xref: /linux/tools/lib/bpf/libbpf.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 #include "bpf_gen_internal.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
64 
65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
66  * compilation if user enables corresponding warning. Disable it explicitly.
67  */
68 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
69 
70 #define __printf(a, b)	__attribute__((format(printf, a, b)))
71 
72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
74 
75 static int __base_pr(enum libbpf_print_level level, const char *format,
76 		     va_list args)
77 {
78 	if (level == LIBBPF_DEBUG)
79 		return 0;
80 
81 	return vfprintf(stderr, format, args);
82 }
83 
84 static libbpf_print_fn_t __libbpf_pr = __base_pr;
85 
86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
87 {
88 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
89 
90 	__libbpf_pr = fn;
91 	return old_print_fn;
92 }
93 
94 __printf(2, 3)
95 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
96 {
97 	va_list args;
98 
99 	if (!__libbpf_pr)
100 		return;
101 
102 	va_start(args, format);
103 	__libbpf_pr(level, format, args);
104 	va_end(args);
105 }
106 
107 static void pr_perm_msg(int err)
108 {
109 	struct rlimit limit;
110 	char buf[100];
111 
112 	if (err != -EPERM || geteuid() != 0)
113 		return;
114 
115 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
116 	if (err)
117 		return;
118 
119 	if (limit.rlim_cur == RLIM_INFINITY)
120 		return;
121 
122 	if (limit.rlim_cur < 1024)
123 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
124 	else if (limit.rlim_cur < 1024*1024)
125 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
126 	else
127 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
128 
129 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
130 		buf);
131 }
132 
133 #define STRERR_BUFSIZE  128
134 
135 /* Copied from tools/perf/util/util.h */
136 #ifndef zfree
137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
138 #endif
139 
140 #ifndef zclose
141 # define zclose(fd) ({			\
142 	int ___err = 0;			\
143 	if ((fd) >= 0)			\
144 		___err = close((fd));	\
145 	fd = -1;			\
146 	___err; })
147 #endif
148 
149 static inline __u64 ptr_to_u64(const void *ptr)
150 {
151 	return (__u64) (unsigned long) ptr;
152 }
153 
154 /* this goes away in libbpf 1.0 */
155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE;
156 
157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
158 {
159 	/* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to
160 	 * get all possible values we compensate last +1, and then (2*x - 1)
161 	 * to get the bit mask
162 	 */
163 	if (mode != LIBBPF_STRICT_ALL
164 	    && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1)))
165 		return errno = EINVAL, -EINVAL;
166 
167 	libbpf_mode = mode;
168 	return 0;
169 }
170 
171 enum kern_feature_id {
172 	/* v4.14: kernel support for program & map names. */
173 	FEAT_PROG_NAME,
174 	/* v5.2: kernel support for global data sections. */
175 	FEAT_GLOBAL_DATA,
176 	/* BTF support */
177 	FEAT_BTF,
178 	/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
179 	FEAT_BTF_FUNC,
180 	/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
181 	FEAT_BTF_DATASEC,
182 	/* BTF_FUNC_GLOBAL is supported */
183 	FEAT_BTF_GLOBAL_FUNC,
184 	/* BPF_F_MMAPABLE is supported for arrays */
185 	FEAT_ARRAY_MMAP,
186 	/* kernel support for expected_attach_type in BPF_PROG_LOAD */
187 	FEAT_EXP_ATTACH_TYPE,
188 	/* bpf_probe_read_{kernel,user}[_str] helpers */
189 	FEAT_PROBE_READ_KERN,
190 	/* BPF_PROG_BIND_MAP is supported */
191 	FEAT_PROG_BIND_MAP,
192 	/* Kernel support for module BTFs */
193 	FEAT_MODULE_BTF,
194 	/* BTF_KIND_FLOAT support */
195 	FEAT_BTF_FLOAT,
196 	__FEAT_CNT,
197 };
198 
199 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id);
200 
201 enum reloc_type {
202 	RELO_LD64,
203 	RELO_CALL,
204 	RELO_DATA,
205 	RELO_EXTERN_VAR,
206 	RELO_EXTERN_FUNC,
207 	RELO_SUBPROG_ADDR,
208 };
209 
210 struct reloc_desc {
211 	enum reloc_type type;
212 	int insn_idx;
213 	int map_idx;
214 	int sym_off;
215 };
216 
217 struct bpf_sec_def;
218 
219 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
220 					struct bpf_program *prog);
221 
222 struct bpf_sec_def {
223 	const char *sec;
224 	size_t len;
225 	enum bpf_prog_type prog_type;
226 	enum bpf_attach_type expected_attach_type;
227 	bool is_exp_attach_type_optional;
228 	bool is_attachable;
229 	bool is_attach_btf;
230 	bool is_sleepable;
231 	attach_fn_t attach_fn;
232 };
233 
234 /*
235  * bpf_prog should be a better name but it has been used in
236  * linux/filter.h.
237  */
238 struct bpf_program {
239 	const struct bpf_sec_def *sec_def;
240 	char *sec_name;
241 	size_t sec_idx;
242 	/* this program's instruction offset (in number of instructions)
243 	 * within its containing ELF section
244 	 */
245 	size_t sec_insn_off;
246 	/* number of original instructions in ELF section belonging to this
247 	 * program, not taking into account subprogram instructions possible
248 	 * appended later during relocation
249 	 */
250 	size_t sec_insn_cnt;
251 	/* Offset (in number of instructions) of the start of instruction
252 	 * belonging to this BPF program  within its containing main BPF
253 	 * program. For the entry-point (main) BPF program, this is always
254 	 * zero. For a sub-program, this gets reset before each of main BPF
255 	 * programs are processed and relocated and is used to determined
256 	 * whether sub-program was already appended to the main program, and
257 	 * if yes, at which instruction offset.
258 	 */
259 	size_t sub_insn_off;
260 
261 	char *name;
262 	/* sec_name with / replaced by _; makes recursive pinning
263 	 * in bpf_object__pin_programs easier
264 	 */
265 	char *pin_name;
266 
267 	/* instructions that belong to BPF program; insns[0] is located at
268 	 * sec_insn_off instruction within its ELF section in ELF file, so
269 	 * when mapping ELF file instruction index to the local instruction,
270 	 * one needs to subtract sec_insn_off; and vice versa.
271 	 */
272 	struct bpf_insn *insns;
273 	/* actual number of instruction in this BPF program's image; for
274 	 * entry-point BPF programs this includes the size of main program
275 	 * itself plus all the used sub-programs, appended at the end
276 	 */
277 	size_t insns_cnt;
278 
279 	struct reloc_desc *reloc_desc;
280 	int nr_reloc;
281 	int log_level;
282 
283 	struct {
284 		int nr;
285 		int *fds;
286 	} instances;
287 	bpf_program_prep_t preprocessor;
288 
289 	struct bpf_object *obj;
290 	void *priv;
291 	bpf_program_clear_priv_t clear_priv;
292 
293 	bool load;
294 	bool mark_btf_static;
295 	enum bpf_prog_type type;
296 	enum bpf_attach_type expected_attach_type;
297 	int prog_ifindex;
298 	__u32 attach_btf_obj_fd;
299 	__u32 attach_btf_id;
300 	__u32 attach_prog_fd;
301 	void *func_info;
302 	__u32 func_info_rec_size;
303 	__u32 func_info_cnt;
304 
305 	void *line_info;
306 	__u32 line_info_rec_size;
307 	__u32 line_info_cnt;
308 	__u32 prog_flags;
309 };
310 
311 struct bpf_struct_ops {
312 	const char *tname;
313 	const struct btf_type *type;
314 	struct bpf_program **progs;
315 	__u32 *kern_func_off;
316 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
317 	void *data;
318 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
319 	 *      btf_vmlinux's format.
320 	 * struct bpf_struct_ops_tcp_congestion_ops {
321 	 *	[... some other kernel fields ...]
322 	 *	struct tcp_congestion_ops data;
323 	 * }
324 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
325 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
326 	 * from "data".
327 	 */
328 	void *kern_vdata;
329 	__u32 type_id;
330 };
331 
332 #define DATA_SEC ".data"
333 #define BSS_SEC ".bss"
334 #define RODATA_SEC ".rodata"
335 #define KCONFIG_SEC ".kconfig"
336 #define KSYMS_SEC ".ksyms"
337 #define STRUCT_OPS_SEC ".struct_ops"
338 
339 enum libbpf_map_type {
340 	LIBBPF_MAP_UNSPEC,
341 	LIBBPF_MAP_DATA,
342 	LIBBPF_MAP_BSS,
343 	LIBBPF_MAP_RODATA,
344 	LIBBPF_MAP_KCONFIG,
345 };
346 
347 static const char * const libbpf_type_to_btf_name[] = {
348 	[LIBBPF_MAP_DATA]	= DATA_SEC,
349 	[LIBBPF_MAP_BSS]	= BSS_SEC,
350 	[LIBBPF_MAP_RODATA]	= RODATA_SEC,
351 	[LIBBPF_MAP_KCONFIG]	= KCONFIG_SEC,
352 };
353 
354 struct bpf_map {
355 	char *name;
356 	int fd;
357 	int sec_idx;
358 	size_t sec_offset;
359 	int map_ifindex;
360 	int inner_map_fd;
361 	struct bpf_map_def def;
362 	__u32 numa_node;
363 	__u32 btf_var_idx;
364 	__u32 btf_key_type_id;
365 	__u32 btf_value_type_id;
366 	__u32 btf_vmlinux_value_type_id;
367 	void *priv;
368 	bpf_map_clear_priv_t clear_priv;
369 	enum libbpf_map_type libbpf_type;
370 	void *mmaped;
371 	struct bpf_struct_ops *st_ops;
372 	struct bpf_map *inner_map;
373 	void **init_slots;
374 	int init_slots_sz;
375 	char *pin_path;
376 	bool pinned;
377 	bool reused;
378 };
379 
380 enum extern_type {
381 	EXT_UNKNOWN,
382 	EXT_KCFG,
383 	EXT_KSYM,
384 };
385 
386 enum kcfg_type {
387 	KCFG_UNKNOWN,
388 	KCFG_CHAR,
389 	KCFG_BOOL,
390 	KCFG_INT,
391 	KCFG_TRISTATE,
392 	KCFG_CHAR_ARR,
393 };
394 
395 struct extern_desc {
396 	enum extern_type type;
397 	int sym_idx;
398 	int btf_id;
399 	int sec_btf_id;
400 	const char *name;
401 	bool is_set;
402 	bool is_weak;
403 	union {
404 		struct {
405 			enum kcfg_type type;
406 			int sz;
407 			int align;
408 			int data_off;
409 			bool is_signed;
410 		} kcfg;
411 		struct {
412 			unsigned long long addr;
413 
414 			/* target btf_id of the corresponding kernel var. */
415 			int kernel_btf_obj_fd;
416 			int kernel_btf_id;
417 
418 			/* local btf_id of the ksym extern's type. */
419 			__u32 type_id;
420 		} ksym;
421 	};
422 };
423 
424 static LIST_HEAD(bpf_objects_list);
425 
426 struct module_btf {
427 	struct btf *btf;
428 	char *name;
429 	__u32 id;
430 	int fd;
431 };
432 
433 struct bpf_object {
434 	char name[BPF_OBJ_NAME_LEN];
435 	char license[64];
436 	__u32 kern_version;
437 
438 	struct bpf_program *programs;
439 	size_t nr_programs;
440 	struct bpf_map *maps;
441 	size_t nr_maps;
442 	size_t maps_cap;
443 
444 	char *kconfig;
445 	struct extern_desc *externs;
446 	int nr_extern;
447 	int kconfig_map_idx;
448 	int rodata_map_idx;
449 
450 	bool loaded;
451 	bool has_subcalls;
452 
453 	struct bpf_gen *gen_loader;
454 
455 	/*
456 	 * Information when doing elf related work. Only valid if fd
457 	 * is valid.
458 	 */
459 	struct {
460 		int fd;
461 		const void *obj_buf;
462 		size_t obj_buf_sz;
463 		Elf *elf;
464 		GElf_Ehdr ehdr;
465 		Elf_Data *symbols;
466 		Elf_Data *data;
467 		Elf_Data *rodata;
468 		Elf_Data *bss;
469 		Elf_Data *st_ops_data;
470 		size_t shstrndx; /* section index for section name strings */
471 		size_t strtabidx;
472 		struct {
473 			GElf_Shdr shdr;
474 			Elf_Data *data;
475 		} *reloc_sects;
476 		int nr_reloc_sects;
477 		int maps_shndx;
478 		int btf_maps_shndx;
479 		__u32 btf_maps_sec_btf_id;
480 		int text_shndx;
481 		int symbols_shndx;
482 		int data_shndx;
483 		int rodata_shndx;
484 		int bss_shndx;
485 		int st_ops_shndx;
486 	} efile;
487 	/*
488 	 * All loaded bpf_object is linked in a list, which is
489 	 * hidden to caller. bpf_objects__<func> handlers deal with
490 	 * all objects.
491 	 */
492 	struct list_head list;
493 
494 	struct btf *btf;
495 	struct btf_ext *btf_ext;
496 
497 	/* Parse and load BTF vmlinux if any of the programs in the object need
498 	 * it at load time.
499 	 */
500 	struct btf *btf_vmlinux;
501 	/* vmlinux BTF override for CO-RE relocations */
502 	struct btf *btf_vmlinux_override;
503 	/* Lazily initialized kernel module BTFs */
504 	struct module_btf *btf_modules;
505 	bool btf_modules_loaded;
506 	size_t btf_module_cnt;
507 	size_t btf_module_cap;
508 
509 	void *priv;
510 	bpf_object_clear_priv_t clear_priv;
511 
512 	char path[];
513 };
514 #define obj_elf_valid(o)	((o)->efile.elf)
515 
516 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
517 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
518 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
519 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
520 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
521 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
522 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
523 
524 void bpf_program__unload(struct bpf_program *prog)
525 {
526 	int i;
527 
528 	if (!prog)
529 		return;
530 
531 	/*
532 	 * If the object is opened but the program was never loaded,
533 	 * it is possible that prog->instances.nr == -1.
534 	 */
535 	if (prog->instances.nr > 0) {
536 		for (i = 0; i < prog->instances.nr; i++)
537 			zclose(prog->instances.fds[i]);
538 	} else if (prog->instances.nr != -1) {
539 		pr_warn("Internal error: instances.nr is %d\n",
540 			prog->instances.nr);
541 	}
542 
543 	prog->instances.nr = -1;
544 	zfree(&prog->instances.fds);
545 
546 	zfree(&prog->func_info);
547 	zfree(&prog->line_info);
548 }
549 
550 static void bpf_program__exit(struct bpf_program *prog)
551 {
552 	if (!prog)
553 		return;
554 
555 	if (prog->clear_priv)
556 		prog->clear_priv(prog, prog->priv);
557 
558 	prog->priv = NULL;
559 	prog->clear_priv = NULL;
560 
561 	bpf_program__unload(prog);
562 	zfree(&prog->name);
563 	zfree(&prog->sec_name);
564 	zfree(&prog->pin_name);
565 	zfree(&prog->insns);
566 	zfree(&prog->reloc_desc);
567 
568 	prog->nr_reloc = 0;
569 	prog->insns_cnt = 0;
570 	prog->sec_idx = -1;
571 }
572 
573 static char *__bpf_program__pin_name(struct bpf_program *prog)
574 {
575 	char *name, *p;
576 
577 	name = p = strdup(prog->sec_name);
578 	while ((p = strchr(p, '/')))
579 		*p = '_';
580 
581 	return name;
582 }
583 
584 static bool insn_is_subprog_call(const struct bpf_insn *insn)
585 {
586 	return BPF_CLASS(insn->code) == BPF_JMP &&
587 	       BPF_OP(insn->code) == BPF_CALL &&
588 	       BPF_SRC(insn->code) == BPF_K &&
589 	       insn->src_reg == BPF_PSEUDO_CALL &&
590 	       insn->dst_reg == 0 &&
591 	       insn->off == 0;
592 }
593 
594 static bool is_ldimm64_insn(struct bpf_insn *insn)
595 {
596 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
597 }
598 
599 static bool is_call_insn(const struct bpf_insn *insn)
600 {
601 	return insn->code == (BPF_JMP | BPF_CALL);
602 }
603 
604 static bool insn_is_pseudo_func(struct bpf_insn *insn)
605 {
606 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
607 }
608 
609 static int
610 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
611 		      const char *name, size_t sec_idx, const char *sec_name,
612 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
613 {
614 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
615 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
616 			sec_name, name, sec_off, insn_data_sz);
617 		return -EINVAL;
618 	}
619 
620 	memset(prog, 0, sizeof(*prog));
621 	prog->obj = obj;
622 
623 	prog->sec_idx = sec_idx;
624 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
625 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
626 	/* insns_cnt can later be increased by appending used subprograms */
627 	prog->insns_cnt = prog->sec_insn_cnt;
628 
629 	prog->type = BPF_PROG_TYPE_UNSPEC;
630 	prog->load = true;
631 
632 	prog->instances.fds = NULL;
633 	prog->instances.nr = -1;
634 
635 	prog->sec_name = strdup(sec_name);
636 	if (!prog->sec_name)
637 		goto errout;
638 
639 	prog->name = strdup(name);
640 	if (!prog->name)
641 		goto errout;
642 
643 	prog->pin_name = __bpf_program__pin_name(prog);
644 	if (!prog->pin_name)
645 		goto errout;
646 
647 	prog->insns = malloc(insn_data_sz);
648 	if (!prog->insns)
649 		goto errout;
650 	memcpy(prog->insns, insn_data, insn_data_sz);
651 
652 	return 0;
653 errout:
654 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
655 	bpf_program__exit(prog);
656 	return -ENOMEM;
657 }
658 
659 static int
660 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
661 			 const char *sec_name, int sec_idx)
662 {
663 	Elf_Data *symbols = obj->efile.symbols;
664 	struct bpf_program *prog, *progs;
665 	void *data = sec_data->d_buf;
666 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
667 	int nr_progs, err, i;
668 	const char *name;
669 	GElf_Sym sym;
670 
671 	progs = obj->programs;
672 	nr_progs = obj->nr_programs;
673 	nr_syms = symbols->d_size / sizeof(GElf_Sym);
674 	sec_off = 0;
675 
676 	for (i = 0; i < nr_syms; i++) {
677 		if (!gelf_getsym(symbols, i, &sym))
678 			continue;
679 		if (sym.st_shndx != sec_idx)
680 			continue;
681 		if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
682 			continue;
683 
684 		prog_sz = sym.st_size;
685 		sec_off = sym.st_value;
686 
687 		name = elf_sym_str(obj, sym.st_name);
688 		if (!name) {
689 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
690 				sec_name, sec_off);
691 			return -LIBBPF_ERRNO__FORMAT;
692 		}
693 
694 		if (sec_off + prog_sz > sec_sz) {
695 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
696 				sec_name, sec_off);
697 			return -LIBBPF_ERRNO__FORMAT;
698 		}
699 
700 		if (sec_idx != obj->efile.text_shndx && GELF_ST_BIND(sym.st_info) == STB_LOCAL) {
701 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
702 			return -ENOTSUP;
703 		}
704 
705 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
706 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
707 
708 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
709 		if (!progs) {
710 			/*
711 			 * In this case the original obj->programs
712 			 * is still valid, so don't need special treat for
713 			 * bpf_close_object().
714 			 */
715 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
716 				sec_name, name);
717 			return -ENOMEM;
718 		}
719 		obj->programs = progs;
720 
721 		prog = &progs[nr_progs];
722 
723 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
724 					    sec_off, data + sec_off, prog_sz);
725 		if (err)
726 			return err;
727 
728 		/* if function is a global/weak symbol, but has restricted
729 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
730 		 * as static to enable more permissive BPF verification mode
731 		 * with more outside context available to BPF verifier
732 		 */
733 		if (GELF_ST_BIND(sym.st_info) != STB_LOCAL
734 		    && (GELF_ST_VISIBILITY(sym.st_other) == STV_HIDDEN
735 			|| GELF_ST_VISIBILITY(sym.st_other) == STV_INTERNAL))
736 			prog->mark_btf_static = true;
737 
738 		nr_progs++;
739 		obj->nr_programs = nr_progs;
740 	}
741 
742 	return 0;
743 }
744 
745 static __u32 get_kernel_version(void)
746 {
747 	__u32 major, minor, patch;
748 	struct utsname info;
749 
750 	uname(&info);
751 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
752 		return 0;
753 	return KERNEL_VERSION(major, minor, patch);
754 }
755 
756 static const struct btf_member *
757 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
758 {
759 	struct btf_member *m;
760 	int i;
761 
762 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
763 		if (btf_member_bit_offset(t, i) == bit_offset)
764 			return m;
765 	}
766 
767 	return NULL;
768 }
769 
770 static const struct btf_member *
771 find_member_by_name(const struct btf *btf, const struct btf_type *t,
772 		    const char *name)
773 {
774 	struct btf_member *m;
775 	int i;
776 
777 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
778 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
779 			return m;
780 	}
781 
782 	return NULL;
783 }
784 
785 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
786 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
787 				   const char *name, __u32 kind);
788 
789 static int
790 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
791 			   const struct btf_type **type, __u32 *type_id,
792 			   const struct btf_type **vtype, __u32 *vtype_id,
793 			   const struct btf_member **data_member)
794 {
795 	const struct btf_type *kern_type, *kern_vtype;
796 	const struct btf_member *kern_data_member;
797 	__s32 kern_vtype_id, kern_type_id;
798 	__u32 i;
799 
800 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
801 	if (kern_type_id < 0) {
802 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
803 			tname);
804 		return kern_type_id;
805 	}
806 	kern_type = btf__type_by_id(btf, kern_type_id);
807 
808 	/* Find the corresponding "map_value" type that will be used
809 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
810 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
811 	 * btf_vmlinux.
812 	 */
813 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
814 						tname, BTF_KIND_STRUCT);
815 	if (kern_vtype_id < 0) {
816 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
817 			STRUCT_OPS_VALUE_PREFIX, tname);
818 		return kern_vtype_id;
819 	}
820 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
821 
822 	/* Find "struct tcp_congestion_ops" from
823 	 * struct bpf_struct_ops_tcp_congestion_ops {
824 	 *	[ ... ]
825 	 *	struct tcp_congestion_ops data;
826 	 * }
827 	 */
828 	kern_data_member = btf_members(kern_vtype);
829 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
830 		if (kern_data_member->type == kern_type_id)
831 			break;
832 	}
833 	if (i == btf_vlen(kern_vtype)) {
834 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
835 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
836 		return -EINVAL;
837 	}
838 
839 	*type = kern_type;
840 	*type_id = kern_type_id;
841 	*vtype = kern_vtype;
842 	*vtype_id = kern_vtype_id;
843 	*data_member = kern_data_member;
844 
845 	return 0;
846 }
847 
848 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
849 {
850 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
851 }
852 
853 /* Init the map's fields that depend on kern_btf */
854 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
855 					 const struct btf *btf,
856 					 const struct btf *kern_btf)
857 {
858 	const struct btf_member *member, *kern_member, *kern_data_member;
859 	const struct btf_type *type, *kern_type, *kern_vtype;
860 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
861 	struct bpf_struct_ops *st_ops;
862 	void *data, *kern_data;
863 	const char *tname;
864 	int err;
865 
866 	st_ops = map->st_ops;
867 	type = st_ops->type;
868 	tname = st_ops->tname;
869 	err = find_struct_ops_kern_types(kern_btf, tname,
870 					 &kern_type, &kern_type_id,
871 					 &kern_vtype, &kern_vtype_id,
872 					 &kern_data_member);
873 	if (err)
874 		return err;
875 
876 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
877 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
878 
879 	map->def.value_size = kern_vtype->size;
880 	map->btf_vmlinux_value_type_id = kern_vtype_id;
881 
882 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
883 	if (!st_ops->kern_vdata)
884 		return -ENOMEM;
885 
886 	data = st_ops->data;
887 	kern_data_off = kern_data_member->offset / 8;
888 	kern_data = st_ops->kern_vdata + kern_data_off;
889 
890 	member = btf_members(type);
891 	for (i = 0; i < btf_vlen(type); i++, member++) {
892 		const struct btf_type *mtype, *kern_mtype;
893 		__u32 mtype_id, kern_mtype_id;
894 		void *mdata, *kern_mdata;
895 		__s64 msize, kern_msize;
896 		__u32 moff, kern_moff;
897 		__u32 kern_member_idx;
898 		const char *mname;
899 
900 		mname = btf__name_by_offset(btf, member->name_off);
901 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
902 		if (!kern_member) {
903 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
904 				map->name, mname);
905 			return -ENOTSUP;
906 		}
907 
908 		kern_member_idx = kern_member - btf_members(kern_type);
909 		if (btf_member_bitfield_size(type, i) ||
910 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
911 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
912 				map->name, mname);
913 			return -ENOTSUP;
914 		}
915 
916 		moff = member->offset / 8;
917 		kern_moff = kern_member->offset / 8;
918 
919 		mdata = data + moff;
920 		kern_mdata = kern_data + kern_moff;
921 
922 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
923 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
924 						    &kern_mtype_id);
925 		if (BTF_INFO_KIND(mtype->info) !=
926 		    BTF_INFO_KIND(kern_mtype->info)) {
927 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
928 				map->name, mname, BTF_INFO_KIND(mtype->info),
929 				BTF_INFO_KIND(kern_mtype->info));
930 			return -ENOTSUP;
931 		}
932 
933 		if (btf_is_ptr(mtype)) {
934 			struct bpf_program *prog;
935 
936 			prog = st_ops->progs[i];
937 			if (!prog)
938 				continue;
939 
940 			kern_mtype = skip_mods_and_typedefs(kern_btf,
941 							    kern_mtype->type,
942 							    &kern_mtype_id);
943 
944 			/* mtype->type must be a func_proto which was
945 			 * guaranteed in bpf_object__collect_st_ops_relos(),
946 			 * so only check kern_mtype for func_proto here.
947 			 */
948 			if (!btf_is_func_proto(kern_mtype)) {
949 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
950 					map->name, mname);
951 				return -ENOTSUP;
952 			}
953 
954 			prog->attach_btf_id = kern_type_id;
955 			prog->expected_attach_type = kern_member_idx;
956 
957 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
958 
959 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
960 				 map->name, mname, prog->name, moff,
961 				 kern_moff);
962 
963 			continue;
964 		}
965 
966 		msize = btf__resolve_size(btf, mtype_id);
967 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
968 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
969 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
970 				map->name, mname, (ssize_t)msize,
971 				(ssize_t)kern_msize);
972 			return -ENOTSUP;
973 		}
974 
975 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
976 			 map->name, mname, (unsigned int)msize,
977 			 moff, kern_moff);
978 		memcpy(kern_mdata, mdata, msize);
979 	}
980 
981 	return 0;
982 }
983 
984 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
985 {
986 	struct bpf_map *map;
987 	size_t i;
988 	int err;
989 
990 	for (i = 0; i < obj->nr_maps; i++) {
991 		map = &obj->maps[i];
992 
993 		if (!bpf_map__is_struct_ops(map))
994 			continue;
995 
996 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
997 						    obj->btf_vmlinux);
998 		if (err)
999 			return err;
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1006 {
1007 	const struct btf_type *type, *datasec;
1008 	const struct btf_var_secinfo *vsi;
1009 	struct bpf_struct_ops *st_ops;
1010 	const char *tname, *var_name;
1011 	__s32 type_id, datasec_id;
1012 	const struct btf *btf;
1013 	struct bpf_map *map;
1014 	__u32 i;
1015 
1016 	if (obj->efile.st_ops_shndx == -1)
1017 		return 0;
1018 
1019 	btf = obj->btf;
1020 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1021 					    BTF_KIND_DATASEC);
1022 	if (datasec_id < 0) {
1023 		pr_warn("struct_ops init: DATASEC %s not found\n",
1024 			STRUCT_OPS_SEC);
1025 		return -EINVAL;
1026 	}
1027 
1028 	datasec = btf__type_by_id(btf, datasec_id);
1029 	vsi = btf_var_secinfos(datasec);
1030 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1031 		type = btf__type_by_id(obj->btf, vsi->type);
1032 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1033 
1034 		type_id = btf__resolve_type(obj->btf, vsi->type);
1035 		if (type_id < 0) {
1036 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1037 				vsi->type, STRUCT_OPS_SEC);
1038 			return -EINVAL;
1039 		}
1040 
1041 		type = btf__type_by_id(obj->btf, type_id);
1042 		tname = btf__name_by_offset(obj->btf, type->name_off);
1043 		if (!tname[0]) {
1044 			pr_warn("struct_ops init: anonymous type is not supported\n");
1045 			return -ENOTSUP;
1046 		}
1047 		if (!btf_is_struct(type)) {
1048 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1049 			return -EINVAL;
1050 		}
1051 
1052 		map = bpf_object__add_map(obj);
1053 		if (IS_ERR(map))
1054 			return PTR_ERR(map);
1055 
1056 		map->sec_idx = obj->efile.st_ops_shndx;
1057 		map->sec_offset = vsi->offset;
1058 		map->name = strdup(var_name);
1059 		if (!map->name)
1060 			return -ENOMEM;
1061 
1062 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1063 		map->def.key_size = sizeof(int);
1064 		map->def.value_size = type->size;
1065 		map->def.max_entries = 1;
1066 
1067 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1068 		if (!map->st_ops)
1069 			return -ENOMEM;
1070 		st_ops = map->st_ops;
1071 		st_ops->data = malloc(type->size);
1072 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1073 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1074 					       sizeof(*st_ops->kern_func_off));
1075 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1076 			return -ENOMEM;
1077 
1078 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1079 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1080 				var_name, STRUCT_OPS_SEC);
1081 			return -EINVAL;
1082 		}
1083 
1084 		memcpy(st_ops->data,
1085 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1086 		       type->size);
1087 		st_ops->tname = tname;
1088 		st_ops->type = type;
1089 		st_ops->type_id = type_id;
1090 
1091 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1092 			 tname, type_id, var_name, vsi->offset);
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 static struct bpf_object *bpf_object__new(const char *path,
1099 					  const void *obj_buf,
1100 					  size_t obj_buf_sz,
1101 					  const char *obj_name)
1102 {
1103 	struct bpf_object *obj;
1104 	char *end;
1105 
1106 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1107 	if (!obj) {
1108 		pr_warn("alloc memory failed for %s\n", path);
1109 		return ERR_PTR(-ENOMEM);
1110 	}
1111 
1112 	strcpy(obj->path, path);
1113 	if (obj_name) {
1114 		strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1115 		obj->name[sizeof(obj->name) - 1] = 0;
1116 	} else {
1117 		/* Using basename() GNU version which doesn't modify arg. */
1118 		strncpy(obj->name, basename((void *)path),
1119 			sizeof(obj->name) - 1);
1120 		end = strchr(obj->name, '.');
1121 		if (end)
1122 			*end = 0;
1123 	}
1124 
1125 	obj->efile.fd = -1;
1126 	/*
1127 	 * Caller of this function should also call
1128 	 * bpf_object__elf_finish() after data collection to return
1129 	 * obj_buf to user. If not, we should duplicate the buffer to
1130 	 * avoid user freeing them before elf finish.
1131 	 */
1132 	obj->efile.obj_buf = obj_buf;
1133 	obj->efile.obj_buf_sz = obj_buf_sz;
1134 	obj->efile.maps_shndx = -1;
1135 	obj->efile.btf_maps_shndx = -1;
1136 	obj->efile.data_shndx = -1;
1137 	obj->efile.rodata_shndx = -1;
1138 	obj->efile.bss_shndx = -1;
1139 	obj->efile.st_ops_shndx = -1;
1140 	obj->kconfig_map_idx = -1;
1141 	obj->rodata_map_idx = -1;
1142 
1143 	obj->kern_version = get_kernel_version();
1144 	obj->loaded = false;
1145 
1146 	INIT_LIST_HEAD(&obj->list);
1147 	list_add(&obj->list, &bpf_objects_list);
1148 	return obj;
1149 }
1150 
1151 static void bpf_object__elf_finish(struct bpf_object *obj)
1152 {
1153 	if (!obj_elf_valid(obj))
1154 		return;
1155 
1156 	if (obj->efile.elf) {
1157 		elf_end(obj->efile.elf);
1158 		obj->efile.elf = NULL;
1159 	}
1160 	obj->efile.symbols = NULL;
1161 	obj->efile.data = NULL;
1162 	obj->efile.rodata = NULL;
1163 	obj->efile.bss = NULL;
1164 	obj->efile.st_ops_data = NULL;
1165 
1166 	zfree(&obj->efile.reloc_sects);
1167 	obj->efile.nr_reloc_sects = 0;
1168 	zclose(obj->efile.fd);
1169 	obj->efile.obj_buf = NULL;
1170 	obj->efile.obj_buf_sz = 0;
1171 }
1172 
1173 static int bpf_object__elf_init(struct bpf_object *obj)
1174 {
1175 	int err = 0;
1176 	GElf_Ehdr *ep;
1177 
1178 	if (obj_elf_valid(obj)) {
1179 		pr_warn("elf: init internal error\n");
1180 		return -LIBBPF_ERRNO__LIBELF;
1181 	}
1182 
1183 	if (obj->efile.obj_buf_sz > 0) {
1184 		/*
1185 		 * obj_buf should have been validated by
1186 		 * bpf_object__open_buffer().
1187 		 */
1188 		obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1189 					    obj->efile.obj_buf_sz);
1190 	} else {
1191 		obj->efile.fd = open(obj->path, O_RDONLY);
1192 		if (obj->efile.fd < 0) {
1193 			char errmsg[STRERR_BUFSIZE], *cp;
1194 
1195 			err = -errno;
1196 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1197 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1198 			return err;
1199 		}
1200 
1201 		obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1202 	}
1203 
1204 	if (!obj->efile.elf) {
1205 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1206 		err = -LIBBPF_ERRNO__LIBELF;
1207 		goto errout;
1208 	}
1209 
1210 	if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1211 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1212 		err = -LIBBPF_ERRNO__FORMAT;
1213 		goto errout;
1214 	}
1215 	ep = &obj->efile.ehdr;
1216 
1217 	if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1218 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1219 			obj->path, elf_errmsg(-1));
1220 		err = -LIBBPF_ERRNO__FORMAT;
1221 		goto errout;
1222 	}
1223 
1224 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1225 	if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1226 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1227 			obj->path, elf_errmsg(-1));
1228 		err = -LIBBPF_ERRNO__FORMAT;
1229 		goto errout;
1230 	}
1231 
1232 	/* Old LLVM set e_machine to EM_NONE */
1233 	if (ep->e_type != ET_REL ||
1234 	    (ep->e_machine && ep->e_machine != EM_BPF)) {
1235 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1236 		err = -LIBBPF_ERRNO__FORMAT;
1237 		goto errout;
1238 	}
1239 
1240 	return 0;
1241 errout:
1242 	bpf_object__elf_finish(obj);
1243 	return err;
1244 }
1245 
1246 static int bpf_object__check_endianness(struct bpf_object *obj)
1247 {
1248 #if __BYTE_ORDER == __LITTLE_ENDIAN
1249 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1250 		return 0;
1251 #elif __BYTE_ORDER == __BIG_ENDIAN
1252 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1253 		return 0;
1254 #else
1255 # error "Unrecognized __BYTE_ORDER__"
1256 #endif
1257 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1258 	return -LIBBPF_ERRNO__ENDIAN;
1259 }
1260 
1261 static int
1262 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1263 {
1264 	memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1265 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1266 	return 0;
1267 }
1268 
1269 static int
1270 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1271 {
1272 	__u32 kver;
1273 
1274 	if (size != sizeof(kver)) {
1275 		pr_warn("invalid kver section in %s\n", obj->path);
1276 		return -LIBBPF_ERRNO__FORMAT;
1277 	}
1278 	memcpy(&kver, data, sizeof(kver));
1279 	obj->kern_version = kver;
1280 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1281 	return 0;
1282 }
1283 
1284 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1285 {
1286 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1287 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1288 		return true;
1289 	return false;
1290 }
1291 
1292 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1293 			     __u32 *size)
1294 {
1295 	int ret = -ENOENT;
1296 
1297 	*size = 0;
1298 	if (!name) {
1299 		return -EINVAL;
1300 	} else if (!strcmp(name, DATA_SEC)) {
1301 		if (obj->efile.data)
1302 			*size = obj->efile.data->d_size;
1303 	} else if (!strcmp(name, BSS_SEC)) {
1304 		if (obj->efile.bss)
1305 			*size = obj->efile.bss->d_size;
1306 	} else if (!strcmp(name, RODATA_SEC)) {
1307 		if (obj->efile.rodata)
1308 			*size = obj->efile.rodata->d_size;
1309 	} else if (!strcmp(name, STRUCT_OPS_SEC)) {
1310 		if (obj->efile.st_ops_data)
1311 			*size = obj->efile.st_ops_data->d_size;
1312 	} else {
1313 		Elf_Scn *scn = elf_sec_by_name(obj, name);
1314 		Elf_Data *data = elf_sec_data(obj, scn);
1315 
1316 		if (data) {
1317 			ret = 0; /* found it */
1318 			*size = data->d_size;
1319 		}
1320 	}
1321 
1322 	return *size ? 0 : ret;
1323 }
1324 
1325 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1326 				__u32 *off)
1327 {
1328 	Elf_Data *symbols = obj->efile.symbols;
1329 	const char *sname;
1330 	size_t si;
1331 
1332 	if (!name || !off)
1333 		return -EINVAL;
1334 
1335 	for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1336 		GElf_Sym sym;
1337 
1338 		if (!gelf_getsym(symbols, si, &sym))
1339 			continue;
1340 		if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1341 		    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1342 			continue;
1343 
1344 		sname = elf_sym_str(obj, sym.st_name);
1345 		if (!sname) {
1346 			pr_warn("failed to get sym name string for var %s\n",
1347 				name);
1348 			return -EIO;
1349 		}
1350 		if (strcmp(name, sname) == 0) {
1351 			*off = sym.st_value;
1352 			return 0;
1353 		}
1354 	}
1355 
1356 	return -ENOENT;
1357 }
1358 
1359 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1360 {
1361 	struct bpf_map *new_maps;
1362 	size_t new_cap;
1363 	int i;
1364 
1365 	if (obj->nr_maps < obj->maps_cap)
1366 		return &obj->maps[obj->nr_maps++];
1367 
1368 	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1369 	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1370 	if (!new_maps) {
1371 		pr_warn("alloc maps for object failed\n");
1372 		return ERR_PTR(-ENOMEM);
1373 	}
1374 
1375 	obj->maps_cap = new_cap;
1376 	obj->maps = new_maps;
1377 
1378 	/* zero out new maps */
1379 	memset(obj->maps + obj->nr_maps, 0,
1380 	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1381 	/*
1382 	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1383 	 * when failure (zclose won't close negative fd)).
1384 	 */
1385 	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1386 		obj->maps[i].fd = -1;
1387 		obj->maps[i].inner_map_fd = -1;
1388 	}
1389 
1390 	return &obj->maps[obj->nr_maps++];
1391 }
1392 
1393 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1394 {
1395 	long page_sz = sysconf(_SC_PAGE_SIZE);
1396 	size_t map_sz;
1397 
1398 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1399 	map_sz = roundup(map_sz, page_sz);
1400 	return map_sz;
1401 }
1402 
1403 static char *internal_map_name(struct bpf_object *obj,
1404 			       enum libbpf_map_type type)
1405 {
1406 	char map_name[BPF_OBJ_NAME_LEN], *p;
1407 	const char *sfx = libbpf_type_to_btf_name[type];
1408 	int sfx_len = max((size_t)7, strlen(sfx));
1409 	int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1410 			  strlen(obj->name));
1411 
1412 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1413 		 sfx_len, libbpf_type_to_btf_name[type]);
1414 
1415 	/* sanitise map name to characters allowed by kernel */
1416 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1417 		if (!isalnum(*p) && *p != '_' && *p != '.')
1418 			*p = '_';
1419 
1420 	return strdup(map_name);
1421 }
1422 
1423 static int
1424 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1425 			      int sec_idx, void *data, size_t data_sz)
1426 {
1427 	struct bpf_map_def *def;
1428 	struct bpf_map *map;
1429 	int err;
1430 
1431 	map = bpf_object__add_map(obj);
1432 	if (IS_ERR(map))
1433 		return PTR_ERR(map);
1434 
1435 	map->libbpf_type = type;
1436 	map->sec_idx = sec_idx;
1437 	map->sec_offset = 0;
1438 	map->name = internal_map_name(obj, type);
1439 	if (!map->name) {
1440 		pr_warn("failed to alloc map name\n");
1441 		return -ENOMEM;
1442 	}
1443 
1444 	def = &map->def;
1445 	def->type = BPF_MAP_TYPE_ARRAY;
1446 	def->key_size = sizeof(int);
1447 	def->value_size = data_sz;
1448 	def->max_entries = 1;
1449 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1450 			 ? BPF_F_RDONLY_PROG : 0;
1451 	def->map_flags |= BPF_F_MMAPABLE;
1452 
1453 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1454 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1455 
1456 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1457 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1458 	if (map->mmaped == MAP_FAILED) {
1459 		err = -errno;
1460 		map->mmaped = NULL;
1461 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1462 			map->name, err);
1463 		zfree(&map->name);
1464 		return err;
1465 	}
1466 
1467 	if (data)
1468 		memcpy(map->mmaped, data, data_sz);
1469 
1470 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1471 	return 0;
1472 }
1473 
1474 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1475 {
1476 	int err;
1477 
1478 	/*
1479 	 * Populate obj->maps with libbpf internal maps.
1480 	 */
1481 	if (obj->efile.data_shndx >= 0) {
1482 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1483 						    obj->efile.data_shndx,
1484 						    obj->efile.data->d_buf,
1485 						    obj->efile.data->d_size);
1486 		if (err)
1487 			return err;
1488 	}
1489 	if (obj->efile.rodata_shndx >= 0) {
1490 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1491 						    obj->efile.rodata_shndx,
1492 						    obj->efile.rodata->d_buf,
1493 						    obj->efile.rodata->d_size);
1494 		if (err)
1495 			return err;
1496 
1497 		obj->rodata_map_idx = obj->nr_maps - 1;
1498 	}
1499 	if (obj->efile.bss_shndx >= 0) {
1500 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1501 						    obj->efile.bss_shndx,
1502 						    NULL,
1503 						    obj->efile.bss->d_size);
1504 		if (err)
1505 			return err;
1506 	}
1507 	return 0;
1508 }
1509 
1510 
1511 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1512 					       const void *name)
1513 {
1514 	int i;
1515 
1516 	for (i = 0; i < obj->nr_extern; i++) {
1517 		if (strcmp(obj->externs[i].name, name) == 0)
1518 			return &obj->externs[i];
1519 	}
1520 	return NULL;
1521 }
1522 
1523 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1524 			      char value)
1525 {
1526 	switch (ext->kcfg.type) {
1527 	case KCFG_BOOL:
1528 		if (value == 'm') {
1529 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1530 				ext->name, value);
1531 			return -EINVAL;
1532 		}
1533 		*(bool *)ext_val = value == 'y' ? true : false;
1534 		break;
1535 	case KCFG_TRISTATE:
1536 		if (value == 'y')
1537 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1538 		else if (value == 'm')
1539 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1540 		else /* value == 'n' */
1541 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1542 		break;
1543 	case KCFG_CHAR:
1544 		*(char *)ext_val = value;
1545 		break;
1546 	case KCFG_UNKNOWN:
1547 	case KCFG_INT:
1548 	case KCFG_CHAR_ARR:
1549 	default:
1550 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1551 			ext->name, value);
1552 		return -EINVAL;
1553 	}
1554 	ext->is_set = true;
1555 	return 0;
1556 }
1557 
1558 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1559 			      const char *value)
1560 {
1561 	size_t len;
1562 
1563 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1564 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1565 		return -EINVAL;
1566 	}
1567 
1568 	len = strlen(value);
1569 	if (value[len - 1] != '"') {
1570 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1571 			ext->name, value);
1572 		return -EINVAL;
1573 	}
1574 
1575 	/* strip quotes */
1576 	len -= 2;
1577 	if (len >= ext->kcfg.sz) {
1578 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1579 			ext->name, value, len, ext->kcfg.sz - 1);
1580 		len = ext->kcfg.sz - 1;
1581 	}
1582 	memcpy(ext_val, value + 1, len);
1583 	ext_val[len] = '\0';
1584 	ext->is_set = true;
1585 	return 0;
1586 }
1587 
1588 static int parse_u64(const char *value, __u64 *res)
1589 {
1590 	char *value_end;
1591 	int err;
1592 
1593 	errno = 0;
1594 	*res = strtoull(value, &value_end, 0);
1595 	if (errno) {
1596 		err = -errno;
1597 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1598 		return err;
1599 	}
1600 	if (*value_end) {
1601 		pr_warn("failed to parse '%s' as integer completely\n", value);
1602 		return -EINVAL;
1603 	}
1604 	return 0;
1605 }
1606 
1607 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1608 {
1609 	int bit_sz = ext->kcfg.sz * 8;
1610 
1611 	if (ext->kcfg.sz == 8)
1612 		return true;
1613 
1614 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1615 	 * bytes size without any loss of information. If the target integer
1616 	 * is signed, we rely on the following limits of integer type of
1617 	 * Y bits and subsequent transformation:
1618 	 *
1619 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1620 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1621 	 *            0 <= X + 2^(Y-1) <  2^Y
1622 	 *
1623 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1624 	 *  zero.
