xref: /linux/tools/lib/bpf/libbpf.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 
58 #ifndef EM_BPF
59 #define EM_BPF 247
60 #endif
61 
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC		0xcafe4a11
64 #endif
65 
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67 
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69  * compilation if user enables corresponding warning. Disable it explicitly.
70  */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72 
73 #define __printf(a, b)	__attribute__((format(printf, a, b)))
74 
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static const struct btf_type *
77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
78 
79 static int __base_pr(enum libbpf_print_level level, const char *format,
80 		     va_list args)
81 {
82 	if (level == LIBBPF_DEBUG)
83 		return 0;
84 
85 	return vfprintf(stderr, format, args);
86 }
87 
88 static libbpf_print_fn_t __libbpf_pr = __base_pr;
89 
90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
91 {
92 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
93 
94 	__libbpf_pr = fn;
95 	return old_print_fn;
96 }
97 
98 __printf(2, 3)
99 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
100 {
101 	va_list args;
102 
103 	if (!__libbpf_pr)
104 		return;
105 
106 	va_start(args, format);
107 	__libbpf_pr(level, format, args);
108 	va_end(args);
109 }
110 
111 static void pr_perm_msg(int err)
112 {
113 	struct rlimit limit;
114 	char buf[100];
115 
116 	if (err != -EPERM || geteuid() != 0)
117 		return;
118 
119 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
120 	if (err)
121 		return;
122 
123 	if (limit.rlim_cur == RLIM_INFINITY)
124 		return;
125 
126 	if (limit.rlim_cur < 1024)
127 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
128 	else if (limit.rlim_cur < 1024*1024)
129 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
130 	else
131 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
132 
133 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
134 		buf);
135 }
136 
137 #define STRERR_BUFSIZE  128
138 
139 /* Copied from tools/perf/util/util.h */
140 #ifndef zfree
141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
142 #endif
143 
144 #ifndef zclose
145 # define zclose(fd) ({			\
146 	int ___err = 0;			\
147 	if ((fd) >= 0)			\
148 		___err = close((fd));	\
149 	fd = -1;			\
150 	___err; })
151 #endif
152 
153 static inline __u64 ptr_to_u64(const void *ptr)
154 {
155 	return (__u64) (unsigned long) ptr;
156 }
157 
158 enum kern_feature_id {
159 	/* v4.14: kernel support for program & map names. */
160 	FEAT_PROG_NAME,
161 	/* v5.2: kernel support for global data sections. */
162 	FEAT_GLOBAL_DATA,
163 	/* BTF support */
164 	FEAT_BTF,
165 	/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
166 	FEAT_BTF_FUNC,
167 	/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
168 	FEAT_BTF_DATASEC,
169 	/* BTF_FUNC_GLOBAL is supported */
170 	FEAT_BTF_GLOBAL_FUNC,
171 	/* BPF_F_MMAPABLE is supported for arrays */
172 	FEAT_ARRAY_MMAP,
173 	/* kernel support for expected_attach_type in BPF_PROG_LOAD */
174 	FEAT_EXP_ATTACH_TYPE,
175 	/* bpf_probe_read_{kernel,user}[_str] helpers */
176 	FEAT_PROBE_READ_KERN,
177 	/* BPF_PROG_BIND_MAP is supported */
178 	FEAT_PROG_BIND_MAP,
179 	/* Kernel support for module BTFs */
180 	FEAT_MODULE_BTF,
181 	__FEAT_CNT,
182 };
183 
184 static bool kernel_supports(enum kern_feature_id feat_id);
185 
186 enum reloc_type {
187 	RELO_LD64,
188 	RELO_CALL,
189 	RELO_DATA,
190 	RELO_EXTERN,
191 };
192 
193 struct reloc_desc {
194 	enum reloc_type type;
195 	int insn_idx;
196 	int map_idx;
197 	int sym_off;
198 	bool processed;
199 };
200 
201 struct bpf_sec_def;
202 
203 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
204 					struct bpf_program *prog);
205 
206 struct bpf_sec_def {
207 	const char *sec;
208 	size_t len;
209 	enum bpf_prog_type prog_type;
210 	enum bpf_attach_type expected_attach_type;
211 	bool is_exp_attach_type_optional;
212 	bool is_attachable;
213 	bool is_attach_btf;
214 	bool is_sleepable;
215 	attach_fn_t attach_fn;
216 };
217 
218 /*
219  * bpf_prog should be a better name but it has been used in
220  * linux/filter.h.
221  */
222 struct bpf_program {
223 	const struct bpf_sec_def *sec_def;
224 	char *sec_name;
225 	size_t sec_idx;
226 	/* this program's instruction offset (in number of instructions)
227 	 * within its containing ELF section
228 	 */
229 	size_t sec_insn_off;
230 	/* number of original instructions in ELF section belonging to this
231 	 * program, not taking into account subprogram instructions possible
232 	 * appended later during relocation
233 	 */
234 	size_t sec_insn_cnt;
235 	/* Offset (in number of instructions) of the start of instruction
236 	 * belonging to this BPF program  within its containing main BPF
237 	 * program. For the entry-point (main) BPF program, this is always
238 	 * zero. For a sub-program, this gets reset before each of main BPF
239 	 * programs are processed and relocated and is used to determined
240 	 * whether sub-program was already appended to the main program, and
241 	 * if yes, at which instruction offset.
242 	 */
243 	size_t sub_insn_off;
244 
245 	char *name;
246 	/* sec_name with / replaced by _; makes recursive pinning
247 	 * in bpf_object__pin_programs easier
248 	 */
249 	char *pin_name;
250 
251 	/* instructions that belong to BPF program; insns[0] is located at
252 	 * sec_insn_off instruction within its ELF section in ELF file, so
253 	 * when mapping ELF file instruction index to the local instruction,
254 	 * one needs to subtract sec_insn_off; and vice versa.
255 	 */
256 	struct bpf_insn *insns;
257 	/* actual number of instruction in this BPF program's image; for
258 	 * entry-point BPF programs this includes the size of main program
259 	 * itself plus all the used sub-programs, appended at the end
260 	 */
261 	size_t insns_cnt;
262 
263 	struct reloc_desc *reloc_desc;
264 	int nr_reloc;
265 	int log_level;
266 
267 	struct {
268 		int nr;
269 		int *fds;
270 	} instances;
271 	bpf_program_prep_t preprocessor;
272 
273 	struct bpf_object *obj;
274 	void *priv;
275 	bpf_program_clear_priv_t clear_priv;
276 
277 	bool load;
278 	enum bpf_prog_type type;
279 	enum bpf_attach_type expected_attach_type;
280 	int prog_ifindex;
281 	__u32 attach_btf_obj_fd;
282 	__u32 attach_btf_id;
283 	__u32 attach_prog_fd;
284 	void *func_info;
285 	__u32 func_info_rec_size;
286 	__u32 func_info_cnt;
287 
288 	void *line_info;
289 	__u32 line_info_rec_size;
290 	__u32 line_info_cnt;
291 	__u32 prog_flags;
292 };
293 
294 struct bpf_struct_ops {
295 	const char *tname;
296 	const struct btf_type *type;
297 	struct bpf_program **progs;
298 	__u32 *kern_func_off;
299 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
300 	void *data;
301 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
302 	 *      btf_vmlinux's format.
303 	 * struct bpf_struct_ops_tcp_congestion_ops {
304 	 *	[... some other kernel fields ...]
305 	 *	struct tcp_congestion_ops data;
306 	 * }
307 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
308 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
309 	 * from "data".
310 	 */
311 	void *kern_vdata;
312 	__u32 type_id;
313 };
314 
315 #define DATA_SEC ".data"
316 #define BSS_SEC ".bss"
317 #define RODATA_SEC ".rodata"
318 #define KCONFIG_SEC ".kconfig"
319 #define KSYMS_SEC ".ksyms"
320 #define STRUCT_OPS_SEC ".struct_ops"
321 
322 enum libbpf_map_type {
323 	LIBBPF_MAP_UNSPEC,
324 	LIBBPF_MAP_DATA,
325 	LIBBPF_MAP_BSS,
326 	LIBBPF_MAP_RODATA,
327 	LIBBPF_MAP_KCONFIG,
328 };
329 
330 static const char * const libbpf_type_to_btf_name[] = {
331 	[LIBBPF_MAP_DATA]	= DATA_SEC,
332 	[LIBBPF_MAP_BSS]	= BSS_SEC,
333 	[LIBBPF_MAP_RODATA]	= RODATA_SEC,
334 	[LIBBPF_MAP_KCONFIG]	= KCONFIG_SEC,
335 };
336 
337 struct bpf_map {
338 	char *name;
339 	int fd;
340 	int sec_idx;
341 	size_t sec_offset;
342 	int map_ifindex;
343 	int inner_map_fd;
344 	struct bpf_map_def def;
345 	__u32 numa_node;
346 	__u32 btf_var_idx;
347 	__u32 btf_key_type_id;
348 	__u32 btf_value_type_id;
349 	__u32 btf_vmlinux_value_type_id;
350 	void *priv;
351 	bpf_map_clear_priv_t clear_priv;
352 	enum libbpf_map_type libbpf_type;
353 	void *mmaped;
354 	struct bpf_struct_ops *st_ops;
355 	struct bpf_map *inner_map;
356 	void **init_slots;
357 	int init_slots_sz;
358 	char *pin_path;
359 	bool pinned;
360 	bool reused;
361 };
362 
363 enum extern_type {
364 	EXT_UNKNOWN,
365 	EXT_KCFG,
366 	EXT_KSYM,
367 };
368 
369 enum kcfg_type {
370 	KCFG_UNKNOWN,
371 	KCFG_CHAR,
372 	KCFG_BOOL,
373 	KCFG_INT,
374 	KCFG_TRISTATE,
375 	KCFG_CHAR_ARR,
376 };
377 
378 struct extern_desc {
379 	enum extern_type type;
380 	int sym_idx;
381 	int btf_id;
382 	int sec_btf_id;
383 	const char *name;
384 	bool is_set;
385 	bool is_weak;
386 	union {
387 		struct {
388 			enum kcfg_type type;
389 			int sz;
390 			int align;
391 			int data_off;
392 			bool is_signed;
393 		} kcfg;
394 		struct {
395 			unsigned long long addr;
396 
397 			/* target btf_id of the corresponding kernel var. */
398 			int kernel_btf_obj_fd;
399 			int kernel_btf_id;
400 
401 			/* local btf_id of the ksym extern's type. */
402 			__u32 type_id;
403 		} ksym;
404 	};
405 };
406 
407 static LIST_HEAD(bpf_objects_list);
408 
409 struct module_btf {
410 	struct btf *btf;
411 	char *name;
412 	__u32 id;
413 	int fd;
414 };
415 
416 struct bpf_object {
417 	char name[BPF_OBJ_NAME_LEN];
418 	char license[64];
419 	__u32 kern_version;
420 
421 	struct bpf_program *programs;
422 	size_t nr_programs;
423 	struct bpf_map *maps;
424 	size_t nr_maps;
425 	size_t maps_cap;
426 
427 	char *kconfig;
428 	struct extern_desc *externs;
429 	int nr_extern;
430 	int kconfig_map_idx;
431 	int rodata_map_idx;
432 
433 	bool loaded;
434 	bool has_subcalls;
435 
436 	/*
437 	 * Information when doing elf related work. Only valid if fd
438 	 * is valid.
439 	 */
440 	struct {
441 		int fd;
442 		const void *obj_buf;
443 		size_t obj_buf_sz;
444 		Elf *elf;
445 		GElf_Ehdr ehdr;
446 		Elf_Data *symbols;
447 		Elf_Data *data;
448 		Elf_Data *rodata;
449 		Elf_Data *bss;
450 		Elf_Data *st_ops_data;
451 		size_t shstrndx; /* section index for section name strings */
452 		size_t strtabidx;
453 		struct {
454 			GElf_Shdr shdr;
455 			Elf_Data *data;
456 		} *reloc_sects;
457 		int nr_reloc_sects;
458 		int maps_shndx;
459 		int btf_maps_shndx;
460 		__u32 btf_maps_sec_btf_id;
461 		int text_shndx;
462 		int symbols_shndx;
463 		int data_shndx;
464 		int rodata_shndx;
465 		int bss_shndx;
466 		int st_ops_shndx;
467 	} efile;
468 	/*
469 	 * All loaded bpf_object is linked in a list, which is
470 	 * hidden to caller. bpf_objects__<func> handlers deal with
471 	 * all objects.
472 	 */
473 	struct list_head list;
474 
475 	struct btf *btf;
476 	struct btf_ext *btf_ext;
477 
478 	/* Parse and load BTF vmlinux if any of the programs in the object need
479 	 * it at load time.
480 	 */
481 	struct btf *btf_vmlinux;
482 	/* vmlinux BTF override for CO-RE relocations */
483 	struct btf *btf_vmlinux_override;
484 	/* Lazily initialized kernel module BTFs */
485 	struct module_btf *btf_modules;
486 	bool btf_modules_loaded;
487 	size_t btf_module_cnt;
488 	size_t btf_module_cap;
489 
490 	void *priv;
491 	bpf_object_clear_priv_t clear_priv;
492 
493 	char path[];
494 };
495 #define obj_elf_valid(o)	((o)->efile.elf)
496 
497 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
498 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
499 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
500 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
501 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
502 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
503 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
504 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
505 			      size_t off, __u32 sym_type, GElf_Sym *sym);
506 
507 void bpf_program__unload(struct bpf_program *prog)
508 {
509 	int i;
510 
511 	if (!prog)
512 		return;
513 
514 	/*
515 	 * If the object is opened but the program was never loaded,
516 	 * it is possible that prog->instances.nr == -1.
517 	 */
518 	if (prog->instances.nr > 0) {
519 		for (i = 0; i < prog->instances.nr; i++)
520 			zclose(prog->instances.fds[i]);
521 	} else if (prog->instances.nr != -1) {
522 		pr_warn("Internal error: instances.nr is %d\n",
523 			prog->instances.nr);
524 	}
525 
526 	prog->instances.nr = -1;
527 	zfree(&prog->instances.fds);
528 
529 	zfree(&prog->func_info);
530 	zfree(&prog->line_info);
531 }
532 
533 static void bpf_program__exit(struct bpf_program *prog)
534 {
535 	if (!prog)
536 		return;
537 
538 	if (prog->clear_priv)
539 		prog->clear_priv(prog, prog->priv);
540 
541 	prog->priv = NULL;
542 	prog->clear_priv = NULL;
543 
544 	bpf_program__unload(prog);
545 	zfree(&prog->name);
546 	zfree(&prog->sec_name);
547 	zfree(&prog->pin_name);
548 	zfree(&prog->insns);
549 	zfree(&prog->reloc_desc);
550 
551 	prog->nr_reloc = 0;
552 	prog->insns_cnt = 0;
553 	prog->sec_idx = -1;
554 }
555 
556 static char *__bpf_program__pin_name(struct bpf_program *prog)
557 {
558 	char *name, *p;
559 
560 	name = p = strdup(prog->sec_name);
561 	while ((p = strchr(p, '/')))
562 		*p = '_';
563 
564 	return name;
565 }
566 
567 static bool insn_is_subprog_call(const struct bpf_insn *insn)
568 {
569 	return BPF_CLASS(insn->code) == BPF_JMP &&
570 	       BPF_OP(insn->code) == BPF_CALL &&
571 	       BPF_SRC(insn->code) == BPF_K &&
572 	       insn->src_reg == BPF_PSEUDO_CALL &&
573 	       insn->dst_reg == 0 &&
574 	       insn->off == 0;
575 }
576 
577 static int
578 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
579 		      const char *name, size_t sec_idx, const char *sec_name,
580 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
581 {
582 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
583 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
584 			sec_name, name, sec_off, insn_data_sz);
585 		return -EINVAL;
586 	}
587 
588 	memset(prog, 0, sizeof(*prog));
589 	prog->obj = obj;
590 
591 	prog->sec_idx = sec_idx;
592 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
593 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
594 	/* insns_cnt can later be increased by appending used subprograms */
595 	prog->insns_cnt = prog->sec_insn_cnt;
596 
597 	prog->type = BPF_PROG_TYPE_UNSPEC;
598 	prog->load = true;
599 
600 	prog->instances.fds = NULL;
601 	prog->instances.nr = -1;
602 
603 	prog->sec_name = strdup(sec_name);
604 	if (!prog->sec_name)
605 		goto errout;
606 
607 	prog->name = strdup(name);
608 	if (!prog->name)
609 		goto errout;
610 
611 	prog->pin_name = __bpf_program__pin_name(prog);
612 	if (!prog->pin_name)
613 		goto errout;
614 
615 	prog->insns = malloc(insn_data_sz);
616 	if (!prog->insns)
617 		goto errout;
618 	memcpy(prog->insns, insn_data, insn_data_sz);
619 
620 	return 0;
621 errout:
622 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
623 	bpf_program__exit(prog);
624 	return -ENOMEM;
625 }
626 
627 static int
628 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
629 			 const char *sec_name, int sec_idx)
630 {
631 	struct bpf_program *prog, *progs;
632 	void *data = sec_data->d_buf;
633 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
634 	int nr_progs, err;
635 	const char *name;
636 	GElf_Sym sym;
637 
638 	progs = obj->programs;
639 	nr_progs = obj->nr_programs;
640 	sec_off = 0;
641 
642 	while (sec_off < sec_sz) {
643 		if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
644 			pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
645 				sec_name, sec_off);
646 			return -LIBBPF_ERRNO__FORMAT;
647 		}
648 
649 		prog_sz = sym.st_size;
650 
651 		name = elf_sym_str(obj, sym.st_name);
652 		if (!name) {
653 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
654 				sec_name, sec_off);
655 			return -LIBBPF_ERRNO__FORMAT;
656 		}
657 
658 		if (sec_off + prog_sz > sec_sz) {
659 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
660 				sec_name, sec_off);
661 			return -LIBBPF_ERRNO__FORMAT;
662 		}
663 
664 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
665 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
666 
667 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
668 		if (!progs) {
669 			/*
670 			 * In this case the original obj->programs
671 			 * is still valid, so don't need special treat for
672 			 * bpf_close_object().
673 			 */
674 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
675 				sec_name, name);
676 			return -ENOMEM;
677 		}
678 		obj->programs = progs;
679 
680 		prog = &progs[nr_progs];
681 
682 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
683 					    sec_off, data + sec_off, prog_sz);
684 		if (err)
685 			return err;
686 
687 		nr_progs++;
688 		obj->nr_programs = nr_progs;
689 
690 		sec_off += prog_sz;
691 	}
692 
693 	return 0;
694 }
695 
696 static __u32 get_kernel_version(void)
697 {
698 	__u32 major, minor, patch;
699 	struct utsname info;
700 
701 	uname(&info);
702 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
703 		return 0;
704 	return KERNEL_VERSION(major, minor, patch);
705 }
706 
707 static const struct btf_member *
708 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
709 {
710 	struct btf_member *m;
711 	int i;
712 
713 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
714 		if (btf_member_bit_offset(t, i) == bit_offset)
715 			return m;
716 	}
717 
718 	return NULL;
719 }
720 
721 static const struct btf_member *
722 find_member_by_name(const struct btf *btf, const struct btf_type *t,
723 		    const char *name)
724 {
725 	struct btf_member *m;
726 	int i;
727 
728 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
729 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
730 			return m;
731 	}
732 
733 	return NULL;
734 }
735 
736 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
737 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
738 				   const char *name, __u32 kind);
739 
740 static int
741 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
742 			   const struct btf_type **type, __u32 *type_id,
743 			   const struct btf_type **vtype, __u32 *vtype_id,
744 			   const struct btf_member **data_member)
745 {
746 	const struct btf_type *kern_type, *kern_vtype;
747 	const struct btf_member *kern_data_member;
748 	__s32 kern_vtype_id, kern_type_id;
749 	__u32 i;
750 
751 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
752 	if (kern_type_id < 0) {
753 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
754 			tname);
755 		return kern_type_id;
756 	}
757 	kern_type = btf__type_by_id(btf, kern_type_id);
758 
759 	/* Find the corresponding "map_value" type that will be used
760 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
761 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
762 	 * btf_vmlinux.
763 	 */
764 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
765 						tname, BTF_KIND_STRUCT);
766 	if (kern_vtype_id < 0) {
767 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
768 			STRUCT_OPS_VALUE_PREFIX, tname);
769 		return kern_vtype_id;
770 	}
771 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
772 
773 	/* Find "struct tcp_congestion_ops" from
774 	 * struct bpf_struct_ops_tcp_congestion_ops {
775 	 *	[ ... ]
776 	 *	struct tcp_congestion_ops data;
777 	 * }
778 	 */
779 	kern_data_member = btf_members(kern_vtype);
780 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
781 		if (kern_data_member->type == kern_type_id)
782 			break;
783 	}
784 	if (i == btf_vlen(kern_vtype)) {
785 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
786 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
787 		return -EINVAL;
788 	}
789 
790 	*type = kern_type;
791 	*type_id = kern_type_id;
792 	*vtype = kern_vtype;
793 	*vtype_id = kern_vtype_id;
794 	*data_member = kern_data_member;
795 
796 	return 0;
797 }
798 
799 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
800 {
801 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
802 }
803 
804 /* Init the map's fields that depend on kern_btf */
805 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
806 					 const struct btf *btf,
807 					 const struct btf *kern_btf)
808 {
809 	const struct btf_member *member, *kern_member, *kern_data_member;
810 	const struct btf_type *type, *kern_type, *kern_vtype;
811 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
812 	struct bpf_struct_ops *st_ops;
813 	void *data, *kern_data;
814 	const char *tname;
815 	int err;
816 
817 	st_ops = map->st_ops;
818 	type = st_ops->type;
819 	tname = st_ops->tname;
820 	err = find_struct_ops_kern_types(kern_btf, tname,
821 					 &kern_type, &kern_type_id,
822 					 &kern_vtype, &kern_vtype_id,
823 					 &kern_data_member);
824 	if (err)
825 		return err;
826 
827 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
828 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
829 
830 	map->def.value_size = kern_vtype->size;
831 	map->btf_vmlinux_value_type_id = kern_vtype_id;
832 
833 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
834 	if (!st_ops->kern_vdata)
835 		return -ENOMEM;
836 
837 	data = st_ops->data;
838 	kern_data_off = kern_data_member->offset / 8;
839 	kern_data = st_ops->kern_vdata + kern_data_off;
840 
841 	member = btf_members(type);
842 	for (i = 0; i < btf_vlen(type); i++, member++) {
843 		const struct btf_type *mtype, *kern_mtype;
844 		__u32 mtype_id, kern_mtype_id;
845 		void *mdata, *kern_mdata;
846 		__s64 msize, kern_msize;
847 		__u32 moff, kern_moff;
848 		__u32 kern_member_idx;
849 		const char *mname;
850 
851 		mname = btf__name_by_offset(btf, member->name_off);
852 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
853 		if (!kern_member) {
854 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
855 				map->name, mname);
856 			return -ENOTSUP;
857 		}
858 
859 		kern_member_idx = kern_member - btf_members(kern_type);
860 		if (btf_member_bitfield_size(type, i) ||
861 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
862 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
863 				map->name, mname);
864 			return -ENOTSUP;
865 		}
866 
867 		moff = member->offset / 8;
868 		kern_moff = kern_member->offset / 8;
869 
870 		mdata = data + moff;
871 		kern_mdata = kern_data + kern_moff;
872 
873 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
874 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
875 						    &kern_mtype_id);
876 		if (BTF_INFO_KIND(mtype->info) !=
877 		    BTF_INFO_KIND(kern_mtype->info)) {
878 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
879 				map->name, mname, BTF_INFO_KIND(mtype->info),
880 				BTF_INFO_KIND(kern_mtype->info));
881 			return -ENOTSUP;
882 		}
883 
884 		if (btf_is_ptr(mtype)) {
885 			struct bpf_program *prog;
886 
887 			prog = st_ops->progs[i];
888 			if (!prog)
889 				continue;
890 
891 			kern_mtype = skip_mods_and_typedefs(kern_btf,
892 							    kern_mtype->type,
893 							    &kern_mtype_id);
894 
895 			/* mtype->type must be a func_proto which was
896 			 * guaranteed in bpf_object__collect_st_ops_relos(),
897 			 * so only check kern_mtype for func_proto here.
898 			 */
899 			if (!btf_is_func_proto(kern_mtype)) {
900 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
901 					map->name, mname);
902 				return -ENOTSUP;
903 			}
904 
905 			prog->attach_btf_id = kern_type_id;
906 			prog->expected_attach_type = kern_member_idx;
907 
908 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
909 
910 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
911 				 map->name, mname, prog->name, moff,
912 				 kern_moff);
913 
914 			continue;
915 		}
916 
917 		msize = btf__resolve_size(btf, mtype_id);
918 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
919 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
920 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
921 				map->name, mname, (ssize_t)msize,
922 				(ssize_t)kern_msize);
923 			return -ENOTSUP;
924 		}
925 
926 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
927 			 map->name, mname, (unsigned int)msize,
928 			 moff, kern_moff);
929 		memcpy(kern_mdata, mdata, msize);
930 	}
931 
932 	return 0;
933 }
934 
935 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
936 {
937 	struct bpf_map *map;
938 	size_t i;
939 	int err;
940 
941 	for (i = 0; i < obj->nr_maps; i++) {
942 		map = &obj->maps[i];
943 
944 		if (!bpf_map__is_struct_ops(map))
945 			continue;
946 
947 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
948 						    obj->btf_vmlinux);
949 		if (err)
950 			return err;
951 	}
952 
953 	return 0;
954 }
955 
956 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
957 {
958 	const struct btf_type *type, *datasec;
959 	const struct btf_var_secinfo *vsi;
960 	struct bpf_struct_ops *st_ops;
961 	const char *tname, *var_name;
962 	__s32 type_id, datasec_id;
963 	const struct btf *btf;
964 	struct bpf_map *map;
965 	__u32 i;
966 
967 	if (obj->efile.st_ops_shndx == -1)
968 		return 0;
969 
970 	btf = obj->btf;
971 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
972 					    BTF_KIND_DATASEC);
973 	if (datasec_id < 0) {
974 		pr_warn("struct_ops init: DATASEC %s not found\n",
975 			STRUCT_OPS_SEC);
976 		return -EINVAL;
977 	}
978 
979 	datasec = btf__type_by_id(btf, datasec_id);
980 	vsi = btf_var_secinfos(datasec);
981 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
982 		type = btf__type_by_id(obj->btf, vsi->type);
983 		var_name = btf__name_by_offset(obj->btf, type->name_off);
984 
985 		type_id = btf__resolve_type(obj->btf, vsi->type);
986 		if (type_id < 0) {
987 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
988 				vsi->type, STRUCT_OPS_SEC);
989 			return -EINVAL;
990 		}
991 
992 		type = btf__type_by_id(obj->btf, type_id);
993 		tname = btf__name_by_offset(obj->btf, type->name_off);
994 		if (!tname[0]) {
995 			pr_warn("struct_ops init: anonymous type is not supported\n");
996 			return -ENOTSUP;
997 		}
998 		if (!btf_is_struct(type)) {
999 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1000 			return -EINVAL;
1001 		}
1002 
1003 		map = bpf_object__add_map(obj);
1004 		if (IS_ERR(map))
1005 			return PTR_ERR(map);
1006 
1007 		map->sec_idx = obj->efile.st_ops_shndx;
1008 		map->sec_offset = vsi->offset;
1009 		map->name = strdup(var_name);
1010 		if (!map->name)
1011 			return -ENOMEM;
1012 
1013 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1014 		map->def.key_size = sizeof(int);
1015 		map->def.value_size = type->size;
1016 		map->def.max_entries = 1;
1017 
1018 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1019 		if (!map->st_ops)
1020 			return -ENOMEM;
1021 		st_ops = map->st_ops;
1022 		st_ops->data = malloc(type->size);
1023 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1024 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1025 					       sizeof(*st_ops->kern_func_off));
1026 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1027 			return -ENOMEM;
1028 
1029 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1030 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1031 				var_name, STRUCT_OPS_SEC);
1032 			return -EINVAL;
1033 		}
1034 
1035 		memcpy(st_ops->data,
1036 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1037 		       type->size);
1038 		st_ops->tname = tname;
1039 		st_ops->type = type;
1040 		st_ops->type_id = type_id;
1041 
1042 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1043 			 tname, type_id, var_name, vsi->offset);
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static struct bpf_object *bpf_object__new(const char *path,
1050 					  const void *obj_buf,
1051 					  size_t obj_buf_sz,
1052 					  const char *obj_name)
1053 {
1054 	struct bpf_object *obj;
1055 	char *end;
1056 
1057 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1058 	if (!obj) {
1059 		pr_warn("alloc memory failed for %s\n", path);
1060 		return ERR_PTR(-ENOMEM);
1061 	}
1062 
1063 	strcpy(obj->path, path);
1064 	if (obj_name) {
1065 		strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1066 		obj->name[sizeof(obj->name) - 1] = 0;
1067 	} else {
1068 		/* Using basename() GNU version which doesn't modify arg. */
1069 		strncpy(obj->name, basename((void *)path),
1070 			sizeof(obj->name) - 1);
1071 		end = strchr(obj->name, '.');
1072 		if (end)
1073 			*end = 0;
1074 	}
1075 
1076 	obj->efile.fd = -1;
1077 	/*
1078 	 * Caller of this function should also call
1079 	 * bpf_object__elf_finish() after data collection to return
1080 	 * obj_buf to user. If not, we should duplicate the buffer to
1081 	 * avoid user freeing them before elf finish.
1082 	 */
1083 	obj->efile.obj_buf = obj_buf;
1084 	obj->efile.obj_buf_sz = obj_buf_sz;
1085 	obj->efile.maps_shndx = -1;
1086 	obj->efile.btf_maps_shndx = -1;
1087 	obj->efile.data_shndx = -1;
1088 	obj->efile.rodata_shndx = -1;
1089 	obj->efile.bss_shndx = -1;
1090 	obj->efile.st_ops_shndx = -1;
1091 	obj->kconfig_map_idx = -1;
1092 	obj->rodata_map_idx = -1;
1093 
1094 	obj->kern_version = get_kernel_version();
1095 	obj->loaded = false;
1096 
1097 	INIT_LIST_HEAD(&obj->list);
1098 	list_add(&obj->list, &bpf_objects_list);
1099 	return obj;
1100 }
1101 
1102 static void bpf_object__elf_finish(struct bpf_object *obj)
1103 {
1104 	if (!obj_elf_valid(obj))
1105 		return;
1106 
1107 	if (obj->efile.elf) {
1108 		elf_end(obj->efile.elf);
1109 		obj->efile.elf = NULL;
1110 	}
1111 	obj->efile.symbols = NULL;
1112 	obj->efile.data = NULL;
1113 	obj->efile.rodata = NULL;
1114 	obj->efile.bss = NULL;
1115 	obj->efile.st_ops_data = NULL;
1116 
1117 	zfree(&obj->efile.reloc_sects);
1118 	obj->efile.nr_reloc_sects = 0;
1119 	zclose(obj->efile.fd);
1120 	obj->efile.obj_buf = NULL;
1121 	obj->efile.obj_buf_sz = 0;
1122 }
1123 
1124 /* if libelf is old and doesn't support mmap(), fall back to read() */
1125 #ifndef ELF_C_READ_MMAP
1126 #define ELF_C_READ_MMAP ELF_C_READ
1127 #endif
1128 
1129 static int bpf_object__elf_init(struct bpf_object *obj)
1130 {
1131 	int err = 0;
1132 	GElf_Ehdr *ep;
1133 
1134 	if (obj_elf_valid(obj)) {
1135 		pr_warn("elf: init internal error\n");
1136 		return -LIBBPF_ERRNO__LIBELF;
1137 	}
1138 
1139 	if (obj->efile.obj_buf_sz > 0) {
1140 		/*
1141 		 * obj_buf should have been validated by
1142 		 * bpf_object__open_buffer().
1143 		 */
1144 		obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1145 					    obj->efile.obj_buf_sz);
1146 	} else {
1147 		obj->efile.fd = open(obj->path, O_RDONLY);
1148 		if (obj->efile.fd < 0) {
1149 			char errmsg[STRERR_BUFSIZE], *cp;
1150 
1151 			err = -errno;
1152 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1153 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1154 			return err;
1155 		}
1156 
1157 		obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1158 	}
1159 
1160 	if (!obj->efile.elf) {
1161 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1162 		err = -LIBBPF_ERRNO__LIBELF;
1163 		goto errout;
1164 	}
1165 
1166 	if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1167 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1168 		err = -LIBBPF_ERRNO__FORMAT;
1169 		goto errout;
1170 	}
1171 	ep = &obj->efile.ehdr;
1172 
1173 	if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1174 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1175 			obj->path, elf_errmsg(-1));
1176 		err = -LIBBPF_ERRNO__FORMAT;
1177 		goto errout;
1178 	}
1179 
1180 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1181 	if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1182 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1183 			obj->path, elf_errmsg(-1));
1184 		return -LIBBPF_ERRNO__FORMAT;
1185 	}
1186 
1187 	/* Old LLVM set e_machine to EM_NONE */
1188 	if (ep->e_type != ET_REL ||
1189 	    (ep->e_machine && ep->e_machine != EM_BPF)) {
1190 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1191 		err = -LIBBPF_ERRNO__FORMAT;
1192 		goto errout;
1193 	}
1194 
1195 	return 0;
1196 errout:
1197 	bpf_object__elf_finish(obj);
1198 	return err;
1199 }
1200 
1201 static int bpf_object__check_endianness(struct bpf_object *obj)
1202 {
1203 #if __BYTE_ORDER == __LITTLE_ENDIAN
1204 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1205 		return 0;
1206 #elif __BYTE_ORDER == __BIG_ENDIAN
1207 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1208 		return 0;
1209 #else
1210 # error "Unrecognized __BYTE_ORDER__"
1211 #endif
1212 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1213 	return -LIBBPF_ERRNO__ENDIAN;
1214 }
1215 
1216 static int
1217 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1218 {
1219 	memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1220 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1221 	return 0;
1222 }
1223 
1224 static int
1225 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1226 {
1227 	__u32 kver;
1228 
1229 	if (size != sizeof(kver)) {
1230 		pr_warn("invalid kver section in %s\n", obj->path);
1231 		return -LIBBPF_ERRNO__FORMAT;
1232 	}
1233 	memcpy(&kver, data, sizeof(kver));
1234 	obj->kern_version = kver;
1235 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1236 	return 0;
1237 }
1238 
1239 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1240 {
1241 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1242 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1243 		return true;
1244 	return false;
1245 }
1246 
1247 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1248 			     __u32 *size)
1249 {
1250 	int ret = -ENOENT;
1251 
1252 	*size = 0;
1253 	if (!name) {
1254 		return -EINVAL;
1255 	} else if (!strcmp(name, DATA_SEC)) {
1256 		if (obj->efile.data)
1257 			*size = obj->efile.data->d_size;
1258 	} else if (!strcmp(name, BSS_SEC)) {
1259 		if (obj->efile.bss)
1260 			*size = obj->efile.bss->d_size;
1261 	} else if (!strcmp(name, RODATA_SEC)) {
1262 		if (obj->efile.rodata)
1263 			*size = obj->efile.rodata->d_size;
1264 	} else if (!strcmp(name, STRUCT_OPS_SEC)) {
1265 		if (obj->efile.st_ops_data)
1266 			*size = obj->efile.st_ops_data->d_size;
1267 	} else {
1268 		Elf_Scn *scn = elf_sec_by_name(obj, name);
1269 		Elf_Data *data = elf_sec_data(obj, scn);
1270 
1271 		if (data) {
1272 			ret = 0; /* found it */
1273 			*size = data->d_size;
1274 		}
1275 	}
1276 
1277 	return *size ? 0 : ret;
1278 }
1279 
1280 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1281 				__u32 *off)
1282 {
1283 	Elf_Data *symbols = obj->efile.symbols;
1284 	const char *sname;
1285 	size_t si;
1286 
1287 	if (!name || !off)
1288 		return -EINVAL;
1289 
1290 	for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1291 		GElf_Sym sym;
1292 
1293 		if (!gelf_getsym(symbols, si, &sym))
1294 			continue;
1295 		if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1296 		    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1297 			continue;
1298 
1299 		sname = elf_sym_str(obj, sym.st_name);
1300 		if (!sname) {
1301 			pr_warn("failed to get sym name string for var %s\n",
1302 				name);
1303 			return -EIO;
1304 		}
1305 		if (strcmp(name, sname) == 0) {
1306 			*off = sym.st_value;
1307 			return 0;
1308 		}
1309 	}
1310 
1311 	return -ENOENT;
1312 }
1313 
1314 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1315 {
1316 	struct bpf_map *new_maps;
1317 	size_t new_cap;
1318 	int i;
1319 
1320 	if (obj->nr_maps < obj->maps_cap)
1321 		return &obj->maps[obj->nr_maps++];
1322 
1323 	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1324 	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1325 	if (!new_maps) {
1326 		pr_warn("alloc maps for object failed\n");
1327 		return ERR_PTR(-ENOMEM);
1328 	}
1329 
1330 	obj->maps_cap = new_cap;
1331 	obj->maps = new_maps;
1332 
1333 	/* zero out new maps */
1334 	memset(obj->maps + obj->nr_maps, 0,
1335 	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1336 	/*
1337 	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1338 	 * when failure (zclose won't close negative fd)).
1339 	 */
1340 	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1341 		obj->maps[i].fd = -1;
1342 		obj->maps[i].inner_map_fd = -1;
1343 	}
1344 
1345 	return &obj->maps[obj->nr_maps++];
1346 }
1347 
1348 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1349 {
1350 	long page_sz = sysconf(_SC_PAGE_SIZE);
1351 	size_t map_sz;
1352 
1353 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1354 	map_sz = roundup(map_sz, page_sz);
1355 	return map_sz;
1356 }
1357 
1358 static char *internal_map_name(struct bpf_object *obj,
1359 			       enum libbpf_map_type type)
1360 {
1361 	char map_name[BPF_OBJ_NAME_LEN], *p;
1362 	const char *sfx = libbpf_type_to_btf_name[type];
1363 	int sfx_len = max((size_t)7, strlen(sfx));
1364 	int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1365 			  strlen(obj->name));
1366 
1367 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1368 		 sfx_len, libbpf_type_to_btf_name[type]);
1369 
1370 	/* sanitise map name to characters allowed by kernel */
1371 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1372 		if (!isalnum(*p) && *p != '_' && *p != '.')
1373 			*p = '_';
1374 
1375 	return strdup(map_name);
1376 }
1377 
1378 static int
1379 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1380 			      int sec_idx, void *data, size_t data_sz)
1381 {
1382 	struct bpf_map_def *def;
1383 	struct bpf_map *map;
1384 	int err;
1385 
1386 	map = bpf_object__add_map(obj);
1387 	if (IS_ERR(map))
1388 		return PTR_ERR(map);
1389 
1390 	map->libbpf_type = type;
1391 	map->sec_idx = sec_idx;
1392 	map->sec_offset = 0;
1393 	map->name = internal_map_name(obj, type);
1394 	if (!map->name) {
1395 		pr_warn("failed to alloc map name\n");
1396 		return -ENOMEM;
1397 	}
1398 
1399 	def = &map->def;
1400 	def->type = BPF_MAP_TYPE_ARRAY;
1401 	def->key_size = sizeof(int);
1402 	def->value_size = data_sz;
1403 	def->max_entries = 1;
1404 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1405 			 ? BPF_F_RDONLY_PROG : 0;
1406 	def->map_flags |= BPF_F_MMAPABLE;
1407 
1408 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1409 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1410 
1411 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1412 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1413 	if (map->mmaped == MAP_FAILED) {
1414 		err = -errno;
1415 		map->mmaped = NULL;
1416 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1417 			map->name, err);
1418 		zfree(&map->name);
1419 		return err;
1420 	}
1421 
1422 	if (data)
1423 		memcpy(map->mmaped, data, data_sz);
1424 
1425 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1426 	return 0;
1427 }
1428 
1429 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1430 {
1431 	int err;
1432 
1433 	/*
1434 	 * Populate obj->maps with libbpf internal maps.
1435 	 */
1436 	if (obj->efile.data_shndx >= 0) {
1437 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1438 						    obj->efile.data_shndx,
1439 						    obj->efile.data->d_buf,
1440 						    obj->efile.data->d_size);
1441 		if (err)
1442 			return err;
1443 	}
1444 	if (obj->efile.rodata_shndx >= 0) {
1445 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1446 						    obj->efile.rodata_shndx,
1447 						    obj->efile.rodata->d_buf,
1448 						    obj->efile.rodata->d_size);
1449 		if (err)
1450 			return err;
1451 
1452 		obj->rodata_map_idx = obj->nr_maps - 1;
1453 	}
1454 	if (obj->efile.bss_shndx >= 0) {
1455 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1456 						    obj->efile.bss_shndx,
1457 						    NULL,
1458 						    obj->efile.bss->d_size);
1459 		if (err)
1460 			return err;
1461 	}
1462 	return 0;
1463 }
1464 
1465 
1466 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1467 					       const void *name)
1468 {
1469 	int i;
1470 
1471 	for (i = 0; i < obj->nr_extern; i++) {
1472 		if (strcmp(obj->externs[i].name, name) == 0)
1473 			return &obj->externs[i];
1474 	}
1475 	return NULL;
1476 }
1477 
1478 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1479 			      char value)
1480 {
1481 	switch (ext->kcfg.type) {
1482 	case KCFG_BOOL:
1483 		if (value == 'm') {
1484 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1485 				ext->name, value);
1486 			return -EINVAL;
1487 		}
1488 		*(bool *)ext_val = value == 'y' ? true : false;
1489 		break;
1490 	case KCFG_TRISTATE:
1491 		if (value == 'y')
1492 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1493 		else if (value == 'm')
1494 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1495 		else /* value == 'n' */
1496 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1497 		break;
1498 	case KCFG_CHAR:
1499 		*(char *)ext_val = value;
1500 		break;
1501 	case KCFG_UNKNOWN:
1502 	case KCFG_INT:
1503 	case KCFG_CHAR_ARR:
1504 	default:
1505 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1506 			ext->name, value);
1507 		return -EINVAL;
1508 	}
1509 	ext->is_set = true;
1510 	return 0;
1511 }
1512 
1513 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1514 			      const char *value)
1515 {
1516 	size_t len;
1517 
1518 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1519 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1520 		return -EINVAL;
1521 	}
1522 
1523 	len = strlen(value);
1524 	if (value[len - 1] != '"') {
1525 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1526 			ext->name, value);
1527 		return -EINVAL;
1528 	}
1529 
1530 	/* strip quotes */
1531 	len -= 2;
1532 	if (len >= ext->kcfg.sz) {
1533 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1534 			ext->name, value, len, ext->kcfg.sz - 1);
1535 		len = ext->kcfg.sz - 1;
1536 	}
1537 	memcpy(ext_val, value + 1, len);
1538 	ext_val[len] = '\0';
1539 	ext->is_set = true;
1540 	return 0;
1541 }
1542 
1543 static int parse_u64(const char *value, __u64 *res)
1544 {
1545 	char *value_end;
1546 	int err;
1547 
1548 	errno = 0;
1549 	*res = strtoull(value, &value_end, 0);
1550 	if (errno) {
1551 		err = -errno;
1552 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1553 		return err;
1554 	}
1555 	if (*value_end) {
1556 		pr_warn("failed to parse '%s' as integer completely\n", value);
1557 		return -EINVAL;
1558 	}
1559 	return 0;
1560 }
1561 
1562 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1563 {
1564 	int bit_sz = ext->kcfg.sz * 8;
1565 
1566 	if (ext->kcfg.sz == 8)
1567 		return true;
1568 
1569 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1570 	 * bytes size without any loss of information. If the target integer
1571 	 * is signed, we rely on the following limits of integer type of
1572 	 * Y bits and subsequent transformation:
1573 	 *
1574 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1575 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1576 	 *            0 <= X + 2^(Y-1) <  2^Y
1577 	 *
1578 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1579 	 *  zero.
