1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <linux/version.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const link_type_name[] = { 122 [BPF_LINK_TYPE_UNSPEC] = "unspec", 123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 124 [BPF_LINK_TYPE_TRACING] = "tracing", 125 [BPF_LINK_TYPE_CGROUP] = "cgroup", 126 [BPF_LINK_TYPE_ITER] = "iter", 127 [BPF_LINK_TYPE_NETNS] = "netns", 128 [BPF_LINK_TYPE_XDP] = "xdp", 129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 132 }; 133 134 static const char * const map_type_name[] = { 135 [BPF_MAP_TYPE_UNSPEC] = "unspec", 136 [BPF_MAP_TYPE_HASH] = "hash", 137 [BPF_MAP_TYPE_ARRAY] = "array", 138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 149 [BPF_MAP_TYPE_DEVMAP] = "devmap", 150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 152 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 153 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 158 [BPF_MAP_TYPE_QUEUE] = "queue", 159 [BPF_MAP_TYPE_STACK] = "stack", 160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 166 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 167 }; 168 169 static const char * const prog_type_name[] = { 170 [BPF_PROG_TYPE_UNSPEC] = "unspec", 171 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 172 [BPF_PROG_TYPE_KPROBE] = "kprobe", 173 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 174 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 175 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 176 [BPF_PROG_TYPE_XDP] = "xdp", 177 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 178 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 179 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 180 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 181 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 182 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 183 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 184 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 185 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 186 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 187 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 188 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 189 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 190 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 191 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 192 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 193 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 194 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 195 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 196 [BPF_PROG_TYPE_TRACING] = "tracing", 197 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 198 [BPF_PROG_TYPE_EXT] = "ext", 199 [BPF_PROG_TYPE_LSM] = "lsm", 200 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 201 [BPF_PROG_TYPE_SYSCALL] = "syscall", 202 }; 203 204 static int __base_pr(enum libbpf_print_level level, const char *format, 205 va_list args) 206 { 207 if (level == LIBBPF_DEBUG) 208 return 0; 209 210 return vfprintf(stderr, format, args); 211 } 212 213 static libbpf_print_fn_t __libbpf_pr = __base_pr; 214 215 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 216 { 217 libbpf_print_fn_t old_print_fn = __libbpf_pr; 218 219 __libbpf_pr = fn; 220 return old_print_fn; 221 } 222 223 __printf(2, 3) 224 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 225 { 226 va_list args; 227 int old_errno; 228 229 if (!__libbpf_pr) 230 return; 231 232 old_errno = errno; 233 234 va_start(args, format); 235 __libbpf_pr(level, format, args); 236 va_end(args); 237 238 errno = old_errno; 239 } 240 241 static void pr_perm_msg(int err) 242 { 243 struct rlimit limit; 244 char buf[100]; 245 246 if (err != -EPERM || geteuid() != 0) 247 return; 248 249 err = getrlimit(RLIMIT_MEMLOCK, &limit); 250 if (err) 251 return; 252 253 if (limit.rlim_cur == RLIM_INFINITY) 254 return; 255 256 if (limit.rlim_cur < 1024) 257 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 258 else if (limit.rlim_cur < 1024*1024) 259 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 260 else 261 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 262 263 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 264 buf); 265 } 266 267 #define STRERR_BUFSIZE 128 268 269 /* Copied from tools/perf/util/util.h */ 270 #ifndef zfree 271 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 272 #endif 273 274 #ifndef zclose 275 # define zclose(fd) ({ \ 276 int ___err = 0; \ 277 if ((fd) >= 0) \ 278 ___err = close((fd)); \ 279 fd = -1; \ 280 ___err; }) 281 #endif 282 283 static inline __u64 ptr_to_u64(const void *ptr) 284 { 285 return (__u64) (unsigned long) ptr; 286 } 287 288 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 289 { 290 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 291 return 0; 292 } 293 294 __u32 libbpf_major_version(void) 295 { 296 return LIBBPF_MAJOR_VERSION; 297 } 298 299 __u32 libbpf_minor_version(void) 300 { 301 return LIBBPF_MINOR_VERSION; 302 } 303 304 const char *libbpf_version_string(void) 305 { 306 #define __S(X) #X 307 #define _S(X) __S(X) 308 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 309 #undef _S 310 #undef __S 311 } 312 313 enum reloc_type { 314 RELO_LD64, 315 RELO_CALL, 316 RELO_DATA, 317 RELO_EXTERN_VAR, 318 RELO_EXTERN_FUNC, 319 RELO_SUBPROG_ADDR, 320 RELO_CORE, 321 }; 322 323 struct reloc_desc { 324 enum reloc_type type; 325 int insn_idx; 326 union { 327 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 328 struct { 329 int map_idx; 330 int sym_off; 331 }; 332 }; 333 }; 334 335 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 336 enum sec_def_flags { 337 SEC_NONE = 0, 338 /* expected_attach_type is optional, if kernel doesn't support that */ 339 SEC_EXP_ATTACH_OPT = 1, 340 /* legacy, only used by libbpf_get_type_names() and 341 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 342 * This used to be associated with cgroup (and few other) BPF programs 343 * that were attachable through BPF_PROG_ATTACH command. Pretty 344 * meaningless nowadays, though. 