1625 	 */
1626 	if (ext->kcfg.is_signed)
1627 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1628 	else
1629 		return (v >> bit_sz) == 0;
1630 }
1631 
1632 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1633 			      __u64 value)
1634 {
1635 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1636 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1637 			ext->name, (unsigned long long)value);
1638 		return -EINVAL;
1639 	}
1640 	if (!is_kcfg_value_in_range(ext, value)) {
1641 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1642 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1643 		return -ERANGE;
1644 	}
1645 	switch (ext->kcfg.sz) {
1646 		case 1: *(__u8 *)ext_val = value; break;
1647 		case 2: *(__u16 *)ext_val = value; break;
1648 		case 4: *(__u32 *)ext_val = value; break;
1649 		case 8: *(__u64 *)ext_val = value; break;
1650 		default:
1651 			return -EINVAL;
1652 	}
1653 	ext->is_set = true;
1654 	return 0;
1655 }
1656 
1657 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1658 					    char *buf, void *data)
1659 {
1660 	struct extern_desc *ext;
1661 	char *sep, *value;
1662 	int len, err = 0;
1663 	void *ext_val;
1664 	__u64 num;
1665 
1666 	if (strncmp(buf, "CONFIG_", 7))
1667 		return 0;
1668 
1669 	sep = strchr(buf, '=');
1670 	if (!sep) {
1671 		pr_warn("failed to parse '%s': no separator\n", buf);
1672 		return -EINVAL;
1673 	}
1674 
1675 	/* Trim ending '\n' */
1676 	len = strlen(buf);
1677 	if (buf[len - 1] == '\n')
1678 		buf[len - 1] = '\0';
1679 	/* Split on '=' and ensure that a value is present. */
1680 	*sep = '\0';
1681 	if (!sep[1]) {
1682 		*sep = '=';
1683 		pr_warn("failed to parse '%s': no value\n", buf);
1684 		return -EINVAL;
1685 	}
1686 
1687 	ext = find_extern_by_name(obj, buf);
1688 	if (!ext || ext->is_set)
1689 		return 0;
1690 
1691 	ext_val = data + ext->kcfg.data_off;
1692 	value = sep + 1;
1693 
1694 	switch (*value) {
1695 	case 'y': case 'n': case 'm':
1696 		err = set_kcfg_value_tri(ext, ext_val, *value);
1697 		break;
1698 	case '"':
1699 		err = set_kcfg_value_str(ext, ext_val, value);
1700 		break;
1701 	default:
1702 		/* assume integer */
1703 		err = parse_u64(value, &num);
1704 		if (err) {
1705 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1706 				ext->name, value);
1707 			return err;
1708 		}
1709 		err = set_kcfg_value_num(ext, ext_val, num);
1710 		break;
1711 	}
1712 	if (err)
1713 		return err;
1714 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1715 	return 0;
1716 }
1717 
1718 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1719 {
1720 	char buf[PATH_MAX];
1721 	struct utsname uts;
1722 	int len, err = 0;
1723 	gzFile file;
1724 
1725 	uname(&uts);
1726 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1727 	if (len < 0)
1728 		return -EINVAL;
1729 	else if (len >= PATH_MAX)
1730 		return -ENAMETOOLONG;
1731 
1732 	/* gzopen also accepts uncompressed files. */
1733 	file = gzopen(buf, "r");
1734 	if (!file)
1735 		file = gzopen("/proc/config.gz", "r");
1736 
1737 	if (!file) {
1738 		pr_warn("failed to open system Kconfig\n");
1739 		return -ENOENT;
1740 	}
1741 
1742 	while (gzgets(file, buf, sizeof(buf))) {
1743 		err = bpf_object__process_kconfig_line(obj, buf, data);
1744 		if (err) {
1745 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1746 				buf, err);
1747 			goto out;
1748 		}
1749 	}
1750 
1751 out:
1752 	gzclose(file);
1753 	return err;
1754 }
1755 
1756 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1757 					const char *config, void *data)
1758 {
1759 	char buf[PATH_MAX];
1760 	int err = 0;
1761 	FILE *file;
1762 
1763 	file = fmemopen((void *)config, strlen(config), "r");
1764 	if (!file) {
1765 		err = -errno;
1766 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1767 		return err;
1768 	}
1769 
1770 	while (fgets(buf, sizeof(buf), file)) {
1771 		err = bpf_object__process_kconfig_line(obj, buf, data);
1772 		if (err) {
1773 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1774 				buf, err);
1775 			break;
1776 		}
1777 	}
1778 
1779 	fclose(file);
1780 	return err;
1781 }
1782 
1783 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1784 {
1785 	struct extern_desc *last_ext = NULL, *ext;
1786 	size_t map_sz;
1787 	int i, err;
1788 
1789 	for (i = 0; i < obj->nr_extern; i++) {
1790 		ext = &obj->externs[i];
1791 		if (ext->type == EXT_KCFG)
1792 			last_ext = ext;
1793 	}
1794 
1795 	if (!last_ext)
1796 		return 0;
1797 
1798 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1799 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1800 					    obj->efile.symbols_shndx,
1801 					    NULL, map_sz);
1802 	if (err)
1803 		return err;
1804 
1805 	obj->kconfig_map_idx = obj->nr_maps - 1;
1806 
1807 	return 0;
1808 }
1809 
1810 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1811 {
1812 	Elf_Data *symbols = obj->efile.symbols;
1813 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1814 	Elf_Data *data = NULL;
1815 	Elf_Scn *scn;
1816 
1817 	if (obj->efile.maps_shndx < 0)
1818 		return 0;
1819 
1820 	if (!symbols)
1821 		return -EINVAL;
1822 
1823 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1824 	data = elf_sec_data(obj, scn);
1825 	if (!scn || !data) {
1826 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1827 			obj->path);
1828 		return -EINVAL;
1829 	}
1830 
1831 	/*
1832 	 * Count number of maps. Each map has a name.
1833 	 * Array of maps is not supported: only the first element is
1834 	 * considered.
1835 	 *
1836 	 * TODO: Detect array of map and report error.
1837 	 */
1838 	nr_syms = symbols->d_size / sizeof(GElf_Sym);
1839 	for (i = 0; i < nr_syms; i++) {
1840 		GElf_Sym sym;
1841 
1842 		if (!gelf_getsym(symbols, i, &sym))
1843 			continue;
1844 		if (sym.st_shndx != obj->efile.maps_shndx)
1845 			continue;
1846 		nr_maps++;
1847 	}
1848 	/* Assume equally sized map definitions */
1849 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1850 		 nr_maps, data->d_size, obj->path);
1851 
1852 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1853 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1854 			obj->path);
1855 		return -EINVAL;
1856 	}
1857 	map_def_sz = data->d_size / nr_maps;
1858 
1859 	/* Fill obj->maps using data in "maps" section.  */
1860 	for (i = 0; i < nr_syms; i++) {
1861 		GElf_Sym sym;
1862 		const char *map_name;
1863 		struct bpf_map_def *def;
1864 		struct bpf_map *map;
1865 
1866 		if (!gelf_getsym(symbols, i, &sym))
1867 			continue;
1868 		if (sym.st_shndx != obj->efile.maps_shndx)
1869 			continue;
1870 
1871 		map = bpf_object__add_map(obj);
1872 		if (IS_ERR(map))
1873 			return PTR_ERR(map);
1874 
1875 		map_name = elf_sym_str(obj, sym.st_name);
1876 		if (!map_name) {
1877 			pr_warn("failed to get map #%d name sym string for obj %s\n",
1878 				i, obj->path);
1879 			return -LIBBPF_ERRNO__FORMAT;
1880 		}
1881 
1882 		if (GELF_ST_TYPE(sym.st_info) == STT_SECTION
1883 		    || GELF_ST_BIND(sym.st_info) == STB_LOCAL) {
1884 			pr_warn("map '%s' (legacy): static maps are not supported\n", map_name);
1885 			return -ENOTSUP;
1886 		}
1887 
1888 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
1889 		map->sec_idx = sym.st_shndx;
1890 		map->sec_offset = sym.st_value;
1891 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1892 			 map_name, map->sec_idx, map->sec_offset);
1893 		if (sym.st_value + map_def_sz > data->d_size) {
1894 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1895 				obj->path, map_name);
1896 			return -EINVAL;
1897 		}
1898 
1899 		map->name = strdup(map_name);
1900 		if (!map->name) {
1901 			pr_warn("failed to alloc map name\n");
1902 			return -ENOMEM;
1903 		}
1904 		pr_debug("map %d is \"%s\"\n", i, map->name);
1905 		def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1906 		/*
1907 		 * If the definition of the map in the object file fits in
1908 		 * bpf_map_def, copy it.  Any extra fields in our version
1909 		 * of bpf_map_def will default to zero as a result of the
1910 		 * calloc above.
1911 		 */
1912 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
1913 			memcpy(&map->def, def, map_def_sz);
1914 		} else {
1915 			/*
1916 			 * Here the map structure being read is bigger than what
1917 			 * we expect, truncate if the excess bits are all zero.
1918 			 * If they are not zero, reject this map as
1919 			 * incompatible.
1920 			 */
1921 			char *b;
1922 
1923 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
1924 			     b < ((char *)def) + map_def_sz; b++) {
1925 				if (*b != 0) {
1926 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1927 						obj->path, map_name);
1928 					if (strict)
1929 						return -EINVAL;
1930 				}
1931 			}
1932 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
1933 		}
1934 	}
1935 	return 0;
1936 }
1937 
1938 const struct btf_type *
1939 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1940 {
1941 	const struct btf_type *t = btf__type_by_id(btf, id);
1942 
1943 	if (res_id)
1944 		*res_id = id;
1945 
1946 	while (btf_is_mod(t) || btf_is_typedef(t)) {
1947 		if (res_id)
1948 			*res_id = t->type;
1949 		t = btf__type_by_id(btf, t->type);
1950 	}
1951 
1952 	return t;
1953 }
1954 
1955 static const struct btf_type *
1956 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1957 {
1958 	const struct btf_type *t;
1959 
1960 	t = skip_mods_and_typedefs(btf, id, NULL);
1961 	if (!btf_is_ptr(t))
1962 		return NULL;
1963 
1964 	t = skip_mods_and_typedefs(btf, t->type, res_id);
1965 
1966 	return btf_is_func_proto(t) ? t : NULL;
1967 }
1968 
1969 static const char *__btf_kind_str(__u16 kind)
1970 {
1971 	switch (kind) {
1972 	case BTF_KIND_UNKN: return "void";
1973 	case BTF_KIND_INT: return "int";
1974 	case BTF_KIND_PTR: return "ptr";
1975 	case BTF_KIND_ARRAY: return "array";
1976 	case BTF_KIND_STRUCT: return "struct";
1977 	case BTF_KIND_UNION: return "union";
1978 	case BTF_KIND_ENUM: return "enum";
1979 	case BTF_KIND_FWD: return "fwd";
1980 	case BTF_KIND_TYPEDEF: return "typedef";
1981 	case BTF_KIND_VOLATILE: return "volatile";
1982 	case BTF_KIND_CONST: return "const";
1983 	case BTF_KIND_RESTRICT: return "restrict";
1984 	case BTF_KIND_FUNC: return "func";
1985 	case BTF_KIND_FUNC_PROTO: return "func_proto";
1986 	case BTF_KIND_VAR: return "var";
1987 	case BTF_KIND_DATASEC: return "datasec";
1988 	case BTF_KIND_FLOAT: return "float";
1989 	default: return "unknown";
1990 	}
1991 }
1992 
1993 const char *btf_kind_str(const struct btf_type *t)
1994 {
1995 	return __btf_kind_str(btf_kind(t));
1996 }
1997 
1998 /*
1999  * Fetch integer attribute of BTF map definition. Such attributes are
2000  * represented using a pointer to an array, in which dimensionality of array
2001  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2002  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2003  * type definition, while using only sizeof(void *) space in ELF data section.
2004  */
2005 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2006 			      const struct btf_member *m, __u32 *res)
2007 {
2008 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2009 	const char *name = btf__name_by_offset(btf, m->name_off);
2010 	const struct btf_array *arr_info;
2011 	const struct btf_type *arr_t;
2012 
2013 	if (!btf_is_ptr(t)) {
2014 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2015 			map_name, name, btf_kind_str(t));
2016 		return false;
2017 	}
2018 
2019 	arr_t = btf__type_by_id(btf, t->type);
2020 	if (!arr_t) {
2021 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2022 			map_name, name, t->type);
2023 		return false;
2024 	}
2025 	if (!btf_is_array(arr_t)) {
2026 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2027 			map_name, name, btf_kind_str(arr_t));
2028 		return false;
2029 	}
2030 	arr_info = btf_array(arr_t);
2031 	*res = arr_info->nelems;
2032 	return true;
2033 }
2034 
2035 static int build_map_pin_path(struct bpf_map *map, const char *path)
2036 {
2037 	char buf[PATH_MAX];
2038 	int len;
2039 
2040 	if (!path)
2041 		path = "/sys/fs/bpf";
2042 
2043 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2044 	if (len < 0)
2045 		return -EINVAL;
2046 	else if (len >= PATH_MAX)
2047 		return -ENAMETOOLONG;
2048 
2049 	return bpf_map__set_pin_path(map, buf);
2050 }
2051 
2052 int parse_btf_map_def(const char *map_name, struct btf *btf,
2053 		      const struct btf_type *def_t, bool strict,
2054 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2055 {
2056 	const struct btf_type *t;
2057 	const struct btf_member *m;
2058 	bool is_inner = inner_def == NULL;
2059 	int vlen, i;
2060 
2061 	vlen = btf_vlen(def_t);
2062 	m = btf_members(def_t);
2063 	for (i = 0; i < vlen; i++, m++) {
2064 		const char *name = btf__name_by_offset(btf, m->name_off);
2065 
2066 		if (!name) {
2067 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2068 			return -EINVAL;
2069 		}
2070 		if (strcmp(name, "type") == 0) {
2071 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2072 				return -EINVAL;
2073 			map_def->parts |= MAP_DEF_MAP_TYPE;
2074 		} else if (strcmp(name, "max_entries") == 0) {
2075 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2076 				return -EINVAL;
2077 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2078 		} else if (strcmp(name, "map_flags") == 0) {
2079 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2080 				return -EINVAL;
2081 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2082 		} else if (strcmp(name, "numa_node") == 0) {
2083 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2084 				return -EINVAL;
2085 			map_def->parts |= MAP_DEF_NUMA_NODE;
2086 		} else if (strcmp(name, "key_size") == 0) {
2087 			__u32 sz;
2088 
2089 			if (!get_map_field_int(map_name, btf, m, &sz))
2090 				return -EINVAL;
2091 			if (map_def->key_size && map_def->key_size != sz) {
2092 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2093 					map_name, map_def->key_size, sz);
2094 				return -EINVAL;
2095 			}
2096 			map_def->key_size = sz;
2097 			map_def->parts |= MAP_DEF_KEY_SIZE;
2098 		} else if (strcmp(name, "key") == 0) {
2099 			__s64 sz;
2100 
2101 			t = btf__type_by_id(btf, m->type);
2102 			if (!t) {
2103 				pr_warn("map '%s': key type [%d] not found.\n",
2104 					map_name, m->type);
2105 				return -EINVAL;
2106 			}
2107 			if (!btf_is_ptr(t)) {
2108 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2109 					map_name, btf_kind_str(t));
2110 				return -EINVAL;
2111 			}
2112 			sz = btf__resolve_size(btf, t->type);
2113 			if (sz < 0) {
2114 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2115 					map_name, t->type, (ssize_t)sz);
2116 				return sz;
2117 			}
2118 			if (map_def->key_size && map_def->key_size != sz) {
2119 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2120 					map_name, map_def->key_size, (ssize_t)sz);
2121 				return -EINVAL;
2122 			}
2123 			map_def->key_size = sz;
2124 			map_def->key_type_id = t->type;
2125 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2126 		} else if (strcmp(name, "value_size") == 0) {
2127 			__u32 sz;
2128 
2129 			if (!get_map_field_int(map_name, btf, m, &sz))
2130 				return -EINVAL;
2131 			if (map_def->value_size && map_def->value_size != sz) {
2132 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2133 					map_name, map_def->value_size, sz);
2134 				return -EINVAL;
2135 			}
2136 			map_def->value_size = sz;
2137 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2138 		} else if (strcmp(name, "value") == 0) {
2139 			__s64 sz;
2140 
2141 			t = btf__type_by_id(btf, m->type);
2142 			if (!t) {
2143 				pr_warn("map '%s': value type [%d] not found.\n",
2144 					map_name, m->type);
2145 				return -EINVAL;
2146 			}
2147 			if (!btf_is_ptr(t)) {
2148 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2149 					map_name, btf_kind_str(t));
2150 				return -EINVAL;
2151 			}
2152 			sz = btf__resolve_size(btf, t->type);
2153 			if (sz < 0) {
2154 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2155 					map_name, t->type, (ssize_t)sz);
2156 				return sz;
2157 			}
2158 			if (map_def->value_size && map_def->value_size != sz) {
2159 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2160 					map_name, map_def->value_size, (ssize_t)sz);
2161 				return -EINVAL;
2162 			}
2163 			map_def->value_size = sz;
2164 			map_def->value_type_id = t->type;
2165 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2166 		}
2167 		else if (strcmp(name, "values") == 0) {
2168 			char inner_map_name[128];
2169 			int err;
2170 
2171 			if (is_inner) {
2172 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2173 					map_name);
2174 				return -ENOTSUP;
2175 			}
2176 			if (i != vlen - 1) {
2177 				pr_warn("map '%s': '%s' member should be last.\n",
2178 					map_name, name);
2179 				return -EINVAL;
2180 			}
2181 			if (!bpf_map_type__is_map_in_map(map_def->map_type)) {
2182 				pr_warn("map '%s': should be map-in-map.\n",
2183 					map_name);
2184 				return -ENOTSUP;
2185 			}
2186 			if (map_def->value_size && map_def->value_size != 4) {
2187 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2188 					map_name, map_def->value_size);
2189 				return -EINVAL;
2190 			}
2191 			map_def->value_size = 4;
2192 			t = btf__type_by_id(btf, m->type);
2193 			if (!t) {
2194 				pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2195 					map_name, m->type);
2196 				return -EINVAL;
2197 			}
2198 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2199 				pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2200 					map_name);
2201 				return -EINVAL;
2202 			}
2203 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2204 			if (!btf_is_ptr(t)) {
2205 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2206 					map_name, btf_kind_str(t));
2207 				return -EINVAL;
2208 			}
2209 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2210 			if (!btf_is_struct(t)) {
2211 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2212 					map_name, btf_kind_str(t));
2213 				return -EINVAL;
2214 			}
2215 
2216 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2217 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2218 			if (err)
2219 				return err;
2220 
2221 			map_def->parts |= MAP_DEF_INNER_MAP;
2222 		} else if (strcmp(name, "pinning") == 0) {
2223 			__u32 val;
2224 
2225 			if (is_inner) {
2226 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2227 				return -EINVAL;
2228 			}
2229 			if (!get_map_field_int(map_name, btf, m, &val))
2230 				return -EINVAL;
2231 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2232 				pr_warn("map '%s': invalid pinning value %u.\n",
2233 					map_name, val);
2234 				return -EINVAL;
2235 			}
2236 			map_def->pinning = val;
2237 			map_def->parts |= MAP_DEF_PINNING;
2238 		} else {
2239 			if (strict) {
2240 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2241 				return -ENOTSUP;
2242 			}
2243 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2244 		}
2245 	}
2246 
2247 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2248 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2249 		return -EINVAL;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2256 {
2257 	map->def.type = def->map_type;
2258 	map->def.key_size = def->key_size;
2259 	map->def.value_size = def->value_size;
2260 	map->def.max_entries = def->max_entries;
2261 	map->def.map_flags = def->map_flags;
2262 
2263 	map->numa_node = def->numa_node;
2264 	map->btf_key_type_id = def->key_type_id;
2265 	map->btf_value_type_id = def->value_type_id;
2266 
2267 	if (def->parts & MAP_DEF_MAP_TYPE)
2268 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2269 
2270 	if (def->parts & MAP_DEF_KEY_TYPE)
2271 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2272 			 map->name, def->key_type_id, def->key_size);
2273 	else if (def->parts & MAP_DEF_KEY_SIZE)
2274 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2275 
2276 	if (def->parts & MAP_DEF_VALUE_TYPE)
2277 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2278 			 map->name, def->value_type_id, def->value_size);
2279 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2280 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2281 
2282 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2283 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2284 	if (def->parts & MAP_DEF_MAP_FLAGS)
2285 		pr_debug("map '%s': found map_flags = %u.\n", map->name, def->map_flags);
2286 	if (def->parts & MAP_DEF_PINNING)
2287 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2288 	if (def->parts & MAP_DEF_NUMA_NODE)
2289 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2290 
2291 	if (def->parts & MAP_DEF_INNER_MAP)
2292 		pr_debug("map '%s': found inner map definition.\n", map->name);
2293 }
2294 
2295 static const char *btf_var_linkage_str(__u32 linkage)
2296 {
2297 	switch (linkage) {
2298 	case BTF_VAR_STATIC: return "static";
2299 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2300 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2301 	default: return "unknown";
2302 	}
2303 }
2304 
2305 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2306 					 const struct btf_type *sec,
2307 					 int var_idx, int sec_idx,
2308 					 const Elf_Data *data, bool strict,
2309 					 const char *pin_root_path)
2310 {
2311 	struct btf_map_def map_def = {}, inner_def = {};
2312 	const struct btf_type *var, *def;
2313 	const struct btf_var_secinfo *vi;
2314 	const struct btf_var *var_extra;
2315 	const char *map_name;
2316 	struct bpf_map *map;
2317 	int err;
2318 
2319 	vi = btf_var_secinfos(sec) + var_idx;
2320 	var = btf__type_by_id(obj->btf, vi->type);
2321 	var_extra = btf_var(var);
2322 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2323 
2324 	if (map_name == NULL || map_name[0] == '\0') {
2325 		pr_warn("map #%d: empty name.\n", var_idx);
2326 		return -EINVAL;
2327 	}
2328 	if ((__u64)vi->offset + vi->size > data->d_size) {
2329 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2330 		return -EINVAL;
2331 	}
2332 	if (!btf_is_var(var)) {
2333 		pr_warn("map '%s': unexpected var kind %s.\n",
2334 			map_name, btf_kind_str(var));
2335 		return -EINVAL;
2336 	}
2337 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2338 		pr_warn("map '%s': unsupported map linkage %s.\n",
2339 			map_name, btf_var_linkage_str(var_extra->linkage));
2340 		return -EOPNOTSUPP;
2341 	}
2342 
2343 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2344 	if (!btf_is_struct(def)) {
2345 		pr_warn("map '%s': unexpected def kind %s.\n",
2346 			map_name, btf_kind_str(var));
2347 		return -EINVAL;
2348 	}
2349 	if (def->size > vi->size) {
2350 		pr_warn("map '%s': invalid def size.\n", map_name);
2351 		return -EINVAL;
2352 	}
2353 
2354 	map = bpf_object__add_map(obj);
2355 	if (IS_ERR(map))
2356 		return PTR_ERR(map);
2357 	map->name = strdup(map_name);
2358 	if (!map->name) {
2359 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2360 		return -ENOMEM;
2361 	}
2362 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2363 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2364 	map->sec_idx = sec_idx;
2365 	map->sec_offset = vi->offset;
2366 	map->btf_var_idx = var_idx;
2367 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2368 		 map_name, map->sec_idx, map->sec_offset);
2369 
2370 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2371 	if (err)
2372 		return err;
2373 
2374 	fill_map_from_def(map, &map_def);
2375 
2376 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2377 		err = build_map_pin_path(map, pin_root_path);
2378 		if (err) {
2379 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2380 			return err;
2381 		}
2382 	}
2383 
2384 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2385 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2386 		if (!map->inner_map)
2387 			return -ENOMEM;
2388 		map->inner_map->fd = -1;
2389 		map->inner_map->sec_idx = sec_idx;
2390 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2391 		if (!map->inner_map->name)
2392 			return -ENOMEM;
2393 		sprintf(map->inner_map->name, "%s.inner", map_name);
2394 
2395 		fill_map_from_def(map->inner_map, &inner_def);
2396 	}
2397 
2398 	return 0;
2399 }
2400 
2401 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2402 					  const char *pin_root_path)
2403 {
2404 	const struct btf_type *sec = NULL;
2405 	int nr_types, i, vlen, err;
2406 	const struct btf_type *t;
2407 	const char *name;
2408 	Elf_Data *data;
2409 	Elf_Scn *scn;
2410 
2411 	if (obj->efile.btf_maps_shndx < 0)
2412 		return 0;
2413 
2414 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2415 	data = elf_sec_data(obj, scn);
2416 	if (!scn || !data) {
2417 		pr_warn("elf: failed to get %s map definitions for %s\n",
2418 			MAPS_ELF_SEC, obj->path);
2419 		return -EINVAL;
2420 	}
2421 
2422 	nr_types = btf__get_nr_types(obj->btf);
2423 	for (i = 1; i <= nr_types; i++) {
2424 		t = btf__type_by_id(obj->btf, i);
2425 		if (!btf_is_datasec(t))
2426 			continue;
2427 		name = btf__name_by_offset(obj->btf, t->name_off);
2428 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2429 			sec = t;
2430 			obj->efile.btf_maps_sec_btf_id = i;
2431 			break;
2432 		}
2433 	}
2434 
2435 	if (!sec) {
2436 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2437 		return -ENOENT;
2438 	}
2439 
2440 	vlen = btf_vlen(sec);
2441 	for (i = 0; i < vlen; i++) {
2442 		err = bpf_object__init_user_btf_map(obj, sec, i,
2443 						    obj->efile.btf_maps_shndx,
2444 						    data, strict,
2445 						    pin_root_path);
2446 		if (err)
2447 			return err;
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static int bpf_object__init_maps(struct bpf_object *obj,
2454 				 const struct bpf_object_open_opts *opts)
2455 {
2456 	const char *pin_root_path;
2457 	bool strict;
2458 	int err;
2459 
2460 	strict = !OPTS_GET(opts, relaxed_maps, false);
2461 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2462 
2463 	err = bpf_object__init_user_maps(obj, strict);
2464 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2465 	err = err ?: bpf_object__init_global_data_maps(obj);
2466 	err = err ?: bpf_object__init_kconfig_map(obj);
2467 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2468 
2469 	return err;
2470 }
2471 
2472 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2473 {
2474 	GElf_Shdr sh;
2475 
2476 	if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2477 		return false;
2478 
2479 	return sh.sh_flags & SHF_EXECINSTR;
2480 }
2481 
2482 static bool btf_needs_sanitization(struct bpf_object *obj)
2483 {
2484 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2485 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2486 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2487 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2488 
2489 	return !has_func || !has_datasec || !has_func_global || !has_float;
2490 }
2491 
2492 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2493 {
2494 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2495 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2496 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2497 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2498 	struct btf_type *t;
2499 	int i, j, vlen;
2500 
2501 	for (i = 1; i <= btf__get_nr_types(btf); i++) {
2502 		t = (struct btf_type *)btf__type_by_id(btf, i);
2503 
2504 		if (!has_datasec && btf_is_var(t)) {
2505 			/* replace VAR with INT */
2506 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2507 			/*
2508 			 * using size = 1 is the safest choice, 4 will be too
2509 			 * big and cause kernel BTF validation failure if
2510 			 * original variable took less than 4 bytes
2511 			 */
2512 			t->size = 1;
2513 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2514 		} else if (!has_datasec && btf_is_datasec(t)) {
2515 			/* replace DATASEC with STRUCT */
2516 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2517 			struct btf_member *m = btf_members(t);
2518 			struct btf_type *vt;
2519 			char *name;
2520 
2521 			name = (char *)btf__name_by_offset(btf, t->name_off);
2522 			while (*name) {
2523 				if (*name == '.')
2524 					*name = '_';
2525 				name++;
2526 			}
2527 
2528 			vlen = btf_vlen(t);
2529 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2530 			for (j = 0; j < vlen; j++, v++, m++) {
2531 				/* order of field assignments is important */
2532 				m->offset = v->offset * 8;
2533 				m->type = v->type;
2534 				/* preserve variable name as member name */
2535 				vt = (void *)btf__type_by_id(btf, v->type);
2536 				m->name_off = vt->name_off;
2537 			}
2538 		} else if (!has_func && btf_is_func_proto(t)) {
2539 			/* replace FUNC_PROTO with ENUM */
2540 			vlen = btf_vlen(t);
2541 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2542 			t->size = sizeof(__u32); /* kernel enforced */
2543 		} else if (!has_func && btf_is_func(t)) {
2544 			/* replace FUNC with TYPEDEF */
2545 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2546 		} else if (!has_func_global && btf_is_func(t)) {
2547 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2548 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2549 		} else if (!has_float && btf_is_float(t)) {
2550 			/* replace FLOAT with an equally-sized empty STRUCT;
2551 			 * since C compilers do not accept e.g. "float" as a
2552 			 * valid struct name, make it anonymous
2553 			 */
2554 			t->name_off = 0;
2555 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2556 		}
2557 	}
2558 }
2559 
2560 static bool libbpf_needs_btf(const struct bpf_object *obj)
2561 {
2562 	return obj->efile.btf_maps_shndx >= 0 ||
2563 	       obj->efile.st_ops_shndx >= 0 ||
2564 	       obj->nr_extern > 0;
2565 }
2566 
2567 static bool kernel_needs_btf(const struct bpf_object *obj)
2568 {
2569 	return obj->efile.st_ops_shndx >= 0;
2570 }
2571 
2572 static int bpf_object__init_btf(struct bpf_object *obj,
2573 				Elf_Data *btf_data,
2574 				Elf_Data *btf_ext_data)
2575 {
2576 	int err = -ENOENT;
2577 
2578 	if (btf_data) {
2579 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2580 		err = libbpf_get_error(obj->btf);
2581 		if (err) {
2582 			obj->btf = NULL;
2583 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2584 			goto out;
2585 		}
2586 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2587 		btf__set_pointer_size(obj->btf, 8);
2588 	}
2589 	if (btf_ext_data) {
2590 		if (!obj->btf) {
2591 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2592 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2593 			goto out;
2594 		}
2595 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2596 		err = libbpf_get_error(obj->btf_ext);
2597 		if (err) {
2598 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2599 				BTF_EXT_ELF_SEC, err);
2600 			obj->btf_ext = NULL;
2601 			goto out;
2602 		}
2603 	}
2604 out:
2605 	if (err && libbpf_needs_btf(obj)) {
2606 		pr_warn("BTF is required, but is missing or corrupted.\n");
2607 		return err;
2608 	}
2609 	return 0;
2610 }
2611 
2612 static int bpf_object__finalize_btf(struct bpf_object *obj)
2613 {
2614 	int err;
2615 
2616 	if (!obj->btf)
2617 		return 0;
2618 
2619 	err = btf__finalize_data(obj, obj->btf);
2620 	if (err) {
2621 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2622 		return err;
2623 	}
2624 
2625 	return 0;
2626 }
2627 
2628 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2629 {
2630 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2631 	    prog->type == BPF_PROG_TYPE_LSM)
2632 		return true;
2633 
2634 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2635 	 * also need vmlinux BTF
2636 	 */
2637 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2638 		return true;
2639 
2640 	return false;
2641 }
2642 
2643 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2644 {
2645 	struct bpf_program *prog;
2646 	int i;
2647 
2648 	/* CO-RE relocations need kernel BTF */
2649 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2650 		return true;
2651 
2652 	/* Support for typed ksyms needs kernel BTF */
2653 	for (i = 0; i < obj->nr_extern; i++) {
2654 		const struct extern_desc *ext;
2655 
2656 		ext = &obj->externs[i];
2657 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2658 			return true;
2659 	}
2660 
2661 	bpf_object__for_each_program(prog, obj) {
2662 		if (!prog->load)
2663 			continue;
2664 		if (prog_needs_vmlinux_btf(prog))
2665 			return true;
2666 	}
2667 
2668 	return false;
2669 }
2670 
2671 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2672 {
2673 	int err;
2674 
2675 	/* btf_vmlinux could be loaded earlier */
2676 	if (obj->btf_vmlinux || obj->gen_loader)
2677 		return 0;
2678 
2679 	if (!force && !obj_needs_vmlinux_btf(obj))
2680 		return 0;
2681 
2682 	obj->btf_vmlinux = libbpf_find_kernel_btf();
2683 	err = libbpf_get_error(obj->btf_vmlinux);
2684 	if (err) {
2685 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2686 		obj->btf_vmlinux = NULL;
2687 		return err;
2688 	}
2689 	return 0;
2690 }
2691 
2692 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2693 {
2694 	struct btf *kern_btf = obj->btf;
2695 	bool btf_mandatory, sanitize;
2696 	int i, err = 0;
2697 
2698 	if (!obj->btf)
2699 		return 0;
2700 
2701 	if (!kernel_supports(obj, FEAT_BTF)) {
2702 		if (kernel_needs_btf(obj)) {
2703 			err = -EOPNOTSUPP;
2704 			goto report;
2705 		}
2706 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2707 		return 0;
2708 	}
2709 
2710 	/* Even though some subprogs are global/weak, user might prefer more
2711 	 * permissive BPF verification process that BPF verifier performs for
2712 	 * static functions, taking into account more context from the caller
2713 	 * functions. In such case, they need to mark such subprogs with
2714 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
2715 	 * corresponding FUNC BTF type to be marked as static and trigger more
2716 	 * involved BPF verification process.
2717 	 */
2718 	for (i = 0; i < obj->nr_programs; i++) {
2719 		struct bpf_program *prog = &obj->programs[i];
2720 		struct btf_type *t;
2721 		const char *name;
2722 		int j, n;
2723 
2724 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
2725 			continue;
2726 
2727 		n = btf__get_nr_types(obj->btf);
2728 		for (j = 1; j <= n; j++) {
2729 			t = btf_type_by_id(obj->btf, j);
2730 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
2731 				continue;
2732 
2733 			name = btf__str_by_offset(obj->btf, t->name_off);
2734 			if (strcmp(name, prog->name) != 0)
2735 				continue;
2736 
2737 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
2738 			break;
2739 		}
2740 	}
2741 
2742 	sanitize = btf_needs_sanitization(obj);
2743 	if (sanitize) {
2744 		const void *raw_data;
2745 		__u32 sz;
2746 
2747 		/* clone BTF to sanitize a copy and leave the original intact */
2748 		raw_data = btf__get_raw_data(obj->btf, &sz);
2749 		kern_btf = btf__new(raw_data, sz);
2750 		err = libbpf_get_error(kern_btf);
2751 		if (err)
2752 			return err;
2753 
2754 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2755 		btf__set_pointer_size(obj->btf, 8);
2756 		bpf_object__sanitize_btf(obj, kern_btf);
2757 	}
2758 
2759 	if (obj->gen_loader) {
2760 		__u32 raw_size = 0;
2761 		const void *raw_data = btf__get_raw_data(kern_btf, &raw_size);
2762 
2763 		if (!raw_data)
2764 			return -ENOMEM;
2765 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
2766 		/* Pretend to have valid FD to pass various fd >= 0 checks.
2767 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
2768 		 */
2769 		btf__set_fd(kern_btf, 0);
2770 	} else {
2771 		err = btf__load(kern_btf);
2772 	}
2773 	if (sanitize) {
2774 		if (!err) {
2775 			/* move fd to libbpf's BTF */
2776 			btf__set_fd(obj->btf, btf__fd(kern_btf));
2777 			btf__set_fd(kern_btf, -1);
2778 		}
2779 		btf__free(kern_btf);
2780 	}
2781 report:
2782 	if (err) {
2783 		btf_mandatory = kernel_needs_btf(obj);
2784 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2785 			btf_mandatory ? "BTF is mandatory, can't proceed."
2786 				      : "BTF is optional, ignoring.");
2787 		if (!btf_mandatory)
2788 			err = 0;
2789 	}
2790 	return err;
2791 }
2792 
2793 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2794 {
2795 	const char *name;
2796 
2797 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2798 	if (!name) {
2799 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2800 			off, obj->path, elf_errmsg(-1));
2801 		return NULL;
2802 	}
2803 
2804 	return name;
2805 }
2806 
2807 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2808 {
2809 	const char *name;
2810 
2811 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2812 	if (!name) {
2813 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2814 			off, obj->path, elf_errmsg(-1));
2815 		return NULL;
2816 	}
2817 
2818 	return name;
2819 }
2820 
2821 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2822 {
2823 	Elf_Scn *scn;
2824 
2825 	scn = elf_getscn(obj->efile.elf, idx);
2826 	if (!scn) {
2827 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2828 			idx, obj->path, elf_errmsg(-1));
2829 		return NULL;
2830 	}
2831 	return scn;
2832 }
2833 
2834 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2835 {
2836 	Elf_Scn *scn = NULL;
2837 	Elf *elf = obj->efile.elf;
2838 	const char *sec_name;
2839 
2840 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2841 		sec_name = elf_sec_name(obj, scn);
2842 		if (!sec_name)
2843 			return NULL;
2844 
2845 		if (strcmp(sec_name, name) != 0)
2846 			continue;
2847 
2848 		return scn;
2849 	}
2850 	return NULL;
2851 }
2852 
2853 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2854 {
2855 	if (!scn)
2856 		return -EINVAL;
2857 
2858 	if (gelf_getshdr(scn, hdr) != hdr) {
2859 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2860 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2861 		return -EINVAL;
2862 	}
2863 
2864 	return 0;
2865 }
2866 
2867 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2868 {
2869 	const char *name;
2870 	GElf_Shdr sh;
2871 
2872 	if (!scn)
2873 		return NULL;
2874 
2875 	if (elf_sec_hdr(obj, scn, &sh))
2876 		return NULL;
2877 
2878 	name = elf_sec_str(obj, sh.sh_name);
2879 	if (!name) {
2880 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2881 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2882 		return NULL;
2883 	}
2884 
2885 	return name;
2886 }
2887 
2888 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2889 {
2890 	Elf_Data *data;
2891 
2892 	if (!scn)
2893 		return NULL;
2894 
2895 	data = elf_getdata(scn, 0);
2896 	if (!data) {
2897 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2898 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2899 			obj->path, elf_errmsg(-1));
2900 		return NULL;
2901 	}
2902 
2903 	return data;
2904 }
2905 
2906 static bool is_sec_name_dwarf(const char *name)
2907 {
2908 	/* approximation, but the actual list is too long */
2909 	return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2910 }
2911 
2912 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2913 {
2914 	/* no special handling of .strtab */
2915 	if (hdr->sh_type == SHT_STRTAB)
2916 		return true;
2917 
2918 	/* ignore .llvm_addrsig section as well */
2919 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
2920 		return true;
2921 
2922 	/* no subprograms will lead to an empty .text section, ignore it */
2923 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2924 	    strcmp(name, ".text") == 0)
2925 		return true;
2926 
2927 	/* DWARF sections */
2928 	if (is_sec_name_dwarf(name))
2929 		return true;
2930 
2931 	if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2932 		name += sizeof(".rel") - 1;
2933 		/* DWARF section relocations */
2934 		if (is_sec_name_dwarf(name))
2935 			return true;
2936 
2937 		/* .BTF and .BTF.ext don't need relocations */
2938 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
2939 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2940 			return true;
2941 	}
2942 
2943 	return false;
2944 }
2945 
2946 static int cmp_progs(const void *_a, const void *_b)
2947 {
2948 	const struct bpf_program *a = _a;
2949 	const struct bpf_program *b = _b;
2950 
2951 	if (a->sec_idx != b->sec_idx)
2952 		return a->sec_idx < b->sec_idx ? -1 : 1;
2953 
2954 	/* sec_insn_off can't be the same within the section */
2955 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2956 }
2957 
2958 static int bpf_object__elf_collect(struct bpf_object *obj)
2959 {
2960 	Elf *elf = obj->efile.elf;
2961 	Elf_Data *btf_ext_data = NULL;
2962 	Elf_Data *btf_data = NULL;
2963 	int idx = 0, err = 0;
2964 	const char *name;
2965 	Elf_Data *data;
2966 	Elf_Scn *scn;
2967 	GElf_Shdr sh;
2968 
2969 	/* a bunch of ELF parsing functionality depends on processing symbols,
2970 	 * so do the first pass and find the symbol table
2971 	 */
2972 	scn = NULL;
2973 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2974 		if (elf_sec_hdr(obj, scn, &sh))
2975 			return -LIBBPF_ERRNO__FORMAT;
2976 
2977 		if (sh.sh_type == SHT_SYMTAB) {
2978 			if (obj->efile.symbols) {
2979 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2980 				return -LIBBPF_ERRNO__FORMAT;
2981 			}
2982 
2983 			data = elf_sec_data(obj, scn);
2984 			if (!data)
2985 				return -LIBBPF_ERRNO__FORMAT;
2986 
2987 			obj->efile.symbols = data;
2988 			obj->efile.symbols_shndx = elf_ndxscn(scn);
2989 			obj->efile.strtabidx = sh.sh_link;
2990 		}
2991 	}
2992 
2993 	scn = NULL;
2994 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2995 		idx++;
2996 
2997 		if (elf_sec_hdr(obj, scn, &sh))
2998 			return -LIBBPF_ERRNO__FORMAT;
2999 
3000 		name = elf_sec_str(obj, sh.sh_name);
3001 		if (!name)
3002 			return -LIBBPF_ERRNO__FORMAT;
3003 
3004 		if (ignore_elf_section(&sh, name))
3005 			continue;
3006 
3007 		data = elf_sec_data(obj, scn);
3008 		if (!data)
3009 			return -LIBBPF_ERRNO__FORMAT;
3010 
3011 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3012 			 idx, name, (unsigned long)data->d_size,
3013 			 (int)sh.sh_link, (unsigned long)sh.sh_flags,
3014 			 (int)sh.sh_type);
3015 
3016 		if (strcmp(name, "license") == 0) {
3017 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3018 			if (err)
3019 				return err;
3020 		} else if (strcmp(name, "version") == 0) {
3021 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3022 			if (err)
3023 				return err;
3024 		} else if (strcmp(name, "maps") == 0) {
3025 			obj->efile.maps_shndx = idx;
3026 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3027 			obj->efile.btf_maps_shndx = idx;
3028 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3029 			btf_data = data;
3030 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3031 			btf_ext_data = data;
3032 		} else if (sh.sh_type == SHT_SYMTAB) {
3033 			/* already processed during the first pass above */
3034 		} else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
3035 			if (sh.sh_flags & SHF_EXECINSTR) {
3036 				if (strcmp(name, ".text") == 0)
3037 					obj->efile.text_shndx = idx;
3038 				err = bpf_object__add_programs(obj, data, name, idx);
3039 				if (err)
3040 					return err;
3041 			} else if (strcmp(name, DATA_SEC) == 0) {
3042 				obj->efile.data = data;
3043 				obj->efile.data_shndx = idx;
3044 			} else if (strcmp(name, RODATA_SEC) == 0) {
3045 				obj->efile.rodata = data;
3046 				obj->efile.rodata_shndx = idx;
3047 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3048 				obj->efile.st_ops_data = data;
3049 				obj->efile.st_ops_shndx = idx;
3050 			} else {
3051 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3052 					idx, name);
3053 			}
3054 		} else if (sh.sh_type == SHT_REL) {
3055 			int nr_sects = obj->efile.nr_reloc_sects;
3056 			void *sects = obj->efile.reloc_sects;
3057 			int sec = sh.sh_info; /* points to other section */
3058 
3059 			/* Only do relo for section with exec instructions */
3060 			if (!section_have_execinstr(obj, sec) &&
3061 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3062 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3063 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3064 					idx, name, sec,
3065 					elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
3066 				continue;
3067 			}
3068 
3069 			sects = libbpf_reallocarray(sects, nr_sects + 1,
3070 						    sizeof(*obj->efile.reloc_sects));
3071 			if (!sects)
3072 				return -ENOMEM;
3073 
3074 			obj->efile.reloc_sects = sects;
3075 			obj->efile.nr_reloc_sects++;
3076 
3077 			obj->efile.reloc_sects[nr_sects].shdr = sh;
3078 			obj->efile.reloc_sects[nr_sects].data = data;
3079 		} else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3080 			obj->efile.bss = data;
3081 			obj->efile.bss_shndx = idx;
3082 		} else {
3083 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3084 				(size_t)sh.sh_size);
3085 		}
3086 	}
3087 
3088 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3089 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3090 		return -LIBBPF_ERRNO__FORMAT;
3091 	}
3092 
3093 	/* sort BPF programs by section name and in-section instruction offset
3094 	 * for faster search */
3095 	qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3096 
3097 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3098 }
3099 
3100 static bool sym_is_extern(const GElf_Sym *sym)
3101 {
3102 	int bind = GELF_ST_BIND(sym->st_info);
3103 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3104 	return sym->st_shndx == SHN_UNDEF &&
3105 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3106 	       GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
3107 }
3108 
3109 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx)
3110 {
3111 	int bind = GELF_ST_BIND(sym->st_info);
3112 	int type = GELF_ST_TYPE(sym->st_info);
3113 
3114 	/* in .text section */
3115 	if (sym->st_shndx != text_shndx)
3116 		return false;
3117 
3118 	/* local function */
3119 	if (bind == STB_LOCAL && type == STT_SECTION)
3120 		return true;
3121 
3122 	/* global function */
3123 	return bind == STB_GLOBAL && type == STT_FUNC;
3124 }
3125 
3126 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3127 {
3128 	const struct btf_type *t;
3129 	const char *tname;
3130 	int i, n;
3131 
3132 	if (!btf)
3133 		return -ESRCH;
3134 
3135 	n = btf__get_nr_types(btf);
3136 	for (i = 1; i <= n; i++) {
3137 		t = btf__type_by_id(btf, i);
3138 
3139 		if (!btf_is_var(t) && !btf_is_func(t))
3140 			continue;
3141 
3142 		tname = btf__name_by_offset(btf, t->name_off);
3143 		if (strcmp(tname, ext_name))
3144 			continue;
3145 
3146 		if (btf_is_var(t) &&
3147 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3148 			return -EINVAL;
3149 
3150 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3151 			return -EINVAL;
3152 
3153 		return i;
3154 	}
3155 
3156 	return -ENOENT;
3157 }
3158 
3159 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3160 	const struct btf_var_secinfo *vs;
3161 	const struct btf_type *t;
3162 	int i, j, n;
3163 
3164 	if (!btf)
3165 		return -ESRCH;
3166 
3167 	n = btf__get_nr_types(btf);
3168 	for (i = 1; i <= n; i++) {
3169 		t = btf__type_by_id(btf, i);
3170 
3171 		if (!btf_is_datasec(t))
3172 			continue;
3173 
3174 		vs = btf_var_secinfos(t);
3175 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3176 			if (vs->type == ext_btf_id)
3177 				return i;
3178 		}
3179 	}
3180 
3181 	return -ENOENT;
3182 }
3183 
3184 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3185 				     bool *is_signed)
3186 {
3187 	const struct btf_type *t;
3188 	const char *name;
3189 
3190 	t = skip_mods_and_typedefs(btf, id, NULL);
3191 	name = btf__name_by_offset(btf, t->name_off);
3192 
3193 	if (is_signed)
3194 		*is_signed = false;
3195 	switch (btf_kind(t)) {
3196 	case BTF_KIND_INT: {
3197 		int enc = btf_int_encoding(t);
3198 
3199 		if (enc & BTF_INT_BOOL)
3200 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3201 		if (is_signed)
3202 			*is_signed = enc & BTF_INT_SIGNED;
3203 		if (t->size == 1)
3204 			return KCFG_CHAR;
3205 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3206 			return KCFG_UNKNOWN;
3207 		return KCFG_INT;
3208 	}
3209 	case BTF_KIND_ENUM:
3210 		if (t->size != 4)
3211 			return KCFG_UNKNOWN;
3212 		if (strcmp(name, "libbpf_tristate"))
3213 			return KCFG_UNKNOWN;
3214 		return KCFG_TRISTATE;
3215 	case BTF_KIND_ARRAY:
3216 		if (btf_array(t)->nelems == 0)
3217 			return KCFG_UNKNOWN;
3218 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3219 			return KCFG_UNKNOWN;
3220 		return KCFG_CHAR_ARR;
3221 	default:
3222 		return KCFG_UNKNOWN;
3223 	}
3224 }
3225 
3226 static int cmp_externs(const void *_a, const void *_b)
3227 {
3228 	const struct extern_desc *a = _a;
3229 	const struct extern_desc *b = _b;
3230 
3231 	if (a->type != b->type)
3232 		return a->type < b->type ? -1 : 1;
3233 
3234 	if (a->type == EXT_KCFG) {
3235 		/* descending order by alignment requirements */
3236 		if (a->kcfg.align != b->kcfg.align)
3237 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3238 		/* ascending order by size, within same alignment class */
3239 		if (a->kcfg.sz != b->kcfg.sz)
3240 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3241 	}
3242 
3243 	/* resolve ties by name */
3244 	return strcmp(a->name, b->name);
3245 }
3246 
3247 static int find_int_btf_id(const struct btf *btf)
3248 {
3249 	const struct btf_type *t;
3250 	int i, n;
3251 
3252 	n = btf__get_nr_types(btf);
3253 	for (i = 1; i <= n; i++) {
3254 		t = btf__type_by_id(btf, i);
3255 
3256 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3257 			return i;
3258 	}
3259 
3260 	return 0;
3261 }
3262 
3263 static int add_dummy_ksym_var(struct btf *btf)
3264 {
3265 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3266 	const struct btf_var_secinfo *vs;
3267 	const struct btf_type *sec;
3268 
3269 	if (!btf)
3270 		return 0;
3271 
3272 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3273 					    BTF_KIND_DATASEC);
3274 	if (sec_btf_id < 0)
3275 		return 0;
3276 
3277 	sec = btf__type_by_id(btf, sec_btf_id);
3278 	vs = btf_var_secinfos(sec);
3279 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3280 		const struct btf_type *vt;
3281 
3282 		vt = btf__type_by_id(btf, vs->type);
3283 		if (btf_is_func(vt))
3284 			break;
3285 	}
3286 
3287 	/* No func in ksyms sec.  No need to add dummy var. */
3288 	if (i == btf_vlen(sec))
3289 		return 0;
3290 
3291 	int_btf_id = find_int_btf_id(btf);
3292 	dummy_var_btf_id = btf__add_var(btf,
3293 					"dummy_ksym",
3294 					BTF_VAR_GLOBAL_ALLOCATED,
3295 					int_btf_id);
3296 	if (dummy_var_btf_id < 0)
3297 		pr_warn("cannot create a dummy_ksym var\n");
3298 
3299 	return dummy_var_btf_id;
3300 }
3301 
3302 static int bpf_object__collect_externs(struct bpf_object *obj)
3303 {
3304 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3305 	const struct btf_type *t;
3306 	struct extern_desc *ext;
3307 	int i, n, off, dummy_var_btf_id;
3308 	const char *ext_name, *sec_name;
3309 	Elf_Scn *scn;
3310 	GElf_Shdr sh;
3311 
3312 	if (!obj->efile.symbols)
3313 		return 0;
3314 
3315 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3316 	if (elf_sec_hdr(obj, scn, &sh))
3317 		return -LIBBPF_ERRNO__FORMAT;
3318 
3319 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3320 	if (dummy_var_btf_id < 0)
3321 		return dummy_var_btf_id;
3322 
3323 	n = sh.sh_size / sh.sh_entsize;
3324 	pr_debug("looking for externs among %d symbols...\n", n);
3325 
3326 	for (i = 0; i < n; i++) {
3327 		GElf_Sym sym;
3328 
3329 		if (!gelf_getsym(obj->efile.symbols, i, &sym))
3330 			return -LIBBPF_ERRNO__FORMAT;
3331 		if (!sym_is_extern(&sym))
3332 			continue;
3333 		ext_name = elf_sym_str(obj, sym.st_name);
3334 		if (!ext_name || !ext_name[0])
3335 			continue;
3336 
3337 		ext = obj->externs;
3338 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3339 		if (!ext)
3340 			return -ENOMEM;
3341 		obj->externs = ext;
3342 		ext = &ext[obj->nr_extern];
3343 		memset(ext, 0, sizeof(*ext));
3344 		obj->nr_extern++;
3345 
3346 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3347 		if (ext->btf_id <= 0) {
3348 			pr_warn("failed to find BTF for extern '%s': %d\n",
3349 				ext_name, ext->btf_id);
3350 			return ext->btf_id;
3351 		}
3352 		t = btf__type_by_id(obj->btf, ext->btf_id);
3353 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3354 		ext->sym_idx = i;
3355 		ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3356 
3357 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3358 		if (ext->sec_btf_id <= 0) {
3359 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3360 				ext_name, ext->btf_id, ext->sec_btf_id);
3361 			return ext->sec_btf_id;
3362 		}
3363 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3364 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3365 
3366 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3367 			if (btf_is_func(t)) {
3368 				pr_warn("extern function %s is unsupported under %s section\n",
3369 					ext->name, KCONFIG_SEC);
3370 				return -ENOTSUP;
3371 			}
3372 			kcfg_sec = sec;
3373 			ext->type = EXT_KCFG;
3374 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3375 			if (ext->kcfg.sz <= 0) {
3376 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3377 					ext_name, ext->kcfg.sz);
3378 				return ext->kcfg.sz;
3379 			}
3380 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3381 			if (ext->kcfg.align <= 0) {
3382 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3383 					ext_name, ext->kcfg.align);
3384 				return -EINVAL;
3385 			}
3386 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3387 						        &ext->kcfg.is_signed);
3388 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3389 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3390 				return -ENOTSUP;
3391 			}
3392 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3393 			if (btf_is_func(t) && ext->is_weak) {
3394 				pr_warn("extern weak function %s is unsupported\n",
3395 					ext->name);
3396 				return -ENOTSUP;
3397 			}
3398 			ksym_sec = sec;
3399 			ext->type = EXT_KSYM;
3400 			skip_mods_and_typedefs(obj->btf, t->type,
3401 					       &ext->ksym.type_id);
3402 		} else {
3403 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3404 			return -ENOTSUP;
3405 		}
3406 	}
3407 	pr_debug("collected %d externs total\n", obj->nr_extern);
3408 
3409 	if (!obj->nr_extern)
3410 		return 0;
3411 
3412 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3413 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3414 
3415 	/* for .ksyms section, we need to turn all externs into allocated
3416 	 * variables in BTF to pass kernel verification; we do this by
3417 	 * pretending that each extern is a 8-byte variable
3418 	 */
3419 	if (ksym_sec) {
3420 		/* find existing 4-byte integer type in BTF to use for fake
3421 		 * extern variables in DATASEC
3422 		 */
3423 		int int_btf_id = find_int_btf_id(obj->btf);
3424 		/* For extern function, a dummy_var added earlier
3425 		 * will be used to replace the vs->type and
3426 		 * its name string will be used to refill
3427 		 * the missing param's name.