1580 	 */
1581 	if (ext->kcfg.is_signed)
1582 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1583 	else
1584 		return (v >> bit_sz) == 0;
1585 }
1586 
1587 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1588 			      __u64 value)
1589 {
1590 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1591 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1592 			ext->name, (unsigned long long)value);
1593 		return -EINVAL;
1594 	}
1595 	if (!is_kcfg_value_in_range(ext, value)) {
1596 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1597 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1598 		return -ERANGE;
1599 	}
1600 	switch (ext->kcfg.sz) {
1601 		case 1: *(__u8 *)ext_val = value; break;
1602 		case 2: *(__u16 *)ext_val = value; break;
1603 		case 4: *(__u32 *)ext_val = value; break;
1604 		case 8: *(__u64 *)ext_val = value; break;
1605 		default:
1606 			return -EINVAL;
1607 	}
1608 	ext->is_set = true;
1609 	return 0;
1610 }
1611 
1612 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1613 					    char *buf, void *data)
1614 {
1615 	struct extern_desc *ext;
1616 	char *sep, *value;
1617 	int len, err = 0;
1618 	void *ext_val;
1619 	__u64 num;
1620 
1621 	if (strncmp(buf, "CONFIG_", 7))
1622 		return 0;
1623 
1624 	sep = strchr(buf, '=');
1625 	if (!sep) {
1626 		pr_warn("failed to parse '%s': no separator\n", buf);
1627 		return -EINVAL;
1628 	}
1629 
1630 	/* Trim ending '\n' */
1631 	len = strlen(buf);
1632 	if (buf[len - 1] == '\n')
1633 		buf[len - 1] = '\0';
1634 	/* Split on '=' and ensure that a value is present. */
1635 	*sep = '\0';
1636 	if (!sep[1]) {
1637 		*sep = '=';
1638 		pr_warn("failed to parse '%s': no value\n", buf);
1639 		return -EINVAL;
1640 	}
1641 
1642 	ext = find_extern_by_name(obj, buf);
1643 	if (!ext || ext->is_set)
1644 		return 0;
1645 
1646 	ext_val = data + ext->kcfg.data_off;
1647 	value = sep + 1;
1648 
1649 	switch (*value) {
1650 	case 'y': case 'n': case 'm':
1651 		err = set_kcfg_value_tri(ext, ext_val, *value);
1652 		break;
1653 	case '"':
1654 		err = set_kcfg_value_str(ext, ext_val, value);
1655 		break;
1656 	default:
1657 		/* assume integer */
1658 		err = parse_u64(value, &num);
1659 		if (err) {
1660 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1661 				ext->name, value);
1662 			return err;
1663 		}
1664 		err = set_kcfg_value_num(ext, ext_val, num);
1665 		break;
1666 	}
1667 	if (err)
1668 		return err;
1669 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1670 	return 0;
1671 }
1672 
1673 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1674 {
1675 	char buf[PATH_MAX];
1676 	struct utsname uts;
1677 	int len, err = 0;
1678 	gzFile file;
1679 
1680 	uname(&uts);
1681 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1682 	if (len < 0)
1683 		return -EINVAL;
1684 	else if (len >= PATH_MAX)
1685 		return -ENAMETOOLONG;
1686 
1687 	/* gzopen also accepts uncompressed files. */
1688 	file = gzopen(buf, "r");
1689 	if (!file)
1690 		file = gzopen("/proc/config.gz", "r");
1691 
1692 	if (!file) {
1693 		pr_warn("failed to open system Kconfig\n");
1694 		return -ENOENT;
1695 	}
1696 
1697 	while (gzgets(file, buf, sizeof(buf))) {
1698 		err = bpf_object__process_kconfig_line(obj, buf, data);
1699 		if (err) {
1700 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1701 				buf, err);
1702 			goto out;
1703 		}
1704 	}
1705 
1706 out:
1707 	gzclose(file);
1708 	return err;
1709 }
1710 
1711 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1712 					const char *config, void *data)
1713 {
1714 	char buf[PATH_MAX];
1715 	int err = 0;
1716 	FILE *file;
1717 
1718 	file = fmemopen((void *)config, strlen(config), "r");
1719 	if (!file) {
1720 		err = -errno;
1721 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1722 		return err;
1723 	}
1724 
1725 	while (fgets(buf, sizeof(buf), file)) {
1726 		err = bpf_object__process_kconfig_line(obj, buf, data);
1727 		if (err) {
1728 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1729 				buf, err);
1730 			break;
1731 		}
1732 	}
1733 
1734 	fclose(file);
1735 	return err;
1736 }
1737 
1738 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1739 {
1740 	struct extern_desc *last_ext = NULL, *ext;
1741 	size_t map_sz;
1742 	int i, err;
1743 
1744 	for (i = 0; i < obj->nr_extern; i++) {
1745 		ext = &obj->externs[i];
1746 		if (ext->type == EXT_KCFG)
1747 			last_ext = ext;
1748 	}
1749 
1750 	if (!last_ext)
1751 		return 0;
1752 
1753 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1754 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1755 					    obj->efile.symbols_shndx,
1756 					    NULL, map_sz);
1757 	if (err)
1758 		return err;
1759 
1760 	obj->kconfig_map_idx = obj->nr_maps - 1;
1761 
1762 	return 0;
1763 }
1764 
1765 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1766 {
1767 	Elf_Data *symbols = obj->efile.symbols;
1768 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1769 	Elf_Data *data = NULL;
1770 	Elf_Scn *scn;
1771 
1772 	if (obj->efile.maps_shndx < 0)
1773 		return 0;
1774 
1775 	if (!symbols)
1776 		return -EINVAL;
1777 
1778 
1779 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1780 	data = elf_sec_data(obj, scn);
1781 	if (!scn || !data) {
1782 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1783 			obj->path);
1784 		return -EINVAL;
1785 	}
1786 
1787 	/*
1788 	 * Count number of maps. Each map has a name.
1789 	 * Array of maps is not supported: only the first element is
1790 	 * considered.
1791 	 *
1792 	 * TODO: Detect array of map and report error.
1793 	 */
1794 	nr_syms = symbols->d_size / sizeof(GElf_Sym);
1795 	for (i = 0; i < nr_syms; i++) {
1796 		GElf_Sym sym;
1797 
1798 		if (!gelf_getsym(symbols, i, &sym))
1799 			continue;
1800 		if (sym.st_shndx != obj->efile.maps_shndx)
1801 			continue;
1802 		nr_maps++;
1803 	}
1804 	/* Assume equally sized map definitions */
1805 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1806 		 nr_maps, data->d_size, obj->path);
1807 
1808 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1809 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1810 			obj->path);
1811 		return -EINVAL;
1812 	}
1813 	map_def_sz = data->d_size / nr_maps;
1814 
1815 	/* Fill obj->maps using data in "maps" section.  */
1816 	for (i = 0; i < nr_syms; i++) {
1817 		GElf_Sym sym;
1818 		const char *map_name;
1819 		struct bpf_map_def *def;
1820 		struct bpf_map *map;
1821 
1822 		if (!gelf_getsym(symbols, i, &sym))
1823 			continue;
1824 		if (sym.st_shndx != obj->efile.maps_shndx)
1825 			continue;
1826 
1827 		map = bpf_object__add_map(obj);
1828 		if (IS_ERR(map))
1829 			return PTR_ERR(map);
1830 
1831 		map_name = elf_sym_str(obj, sym.st_name);
1832 		if (!map_name) {
1833 			pr_warn("failed to get map #%d name sym string for obj %s\n",
1834 				i, obj->path);
1835 			return -LIBBPF_ERRNO__FORMAT;
1836 		}
1837 
1838 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
1839 		map->sec_idx = sym.st_shndx;
1840 		map->sec_offset = sym.st_value;
1841 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1842 			 map_name, map->sec_idx, map->sec_offset);
1843 		if (sym.st_value + map_def_sz > data->d_size) {
1844 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1845 				obj->path, map_name);
1846 			return -EINVAL;
1847 		}
1848 
1849 		map->name = strdup(map_name);
1850 		if (!map->name) {
1851 			pr_warn("failed to alloc map name\n");
1852 			return -ENOMEM;
1853 		}
1854 		pr_debug("map %d is \"%s\"\n", i, map->name);
1855 		def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1856 		/*
1857 		 * If the definition of the map in the object file fits in
1858 		 * bpf_map_def, copy it.  Any extra fields in our version
1859 		 * of bpf_map_def will default to zero as a result of the
1860 		 * calloc above.
1861 		 */
1862 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
1863 			memcpy(&map->def, def, map_def_sz);
1864 		} else {
1865 			/*
1866 			 * Here the map structure being read is bigger than what
1867 			 * we expect, truncate if the excess bits are all zero.
1868 			 * If they are not zero, reject this map as
1869 			 * incompatible.
1870 			 */
1871 			char *b;
1872 
1873 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
1874 			     b < ((char *)def) + map_def_sz; b++) {
1875 				if (*b != 0) {
1876 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1877 						obj->path, map_name);
1878 					if (strict)
1879 						return -EINVAL;
1880 				}
1881 			}
1882 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
1883 		}
1884 	}
1885 	return 0;
1886 }
1887 
1888 static const struct btf_type *
1889 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1890 {
1891 	const struct btf_type *t = btf__type_by_id(btf, id);
1892 
1893 	if (res_id)
1894 		*res_id = id;
1895 
1896 	while (btf_is_mod(t) || btf_is_typedef(t)) {
1897 		if (res_id)
1898 			*res_id = t->type;
1899 		t = btf__type_by_id(btf, t->type);
1900 	}
1901 
1902 	return t;
1903 }
1904 
1905 static const struct btf_type *
1906 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1907 {
1908 	const struct btf_type *t;
1909 
1910 	t = skip_mods_and_typedefs(btf, id, NULL);
1911 	if (!btf_is_ptr(t))
1912 		return NULL;
1913 
1914 	t = skip_mods_and_typedefs(btf, t->type, res_id);
1915 
1916 	return btf_is_func_proto(t) ? t : NULL;
1917 }
1918 
1919 static const char *btf_kind_str(const struct btf_type *t)
1920 {
1921 	switch (btf_kind(t)) {
1922 	case BTF_KIND_UNKN: return "void";
1923 	case BTF_KIND_INT: return "int";
1924 	case BTF_KIND_PTR: return "ptr";
1925 	case BTF_KIND_ARRAY: return "array";
1926 	case BTF_KIND_STRUCT: return "struct";
1927 	case BTF_KIND_UNION: return "union";
1928 	case BTF_KIND_ENUM: return "enum";
1929 	case BTF_KIND_FWD: return "fwd";
1930 	case BTF_KIND_TYPEDEF: return "typedef";
1931 	case BTF_KIND_VOLATILE: return "volatile";
1932 	case BTF_KIND_CONST: return "const";
1933 	case BTF_KIND_RESTRICT: return "restrict";
1934 	case BTF_KIND_FUNC: return "func";
1935 	case BTF_KIND_FUNC_PROTO: return "func_proto";
1936 	case BTF_KIND_VAR: return "var";
1937 	case BTF_KIND_DATASEC: return "datasec";
1938 	default: return "unknown";
1939 	}
1940 }
1941 
1942 /*
1943  * Fetch integer attribute of BTF map definition. Such attributes are
1944  * represented using a pointer to an array, in which dimensionality of array
1945  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1946  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1947  * type definition, while using only sizeof(void *) space in ELF data section.
1948  */
1949 static bool get_map_field_int(const char *map_name, const struct btf *btf,
1950 			      const struct btf_member *m, __u32 *res)
1951 {
1952 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1953 	const char *name = btf__name_by_offset(btf, m->name_off);
1954 	const struct btf_array *arr_info;
1955 	const struct btf_type *arr_t;
1956 
1957 	if (!btf_is_ptr(t)) {
1958 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1959 			map_name, name, btf_kind_str(t));
1960 		return false;
1961 	}
1962 
1963 	arr_t = btf__type_by_id(btf, t->type);
1964 	if (!arr_t) {
1965 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1966 			map_name, name, t->type);
1967 		return false;
1968 	}
1969 	if (!btf_is_array(arr_t)) {
1970 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1971 			map_name, name, btf_kind_str(arr_t));
1972 		return false;
1973 	}
1974 	arr_info = btf_array(arr_t);
1975 	*res = arr_info->nelems;
1976 	return true;
1977 }
1978 
1979 static int build_map_pin_path(struct bpf_map *map, const char *path)
1980 {
1981 	char buf[PATH_MAX];
1982 	int len;
1983 
1984 	if (!path)
1985 		path = "/sys/fs/bpf";
1986 
1987 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
1988 	if (len < 0)
1989 		return -EINVAL;
1990 	else if (len >= PATH_MAX)
1991 		return -ENAMETOOLONG;
1992 
1993 	return bpf_map__set_pin_path(map, buf);
1994 }
1995 
1996 
1997 static int parse_btf_map_def(struct bpf_object *obj,
1998 			     struct bpf_map *map,
1999 			     const struct btf_type *def,
2000 			     bool strict, bool is_inner,
2001 			     const char *pin_root_path)
2002 {
2003 	const struct btf_type *t;
2004 	const struct btf_member *m;
2005 	int vlen, i;
2006 
2007 	vlen = btf_vlen(def);
2008 	m = btf_members(def);
2009 	for (i = 0; i < vlen; i++, m++) {
2010 		const char *name = btf__name_by_offset(obj->btf, m->name_off);
2011 
2012 		if (!name) {
2013 			pr_warn("map '%s': invalid field #%d.\n", map->name, i);
2014 			return -EINVAL;
2015 		}
2016 		if (strcmp(name, "type") == 0) {
2017 			if (!get_map_field_int(map->name, obj->btf, m,
2018 					       &map->def.type))
2019 				return -EINVAL;
2020 			pr_debug("map '%s': found type = %u.\n",
2021 				 map->name, map->def.type);
2022 		} else if (strcmp(name, "max_entries") == 0) {
2023 			if (!get_map_field_int(map->name, obj->btf, m,
2024 					       &map->def.max_entries))
2025 				return -EINVAL;
2026 			pr_debug("map '%s': found max_entries = %u.\n",
2027 				 map->name, map->def.max_entries);
2028 		} else if (strcmp(name, "map_flags") == 0) {
2029 			if (!get_map_field_int(map->name, obj->btf, m,
2030 					       &map->def.map_flags))
2031 				return -EINVAL;
2032 			pr_debug("map '%s': found map_flags = %u.\n",
2033 				 map->name, map->def.map_flags);
2034 		} else if (strcmp(name, "numa_node") == 0) {
2035 			if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2036 				return -EINVAL;
2037 			pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2038 		} else if (strcmp(name, "key_size") == 0) {
2039 			__u32 sz;
2040 
2041 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2042 				return -EINVAL;
2043 			pr_debug("map '%s': found key_size = %u.\n",
2044 				 map->name, sz);
2045 			if (map->def.key_size && map->def.key_size != sz) {
2046 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2047 					map->name, map->def.key_size, sz);
2048 				return -EINVAL;
2049 			}
2050 			map->def.key_size = sz;
2051 		} else if (strcmp(name, "key") == 0) {
2052 			__s64 sz;
2053 
2054 			t = btf__type_by_id(obj->btf, m->type);
2055 			if (!t) {
2056 				pr_warn("map '%s': key type [%d] not found.\n",
2057 					map->name, m->type);
2058 				return -EINVAL;
2059 			}
2060 			if (!btf_is_ptr(t)) {
2061 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2062 					map->name, btf_kind_str(t));
2063 				return -EINVAL;
2064 			}
2065 			sz = btf__resolve_size(obj->btf, t->type);
2066 			if (sz < 0) {
2067 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2068 					map->name, t->type, (ssize_t)sz);
2069 				return sz;
2070 			}
2071 			pr_debug("map '%s': found key [%u], sz = %zd.\n",
2072 				 map->name, t->type, (ssize_t)sz);
2073 			if (map->def.key_size && map->def.key_size != sz) {
2074 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2075 					map->name, map->def.key_size, (ssize_t)sz);
2076 				return -EINVAL;
2077 			}
2078 			map->def.key_size = sz;
2079 			map->btf_key_type_id = t->type;
2080 		} else if (strcmp(name, "value_size") == 0) {
2081 			__u32 sz;
2082 
2083 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2084 				return -EINVAL;
2085 			pr_debug("map '%s': found value_size = %u.\n",
2086 				 map->name, sz);
2087 			if (map->def.value_size && map->def.value_size != sz) {
2088 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2089 					map->name, map->def.value_size, sz);
2090 				return -EINVAL;
2091 			}
2092 			map->def.value_size = sz;
2093 		} else if (strcmp(name, "value") == 0) {
2094 			__s64 sz;
2095 
2096 			t = btf__type_by_id(obj->btf, m->type);
2097 			if (!t) {
2098 				pr_warn("map '%s': value type [%d] not found.\n",
2099 					map->name, m->type);
2100 				return -EINVAL;
2101 			}
2102 			if (!btf_is_ptr(t)) {
2103 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2104 					map->name, btf_kind_str(t));
2105 				return -EINVAL;
2106 			}
2107 			sz = btf__resolve_size(obj->btf, t->type);
2108 			if (sz < 0) {
2109 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2110 					map->name, t->type, (ssize_t)sz);
2111 				return sz;
2112 			}
2113 			pr_debug("map '%s': found value [%u], sz = %zd.\n",
2114 				 map->name, t->type, (ssize_t)sz);
2115 			if (map->def.value_size && map->def.value_size != sz) {
2116 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2117 					map->name, map->def.value_size, (ssize_t)sz);
2118 				return -EINVAL;
2119 			}
2120 			map->def.value_size = sz;
2121 			map->btf_value_type_id = t->type;
2122 		}
2123 		else if (strcmp(name, "values") == 0) {
2124 			int err;
2125 
2126 			if (is_inner) {
2127 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2128 					map->name);
2129 				return -ENOTSUP;
2130 			}
2131 			if (i != vlen - 1) {
2132 				pr_warn("map '%s': '%s' member should be last.\n",
2133 					map->name, name);
2134 				return -EINVAL;
2135 			}
2136 			if (!bpf_map_type__is_map_in_map(map->def.type)) {
2137 				pr_warn("map '%s': should be map-in-map.\n",
2138 					map->name);
2139 				return -ENOTSUP;
2140 			}
2141 			if (map->def.value_size && map->def.value_size != 4) {
2142 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2143 					map->name, map->def.value_size);
2144 				return -EINVAL;
2145 			}
2146 			map->def.value_size = 4;
2147 			t = btf__type_by_id(obj->btf, m->type);
2148 			if (!t) {
2149 				pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2150 					map->name, m->type);
2151 				return -EINVAL;
2152 			}
2153 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2154 				pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2155 					map->name);
2156 				return -EINVAL;
2157 			}
2158 			t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2159 						   NULL);
2160 			if (!btf_is_ptr(t)) {
2161 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2162 					map->name, btf_kind_str(t));
2163 				return -EINVAL;
2164 			}
2165 			t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2166 			if (!btf_is_struct(t)) {
2167 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2168 					map->name, btf_kind_str(t));
2169 				return -EINVAL;
2170 			}
2171 
2172 			map->inner_map = calloc(1, sizeof(*map->inner_map));
2173 			if (!map->inner_map)
2174 				return -ENOMEM;
2175 			map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2176 			map->inner_map->name = malloc(strlen(map->name) +
2177 						      sizeof(".inner") + 1);
2178 			if (!map->inner_map->name)
2179 				return -ENOMEM;
2180 			sprintf(map->inner_map->name, "%s.inner", map->name);
2181 
2182 			err = parse_btf_map_def(obj, map->inner_map, t, strict,
2183 						true /* is_inner */, NULL);
2184 			if (err)
2185 				return err;
2186 		} else if (strcmp(name, "pinning") == 0) {
2187 			__u32 val;
2188 			int err;
2189 
2190 			if (is_inner) {
2191 				pr_debug("map '%s': inner def can't be pinned.\n",
2192 					 map->name);
2193 				return -EINVAL;
2194 			}
2195 			if (!get_map_field_int(map->name, obj->btf, m, &val))
2196 				return -EINVAL;
2197 			pr_debug("map '%s': found pinning = %u.\n",
2198 				 map->name, val);
2199 
2200 			if (val != LIBBPF_PIN_NONE &&
2201 			    val != LIBBPF_PIN_BY_NAME) {
2202 				pr_warn("map '%s': invalid pinning value %u.\n",
2203 					map->name, val);
2204 				return -EINVAL;
2205 			}
2206 			if (val == LIBBPF_PIN_BY_NAME) {
2207 				err = build_map_pin_path(map, pin_root_path);
2208 				if (err) {
2209 					pr_warn("map '%s': couldn't build pin path.\n",
2210 						map->name);
2211 					return err;
2212 				}
2213 			}
2214 		} else {
2215 			if (strict) {
2216 				pr_warn("map '%s': unknown field '%s'.\n",
2217 					map->name, name);
2218 				return -ENOTSUP;
2219 			}
2220 			pr_debug("map '%s': ignoring unknown field '%s'.\n",
2221 				 map->name, name);
2222 		}
2223 	}
2224 
2225 	if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2226 		pr_warn("map '%s': map type isn't specified.\n", map->name);
2227 		return -EINVAL;
2228 	}
2229 
2230 	return 0;
2231 }
2232 
2233 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2234 					 const struct btf_type *sec,
2235 					 int var_idx, int sec_idx,
2236 					 const Elf_Data *data, bool strict,
2237 					 const char *pin_root_path)
2238 {
2239 	const struct btf_type *var, *def;
2240 	const struct btf_var_secinfo *vi;
2241 	const struct btf_var *var_extra;
2242 	const char *map_name;
2243 	struct bpf_map *map;
2244 
2245 	vi = btf_var_secinfos(sec) + var_idx;
2246 	var = btf__type_by_id(obj->btf, vi->type);
2247 	var_extra = btf_var(var);
2248 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2249 
2250 	if (map_name == NULL || map_name[0] == '\0') {
2251 		pr_warn("map #%d: empty name.\n", var_idx);
2252 		return -EINVAL;
2253 	}
2254 	if ((__u64)vi->offset + vi->size > data->d_size) {
2255 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2256 		return -EINVAL;
2257 	}
2258 	if (!btf_is_var(var)) {
2259 		pr_warn("map '%s': unexpected var kind %s.\n",
2260 			map_name, btf_kind_str(var));
2261 		return -EINVAL;
2262 	}
2263 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2264 	    var_extra->linkage != BTF_VAR_STATIC) {
2265 		pr_warn("map '%s': unsupported var linkage %u.\n",
2266 			map_name, var_extra->linkage);
2267 		return -EOPNOTSUPP;
2268 	}
2269 
2270 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2271 	if (!btf_is_struct(def)) {
2272 		pr_warn("map '%s': unexpected def kind %s.\n",
2273 			map_name, btf_kind_str(var));
2274 		return -EINVAL;
2275 	}
2276 	if (def->size > vi->size) {
2277 		pr_warn("map '%s': invalid def size.\n", map_name);
2278 		return -EINVAL;
2279 	}
2280 
2281 	map = bpf_object__add_map(obj);
2282 	if (IS_ERR(map))
2283 		return PTR_ERR(map);
2284 	map->name = strdup(map_name);
2285 	if (!map->name) {
2286 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2287 		return -ENOMEM;
2288 	}
2289 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2290 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2291 	map->sec_idx = sec_idx;
2292 	map->sec_offset = vi->offset;
2293 	map->btf_var_idx = var_idx;
2294 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2295 		 map_name, map->sec_idx, map->sec_offset);
2296 
2297 	return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2298 }
2299 
2300 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2301 					  const char *pin_root_path)
2302 {
2303 	const struct btf_type *sec = NULL;
2304 	int nr_types, i, vlen, err;
2305 	const struct btf_type *t;
2306 	const char *name;
2307 	Elf_Data *data;
2308 	Elf_Scn *scn;
2309 
2310 	if (obj->efile.btf_maps_shndx < 0)
2311 		return 0;
2312 
2313 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2314 	data = elf_sec_data(obj, scn);
2315 	if (!scn || !data) {
2316 		pr_warn("elf: failed to get %s map definitions for %s\n",
2317 			MAPS_ELF_SEC, obj->path);
2318 		return -EINVAL;
2319 	}
2320 
2321 	nr_types = btf__get_nr_types(obj->btf);
2322 	for (i = 1; i <= nr_types; i++) {
2323 		t = btf__type_by_id(obj->btf, i);
2324 		if (!btf_is_datasec(t))
2325 			continue;
2326 		name = btf__name_by_offset(obj->btf, t->name_off);
2327 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2328 			sec = t;
2329 			obj->efile.btf_maps_sec_btf_id = i;
2330 			break;
2331 		}
2332 	}
2333 
2334 	if (!sec) {
2335 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2336 		return -ENOENT;
2337 	}
2338 
2339 	vlen = btf_vlen(sec);
2340 	for (i = 0; i < vlen; i++) {
2341 		err = bpf_object__init_user_btf_map(obj, sec, i,
2342 						    obj->efile.btf_maps_shndx,
2343 						    data, strict,
2344 						    pin_root_path);
2345 		if (err)
2346 			return err;
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 static int bpf_object__init_maps(struct bpf_object *obj,
2353 				 const struct bpf_object_open_opts *opts)
2354 {
2355 	const char *pin_root_path;
2356 	bool strict;
2357 	int err;
2358 
2359 	strict = !OPTS_GET(opts, relaxed_maps, false);
2360 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2361 
2362 	err = bpf_object__init_user_maps(obj, strict);
2363 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2364 	err = err ?: bpf_object__init_global_data_maps(obj);
2365 	err = err ?: bpf_object__init_kconfig_map(obj);
2366 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2367 	if (err)
2368 		return err;
2369 
2370 	return 0;
2371 }
2372 
2373 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2374 {
2375 	GElf_Shdr sh;
2376 
2377 	if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2378 		return false;
2379 
2380 	return sh.sh_flags & SHF_EXECINSTR;
2381 }
2382 
2383 static bool btf_needs_sanitization(struct bpf_object *obj)
2384 {
2385 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2386 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2387 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2388 
2389 	return !has_func || !has_datasec || !has_func_global;
2390 }
2391 
2392 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2393 {
2394 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2395 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2396 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2397 	struct btf_type *t;
2398 	int i, j, vlen;
2399 
2400 	for (i = 1; i <= btf__get_nr_types(btf); i++) {
2401 		t = (struct btf_type *)btf__type_by_id(btf, i);
2402 
2403 		if (!has_datasec && btf_is_var(t)) {
2404 			/* replace VAR with INT */
2405 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2406 			/*
2407 			 * using size = 1 is the safest choice, 4 will be too
2408 			 * big and cause kernel BTF validation failure if
2409 			 * original variable took less than 4 bytes
2410 			 */
2411 			t->size = 1;
2412 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2413 		} else if (!has_datasec && btf_is_datasec(t)) {
2414 			/* replace DATASEC with STRUCT */
2415 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2416 			struct btf_member *m = btf_members(t);
2417 			struct btf_type *vt;
2418 			char *name;
2419 
2420 			name = (char *)btf__name_by_offset(btf, t->name_off);
2421 			while (*name) {
2422 				if (*name == '.')
2423 					*name = '_';
2424 				name++;
2425 			}
2426 
2427 			vlen = btf_vlen(t);
2428 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2429 			for (j = 0; j < vlen; j++, v++, m++) {
2430 				/* order of field assignments is important */
2431 				m->offset = v->offset * 8;
2432 				m->type = v->type;
2433 				/* preserve variable name as member name */
2434 				vt = (void *)btf__type_by_id(btf, v->type);
2435 				m->name_off = vt->name_off;
2436 			}
2437 		} else if (!has_func && btf_is_func_proto(t)) {
2438 			/* replace FUNC_PROTO with ENUM */
2439 			vlen = btf_vlen(t);
2440 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2441 			t->size = sizeof(__u32); /* kernel enforced */
2442 		} else if (!has_func && btf_is_func(t)) {
2443 			/* replace FUNC with TYPEDEF */
2444 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2445 		} else if (!has_func_global && btf_is_func(t)) {
2446 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2447 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2448 		}
2449 	}
2450 }
2451 
2452 static bool libbpf_needs_btf(const struct bpf_object *obj)
2453 {
2454 	return obj->efile.btf_maps_shndx >= 0 ||
2455 	       obj->efile.st_ops_shndx >= 0 ||
2456 	       obj->nr_extern > 0;
2457 }
2458 
2459 static bool kernel_needs_btf(const struct bpf_object *obj)
2460 {
2461 	return obj->efile.st_ops_shndx >= 0;
2462 }
2463 
2464 static int bpf_object__init_btf(struct bpf_object *obj,
2465 				Elf_Data *btf_data,
2466 				Elf_Data *btf_ext_data)
2467 {
2468 	int err = -ENOENT;
2469 
2470 	if (btf_data) {
2471 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2472 		if (IS_ERR(obj->btf)) {
2473 			err = PTR_ERR(obj->btf);
2474 			obj->btf = NULL;
2475 			pr_warn("Error loading ELF section %s: %d.\n",
2476 				BTF_ELF_SEC, err);
2477 			goto out;
2478 		}
2479 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2480 		btf__set_pointer_size(obj->btf, 8);
2481 		err = 0;
2482 	}
2483 	if (btf_ext_data) {
2484 		if (!obj->btf) {
2485 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2486 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2487 			goto out;
2488 		}
2489 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2490 					    btf_ext_data->d_size);
2491 		if (IS_ERR(obj->btf_ext)) {
2492 			pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2493 				BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2494 			obj->btf_ext = NULL;
2495 			goto out;
2496 		}
2497 	}
2498 out:
2499 	if (err && libbpf_needs_btf(obj)) {
2500 		pr_warn("BTF is required, but is missing or corrupted.\n");
2501 		return err;
2502 	}
2503 	return 0;
2504 }
2505 
2506 static int bpf_object__finalize_btf(struct bpf_object *obj)
2507 {
2508 	int err;
2509 
2510 	if (!obj->btf)
2511 		return 0;
2512 
2513 	err = btf__finalize_data(obj, obj->btf);
2514 	if (err) {
2515 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2516 		return err;
2517 	}
2518 
2519 	return 0;
2520 }
2521 
2522 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2523 {
2524 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2525 	    prog->type == BPF_PROG_TYPE_LSM)
2526 		return true;
2527 
2528 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2529 	 * also need vmlinux BTF
2530 	 */
2531 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2532 		return true;
2533 
2534 	return false;
2535 }
2536 
2537 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2538 {
2539 	struct bpf_program *prog;
2540 	int i;
2541 
2542 	/* CO-RE relocations need kernel BTF */
2543 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2544 		return true;
2545 
2546 	/* Support for typed ksyms needs kernel BTF */
2547 	for (i = 0; i < obj->nr_extern; i++) {
2548 		const struct extern_desc *ext;
2549 
2550 		ext = &obj->externs[i];
2551 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2552 			return true;
2553 	}
2554 
2555 	bpf_object__for_each_program(prog, obj) {
2556 		if (!prog->load)
2557 			continue;
2558 		if (prog_needs_vmlinux_btf(prog))
2559 			return true;
2560 	}
2561 
2562 	return false;
2563 }
2564 
2565 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2566 {
2567 	int err;
2568 
2569 	/* btf_vmlinux could be loaded earlier */
2570 	if (obj->btf_vmlinux)
2571 		return 0;
2572 
2573 	if (!force && !obj_needs_vmlinux_btf(obj))
2574 		return 0;
2575 
2576 	obj->btf_vmlinux = libbpf_find_kernel_btf();
2577 	if (IS_ERR(obj->btf_vmlinux)) {
2578 		err = PTR_ERR(obj->btf_vmlinux);
2579 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2580 		obj->btf_vmlinux = NULL;
2581 		return err;
2582 	}
2583 	return 0;
2584 }
2585 
2586 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2587 {
2588 	struct btf *kern_btf = obj->btf;
2589 	bool btf_mandatory, sanitize;
2590 	int err = 0;
2591 
2592 	if (!obj->btf)
2593 		return 0;
2594 
2595 	if (!kernel_supports(FEAT_BTF)) {
2596 		if (kernel_needs_btf(obj)) {
2597 			err = -EOPNOTSUPP;
2598 			goto report;
2599 		}
2600 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2601 		return 0;
2602 	}
2603 
2604 	sanitize = btf_needs_sanitization(obj);
2605 	if (sanitize) {
2606 		const void *raw_data;
2607 		__u32 sz;
2608 
2609 		/* clone BTF to sanitize a copy and leave the original intact */
2610 		raw_data = btf__get_raw_data(obj->btf, &sz);
2611 		kern_btf = btf__new(raw_data, sz);
2612 		if (IS_ERR(kern_btf))
2613 			return PTR_ERR(kern_btf);
2614 
2615 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2616 		btf__set_pointer_size(obj->btf, 8);
2617 		bpf_object__sanitize_btf(obj, kern_btf);
2618 	}
2619 
2620 	err = btf__load(kern_btf);
2621 	if (sanitize) {
2622 		if (!err) {
2623 			/* move fd to libbpf's BTF */
2624 			btf__set_fd(obj->btf, btf__fd(kern_btf));
2625 			btf__set_fd(kern_btf, -1);
2626 		}
2627 		btf__free(kern_btf);
2628 	}
2629 report:
2630 	if (err) {
2631 		btf_mandatory = kernel_needs_btf(obj);
2632 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2633 			btf_mandatory ? "BTF is mandatory, can't proceed."