345 */ 346 SEC_ATTACHABLE = 2, 347 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 348 /* attachment target is specified through BTF ID in either kernel or 349 * other BPF program's BTF object */ 350 SEC_ATTACH_BTF = 4, 351 /* BPF program type allows sleeping/blocking in kernel */ 352 SEC_SLEEPABLE = 8, 353 /* BPF program support non-linear XDP buffer */ 354 SEC_XDP_FRAGS = 16, 355 }; 356 357 struct bpf_sec_def { 358 char *sec; 359 enum bpf_prog_type prog_type; 360 enum bpf_attach_type expected_attach_type; 361 long cookie; 362 int handler_id; 363 364 libbpf_prog_setup_fn_t prog_setup_fn; 365 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 366 libbpf_prog_attach_fn_t prog_attach_fn; 367 }; 368 369 /* 370 * bpf_prog should be a better name but it has been used in 371 * linux/filter.h. 372 */ 373 struct bpf_program { 374 char *name; 375 char *sec_name; 376 size_t sec_idx; 377 const struct bpf_sec_def *sec_def; 378 /* this program's instruction offset (in number of instructions) 379 * within its containing ELF section 380 */ 381 size_t sec_insn_off; 382 /* number of original instructions in ELF section belonging to this 383 * program, not taking into account subprogram instructions possible 384 * appended later during relocation 385 */ 386 size_t sec_insn_cnt; 387 /* Offset (in number of instructions) of the start of instruction 388 * belonging to this BPF program within its containing main BPF 389 * program. For the entry-point (main) BPF program, this is always 390 * zero. For a sub-program, this gets reset before each of main BPF 391 * programs are processed and relocated and is used to determined 392 * whether sub-program was already appended to the main program, and 393 * if yes, at which instruction offset. 394 */ 395 size_t sub_insn_off; 396 397 /* instructions that belong to BPF program; insns[0] is located at 398 * sec_insn_off instruction within its ELF section in ELF file, so 399 * when mapping ELF file instruction index to the local instruction, 400 * one needs to subtract sec_insn_off; and vice versa. 401 */ 402 struct bpf_insn *insns; 403 /* actual number of instruction in this BPF program's image; for 404 * entry-point BPF programs this includes the size of main program 405 * itself plus all the used sub-programs, appended at the end 406 */ 407 size_t insns_cnt; 408 409 struct reloc_desc *reloc_desc; 410 int nr_reloc; 411 412 /* BPF verifier log settings */ 413 char *log_buf; 414 size_t log_size; 415 __u32 log_level; 416 417 struct bpf_object *obj; 418 419 int fd; 420 bool autoload; 421 bool autoattach; 422 bool mark_btf_static; 423 enum bpf_prog_type type; 424 enum bpf_attach_type expected_attach_type; 425 426 int prog_ifindex; 427 __u32 attach_btf_obj_fd; 428 __u32 attach_btf_id; 429 __u32 attach_prog_fd; 430 431 void *func_info; 432 __u32 func_info_rec_size; 433 __u32 func_info_cnt; 434 435 void *line_info; 436 __u32 line_info_rec_size; 437 __u32 line_info_cnt; 438 __u32 prog_flags; 439 }; 440 441 struct bpf_struct_ops { 442 const char *tname; 443 const struct btf_type *type; 444 struct bpf_program **progs; 445 __u32 *kern_func_off; 446 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 447 void *data; 448 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 449 * btf_vmlinux's format. 450 * struct bpf_struct_ops_tcp_congestion_ops { 451 * [... some other kernel fields ...] 452 * struct tcp_congestion_ops data; 453 * } 454 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 455 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 456 * from "data". 457 */ 458 void *kern_vdata; 459 __u32 type_id; 460 }; 461 462 #define DATA_SEC ".data" 463 #define BSS_SEC ".bss" 464 #define RODATA_SEC ".rodata" 465 #define KCONFIG_SEC ".kconfig" 466 #define KSYMS_SEC ".ksyms" 467 #define STRUCT_OPS_SEC ".struct_ops" 468 469 enum libbpf_map_type { 470 LIBBPF_MAP_UNSPEC, 471 LIBBPF_MAP_DATA, 472 LIBBPF_MAP_BSS, 473 LIBBPF_MAP_RODATA, 474 LIBBPF_MAP_KCONFIG, 475 }; 476 477 struct bpf_map_def { 478 unsigned int type; 479 unsigned int key_size; 480 unsigned int value_size; 481 unsigned int max_entries; 482 unsigned int map_flags; 483 }; 484 485 struct bpf_map { 486 struct bpf_object *obj; 487 char *name; 488 /* real_name is defined for special internal maps (.rodata*, 489 * .data*, .bss, .kconfig) and preserves their original ELF section 490 * name. This is important to be be able to find corresponding BTF 491 * DATASEC information. 