3428 		 */
3429 		const struct btf_type *dummy_var;
3430 
3431 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3432 		for (i = 0; i < obj->nr_extern; i++) {
3433 			ext = &obj->externs[i];
3434 			if (ext->type != EXT_KSYM)
3435 				continue;
3436 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3437 				 i, ext->sym_idx, ext->name);
3438 		}
3439 
3440 		sec = ksym_sec;
3441 		n = btf_vlen(sec);
3442 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3443 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3444 			struct btf_type *vt;
3445 
3446 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3447 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3448 			ext = find_extern_by_name(obj, ext_name);
3449 			if (!ext) {
3450 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3451 					btf_kind_str(vt), ext_name);
3452 				return -ESRCH;
3453 			}
3454 			if (btf_is_func(vt)) {
3455 				const struct btf_type *func_proto;
3456 				struct btf_param *param;
3457 				int j;
3458 
3459 				func_proto = btf__type_by_id(obj->btf,
3460 							     vt->type);
3461 				param = btf_params(func_proto);
3462 				/* Reuse the dummy_var string if the
3463 				 * func proto does not have param name.
3464 				 */
3465 				for (j = 0; j < btf_vlen(func_proto); j++)
3466 					if (param[j].type && !param[j].name_off)
3467 						param[j].name_off =
3468 							dummy_var->name_off;
3469 				vs->type = dummy_var_btf_id;
3470 				vt->info &= ~0xffff;
3471 				vt->info |= BTF_FUNC_GLOBAL;
3472 			} else {
3473 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3474 				vt->type = int_btf_id;
3475 			}
3476 			vs->offset = off;
3477 			vs->size = sizeof(int);
3478 		}
3479 		sec->size = off;
3480 	}
3481 
3482 	if (kcfg_sec) {
3483 		sec = kcfg_sec;
3484 		/* for kcfg externs calculate their offsets within a .kconfig map */
3485 		off = 0;
3486 		for (i = 0; i < obj->nr_extern; i++) {
3487 			ext = &obj->externs[i];
3488 			if (ext->type != EXT_KCFG)
3489 				continue;
3490 
3491 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3492 			off = ext->kcfg.data_off + ext->kcfg.sz;
3493 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3494 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3495 		}
3496 		sec->size = off;
3497 		n = btf_vlen(sec);
3498 		for (i = 0; i < n; i++) {
3499 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3500 
3501 			t = btf__type_by_id(obj->btf, vs->type);
3502 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3503 			ext = find_extern_by_name(obj, ext_name);
3504 			if (!ext) {
3505 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3506 					ext_name);
3507 				return -ESRCH;
3508 			}
3509 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3510 			vs->offset = ext->kcfg.data_off;
3511 		}
3512 	}
3513 	return 0;
3514 }
3515 
3516 struct bpf_program *
3517 bpf_object__find_program_by_title(const struct bpf_object *obj,
3518 				  const char *title)
3519 {
3520 	struct bpf_program *pos;
3521 
3522 	bpf_object__for_each_program(pos, obj) {
3523 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3524 			return pos;
3525 	}
3526 	return errno = ENOENT, NULL;
3527 }
3528 
3529 static bool prog_is_subprog(const struct bpf_object *obj,
3530 			    const struct bpf_program *prog)
3531 {
3532 	/* For legacy reasons, libbpf supports an entry-point BPF programs
3533 	 * without SEC() attribute, i.e., those in the .text section. But if
3534 	 * there are 2 or more such programs in the .text section, they all
3535 	 * must be subprograms called from entry-point BPF programs in
3536 	 * designated SEC()'tions, otherwise there is no way to distinguish
3537 	 * which of those programs should be loaded vs which are a subprogram.
3538 	 * Similarly, if there is a function/program in .text and at least one
3539 	 * other BPF program with custom SEC() attribute, then we just assume
3540 	 * .text programs are subprograms (even if they are not called from
3541 	 * other programs), because libbpf never explicitly supported mixing
3542 	 * SEC()-designated BPF programs and .text entry-point BPF programs.
3543 	 */
3544 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3545 }
3546 
3547 struct bpf_program *
3548 bpf_object__find_program_by_name(const struct bpf_object *obj,
3549 				 const char *name)
3550 {
3551 	struct bpf_program *prog;
3552 
3553 	bpf_object__for_each_program(prog, obj) {
3554 		if (prog_is_subprog(obj, prog))
3555 			continue;
3556 		if (!strcmp(prog->name, name))
3557 			return prog;
3558 	}
3559 	return errno = ENOENT, NULL;
3560 }
3561 
3562 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3563 				      int shndx)
3564 {
3565 	return shndx == obj->efile.data_shndx ||
3566 	       shndx == obj->efile.bss_shndx ||
3567 	       shndx == obj->efile.rodata_shndx;
3568 }
3569 
3570 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3571 				      int shndx)
3572 {
3573 	return shndx == obj->efile.maps_shndx ||
3574 	       shndx == obj->efile.btf_maps_shndx;
3575 }
3576 
3577 static enum libbpf_map_type
3578 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3579 {
3580 	if (shndx == obj->efile.data_shndx)
3581 		return LIBBPF_MAP_DATA;
3582 	else if (shndx == obj->efile.bss_shndx)
3583 		return LIBBPF_MAP_BSS;
3584 	else if (shndx == obj->efile.rodata_shndx)
3585 		return LIBBPF_MAP_RODATA;
3586 	else if (shndx == obj->efile.symbols_shndx)
3587 		return LIBBPF_MAP_KCONFIG;
3588 	else
3589 		return LIBBPF_MAP_UNSPEC;
3590 }
3591 
3592 static int bpf_program__record_reloc(struct bpf_program *prog,
3593 				     struct reloc_desc *reloc_desc,
3594 				     __u32 insn_idx, const char *sym_name,
3595 				     const GElf_Sym *sym, const GElf_Rel *rel)
3596 {
3597 	struct bpf_insn *insn = &prog->insns[insn_idx];
3598 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3599 	struct bpf_object *obj = prog->obj;
3600 	__u32 shdr_idx = sym->st_shndx;
3601 	enum libbpf_map_type type;
3602 	const char *sym_sec_name;
3603 	struct bpf_map *map;
3604 
3605 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3606 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3607 			prog->name, sym_name, insn_idx, insn->code);
3608 		return -LIBBPF_ERRNO__RELOC;
3609 	}
3610 
3611 	if (sym_is_extern(sym)) {
3612 		int sym_idx = GELF_R_SYM(rel->r_info);
3613 		int i, n = obj->nr_extern;
3614 		struct extern_desc *ext;
3615 
3616 		for (i = 0; i < n; i++) {
3617 			ext = &obj->externs[i];
3618 			if (ext->sym_idx == sym_idx)
3619 				break;
3620 		}
3621 		if (i >= n) {
3622 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3623 				prog->name, sym_name, sym_idx);
3624 			return -LIBBPF_ERRNO__RELOC;
3625 		}
3626 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3627 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3628 		if (insn->code == (BPF_JMP | BPF_CALL))
3629 			reloc_desc->type = RELO_EXTERN_FUNC;
3630 		else
3631 			reloc_desc->type = RELO_EXTERN_VAR;
3632 		reloc_desc->insn_idx = insn_idx;
3633 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3634 		return 0;
3635 	}
3636 
3637 	/* sub-program call relocation */
3638 	if (is_call_insn(insn)) {
3639 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3640 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3641 			return -LIBBPF_ERRNO__RELOC;
3642 		}
3643 		/* text_shndx can be 0, if no default "main" program exists */
3644 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3645 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3646 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3647 				prog->name, sym_name, sym_sec_name);
3648 			return -LIBBPF_ERRNO__RELOC;
3649 		}
3650 		if (sym->st_value % BPF_INSN_SZ) {
3651 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3652 				prog->name, sym_name, (size_t)sym->st_value);
3653 			return -LIBBPF_ERRNO__RELOC;
3654 		}
3655 		reloc_desc->type = RELO_CALL;
3656 		reloc_desc->insn_idx = insn_idx;
3657 		reloc_desc->sym_off = sym->st_value;
3658 		return 0;
3659 	}
3660 
3661 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3662 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3663 			prog->name, sym_name, shdr_idx);
3664 		return -LIBBPF_ERRNO__RELOC;
3665 	}
3666 
3667 	/* loading subprog addresses */
3668 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3669 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
3670 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3671 		 */
3672 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3673 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3674 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3675 			return -LIBBPF_ERRNO__RELOC;
3676 		}
3677 
3678 		reloc_desc->type = RELO_SUBPROG_ADDR;
3679 		reloc_desc->insn_idx = insn_idx;
3680 		reloc_desc->sym_off = sym->st_value;
3681 		return 0;
3682 	}
3683 
3684 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3685 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3686 
3687 	/* generic map reference relocation */
3688 	if (type == LIBBPF_MAP_UNSPEC) {
3689 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3690 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3691 				prog->name, sym_name, sym_sec_name);
3692 			return -LIBBPF_ERRNO__RELOC;
3693 		}
3694 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3695 			map = &obj->maps[map_idx];
3696 			if (map->libbpf_type != type ||
3697 			    map->sec_idx != sym->st_shndx ||
3698 			    map->sec_offset != sym->st_value)
3699 				continue;
3700 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3701 				 prog->name, map_idx, map->name, map->sec_idx,
3702 				 map->sec_offset, insn_idx);
3703 			break;
3704 		}
3705 		if (map_idx >= nr_maps) {
3706 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3707 				prog->name, sym_sec_name, (size_t)sym->st_value);
3708 			return -LIBBPF_ERRNO__RELOC;
3709 		}
3710 		reloc_desc->type = RELO_LD64;
3711 		reloc_desc->insn_idx = insn_idx;
3712 		reloc_desc->map_idx = map_idx;
3713 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3714 		return 0;
3715 	}
3716 
3717 	/* global data map relocation */
3718 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3719 		pr_warn("prog '%s': bad data relo against section '%s'\n",
3720 			prog->name, sym_sec_name);
3721 		return -LIBBPF_ERRNO__RELOC;
3722 	}
3723 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3724 		map = &obj->maps[map_idx];
3725 		if (map->libbpf_type != type)
3726 			continue;
3727 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3728 			 prog->name, map_idx, map->name, map->sec_idx,
3729 			 map->sec_offset, insn_idx);
3730 		break;
3731 	}
3732 	if (map_idx >= nr_maps) {
3733 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3734 			prog->name, sym_sec_name);
3735 		return -LIBBPF_ERRNO__RELOC;
3736 	}
3737 
3738 	reloc_desc->type = RELO_DATA;
3739 	reloc_desc->insn_idx = insn_idx;
3740 	reloc_desc->map_idx = map_idx;
3741 	reloc_desc->sym_off = sym->st_value;
3742 	return 0;
3743 }
3744 
3745 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3746 {
3747 	return insn_idx >= prog->sec_insn_off &&
3748 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3749 }
3750 
3751 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3752 						 size_t sec_idx, size_t insn_idx)
3753 {
3754 	int l = 0, r = obj->nr_programs - 1, m;
3755 	struct bpf_program *prog;
3756 
3757 	while (l < r) {
3758 		m = l + (r - l + 1) / 2;
3759 		prog = &obj->programs[m];
3760 
3761 		if (prog->sec_idx < sec_idx ||
3762 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3763 			l = m;
3764 		else
3765 			r = m - 1;
3766 	}
3767 	/* matching program could be at index l, but it still might be the
3768 	 * wrong one, so we need to double check conditions for the last time
3769 	 */
3770 	prog = &obj->programs[l];
3771 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3772 		return prog;
3773 	return NULL;
3774 }
3775 
3776 static int
3777 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3778 {
3779 	Elf_Data *symbols = obj->efile.symbols;
3780 	const char *relo_sec_name, *sec_name;
3781 	size_t sec_idx = shdr->sh_info;
3782 	struct bpf_program *prog;
3783 	struct reloc_desc *relos;
3784 	int err, i, nrels;
3785 	const char *sym_name;
3786 	__u32 insn_idx;
3787 	Elf_Scn *scn;
3788 	Elf_Data *scn_data;
3789 	GElf_Sym sym;
3790 	GElf_Rel rel;
3791 
3792 	scn = elf_sec_by_idx(obj, sec_idx);
3793 	scn_data = elf_sec_data(obj, scn);
3794 
3795 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3796 	sec_name = elf_sec_name(obj, scn);
3797 	if (!relo_sec_name || !sec_name)
3798 		return -EINVAL;
3799 
3800 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3801 		 relo_sec_name, sec_idx, sec_name);
3802 	nrels = shdr->sh_size / shdr->sh_entsize;
3803 
3804 	for (i = 0; i < nrels; i++) {
3805 		if (!gelf_getrel(data, i, &rel)) {
3806 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3807 			return -LIBBPF_ERRNO__FORMAT;
3808 		}
3809 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3810 			pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3811 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3812 			return -LIBBPF_ERRNO__FORMAT;
3813 		}
3814 
3815 		if (rel.r_offset % BPF_INSN_SZ || rel.r_offset >= scn_data->d_size) {
3816 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3817 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3818 			return -LIBBPF_ERRNO__FORMAT;
3819 		}
3820 
3821 		insn_idx = rel.r_offset / BPF_INSN_SZ;
3822 		/* relocations against static functions are recorded as
3823 		 * relocations against the section that contains a function;
3824 		 * in such case, symbol will be STT_SECTION and sym.st_name
3825 		 * will point to empty string (0), so fetch section name
3826 		 * instead
3827 		 */
3828 		if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3829 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3830 		else
3831 			sym_name = elf_sym_str(obj, sym.st_name);
3832 		sym_name = sym_name ?: "<?";
3833 
3834 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3835 			 relo_sec_name, i, insn_idx, sym_name);
3836 
3837 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3838 		if (!prog) {
3839 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
3840 				relo_sec_name, i, sec_name, insn_idx);
3841 			continue;
3842 		}
3843 
3844 		relos = libbpf_reallocarray(prog->reloc_desc,
3845 					    prog->nr_reloc + 1, sizeof(*relos));
3846 		if (!relos)
3847 			return -ENOMEM;
3848 		prog->reloc_desc = relos;
3849 
3850 		/* adjust insn_idx to local BPF program frame of reference */
3851 		insn_idx -= prog->sec_insn_off;
3852 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3853 						insn_idx, sym_name, &sym, &rel);
3854 		if (err)
3855 			return err;
3856 
3857 		prog->nr_reloc++;
3858 	}
3859 	return 0;
3860 }
3861 
3862 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3863 {
3864 	struct bpf_map_def *def = &map->def;
3865 	__u32 key_type_id = 0, value_type_id = 0;
3866 	int ret;
3867 
3868 	/* if it's BTF-defined map, we don't need to search for type IDs.
3869 	 * For struct_ops map, it does not need btf_key_type_id and
3870 	 * btf_value_type_id.
3871 	 */
3872 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
3873 	    bpf_map__is_struct_ops(map))
3874 		return 0;
3875 
3876 	if (!bpf_map__is_internal(map)) {
3877 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3878 					   def->value_size, &key_type_id,
3879 					   &value_type_id);
3880 	} else {
3881 		/*
3882 		 * LLVM annotates global data differently in BTF, that is,
3883 		 * only as '.data', '.bss' or '.rodata'.
3884 		 */
3885 		ret = btf__find_by_name(obj->btf,
3886 				libbpf_type_to_btf_name[map->libbpf_type]);
3887 	}
3888 	if (ret < 0)
3889 		return ret;
3890 
3891 	map->btf_key_type_id = key_type_id;
3892 	map->btf_value_type_id = bpf_map__is_internal(map) ?
3893 				 ret : value_type_id;
3894 	return 0;
3895 }
3896 
3897 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3898 {
3899 	struct bpf_map_info info = {};
3900 	__u32 len = sizeof(info);
3901 	int new_fd, err;
3902 	char *new_name;
3903 
3904 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
3905 	if (err)
3906 		return libbpf_err(err);
3907 
3908 	new_name = strdup(info.name);
3909 	if (!new_name)
3910 		return libbpf_err(-errno);
3911 
3912 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
3913 	if (new_fd < 0) {
3914 		err = -errno;
3915 		goto err_free_new_name;
3916 	}
3917 
3918 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
3919 	if (new_fd < 0) {
3920 		err = -errno;
3921 		goto err_close_new_fd;
3922 	}
3923 
3924 	err = zclose(map->fd);
3925 	if (err) {
3926 		err = -errno;
3927 		goto err_close_new_fd;
3928 	}
3929 	free(map->name);
3930 
3931 	map->fd = new_fd;
3932 	map->name = new_name;
3933 	map->def.type = info.type;
3934 	map->def.key_size = info.key_size;
3935 	map->def.value_size = info.value_size;
3936 	map->def.max_entries = info.max_entries;
3937 	map->def.map_flags = info.map_flags;
3938 	map->btf_key_type_id = info.btf_key_type_id;
3939 	map->btf_value_type_id = info.btf_value_type_id;
3940 	map->reused = true;
3941 
3942 	return 0;
3943 
3944 err_close_new_fd:
3945 	close(new_fd);
3946 err_free_new_name:
3947 	free(new_name);
3948 	return libbpf_err(err);
3949 }
3950 
3951 __u32 bpf_map__max_entries(const struct bpf_map *map)
3952 {
3953 	return map->def.max_entries;
3954 }
3955 
3956 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
3957 {
3958 	if (!bpf_map_type__is_map_in_map(map->def.type))
3959 		return errno = EINVAL, NULL;
3960 
3961 	return map->inner_map;
3962 }
3963 
3964 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3965 {
3966 	if (map->fd >= 0)
3967 		return libbpf_err(-EBUSY);
3968 	map->def.max_entries = max_entries;
3969 	return 0;
3970 }
3971 
3972 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3973 {
3974 	if (!map || !max_entries)
3975 		return libbpf_err(-EINVAL);
3976 
3977 	return bpf_map__set_max_entries(map, max_entries);
3978 }
3979 
3980 static int
3981 bpf_object__probe_loading(struct bpf_object *obj)
3982 {
3983 	struct bpf_load_program_attr attr;
3984 	char *cp, errmsg[STRERR_BUFSIZE];
3985 	struct bpf_insn insns[] = {
3986 		BPF_MOV64_IMM(BPF_REG_0, 0),
3987 		BPF_EXIT_INSN(),
3988 	};
3989 	int ret;
3990 
3991 	if (obj->gen_loader)
3992 		return 0;
3993 
3994 	/* make sure basic loading works */
3995 
3996 	memset(&attr, 0, sizeof(attr));
3997 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3998 	attr.insns = insns;
3999 	attr.insns_cnt = ARRAY_SIZE(insns);
4000 	attr.license = "GPL";
4001 
4002 	ret = bpf_load_program_xattr(&attr, NULL, 0);
4003 	if (ret < 0) {
4004 		attr.prog_type = BPF_PROG_TYPE_TRACEPOINT;
4005 		ret = bpf_load_program_xattr(&attr, NULL, 0);
4006 	}
4007 	if (ret < 0) {
4008 		ret = errno;
4009 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4010 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4011 			"program. Make sure your kernel supports BPF "
4012 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4013 			"set to big enough value.\n", __func__, cp, ret);
4014 		return -ret;
4015 	}
4016 	close(ret);
4017 
4018 	return 0;
4019 }
4020 
4021 static int probe_fd(int fd)
4022 {
4023 	if (fd >= 0)
4024 		close(fd);
4025 	return fd >= 0;
4026 }
4027 
4028 static int probe_kern_prog_name(void)
4029 {
4030 	struct bpf_load_program_attr attr;
4031 	struct bpf_insn insns[] = {
4032 		BPF_MOV64_IMM(BPF_REG_0, 0),
4033 		BPF_EXIT_INSN(),
4034 	};
4035 	int ret;
4036 
4037 	/* make sure loading with name works */
4038 
4039 	memset(&attr, 0, sizeof(attr));
4040 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4041 	attr.insns = insns;
4042 	attr.insns_cnt = ARRAY_SIZE(insns);
4043 	attr.license = "GPL";
4044 	attr.name = "test";
4045 	ret = bpf_load_program_xattr(&attr, NULL, 0);
4046 	return probe_fd(ret);
4047 }
4048 
4049 static int probe_kern_global_data(void)
4050 {
4051 	struct bpf_load_program_attr prg_attr;
4052 	struct bpf_create_map_attr map_attr;
4053 	char *cp, errmsg[STRERR_BUFSIZE];
4054 	struct bpf_insn insns[] = {
4055 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4056 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4057 		BPF_MOV64_IMM(BPF_REG_0, 0),
4058 		BPF_EXIT_INSN(),
4059 	};
4060 	int ret, map;
4061 
4062 	memset(&map_attr, 0, sizeof(map_attr));
4063 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
4064 	map_attr.key_size = sizeof(int);
4065 	map_attr.value_size = 32;
4066 	map_attr.max_entries = 1;
4067 
4068 	map = bpf_create_map_xattr(&map_attr);
4069 	if (map < 0) {
4070 		ret = -errno;
4071 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4072 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4073 			__func__, cp, -ret);
4074 		return ret;
4075 	}
4076 
4077 	insns[0].imm = map;
4078 
4079 	memset(&prg_attr, 0, sizeof(prg_attr));
4080 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4081 	prg_attr.insns = insns;
4082 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
4083 	prg_attr.license = "GPL";
4084 
4085 	ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
4086 	close(map);
4087 	return probe_fd(ret);
4088 }
4089 
4090 static int probe_kern_btf(void)
4091 {
4092 	static const char strs[] = "\0int";
4093 	__u32 types[] = {
4094 		/* int */
4095 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4096 	};
4097 
4098 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4099 					     strs, sizeof(strs)));
4100 }
4101 
4102 static int probe_kern_btf_func(void)
4103 {
4104 	static const char strs[] = "\0int\0x\0a";
4105 	/* void x(int a) {} */
4106 	__u32 types[] = {
4107 		/* int */
4108 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4109 		/* FUNC_PROTO */                                /* [2] */
4110 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4111 		BTF_PARAM_ENC(7, 1),
4112 		/* FUNC x */                                    /* [3] */
4113 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4114 	};
4115 
4116 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4117 					     strs, sizeof(strs)));
4118 }
4119 
4120 static int probe_kern_btf_func_global(void)
4121 {
4122 	static const char strs[] = "\0int\0x\0a";
4123 	/* static void x(int a) {} */
4124 	__u32 types[] = {
4125 		/* int */
4126 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4127 		/* FUNC_PROTO */                                /* [2] */
4128 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4129 		BTF_PARAM_ENC(7, 1),
4130 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4131 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4132 	};
4133 
4134 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4135 					     strs, sizeof(strs)));
4136 }
4137 
4138 static int probe_kern_btf_datasec(void)
4139 {
4140 	static const char strs[] = "\0x\0.data";
4141 	/* static int a; */
4142 	__u32 types[] = {
4143 		/* int */
4144 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4145 		/* VAR x */                                     /* [2] */
4146 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4147 		BTF_VAR_STATIC,
4148 		/* DATASEC val */                               /* [3] */
4149 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4150 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4151 	};
4152 
4153 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4154 					     strs, sizeof(strs)));
4155 }
4156 
4157 static int probe_kern_btf_float(void)
4158 {
4159 	static const char strs[] = "\0float";
4160 	__u32 types[] = {
4161 		/* float */
4162 		BTF_TYPE_FLOAT_ENC(1, 4),
4163 	};
4164 
4165 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4166 					     strs, sizeof(strs)));
4167 }
4168 
4169 static int probe_kern_array_mmap(void)
4170 {
4171 	struct bpf_create_map_attr attr = {
4172 		.map_type = BPF_MAP_TYPE_ARRAY,
4173 		.map_flags = BPF_F_MMAPABLE,
4174 		.key_size = sizeof(int),
4175 		.value_size = sizeof(int),
4176 		.max_entries = 1,
4177 	};
4178 
4179 	return probe_fd(bpf_create_map_xattr(&attr));
4180 }
4181 
4182 static int probe_kern_exp_attach_type(void)
4183 {
4184 	struct bpf_load_program_attr attr;
4185 	struct bpf_insn insns[] = {
4186 		BPF_MOV64_IMM(BPF_REG_0, 0),
4187 		BPF_EXIT_INSN(),
4188 	};
4189 
4190 	memset(&attr, 0, sizeof(attr));
4191 	/* use any valid combination of program type and (optional)
4192 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4193 	 * to see if kernel supports expected_attach_type field for
4194 	 * BPF_PROG_LOAD command
4195 	 */
4196 	attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
4197 	attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
4198 	attr.insns = insns;
4199 	attr.insns_cnt = ARRAY_SIZE(insns);
4200 	attr.license = "GPL";
4201 
4202 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
4203 }
4204 
4205 static int probe_kern_probe_read_kernel(void)
4206 {
4207 	struct bpf_load_program_attr attr;
4208 	struct bpf_insn insns[] = {
4209 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4210 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4211 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4212 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4213 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4214 		BPF_EXIT_INSN(),
4215 	};
4216 
4217 	memset(&attr, 0, sizeof(attr));
4218 	attr.prog_type = BPF_PROG_TYPE_KPROBE;
4219 	attr.insns = insns;
4220 	attr.insns_cnt = ARRAY_SIZE(insns);
4221 	attr.license = "GPL";
4222 
4223 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
4224 }
4225 
4226 static int probe_prog_bind_map(void)
4227 {
4228 	struct bpf_load_program_attr prg_attr;
4229 	struct bpf_create_map_attr map_attr;
4230 	char *cp, errmsg[STRERR_BUFSIZE];
4231 	struct bpf_insn insns[] = {
4232 		BPF_MOV64_IMM(BPF_REG_0, 0),
4233 		BPF_EXIT_INSN(),
4234 	};
4235 	int ret, map, prog;
4236 
4237 	memset(&map_attr, 0, sizeof(map_attr));
4238 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
4239 	map_attr.key_size = sizeof(int);
4240 	map_attr.value_size = 32;
4241 	map_attr.max_entries = 1;
4242 
4243 	map = bpf_create_map_xattr(&map_attr);
4244 	if (map < 0) {
4245 		ret = -errno;
4246 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4247 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4248 			__func__, cp, -ret);
4249 		return ret;
4250 	}
4251 
4252 	memset(&prg_attr, 0, sizeof(prg_attr));
4253 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4254 	prg_attr.insns = insns;
4255 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
4256 	prg_attr.license = "GPL";
4257 
4258 	prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
4259 	if (prog < 0) {
4260 		close(map);
4261 		return 0;
4262 	}
4263 
4264 	ret = bpf_prog_bind_map(prog, map, NULL);
4265 
4266 	close(map);
4267 	close(prog);
4268 
4269 	return ret >= 0;
4270 }
4271 
4272 static int probe_module_btf(void)
4273 {
4274 	static const char strs[] = "\0int";
4275 	__u32 types[] = {
4276 		/* int */
4277 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4278 	};
4279 	struct bpf_btf_info info;
4280 	__u32 len = sizeof(info);
4281 	char name[16];
4282 	int fd, err;
4283 
4284 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4285 	if (fd < 0)
4286 		return 0; /* BTF not supported at all */
4287 
4288 	memset(&info, 0, sizeof(info));
4289 	info.name = ptr_to_u64(name);
4290 	info.name_len = sizeof(name);
4291 
4292 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4293 	 * kernel's module BTF support coincides with support for
4294 	 * name/name_len fields in struct bpf_btf_info.
4295 	 */
4296 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4297 	close(fd);
4298 	return !err;
4299 }
4300 
4301 enum kern_feature_result {
4302 	FEAT_UNKNOWN = 0,
4303 	FEAT_SUPPORTED = 1,
4304 	FEAT_MISSING = 2,
4305 };
4306 
4307 typedef int (*feature_probe_fn)(void);
4308 
4309 static struct kern_feature_desc {
4310 	const char *desc;
4311 	feature_probe_fn probe;
4312 	enum kern_feature_result res;
4313 } feature_probes[__FEAT_CNT] = {
4314 	[FEAT_PROG_NAME] = {
4315 		"BPF program name", probe_kern_prog_name,
4316 	},
4317 	[FEAT_GLOBAL_DATA] = {
4318 		"global variables", probe_kern_global_data,
4319 	},
4320 	[FEAT_BTF] = {
4321 		"minimal BTF", probe_kern_btf,
4322 	},
4323 	[FEAT_BTF_FUNC] = {
4324 		"BTF functions", probe_kern_btf_func,
4325 	},
4326 	[FEAT_BTF_GLOBAL_FUNC] = {
4327 		"BTF global function", probe_kern_btf_func_global,
4328 	},
4329 	[FEAT_BTF_DATASEC] = {
4330 		"BTF data section and variable", probe_kern_btf_datasec,
4331 	},
4332 	[FEAT_ARRAY_MMAP] = {
4333 		"ARRAY map mmap()", probe_kern_array_mmap,
4334 	},
4335 	[FEAT_EXP_ATTACH_TYPE] = {
4336 		"BPF_PROG_LOAD expected_attach_type attribute",
4337 		probe_kern_exp_attach_type,
4338 	},
4339 	[FEAT_PROBE_READ_KERN] = {
4340 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4341 	},
4342 	[FEAT_PROG_BIND_MAP] = {
4343 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4344 	},
4345 	[FEAT_MODULE_BTF] = {
4346 		"module BTF support", probe_module_btf,
4347 	},
4348 	[FEAT_BTF_FLOAT] = {
4349 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4350 	},
4351 };
4352 
4353 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4354 {
4355 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4356 	int ret;
4357 
4358 	if (obj->gen_loader)
4359 		/* To generate loader program assume the latest kernel
4360 		 * to avoid doing extra prog_load, map_create syscalls.
4361 		 */
4362 		return true;
4363 
4364 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4365 		ret = feat->probe();
4366 		if (ret > 0) {
4367 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4368 		} else if (ret == 0) {
4369 			WRITE_ONCE(feat->res, FEAT_MISSING);
4370 		} else {
4371 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4372 			WRITE_ONCE(feat->res, FEAT_MISSING);
4373 		}
4374 	}
4375 
4376 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4377 }
4378 
4379 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4380 {
4381 	struct bpf_map_info map_info = {};
4382 	char msg[STRERR_BUFSIZE];
4383 	__u32 map_info_len;
4384 
4385 	map_info_len = sizeof(map_info);
4386 
4387 	if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) {
4388 		pr_warn("failed to get map info for map FD %d: %s\n",
4389 			map_fd, libbpf_strerror_r(errno, msg, sizeof(msg)));
4390 		return false;
4391 	}
4392 
4393 	return (map_info.type == map->def.type &&
4394 		map_info.key_size == map->def.key_size &&
4395 		map_info.value_size == map->def.value_size &&
4396 		map_info.max_entries == map->def.max_entries &&
4397 		map_info.map_flags == map->def.map_flags);
4398 }
4399 
4400 static int
4401 bpf_object__reuse_map(struct bpf_map *map)
4402 {
4403 	char *cp, errmsg[STRERR_BUFSIZE];
4404 	int err, pin_fd;
4405 
4406 	pin_fd = bpf_obj_get(map->pin_path);
4407 	if (pin_fd < 0) {
4408 		err = -errno;
4409 		if (err == -ENOENT) {
4410 			pr_debug("found no pinned map to reuse at '%s'\n",
4411 				 map->pin_path);
4412 			return 0;
4413 		}
4414 
4415 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4416 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4417 			map->pin_path, cp);
4418 		return err;
4419 	}
4420 
4421 	if (!map_is_reuse_compat(map, pin_fd)) {
4422 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4423 			map->pin_path);
4424 		close(pin_fd);
4425 		return -EINVAL;
4426 	}
4427 
4428 	err = bpf_map__reuse_fd(map, pin_fd);
4429 	if (err) {
4430 		close(pin_fd);
4431 		return err;
4432 	}
4433 	map->pinned = true;
4434 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4435 
4436 	return 0;
4437 }
4438 
4439 static int
4440 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4441 {
4442 	enum libbpf_map_type map_type = map->libbpf_type;
4443 	char *cp, errmsg[STRERR_BUFSIZE];
4444 	int err, zero = 0;
4445 
4446 	if (obj->gen_loader) {
4447 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4448 					 map->mmaped, map->def.value_size);
4449 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4450 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4451 		return 0;
4452 	}
4453 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4454 	if (err) {
4455 		err = -errno;
4456 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4457 		pr_warn("Error setting initial map(%s) contents: %s\n",
4458 			map->name, cp);
4459 		return err;
4460 	}
4461 
4462 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4463 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4464 		err = bpf_map_freeze(map->fd);
4465 		if (err) {
4466 			err = -errno;
4467 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4468 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4469 				map->name, cp);
4470 			return err;
4471 		}
4472 	}
4473 	return 0;
4474 }
4475 
4476 static void bpf_map__destroy(struct bpf_map *map);
4477 
4478 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4479 {
4480 	struct bpf_create_map_attr create_attr;
4481 	struct bpf_map_def *def = &map->def;
4482 
4483 	memset(&create_attr, 0, sizeof(create_attr));
4484 
4485 	if (kernel_supports(obj, FEAT_PROG_NAME))
4486 		create_attr.name = map->name;
4487 	create_attr.map_ifindex = map->map_ifindex;
4488 	create_attr.map_type = def->type;
4489 	create_attr.map_flags = def->map_flags;
4490 	create_attr.key_size = def->key_size;
4491 	create_attr.value_size = def->value_size;
4492 	create_attr.numa_node = map->numa_node;
4493 
4494 	if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4495 		int nr_cpus;
4496 
4497 		nr_cpus = libbpf_num_possible_cpus();
4498 		if (nr_cpus < 0) {
4499 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4500 				map->name, nr_cpus);
4501 			return nr_cpus;
4502 		}
4503 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4504 		create_attr.max_entries = nr_cpus;
4505 	} else {
4506 		create_attr.max_entries = def->max_entries;
4507 	}
4508 
4509 	if (bpf_map__is_struct_ops(map))
4510 		create_attr.btf_vmlinux_value_type_id =
4511 			map->btf_vmlinux_value_type_id;
4512 
4513 	create_attr.btf_fd = 0;
4514 	create_attr.btf_key_type_id = 0;
4515 	create_attr.btf_value_type_id = 0;
4516 	if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4517 		create_attr.btf_fd = btf__fd(obj->btf);
4518 		create_attr.btf_key_type_id = map->btf_key_type_id;
4519 		create_attr.btf_value_type_id = map->btf_value_type_id;
4520 	}
4521 
4522 	if (bpf_map_type__is_map_in_map(def->type)) {
4523 		if (map->inner_map) {
4524 			int err;
4525 
4526 			err = bpf_object__create_map(obj, map->inner_map, true);
4527 			if (err) {
4528 				pr_warn("map '%s': failed to create inner map: %d\n",
4529 					map->name, err);
4530 				return err;
4531 			}
4532 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4533 		}
4534 		if (map->inner_map_fd >= 0)
4535 			create_attr.inner_map_fd = map->inner_map_fd;
4536 	}
4537 
4538 	if (obj->gen_loader) {
4539 		bpf_gen__map_create(obj->gen_loader, &create_attr, is_inner ? -1 : map - obj->maps);
4540 		/* Pretend to have valid FD to pass various fd >= 0 checks.