2634 				      : "BTF is optional, ignoring.");
2635 		if (!btf_mandatory)
2636 			err = 0;
2637 	}
2638 	return err;
2639 }
2640 
2641 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2642 {
2643 	const char *name;
2644 
2645 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2646 	if (!name) {
2647 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2648 			off, obj->path, elf_errmsg(-1));
2649 		return NULL;
2650 	}
2651 
2652 	return name;
2653 }
2654 
2655 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2656 {
2657 	const char *name;
2658 
2659 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2660 	if (!name) {
2661 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2662 			off, obj->path, elf_errmsg(-1));
2663 		return NULL;
2664 	}
2665 
2666 	return name;
2667 }
2668 
2669 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2670 {
2671 	Elf_Scn *scn;
2672 
2673 	scn = elf_getscn(obj->efile.elf, idx);
2674 	if (!scn) {
2675 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2676 			idx, obj->path, elf_errmsg(-1));
2677 		return NULL;
2678 	}
2679 	return scn;
2680 }
2681 
2682 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2683 {
2684 	Elf_Scn *scn = NULL;
2685 	Elf *elf = obj->efile.elf;
2686 	const char *sec_name;
2687 
2688 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2689 		sec_name = elf_sec_name(obj, scn);
2690 		if (!sec_name)
2691 			return NULL;
2692 
2693 		if (strcmp(sec_name, name) != 0)
2694 			continue;
2695 
2696 		return scn;
2697 	}
2698 	return NULL;
2699 }
2700 
2701 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2702 {
2703 	if (!scn)
2704 		return -EINVAL;
2705 
2706 	if (gelf_getshdr(scn, hdr) != hdr) {
2707 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2708 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2709 		return -EINVAL;
2710 	}
2711 
2712 	return 0;
2713 }
2714 
2715 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2716 {
2717 	const char *name;
2718 	GElf_Shdr sh;
2719 
2720 	if (!scn)
2721 		return NULL;
2722 
2723 	if (elf_sec_hdr(obj, scn, &sh))
2724 		return NULL;
2725 
2726 	name = elf_sec_str(obj, sh.sh_name);
2727 	if (!name) {
2728 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2729 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2730 		return NULL;
2731 	}
2732 
2733 	return name;
2734 }
2735 
2736 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2737 {
2738 	Elf_Data *data;
2739 
2740 	if (!scn)
2741 		return NULL;
2742 
2743 	data = elf_getdata(scn, 0);
2744 	if (!data) {
2745 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2746 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2747 			obj->path, elf_errmsg(-1));
2748 		return NULL;
2749 	}
2750 
2751 	return data;
2752 }
2753 
2754 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2755 			      size_t off, __u32 sym_type, GElf_Sym *sym)
2756 {
2757 	Elf_Data *symbols = obj->efile.symbols;
2758 	size_t n = symbols->d_size / sizeof(GElf_Sym);
2759 	int i;
2760 
2761 	for (i = 0; i < n; i++) {
2762 		if (!gelf_getsym(symbols, i, sym))
2763 			continue;
2764 		if (sym->st_shndx != sec_idx || sym->st_value != off)
2765 			continue;
2766 		if (GELF_ST_TYPE(sym->st_info) != sym_type)
2767 			continue;
2768 		return 0;
2769 	}
2770 
2771 	return -ENOENT;
2772 }
2773 
2774 static bool is_sec_name_dwarf(const char *name)
2775 {
2776 	/* approximation, but the actual list is too long */
2777 	return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2778 }
2779 
2780 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2781 {
2782 	/* no special handling of .strtab */
2783 	if (hdr->sh_type == SHT_STRTAB)
2784 		return true;
2785 
2786 	/* ignore .llvm_addrsig section as well */
2787 	if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2788 		return true;
2789 
2790 	/* no subprograms will lead to an empty .text section, ignore it */
2791 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2792 	    strcmp(name, ".text") == 0)
2793 		return true;
2794 
2795 	/* DWARF sections */
2796 	if (is_sec_name_dwarf(name))
2797 		return true;
2798 
2799 	if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2800 		name += sizeof(".rel") - 1;
2801 		/* DWARF section relocations */
2802 		if (is_sec_name_dwarf(name))
2803 			return true;
2804 
2805 		/* .BTF and .BTF.ext don't need relocations */
2806 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
2807 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2808 			return true;
2809 	}
2810 
2811 	return false;
2812 }
2813 
2814 static int cmp_progs(const void *_a, const void *_b)
2815 {
2816 	const struct bpf_program *a = _a;
2817 	const struct bpf_program *b = _b;
2818 
2819 	if (a->sec_idx != b->sec_idx)
2820 		return a->sec_idx < b->sec_idx ? -1 : 1;
2821 
2822 	/* sec_insn_off can't be the same within the section */
2823 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2824 }
2825 
2826 static int bpf_object__elf_collect(struct bpf_object *obj)
2827 {
2828 	Elf *elf = obj->efile.elf;
2829 	Elf_Data *btf_ext_data = NULL;
2830 	Elf_Data *btf_data = NULL;
2831 	int idx = 0, err = 0;
2832 	const char *name;
2833 	Elf_Data *data;
2834 	Elf_Scn *scn;
2835 	GElf_Shdr sh;
2836 
2837 	/* a bunch of ELF parsing functionality depends on processing symbols,
2838 	 * so do the first pass and find the symbol table
2839 	 */
2840 	scn = NULL;
2841 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2842 		if (elf_sec_hdr(obj, scn, &sh))
2843 			return -LIBBPF_ERRNO__FORMAT;
2844 
2845 		if (sh.sh_type == SHT_SYMTAB) {
2846 			if (obj->efile.symbols) {
2847 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2848 				return -LIBBPF_ERRNO__FORMAT;
2849 			}
2850 
2851 			data = elf_sec_data(obj, scn);
2852 			if (!data)
2853 				return -LIBBPF_ERRNO__FORMAT;
2854 
2855 			obj->efile.symbols = data;
2856 			obj->efile.symbols_shndx = elf_ndxscn(scn);
2857 			obj->efile.strtabidx = sh.sh_link;
2858 		}
2859 	}
2860 
2861 	scn = NULL;
2862 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2863 		idx++;
2864 
2865 		if (elf_sec_hdr(obj, scn, &sh))
2866 			return -LIBBPF_ERRNO__FORMAT;
2867 
2868 		name = elf_sec_str(obj, sh.sh_name);
2869 		if (!name)
2870 			return -LIBBPF_ERRNO__FORMAT;
2871 
2872 		if (ignore_elf_section(&sh, name))
2873 			continue;
2874 
2875 		data = elf_sec_data(obj, scn);
2876 		if (!data)
2877 			return -LIBBPF_ERRNO__FORMAT;
2878 
2879 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2880 			 idx, name, (unsigned long)data->d_size,
2881 			 (int)sh.sh_link, (unsigned long)sh.sh_flags,
2882 			 (int)sh.sh_type);
2883 
2884 		if (strcmp(name, "license") == 0) {
2885 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2886 			if (err)
2887 				return err;
2888 		} else if (strcmp(name, "version") == 0) {
2889 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2890 			if (err)
2891 				return err;
2892 		} else if (strcmp(name, "maps") == 0) {
2893 			obj->efile.maps_shndx = idx;
2894 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2895 			obj->efile.btf_maps_shndx = idx;
2896 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
2897 			btf_data = data;
2898 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2899 			btf_ext_data = data;
2900 		} else if (sh.sh_type == SHT_SYMTAB) {
2901 			/* already processed during the first pass above */
2902 		} else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2903 			if (sh.sh_flags & SHF_EXECINSTR) {
2904 				if (strcmp(name, ".text") == 0)
2905 					obj->efile.text_shndx = idx;
2906 				err = bpf_object__add_programs(obj, data, name, idx);
2907 				if (err)
2908 					return err;
2909 			} else if (strcmp(name, DATA_SEC) == 0) {
2910 				obj->efile.data = data;
2911 				obj->efile.data_shndx = idx;
2912 			} else if (strcmp(name, RODATA_SEC) == 0) {
2913 				obj->efile.rodata = data;
2914 				obj->efile.rodata_shndx = idx;
2915 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2916 				obj->efile.st_ops_data = data;
2917 				obj->efile.st_ops_shndx = idx;
2918 			} else {
2919 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
2920 					idx, name);
2921 			}
2922 		} else if (sh.sh_type == SHT_REL) {
2923 			int nr_sects = obj->efile.nr_reloc_sects;
2924 			void *sects = obj->efile.reloc_sects;
2925 			int sec = sh.sh_info; /* points to other section */
2926 
2927 			/* Only do relo for section with exec instructions */
2928 			if (!section_have_execinstr(obj, sec) &&
2929 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2930 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
2931 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2932 					idx, name, sec,
2933 					elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2934 				continue;
2935 			}
2936 
2937 			sects = libbpf_reallocarray(sects, nr_sects + 1,
2938 						    sizeof(*obj->efile.reloc_sects));
2939 			if (!sects)
2940 				return -ENOMEM;
2941 
2942 			obj->efile.reloc_sects = sects;
2943 			obj->efile.nr_reloc_sects++;
2944 
2945 			obj->efile.reloc_sects[nr_sects].shdr = sh;
2946 			obj->efile.reloc_sects[nr_sects].data = data;
2947 		} else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2948 			obj->efile.bss = data;
2949 			obj->efile.bss_shndx = idx;
2950 		} else {
2951 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2952 				(size_t)sh.sh_size);
2953 		}
2954 	}
2955 
2956 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2957 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2958 		return -LIBBPF_ERRNO__FORMAT;
2959 	}
2960 
2961 	/* sort BPF programs by section name and in-section instruction offset
2962 	 * for faster search */
2963 	qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2964 
2965 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2966 }
2967 
2968 static bool sym_is_extern(const GElf_Sym *sym)
2969 {
2970 	int bind = GELF_ST_BIND(sym->st_info);
2971 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2972 	return sym->st_shndx == SHN_UNDEF &&
2973 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
2974 	       GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2975 }
2976 
2977 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
2978 {
2979 	const struct btf_type *t;
2980 	const char *var_name;
2981 	int i, n;
2982 
2983 	if (!btf)
2984 		return -ESRCH;
2985 
2986 	n = btf__get_nr_types(btf);
2987 	for (i = 1; i <= n; i++) {
2988 		t = btf__type_by_id(btf, i);
2989 
2990 		if (!btf_is_var(t))
2991 			continue;
2992 
2993 		var_name = btf__name_by_offset(btf, t->name_off);
2994 		if (strcmp(var_name, ext_name))
2995 			continue;
2996 
2997 		if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
2998 			return -EINVAL;
2999 
3000 		return i;
3001 	}
3002 
3003 	return -ENOENT;
3004 }
3005 
3006 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3007 	const struct btf_var_secinfo *vs;
3008 	const struct btf_type *t;
3009 	int i, j, n;
3010 
3011 	if (!btf)
3012 		return -ESRCH;
3013 
3014 	n = btf__get_nr_types(btf);
3015 	for (i = 1; i <= n; i++) {
3016 		t = btf__type_by_id(btf, i);
3017 
3018 		if (!btf_is_datasec(t))
3019 			continue;
3020 
3021 		vs = btf_var_secinfos(t);
3022 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3023 			if (vs->type == ext_btf_id)
3024 				return i;
3025 		}
3026 	}
3027 
3028 	return -ENOENT;
3029 }
3030 
3031 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3032 				     bool *is_signed)
3033 {
3034 	const struct btf_type *t;
3035 	const char *name;
3036 
3037 	t = skip_mods_and_typedefs(btf, id, NULL);
3038 	name = btf__name_by_offset(btf, t->name_off);
3039 
3040 	if (is_signed)
3041 		*is_signed = false;
3042 	switch (btf_kind(t)) {
3043 	case BTF_KIND_INT: {
3044 		int enc = btf_int_encoding(t);
3045 
3046 		if (enc & BTF_INT_BOOL)
3047 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3048 		if (is_signed)
3049 			*is_signed = enc & BTF_INT_SIGNED;
3050 		if (t->size == 1)
3051 			return KCFG_CHAR;
3052 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3053 			return KCFG_UNKNOWN;
3054 		return KCFG_INT;
3055 	}
3056 	case BTF_KIND_ENUM:
3057 		if (t->size != 4)
3058 			return KCFG_UNKNOWN;
3059 		if (strcmp(name, "libbpf_tristate"))
3060 			return KCFG_UNKNOWN;
3061 		return KCFG_TRISTATE;
3062 	case BTF_KIND_ARRAY:
3063 		if (btf_array(t)->nelems == 0)
3064 			return KCFG_UNKNOWN;
3065 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3066 			return KCFG_UNKNOWN;
3067 		return KCFG_CHAR_ARR;
3068 	default:
3069 		return KCFG_UNKNOWN;
3070 	}
3071 }
3072 
3073 static int cmp_externs(const void *_a, const void *_b)
3074 {
3075 	const struct extern_desc *a = _a;
3076 	const struct extern_desc *b = _b;
3077 
3078 	if (a->type != b->type)
3079 		return a->type < b->type ? -1 : 1;
3080 
3081 	if (a->type == EXT_KCFG) {
3082 		/* descending order by alignment requirements */
3083 		if (a->kcfg.align != b->kcfg.align)
3084 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3085 		/* ascending order by size, within same alignment class */
3086 		if (a->kcfg.sz != b->kcfg.sz)
3087 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3088 	}
3089 
3090 	/* resolve ties by name */
3091 	return strcmp(a->name, b->name);
3092 }
3093 
3094 static int find_int_btf_id(const struct btf *btf)
3095 {
3096 	const struct btf_type *t;
3097 	int i, n;
3098 
3099 	n = btf__get_nr_types(btf);
3100 	for (i = 1; i <= n; i++) {
3101 		t = btf__type_by_id(btf, i);
3102 
3103 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3104 			return i;
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 static int bpf_object__collect_externs(struct bpf_object *obj)
3111 {
3112 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3113 	const struct btf_type *t;
3114 	struct extern_desc *ext;
3115 	int i, n, off;
3116 	const char *ext_name, *sec_name;
3117 	Elf_Scn *scn;
3118 	GElf_Shdr sh;
3119 
3120 	if (!obj->efile.symbols)
3121 		return 0;
3122 
3123 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3124 	if (elf_sec_hdr(obj, scn, &sh))
3125 		return -LIBBPF_ERRNO__FORMAT;
3126 
3127 	n = sh.sh_size / sh.sh_entsize;
3128 	pr_debug("looking for externs among %d symbols...\n", n);
3129 
3130 	for (i = 0; i < n; i++) {
3131 		GElf_Sym sym;
3132 
3133 		if (!gelf_getsym(obj->efile.symbols, i, &sym))
3134 			return -LIBBPF_ERRNO__FORMAT;
3135 		if (!sym_is_extern(&sym))
3136 			continue;
3137 		ext_name = elf_sym_str(obj, sym.st_name);
3138 		if (!ext_name || !ext_name[0])
3139 			continue;
3140 
3141 		ext = obj->externs;
3142 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3143 		if (!ext)
3144 			return -ENOMEM;
3145 		obj->externs = ext;
3146 		ext = &ext[obj->nr_extern];
3147 		memset(ext, 0, sizeof(*ext));
3148 		obj->nr_extern++;
3149 
3150 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3151 		if (ext->btf_id <= 0) {
3152 			pr_warn("failed to find BTF for extern '%s': %d\n",
3153 				ext_name, ext->btf_id);
3154 			return ext->btf_id;
3155 		}
3156 		t = btf__type_by_id(obj->btf, ext->btf_id);
3157 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3158 		ext->sym_idx = i;
3159 		ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3160 
3161 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3162 		if (ext->sec_btf_id <= 0) {
3163 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3164 				ext_name, ext->btf_id, ext->sec_btf_id);
3165 			return ext->sec_btf_id;
3166 		}
3167 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3168 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3169 
3170 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3171 			kcfg_sec = sec;
3172 			ext->type = EXT_KCFG;
3173 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3174 			if (ext->kcfg.sz <= 0) {
3175 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3176 					ext_name, ext->kcfg.sz);
3177 				return ext->kcfg.sz;
3178 			}
3179 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3180 			if (ext->kcfg.align <= 0) {
3181 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3182 					ext_name, ext->kcfg.align);
3183 				return -EINVAL;
3184 			}
3185 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3186 						        &ext->kcfg.is_signed);
3187 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3188 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3189 				return -ENOTSUP;
3190 			}
3191 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3192 			ksym_sec = sec;
3193 			ext->type = EXT_KSYM;
3194 			skip_mods_and_typedefs(obj->btf, t->type,
3195 					       &ext->ksym.type_id);
3196 		} else {
3197 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3198 			return -ENOTSUP;
3199 		}
3200 	}
3201 	pr_debug("collected %d externs total\n", obj->nr_extern);
3202 
3203 	if (!obj->nr_extern)
3204 		return 0;
3205 
3206 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3207 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3208 
3209 	/* for .ksyms section, we need to turn all externs into allocated
3210 	 * variables in BTF to pass kernel verification; we do this by
3211 	 * pretending that each extern is a 8-byte variable
3212 	 */
3213 	if (ksym_sec) {
3214 		/* find existing 4-byte integer type in BTF to use for fake
3215 		 * extern variables in DATASEC
3216 		 */
3217 		int int_btf_id = find_int_btf_id(obj->btf);
3218 
3219 		for (i = 0; i < obj->nr_extern; i++) {
3220 			ext = &obj->externs[i];
3221 			if (ext->type != EXT_KSYM)
3222 				continue;
3223 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3224 				 i, ext->sym_idx, ext->name);
3225 		}
3226 
3227 		sec = ksym_sec;
3228 		n = btf_vlen(sec);
3229 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3230 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3231 			struct btf_type *vt;
3232 
3233 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3234 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3235 			ext = find_extern_by_name(obj, ext_name);
3236 			if (!ext) {
3237 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3238 					ext_name);
3239 				return -ESRCH;
3240 			}
3241 			btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3242 			vt->type = int_btf_id;
3243 			vs->offset = off;
3244 			vs->size = sizeof(int);
3245 		}
3246 		sec->size = off;
3247 	}
3248 
3249 	if (kcfg_sec) {
3250 		sec = kcfg_sec;
3251 		/* for kcfg externs calculate their offsets within a .kconfig map */
3252 		off = 0;
3253 		for (i = 0; i < obj->nr_extern; i++) {
3254 			ext = &obj->externs[i];
3255 			if (ext->type != EXT_KCFG)
3256 				continue;
3257 
3258 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3259 			off = ext->kcfg.data_off + ext->kcfg.sz;
3260 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3261 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3262 		}
3263 		sec->size = off;
3264 		n = btf_vlen(sec);
3265 		for (i = 0; i < n; i++) {
3266 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3267 
3268 			t = btf__type_by_id(obj->btf, vs->type);
3269 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3270 			ext = find_extern_by_name(obj, ext_name);
3271 			if (!ext) {
3272 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3273 					ext_name);
3274 				return -ESRCH;
3275 			}
3276 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3277 			vs->offset = ext->kcfg.data_off;
3278 		}
3279 	}
3280 	return 0;
3281 }
3282 
3283 struct bpf_program *
3284 bpf_object__find_program_by_title(const struct bpf_object *obj,
3285 				  const char *title)
3286 {
3287 	struct bpf_program *pos;
3288 
3289 	bpf_object__for_each_program(pos, obj) {
3290 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3291 			return pos;
3292 	}
3293 	return NULL;
3294 }
3295 
3296 static bool prog_is_subprog(const struct bpf_object *obj,
3297 			    const struct bpf_program *prog)
3298 {
3299 	/* For legacy reasons, libbpf supports an entry-point BPF programs
3300 	 * without SEC() attribute, i.e., those in the .text section. But if
3301 	 * there are 2 or more such programs in the .text section, they all
3302 	 * must be subprograms called from entry-point BPF programs in
3303 	 * designated SEC()'tions, otherwise there is no way to distinguish
3304 	 * which of those programs should be loaded vs which are a subprogram.
3305 	 * Similarly, if there is a function/program in .text and at least one
3306 	 * other BPF program with custom SEC() attribute, then we just assume
3307 	 * .text programs are subprograms (even if they are not called from
3308 	 * other programs), because libbpf never explicitly supported mixing
3309 	 * SEC()-designated BPF programs and .text entry-point BPF programs.
3310 	 */
3311 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3312 }
3313 
3314 struct bpf_program *
3315 bpf_object__find_program_by_name(const struct bpf_object *obj,
3316 				 const char *name)
3317 {
3318 	struct bpf_program *prog;
3319 
3320 	bpf_object__for_each_program(prog, obj) {
3321 		if (prog_is_subprog(obj, prog))
3322 			continue;
3323 		if (!strcmp(prog->name, name))
3324 			return prog;
3325 	}
3326 	return NULL;
3327 }
3328 
3329 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3330 				      int shndx)
3331 {
3332 	return shndx == obj->efile.data_shndx ||
3333 	       shndx == obj->efile.bss_shndx ||
3334 	       shndx == obj->efile.rodata_shndx;
3335 }
3336 
3337 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3338 				      int shndx)
3339 {
3340 	return shndx == obj->efile.maps_shndx ||
3341 	       shndx == obj->efile.btf_maps_shndx;
3342 }
3343 
3344 static enum libbpf_map_type
3345 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3346 {
3347 	if (shndx == obj->efile.data_shndx)
3348 		return LIBBPF_MAP_DATA;
3349 	else if (shndx == obj->efile.bss_shndx)
3350 		return LIBBPF_MAP_BSS;
3351 	else if (shndx == obj->efile.rodata_shndx)
3352 		return LIBBPF_MAP_RODATA;
3353 	else if (shndx == obj->efile.symbols_shndx)
3354 		return LIBBPF_MAP_KCONFIG;
3355 	else
3356 		return LIBBPF_MAP_UNSPEC;
3357 }
3358 
3359 static int bpf_program__record_reloc(struct bpf_program *prog,
3360 				     struct reloc_desc *reloc_desc,
3361 				     __u32 insn_idx, const char *sym_name,
3362 				     const GElf_Sym *sym, const GElf_Rel *rel)
3363 {
3364 	struct bpf_insn *insn = &prog->insns[insn_idx];
3365 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3366 	struct bpf_object *obj = prog->obj;
3367 	__u32 shdr_idx = sym->st_shndx;
3368 	enum libbpf_map_type type;
3369 	const char *sym_sec_name;
3370 	struct bpf_map *map;
3371 
3372 	reloc_desc->processed = false;
3373 
3374 	/* sub-program call relocation */
3375 	if (insn->code == (BPF_JMP | BPF_CALL)) {
3376 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3377 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3378 			return -LIBBPF_ERRNO__RELOC;
3379 		}
3380 		/* text_shndx can be 0, if no default "main" program exists */
3381 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3382 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3383 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3384 				prog->name, sym_name, sym_sec_name);
3385 			return -LIBBPF_ERRNO__RELOC;
3386 		}
3387 		if (sym->st_value % BPF_INSN_SZ) {
3388 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3389 				prog->name, sym_name, (size_t)sym->st_value);
3390 			return -LIBBPF_ERRNO__RELOC;
3391 		}
3392 		reloc_desc->type = RELO_CALL;
3393 		reloc_desc->insn_idx = insn_idx;
3394 		reloc_desc->sym_off = sym->st_value;
3395 		return 0;
3396 	}
3397 
3398 	if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
3399 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3400 			prog->name, sym_name, insn_idx, insn->code);
3401 		return -LIBBPF_ERRNO__RELOC;
3402 	}
3403 
3404 	if (sym_is_extern(sym)) {
3405 		int sym_idx = GELF_R_SYM(rel->r_info);
3406 		int i, n = obj->nr_extern;
3407 		struct extern_desc *ext;
3408 
3409 		for (i = 0; i < n; i++) {
3410 			ext = &obj->externs[i];
3411 			if (ext->sym_idx == sym_idx)
3412 				break;
3413 		}
3414 		if (i >= n) {
3415 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3416 				prog->name, sym_name, sym_idx);
3417 			return -LIBBPF_ERRNO__RELOC;
3418 		}
3419 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3420 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3421 		reloc_desc->type = RELO_EXTERN;
3422 		reloc_desc->insn_idx = insn_idx;
3423 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3424 		return 0;
3425 	}
3426 
3427 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3428 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3429 			prog->name, sym_name, shdr_idx);
3430 		return -LIBBPF_ERRNO__RELOC;
3431 	}
3432 
3433 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3434 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3435 
3436 	/* generic map reference relocation */
3437 	if (type == LIBBPF_MAP_UNSPEC) {
3438 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3439 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3440 				prog->name, sym_name, sym_sec_name);
3441 			return -LIBBPF_ERRNO__RELOC;
3442 		}
3443 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3444 			map = &obj->maps[map_idx];
3445 			if (map->libbpf_type != type ||
3446 			    map->sec_idx != sym->st_shndx ||
3447 			    map->sec_offset != sym->st_value)
3448 				continue;
3449 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3450 				 prog->name, map_idx, map->name, map->sec_idx,
3451 				 map->sec_offset, insn_idx);
3452 			break;
3453 		}
3454 		if (map_idx >= nr_maps) {
3455 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3456 				prog->name, sym_sec_name, (size_t)sym->st_value);
3457 			return -LIBBPF_ERRNO__RELOC;
3458 		}
3459 		reloc_desc->type = RELO_LD64;
3460 		reloc_desc->insn_idx = insn_idx;
3461 		reloc_desc->map_idx = map_idx;
3462 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3463 		return 0;
3464 	}
3465 
3466 	/* global data map relocation */
3467 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3468 		pr_warn("prog '%s': bad data relo against section '%s'\n",
3469 			prog->name, sym_sec_name);
3470 		return -LIBBPF_ERRNO__RELOC;
3471 	}
3472 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3473 		map = &obj->maps[map_idx];
3474 		if (map->libbpf_type != type)
3475 			continue;
3476 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3477 			 prog->name, map_idx, map->name, map->sec_idx,
3478 			 map->sec_offset, insn_idx);
3479 		break;
3480 	}
3481 	if (map_idx >= nr_maps) {
3482 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3483 			prog->name, sym_sec_name);
3484 		return -LIBBPF_ERRNO__RELOC;
3485 	}
3486 
3487 	reloc_desc->type = RELO_DATA;
3488 	reloc_desc->insn_idx = insn_idx;
3489 	reloc_desc->map_idx = map_idx;
3490 	reloc_desc->sym_off = sym->st_value;
3491 	return 0;
3492 }
3493 
3494 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3495 {
3496 	return insn_idx >= prog->sec_insn_off &&
3497 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3498 }
3499 
3500 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3501 						 size_t sec_idx, size_t insn_idx)
3502 {
3503 	int l = 0, r = obj->nr_programs - 1, m;
3504 	struct bpf_program *prog;
3505 
3506 	while (l < r) {
3507 		m = l + (r - l + 1) / 2;
3508 		prog = &obj->programs[m];
3509 
3510 		if (prog->sec_idx < sec_idx ||
3511 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3512 			l = m;
3513 		else
3514 			r = m - 1;
3515 	}
3516 	/* matching program could be at index l, but it still might be the
3517 	 * wrong one, so we need to double check conditions for the last time
3518 	 */
3519 	prog = &obj->programs[l];
3520 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3521 		return prog;
3522 	return NULL;
3523 }
3524 
3525 static int
3526 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3527 {
3528 	Elf_Data *symbols = obj->efile.symbols;
3529 	const char *relo_sec_name, *sec_name;
3530 	size_t sec_idx = shdr->sh_info;
3531 	struct bpf_program *prog;
3532 	struct reloc_desc *relos;
3533 	int err, i, nrels;
3534 	const char *sym_name;
3535 	__u32 insn_idx;
3536 	GElf_Sym sym;
3537 	GElf_Rel rel;
3538 
3539 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3540 	sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3541 	if (!relo_sec_name || !sec_name)
3542 		return -EINVAL;
3543 
3544 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3545 		 relo_sec_name, sec_idx, sec_name);
3546 	nrels = shdr->sh_size / shdr->sh_entsize;
3547 
3548 	for (i = 0; i < nrels; i++) {
3549 		if (!gelf_getrel(data, i, &rel)) {
3550 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3551 			return -LIBBPF_ERRNO__FORMAT;
3552 		}
3553 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3554 			pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3555 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3556 			return -LIBBPF_ERRNO__FORMAT;
3557 		}
3558 		if (rel.r_offset % BPF_INSN_SZ) {
3559 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3560 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3561 			return -LIBBPF_ERRNO__FORMAT;
3562 		}
3563 
3564 		insn_idx = rel.r_offset / BPF_INSN_SZ;
3565 		/* relocations against static functions are recorded as
3566 		 * relocations against the section that contains a function;
3567 		 * in such case, symbol will be STT_SECTION and sym.st_name
3568 		 * will point to empty string (0), so fetch section name
3569 		 * instead
3570 		 */
3571 		if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3572 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3573 		else
3574 			sym_name = elf_sym_str(obj, sym.st_name);
3575 		sym_name = sym_name ?: "<?";
3576 
3577 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3578 			 relo_sec_name, i, insn_idx, sym_name);
3579 
3580 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3581 		if (!prog) {
3582 			pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3583 				relo_sec_name, i, sec_name, insn_idx);
3584 			return -LIBBPF_ERRNO__RELOC;
3585 		}
3586 
3587 		relos = libbpf_reallocarray(prog->reloc_desc,
3588 					    prog->nr_reloc + 1, sizeof(*relos));
3589 		if (!relos)
3590 			return -ENOMEM;
3591 		prog->reloc_desc = relos;
3592 
3593 		/* adjust insn_idx to local BPF program frame of reference */
3594 		insn_idx -= prog->sec_insn_off;
3595 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3596 						insn_idx, sym_name, &sym, &rel);
3597 		if (err)
3598 			return err;
3599 
3600 		prog->nr_reloc++;
3601 	}
3602 	return 0;
3603 }
3604 
3605 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3606 {
3607 	struct bpf_map_def *def = &map->def;
3608 	__u32 key_type_id = 0, value_type_id = 0;
3609 	int ret;
3610 
3611 	/* if it's BTF-defined map, we don't need to search for type IDs.
3612 	 * For struct_ops map, it does not need btf_key_type_id and
3613 	 * btf_value_type_id.
3614 	 */
3615 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
3616 	    bpf_map__is_struct_ops(map))
3617 		return 0;
3618 
3619 	if (!bpf_map__is_internal(map)) {
3620 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3621 					   def->value_size, &key_type_id,
3622 					   &value_type_id);
3623 	} else {
3624 		/*
3625 		 * LLVM annotates global data differently in BTF, that is,
3626 		 * only as '.data', '.bss' or '.rodata'.
3627 		 */
3628 		ret = btf__find_by_name(obj->btf,
3629 				libbpf_type_to_btf_name[map->libbpf_type]);
3630 	}
3631 	if (ret < 0)
3632 		return ret;
3633 
3634 	map->btf_key_type_id = key_type_id;
3635 	map->btf_value_type_id = bpf_map__is_internal(map) ?
3636 				 ret : value_type_id;
3637 	return 0;
3638 }
3639 
3640 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3641 {
3642 	struct bpf_map_info info = {};
3643 	__u32 len = sizeof(info);
3644 	int new_fd, err;
3645 	char *new_name;
3646 
3647 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
3648 	if (err)
3649 		return err;
3650 
3651 	new_name = strdup(info.name);
3652 	if (!new_name)
3653 		return -errno;
3654 
3655 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
3656 	if (new_fd < 0) {
3657 		err = -errno;
3658 		goto err_free_new_name;
3659 	}
3660 
3661 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
3662 	if (new_fd < 0) {
3663 		err = -errno;
3664 		goto err_close_new_fd;
3665 	}
3666 
3667 	err = zclose(map->fd);
3668 	if (err) {
3669 		err = -errno;
3670 		goto err_close_new_fd;
3671 	}
3672 	free(map->name);
3673 
3674 	map->fd = new_fd;
3675 	map->name = new_name;
3676 	map->def.type = info.type;
3677 	map->def.key_size = info.key_size;
3678 	map->def.value_size = info.value_size;
3679 	map->def.max_entries = info.max_entries;
3680 	map->def.map_flags = info.map_flags;
3681 	map->btf_key_type_id = info.btf_key_type_id;
3682 	map->btf_value_type_id = info.btf_value_type_id;
3683 	map->reused = true;
3684 
3685 	return 0;
3686 
3687 err_close_new_fd:
3688 	close(new_fd);
3689 err_free_new_name:
3690 	free(new_name);
3691 	return err;
3692 }
3693 
3694 __u32 bpf_map__max_entries(const struct bpf_map *map)
3695 {
3696 	return map->def.max_entries;
3697 }
3698 
3699 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3700 {
3701 	if (map->fd >= 0)
3702 		return -EBUSY;
3703 	map->def.max_entries = max_entries;
3704 	return 0;
3705 }
3706 
3707 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3708 {
3709 	if (!map || !max_entries)
3710 		return -EINVAL;
3711 
3712 	return bpf_map__set_max_entries(map, max_entries);
3713 }
3714 
3715 static int
3716 bpf_object__probe_loading(struct bpf_object *obj)
3717 {
3718 	struct bpf_load_program_attr attr;
3719 	char *cp, errmsg[STRERR_BUFSIZE];
3720 	struct bpf_insn insns[] = {
3721 		BPF_MOV64_IMM(BPF_REG_0, 0),
3722 		BPF_EXIT_INSN(),
3723 	};
3724 	int ret;
3725 
3726 	/* make sure basic loading works */
3727 
3728 	memset(&attr, 0, sizeof(attr));
3729 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3730 	attr.insns = insns;
3731 	attr.insns_cnt = ARRAY_SIZE(insns);
3732 	attr.license = "GPL";
3733 
3734 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3735 	if (ret < 0) {
3736 		ret = errno;
3737 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3738 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3739 			"program. Make sure your kernel supports BPF "
3740 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3741 			"set to big enough value.\n", __func__, cp, ret);
3742 		return -ret;
3743 	}
3744 	close(ret);
3745 
3746 	return 0;
3747 }
3748 
3749 static int probe_fd(int fd)
3750 {
3751 	if (fd >= 0)
3752 		close(fd);
3753 	return fd >= 0;
3754 }
3755 
3756 static int probe_kern_prog_name(void)
3757 {
3758 	struct bpf_load_program_attr attr;
3759 	struct bpf_insn insns[] = {
3760 		BPF_MOV64_IMM(BPF_REG_0, 0),
3761 		BPF_EXIT_INSN(),
3762 	};
3763 	int ret;
3764 
3765 	/* make sure loading with name works */
3766 
3767 	memset(&attr, 0, sizeof(attr));
3768 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3769 	attr.insns = insns;
3770 	attr.insns_cnt = ARRAY_SIZE(insns);
3771 	attr.license = "GPL";
3772 	attr.name = "test";
3773 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3774 	return probe_fd(ret);
3775 }
3776 
3777 static int probe_kern_global_data(void)
3778 {
3779 	struct bpf_load_program_attr prg_attr;
3780 	struct bpf_create_map_attr map_attr;
3781 	char *cp, errmsg[STRERR_BUFSIZE];
3782 	struct bpf_insn insns[] = {
3783 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3784 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3785 		BPF_MOV64_IMM(BPF_REG_0, 0),
3786 		BPF_EXIT_INSN(),
3787 	};
3788 	int ret, map;
3789 
3790 	memset(&map_attr, 0, sizeof(map_attr));
3791 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3792 	map_attr.key_size = sizeof(int);
3793 	map_attr.value_size = 32;
3794 	map_attr.max_entries = 1;
3795 
3796 	map = bpf_create_map_xattr(&map_attr);
3797 	if (map < 0) {
3798 		ret = -errno;
3799 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3800 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3801 			__func__, cp, -ret);
3802 		return ret;
3803 	}
3804 
3805 	insns[0].imm = map;
3806 
3807 	memset(&prg_attr, 0, sizeof(prg_attr));
3808 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3809 	prg_attr.insns = insns;
3810 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3811 	prg_attr.license = "GPL";
3812 
3813 	ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3814 	close(map);
3815 	return probe_fd(ret);
3816 }
3817 
3818 static int probe_kern_btf(void)
3819 {
3820 	static const char strs[] = "\0int";
3821 	__u32 types[] = {
3822 		/* int */
3823 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3824 	};
3825 
3826 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3827 					     strs, sizeof(strs)));
3828 }
3829 
3830 static int probe_kern_btf_func(void)
3831 {
3832 	static const char strs[] = "\0int\0x\0a";
3833 	/* void x(int a) {} */
3834 	__u32 types[] = {
3835 		/* int */
3836 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3837 		/* FUNC_PROTO */                                /* [2] */
3838 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3839 		BTF_PARAM_ENC(7, 1),
3840 		/* FUNC x */                                    /* [3] */
3841 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3842 	};
3843 
3844 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3845 					     strs, sizeof(strs)));
3846 }
3847 
3848 static int probe_kern_btf_func_global(void)
3849 {
3850 	static const char strs[] = "\0int\0x\0a";
3851 	/* static void x(int a) {} */
3852 	__u32 types[] = {
3853 		/* int */
3854 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3855 		/* FUNC_PROTO */                                /* [2] */
3856 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3857 		BTF_PARAM_ENC(7, 1),
3858 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
3859 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3860 	};
3861 
3862 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3863 					     strs, sizeof(strs)));
3864 }
3865 
3866 static int probe_kern_btf_datasec(void)
3867 {
3868 	static const char strs[] = "\0x\0.data";
3869 	/* static int a; */
3870 	__u32 types[] = {
3871 		/* int */
3872 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3873 		/* VAR x */                                     /* [2] */
3874 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3875 		BTF_VAR_STATIC,
3876 		/* DATASEC val */                               /* [3] */
3877 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3878 		BTF_VAR_SECINFO_ENC(2, 0, 4),
3879 	};
3880 
3881 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3882 					     strs, sizeof(strs)));
3883 }
3884 
3885 static int probe_kern_array_mmap(void)
3886 {
3887 	struct bpf_create_map_attr attr = {
3888 		.map_type = BPF_MAP_TYPE_ARRAY,
3889 		.map_flags = BPF_F_MMAPABLE,
3890 		.key_size = sizeof(int),
3891 		.value_size = sizeof(int),
3892 		.max_entries = 1,
3893 	};
3894 
3895 	return probe_fd(bpf_create_map_xattr(&attr));
3896 }
3897 
3898 static int probe_kern_exp_attach_type(void)
3899 {
3900 	struct bpf_load_program_attr attr;
3901 	struct bpf_insn insns[] = {
3902 		BPF_MOV64_IMM(BPF_REG_0, 0),
3903 		BPF_EXIT_INSN(),
3904 	};
3905 
3906 	memset(&attr, 0, sizeof(attr));
3907 	/* use any valid combination of program type and (optional)
3908 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3909 	 * to see if kernel supports expected_attach_type field for
3910 	 * BPF_PROG_LOAD command
3911 	 */
3912 	attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3913 	attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3914 	attr.insns = insns;
3915 	attr.insns_cnt = ARRAY_SIZE(insns);
3916 	attr.license = "GPL";
3917 
3918 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3919 }
3920 
3921 static int probe_kern_probe_read_kernel(void)
3922 {
3923 	struct bpf_load_program_attr attr;
3924 	struct bpf_insn insns[] = {
3925 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
3926 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
3927 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
3928 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
3929 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3930 		BPF_EXIT_INSN(),
3931 	};
3932 
3933 	memset(&attr, 0, sizeof(attr));
3934 	attr.prog_type = BPF_PROG_TYPE_KPROBE;
3935 	attr.insns = insns;
3936 	attr.insns_cnt = ARRAY_SIZE(insns);
3937 	attr.license = "GPL";
3938 
3939 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3940 }
3941 
3942 static int probe_prog_bind_map(void)
3943 {
3944 	struct bpf_load_program_attr prg_attr;
3945 	struct bpf_create_map_attr map_attr;
3946 	char *cp, errmsg[STRERR_BUFSIZE];
3947 	struct bpf_insn insns[] = {
3948 		BPF_MOV64_IMM(BPF_REG_0, 0),
3949 		BPF_EXIT_INSN(),
3950 	};
3951 	int ret, map, prog;
3952 
3953 	memset(&map_attr, 0, sizeof(map_attr));
3954 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3955 	map_attr.key_size = sizeof(int);
3956 	map_attr.value_size = 32;
3957 	map_attr.max_entries = 1;
3958 
3959 	map = bpf_create_map_xattr(&map_attr);
3960 	if (map < 0) {
3961 		ret = -errno;
3962 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3963 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3964 			__func__, cp, -ret);
3965 		return ret;
3966 	}
3967 
3968 	memset(&prg_attr, 0, sizeof(prg_attr));
3969 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3970 	prg_attr.insns = insns;
3971 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3972 	prg_attr.license = "GPL";
3973 
3974 	prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
3975 	if (prog < 0) {
3976 		close(map);
3977 		return 0;
3978 	}
3979 
3980 	ret = bpf_prog_bind_map(prog, map, NULL);
3981 
3982 	close(map);
3983 	close(prog);
3984 
3985 	return ret >= 0;
3986 }
3987 
3988 static int probe_module_btf(void)
3989 {
3990 	static const char strs[] = "\0int";
3991 	__u32 types[] = {
3992 		/* int */
3993 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3994 	};
3995 	struct bpf_btf_info info;
3996 	__u32 len = sizeof(info);
3997 	char name[16];
3998 	int fd, err;
3999 
4000 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4001 	if (fd < 0)
4002 		return 0; /* BTF not supported at all */
4003 
4004 	memset(&info, 0, sizeof(info));
4005 	info.name = ptr_to_u64(name);
4006 	info.name_len = sizeof(name);
4007 
4008 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4009 	 * kernel's module BTF support coincides with support for
4010 	 * name/name_len fields in struct bpf_btf_info.
4011 	 */
4012 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4013 	close(fd);
4014 	return !err;
4015 }
4016 
4017 enum kern_feature_result {
4018 	FEAT_UNKNOWN = 0,
4019 	FEAT_SUPPORTED = 1,
4020 	FEAT_MISSING = 2,
4021 };
4022 
4023 typedef int (*feature_probe_fn)(void);
4024 
4025 static struct kern_feature_desc {
4026 	const char *desc;
4027 	feature_probe_fn probe;
4028 	enum kern_feature_result res;
4029 } feature_probes[__FEAT_CNT] = {
4030 	[FEAT_PROG_NAME] = {
4031 		"BPF program name", probe_kern_prog_name,
4032 	},
4033 	[FEAT_GLOBAL_DATA] = {
4034 		"global variables", probe_kern_global_data,
4035 	},
4036 	[FEAT_BTF] = {
4037 		"minimal BTF", probe_kern_btf,
4038 	},
4039 	[FEAT_BTF_FUNC] = {
4040 		"BTF functions", probe_kern_btf_func,
4041 	},
4042 	[FEAT_BTF_GLOBAL_FUNC] = {
4043 		"BTF global function", probe_kern_btf_func_global,
4044 	},
4045 	[FEAT_BTF_DATASEC] = {
4046 		"BTF data section and variable", probe_kern_btf_datasec,
4047 	},
4048 	[FEAT_ARRAY_MMAP] = {
4049 		"ARRAY map mmap()", probe_kern_array_mmap,
4050 	},
4051 	[FEAT_EXP_ATTACH_TYPE] = {
4052 		"BPF_PROG_LOAD expected_attach_type attribute",
4053 		probe_kern_exp_attach_type,
4054 	},
4055 	[FEAT_PROBE_READ_KERN] = {
4056 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4057 	},
4058 	[FEAT_PROG_BIND_MAP] = {
4059 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4060 	},
4061 	[FEAT_MODULE_BTF] = {
4062 		"module BTF support", probe_module_btf,
4063 	},
4064 };
4065 
4066 static bool kernel_supports(enum kern_feature_id feat_id)
4067 {
4068 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4069 	int ret;
4070 
4071 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4072 		ret = feat->probe();
4073 		if (ret > 0) {
4074 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4075 		} else if (ret == 0) {
4076 			WRITE_ONCE(feat->res, FEAT_MISSING);
4077 		} else {
4078 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4079 			WRITE_ONCE(feat->res, FEAT_MISSING);
4080 		}
4081 	}
4082 
4083 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4084 }
4085 
4086 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4087 {
4088 	struct bpf_map_info map_info = {};
4089 	char msg[STRERR_BUFSIZE];
4090 	__u32 map_info_len;
4091 
4092 	map_info_len = sizeof(map_info);
4093 
4094 	if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) {
4095 		pr_warn("failed to get map info for map FD %d: %s\n",
4096 			map_fd, libbpf_strerror_r(errno, msg, sizeof(msg)));
4097 		return false;
4098 	}
4099 
4100 	return (map_info.type == map->def.type &&
4101 		map_info.key_size == map->def.key_size &&
4102 		map_info.value_size == map->def.value_size &&
4103 		map_info.max_entries == map->def.max_entries &&
4104 		map_info.map_flags == map->def.map_flags);
4105 }
4106 
4107 static int
4108 bpf_object__reuse_map(struct bpf_map *map)
4109 {
4110 	char *cp, errmsg[STRERR_BUFSIZE];
4111 	int err, pin_fd;
4112 
4113 	pin_fd = bpf_obj_get(map->pin_path);
4114 	if (pin_fd < 0) {
4115 		err = -errno;
4116 		if (err == -ENOENT) {
4117 			pr_debug("found no pinned map to reuse at '%s'\n",
4118 				 map->pin_path);
4119 			return 0;
4120 		}
4121 
4122 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4123 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4124 			map->pin_path, cp);
4125 		return err;
4126 	}
4127 
4128 	if (!map_is_reuse_compat(map, pin_fd)) {
4129 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4130 			map->pin_path);
4131 		close(pin_fd);
4132 		return -EINVAL;
4133 	}
4134 
4135 	err = bpf_map__reuse_fd(map, pin_fd);
4136 	if (err) {
4137 		close(pin_fd);
4138 		return err;
4139 	}
4140 	map->pinned = true;
4141 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4142 
4143 	return 0;
4144 }
4145 
4146 static int
4147 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4148 {
4149 	enum libbpf_map_type map_type = map->libbpf_type;
4150 	char *cp, errmsg[STRERR_BUFSIZE];
4151 	int err, zero = 0;
4152 
4153 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4154 	if (err) {
4155 		err = -errno;
4156 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4157 		pr_warn("Error setting initial map(%s) contents: %s\n",
4158 			map->name, cp);
4159 		return err;
4160 	}
4161 
4162 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4163 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4164 		err = bpf_map_freeze(map->fd);
4165 		if (err) {
4166 			err = -errno;
4167 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4168 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4169 				map->name, cp);
4170 			return err;
4171 		}
4172 	}
4173 	return 0;
4174 }
4175 
4176 static void bpf_map__destroy(struct bpf_map *map);
4177 
4178 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4179 {
4180 	struct bpf_create_map_attr create_attr;
4181 	struct bpf_map_def *def = &map->def;
4182 
4183 	memset(&create_attr, 0, sizeof(create_attr));
4184 
4185 	if (kernel_supports(FEAT_PROG_NAME))
4186 		create_attr.name = map->name;
4187 	create_attr.map_ifindex = map->map_ifindex;
4188 	create_attr.map_type = def->type;
4189 	create_attr.map_flags = def->map_flags;
4190 	create_attr.key_size = def->key_size;
4191 	create_attr.value_size = def->value_size;
4192 	create_attr.numa_node = map->numa_node;
4193 
4194 	if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4195 		int nr_cpus;
4196 
4197 		nr_cpus = libbpf_num_possible_cpus();
4198 		if (nr_cpus < 0) {
4199 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4200 				map->name, nr_cpus);
4201 			return nr_cpus;
4202 		}
4203 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4204 		create_attr.max_entries = nr_cpus;
4205 	} else {
4206 		create_attr.max_entries = def->max_entries;
4207 	}
4208 
4209 	if (bpf_map__is_struct_ops(map))
4210 		create_attr.btf_vmlinux_value_type_id =
4211 			map->btf_vmlinux_value_type_id;
4212 
4213 	create_attr.btf_fd = 0;
4214 	create_attr.btf_key_type_id = 0;
4215 	create_attr.btf_value_type_id = 0;
4216 	if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4217 		create_attr.btf_fd = btf__fd(obj->btf);
4218 		create_attr.btf_key_type_id = map->btf_key_type_id;
4219 		create_attr.btf_value_type_id = map->btf_value_type_id;
4220 	}
4221 
4222 	if (bpf_map_type__is_map_in_map(def->type)) {
4223 		if (map->inner_map) {
4224 			int err;
4225 
4226 			err = bpf_object__create_map(obj, map->inner_map);
4227 			if (err) {
4228 				pr_warn("map '%s': failed to create inner map: %d\n",
4229 					map->name, err);
4230 				return err;
4231 			}
4232 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4233 		}
4234 		if (map->inner_map_fd >= 0)
4235 			create_attr.inner_map_fd = map->inner_map_fd;
4236 	}
4237 
4238 	map->fd = bpf_create_map_xattr(&create_attr);
4239 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4240 			    create_attr.btf_value_type_id)) {
4241 		char *cp, errmsg[STRERR_BUFSIZE];
4242 		int err = -errno;
4243 
4244 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4245 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4246 			map->name, cp, err);
4247 		create_attr.btf_fd = 0;
4248 		create_attr.btf_key_type_id = 0;
4249 		create_attr.btf_value_type_id = 0;
4250 		map->btf_key_type_id = 0;
4251 		map->btf_value_type_id = 0;
4252 		map->fd = bpf_create_map_xattr(&create_attr);
4253 	}
4254 
4255 	if (map->fd < 0)
4256 		return -errno;
4257 
4258 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4259 		bpf_map__destroy(map->inner_map);
4260 		zfree(&map->inner_map);
4261 	}
4262 
4263 	return 0;
4264 }
4265 
4266 static int init_map_slots(struct bpf_map *map)
4267 {
4268 	const struct bpf_map *targ_map;
4269 	unsigned int i;
4270 	int fd, err;
4271 
4272 	for (i = 0; i < map->init_slots_sz; i++) {
4273 		if (!map->init_slots[i])
4274 			continue;
4275 
4276 		targ_map = map->init_slots[i];
4277 		fd = bpf_map__fd(targ_map);
4278 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4279 		if (err) {
4280 			err = -errno;
4281 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4282 				map->name, i, targ_map->name,
4283 				fd, err);
4284 			return err;
4285 		}
4286 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4287 			 map->name, i, targ_map->name, fd);
4288 	}
4289 
4290 	zfree(&map->init_slots);
4291 	map->init_slots_sz = 0;
4292 
4293 	return 0;
4294 }
4295 
4296 static int
4297 bpf_object__create_maps(struct bpf_object *obj)
4298 {
4299 	struct bpf_map *map;
4300 	char *cp, errmsg[STRERR_BUFSIZE];
4301 	unsigned int i, j;
4302 	int err;
4303 
4304 	for (i = 0; i < obj->nr_maps; i++) {
4305 		map = &obj->maps[i];
4306 
4307 		if (map->pin_path) {
4308 			err = bpf_object__reuse_map(map);
4309 			if (err) {
4310 				pr_warn("map '%s': error reusing pinned map\n",
4311 					map->name);
4312 				goto err_out;
4313 			}
4314 		}
4315 
4316 		if (map->fd >= 0) {
4317 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4318 				 map->name, map->fd);
4319 		} else {
4320 			err = bpf_object__create_map(obj, map);
4321 			if (err)
4322 				goto err_out;
4323 
4324 			pr_debug("map '%s': created successfully, fd=%d\n",
4325 				 map->name, map->fd);
4326 
4327 			if (bpf_map__is_internal(map)) {
4328 				err = bpf_object__populate_internal_map(obj, map);
4329 				if (err < 0) {
4330 					zclose(map->fd);
4331 					goto err_out;
4332 				}
4333 			}
4334 
4335 			if (map->init_slots_sz) {
4336 				err = init_map_slots(map);
4337 				if (err < 0) {
4338 					zclose(map->fd);
4339 					goto err_out;
4340 				}
4341 			}
4342 		}
4343 
4344 		if (map->pin_path && !map->pinned) {
4345 			err = bpf_map__pin(map, NULL);
4346 			if (err) {
4347 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4348 					map->name, map->pin_path, err);
4349 				zclose(map->fd);
4350 				goto err_out;
4351 			}
4352 		}
4353 	}
4354 
4355 	return 0;
4356 
4357 err_out:
4358 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4359 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4360 	pr_perm_msg(err);
4361 	for (j = 0; j < i; j++)
4362 		zclose(obj->maps[j].fd);
4363 	return err;
4364 }
4365 
4366 #define BPF_CORE_SPEC_MAX_LEN 64
4367 
4368 /* represents BPF CO-RE field or array element accessor */
4369 struct bpf_core_accessor {
4370 	__u32 type_id;		/* struct/union type or array element type */
4371 	__u32 idx;		/* field index or array index */
4372 	const char *name;	/* field name or NULL for array accessor */
4373 };
4374 
4375 struct bpf_core_spec {
4376 	const struct btf *btf;
4377 	/* high-level spec: named fields and array indices only */
4378 	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4379 	/* original unresolved (no skip_mods_or_typedefs) root type ID */
4380 	__u32 root_type_id;
4381 	/* CO-RE relocation kind */
4382 	enum bpf_core_relo_kind relo_kind;
4383 	/* high-level spec length */
4384 	int len;
4385 	/* raw, low-level spec: 1-to-1 with accessor spec string */
4386 	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4387 	/* raw spec length */
4388 	int raw_len;
4389 	/* field bit offset represented by spec */
4390 	__u32 bit_offset;
4391 };
4392 
4393 static bool str_is_empty(const char *s)
4394 {
4395 	return !s || !s[0];
4396 }
4397 
4398 static bool is_flex_arr(const struct btf *btf,
4399 			const struct bpf_core_accessor *acc,
4400 			const struct btf_array *arr)
4401 {
4402 	const struct btf_type *t;
4403 
4404 	/* not a flexible array, if not inside a struct or has non-zero size */
4405 	if (!acc->name || arr->nelems > 0)
4406 		return false;
4407 
4408 	/* has to be the last member of enclosing struct */
4409 	t = btf__type_by_id(btf, acc->type_id);
4410 	return acc->idx == btf_vlen(t) - 1;
4411 }
4412 
4413 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4414 {
4415 	switch (kind) {
4416 	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4417 	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4418 	case BPF_FIELD_EXISTS: return "field_exists";
4419 	case BPF_FIELD_SIGNED: return "signed";
4420 	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4421 	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4422 	case BPF_TYPE_ID_LOCAL: return "local_type_id";
4423 	case BPF_TYPE_ID_TARGET: return "target_type_id";
4424 	case BPF_TYPE_EXISTS: return "type_exists";
4425 	case BPF_TYPE_SIZE: return "type_size";
4426 	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4427 	case BPF_ENUMVAL_VALUE: return "enumval_value";
4428 	default: return "unknown";
4429 	}
4430 }
4431 
4432 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4433 {
4434 	switch (kind) {
4435 	case BPF_FIELD_BYTE_OFFSET:
4436 	case BPF_FIELD_BYTE_SIZE:
4437 	case BPF_FIELD_EXISTS:
4438 	case BPF_FIELD_SIGNED:
4439 	case BPF_FIELD_LSHIFT_U64:
4440 	case BPF_FIELD_RSHIFT_U64:
4441 		return true;
4442 	default:
4443 		return false;
4444 	}
4445 }
4446 
4447 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4448 {
4449 	switch (kind) {
4450 	case BPF_TYPE_ID_LOCAL:
4451 	case BPF_TYPE_ID_TARGET:
4452 	case BPF_TYPE_EXISTS:
4453 	case BPF_TYPE_SIZE:
4454 		return true;
4455 	default:
4456 		return false;
4457 	}
4458 }
4459 
4460 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4461 {
4462 	switch (kind) {
4463 	case BPF_ENUMVAL_EXISTS:
4464 	case BPF_ENUMVAL_VALUE:
4465 		return true;
4466 	default:
4467 		return false;
4468 	}
4469 }
4470 
4471 /*
4472  * Turn bpf_core_relo into a low- and high-level spec representation,
4473  * validating correctness along the way, as well as calculating resulting
4474  * field bit offset, specified by accessor string. Low-level spec captures
4475  * every single level of nestedness, including traversing anonymous
4476  * struct/union members. High-level one only captures semantically meaningful
4477  * "turning points": named fields and array indicies.