492 */ 493 char *real_name; 494 int fd; 495 int sec_idx; 496 size_t sec_offset; 497 int map_ifindex; 498 int inner_map_fd; 499 struct bpf_map_def def; 500 __u32 numa_node; 501 __u32 btf_var_idx; 502 __u32 btf_key_type_id; 503 __u32 btf_value_type_id; 504 __u32 btf_vmlinux_value_type_id; 505 enum libbpf_map_type libbpf_type; 506 void *mmaped; 507 struct bpf_struct_ops *st_ops; 508 struct bpf_map *inner_map; 509 void **init_slots; 510 int init_slots_sz; 511 char *pin_path; 512 bool pinned; 513 bool reused; 514 bool autocreate; 515 __u64 map_extra; 516 }; 517 518 enum extern_type { 519 EXT_UNKNOWN, 520 EXT_KCFG, 521 EXT_KSYM, 522 }; 523 524 enum kcfg_type { 525 KCFG_UNKNOWN, 526 KCFG_CHAR, 527 KCFG_BOOL, 528 KCFG_INT, 529 KCFG_TRISTATE, 530 KCFG_CHAR_ARR, 531 }; 532 533 struct extern_desc { 534 enum extern_type type; 535 int sym_idx; 536 int btf_id; 537 int sec_btf_id; 538 const char *name; 539 bool is_set; 540 bool is_weak; 541 union { 542 struct { 543 enum kcfg_type type; 544 int sz; 545 int align; 546 int data_off; 547 bool is_signed; 548 } kcfg; 549 struct { 550 unsigned long long addr; 551 552 /* target btf_id of the corresponding kernel var. */ 553 int kernel_btf_obj_fd; 554 int kernel_btf_id; 555 556 /* local btf_id of the ksym extern's type. */ 557 __u32 type_id; 558 /* BTF fd index to be patched in for insn->off, this is 559 * 0 for vmlinux BTF, index in obj->fd_array for module 560 * BTF 561 */ 562 __s16 btf_fd_idx; 563 } ksym; 564 }; 565 }; 566 567 struct module_btf { 568 struct btf *btf; 569 char *name; 570 __u32 id; 571 int fd; 572 int fd_array_idx; 573 }; 574 575 enum sec_type { 576 SEC_UNUSED = 0, 577 SEC_RELO, 578 SEC_BSS, 579 SEC_DATA, 580 SEC_RODATA, 581 }; 582 583 struct elf_sec_desc { 584 enum sec_type sec_type; 585 Elf64_Shdr *shdr; 586 Elf_Data *data; 587 }; 588 589 struct elf_state { 590 int fd; 591 const void *obj_buf; 592 size_t obj_buf_sz; 593 Elf *elf; 594 Elf64_Ehdr *ehdr; 595 Elf_Data *symbols; 596 Elf_Data *st_ops_data; 597 size_t shstrndx; /* section index for section name strings */ 598 size_t strtabidx; 599 struct elf_sec_desc *secs; 600 size_t sec_cnt; 601 int btf_maps_shndx; 602 __u32 btf_maps_sec_btf_id; 603 int text_shndx; 604 int symbols_shndx; 605 int st_ops_shndx; 606 }; 607 608 struct usdt_manager; 609 610 struct bpf_object { 611 char name[BPF_OBJ_NAME_LEN]; 612 char license[64]; 613 __u32 kern_version; 614 615 struct bpf_program *programs; 616 size_t nr_programs; 617 struct bpf_map *maps; 618 size_t nr_maps; 619 size_t maps_cap; 620 621 char *kconfig; 622 struct extern_desc *externs; 623 int nr_extern; 624 int kconfig_map_idx; 625 626 bool loaded; 627 bool has_subcalls; 628 bool has_rodata; 629 630 struct bpf_gen *gen_loader; 631 632 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 633 struct elf_state efile; 634 635 struct btf *btf; 636 struct btf_ext *btf_ext; 637 638 /* Parse and load BTF vmlinux if any of the programs in the object need 639 * it at load time. 640 */ 641 struct btf *btf_vmlinux; 642 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 643 * override for vmlinux BTF. 644 */ 645 char *btf_custom_path; 646 /* vmlinux BTF override for CO-RE relocations */ 647 struct btf *btf_vmlinux_override; 648 /* Lazily initialized kernel module BTFs */ 649 struct module_btf *btf_modules; 650 bool btf_modules_loaded; 651 size_t btf_module_cnt; 652 size_t btf_module_cap; 653 654 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 655 char *log_buf; 656 size_t log_size; 657 __u32 log_level; 658 659 int *fd_array; 660 size_t fd_array_cap; 661 size_t fd_array_cnt; 662 663 struct usdt_manager *usdt_man; 664 665 char path[]; 666 }; 667 668 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 669 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 670 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 671 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 672 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 673 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 674 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 675 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 676 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 677 678 void bpf_program__unload(struct bpf_program *prog) 679 { 680 if (!prog) 681 return; 682 683 zclose(prog->fd); 684 685 zfree(&prog->func_info); 686 zfree(&prog->line_info); 687 } 688 689 static void bpf_program__exit(struct bpf_program *prog) 690 { 691 if (!prog) 692 return; 693 694 bpf_program__unload(prog); 695 zfree(&prog->name); 696 zfree(&prog->sec_name); 697 zfree(&prog->insns); 698 zfree(&prog->reloc_desc); 699 700 prog->nr_reloc = 0; 701 prog->insns_cnt = 0; 702 prog->sec_idx = -1; 703 } 704 705 static bool insn_is_subprog_call(const struct bpf_insn *insn) 706 { 707 return BPF_CLASS(insn->code) == BPF_JMP && 708 BPF_OP(insn->code) == BPF_CALL && 709 BPF_SRC(insn->code) == BPF_K && 710 insn->src_reg == BPF_PSEUDO_CALL && 711 insn->dst_reg == 0 && 712 insn->off == 0; 713 } 714 715 static bool is_call_insn(const struct bpf_insn *insn) 716 { 717 return insn->code == (BPF_JMP | BPF_CALL); 718 } 719 720 static bool insn_is_pseudo_func(struct bpf_insn *insn) 721 { 722 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 723 } 724 725 static int 726 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 727 const char *name, size_t sec_idx, const char *sec_name, 728 size_t sec_off, void *insn_data, size_t insn_data_sz) 729 { 730 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 731 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 732 sec_name, name, sec_off, insn_data_sz); 733 return -EINVAL; 734 } 735 736 memset(prog, 0, sizeof(*prog)); 737 prog->obj = obj; 738 739 prog->sec_idx = sec_idx; 740 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 741 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 742 /* insns_cnt can later be increased by appending used subprograms */ 743 prog->insns_cnt = prog->sec_insn_cnt; 744 745 prog->type = BPF_PROG_TYPE_UNSPEC; 746 prog->fd = -1; 747 748 /* libbpf's convention for SEC("?abc...") is that it's just like 749 * SEC("abc...") but the corresponding bpf_program starts out with 750 * autoload set to false. 