4541 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
4542 		 */
4543 		map->fd = 0;
4544 	} else {
4545 		map->fd = bpf_create_map_xattr(&create_attr);
4546 	}
4547 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4548 			    create_attr.btf_value_type_id)) {
4549 		char *cp, errmsg[STRERR_BUFSIZE];
4550 		int err = -errno;
4551 
4552 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4553 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4554 			map->name, cp, err);
4555 		create_attr.btf_fd = 0;
4556 		create_attr.btf_key_type_id = 0;
4557 		create_attr.btf_value_type_id = 0;
4558 		map->btf_key_type_id = 0;
4559 		map->btf_value_type_id = 0;
4560 		map->fd = bpf_create_map_xattr(&create_attr);
4561 	}
4562 
4563 	if (map->fd < 0)
4564 		return -errno;
4565 
4566 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4567 		if (obj->gen_loader)
4568 			map->inner_map->fd = -1;
4569 		bpf_map__destroy(map->inner_map);
4570 		zfree(&map->inner_map);
4571 	}
4572 
4573 	return 0;
4574 }
4575 
4576 static int init_map_slots(struct bpf_object *obj, struct bpf_map *map)
4577 {
4578 	const struct bpf_map *targ_map;
4579 	unsigned int i;
4580 	int fd, err = 0;
4581 
4582 	for (i = 0; i < map->init_slots_sz; i++) {
4583 		if (!map->init_slots[i])
4584 			continue;
4585 
4586 		targ_map = map->init_slots[i];
4587 		fd = bpf_map__fd(targ_map);
4588 		if (obj->gen_loader) {
4589 			pr_warn("// TODO map_update_elem: idx %td key %d value==map_idx %td\n",
4590 				map - obj->maps, i, targ_map - obj->maps);
4591 			return -ENOTSUP;
4592 		} else {
4593 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4594 		}
4595 		if (err) {
4596 			err = -errno;
4597 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4598 				map->name, i, targ_map->name,
4599 				fd, err);
4600 			return err;
4601 		}
4602 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4603 			 map->name, i, targ_map->name, fd);
4604 	}
4605 
4606 	zfree(&map->init_slots);
4607 	map->init_slots_sz = 0;
4608 
4609 	return 0;
4610 }
4611 
4612 static int
4613 bpf_object__create_maps(struct bpf_object *obj)
4614 {
4615 	struct bpf_map *map;
4616 	char *cp, errmsg[STRERR_BUFSIZE];
4617 	unsigned int i, j;
4618 	int err;
4619 
4620 	for (i = 0; i < obj->nr_maps; i++) {
4621 		map = &obj->maps[i];
4622 
4623 		if (map->pin_path) {
4624 			err = bpf_object__reuse_map(map);
4625 			if (err) {
4626 				pr_warn("map '%s': error reusing pinned map\n",
4627 					map->name);
4628 				goto err_out;
4629 			}
4630 		}
4631 
4632 		if (map->fd >= 0) {
4633 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4634 				 map->name, map->fd);
4635 		} else {
4636 			err = bpf_object__create_map(obj, map, false);
4637 			if (err)
4638 				goto err_out;
4639 
4640 			pr_debug("map '%s': created successfully, fd=%d\n",
4641 				 map->name, map->fd);
4642 
4643 			if (bpf_map__is_internal(map)) {
4644 				err = bpf_object__populate_internal_map(obj, map);
4645 				if (err < 0) {
4646 					zclose(map->fd);
4647 					goto err_out;
4648 				}
4649 			}
4650 
4651 			if (map->init_slots_sz) {
4652 				err = init_map_slots(obj, map);
4653 				if (err < 0) {
4654 					zclose(map->fd);
4655 					goto err_out;
4656 				}
4657 			}
4658 		}
4659 
4660 		if (map->pin_path && !map->pinned) {
4661 			err = bpf_map__pin(map, NULL);
4662 			if (err) {
4663 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4664 					map->name, map->pin_path, err);
4665 				zclose(map->fd);
4666 				goto err_out;
4667 			}
4668 		}
4669 	}
4670 
4671 	return 0;
4672 
4673 err_out:
4674 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4675 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4676 	pr_perm_msg(err);
4677 	for (j = 0; j < i; j++)
4678 		zclose(obj->maps[j].fd);
4679 	return err;
4680 }
4681 
4682 #define BPF_CORE_SPEC_MAX_LEN 64
4683 
4684 /* represents BPF CO-RE field or array element accessor */
4685 struct bpf_core_accessor {
4686 	__u32 type_id;		/* struct/union type or array element type */
4687 	__u32 idx;		/* field index or array index */
4688 	const char *name;	/* field name or NULL for array accessor */
4689 };
4690 
4691 struct bpf_core_spec {
4692 	const struct btf *btf;
4693 	/* high-level spec: named fields and array indices only */
4694 	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4695 	/* original unresolved (no skip_mods_or_typedefs) root type ID */
4696 	__u32 root_type_id;
4697 	/* CO-RE relocation kind */
4698 	enum bpf_core_relo_kind relo_kind;
4699 	/* high-level spec length */
4700 	int len;
4701 	/* raw, low-level spec: 1-to-1 with accessor spec string */
4702 	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4703 	/* raw spec length */
4704 	int raw_len;
4705 	/* field bit offset represented by spec */
4706 	__u32 bit_offset;
4707 };
4708 
4709 static bool str_is_empty(const char *s)
4710 {
4711 	return !s || !s[0];
4712 }
4713 
4714 static bool is_flex_arr(const struct btf *btf,
4715 			const struct bpf_core_accessor *acc,
4716 			const struct btf_array *arr)
4717 {
4718 	const struct btf_type *t;
4719 
4720 	/* not a flexible array, if not inside a struct or has non-zero size */
4721 	if (!acc->name || arr->nelems > 0)
4722 		return false;
4723 
4724 	/* has to be the last member of enclosing struct */
4725 	t = btf__type_by_id(btf, acc->type_id);
4726 	return acc->idx == btf_vlen(t) - 1;
4727 }
4728 
4729 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4730 {
4731 	switch (kind) {
4732 	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4733 	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4734 	case BPF_FIELD_EXISTS: return "field_exists";
4735 	case BPF_FIELD_SIGNED: return "signed";
4736 	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4737 	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4738 	case BPF_TYPE_ID_LOCAL: return "local_type_id";
4739 	case BPF_TYPE_ID_TARGET: return "target_type_id";
4740 	case BPF_TYPE_EXISTS: return "type_exists";
4741 	case BPF_TYPE_SIZE: return "type_size";
4742 	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4743 	case BPF_ENUMVAL_VALUE: return "enumval_value";
4744 	default: return "unknown";
4745 	}
4746 }
4747 
4748 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4749 {
4750 	switch (kind) {
4751 	case BPF_FIELD_BYTE_OFFSET:
4752 	case BPF_FIELD_BYTE_SIZE:
4753 	case BPF_FIELD_EXISTS:
4754 	case BPF_FIELD_SIGNED:
4755 	case BPF_FIELD_LSHIFT_U64:
4756 	case BPF_FIELD_RSHIFT_U64:
4757 		return true;
4758 	default:
4759 		return false;
4760 	}
4761 }
4762 
4763 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4764 {
4765 	switch (kind) {
4766 	case BPF_TYPE_ID_LOCAL:
4767 	case BPF_TYPE_ID_TARGET:
4768 	case BPF_TYPE_EXISTS:
4769 	case BPF_TYPE_SIZE:
4770 		return true;
4771 	default:
4772 		return false;
4773 	}
4774 }
4775 
4776 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4777 {
4778 	switch (kind) {
4779 	case BPF_ENUMVAL_EXISTS:
4780 	case BPF_ENUMVAL_VALUE:
4781 		return true;
4782 	default:
4783 		return false;
4784 	}
4785 }
4786 
4787 /*
4788  * Turn bpf_core_relo into a low- and high-level spec representation,
4789  * validating correctness along the way, as well as calculating resulting
4790  * field bit offset, specified by accessor string. Low-level spec captures
4791  * every single level of nestedness, including traversing anonymous
4792  * struct/union members. High-level one only captures semantically meaningful
4793  * "turning points": named fields and array indicies.
4794  * E.g., for this case:
4795  *
4796  *   struct sample {
4797  *       int __unimportant;
4798  *       struct {
4799  *           int __1;
4800  *           int __2;
4801  *           int a[7];
4802  *       };
4803  *   };
4804  *
4805  *   struct sample *s = ...;
4806  *
4807  *   int x = &s->a[3]; // access string = '0:1:2:3'
4808  *
4809  * Low-level spec has 1:1 mapping with each element of access string (it's
4810  * just a parsed access string representation): [0, 1, 2, 3].
4811  *
4812  * High-level spec will capture only 3 points:
4813  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4814  *   - field 'a' access (corresponds to '2' in low-level spec);
4815  *   - array element #3 access (corresponds to '3' in low-level spec).
4816  *
4817  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4818  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4819  * spec and raw_spec are kept empty.
4820  *
4821  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4822  * string to specify enumerator's value index that need to be relocated.
4823  */
4824 static int bpf_core_parse_spec(const struct btf *btf,
4825 			       __u32 type_id,
4826 			       const char *spec_str,
4827 			       enum bpf_core_relo_kind relo_kind,
4828 			       struct bpf_core_spec *spec)
4829 {
4830 	int access_idx, parsed_len, i;
4831 	struct bpf_core_accessor *acc;
4832 	const struct btf_type *t;
4833 	const char *name;
4834 	__u32 id;
4835 	__s64 sz;
4836 
4837 	if (str_is_empty(spec_str) || *spec_str == ':')
4838 		return -EINVAL;
4839 
4840 	memset(spec, 0, sizeof(*spec));
4841 	spec->btf = btf;
4842 	spec->root_type_id = type_id;
4843 	spec->relo_kind = relo_kind;
4844 
4845 	/* type-based relocations don't have a field access string */
4846 	if (core_relo_is_type_based(relo_kind)) {
4847 		if (strcmp(spec_str, "0"))
4848 			return -EINVAL;
4849 		return 0;
4850 	}
4851 
4852 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4853 	while (*spec_str) {
4854 		if (*spec_str == ':')
4855 			++spec_str;
4856 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4857 			return -EINVAL;
4858 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4859 			return -E2BIG;
4860 		spec_str += parsed_len;
4861 		spec->raw_spec[spec->raw_len++] = access_idx;
4862 	}
4863 
4864 	if (spec->raw_len == 0)
4865 		return -EINVAL;
4866 
4867 	t = skip_mods_and_typedefs(btf, type_id, &id);
4868 	if (!t)
4869 		return -EINVAL;
4870 
4871 	access_idx = spec->raw_spec[0];
4872 	acc = &spec->spec[0];
4873 	acc->type_id = id;
4874 	acc->idx = access_idx;
4875 	spec->len++;
4876 
4877 	if (core_relo_is_enumval_based(relo_kind)) {
4878 		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4879 			return -EINVAL;
4880 
4881 		/* record enumerator name in a first accessor */
4882 		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4883 		return 0;
4884 	}
4885 
4886 	if (!core_relo_is_field_based(relo_kind))
4887 		return -EINVAL;
4888 
4889 	sz = btf__resolve_size(btf, id);
4890 	if (sz < 0)
4891 		return sz;
4892 	spec->bit_offset = access_idx * sz * 8;
4893 
4894 	for (i = 1; i < spec->raw_len; i++) {
4895 		t = skip_mods_and_typedefs(btf, id, &id);
4896 		if (!t)
4897 			return -EINVAL;
4898 
4899 		access_idx = spec->raw_spec[i];
4900 		acc = &spec->spec[spec->len];
4901 
4902 		if (btf_is_composite(t)) {
4903 			const struct btf_member *m;
4904 			__u32 bit_offset;
4905 
4906 			if (access_idx >= btf_vlen(t))
4907 				return -EINVAL;
4908 
4909 			bit_offset = btf_member_bit_offset(t, access_idx);
4910 			spec->bit_offset += bit_offset;
4911 
4912 			m = btf_members(t) + access_idx;
4913 			if (m->name_off) {
4914 				name = btf__name_by_offset(btf, m->name_off);
4915 				if (str_is_empty(name))
4916 					return -EINVAL;
4917 
4918 				acc->type_id = id;
4919 				acc->idx = access_idx;
4920 				acc->name = name;
4921 				spec->len++;
4922 			}
4923 
4924 			id = m->type;
4925 		} else if (btf_is_array(t)) {
4926 			const struct btf_array *a = btf_array(t);
4927 			bool flex;
4928 
4929 			t = skip_mods_and_typedefs(btf, a->type, &id);
4930 			if (!t)
4931 				return -EINVAL;
4932 
4933 			flex = is_flex_arr(btf, acc - 1, a);
4934 			if (!flex && access_idx >= a->nelems)
4935 				return -EINVAL;
4936 
4937 			spec->spec[spec->len].type_id = id;
4938 			spec->spec[spec->len].idx = access_idx;
4939 			spec->len++;
4940 
4941 			sz = btf__resolve_size(btf, id);
4942 			if (sz < 0)
4943 				return sz;
4944 			spec->bit_offset += access_idx * sz * 8;
4945 		} else {
4946 			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4947 				type_id, spec_str, i, id, btf_kind_str(t));
4948 			return -EINVAL;
4949 		}
4950 	}
4951 
4952 	return 0;
4953 }
4954 
4955 static bool bpf_core_is_flavor_sep(const char *s)
4956 {
4957 	/* check X___Y name pattern, where X and Y are not underscores */
4958 	return s[0] != '_' &&				      /* X */
4959 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4960 	       s[4] != '_';				      /* Y */
4961 }
4962 
4963 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4964  * before last triple underscore. Struct name part after last triple
4965  * underscore is ignored by BPF CO-RE relocation during relocation matching.
4966  */
4967 static size_t bpf_core_essential_name_len(const char *name)
4968 {
4969 	size_t n = strlen(name);
4970 	int i;
4971 
4972 	for (i = n - 5; i >= 0; i--) {
4973 		if (bpf_core_is_flavor_sep(name + i))
4974 			return i + 1;
4975 	}
4976 	return n;
4977 }
4978 
4979 struct core_cand
4980 {
4981 	const struct btf *btf;
4982 	const struct btf_type *t;
4983 	const char *name;
4984 	__u32 id;
4985 };
4986 
4987 /* dynamically sized list of type IDs and its associated struct btf */
4988 struct core_cand_list {
4989 	struct core_cand *cands;
4990 	int len;
4991 };
4992 
4993 static void bpf_core_free_cands(struct core_cand_list *cands)
4994 {
4995 	free(cands->cands);
4996 	free(cands);
4997 }
4998 
4999 static int bpf_core_add_cands(struct core_cand *local_cand,
5000 			      size_t local_essent_len,
5001 			      const struct btf *targ_btf,
5002 			      const char *targ_btf_name,
5003 			      int targ_start_id,
5004 			      struct core_cand_list *cands)
5005 {
5006 	struct core_cand *new_cands, *cand;
5007 	const struct btf_type *t;
5008 	const char *targ_name;
5009 	size_t targ_essent_len;
5010 	int n, i;
5011 
5012 	n = btf__get_nr_types(targ_btf);
5013 	for (i = targ_start_id; i <= n; i++) {
5014 		t = btf__type_by_id(targ_btf, i);
5015 		if (btf_kind(t) != btf_kind(local_cand->t))
5016 			continue;
5017 
5018 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5019 		if (str_is_empty(targ_name))
5020 			continue;
5021 
5022 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5023 		if (targ_essent_len != local_essent_len)
5024 			continue;
5025 
5026 		if (strncmp(local_cand->name, targ_name, local_essent_len) != 0)
5027 			continue;
5028 
5029 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5030 			 local_cand->id, btf_kind_str(local_cand->t),
5031 			 local_cand->name, i, btf_kind_str(t), targ_name,
5032 			 targ_btf_name);
5033 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5034 					      sizeof(*cands->cands));
5035 		if (!new_cands)
5036 			return -ENOMEM;
5037 
5038 		cand = &new_cands[cands->len];
5039 		cand->btf = targ_btf;
5040 		cand->t = t;
5041 		cand->name = targ_name;
5042 		cand->id = i;
5043 
5044 		cands->cands = new_cands;
5045 		cands->len++;
5046 	}
5047 	return 0;
5048 }
5049 
5050 static int load_module_btfs(struct bpf_object *obj)
5051 {
5052 	struct bpf_btf_info info;
5053 	struct module_btf *mod_btf;
5054 	struct btf *btf;
5055 	char name[64];
5056 	__u32 id = 0, len;
5057 	int err, fd;
5058 
5059 	if (obj->btf_modules_loaded)
5060 		return 0;
5061 
5062 	if (obj->gen_loader)
5063 		return 0;
5064 
5065 	/* don't do this again, even if we find no module BTFs */
5066 	obj->btf_modules_loaded = true;
5067 
5068 	/* kernel too old to support module BTFs */
5069 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5070 		return 0;
5071 
5072 	while (true) {
5073 		err = bpf_btf_get_next_id(id, &id);
5074 		if (err && errno == ENOENT)
5075 			return 0;
5076 		if (err) {
5077 			err = -errno;
5078 			pr_warn("failed to iterate BTF objects: %d\n", err);
5079 			return err;
5080 		}
5081 
5082 		fd = bpf_btf_get_fd_by_id(id);
5083 		if (fd < 0) {
5084 			if (errno == ENOENT)
5085 				continue; /* expected race: BTF was unloaded */
5086 			err = -errno;
5087 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5088 			return err;
5089 		}
5090 
5091 		len = sizeof(info);
5092 		memset(&info, 0, sizeof(info));
5093 		info.name = ptr_to_u64(name);
5094 		info.name_len = sizeof(name);
5095 
5096 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
5097 		if (err) {
5098 			err = -errno;
5099 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5100 			goto err_out;
5101 		}
5102 
5103 		/* ignore non-module BTFs */
5104 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5105 			close(fd);
5106 			continue;
5107 		}
5108 
5109 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5110 		err = libbpf_get_error(btf);
5111 		if (err) {
5112 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5113 				name, id, err);
5114 			goto err_out;
5115 		}
5116 
5117 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5118 				        sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5119 		if (err)
5120 			goto err_out;
5121 
5122 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5123 
5124 		mod_btf->btf = btf;
5125 		mod_btf->id = id;
5126 		mod_btf->fd = fd;
5127 		mod_btf->name = strdup(name);
5128 		if (!mod_btf->name) {
5129 			err = -ENOMEM;
5130 			goto err_out;
5131 		}
5132 		continue;
5133 
5134 err_out:
5135 		close(fd);
5136 		return err;
5137 	}
5138 
5139 	return 0;
5140 }
5141 
5142 static struct core_cand_list *
5143 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5144 {
5145 	struct core_cand local_cand = {};
5146 	struct core_cand_list *cands;
5147 	const struct btf *main_btf;
5148 	size_t local_essent_len;
5149 	int err, i;
5150 
5151 	local_cand.btf = local_btf;
5152 	local_cand.t = btf__type_by_id(local_btf, local_type_id);
5153 	if (!local_cand.t)
5154 		return ERR_PTR(-EINVAL);
5155 
5156 	local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off);
5157 	if (str_is_empty(local_cand.name))
5158 		return ERR_PTR(-EINVAL);
5159 	local_essent_len = bpf_core_essential_name_len(local_cand.name);
5160 
5161 	cands = calloc(1, sizeof(*cands));
5162 	if (!cands)
5163 		return ERR_PTR(-ENOMEM);
5164 
5165 	/* Attempt to find target candidates in vmlinux BTF first */
5166 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5167 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5168 	if (err)
5169 		goto err_out;
5170 
5171 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5172 	if (cands->len)
5173 		return cands;
5174 
5175 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5176 	if (obj->btf_vmlinux_override)
5177 		return cands;
5178 
5179 	/* now look through module BTFs, trying to still find candidates */
5180 	err = load_module_btfs(obj);
5181 	if (err)
5182 		goto err_out;
5183 
5184 	for (i = 0; i < obj->btf_module_cnt; i++) {
5185 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5186 					 obj->btf_modules[i].btf,
5187 					 obj->btf_modules[i].name,
5188 					 btf__get_nr_types(obj->btf_vmlinux) + 1,
5189 					 cands);
5190 		if (err)
5191 			goto err_out;
5192 	}
5193 
5194 	return cands;
5195 err_out:
5196 	bpf_core_free_cands(cands);
5197 	return ERR_PTR(err);
5198 }
5199 
5200 /* Check two types for compatibility for the purpose of field access
5201  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
5202  * are relocating semantically compatible entities:
5203  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
5204  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
5205  *   - any two PTRs are always compatible;
5206  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
5207  *     least one of enums should be anonymous;
5208  *   - for ENUMs, check sizes, names are ignored;
5209  *   - for INT, size and signedness are ignored;
5210  *   - any two FLOATs are always compatible;
5211  *   - for ARRAY, dimensionality is ignored, element types are checked for
5212  *     compatibility recursively;
5213  *   - everything else shouldn't be ever a target of relocation.
5214  * These rules are not set in stone and probably will be adjusted as we get
5215  * more experience with using BPF CO-RE relocations.
5216  */
5217 static int bpf_core_fields_are_compat(const struct btf *local_btf,
5218 				      __u32 local_id,
5219 				      const struct btf *targ_btf,
5220 				      __u32 targ_id)
5221 {
5222 	const struct btf_type *local_type, *targ_type;
5223 
5224 recur:
5225 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5226 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5227 	if (!local_type || !targ_type)
5228 		return -EINVAL;
5229 
5230 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
5231 		return 1;
5232 	if (btf_kind(local_type) != btf_kind(targ_type))
5233 		return 0;
5234 
5235 	switch (btf_kind(local_type)) {
5236 	case BTF_KIND_PTR:
5237 	case BTF_KIND_FLOAT:
5238 		return 1;
5239 	case BTF_KIND_FWD:
5240 	case BTF_KIND_ENUM: {
5241 		const char *local_name, *targ_name;
5242 		size_t local_len, targ_len;
5243 
5244 		local_name = btf__name_by_offset(local_btf,
5245 						 local_type->name_off);
5246 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
5247 		local_len = bpf_core_essential_name_len(local_name);
5248 		targ_len = bpf_core_essential_name_len(targ_name);
5249 		/* one of them is anonymous or both w/ same flavor-less names */
5250 		return local_len == 0 || targ_len == 0 ||
5251 		       (local_len == targ_len &&
5252 			strncmp(local_name, targ_name, local_len) == 0);
5253 	}
5254 	case BTF_KIND_INT:
5255 		/* just reject deprecated bitfield-like integers; all other
5256 		 * integers are by default compatible between each other
5257 		 */
5258 		return btf_int_offset(local_type) == 0 &&
5259 		       btf_int_offset(targ_type) == 0;
5260 	case BTF_KIND_ARRAY:
5261 		local_id = btf_array(local_type)->type;
5262 		targ_id = btf_array(targ_type)->type;
5263 		goto recur;
5264 	default:
5265 		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
5266 			btf_kind(local_type), local_id, targ_id);
5267 		return 0;
5268 	}
5269 }
5270 
5271 /*
5272  * Given single high-level named field accessor in local type, find
5273  * corresponding high-level accessor for a target type. Along the way,
5274  * maintain low-level spec for target as well. Also keep updating target
5275  * bit offset.
5276  *
5277  * Searching is performed through recursive exhaustive enumeration of all
5278  * fields of a struct/union. If there are any anonymous (embedded)
5279  * structs/unions, they are recursively searched as well. If field with
5280  * desired name is found, check compatibility between local and target types,
5281  * before returning result.
5282  *
5283  * 1 is returned, if field is found.
5284  * 0 is returned if no compatible field is found.
5285  * <0 is returned on error.
5286  */
5287 static int bpf_core_match_member(const struct btf *local_btf,
5288 				 const struct bpf_core_accessor *local_acc,
5289 				 const struct btf *targ_btf,
5290 				 __u32 targ_id,
5291 				 struct bpf_core_spec *spec,
5292 				 __u32 *next_targ_id)
5293 {
5294 	const struct btf_type *local_type, *targ_type;
5295 	const struct btf_member *local_member, *m;
5296 	const char *local_name, *targ_name;
5297 	__u32 local_id;
5298 	int i, n, found;
5299 
5300 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5301 	if (!targ_type)
5302 		return -EINVAL;
5303 	if (!btf_is_composite(targ_type))
5304 		return 0;
5305 
5306 	local_id = local_acc->type_id;
5307 	local_type = btf__type_by_id(local_btf, local_id);
5308 	local_member = btf_members(local_type) + local_acc->idx;
5309 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
5310 
5311 	n = btf_vlen(targ_type);
5312 	m = btf_members(targ_type);
5313 	for (i = 0; i < n; i++, m++) {
5314 		__u32 bit_offset;
5315 
5316 		bit_offset = btf_member_bit_offset(targ_type, i);
5317 
5318 		/* too deep struct/union/array nesting */
5319 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5320 			return -E2BIG;
5321 
5322 		/* speculate this member will be the good one */
5323 		spec->bit_offset += bit_offset;
5324 		spec->raw_spec[spec->raw_len++] = i;
5325 
5326 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
5327 		if (str_is_empty(targ_name)) {
5328 			/* embedded struct/union, we need to go deeper */
5329 			found = bpf_core_match_member(local_btf, local_acc,
5330 						      targ_btf, m->type,
5331 						      spec, next_targ_id);
5332 			if (found) /* either found or error */
5333 				return found;
5334 		} else if (strcmp(local_name, targ_name) == 0) {
5335 			/* matching named field */
5336 			struct bpf_core_accessor *targ_acc;
5337 
5338 			targ_acc = &spec->spec[spec->len++];
5339 			targ_acc->type_id = targ_id;
5340 			targ_acc->idx = i;
5341 			targ_acc->name = targ_name;
5342 
5343 			*next_targ_id = m->type;
5344 			found = bpf_core_fields_are_compat(local_btf,
5345 							   local_member->type,
5346 							   targ_btf, m->type);
5347 			if (!found)
5348 				spec->len--; /* pop accessor */
5349 			return found;
5350 		}
5351 		/* member turned out not to be what we looked for */
5352 		spec->bit_offset -= bit_offset;
5353 		spec->raw_len--;
5354 	}
5355 
5356 	return 0;
5357 }
5358 
5359 /* Check local and target types for compatibility. This check is used for
5360  * type-based CO-RE relocations and follow slightly different rules than
5361  * field-based relocations. This function assumes that root types were already
5362  * checked for name match. Beyond that initial root-level name check, names
5363  * are completely ignored. Compatibility rules are as follows:
5364  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5365  *     kind should match for local and target types (i.e., STRUCT is not
5366  *     compatible with UNION);
5367  *   - for ENUMs, the size is ignored;
5368  *   - for INT, size and signedness are ignored;
5369  *   - for ARRAY, dimensionality is ignored, element types are checked for
5370  *     compatibility recursively;
5371  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5372  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5373  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5374  *     number of input args and compatible return and argument types.
5375  * These rules are not set in stone and probably will be adjusted as we get
5376  * more experience with using BPF CO-RE relocations.
5377  */
5378 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5379 				     const struct btf *targ_btf, __u32 targ_id)
5380 {
5381 	const struct btf_type *local_type, *targ_type;
5382 	int depth = 32; /* max recursion depth */
5383 
5384 	/* caller made sure that names match (ignoring flavor suffix) */
5385 	local_type = btf__type_by_id(local_btf, local_id);
5386 	targ_type = btf__type_by_id(targ_btf, targ_id);
5387 	if (btf_kind(local_type) != btf_kind(targ_type))
5388 		return 0;
5389 
5390 recur:
5391 	depth--;
5392 	if (depth < 0)
5393 		return -EINVAL;
5394 
5395 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5396 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5397 	if (!local_type || !targ_type)
5398 		return -EINVAL;
5399 
5400 	if (btf_kind(local_type) != btf_kind(targ_type))
5401 		return 0;
5402 
5403 	switch (btf_kind(local_type)) {
5404 	case BTF_KIND_UNKN:
5405 	case BTF_KIND_STRUCT:
5406 	case BTF_KIND_UNION:
5407 	case BTF_KIND_ENUM:
5408 	case BTF_KIND_FWD:
5409 		return 1;
5410 	case BTF_KIND_INT:
5411 		/* just reject deprecated bitfield-like integers; all other
5412 		 * integers are by default compatible between each other
5413 		 */
5414 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5415 	case BTF_KIND_PTR:
5416 		local_id = local_type->type;
5417 		targ_id = targ_type->type;
5418 		goto recur;
5419 	case BTF_KIND_ARRAY:
5420 		local_id = btf_array(local_type)->type;
5421 		targ_id = btf_array(targ_type)->type;
5422 		goto recur;
5423 	case BTF_KIND_FUNC_PROTO: {
5424 		struct btf_param *local_p = btf_params(local_type);
5425 		struct btf_param *targ_p = btf_params(targ_type);
5426 		__u16 local_vlen = btf_vlen(local_type);
5427 		__u16 targ_vlen = btf_vlen(targ_type);
5428 		int i, err;
5429 
5430 		if (local_vlen != targ_vlen)
5431 			return 0;
5432 
5433 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5434 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5435 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5436 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5437 			if (err <= 0)
5438 				return err;
5439 		}
5440 
5441 		/* tail recurse for return type check */
5442 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5443 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5444 		goto recur;
5445 	}
5446 	default:
5447 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5448 			btf_kind_str(local_type), local_id, targ_id);
5449 		return 0;
5450 	}
5451 }
5452 
5453 /*
5454  * Try to match local spec to a target type and, if successful, produce full
5455  * target spec (high-level, low-level + bit offset).
5456  */
5457 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
5458 			       const struct btf *targ_btf, __u32 targ_id,
5459 			       struct bpf_core_spec *targ_spec)
5460 {
5461 	const struct btf_type *targ_type;
5462 	const struct bpf_core_accessor *local_acc;
5463 	struct bpf_core_accessor *targ_acc;
5464 	int i, sz, matched;
5465 
5466 	memset(targ_spec, 0, sizeof(*targ_spec));
5467 	targ_spec->btf = targ_btf;
5468 	targ_spec->root_type_id = targ_id;
5469 	targ_spec->relo_kind = local_spec->relo_kind;
5470 
5471 	if (core_relo_is_type_based(local_spec->relo_kind)) {
5472 		return bpf_core_types_are_compat(local_spec->btf,
5473 						 local_spec->root_type_id,
5474 						 targ_btf, targ_id);
5475 	}
5476 
5477 	local_acc = &local_spec->spec[0];
5478 	targ_acc = &targ_spec->spec[0];
5479 
5480 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5481 		size_t local_essent_len, targ_essent_len;
5482 		const struct btf_enum *e;
5483 		const char *targ_name;
5484 
5485 		/* has to resolve to an enum */
5486 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5487 		if (!btf_is_enum(targ_type))
5488 			return 0;
5489 
5490 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
5491 
5492 		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5493 			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5494 			targ_essent_len = bpf_core_essential_name_len(targ_name);
5495 			if (targ_essent_len != local_essent_len)
5496 				continue;
5497 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5498 				targ_acc->type_id = targ_id;
5499 				targ_acc->idx = i;
5500 				targ_acc->name = targ_name;
5501 				targ_spec->len++;
5502 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5503 				targ_spec->raw_len++;
5504 				return 1;
5505 			}
5506 		}
5507 		return 0;
5508 	}
5509 
5510 	if (!core_relo_is_field_based(local_spec->relo_kind))
5511 		return -EINVAL;
5512 
5513 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5514 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5515 						   &targ_id);
5516 		if (!targ_type)
5517 			return -EINVAL;
5518 
5519 		if (local_acc->name) {
5520 			matched = bpf_core_match_member(local_spec->btf,
5521 							local_acc,
5522 							targ_btf, targ_id,
5523 							targ_spec, &targ_id);
5524 			if (matched <= 0)
5525 				return matched;
5526 		} else {
5527 			/* for i=0, targ_id is already treated as array element
5528 			 * type (because it's the original struct), for others
5529 			 * we should find array element type first
5530 			 */
5531 			if (i > 0) {
5532 				const struct btf_array *a;
5533 				bool flex;
5534 
5535 				if (!btf_is_array(targ_type))
5536 					return 0;
5537 
5538 				a = btf_array(targ_type);
5539 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5540 				if (!flex && local_acc->idx >= a->nelems)
5541 					return 0;
5542 				if (!skip_mods_and_typedefs(targ_btf, a->type,
5543 							    &targ_id))
5544 					return -EINVAL;
5545 			}
5546 
5547 			/* too deep struct/union/array nesting */
5548 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5549 				return -E2BIG;
5550 
5551 			targ_acc->type_id = targ_id;
5552 			targ_acc->idx = local_acc->idx;
5553 			targ_acc->name = NULL;
5554 			targ_spec->len++;
5555 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5556 			targ_spec->raw_len++;
5557 
5558 			sz = btf__resolve_size(targ_btf, targ_id);
5559 			if (sz < 0)
5560 				return sz;
5561 			targ_spec->bit_offset += local_acc->idx * sz * 8;
5562 		}
5563 	}
5564 
5565 	return 1;
5566 }
5567 
5568 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5569 				    const struct bpf_core_relo *relo,
5570 				    const struct bpf_core_spec *spec,
5571 				    __u32 *val, __u32 *field_sz, __u32 *type_id,
5572 				    bool *validate)
5573 {
5574 	const struct bpf_core_accessor *acc;
5575 	const struct btf_type *t;
5576 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5577 	const struct btf_member *m;
5578 	const struct btf_type *mt;
5579 	bool bitfield;
5580 	__s64 sz;
5581 
5582 	*field_sz = 0;
5583 
5584 	if (relo->kind == BPF_FIELD_EXISTS) {
5585 		*val = spec ? 1 : 0;
5586 		return 0;
5587 	}
5588 
5589 	if (!spec)
5590 		return -EUCLEAN; /* request instruction poisoning */
5591 
5592 	acc = &spec->spec[spec->len - 1];
5593 	t = btf__type_by_id(spec->btf, acc->type_id);
5594 
5595 	/* a[n] accessor needs special handling */
5596 	if (!acc->name) {
5597 		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5598 			*val = spec->bit_offset / 8;
5599 			/* remember field size for load/store mem size */
5600 			sz = btf__resolve_size(spec->btf, acc->type_id);
5601 			if (sz < 0)
5602 				return -EINVAL;
5603 			*field_sz = sz;
5604 			*type_id = acc->type_id;
5605 		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5606 			sz = btf__resolve_size(spec->btf, acc->type_id);
5607 			if (sz < 0)
5608 				return -EINVAL;
5609 			*val = sz;
5610 		} else {
5611 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5612 				prog->name, relo->kind, relo->insn_off / 8);
5613 			return -EINVAL;
5614 		}
5615 		if (validate)
5616 			*validate = true;
5617 		return 0;
5618 	}
5619 
5620 	m = btf_members(t) + acc->idx;
5621 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5622 	bit_off = spec->bit_offset;
5623 	bit_sz = btf_member_bitfield_size(t, acc->idx);
5624 
5625 	bitfield = bit_sz > 0;
5626 	if (bitfield) {
5627 		byte_sz = mt->size;
5628 		byte_off = bit_off / 8 / byte_sz * byte_sz;
5629 		/* figure out smallest int size necessary for bitfield load */
5630 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5631 			if (byte_sz >= 8) {
5632 				/* bitfield can't be read with 64-bit read */
5633 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5634 					prog->name, relo->kind, relo->insn_off / 8);
5635 				return -E2BIG;
5636 			}
5637 			byte_sz *= 2;
5638 			byte_off = bit_off / 8 / byte_sz * byte_sz;
5639 		}
5640 	} else {
5641 		sz = btf__resolve_size(spec->btf, field_type_id);
5642 		if (sz < 0)
5643 			return -EINVAL;
5644 		byte_sz = sz;
5645 		byte_off = spec->bit_offset / 8;
5646 		bit_sz = byte_sz * 8;
5647 	}
5648 
5649 	/* for bitfields, all the relocatable aspects are ambiguous and we
5650 	 * might disagree with compiler, so turn off validation of expected
5651 	 * value, except for signedness
5652 	 */
5653 	if (validate)
5654 		*validate = !bitfield;
5655 
5656 	switch (relo->kind) {
5657 	case BPF_FIELD_BYTE_OFFSET:
5658 		*val = byte_off;
5659 		if (!bitfield) {
5660 			*field_sz = byte_sz;
5661 			*type_id = field_type_id;
5662 		}
5663 		break;
5664 	case BPF_FIELD_BYTE_SIZE:
5665 		*val = byte_sz;
5666 		break;
5667 	case BPF_FIELD_SIGNED:
5668 		/* enums will be assumed unsigned */
5669 		*val = btf_is_enum(mt) ||
5670 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5671 		if (validate)
5672 			*validate = true; /* signedness is never ambiguous */
5673 		break;
5674 	case BPF_FIELD_LSHIFT_U64:
5675 #if __BYTE_ORDER == __LITTLE_ENDIAN
5676 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
5677 #else
5678 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5679 #endif
5680 		break;
5681 	case BPF_FIELD_RSHIFT_U64:
5682 		*val = 64 - bit_sz;
5683 		if (validate)
5684 			*validate = true; /* right shift is never ambiguous */
5685 		break;
5686 	case BPF_FIELD_EXISTS:
5687 	default:
5688 		return -EOPNOTSUPP;
5689 	}
5690 
5691 	return 0;
5692 }
5693 
5694 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5695 				   const struct bpf_core_spec *spec,
5696 				   __u32 *val)
5697 {
5698 	__s64 sz;
5699 
5700 	/* type-based relos return zero when target type is not found */
5701 	if (!spec) {
5702 		*val = 0;
5703 		return 0;
5704 	}
5705 
5706 	switch (relo->kind) {
5707 	case BPF_TYPE_ID_TARGET:
5708 		*val = spec->root_type_id;
5709 		break;
5710 	case BPF_TYPE_EXISTS:
5711 		*val = 1;
5712 		break;
5713 	case BPF_TYPE_SIZE:
5714 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
5715 		if (sz < 0)
5716 			return -EINVAL;
5717 		*val = sz;
5718 		break;
5719 	case BPF_TYPE_ID_LOCAL:
5720 	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5721 	default:
5722 		return -EOPNOTSUPP;
5723 	}
5724 
5725 	return 0;
5726 }
5727 
5728 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5729 				      const struct bpf_core_spec *spec,
5730 				      __u32 *val)
5731 {
5732 	const struct btf_type *t;
5733 	const struct btf_enum *e;
5734 
5735 	switch (relo->kind) {
5736 	case BPF_ENUMVAL_EXISTS:
5737 		*val = spec ? 1 : 0;
5738 		break;
5739 	case BPF_ENUMVAL_VALUE:
5740 		if (!spec)
5741 			return -EUCLEAN; /* request instruction poisoning */
5742 		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5743 		e = btf_enum(t) + spec->spec[0].idx;
5744 		*val = e->val;
5745 		break;
5746 	default:
5747 		return -EOPNOTSUPP;
5748 	}
5749 
5750 	return 0;
5751 }
5752 
5753 struct bpf_core_relo_res
5754 {
5755 	/* expected value in the instruction, unless validate == false */
5756 	__u32 orig_val;
5757 	/* new value that needs to be patched up to */
5758 	__u32 new_val;
5759 	/* relocation unsuccessful, poison instruction, but don't fail load */
5760 	bool poison;
5761 	/* some relocations can't be validated against orig_val */
5762 	bool validate;
5763 	/* for field byte offset relocations or the forms:
5764 	 *     *(T *)(rX + <off>) = rY
5765 	 *     rX = *(T *)(rY + <off>),
5766 	 * we remember original and resolved field size to adjust direct
5767 	 * memory loads of pointers and integers; this is necessary for 32-bit
5768 	 * host kernel architectures, but also allows to automatically
5769 	 * relocate fields that were resized from, e.g., u32 to u64, etc.
5770 	 */
5771 	bool fail_memsz_adjust;
5772 	__u32 orig_sz;
5773 	__u32 orig_type_id;
5774 	__u32 new_sz;
5775 	__u32 new_type_id;
5776 };
5777 
5778 /* Calculate original and target relocation values, given local and target
5779  * specs and relocation kind. These values are calculated for each candidate.
5780  * If there are multiple candidates, resulting values should all be consistent
5781  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5782  * If instruction has to be poisoned, *poison will be set to true.
5783  */
5784 static int bpf_core_calc_relo(const struct bpf_program *prog,
5785 			      const struct bpf_core_relo *relo,
5786 			      int relo_idx,
5787 			      const struct bpf_core_spec *local_spec,
5788 			      const struct bpf_core_spec *targ_spec,
5789 			      struct bpf_core_relo_res *res)
5790 {
5791 	int err = -EOPNOTSUPP;
5792 
5793 	res->orig_val = 0;
5794 	res->new_val = 0;
5795 	res->poison = false;
5796 	res->validate = true;
5797 	res->fail_memsz_adjust = false;
5798 	res->orig_sz = res->new_sz = 0;
5799 	res->orig_type_id = res->new_type_id = 0;
5800 
5801 	if (core_relo_is_field_based(relo->kind)) {
5802 		err = bpf_core_calc_field_relo(prog, relo, local_spec,
5803 					       &res->orig_val, &res->orig_sz,
5804 					       &res->orig_type_id, &res->validate);
5805 		err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5806 						      &res->new_val, &res->new_sz,
5807 						      &res->new_type_id, NULL);
5808 		if (err)
5809 			goto done;
5810 		/* Validate if it's safe to adjust load/store memory size.
5811 		 * Adjustments are performed only if original and new memory
5812 		 * sizes differ.
5813 		 */
5814 		res->fail_memsz_adjust = false;
5815 		if (res->orig_sz != res->new_sz) {
5816 			const struct btf_type *orig_t, *new_t;
5817 
5818 			orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5819 			new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5820 
5821 			/* There are two use cases in which it's safe to
5822 			 * adjust load/store's mem size:
5823 			 *   - reading a 32-bit kernel pointer, while on BPF
5824 			 *   size pointers are always 64-bit; in this case
5825 			 *   it's safe to "downsize" instruction size due to
5826 			 *   pointer being treated as unsigned integer with
5827 			 *   zero-extended upper 32-bits;
5828 			 *   - reading unsigned integers, again due to
5829 			 *   zero-extension is preserving the value correctly.
5830 			 *
5831 			 * In all other cases it's incorrect to attempt to
5832 			 * load/store field because read value will be
5833 			 * incorrect, so we poison relocated instruction.
5834 			 */
5835 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5836 				goto done;
5837 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5838 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5839 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
5840 				goto done;
5841 
5842 			/* mark as invalid mem size adjustment, but this will
5843 			 * only be checked for LDX/STX/ST insns
5844 			 */
5845 			res->fail_memsz_adjust = true;
5846 		}
5847 	} else if (core_relo_is_type_based(relo->kind)) {
5848 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5849 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5850 	} else if (core_relo_is_enumval_based(relo->kind)) {
5851 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5852 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5853 	}
5854 
5855 done:
5856 	if (err == -EUCLEAN) {
5857 		/* EUCLEAN is used to signal instruction poisoning request */
5858 		res->poison = true;
5859 		err = 0;
5860 	} else if (err == -EOPNOTSUPP) {
5861 		/* EOPNOTSUPP means unknown/unsupported relocation */
5862 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5863 			prog->name, relo_idx, core_relo_kind_str(relo->kind),
5864 			relo->kind, relo->insn_off / 8);
5865 	}
5866 
5867 	return err;
5868 }
5869 
5870 /*
5871  * Turn instruction for which CO_RE relocation failed into invalid one with
5872  * distinct signature.
5873  */
5874 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5875 				 int insn_idx, struct bpf_insn *insn)
5876 {
5877 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5878 		 prog->name, relo_idx, insn_idx);
5879 	insn->code = BPF_JMP | BPF_CALL;
5880 	insn->dst_reg = 0;
5881 	insn->src_reg = 0;
5882 	insn->off = 0;
5883 	/* if this instruction is reachable (not a dead code),
5884 	 * verifier will complain with the following message:
5885 	 * invalid func unknown#195896080
5886 	 */
5887 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5888 }
5889 
5890 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5891 {
5892 	switch (BPF_SIZE(insn->code)) {
5893 	case BPF_DW: return 8;
5894 	case BPF_W: return 4;
5895 	case BPF_H: return 2;
5896 	case BPF_B: return 1;
5897 	default: return -1;
5898 	}
5899 }
5900 
5901 static int insn_bytes_to_bpf_size(__u32 sz)
5902 {
5903 	switch (sz) {
5904 	case 8: return BPF_DW;
5905 	case 4: return BPF_W;
5906 	case 2: return BPF_H;
5907 	case 1: return BPF_B;
5908 	default: return -1;
5909 	}
5910 }
5911 
5912 /*
5913  * Patch relocatable BPF instruction.
5914  *
5915  * Patched value is determined by relocation kind and target specification.
5916  * For existence relocations target spec will be NULL if field/type is not found.
5917  * Expected insn->imm value is determined using relocation kind and local
5918  * spec, and is checked before patching instruction. If actual insn->imm value
5919  * is wrong, bail out with error.
5920  *
5921  * Currently supported classes of BPF instruction are:
5922  * 1. rX = <imm> (assignment with immediate operand);
5923  * 2. rX += <imm> (arithmetic operations with immediate operand);
5924  * 3. rX = <imm64> (load with 64-bit immediate value);
5925  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5926  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5927  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5928  */
5929 static int bpf_core_patch_insn(struct bpf_program *prog,
5930 			       const struct bpf_core_relo *relo,
5931 			       int relo_idx,
5932 			       const struct bpf_core_relo_res *res)
5933 {
5934 	__u32 orig_val, new_val;
5935 	struct bpf_insn *insn;
5936 	int insn_idx;
5937 	__u8 class;
5938 
5939 	if (relo->insn_off % BPF_INSN_SZ)
5940 		return -EINVAL;
5941 	insn_idx = relo->insn_off / BPF_INSN_SZ;
5942 	/* adjust insn_idx from section frame of reference to the local
5943 	 * program's frame of reference; (sub-)program code is not yet
5944 	 * relocated, so it's enough to just subtract in-section offset
5945 	 */
5946 	insn_idx = insn_idx - prog->sec_insn_off;
5947 	insn = &prog->insns[insn_idx];
5948 	class = BPF_CLASS(insn->code);
5949 
5950 	if (res->poison) {
5951 poison:
5952 		/* poison second part of ldimm64 to avoid confusing error from
5953 		 * verifier about "unknown opcode 00"
5954 		 */
5955 		if (is_ldimm64_insn(insn))
5956 			bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5957 		bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5958 		return 0;
5959 	}
5960 
5961 	orig_val = res->orig_val;
5962 	new_val = res->new_val;
5963 
5964 	switch (class) {
5965 	case BPF_ALU:
5966 	case BPF_ALU64:
5967 		if (BPF_SRC(insn->code) != BPF_K)
5968 			return -EINVAL;
5969 		if (res->validate && insn->imm != orig_val) {
5970 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5971 				prog->name, relo_idx,
5972 				insn_idx, insn->imm, orig_val, new_val);
5973 			return -EINVAL;
5974 		}
5975 		orig_val = insn->imm;
5976 		insn->imm = new_val;
5977 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5978 			 prog->name, relo_idx, insn_idx,
5979 			 orig_val, new_val);
5980 		break;
5981 	case BPF_LDX:
5982 	case BPF_ST:
5983 	case BPF_STX:
5984 		if (res->validate && insn->off != orig_val) {
5985 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5986 				prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5987 			return -EINVAL;
5988 		}
5989 		if (new_val > SHRT_MAX) {
5990 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5991 				prog->name, relo_idx, insn_idx, new_val);
5992 			return -ERANGE;
5993 		}
5994 		if (res->fail_memsz_adjust) {
5995 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5996 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5997 				prog->name, relo_idx, insn_idx);
5998 			goto poison;
5999 		}
6000 
6001 		orig_val = insn->off;
6002 		insn->off = new_val;
6003 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
6004 			 prog->name, relo_idx, insn_idx, orig_val, new_val);
6005 
6006 		if (res->new_sz != res->orig_sz) {
6007 			int insn_bytes_sz, insn_bpf_sz;
6008 
6009 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
6010 			if (insn_bytes_sz != res->orig_sz) {
6011 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
6012 					prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
6013 				return -EINVAL;
6014 			}
6015 
6016 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
6017 			if (insn_bpf_sz < 0) {
6018 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
6019 					prog->name, relo_idx, insn_idx, res->new_sz);
6020 				return -EINVAL;
6021 			}
6022 
6023 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
6024 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
6025 				 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
6026 		}
6027 		break;
6028 	case BPF_LD: {
6029 		__u64 imm;
6030 
6031 		if (!is_ldimm64_insn(insn) ||
6032 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
6033 		    insn_idx + 1 >= prog->insns_cnt ||
6034 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
6035 		    insn[1].src_reg != 0 || insn[1].off != 0) {
6036 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
6037 				prog->name, relo_idx, insn_idx);
6038 			return -EINVAL;
6039 		}
6040 
6041 		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
6042 		if (res->validate && imm != orig_val) {
6043 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
6044 				prog->name, relo_idx,
6045 				insn_idx, (unsigned long long)imm,
6046 				orig_val, new_val);
6047 			return -EINVAL;
6048 		}
6049 
6050 		insn[0].imm = new_val;
6051 		insn[1].imm = 0; /* currently only 32-bit values are supported */
6052 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
6053 			 prog->name, relo_idx, insn_idx,
6054 			 (unsigned long long)imm, new_val);
6055 		break;
6056 	}
6057 	default:
6058 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
6059 			prog->name, relo_idx, insn_idx, insn->code,
6060 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
6061 		return -EINVAL;
6062 	}
6063 
6064 	return 0;
6065 }
6066 
6067 /* Output spec definition in the format:
6068  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
6069  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
6070  */
6071 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
6072 {
6073 	const struct btf_type *t;
6074 	const struct btf_enum *e;
6075 	const char *s;
6076 	__u32 type_id;
6077 	int i;
6078 
6079 	type_id = spec->root_type_id;
6080 	t = btf__type_by_id(spec->btf, type_id);
6081 	s = btf__name_by_offset(spec->btf, t->name_off);
6082 
6083 	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
6084 
6085 	if (core_relo_is_type_based(spec->relo_kind))
6086 		return;
6087 
6088 	if (core_relo_is_enumval_based(spec->relo_kind)) {
6089 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
6090 		e = btf_enum(t) + spec->raw_spec[0];
6091 		s = btf__name_by_offset(spec->btf, e->name_off);
6092 
6093 		libbpf_print(level, "::%s = %u", s, e->val);
6094 		return;
6095 	}
6096 
6097 	if (core_relo_is_field_based(spec->relo_kind)) {
6098 		for (i = 0; i < spec->len; i++) {
6099 			if (spec->spec[i].name)
6100 				libbpf_print(level, ".%s", spec->spec[i].name);
6101 			else if (i > 0 || spec->spec[i].idx > 0)
6102 				libbpf_print(level, "[%u]", spec->spec[i].idx);
6103 		}
6104 
6105 		libbpf_print(level, " (");
6106 		for (i = 0; i < spec->raw_len; i++)
6107 			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
6108 
6109 		if (spec->bit_offset % 8)
6110 			libbpf_print(level, " @ offset %u.%u)",
6111 				     spec->bit_offset / 8, spec->bit_offset % 8);
6112 		else
6113 			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
6114 		return;
6115 	}
6116 }
6117 
6118 static size_t bpf_core_hash_fn(const void *key, void *ctx)
6119 {
6120 	return (size_t)key;
6121 }
6122 
6123 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
6124 {
6125 	return k1 == k2;
6126 }
6127 
6128 static void *u32_as_hash_key(__u32 x)
6129 {
6130 	return (void *)(uintptr_t)x;
6131 }
6132 
6133 /*
6134  * CO-RE relocate single instruction.
