *mask = NULL; 11701 *mask_sz = 0; 11702 11703 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11704 while (*s) { 11705 if (*s == ',' || *s == '\n') { 11706 s++; 11707 continue; 11708 } 11709 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11710 if (n <= 0 || n > 2) { 11711 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11712 err = -EINVAL; 11713 goto cleanup; 11714 } else if (n == 1) { 11715 end = start; 11716 } 11717 if (start < 0 || start > end) { 11718 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11719 start, end, s); 11720 err = -EINVAL; 11721 goto cleanup; 11722 } 11723 tmp = realloc(*mask, end + 1); 11724 if (!tmp) { 11725 err = -ENOMEM; 11726 goto cleanup; 11727 } 11728 *mask = tmp; 11729 memset(tmp + *mask_sz, 0, start - *mask_sz); 11730 memset(tmp + start, 1, end - start + 1); 11731 *mask_sz = end + 1; 11732 s += len; 11733 } 11734 if (!*mask_sz) { 11735 pr_warn("Empty CPU range\n"); 11736 return -EINVAL; 11737 } 11738 return 0; 11739 cleanup: 11740 free(*mask); 11741 *mask = NULL; 11742 return err; 11743 } 11744 11745 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11746 { 11747 int fd, err = 0, len; 11748 char buf[128]; 11749 11750 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11751 if (fd < 0) { 11752 err = -errno; 11753 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11754 return err; 11755 } 11756 len = read(fd, buf, sizeof(buf)); 11757 close(fd); 11758 if (len <= 0) { 11759 err = len ? -errno : -EINVAL; 11760 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11761 return err; 11762 } 11763 if (len >= sizeof(buf)) { 11764 pr_warn("CPU mask is too big in file %s\n", fcpu); 11765 return -E2BIG; 11766 } 11767 buf[len] = '\0'; 11768 11769 return parse_cpu_mask_str(buf, mask, mask_sz); 11770 } 11771 11772 int libbpf_num_possible_cpus(void) 11773 { 11774 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11775 static int cpus; 11776 int err, n, i, tmp_cpus; 11777 bool *mask; 11778 11779 tmp_cpus = READ_ONCE(cpus); 11780 if (tmp_cpus > 0) 11781 return tmp_cpus; 11782 11783 err = parse_cpu_mask_file(fcpu, &mask, &n); 11784 if (err) 11785 return libbpf_err(err); 11786 11787 tmp_cpus = 0; 11788 for (i = 0; i < n; i++) { 11789 if (mask[i]) 11790 tmp_cpus++; 11791 } 11792 free(mask); 11793 11794 WRITE_ONCE(cpus, tmp_cpus); 11795 return tmp_cpus; 11796 } 11797 11798 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11799 const struct bpf_object_open_opts *opts) 11800 { 11801 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11802 .object_name = s->name, 11803 ); 11804 struct bpf_object *obj; 11805 int i, err; 11806 11807 /* Attempt to preserve opts->object_name, unless overriden by user 11808 * explicitly. Overwriting object name for skeletons is discouraged, 11809 * as it breaks global data maps, because they contain object name 11810 * prefix as their own map name prefix. When skeleton is generated, 11811 * bpftool is making an assumption that this name will stay the same. 11812 */ 11813 if (opts) { 11814 memcpy(&skel_opts, opts, sizeof(*opts)); 11815 if (!opts->object_name) 11816 skel_opts.object_name = s->name; 11817 } 11818 11819 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11820 err = libbpf_get_error(obj); 11821 if (err) { 11822 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 11823 s->name, err); 11824 return libbpf_err(err); 11825 } 11826 11827 *s->obj = obj; 11828 11829 for (i = 0; i < s->map_cnt; i++) { 11830 struct bpf_map **map = s->maps[i].map; 11831 const char *name = s->maps[i].name; 11832 void **mmaped = s->maps[i].mmaped; 11833 11834 *map = bpf_object__find_map_by_name(obj, name); 11835 if (!*map) { 11836 pr_warn("failed to find skeleton map '%s'\n", name); 11837 return libbpf_err(-ESRCH); 11838 } 11839 11840 /* externs shouldn't be pre-setup from user code */ 11841 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11842 *mmaped = (*map)->mmaped; 11843 } 11844 11845 for (i = 0; i < s->prog_cnt; i++) { 11846 struct bpf_program **prog = s->progs[i].prog; 11847 const char *name = s->progs[i].name; 11848 11849 *prog = bpf_object__find_program_by_name(obj, name); 11850 if (!