751 */ 752 if (sec_name[0] == '?') { 753 prog->autoload = false; 754 /* from now on forget there was ? in section name */ 755 sec_name++; 756 } else { 757 prog->autoload = true; 758 } 759 760 prog->autoattach = true; 761 762 /* inherit object's log_level */ 763 prog->log_level = obj->log_level; 764 765 prog->sec_name = strdup(sec_name); 766 if (!prog->sec_name) 767 goto errout; 768 769 prog->name = strdup(name); 770 if (!prog->name) 771 goto errout; 772 773 prog->insns = malloc(insn_data_sz); 774 if (!prog->insns) 775 goto errout; 776 memcpy(prog->insns, insn_data, insn_data_sz); 777 778 return 0; 779 errout: 780 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 781 bpf_program__exit(prog); 782 return -ENOMEM; 783 } 784 785 static int 786 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 787 const char *sec_name, int sec_idx) 788 { 789 Elf_Data *symbols = obj->efile.symbols; 790 struct bpf_program *prog, *progs; 791 void *data = sec_data->d_buf; 792 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 793 int nr_progs, err, i; 794 const char *name; 795 Elf64_Sym *sym; 796 797 progs = obj->programs; 798 nr_progs = obj->nr_programs; 799 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 800 sec_off = 0; 801 802 for (i = 0; i < nr_syms; i++) { 803 sym = elf_sym_by_idx(obj, i); 804 805 if (sym->st_shndx != sec_idx) 806 continue; 807 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 808 continue; 809 810 prog_sz = sym->st_size; 811 sec_off = sym->st_value; 812 813 name = elf_sym_str(obj, sym->st_name); 814 if (!name) { 815 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 816 sec_name, sec_off); 817 return -LIBBPF_ERRNO__FORMAT; 818 } 819 820 if (sec_off + prog_sz > sec_sz) { 821 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 822 sec_name, sec_off); 823 return -LIBBPF_ERRNO__FORMAT; 824 } 825 826 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 827 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 828 return -ENOTSUP; 829 } 830 831 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 832 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 833 834 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 835 if (!progs) { 836 /* 837 * In this case the original obj->programs 838 * is still valid, so don't need special treat for 839 * bpf_close_object(). 840 */ 841 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 842 sec_name, name); 843 return -ENOMEM; 844 } 845 obj->programs = progs; 846 847 prog = &progs[nr_progs]; 848 849 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 850 sec_off, data + sec_off, prog_sz); 851 if (err) 852 return err; 853 854 /* if function is a global/weak symbol, but has restricted 855 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 856 * as static to enable more permissive BPF verification mode 857 * with more outside context available to BPF verifier 858 */ 859 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 860 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 861 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 862 prog->mark_btf_static = true; 863 864 nr_progs++; 865 obj->nr_programs = nr_progs; 866 } 867 868 return 0; 869 } 870 871 __u32 get_kernel_version(void) 872 { 873 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 874 * but Ubuntu provides /proc/version_signature file, as described at 875 * https://ubuntu.com/kernel, with an example contents below, which we 876 * can use to get a proper LINUX_VERSION_CODE. 877 * 878 * Ubuntu 5.4.0-12.15-generic 5.4.8 879 * 880 * In the above, 5.4.8 is what kernel is actually expecting, while 881 * uname() call will return 5.4.0 in info.release. 882 */ 883 const char *ubuntu_kver_file = "/proc/version_signature"; 884 __u32 major, minor, patch; 885 struct utsname info; 886 887 if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) { 888 FILE *f; 889 890 f = fopen(ubuntu_kver_file, "r"); 891 if (f) { 892 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 893 fclose(f); 894 return KERNEL_VERSION(major, minor, patch); 895 } 896 fclose(f); 897 } 898 /* something went wrong, fall back to uname() approach */ 899 } 900 901 uname(&info); 902 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 903 return 0; 904 return KERNEL_VERSION(major, minor, patch); 905 } 906 907 static const struct btf_member * 908 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 909 { 910 struct btf_member *m; 911 int i; 912 913 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 914 if (btf_member_bit_offset(t, i) == bit_offset) 915 return m; 916 } 917 918 return NULL; 919 } 920 921 static const struct btf_member * 922 find_member_by_name(const struct btf *btf, const struct btf_type *t, 923 const char *name) 924 { 925 struct btf_member *m; 926 int i; 927 928 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 929 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 930 return m; 931 } 932 933 return NULL; 934 } 935 936 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 937 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 938 const char *name, __u32 kind); 939 940 static int 941 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 942 const struct btf_type **type, __u32 *type_id, 943 const struct btf_type **vtype, __u32 *vtype_id, 944 const struct btf_member **data_member) 945 { 946 const struct btf_type *kern_type, *kern_vtype; 947 const struct btf_member *kern_data_member; 948 __s32 kern_vtype_id, kern_type_id; 949 __u32 i; 950 951 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 952 if (kern_type_id < 0) { 953 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 954 tname); 955 return kern_type_id; 956 } 957 kern_type = btf__type_by_id(btf, kern_type_id); 958 959 /* Find the corresponding "map_value" type that will be used 960 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 961 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 962 * btf_vmlinux. 