6135  *
6136  * The outline and important points of the algorithm:
6137  * 1. For given local type, find corresponding candidate target types.
6138  *    Candidate type is a type with the same "essential" name, ignoring
6139  *    everything after last triple underscore (___). E.g., `sample`,
6140  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
6141  *    for each other. Names with triple underscore are referred to as
6142  *    "flavors" and are useful, among other things, to allow to
6143  *    specify/support incompatible variations of the same kernel struct, which
6144  *    might differ between different kernel versions and/or build
6145  *    configurations.
6146  *
6147  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
6148  *    converter, when deduplicated BTF of a kernel still contains more than
6149  *    one different types with the same name. In that case, ___2, ___3, etc
6150  *    are appended starting from second name conflict. But start flavors are
6151  *    also useful to be defined "locally", in BPF program, to extract same
6152  *    data from incompatible changes between different kernel
6153  *    versions/configurations. For instance, to handle field renames between
6154  *    kernel versions, one can use two flavors of the struct name with the
6155  *    same common name and use conditional relocations to extract that field,
6156  *    depending on target kernel version.
6157  * 2. For each candidate type, try to match local specification to this
6158  *    candidate target type. Matching involves finding corresponding
6159  *    high-level spec accessors, meaning that all named fields should match,
6160  *    as well as all array accesses should be within the actual bounds. Also,
6161  *    types should be compatible (see bpf_core_fields_are_compat for details).
6162  * 3. It is supported and expected that there might be multiple flavors
6163  *    matching the spec. As long as all the specs resolve to the same set of
6164  *    offsets across all candidates, there is no error. If there is any
6165  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
6166  *    imprefection of BTF deduplication, which can cause slight duplication of
6167  *    the same BTF type, if some directly or indirectly referenced (by
6168  *    pointer) type gets resolved to different actual types in different
6169  *    object files. If such situation occurs, deduplicated BTF will end up
6170  *    with two (or more) structurally identical types, which differ only in
6171  *    types they refer to through pointer. This should be OK in most cases and
6172  *    is not an error.
6173  * 4. Candidate types search is performed by linearly scanning through all
6174  *    types in target BTF. It is anticipated that this is overall more
6175  *    efficient memory-wise and not significantly worse (if not better)
6176  *    CPU-wise compared to prebuilding a map from all local type names to
6177  *    a list of candidate type names. It's also sped up by caching resolved
6178  *    list of matching candidates per each local "root" type ID, that has at
6179  *    least one bpf_core_relo associated with it. This list is shared
6180  *    between multiple relocations for the same type ID and is updated as some
6181  *    of the candidates are pruned due to structural incompatibility.
6182  */
6183 static int bpf_core_apply_relo(struct bpf_program *prog,
6184 			       const struct bpf_core_relo *relo,
6185 			       int relo_idx,
6186 			       const struct btf *local_btf,
6187 			       struct hashmap *cand_cache)
6188 {
6189 	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
6190 	const void *type_key = u32_as_hash_key(relo->type_id);
6191 	struct bpf_core_relo_res cand_res, targ_res;
6192 	const struct btf_type *local_type;
6193 	const char *local_name;
6194 	struct core_cand_list *cands = NULL;
6195 	__u32 local_id;
6196 	const char *spec_str;
6197 	int i, j, err;
6198 
6199 	local_id = relo->type_id;
6200 	local_type = btf__type_by_id(local_btf, local_id);
6201 	if (!local_type)
6202 		return -EINVAL;
6203 
6204 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
6205 	if (!local_name)
6206 		return -EINVAL;
6207 
6208 	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
6209 	if (str_is_empty(spec_str))
6210 		return -EINVAL;
6211 
6212 	if (prog->obj->gen_loader) {
6213 		pr_warn("// TODO core_relo: prog %td insn[%d] %s %s kind %d\n",
6214 			prog - prog->obj->programs, relo->insn_off / 8,
6215 			local_name, spec_str, relo->kind);
6216 		return -ENOTSUP;
6217 	}
6218 	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
6219 	if (err) {
6220 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
6221 			prog->name, relo_idx, local_id, btf_kind_str(local_type),
6222 			str_is_empty(local_name) ? "<anon>" : local_name,
6223 			spec_str, err);
6224 		return -EINVAL;
6225 	}
6226 
6227 	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
6228 		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
6229 	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
6230 	libbpf_print(LIBBPF_DEBUG, "\n");
6231 
6232 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
6233 	if (relo->kind == BPF_TYPE_ID_LOCAL) {
6234 		targ_res.validate = true;
6235 		targ_res.poison = false;
6236 		targ_res.orig_val = local_spec.root_type_id;
6237 		targ_res.new_val = local_spec.root_type_id;
6238 		goto patch_insn;
6239 	}
6240 
6241 	/* libbpf doesn't support candidate search for anonymous types */
6242 	if (str_is_empty(spec_str)) {
6243 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
6244 			prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
6245 		return -EOPNOTSUPP;
6246 	}
6247 
6248 	if (!hashmap__find(cand_cache, type_key, (void **)&cands)) {
6249 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
6250 		if (IS_ERR(cands)) {
6251 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
6252 				prog->name, relo_idx, local_id, btf_kind_str(local_type),
6253 				local_name, PTR_ERR(cands));
6254 			return PTR_ERR(cands);
6255 		}
6256 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
6257 		if (err) {
6258 			bpf_core_free_cands(cands);
6259 			return err;
6260 		}
6261 	}
6262 
6263 	for (i = 0, j = 0; i < cands->len; i++) {
6264 		err = bpf_core_spec_match(&local_spec, cands->cands[i].btf,
6265 					  cands->cands[i].id, &cand_spec);
6266 		if (err < 0) {
6267 			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
6268 				prog->name, relo_idx, i);
6269 			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
6270 			libbpf_print(LIBBPF_WARN, ": %d\n", err);
6271 			return err;
6272 		}
6273 
6274 		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
6275 			 relo_idx, err == 0 ? "non-matching" : "matching", i);
6276 		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
6277 		libbpf_print(LIBBPF_DEBUG, "\n");
6278 
6279 		if (err == 0)
6280 			continue;
6281 
6282 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
6283 		if (err)
6284 			return err;
6285 
6286 		if (j == 0) {
6287 			targ_res = cand_res;
6288 			targ_spec = cand_spec;
6289 		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
6290 			/* if there are many field relo candidates, they
6291 			 * should all resolve to the same bit offset
6292 			 */
6293 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
6294 				prog->name, relo_idx, cand_spec.bit_offset,
6295 				targ_spec.bit_offset);
6296 			return -EINVAL;
6297 		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
6298 			/* all candidates should result in the same relocation
6299 			 * decision and value, otherwise it's dangerous to
6300 			 * proceed due to ambiguity
6301 			 */
6302 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
6303 				prog->name, relo_idx,
6304 				cand_res.poison ? "failure" : "success", cand_res.new_val,
6305 				targ_res.poison ? "failure" : "success", targ_res.new_val);
6306 			return -EINVAL;
6307 		}
6308 
6309 		cands->cands[j++] = cands->cands[i];
6310 	}
6311 
6312 	/*
6313 	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
6314 	 * existence checks or kernel version/config checks, it's expected
6315 	 * that we might not find any candidates. In this case, if field
6316 	 * wasn't found in any candidate, the list of candidates shouldn't
6317 	 * change at all, we'll just handle relocating appropriately,
6318 	 * depending on relo's kind.
6319 	 */
6320 	if (j > 0)
6321 		cands->len = j;
6322 
6323 	/*
6324 	 * If no candidates were found, it might be both a programmer error,
6325 	 * as well as expected case, depending whether instruction w/
6326 	 * relocation is guarded in some way that makes it unreachable (dead
6327 	 * code) if relocation can't be resolved. This is handled in
6328 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
6329 	 * BPF helper call insn (using invalid helper ID). If that instruction
6330 	 * is indeed unreachable, then it will be ignored and eliminated by
6331 	 * verifier. If it was an error, then verifier will complain and point
6332 	 * to a specific instruction number in its log.
6333 	 */
6334 	if (j == 0) {
6335 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
6336 			 prog->name, relo_idx);
6337 
6338 		/* calculate single target relo result explicitly */
6339 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
6340 		if (err)
6341 			return err;
6342 	}
6343 
6344 patch_insn:
6345 	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
6346 	err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
6347 	if (err) {
6348 		pr_warn("prog '%s': relo #%d: failed to patch insn #%zu: %d\n",
6349 			prog->name, relo_idx, relo->insn_off / BPF_INSN_SZ, err);
6350 		return -EINVAL;
6351 	}
6352 
6353 	return 0;
6354 }
6355 
6356 static int
6357 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
6358 {
6359 	const struct btf_ext_info_sec *sec;
6360 	const struct bpf_core_relo *rec;
6361 	const struct btf_ext_info *seg;
6362 	struct hashmap_entry *entry;
6363 	struct hashmap *cand_cache = NULL;
6364 	struct bpf_program *prog;
6365 	const char *sec_name;
6366 	int i, err = 0, insn_idx, sec_idx;
6367 
6368 	if (obj->btf_ext->core_relo_info.len == 0)
6369 		return 0;
6370 
6371 	if (targ_btf_path) {
6372 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
6373 		err = libbpf_get_error(obj->btf_vmlinux_override);
6374 		if (err) {
6375 			pr_warn("failed to parse target BTF: %d\n", err);
6376 			return err;
6377 		}
6378 	}
6379 
6380 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6381 	if (IS_ERR(cand_cache)) {
6382 		err = PTR_ERR(cand_cache);
6383 		goto out;
6384 	}
6385 
6386 	seg = &obj->btf_ext->core_relo_info;
6387 	for_each_btf_ext_sec(seg, sec) {
6388 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6389 		if (str_is_empty(sec_name)) {
6390 			err = -EINVAL;
6391 			goto out;
6392 		}
6393 		/* bpf_object's ELF is gone by now so it's not easy to find
6394 		 * section index by section name, but we can find *any*
6395 		 * bpf_program within desired section name and use it's
6396 		 * prog->sec_idx to do a proper search by section index and
6397 		 * instruction offset
6398 		 */
6399 		prog = NULL;
6400 		for (i = 0; i < obj->nr_programs; i++) {
6401 			prog = &obj->programs[i];
6402 			if (strcmp(prog->sec_name, sec_name) == 0)
6403 				break;
6404 		}
6405 		if (!prog) {
6406 			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
6407 			return -ENOENT;
6408 		}
6409 		sec_idx = prog->sec_idx;
6410 
6411 		pr_debug("sec '%s': found %d CO-RE relocations\n",
6412 			 sec_name, sec->num_info);
6413 
6414 		for_each_btf_ext_rec(seg, sec, i, rec) {
6415 			insn_idx = rec->insn_off / BPF_INSN_SZ;
6416 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6417 			if (!prog) {
6418 				pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
6419 					sec_name, insn_idx, i);
6420 				err = -EINVAL;
6421 				goto out;
6422 			}
6423 			/* no need to apply CO-RE relocation if the program is
6424 			 * not going to be loaded
6425 			 */
6426 			if (!prog->load)
6427 				continue;
6428 
6429 			err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache);
6430 			if (err) {
6431 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
6432 					prog->name, i, err);
6433 				goto out;
6434 			}
6435 		}
6436 	}
6437 
6438 out:
6439 	/* obj->btf_vmlinux and module BTFs are freed after object load */
6440 	btf__free(obj->btf_vmlinux_override);
6441 	obj->btf_vmlinux_override = NULL;
6442 
6443 	if (!IS_ERR_OR_NULL(cand_cache)) {
6444 		hashmap__for_each_entry(cand_cache, entry, i) {
6445 			bpf_core_free_cands(entry->value);
6446 		}
6447 		hashmap__free(cand_cache);
6448 	}
6449 	return err;
6450 }
6451 
6452 /* Relocate data references within program code:
6453  *  - map references;
6454  *  - global variable references;
6455  *  - extern references.
6456  */
6457 static int
6458 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6459 {
6460 	int i;
6461 
6462 	for (i = 0; i < prog->nr_reloc; i++) {
6463 		struct reloc_desc *relo = &prog->reloc_desc[i];
6464 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6465 		struct extern_desc *ext;
6466 
6467 		switch (relo->type) {
6468 		case RELO_LD64:
6469 			if (obj->gen_loader) {
6470 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6471 				insn[0].imm = relo->map_idx;
6472 			} else {
6473 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6474 				insn[0].imm = obj->maps[relo->map_idx].fd;
6475 			}
6476 			break;
6477 		case RELO_DATA:
6478 			insn[1].imm = insn[0].imm + relo->sym_off;
6479 			if (obj->gen_loader) {
6480 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6481 				insn[0].imm = relo->map_idx;
6482 			} else {
6483 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6484 				insn[0].imm = obj->maps[relo->map_idx].fd;
6485 			}
6486 			break;
6487 		case RELO_EXTERN_VAR:
6488 			ext = &obj->externs[relo->sym_off];
6489 			if (ext->type == EXT_KCFG) {
6490 				if (obj->gen_loader) {
6491 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6492 					insn[0].imm = obj->kconfig_map_idx;
6493 				} else {
6494 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6495 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6496 				}
6497 				insn[1].imm = ext->kcfg.data_off;
6498 			} else /* EXT_KSYM */ {
6499 				if (ext->ksym.type_id) { /* typed ksyms */
6500 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6501 					insn[0].imm = ext->ksym.kernel_btf_id;
6502 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6503 				} else { /* typeless ksyms */
6504 					insn[0].imm = (__u32)ext->ksym.addr;
6505 					insn[1].imm = ext->ksym.addr >> 32;
6506 				}
6507 			}
6508 			break;
6509 		case RELO_EXTERN_FUNC:
6510 			ext = &obj->externs[relo->sym_off];
6511 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6512 			insn[0].imm = ext->ksym.kernel_btf_id;
6513 			break;
6514 		case RELO_SUBPROG_ADDR:
6515 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6516 				pr_warn("prog '%s': relo #%d: bad insn\n",
6517 					prog->name, i);
6518 				return -EINVAL;
6519 			}
6520 			/* handled already */
6521 			break;
6522 		case RELO_CALL:
6523 			/* handled already */
6524 			break;
6525 		default:
6526 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6527 				prog->name, i, relo->type);
6528 			return -EINVAL;
6529 		}
6530 	}
6531 
6532 	return 0;
6533 }
6534 
6535 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6536 				    const struct bpf_program *prog,
6537 				    const struct btf_ext_info *ext_info,
6538 				    void **prog_info, __u32 *prog_rec_cnt,
6539 				    __u32 *prog_rec_sz)
6540 {
6541 	void *copy_start = NULL, *copy_end = NULL;
6542 	void *rec, *rec_end, *new_prog_info;
6543 	const struct btf_ext_info_sec *sec;
6544 	size_t old_sz, new_sz;
6545 	const char *sec_name;
6546 	int i, off_adj;
6547 
6548 	for_each_btf_ext_sec(ext_info, sec) {
6549 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6550 		if (!sec_name)
6551 			return -EINVAL;
6552 		if (strcmp(sec_name, prog->sec_name) != 0)
6553 			continue;
6554 
6555 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6556 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6557 
6558 			if (insn_off < prog->sec_insn_off)
6559 				continue;
6560 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6561 				break;
6562 
6563 			if (!copy_start)
6564 				copy_start = rec;
6565 			copy_end = rec + ext_info->rec_size;
6566 		}
6567 
6568 		if (!copy_start)
6569 			return -ENOENT;
6570 
6571 		/* append func/line info of a given (sub-)program to the main
6572 		 * program func/line info
6573 		 */
6574 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6575 		new_sz = old_sz + (copy_end - copy_start);
6576 		new_prog_info = realloc(*prog_info, new_sz);
6577 		if (!new_prog_info)
6578 			return -ENOMEM;
6579 		*prog_info = new_prog_info;
6580 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6581 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6582 
6583 		/* Kernel instruction offsets are in units of 8-byte
6584 		 * instructions, while .BTF.ext instruction offsets generated
6585 		 * by Clang are in units of bytes. So convert Clang offsets
6586 		 * into kernel offsets and adjust offset according to program
6587 		 * relocated position.
6588 		 */
6589 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6590 		rec = new_prog_info + old_sz;
6591 		rec_end = new_prog_info + new_sz;
6592 		for (; rec < rec_end; rec += ext_info->rec_size) {
6593 			__u32 *insn_off = rec;
6594 
6595 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6596 		}
6597 		*prog_rec_sz = ext_info->rec_size;
6598 		return 0;
6599 	}
6600 
6601 	return -ENOENT;
6602 }
6603 
6604 static int
6605 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6606 			      struct bpf_program *main_prog,
6607 			      const struct bpf_program *prog)
6608 {
6609 	int err;
6610 
6611 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6612 	 * supprot func/line info
6613 	 */
6614 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6615 		return 0;
6616 
6617 	/* only attempt func info relocation if main program's func_info
6618 	 * relocation was successful
6619 	 */
6620 	if (main_prog != prog && !main_prog->func_info)
6621 		goto line_info;
6622 
6623 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6624 				       &main_prog->func_info,
6625 				       &main_prog->func_info_cnt,
6626 				       &main_prog->func_info_rec_size);
6627 	if (err) {
6628 		if (err != -ENOENT) {
6629 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6630 				prog->name, err);
6631 			return err;
6632 		}
6633 		if (main_prog->func_info) {
6634 			/*
6635 			 * Some info has already been found but has problem
6636 			 * in the last btf_ext reloc. Must have to error out.
6637 			 */
6638 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6639 			return err;
6640 		}
6641 		/* Have problem loading the very first info. Ignore the rest. */
6642 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6643 			prog->name);
6644 	}
6645 
6646 line_info:
6647 	/* don't relocate line info if main program's relocation failed */
6648 	if (main_prog != prog && !main_prog->line_info)
6649 		return 0;
6650 
6651 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6652 				       &main_prog->line_info,
6653 				       &main_prog->line_info_cnt,
6654 				       &main_prog->line_info_rec_size);
6655 	if (err) {
6656 		if (err != -ENOENT) {
6657 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6658 				prog->name, err);
6659 			return err;
6660 		}
6661 		if (main_prog->line_info) {
6662 			/*
6663 			 * Some info has already been found but has problem
6664 			 * in the last btf_ext reloc. Must have to error out.
6665 			 */
6666 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6667 			return err;
6668 		}
6669 		/* Have problem loading the very first info. Ignore the rest. */
6670 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6671 			prog->name);
6672 	}
6673 	return 0;
6674 }
6675 
6676 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6677 {
6678 	size_t insn_idx = *(const size_t *)key;
6679 	const struct reloc_desc *relo = elem;
6680 
6681 	if (insn_idx == relo->insn_idx)
6682 		return 0;
6683 	return insn_idx < relo->insn_idx ? -1 : 1;
6684 }
6685 
6686 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6687 {
6688 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6689 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6690 }
6691 
6692 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6693 {
6694 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6695 	struct reloc_desc *relos;
6696 	int i;
6697 
6698 	if (main_prog == subprog)
6699 		return 0;
6700 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6701 	if (!relos)
6702 		return -ENOMEM;
6703 	memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6704 	       sizeof(*relos) * subprog->nr_reloc);
6705 
6706 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6707 		relos[i].insn_idx += subprog->sub_insn_off;
6708 	/* After insn_idx adjustment the 'relos' array is still sorted
6709 	 * by insn_idx and doesn't break bsearch.
6710 	 */
6711 	main_prog->reloc_desc = relos;
6712 	main_prog->nr_reloc = new_cnt;
6713 	return 0;
6714 }
6715 
6716 static int
6717 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6718 		       struct bpf_program *prog)
6719 {
6720 	size_t sub_insn_idx, insn_idx, new_cnt;
6721 	struct bpf_program *subprog;
6722 	struct bpf_insn *insns, *insn;
6723 	struct reloc_desc *relo;
6724 	int err;
6725 
6726 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6727 	if (err)
6728 		return err;
6729 
6730 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6731 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6732 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6733 			continue;
6734 
6735 		relo = find_prog_insn_relo(prog, insn_idx);
6736 		if (relo && relo->type == RELO_EXTERN_FUNC)
6737 			/* kfunc relocations will be handled later
6738 			 * in bpf_object__relocate_data()
6739 			 */
6740 			continue;
6741 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6742 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6743 				prog->name, insn_idx, relo->type);
6744 			return -LIBBPF_ERRNO__RELOC;
6745 		}
6746 		if (relo) {
6747 			/* sub-program instruction index is a combination of
6748 			 * an offset of a symbol pointed to by relocation and
6749 			 * call instruction's imm field; for global functions,
6750 			 * call always has imm = -1, but for static functions
6751 			 * relocation is against STT_SECTION and insn->imm
6752 			 * points to a start of a static function
6753 			 *
6754 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6755 			 * the byte offset in the corresponding section.
6756 			 */
6757 			if (relo->type == RELO_CALL)
6758 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6759 			else
6760 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6761 		} else if (insn_is_pseudo_func(insn)) {
6762 			/*
6763 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6764 			 * functions are in the same section, so it shouldn't reach here.
6765 			 */
6766 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6767 				prog->name, insn_idx);
6768 			return -LIBBPF_ERRNO__RELOC;
6769 		} else {
6770 			/* if subprogram call is to a static function within
6771 			 * the same ELF section, there won't be any relocation
6772 			 * emitted, but it also means there is no additional
6773 			 * offset necessary, insns->imm is relative to
6774 			 * instruction's original position within the section
6775 			 */
6776 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6777 		}
6778 
6779 		/* we enforce that sub-programs should be in .text section */
6780 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6781 		if (!subprog) {
6782 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6783 				prog->name);
6784 			return -LIBBPF_ERRNO__RELOC;
6785 		}
6786 
6787 		/* if it's the first call instruction calling into this
6788 		 * subprogram (meaning this subprog hasn't been processed
6789 		 * yet) within the context of current main program:
6790 		 *   - append it at the end of main program's instructions blog;
6791 		 *   - process is recursively, while current program is put on hold;
6792 		 *   - if that subprogram calls some other not yet processes
6793 		 *   subprogram, same thing will happen recursively until
6794 		 *   there are no more unprocesses subprograms left to append
6795 		 *   and relocate.
6796 		 */
6797 		if (subprog->sub_insn_off == 0) {
6798 			subprog->sub_insn_off = main_prog->insns_cnt;
6799 
6800 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6801 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6802 			if (!insns) {
6803 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6804 				return -ENOMEM;
6805 			}
6806 			main_prog->insns = insns;
6807 			main_prog->insns_cnt = new_cnt;
6808 
6809 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6810 			       subprog->insns_cnt * sizeof(*insns));
6811 
6812 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6813 				 main_prog->name, subprog->insns_cnt, subprog->name);
6814 
6815 			/* The subprog insns are now appended. Append its relos too. */
6816 			err = append_subprog_relos(main_prog, subprog);
6817 			if (err)
6818 				return err;
6819 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6820 			if (err)
6821 				return err;
6822 		}
6823 
6824 		/* main_prog->insns memory could have been re-allocated, so
6825 		 * calculate pointer again
6826 		 */
6827 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6828 		/* calculate correct instruction position within current main
6829 		 * prog; each main prog can have a different set of
6830 		 * subprograms appended (potentially in different order as
6831 		 * well), so position of any subprog can be different for
6832 		 * different main programs */
6833 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6834 
6835 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6836 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6837 	}
6838 
6839 	return 0;
6840 }
6841 
6842 /*
6843  * Relocate sub-program calls.
6844  *
6845  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6846  * main prog) is processed separately. For each subprog (non-entry functions,
6847  * that can be called from either entry progs or other subprogs) gets their
6848  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6849  * hasn't been yet appended and relocated within current main prog. Once its
6850  * relocated, sub_insn_off will point at the position within current main prog
6851  * where given subprog was appended. This will further be used to relocate all
6852  * the call instructions jumping into this subprog.
6853  *
6854  * We start with main program and process all call instructions. If the call
6855  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6856  * is zero), subprog instructions are appended at the end of main program's
6857  * instruction array. Then main program is "put on hold" while we recursively
6858  * process newly appended subprogram. If that subprogram calls into another
6859  * subprogram that hasn't been appended, new subprogram is appended again to
6860  * the *main* prog's instructions (subprog's instructions are always left
6861  * untouched, as they need to be in unmodified state for subsequent main progs
6862  * and subprog instructions are always sent only as part of a main prog) and
6863  * the process continues recursively. Once all the subprogs called from a main
6864  * prog or any of its subprogs are appended (and relocated), all their
6865  * positions within finalized instructions array are known, so it's easy to
6866  * rewrite call instructions with correct relative offsets, corresponding to
6867  * desired target subprog.
6868  *
6869  * Its important to realize that some subprogs might not be called from some
6870  * main prog and any of its called/used subprogs. Those will keep their
6871  * subprog->sub_insn_off as zero at all times and won't be appended to current
6872  * main prog and won't be relocated within the context of current main prog.
6873  * They might still be used from other main progs later.
6874  *
6875  * Visually this process can be shown as below. Suppose we have two main
6876  * programs mainA and mainB and BPF object contains three subprogs: subA,
6877  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6878  * subC both call subB:
6879  *
6880  *        +--------+ +-------+
6881  *        |        v v       |
6882  *     +--+---+ +--+-+-+ +---+--+
6883  *     | subA | | subB | | subC |
6884  *     +--+---+ +------+ +---+--+
6885  *        ^                  ^
6886  *        |                  |
6887  *    +---+-------+   +------+----+
6888  *    |   mainA   |   |   mainB   |
6889  *    +-----------+   +-----------+
6890  *
6891  * We'll start relocating mainA, will find subA, append it and start
6892  * processing sub A recursively:
6893  *
6894  *    +-----------+------+
6895  *    |   mainA   | subA |
6896  *    +-----------+------+
6897  *
6898  * At this point we notice that subB is used from subA, so we append it and
6899  * relocate (there are no further subcalls from subB):
6900  *
6901  *    +-----------+------+------+
6902  *    |   mainA   | subA | subB |
6903  *    +-----------+------+------+
6904  *
6905  * At this point, we relocate subA calls, then go one level up and finish with
6906  * relocatin mainA calls. mainA is done.
6907  *
6908  * For mainB process is similar but results in different order. We start with
6909  * mainB and skip subA and subB, as mainB never calls them (at least
6910  * directly), but we see subC is needed, so we append and start processing it:
6911  *
6912  *    +-----------+------+
6913  *    |   mainB   | subC |
6914  *    +-----------+------+
6915  * Now we see subC needs subB, so we go back to it, append and relocate it:
6916  *
6917  *    +-----------+------+------+
6918  *    |   mainB   | subC | subB |
6919  *    +-----------+------+------+
6920  *
6921  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6922  */
6923 static int
6924 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6925 {
6926 	struct bpf_program *subprog;
6927 	int i, err;
6928 
6929 	/* mark all subprogs as not relocated (yet) within the context of
6930 	 * current main program
6931 	 */
6932 	for (i = 0; i < obj->nr_programs; i++) {
6933 		subprog = &obj->programs[i];
6934 		if (!prog_is_subprog(obj, subprog))
6935 			continue;
6936 
6937 		subprog->sub_insn_off = 0;
6938 	}
6939 
6940 	err = bpf_object__reloc_code(obj, prog, prog);
6941 	if (err)
6942 		return err;
6943 
6944 
6945 	return 0;
6946 }
6947 
6948 static void
6949 bpf_object__free_relocs(struct bpf_object *obj)
6950 {
6951 	struct bpf_program *prog;
6952 	int i;
6953 
6954 	/* free up relocation descriptors */
6955 	for (i = 0; i < obj->nr_programs; i++) {
6956 		prog = &obj->programs[i];
6957 		zfree(&prog->reloc_desc);
6958 		prog->nr_reloc = 0;
6959 	}
6960 }
6961 
6962 static int
6963 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6964 {
6965 	struct bpf_program *prog;
6966 	size_t i, j;
6967 	int err;
6968 
6969 	if (obj->btf_ext) {
6970 		err = bpf_object__relocate_core(obj, targ_btf_path);
6971 		if (err) {
6972 			pr_warn("failed to perform CO-RE relocations: %d\n",
6973 				err);
6974 			return err;
6975 		}
6976 	}
6977 
6978 	/* Before relocating calls pre-process relocations and mark
6979 	 * few ld_imm64 instructions that points to subprogs.
6980 	 * Otherwise bpf_object__reloc_code() later would have to consider
6981 	 * all ld_imm64 insns as relocation candidates. That would
6982 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6983 	 * would increase and most of them will fail to find a relo.
6984 	 */
6985 	for (i = 0; i < obj->nr_programs; i++) {
6986 		prog = &obj->programs[i];
6987 		for (j = 0; j < prog->nr_reloc; j++) {
6988 			struct reloc_desc *relo = &prog->reloc_desc[j];
6989 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6990 
6991 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6992 			if (relo->type == RELO_SUBPROG_ADDR)
6993 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6994 		}
6995 	}
6996 
6997 	/* relocate subprogram calls and append used subprograms to main
6998 	 * programs; each copy of subprogram code needs to be relocated
6999 	 * differently for each main program, because its code location might
7000 	 * have changed.
7001 	 * Append subprog relos to main programs to allow data relos to be
7002 	 * processed after text is completely relocated.
7003 	 */
7004 	for (i = 0; i < obj->nr_programs; i++) {
7005 		prog = &obj->programs[i];
7006 		/* sub-program's sub-calls are relocated within the context of
7007 		 * its main program only
7008 		 */
7009 		if (prog_is_subprog(obj, prog))
7010 			continue;
7011 
7012 		err = bpf_object__relocate_calls(obj, prog);
7013 		if (err) {
7014 			pr_warn("prog '%s': failed to relocate calls: %d\n",
7015 				prog->name, err);
7016 			return err;
7017 		}
7018 	}
7019 	/* Process data relos for main programs */
7020 	for (i = 0; i < obj->nr_programs; i++) {
7021 		prog = &obj->programs[i];
7022 		if (prog_is_subprog(obj, prog))
7023 			continue;
7024 		err = bpf_object__relocate_data(obj, prog);
7025 		if (err) {
7026 			pr_warn("prog '%s': failed to relocate data references: %d\n",
7027 				prog->name, err);
7028 			return err;
7029 		}
7030 	}
7031 	if (!obj->gen_loader)
7032 		bpf_object__free_relocs(obj);
7033 	return 0;
7034 }
7035 
7036 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7037 					    GElf_Shdr *shdr, Elf_Data *data);
7038 
7039 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7040 					 GElf_Shdr *shdr, Elf_Data *data)
7041 {
7042 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7043 	int i, j, nrels, new_sz;
7044 	const struct btf_var_secinfo *vi = NULL;
7045 	const struct btf_type *sec, *var, *def;
7046 	struct bpf_map *map = NULL, *targ_map;
7047 	const struct btf_member *member;
7048 	const char *name, *mname;
7049 	Elf_Data *symbols;
7050 	unsigned int moff;
7051 	GElf_Sym sym;
7052 	GElf_Rel rel;
7053 	void *tmp;
7054 
7055 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7056 		return -EINVAL;
7057 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7058 	if (!sec)
7059 		return -EINVAL;
7060 
7061 	symbols = obj->efile.symbols;
7062 	nrels = shdr->sh_size / shdr->sh_entsize;
7063 	for (i = 0; i < nrels; i++) {
7064 		if (!gelf_getrel(data, i, &rel)) {
7065 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7066 			return -LIBBPF_ERRNO__FORMAT;
7067 		}
7068 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
7069 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7070 				i, (size_t)GELF_R_SYM(rel.r_info));
7071 			return -LIBBPF_ERRNO__FORMAT;
7072 		}
7073 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
7074 		if (sym.st_shndx != obj->efile.btf_maps_shndx) {
7075 			pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7076 				i, name);
7077 			return -LIBBPF_ERRNO__RELOC;
7078 		}
7079 
7080 		pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
7081 			 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
7082 			 (size_t)rel.r_offset, sym.st_name, name);
7083 
7084 		for (j = 0; j < obj->nr_maps; j++) {
7085 			map = &obj->maps[j];
7086 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7087 				continue;
7088 
7089 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7090 			if (vi->offset <= rel.r_offset &&
7091 			    rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7092 				break;
7093 		}
7094 		if (j == obj->nr_maps) {
7095 			pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
7096 				i, name, (size_t)rel.r_offset);
7097 			return -EINVAL;
7098 		}
7099 
7100 		if (!bpf_map_type__is_map_in_map(map->def.type))
7101 			return -EINVAL;
7102 		if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7103 		    map->def.key_size != sizeof(int)) {
7104 			pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7105 				i, map->name, sizeof(int));
7106 			return -EINVAL;
7107 		}
7108 
7109 		targ_map = bpf_object__find_map_by_name(obj, name);
7110 		if (!targ_map)
7111 			return -ESRCH;
7112 
7113 		var = btf__type_by_id(obj->btf, vi->type);
7114 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7115 		if (btf_vlen(def) == 0)
7116 			return -EINVAL;
7117 		member = btf_members(def) + btf_vlen(def) - 1;
7118 		mname = btf__name_by_offset(obj->btf, member->name_off);
7119 		if (strcmp(mname, "values"))
7120 			return -EINVAL;
7121 
7122 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7123 		if (rel.r_offset - vi->offset < moff)
7124 			return -EINVAL;
7125 
7126 		moff = rel.r_offset - vi->offset - moff;
7127 		/* here we use BPF pointer size, which is always 64 bit, as we
7128 		 * are parsing ELF that was built for BPF target
7129 		 */
7130 		if (moff % bpf_ptr_sz)
7131 			return -EINVAL;
7132 		moff /= bpf_ptr_sz;
7133 		if (moff >= map->init_slots_sz) {
7134 			new_sz = moff + 1;
7135 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7136 			if (!tmp)
7137 				return -ENOMEM;
7138 			map->init_slots = tmp;
7139 			memset(map->init_slots + map->init_slots_sz, 0,
7140 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7141 			map->init_slots_sz = new_sz;
7142 		}
7143 		map->init_slots[moff] = targ_map;
7144 
7145 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
7146 			 i, map->name, moff, name);
7147 	}
7148 
7149 	return 0;
7150 }
7151 
7152 static int cmp_relocs(const void *_a, const void *_b)
7153 {
7154 	const struct reloc_desc *a = _a;
7155 	const struct reloc_desc *b = _b;
7156 
7157 	if (a->insn_idx != b->insn_idx)
7158 		return a->insn_idx < b->insn_idx ? -1 : 1;
7159 
7160 	/* no two relocations should have the same insn_idx, but ... */
7161 	if (a->type != b->type)
7162 		return a->type < b->type ? -1 : 1;
7163 
7164 	return 0;
7165 }
7166 
7167 static int bpf_object__collect_relos(struct bpf_object *obj)
7168 {
7169 	int i, err;
7170 
7171 	for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
7172 		GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
7173 		Elf_Data *data = obj->efile.reloc_sects[i].data;
7174 		int idx = shdr->sh_info;
7175 
7176 		if (shdr->sh_type != SHT_REL) {
7177 			pr_warn("internal error at %d\n", __LINE__);
7178 			return -LIBBPF_ERRNO__INTERNAL;
7179 		}
7180 
7181 		if (idx == obj->efile.st_ops_shndx)
7182 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7183 		else if (idx == obj->efile.btf_maps_shndx)
7184 			err = bpf_object__collect_map_relos(obj, shdr, data);
7185 		else
7186 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7187 		if (err)
7188 			return err;
7189 	}
7190 
7191 	for (i = 0; i < obj->nr_programs; i++) {
7192 		struct bpf_program *p = &obj->programs[i];
7193 
7194 		if (!p->nr_reloc)
7195 			continue;
7196 
7197 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
7198 	}
7199 	return 0;
7200 }
7201 
7202 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7203 {
7204 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7205 	    BPF_OP(insn->code) == BPF_CALL &&
7206 	    BPF_SRC(insn->code) == BPF_K &&
7207 	    insn->src_reg == 0 &&
7208 	    insn->dst_reg == 0) {
7209 		    *func_id = insn->imm;
7210 		    return true;
7211 	}
7212 	return false;
7213 }
7214 
7215 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7216 {
7217 	struct bpf_insn *insn = prog->insns;
7218 	enum bpf_func_id func_id;
7219 	int i;
7220 
7221 	if (obj->gen_loader)
7222 		return 0;
7223 
7224 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7225 		if (!insn_is_helper_call(insn, &func_id))
7226 			continue;
7227 
7228 		/* on kernels that don't yet support
7229 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7230 		 * to bpf_probe_read() which works well for old kernels
7231 		 */
7232 		switch (func_id) {
7233 		case BPF_FUNC_probe_read_kernel:
7234 		case BPF_FUNC_probe_read_user:
7235 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7236 				insn->imm = BPF_FUNC_probe_read;
7237 			break;
7238 		case BPF_FUNC_probe_read_kernel_str:
7239 		case BPF_FUNC_probe_read_user_str:
7240 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7241 				insn->imm = BPF_FUNC_probe_read_str;
7242 			break;
7243 		default:
7244 			break;
7245 		}
7246 	}
7247 	return 0;
7248 }
7249 
7250 static int
7251 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
7252 	     char *license, __u32 kern_version, int *pfd)
7253 {
7254 	struct bpf_prog_load_params load_attr = {};
7255 	char *cp, errmsg[STRERR_BUFSIZE];
7256 	size_t log_buf_size = 0;
7257 	char *log_buf = NULL;
7258 	int btf_fd, ret;
7259 
7260 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7261 		/*
7262 		 * The program type must be set.  Most likely we couldn't find a proper
7263 		 * section definition at load time, and thus we didn't infer the type.