4478  * E.g., for this case:
4479  *
4480  *   struct sample {
4481  *       int __unimportant;
4482  *       struct {
4483  *           int __1;
4484  *           int __2;
4485  *           int a[7];
4486  *       };
4487  *   };
4488  *
4489  *   struct sample *s = ...;
4490  *
4491  *   int x = &s->a[3]; // access string = '0:1:2:3'
4492  *
4493  * Low-level spec has 1:1 mapping with each element of access string (it's
4494  * just a parsed access string representation): [0, 1, 2, 3].
4495  *
4496  * High-level spec will capture only 3 points:
4497  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4498  *   - field 'a' access (corresponds to '2' in low-level spec);
4499  *   - array element #3 access (corresponds to '3' in low-level spec).
4500  *
4501  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4502  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4503  * spec and raw_spec are kept empty.
4504  *
4505  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4506  * string to specify enumerator's value index that need to be relocated.
4507  */
4508 static int bpf_core_parse_spec(const struct btf *btf,
4509 			       __u32 type_id,
4510 			       const char *spec_str,
4511 			       enum bpf_core_relo_kind relo_kind,
4512 			       struct bpf_core_spec *spec)
4513 {
4514 	int access_idx, parsed_len, i;
4515 	struct bpf_core_accessor *acc;
4516 	const struct btf_type *t;
4517 	const char *name;
4518 	__u32 id;
4519 	__s64 sz;
4520 
4521 	if (str_is_empty(spec_str) || *spec_str == ':')
4522 		return -EINVAL;
4523 
4524 	memset(spec, 0, sizeof(*spec));
4525 	spec->btf = btf;
4526 	spec->root_type_id = type_id;
4527 	spec->relo_kind = relo_kind;
4528 
4529 	/* type-based relocations don't have a field access string */
4530 	if (core_relo_is_type_based(relo_kind)) {
4531 		if (strcmp(spec_str, "0"))
4532 			return -EINVAL;
4533 		return 0;
4534 	}
4535 
4536 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4537 	while (*spec_str) {
4538 		if (*spec_str == ':')
4539 			++spec_str;
4540 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4541 			return -EINVAL;
4542 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4543 			return -E2BIG;
4544 		spec_str += parsed_len;
4545 		spec->raw_spec[spec->raw_len++] = access_idx;
4546 	}
4547 
4548 	if (spec->raw_len == 0)
4549 		return -EINVAL;
4550 
4551 	t = skip_mods_and_typedefs(btf, type_id, &id);
4552 	if (!t)
4553 		return -EINVAL;
4554 
4555 	access_idx = spec->raw_spec[0];
4556 	acc = &spec->spec[0];
4557 	acc->type_id = id;
4558 	acc->idx = access_idx;
4559 	spec->len++;
4560 
4561 	if (core_relo_is_enumval_based(relo_kind)) {
4562 		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4563 			return -EINVAL;
4564 
4565 		/* record enumerator name in a first accessor */
4566 		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4567 		return 0;
4568 	}
4569 
4570 	if (!core_relo_is_field_based(relo_kind))
4571 		return -EINVAL;
4572 
4573 	sz = btf__resolve_size(btf, id);
4574 	if (sz < 0)
4575 		return sz;
4576 	spec->bit_offset = access_idx * sz * 8;
4577 
4578 	for (i = 1; i < spec->raw_len; i++) {
4579 		t = skip_mods_and_typedefs(btf, id, &id);
4580 		if (!t)
4581 			return -EINVAL;
4582 
4583 		access_idx = spec->raw_spec[i];
4584 		acc = &spec->spec[spec->len];
4585 
4586 		if (btf_is_composite(t)) {
4587 			const struct btf_member *m;
4588 			__u32 bit_offset;
4589 
4590 			if (access_idx >= btf_vlen(t))
4591 				return -EINVAL;
4592 
4593 			bit_offset = btf_member_bit_offset(t, access_idx);
4594 			spec->bit_offset += bit_offset;
4595 
4596 			m = btf_members(t) + access_idx;
4597 			if (m->name_off) {
4598 				name = btf__name_by_offset(btf, m->name_off);
4599 				if (str_is_empty(name))
4600 					return -EINVAL;
4601 
4602 				acc->type_id = id;
4603 				acc->idx = access_idx;
4604 				acc->name = name;
4605 				spec->len++;
4606 			}
4607 
4608 			id = m->type;
4609 		} else if (btf_is_array(t)) {
4610 			const struct btf_array *a = btf_array(t);
4611 			bool flex;
4612 
4613 			t = skip_mods_and_typedefs(btf, a->type, &id);
4614 			if (!t)
4615 				return -EINVAL;
4616 
4617 			flex = is_flex_arr(btf, acc - 1, a);
4618 			if (!flex && access_idx >= a->nelems)
4619 				return -EINVAL;
4620 
4621 			spec->spec[spec->len].type_id = id;
4622 			spec->spec[spec->len].idx = access_idx;
4623 			spec->len++;
4624 
4625 			sz = btf__resolve_size(btf, id);
4626 			if (sz < 0)
4627 				return sz;
4628 			spec->bit_offset += access_idx * sz * 8;
4629 		} else {
4630 			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4631 				type_id, spec_str, i, id, btf_kind_str(t));
4632 			return -EINVAL;
4633 		}
4634 	}
4635 
4636 	return 0;
4637 }
4638 
4639 static bool bpf_core_is_flavor_sep(const char *s)
4640 {
4641 	/* check X___Y name pattern, where X and Y are not underscores */
4642 	return s[0] != '_' &&				      /* X */
4643 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4644 	       s[4] != '_';				      /* Y */
4645 }
4646 
4647 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4648  * before last triple underscore. Struct name part after last triple
4649  * underscore is ignored by BPF CO-RE relocation during relocation matching.
4650  */
4651 static size_t bpf_core_essential_name_len(const char *name)
4652 {
4653 	size_t n = strlen(name);
4654 	int i;
4655 
4656 	for (i = n - 5; i >= 0; i--) {
4657 		if (bpf_core_is_flavor_sep(name + i))
4658 			return i + 1;
4659 	}
4660 	return n;
4661 }
4662 
4663 struct core_cand
4664 {
4665 	const struct btf *btf;
4666 	const struct btf_type *t;
4667 	const char *name;
4668 	__u32 id;
4669 };
4670 
4671 /* dynamically sized list of type IDs and its associated struct btf */
4672 struct core_cand_list {
4673 	struct core_cand *cands;
4674 	int len;
4675 };
4676 
4677 static void bpf_core_free_cands(struct core_cand_list *cands)
4678 {
4679 	free(cands->cands);
4680 	free(cands);
4681 }
4682 
4683 static int bpf_core_add_cands(struct core_cand *local_cand,
4684 			      size_t local_essent_len,
4685 			      const struct btf *targ_btf,
4686 			      const char *targ_btf_name,
4687 			      int targ_start_id,
4688 			      struct core_cand_list *cands)
4689 {
4690 	struct core_cand *new_cands, *cand;
4691 	const struct btf_type *t;
4692 	const char *targ_name;
4693 	size_t targ_essent_len;
4694 	int n, i;
4695 
4696 	n = btf__get_nr_types(targ_btf);
4697 	for (i = targ_start_id; i <= n; i++) {
4698 		t = btf__type_by_id(targ_btf, i);
4699 		if (btf_kind(t) != btf_kind(local_cand->t))
4700 			continue;
4701 
4702 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
4703 		if (str_is_empty(targ_name))
4704 			continue;
4705 
4706 		targ_essent_len = bpf_core_essential_name_len(targ_name);
4707 		if (targ_essent_len != local_essent_len)
4708 			continue;
4709 
4710 		if (strncmp(local_cand->name, targ_name, local_essent_len) != 0)
4711 			continue;
4712 
4713 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
4714 			 local_cand->id, btf_kind_str(local_cand->t),
4715 			 local_cand->name, i, btf_kind_str(t), targ_name,
4716 			 targ_btf_name);
4717 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
4718 					      sizeof(*cands->cands));
4719 		if (!new_cands)
4720 			return -ENOMEM;
4721 
4722 		cand = &new_cands[cands->len];
4723 		cand->btf = targ_btf;
4724 		cand->t = t;
4725 		cand->name = targ_name;
4726 		cand->id = i;
4727 
4728 		cands->cands = new_cands;
4729 		cands->len++;
4730 	}
4731 	return 0;
4732 }
4733 
4734 static int load_module_btfs(struct bpf_object *obj)
4735 {
4736 	struct bpf_btf_info info;
4737 	struct module_btf *mod_btf;
4738 	struct btf *btf;
4739 	char name[64];
4740 	__u32 id = 0, len;
4741 	int err, fd;
4742 
4743 	if (obj->btf_modules_loaded)
4744 		return 0;
4745 
4746 	/* don't do this again, even if we find no module BTFs */
4747 	obj->btf_modules_loaded = true;
4748 
4749 	/* kernel too old to support module BTFs */
4750 	if (!kernel_supports(FEAT_MODULE_BTF))
4751 		return 0;
4752 
4753 	while (true) {
4754 		err = bpf_btf_get_next_id(id, &id);
4755 		if (err && errno == ENOENT)
4756 			return 0;
4757 		if (err) {
4758 			err = -errno;
4759 			pr_warn("failed to iterate BTF objects: %d\n", err);
4760 			return err;
4761 		}
4762 
4763 		fd = bpf_btf_get_fd_by_id(id);
4764 		if (fd < 0) {
4765 			if (errno == ENOENT)
4766 				continue; /* expected race: BTF was unloaded */
4767 			err = -errno;
4768 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
4769 			return err;
4770 		}
4771 
4772 		len = sizeof(info);
4773 		memset(&info, 0, sizeof(info));
4774 		info.name = ptr_to_u64(name);
4775 		info.name_len = sizeof(name);
4776 
4777 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
4778 		if (err) {
4779 			err = -errno;
4780 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
4781 			goto err_out;
4782 		}
4783 
4784 		/* ignore non-module BTFs */
4785 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
4786 			close(fd);
4787 			continue;
4788 		}
4789 
4790 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
4791 		if (IS_ERR(btf)) {
4792 			pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n",
4793 				name, id, PTR_ERR(btf));
4794 			err = PTR_ERR(btf);
4795 			goto err_out;
4796 		}
4797 
4798 		err = btf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
4799 				     sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
4800 		if (err)
4801 			goto err_out;
4802 
4803 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
4804 
4805 		mod_btf->btf = btf;
4806 		mod_btf->id = id;
4807 		mod_btf->fd = fd;
4808 		mod_btf->name = strdup(name);
4809 		if (!mod_btf->name) {
4810 			err = -ENOMEM;
4811 			goto err_out;
4812 		}
4813 		continue;
4814 
4815 err_out:
4816 		close(fd);
4817 		return err;
4818 	}
4819 
4820 	return 0;
4821 }
4822 
4823 static struct core_cand_list *
4824 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
4825 {
4826 	struct core_cand local_cand = {};
4827 	struct core_cand_list *cands;
4828 	const struct btf *main_btf;
4829 	size_t local_essent_len;
4830 	int err, i;
4831 
4832 	local_cand.btf = local_btf;
4833 	local_cand.t = btf__type_by_id(local_btf, local_type_id);
4834 	if (!local_cand.t)
4835 		return ERR_PTR(-EINVAL);
4836 
4837 	local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off);
4838 	if (str_is_empty(local_cand.name))
4839 		return ERR_PTR(-EINVAL);
4840 	local_essent_len = bpf_core_essential_name_len(local_cand.name);
4841 
4842 	cands = calloc(1, sizeof(*cands));
4843 	if (!cands)
4844 		return ERR_PTR(-ENOMEM);
4845 
4846 	/* Attempt to find target candidates in vmlinux BTF first */
4847 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
4848 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
4849 	if (err)
4850 		goto err_out;
4851 
4852 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
4853 	if (cands->len)
4854 		return cands;
4855 
4856 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
4857 	if (obj->btf_vmlinux_override)
4858 		return cands;
4859 
4860 	/* now look through module BTFs, trying to still find candidates */
4861 	err = load_module_btfs(obj);
4862 	if (err)
4863 		goto err_out;
4864 
4865 	for (i = 0; i < obj->btf_module_cnt; i++) {
4866 		err = bpf_core_add_cands(&local_cand, local_essent_len,
4867 					 obj->btf_modules[i].btf,
4868 					 obj->btf_modules[i].name,
4869 					 btf__get_nr_types(obj->btf_vmlinux) + 1,
4870 					 cands);
4871 		if (err)
4872 			goto err_out;
4873 	}
4874 
4875 	return cands;
4876 err_out:
4877 	bpf_core_free_cands(cands);
4878 	return ERR_PTR(err);
4879 }
4880 
4881 /* Check two types for compatibility for the purpose of field access
4882  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4883  * are relocating semantically compatible entities:
4884  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
4885  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
4886  *   - any two PTRs are always compatible;
4887  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
4888  *     least one of enums should be anonymous;
4889  *   - for ENUMs, check sizes, names are ignored;
4890  *   - for INT, size and signedness are ignored;
4891  *   - for ARRAY, dimensionality is ignored, element types are checked for
4892  *     compatibility recursively;
4893  *   - everything else shouldn't be ever a target of relocation.
4894  * These rules are not set in stone and probably will be adjusted as we get
4895  * more experience with using BPF CO-RE relocations.
4896  */
4897 static int bpf_core_fields_are_compat(const struct btf *local_btf,
4898 				      __u32 local_id,
4899 				      const struct btf *targ_btf,
4900 				      __u32 targ_id)
4901 {
4902 	const struct btf_type *local_type, *targ_type;
4903 
4904 recur:
4905 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4906 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4907 	if (!local_type || !targ_type)
4908 		return -EINVAL;
4909 
4910 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4911 		return 1;
4912 	if (btf_kind(local_type) != btf_kind(targ_type))
4913 		return 0;
4914 
4915 	switch (btf_kind(local_type)) {
4916 	case BTF_KIND_PTR:
4917 		return 1;
4918 	case BTF_KIND_FWD:
4919 	case BTF_KIND_ENUM: {
4920 		const char *local_name, *targ_name;
4921 		size_t local_len, targ_len;
4922 
4923 		local_name = btf__name_by_offset(local_btf,
4924 						 local_type->name_off);
4925 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4926 		local_len = bpf_core_essential_name_len(local_name);
4927 		targ_len = bpf_core_essential_name_len(targ_name);
4928 		/* one of them is anonymous or both w/ same flavor-less names */
4929 		return local_len == 0 || targ_len == 0 ||
4930 		       (local_len == targ_len &&
4931 			strncmp(local_name, targ_name, local_len) == 0);
4932 	}
4933 	case BTF_KIND_INT:
4934 		/* just reject deprecated bitfield-like integers; all other
4935 		 * integers are by default compatible between each other
4936 		 */
4937 		return btf_int_offset(local_type) == 0 &&
4938 		       btf_int_offset(targ_type) == 0;
4939 	case BTF_KIND_ARRAY:
4940 		local_id = btf_array(local_type)->type;
4941 		targ_id = btf_array(targ_type)->type;
4942 		goto recur;
4943 	default:
4944 		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
4945 			btf_kind(local_type), local_id, targ_id);
4946 		return 0;
4947 	}
4948 }
4949 
4950 /*
4951  * Given single high-level named field accessor in local type, find
4952  * corresponding high-level accessor for a target type. Along the way,
4953  * maintain low-level spec for target as well. Also keep updating target
4954  * bit offset.
4955  *
4956  * Searching is performed through recursive exhaustive enumeration of all
4957  * fields of a struct/union. If there are any anonymous (embedded)
4958  * structs/unions, they are recursively searched as well. If field with
4959  * desired name is found, check compatibility between local and target types,
4960  * before returning result.
4961  *
4962  * 1 is returned, if field is found.
4963  * 0 is returned if no compatible field is found.
4964  * <0 is returned on error.
4965  */
4966 static int bpf_core_match_member(const struct btf *local_btf,
4967 				 const struct bpf_core_accessor *local_acc,
4968 				 const struct btf *targ_btf,
4969 				 __u32 targ_id,
4970 				 struct bpf_core_spec *spec,
4971 				 __u32 *next_targ_id)
4972 {
4973 	const struct btf_type *local_type, *targ_type;
4974 	const struct btf_member *local_member, *m;
4975 	const char *local_name, *targ_name;
4976 	__u32 local_id;
4977 	int i, n, found;
4978 
4979 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4980 	if (!targ_type)
4981 		return -EINVAL;
4982 	if (!btf_is_composite(targ_type))
4983 		return 0;
4984 
4985 	local_id = local_acc->type_id;
4986 	local_type = btf__type_by_id(local_btf, local_id);
4987 	local_member = btf_members(local_type) + local_acc->idx;
4988 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
4989 
4990 	n = btf_vlen(targ_type);
4991 	m = btf_members(targ_type);
4992 	for (i = 0; i < n; i++, m++) {
4993 		__u32 bit_offset;
4994 
4995 		bit_offset = btf_member_bit_offset(targ_type, i);
4996 
4997 		/* too deep struct/union/array nesting */
4998 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4999 			return -E2BIG;
5000 
5001 		/* speculate this member will be the good one */
5002 		spec->bit_offset += bit_offset;
5003 		spec->raw_spec[spec->raw_len++] = i;
5004 
5005 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
5006 		if (str_is_empty(targ_name)) {
5007 			/* embedded struct/union, we need to go deeper */
5008 			found = bpf_core_match_member(local_btf, local_acc,
5009 						      targ_btf, m->type,
5010 						      spec, next_targ_id);
5011 			if (found) /* either found or error */
5012 				return found;
5013 		} else if (strcmp(local_name, targ_name) == 0) {
5014 			/* matching named field */
5015 			struct bpf_core_accessor *targ_acc;
5016 
5017 			targ_acc = &spec->spec[spec->len++];
5018 			targ_acc->type_id = targ_id;
5019 			targ_acc->idx = i;
5020 			targ_acc->name = targ_name;
5021 
5022 			*next_targ_id = m->type;
5023 			found = bpf_core_fields_are_compat(local_btf,
5024 							   local_member->type,
5025 							   targ_btf, m->type);
5026 			if (!found)
5027 				spec->len--; /* pop accessor */
5028 			return found;
5029 		}
5030 		/* member turned out not to be what we looked for */
5031 		spec->bit_offset -= bit_offset;
5032 		spec->raw_len--;
5033 	}
5034 
5035 	return 0;
5036 }
5037 
5038 /* Check local and target types for compatibility. This check is used for
5039  * type-based CO-RE relocations and follow slightly different rules than
5040  * field-based relocations. This function assumes that root types were already
5041  * checked for name match. Beyond that initial root-level name check, names
5042  * are completely ignored. Compatibility rules are as follows:
5043  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5044  *     kind should match for local and target types (i.e., STRUCT is not
5045  *     compatible with UNION);
5046  *   - for ENUMs, the size is ignored;
5047  *   - for INT, size and signedness are ignored;
5048  *   - for ARRAY, dimensionality is ignored, element types are checked for
5049  *     compatibility recursively;
5050  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5051  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5052  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5053  *     number of input args and compatible return and argument types.
5054  * These rules are not set in stone and probably will be adjusted as we get
5055  * more experience with using BPF CO-RE relocations.
5056  */
5057 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5058 				     const struct btf *targ_btf, __u32 targ_id)
5059 {
5060 	const struct btf_type *local_type, *targ_type;
5061 	int depth = 32; /* max recursion depth */
5062 
5063 	/* caller made sure that names match (ignoring flavor suffix) */
5064 	local_type = btf__type_by_id(local_btf, local_id);
5065 	targ_type = btf__type_by_id(targ_btf, targ_id);
5066 	if (btf_kind(local_type) != btf_kind(targ_type))
5067 		return 0;
5068 
5069 recur:
5070 	depth--;
5071 	if (depth < 0)
5072 		return -EINVAL;
5073 
5074 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5075 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5076 	if (!local_type || !targ_type)
5077 		return -EINVAL;
5078 
5079 	if (btf_kind(local_type) != btf_kind(targ_type))
5080 		return 0;
5081 
5082 	switch (btf_kind(local_type)) {
5083 	case BTF_KIND_UNKN:
5084 	case BTF_KIND_STRUCT:
5085 	case BTF_KIND_UNION:
5086 	case BTF_KIND_ENUM:
5087 	case BTF_KIND_FWD:
5088 		return 1;
5089 	case BTF_KIND_INT:
5090 		/* just reject deprecated bitfield-like integers; all other
5091 		 * integers are by default compatible between each other
5092 		 */
5093 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5094 	case BTF_KIND_PTR:
5095 		local_id = local_type->type;
5096 		targ_id = targ_type->type;
5097 		goto recur;
5098 	case BTF_KIND_ARRAY:
5099 		local_id = btf_array(local_type)->type;
5100 		targ_id = btf_array(targ_type)->type;
5101 		goto recur;
5102 	case BTF_KIND_FUNC_PROTO: {
5103 		struct btf_param *local_p = btf_params(local_type);
5104 		struct btf_param *targ_p = btf_params(targ_type);
5105 		__u16 local_vlen = btf_vlen(local_type);
5106 		__u16 targ_vlen = btf_vlen(targ_type);
5107 		int i, err;
5108 
5109 		if (local_vlen != targ_vlen)
5110 			return 0;
5111 
5112 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5113 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5114 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5115 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5116 			if (err <= 0)
5117 				return err;
5118 		}
5119 
5120 		/* tail recurse for return type check */
5121 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5122 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5123 		goto recur;
5124 	}
5125 	default:
5126 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5127 			btf_kind_str(local_type), local_id, targ_id);
5128 		return 0;
5129 	}
5130 }
5131 
5132 /*
5133  * Try to match local spec to a target type and, if successful, produce full
5134  * target spec (high-level, low-level + bit offset).
5135  */
5136 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
5137 			       const struct btf *targ_btf, __u32 targ_id,
5138 			       struct bpf_core_spec *targ_spec)
5139 {
5140 	const struct btf_type *targ_type;
5141 	const struct bpf_core_accessor *local_acc;
5142 	struct bpf_core_accessor *targ_acc;
5143 	int i, sz, matched;
5144 
5145 	memset(targ_spec, 0, sizeof(*targ_spec));
5146 	targ_spec->btf = targ_btf;
5147 	targ_spec->root_type_id = targ_id;
5148 	targ_spec->relo_kind = local_spec->relo_kind;
5149 
5150 	if (core_relo_is_type_based(local_spec->relo_kind)) {
5151 		return bpf_core_types_are_compat(local_spec->btf,
5152 						 local_spec->root_type_id,
5153 						 targ_btf, targ_id);
5154 	}
5155 
5156 	local_acc = &local_spec->spec[0];
5157 	targ_acc = &targ_spec->spec[0];
5158 
5159 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5160 		size_t local_essent_len, targ_essent_len;
5161 		const struct btf_enum *e;
5162 		const char *targ_name;
5163 
5164 		/* has to resolve to an enum */
5165 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5166 		if (!btf_is_enum(targ_type))
5167 			return 0;
5168 
5169 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
5170 
5171 		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5172 			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5173 			targ_essent_len = bpf_core_essential_name_len(targ_name);
5174 			if (targ_essent_len != local_essent_len)
5175 				continue;
5176 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5177 				targ_acc->type_id = targ_id;
5178 				targ_acc->idx = i;
5179 				targ_acc->name = targ_name;
5180 				targ_spec->len++;
5181 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5182 				targ_spec->raw_len++;
5183 				return 1;
5184 			}
5185 		}
5186 		return 0;
5187 	}
5188 
5189 	if (!core_relo_is_field_based(local_spec->relo_kind))
5190 		return -EINVAL;
5191 
5192 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5193 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5194 						   &targ_id);
5195 		if (!targ_type)
5196 			return -EINVAL;
5197 
5198 		if (local_acc->name) {
5199 			matched = bpf_core_match_member(local_spec->btf,
5200 							local_acc,
5201 							targ_btf, targ_id,
5202 							targ_spec, &targ_id);
5203 			if (matched <= 0)
5204 				return matched;
5205 		} else {
5206 			/* for i=0, targ_id is already treated as array element
5207 			 * type (because it's the original struct), for others
5208 			 * we should find array element type first
5209 			 */
5210 			if (i > 0) {
5211 				const struct btf_array *a;
5212 				bool flex;
5213 
5214 				if (!btf_is_array(targ_type))
5215 					return 0;
5216 
5217 				a = btf_array(targ_type);
5218 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5219 				if (!flex && local_acc->idx >= a->nelems)
5220 					return 0;
5221 				if (!skip_mods_and_typedefs(targ_btf, a->type,
5222 							    &targ_id))
5223 					return -EINVAL;
5224 			}
5225 
5226 			/* too deep struct/union/array nesting */
5227 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5228 				return -E2BIG;
5229 
5230 			targ_acc->type_id = targ_id;
5231 			targ_acc->idx = local_acc->idx;
5232 			targ_acc->name = NULL;
5233 			targ_spec->len++;
5234 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5235 			targ_spec->raw_len++;
5236 
5237 			sz = btf__resolve_size(targ_btf, targ_id);
5238 			if (sz < 0)
5239 				return sz;
5240 			targ_spec->bit_offset += local_acc->idx * sz * 8;
5241 		}
5242 	}
5243 
5244 	return 1;
5245 }
5246 
5247 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5248 				    const struct bpf_core_relo *relo,
5249 				    const struct bpf_core_spec *spec,
5250 				    __u32 *val, __u32 *field_sz, __u32 *type_id,
5251 				    bool *validate)
5252 {
5253 	const struct bpf_core_accessor *acc;
5254 	const struct btf_type *t;
5255 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5256 	const struct btf_member *m;
5257 	const struct btf_type *mt;
5258 	bool bitfield;
5259 	__s64 sz;
5260 
5261 	*field_sz = 0;
5262 
5263 	if (relo->kind == BPF_FIELD_EXISTS) {
5264 		*val = spec ? 1 : 0;
5265 		return 0;
5266 	}
5267 
5268 	if (!spec)
5269 		return -EUCLEAN; /* request instruction poisoning */
5270 
5271 	acc = &spec->spec[spec->len - 1];
5272 	t = btf__type_by_id(spec->btf, acc->type_id);
5273 
5274 	/* a[n] accessor needs special handling */
5275 	if (!acc->name) {
5276 		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5277 			*val = spec->bit_offset / 8;
5278 			/* remember field size for load/store mem size */
5279 			sz = btf__resolve_size(spec->btf, acc->type_id);
5280 			if (sz < 0)
5281 				return -EINVAL;
5282 			*field_sz = sz;
5283 			*type_id = acc->type_id;
5284 		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5285 			sz = btf__resolve_size(spec->btf, acc->type_id);
5286 			if (sz < 0)
5287 				return -EINVAL;
5288 			*val = sz;
5289 		} else {
5290 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5291 				prog->name, relo->kind, relo->insn_off / 8);
5292 			return -EINVAL;
5293 		}
5294 		if (validate)
5295 			*validate = true;
5296 		return 0;
5297 	}
5298 
5299 	m = btf_members(t) + acc->idx;
5300 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5301 	bit_off = spec->bit_offset;
5302 	bit_sz = btf_member_bitfield_size(t, acc->idx);
5303 
5304 	bitfield = bit_sz > 0;
5305 	if (bitfield) {
5306 		byte_sz = mt->size;
5307 		byte_off = bit_off / 8 / byte_sz * byte_sz;
5308 		/* figure out smallest int size necessary for bitfield load */
5309 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5310 			if (byte_sz >= 8) {
5311 				/* bitfield can't be read with 64-bit read */
5312 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5313 					prog->name, relo->kind, relo->insn_off / 8);
5314 				return -E2BIG;
5315 			}
5316 			byte_sz *= 2;
5317 			byte_off = bit_off / 8 / byte_sz * byte_sz;
5318 		}
5319 	} else {
5320 		sz = btf__resolve_size(spec->btf, field_type_id);
5321 		if (sz < 0)
5322 			return -EINVAL;
5323 		byte_sz = sz;
5324 		byte_off = spec->bit_offset / 8;
5325 		bit_sz = byte_sz * 8;
5326 	}
5327 
5328 	/* for bitfields, all the relocatable aspects are ambiguous and we
5329 	 * might disagree with compiler, so turn off validation of expected
5330 	 * value, except for signedness
5331 	 */
5332 	if (validate)
5333 		*validate = !bitfield;
5334 
5335 	switch (relo->kind) {
5336 	case BPF_FIELD_BYTE_OFFSET:
5337 		*val = byte_off;
5338 		if (!bitfield) {
5339 			*field_sz = byte_sz;
5340 			*type_id = field_type_id;
5341 		}
5342 		break;
5343 	case BPF_FIELD_BYTE_SIZE:
5344 		*val = byte_sz;
5345 		break;
5346 	case BPF_FIELD_SIGNED:
5347 		/* enums will be assumed unsigned */
5348 		*val = btf_is_enum(mt) ||
5349 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5350 		if (validate)
5351 			*validate = true; /* signedness is never ambiguous */
5352 		break;
5353 	case BPF_FIELD_LSHIFT_U64:
5354 #if __BYTE_ORDER == __LITTLE_ENDIAN
5355 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
5356 #else
5357 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5358 #endif
5359 		break;
5360 	case BPF_FIELD_RSHIFT_U64:
5361 		*val = 64 - bit_sz;
5362 		if (validate)
5363 			*validate = true; /* right shift is never ambiguous */
5364 		break;
5365 	case BPF_FIELD_EXISTS:
5366 	default:
5367 		return -EOPNOTSUPP;
5368 	}
5369 
5370 	return 0;
5371 }
5372 
5373 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5374 				   const struct bpf_core_spec *spec,
5375 				   __u32 *val)
5376 {
5377 	__s64 sz;
5378 
5379 	/* type-based relos return zero when target type is not found */
5380 	if (!spec) {
5381 		*val = 0;
5382 		return 0;
5383 	}
5384 
5385 	switch (relo->kind) {
5386 	case BPF_TYPE_ID_TARGET:
5387 		*val = spec->root_type_id;
5388 		break;
5389 	case BPF_TYPE_EXISTS:
5390 		*val = 1;
5391 		break;
5392 	case BPF_TYPE_SIZE:
5393 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
5394 		if (sz < 0)
5395 			return -EINVAL;
5396 		*val = sz;
5397 		break;
5398 	case BPF_TYPE_ID_LOCAL:
5399 	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5400 	default:
5401 		return -EOPNOTSUPP;
5402 	}
5403 
5404 	return 0;
5405 }
5406 
5407 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5408 				      const struct bpf_core_spec *spec,
5409 				      __u32 *val)
5410 {
5411 	const struct btf_type *t;
5412 	const struct btf_enum *e;
5413 
5414 	switch (relo->kind) {
5415 	case BPF_ENUMVAL_EXISTS:
5416 		*val = spec ? 1 : 0;
5417 		break;
5418 	case BPF_ENUMVAL_VALUE:
5419 		if (!spec)
5420 			return -EUCLEAN; /* request instruction poisoning */
5421 		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5422 		e = btf_enum(t) + spec->spec[0].idx;
5423 		*val = e->val;
5424 		break;
5425 	default:
5426 		return -EOPNOTSUPP;
5427 	}
5428 
5429 	return 0;
5430 }
5431 
5432 struct bpf_core_relo_res
5433 {
5434 	/* expected value in the instruction, unless validate == false */
5435 	__u32 orig_val;
5436 	/* new value that needs to be patched up to */
5437 	__u32 new_val;
5438 	/* relocation unsuccessful, poison instruction, but don't fail load */
5439 	bool poison;
5440 	/* some relocations can't be validated against orig_val */
5441 	bool validate;
5442 	/* for field byte offset relocations or the forms:
5443 	 *     *(T *)(rX + <off>) = rY
5444 	 *     rX = *(T *)(rY + <off>),
5445 	 * we remember original and resolved field size to adjust direct
5446 	 * memory loads of pointers and integers; this is necessary for 32-bit
5447 	 * host kernel architectures, but also allows to automatically
5448 	 * relocate fields that were resized from, e.g., u32 to u64, etc.
5449 	 */
5450 	bool fail_memsz_adjust;
5451 	__u32 orig_sz;
5452 	__u32 orig_type_id;
5453 	__u32 new_sz;
5454 	__u32 new_type_id;
5455 };
5456 
5457 /* Calculate original and target relocation values, given local and target
5458  * specs and relocation kind. These values are calculated for each candidate.
5459  * If there are multiple candidates, resulting values should all be consistent
5460  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5461  * If instruction has to be poisoned, *poison will be set to true.
5462  */
5463 static int bpf_core_calc_relo(const struct bpf_program *prog,
5464 			      const struct bpf_core_relo *relo,
5465 			      int relo_idx,
5466 			      const struct bpf_core_spec *local_spec,
5467 			      const struct bpf_core_spec *targ_spec,
5468 			      struct bpf_core_relo_res *res)
5469 {
5470 	int err = -EOPNOTSUPP;
5471 
5472 	res->orig_val = 0;
5473 	res->new_val = 0;
5474 	res->poison = false;
5475 	res->validate = true;
5476 	res->fail_memsz_adjust = false;
5477 	res->orig_sz = res->new_sz = 0;
5478 	res->orig_type_id = res->new_type_id = 0;
5479 
5480 	if (core_relo_is_field_based(relo->kind)) {
5481 		err = bpf_core_calc_field_relo(prog, relo, local_spec,
5482 					       &res->orig_val, &res->orig_sz,
5483 					       &res->orig_type_id, &res->validate);
5484 		err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5485 						      &res->new_val, &res->new_sz,
5486 						      &res->new_type_id, NULL);
5487 		if (err)
5488 			goto done;
5489 		/* Validate if it's safe to adjust load/store memory size.
5490 		 * Adjustments are performed only if original and new memory
5491 		 * sizes differ.
5492 		 */
5493 		res->fail_memsz_adjust = false;
5494 		if (res->orig_sz != res->new_sz) {
5495 			const struct btf_type *orig_t, *new_t;
5496 
5497 			orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5498 			new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5499 
5500 			/* There are two use cases in which it's safe to
5501 			 * adjust load/store's mem size:
5502 			 *   - reading a 32-bit kernel pointer, while on BPF
5503 			 *   size pointers are always 64-bit; in this case
5504 			 *   it's safe to "downsize" instruction size due to
5505 			 *   pointer being treated as unsigned integer with
5506 			 *   zero-extended upper 32-bits;
5507 			 *   - reading unsigned integers, again due to
5508 			 *   zero-extension is preserving the value correctly.
5509 			 *
5510 			 * In all other cases it's incorrect to attempt to
5511 			 * load/store field because read value will be
5512 			 * incorrect, so we poison relocated instruction.
5513 			 */
5514 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5515 				goto done;
5516 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5517 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5518 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
5519 				goto done;
5520 
5521 			/* mark as invalid mem size adjustment, but this will
5522 			 * only be checked for LDX/STX/ST insns
5523 			 */
5524 			res->fail_memsz_adjust = true;
5525 		}
5526 	} else if (core_relo_is_type_based(relo->kind)) {
5527 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5528 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5529 	} else if (core_relo_is_enumval_based(relo->kind)) {
5530 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5531 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5532 	}
5533 
5534 done:
5535 	if (err == -EUCLEAN) {
5536 		/* EUCLEAN is used to signal instruction poisoning request */
5537 		res->poison = true;
5538 		err = 0;
5539 	} else if (err == -EOPNOTSUPP) {
5540 		/* EOPNOTSUPP means unknown/unsupported relocation */
5541 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5542 			prog->name, relo_idx, core_relo_kind_str(relo->kind),
5543 			relo->kind, relo->insn_off / 8);
5544 	}
5545 
5546 	return err;
5547 }
5548 
5549 /*
5550  * Turn instruction for which CO_RE relocation failed into invalid one with
5551  * distinct signature.
5552  */
5553 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5554 				 int insn_idx, struct bpf_insn *insn)
5555 {
5556 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5557 		 prog->name, relo_idx, insn_idx);
5558 	insn->code = BPF_JMP | BPF_CALL;
5559 	insn->dst_reg = 0;
5560 	insn->src_reg = 0;
5561 	insn->off = 0;
5562 	/* if this instruction is reachable (not a dead code),
5563 	 * verifier will complain with the following message:
5564 	 * invalid func unknown#195896080
5565 	 */
5566 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5567 }
5568 
5569 static bool is_ldimm64(struct bpf_insn *insn)
5570 {
5571 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
5572 }
5573 
5574 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5575 {
5576 	switch (BPF_SIZE(insn->code)) {
5577 	case BPF_DW: return 8;
5578 	case BPF_W: return 4;
5579 	case BPF_H: return 2;
5580 	case BPF_B: return 1;
5581 	default: return -1;
5582 	}
5583 }
5584 
5585 static int insn_bytes_to_bpf_size(__u32 sz)
5586 {
5587 	switch (sz) {
5588 	case 8: return BPF_DW;
5589 	case 4: return BPF_W;
5590 	case 2: return BPF_H;
5591 	case 1: return BPF_B;
5592 	default: return -1;
5593 	}
5594 }
5595 
5596 /*
5597  * Patch relocatable BPF instruction.
5598  *
5599  * Patched value is determined by relocation kind and target specification.
5600  * For existence relocations target spec will be NULL if field/type is not found.
5601  * Expected insn->imm value is determined using relocation kind and local
5602  * spec, and is checked before patching instruction. If actual insn->imm value
5603  * is wrong, bail out with error.