963 */ 964 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 965 tname, BTF_KIND_STRUCT); 966 if (kern_vtype_id < 0) { 967 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 968 STRUCT_OPS_VALUE_PREFIX, tname); 969 return kern_vtype_id; 970 } 971 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 972 973 /* Find "struct tcp_congestion_ops" from 974 * struct bpf_struct_ops_tcp_congestion_ops { 975 * [ ... ] 976 * struct tcp_congestion_ops data; 977 * } 978 */ 979 kern_data_member = btf_members(kern_vtype); 980 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 981 if (kern_data_member->type == kern_type_id) 982 break; 983 } 984 if (i == btf_vlen(kern_vtype)) { 985 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 986 tname, STRUCT_OPS_VALUE_PREFIX, tname); 987 return -EINVAL; 988 } 989 990 *type = kern_type; 991 *type_id = kern_type_id; 992 *vtype = kern_vtype; 993 *vtype_id = kern_vtype_id; 994 *data_member = kern_data_member; 995 996 return 0; 997 } 998 999 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1000 { 1001 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1002 } 1003 1004 /* Init the map's fields that depend on kern_btf */ 1005 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1006 const struct btf *btf, 1007 const struct btf *kern_btf) 1008 { 1009 const struct btf_member *member, *kern_member, *kern_data_member; 1010 const struct btf_type *type, *kern_type, *kern_vtype; 1011 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1012 struct bpf_struct_ops *st_ops; 1013 void *data, *kern_data; 1014 const char *tname; 1015 int err; 1016 1017 st_ops = map->st_ops; 1018 type = st_ops->type; 1019 tname = st_ops->tname; 1020 err = find_struct_ops_kern_types(kern_btf, tname, 1021 &kern_type, &kern_type_id, 1022 &kern_vtype, &kern_vtype_id, 1023 &kern_data_member); 1024 if (err) 1025 return err; 1026 1027 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1028 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1029 1030 map->def.value_size = kern_vtype->size; 1031 map->btf_vmlinux_value_type_id = kern_vtype_id; 1032 1033 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1034 if (!st_ops->kern_vdata) 1035 return -ENOMEM; 1036 1037 data = st_ops->data; 1038 kern_data_off = kern_data_member->offset / 8; 1039 kern_data = st_ops->kern_vdata + kern_data_off; 1040 1041 member = btf_members(type); 1042 for (i = 0; i < btf_vlen(type); i++, member++) { 1043 const struct btf_type *mtype, *kern_mtype; 1044 __u32 mtype_id, kern_mtype_id; 1045 void *mdata, *kern_mdata; 1046 __s64 msize, kern_msize; 1047 __u32 moff, kern_moff; 1048 __u32 kern_member_idx; 1049 const char *mname; 1050 1051 mname = btf__name_by_offset(btf, member->name_off); 1052 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1053 if (!kern_member) { 1054 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1055 map->name, mname); 1056 return -ENOTSUP; 1057 } 1058 1059 kern_member_idx = kern_member - btf_members(kern_type); 1060 if (btf_member_bitfield_size(type, i) || 1061 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1062 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1063 map->name, mname); 1064 return -ENOTSUP; 1065 } 1066 1067 moff = member->offset / 8; 1068 kern_moff = kern_member->offset / 8; 1069 1070 mdata = data + moff; 1071 kern_mdata = kern_data + kern_moff; 1072 1073 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1074 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1075 &kern_mtype_id); 1076 if (BTF_INFO_KIND(mtype->info) != 1077 BTF_INFO_KIND(kern_mtype->info)) { 1078 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1079 map->name, mname, BTF_INFO_KIND(mtype->info), 1080 BTF_INFO_KIND(kern_mtype->info)); 1081 return -ENOTSUP; 1082 } 1083 1084 if (btf_is_ptr(mtype)) { 1085 struct bpf_program *prog; 1086 1087 prog = st_ops->progs[i]; 1088 if (!prog) 1089 continue; 1090 1091 kern_mtype = skip_mods_and_typedefs(kern_btf, 1092 kern_mtype->type, 1093 &kern_mtype_id); 1094 1095 /* mtype->type must be a func_proto which was 1096 * guaranteed in bpf_object__collect_st_ops_relos(), 1097 * so only check kern_mtype for func_proto here. 1098 */ 1099 if (!btf_is_func_proto(kern_mtype)) { 1100 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1101 map->name, mname); 1102 return -ENOTSUP; 1103 } 1104 1105 prog->attach_btf_id = kern_type_id; 1106 prog->expected_attach_type = kern_member_idx; 1107 1108 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1109 1110 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1111 map->name, mname, prog->name, moff, 1112 kern_moff); 1113 1114 continue; 1115 } 1116 1117 msize = btf__resolve_size(btf, mtype_id); 1118 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1119 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1120 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1121 map->name, mname, (ssize_t)msize, 1122 (ssize_t)kern_msize); 1123 return -ENOTSUP; 1124 } 1125 1126 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1127 map->name, mname, (unsigned int)msize, 1128 moff, kern_moff); 1129 memcpy(kern_mdata, mdata, msize); 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1136 { 1137 struct bpf_map *map; 1138 size_t i; 1139 int err; 1140 1141 for (i = 0; i < obj->nr_maps; i++) { 1142 map = &obj->maps[i]; 1143 1144 if (!bpf_map__is_struct_ops(map)) 1145 continue; 1146 1147 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1148 obj->btf_vmlinux); 1149 if (err) 1150 return err; 1151 } 1152 1153 return 0; 1154 } 1155 1156 