7264 		 */
7265 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7266 			prog->name, prog->sec_name);
7267 		return -EINVAL;
7268 	}
7269 
7270 	if (!insns || !insns_cnt)
7271 		return -EINVAL;
7272 
7273 	load_attr.prog_type = prog->type;
7274 	/* old kernels might not support specifying expected_attach_type */
7275 	if (!kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
7276 	    prog->sec_def->is_exp_attach_type_optional)
7277 		load_attr.expected_attach_type = 0;
7278 	else
7279 		load_attr.expected_attach_type = prog->expected_attach_type;
7280 	if (kernel_supports(prog->obj, FEAT_PROG_NAME))
7281 		load_attr.name = prog->name;
7282 	load_attr.insns = insns;
7283 	load_attr.insn_cnt = insns_cnt;
7284 	load_attr.license = license;
7285 	load_attr.attach_btf_id = prog->attach_btf_id;
7286 	if (prog->attach_prog_fd)
7287 		load_attr.attach_prog_fd = prog->attach_prog_fd;
7288 	else
7289 		load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7290 	load_attr.attach_btf_id = prog->attach_btf_id;
7291 	load_attr.kern_version = kern_version;
7292 	load_attr.prog_ifindex = prog->prog_ifindex;
7293 
7294 	/* specify func_info/line_info only if kernel supports them */
7295 	btf_fd = bpf_object__btf_fd(prog->obj);
7296 	if (btf_fd >= 0 && kernel_supports(prog->obj, FEAT_BTF_FUNC)) {
7297 		load_attr.prog_btf_fd = btf_fd;
7298 		load_attr.func_info = prog->func_info;
7299 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7300 		load_attr.func_info_cnt = prog->func_info_cnt;
7301 		load_attr.line_info = prog->line_info;
7302 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7303 		load_attr.line_info_cnt = prog->line_info_cnt;
7304 	}
7305 	load_attr.log_level = prog->log_level;
7306 	load_attr.prog_flags = prog->prog_flags;
7307 
7308 	if (prog->obj->gen_loader) {
7309 		bpf_gen__prog_load(prog->obj->gen_loader, &load_attr,
7310 				   prog - prog->obj->programs);
7311 		*pfd = -1;
7312 		return 0;
7313 	}
7314 retry_load:
7315 	if (log_buf_size) {
7316 		log_buf = malloc(log_buf_size);
7317 		if (!log_buf)
7318 			return -ENOMEM;
7319 
7320 		*log_buf = 0;
7321 	}
7322 
7323 	load_attr.log_buf = log_buf;
7324 	load_attr.log_buf_sz = log_buf_size;
7325 	ret = libbpf__bpf_prog_load(&load_attr);
7326 
7327 	if (ret >= 0) {
7328 		if (log_buf && load_attr.log_level)
7329 			pr_debug("verifier log:\n%s", log_buf);
7330 
7331 		if (prog->obj->rodata_map_idx >= 0 &&
7332 		    kernel_supports(prog->obj, FEAT_PROG_BIND_MAP)) {
7333 			struct bpf_map *rodata_map =
7334 				&prog->obj->maps[prog->obj->rodata_map_idx];
7335 
7336 			if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
7337 				cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7338 				pr_warn("prog '%s': failed to bind .rodata map: %s\n",
7339 					prog->name, cp);
7340 				/* Don't fail hard if can't bind rodata. */
7341 			}
7342 		}
7343 
7344 		*pfd = ret;
7345 		ret = 0;
7346 		goto out;
7347 	}
7348 
7349 	if (!log_buf || errno == ENOSPC) {
7350 		log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
7351 				   log_buf_size << 1);
7352 
7353 		free(log_buf);
7354 		goto retry_load;
7355 	}
7356 	ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
7357 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7358 	pr_warn("load bpf program failed: %s\n", cp);
7359 	pr_perm_msg(ret);
7360 
7361 	if (log_buf && log_buf[0] != '\0') {
7362 		ret = -LIBBPF_ERRNO__VERIFY;
7363 		pr_warn("-- BEGIN DUMP LOG ---\n");
7364 		pr_warn("\n%s\n", log_buf);
7365 		pr_warn("-- END LOG --\n");
7366 	} else if (load_attr.insn_cnt >= BPF_MAXINSNS) {
7367 		pr_warn("Program too large (%zu insns), at most %d insns\n",
7368 			load_attr.insn_cnt, BPF_MAXINSNS);
7369 		ret = -LIBBPF_ERRNO__PROG2BIG;
7370 	} else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
7371 		/* Wrong program type? */
7372 		int fd;
7373 
7374 		load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
7375 		load_attr.expected_attach_type = 0;
7376 		load_attr.log_buf = NULL;
7377 		load_attr.log_buf_sz = 0;
7378 		fd = libbpf__bpf_prog_load(&load_attr);
7379 		if (fd >= 0) {
7380 			close(fd);
7381 			ret = -LIBBPF_ERRNO__PROGTYPE;
7382 			goto out;
7383 		}
7384 	}
7385 
7386 out:
7387 	free(log_buf);
7388 	return ret;
7389 }
7390 
7391 static int bpf_program__record_externs(struct bpf_program *prog)
7392 {
7393 	struct bpf_object *obj = prog->obj;
7394 	int i;
7395 
7396 	for (i = 0; i < prog->nr_reloc; i++) {
7397 		struct reloc_desc *relo = &prog->reloc_desc[i];
7398 		struct extern_desc *ext = &obj->externs[relo->sym_off];
7399 
7400 		switch (relo->type) {
7401 		case RELO_EXTERN_VAR:
7402 			if (ext->type != EXT_KSYM)
7403 				continue;
7404 			if (!ext->ksym.type_id) {
7405 				pr_warn("typeless ksym %s is not supported yet\n",
7406 					ext->name);
7407 				return -ENOTSUP;
7408 			}
7409 			bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_VAR,
7410 					       relo->insn_idx);
7411 			break;
7412 		case RELO_EXTERN_FUNC:
7413 			bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_FUNC,
7414 					       relo->insn_idx);
7415 			break;
7416 		default:
7417 			continue;
7418 		}
7419 	}
7420 	return 0;
7421 }
7422 
7423 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id);
7424 
7425 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
7426 {
7427 	int err = 0, fd, i;
7428 
7429 	if (prog->obj->loaded) {
7430 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
7431 		return libbpf_err(-EINVAL);
7432 	}
7433 
7434 	if ((prog->type == BPF_PROG_TYPE_TRACING ||
7435 	     prog->type == BPF_PROG_TYPE_LSM ||
7436 	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
7437 		int btf_obj_fd = 0, btf_type_id = 0;
7438 
7439 		err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id);
7440 		if (err)
7441 			return libbpf_err(err);
7442 
7443 		prog->attach_btf_obj_fd = btf_obj_fd;
7444 		prog->attach_btf_id = btf_type_id;
7445 	}
7446 
7447 	if (prog->instances.nr < 0 || !prog->instances.fds) {
7448 		if (prog->preprocessor) {
7449 			pr_warn("Internal error: can't load program '%s'\n",
7450 				prog->name);
7451 			return libbpf_err(-LIBBPF_ERRNO__INTERNAL);
7452 		}
7453 
7454 		prog->instances.fds = malloc(sizeof(int));
7455 		if (!prog->instances.fds) {
7456 			pr_warn("Not enough memory for BPF fds\n");
7457 			return libbpf_err(-ENOMEM);
7458 		}
7459 		prog->instances.nr = 1;
7460 		prog->instances.fds[0] = -1;
7461 	}
7462 
7463 	if (!prog->preprocessor) {
7464 		if (prog->instances.nr != 1) {
7465 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
7466 				prog->name, prog->instances.nr);
7467 		}
7468 		if (prog->obj->gen_loader)
7469 			bpf_program__record_externs(prog);
7470 		err = load_program(prog, prog->insns, prog->insns_cnt,
7471 				   license, kern_ver, &fd);
7472 		if (!err)
7473 			prog->instances.fds[0] = fd;
7474 		goto out;
7475 	}
7476 
7477 	for (i = 0; i < prog->instances.nr; i++) {
7478 		struct bpf_prog_prep_result result;
7479 		bpf_program_prep_t preprocessor = prog->preprocessor;
7480 
7481 		memset(&result, 0, sizeof(result));
7482 		err = preprocessor(prog, i, prog->insns,
7483 				   prog->insns_cnt, &result);
7484 		if (err) {
7485 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
7486 				i, prog->name);
7487 			goto out;
7488 		}
7489 
7490 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
7491 			pr_debug("Skip loading the %dth instance of program '%s'\n",
7492 				 i, prog->name);
7493 			prog->instances.fds[i] = -1;
7494 			if (result.pfd)
7495 				*result.pfd = -1;
7496 			continue;
7497 		}
7498 
7499 		err = load_program(prog, result.new_insn_ptr,
7500 				   result.new_insn_cnt, license, kern_ver, &fd);
7501 		if (err) {
7502 			pr_warn("Loading the %dth instance of program '%s' failed\n",
7503 				i, prog->name);
7504 			goto out;
7505 		}
7506 
7507 		if (result.pfd)
7508 			*result.pfd = fd;
7509 		prog->instances.fds[i] = fd;
7510 	}
7511 out:
7512 	if (err)
7513 		pr_warn("failed to load program '%s'\n", prog->name);
7514 	zfree(&prog->insns);
7515 	prog->insns_cnt = 0;
7516 	return libbpf_err(err);
7517 }
7518 
7519 static int
7520 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7521 {
7522 	struct bpf_program *prog;
7523 	size_t i;
7524 	int err;
7525 
7526 	for (i = 0; i < obj->nr_programs; i++) {
7527 		prog = &obj->programs[i];
7528 		err = bpf_object__sanitize_prog(obj, prog);
7529 		if (err)
7530 			return err;
7531 	}
7532 
7533 	for (i = 0; i < obj->nr_programs; i++) {
7534 		prog = &obj->programs[i];
7535 		if (prog_is_subprog(obj, prog))
7536 			continue;
7537 		if (!prog->load) {
7538 			pr_debug("prog '%s': skipped loading\n", prog->name);
7539 			continue;
7540 		}
7541 		prog->log_level |= log_level;
7542 		err = bpf_program__load(prog, obj->license, obj->kern_version);
7543 		if (err)
7544 			return err;
7545 	}
7546 	if (obj->gen_loader)
7547 		bpf_object__free_relocs(obj);
7548 	return 0;
7549 }
7550 
7551 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7552 
7553 static struct bpf_object *
7554 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7555 		   const struct bpf_object_open_opts *opts)
7556 {
7557 	const char *obj_name, *kconfig;
7558 	struct bpf_program *prog;
7559 	struct bpf_object *obj;
7560 	char tmp_name[64];
7561 	int err;
7562 
7563 	if (elf_version(EV_CURRENT) == EV_NONE) {
7564 		pr_warn("failed to init libelf for %s\n",
7565 			path ? : "(mem buf)");
7566 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7567 	}
7568 
7569 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7570 		return ERR_PTR(-EINVAL);
7571 
7572 	obj_name = OPTS_GET(opts, object_name, NULL);
7573 	if (obj_buf) {
7574 		if (!obj_name) {
7575 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7576 				 (unsigned long)obj_buf,
7577 				 (unsigned long)obj_buf_sz);
7578 			obj_name = tmp_name;
7579 		}
7580 		path = obj_name;
7581 		pr_debug("loading object '%s' from buffer\n", obj_name);
7582 	}
7583 
7584 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7585 	if (IS_ERR(obj))
7586 		return obj;
7587 
7588 	kconfig = OPTS_GET(opts, kconfig, NULL);
7589 	if (kconfig) {
7590 		obj->kconfig = strdup(kconfig);
7591 		if (!obj->kconfig)
7592 			return ERR_PTR(-ENOMEM);
7593 	}
7594 
7595 	err = bpf_object__elf_init(obj);
7596 	err = err ? : bpf_object__check_endianness(obj);
7597 	err = err ? : bpf_object__elf_collect(obj);
7598 	err = err ? : bpf_object__collect_externs(obj);
7599 	err = err ? : bpf_object__finalize_btf(obj);
7600 	err = err ? : bpf_object__init_maps(obj, opts);
7601 	err = err ? : bpf_object__collect_relos(obj);
7602 	if (err)
7603 		goto out;
7604 	bpf_object__elf_finish(obj);
7605 
7606 	bpf_object__for_each_program(prog, obj) {
7607 		prog->sec_def = find_sec_def(prog->sec_name);
7608 		if (!prog->sec_def) {
7609 			/* couldn't guess, but user might manually specify */
7610 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7611 				prog->name, prog->sec_name);
7612 			continue;
7613 		}
7614 
7615 		if (prog->sec_def->is_sleepable)
7616 			prog->prog_flags |= BPF_F_SLEEPABLE;
7617 		bpf_program__set_type(prog, prog->sec_def->prog_type);
7618 		bpf_program__set_expected_attach_type(prog,
7619 				prog->sec_def->expected_attach_type);
7620 
7621 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7622 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7623 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7624 	}
7625 
7626 	return obj;
7627 out:
7628 	bpf_object__close(obj);
7629 	return ERR_PTR(err);
7630 }
7631 
7632 static struct bpf_object *
7633 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7634 {
7635 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7636 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
7637 	);
7638 
7639 	/* param validation */
7640 	if (!attr->file)
7641 		return NULL;
7642 
7643 	pr_debug("loading %s\n", attr->file);
7644 	return __bpf_object__open(attr->file, NULL, 0, &opts);
7645 }
7646 
7647 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7648 {
7649 	return libbpf_ptr(__bpf_object__open_xattr(attr, 0));
7650 }
7651 
7652 struct bpf_object *bpf_object__open(const char *path)
7653 {
7654 	struct bpf_object_open_attr attr = {
7655 		.file		= path,
7656 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
7657 	};
7658 
7659 	return libbpf_ptr(__bpf_object__open_xattr(&attr, 0));
7660 }
7661 
7662 struct bpf_object *
7663 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7664 {
7665 	if (!path)
7666 		return libbpf_err_ptr(-EINVAL);
7667 
7668 	pr_debug("loading %s\n", path);
7669 
7670 	return libbpf_ptr(__bpf_object__open(path, NULL, 0, opts));
7671 }
7672 
7673 struct bpf_object *
7674 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7675 		     const struct bpf_object_open_opts *opts)
7676 {
7677 	if (!obj_buf || obj_buf_sz == 0)
7678 		return libbpf_err_ptr(-EINVAL);
7679 
7680 	return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, opts));
7681 }
7682 
7683 struct bpf_object *
7684 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7685 			const char *name)
7686 {
7687 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7688 		.object_name = name,
7689 		/* wrong default, but backwards-compatible */
7690 		.relaxed_maps = true,
7691 	);
7692 
7693 	/* returning NULL is wrong, but backwards-compatible */
7694 	if (!obj_buf || obj_buf_sz == 0)
7695 		return errno = EINVAL, NULL;
7696 
7697 	return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, &opts));
7698 }
7699 
7700 int bpf_object__unload(struct bpf_object *obj)
7701 {
7702 	size_t i;
7703 
7704 	if (!obj)
7705 		return libbpf_err(-EINVAL);
7706 
7707 	for (i = 0; i < obj->nr_maps; i++) {
7708 		zclose(obj->maps[i].fd);
7709 		if (obj->maps[i].st_ops)
7710 			zfree(&obj->maps[i].st_ops->kern_vdata);
7711 	}
7712 
7713 	for (i = 0; i < obj->nr_programs; i++)
7714 		bpf_program__unload(&obj->programs[i]);
7715 
7716 	return 0;
7717 }
7718 
7719 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7720 {
7721 	struct bpf_map *m;
7722 
7723 	bpf_object__for_each_map(m, obj) {
7724 		if (!bpf_map__is_internal(m))
7725 			continue;
7726 		if (!kernel_supports(obj, FEAT_GLOBAL_DATA)) {
7727 			pr_warn("kernel doesn't support global data\n");
7728 			return -ENOTSUP;
7729 		}
7730 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7731 			m->def.map_flags ^= BPF_F_MMAPABLE;
7732 	}
7733 
7734 	return 0;
7735 }
7736 
7737 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7738 {
7739 	char sym_type, sym_name[500];
7740 	unsigned long long sym_addr;
7741 	const struct btf_type *t;
7742 	struct extern_desc *ext;
7743 	int ret, err = 0;
7744 	FILE *f;
7745 
7746 	f = fopen("/proc/kallsyms", "r");
7747 	if (!f) {
7748 		err = -errno;
7749 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7750 		return err;
7751 	}
7752 
7753 	while (true) {
7754 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7755 			     &sym_addr, &sym_type, sym_name);
7756 		if (ret == EOF && feof(f))
7757 			break;
7758 		if (ret != 3) {
7759 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7760 			err = -EINVAL;
7761 			goto out;
7762 		}
7763 
7764 		ext = find_extern_by_name(obj, sym_name);
7765 		if (!ext || ext->type != EXT_KSYM)
7766 			continue;
7767 
7768 		t = btf__type_by_id(obj->btf, ext->btf_id);
7769 		if (!btf_is_var(t))
7770 			continue;
7771 
7772 		if (ext->is_set && ext->ksym.addr != sym_addr) {
7773 			pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7774 				sym_name, ext->ksym.addr, sym_addr);
7775 			err = -EINVAL;
7776 			goto out;
7777 		}
7778 		if (!ext->is_set) {
7779 			ext->is_set = true;
7780 			ext->ksym.addr = sym_addr;
7781 			pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7782 		}
7783 	}
7784 
7785 out:
7786 	fclose(f);
7787 	return err;
7788 }
7789 
7790 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7791 			    __u16 kind, struct btf **res_btf,
7792 			    int *res_btf_fd)
7793 {
7794 	int i, id, btf_fd, err;
7795 	struct btf *btf;
7796 
7797 	btf = obj->btf_vmlinux;
7798 	btf_fd = 0;
7799 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7800 
7801 	if (id == -ENOENT) {
7802 		err = load_module_btfs(obj);
7803 		if (err)
7804 			return err;
7805 
7806 		for (i = 0; i < obj->btf_module_cnt; i++) {
7807 			btf = obj->btf_modules[i].btf;
7808 			/* we assume module BTF FD is always >0 */
7809 			btf_fd = obj->btf_modules[i].fd;
7810 			id = btf__find_by_name_kind(btf, ksym_name, kind);
7811 			if (id != -ENOENT)
7812 				break;
7813 		}
7814 	}
7815 	if (id <= 0) {
7816 		pr_warn("extern (%s ksym) '%s': failed to find BTF ID in kernel BTF(s).\n",
7817 			__btf_kind_str(kind), ksym_name);
7818 		return -ESRCH;
7819 	}
7820 
7821 	*res_btf = btf;
7822 	*res_btf_fd = btf_fd;
7823 	return id;
7824 }
7825 
7826 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7827 					       struct extern_desc *ext)
7828 {
7829 	const struct btf_type *targ_var, *targ_type;
7830 	__u32 targ_type_id, local_type_id;
7831 	const char *targ_var_name;
7832 	int id, btf_fd = 0, err;
7833 	struct btf *btf = NULL;
7834 
7835 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &btf_fd);
7836 	if (id < 0)
7837 		return id;
7838 
7839 	/* find local type_id */
7840 	local_type_id = ext->ksym.type_id;
7841 
7842 	/* find target type_id */
7843 	targ_var = btf__type_by_id(btf, id);
7844 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7845 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7846 
7847 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7848 					btf, targ_type_id);
7849 	if (err <= 0) {
7850 		const struct btf_type *local_type;
7851 		const char *targ_name, *local_name;
7852 
7853 		local_type = btf__type_by_id(obj->btf, local_type_id);
7854 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7855 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7856 
7857 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7858 			ext->name, local_type_id,
7859 			btf_kind_str(local_type), local_name, targ_type_id,
7860 			btf_kind_str(targ_type), targ_name);
7861 		return -EINVAL;
7862 	}
7863 
7864 	ext->is_set = true;
7865 	ext->ksym.kernel_btf_obj_fd = btf_fd;
7866 	ext->ksym.kernel_btf_id = id;
7867 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7868 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7869 
7870 	return 0;
7871 }
7872 
7873 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7874 						struct extern_desc *ext)
7875 {
7876 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7877 	const struct btf_type *kern_func;
7878 	struct btf *kern_btf = NULL;
7879 	int ret, kern_btf_fd = 0;
7880 
7881 	local_func_proto_id = ext->ksym.type_id;
7882 
7883 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC,
7884 				    &kern_btf, &kern_btf_fd);
7885 	if (kfunc_id < 0) {
7886 		pr_warn("extern (func ksym) '%s': not found in kernel BTF\n",
7887 			ext->name);
7888 		return kfunc_id;
7889 	}
7890 
7891 	if (kern_btf != obj->btf_vmlinux) {
7892 		pr_warn("extern (func ksym) '%s': function in kernel module is not supported\n",
7893 			ext->name);
7894 		return -ENOTSUP;
7895 	}
7896 
7897 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7898 	kfunc_proto_id = kern_func->type;
7899 
7900 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7901 					kern_btf, kfunc_proto_id);
7902 	if (ret <= 0) {
7903 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7904 			ext->name, local_func_proto_id, kfunc_proto_id);
7905 		return -EINVAL;
7906 	}
7907 
7908 	ext->is_set = true;
7909 	ext->ksym.kernel_btf_obj_fd = kern_btf_fd;
7910 	ext->ksym.kernel_btf_id = kfunc_id;
7911 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7912 		 ext->name, kfunc_id);
7913 
7914 	return 0;
7915 }
7916 
7917 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7918 {
7919 	const struct btf_type *t;
7920 	struct extern_desc *ext;
7921 	int i, err;
7922 
7923 	for (i = 0; i < obj->nr_extern; i++) {
7924 		ext = &obj->externs[i];
7925 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7926 			continue;
7927 
7928 		if (obj->gen_loader) {
7929 			ext->is_set = true;
7930 			ext->ksym.kernel_btf_obj_fd = 0;
7931 			ext->ksym.kernel_btf_id = 0;
7932 			continue;
7933 		}
7934 		t = btf__type_by_id(obj->btf, ext->btf_id);
7935 		if (btf_is_var(t))
7936 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7937 		else
7938 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7939 		if (err)
7940 			return err;
7941 	}
7942 	return 0;
7943 }
7944 
7945 static int bpf_object__resolve_externs(struct bpf_object *obj,
7946 				       const char *extra_kconfig)
7947 {
7948 	bool need_config = false, need_kallsyms = false;
7949 	bool need_vmlinux_btf = false;
7950 	struct extern_desc *ext;
7951 	void *kcfg_data = NULL;
7952 	int err, i;
7953 
7954 	if (obj->nr_extern == 0)
7955 		return 0;
7956 
7957 	if (obj->kconfig_map_idx >= 0)
7958 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7959 
7960 	for (i = 0; i < obj->nr_extern; i++) {
7961 		ext = &obj->externs[i];
7962 
7963 		if (ext->type == EXT_KCFG &&
7964 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7965 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7966 			__u32 kver = get_kernel_version();
7967 
7968 			if (!kver) {
7969 				pr_warn("failed to get kernel version\n");
7970 				return -EINVAL;
7971 			}
7972 			err = set_kcfg_value_num(ext, ext_val, kver);
7973 			if (err)
7974 				return err;
7975 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7976 		} else if (ext->type == EXT_KCFG &&
7977 			   strncmp(ext->name, "CONFIG_", 7) == 0) {
7978 			need_config = true;
7979 		} else if (ext->type == EXT_KSYM) {
7980 			if (ext->ksym.type_id)
7981 				need_vmlinux_btf = true;
7982 			else
7983 				need_kallsyms = true;
7984 		} else {
7985 			pr_warn("unrecognized extern '%s'\n", ext->name);
7986 			return -EINVAL;
7987 		}
7988 	}
7989 	if (need_config && extra_kconfig) {
7990 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7991 		if (err)
7992 			return -EINVAL;
7993 		need_config = false;
7994 		for (i = 0; i < obj->nr_extern; i++) {
7995 			ext = &obj->externs[i];
7996 			if (ext->type == EXT_KCFG && !ext->is_set) {
7997 				need_config = true;
7998 				break;
7999 			}
8000 		}
8001 	}
8002 	if (need_config) {
8003 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8004 		if (err)
8005 			return -EINVAL;
8006 	}
8007 	if (need_kallsyms) {
8008 		err = bpf_object__read_kallsyms_file(obj);
8009 		if (err)
8010 			return -EINVAL;
8011 	}
8012 	if (need_vmlinux_btf) {
8013 		err = bpf_object__resolve_ksyms_btf_id(obj);
8014 		if (err)
8015 			return -EINVAL;
8016 	}
8017 	for (i = 0; i < obj->nr_extern; i++) {
8018 		ext = &obj->externs[i];
8019 
8020 		if (!ext->is_set && !ext->is_weak) {
8021 			pr_warn("extern %s (strong) not resolved\n", ext->name);
8022 			return -ESRCH;
8023 		} else if (!ext->is_set) {
8024 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
8025 				 ext->name);
8026 		}
8027 	}
8028 
8029 	return 0;
8030 }
8031 
8032 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
8033 {
8034 	struct bpf_object *obj;
8035 	int err, i;
8036 
8037 	if (!attr)
8038 		return libbpf_err(-EINVAL);
8039 	obj = attr->obj;
8040 	if (!obj)
8041 		return libbpf_err(-EINVAL);
8042 
8043 	if (obj->loaded) {
8044 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8045 		return libbpf_err(-EINVAL);
8046 	}
8047 
8048 	if (obj->gen_loader)
8049 		bpf_gen__init(obj->gen_loader, attr->log_level);
8050 
8051 	err = bpf_object__probe_loading(obj);
8052 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8053 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8054 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8055 	err = err ? : bpf_object__sanitize_maps(obj);
8056 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8057 	err = err ? : bpf_object__create_maps(obj);
8058 	err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
8059 	err = err ? : bpf_object__load_progs(obj, attr->log_level);
8060 
8061 	if (obj->gen_loader) {
8062 		/* reset FDs */
8063 		btf__set_fd(obj->btf, -1);
8064 		for (i = 0; i < obj->nr_maps; i++)
8065 			obj->maps[i].fd = -1;
8066 		if (!err)
8067 			err = bpf_gen__finish(obj->gen_loader);
8068 	}
8069 
8070 	/* clean up module BTFs */
8071 	for (i = 0; i < obj->btf_module_cnt; i++) {
8072 		close(obj->btf_modules[i].fd);
8073 		btf__free(obj->btf_modules[i].btf);
8074 		free(obj->btf_modules[i].name);
8075 	}
8076 	free(obj->btf_modules);
8077 
8078 	/* clean up vmlinux BTF */
8079 	btf__free(obj->btf_vmlinux);
8080 	obj->btf_vmlinux = NULL;
8081 
8082 	obj->loaded = true; /* doesn't matter if successfully or not */
8083 
8084 	if (err)
8085 		goto out;
8086 
8087 	return 0;
8088 out:
8089 	/* unpin any maps that were auto-pinned during load */
8090 	for (i = 0; i < obj->nr_maps; i++)
8091 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8092 			bpf_map__unpin(&obj->maps[i], NULL);
8093 
8094 	bpf_object__unload(obj);
8095 	pr_warn("failed to load object '%s'\n", obj->path);
8096 	return libbpf_err(err);
8097 }
8098 
8099 int bpf_object__load(struct bpf_object *obj)
8100 {
8101 	struct bpf_object_load_attr attr = {
8102 		.obj = obj,
8103 	};
8104 
8105 	return bpf_object__load_xattr(&attr);
8106 }
8107 
8108 static int make_parent_dir(const char *path)
8109 {
8110 	char *cp, errmsg[STRERR_BUFSIZE];
8111 	char *dname, *dir;
8112 	int err = 0;
8113 
8114 	dname = strdup(path);
8115 	if (dname == NULL)
8116 		return -ENOMEM;
8117 
8118 	dir = dirname(dname);
8119 	if (mkdir(dir, 0700) && errno != EEXIST)
8120 		err = -errno;
8121 
8122 	free(dname);
8123 	if (err) {
8124 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8125 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8126 	}
8127 	return err;
8128 }
8129 
8130 static int check_path(const char *path)
8131 {
8132 	char *cp, errmsg[STRERR_BUFSIZE];
8133 	struct statfs st_fs;
8134 	char *dname, *dir;
8135 	int err = 0;
8136 
8137 	if (path == NULL)
8138 		return -EINVAL;
8139 
8140 	dname = strdup(path);
8141 	if (dname == NULL)
8142 		return -ENOMEM;
8143 
8144 	dir = dirname(dname);
8145 	if (statfs(dir, &st_fs)) {
8146 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8147 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8148 		err = -errno;
8149 	}
8150 	free(dname);
8151 
8152 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8153 		pr_warn("specified path %s is not on BPF FS\n", path);
8154 		err = -EINVAL;
8155 	}
8156 
8157 	return err;
8158 }
8159 
8160 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
8161 			      int instance)
8162 {
8163 	char *cp, errmsg[STRERR_BUFSIZE];
8164 	int err;
8165 
8166 	err = make_parent_dir(path);
8167 	if (err)
8168 		return libbpf_err(err);
8169 
8170 	err = check_path(path);
8171 	if (err)
8172 		return libbpf_err(err);
8173 
8174 	if (prog == NULL) {
8175 		pr_warn("invalid program pointer\n");
8176 		return libbpf_err(-EINVAL);
8177 	}
8178 
8179 	if (instance < 0 || instance >= prog->instances.nr) {
8180 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
8181 			instance, prog->name, prog->instances.nr);
8182 		return libbpf_err(-EINVAL);
8183 	}
8184 
8185 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
8186 		err = -errno;
8187 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8188 		pr_warn("failed to pin program: %s\n", cp);
8189 		return libbpf_err(err);
8190 	}
8191 	pr_debug("pinned program '%s'\n", path);
8192 
8193 	return 0;
8194 }
8195 
8196 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
8197 				int instance)
8198 {
8199 	int err;
8200 
8201 	err = check_path(path);
8202 	if (err)
8203 		return libbpf_err(err);
8204 
8205 	if (prog == NULL) {
8206 		pr_warn("invalid program pointer\n");
8207 		return libbpf_err(-EINVAL);
8208 	}
8209 
8210 	if (instance < 0 || instance >= prog->instances.nr) {
8211 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
8212 			instance, prog->name, prog->instances.nr);
8213 		return libbpf_err(-EINVAL);
8214 	}
8215 
8216 	err = unlink(path);
8217 	if (err != 0)
8218 		return libbpf_err(-errno);
8219 
8220 	pr_debug("unpinned program '%s'\n", path);
8221 
8222 	return 0;
8223 }
8224 
8225 int bpf_program__pin(struct bpf_program *prog, const char *path)
8226 {
8227 	int i, err;
8228 
8229 	err = make_parent_dir(path);
8230 	if (err)
8231 		return libbpf_err(err);
8232 
8233 	err = check_path(path);
8234 	if (err)
8235 		return libbpf_err(err);
8236 
8237 	if (prog == NULL) {
8238 		pr_warn("invalid program pointer\n");
8239 		return libbpf_err(-EINVAL);
8240 	}
8241 
8242 	if (prog->instances.nr <= 0) {
8243 		pr_warn("no instances of prog %s to pin\n", prog->name);
8244 		return libbpf_err(-EINVAL);
8245 	}
8246 
8247 	if (prog->instances.nr == 1) {
8248 		/* don't create subdirs when pinning single instance */
8249 		return bpf_program__pin_instance(prog, path, 0);
8250 	}
8251 
8252 	for (i = 0; i < prog->instances.nr; i++) {
8253 		char buf[PATH_MAX];
8254 		int len;
8255 
8256 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8257 		if (len < 0) {
8258 			err = -EINVAL;
8259 			goto err_unpin;
8260 		} else if (len >= PATH_MAX) {
8261 			err = -ENAMETOOLONG;
8262 			goto err_unpin;
8263 		}
8264 
8265 		err = bpf_program__pin_instance(prog, buf, i);
8266 		if (err)
8267 			goto err_unpin;
8268 	}
8269 
8270 	return 0;
8271 
8272 err_unpin:
8273 	for (i = i - 1; i >= 0; i--) {
8274 		char buf[PATH_MAX];
8275 		int len;
8276 
8277 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8278 		if (len < 0)
8279 			continue;
8280 		else if (len >= PATH_MAX)
8281 			continue;
8282 
8283 		bpf_program__unpin_instance(prog, buf, i);
8284 	}
8285 
8286 	rmdir(path);
8287 
8288 	return libbpf_err(err);
8289 }
8290 
8291 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8292 {
8293 	int i, err;
8294 
8295 	err = check_path(path);
8296 	if (err)
8297 		return libbpf_err(err);
8298 
8299 	if (prog == NULL) {
8300 		pr_warn("invalid program pointer\n");
8301 		return libbpf_err(-EINVAL);
8302 	}
8303 
8304 	if (prog->instances.nr <= 0) {
8305 		pr_warn("no instances of prog %s to pin\n", prog->name);
8306 		return libbpf_err(-EINVAL);
8307 	}
8308 
8309 	if (prog->instances.nr == 1) {
8310 		/* don't create subdirs when pinning single instance */
8311 		return bpf_program__unpin_instance(prog, path, 0);
8312 	}
8313 
8314 	for (i = 0; i < prog->instances.nr; i++) {
8315 		char buf[PATH_MAX];
8316 		int len;
8317 
8318 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8319 		if (len < 0)
8320 			return libbpf_err(-EINVAL);
8321 		else if (len >= PATH_MAX)
8322 			return libbpf_err(-ENAMETOOLONG);
8323 
8324 		err = bpf_program__unpin_instance(prog, buf, i);
8325 		if (err)
8326 			return err;
8327 	}
8328 
8329 	err = rmdir(path);
8330 	if (err)
8331 		return libbpf_err(-errno);
8332 
8333 	return 0;
8334 }
8335 
8336 int bpf_map__pin(struct bpf_map *map, const char *path)
8337 {
8338 	char *cp, errmsg[STRERR_BUFSIZE];
8339 	int err;
8340 
8341 	if (map == NULL) {
8342 		pr_warn("invalid map pointer\n");
8343 		return libbpf_err(-EINVAL);
8344 	}
8345 
8346 	if (map->pin_path) {
8347 		if (path && strcmp(path, map->pin_path)) {
8348 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8349 				bpf_map__name(map), map->pin_path, path);
8350 			return libbpf_err(-EINVAL);
8351 		} else if (map->pinned) {
8352 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8353 				 bpf_map__name(map), map->pin_path);
8354 			return 0;
8355 		}
8356 	} else {
8357 		if (!path) {
8358 			pr_warn("missing a path to pin map '%s' at\n",
8359 				bpf_map__name(map));
8360 			return libbpf_err(-EINVAL);
8361 		} else if (map->pinned) {
8362 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8363 			return libbpf_err(-EEXIST);
8364 		}
8365 
8366 		map->pin_path = strdup(path);
8367 		if (!map->pin_path) {
8368 			err = -errno;
8369 			goto out_err;
8370 		}
8371 	}
8372 
8373 	err = make_parent_dir(map->pin_path);
8374 	if (err)
8375 		return libbpf_err(err);
8376 
8377 	err = check_path(map->pin_path);
8378 	if (err)
8379 		return libbpf_err(err);
8380 
8381 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8382 		err = -errno;
8383 		goto out_err;
8384 	}
8385 
8386 	map->pinned = true;
8387 	pr_debug("pinned map '%s'\n", map->pin_path);
8388 
8389 	return 0;
8390 
8391 out_err:
8392 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8393 	pr_warn("failed to pin map: %s\n", cp);
8394 	return libbpf_err(err);
8395 }
8396 
8397 int bpf_map__unpin(struct bpf_map *map, const char *path)
8398 {
8399 	int err;
8400 
8401 	if (map == NULL) {
8402 		pr_warn("invalid map pointer\n");
8403 		return libbpf_err(-EINVAL);
8404 	}
8405 
8406 	if (map->pin_path) {
8407 		if (path && strcmp(path, map->pin_path)) {
8408 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8409 				bpf_map__name(map), map->pin_path, path);
8410 			return libbpf_err(-EINVAL);
8411 		}
8412 		path = map->pin_path;
8413 	} else if (!path) {
8414 		pr_warn("no path to unpin map '%s' from\n",
8415 			bpf_map__name(map));
8416 		return libbpf_err(-EINVAL);
8417 	}
8418 
8419 	err = check_path(path);
8420 	if (err)
8421 		return libbpf_err(err);
8422 
8423 	err = unlink(path);
8424 	if (err != 0)
8425 		return libbpf_err(-errno);
8426 
8427 	map->pinned = false;
8428 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8429 
8430 	return 0;
8431 }
8432 
8433 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8434 {
8435 	char *new = NULL;
8436 
8437 	if (path) {
8438 		new = strdup(path);
8439 		if (!new)
8440 			return libbpf_err(-errno);
8441 	}
8442 
8443 	free(map->pin_path);
8444 	map->pin_path = new;
8445 	return 0;
8446 }
8447 
8448 const char *bpf_map__get_pin_path(const struct bpf_map *map)
8449 {
8450 	return map->pin_path;
8451 }
8452 
8453 bool bpf_map__is_pinned(const struct bpf_map *map)
8454 {
8455 	return map->pinned;
8456 }
8457 
8458 static void sanitize_pin_path(char *s)
8459 {
8460 	/* bpffs disallows periods in path names */
8461 	while (*s) {
8462 		if (*s == '.')
8463 			*s = '_';
8464 		s++;
8465 	}
8466 }
8467 
8468 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8469 {
8470 	struct bpf_map *map;
8471 	int err;
8472 
8473 	if (!obj)
8474 		return libbpf_err(-ENOENT);
8475 
8476 	if (!obj->loaded) {
8477 		pr_warn("object not yet loaded; load it first\n");
8478 		return libbpf_err(-ENOENT);
8479 	}
8480 
8481 	bpf_object__for_each_map(map, obj) {
8482 		char *pin_path = NULL;
8483 		char buf[PATH_MAX];
8484 
8485 		if (path) {
8486 			int len;
8487 
8488 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
8489 				       bpf_map__name(map));
8490 			if (len < 0) {
8491 				err = -EINVAL;
8492 				goto err_unpin_maps;
8493 			} else if (len >= PATH_MAX) {
8494 				err = -ENAMETOOLONG;
8495 				goto err_unpin_maps;
8496 			}
8497 			sanitize_pin_path(buf);
8498 			pin_path = buf;
8499 		} else if (!map->pin_path) {
8500 			continue;
8501 		}
8502 
8503 		err = bpf_map__pin(map, pin_path);
8504 		if (err)
8505 			goto err_unpin_maps;
8506 	}
8507 
8508 	return 0;
8509 
8510 err_unpin_maps:
8511 	while ((map = bpf_map__prev(map, obj))) {
8512 		if (!map->pin_path)
8513 			continue;
8514 
8515 		bpf_map__unpin(map, NULL);
8516 	}
8517 
8518 	return libbpf_err(err);
8519 }
8520 
8521 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8522 {
8523 	struct bpf_map *map;
8524 	int err;
8525 
8526 	if (!obj)
8527 		return libbpf_err(-ENOENT);
8528 
8529 	bpf_object__for_each_map(map, obj) {
8530 		char *pin_path = NULL;
8531 		char buf[PATH_MAX];
8532 
8533 		if (path) {
8534 			int len;
8535 
8536 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
8537 				       bpf_map__name(map));
8538 			if (len < 0)
8539 				return libbpf_err(-EINVAL);
8540 			else if (len >= PATH_MAX)
8541 				return libbpf_err(-ENAMETOOLONG);
8542 			sanitize_pin_path(buf);
8543 			pin_path = buf;
8544 		} else if (!map->pin_path) {
8545 			continue;
8546 		}
8547 
8548 		err = bpf_map__unpin(map, pin_path);
8549 		if (err)
8550 			return libbpf_err(err);
8551 	}
8552 
8553 	return 0;
8554 }
8555 
8556 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8557 {
8558 	struct bpf_program *prog;
8559 	int err;
8560 
8561 	if (!obj)
8562 		return libbpf_err(-ENOENT);
8563 
8564 	if (!obj->loaded) {
8565 		pr_warn("object not yet loaded; load it first\n");
8566 		return libbpf_err(-ENOENT);
8567 	}
8568 
8569 	bpf_object__for_each_program(prog, obj) {
8570 		char buf[PATH_MAX];
8571 		int len;
8572 
8573 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8574 			       prog->pin_name);
8575 		if (len < 0) {
8576 			err = -EINVAL;
8577 			goto err_unpin_programs;
8578 		} else if (len >= PATH_MAX) {
8579 			err = -ENAMETOOLONG;
8580 			goto err_unpin_programs;
8581 		}
8582 
8583 		err = bpf_program__pin(prog, buf);
8584 		if (err)
8585 			goto err_unpin_programs;
8586 	}
8587 
8588 	return 0;
8589 
8590 err_unpin_programs:
8591 	while ((prog = bpf_program__prev(prog, obj))) {
8592 		char buf[PATH_MAX];
8593 		int len;
8594 
8595 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8596 			       prog->pin_name);
8597 		if (len < 0)
8598 			continue;
8599 		else if (len >= PATH_MAX)
8600 			continue;
8601 
8602 		bpf_program__unpin(prog, buf);
8603 	}
8604 
8605 	return libbpf_err(err);
8606 }
8607 
8608 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8609 {
8610 	struct bpf_program *prog;
8611 	int err;
8612 
8613 	if (!obj)
8614 		return libbpf_err(-ENOENT);
8615 
8616 	bpf_object__for_each_program(prog, obj) {
8617 		char buf[PATH_MAX];
8618 		int len;
8619 
8620 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8621 			       prog->pin_name);
8622 		if (len < 0)
8623 			return libbpf_err(-EINVAL);
8624 		else if (len >= PATH_MAX)
8625 			return libbpf_err(-ENAMETOOLONG);
8626 
8627 		err = bpf_program__unpin(prog, buf);
8628 		if (err)
8629 			return libbpf_err(err);
8630 	}
8631 
8632 	return 0;
8633 }
8634 
8635 int bpf_object__pin(struct bpf_object *obj, const char *path)
8636 {
8637 	int err;
8638 
8639 	err = bpf_object__pin_maps(obj, path);
8640 	if (err)
8641 		return libbpf_err(err);
8642 
8643 	err = bpf_object__pin_programs(obj, path);
8644 	if (err) {
8645 		bpf_object__unpin_maps(obj, path);
8646 		return libbpf_err(err);
8647 	}
8648 
8649 	return 0;
8650 }
8651 
8652 static void bpf_map__destroy(struct bpf_map *map)
8653 {
8654 	if (map->clear_priv)
8655 		map->clear_priv(map, map->priv);
8656 	map->priv = NULL;
8657 	map->clear_priv = NULL;
8658 
8659 	if (map->inner_map) {
8660 		bpf_map__destroy(map->inner_map);
8661 		zfree(&map->inner_map);
8662 	}
8663 
8664 	zfree(&map->init_slots);
8665 	map->init_slots_sz = 0;
8666 
8667 	if (map->mmaped) {
8668 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8669 		map->mmaped = NULL;
8670 	}
8671 
8672 	if (map->st_ops) {
8673 		zfree(&map->st_ops->data);
8674 		zfree(&map->st_ops->progs);
8675 		zfree(&map->st_ops->kern_func_off);
8676 		zfree(&map->st_ops);
8677 	}
8678 
8679 	zfree(&map->name);
8680 	zfree(&map->pin_path);
8681 
8682 	if (map->fd >= 0)
8683 		zclose(map->fd);
8684 }
8685 
8686 void bpf_object__close(struct bpf_object *obj)
8687 {
8688 	size_t i;
8689 
8690 	if (IS_ERR_OR_NULL(obj))
8691 		return;
8692 
8693 	if (obj->clear_priv)
8694 		obj->clear_priv(obj, obj->priv);
8695 
8696 	bpf_gen__free(obj->gen_loader);
8697 	bpf_object__elf_finish(obj);
8698 	bpf_object__unload(obj);
8699 	btf__free(obj->btf);
8700 	btf_ext__free(obj->btf_ext);
8701 
8702 	for (i = 0; i < obj->nr_maps; i++)
8703 		bpf_map__destroy(&obj->maps[i]);
8704 
8705 	zfree(&obj->kconfig);
8706 	zfree(&obj->externs);
8707 	obj->nr_extern = 0;
8708 
8709 	zfree(&obj->maps);
8710 	obj->nr_maps = 0;
8711 
8712 	if (obj->programs && obj->nr_programs) {
8713 		for (i = 0; i < obj->nr_programs; i++)
8714 			bpf_program__exit(&obj->programs[i]);
8715 	}
8716 	zfree(&obj->programs);
8717 
8718 	list_del(&obj->list);
8719 	free(obj);
8720 }
8721 
8722 struct bpf_object *
8723 bpf_object__next(struct bpf_object *prev)
8724 {
8725 	struct bpf_object *next;
8726 
8727 	if (!prev)
8728 		next = list_first_entry(&bpf_objects_list,
8729 					struct bpf_object,
8730 					list);
8731 	else
8732 		next = list_next_entry(prev, list);
8733 
8734 	/* Empty list is noticed here so don't need checking on entry. */
8735 	if (&next->list == &bpf_objects_list)
8736 		return NULL;
8737 
8738 	return next;
8739 }
8740 
8741 const char *bpf_object__name(const struct bpf_object *obj)
8742 {
8743 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8744 }
8745 
8746 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8747 {
8748 	return obj ? obj->kern_version : 0;
8749 }
8750 
8751 struct btf *bpf_object__btf(const struct bpf_object *obj)
8752 {
8753 	return obj ? obj->btf : NULL;
8754 }
8755 
8756 int bpf_object__btf_fd(const struct bpf_object *obj)
8757 {
8758 	return obj->btf ? btf__fd(obj->btf) : -1;
8759 }
8760 
8761 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8762 {
8763 	if (obj->loaded)
8764 		return libbpf_err(-EINVAL);
8765 
8766 	obj->kern_version = kern_version;
8767 
8768 	return 0;
8769 }
8770 
8771 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8772 			 bpf_object_clear_priv_t clear_priv)
8773 {
8774 	if (obj->priv && obj->clear_priv)
8775 		obj->clear_priv(obj, obj->priv);
8776 
8777 	obj->priv = priv;
8778 	obj->clear_priv = clear_priv;
8779 	return 0;
8780 }
8781 
8782 void *bpf_object__priv(const struct bpf_object *obj)
8783 {
8784 	return obj ? obj->priv : libbpf_err_ptr(-EINVAL);
8785 }
8786 
8787 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8788 {
8789 	struct bpf_gen *gen;
8790 
8791 	if (!opts)
8792 		return -EFAULT;
8793 	if (!OPTS_VALID(opts, gen_loader_opts))
8794 		return -EINVAL;
8795 	gen = calloc(sizeof(*gen), 1);
8796 	if (!gen)
8797 		return -ENOMEM;
8798 	gen->opts = opts;
8799 	obj->gen_loader = gen;
8800 	return 0;
8801 }
8802 
8803 static struct bpf_program *
8804 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8805 		    bool forward)
8806 {
8807 	size_t nr_programs = obj->nr_programs;
8808 	ssize_t idx;
8809 
8810 	if (!nr_programs)
8811 		return NULL;
8812 
8813 	if (!p)
8814 		/* Iter from the beginning */
8815 		return forward ? &obj->programs[0] :
8816 			&obj->programs[nr_programs - 1];
8817 
8818 	if (p->obj != obj) {
8819 		pr_warn("error: program handler doesn't match object\n");
8820 		return errno = EINVAL, NULL;
8821 	}
8822 
8823 	idx = (p - obj->programs) + (forward ? 1 : -1);
8824 	if (idx >= obj->nr_programs || idx < 0)
8825 		return NULL;
8826 	return &obj->programs[idx];
8827 }
8828 
8829 struct bpf_program *
8830 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8831 {
8832 	struct bpf_program *prog = prev;
8833 
8834 	do {
8835 		prog = __bpf_program__iter(prog, obj, true);
8836 	} while (prog && prog_is_subprog(obj, prog));
8837 
8838 	return prog;
8839 }
8840 
8841 struct bpf_program *
8842 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8843 {
8844 	struct bpf_program *prog = next;
8845 
8846 	do {
8847 		prog = __bpf_program__iter(prog, obj, false);
8848 	} while (prog && prog_is_subprog(obj, prog));
8849 
8850 	return prog;
8851 }
8852 
8853 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8854 			  bpf_program_clear_priv_t clear_priv)
8855 {
8856 	if (prog->priv && prog->clear_priv)
8857 		prog->clear_priv(prog, prog->priv);
8858 
8859 	prog->priv = priv;
8860 	prog->clear_priv = clear_priv;
8861 	return 0;
8862 }
8863 
8864 void *bpf_program__priv(const struct bpf_program *prog)
8865 {
8866 	return prog ? prog->priv : libbpf_err_ptr(-EINVAL);
8867 }
8868 
8869 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8870 {
8871 	prog->prog_ifindex = ifindex;
8872 }
8873 
8874 const char *bpf_program__name(const struct bpf_program *prog)
8875 {
8876 	return prog->name;
8877 }
8878 
8879 const char *bpf_program__section_name(const struct bpf_program *prog)
8880 {
8881 	return prog->sec_name;
8882 }
8883 
8884 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8885 {
8886 	const char *title;
8887 
8888 	title = prog->sec_name;
8889 	if (needs_copy) {
8890 		title = strdup(title);
8891 		if (!title) {
8892 			pr_warn("failed to strdup program title\n");
8893 			return libbpf_err_ptr(-ENOMEM);
8894 		}
8895 	}
8896 
8897 	return title;
8898 }
8899 
8900 bool bpf_program__autoload(const struct bpf_program *prog)
8901 {
8902 	return prog->load;
8903 }
8904 
8905 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8906 {
8907 	if (prog->obj->loaded)
8908 		return libbpf_err(-EINVAL);
8909 
8910 	prog->load = autoload;
8911 	return 0;
8912 }
8913 
8914 int bpf_program__fd(const struct bpf_program *prog)
8915 {
8916 	return bpf_program__nth_fd(prog, 0);
8917 }
8918 
8919 size_t bpf_program__size(const struct bpf_program *prog)
8920 {
8921 	return prog->insns_cnt * BPF_INSN_SZ;
8922 }
8923 
8924 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8925 			  bpf_program_prep_t prep)
8926 {
8927 	int *instances_fds;
8928 
8929 	if (nr_instances <= 0 || !prep)
8930 		return libbpf_err(-EINVAL);
8931 
8932 	if (prog->instances.nr > 0 || prog->instances.fds) {
8933 		pr_warn("Can't set pre-processor after loading\n");
8934 		return libbpf_err(-EINVAL);
8935 	}
8936 
8937 	instances_fds = malloc(sizeof(int) * nr_instances);
8938 	if (!instances_fds) {
8939 		pr_warn("alloc memory failed for fds\n");
8940 		return libbpf_err(-ENOMEM);
8941 	}
8942 
8943 	/* fill all fd with -1 */
8944 	memset(instances_fds, -1, sizeof(int) * nr_instances);
8945 
8946 	prog->instances.nr = nr_instances;
8947 	prog->instances.fds = instances_fds;
8948 	prog->preprocessor = prep;
8949 	return 0;
8950 }
8951 
8952 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8953 {
8954 	int fd;
8955 
8956 	if (!prog)
8957 		return libbpf_err(-EINVAL);
8958 
8959 	if (n >= prog->instances.nr || n < 0) {
8960 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8961 			n, prog->name, prog->instances.nr);
8962 		return libbpf_err(-EINVAL);
8963 	}
8964 
8965 	fd = prog->instances.fds[n];
8966 	if (fd < 0) {
8967 		pr_warn("%dth instance of program '%s' is invalid\n",
8968 			n, prog->name);
8969 		return libbpf_err(-ENOENT);
8970 	}
8971 
8972 	return fd;
8973 }
8974 
8975 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog)
8976 {
8977 	return prog->type;
8978 }
8979 
8980 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8981 {
8982 	prog->type = type;
8983 }
8984 
8985 static bool bpf_program__is_type(const struct bpf_program *prog,
8986 				 enum bpf_prog_type type)
8987 {
8988 	return prog ? (prog->type == type) : false;
8989 }
8990 
8991 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8992 int bpf_program__set_##NAME(struct bpf_program *prog)		\
8993 {								\
8994 	if (!prog)						\
8995 		return libbpf_err(-EINVAL);			\
8996 	bpf_program__set_type(prog, TYPE);			\
8997 	return 0;						\
8998 }								\
8999 								\
9000 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
9001 {								\
9002 	return bpf_program__is_type(prog, TYPE);		\
9003 }								\
9004 
9005 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
9006 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
9007 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
9008 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
9009 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
9010 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
9011 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
9012 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
9013 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
9014 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
9015 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
9016 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
9017 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
9018 
9019 enum bpf_attach_type
9020 bpf_program__get_expected_attach_type(const struct bpf_program *prog)
9021 {
9022 	return prog->expected_attach_type;
9023 }
9024 
9025 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
9026 					   enum bpf_attach_type type)
9027 {
9028 	prog->expected_attach_type = type;
9029 }
9030 
9031 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,	    \
9032 			  attachable, attach_btf)			    \
9033 	{								    \
9034 		.sec = string,						    \
9035 		.len = sizeof(string) - 1,				    \
9036 		.prog_type = ptype,					    \
9037 		.expected_attach_type = eatype,				    \
9038 		.is_exp_attach_type_optional = eatype_optional,		    \
9039 		.is_attachable = attachable,				    \
9040 		.is_attach_btf = attach_btf,				    \
9041 	}
9042 
9043 /* Programs that can NOT be attached. */
9044 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
9045 
9046 /* Programs that can be attached. */
9047 #define BPF_APROG_SEC(string, ptype, atype) \
9048 	BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
9049 
9050 /* Programs that must specify expected attach type at load time. */
9051 #define BPF_EAPROG_SEC(string, ptype, eatype) \
9052 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
9053 
9054 /* Programs that use BTF to identify attach point */
9055 #define BPF_PROG_BTF(string, ptype, eatype) \
9056 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
9057 
9058 /* Programs that can be attached but attach type can't be identified by section
9059  * name. Kept for backward compatibility.