*prog) { 11851 pr_warn("failed to find skeleton program '%s'\n", name); 11852 return libbpf_err(-ESRCH); 11853 } 11854 } 11855 11856 return 0; 11857 } 11858 11859 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11860 { 11861 int i, err; 11862 11863 err = bpf_object__load(*s->obj); 11864 if (err) { 11865 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11866 return libbpf_err(err); 11867 } 11868 11869 for (i = 0; i < s->map_cnt; i++) { 11870 struct bpf_map *map = *s->maps[i].map; 11871 size_t mmap_sz = bpf_map_mmap_sz(map); 11872 int prot, map_fd = bpf_map__fd(map); 11873 void **mmaped = s->maps[i].mmaped; 11874 11875 if (!mmaped) 11876 continue; 11877 11878 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11879 *mmaped = NULL; 11880 continue; 11881 } 11882 11883 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11884 prot = PROT_READ; 11885 else 11886 prot = PROT_READ | PROT_WRITE; 11887 11888 /* Remap anonymous mmap()-ed "map initialization image" as 11889 * a BPF map-backed mmap()-ed memory, but preserving the same 11890 * memory address. This will cause kernel to change process' 11891 * page table to point to a different piece of kernel memory, 11892 * but from userspace point of view memory address (and its 11893 * contents, being identical at this point) will stay the 11894 * same. This mapping will be released by bpf_object__close() 11895 * as per normal clean up procedure, so we don't need to worry 11896 * about it from skeleton's clean up perspective. 11897 */ 11898 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11899 MAP_SHARED | MAP_FIXED, map_fd, 0); 11900 if (*mmaped == MAP_FAILED) { 11901 err = -errno; 11902 *mmaped = NULL; 11903 pr_warn("failed to re-mmap() map '%s': %d\n", 11904 bpf_map__name(map), err); 11905 return libbpf_err(err); 11906 } 11907 } 11908 11909 return 0; 11910 } 11911 11912 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11913 { 11914 int i, err; 11915 11916 for (i = 0; i < s->prog_cnt; i++) { 11917 struct bpf_program *prog = *s->progs[i].prog; 11918 struct bpf_link **link = s->progs[i].link; 11919 11920 if (!prog->load) 11921 continue; 11922 11923 /* auto-attaching not supported for this program */ 11924 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11925 continue; 11926 11927 /* if user already set the link manually, don't attempt auto-attach */ 11928 if (*link) 11929 continue; 11930 11931 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 11932 if (err) { 11933 pr_warn("prog '%s': failed to auto-attach: %d\n", 11934 bpf_program__name(prog), err); 11935 return libbpf_err(err); 11936 } 11937 11938 /* It's possible that for some SEC() definitions auto-attach 11939 * is supported in some cases (e.g., if definition completely 11940 * specifies target information), but is not in other cases. 11941 * SEC("uprobe") is one such case. If user specified target 11942 * binary and function name, such BPF program can be 11943 * auto-attached. But if not, it shouldn't trigger skeleton's 11944 * attach to fail. It should just be skipped. 11945 * attach_fn signals such case with returning 0 (no error) and 11946 * setting link to NULL. 11947 */ 11948 } 11949 11950 return 0; 11951 } 11952 11953 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11954 { 11955 int i; 11956 11957 for (i = 0; i < s->prog_cnt; i++) { 11958 struct bpf_link **link = s->progs[i].link; 11959 11960 bpf_link__destroy(*link); 11961 *link = NULL; 11962 } 11963 } 11964 11965 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11966 { 11967 if (!s) 11968 return; 11969 11970 if (s->progs) 11971 bpf_object__detach_skeleton(s); 11972 if (s->obj) 11973 bpf_object__close(*s->obj); 11974 free(s->maps); 11975 free(s->progs); 11976 free(s); 11977 } 11978