5604  *
5605  * Currently supported classes of BPF instruction are:
5606  * 1. rX = <imm> (assignment with immediate operand);
5607  * 2. rX += <imm> (arithmetic operations with immediate operand);
5608  * 3. rX = <imm64> (load with 64-bit immediate value);
5609  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5610  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5611  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5612  */
5613 static int bpf_core_patch_insn(struct bpf_program *prog,
5614 			       const struct bpf_core_relo *relo,
5615 			       int relo_idx,
5616 			       const struct bpf_core_relo_res *res)
5617 {
5618 	__u32 orig_val, new_val;
5619 	struct bpf_insn *insn;
5620 	int insn_idx;
5621 	__u8 class;
5622 
5623 	if (relo->insn_off % BPF_INSN_SZ)
5624 		return -EINVAL;
5625 	insn_idx = relo->insn_off / BPF_INSN_SZ;
5626 	/* adjust insn_idx from section frame of reference to the local
5627 	 * program's frame of reference; (sub-)program code is not yet
5628 	 * relocated, so it's enough to just subtract in-section offset
5629 	 */
5630 	insn_idx = insn_idx - prog->sec_insn_off;
5631 	insn = &prog->insns[insn_idx];
5632 	class = BPF_CLASS(insn->code);
5633 
5634 	if (res->poison) {
5635 poison:
5636 		/* poison second part of ldimm64 to avoid confusing error from
5637 		 * verifier about "unknown opcode 00"
5638 		 */
5639 		if (is_ldimm64(insn))
5640 			bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5641 		bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5642 		return 0;
5643 	}
5644 
5645 	orig_val = res->orig_val;
5646 	new_val = res->new_val;
5647 
5648 	switch (class) {
5649 	case BPF_ALU:
5650 	case BPF_ALU64:
5651 		if (BPF_SRC(insn->code) != BPF_K)
5652 			return -EINVAL;
5653 		if (res->validate && insn->imm != orig_val) {
5654 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5655 				prog->name, relo_idx,
5656 				insn_idx, insn->imm, orig_val, new_val);
5657 			return -EINVAL;
5658 		}
5659 		orig_val = insn->imm;
5660 		insn->imm = new_val;
5661 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5662 			 prog->name, relo_idx, insn_idx,
5663 			 orig_val, new_val);
5664 		break;
5665 	case BPF_LDX:
5666 	case BPF_ST:
5667 	case BPF_STX:
5668 		if (res->validate && insn->off != orig_val) {
5669 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5670 				prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5671 			return -EINVAL;
5672 		}
5673 		if (new_val > SHRT_MAX) {
5674 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5675 				prog->name, relo_idx, insn_idx, new_val);
5676 			return -ERANGE;
5677 		}
5678 		if (res->fail_memsz_adjust) {
5679 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5680 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5681 				prog->name, relo_idx, insn_idx);
5682 			goto poison;
5683 		}
5684 
5685 		orig_val = insn->off;
5686 		insn->off = new_val;
5687 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5688 			 prog->name, relo_idx, insn_idx, orig_val, new_val);
5689 
5690 		if (res->new_sz != res->orig_sz) {
5691 			int insn_bytes_sz, insn_bpf_sz;
5692 
5693 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5694 			if (insn_bytes_sz != res->orig_sz) {
5695 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5696 					prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5697 				return -EINVAL;
5698 			}
5699 
5700 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5701 			if (insn_bpf_sz < 0) {
5702 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5703 					prog->name, relo_idx, insn_idx, res->new_sz);
5704 				return -EINVAL;
5705 			}
5706 
5707 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5708 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5709 				 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5710 		}
5711 		break;
5712 	case BPF_LD: {
5713 		__u64 imm;
5714 
5715 		if (!is_ldimm64(insn) ||
5716 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
5717 		    insn_idx + 1 >= prog->insns_cnt ||
5718 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
5719 		    insn[1].src_reg != 0 || insn[1].off != 0) {
5720 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5721 				prog->name, relo_idx, insn_idx);
5722 			return -EINVAL;
5723 		}
5724 
5725 		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5726 		if (res->validate && imm != orig_val) {
5727 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5728 				prog->name, relo_idx,
5729 				insn_idx, (unsigned long long)imm,
5730 				orig_val, new_val);
5731 			return -EINVAL;
5732 		}
5733 
5734 		insn[0].imm = new_val;
5735 		insn[1].imm = 0; /* currently only 32-bit values are supported */
5736 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5737 			 prog->name, relo_idx, insn_idx,
5738 			 (unsigned long long)imm, new_val);
5739 		break;
5740 	}
5741 	default:
5742 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5743 			prog->name, relo_idx, insn_idx, insn->code,
5744 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5745 		return -EINVAL;
5746 	}
5747 
5748 	return 0;
5749 }
5750 
5751 /* Output spec definition in the format:
5752  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5753  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5754  */
5755 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5756 {
5757 	const struct btf_type *t;
5758 	const struct btf_enum *e;
5759 	const char *s;
5760 	__u32 type_id;
5761 	int i;
5762 
5763 	type_id = spec->root_type_id;
5764 	t = btf__type_by_id(spec->btf, type_id);
5765 	s = btf__name_by_offset(spec->btf, t->name_off);
5766 
5767 	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5768 
5769 	if (core_relo_is_type_based(spec->relo_kind))
5770 		return;
5771 
5772 	if (core_relo_is_enumval_based(spec->relo_kind)) {
5773 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5774 		e = btf_enum(t) + spec->raw_spec[0];
5775 		s = btf__name_by_offset(spec->btf, e->name_off);
5776 
5777 		libbpf_print(level, "::%s = %u", s, e->val);
5778 		return;
5779 	}
5780 
5781 	if (core_relo_is_field_based(spec->relo_kind)) {
5782 		for (i = 0; i < spec->len; i++) {
5783 			if (spec->spec[i].name)
5784 				libbpf_print(level, ".%s", spec->spec[i].name);
5785 			else if (i > 0 || spec->spec[i].idx > 0)
5786 				libbpf_print(level, "[%u]", spec->spec[i].idx);
5787 		}
5788 
5789 		libbpf_print(level, " (");
5790 		for (i = 0; i < spec->raw_len; i++)
5791 			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5792 
5793 		if (spec->bit_offset % 8)
5794 			libbpf_print(level, " @ offset %u.%u)",
5795 				     spec->bit_offset / 8, spec->bit_offset % 8);
5796 		else
5797 			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5798 		return;
5799 	}
5800 }
5801 
5802 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5803 {
5804 	return (size_t)key;
5805 }
5806 
5807 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5808 {
5809 	return k1 == k2;
5810 }
5811 
5812 static void *u32_as_hash_key(__u32 x)
5813 {
5814 	return (void *)(uintptr_t)x;
5815 }
5816 
5817 /*
5818  * CO-RE relocate single instruction.
5819  *
5820  * The outline and important points of the algorithm:
5821  * 1. For given local type, find corresponding candidate target types.
5822  *    Candidate type is a type with the same "essential" name, ignoring
5823  *    everything after last triple underscore (___). E.g., `sample`,
5824  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5825  *    for each other. Names with triple underscore are referred to as
5826  *    "flavors" and are useful, among other things, to allow to
5827  *    specify/support incompatible variations of the same kernel struct, which
5828  *    might differ between different kernel versions and/or build
5829  *    configurations.
5830  *
5831  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5832  *    converter, when deduplicated BTF of a kernel still contains more than
5833  *    one different types with the same name. In that case, ___2, ___3, etc
5834  *    are appended starting from second name conflict. But start flavors are
5835  *    also useful to be defined "locally", in BPF program, to extract same
5836  *    data from incompatible changes between different kernel
5837  *    versions/configurations. For instance, to handle field renames between
5838  *    kernel versions, one can use two flavors of the struct name with the
5839  *    same common name and use conditional relocations to extract that field,
5840  *    depending on target kernel version.
5841  * 2. For each candidate type, try to match local specification to this
5842  *    candidate target type. Matching involves finding corresponding
5843  *    high-level spec accessors, meaning that all named fields should match,
5844  *    as well as all array accesses should be within the actual bounds. Also,
5845  *    types should be compatible (see bpf_core_fields_are_compat for details).
5846  * 3. It is supported and expected that there might be multiple flavors
5847  *    matching the spec. As long as all the specs resolve to the same set of
5848  *    offsets across all candidates, there is no error. If there is any
5849  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5850  *    imprefection of BTF deduplication, which can cause slight duplication of
5851  *    the same BTF type, if some directly or indirectly referenced (by
5852  *    pointer) type gets resolved to different actual types in different
5853  *    object files. If such situation occurs, deduplicated BTF will end up
5854  *    with two (or more) structurally identical types, which differ only in
5855  *    types they refer to through pointer. This should be OK in most cases and
5856  *    is not an error.
5857  * 4. Candidate types search is performed by linearly scanning through all
5858  *    types in target BTF. It is anticipated that this is overall more
5859  *    efficient memory-wise and not significantly worse (if not better)
5860  *    CPU-wise compared to prebuilding a map from all local type names to
5861  *    a list of candidate type names. It's also sped up by caching resolved
5862  *    list of matching candidates per each local "root" type ID, that has at
5863  *    least one bpf_core_relo associated with it. This list is shared
5864  *    between multiple relocations for the same type ID and is updated as some
5865  *    of the candidates are pruned due to structural incompatibility.
5866  */
5867 static int bpf_core_apply_relo(struct bpf_program *prog,
5868 			       const struct bpf_core_relo *relo,
5869 			       int relo_idx,
5870 			       const struct btf *local_btf,
5871 			       struct hashmap *cand_cache)
5872 {
5873 	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5874 	const void *type_key = u32_as_hash_key(relo->type_id);
5875 	struct bpf_core_relo_res cand_res, targ_res;
5876 	const struct btf_type *local_type;
5877 	const char *local_name;
5878 	struct core_cand_list *cands = NULL;
5879 	__u32 local_id;
5880 	const char *spec_str;
5881 	int i, j, err;
5882 
5883 	local_id = relo->type_id;
5884 	local_type = btf__type_by_id(local_btf, local_id);
5885 	if (!local_type)
5886 		return -EINVAL;
5887 
5888 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5889 	if (!local_name)
5890 		return -EINVAL;
5891 
5892 	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5893 	if (str_is_empty(spec_str))
5894 		return -EINVAL;
5895 
5896 	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5897 	if (err) {
5898 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5899 			prog->name, relo_idx, local_id, btf_kind_str(local_type),
5900 			str_is_empty(local_name) ? "<anon>" : local_name,
5901 			spec_str, err);
5902 		return -EINVAL;
5903 	}
5904 
5905 	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5906 		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5907 	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5908 	libbpf_print(LIBBPF_DEBUG, "\n");
5909 
5910 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5911 	if (relo->kind == BPF_TYPE_ID_LOCAL) {
5912 		targ_res.validate = true;
5913 		targ_res.poison = false;
5914 		targ_res.orig_val = local_spec.root_type_id;
5915 		targ_res.new_val = local_spec.root_type_id;
5916 		goto patch_insn;
5917 	}
5918 
5919 	/* libbpf doesn't support candidate search for anonymous types */
5920 	if (str_is_empty(spec_str)) {
5921 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5922 			prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5923 		return -EOPNOTSUPP;
5924 	}
5925 
5926 	if (!hashmap__find(cand_cache, type_key, (void **)&cands)) {
5927 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5928 		if (IS_ERR(cands)) {
5929 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5930 				prog->name, relo_idx, local_id, btf_kind_str(local_type),
5931 				local_name, PTR_ERR(cands));
5932 			return PTR_ERR(cands);
5933 		}
5934 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5935 		if (err) {
5936 			bpf_core_free_cands(cands);
5937 			return err;
5938 		}
5939 	}
5940 
5941 	for (i = 0, j = 0; i < cands->len; i++) {
5942 		err = bpf_core_spec_match(&local_spec, cands->cands[i].btf,
5943 					  cands->cands[i].id, &cand_spec);
5944 		if (err < 0) {
5945 			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
5946 				prog->name, relo_idx, i);
5947 			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
5948 			libbpf_print(LIBBPF_WARN, ": %d\n", err);
5949 			return err;
5950 		}
5951 
5952 		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
5953 			 relo_idx, err == 0 ? "non-matching" : "matching", i);
5954 		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
5955 		libbpf_print(LIBBPF_DEBUG, "\n");
5956 
5957 		if (err == 0)
5958 			continue;
5959 
5960 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
5961 		if (err)
5962 			return err;
5963 
5964 		if (j == 0) {
5965 			targ_res = cand_res;
5966 			targ_spec = cand_spec;
5967 		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
5968 			/* if there are many field relo candidates, they
5969 			 * should all resolve to the same bit offset
5970 			 */
5971 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
5972 				prog->name, relo_idx, cand_spec.bit_offset,
5973 				targ_spec.bit_offset);
5974 			return -EINVAL;
5975 		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
5976 			/* all candidates should result in the same relocation
5977 			 * decision and value, otherwise it's dangerous to
5978 			 * proceed due to ambiguity
5979 			 */
5980 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
5981 				prog->name, relo_idx,
5982 				cand_res.poison ? "failure" : "success", cand_res.new_val,
5983 				targ_res.poison ? "failure" : "success", targ_res.new_val);
5984 			return -EINVAL;
5985 		}
5986 
5987 		cands->cands[j++] = cands->cands[i];
5988 	}
5989 
5990 	/*
5991 	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
5992 	 * existence checks or kernel version/config checks, it's expected
5993 	 * that we might not find any candidates. In this case, if field
5994 	 * wasn't found in any candidate, the list of candidates shouldn't
5995 	 * change at all, we'll just handle relocating appropriately,
5996 	 * depending on relo's kind.
5997 	 */
5998 	if (j > 0)
5999 		cands->len = j;
6000 
6001 	/*
6002 	 * If no candidates were found, it might be both a programmer error,
6003 	 * as well as expected case, depending whether instruction w/
6004 	 * relocation is guarded in some way that makes it unreachable (dead
6005 	 * code) if relocation can't be resolved. This is handled in
6006 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
6007 	 * BPF helper call insn (using invalid helper ID). If that instruction
6008 	 * is indeed unreachable, then it will be ignored and eliminated by
6009 	 * verifier. If it was an error, then verifier will complain and point
6010 	 * to a specific instruction number in its log.
6011 	 */
6012 	if (j == 0) {
6013 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
6014 			 prog->name, relo_idx);
6015 
6016 		/* calculate single target relo result explicitly */
6017 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
6018 		if (err)
6019 			return err;
6020 	}
6021 
6022 patch_insn:
6023 	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
6024 	err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
6025 	if (err) {
6026 		pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
6027 			prog->name, relo_idx, relo->insn_off, err);
6028 		return -EINVAL;
6029 	}
6030 
6031 	return 0;
6032 }
6033 
6034 static int
6035 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
6036 {
6037 	const struct btf_ext_info_sec *sec;
6038 	const struct bpf_core_relo *rec;
6039 	const struct btf_ext_info *seg;
6040 	struct hashmap_entry *entry;
6041 	struct hashmap *cand_cache = NULL;
6042 	struct bpf_program *prog;
6043 	const char *sec_name;
6044 	int i, err = 0, insn_idx, sec_idx;
6045 
6046 	if (obj->btf_ext->core_relo_info.len == 0)
6047 		return 0;
6048 
6049 	if (targ_btf_path) {
6050 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
6051 		if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) {
6052 			err = PTR_ERR(obj->btf_vmlinux_override);
6053 			pr_warn("failed to parse target BTF: %d\n", err);
6054 			return err;
6055 		}
6056 	}
6057 
6058 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6059 	if (IS_ERR(cand_cache)) {
6060 		err = PTR_ERR(cand_cache);
6061 		goto out;
6062 	}
6063 
6064 	seg = &obj->btf_ext->core_relo_info;
6065 	for_each_btf_ext_sec(seg, sec) {
6066 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6067 		if (str_is_empty(sec_name)) {
6068 			err = -EINVAL;
6069 			goto out;
6070 		}
6071 		/* bpf_object's ELF is gone by now so it's not easy to find
6072 		 * section index by section name, but we can find *any*
6073 		 * bpf_program within desired section name and use it's
6074 		 * prog->sec_idx to do a proper search by section index and
6075 		 * instruction offset
6076 		 */
6077 		prog = NULL;
6078 		for (i = 0; i < obj->nr_programs; i++) {
6079 			prog = &obj->programs[i];
6080 			if (strcmp(prog->sec_name, sec_name) == 0)
6081 				break;
6082 		}
6083 		if (!prog) {
6084 			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
6085 			return -ENOENT;
6086 		}
6087 		sec_idx = prog->sec_idx;
6088 
6089 		pr_debug("sec '%s': found %d CO-RE relocations\n",
6090 			 sec_name, sec->num_info);
6091 
6092 		for_each_btf_ext_rec(seg, sec, i, rec) {
6093 			insn_idx = rec->insn_off / BPF_INSN_SZ;
6094 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6095 			if (!prog) {
6096 				pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
6097 					sec_name, insn_idx, i);
6098 				err = -EINVAL;
6099 				goto out;
6100 			}
6101 			/* no need to apply CO-RE relocation if the program is
6102 			 * not going to be loaded
6103 			 */
6104 			if (!prog->load)
6105 				continue;
6106 
6107 			err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache);
6108 			if (err) {
6109 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
6110 					prog->name, i, err);
6111 				goto out;
6112 			}
6113 		}
6114 	}
6115 
6116 out:
6117 	/* obj->btf_vmlinux and module BTFs are freed after object load */
6118 	btf__free(obj->btf_vmlinux_override);
6119 	obj->btf_vmlinux_override = NULL;
6120 
6121 	if (!IS_ERR_OR_NULL(cand_cache)) {
6122 		hashmap__for_each_entry(cand_cache, entry, i) {
6123 			bpf_core_free_cands(entry->value);
6124 		}
6125 		hashmap__free(cand_cache);
6126 	}
6127 	return err;
6128 }
6129 
6130 /* Relocate data references within program code:
6131  *  - map references;
6132  *  - global variable references;
6133  *  - extern references.
6134  */
6135 static int
6136 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6137 {
6138 	int i;
6139 
6140 	for (i = 0; i < prog->nr_reloc; i++) {
6141 		struct reloc_desc *relo = &prog->reloc_desc[i];
6142 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6143 		struct extern_desc *ext;
6144 
6145 		switch (relo->type) {
6146 		case RELO_LD64:
6147 			insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6148 			insn[0].imm = obj->maps[relo->map_idx].fd;
6149 			relo->processed = true;
6150 			break;
6151 		case RELO_DATA:
6152 			insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6153 			insn[1].imm = insn[0].imm + relo->sym_off;
6154 			insn[0].imm = obj->maps[relo->map_idx].fd;
6155 			relo->processed = true;
6156 			break;
6157 		case RELO_EXTERN:
6158 			ext = &obj->externs[relo->sym_off];
6159 			if (ext->type == EXT_KCFG) {
6160 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6161 				insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6162 				insn[1].imm = ext->kcfg.data_off;
6163 			} else /* EXT_KSYM */ {
6164 				if (ext->ksym.type_id) { /* typed ksyms */
6165 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6166 					insn[0].imm = ext->ksym.kernel_btf_id;
6167 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6168 				} else { /* typeless ksyms */
6169 					insn[0].imm = (__u32)ext->ksym.addr;
6170 					insn[1].imm = ext->ksym.addr >> 32;
6171 				}
6172 			}
6173 			relo->processed = true;
6174 			break;
6175 		case RELO_CALL:
6176 			/* will be handled as a follow up pass */
6177 			break;
6178 		default:
6179 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6180 				prog->name, i, relo->type);
6181 			return -EINVAL;
6182 		}
6183 	}
6184 
6185 	return 0;
6186 }
6187 
6188 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6189 				    const struct bpf_program *prog,
6190 				    const struct btf_ext_info *ext_info,
6191 				    void **prog_info, __u32 *prog_rec_cnt,
6192 				    __u32 *prog_rec_sz)
6193 {
6194 	void *copy_start = NULL, *copy_end = NULL;
6195 	void *rec, *rec_end, *new_prog_info;
6196 	const struct btf_ext_info_sec *sec;
6197 	size_t old_sz, new_sz;
6198 	const char *sec_name;
6199 	int i, off_adj;
6200 
6201 	for_each_btf_ext_sec(ext_info, sec) {
6202 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6203 		if (!sec_name)
6204 			return -EINVAL;
6205 		if (strcmp(sec_name, prog->sec_name) != 0)
6206 			continue;
6207 
6208 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6209 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6210 
6211 			if (insn_off < prog->sec_insn_off)
6212 				continue;
6213 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6214 				break;
6215 
6216 			if (!copy_start)
6217 				copy_start = rec;
6218 			copy_end = rec + ext_info->rec_size;
6219 		}
6220 
6221 		if (!copy_start)
6222 			return -ENOENT;
6223 
6224 		/* append func/line info of a given (sub-)program to the main
6225 		 * program func/line info
6226 		 */
6227 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6228 		new_sz = old_sz + (copy_end - copy_start);
6229 		new_prog_info = realloc(*prog_info, new_sz);
6230 		if (!new_prog_info)
6231 			return -ENOMEM;
6232 		*prog_info = new_prog_info;
6233 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6234 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6235 
6236 		/* Kernel instruction offsets are in units of 8-byte
6237 		 * instructions, while .BTF.ext instruction offsets generated
6238 		 * by Clang are in units of bytes. So convert Clang offsets
6239 		 * into kernel offsets and adjust offset according to program
6240 		 * relocated position.
6241 		 */
6242 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6243 		rec = new_prog_info + old_sz;
6244 		rec_end = new_prog_info + new_sz;
6245 		for (; rec < rec_end; rec += ext_info->rec_size) {
6246 			__u32 *insn_off = rec;
6247 
6248 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6249 		}
6250 		*prog_rec_sz = ext_info->rec_size;
6251 		return 0;
6252 	}
6253 
6254 	return -ENOENT;
6255 }
6256 
6257 static int
6258 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6259 			      struct bpf_program *main_prog,
6260 			      const struct bpf_program *prog)
6261 {
6262 	int err;
6263 
6264 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6265 	 * supprot func/line info
6266 	 */
6267 	if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6268 		return 0;
6269 
6270 	/* only attempt func info relocation if main program's func_info
6271 	 * relocation was successful
6272 	 */
6273 	if (main_prog != prog && !main_prog->func_info)
6274 		goto line_info;
6275 
6276 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6277 				       &main_prog->func_info,
6278 				       &main_prog->func_info_cnt,
6279 				       &main_prog->func_info_rec_size);
6280 	if (err) {
6281 		if (err != -ENOENT) {
6282 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6283 				prog->name, err);
6284 			return err;
6285 		}
6286 		if (main_prog->func_info) {
6287 			/*
6288 			 * Some info has already been found but has problem
6289 			 * in the last btf_ext reloc. Must have to error out.
6290 			 */
6291 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6292 			return err;
6293 		}
6294 		/* Have problem loading the very first info. Ignore the rest. */
6295 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6296 			prog->name);
6297 	}
6298 
6299 line_info:
6300 	/* don't relocate line info if main program's relocation failed */
6301 	if (main_prog != prog && !main_prog->line_info)
6302 		return 0;
6303 
6304 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6305 				       &main_prog->line_info,
6306 				       &main_prog->line_info_cnt,
6307 				       &main_prog->line_info_rec_size);
6308 	if (err) {
6309 		if (err != -ENOENT) {
6310 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6311 				prog->name, err);
6312 			return err;
6313 		}
6314 		if (main_prog->line_info) {
6315 			/*
6316 			 * Some info has already been found but has problem
6317 			 * in the last btf_ext reloc. Must have to error out.
6318 			 */
6319 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6320 			return err;
6321 		}
6322 		/* Have problem loading the very first info. Ignore the rest. */
6323 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6324 			prog->name);
6325 	}
6326 	return 0;
6327 }
6328 
6329 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6330 {
6331 	size_t insn_idx = *(const size_t *)key;
6332 	const struct reloc_desc *relo = elem;
6333 
6334 	if (insn_idx == relo->insn_idx)
6335 		return 0;
6336 	return insn_idx < relo->insn_idx ? -1 : 1;
6337 }
6338 
6339 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6340 {
6341 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6342 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6343 }
6344 
6345 static int
6346 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6347 		       struct bpf_program *prog)
6348 {
6349 	size_t sub_insn_idx, insn_idx, new_cnt;
6350 	struct bpf_program *subprog;
6351 	struct bpf_insn *insns, *insn;
6352 	struct reloc_desc *relo;
6353 	int err;
6354 
6355 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6356 	if (err)
6357 		return err;
6358 
6359 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6360 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6361 		if (!insn_is_subprog_call(insn))
6362 			continue;
6363 
6364 		relo = find_prog_insn_relo(prog, insn_idx);
6365 		if (relo && relo->type != RELO_CALL) {
6366 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6367 				prog->name, insn_idx, relo->type);
6368 			return -LIBBPF_ERRNO__RELOC;
6369 		}
6370 		if (relo) {
6371 			/* sub-program instruction index is a combination of
6372 			 * an offset of a symbol pointed to by relocation and
6373 			 * call instruction's imm field; for global functions,
6374 			 * call always has imm = -1, but for static functions
6375 			 * relocation is against STT_SECTION and insn->imm
6376 			 * points to a start of a static function
6377 			 */
6378 			sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6379 		} else {
6380 			/* if subprogram call is to a static function within
6381 			 * the same ELF section, there won't be any relocation
6382 			 * emitted, but it also means there is no additional
6383 			 * offset necessary, insns->imm is relative to
6384 			 * instruction's original position within the section
6385 			 */
6386 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6387 		}
6388 
6389 		/* we enforce that sub-programs should be in .text section */
6390 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6391 		if (!subprog) {
6392 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6393 				prog->name);
6394 			return -LIBBPF_ERRNO__RELOC;
6395 		}
6396 
6397 		/* if it's the first call instruction calling into this
6398 		 * subprogram (meaning this subprog hasn't been processed
6399 		 * yet) within the context of current main program:
6400 		 *   - append it at the end of main program's instructions blog;
6401 		 *   - process is recursively, while current program is put on hold;
6402 		 *   - if that subprogram calls some other not yet processes
6403 		 *   subprogram, same thing will happen recursively until
6404 		 *   there are no more unprocesses subprograms left to append
6405 		 *   and relocate.
6406 		 */
6407 		if (subprog->sub_insn_off == 0) {
6408 			subprog->sub_insn_off = main_prog->insns_cnt;
6409 
6410 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6411 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6412 			if (!insns) {
6413 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6414 				return -ENOMEM;
6415 			}
6416 			main_prog->insns = insns;
6417 			main_prog->insns_cnt = new_cnt;
6418 
6419 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6420 			       subprog->insns_cnt * sizeof(*insns));
6421 
6422 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6423 				 main_prog->name, subprog->insns_cnt, subprog->name);
6424 
6425 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6426 			if (err)
6427 				return err;
6428 		}
6429 
6430 		/* main_prog->insns memory could have been re-allocated, so
6431 		 * calculate pointer again
6432 		 */
6433 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6434 		/* calculate correct instruction position within current main
6435 		 * prog; each main prog can have a different set of
6436 		 * subprograms appended (potentially in different order as
6437 		 * well), so position of any subprog can be different for
6438 		 * different main programs */
6439 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6440 
6441 		if (relo)
6442 			relo->processed = true;
6443 
6444 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6445 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6446 	}
6447 
6448 	return 0;
6449 }
6450 
6451 /*
6452  * Relocate sub-program calls.
6453  *
6454  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6455  * main prog) is processed separately. For each subprog (non-entry functions,
6456  * that can be called from either entry progs or other subprogs) gets their
6457  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6458  * hasn't been yet appended and relocated within current main prog. Once its
6459  * relocated, sub_insn_off will point at the position within current main prog
6460  * where given subprog was appended. This will further be used to relocate all
6461  * the call instructions jumping into this subprog.
6462  *
6463  * We start with main program and process all call instructions. If the call
6464  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6465  * is zero), subprog instructions are appended at the end of main program's
6466  * instruction array. Then main program is "put on hold" while we recursively
6467  * process newly appended subprogram. If that subprogram calls into another
6468  * subprogram that hasn't been appended, new subprogram is appended again to
6469  * the *main* prog's instructions (subprog's instructions are always left
6470  * untouched, as they need to be in unmodified state for subsequent main progs
6471  * and subprog instructions are always sent only as part of a main prog) and
6472  * the process continues recursively. Once all the subprogs called from a main
6473  * prog or any of its subprogs are appended (and relocated), all their
6474  * positions within finalized instructions array are known, so it's easy to
6475  * rewrite call instructions with correct relative offsets, corresponding to
6476  * desired target subprog.
6477  *
6478  * Its important to realize that some subprogs might not be called from some
6479  * main prog and any of its called/used subprogs. Those will keep their
6480  * subprog->sub_insn_off as zero at all times and won't be appended to current
6481  * main prog and won't be relocated within the context of current main prog.
6482  * They might still be used from other main progs later.
6483  *
6484  * Visually this process can be shown as below. Suppose we have two main
6485  * programs mainA and mainB and BPF object contains three subprogs: subA,
6486  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6487  * subC both call subB:
6488  *
6489  *        +--------+ +-------+
6490  *        |        v v       |
6491  *     +--+---+ +--+-+-+ +---+--+
6492  *     | subA | | subB | | subC |
6493  *     +--+---+ +------+ +---+--+
6494  *        ^                  ^
6495  *        |                  |
6496  *    +---+-------+   +------+----+
6497  *    |   mainA   |   |   mainB   |
6498  *    +-----------+   +-----------+
6499  *
6500  * We'll start relocating mainA, will find subA, append it and start
6501  * processing sub A recursively:
6502  *
6503  *    +-----------+------+
6504  *    |   mainA   | subA |
6505  *    +-----------+------+
6506  *
6507  * At this point we notice that subB is used from subA, so we append it and
6508  * relocate (there are no further subcalls from subB):
6509  *
6510  *    +-----------+------+------+
6511  *    |   mainA   | subA | subB |
6512  *    +-----------+------+------+
6513  *
6514  * At this point, we relocate subA calls, then go one level up and finish with
6515  * relocatin mainA calls. mainA is done.
6516  *
6517  * For mainB process is similar but results in different order. We start with
6518  * mainB and skip subA and subB, as mainB never calls them (at least
6519  * directly), but we see subC is needed, so we append and start processing it:
6520  *
6521  *    +-----------+------+
6522  *    |   mainB   | subC |
6523  *    +-----------+------+
6524  * Now we see subC needs subB, so we go back to it, append and relocate it:
6525  *
6526  *    +-----------+------+------+
6527  *    |   mainB   | subC | subB |
6528  *    +-----------+------+------+
6529  *
6530  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6531  */
6532 static int
6533 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6534 {
6535 	struct bpf_program *subprog;
6536 	int i, j, err;
6537 
6538 	/* mark all subprogs as not relocated (yet) within the context of
6539 	 * current main program
6540 	 */
6541 	for (i = 0; i < obj->nr_programs; i++) {
6542 		subprog = &obj->programs[i];
6543 		if (!prog_is_subprog(obj, subprog))
6544 			continue;
6545 
6546 		subprog->sub_insn_off = 0;
6547 		for (j = 0; j < subprog->nr_reloc; j++)
6548 			if (subprog->reloc_desc[j].type == RELO_CALL)
6549 				subprog->reloc_desc[j].processed = false;
6550 	}
6551 
6552 	err = bpf_object__reloc_code(obj, prog, prog);
6553 	if (err)
6554 		return err;
6555 
6556 
6557 	return 0;
6558 }
6559 
6560 static int
6561 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6562 {
6563 	struct bpf_program *prog;
6564 	size_t i;
6565 	int err;
6566 
6567 	if (obj->btf_ext) {
6568 		err = bpf_object__relocate_core(obj, targ_btf_path);
6569 		if (err) {
6570 			pr_warn("failed to perform CO-RE relocations: %d\n",
6571 				err);
6572 			return err;
6573 		}
6574 	}
6575 	/* relocate data references first for all programs and sub-programs,
6576 	 * as they don't change relative to code locations, so subsequent
6577 	 * subprogram processing won't need to re-calculate any of them
6578 	 */
6579 	for (i = 0; i < obj->nr_programs; i++) {
6580 		prog = &obj->programs[i];
6581 		err = bpf_object__relocate_data(obj, prog);
6582 		if (err) {
6583 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6584 				prog->name, err);
6585 			return err;
6586 		}
6587 	}
6588 	/* now relocate subprogram calls and append used subprograms to main
6589 	 * programs; each copy of subprogram code needs to be relocated
6590 	 * differently for each main program, because its code location might
6591 	 * have changed
6592 	 */
6593 	for (i = 0; i < obj->nr_programs; i++) {
6594 		prog = &obj->programs[i];
6595 		/* sub-program's sub-calls are relocated within the context of
6596 		 * its main program only
6597 		 */
6598 		if (prog_is_subprog(obj, prog))
6599 			continue;
6600 
6601 		err = bpf_object__relocate_calls(obj, prog);
6602 		if (err) {
6603 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6604 				prog->name, err);
6605 			return err;
6606 		}
6607 	}
6608 	/* free up relocation descriptors */
6609 	for (i = 0; i < obj->nr_programs; i++) {
6610 		prog = &obj->programs[i];
6611 		zfree(&prog->reloc_desc);
6612 		prog->nr_reloc = 0;
6613 	}
6614 	return 0;
6615 }
6616 
6617 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6618 					    GElf_Shdr *shdr, Elf_Data *data);
6619 
6620 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6621 					 GElf_Shdr *shdr, Elf_Data *data)
6622 {
6623 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6624 	int i, j, nrels, new_sz;
6625 	const struct btf_var_secinfo *vi = NULL;
6626 	const struct btf_type *sec, *var, *def;
6627 	struct bpf_map *map = NULL, *targ_map;
6628 	const struct btf_member *member;
6629 	const char *name, *mname;
6630 	Elf_Data *symbols;
6631 	unsigned int moff;
6632 	GElf_Sym sym;
6633 	GElf_Rel rel;
6634 	void *tmp;
6635 
6636 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6637 		return -EINVAL;
6638 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6639 	if (!sec)
6640 		return -EINVAL;
6641 
6642 	symbols = obj->efile.symbols;
6643 	nrels = shdr->sh_size / shdr->sh_entsize;
6644 	for (i = 0; i < nrels; i++) {
6645 		if (!gelf_getrel(data, i, &rel)) {
6646 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6647 			return -LIBBPF_ERRNO__FORMAT;
6648 		}
6649 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6650 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6651 				i, (size_t)GELF_R_SYM(rel.r_info));
6652 			return -LIBBPF_ERRNO__FORMAT;
6653 		}
6654 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6655 		if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6656 			pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6657 				i, name);
6658 			return -LIBBPF_ERRNO__RELOC;
6659 		}
6660 
6661 		pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6662 			 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6663 			 (size_t)rel.r_offset, sym.st_name, name);
6664 
6665 		for (j = 0; j < obj->nr_maps; j++) {
6666 			map = &obj->maps[j];
6667 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6668 				continue;
6669 
6670 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6671 			if (vi->offset <= rel.r_offset &&
6672 			    rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6673 				break;
6674 		}
6675 		if (j == obj->nr_maps) {
6676 			pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6677 				i, name, (size_t)rel.r_offset);
6678 			return -EINVAL;
6679 		}
6680 
6681 		if (!bpf_map_type__is_map_in_map(map->def.type))
6682 			return -EINVAL;
6683 		if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6684 		    map->def.key_size != sizeof(int)) {
6685 			pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6686 				i, map->name, sizeof(int));
6687 			return -EINVAL;
6688 		}
6689 
6690 		targ_map = bpf_object__find_map_by_name(obj, name);
6691 		if (!targ_map)
6692 			return -ESRCH;
6693 
6694 		var = btf__type_by_id(obj->btf, vi->type);
6695 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6696 		if (btf_vlen(def) == 0)
6697 			return -EINVAL;
6698 		member = btf_members(def) + btf_vlen(def) - 1;
6699 		mname = btf__name_by_offset(obj->btf, member->name_off);
6700 		if (strcmp(mname, "values"))
6701 			return -EINVAL;
6702 
6703 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6704 		if (rel.r_offset - vi->offset < moff)
6705 			return -EINVAL;
6706 
6707 		moff = rel.r_offset - vi->offset - moff;
6708 		/* here we use BPF pointer size, which is always 64 bit, as we
6709 		 * are parsing ELF that was built for BPF target
6710 		 */
6711 		if (moff % bpf_ptr_sz)
6712 			return -EINVAL;
6713 		moff /= bpf_ptr_sz;
6714 		if (moff >= map->init_slots_sz) {
6715 			new_sz = moff + 1;
6716 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6717 			if (!tmp)
6718 				return -ENOMEM;
6719 			map->init_slots = tmp;
6720 			memset(map->init_slots + map->init_slots_sz, 0,
6721 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6722 			map->init_slots_sz = new_sz;
6723 		}
6724 		map->init_slots[moff] = targ_map;
6725 
6726 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6727 			 i, map->name, moff, name);
6728 	}
6729 
6730 	return 0;
6731 }
6732 
6733 static int cmp_relocs(const void *_a, const void *_b)
6734 {
6735 	const struct reloc_desc *a = _a;
6736 	const struct reloc_desc *b = _b;
6737 
6738 	if (a->insn_idx != b->insn_idx)
6739 		return a->insn_idx < b->insn_idx ? -1 : 1;
6740 
6741 	/* no two relocations should have the same insn_idx, but ... */
6742 	if (a->type != b->type)
6743 		return a->type < b->type ? -1 : 1;
6744 
6745 	return 0;
6746 }
6747 
6748 static int bpf_object__collect_relos(struct bpf_object *obj)
6749 {
6750 	int i, err;
6751 
6752 	for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6753 		GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6754 		Elf_Data *data = obj->efile.reloc_sects[i].data;
6755 		int idx = shdr->sh_info;
6756 
6757 		if (shdr->sh_type != SHT_REL) {
6758 			pr_warn("internal error at %d\n", __LINE__);
6759 			return -LIBBPF_ERRNO__INTERNAL;
6760 		}
6761 
6762 		if (idx == obj->efile.st_ops_shndx)
6763 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6764 		else if (idx == obj->efile.btf_maps_shndx)
6765 			err = bpf_object__collect_map_relos(obj, shdr, data);
6766 		else
6767 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6768 		if (err)
6769 			return err;
6770 	}
6771 
6772 	for (i = 0; i < obj->nr_programs; i++) {
6773 		struct bpf_program *p = &obj->programs[i];
6774 
6775 		if (!p->nr_reloc)
6776 			continue;
6777 
6778 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6779 	}
6780 	return 0;
6781 }
6782 
6783 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6784 {
6785 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6786 	    BPF_OP(insn->code) == BPF_CALL &&
6787 	    BPF_SRC(insn->code) == BPF_K &&
6788 	    insn->src_reg == 0 &&
6789 	    insn->dst_reg == 0) {
6790 		    *func_id = insn->imm;
6791 		    return true;
6792 	}
6793 	return false;
6794 }
6795 
6796 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6797 {
6798 	struct bpf_insn *insn = prog->insns;
6799 	enum bpf_func_id func_id;
6800 	int i;
6801 
6802 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6803 		if (!insn_is_helper_call(insn, &func_id))
6804 			continue;
6805 
6806 		/* on kernels that don't yet support
6807 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6808 		 * to bpf_probe_read() which works well for old kernels
6809 		 */
6810 		switch (func_id) {
6811 		case BPF_FUNC_probe_read_kernel:
6812 		case BPF_FUNC_probe_read_user:
6813 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6814 				insn->imm = BPF_FUNC_probe_read;
6815 			break;
6816 		case BPF_FUNC_probe_read_kernel_str:
6817 		case BPF_FUNC_probe_read_user_str:
6818 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6819 				insn->imm = BPF_FUNC_probe_read_str;
6820 			break;
6821 		default:
6822 			break;
6823 		}
6824 	}
6825 	return 0;
6826 }
6827 
6828 static int
6829 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6830 	     char *license, __u32 kern_version, int *pfd)
6831 {
6832 	struct bpf_prog_load_params load_attr = {};
6833 	char *cp, errmsg[STRERR_BUFSIZE];
6834 	size_t log_buf_size = 0;
6835 	char *log_buf = NULL;
6836 	int btf_fd, ret;
6837 
6838 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6839 		/*
6840 		 * The program type must be set.  Most likely we couldn't find a proper
6841 		 * section definition at load time, and thus we didn't infer the type.