9060  */
9061 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
9062 
9063 #define SEC_DEF(sec_pfx, ptype, ...) {					    \
9064 	.sec = sec_pfx,							    \
9065 	.len = sizeof(sec_pfx) - 1,					    \
9066 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9067 	__VA_ARGS__							    \
9068 }
9069 
9070 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9071 				      struct bpf_program *prog);
9072 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9073 				  struct bpf_program *prog);
9074 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9075 				      struct bpf_program *prog);
9076 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9077 				     struct bpf_program *prog);
9078 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9079 				   struct bpf_program *prog);
9080 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9081 				    struct bpf_program *prog);
9082 
9083 static const struct bpf_sec_def section_defs[] = {
9084 	BPF_PROG_SEC("socket",			BPF_PROG_TYPE_SOCKET_FILTER),
9085 	BPF_EAPROG_SEC("sk_reuseport/migrate",	BPF_PROG_TYPE_SK_REUSEPORT,
9086 						BPF_SK_REUSEPORT_SELECT_OR_MIGRATE),
9087 	BPF_EAPROG_SEC("sk_reuseport",		BPF_PROG_TYPE_SK_REUSEPORT,
9088 						BPF_SK_REUSEPORT_SELECT),
9089 	SEC_DEF("kprobe/", KPROBE,
9090 		.attach_fn = attach_kprobe),
9091 	BPF_PROG_SEC("uprobe/",			BPF_PROG_TYPE_KPROBE),
9092 	SEC_DEF("kretprobe/", KPROBE,
9093 		.attach_fn = attach_kprobe),
9094 	BPF_PROG_SEC("uretprobe/",		BPF_PROG_TYPE_KPROBE),
9095 	BPF_PROG_SEC("classifier",		BPF_PROG_TYPE_SCHED_CLS),
9096 	BPF_PROG_SEC("action",			BPF_PROG_TYPE_SCHED_ACT),
9097 	SEC_DEF("tracepoint/", TRACEPOINT,
9098 		.attach_fn = attach_tp),
9099 	SEC_DEF("tp/", TRACEPOINT,
9100 		.attach_fn = attach_tp),
9101 	SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
9102 		.attach_fn = attach_raw_tp),
9103 	SEC_DEF("raw_tp/", RAW_TRACEPOINT,
9104 		.attach_fn = attach_raw_tp),
9105 	SEC_DEF("tp_btf/", TRACING,
9106 		.expected_attach_type = BPF_TRACE_RAW_TP,
9107 		.is_attach_btf = true,
9108 		.attach_fn = attach_trace),
9109 	SEC_DEF("fentry/", TRACING,
9110 		.expected_attach_type = BPF_TRACE_FENTRY,
9111 		.is_attach_btf = true,
9112 		.attach_fn = attach_trace),
9113 	SEC_DEF("fmod_ret/", TRACING,
9114 		.expected_attach_type = BPF_MODIFY_RETURN,
9115 		.is_attach_btf = true,
9116 		.attach_fn = attach_trace),
9117 	SEC_DEF("fexit/", TRACING,
9118 		.expected_attach_type = BPF_TRACE_FEXIT,
9119 		.is_attach_btf = true,
9120 		.attach_fn = attach_trace),
9121 	SEC_DEF("fentry.s/", TRACING,
9122 		.expected_attach_type = BPF_TRACE_FENTRY,
9123 		.is_attach_btf = true,
9124 		.is_sleepable = true,
9125 		.attach_fn = attach_trace),
9126 	SEC_DEF("fmod_ret.s/", TRACING,
9127 		.expected_attach_type = BPF_MODIFY_RETURN,
9128 		.is_attach_btf = true,
9129 		.is_sleepable = true,
9130 		.attach_fn = attach_trace),
9131 	SEC_DEF("fexit.s/", TRACING,
9132 		.expected_attach_type = BPF_TRACE_FEXIT,
9133 		.is_attach_btf = true,
9134 		.is_sleepable = true,
9135 		.attach_fn = attach_trace),
9136 	SEC_DEF("freplace/", EXT,
9137 		.is_attach_btf = true,
9138 		.attach_fn = attach_trace),
9139 	SEC_DEF("lsm/", LSM,
9140 		.is_attach_btf = true,
9141 		.expected_attach_type = BPF_LSM_MAC,
9142 		.attach_fn = attach_lsm),
9143 	SEC_DEF("lsm.s/", LSM,
9144 		.is_attach_btf = true,
9145 		.is_sleepable = true,
9146 		.expected_attach_type = BPF_LSM_MAC,
9147 		.attach_fn = attach_lsm),
9148 	SEC_DEF("iter/", TRACING,
9149 		.expected_attach_type = BPF_TRACE_ITER,
9150 		.is_attach_btf = true,
9151 		.attach_fn = attach_iter),
9152 	SEC_DEF("syscall", SYSCALL,
9153 		.is_sleepable = true),
9154 	BPF_EAPROG_SEC("xdp_devmap/",		BPF_PROG_TYPE_XDP,
9155 						BPF_XDP_DEVMAP),
9156 	BPF_EAPROG_SEC("xdp_cpumap/",		BPF_PROG_TYPE_XDP,
9157 						BPF_XDP_CPUMAP),
9158 	BPF_APROG_SEC("xdp",			BPF_PROG_TYPE_XDP,
9159 						BPF_XDP),
9160 	BPF_PROG_SEC("perf_event",		BPF_PROG_TYPE_PERF_EVENT),
9161 	BPF_PROG_SEC("lwt_in",			BPF_PROG_TYPE_LWT_IN),
9162 	BPF_PROG_SEC("lwt_out",			BPF_PROG_TYPE_LWT_OUT),
9163 	BPF_PROG_SEC("lwt_xmit",		BPF_PROG_TYPE_LWT_XMIT),
9164 	BPF_PROG_SEC("lwt_seg6local",		BPF_PROG_TYPE_LWT_SEG6LOCAL),
9165 	BPF_APROG_SEC("cgroup_skb/ingress",	BPF_PROG_TYPE_CGROUP_SKB,
9166 						BPF_CGROUP_INET_INGRESS),
9167 	BPF_APROG_SEC("cgroup_skb/egress",	BPF_PROG_TYPE_CGROUP_SKB,
9168 						BPF_CGROUP_INET_EGRESS),
9169 	BPF_APROG_COMPAT("cgroup/skb",		BPF_PROG_TYPE_CGROUP_SKB),
9170 	BPF_EAPROG_SEC("cgroup/sock_create",	BPF_PROG_TYPE_CGROUP_SOCK,
9171 						BPF_CGROUP_INET_SOCK_CREATE),
9172 	BPF_EAPROG_SEC("cgroup/sock_release",	BPF_PROG_TYPE_CGROUP_SOCK,
9173 						BPF_CGROUP_INET_SOCK_RELEASE),
9174 	BPF_APROG_SEC("cgroup/sock",		BPF_PROG_TYPE_CGROUP_SOCK,
9175 						BPF_CGROUP_INET_SOCK_CREATE),
9176 	BPF_EAPROG_SEC("cgroup/post_bind4",	BPF_PROG_TYPE_CGROUP_SOCK,
9177 						BPF_CGROUP_INET4_POST_BIND),
9178 	BPF_EAPROG_SEC("cgroup/post_bind6",	BPF_PROG_TYPE_CGROUP_SOCK,
9179 						BPF_CGROUP_INET6_POST_BIND),
9180 	BPF_APROG_SEC("cgroup/dev",		BPF_PROG_TYPE_CGROUP_DEVICE,
9181 						BPF_CGROUP_DEVICE),
9182 	BPF_APROG_SEC("sockops",		BPF_PROG_TYPE_SOCK_OPS,
9183 						BPF_CGROUP_SOCK_OPS),
9184 	BPF_APROG_SEC("sk_skb/stream_parser",	BPF_PROG_TYPE_SK_SKB,
9185 						BPF_SK_SKB_STREAM_PARSER),
9186 	BPF_APROG_SEC("sk_skb/stream_verdict",	BPF_PROG_TYPE_SK_SKB,
9187 						BPF_SK_SKB_STREAM_VERDICT),
9188 	BPF_APROG_COMPAT("sk_skb",		BPF_PROG_TYPE_SK_SKB),
9189 	BPF_APROG_SEC("sk_msg",			BPF_PROG_TYPE_SK_MSG,
9190 						BPF_SK_MSG_VERDICT),
9191 	BPF_APROG_SEC("lirc_mode2",		BPF_PROG_TYPE_LIRC_MODE2,
9192 						BPF_LIRC_MODE2),
9193 	BPF_APROG_SEC("flow_dissector",		BPF_PROG_TYPE_FLOW_DISSECTOR,
9194 						BPF_FLOW_DISSECTOR),
9195 	BPF_EAPROG_SEC("cgroup/bind4",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9196 						BPF_CGROUP_INET4_BIND),
9197 	BPF_EAPROG_SEC("cgroup/bind6",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9198 						BPF_CGROUP_INET6_BIND),
9199 	BPF_EAPROG_SEC("cgroup/connect4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9200 						BPF_CGROUP_INET4_CONNECT),
9201 	BPF_EAPROG_SEC("cgroup/connect6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9202 						BPF_CGROUP_INET6_CONNECT),
9203 	BPF_EAPROG_SEC("cgroup/sendmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9204 						BPF_CGROUP_UDP4_SENDMSG),
9205 	BPF_EAPROG_SEC("cgroup/sendmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9206 						BPF_CGROUP_UDP6_SENDMSG),
9207 	BPF_EAPROG_SEC("cgroup/recvmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9208 						BPF_CGROUP_UDP4_RECVMSG),
9209 	BPF_EAPROG_SEC("cgroup/recvmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9210 						BPF_CGROUP_UDP6_RECVMSG),
9211 	BPF_EAPROG_SEC("cgroup/getpeername4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9212 						BPF_CGROUP_INET4_GETPEERNAME),
9213 	BPF_EAPROG_SEC("cgroup/getpeername6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9214 						BPF_CGROUP_INET6_GETPEERNAME),
9215 	BPF_EAPROG_SEC("cgroup/getsockname4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9216 						BPF_CGROUP_INET4_GETSOCKNAME),
9217 	BPF_EAPROG_SEC("cgroup/getsockname6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
9218 						BPF_CGROUP_INET6_GETSOCKNAME),
9219 	BPF_EAPROG_SEC("cgroup/sysctl",		BPF_PROG_TYPE_CGROUP_SYSCTL,
9220 						BPF_CGROUP_SYSCTL),
9221 	BPF_EAPROG_SEC("cgroup/getsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
9222 						BPF_CGROUP_GETSOCKOPT),
9223 	BPF_EAPROG_SEC("cgroup/setsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
9224 						BPF_CGROUP_SETSOCKOPT),
9225 	BPF_PROG_SEC("struct_ops",		BPF_PROG_TYPE_STRUCT_OPS),
9226 	BPF_EAPROG_SEC("sk_lookup/",		BPF_PROG_TYPE_SK_LOOKUP,
9227 						BPF_SK_LOOKUP),
9228 };
9229 
9230 #undef BPF_PROG_SEC_IMPL
9231 #undef BPF_PROG_SEC
9232 #undef BPF_APROG_SEC
9233 #undef BPF_EAPROG_SEC
9234 #undef BPF_APROG_COMPAT
9235 #undef SEC_DEF
9236 
9237 #define MAX_TYPE_NAME_SIZE 32
9238 
9239 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9240 {
9241 	int i, n = ARRAY_SIZE(section_defs);
9242 
9243 	for (i = 0; i < n; i++) {
9244 		if (strncmp(sec_name,
9245 			    section_defs[i].sec, section_defs[i].len))
9246 			continue;
9247 		return &section_defs[i];
9248 	}
9249 	return NULL;
9250 }
9251 
9252 static char *libbpf_get_type_names(bool attach_type)
9253 {
9254 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9255 	char *buf;
9256 
9257 	buf = malloc(len);
9258 	if (!buf)
9259 		return NULL;
9260 
9261 	buf[0] = '\0';
9262 	/* Forge string buf with all available names */
9263 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9264 		if (attach_type && !section_defs[i].is_attachable)
9265 			continue;
9266 
9267 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9268 			free(buf);
9269 			return NULL;
9270 		}
9271 		strcat(buf, " ");
9272 		strcat(buf, section_defs[i].sec);
9273 	}
9274 
9275 	return buf;
9276 }
9277 
9278 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9279 			     enum bpf_attach_type *expected_attach_type)
9280 {
9281 	const struct bpf_sec_def *sec_def;
9282 	char *type_names;
9283 
9284 	if (!name)
9285 		return libbpf_err(-EINVAL);
9286 
9287 	sec_def = find_sec_def(name);
9288 	if (sec_def) {
9289 		*prog_type = sec_def->prog_type;
9290 		*expected_attach_type = sec_def->expected_attach_type;
9291 		return 0;
9292 	}
9293 
9294 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9295 	type_names = libbpf_get_type_names(false);
9296 	if (type_names != NULL) {
9297 		pr_debug("supported section(type) names are:%s\n", type_names);
9298 		free(type_names);
9299 	}
9300 
9301 	return libbpf_err(-ESRCH);
9302 }
9303 
9304 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9305 						     size_t offset)
9306 {
9307 	struct bpf_map *map;
9308 	size_t i;
9309 
9310 	for (i = 0; i < obj->nr_maps; i++) {
9311 		map = &obj->maps[i];
9312 		if (!bpf_map__is_struct_ops(map))
9313 			continue;
9314 		if (map->sec_offset <= offset &&
9315 		    offset - map->sec_offset < map->def.value_size)
9316 			return map;
9317 	}
9318 
9319 	return NULL;
9320 }
9321 
9322 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9323 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9324 					    GElf_Shdr *shdr, Elf_Data *data)
9325 {
9326 	const struct btf_member *member;
9327 	struct bpf_struct_ops *st_ops;
9328 	struct bpf_program *prog;
9329 	unsigned int shdr_idx;
9330 	const struct btf *btf;
9331 	struct bpf_map *map;
9332 	Elf_Data *symbols;
9333 	unsigned int moff, insn_idx;
9334 	const char *name;
9335 	__u32 member_idx;
9336 	GElf_Sym sym;
9337 	GElf_Rel rel;
9338 	int i, nrels;
9339 
9340 	symbols = obj->efile.symbols;
9341 	btf = obj->btf;
9342 	nrels = shdr->sh_size / shdr->sh_entsize;
9343 	for (i = 0; i < nrels; i++) {
9344 		if (!gelf_getrel(data, i, &rel)) {
9345 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9346 			return -LIBBPF_ERRNO__FORMAT;
9347 		}
9348 
9349 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
9350 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9351 				(size_t)GELF_R_SYM(rel.r_info));
9352 			return -LIBBPF_ERRNO__FORMAT;
9353 		}
9354 
9355 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
9356 		map = find_struct_ops_map_by_offset(obj, rel.r_offset);
9357 		if (!map) {
9358 			pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
9359 				(size_t)rel.r_offset);
9360 			return -EINVAL;
9361 		}
9362 
9363 		moff = rel.r_offset - map->sec_offset;
9364 		shdr_idx = sym.st_shndx;
9365 		st_ops = map->st_ops;
9366 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9367 			 map->name,
9368 			 (long long)(rel.r_info >> 32),
9369 			 (long long)sym.st_value,
9370 			 shdr_idx, (size_t)rel.r_offset,
9371 			 map->sec_offset, sym.st_name, name);
9372 
9373 		if (shdr_idx >= SHN_LORESERVE) {
9374 			pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
9375 				map->name, (size_t)rel.r_offset, shdr_idx);
9376 			return -LIBBPF_ERRNO__RELOC;
9377 		}
9378 		if (sym.st_value % BPF_INSN_SZ) {
9379 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9380 				map->name, (unsigned long long)sym.st_value);
9381 			return -LIBBPF_ERRNO__FORMAT;
9382 		}
9383 		insn_idx = sym.st_value / BPF_INSN_SZ;
9384 
9385 		member = find_member_by_offset(st_ops->type, moff * 8);
9386 		if (!member) {
9387 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9388 				map->name, moff);
9389 			return -EINVAL;
9390 		}
9391 		member_idx = member - btf_members(st_ops->type);
9392 		name = btf__name_by_offset(btf, member->name_off);
9393 
9394 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9395 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9396 				map->name, name);
9397 			return -EINVAL;
9398 		}
9399 
9400 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9401 		if (!prog) {
9402 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9403 				map->name, shdr_idx, name);
9404 			return -EINVAL;
9405 		}
9406 
9407 		if (prog->type == BPF_PROG_TYPE_UNSPEC) {
9408 			const struct bpf_sec_def *sec_def;
9409 
9410 			sec_def = find_sec_def(prog->sec_name);
9411 			if (sec_def &&
9412 			    sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
9413 				/* for pr_warn */
9414 				prog->type = sec_def->prog_type;
9415 				goto invalid_prog;
9416 			}
9417 
9418 			prog->type = BPF_PROG_TYPE_STRUCT_OPS;
9419 			prog->attach_btf_id = st_ops->type_id;
9420 			prog->expected_attach_type = member_idx;
9421 		} else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
9422 			   prog->attach_btf_id != st_ops->type_id ||
9423 			   prog->expected_attach_type != member_idx) {
9424 			goto invalid_prog;
9425 		}
9426 		st_ops->progs[member_idx] = prog;
9427 	}
9428 
9429 	return 0;
9430 
9431 invalid_prog:
9432 	pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9433 		map->name, prog->name, prog->sec_name, prog->type,
9434 		prog->attach_btf_id, prog->expected_attach_type, name);
9435 	return -EINVAL;
9436 }
9437 
9438 #define BTF_TRACE_PREFIX "btf_trace_"
9439 #define BTF_LSM_PREFIX "bpf_lsm_"
9440 #define BTF_ITER_PREFIX "bpf_iter_"
9441 #define BTF_MAX_NAME_SIZE 128
9442 
9443 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9444 				const char **prefix, int *kind)
9445 {
9446 	switch (attach_type) {
9447 	case BPF_TRACE_RAW_TP:
9448 		*prefix = BTF_TRACE_PREFIX;
9449 		*kind = BTF_KIND_TYPEDEF;
9450 		break;
9451 	case BPF_LSM_MAC:
9452 		*prefix = BTF_LSM_PREFIX;
9453 		*kind = BTF_KIND_FUNC;
9454 		break;
9455 	case BPF_TRACE_ITER:
9456 		*prefix = BTF_ITER_PREFIX;
9457 		*kind = BTF_KIND_FUNC;
9458 		break;
9459 	default:
9460 		*prefix = "";
9461 		*kind = BTF_KIND_FUNC;
9462 	}
9463 }
9464 
9465 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9466 				   const char *name, __u32 kind)
9467 {
9468 	char btf_type_name[BTF_MAX_NAME_SIZE];
9469 	int ret;
9470 
9471 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9472 		       "%s%s", prefix, name);
9473 	/* snprintf returns the number of characters written excluding the
9474 	 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9475 	 * indicates truncation.
9476 	 */
9477 	if (ret < 0 || ret >= sizeof(btf_type_name))
9478 		return -ENAMETOOLONG;
9479 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9480 }
9481 
9482 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9483 				     enum bpf_attach_type attach_type)
9484 {
9485 	const char *prefix;
9486 	int kind;
9487 
9488 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9489 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9490 }
9491 
9492 int libbpf_find_vmlinux_btf_id(const char *name,
9493 			       enum bpf_attach_type attach_type)
9494 {
9495 	struct btf *btf;
9496 	int err;
9497 
9498 	btf = libbpf_find_kernel_btf();
9499 	err = libbpf_get_error(btf);
9500 	if (err) {
9501 		pr_warn("vmlinux BTF is not found\n");
9502 		return libbpf_err(err);
9503 	}
9504 
9505 	err = find_attach_btf_id(btf, name, attach_type);
9506 	if (err <= 0)
9507 		pr_warn("%s is not found in vmlinux BTF\n", name);
9508 
9509 	btf__free(btf);
9510 	return libbpf_err(err);
9511 }
9512 
9513 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9514 {
9515 	struct bpf_prog_info_linear *info_linear;
9516 	struct bpf_prog_info *info;
9517 	struct btf *btf = NULL;
9518 	int err = -EINVAL;
9519 
9520 	info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
9521 	err = libbpf_get_error(info_linear);
9522 	if (err) {
9523 		pr_warn("failed get_prog_info_linear for FD %d\n",
9524 			attach_prog_fd);
9525 		return err;
9526 	}
9527 	info = &info_linear->info;
9528 	if (!info->btf_id) {
9529 		pr_warn("The target program doesn't have BTF\n");
9530 		goto out;
9531 	}
9532 	if (btf__get_from_id(info->btf_id, &btf)) {
9533 		pr_warn("Failed to get BTF of the program\n");
9534 		goto out;
9535 	}
9536 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9537 	btf__free(btf);
9538 	if (err <= 0) {
9539 		pr_warn("%s is not found in prog's BTF\n", name);
9540 		goto out;
9541 	}
9542 out:
9543 	free(info_linear);
9544 	return err;
9545 }
9546 
9547 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9548 			      enum bpf_attach_type attach_type,
9549 			      int *btf_obj_fd, int *btf_type_id)
9550 {
9551 	int ret, i;
9552 
9553 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9554 	if (ret > 0) {
9555 		*btf_obj_fd = 0; /* vmlinux BTF */
9556 		*btf_type_id = ret;
9557 		return 0;
9558 	}
9559 	if (ret != -ENOENT)
9560 		return ret;
9561 
9562 	ret = load_module_btfs(obj);
9563 	if (ret)
9564 		return ret;
9565 
9566 	for (i = 0; i < obj->btf_module_cnt; i++) {
9567 		const struct module_btf *mod = &obj->btf_modules[i];
9568 
9569 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9570 		if (ret > 0) {
9571 			*btf_obj_fd = mod->fd;
9572 			*btf_type_id = ret;
9573 			return 0;
9574 		}
9575 		if (ret == -ENOENT)
9576 			continue;
9577 
9578 		return ret;
9579 	}
9580 
9581 	return -ESRCH;
9582 }
9583 
9584 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id)
9585 {
9586 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9587 	__u32 attach_prog_fd = prog->attach_prog_fd;
9588 	const char *name = prog->sec_name, *attach_name;
9589 	const struct bpf_sec_def *sec = NULL;
9590 	int i, err = 0;
9591 
9592 	if (!name)
9593 		return -EINVAL;
9594 
9595 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9596 		if (!section_defs[i].is_attach_btf)
9597 			continue;
9598 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9599 			continue;
9600 
9601 		sec = &section_defs[i];
9602 		break;
9603 	}
9604 
9605 	if (!sec) {
9606 		pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name);
9607 		return -ESRCH;
9608 	}
9609 	attach_name = name + sec->len;
9610 
9611 	/* BPF program's BTF ID */
9612 	if (attach_prog_fd) {
9613 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9614 		if (err < 0) {
9615 			pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9616 				 attach_prog_fd, attach_name, err);
9617 			return err;
9618 		}
9619 		*btf_obj_fd = 0;
9620 		*btf_type_id = err;
9621 		return 0;
9622 	}
9623 
9624 	/* kernel/module BTF ID */
9625 	if (prog->obj->gen_loader) {
9626 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9627 		*btf_obj_fd = 0;
9628 		*btf_type_id = 1;
9629 	} else {
9630 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9631 	}
9632 	if (err) {
9633 		pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9634 		return err;
9635 	}
9636 	return 0;
9637 }
9638 
9639 int libbpf_attach_type_by_name(const char *name,
9640 			       enum bpf_attach_type *attach_type)
9641 {
9642 	char *type_names;
9643 	int i;
9644 
9645 	if (!name)
9646 		return libbpf_err(-EINVAL);
9647 
9648 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9649 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9650 			continue;
9651 		if (!section_defs[i].is_attachable)
9652 			return libbpf_err(-EINVAL);
9653 		*attach_type = section_defs[i].expected_attach_type;
9654 		return 0;
9655 	}
9656 	pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9657 	type_names = libbpf_get_type_names(true);
9658 	if (type_names != NULL) {
9659 		pr_debug("attachable section(type) names are:%s\n", type_names);
9660 		free(type_names);
9661 	}
9662 
9663 	return libbpf_err(-EINVAL);
9664 }
9665 
9666 int bpf_map__fd(const struct bpf_map *map)
9667 {
9668 	return map ? map->fd : libbpf_err(-EINVAL);
9669 }
9670 
9671 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9672 {
9673 	return map ? &map->def : libbpf_err_ptr(-EINVAL);
9674 }
9675 
9676 const char *bpf_map__name(const struct bpf_map *map)
9677 {
9678 	return map ? map->name : NULL;
9679 }
9680 
9681 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9682 {
9683 	return map->def.type;
9684 }
9685 
9686 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9687 {
9688 	if (map->fd >= 0)
9689 		return libbpf_err(-EBUSY);
9690 	map->def.type = type;
9691 	return 0;
9692 }
9693 
9694 __u32 bpf_map__map_flags(const struct bpf_map *map)
9695 {
9696 	return map->def.map_flags;
9697 }
9698 
9699 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9700 {
9701 	if (map->fd >= 0)
9702 		return libbpf_err(-EBUSY);
9703 	map->def.map_flags = flags;
9704 	return 0;
9705 }
9706 
9707 __u32 bpf_map__numa_node(const struct bpf_map *map)
9708 {
9709 	return map->numa_node;
9710 }
9711 
9712 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9713 {
9714 	if (map->fd >= 0)
9715 		return libbpf_err(-EBUSY);
9716 	map->numa_node = numa_node;
9717 	return 0;
9718 }
9719 
9720 __u32 bpf_map__key_size(const struct bpf_map *map)
9721 {
9722 	return map->def.key_size;
9723 }
9724 
9725 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9726 {
9727 	if (map->fd >= 0)
9728 		return libbpf_err(-EBUSY);
9729 	map->def.key_size = size;
9730 	return 0;
9731 }
9732 
9733 __u32 bpf_map__value_size(const struct bpf_map *map)
9734 {
9735 	return map->def.value_size;
9736 }
9737 
9738 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9739 {
9740 	if (map->fd >= 0)
9741 		return libbpf_err(-EBUSY);
9742 	map->def.value_size = size;
9743 	return 0;
9744 }
9745 
9746 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9747 {
9748 	return map ? map->btf_key_type_id : 0;
9749 }
9750 
9751 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9752 {
9753 	return map ? map->btf_value_type_id : 0;
9754 }
9755 
9756 int bpf_map__set_priv(struct bpf_map *map, void *priv,
9757 		     bpf_map_clear_priv_t clear_priv)
9758 {
9759 	if (!map)
9760 		return libbpf_err(-EINVAL);
9761 
9762 	if (map->priv) {
9763 		if (map->clear_priv)
9764 			map->clear_priv(map, map->priv);
9765 	}
9766 
9767 	map->priv = priv;
9768 	map->clear_priv = clear_priv;
9769 	return 0;
9770 }
9771 
9772 void *bpf_map__priv(const struct bpf_map *map)
9773 {
9774 	return map ? map->priv : libbpf_err_ptr(-EINVAL);
9775 }
9776 
9777 int bpf_map__set_initial_value(struct bpf_map *map,
9778 			       const void *data, size_t size)
9779 {
9780 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9781 	    size != map->def.value_size || map->fd >= 0)
9782 		return libbpf_err(-EINVAL);
9783 
9784 	memcpy(map->mmaped, data, size);
9785 	return 0;
9786 }
9787 
9788 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9789 {
9790 	if (!map->mmaped)
9791 		return NULL;
9792 	*psize = map->def.value_size;
9793 	return map->mmaped;
9794 }
9795 
9796 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9797 {
9798 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9799 }
9800 
9801 bool bpf_map__is_internal(const struct bpf_map *map)
9802 {
9803 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9804 }
9805 
9806 __u32 bpf_map__ifindex(const struct bpf_map *map)
9807 {
9808 	return map->map_ifindex;
9809 }
9810 
9811 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9812 {
9813 	if (map->fd >= 0)
9814 		return libbpf_err(-EBUSY);
9815 	map->map_ifindex = ifindex;
9816 	return 0;
9817 }
9818 
9819 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9820 {
9821 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9822 		pr_warn("error: unsupported map type\n");
9823 		return libbpf_err(-EINVAL);
9824 	}
9825 	if (map->inner_map_fd != -1) {
9826 		pr_warn("error: inner_map_fd already specified\n");
9827 		return libbpf_err(-EINVAL);
9828 	}
9829 	zfree(&map->inner_map);
9830 	map->inner_map_fd = fd;
9831 	return 0;
9832 }
9833 
9834 static struct bpf_map *
9835 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9836 {
9837 	ssize_t idx;
9838 	struct bpf_map *s, *e;
9839 
9840 	if (!obj || !obj->maps)
9841 		return errno = EINVAL, NULL;
9842 
9843 	s = obj->maps;
9844 	e = obj->maps + obj->nr_maps;
9845 
9846 	if ((m < s) || (m >= e)) {
9847 		pr_warn("error in %s: map handler doesn't belong to object\n",
9848 			 __func__);
9849 		return errno = EINVAL, NULL;
9850 	}
9851 
9852 	idx = (m - obj->maps) + i;
9853 	if (idx >= obj->nr_maps || idx < 0)
9854 		return NULL;
9855 	return &obj->maps[idx];
9856 }
9857 
9858 struct bpf_map *
9859 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9860 {
9861 	if (prev == NULL)
9862 		return obj->maps;
9863 
9864 	return __bpf_map__iter(prev, obj, 1);
9865 }
9866 
9867 struct bpf_map *
9868 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9869 {
9870 	if (next == NULL) {
9871 		if (!obj->nr_maps)
9872 			return NULL;
9873 		return obj->maps + obj->nr_maps - 1;
9874 	}
9875 
9876 	return __bpf_map__iter(next, obj, -1);
9877 }
9878 
9879 struct bpf_map *
9880 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9881 {
9882 	struct bpf_map *pos;
9883 
9884 	bpf_object__for_each_map(pos, obj) {
9885 		if (pos->name && !strcmp(pos->name, name))
9886 			return pos;
9887 	}
9888 	return errno = ENOENT, NULL;
9889 }
9890 
9891 int
9892 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9893 {
9894 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9895 }
9896 
9897 struct bpf_map *
9898 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9899 {
9900 	return libbpf_err_ptr(-ENOTSUP);
9901 }
9902 
9903 long libbpf_get_error(const void *ptr)
9904 {
9905 	if (!IS_ERR_OR_NULL(ptr))
9906 		return 0;
9907 
9908 	if (IS_ERR(ptr))
9909 		errno = -PTR_ERR(ptr);
9910 
9911 	/* If ptr == NULL, then errno should be already set by the failing
9912 	 * API, because libbpf never returns NULL on success and it now always
9913 	 * sets errno on error. So no extra errno handling for ptr == NULL
9914 	 * case.
9915 	 */
9916 	return -errno;
9917 }
9918 
9919 int bpf_prog_load(const char *file, enum bpf_prog_type type,
9920 		  struct bpf_object **pobj, int *prog_fd)
9921 {
9922 	struct bpf_prog_load_attr attr;
9923 
9924 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9925 	attr.file = file;
9926 	attr.prog_type = type;
9927 	attr.expected_attach_type = 0;
9928 
9929 	return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9930 }
9931 
9932 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9933 			struct bpf_object **pobj, int *prog_fd)
9934 {
9935 	struct bpf_object_open_attr open_attr = {};
9936 	struct bpf_program *prog, *first_prog = NULL;
9937 	struct bpf_object *obj;
9938 	struct bpf_map *map;
9939 	int err;
9940 
9941 	if (!attr)
9942 		return libbpf_err(-EINVAL);
9943 	if (!attr->file)
9944 		return libbpf_err(-EINVAL);
9945 
9946 	open_attr.file = attr->file;
9947 	open_attr.prog_type = attr->prog_type;
9948 
9949 	obj = bpf_object__open_xattr(&open_attr);
9950 	err = libbpf_get_error(obj);
9951 	if (err)
9952 		return libbpf_err(-ENOENT);
9953 
9954 	bpf_object__for_each_program(prog, obj) {
9955 		enum bpf_attach_type attach_type = attr->expected_attach_type;
9956 		/*
9957 		 * to preserve backwards compatibility, bpf_prog_load treats
9958 		 * attr->prog_type, if specified, as an override to whatever
9959 		 * bpf_object__open guessed
9960 		 */
9961 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9962 			bpf_program__set_type(prog, attr->prog_type);
9963 			bpf_program__set_expected_attach_type(prog,
9964 							      attach_type);
9965 		}
9966 		if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9967 			/*
9968 			 * we haven't guessed from section name and user
9969 			 * didn't provide a fallback type, too bad...
9970 			 */
9971 			bpf_object__close(obj);
9972 			return libbpf_err(-EINVAL);
9973 		}
9974 
9975 		prog->prog_ifindex = attr->ifindex;
9976 		prog->log_level = attr->log_level;
9977 		prog->prog_flags |= attr->prog_flags;
9978 		if (!first_prog)
9979 			first_prog = prog;
9980 	}
9981 
9982 	bpf_object__for_each_map(map, obj) {
9983 		if (!bpf_map__is_offload_neutral(map))
9984 			map->map_ifindex = attr->ifindex;
9985 	}
9986 
9987 	if (!first_prog) {
9988 		pr_warn("object file doesn't contain bpf program\n");
9989 		bpf_object__close(obj);
9990 		return libbpf_err(-ENOENT);
9991 	}
9992 
9993 	err = bpf_object__load(obj);
9994 	if (err) {
9995 		bpf_object__close(obj);
9996 		return libbpf_err(err);
9997 	}
9998 
9999 	*pobj = obj;
10000 	*prog_fd = bpf_program__fd(first_prog);
10001 	return 0;
10002 }
10003 
10004 struct bpf_link {
10005 	int (*detach)(struct bpf_link *link);
10006 	int (*destroy)(struct bpf_link *link);
10007 	char *pin_path;		/* NULL, if not pinned */
10008 	int fd;			/* hook FD, -1 if not applicable */
10009 	bool disconnected;
10010 };
10011 
10012 /* Replace link's underlying BPF program with the new one */
10013 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10014 {
10015 	int ret;
10016 
10017 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10018 	return libbpf_err_errno(ret);
10019 }
10020 
10021 /* Release "ownership" of underlying BPF resource (typically, BPF program
10022  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10023  * link, when destructed through bpf_link__destroy() call won't attempt to
10024  * detach/unregisted that BPF resource. This is useful in situations where,
10025  * say, attached BPF program has to outlive userspace program that attached it
10026  * in the system. Depending on type of BPF program, though, there might be
10027  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10028  * exit of userspace program doesn't trigger automatic detachment and clean up
10029  * inside the kernel.