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1157 { 1158 const struct btf_type *type, *datasec; 1159 const struct btf_var_secinfo *vsi; 1160 struct bpf_struct_ops *st_ops; 1161 const char *tname, *var_name; 1162 __s32 type_id, datasec_id; 1163 const struct btf *btf; 1164 struct bpf_map *map; 1165 __u32 i; 1166 1167 if (obj->efile.st_ops_shndx == -1) 1168 return 0; 1169 1170 btf = obj->btf; 1171 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1172 BTF_KIND_DATASEC); 1173 if (datasec_id < 0) { 1174 pr_warn("struct_ops init: DATASEC %s not found\n", 1175 STRUCT_OPS_SEC); 1176 return -EINVAL; 1177 } 1178 1179 datasec = btf__type_by_id(btf, datasec_id); 1180 vsi = btf_var_secinfos(datasec); 1181 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1182 type = btf__type_by_id(obj->btf, vsi->type); 1183 var_name = btf__name_by_offset(obj->btf, type->name_off); 1184 1185 type_id = btf__resolve_type(obj->btf, vsi->type); 1186 if (type_id < 0) { 1187 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1188 vsi->type, STRUCT_OPS_SEC); 1189 return -EINVAL; 1190 } 1191 1192 type = btf__type_by_id(obj->btf, type_id); 1193 tname = btf__name_by_offset(obj->btf, type->name_off); 1194 if (!tname[0]) { 1195 pr_warn("struct_ops init: anonymous type is not supported\n"); 1196 return -ENOTSUP; 1197 } 1198 if (!btf_is_struct(type)) { 1199 pr_warn("struct_ops init: %s is not a struct\n", tname); 1200 return -EINVAL; 1201 } 1202 1203 map = bpf_object__add_map(obj); 1204 if (IS_ERR(map)) 1205 return PTR_ERR(map); 1206 1207 map->sec_idx = obj->efile.st_ops_shndx; 1208 map->sec_offset = vsi->offset; 1209 map->name = strdup(var_name); 1210 if (!map->name) 1211 return -ENOMEM; 1212 1213 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1214 map->def.key_size = sizeof(int); 1215 map->def.value_size = type->size; 1216 map->def.max_entries = 1; 1217 1218 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1219 if (!map->st_ops) 1220 return -ENOMEM; 1221 st_ops = map->st_ops; 1222 st_ops->data = malloc(type->size); 1223 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1224 st_ops->kern_func_off = malloc(btf_vlen(type) * 1225 sizeof(*st_ops->kern_func_off)); 1226 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1227 return -ENOMEM; 1228 1229 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1230 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1231 var_name, STRUCT_OPS_SEC); 1232 return -EINVAL; 1233 } 1234 1235 memcpy(st_ops->data, 1236 obj->efile.st_ops_data->d_buf + vsi->offset, 1237 type->size); 1238 st_ops->tname = tname; 1239 st_ops->type = type; 1240 st_ops->type_id = type_id; 1241 1242 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1243 tname, type_id, var_name, vsi->offset); 1244 } 1245 1246 return 0; 1247 } 1248 1249 static struct bpf_object *bpf_object__new(const char *path, 1250 const void *obj_buf, 1251 size_t obj_buf_sz, 1252 const char *obj_name) 1253 { 1254 struct bpf_object *obj; 1255 char *end; 1256 1257 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1258 if (!obj) { 1259 pr_warn("alloc memory failed for %s\n", path); 1260 return ERR_PTR(-ENOMEM); 1261 } 1262 1263 strcpy(obj->path, path); 1264 if (obj_name) { 1265 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1266 } else { 1267 /* Using basename() GNU version which doesn't modify arg. */ 1268 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1269 end = strchr(obj->name, '.'); 1270 if (end) 1271 *end = 0; 1272 } 1273 1274 obj->efile.fd = -1; 1275 /* 1276 * Caller of this function should also call 1277 * bpf_object__elf_finish() after data collection to return 1278 * obj_buf to user. If not, we should duplicate the buffer to 1279 * avoid user freeing them before elf finish. 1280 */ 1281 obj->efile.obj_buf = obj_buf; 1282 obj->efile.obj_buf_sz = obj_buf_sz; 1283 obj->efile.btf_maps_shndx = -1; 1284 obj->efile.st_ops_shndx = -1; 1285 obj->kconfig_map_idx = -1; 1286 1287 obj->kern_version = get_kernel_version(); 1288 obj->loaded = false; 1289 1290 return obj; 1291 } 1292 1293 static void bpf_object__elf_finish(struct bpf_object *obj) 1294 { 1295 if (!obj->efile.elf) 1296 return; 1297 1298 elf_end(obj->efile.elf); 1299 obj->efile.elf = NULL; 1300 obj->efile.symbols = NULL; 1301 obj->efile.st_ops_data = NULL; 1302 1303 zfree(&obj->efile.secs); 1304 obj->efile.sec_cnt = 0; 1305 zclose(obj->efile.fd); 1306 obj->efile.obj_buf = NULL; 1307 obj->efile.obj_buf_sz = 0; 1308 } 1309 1310 static int bpf_object__elf_init(struct bpf_object *obj) 1311 { 1312 Elf64_Ehdr *ehdr; 1313 int err = 0; 1314 Elf *elf; 1315 1316 if (obj->efile.elf) { 1317 pr_warn("elf: init internal error\n"); 1318 return -LIBBPF_ERRNO__LIBELF; 1319 } 1320 1321 if (obj->efile.obj_buf_sz > 0) { 1322 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1323 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1324 } else { 1325 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1326 if (obj->efile.fd < 0) { 1327 char errmsg[STRERR_BUFSIZE], *cp; 1328 1329 err = -errno; 1330 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1331 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1332 return err; 1333 } 1334 1335 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1336 } 1337 1338 if (!elf) { 1339 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1340 err = -LIBBPF_ERRNO__LIBELF; 1341 goto errout; 1342 } 1343 1344 obj->efile.elf = elf; 1345 1346 if (elf_kind(elf) != ELF_K_ELF) { 1347 err = -LIBBPF_ERRNO__FORMAT; 1348 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1349 goto errout; 1350 } 1351 1352 if (gelf_getclass(elf) != ELFCLASS64) { 1353 err = -LIBBPF_ERRNO__FORMAT; 1354 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1355 goto errout; 1356 } 1357 1358 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1359 if (!obj->efile.ehdr) { 1360 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 goto errout; 1363 } 1364 1365 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1366 pr_warn("elf: failed to get section names section index for %s: %s\n", 1367 obj->path, elf_errmsg(-1)); 1368 err = -LIBBPF_ERRNO__FORMAT; 1369 goto errout; 1370 } 1371 1372 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1373 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1374 pr_warn("elf: failed to get section names strings from %s: %s\n", 1375 obj->path, elf_errmsg(-1)); 1376 err = -LIBBPF_ERRNO__FORMAT; 1377 goto errout; 1378 } 1379 1380 /* Old LLVM set e_machine to EM_NONE */ 1381 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1382 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1383 err = -LIBBPF_ERRNO__FORMAT; 1384 goto errout; 1385 } 1386 1387 return 0; 1388 errout: 1389 bpf_object__elf_finish(obj); 1390 return err; 1391 } 1392 1393 static int bpf_object__check_endianness(struct bpf_object *obj) 1394 { 1395 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1396 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1397 return 0; 1398 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1399 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1400 return 0; 1401 #else 1402 # error "Unrecognized __BYTE_ORDER__" 1403 #endif 1404 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1405 return -LIBBPF_ERRNO__ENDIAN; 1406 } 1407 1408 static int 1409 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1410 { 1411 if (!data) { 1412 pr_warn("invalid license section in %s\n", obj->path); 1413 return -LIBBPF_ERRNO__FORMAT; 1414 } 1415 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1416 * go over allowed ELF data section buffer 1417 */ 1418 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1419 pr_debug("license of %s is %s\n", obj->path, obj->license); 1420 return 0; 1421 } 1422 1423 static int 1424 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1425 { 1426 __u32 kver; 1427 1428 if (!data || size != sizeof(kver)) { 1429 pr_warn("invalid kver section in %s\n", obj->path); 1430 return -LIBBPF_ERRNO__FORMAT; 1431 } 1432 memcpy(&kver, data, sizeof(kver)); 1433 obj->kern_version = kver; 1434 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1435 return 0; 1436 } 1437 1438 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1439 { 1440 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1441 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1442 return true; 1443 return false; 1444 } 1445 1446 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1447 { 1448 Elf_Data *data; 1449 Elf_Scn *scn; 1450 1451 if (!name) 1452 return -EINVAL; 1453 1454 scn = elf_sec_by_name(obj, name); 1455 data = elf_sec_data(obj, scn); 1456 if (data) { 1457 *size = data->d_size; 1458 return 0; /* found it */ 1459 } 1460 1461 return -ENOENT; 1462 } 1463 1464 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1465 { 1466 Elf_Data *symbols = obj->efile.symbols; 1467 const char *sname; 1468 size_t si; 1469 1470 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1471 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1472 1473 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1474 continue; 1475 1476 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1477 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1478 continue; 1479 1480 sname = elf_sym_str(obj, sym->st_name); 1481 if (!sname) { 1482 pr_warn("failed to get sym name string for var %s\n", name); 1483 return ERR_PTR(-EIO); 1484 } 1485 if (strcmp(name, sname) == 0) 1486 return sym; 1487 } 1488 1489 return ERR_PTR(-ENOENT); 1490 } 1491 1492 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1493 { 1494 struct bpf_map *map; 1495 int err; 1496 1497 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1498 sizeof(*obj->maps), obj->nr_maps + 1); 1499 if (err) 1500 return ERR_PTR(err); 1501 1502 map = &obj->maps[obj->nr_maps++]; 1503 map->obj = obj; 1504 map->fd = -1; 1505 map->inner_map_fd = -1; 1506 map->autocreate = true; 1507 1508 return map; 1509 } 1510 1511 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1512 { 1513 long page_sz = sysconf(_SC_PAGE_SIZE); 1514 size_t map_sz; 1515 1516 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1517 map_sz = roundup(map_sz, page_sz); 1518 return map_sz; 1519 } 1520 1521 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1522 { 1523 char map_name[BPF_OBJ_NAME_LEN], *p; 1524 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1525 1526 /* This is one of the more confusing parts of libbpf for various 1527 * reasons, some of which are historical. The original idea for naming 1528 * internal names was to include as much of BPF object name prefix as 1529 * possible, so that it can be distinguished from similar internal 1530 * maps of a different BPF object. 1531 * As an example, let's say we have bpf_object named 'my_object_name' 1532 * and internal map corresponding to '.rodata' ELF section. The final 1533 * map name advertised to user and to the kernel will be 1534 * 'my_objec.rodata', taking first 8 characters of object name and 1535 * entire 7 characters of '.rodata'. 