6842 		 */
6843 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6844 			prog->name, prog->sec_name);
6845 		return -EINVAL;
6846 	}
6847 
6848 	if (!insns || !insns_cnt)
6849 		return -EINVAL;
6850 
6851 	load_attr.prog_type = prog->type;
6852 	/* old kernels might not support specifying expected_attach_type */
6853 	if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6854 	    prog->sec_def->is_exp_attach_type_optional)
6855 		load_attr.expected_attach_type = 0;
6856 	else
6857 		load_attr.expected_attach_type = prog->expected_attach_type;
6858 	if (kernel_supports(FEAT_PROG_NAME))
6859 		load_attr.name = prog->name;
6860 	load_attr.insns = insns;
6861 	load_attr.insn_cnt = insns_cnt;
6862 	load_attr.license = license;
6863 	load_attr.attach_btf_id = prog->attach_btf_id;
6864 	if (prog->attach_prog_fd)
6865 		load_attr.attach_prog_fd = prog->attach_prog_fd;
6866 	else
6867 		load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6868 	load_attr.attach_btf_id = prog->attach_btf_id;
6869 	load_attr.kern_version = kern_version;
6870 	load_attr.prog_ifindex = prog->prog_ifindex;
6871 
6872 	/* specify func_info/line_info only if kernel supports them */
6873 	btf_fd = bpf_object__btf_fd(prog->obj);
6874 	if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6875 		load_attr.prog_btf_fd = btf_fd;
6876 		load_attr.func_info = prog->func_info;
6877 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6878 		load_attr.func_info_cnt = prog->func_info_cnt;
6879 		load_attr.line_info = prog->line_info;
6880 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6881 		load_attr.line_info_cnt = prog->line_info_cnt;
6882 	}
6883 	load_attr.log_level = prog->log_level;
6884 	load_attr.prog_flags = prog->prog_flags;
6885 
6886 retry_load:
6887 	if (log_buf_size) {
6888 		log_buf = malloc(log_buf_size);
6889 		if (!log_buf)
6890 			return -ENOMEM;
6891 
6892 		*log_buf = 0;
6893 	}
6894 
6895 	load_attr.log_buf = log_buf;
6896 	load_attr.log_buf_sz = log_buf_size;
6897 	ret = libbpf__bpf_prog_load(&load_attr);
6898 
6899 	if (ret >= 0) {
6900 		if (log_buf && load_attr.log_level)
6901 			pr_debug("verifier log:\n%s", log_buf);
6902 
6903 		if (prog->obj->rodata_map_idx >= 0 &&
6904 		    kernel_supports(FEAT_PROG_BIND_MAP)) {
6905 			struct bpf_map *rodata_map =
6906 				&prog->obj->maps[prog->obj->rodata_map_idx];
6907 
6908 			if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6909 				cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6910 				pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6911 					prog->name, cp);
6912 				/* Don't fail hard if can't bind rodata. */
6913 			}
6914 		}
6915 
6916 		*pfd = ret;
6917 		ret = 0;
6918 		goto out;
6919 	}
6920 
6921 	if (!log_buf || errno == ENOSPC) {
6922 		log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6923 				   log_buf_size << 1);
6924 
6925 		free(log_buf);
6926 		goto retry_load;
6927 	}
6928 	ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6929 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6930 	pr_warn("load bpf program failed: %s\n", cp);
6931 	pr_perm_msg(ret);
6932 
6933 	if (log_buf && log_buf[0] != '\0') {
6934 		ret = -LIBBPF_ERRNO__VERIFY;
6935 		pr_warn("-- BEGIN DUMP LOG ---\n");
6936 		pr_warn("\n%s\n", log_buf);
6937 		pr_warn("-- END LOG --\n");
6938 	} else if (load_attr.insn_cnt >= BPF_MAXINSNS) {
6939 		pr_warn("Program too large (%zu insns), at most %d insns\n",
6940 			load_attr.insn_cnt, BPF_MAXINSNS);
6941 		ret = -LIBBPF_ERRNO__PROG2BIG;
6942 	} else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6943 		/* Wrong program type? */
6944 		int fd;
6945 
6946 		load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6947 		load_attr.expected_attach_type = 0;
6948 		load_attr.log_buf = NULL;
6949 		load_attr.log_buf_sz = 0;
6950 		fd = libbpf__bpf_prog_load(&load_attr);
6951 		if (fd >= 0) {
6952 			close(fd);
6953 			ret = -LIBBPF_ERRNO__PROGTYPE;
6954 			goto out;
6955 		}
6956 	}
6957 
6958 out:
6959 	free(log_buf);
6960 	return ret;
6961 }
6962 
6963 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id);
6964 
6965 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6966 {
6967 	int err = 0, fd, i;
6968 
6969 	if (prog->obj->loaded) {
6970 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6971 		return -EINVAL;
6972 	}
6973 
6974 	if ((prog->type == BPF_PROG_TYPE_TRACING ||
6975 	     prog->type == BPF_PROG_TYPE_LSM ||
6976 	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6977 		int btf_obj_fd = 0, btf_type_id = 0;
6978 
6979 		err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id);
6980 		if (err)
6981 			return err;
6982 
6983 		prog->attach_btf_obj_fd = btf_obj_fd;
6984 		prog->attach_btf_id = btf_type_id;
6985 	}
6986 
6987 	if (prog->instances.nr < 0 || !prog->instances.fds) {
6988 		if (prog->preprocessor) {
6989 			pr_warn("Internal error: can't load program '%s'\n",
6990 				prog->name);
6991 			return -LIBBPF_ERRNO__INTERNAL;
6992 		}
6993 
6994 		prog->instances.fds = malloc(sizeof(int));
6995 		if (!prog->instances.fds) {
6996 			pr_warn("Not enough memory for BPF fds\n");
6997 			return -ENOMEM;
6998 		}
6999 		prog->instances.nr = 1;
7000 		prog->instances.fds[0] = -1;
7001 	}
7002 
7003 	if (!prog->preprocessor) {
7004 		if (prog->instances.nr != 1) {
7005 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
7006 				prog->name, prog->instances.nr);
7007 		}
7008 		err = load_program(prog, prog->insns, prog->insns_cnt,
7009 				   license, kern_ver, &fd);
7010 		if (!err)
7011 			prog->instances.fds[0] = fd;
7012 		goto out;
7013 	}
7014 
7015 	for (i = 0; i < prog->instances.nr; i++) {
7016 		struct bpf_prog_prep_result result;
7017 		bpf_program_prep_t preprocessor = prog->preprocessor;
7018 
7019 		memset(&result, 0, sizeof(result));
7020 		err = preprocessor(prog, i, prog->insns,
7021 				   prog->insns_cnt, &result);
7022 		if (err) {
7023 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
7024 				i, prog->name);
7025 			goto out;
7026 		}
7027 
7028 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
7029 			pr_debug("Skip loading the %dth instance of program '%s'\n",
7030 				 i, prog->name);
7031 			prog->instances.fds[i] = -1;
7032 			if (result.pfd)
7033 				*result.pfd = -1;
7034 			continue;
7035 		}
7036 
7037 		err = load_program(prog, result.new_insn_ptr,
7038 				   result.new_insn_cnt, license, kern_ver, &fd);
7039 		if (err) {
7040 			pr_warn("Loading the %dth instance of program '%s' failed\n",
7041 				i, prog->name);
7042 			goto out;
7043 		}
7044 
7045 		if (result.pfd)
7046 			*result.pfd = fd;
7047 		prog->instances.fds[i] = fd;
7048 	}
7049 out:
7050 	if (err)
7051 		pr_warn("failed to load program '%s'\n", prog->name);
7052 	zfree(&prog->insns);
7053 	prog->insns_cnt = 0;
7054 	return err;
7055 }
7056 
7057 static int
7058 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7059 {
7060 	struct bpf_program *prog;
7061 	size_t i;
7062 	int err;
7063 
7064 	for (i = 0; i < obj->nr_programs; i++) {
7065 		prog = &obj->programs[i];
7066 		err = bpf_object__sanitize_prog(obj, prog);
7067 		if (err)
7068 			return err;
7069 	}
7070 
7071 	for (i = 0; i < obj->nr_programs; i++) {
7072 		prog = &obj->programs[i];
7073 		if (prog_is_subprog(obj, prog))
7074 			continue;
7075 		if (!prog->load) {
7076 			pr_debug("prog '%s': skipped loading\n", prog->name);
7077 			continue;
7078 		}
7079 		prog->log_level |= log_level;
7080 		err = bpf_program__load(prog, obj->license, obj->kern_version);
7081 		if (err)
7082 			return err;
7083 	}
7084 	return 0;
7085 }
7086 
7087 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7088 
7089 static struct bpf_object *
7090 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7091 		   const struct bpf_object_open_opts *opts)
7092 {
7093 	const char *obj_name, *kconfig;
7094 	struct bpf_program *prog;
7095 	struct bpf_object *obj;
7096 	char tmp_name[64];
7097 	int err;
7098 
7099 	if (elf_version(EV_CURRENT) == EV_NONE) {
7100 		pr_warn("failed to init libelf for %s\n",
7101 			path ? : "(mem buf)");
7102 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7103 	}
7104 
7105 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7106 		return ERR_PTR(-EINVAL);
7107 
7108 	obj_name = OPTS_GET(opts, object_name, NULL);
7109 	if (obj_buf) {
7110 		if (!obj_name) {
7111 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7112 				 (unsigned long)obj_buf,
7113 				 (unsigned long)obj_buf_sz);
7114 			obj_name = tmp_name;
7115 		}
7116 		path = obj_name;
7117 		pr_debug("loading object '%s' from buffer\n", obj_name);
7118 	}
7119 
7120 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7121 	if (IS_ERR(obj))
7122 		return obj;
7123 
7124 	kconfig = OPTS_GET(opts, kconfig, NULL);
7125 	if (kconfig) {
7126 		obj->kconfig = strdup(kconfig);
7127 		if (!obj->kconfig)
7128 			return ERR_PTR(-ENOMEM);
7129 	}
7130 
7131 	err = bpf_object__elf_init(obj);
7132 	err = err ? : bpf_object__check_endianness(obj);
7133 	err = err ? : bpf_object__elf_collect(obj);
7134 	err = err ? : bpf_object__collect_externs(obj);
7135 	err = err ? : bpf_object__finalize_btf(obj);
7136 	err = err ? : bpf_object__init_maps(obj, opts);
7137 	err = err ? : bpf_object__collect_relos(obj);
7138 	if (err)
7139 		goto out;
7140 	bpf_object__elf_finish(obj);
7141 
7142 	bpf_object__for_each_program(prog, obj) {
7143 		prog->sec_def = find_sec_def(prog->sec_name);
7144 		if (!prog->sec_def) {
7145 			/* couldn't guess, but user might manually specify */
7146 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7147 				prog->name, prog->sec_name);
7148 			continue;
7149 		}
7150 
7151 		if (prog->sec_def->is_sleepable)
7152 			prog->prog_flags |= BPF_F_SLEEPABLE;
7153 		bpf_program__set_type(prog, prog->sec_def->prog_type);
7154 		bpf_program__set_expected_attach_type(prog,
7155 				prog->sec_def->expected_attach_type);
7156 
7157 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7158 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7159 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7160 	}
7161 
7162 	return obj;
7163 out:
7164 	bpf_object__close(obj);
7165 	return ERR_PTR(err);
7166 }
7167 
7168 static struct bpf_object *
7169 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7170 {
7171 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7172 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
7173 	);
7174 
7175 	/* param validation */
7176 	if (!attr->file)
7177 		return NULL;
7178 
7179 	pr_debug("loading %s\n", attr->file);
7180 	return __bpf_object__open(attr->file, NULL, 0, &opts);
7181 }
7182 
7183 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7184 {
7185 	return __bpf_object__open_xattr(attr, 0);
7186 }
7187 
7188 struct bpf_object *bpf_object__open(const char *path)
7189 {
7190 	struct bpf_object_open_attr attr = {
7191 		.file		= path,
7192 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
7193 	};
7194 
7195 	return bpf_object__open_xattr(&attr);
7196 }
7197 
7198 struct bpf_object *
7199 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7200 {
7201 	if (!path)
7202 		return ERR_PTR(-EINVAL);
7203 
7204 	pr_debug("loading %s\n", path);
7205 
7206 	return __bpf_object__open(path, NULL, 0, opts);
7207 }
7208 
7209 struct bpf_object *
7210 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7211 		     const struct bpf_object_open_opts *opts)
7212 {
7213 	if (!obj_buf || obj_buf_sz == 0)
7214 		return ERR_PTR(-EINVAL);
7215 
7216 	return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
7217 }
7218 
7219 struct bpf_object *
7220 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7221 			const char *name)
7222 {
7223 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7224 		.object_name = name,
7225 		/* wrong default, but backwards-compatible */
7226 		.relaxed_maps = true,
7227 	);
7228 
7229 	/* returning NULL is wrong, but backwards-compatible */
7230 	if (!obj_buf || obj_buf_sz == 0)
7231 		return NULL;
7232 
7233 	return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7234 }
7235 
7236 int bpf_object__unload(struct bpf_object *obj)
7237 {
7238 	size_t i;
7239 
7240 	if (!obj)
7241 		return -EINVAL;
7242 
7243 	for (i = 0; i < obj->nr_maps; i++) {
7244 		zclose(obj->maps[i].fd);
7245 		if (obj->maps[i].st_ops)
7246 			zfree(&obj->maps[i].st_ops->kern_vdata);
7247 	}
7248 
7249 	for (i = 0; i < obj->nr_programs; i++)
7250 		bpf_program__unload(&obj->programs[i]);
7251 
7252 	return 0;
7253 }
7254 
7255 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7256 {
7257 	struct bpf_map *m;
7258 
7259 	bpf_object__for_each_map(m, obj) {
7260 		if (!bpf_map__is_internal(m))
7261 			continue;
7262 		if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7263 			pr_warn("kernel doesn't support global data\n");
7264 			return -ENOTSUP;
7265 		}
7266 		if (!kernel_supports(FEAT_ARRAY_MMAP))
7267 			m->def.map_flags ^= BPF_F_MMAPABLE;
7268 	}
7269 
7270 	return 0;
7271 }
7272 
7273 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7274 {
7275 	char sym_type, sym_name[500];
7276 	unsigned long long sym_addr;
7277 	struct extern_desc *ext;
7278 	int ret, err = 0;
7279 	FILE *f;
7280 
7281 	f = fopen("/proc/kallsyms", "r");
7282 	if (!f) {
7283 		err = -errno;
7284 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7285 		return err;
7286 	}
7287 
7288 	while (true) {
7289 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7290 			     &sym_addr, &sym_type, sym_name);
7291 		if (ret == EOF && feof(f))
7292 			break;
7293 		if (ret != 3) {
7294 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7295 			err = -EINVAL;
7296 			goto out;
7297 		}
7298 
7299 		ext = find_extern_by_name(obj, sym_name);
7300 		if (!ext || ext->type != EXT_KSYM)
7301 			continue;
7302 
7303 		if (ext->is_set && ext->ksym.addr != sym_addr) {
7304 			pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7305 				sym_name, ext->ksym.addr, sym_addr);
7306 			err = -EINVAL;
7307 			goto out;
7308 		}
7309 		if (!ext->is_set) {
7310 			ext->is_set = true;
7311 			ext->ksym.addr = sym_addr;
7312 			pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7313 		}
7314 	}
7315 
7316 out:
7317 	fclose(f);
7318 	return err;
7319 }
7320 
7321 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7322 {
7323 	struct extern_desc *ext;
7324 	struct btf *btf;
7325 	int i, j, id, btf_fd, err;
7326 
7327 	for (i = 0; i < obj->nr_extern; i++) {
7328 		const struct btf_type *targ_var, *targ_type;
7329 		__u32 targ_type_id, local_type_id;
7330 		const char *targ_var_name;
7331 		int ret;
7332 
7333 		ext = &obj->externs[i];
7334 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7335 			continue;
7336 
7337 		btf = obj->btf_vmlinux;
7338 		btf_fd = 0;
7339 		id = btf__find_by_name_kind(btf, ext->name, BTF_KIND_VAR);
7340 		if (id == -ENOENT) {
7341 			err = load_module_btfs(obj);
7342 			if (err)
7343 				return err;
7344 
7345 			for (j = 0; j < obj->btf_module_cnt; j++) {
7346 				btf = obj->btf_modules[j].btf;
7347 				/* we assume module BTF FD is always >0 */
7348 				btf_fd = obj->btf_modules[j].fd;
7349 				id = btf__find_by_name_kind(btf, ext->name, BTF_KIND_VAR);
7350 				if (id != -ENOENT)
7351 					break;
7352 			}
7353 		}
7354 		if (id <= 0) {
7355 			pr_warn("extern (ksym) '%s': failed to find BTF ID in kernel BTF(s).\n",
7356 				ext->name);
7357 			return -ESRCH;
7358 		}
7359 
7360 		/* find local type_id */
7361 		local_type_id = ext->ksym.type_id;
7362 
7363 		/* find target type_id */
7364 		targ_var = btf__type_by_id(btf, id);
7365 		targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7366 		targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7367 
7368 		ret = bpf_core_types_are_compat(obj->btf, local_type_id,
7369 						btf, targ_type_id);
7370 		if (ret <= 0) {
7371 			const struct btf_type *local_type;
7372 			const char *targ_name, *local_name;
7373 
7374 			local_type = btf__type_by_id(obj->btf, local_type_id);
7375 			local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7376 			targ_name = btf__name_by_offset(btf, targ_type->name_off);
7377 
7378 			pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7379 				ext->name, local_type_id,
7380 				btf_kind_str(local_type), local_name, targ_type_id,
7381 				btf_kind_str(targ_type), targ_name);
7382 			return -EINVAL;
7383 		}
7384 
7385 		ext->is_set = true;
7386 		ext->ksym.kernel_btf_obj_fd = btf_fd;
7387 		ext->ksym.kernel_btf_id = id;
7388 		pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n",
7389 			 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7390 	}
7391 	return 0;
7392 }
7393 
7394 static int bpf_object__resolve_externs(struct bpf_object *obj,
7395 				       const char *extra_kconfig)
7396 {
7397 	bool need_config = false, need_kallsyms = false;
7398 	bool need_vmlinux_btf = false;
7399 	struct extern_desc *ext;
7400 	void *kcfg_data = NULL;
7401 	int err, i;
7402 
7403 	if (obj->nr_extern == 0)
7404 		return 0;
7405 
7406 	if (obj->kconfig_map_idx >= 0)
7407 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7408 
7409 	for (i = 0; i < obj->nr_extern; i++) {
7410 		ext = &obj->externs[i];
7411 
7412 		if (ext->type == EXT_KCFG &&
7413 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7414 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7415 			__u32 kver = get_kernel_version();
7416 
7417 			if (!kver) {
7418 				pr_warn("failed to get kernel version\n");
7419 				return -EINVAL;
7420 			}
7421 			err = set_kcfg_value_num(ext, ext_val, kver);
7422 			if (err)
7423 				return err;
7424 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7425 		} else if (ext->type == EXT_KCFG &&
7426 			   strncmp(ext->name, "CONFIG_", 7) == 0) {
7427 			need_config = true;
7428 		} else if (ext->type == EXT_KSYM) {
7429 			if (ext->ksym.type_id)
7430 				need_vmlinux_btf = true;
7431 			else
7432 				need_kallsyms = true;
7433 		} else {
7434 			pr_warn("unrecognized extern '%s'\n", ext->name);
7435 			return -EINVAL;
7436 		}
7437 	}
7438 	if (need_config && extra_kconfig) {
7439 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7440 		if (err)
7441 			return -EINVAL;
7442 		need_config = false;
7443 		for (i = 0; i < obj->nr_extern; i++) {
7444 			ext = &obj->externs[i];
7445 			if (ext->type == EXT_KCFG && !ext->is_set) {
7446 				need_config = true;
7447 				break;
7448 			}
7449 		}
7450 	}
7451 	if (need_config) {
7452 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7453 		if (err)
7454 			return -EINVAL;
7455 	}
7456 	if (need_kallsyms) {
7457 		err = bpf_object__read_kallsyms_file(obj);
7458 		if (err)
7459 			return -EINVAL;
7460 	}
7461 	if (need_vmlinux_btf) {
7462 		err = bpf_object__resolve_ksyms_btf_id(obj);
7463 		if (err)
7464 			return -EINVAL;
7465 	}
7466 	for (i = 0; i < obj->nr_extern; i++) {
7467 		ext = &obj->externs[i];
7468 
7469 		if (!ext->is_set && !ext->is_weak) {
7470 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7471 			return -ESRCH;
7472 		} else if (!ext->is_set) {
7473 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7474 				 ext->name);
7475 		}
7476 	}
7477 
7478 	return 0;
7479 }
7480 
7481 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7482 {
7483 	struct bpf_object *obj;
7484 	int err, i;
7485 
7486 	if (!attr)
7487 		return -EINVAL;
7488 	obj = attr->obj;
7489 	if (!obj)
7490 		return -EINVAL;
7491 
7492 	if (obj->loaded) {
7493 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7494 		return -EINVAL;
7495 	}
7496 
7497 	err = bpf_object__probe_loading(obj);
7498 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7499 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7500 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7501 	err = err ? : bpf_object__sanitize_maps(obj);
7502 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7503 	err = err ? : bpf_object__create_maps(obj);
7504 	err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7505 	err = err ? : bpf_object__load_progs(obj, attr->log_level);
7506 
7507 	/* clean up module BTFs */
7508 	for (i = 0; i < obj->btf_module_cnt; i++) {
7509 		close(obj->btf_modules[i].fd);
7510 		btf__free(obj->btf_modules[i].btf);
7511 		free(obj->btf_modules[i].name);
7512 	}
7513 	free(obj->btf_modules);
7514 
7515 	/* clean up vmlinux BTF */
7516 	btf__free(obj->btf_vmlinux);
7517 	obj->btf_vmlinux = NULL;
7518 
7519 	obj->loaded = true; /* doesn't matter if successfully or not */
7520 
7521 	if (err)
7522 		goto out;
7523 
7524 	return 0;
7525 out:
7526 	/* unpin any maps that were auto-pinned during load */
7527 	for (i = 0; i < obj->nr_maps; i++)
7528 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7529 			bpf_map__unpin(&obj->maps[i], NULL);
7530 
7531 	bpf_object__unload(obj);
7532 	pr_warn("failed to load object '%s'\n", obj->path);
7533 	return err;
7534 }
7535 
7536 int bpf_object__load(struct bpf_object *obj)
7537 {
7538 	struct bpf_object_load_attr attr = {
7539 		.obj = obj,
7540 	};
7541 
7542 	return bpf_object__load_xattr(&attr);
7543 }
7544 
7545 static int make_parent_dir(const char *path)
7546 {
7547 	char *cp, errmsg[STRERR_BUFSIZE];
7548 	char *dname, *dir;
7549 	int err = 0;
7550 
7551 	dname = strdup(path);
7552 	if (dname == NULL)
7553 		return -ENOMEM;
7554 
7555 	dir = dirname(dname);
7556 	if (mkdir(dir, 0700) && errno != EEXIST)
7557 		err = -errno;
7558 
7559 	free(dname);
7560 	if (err) {
7561 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7562 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7563 	}
7564 	return err;
7565 }
7566 
7567 static int check_path(const char *path)
7568 {
7569 	char *cp, errmsg[STRERR_BUFSIZE];
7570 	struct statfs st_fs;
7571 	char *dname, *dir;
7572 	int err = 0;
7573 
7574 	if (path == NULL)
7575 		return -EINVAL;
7576 
7577 	dname = strdup(path);
7578 	if (dname == NULL)
7579 		return -ENOMEM;
7580 
7581 	dir = dirname(dname);
7582 	if (statfs(dir, &st_fs)) {
7583 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7584 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7585 		err = -errno;
7586 	}
7587 	free(dname);
7588 
7589 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7590 		pr_warn("specified path %s is not on BPF FS\n", path);
7591 		err = -EINVAL;
7592 	}
7593 
7594 	return err;
7595 }
7596 
7597 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7598 			      int instance)
7599 {
7600 	char *cp, errmsg[STRERR_BUFSIZE];
7601 	int err;
7602 
7603 	err = make_parent_dir(path);
7604 	if (err)
7605 		return err;
7606 
7607 	err = check_path(path);
7608 	if (err)
7609 		return err;
7610 
7611 	if (prog == NULL) {
7612 		pr_warn("invalid program pointer\n");
7613 		return -EINVAL;
7614 	}
7615 
7616 	if (instance < 0 || instance >= prog->instances.nr) {
7617 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7618 			instance, prog->name, prog->instances.nr);
7619 		return -EINVAL;
7620 	}
7621 
7622 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7623 		err = -errno;
7624 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7625 		pr_warn("failed to pin program: %s\n", cp);
7626 		return err;
7627 	}
7628 	pr_debug("pinned program '%s'\n", path);
7629 
7630 	return 0;
7631 }
7632 
7633 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7634 				int instance)
7635 {
7636 	int err;
7637 
7638 	err = check_path(path);
7639 	if (err)
7640 		return err;
7641 
7642 	if (prog == NULL) {
7643 		pr_warn("invalid program pointer\n");
7644 		return -EINVAL;
7645 	}
7646 
7647 	if (instance < 0 || instance >= prog->instances.nr) {
7648 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7649 			instance, prog->name, prog->instances.nr);
7650 		return -EINVAL;
7651 	}
7652 
7653 	err = unlink(path);
7654 	if (err != 0)
7655 		return -errno;
7656 	pr_debug("unpinned program '%s'\n", path);
7657 
7658 	return 0;
7659 }
7660 
7661 int bpf_program__pin(struct bpf_program *prog, const char *path)
7662 {
7663 	int i, err;
7664 
7665 	err = make_parent_dir(path);
7666 	if (err)
7667 		return err;
7668 
7669 	err = check_path(path);
7670 	if (err)
7671 		return err;
7672 
7673 	if (prog == NULL) {
7674 		pr_warn("invalid program pointer\n");
7675 		return -EINVAL;
7676 	}
7677 
7678 	if (prog->instances.nr <= 0) {
7679 		pr_warn("no instances of prog %s to pin\n", prog->name);
7680 		return -EINVAL;
7681 	}
7682 
7683 	if (prog->instances.nr == 1) {
7684 		/* don't create subdirs when pinning single instance */
7685 		return bpf_program__pin_instance(prog, path, 0);
7686 	}
7687 
7688 	for (i = 0; i < prog->instances.nr; i++) {
7689 		char buf[PATH_MAX];
7690 		int len;
7691 
7692 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7693 		if (len < 0) {
7694 			err = -EINVAL;
7695 			goto err_unpin;
7696 		} else if (len >= PATH_MAX) {
7697 			err = -ENAMETOOLONG;
7698 			goto err_unpin;
7699 		}
7700 
7701 		err = bpf_program__pin_instance(prog, buf, i);
7702 		if (err)
7703 			goto err_unpin;
7704 	}
7705 
7706 	return 0;
7707 
7708 err_unpin:
7709 	for (i = i - 1; i >= 0; i--) {
7710 		char buf[PATH_MAX];
7711 		int len;
7712 
7713 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7714 		if (len < 0)
7715 			continue;
7716 		else if (len >= PATH_MAX)
7717 			continue;
7718 
7719 		bpf_program__unpin_instance(prog, buf, i);
7720 	}
7721 
7722 	rmdir(path);
7723 
7724 	return err;
7725 }
7726 
7727 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7728 {
7729 	int i, err;
7730 
7731 	err = check_path(path);
7732 	if (err)
7733 		return err;
7734 
7735 	if (prog == NULL) {
7736 		pr_warn("invalid program pointer\n");
7737 		return -EINVAL;
7738 	}
7739 
7740 	if (prog->instances.nr <= 0) {
7741 		pr_warn("no instances of prog %s to pin\n", prog->name);
7742 		return -EINVAL;
7743 	}
7744 
7745 	if (prog->instances.nr == 1) {
7746 		/* don't create subdirs when pinning single instance */
7747 		return bpf_program__unpin_instance(prog, path, 0);
7748 	}
7749 
7750 	for (i = 0; i < prog->instances.nr; i++) {
7751 		char buf[PATH_MAX];
7752 		int len;
7753 
7754 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7755 		if (len < 0)
7756 			return -EINVAL;
7757 		else if (len >= PATH_MAX)
7758 			return -ENAMETOOLONG;
7759 
7760 		err = bpf_program__unpin_instance(prog, buf, i);
7761 		if (err)
7762 			return err;
7763 	}
7764 
7765 	err = rmdir(path);
7766 	if (err)
7767 		return -errno;
7768 
7769 	return 0;
7770 }
7771 
7772 int bpf_map__pin(struct bpf_map *map, const char *path)
7773 {
7774 	char *cp, errmsg[STRERR_BUFSIZE];
7775 	int err;
7776 
7777 	if (map == NULL) {
7778 		pr_warn("invalid map pointer\n");
7779 		return -EINVAL;
7780 	}
7781 
7782 	if (map->pin_path) {
7783 		if (path && strcmp(path, map->pin_path)) {
7784 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7785 				bpf_map__name(map), map->pin_path, path);
7786 			return -EINVAL;
7787 		} else if (map->pinned) {
7788 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7789 				 bpf_map__name(map), map->pin_path);
7790 			return 0;
7791 		}
7792 	} else {
7793 		if (!path) {
7794 			pr_warn("missing a path to pin map '%s' at\n",
7795 				bpf_map__name(map));
7796 			return -EINVAL;
7797 		} else if (map->pinned) {
7798 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7799 			return -EEXIST;
7800 		}
7801 
7802 		map->pin_path = strdup(path);
7803 		if (!map->pin_path) {
7804 			err = -errno;
7805 			goto out_err;
7806 		}
7807 	}
7808 
7809 	err = make_parent_dir(map->pin_path);
7810 	if (err)
7811 		return err;
7812 
7813 	err = check_path(map->pin_path);
7814 	if (err)
7815 		return err;
7816 
7817 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7818 		err = -errno;
7819 		goto out_err;
7820 	}
7821 
7822 	map->pinned = true;
7823 	pr_debug("pinned map '%s'\n", map->pin_path);
7824 
7825 	return 0;
7826 
7827 out_err:
7828 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7829 	pr_warn("failed to pin map: %s\n", cp);
7830 	return err;
7831 }
7832 
7833 int bpf_map__unpin(struct bpf_map *map, const char *path)
7834 {
7835 	int err;
7836 
7837 	if (map == NULL) {
7838 		pr_warn("invalid map pointer\n");
7839 		return -EINVAL;
7840 	}
7841 
7842 	if (map->pin_path) {
7843 		if (path && strcmp(path, map->pin_path)) {
7844 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7845 				bpf_map__name(map), map->pin_path, path);
7846 			return -EINVAL;
7847 		}
7848 		path = map->pin_path;
7849 	} else if (!path) {
7850 		pr_warn("no path to unpin map '%s' from\n",
7851 			bpf_map__name(map));
7852 		return -EINVAL;
7853 	}
7854 
7855 	err = check_path(path);
7856 	if (err)
7857 		return err;
7858 
7859 	err = unlink(path);
7860 	if (err != 0)
7861 		return -errno;
7862 
7863 	map->pinned = false;
7864 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7865 
7866 	return 0;
7867 }
7868 
7869 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7870 {
7871 	char *new = NULL;
7872 
7873 	if (path) {
7874 		new = strdup(path);
7875 		if (!new)
7876 			return -errno;
7877 	}
7878 
7879 	free(map->pin_path);
7880 	map->pin_path = new;
7881 	return 0;
7882 }
7883 
7884 const char *bpf_map__get_pin_path(const struct bpf_map *map)
7885 {
7886 	return map->pin_path;
7887 }
7888 
7889 bool bpf_map__is_pinned(const struct bpf_map *map)
7890 {
7891 	return map->pinned;
7892 }
7893 
7894 static void sanitize_pin_path(char *s)
7895 {
7896 	/* bpffs disallows periods in path names */
7897 	while (*s) {
7898 		if (*s == '.')
7899 			*s = '_';
7900 		s++;
7901 	}
7902 }
7903 
7904 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7905 {
7906 	struct bpf_map *map;
7907 	int err;
7908 
7909 	if (!obj)
7910 		return -ENOENT;
7911 
7912 	if (!obj->loaded) {
7913 		pr_warn("object not yet loaded; load it first\n");
7914 		return -ENOENT;
7915 	}
7916 
7917 	bpf_object__for_each_map(map, obj) {
7918 		char *pin_path = NULL;
7919 		char buf[PATH_MAX];
7920 
7921 		if (path) {
7922 			int len;
7923 
7924 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7925 				       bpf_map__name(map));
7926 			if (len < 0) {
7927 				err = -EINVAL;
7928 				goto err_unpin_maps;
7929 			} else if (len >= PATH_MAX) {
7930 				err = -ENAMETOOLONG;
7931 				goto err_unpin_maps;
7932 			}
7933 			sanitize_pin_path(buf);
7934 			pin_path = buf;
7935 		} else if (!map->pin_path) {
7936 			continue;
7937 		}
7938 
7939 		err = bpf_map__pin(map, pin_path);
7940 		if (err)
7941 			goto err_unpin_maps;
7942 	}
7943 
7944 	return 0;
7945 
7946 err_unpin_maps:
7947 	while ((map = bpf_map__prev(map, obj))) {
7948 		if (!map->pin_path)
7949 			continue;
7950 
7951 		bpf_map__unpin(map, NULL);
7952 	}
7953 
7954 	return err;
7955 }
7956 
7957 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7958 {
7959 	struct bpf_map *map;
7960 	int err;
7961 
7962 	if (!obj)
7963 		return -ENOENT;
7964 
7965 	bpf_object__for_each_map(map, obj) {
7966 		char *pin_path = NULL;
7967 		char buf[PATH_MAX];
7968 
7969 		if (path) {
7970 			int len;
7971 
7972 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
7973 				       bpf_map__name(map));
7974 			if (len < 0)
7975 				return -EINVAL;
7976 			else if (len >= PATH_MAX)
7977 				return -ENAMETOOLONG;
7978 			sanitize_pin_path(buf);
7979 			pin_path = buf;
7980 		} else if (!map->pin_path) {
7981 			continue;
7982 		}
7983 
7984 		err = bpf_map__unpin(map, pin_path);
7985 		if (err)
7986 			return err;
7987 	}
7988 
7989 	return 0;
7990 }
7991 
7992 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7993 {
7994 	struct bpf_program *prog;
7995 	int err;
7996 
7997 	if (!obj)
7998 		return -ENOENT;
7999 
8000 	if (!obj->loaded) {
8001 		pr_warn("object not yet loaded; load it first\n");
8002 		return -ENOENT;
8003 	}
8004 
8005 	bpf_object__for_each_program(prog, obj) {
8006 		char buf[PATH_MAX];
8007 		int len;
8008 
8009 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8010 			       prog->pin_name);
8011 		if (len < 0) {
8012 			err = -EINVAL;
8013 			goto err_unpin_programs;
8014 		} else if (len >= PATH_MAX) {
8015 			err = -ENAMETOOLONG;
8016 			goto err_unpin_programs;
8017 		}
8018 
8019 		err = bpf_program__pin(prog, buf);
8020 		if (err)
8021 			goto err_unpin_programs;
8022 	}
8023 
8024 	return 0;
8025 
8026 err_unpin_programs:
8027 	while ((prog = bpf_program__prev(prog, obj))) {
8028 		char buf[PATH_MAX];
8029 		int len;
8030 
8031 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8032 			       prog->pin_name);
8033 		if (len < 0)
8034 			continue;
8035 		else if (len >= PATH_MAX)
8036 			continue;
8037 
8038 		bpf_program__unpin(prog, buf);
8039 	}
8040 
8041 	return err;
8042 }
8043 
8044 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8045 {
8046 	struct bpf_program *prog;
8047 	int err;
8048 
8049 	if (!obj)
8050 		return -ENOENT;
8051 
8052 	bpf_object__for_each_program(prog, obj) {
8053 		char buf[PATH_MAX];
8054 		int len;
8055 
8056 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8057 			       prog->pin_name);
8058 		if (len < 0)
8059 			return -EINVAL;
8060 		else if (len >= PATH_MAX)
8061 			return -ENAMETOOLONG;
8062 
8063 		err = bpf_program__unpin(prog, buf);
8064 		if (err)
8065 			return err;
8066 	}
8067 
8068 	return 0;
8069 }
8070 
8071 int bpf_object__pin(struct bpf_object *obj, const char *path)
8072 {
8073 	int err;
8074 
8075 	err = bpf_object__pin_maps(obj, path);
8076 	if (err)
8077 		return err;
8078 
8079 	err = bpf_object__pin_programs(obj, path);
8080 	if (err) {
8081 		bpf_object__unpin_maps(obj, path);
8082 		return err;
8083 	}
8084 
8085 	return 0;
8086 }
8087 
8088 static void bpf_map__destroy(struct bpf_map *map)
8089 {
8090 	if (map->clear_priv)
8091 		map->clear_priv(map, map->priv);
8092 	map->priv = NULL;
8093 	map->clear_priv = NULL;
8094 
8095 	if (map->inner_map) {
8096 		bpf_map__destroy(map->inner_map);
8097 		zfree(&map->inner_map);
8098 	}
8099 
8100 	zfree(&map->init_slots);
8101 	map->init_slots_sz = 0;
8102 
8103 	if (map->mmaped) {
8104 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8105 		map->mmaped = NULL;
8106 	}
8107 
8108 	if (map->st_ops) {
8109 		zfree(&map->st_ops->data);
8110 		zfree(&map->st_ops->progs);
8111 		zfree(&map->st_ops->kern_func_off);
8112 		zfree(&map->st_ops);
8113 	}
8114 
8115 	zfree(&map->name);
8116 	zfree(&map->pin_path);
8117 
8118 	if (map->fd >= 0)
8119 		zclose(map->fd);
8120 }
8121 
8122 void bpf_object__close(struct bpf_object *obj)
8123 {
8124 	size_t i;
8125 
8126 	if (IS_ERR_OR_NULL(obj))
8127 		return;
8128 
8129 	if (obj->clear_priv)
8130 		obj->clear_priv(obj, obj->priv);
8131 
8132 	bpf_object__elf_finish(obj);
8133 	bpf_object__unload(obj);
8134 	btf__free(obj->btf);
8135 	btf_ext__free(obj->btf_ext);
8136 
8137 	for (i = 0; i < obj->nr_maps; i++)
8138 		bpf_map__destroy(&obj->maps[i]);
8139 
8140 	zfree(&obj->kconfig);
8141 	zfree(&obj->externs);
8142 	obj->nr_extern = 0;
8143 
8144 	zfree(&obj->maps);
8145 	obj->nr_maps = 0;
8146 
8147 	if (obj->programs && obj->nr_programs) {
8148 		for (i = 0; i < obj->nr_programs; i++)
8149 			bpf_program__exit(&obj->programs[i]);
8150 	}
8151 	zfree(&obj->programs);
8152 
8153 	list_del(&obj->list);
8154 	free(obj);
8155 }
8156 
8157 struct bpf_object *
8158 bpf_object__next(struct bpf_object *prev)
8159 {
8160 	struct bpf_object *next;
8161 
8162 	if (!prev)
8163 		next = list_first_entry(&bpf_objects_list,
8164 					struct bpf_object,
8165 					list);
8166 	else
8167 		next = list_next_entry(prev, list);
8168 
8169 	/* Empty list is noticed here so don't need checking on entry. */
8170 	if (&next->list == &bpf_objects_list)
8171 		return NULL;
8172 
8173 	return next;
8174 }
8175 
8176 const char *bpf_object__name(const struct bpf_object *obj)
8177 {
8178 	return obj ? obj->name : ERR_PTR(-EINVAL);
8179 }
8180 
8181 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8182 {
8183 	return obj ? obj->kern_version : 0;
8184 }
8185 
8186 struct btf *bpf_object__btf(const struct bpf_object *obj)
8187 {
8188 	return obj ? obj->btf : NULL;
8189 }
8190 
8191 int bpf_object__btf_fd(const struct bpf_object *obj)
8192 {
8193 	return obj->btf ? btf__fd(obj->btf) : -1;
8194 }
8195 
8196 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8197 			 bpf_object_clear_priv_t clear_priv)
8198 {
8199 	if (obj->priv && obj->clear_priv)
8200 		obj->clear_priv(obj, obj->priv);
8201 
8202 	obj->priv = priv;
8203 	obj->clear_priv = clear_priv;
8204 	return 0;
8205 }
8206 
8207 void *bpf_object__priv(const struct bpf_object *obj)
8208 {
8209 	return obj ? obj->priv : ERR_PTR(-EINVAL);
8210 }
8211 
8212 static struct bpf_program *
8213 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8214 		    bool forward)
8215 {
8216 	size_t nr_programs = obj->nr_programs;
8217 	ssize_t idx;
8218 
8219 	if (!nr_programs)
8220 		return NULL;
8221 
8222 	if (!p)
8223 		/* Iter from the beginning */
8224 		return forward ? &obj->programs[0] :
8225 			&obj->programs[nr_programs - 1];
8226 
8227 	if (p->obj != obj) {
8228 		pr_warn("error: program handler doesn't match object\n");
8229 		return NULL;
8230 	}
8231 
8232 	idx = (p - obj->programs) + (forward ? 1 : -1);
8233 	if (idx >= obj->nr_programs || idx < 0)
8234 		return NULL;
8235 	return &obj->programs[idx];
8236 }
8237 
8238 struct bpf_program *
8239 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8240 {
8241 	struct bpf_program *prog = prev;
8242 
8243 	do {
8244 		prog = __bpf_program__iter(prog, obj, true);
8245 	} while (prog && prog_is_subprog(obj, prog));
8246 
8247 	return prog;
8248 }
8249 
8250 struct bpf_program *
8251 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8252 {
8253 	struct bpf_program *prog = next;
8254 
8255 	do {
8256 		prog = __bpf_program__iter(prog, obj, false);
8257 	} while (prog && prog_is_subprog(obj, prog));
8258 
8259 	return prog;
8260 }
8261 
8262 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8263 			  bpf_program_clear_priv_t clear_priv)
8264 {
8265 	if (prog->priv && prog->clear_priv)
8266 		prog->clear_priv(prog, prog->priv);
8267 
8268 	prog->priv = priv;
8269 	prog->clear_priv = clear_priv;
8270 	return 0;
8271 }
8272 
8273 void *bpf_program__priv(const struct bpf_program *prog)
8274 {
8275 	return prog ? prog->priv : ERR_PTR(-EINVAL);
8276 }
8277 
8278 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8279 {
8280 	prog->prog_ifindex = ifindex;
8281 }
8282 
8283 const char *bpf_program__name(const struct bpf_program *prog)
8284 {
8285 	return prog->name;
8286 }
8287 
8288 const char *bpf_program__section_name(const struct bpf_program *prog)
8289 {
8290 	return prog->sec_name;
8291 }
8292 
8293 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8294 {
8295 	const char *title;
8296 
8297 	title = prog->sec_name;
8298 	if (needs_copy) {
8299 		title = strdup(title);
8300 		if (!title) {
8301 			pr_warn("failed to strdup program title\n");
8302 			return ERR_PTR(-ENOMEM);
8303 		}
8304 	}
8305 
8306 	return title;
8307 }
8308 
8309 bool bpf_program__autoload(const struct bpf_program *prog)
8310 {
8311 	return prog->load;
8312 }
8313 
8314 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8315 {
8316 	if (prog->obj->loaded)
8317 		return -EINVAL;
8318 
8319 	prog->load = autoload;
8320 	return 0;
8321 }
8322 
8323 int bpf_program__fd(const struct bpf_program *prog)
8324 {
8325 	return bpf_program__nth_fd(prog, 0);
8326 }
8327 
8328 size_t bpf_program__size(const struct bpf_program *prog)
8329 {
8330 	return prog->insns_cnt * BPF_INSN_SZ;
8331 }
8332 
8333 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8334 			  bpf_program_prep_t prep)
8335 {
8336 	int *instances_fds;
8337 
8338 	if (nr_instances <= 0 || !prep)
8339 		return -EINVAL;
8340 
8341 	if (prog->instances.nr > 0 || prog->instances.fds) {
8342 		pr_warn("Can't set pre-processor after loading\n");
8343 		return -EINVAL;
8344 	}
8345 
8346 	instances_fds = malloc(sizeof(int) * nr_instances);
8347 	if (!instances_fds) {
8348 		pr_warn("alloc memory failed for fds\n");
8349 		return -ENOMEM;
8350 	}
8351 
8352 	/* fill all fd with -1 */
8353 	memset(instances_fds, -1, sizeof(int) * nr_instances);
8354 
8355 	prog->instances.nr = nr_instances;
8356 	prog->instances.fds = instances_fds;
8357 	prog->preprocessor = prep;
8358 	return 0;
8359 }
8360 
8361 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8362 {
8363 	int fd;
8364 
8365 	if (!prog)
8366 		return -EINVAL;
8367 
8368 	if (n >= prog->instances.nr || n < 0) {
8369 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8370 			n, prog->name, prog->instances.nr);
8371 		return -EINVAL;
8372 	}
8373 
8374 	fd = prog->instances.fds[n];
8375 	if (fd < 0) {
8376 		pr_warn("%dth instance of program '%s' is invalid\n",
8377 			n, prog->name);
8378 		return -ENOENT;
8379 	}
8380 
8381 	return fd;
8382 }
8383 
8384 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
8385 {
8386 	return prog->type;
8387 }
8388 
8389 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8390 {
8391 	prog->type = type;
8392 }
8393 
8394 static bool bpf_program__is_type(const struct bpf_program *prog,
8395 				 enum bpf_prog_type type)
8396 {
8397 	return prog ? (prog->type == type) : false;
8398 }
8399 
8400 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8401 int bpf_program__set_##NAME(struct bpf_program *prog)		\
8402 {								\
8403 	if (!prog)						\
8404 		return -EINVAL;					\
8405 	bpf_program__set_type(prog, TYPE);			\
8406 	return 0;						\
8407 }								\
8408 								\
8409 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
8410 {								\
8411 	return bpf_program__is_type(prog, TYPE);		\
8412 }								\
8413 
8414 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8415 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8416 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8417 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8418 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8419 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8420 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8421 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8422 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8423 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8424 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8425 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8426 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8427 
8428 enum bpf_attach_type
8429 bpf_program__get_expected_attach_type(struct bpf_program *prog)
8430 {
8431 	return prog->expected_attach_type;
8432 }
8433 
8434 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8435 					   enum bpf_attach_type type)
8436 {
8437 	prog->expected_attach_type = type;
8438 }
8439 
8440 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,	    \
8441 			  attachable, attach_btf)			    \
8442 	{								    \
8443 		.sec = string,						    \
8444 		.len = sizeof(string) - 1,				    \
8445 		.prog_type = ptype,					    \
8446 		.expected_attach_type = eatype,				    \
8447 		.is_exp_attach_type_optional = eatype_optional,		    \
8448 		.is_attachable = attachable,				    \
8449 		.is_attach_btf = attach_btf,				    \
8450 	}
8451 
8452 /* Programs that can NOT be attached. */
8453 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8454 
8455 /* Programs that can be attached. */
8456 #define BPF_APROG_SEC(string, ptype, atype) \
8457 	BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8458 
8459 /* Programs that must specify expected attach type at load time. */
8460 #define BPF_EAPROG_SEC(string, ptype, eatype) \
8461 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8462 
8463 /* Programs that use BTF to identify attach point */
8464 #define BPF_PROG_BTF(string, ptype, eatype) \
8465 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8466 
8467 /* Programs that can be attached but attach type can't be identified by section
8468  * name. Kept for backward compatibility.