10030  */
10031 void bpf_link__disconnect(struct bpf_link *link)
10032 {
10033 	link->disconnected = true;
10034 }
10035 
10036 int bpf_link__destroy(struct bpf_link *link)
10037 {
10038 	int err = 0;
10039 
10040 	if (IS_ERR_OR_NULL(link))
10041 		return 0;
10042 
10043 	if (!link->disconnected && link->detach)
10044 		err = link->detach(link);
10045 	if (link->destroy)
10046 		link->destroy(link);
10047 	if (link->pin_path)
10048 		free(link->pin_path);
10049 	free(link);
10050 
10051 	return libbpf_err(err);
10052 }
10053 
10054 int bpf_link__fd(const struct bpf_link *link)
10055 {
10056 	return link->fd;
10057 }
10058 
10059 const char *bpf_link__pin_path(const struct bpf_link *link)
10060 {
10061 	return link->pin_path;
10062 }
10063 
10064 static int bpf_link__detach_fd(struct bpf_link *link)
10065 {
10066 	return libbpf_err_errno(close(link->fd));
10067 }
10068 
10069 struct bpf_link *bpf_link__open(const char *path)
10070 {
10071 	struct bpf_link *link;
10072 	int fd;
10073 
10074 	fd = bpf_obj_get(path);
10075 	if (fd < 0) {
10076 		fd = -errno;
10077 		pr_warn("failed to open link at %s: %d\n", path, fd);
10078 		return libbpf_err_ptr(fd);
10079 	}
10080 
10081 	link = calloc(1, sizeof(*link));
10082 	if (!link) {
10083 		close(fd);
10084 		return libbpf_err_ptr(-ENOMEM);
10085 	}
10086 	link->detach = &bpf_link__detach_fd;
10087 	link->fd = fd;
10088 
10089 	link->pin_path = strdup(path);
10090 	if (!link->pin_path) {
10091 		bpf_link__destroy(link);
10092 		return libbpf_err_ptr(-ENOMEM);
10093 	}
10094 
10095 	return link;
10096 }
10097 
10098 int bpf_link__detach(struct bpf_link *link)
10099 {
10100 	return bpf_link_detach(link->fd) ? -errno : 0;
10101 }
10102 
10103 int bpf_link__pin(struct bpf_link *link, const char *path)
10104 {
10105 	int err;
10106 
10107 	if (link->pin_path)
10108 		return libbpf_err(-EBUSY);
10109 	err = make_parent_dir(path);
10110 	if (err)
10111 		return libbpf_err(err);
10112 	err = check_path(path);
10113 	if (err)
10114 		return libbpf_err(err);
10115 
10116 	link->pin_path = strdup(path);
10117 	if (!link->pin_path)
10118 		return libbpf_err(-ENOMEM);
10119 
10120 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10121 		err = -errno;
10122 		zfree(&link->pin_path);
10123 		return libbpf_err(err);
10124 	}
10125 
10126 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10127 	return 0;
10128 }
10129 
10130 int bpf_link__unpin(struct bpf_link *link)
10131 {
10132 	int err;
10133 
10134 	if (!link->pin_path)
10135 		return libbpf_err(-EINVAL);
10136 
10137 	err = unlink(link->pin_path);
10138 	if (err != 0)
10139 		return -errno;
10140 
10141 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10142 	zfree(&link->pin_path);
10143 	return 0;
10144 }
10145 
10146 static int bpf_link__detach_perf_event(struct bpf_link *link)
10147 {
10148 	int err;
10149 
10150 	err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
10151 	if (err)
10152 		err = -errno;
10153 
10154 	close(link->fd);
10155 	return libbpf_err(err);
10156 }
10157 
10158 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, int pfd)
10159 {
10160 	char errmsg[STRERR_BUFSIZE];
10161 	struct bpf_link *link;
10162 	int prog_fd, err;
10163 
10164 	if (pfd < 0) {
10165 		pr_warn("prog '%s': invalid perf event FD %d\n",
10166 			prog->name, pfd);
10167 		return libbpf_err_ptr(-EINVAL);
10168 	}
10169 	prog_fd = bpf_program__fd(prog);
10170 	if (prog_fd < 0) {
10171 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10172 			prog->name);
10173 		return libbpf_err_ptr(-EINVAL);
10174 	}
10175 
10176 	link = calloc(1, sizeof(*link));
10177 	if (!link)
10178 		return libbpf_err_ptr(-ENOMEM);
10179 	link->detach = &bpf_link__detach_perf_event;
10180 	link->fd = pfd;
10181 
10182 	if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10183 		err = -errno;
10184 		free(link);
10185 		pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
10186 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10187 		if (err == -EPROTO)
10188 			pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10189 				prog->name, pfd);
10190 		return libbpf_err_ptr(err);
10191 	}
10192 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10193 		err = -errno;
10194 		free(link);
10195 		pr_warn("prog '%s': failed to enable pfd %d: %s\n",
10196 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10197 		return libbpf_err_ptr(err);
10198 	}
10199 	return link;
10200 }
10201 
10202 /*
10203  * this function is expected to parse integer in the range of [0, 2^31-1] from
10204  * given file using scanf format string fmt. If actual parsed value is
10205  * negative, the result might be indistinguishable from error
10206  */
10207 static int parse_uint_from_file(const char *file, const char *fmt)
10208 {
10209 	char buf[STRERR_BUFSIZE];
10210 	int err, ret;
10211 	FILE *f;
10212 
10213 	f = fopen(file, "r");
10214 	if (!f) {
10215 		err = -errno;
10216 		pr_debug("failed to open '%s': %s\n", file,
10217 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10218 		return err;
10219 	}
10220 	err = fscanf(f, fmt, &ret);
10221 	if (err != 1) {
10222 		err = err == EOF ? -EIO : -errno;
10223 		pr_debug("failed to parse '%s': %s\n", file,
10224 			libbpf_strerror_r(err, buf, sizeof(buf)));
10225 		fclose(f);
10226 		return err;
10227 	}
10228 	fclose(f);
10229 	return ret;
10230 }
10231 
10232 static int determine_kprobe_perf_type(void)
10233 {
10234 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10235 
10236 	return parse_uint_from_file(file, "%d\n");
10237 }
10238 
10239 static int determine_uprobe_perf_type(void)
10240 {
10241 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10242 
10243 	return parse_uint_from_file(file, "%d\n");
10244 }
10245 
10246 static int determine_kprobe_retprobe_bit(void)
10247 {
10248 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10249 
10250 	return parse_uint_from_file(file, "config:%d\n");
10251 }
10252 
10253 static int determine_uprobe_retprobe_bit(void)
10254 {
10255 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10256 
10257 	return parse_uint_from_file(file, "config:%d\n");
10258 }
10259 
10260 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10261 				 uint64_t offset, int pid)
10262 {
10263 	struct perf_event_attr attr = {};
10264 	char errmsg[STRERR_BUFSIZE];
10265 	int type, pfd, err;
10266 
10267 	type = uprobe ? determine_uprobe_perf_type()
10268 		      : determine_kprobe_perf_type();
10269 	if (type < 0) {
10270 		pr_warn("failed to determine %s perf type: %s\n",
10271 			uprobe ? "uprobe" : "kprobe",
10272 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10273 		return type;
10274 	}
10275 	if (retprobe) {
10276 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10277 				 : determine_kprobe_retprobe_bit();
10278 
10279 		if (bit < 0) {
10280 			pr_warn("failed to determine %s retprobe bit: %s\n",
10281 				uprobe ? "uprobe" : "kprobe",
10282 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10283 			return bit;
10284 		}
10285 		attr.config |= 1 << bit;
10286 	}
10287 	attr.size = sizeof(attr);
10288 	attr.type = type;
10289 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10290 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10291 
10292 	/* pid filter is meaningful only for uprobes */
10293 	pfd = syscall(__NR_perf_event_open, &attr,
10294 		      pid < 0 ? -1 : pid /* pid */,
10295 		      pid == -1 ? 0 : -1 /* cpu */,
10296 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10297 	if (pfd < 0) {
10298 		err = -errno;
10299 		pr_warn("%s perf_event_open() failed: %s\n",
10300 			uprobe ? "uprobe" : "kprobe",
10301 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10302 		return err;
10303 	}
10304 	return pfd;
10305 }
10306 
10307 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
10308 					    bool retprobe,
10309 					    const char *func_name)
10310 {
10311 	char errmsg[STRERR_BUFSIZE];
10312 	struct bpf_link *link;
10313 	int pfd, err;
10314 
10315 	pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
10316 				    0 /* offset */, -1 /* pid */);
10317 	if (pfd < 0) {
10318 		pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
10319 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
10320 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10321 		return libbpf_err_ptr(pfd);
10322 	}
10323 	link = bpf_program__attach_perf_event(prog, pfd);
10324 	err = libbpf_get_error(link);
10325 	if (err) {
10326 		close(pfd);
10327 		pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
10328 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
10329 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10330 		return libbpf_err_ptr(err);
10331 	}
10332 	return link;
10333 }
10334 
10335 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
10336 				      struct bpf_program *prog)
10337 {
10338 	const char *func_name;
10339 	bool retprobe;
10340 
10341 	func_name = prog->sec_name + sec->len;
10342 	retprobe = strcmp(sec->sec, "kretprobe/") == 0;
10343 
10344 	return bpf_program__attach_kprobe(prog, retprobe, func_name);
10345 }
10346 
10347 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
10348 					    bool retprobe, pid_t pid,
10349 					    const char *binary_path,
10350 					    size_t func_offset)
10351 {
10352 	char errmsg[STRERR_BUFSIZE];
10353 	struct bpf_link *link;
10354 	int pfd, err;
10355 
10356 	pfd = perf_event_open_probe(true /* uprobe */, retprobe,
10357 				    binary_path, func_offset, pid);
10358 	if (pfd < 0) {
10359 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10360 			prog->name, retprobe ? "uretprobe" : "uprobe",
10361 			binary_path, func_offset,
10362 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10363 		return libbpf_err_ptr(pfd);
10364 	}
10365 	link = bpf_program__attach_perf_event(prog, pfd);
10366 	err = libbpf_get_error(link);
10367 	if (err) {
10368 		close(pfd);
10369 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10370 			prog->name, retprobe ? "uretprobe" : "uprobe",
10371 			binary_path, func_offset,
10372 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10373 		return libbpf_err_ptr(err);
10374 	}
10375 	return link;
10376 }
10377 
10378 static int determine_tracepoint_id(const char *tp_category,
10379 				   const char *tp_name)
10380 {
10381 	char file[PATH_MAX];
10382 	int ret;
10383 
10384 	ret = snprintf(file, sizeof(file),
10385 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
10386 		       tp_category, tp_name);
10387 	if (ret < 0)
10388 		return -errno;
10389 	if (ret >= sizeof(file)) {
10390 		pr_debug("tracepoint %s/%s path is too long\n",
10391 			 tp_category, tp_name);
10392 		return -E2BIG;
10393 	}
10394 	return parse_uint_from_file(file, "%d\n");
10395 }
10396 
10397 static int perf_event_open_tracepoint(const char *tp_category,
10398 				      const char *tp_name)
10399 {
10400 	struct perf_event_attr attr = {};
10401 	char errmsg[STRERR_BUFSIZE];
10402 	int tp_id, pfd, err;
10403 
10404 	tp_id = determine_tracepoint_id(tp_category, tp_name);
10405 	if (tp_id < 0) {
10406 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10407 			tp_category, tp_name,
10408 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10409 		return tp_id;
10410 	}
10411 
10412 	attr.type = PERF_TYPE_TRACEPOINT;
10413 	attr.size = sizeof(attr);
10414 	attr.config = tp_id;
10415 
10416 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10417 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10418 	if (pfd < 0) {
10419 		err = -errno;
10420 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10421 			tp_category, tp_name,
10422 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10423 		return err;
10424 	}
10425 	return pfd;
10426 }
10427 
10428 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
10429 						const char *tp_category,
10430 						const char *tp_name)
10431 {
10432 	char errmsg[STRERR_BUFSIZE];
10433 	struct bpf_link *link;
10434 	int pfd, err;
10435 
10436 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
10437 	if (pfd < 0) {
10438 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
10439 			prog->name, tp_category, tp_name,
10440 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10441 		return libbpf_err_ptr(pfd);
10442 	}
10443 	link = bpf_program__attach_perf_event(prog, pfd);
10444 	err = libbpf_get_error(link);
10445 	if (err) {
10446 		close(pfd);
10447 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
10448 			prog->name, tp_category, tp_name,
10449 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10450 		return libbpf_err_ptr(err);
10451 	}
10452 	return link;
10453 }
10454 
10455 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
10456 				  struct bpf_program *prog)
10457 {
10458 	char *sec_name, *tp_cat, *tp_name;
10459 	struct bpf_link *link;
10460 
10461 	sec_name = strdup(prog->sec_name);
10462 	if (!sec_name)
10463 		return libbpf_err_ptr(-ENOMEM);
10464 
10465 	/* extract "tp/<category>/<name>" */
10466 	tp_cat = sec_name + sec->len;
10467 	tp_name = strchr(tp_cat, '/');
10468 	if (!tp_name) {
10469 		free(sec_name);
10470 		return libbpf_err_ptr(-EINVAL);
10471 	}
10472 	*tp_name = '\0';
10473 	tp_name++;
10474 
10475 	link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
10476 	free(sec_name);
10477 	return link;
10478 }
10479 
10480 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
10481 						    const char *tp_name)
10482 {
10483 	char errmsg[STRERR_BUFSIZE];
10484 	struct bpf_link *link;
10485 	int prog_fd, pfd;
10486 
10487 	prog_fd = bpf_program__fd(prog);
10488 	if (prog_fd < 0) {
10489 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10490 		return libbpf_err_ptr(-EINVAL);
10491 	}
10492 
10493 	link = calloc(1, sizeof(*link));
10494 	if (!link)
10495 		return libbpf_err_ptr(-ENOMEM);
10496 	link->detach = &bpf_link__detach_fd;
10497 
10498 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
10499 	if (pfd < 0) {
10500 		pfd = -errno;
10501 		free(link);
10502 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
10503 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10504 		return libbpf_err_ptr(pfd);
10505 	}
10506 	link->fd = pfd;
10507 	return link;
10508 }
10509 
10510 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
10511 				      struct bpf_program *prog)
10512 {
10513 	const char *tp_name = prog->sec_name + sec->len;
10514 
10515 	return bpf_program__attach_raw_tracepoint(prog, tp_name);
10516 }
10517 
10518 /* Common logic for all BPF program types that attach to a btf_id */
10519 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
10520 {
10521 	char errmsg[STRERR_BUFSIZE];
10522 	struct bpf_link *link;
10523 	int prog_fd, pfd;
10524 
10525 	prog_fd = bpf_program__fd(prog);
10526 	if (prog_fd < 0) {
10527 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10528 		return libbpf_err_ptr(-EINVAL);
10529 	}
10530 
10531 	link = calloc(1, sizeof(*link));
10532 	if (!link)
10533 		return libbpf_err_ptr(-ENOMEM);
10534 	link->detach = &bpf_link__detach_fd;
10535 
10536 	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
10537 	if (pfd < 0) {
10538 		pfd = -errno;
10539 		free(link);
10540 		pr_warn("prog '%s': failed to attach: %s\n",
10541 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10542 		return libbpf_err_ptr(pfd);
10543 	}
10544 	link->fd = pfd;
10545 	return (struct bpf_link *)link;
10546 }
10547 
10548 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
10549 {
10550 	return bpf_program__attach_btf_id(prog);
10551 }
10552 
10553 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
10554 {
10555 	return bpf_program__attach_btf_id(prog);
10556 }
10557 
10558 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
10559 				     struct bpf_program *prog)
10560 {
10561 	return bpf_program__attach_trace(prog);
10562 }
10563 
10564 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
10565 				   struct bpf_program *prog)
10566 {
10567 	return bpf_program__attach_lsm(prog);
10568 }
10569 
10570 static struct bpf_link *
10571 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
10572 		       const char *target_name)
10573 {
10574 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
10575 			    .target_btf_id = btf_id);
10576 	enum bpf_attach_type attach_type;
10577 	char errmsg[STRERR_BUFSIZE];
10578 	struct bpf_link *link;
10579 	int prog_fd, link_fd;
10580 
10581 	prog_fd = bpf_program__fd(prog);
10582 	if (prog_fd < 0) {
10583 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10584 		return libbpf_err_ptr(-EINVAL);
10585 	}
10586 
10587 	link = calloc(1, sizeof(*link));
10588 	if (!link)
10589 		return libbpf_err_ptr(-ENOMEM);
10590 	link->detach = &bpf_link__detach_fd;
10591 
10592 	attach_type = bpf_program__get_expected_attach_type(prog);
10593 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
10594 	if (link_fd < 0) {
10595 		link_fd = -errno;
10596 		free(link);
10597 		pr_warn("prog '%s': failed to attach to %s: %s\n",
10598 			prog->name, target_name,
10599 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10600 		return libbpf_err_ptr(link_fd);
10601 	}
10602 	link->fd = link_fd;
10603 	return link;
10604 }
10605 
10606 struct bpf_link *
10607 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
10608 {
10609 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
10610 }
10611 
10612 struct bpf_link *
10613 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
10614 {
10615 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
10616 }
10617 
10618 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
10619 {
10620 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
10621 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
10622 }
10623 
10624 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
10625 					      int target_fd,
10626 					      const char *attach_func_name)
10627 {
10628 	int btf_id;
10629 
10630 	if (!!target_fd != !!attach_func_name) {
10631 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
10632 			prog->name);
10633 		return libbpf_err_ptr(-EINVAL);
10634 	}
10635 
10636 	if (prog->type != BPF_PROG_TYPE_EXT) {
10637 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
10638 			prog->name);
10639 		return libbpf_err_ptr(-EINVAL);
10640 	}
10641 
10642 	if (target_fd) {
10643 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
10644 		if (btf_id < 0)
10645 			return libbpf_err_ptr(btf_id);
10646 
10647 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10648 	} else {
10649 		/* no target, so use raw_tracepoint_open for compatibility
10650 		 * with old kernels
10651 		 */
10652 		return bpf_program__attach_trace(prog);
10653 	}
10654 }
10655 
10656 struct bpf_link *
10657 bpf_program__attach_iter(struct bpf_program *prog,
10658 			 const struct bpf_iter_attach_opts *opts)
10659 {
10660 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10661 	char errmsg[STRERR_BUFSIZE];
10662 	struct bpf_link *link;
10663 	int prog_fd, link_fd;
10664 	__u32 target_fd = 0;
10665 
10666 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10667 		return libbpf_err_ptr(-EINVAL);
10668 
10669 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10670 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10671 
10672 	prog_fd = bpf_program__fd(prog);
10673 	if (prog_fd < 0) {
10674 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10675 		return libbpf_err_ptr(-EINVAL);
10676 	}
10677 
10678 	link = calloc(1, sizeof(*link));
10679 	if (!link)
10680 		return libbpf_err_ptr(-ENOMEM);
10681 	link->detach = &bpf_link__detach_fd;
10682 
10683 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10684 				  &link_create_opts);
10685 	if (link_fd < 0) {
10686 		link_fd = -errno;
10687 		free(link);
10688 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
10689 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10690 		return libbpf_err_ptr(link_fd);
10691 	}
10692 	link->fd = link_fd;
10693 	return link;
10694 }
10695 
10696 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
10697 				    struct bpf_program *prog)
10698 {
10699 	return bpf_program__attach_iter(prog, NULL);
10700 }
10701 
10702 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
10703 {
10704 	const struct bpf_sec_def *sec_def;
10705 
10706 	sec_def = find_sec_def(prog->sec_name);
10707 	if (!sec_def || !sec_def->attach_fn)
10708 		return libbpf_err_ptr(-ESRCH);
10709 
10710 	return sec_def->attach_fn(sec_def, prog);
10711 }
10712 
10713 static int bpf_link__detach_struct_ops(struct bpf_link *link)
10714 {
10715 	__u32 zero = 0;
10716 
10717 	if (bpf_map_delete_elem(link->fd, &zero))
10718 		return -errno;
10719 
10720 	return 0;
10721 }
10722 
10723 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
10724 {
10725 	struct bpf_struct_ops *st_ops;
10726 	struct bpf_link *link;
10727 	__u32 i, zero = 0;
10728 	int err;
10729 
10730 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
10731 		return libbpf_err_ptr(-EINVAL);
10732 
10733 	link = calloc(1, sizeof(*link));
10734 	if (!link)
10735 		return libbpf_err_ptr(-EINVAL);
10736 
10737 	st_ops = map->st_ops;
10738 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
10739 		struct bpf_program *prog = st_ops->progs[i];
10740 		void *kern_data;
10741 		int prog_fd;
10742 
10743 		if (!prog)
10744 			continue;
10745 
10746 		prog_fd = bpf_program__fd(prog);
10747 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
10748 		*(unsigned long *)kern_data = prog_fd;
10749 	}
10750 
10751 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
10752 	if (err) {
10753 		err = -errno;
10754 		free(link);
10755 		return libbpf_err_ptr(err);
10756 	}
10757 
10758 	link->detach = bpf_link__detach_struct_ops;
10759 	link->fd = map->fd;
10760 
10761 	return link;
10762 }
10763 
10764 enum bpf_perf_event_ret
10765 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
10766 			   void **copy_mem, size_t *copy_size,
10767 			   bpf_perf_event_print_t fn, void *private_data)
10768 {
10769 	struct perf_event_mmap_page *header = mmap_mem;
10770 	__u64 data_head = ring_buffer_read_head(header);
10771 	__u64 data_tail = header->data_tail;
10772 	void *base = ((__u8 *)header) + page_size;
10773 	int ret = LIBBPF_PERF_EVENT_CONT;
10774 	struct perf_event_header *ehdr;
10775 	size_t ehdr_size;
10776 
10777 	while (data_head != data_tail) {
10778 		ehdr = base + (data_tail & (mmap_size - 1));
10779 		ehdr_size = ehdr->size;
10780 
10781 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
10782 			void *copy_start = ehdr;
10783 			size_t len_first = base + mmap_size - copy_start;
10784 			size_t len_secnd = ehdr_size - len_first;
10785 
10786 			if (*copy_size < ehdr_size) {
10787 				free(*copy_mem);
10788 				*copy_mem = malloc(ehdr_size);
10789 				if (!*copy_mem) {
10790 					*copy_size = 0;
10791 					ret = LIBBPF_PERF_EVENT_ERROR;
10792 					break;
10793 				}
10794 				*copy_size = ehdr_size;
10795 			}
10796 
10797 			memcpy(*copy_mem, copy_start, len_first);
10798 			memcpy(*copy_mem + len_first, base, len_secnd);
10799 			ehdr = *copy_mem;
10800 		}
10801 
10802 		ret = fn(ehdr, private_data);
10803 		data_tail += ehdr_size;
10804 		if (ret != LIBBPF_PERF_EVENT_CONT)
10805 			break;
10806 	}
10807 
10808 	ring_buffer_write_tail(header, data_tail);
10809 	return libbpf_err(ret);
10810 }
10811 
10812 struct perf_buffer;
10813 
10814 struct perf_buffer_params {
10815 	struct perf_event_attr *attr;
10816 	/* if event_cb is specified, it takes precendence */
10817 	perf_buffer_event_fn event_cb;
10818 	/* sample_cb and lost_cb are higher-level common-case callbacks */
10819 	perf_buffer_sample_fn sample_cb;
10820 	perf_buffer_lost_fn lost_cb;
10821 	void *ctx;
10822 	int cpu_cnt;
10823 	int *cpus;
10824 	int *map_keys;
10825 };
10826 
10827 struct perf_cpu_buf {
10828 	struct perf_buffer *pb;
10829 	void *base; /* mmap()'ed memory */
10830 	void *buf; /* for reconstructing segmented data */
10831 	size_t buf_size;
10832 	int fd;
10833 	int cpu;
10834 	int map_key;
10835 };
10836 
10837 struct perf_buffer {
10838 	perf_buffer_event_fn event_cb;
10839 	perf_buffer_sample_fn sample_cb;
10840 	perf_buffer_lost_fn lost_cb;
10841 	void *ctx; /* passed into callbacks */
10842 
10843 	size_t page_size;
10844 	size_t mmap_size;
10845 	struct perf_cpu_buf **cpu_bufs;
10846 	struct epoll_event *events;
10847 	int cpu_cnt; /* number of allocated CPU buffers */
10848 	int epoll_fd; /* perf event FD */
10849 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
10850 };
10851 
10852 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
10853 				      struct perf_cpu_buf *cpu_buf)
10854 {
10855 	if (!cpu_buf)
10856 		return;
10857 	if (cpu_buf->base &&
10858 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
10859 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
10860 	if (cpu_buf->fd >= 0) {
10861 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
10862 		close(cpu_buf->fd);
10863 	}
10864 	free(cpu_buf->buf);
10865 	free(cpu_buf);
10866 }
10867 
10868 void perf_buffer__free(struct perf_buffer *pb)
10869 {
10870 	int i;
10871 
10872 	if (IS_ERR_OR_NULL(pb))
10873 		return;
10874 	if (pb->cpu_bufs) {
10875 		for (i = 0; i < pb->cpu_cnt; i++) {
10876 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10877 
10878 			if (!cpu_buf)
10879 				continue;
10880 
10881 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10882 			perf_buffer__free_cpu_buf(pb, cpu_buf);
10883 		}
10884 		free(pb->cpu_bufs);
10885 	}
10886 	if (pb->epoll_fd >= 0)
10887 		close(pb->epoll_fd);
10888 	free(pb->events);
10889 	free(pb);
10890 }
10891 
10892 static struct perf_cpu_buf *
10893 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10894 			  int cpu, int map_key)
10895 {
10896 	struct perf_cpu_buf *cpu_buf;
10897 	char msg[STRERR_BUFSIZE];
10898 	int err;
10899 
10900 	cpu_buf = calloc(1, sizeof(*cpu_buf));
10901 	if (!cpu_buf)
10902 		return ERR_PTR(-ENOMEM);
10903 
10904 	cpu_buf->pb = pb;
10905 	cpu_buf->cpu = cpu;
10906 	cpu_buf->map_key = map_key;
10907 
10908 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10909 			      -1, PERF_FLAG_FD_CLOEXEC);
10910 	if (cpu_buf->fd < 0) {
10911 		err = -errno;
10912 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10913 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10914 		goto error;
10915 	}
10916 
10917 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10918 			     PROT_READ | PROT_WRITE, MAP_SHARED,
10919 			     cpu_buf->fd, 0);
10920 	if (cpu_buf->base == MAP_FAILED) {
10921 		cpu_buf->base = NULL;
10922 		err = -errno;
10923 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10924 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10925 		goto error;
10926 	}
10927 
10928 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10929 		err = -errno;
10930 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10931 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10932 		goto error;
10933 	}
10934 
10935 	return cpu_buf;
10936 
10937 error:
10938 	perf_buffer__free_cpu_buf(pb, cpu_buf);
10939 	return (struct perf_cpu_buf *)ERR_PTR(err);
10940 }
10941 
10942 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10943 					      struct perf_buffer_params *p);
10944 
10945 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10946 				     const struct perf_buffer_opts *opts)
10947 {
10948 	struct perf_buffer_params p = {};
10949 	struct perf_event_attr attr = { 0, };
10950 
10951 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10952 	attr.type = PERF_TYPE_SOFTWARE;
10953 	attr.sample_type = PERF_SAMPLE_RAW;
10954 	attr.sample_period = 1;
10955 	attr.wakeup_events = 1;
10956 
10957 	p.attr = &attr;
10958 	p.sample_cb = opts ? opts->sample_cb : NULL;
10959 	p.lost_cb = opts ? opts->lost_cb : NULL;
10960 	p.ctx = opts ? opts->ctx : NULL;
10961 
10962 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
10963 }
10964 
10965 struct perf_buffer *
10966 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10967 		     const struct perf_buffer_raw_opts *opts)
10968 {
10969 	struct perf_buffer_params p = {};
10970 
10971 	p.attr = opts->attr;
10972 	p.event_cb = opts->event_cb;
10973 	p.ctx = opts->ctx;
10974 	p.cpu_cnt = opts->cpu_cnt;
10975 	p.cpus = opts->cpus;
10976 	p.map_keys = opts->map_keys;
10977 
10978 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
10979 }
10980 
10981 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10982 					      struct perf_buffer_params *p)
10983 {
10984 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
10985 	struct bpf_map_info map;
10986 	char msg[STRERR_BUFSIZE];
10987 	struct perf_buffer *pb;
10988 	bool *online = NULL;
10989 	__u32 map_info_len;
10990 	int err, i, j, n;
10991 
10992 	if (page_cnt & (page_cnt - 1)) {
10993 		pr_warn("page count should be power of two, but is %zu\n",
10994 			page_cnt);
10995 		return ERR_PTR(-EINVAL);
10996 	}
10997 
10998 	/* best-effort sanity checks */
10999 	memset(&map, 0, sizeof(map));
11000 	map_info_len = sizeof(map);
11001 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11002 	if (err) {
11003 		err = -errno;
11004 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11005 		 * -EBADFD, -EFAULT, or -E2BIG on real error
11006 		 */
11007 		if (err != -EINVAL) {
11008 			pr_warn("failed to get map info for map FD %d: %s\n",
11009 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11010 			return ERR_PTR(err);
11011 		}
11012 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11013 			 map_fd);
11014 	} else {
11015 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11016 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11017 				map.name);
11018 			return ERR_PTR(-EINVAL);
11019 		}
11020 	}
11021 
11022 	pb = calloc(1, sizeof(*pb));
11023 	if (!pb)
11024 		return ERR_PTR(-ENOMEM);
11025 
11026 	pb->event_cb = p->event_cb;
11027 	pb->sample_cb = p->sample_cb;
11028 	pb->lost_cb = p->lost_cb;
11029 	pb->ctx = p->ctx;
11030 
11031 	pb->page_size = getpagesize();
11032 	pb->mmap_size = pb->page_size * page_cnt;
11033 	pb->map_fd = map_fd;
11034 
11035 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11036 	if (pb->epoll_fd < 0) {
11037 		err = -errno;
11038 		pr_warn("failed to create epoll instance: %s\n",
11039 			libbpf_strerror_r(err, msg, sizeof(msg)));
11040 		goto error;
11041 	}
11042 
11043 	if (p->cpu_cnt > 0) {
11044 		pb->cpu_cnt = p->cpu_cnt;
11045 	} else {
11046 		pb->cpu_cnt = libbpf_num_possible_cpus();
11047 		if (pb->cpu_cnt < 0) {
11048 			err = pb->cpu_cnt;
11049 			goto error;
11050 		}
11051 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
11052 			pb->cpu_cnt = map.max_entries;
11053 	}
11054 
11055 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11056 	if (!pb->events) {
11057 		err = -ENOMEM;
11058 		pr_warn("failed to allocate events: out of memory\n");
11059 		goto error;
11060 	}
11061 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11062 	if (!pb->cpu_bufs) {
11063 		err = -ENOMEM;
11064 		pr_warn("failed to allocate buffers: out of memory\n");
11065 		goto error;
11066 	}
11067 
11068 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11069 	if (err) {
11070 		pr_warn("failed to get online CPU mask: %d\n", err);
11071 		goto error;
11072 	}
11073 
11074 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11075 		struct perf_cpu_buf *cpu_buf;
11076 		int cpu, map_key;
11077 
11078 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11079 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11080 
11081 		/* in case user didn't explicitly requested particular CPUs to
11082 		 * be attached to, skip offline/not present CPUs
11083 		 */
11084 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11085 			continue;
11086 
11087 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11088 		if (IS_ERR(cpu_buf)) {
11089 			err = PTR_ERR(cpu_buf);
11090 			goto error;
11091 		}
11092 
11093 		pb->cpu_bufs[j] = cpu_buf;
11094 
11095 		err = bpf_map_update_elem(pb->map_fd, &map_key,
11096 					  &cpu_buf->fd, 0);
11097 		if (err) {
11098 			err = -errno;
11099 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11100 				cpu, map_key, cpu_buf->fd,
11101 				libbpf_strerror_r(err, msg, sizeof(msg)));
11102 			goto error;
11103 		}
11104 
11105 		pb->events[j].events = EPOLLIN;
11106 		pb->events[j].data.ptr = cpu_buf;
11107 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11108 			      &pb->events[j]) < 0) {
11109 			err = -errno;
11110 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11111 				cpu, cpu_buf->fd,
11112 				libbpf_strerror_r(err, msg, sizeof(msg)));
11113 			goto error;
11114 		}
11115 		j++;
11116 	}
11117 	pb->cpu_cnt = j;
11118 	free(online);
11119 
11120 	return pb;
11121 
11122 error:
11123 	free(online);
11124 	if (pb)
11125 		perf_buffer__free(pb);
11126 	return ERR_PTR(err);
11127 }
11128 
11129 struct perf_sample_raw {
11130 	struct perf_event_header header;
11131 	uint32_t size;
11132 	char data[];
11133 };
11134 
11135 struct perf_sample_lost {
11136 	struct perf_event_header header;
11137 	uint64_t id;
11138 	uint64_t lost;
11139 	uint64_t sample_id;
11140 };
11141 
11142 static enum bpf_perf_event_ret
11143 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11144 {
11145 	struct perf_cpu_buf *cpu_buf = ctx;
11146 	struct perf_buffer *pb = cpu_buf->pb;
11147 	void *data = e;
11148 
11149 	/* user wants full control over parsing perf event */
11150 	if (pb->event_cb)
11151 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11152 
11153 	switch (e->type) {
11154 	case PERF_RECORD_SAMPLE: {
11155 		struct perf_sample_raw *s = data;
11156 
11157 		if (pb->sample_cb)
11158 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11159 		break;
11160 	}
11161 	case PERF_RECORD_LOST: {
11162 		struct perf_sample_lost *s = data;
11163 
11164 		if (pb->lost_cb)
11165 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11166 		break;
11167 	}
11168 	default:
11169 		pr_warn("unknown perf sample type %d\n", e->type);
11170 		return LIBBPF_PERF_EVENT_ERROR;
11171 	}
11172 	return LIBBPF_PERF_EVENT_CONT;
11173 }
11174 
11175 static int perf_buffer__process_records(struct perf_buffer *pb,
11176 					struct perf_cpu_buf *cpu_buf)
11177 {
11178 	enum bpf_perf_event_ret ret;
11179 
11180 	ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11181 					 pb->page_size, &cpu_buf->buf,
11182 					 &cpu_buf->buf_size,
11183 					 perf_buffer__process_record, cpu_buf);
11184 	if (ret != LIBBPF_PERF_EVENT_CONT)
11185 		return ret;
11186 	return 0;
11187 }
11188 
11189 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11190 {
11191 	return pb->epoll_fd;
11192 }
11193 
11194 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11195 {
11196 	int i, cnt, err;
11197 
11198 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11199 	if (cnt < 0)
11200 		return -errno;
11201 
11202 	for (i = 0; i < cnt; i++) {
11203 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11204 
11205 		err = perf_buffer__process_records(pb, cpu_buf);
11206 		if (err) {
11207 			pr_warn("error while processing records: %d\n", err);
11208 			return libbpf_err(err);
11209 		}
11210 	}
11211 	return cnt;
11212 }
11213 
11214 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11215  * manager.
11216  */
11217 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11218 {
11219 	return pb->cpu_cnt;
11220 }
11221 
11222 /*
11223  * Return perf_event FD of a ring buffer in *buf_idx* slot of
11224  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11225  * select()/poll()/epoll() Linux syscalls.
11226  */
11227 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11228 {
11229 	struct perf_cpu_buf *cpu_buf;
11230 
11231 	if (buf_idx >= pb->cpu_cnt)
11232 		return libbpf_err(-EINVAL);
11233 
11234 	cpu_buf = pb->cpu_bufs[buf_idx];
11235 	if (!cpu_buf)
11236 		return libbpf_err(-ENOENT);
11237 
11238 	return cpu_buf->fd;
11239 }
11240 
11241 /*
11242  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11243  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11244  * consume, do nothing and return success.
11245  * Returns:
11246  *   - 0 on success;
11247  *   - <0 on failure.
11248  */
11249 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11250 {
11251 	struct perf_cpu_buf *cpu_buf;
11252 
11253 	if (buf_idx >= pb->cpu_cnt)
11254 		return libbpf_err(-EINVAL);
11255 
11256 	cpu_buf = pb->cpu_bufs[buf_idx];
11257 	if (!cpu_buf)
11258 		return libbpf_err(-ENOENT);
11259 
11260 	return perf_buffer__process_records(pb, cpu_buf);
11261 }
11262 
11263 int perf_buffer__consume(struct perf_buffer *pb)
11264 {
11265 	int i, err;
11266 
11267 	for (i = 0; i < pb->cpu_cnt; i++) {
11268 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11269 
11270 		if (!cpu_buf)
11271 			continue;
11272 
11273 		err = perf_buffer__process_records(pb, cpu_buf);
11274 		if (err) {
11275 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11276 			return libbpf_err(err);
11277 		}
11278 	}
11279 	return 0;
11280 }
11281 
11282 struct bpf_prog_info_array_desc {
11283 	int	array_offset;	/* e.g. offset of jited_prog_insns */
11284 	int	count_offset;	/* e.g. offset of jited_prog_len */
11285 	int	size_offset;	/* > 0: offset of rec size,
11286 				 * < 0: fix size of -size_offset
11287 				 */
11288 };
11289 
11290 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
11291 	[BPF_PROG_INFO_JITED_INSNS] = {
11292 		offsetof(struct bpf_prog_info, jited_prog_insns),
11293 		offsetof(struct bpf_prog_info, jited_prog_len),
11294 		-1,
11295 	},
11296 	[BPF_PROG_INFO_XLATED_INSNS] = {
11297 		offsetof(struct bpf_prog_info, xlated_prog_insns),
11298 		offsetof(struct bpf_prog_info, xlated_prog_len),
11299 		-1,
11300 	},
11301 	[BPF_PROG_INFO_MAP_IDS] = {
11302 		offsetof(struct bpf_prog_info, map_ids),
11303 		offsetof(struct bpf_prog_info, nr_map_ids),
11304 		-(int)sizeof(__u32),
11305 	},
11306 	[BPF_PROG_INFO_JITED_KSYMS] = {
11307 		offsetof(struct bpf_prog_info, jited_ksyms),
11308 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
11309 		-(int)sizeof(__u64),
11310 	},
11311 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
11312 		offsetof(struct bpf_prog_info, jited_func_lens),
11313 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
11314 		-(int)sizeof(__u32),
11315 	},
11316 	[BPF_PROG_INFO_FUNC_INFO] = {
11317 		offsetof(struct bpf_prog_info, func_info),
11318 		offsetof(struct bpf_prog_info, nr_func_info),
11319 		offsetof(struct bpf_prog_info, func_info_rec_size),
11320 	},
11321 	[BPF_PROG_INFO_LINE_INFO] = {
11322 		offsetof(struct bpf_prog_info, line_info),
11323 		offsetof(struct bpf_prog_info, nr_line_info),
11324 		offsetof(struct bpf_prog_info, line_info_rec_size),
11325 	},
11326 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
11327 		offsetof(struct bpf_prog_info, jited_line_info),
11328 		offsetof(struct bpf_prog_info, nr_jited_line_info),
11329 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
11330 	},
11331 	[BPF_PROG_INFO_PROG_TAGS] = {
11332 		offsetof(struct bpf_prog_info, prog_tags),
11333 		offsetof(struct bpf_prog_info, nr_prog_tags),
11334 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
11335 	},
11336 
11337 };
11338 
11339 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
11340 					   int offset)
11341 {
11342 	__u32 *array = (__u32 *)info;
11343 
11344 	if (offset >= 0)
11345 		return array[offset / sizeof(__u32)];
11346 	return -(int)offset;
11347 }
11348 
11349 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
11350 					   int offset)
11351 {
11352 	__u64 *array = (__u64 *)info;
11353 
11354 	if (offset >= 0)
11355 		return array[offset / sizeof(__u64)];
11356 	return -(int)offset;
11357 }
11358 
11359 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
11360 					 __u32 val)
11361 {
11362 	__u32 *array = (__u32 *)info;
11363 
11364 	if (offset >= 0)
11365 		array[offset / sizeof(__u32)] = val;
11366 }
11367 
11368 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
11369 					 __u64 val)
11370 {
11371 	__u64 *array = (__u64 *)info;
11372 
11373 	if (offset >= 0)
11374 		array[offset / sizeof(__u64)] = val;
11375 }
11376 
11377 struct bpf_prog_info_linear *
11378 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
11379 {
11380 	struct bpf_prog_info_linear *info_linear;
11381 	struct bpf_prog_info info = {};
11382 	__u32 info_len = sizeof(info);
11383 	__u32 data_len = 0;
11384 	int i, err;
11385 	void *ptr;
11386 
11387 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
11388 		return libbpf_err_ptr(-EINVAL);
11389 
11390 	/* step 1: get array dimensions */
11391 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
11392 	if (err) {
11393 		pr_debug("can't get prog info: %s", strerror(errno));
11394 		return libbpf_err_ptr(-EFAULT);
11395 	}
11396 
11397 	/* step 2: calculate total size of all arrays */
11398 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11399 		bool include_array = (arrays & (1UL << i)) > 0;
11400 		struct bpf_prog_info_array_desc *desc;
11401 		__u32 count, size;
11402 
11403 		desc = bpf_prog_info_array_desc + i;
11404 
11405 		/* kernel is too old to support this field */
11406 		if (info_len < desc->array_offset + sizeof(__u32) ||
11407 		    info_len < desc->count_offset + sizeof(__u32) ||
11408 		    (desc->size_offset > 0 && info_len < desc->size_offset))
11409 			include_array = false;
11410 
11411 		if (!include_array) {
11412 			arrays &= ~(1UL << i);	/* clear the bit */
11413 			continue;
11414 		}
11415 
11416 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11417 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11418 
11419 		data_len += count * size;
11420 	}
11421 
11422 	/* step 3: allocate continuous memory */
11423 	data_len = roundup(data_len, sizeof(__u64));
11424 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
11425 	if (!info_linear)
11426 		return libbpf_err_ptr(-ENOMEM);
11427 
11428 	/* step 4: fill data to info_linear->info */
11429 	info_linear->arrays = arrays;
11430 	memset(&info_linear->info, 0, sizeof(info));
11431 	ptr = info_linear->data;
11432 
11433 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11434 		struct bpf_prog_info_array_desc *desc;
11435 		__u32 count, size;
11436 
11437 		if ((arrays & (1UL << i)) == 0)
11438 			continue;
11439 
11440 		desc  = bpf_prog_info_array_desc + i;
11441 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11442 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11443 		bpf_prog_info_set_offset_u32(&info_linear->info,
11444 					     desc->count_offset, count);
11445 		bpf_prog_info_set_offset_u32(&info_linear->info,
11446 					     desc->size_offset, size);
11447 		bpf_prog_info_set_offset_u64(&info_linear->info,
11448 					     desc->array_offset,
11449 					     ptr_to_u64(ptr));
11450 		ptr += count * size;
11451 	}
11452 
11453 	/* step 5: call syscall again to get required arrays */
11454 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
11455 	if (err) {
11456 		pr_debug("can't get prog info: %s", strerror(errno));
11457 		free(info_linear);
11458 		return libbpf_err_ptr(-EFAULT);
11459 	}
11460 
11461 	/* step 6: verify the data */
11462 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11463 		struct bpf_prog_info_array_desc *desc;
11464 		__u32 v1, v2;
11465 
11466 		if ((arrays & (1UL << i)) == 0)
11467 			continue;
11468 
11469 		desc = bpf_prog_info_array_desc + i;
11470 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11471 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11472 						   desc->count_offset);
11473 		if (v1 != v2)
11474 			pr_warn("%s: mismatch in element count\n", __func__);
11475 
11476 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11477 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11478 						   desc->size_offset);
11479 		if (v1 != v2)
11480 			pr_warn("%s: mismatch in rec size\n", __func__);
11481 	}
11482 
11483 	/* step 7: update info_len and data_len */
11484 	info_linear->info_len = sizeof(struct bpf_prog_info);
11485 	info_linear->data_len = data_len;
11486 
11487 	return info_linear;
11488 }
11489 
11490 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
11491 {
11492 	int i;
11493 
11494 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11495 		struct bpf_prog_info_array_desc *desc;
11496 		__u64 addr, offs;
11497 
11498 		if ((info_linear->arrays & (1UL << i)) == 0)
11499 			continue;
11500 
11501 		desc = bpf_prog_info_array_desc + i;
11502 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
11503 						     desc->array_offset);
11504 		offs = addr - ptr_to_u64(info_linear->data);
11505 		bpf_prog_info_set_offset_u64(&info_linear->info,
11506 					     desc->array_offset, offs);
11507 	}
11508 }
11509 
11510 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
11511 {
11512 	int i;
11513 
11514 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11515 		struct bpf_prog_info_array_desc *desc;
11516 		__u64 addr, offs;
11517 
11518 		if ((info_linear->arrays & (1UL << i)) == 0)
11519 			continue;
11520 
11521 		desc = bpf_prog_info_array_desc + i;
11522 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
11523 						     desc->array_offset);
11524 		addr = offs + ptr_to_u64(info_linear->data);
11525 		bpf_prog_info_set_offset_u64(&info_linear->info,
11526 					     desc->array_offset, addr);
11527 	}
11528 }
11529 
11530 int bpf_program__set_attach_target(struct bpf_program *prog,
11531 				   int attach_prog_fd,
11532 				   const char *attach_func_name)
11533 {
11534 	int btf_obj_fd = 0, btf_id = 0, err;
11535 
11536 	if (!prog || attach_prog_fd < 0 || !attach_func_name)
11537 		return libbpf_err(-EINVAL);
11538 
11539 	if (prog->obj->loaded)
11540 		return libbpf_err(-EINVAL);
11541 
11542 	if (attach_prog_fd) {
11543 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
11544 						 attach_prog_fd);
11545 		if (btf_id < 0)
11546 			return libbpf_err(btf_id);
11547 	} else {
11548 		/* load btf_vmlinux, if not yet */
11549 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
11550 		if (err)
11551 			return libbpf_err(err);
11552 		err = find_kernel_btf_id(prog->obj, attach_func_name,
11553 					 prog->expected_attach_type,
11554 					 &btf_obj_fd, &btf_id);
11555 		if (err)
11556 			return libbpf_err(err);
11557 	}
11558 
11559 	prog->attach_btf_id = btf_id;
11560 	prog->attach_btf_obj_fd = btf_obj_fd;
11561 	prog->attach_prog_fd = attach_prog_fd;
11562 	return 0;
11563 }
11564 
11565 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
11566 {
11567 	int err = 0, n, len, start, end = -1;
11568 	bool *tmp;
11569 
11570 	*mask = NULL;
11571 	*mask_sz = 0;
11572 
11573 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
11574 	while (*s) {
11575 		if (*s == ',' || *s == '\n') {
11576 			s++;
11577 			continue;
11578 		}
11579 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
11580 		if (n <= 0 || n > 2) {
11581 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
11582 			err = -EINVAL;
11583 			goto cleanup;
11584 		} else if (n == 1) {
11585 			end = start;
11586 		}
11587 		if (start < 0 || start > end) {
11588 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
11589 				start, end, s);
11590 			err = -EINVAL;
11591 			goto cleanup;
11592 		}
11593 		tmp = realloc(*mask, end + 1);
11594 		if (!tmp) {
11595 			err = -ENOMEM;
11596 			goto cleanup;
11597 		}
11598 		*mask = tmp;
11599 		memset(tmp + *mask_sz, 0, start - *mask_sz);
11600 		memset(tmp + start, 1, end - start + 1);
11601 		*mask_sz = end + 1;
11602 		s += len;
11603 	}
11604 	if (!*mask_sz) {
11605 		pr_warn("Empty CPU range\n");
11606 		return -EINVAL;
11607 	}
11608 	return 0;
11609 cleanup:
11610 	free(*mask);
11611 	*mask = NULL;
11612 	return err;
11613 }
11614 
11615 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
11616 {
11617 	int fd, err = 0, len;
11618 	char buf[128];
11619 
11620 	fd = open(fcpu, O_RDONLY);
11621 	if (fd < 0) {
11622 		err = -errno;
11623 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
11624 		return err;
11625 	}
11626 	len = read(fd, buf, sizeof(buf));
11627 	close(fd);
11628 	if (len <= 0) {
11629 		err = len ? -errno : -EINVAL;
11630 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
11631 		return err;
11632 	}
11633 	if (len >= sizeof(buf)) {
11634 		pr_warn("CPU mask is too big in file %s\n", fcpu);
11635 		return -E2BIG;
11636 	}
11637 	buf[len] = '\0';
11638 
11639 	return parse_cpu_mask_str(buf, mask, mask_sz);
11640 }
11641 
11642 int libbpf_num_possible_cpus(void)
11643 {
11644 	static const char *fcpu = "/sys/devices/system/cpu/possible";
11645 	static int cpus;
11646 	int err, n, i, tmp_cpus;
11647 	bool *mask;
11648 
11649 	tmp_cpus = READ_ONCE(cpus);
11650 	if (tmp_cpus > 0)
11651 		return tmp_cpus;
11652 
11653 	err = parse_cpu_mask_file(fcpu, &mask, &n);
11654 	if (err)
11655 		return libbpf_err(err);
11656 
11657 	tmp_cpus = 0;
11658 	for (i = 0; i < n; i++) {
11659 		if (mask[i])
11660 			tmp_cpus++;
11661 	}
11662 	free(mask);
11663 
11664 	WRITE_ONCE(cpus, tmp_cpus);
11665 	return tmp_cpus;
11666 }
11667 
11668 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
11669 			      const struct bpf_object_open_opts *opts)
11670 {
11671 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
11672 		.object_name = s->name,
11673 	);
11674 	struct bpf_object *obj;
11675 	int i, err;
11676 
11677 	/* Attempt to preserve opts->object_name, unless overriden by user
11678 	 * explicitly. Overwriting object name for skeletons is discouraged,
11679 	 * as it breaks global data maps, because they contain object name
11680 	 * prefix as their own map name prefix. When skeleton is generated,
11681 	 * bpftool is making an assumption that this name will stay the same.
11682 	 */
11683 	if (opts) {
11684 		memcpy(&skel_opts, opts, sizeof(*opts));
11685 		if (!opts->object_name)
11686 			skel_opts.object_name = s->name;
11687 	}
11688 
11689 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
11690 	err = libbpf_get_error(obj);
11691 	if (err) {
11692 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
11693 			s->name, err);
11694 		return libbpf_err(err);
11695 	}
11696 
11697 	*s->obj = obj;
11698 
11699 	for (i = 0; i < s->map_cnt; i++) {
11700 		struct bpf_map **map = s->maps[i].map;
11701 		const char *name = s->maps[i].name;
11702 		void **mmaped = s->maps[i].mmaped;
11703 
11704 		*map = bpf_object__find_map_by_name(obj, name);
11705 		if (!*map) {
11706 			pr_warn("failed to find skeleton map '%s'\n", name);
11707 			return libbpf_err(-ESRCH);
11708 		}
11709 
11710 		/* externs shouldn't be pre-setup from user code */
11711 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
11712 			*mmaped = (*map)->mmaped;
11713 	}
11714 
11715 	for (i = 0; i < s->prog_cnt; i++) {
11716 		struct bpf_program **prog = s->progs[i].prog;
11717 		const char *name = s->progs[i].name;
11718 
11719 		*prog = bpf_object__find_program_by_name(obj, name);
11720 		if (!*prog) {
11721 			pr_warn("failed to find skeleton program '%s'\n", name);
11722 			return libbpf_err(-ESRCH);
11723 		}
11724 	}
11725 
11726 	return 0;
11727 }
11728 
11729 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
11730 {
11731 	int i, err;
11732 
11733 	err = bpf_object__load(*s->obj);
11734 	if (err) {
11735 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
11736 		return libbpf_err(err);
11737 	}
11738 
11739 	for (i = 0; i < s->map_cnt; i++) {
11740 		struct bpf_map *map = *s->maps[i].map;
11741 		size_t mmap_sz = bpf_map_mmap_sz(map);
11742 		int prot, map_fd = bpf_map__fd(map);
11743 		void **mmaped = s->maps[i].mmaped;
11744 
11745 		if (!mmaped)
11746 			continue;
11747 
11748 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
11749 			*mmaped = NULL;
11750 			continue;
11751 		}
11752 
11753 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
11754 			prot = PROT_READ;
11755 		else
11756 			prot = PROT_READ | PROT_WRITE;
11757 
11758 		/* Remap anonymous mmap()-ed "map initialization image" as
11759 		 * a BPF map-backed mmap()-ed memory, but preserving the same
11760 		 * memory address. This will cause kernel to change process'
11761 		 * page table to point to a different piece of kernel memory,
11762 		 * but from userspace point of view memory address (and its
11763 		 * contents, being identical at this point) will stay the
11764 		 * same. This mapping will be released by bpf_object__close()
11765 		 * as per normal clean up procedure, so we don't need to worry
11766 		 * about it from skeleton's clean up perspective.
11767 		 */
11768 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
11769 				MAP_SHARED | MAP_FIXED, map_fd, 0);
11770 		if (*mmaped == MAP_FAILED) {
11771 			err = -errno;
11772 			*mmaped = NULL;
11773 			pr_warn("failed to re-mmap() map '%s': %d\n",
11774 				 bpf_map__name(map), err);
11775 			return libbpf_err(err);
11776 		}
11777 	}
11778 
11779 	return 0;
11780 }
11781 
11782 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
11783 {
11784 	int i, err;
11785 
11786 	for (i = 0; i < s->prog_cnt; i++) {
11787 		struct bpf_program *prog = *s->progs[i].prog;
11788 		struct bpf_link **link = s->progs[i].link;
11789 		const struct bpf_sec_def *sec_def;
11790 
11791 		if (!prog->load)
11792 			continue;
11793 
11794 		sec_def = find_sec_def(prog->sec_name);
11795 		if (!sec_def || !sec_def->attach_fn)
11796 			continue;
11797 
11798 		*link = sec_def->attach_fn(sec_def, prog);
11799 		err = libbpf_get_error(*link);
11800 		if (err) {
11801 			pr_warn("failed to auto-attach program '%s': %d\n",
11802 				bpf_program__name(prog), err);
11803 			return libbpf_err(err);
11804 		}
11805 	}
11806 
11807 	return 0;
11808 }
11809 
11810 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
11811 {
11812 	int i;
11813 
11814 	for (i = 0; i < s->prog_cnt; i++) {
11815 		struct bpf_link **link = s->progs[i].link;
11816 
11817 		bpf_link__destroy(*link);
11818 		*link = NULL;
11819 	}
11820 }
11821 
11822 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
11823 {
11824 	if (s->progs)
11825 		bpf_object__detach_skeleton(s);
11826 	if (s->obj)
11827 		bpf_object__close(*s->obj);
11828 	free(s->maps);
11829 	free(s->progs);
11830 	free(s);
11831 }
11832