8469  */
8470 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8471 
8472 #define SEC_DEF(sec_pfx, ptype, ...) {					    \
8473 	.sec = sec_pfx,							    \
8474 	.len = sizeof(sec_pfx) - 1,					    \
8475 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8476 	__VA_ARGS__							    \
8477 }
8478 
8479 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8480 				      struct bpf_program *prog);
8481 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8482 				  struct bpf_program *prog);
8483 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8484 				      struct bpf_program *prog);
8485 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8486 				     struct bpf_program *prog);
8487 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8488 				   struct bpf_program *prog);
8489 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8490 				    struct bpf_program *prog);
8491 
8492 static const struct bpf_sec_def section_defs[] = {
8493 	BPF_PROG_SEC("socket",			BPF_PROG_TYPE_SOCKET_FILTER),
8494 	BPF_PROG_SEC("sk_reuseport",		BPF_PROG_TYPE_SK_REUSEPORT),
8495 	SEC_DEF("kprobe/", KPROBE,
8496 		.attach_fn = attach_kprobe),
8497 	BPF_PROG_SEC("uprobe/",			BPF_PROG_TYPE_KPROBE),
8498 	SEC_DEF("kretprobe/", KPROBE,
8499 		.attach_fn = attach_kprobe),
8500 	BPF_PROG_SEC("uretprobe/",		BPF_PROG_TYPE_KPROBE),
8501 	BPF_PROG_SEC("classifier",		BPF_PROG_TYPE_SCHED_CLS),
8502 	BPF_PROG_SEC("action",			BPF_PROG_TYPE_SCHED_ACT),
8503 	SEC_DEF("tracepoint/", TRACEPOINT,
8504 		.attach_fn = attach_tp),
8505 	SEC_DEF("tp/", TRACEPOINT,
8506 		.attach_fn = attach_tp),
8507 	SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8508 		.attach_fn = attach_raw_tp),
8509 	SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8510 		.attach_fn = attach_raw_tp),
8511 	SEC_DEF("tp_btf/", TRACING,
8512 		.expected_attach_type = BPF_TRACE_RAW_TP,
8513 		.is_attach_btf = true,
8514 		.attach_fn = attach_trace),
8515 	SEC_DEF("fentry/", TRACING,
8516 		.expected_attach_type = BPF_TRACE_FENTRY,
8517 		.is_attach_btf = true,
8518 		.attach_fn = attach_trace),
8519 	SEC_DEF("fmod_ret/", TRACING,
8520 		.expected_attach_type = BPF_MODIFY_RETURN,
8521 		.is_attach_btf = true,
8522 		.attach_fn = attach_trace),
8523 	SEC_DEF("fexit/", TRACING,
8524 		.expected_attach_type = BPF_TRACE_FEXIT,
8525 		.is_attach_btf = true,
8526 		.attach_fn = attach_trace),
8527 	SEC_DEF("fentry.s/", TRACING,
8528 		.expected_attach_type = BPF_TRACE_FENTRY,
8529 		.is_attach_btf = true,
8530 		.is_sleepable = true,
8531 		.attach_fn = attach_trace),
8532 	SEC_DEF("fmod_ret.s/", TRACING,
8533 		.expected_attach_type = BPF_MODIFY_RETURN,
8534 		.is_attach_btf = true,
8535 		.is_sleepable = true,
8536 		.attach_fn = attach_trace),
8537 	SEC_DEF("fexit.s/", TRACING,
8538 		.expected_attach_type = BPF_TRACE_FEXIT,
8539 		.is_attach_btf = true,
8540 		.is_sleepable = true,
8541 		.attach_fn = attach_trace),
8542 	SEC_DEF("freplace/", EXT,
8543 		.is_attach_btf = true,
8544 		.attach_fn = attach_trace),
8545 	SEC_DEF("lsm/", LSM,
8546 		.is_attach_btf = true,
8547 		.expected_attach_type = BPF_LSM_MAC,
8548 		.attach_fn = attach_lsm),
8549 	SEC_DEF("lsm.s/", LSM,
8550 		.is_attach_btf = true,
8551 		.is_sleepable = true,
8552 		.expected_attach_type = BPF_LSM_MAC,
8553 		.attach_fn = attach_lsm),
8554 	SEC_DEF("iter/", TRACING,
8555 		.expected_attach_type = BPF_TRACE_ITER,
8556 		.is_attach_btf = true,
8557 		.attach_fn = attach_iter),
8558 	BPF_EAPROG_SEC("xdp_devmap/",		BPF_PROG_TYPE_XDP,
8559 						BPF_XDP_DEVMAP),
8560 	BPF_EAPROG_SEC("xdp_cpumap/",		BPF_PROG_TYPE_XDP,
8561 						BPF_XDP_CPUMAP),
8562 	BPF_APROG_SEC("xdp",			BPF_PROG_TYPE_XDP,
8563 						BPF_XDP),
8564 	BPF_PROG_SEC("perf_event",		BPF_PROG_TYPE_PERF_EVENT),
8565 	BPF_PROG_SEC("lwt_in",			BPF_PROG_TYPE_LWT_IN),
8566 	BPF_PROG_SEC("lwt_out",			BPF_PROG_TYPE_LWT_OUT),
8567 	BPF_PROG_SEC("lwt_xmit",		BPF_PROG_TYPE_LWT_XMIT),
8568 	BPF_PROG_SEC("lwt_seg6local",		BPF_PROG_TYPE_LWT_SEG6LOCAL),
8569 	BPF_APROG_SEC("cgroup_skb/ingress",	BPF_PROG_TYPE_CGROUP_SKB,
8570 						BPF_CGROUP_INET_INGRESS),
8571 	BPF_APROG_SEC("cgroup_skb/egress",	BPF_PROG_TYPE_CGROUP_SKB,
8572 						BPF_CGROUP_INET_EGRESS),
8573 	BPF_APROG_COMPAT("cgroup/skb",		BPF_PROG_TYPE_CGROUP_SKB),
8574 	BPF_EAPROG_SEC("cgroup/sock_create",	BPF_PROG_TYPE_CGROUP_SOCK,
8575 						BPF_CGROUP_INET_SOCK_CREATE),
8576 	BPF_EAPROG_SEC("cgroup/sock_release",	BPF_PROG_TYPE_CGROUP_SOCK,
8577 						BPF_CGROUP_INET_SOCK_RELEASE),
8578 	BPF_APROG_SEC("cgroup/sock",		BPF_PROG_TYPE_CGROUP_SOCK,
8579 						BPF_CGROUP_INET_SOCK_CREATE),
8580 	BPF_EAPROG_SEC("cgroup/post_bind4",	BPF_PROG_TYPE_CGROUP_SOCK,
8581 						BPF_CGROUP_INET4_POST_BIND),
8582 	BPF_EAPROG_SEC("cgroup/post_bind6",	BPF_PROG_TYPE_CGROUP_SOCK,
8583 						BPF_CGROUP_INET6_POST_BIND),
8584 	BPF_APROG_SEC("cgroup/dev",		BPF_PROG_TYPE_CGROUP_DEVICE,
8585 						BPF_CGROUP_DEVICE),
8586 	BPF_APROG_SEC("sockops",		BPF_PROG_TYPE_SOCK_OPS,
8587 						BPF_CGROUP_SOCK_OPS),
8588 	BPF_APROG_SEC("sk_skb/stream_parser",	BPF_PROG_TYPE_SK_SKB,
8589 						BPF_SK_SKB_STREAM_PARSER),
8590 	BPF_APROG_SEC("sk_skb/stream_verdict",	BPF_PROG_TYPE_SK_SKB,
8591 						BPF_SK_SKB_STREAM_VERDICT),
8592 	BPF_APROG_COMPAT("sk_skb",		BPF_PROG_TYPE_SK_SKB),
8593 	BPF_APROG_SEC("sk_msg",			BPF_PROG_TYPE_SK_MSG,
8594 						BPF_SK_MSG_VERDICT),
8595 	BPF_APROG_SEC("lirc_mode2",		BPF_PROG_TYPE_LIRC_MODE2,
8596 						BPF_LIRC_MODE2),
8597 	BPF_APROG_SEC("flow_dissector",		BPF_PROG_TYPE_FLOW_DISSECTOR,
8598 						BPF_FLOW_DISSECTOR),
8599 	BPF_EAPROG_SEC("cgroup/bind4",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8600 						BPF_CGROUP_INET4_BIND),
8601 	BPF_EAPROG_SEC("cgroup/bind6",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8602 						BPF_CGROUP_INET6_BIND),
8603 	BPF_EAPROG_SEC("cgroup/connect4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8604 						BPF_CGROUP_INET4_CONNECT),
8605 	BPF_EAPROG_SEC("cgroup/connect6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8606 						BPF_CGROUP_INET6_CONNECT),
8607 	BPF_EAPROG_SEC("cgroup/sendmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8608 						BPF_CGROUP_UDP4_SENDMSG),
8609 	BPF_EAPROG_SEC("cgroup/sendmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8610 						BPF_CGROUP_UDP6_SENDMSG),
8611 	BPF_EAPROG_SEC("cgroup/recvmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8612 						BPF_CGROUP_UDP4_RECVMSG),
8613 	BPF_EAPROG_SEC("cgroup/recvmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8614 						BPF_CGROUP_UDP6_RECVMSG),
8615 	BPF_EAPROG_SEC("cgroup/getpeername4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8616 						BPF_CGROUP_INET4_GETPEERNAME),
8617 	BPF_EAPROG_SEC("cgroup/getpeername6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8618 						BPF_CGROUP_INET6_GETPEERNAME),
8619 	BPF_EAPROG_SEC("cgroup/getsockname4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8620 						BPF_CGROUP_INET4_GETSOCKNAME),
8621 	BPF_EAPROG_SEC("cgroup/getsockname6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8622 						BPF_CGROUP_INET6_GETSOCKNAME),
8623 	BPF_EAPROG_SEC("cgroup/sysctl",		BPF_PROG_TYPE_CGROUP_SYSCTL,
8624 						BPF_CGROUP_SYSCTL),
8625 	BPF_EAPROG_SEC("cgroup/getsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8626 						BPF_CGROUP_GETSOCKOPT),
8627 	BPF_EAPROG_SEC("cgroup/setsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8628 						BPF_CGROUP_SETSOCKOPT),
8629 	BPF_PROG_SEC("struct_ops",		BPF_PROG_TYPE_STRUCT_OPS),
8630 	BPF_EAPROG_SEC("sk_lookup/",		BPF_PROG_TYPE_SK_LOOKUP,
8631 						BPF_SK_LOOKUP),
8632 };
8633 
8634 #undef BPF_PROG_SEC_IMPL
8635 #undef BPF_PROG_SEC
8636 #undef BPF_APROG_SEC
8637 #undef BPF_EAPROG_SEC
8638 #undef BPF_APROG_COMPAT
8639 #undef SEC_DEF
8640 
8641 #define MAX_TYPE_NAME_SIZE 32
8642 
8643 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8644 {
8645 	int i, n = ARRAY_SIZE(section_defs);
8646 
8647 	for (i = 0; i < n; i++) {
8648 		if (strncmp(sec_name,
8649 			    section_defs[i].sec, section_defs[i].len))
8650 			continue;
8651 		return &section_defs[i];
8652 	}
8653 	return NULL;
8654 }
8655 
8656 static char *libbpf_get_type_names(bool attach_type)
8657 {
8658 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8659 	char *buf;
8660 
8661 	buf = malloc(len);
8662 	if (!buf)
8663 		return NULL;
8664 
8665 	buf[0] = '\0';
8666 	/* Forge string buf with all available names */
8667 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8668 		if (attach_type && !section_defs[i].is_attachable)
8669 			continue;
8670 
8671 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8672 			free(buf);
8673 			return NULL;
8674 		}
8675 		strcat(buf, " ");
8676 		strcat(buf, section_defs[i].sec);
8677 	}
8678 
8679 	return buf;
8680 }
8681 
8682 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8683 			     enum bpf_attach_type *expected_attach_type)
8684 {
8685 	const struct bpf_sec_def *sec_def;
8686 	char *type_names;
8687 
8688 	if (!name)
8689 		return -EINVAL;
8690 
8691 	sec_def = find_sec_def(name);
8692 	if (sec_def) {
8693 		*prog_type = sec_def->prog_type;
8694 		*expected_attach_type = sec_def->expected_attach_type;
8695 		return 0;
8696 	}
8697 
8698 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8699 	type_names = libbpf_get_type_names(false);
8700 	if (type_names != NULL) {
8701 		pr_debug("supported section(type) names are:%s\n", type_names);
8702 		free(type_names);
8703 	}
8704 
8705 	return -ESRCH;
8706 }
8707 
8708 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8709 						     size_t offset)
8710 {
8711 	struct bpf_map *map;
8712 	size_t i;
8713 
8714 	for (i = 0; i < obj->nr_maps; i++) {
8715 		map = &obj->maps[i];
8716 		if (!bpf_map__is_struct_ops(map))
8717 			continue;
8718 		if (map->sec_offset <= offset &&
8719 		    offset - map->sec_offset < map->def.value_size)
8720 			return map;
8721 	}
8722 
8723 	return NULL;
8724 }
8725 
8726 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8727 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8728 					    GElf_Shdr *shdr, Elf_Data *data)
8729 {
8730 	const struct btf_member *member;
8731 	struct bpf_struct_ops *st_ops;
8732 	struct bpf_program *prog;
8733 	unsigned int shdr_idx;
8734 	const struct btf *btf;
8735 	struct bpf_map *map;
8736 	Elf_Data *symbols;
8737 	unsigned int moff, insn_idx;
8738 	const char *name;
8739 	__u32 member_idx;
8740 	GElf_Sym sym;
8741 	GElf_Rel rel;
8742 	int i, nrels;
8743 
8744 	symbols = obj->efile.symbols;
8745 	btf = obj->btf;
8746 	nrels = shdr->sh_size / shdr->sh_entsize;
8747 	for (i = 0; i < nrels; i++) {
8748 		if (!gelf_getrel(data, i, &rel)) {
8749 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8750 			return -LIBBPF_ERRNO__FORMAT;
8751 		}
8752 
8753 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8754 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8755 				(size_t)GELF_R_SYM(rel.r_info));
8756 			return -LIBBPF_ERRNO__FORMAT;
8757 		}
8758 
8759 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8760 		map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8761 		if (!map) {
8762 			pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8763 				(size_t)rel.r_offset);
8764 			return -EINVAL;
8765 		}
8766 
8767 		moff = rel.r_offset - map->sec_offset;
8768 		shdr_idx = sym.st_shndx;
8769 		st_ops = map->st_ops;
8770 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8771 			 map->name,
8772 			 (long long)(rel.r_info >> 32),
8773 			 (long long)sym.st_value,
8774 			 shdr_idx, (size_t)rel.r_offset,
8775 			 map->sec_offset, sym.st_name, name);
8776 
8777 		if (shdr_idx >= SHN_LORESERVE) {
8778 			pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8779 				map->name, (size_t)rel.r_offset, shdr_idx);
8780 			return -LIBBPF_ERRNO__RELOC;
8781 		}
8782 		if (sym.st_value % BPF_INSN_SZ) {
8783 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8784 				map->name, (unsigned long long)sym.st_value);
8785 			return -LIBBPF_ERRNO__FORMAT;
8786 		}
8787 		insn_idx = sym.st_value / BPF_INSN_SZ;
8788 
8789 		member = find_member_by_offset(st_ops->type, moff * 8);
8790 		if (!member) {
8791 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8792 				map->name, moff);
8793 			return -EINVAL;
8794 		}
8795 		member_idx = member - btf_members(st_ops->type);
8796 		name = btf__name_by_offset(btf, member->name_off);
8797 
8798 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8799 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8800 				map->name, name);
8801 			return -EINVAL;
8802 		}
8803 
8804 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8805 		if (!prog) {
8806 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8807 				map->name, shdr_idx, name);
8808 			return -EINVAL;
8809 		}
8810 
8811 		if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8812 			const struct bpf_sec_def *sec_def;
8813 
8814 			sec_def = find_sec_def(prog->sec_name);
8815 			if (sec_def &&
8816 			    sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8817 				/* for pr_warn */
8818 				prog->type = sec_def->prog_type;
8819 				goto invalid_prog;
8820 			}
8821 
8822 			prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8823 			prog->attach_btf_id = st_ops->type_id;
8824 			prog->expected_attach_type = member_idx;
8825 		} else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8826 			   prog->attach_btf_id != st_ops->type_id ||
8827 			   prog->expected_attach_type != member_idx) {
8828 			goto invalid_prog;
8829 		}
8830 		st_ops->progs[member_idx] = prog;
8831 	}
8832 
8833 	return 0;
8834 
8835 invalid_prog:
8836 	pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8837 		map->name, prog->name, prog->sec_name, prog->type,
8838 		prog->attach_btf_id, prog->expected_attach_type, name);
8839 	return -EINVAL;
8840 }
8841 
8842 #define BTF_TRACE_PREFIX "btf_trace_"
8843 #define BTF_LSM_PREFIX "bpf_lsm_"
8844 #define BTF_ITER_PREFIX "bpf_iter_"
8845 #define BTF_MAX_NAME_SIZE 128
8846 
8847 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8848 				   const char *name, __u32 kind)
8849 {
8850 	char btf_type_name[BTF_MAX_NAME_SIZE];
8851 	int ret;
8852 
8853 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8854 		       "%s%s", prefix, name);
8855 	/* snprintf returns the number of characters written excluding the
8856 	 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8857 	 * indicates truncation.
8858 	 */
8859 	if (ret < 0 || ret >= sizeof(btf_type_name))
8860 		return -ENAMETOOLONG;
8861 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8862 }
8863 
8864 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8865 				     enum bpf_attach_type attach_type)
8866 {
8867 	int err;
8868 
8869 	if (attach_type == BPF_TRACE_RAW_TP)
8870 		err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8871 					      BTF_KIND_TYPEDEF);
8872 	else if (attach_type == BPF_LSM_MAC)
8873 		err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8874 					      BTF_KIND_FUNC);
8875 	else if (attach_type == BPF_TRACE_ITER)
8876 		err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8877 					      BTF_KIND_FUNC);
8878 	else
8879 		err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8880 
8881 	return err;
8882 }
8883 
8884 int libbpf_find_vmlinux_btf_id(const char *name,
8885 			       enum bpf_attach_type attach_type)
8886 {
8887 	struct btf *btf;
8888 	int err;
8889 
8890 	btf = libbpf_find_kernel_btf();
8891 	if (IS_ERR(btf)) {
8892 		pr_warn("vmlinux BTF is not found\n");
8893 		return -EINVAL;
8894 	}
8895 
8896 	err = find_attach_btf_id(btf, name, attach_type);
8897 	if (err <= 0)
8898 		pr_warn("%s is not found in vmlinux BTF\n", name);
8899 
8900 	btf__free(btf);
8901 	return err;
8902 }
8903 
8904 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8905 {
8906 	struct bpf_prog_info_linear *info_linear;
8907 	struct bpf_prog_info *info;
8908 	struct btf *btf = NULL;
8909 	int err = -EINVAL;
8910 
8911 	info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8912 	if (IS_ERR_OR_NULL(info_linear)) {
8913 		pr_warn("failed get_prog_info_linear for FD %d\n",
8914 			attach_prog_fd);
8915 		return -EINVAL;
8916 	}
8917 	info = &info_linear->info;
8918 	if (!info->btf_id) {
8919 		pr_warn("The target program doesn't have BTF\n");
8920 		goto out;
8921 	}
8922 	if (btf__get_from_id(info->btf_id, &btf)) {
8923 		pr_warn("Failed to get BTF of the program\n");
8924 		goto out;
8925 	}
8926 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8927 	btf__free(btf);
8928 	if (err <= 0) {
8929 		pr_warn("%s is not found in prog's BTF\n", name);
8930 		goto out;
8931 	}
8932 out:
8933 	free(info_linear);
8934 	return err;
8935 }
8936 
8937 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
8938 			      enum bpf_attach_type attach_type,
8939 			      int *btf_obj_fd, int *btf_type_id)
8940 {
8941 	int ret, i;
8942 
8943 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
8944 	if (ret > 0) {
8945 		*btf_obj_fd = 0; /* vmlinux BTF */
8946 		*btf_type_id = ret;
8947 		return 0;
8948 	}
8949 	if (ret != -ENOENT)
8950 		return ret;
8951 
8952 	ret = load_module_btfs(obj);
8953 	if (ret)
8954 		return ret;
8955 
8956 	for (i = 0; i < obj->btf_module_cnt; i++) {
8957 		const struct module_btf *mod = &obj->btf_modules[i];
8958 
8959 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
8960 		if (ret > 0) {
8961 			*btf_obj_fd = mod->fd;
8962 			*btf_type_id = ret;
8963 			return 0;
8964 		}
8965 		if (ret == -ENOENT)
8966 			continue;
8967 
8968 		return ret;
8969 	}
8970 
8971 	return -ESRCH;
8972 }
8973 
8974 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id)
8975 {
8976 	enum bpf_attach_type attach_type = prog->expected_attach_type;
8977 	__u32 attach_prog_fd = prog->attach_prog_fd;
8978 	const char *name = prog->sec_name, *attach_name;
8979 	const struct bpf_sec_def *sec = NULL;
8980 	int i, err;
8981 
8982 	if (!name)
8983 		return -EINVAL;
8984 
8985 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8986 		if (!section_defs[i].is_attach_btf)
8987 			continue;
8988 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8989 			continue;
8990 
8991 		sec = &section_defs[i];
8992 		break;
8993 	}
8994 
8995 	if (!sec) {
8996 		pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name);
8997 		return -ESRCH;
8998 	}
8999 	attach_name = name + sec->len;
9000 
9001 	/* BPF program's BTF ID */
9002 	if (attach_prog_fd) {
9003 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9004 		if (err < 0) {
9005 			pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9006 				 attach_prog_fd, attach_name, err);
9007 			return err;
9008 		}
9009 		*btf_obj_fd = 0;
9010 		*btf_type_id = err;
9011 		return 0;
9012 	}
9013 
9014 	/* kernel/module BTF ID */
9015 	err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9016 	if (err) {
9017 		pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9018 		return err;
9019 	}
9020 	return 0;
9021 }
9022 
9023 int libbpf_attach_type_by_name(const char *name,
9024 			       enum bpf_attach_type *attach_type)
9025 {
9026 	char *type_names;
9027 	int i;
9028 
9029 	if (!name)
9030 		return -EINVAL;
9031 
9032 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9033 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9034 			continue;
9035 		if (!section_defs[i].is_attachable)
9036 			return -EINVAL;
9037 		*attach_type = section_defs[i].expected_attach_type;
9038 		return 0;
9039 	}
9040 	pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9041 	type_names = libbpf_get_type_names(true);
9042 	if (type_names != NULL) {
9043 		pr_debug("attachable section(type) names are:%s\n", type_names);
9044 		free(type_names);
9045 	}
9046 
9047 	return -EINVAL;
9048 }
9049 
9050 int bpf_map__fd(const struct bpf_map *map)
9051 {
9052 	return map ? map->fd : -EINVAL;
9053 }
9054 
9055 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9056 {
9057 	return map ? &map->def : ERR_PTR(-EINVAL);
9058 }
9059 
9060 const char *bpf_map__name(const struct bpf_map *map)
9061 {
9062 	return map ? map->name : NULL;
9063 }
9064 
9065 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9066 {
9067 	return map->def.type;
9068 }
9069 
9070 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9071 {
9072 	if (map->fd >= 0)
9073 		return -EBUSY;
9074 	map->def.type = type;
9075 	return 0;
9076 }
9077 
9078 __u32 bpf_map__map_flags(const struct bpf_map *map)
9079 {
9080 	return map->def.map_flags;
9081 }
9082 
9083 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9084 {
9085 	if (map->fd >= 0)
9086 		return -EBUSY;
9087 	map->def.map_flags = flags;
9088 	return 0;
9089 }
9090 
9091 __u32 bpf_map__numa_node(const struct bpf_map *map)
9092 {
9093 	return map->numa_node;
9094 }
9095 
9096 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9097 {
9098 	if (map->fd >= 0)
9099 		return -EBUSY;
9100 	map->numa_node = numa_node;
9101 	return 0;
9102 }
9103 
9104 __u32 bpf_map__key_size(const struct bpf_map *map)
9105 {
9106 	return map->def.key_size;
9107 }
9108 
9109 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9110 {
9111 	if (map->fd >= 0)
9112 		return -EBUSY;
9113 	map->def.key_size = size;
9114 	return 0;
9115 }
9116 
9117 __u32 bpf_map__value_size(const struct bpf_map *map)
9118 {
9119 	return map->def.value_size;
9120 }
9121 
9122 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9123 {
9124 	if (map->fd >= 0)
9125 		return -EBUSY;
9126 	map->def.value_size = size;
9127 	return 0;
9128 }
9129 
9130 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9131 {
9132 	return map ? map->btf_key_type_id : 0;
9133 }
9134 
9135 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9136 {
9137 	return map ? map->btf_value_type_id : 0;
9138 }
9139 
9140 int bpf_map__set_priv(struct bpf_map *map, void *priv,
9141 		     bpf_map_clear_priv_t clear_priv)
9142 {
9143 	if (!map)
9144 		return -EINVAL;
9145 
9146 	if (map->priv) {
9147 		if (map->clear_priv)
9148 			map->clear_priv(map, map->priv);
9149 	}
9150 
9151 	map->priv = priv;
9152 	map->clear_priv = clear_priv;
9153 	return 0;
9154 }
9155 
9156 void *bpf_map__priv(const struct bpf_map *map)
9157 {
9158 	return map ? map->priv : ERR_PTR(-EINVAL);
9159 }
9160 
9161 int bpf_map__set_initial_value(struct bpf_map *map,
9162 			       const void *data, size_t size)
9163 {
9164 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9165 	    size != map->def.value_size || map->fd >= 0)
9166 		return -EINVAL;
9167 
9168 	memcpy(map->mmaped, data, size);
9169 	return 0;
9170 }
9171 
9172 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9173 {
9174 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9175 }
9176 
9177 bool bpf_map__is_internal(const struct bpf_map *map)
9178 {
9179 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9180 }
9181 
9182 __u32 bpf_map__ifindex(const struct bpf_map *map)
9183 {
9184 	return map->map_ifindex;
9185 }
9186 
9187 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9188 {
9189 	if (map->fd >= 0)
9190 		return -EBUSY;
9191 	map->map_ifindex = ifindex;
9192 	return 0;
9193 }
9194 
9195 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9196 {
9197 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9198 		pr_warn("error: unsupported map type\n");
9199 		return -EINVAL;
9200 	}
9201 	if (map->inner_map_fd != -1) {
9202 		pr_warn("error: inner_map_fd already specified\n");
9203 		return -EINVAL;
9204 	}
9205 	map->inner_map_fd = fd;
9206 	return 0;
9207 }
9208 
9209 static struct bpf_map *
9210 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9211 {
9212 	ssize_t idx;
9213 	struct bpf_map *s, *e;
9214 
9215 	if (!obj || !obj->maps)
9216 		return NULL;
9217 
9218 	s = obj->maps;
9219 	e = obj->maps + obj->nr_maps;
9220 
9221 	if ((m < s) || (m >= e)) {
9222 		pr_warn("error in %s: map handler doesn't belong to object\n",
9223 			 __func__);
9224 		return NULL;
9225 	}
9226 
9227 	idx = (m - obj->maps) + i;
9228 	if (idx >= obj->nr_maps || idx < 0)
9229 		return NULL;
9230 	return &obj->maps[idx];
9231 }
9232 
9233 struct bpf_map *
9234 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9235 {
9236 	if (prev == NULL)
9237 		return obj->maps;
9238 
9239 	return __bpf_map__iter(prev, obj, 1);
9240 }
9241 
9242 struct bpf_map *
9243 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9244 {
9245 	if (next == NULL) {
9246 		if (!obj->nr_maps)
9247 			return NULL;
9248 		return obj->maps + obj->nr_maps - 1;
9249 	}
9250 
9251 	return __bpf_map__iter(next, obj, -1);
9252 }
9253 
9254 struct bpf_map *
9255 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9256 {
9257 	struct bpf_map *pos;
9258 
9259 	bpf_object__for_each_map(pos, obj) {
9260 		if (pos->name && !strcmp(pos->name, name))
9261 			return pos;
9262 	}
9263 	return NULL;
9264 }
9265 
9266 int
9267 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9268 {
9269 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9270 }
9271 
9272 struct bpf_map *
9273 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9274 {
9275 	return ERR_PTR(-ENOTSUP);
9276 }
9277 
9278 long libbpf_get_error(const void *ptr)
9279 {
9280 	return PTR_ERR_OR_ZERO(ptr);
9281 }
9282 
9283 int bpf_prog_load(const char *file, enum bpf_prog_type type,
9284 		  struct bpf_object **pobj, int *prog_fd)
9285 {
9286 	struct bpf_prog_load_attr attr;
9287 
9288 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9289 	attr.file = file;
9290 	attr.prog_type = type;
9291 	attr.expected_attach_type = 0;
9292 
9293 	return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9294 }
9295 
9296 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9297 			struct bpf_object **pobj, int *prog_fd)
9298 {
9299 	struct bpf_object_open_attr open_attr = {};
9300 	struct bpf_program *prog, *first_prog = NULL;
9301 	struct bpf_object *obj;
9302 	struct bpf_map *map;
9303 	int err;
9304 
9305 	if (!attr)
9306 		return -EINVAL;
9307 	if (!attr->file)
9308 		return -EINVAL;
9309 
9310 	open_attr.file = attr->file;
9311 	open_attr.prog_type = attr->prog_type;
9312 
9313 	obj = bpf_object__open_xattr(&open_attr);
9314 	if (IS_ERR_OR_NULL(obj))
9315 		return -ENOENT;
9316 
9317 	bpf_object__for_each_program(prog, obj) {
9318 		enum bpf_attach_type attach_type = attr->expected_attach_type;
9319 		/*
9320 		 * to preserve backwards compatibility, bpf_prog_load treats
9321 		 * attr->prog_type, if specified, as an override to whatever
9322 		 * bpf_object__open guessed
9323 		 */
9324 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9325 			bpf_program__set_type(prog, attr->prog_type);
9326 			bpf_program__set_expected_attach_type(prog,
9327 							      attach_type);
9328 		}
9329 		if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9330 			/*
9331 			 * we haven't guessed from section name and user
9332 			 * didn't provide a fallback type, too bad...
9333 			 */
9334 			bpf_object__close(obj);
9335 			return -EINVAL;
9336 		}
9337 
9338 		prog->prog_ifindex = attr->ifindex;
9339 		prog->log_level = attr->log_level;
9340 		prog->prog_flags |= attr->prog_flags;
9341 		if (!first_prog)
9342 			first_prog = prog;
9343 	}
9344 
9345 	bpf_object__for_each_map(map, obj) {
9346 		if (!bpf_map__is_offload_neutral(map))
9347 			map->map_ifindex = attr->ifindex;
9348 	}
9349 
9350 	if (!first_prog) {
9351 		pr_warn("object file doesn't contain bpf program\n");
9352 		bpf_object__close(obj);
9353 		return -ENOENT;
9354 	}
9355 
9356 	err = bpf_object__load(obj);
9357 	if (err) {
9358 		bpf_object__close(obj);
9359 		return err;
9360 	}
9361 
9362 	*pobj = obj;
9363 	*prog_fd = bpf_program__fd(first_prog);
9364 	return 0;
9365 }
9366 
9367 struct bpf_link {
9368 	int (*detach)(struct bpf_link *link);
9369 	int (*destroy)(struct bpf_link *link);
9370 	char *pin_path;		/* NULL, if not pinned */
9371 	int fd;			/* hook FD, -1 if not applicable */
9372 	bool disconnected;
9373 };
9374 
9375 /* Replace link's underlying BPF program with the new one */
9376 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9377 {
9378 	return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9379 }
9380 
9381 /* Release "ownership" of underlying BPF resource (typically, BPF program
9382  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9383  * link, when destructed through bpf_link__destroy() call won't attempt to
9384  * detach/unregisted that BPF resource. This is useful in situations where,
9385  * say, attached BPF program has to outlive userspace program that attached it
9386  * in the system. Depending on type of BPF program, though, there might be
9387  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9388  * exit of userspace program doesn't trigger automatic detachment and clean up
9389  * inside the kernel.
9390  */
9391 void bpf_link__disconnect(struct bpf_link *link)
9392 {
9393 	link->disconnected = true;
9394 }
9395 
9396 int bpf_link__destroy(struct bpf_link *link)
9397 {
9398 	int err = 0;
9399 
9400 	if (IS_ERR_OR_NULL(link))
9401 		return 0;
9402 
9403 	if (!link->disconnected && link->detach)
9404 		err = link->detach(link);
9405 	if (link->destroy)
9406 		link->destroy(link);
9407 	if (link->pin_path)
9408 		free(link->pin_path);
9409 	free(link);
9410 
9411 	return err;
9412 }
9413 
9414 int bpf_link__fd(const struct bpf_link *link)
9415 {
9416 	return link->fd;
9417 }
9418 
9419 const char *bpf_link__pin_path(const struct bpf_link *link)
9420 {
9421 	return link->pin_path;
9422 }
9423 
9424 static int bpf_link__detach_fd(struct bpf_link *link)
9425 {
9426 	return close(link->fd);
9427 }
9428 
9429 struct bpf_link *bpf_link__open(const char *path)
9430 {
9431 	struct bpf_link *link;
9432 	int fd;
9433 
9434 	fd = bpf_obj_get(path);
9435 	if (fd < 0) {
9436 		fd = -errno;
9437 		pr_warn("failed to open link at %s: %d\n", path, fd);
9438 		return ERR_PTR(fd);
9439 	}
9440 
9441 	link = calloc(1, sizeof(*link));
9442 	if (!link) {
9443 		close(fd);
9444 		return ERR_PTR(-ENOMEM);
9445 	}
9446 	link->detach = &bpf_link__detach_fd;
9447 	link->fd = fd;
9448 
9449 	link->pin_path = strdup(path);
9450 	if (!link->pin_path) {
9451 		bpf_link__destroy(link);
9452 		return ERR_PTR(-ENOMEM);
9453 	}
9454 
9455 	return link;
9456 }
9457 
9458 int bpf_link__detach(struct bpf_link *link)
9459 {
9460 	return bpf_link_detach(link->fd) ? -errno : 0;
9461 }
9462 
9463 int bpf_link__pin(struct bpf_link *link, const char *path)
9464 {
9465 	int err;
9466 
9467 	if (link->pin_path)
9468 		return -EBUSY;
9469 	err = make_parent_dir(path);
9470 	if (err)
9471 		return err;
9472 	err = check_path(path);
9473 	if (err)
9474 		return err;
9475 
9476 	link->pin_path = strdup(path);
9477 	if (!link->pin_path)
9478 		return -ENOMEM;
9479 
9480 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9481 		err = -errno;
9482 		zfree(&link->pin_path);
9483 		return err;
9484 	}
9485 
9486 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9487 	return 0;
9488 }
9489 
9490 int bpf_link__unpin(struct bpf_link *link)
9491 {
9492 	int err;
9493 
9494 	if (!link->pin_path)
9495 		return -EINVAL;
9496 
9497 	err = unlink(link->pin_path);
9498 	if (err != 0)
9499 		return -errno;
9500 
9501 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9502 	zfree(&link->pin_path);
9503 	return 0;
9504 }
9505 
9506 static int bpf_link__detach_perf_event(struct bpf_link *link)
9507 {
9508 	int err;
9509 
9510 	err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9511 	if (err)
9512 		err = -errno;
9513 
9514 	close(link->fd);
9515 	return err;
9516 }
9517 
9518 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9519 						int pfd)
9520 {
9521 	char errmsg[STRERR_BUFSIZE];
9522 	struct bpf_link *link;
9523 	int prog_fd, err;
9524 
9525 	if (pfd < 0) {
9526 		pr_warn("prog '%s': invalid perf event FD %d\n",
9527 			prog->name, pfd);
9528 		return ERR_PTR(-EINVAL);
9529 	}
9530 	prog_fd = bpf_program__fd(prog);
9531 	if (prog_fd < 0) {
9532 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9533 			prog->name);
9534 		return ERR_PTR(-EINVAL);
9535 	}
9536 
9537 	link = calloc(1, sizeof(*link));
9538 	if (!link)
9539 		return ERR_PTR(-ENOMEM);
9540 	link->detach = &bpf_link__detach_perf_event;
9541 	link->fd = pfd;
9542 
9543 	if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9544 		err = -errno;
9545 		free(link);
9546 		pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9547 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9548 		if (err == -EPROTO)
9549 			pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9550 				prog->name, pfd);
9551 		return ERR_PTR(err);
9552 	}
9553 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9554 		err = -errno;
9555 		free(link);
9556 		pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9557 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9558 		return ERR_PTR(err);
9559 	}
9560 	return link;
9561 }
9562 
9563 /*
9564  * this function is expected to parse integer in the range of [0, 2^31-1] from
9565  * given file using scanf format string fmt. If actual parsed value is
9566  * negative, the result might be indistinguishable from error
9567  */
9568 static int parse_uint_from_file(const char *file, const char *fmt)
9569 {
9570 	char buf[STRERR_BUFSIZE];
9571 	int err, ret;
9572 	FILE *f;
9573 
9574 	f = fopen(file, "r");
9575 	if (!f) {
9576 		err = -errno;
9577 		pr_debug("failed to open '%s': %s\n", file,
9578 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9579 		return err;
9580 	}
9581 	err = fscanf(f, fmt, &ret);
9582 	if (err != 1) {
9583 		err = err == EOF ? -EIO : -errno;
9584 		pr_debug("failed to parse '%s': %s\n", file,
9585 			libbpf_strerror_r(err, buf, sizeof(buf)));
9586 		fclose(f);
9587 		return err;
9588 	}
9589 	fclose(f);
9590 	return ret;
9591 }
9592 
9593 static int determine_kprobe_perf_type(void)
9594 {
9595 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9596 
9597 	return parse_uint_from_file(file, "%d\n");
9598 }
9599 
9600 static int determine_uprobe_perf_type(void)
9601 {
9602 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9603 
9604 	return parse_uint_from_file(file, "%d\n");
9605 }
9606 
9607 static int determine_kprobe_retprobe_bit(void)
9608 {
9609 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9610 
9611 	return parse_uint_from_file(file, "config:%d\n");
9612 }
9613 
9614 static int determine_uprobe_retprobe_bit(void)
9615 {
9616 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9617 
9618 	return parse_uint_from_file(file, "config:%d\n");
9619 }
9620 
9621 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9622 				 uint64_t offset, int pid)
9623 {
9624 	struct perf_event_attr attr = {};
9625 	char errmsg[STRERR_BUFSIZE];
9626 	int type, pfd, err;
9627 
9628 	type = uprobe ? determine_uprobe_perf_type()
9629 		      : determine_kprobe_perf_type();
9630 	if (type < 0) {
9631 		pr_warn("failed to determine %s perf type: %s\n",
9632 			uprobe ? "uprobe" : "kprobe",
9633 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9634 		return type;
9635 	}
9636 	if (retprobe) {
9637 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9638 				 : determine_kprobe_retprobe_bit();
9639 
9640 		if (bit < 0) {
9641 			pr_warn("failed to determine %s retprobe bit: %s\n",
9642 				uprobe ? "uprobe" : "kprobe",
9643 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9644 			return bit;
9645 		}
9646 		attr.config |= 1 << bit;
9647 	}
9648 	attr.size = sizeof(attr);
9649 	attr.type = type;
9650 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9651 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9652 
9653 	/* pid filter is meaningful only for uprobes */
9654 	pfd = syscall(__NR_perf_event_open, &attr,
9655 		      pid < 0 ? -1 : pid /* pid */,
9656 		      pid == -1 ? 0 : -1 /* cpu */,
9657 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9658 	if (pfd < 0) {
9659 		err = -errno;
9660 		pr_warn("%s perf_event_open() failed: %s\n",
9661 			uprobe ? "uprobe" : "kprobe",
9662 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9663 		return err;
9664 	}
9665 	return pfd;
9666 }
9667 
9668 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9669 					    bool retprobe,
9670 					    const char *func_name)
9671 {
9672 	char errmsg[STRERR_BUFSIZE];
9673 	struct bpf_link *link;
9674 	int pfd, err;
9675 
9676 	pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9677 				    0 /* offset */, -1 /* pid */);
9678 	if (pfd < 0) {
9679 		pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9680 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9681 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9682 		return ERR_PTR(pfd);
9683 	}
9684 	link = bpf_program__attach_perf_event(prog, pfd);
9685 	if (IS_ERR(link)) {
9686 		close(pfd);
9687 		err = PTR_ERR(link);
9688 		pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9689 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9690 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9691 		return link;
9692 	}
9693 	return link;
9694 }
9695 
9696 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9697 				      struct bpf_program *prog)
9698 {
9699 	const char *func_name;
9700 	bool retprobe;
9701 
9702 	func_name = prog->sec_name + sec->len;
9703 	retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9704 
9705 	return bpf_program__attach_kprobe(prog, retprobe, func_name);
9706 }
9707 
9708 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9709 					    bool retprobe, pid_t pid,
9710 					    const char *binary_path,
9711 					    size_t func_offset)
9712 {
9713 	char errmsg[STRERR_BUFSIZE];
9714 	struct bpf_link *link;
9715 	int pfd, err;
9716 
9717 	pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9718 				    binary_path, func_offset, pid);
9719 	if (pfd < 0) {
9720 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9721 			prog->name, retprobe ? "uretprobe" : "uprobe",
9722 			binary_path, func_offset,
9723 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9724 		return ERR_PTR(pfd);
9725 	}
9726 	link = bpf_program__attach_perf_event(prog, pfd);
9727 	if (IS_ERR(link)) {
9728 		close(pfd);
9729 		err = PTR_ERR(link);
9730 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9731 			prog->name, retprobe ? "uretprobe" : "uprobe",
9732 			binary_path, func_offset,
9733 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9734 		return link;
9735 	}
9736 	return link;
9737 }
9738 
9739 static int determine_tracepoint_id(const char *tp_category,
9740 				   const char *tp_name)
9741 {
9742 	char file[PATH_MAX];
9743 	int ret;
9744 
9745 	ret = snprintf(file, sizeof(file),
9746 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
9747 		       tp_category, tp_name);
9748 	if (ret < 0)
9749 		return -errno;
9750 	if (ret >= sizeof(file)) {
9751 		pr_debug("tracepoint %s/%s path is too long\n",
9752 			 tp_category, tp_name);
9753 		return -E2BIG;
9754 	}
9755 	return parse_uint_from_file(file, "%d\n");
9756 }
9757 
9758 static int perf_event_open_tracepoint(const char *tp_category,
9759 				      const char *tp_name)
9760 {
9761 	struct perf_event_attr attr = {};
9762 	char errmsg[STRERR_BUFSIZE];
9763 	int tp_id, pfd, err;
9764 
9765 	tp_id = determine_tracepoint_id(tp_category, tp_name);
9766 	if (tp_id < 0) {
9767 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9768 			tp_category, tp_name,
9769 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9770 		return tp_id;
9771 	}
9772 
9773 	attr.type = PERF_TYPE_TRACEPOINT;
9774 	attr.size = sizeof(attr);
9775 	attr.config = tp_id;
9776 
9777 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9778 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9779 	if (pfd < 0) {
9780 		err = -errno;
9781 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9782 			tp_category, tp_name,
9783 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9784 		return err;
9785 	}
9786 	return pfd;
9787 }
9788 
9789 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9790 						const char *tp_category,
9791 						const char *tp_name)
9792 {
9793 	char errmsg[STRERR_BUFSIZE];
9794 	struct bpf_link *link;
9795 	int pfd, err;
9796 
9797 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
9798 	if (pfd < 0) {
9799 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9800 			prog->name, tp_category, tp_name,
9801 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9802 		return ERR_PTR(pfd);
9803 	}
9804 	link = bpf_program__attach_perf_event(prog, pfd);
9805 	if (IS_ERR(link)) {
9806 		close(pfd);
9807 		err = PTR_ERR(link);
9808 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9809 			prog->name, tp_category, tp_name,
9810 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9811 		return link;
9812 	}
9813 	return link;
9814 }
9815 
9816 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9817 				  struct bpf_program *prog)
9818 {
9819 	char *sec_name, *tp_cat, *tp_name;
9820 	struct bpf_link *link;
9821 
9822 	sec_name = strdup(prog->sec_name);
9823 	if (!sec_name)
9824 		return ERR_PTR(-ENOMEM);
9825 
9826 	/* extract "tp/<category>/<name>" */
9827 	tp_cat = sec_name + sec->len;
9828 	tp_name = strchr(tp_cat, '/');
9829 	if (!tp_name) {
9830 		link = ERR_PTR(-EINVAL);
9831 		goto out;
9832 	}
9833 	*tp_name = '\0';
9834 	tp_name++;
9835 
9836 	link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9837 out:
9838 	free(sec_name);
9839 	return link;
9840 }
9841 
9842 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9843 						    const char *tp_name)
9844 {
9845 	char errmsg[STRERR_BUFSIZE];
9846 	struct bpf_link *link;
9847 	int prog_fd, pfd;
9848 
9849 	prog_fd = bpf_program__fd(prog);
9850 	if (prog_fd < 0) {
9851 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9852 		return ERR_PTR(-EINVAL);
9853 	}
9854 
9855 	link = calloc(1, sizeof(*link));
9856 	if (!link)
9857 		return ERR_PTR(-ENOMEM);
9858 	link->detach = &bpf_link__detach_fd;
9859 
9860 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9861 	if (pfd < 0) {
9862 		pfd = -errno;
9863 		free(link);
9864 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9865 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9866 		return ERR_PTR(pfd);
9867 	}
9868 	link->fd = pfd;
9869 	return link;
9870 }
9871 
9872 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9873 				      struct bpf_program *prog)
9874 {
9875 	const char *tp_name = prog->sec_name + sec->len;
9876 
9877 	return bpf_program__attach_raw_tracepoint(prog, tp_name);
9878 }
9879 
9880 /* Common logic for all BPF program types that attach to a btf_id */
9881 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9882 {
9883 	char errmsg[STRERR_BUFSIZE];
9884 	struct bpf_link *link;
9885 	int prog_fd, pfd;
9886 
9887 	prog_fd = bpf_program__fd(prog);
9888 	if (prog_fd < 0) {
9889 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9890 		return ERR_PTR(-EINVAL);
9891 	}
9892 
9893 	link = calloc(1, sizeof(*link));
9894 	if (!link)
9895 		return ERR_PTR(-ENOMEM);
9896 	link->detach = &bpf_link__detach_fd;
9897 
9898 	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9899 	if (pfd < 0) {
9900 		pfd = -errno;
9901 		free(link);
9902 		pr_warn("prog '%s': failed to attach: %s\n",
9903 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9904 		return ERR_PTR(pfd);
9905 	}
9906 	link->fd = pfd;
9907 	return (struct bpf_link *)link;
9908 }
9909 
9910 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9911 {
9912 	return bpf_program__attach_btf_id(prog);
9913 }
9914 
9915 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
9916 {
9917 	return bpf_program__attach_btf_id(prog);
9918 }
9919 
9920 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9921 				     struct bpf_program *prog)
9922 {
9923 	return bpf_program__attach_trace(prog);
9924 }
9925 
9926 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9927 				   struct bpf_program *prog)
9928 {
9929 	return bpf_program__attach_lsm(prog);
9930 }
9931 
9932 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9933 				    struct bpf_program *prog)
9934 {
9935 	return bpf_program__attach_iter(prog, NULL);
9936 }
9937 
9938 static struct bpf_link *
9939 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
9940 		       const char *target_name)
9941 {
9942 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
9943 			    .target_btf_id = btf_id);
9944 	enum bpf_attach_type attach_type;
9945 	char errmsg[STRERR_BUFSIZE];
9946 	struct bpf_link *link;
9947 	int prog_fd, link_fd;
9948 
9949 	prog_fd = bpf_program__fd(prog);
9950 	if (prog_fd < 0) {
9951 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9952 		return ERR_PTR(-EINVAL);
9953 	}
9954 
9955 	link = calloc(1, sizeof(*link));
9956 	if (!link)
9957 		return ERR_PTR(-ENOMEM);
9958 	link->detach = &bpf_link__detach_fd;
9959 
9960 	attach_type = bpf_program__get_expected_attach_type(prog);
9961 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
9962 	if (link_fd < 0) {
9963 		link_fd = -errno;
9964 		free(link);
9965 		pr_warn("prog '%s': failed to attach to %s: %s\n",
9966 			prog->name, target_name,
9967 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9968 		return ERR_PTR(link_fd);
9969 	}
9970 	link->fd = link_fd;
9971 	return link;
9972 }
9973 
9974 struct bpf_link *
9975 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
9976 {
9977 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
9978 }
9979 
9980 struct bpf_link *
9981 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
9982 {
9983 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
9984 }
9985 
9986 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
9987 {
9988 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
9989 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
9990 }
9991 
9992 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
9993 					      int target_fd,
9994 					      const char *attach_func_name)
9995 {
9996 	int btf_id;
9997 
9998 	if (!!target_fd != !!attach_func_name) {
9999 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
10000 			prog->name);
10001 		return ERR_PTR(-EINVAL);
10002 	}
10003 
10004 	if (prog->type != BPF_PROG_TYPE_EXT) {
10005 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
10006 			prog->name);
10007 		return ERR_PTR(-EINVAL);
10008 	}
10009 
10010 	if (target_fd) {
10011 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
10012 		if (btf_id < 0)
10013 			return ERR_PTR(btf_id);
10014 
10015 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10016 	} else {
10017 		/* no target, so use raw_tracepoint_open for compatibility
10018 		 * with old kernels
10019 		 */
10020 		return bpf_program__attach_trace(prog);
10021 	}
10022 }
10023 
10024 struct bpf_link *
10025 bpf_program__attach_iter(struct bpf_program *prog,
10026 			 const struct bpf_iter_attach_opts *opts)
10027 {
10028 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10029 	char errmsg[STRERR_BUFSIZE];
10030 	struct bpf_link *link;
10031 	int prog_fd, link_fd;
10032 	__u32 target_fd = 0;
10033 
10034 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10035 		return ERR_PTR(-EINVAL);
10036 
10037 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10038 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10039 
10040 	prog_fd = bpf_program__fd(prog);
10041 	if (prog_fd < 0) {
10042 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10043 		return ERR_PTR(-EINVAL);
10044 	}
10045 
10046 	link = calloc(1, sizeof(*link));
10047 	if (!link)
10048 		return ERR_PTR(-ENOMEM);
10049 	link->detach = &bpf_link__detach_fd;
10050 
10051 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10052 				  &link_create_opts);
10053 	if (link_fd < 0) {
10054 		link_fd = -errno;
10055 		free(link);
10056 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
10057 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10058 		return ERR_PTR(link_fd);
10059 	}
10060 	link->fd = link_fd;
10061 	return link;
10062 }
10063 
10064 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
10065 {
10066 	const struct bpf_sec_def *sec_def;
10067 
10068 	sec_def = find_sec_def(prog->sec_name);
10069 	if (!sec_def || !sec_def->attach_fn)
10070 		return ERR_PTR(-ESRCH);
10071 
10072 	return sec_def->attach_fn(sec_def, prog);
10073 }
10074 
10075 static int bpf_link__detach_struct_ops(struct bpf_link *link)
10076 {
10077 	__u32 zero = 0;
10078 
10079 	if (bpf_map_delete_elem(link->fd, &zero))
10080 		return -errno;
10081 
10082 	return 0;
10083 }
10084 
10085 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
10086 {
10087 	struct bpf_struct_ops *st_ops;
10088 	struct bpf_link *link;
10089 	__u32 i, zero = 0;
10090 	int err;
10091 
10092 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
10093 		return ERR_PTR(-EINVAL);
10094 
10095 	link = calloc(1, sizeof(*link));
10096 	if (!link)
10097 		return ERR_PTR(-EINVAL);
10098 
10099 	st_ops = map->st_ops;
10100 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
10101 		struct bpf_program *prog = st_ops->progs[i];
10102 		void *kern_data;
10103 		int prog_fd;
10104 
10105 		if (!prog)
10106 			continue;
10107 
10108 		prog_fd = bpf_program__fd(prog);
10109 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
10110 		*(unsigned long *)kern_data = prog_fd;
10111 	}
10112 
10113 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
10114 	if (err) {
10115 		err = -errno;
10116 		free(link);
10117 		return ERR_PTR(err);
10118 	}
10119 
10120 	link->detach = bpf_link__detach_struct_ops;
10121 	link->fd = map->fd;
10122 
10123 	return link;
10124 }
10125 
10126 enum bpf_perf_event_ret
10127 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
10128 			   void **copy_mem, size_t *copy_size,
10129 			   bpf_perf_event_print_t fn, void *private_data)
10130 {
10131 	struct perf_event_mmap_page *header = mmap_mem;
10132 	__u64 data_head = ring_buffer_read_head(header);
10133 	__u64 data_tail = header->data_tail;
10134 	void *base = ((__u8 *)header) + page_size;
10135 	int ret = LIBBPF_PERF_EVENT_CONT;
10136 	struct perf_event_header *ehdr;
10137 	size_t ehdr_size;
10138 
10139 	while (data_head != data_tail) {
10140 		ehdr = base + (data_tail & (mmap_size - 1));
10141 		ehdr_size = ehdr->size;
10142 
10143 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
10144 			void *copy_start = ehdr;
10145 			size_t len_first = base + mmap_size - copy_start;
10146 			size_t len_secnd = ehdr_size - len_first;
10147 
10148 			if (*copy_size < ehdr_size) {
10149 				free(*copy_mem);
10150 				*copy_mem = malloc(ehdr_size);
10151 				if (!*copy_mem) {
10152 					*copy_size = 0;
10153 					ret = LIBBPF_PERF_EVENT_ERROR;
10154 					break;
10155 				}
10156 				*copy_size = ehdr_size;
10157 			}
10158 
10159 			memcpy(*copy_mem, copy_start, len_first);
10160 			memcpy(*copy_mem + len_first, base, len_secnd);
10161 			ehdr = *copy_mem;
10162 		}
10163 
10164 		ret = fn(ehdr, private_data);
10165 		data_tail += ehdr_size;
10166 		if (ret != LIBBPF_PERF_EVENT_CONT)
10167 			break;
10168 	}
10169 
10170 	ring_buffer_write_tail(header, data_tail);
10171 	return ret;
10172 }
10173 
10174 struct perf_buffer;
10175 
10176 struct perf_buffer_params {
10177 	struct perf_event_attr *attr;
10178 	/* if event_cb is specified, it takes precendence */
10179 	perf_buffer_event_fn event_cb;
10180 	/* sample_cb and lost_cb are higher-level common-case callbacks */
10181 	perf_buffer_sample_fn sample_cb;
10182 	perf_buffer_lost_fn lost_cb;
10183 	void *ctx;
10184 	int cpu_cnt;
10185 	int *cpus;
10186 	int *map_keys;
10187 };
10188 
10189 struct perf_cpu_buf {
10190 	struct perf_buffer *pb;
10191 	void *base; /* mmap()'ed memory */
10192 	void *buf; /* for reconstructing segmented data */
10193 	size_t buf_size;
10194 	int fd;
10195 	int cpu;
10196 	int map_key;
10197 };
10198 
10199 struct perf_buffer {
10200 	perf_buffer_event_fn event_cb;
10201 	perf_buffer_sample_fn sample_cb;
10202 	perf_buffer_lost_fn lost_cb;
10203 	void *ctx; /* passed into callbacks */
10204 
10205 	size_t page_size;
10206 	size_t mmap_size;
10207 	struct perf_cpu_buf **cpu_bufs;
10208 	struct epoll_event *events;
10209 	int cpu_cnt; /* number of allocated CPU buffers */
10210 	int epoll_fd; /* perf event FD */
10211 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
10212 };
10213 
10214 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
10215 				      struct perf_cpu_buf *cpu_buf)
10216 {
10217 	if (!cpu_buf)
10218 		return;
10219 	if (cpu_buf->base &&
10220 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
10221 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
10222 	if (cpu_buf->fd >= 0) {
10223 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
10224 		close(cpu_buf->fd);
10225 	}
10226 	free(cpu_buf->buf);
10227 	free(cpu_buf);
10228 }
10229 
10230 void perf_buffer__free(struct perf_buffer *pb)
10231 {
10232 	int i;
10233 
10234 	if (IS_ERR_OR_NULL(pb))
10235 		return;
10236 	if (pb->cpu_bufs) {
10237 		for (i = 0; i < pb->cpu_cnt; i++) {
10238 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10239 
10240 			if (!cpu_buf)
10241 				continue;
10242 
10243 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10244 			perf_buffer__free_cpu_buf(pb, cpu_buf);
10245 		}
10246 		free(pb->cpu_bufs);
10247 	}
10248 	if (pb->epoll_fd >= 0)
10249 		close(pb->epoll_fd);
10250 	free(pb->events);
10251 	free(pb);
10252 }
10253 
10254 static struct perf_cpu_buf *
10255 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10256 			  int cpu, int map_key)
10257 {
10258 	struct perf_cpu_buf *cpu_buf;
10259 	char msg[STRERR_BUFSIZE];
10260 	int err;
10261 
10262 	cpu_buf = calloc(1, sizeof(*cpu_buf));
10263 	if (!cpu_buf)
10264 		return ERR_PTR(-ENOMEM);
10265 
10266 	cpu_buf->pb = pb;
10267 	cpu_buf->cpu = cpu;
10268 	cpu_buf->map_key = map_key;
10269 
10270 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10271 			      -1, PERF_FLAG_FD_CLOEXEC);
10272 	if (cpu_buf->fd < 0) {
10273 		err = -errno;
10274 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10275 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10276 		goto error;
10277 	}
10278 
10279 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10280 			     PROT_READ | PROT_WRITE, MAP_SHARED,
10281 			     cpu_buf->fd, 0);
10282 	if (cpu_buf->base == MAP_FAILED) {
10283 		cpu_buf->base = NULL;
10284 		err = -errno;
10285 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10286 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10287 		goto error;
10288 	}
10289 
10290 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10291 		err = -errno;
10292 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10293 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10294 		goto error;
10295 	}
10296 
10297 	return cpu_buf;
10298 
10299 error:
10300 	perf_buffer__free_cpu_buf(pb, cpu_buf);
10301 	return (struct perf_cpu_buf *)ERR_PTR(err);
10302 }
10303 
10304 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10305 					      struct perf_buffer_params *p);
10306 
10307 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10308 				     const struct perf_buffer_opts *opts)
10309 {
10310 	struct perf_buffer_params p = {};
10311 	struct perf_event_attr attr = { 0, };
10312 
10313 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10314 	attr.type = PERF_TYPE_SOFTWARE;
10315 	attr.sample_type = PERF_SAMPLE_RAW;
10316 	attr.sample_period = 1;
10317 	attr.wakeup_events = 1;
10318 
10319 	p.attr = &attr;
10320 	p.sample_cb = opts ? opts->sample_cb : NULL;
10321 	p.lost_cb = opts ? opts->lost_cb : NULL;
10322 	p.ctx = opts ? opts->ctx : NULL;
10323 
10324 	return __perf_buffer__new(map_fd, page_cnt, &p);
10325 }
10326 
10327 struct perf_buffer *
10328 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10329 		     const struct perf_buffer_raw_opts *opts)
10330 {
10331 	struct perf_buffer_params p = {};
10332 
10333 	p.attr = opts->attr;
10334 	p.event_cb = opts->event_cb;
10335 	p.ctx = opts->ctx;
10336 	p.cpu_cnt = opts->cpu_cnt;
10337 	p.cpus = opts->cpus;
10338 	p.map_keys = opts->map_keys;
10339 
10340 	return __perf_buffer__new(map_fd, page_cnt, &p);
10341 }
10342 
10343 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10344 					      struct perf_buffer_params *p)
10345 {
10346 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
10347 	struct bpf_map_info map;
10348 	char msg[STRERR_BUFSIZE];
10349 	struct perf_buffer *pb;
10350 	bool *online = NULL;
10351 	__u32 map_info_len;
10352 	int err, i, j, n;
10353 
10354 	if (page_cnt & (page_cnt - 1)) {
10355 		pr_warn("page count should be power of two, but is %zu\n",
10356 			page_cnt);
10357 		return ERR_PTR(-EINVAL);
10358 	}
10359 
10360 	/* best-effort sanity checks */
10361 	memset(&map, 0, sizeof(map));
10362 	map_info_len = sizeof(map);
10363 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10364 	if (err) {
10365 		err = -errno;
10366 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10367 		 * -EBADFD, -EFAULT, or -E2BIG on real error
10368 		 */
10369 		if (err != -EINVAL) {
10370 			pr_warn("failed to get map info for map FD %d: %s\n",
10371 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10372 			return ERR_PTR(err);
10373 		}
10374 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10375 			 map_fd);
10376 	} else {
10377 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10378 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10379 				map.name);
10380 			return ERR_PTR(-EINVAL);
10381 		}
10382 	}
10383 
10384 	pb = calloc(1, sizeof(*pb));
10385 	if (!pb)
10386 		return ERR_PTR(-ENOMEM);
10387 
10388 	pb->event_cb = p->event_cb;
10389 	pb->sample_cb = p->sample_cb;
10390 	pb->lost_cb = p->lost_cb;
10391 	pb->ctx = p->ctx;
10392 
10393 	pb->page_size = getpagesize();
10394 	pb->mmap_size = pb->page_size * page_cnt;
10395 	pb->map_fd = map_fd;
10396 
10397 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10398 	if (pb->epoll_fd < 0) {
10399 		err = -errno;
10400 		pr_warn("failed to create epoll instance: %s\n",
10401 			libbpf_strerror_r(err, msg, sizeof(msg)));
10402 		goto error;
10403 	}
10404 
10405 	if (p->cpu_cnt > 0) {
10406 		pb->cpu_cnt = p->cpu_cnt;
10407 	} else {
10408 		pb->cpu_cnt = libbpf_num_possible_cpus();
10409 		if (pb->cpu_cnt < 0) {
10410 			err = pb->cpu_cnt;
10411 			goto error;
10412 		}
10413 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
10414 			pb->cpu_cnt = map.max_entries;
10415 	}
10416 
10417 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10418 	if (!pb->events) {
10419 		err = -ENOMEM;
10420 		pr_warn("failed to allocate events: out of memory\n");
10421 		goto error;
10422 	}
10423 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10424 	if (!pb->cpu_bufs) {
10425 		err = -ENOMEM;
10426 		pr_warn("failed to allocate buffers: out of memory\n");
10427 		goto error;
10428 	}
10429 
10430 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10431 	if (err) {
10432 		pr_warn("failed to get online CPU mask: %d\n", err);
10433 		goto error;
10434 	}
10435 
10436 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10437 		struct perf_cpu_buf *cpu_buf;
10438 		int cpu, map_key;
10439 
10440 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10441 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10442 
10443 		/* in case user didn't explicitly requested particular CPUs to
10444 		 * be attached to, skip offline/not present CPUs
10445 		 */
10446 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10447 			continue;
10448 
10449 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10450 		if (IS_ERR(cpu_buf)) {
10451 			err = PTR_ERR(cpu_buf);
10452 			goto error;
10453 		}
10454 
10455 		pb->cpu_bufs[j] = cpu_buf;
10456 
10457 		err = bpf_map_update_elem(pb->map_fd, &map_key,
10458 					  &cpu_buf->fd, 0);
10459 		if (err) {
10460 			err = -errno;
10461 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10462 				cpu, map_key, cpu_buf->fd,
10463 				libbpf_strerror_r(err, msg, sizeof(msg)));
10464 			goto error;
10465 		}
10466 
10467 		pb->events[j].events = EPOLLIN;
10468 		pb->events[j].data.ptr = cpu_buf;
10469 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10470 			      &pb->events[j]) < 0) {
10471 			err = -errno;
10472 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10473 				cpu, cpu_buf->fd,
10474 				libbpf_strerror_r(err, msg, sizeof(msg)));
10475 			goto error;
10476 		}
10477 		j++;
10478 	}
10479 	pb->cpu_cnt = j;
10480 	free(online);
10481 
10482 	return pb;
10483 
10484 error:
10485 	free(online);
10486 	if (pb)
10487 		perf_buffer__free(pb);
10488 	return ERR_PTR(err);
10489 }
10490 
10491 struct perf_sample_raw {
10492 	struct perf_event_header header;
10493 	uint32_t size;
10494 	char data[];
10495 };
10496 
10497 struct perf_sample_lost {
10498 	struct perf_event_header header;
10499 	uint64_t id;
10500 	uint64_t lost;
10501 	uint64_t sample_id;
10502 };
10503 
10504 static enum bpf_perf_event_ret
10505 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10506 {
10507 	struct perf_cpu_buf *cpu_buf = ctx;
10508 	struct perf_buffer *pb = cpu_buf->pb;
10509 	void *data = e;
10510 
10511 	/* user wants full control over parsing perf event */
10512 	if (pb->event_cb)
10513 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10514 
10515 	switch (e->type) {
10516 	case PERF_RECORD_SAMPLE: {
10517 		struct perf_sample_raw *s = data;
10518 
10519 		if (pb->sample_cb)
10520 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10521 		break;
10522 	}
10523 	case PERF_RECORD_LOST: {
10524 		struct perf_sample_lost *s = data;
10525 
10526 		if (pb->lost_cb)
10527 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10528 		break;
10529 	}
10530 	default:
10531 		pr_warn("unknown perf sample type %d\n", e->type);
10532 		return LIBBPF_PERF_EVENT_ERROR;
10533 	}
10534 	return LIBBPF_PERF_EVENT_CONT;
10535 }
10536 
10537 static int perf_buffer__process_records(struct perf_buffer *pb,
10538 					struct perf_cpu_buf *cpu_buf)
10539 {
10540 	enum bpf_perf_event_ret ret;
10541 
10542 	ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10543 					 pb->page_size, &cpu_buf->buf,
10544 					 &cpu_buf->buf_size,
10545 					 perf_buffer__process_record, cpu_buf);
10546 	if (ret != LIBBPF_PERF_EVENT_CONT)
10547 		return ret;
10548 	return 0;
10549 }
10550 
10551 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10552 {
10553 	return pb->epoll_fd;
10554 }
10555 
10556 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10557 {
10558 	int i, cnt, err;
10559 
10560 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10561 	for (i = 0; i < cnt; i++) {
10562 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10563 
10564 		err = perf_buffer__process_records(pb, cpu_buf);
10565 		if (err) {
10566 			pr_warn("error while processing records: %d\n", err);
10567 			return err;
10568 		}
10569 	}
10570 	return cnt < 0 ? -errno : cnt;
10571 }
10572 
10573 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10574  * manager.
10575  */
10576 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10577 {
10578 	return pb->cpu_cnt;
10579 }
10580 
10581 /*
10582  * Return perf_event FD of a ring buffer in *buf_idx* slot of
10583  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10584  * select()/poll()/epoll() Linux syscalls.
10585  */
10586 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10587 {
10588 	struct perf_cpu_buf *cpu_buf;
10589 
10590 	if (buf_idx >= pb->cpu_cnt)
10591 		return -EINVAL;
10592 
10593 	cpu_buf = pb->cpu_bufs[buf_idx];
10594 	if (!cpu_buf)
10595 		return -ENOENT;
10596 
10597 	return cpu_buf->fd;
10598 }
10599 
10600 /*
10601  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10602  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10603  * consume, do nothing and return success.
10604  * Returns:
10605  *   - 0 on success;
10606  *   - <0 on failure.
10607  */
10608 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10609 {
10610 	struct perf_cpu_buf *cpu_buf;
10611 
10612 	if (buf_idx >= pb->cpu_cnt)
10613 		return -EINVAL;
10614 
10615 	cpu_buf = pb->cpu_bufs[buf_idx];
10616 	if (!cpu_buf)
10617 		return -ENOENT;
10618 
10619 	return perf_buffer__process_records(pb, cpu_buf);
10620 }
10621 
10622 int perf_buffer__consume(struct perf_buffer *pb)
10623 {
10624 	int i, err;
10625 
10626 	for (i = 0; i < pb->cpu_cnt; i++) {
10627 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10628 
10629 		if (!cpu_buf)
10630 			continue;
10631 
10632 		err = perf_buffer__process_records(pb, cpu_buf);
10633 		if (err) {
10634 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10635 			return err;
10636 		}
10637 	}
10638 	return 0;
10639 }
10640 
10641 struct bpf_prog_info_array_desc {
10642 	int	array_offset;	/* e.g. offset of jited_prog_insns */
10643 	int	count_offset;	/* e.g. offset of jited_prog_len */
10644 	int	size_offset;	/* > 0: offset of rec size,
10645 				 * < 0: fix size of -size_offset
10646 				 */
10647 };
10648 
10649 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10650 	[BPF_PROG_INFO_JITED_INSNS] = {
10651 		offsetof(struct bpf_prog_info, jited_prog_insns),
10652 		offsetof(struct bpf_prog_info, jited_prog_len),
10653 		-1,
10654 	},
10655 	[BPF_PROG_INFO_XLATED_INSNS] = {
10656 		offsetof(struct bpf_prog_info, xlated_prog_insns),
10657 		offsetof(struct bpf_prog_info, xlated_prog_len),
10658 		-1,
10659 	},
10660 	[BPF_PROG_INFO_MAP_IDS] = {
10661 		offsetof(struct bpf_prog_info, map_ids),
10662 		offsetof(struct bpf_prog_info, nr_map_ids),
10663 		-(int)sizeof(__u32),
10664 	},
10665 	[BPF_PROG_INFO_JITED_KSYMS] = {
10666 		offsetof(struct bpf_prog_info, jited_ksyms),
10667 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
10668 		-(int)sizeof(__u64),
10669 	},
10670 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
10671 		offsetof(struct bpf_prog_info, jited_func_lens),
10672 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
10673 		-(int)sizeof(__u32),
10674 	},
10675 	[BPF_PROG_INFO_FUNC_INFO] = {
10676 		offsetof(struct bpf_prog_info, func_info),
10677 		offsetof(struct bpf_prog_info, nr_func_info),
10678 		offsetof(struct bpf_prog_info, func_info_rec_size),
10679 	},
10680 	[BPF_PROG_INFO_LINE_INFO] = {
10681 		offsetof(struct bpf_prog_info, line_info),
10682 		offsetof(struct bpf_prog_info, nr_line_info),
10683 		offsetof(struct bpf_prog_info, line_info_rec_size),
10684 	},
10685 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
10686 		offsetof(struct bpf_prog_info, jited_line_info),
10687 		offsetof(struct bpf_prog_info, nr_jited_line_info),
10688 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10689 	},
10690 	[BPF_PROG_INFO_PROG_TAGS] = {
10691 		offsetof(struct bpf_prog_info, prog_tags),
10692 		offsetof(struct bpf_prog_info, nr_prog_tags),
10693 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
10694 	},
10695 
10696 };
10697 
10698 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10699 					   int offset)
10700 {
10701 	__u32 *array = (__u32 *)info;
10702 
10703 	if (offset >= 0)
10704 		return array[offset / sizeof(__u32)];
10705 	return -(int)offset;
10706 }
10707 
10708 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10709 					   int offset)
10710 {
10711 	__u64 *array = (__u64 *)info;
10712 
10713 	if (offset >= 0)
10714 		return array[offset / sizeof(__u64)];
10715 	return -(int)offset;
10716 }
10717 
10718 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10719 					 __u32 val)
10720 {
10721 	__u32 *array = (__u32 *)info;
10722 
10723 	if (offset >= 0)
10724 		array[offset / sizeof(__u32)] = val;
10725 }
10726 
10727 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10728 					 __u64 val)
10729 {
10730 	__u64 *array = (__u64 *)info;
10731 
10732 	if (offset >= 0)
10733 		array[offset / sizeof(__u64)] = val;
10734 }
10735 
10736 struct bpf_prog_info_linear *
10737 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10738 {
10739 	struct bpf_prog_info_linear *info_linear;
10740 	struct bpf_prog_info info = {};
10741 	__u32 info_len = sizeof(info);
10742 	__u32 data_len = 0;
10743 	int i, err;
10744 	void *ptr;
10745 
10746 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10747 		return ERR_PTR(-EINVAL);
10748 
10749 	/* step 1: get array dimensions */
10750 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10751 	if (err) {
10752 		pr_debug("can't get prog info: %s", strerror(errno));
10753 		return ERR_PTR(-EFAULT);
10754 	}
10755 
10756 	/* step 2: calculate total size of all arrays */
10757 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10758 		bool include_array = (arrays & (1UL << i)) > 0;
10759 		struct bpf_prog_info_array_desc *desc;
10760 		__u32 count, size;
10761 
10762 		desc = bpf_prog_info_array_desc + i;
10763 
10764 		/* kernel is too old to support this field */
10765 		if (info_len < desc->array_offset + sizeof(__u32) ||
10766 		    info_len < desc->count_offset + sizeof(__u32) ||
10767 		    (desc->size_offset > 0 && info_len < desc->size_offset))
10768 			include_array = false;
10769 
10770 		if (!include_array) {
10771 			arrays &= ~(1UL << i);	/* clear the bit */
10772 			continue;
10773 		}
10774 
10775 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10776 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10777 
10778 		data_len += count * size;
10779 	}
10780 
10781 	/* step 3: allocate continuous memory */
10782 	data_len = roundup(data_len, sizeof(__u64));
10783 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10784 	if (!info_linear)
10785 		return ERR_PTR(-ENOMEM);
10786 
10787 	/* step 4: fill data to info_linear->info */
10788 	info_linear->arrays = arrays;
10789 	memset(&info_linear->info, 0, sizeof(info));
10790 	ptr = info_linear->data;
10791 
10792 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10793 		struct bpf_prog_info_array_desc *desc;
10794 		__u32 count, size;
10795 
10796 		if ((arrays & (1UL << i)) == 0)
10797 			continue;
10798 
10799 		desc  = bpf_prog_info_array_desc + i;
10800 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10801 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10802 		bpf_prog_info_set_offset_u32(&info_linear->info,
10803 					     desc->count_offset, count);
10804 		bpf_prog_info_set_offset_u32(&info_linear->info,
10805 					     desc->size_offset, size);
10806 		bpf_prog_info_set_offset_u64(&info_linear->info,
10807 					     desc->array_offset,
10808 					     ptr_to_u64(ptr));
10809 		ptr += count * size;
10810 	}
10811 
10812 	/* step 5: call syscall again to get required arrays */
10813 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10814 	if (err) {
10815 		pr_debug("can't get prog info: %s", strerror(errno));
10816 		free(info_linear);
10817 		return ERR_PTR(-EFAULT);
10818 	}
10819 
10820 	/* step 6: verify the data */
10821 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10822 		struct bpf_prog_info_array_desc *desc;
10823 		__u32 v1, v2;
10824 
10825 		if ((arrays & (1UL << i)) == 0)
10826 			continue;
10827 
10828 		desc = bpf_prog_info_array_desc + i;
10829 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10830 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10831 						   desc->count_offset);
10832 		if (v1 != v2)
10833 			pr_warn("%s: mismatch in element count\n", __func__);
10834 
10835 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10836 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10837 						   desc->size_offset);
10838 		if (v1 != v2)
10839 			pr_warn("%s: mismatch in rec size\n", __func__);
10840 	}
10841 
10842 	/* step 7: update info_len and data_len */
10843 	info_linear->info_len = sizeof(struct bpf_prog_info);
10844 	info_linear->data_len = data_len;
10845 
10846 	return info_linear;
10847 }
10848 
10849 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10850 {
10851 	int i;
10852 
10853 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10854 		struct bpf_prog_info_array_desc *desc;
10855 		__u64 addr, offs;
10856 
10857 		if ((info_linear->arrays & (1UL << i)) == 0)
10858 			continue;
10859 
10860 		desc = bpf_prog_info_array_desc + i;
10861 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10862 						     desc->array_offset);
10863 		offs = addr - ptr_to_u64(info_linear->data);
10864 		bpf_prog_info_set_offset_u64(&info_linear->info,
10865 					     desc->array_offset, offs);
10866 	}
10867 }
10868 
10869 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10870 {
10871 	int i;
10872 
10873 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10874 		struct bpf_prog_info_array_desc *desc;
10875 		__u64 addr, offs;
10876 
10877 		if ((info_linear->arrays & (1UL << i)) == 0)
10878 			continue;
10879 
10880 		desc = bpf_prog_info_array_desc + i;
10881 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10882 						     desc->array_offset);
10883 		addr = offs + ptr_to_u64(info_linear->data);
10884 		bpf_prog_info_set_offset_u64(&info_linear->info,
10885 					     desc->array_offset, addr);
10886 	}
10887 }
10888 
10889 int bpf_program__set_attach_target(struct bpf_program *prog,
10890 				   int attach_prog_fd,
10891 				   const char *attach_func_name)
10892 {
10893 	int btf_obj_fd = 0, btf_id = 0, err;
10894 
10895 	if (!prog || attach_prog_fd < 0 || !attach_func_name)
10896 		return -EINVAL;
10897 
10898 	if (prog->obj->loaded)
10899 		return -EINVAL;
10900 
10901 	if (attach_prog_fd) {
10902 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
10903 						 attach_prog_fd);
10904 		if (btf_id < 0)
10905 			return btf_id;
10906 	} else {
10907 		/* load btf_vmlinux, if not yet */
10908 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
10909 		if (err)
10910 			return err;
10911 		err = find_kernel_btf_id(prog->obj, attach_func_name,
10912 					 prog->expected_attach_type,
10913 					 &btf_obj_fd, &btf_id);
10914 		if (err)
10915 			return err;
10916 	}
10917 
10918 	prog->attach_btf_id = btf_id;
10919 	prog->attach_btf_obj_fd = btf_obj_fd;
10920 	prog->attach_prog_fd = attach_prog_fd;
10921 	return 0;
10922 }
10923 
10924 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
10925 {
10926 	int err = 0, n, len, start, end = -1;
10927 	bool *tmp;
10928 
10929 	*mask = NULL;
10930 	*mask_sz = 0;
10931 
10932 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
10933 	while (*s) {
10934 		if (*s == ',' || *s == '\n') {
10935 			s++;
10936 			continue;
10937 		}
10938 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
10939 		if (n <= 0 || n > 2) {
10940 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
10941 			err = -EINVAL;
10942 			goto cleanup;
10943 		} else if (n == 1) {
10944 			end = start;
10945 		}
10946 		if (start < 0 || start > end) {
10947 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
10948 				start, end, s);
10949 			err = -EINVAL;
10950 			goto cleanup;
10951 		}
10952 		tmp = realloc(*mask, end + 1);
10953 		if (!tmp) {
10954 			err = -ENOMEM;
10955 			goto cleanup;
10956 		}
10957 		*mask = tmp;
10958 		memset(tmp + *mask_sz, 0, start - *mask_sz);
10959 		memset(tmp + start, 1, end - start + 1);
10960 		*mask_sz = end + 1;
10961 		s += len;
10962 	}
10963 	if (!*mask_sz) {
10964 		pr_warn("Empty CPU range\n");
10965 		return -EINVAL;
10966 	}
10967 	return 0;
10968 cleanup:
10969 	free(*mask);
10970 	*mask = NULL;
10971 	return err;
10972 }
10973 
10974 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
10975 {
10976 	int fd, err = 0, len;
10977 	char buf[128];
10978 
10979 	fd = open(fcpu, O_RDONLY);
10980 	if (fd < 0) {
10981 		err = -errno;
10982 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
10983 		return err;
10984 	}
10985 	len = read(fd, buf, sizeof(buf));
10986 	close(fd);
10987 	if (len <= 0) {
10988 		err = len ? -errno : -EINVAL;
10989 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
10990 		return err;
10991 	}
10992 	if (len >= sizeof(buf)) {
10993 		pr_warn("CPU mask is too big in file %s\n", fcpu);
10994 		return -E2BIG;
10995 	}
10996 	buf[len] = '\0';
10997 
10998 	return parse_cpu_mask_str(buf, mask, mask_sz);
10999 }
11000 
11001 int libbpf_num_possible_cpus(void)
11002 {
11003 	static const char *fcpu = "/sys/devices/system/cpu/possible";
11004 	static int cpus;
11005 	int err, n, i, tmp_cpus;
11006 	bool *mask;
11007 
11008 	tmp_cpus = READ_ONCE(cpus);
11009 	if (tmp_cpus > 0)
11010 		return tmp_cpus;
11011 
11012 	err = parse_cpu_mask_file(fcpu, &mask, &n);
11013 	if (err)
11014 		return err;
11015 
11016 	tmp_cpus = 0;
11017 	for (i = 0; i < n; i++) {
11018 		if (mask[i])
11019 			tmp_cpus++;
11020 	}
11021 	free(mask);
11022 
11023 	WRITE_ONCE(cpus, tmp_cpus);
11024 	return tmp_cpus;
11025 }
11026 
11027 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
11028 			      const struct bpf_object_open_opts *opts)
11029 {
11030 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
11031 		.object_name = s->name,
11032 	);
11033 	struct bpf_object *obj;
11034 	int i;
11035 
11036 	/* Attempt to preserve opts->object_name, unless overriden by user
11037 	 * explicitly. Overwriting object name for skeletons is discouraged,
11038 	 * as it breaks global data maps, because they contain object name
11039 	 * prefix as their own map name prefix. When skeleton is generated,
11040 	 * bpftool is making an assumption that this name will stay the same.
11041 	 */
11042 	if (opts) {
11043 		memcpy(&skel_opts, opts, sizeof(*opts));
11044 		if (!opts->object_name)
11045 			skel_opts.object_name = s->name;
11046 	}
11047 
11048 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
11049 	if (IS_ERR(obj)) {
11050 		pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
11051 			s->name, PTR_ERR(obj));
11052 		return PTR_ERR(obj);
11053 	}
11054 
11055 	*s->obj = obj;
11056 
11057 	for (i = 0; i < s->map_cnt; i++) {
11058 		struct bpf_map **map = s->maps[i].map;
11059 		const char *name = s->maps[i].name;
11060 		void **mmaped = s->maps[i].mmaped;
11061 
11062 		*map = bpf_object__find_map_by_name(obj, name);
11063 		if (!*map) {
11064 			pr_warn("failed to find skeleton map '%s'\n", name);
11065 			return -ESRCH;
11066 		}
11067 
11068 		/* externs shouldn't be pre-setup from user code */
11069 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
11070 			*mmaped = (*map)->mmaped;
11071 	}
11072 
11073 	for (i = 0; i < s->prog_cnt; i++) {
11074 		struct bpf_program **prog = s->progs[i].prog;
11075 		const char *name = s->progs[i].name;
11076 
11077 		*prog = bpf_object__find_program_by_name(obj, name);
11078 		if (!*prog) {
11079 			pr_warn("failed to find skeleton program '%s'\n", name);
11080 			return -ESRCH;
11081 		}
11082 	}
11083 
11084 	return 0;
11085 }
11086 
11087 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
11088 {
11089 	int i, err;
11090 
11091 	err = bpf_object__load(*s->obj);
11092 	if (err) {
11093 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
11094 		return err;
11095 	}
11096 
11097 	for (i = 0; i < s->map_cnt; i++) {
11098 		struct bpf_map *map = *s->maps[i].map;
11099 		size_t mmap_sz = bpf_map_mmap_sz(map);
11100 		int prot, map_fd = bpf_map__fd(map);
11101 		void **mmaped = s->maps[i].mmaped;
11102 
11103 		if (!mmaped)
11104 			continue;
11105 
11106 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
11107 			*mmaped = NULL;
11108 			continue;
11109 		}
11110 
11111 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
11112 			prot = PROT_READ;
11113 		else
11114 			prot = PROT_READ | PROT_WRITE;
11115 
11116 		/* Remap anonymous mmap()-ed "map initialization image" as
11117 		 * a BPF map-backed mmap()-ed memory, but preserving the same
11118 		 * memory address. This will cause kernel to change process'
11119 		 * page table to point to a different piece of kernel memory,
11120 		 * but from userspace point of view memory address (and its
11121 		 * contents, being identical at this point) will stay the
11122 		 * same. This mapping will be released by bpf_object__close()
11123 		 * as per normal clean up procedure, so we don't need to worry
11124 		 * about it from skeleton's clean up perspective.
11125 		 */
11126 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
11127 				MAP_SHARED | MAP_FIXED, map_fd, 0);
11128 		if (*mmaped == MAP_FAILED) {
11129 			err = -errno;
11130 			*mmaped = NULL;
11131 			pr_warn("failed to re-mmap() map '%s': %d\n",
11132 				 bpf_map__name(map), err);
11133 			return err;
11134 		}
11135 	}
11136 
11137 	return 0;
11138 }
11139 
11140 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
11141 {
11142 	int i;
11143 
11144 	for (i = 0; i < s->prog_cnt; i++) {
11145 		struct bpf_program *prog = *s->progs[i].prog;
11146 		struct bpf_link **link = s->progs[i].link;
11147 		const struct bpf_sec_def *sec_def;
11148 
11149 		if (!prog->load)
11150 			continue;
11151 
11152 		sec_def = find_sec_def(prog->sec_name);
11153 		if (!sec_def || !sec_def->attach_fn)
11154 			continue;
11155 
11156 		*link = sec_def->attach_fn(sec_def, prog);
11157 		if (IS_ERR(*link)) {
11158 			pr_warn("failed to auto-attach program '%s': %ld\n",
11159 				bpf_program__name(prog), PTR_ERR(*link));
11160 			return PTR_ERR(*link);
11161 		}
11162 	}
11163 
11164 	return 0;
11165 }
11166 
11167 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
11168 {
11169 	int i;
11170 
11171 	for (i = 0; i < s->prog_cnt; i++) {
11172 		struct bpf_link **link = s->progs[i].link;
11173 
11174 		bpf_link__destroy(*link);
11175 		*link = NULL;
11176 	}
11177 }
11178 
11179 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
11180 {
11181 	if (s->progs)
11182 		bpf_object__detach_skeleton(s);
11183 	if (s->obj)
11184 		bpf_object__close(*s->obj);
11185 	free(s->maps);
11186 	free(s->progs);
11187 	free(s);
11188 }
11189