1536 * Somewhat confusingly, if internal map ELF section name is shorter 1537 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1538 * for the suffix, even though we only have 4 actual characters, and 1539 * resulting map will be called 'my_objec.bss', not even using all 15 1540 * characters allowed by the kernel. Oh well, at least the truncated 1541 * object name is somewhat consistent in this case. But if the map 1542 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1543 * (8 chars) and thus will be left with only first 7 characters of the 1544 * object name ('my_obje'). Happy guessing, user, that the final map 1545 * name will be "my_obje.kconfig". 1546 * Now, with libbpf starting to support arbitrarily named .rodata.* 1547 * and .data.* data sections, it's possible that ELF section name is 1548 * longer than allowed 15 chars, so we now need to be careful to take 1549 * only up to 15 first characters of ELF name, taking no BPF object 1550 * name characters at all. So '.rodata.abracadabra' will result in 1551 * '.rodata.abracad' kernel and user-visible name. 1552 * We need to keep this convoluted logic intact for .data, .bss and 1553 * .rodata maps, but for new custom .data.custom and .rodata.custom 1554 * maps we use their ELF names as is, not prepending bpf_object name 1555 * in front. We still need to truncate them to 15 characters for the 1556 * kernel. Full name can be recovered for such maps by using DATASEC 1557 * BTF type associated with such map's value type, though. 1558 */ 1559 if (sfx_len >= BPF_OBJ_NAME_LEN) 1560 sfx_len = BPF_OBJ_NAME_LEN - 1; 1561 1562 /* if there are two or more dots in map name, it's a custom dot map */ 1563 if (strchr(real_name + 1, '.') != NULL) 1564 pfx_len = 0; 1565 else 1566 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1567 1568 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1569 sfx_len, real_name); 1570 1571 /* sanitise map name to characters allowed by kernel */ 1572 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1573 if (!isalnum(*p) && *p != '_' && *p != '.') 1574 *p = '_'; 1575 1576 return strdup(map_name); 1577 } 1578 1579 static int 1580 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1581 1582 /* Internal BPF map is mmap()'able only if at least one of corresponding 1583 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1584 * variable and it's not marked as __hidden (which turns it into, effectively, 1585 * a STATIC variable). 1586 */ 1587 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1588 { 1589 const struct btf_type *t, *vt; 1590 struct btf_var_secinfo *vsi; 1591 int i, n; 1592 1593 if (!map->btf_value_type_id) 1594 return false; 1595 1596 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1597 if (!btf_is_datasec(t)) 1598 return false; 1599 1600 vsi = btf_var_secinfos(t); 1601 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1602 vt = btf__type_by_id(obj->btf, vsi->type); 1603 if (!btf_is_var(vt)) 1604 continue; 1605 1606 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1607 return true; 1608 } 1609 1610 return false; 1611 } 1612 1613 static int 1614 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1615 const char *real_name, int sec_idx, void *data, size_t data_sz) 1616 { 1617 struct bpf_map_def *def; 1618 struct bpf_map *map; 1619 int err; 1620 1621 map = bpf_object__add_map(obj); 1622 if (IS_ERR(map)) 1623 return PTR_ERR(map); 1624 1625 map->libbpf_type = type; 1626 map->sec_idx = sec_idx; 1627 map->sec_offset = 0; 1628 map->real_name = strdup(real_name); 1629 map->name = internal_map_name(obj, real_name); 1630 if (!map->real_name || !map->name) { 1631 zfree(&map->real_name); 1632 zfree(&map->name); 1633 return -ENOMEM; 1634 } 1635 1636 def = &map->def; 1637 def->type = BPF_MAP_TYPE_ARRAY; 1638 def->key_size = sizeof(int); 1639 def->value_size = data_sz; 1640 def->max_entries = 1; 1641 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1642 ? BPF_F_RDONLY_PROG : 0; 1643 1644 /* failures are fine because of maps like .rodata.str1.1 */ 1645 (void) map_fill_btf_type_info(obj, map); 1646 1647 if (map_is_mmapable(obj, map)) 1648 def->map_flags |= BPF_F_MMAPABLE; 1649 1650 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1651 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1652 1653 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1654 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1655 if (map->mmaped == MAP_FAILED) { 1656 err = -errno; 1657 map->mmaped = NULL; 1658 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1659 map->name, err); 1660 zfree(&map->real_name); 1661 zfree(&map->name); 1662 return err; 1663 } 1664 1665 if (data) 1666 memcpy(map->mmaped, data, data_sz); 1667 1668 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1669 return 0; 1670 } 1671 1672 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1673 { 1674 struct elf_sec_desc *sec_desc; 1675 const char *sec_name; 1676 int err = 0, sec_idx; 1677 1678 /* 1679 * Populate obj->maps with libbpf internal maps. 1680 */ 1681 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1682 sec_desc = &obj->efile.secs[sec_idx]; 1683 1684 /* Skip recognized sections with size 0. */ 1685 if (!sec_desc->data || sec_desc->data->d_size == 0) 1686 continue; 1687 1688 switch (sec_desc->sec_type) { 1689 case SEC_DATA: 1690 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1691 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1692 sec_name, sec_idx, 1693 sec_desc->data->d_buf, 1694 sec_desc->data->d_size); 1695 break; 1696 case SEC_RODATA: 1697 obj->has_rodata = true; 1698 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1699 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1700 sec_name, sec_idx, 1701 sec_desc->data->d_buf, 1702 sec_desc->data->d_size); 1703 break; 1704 case SEC_BSS: 1705 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1706 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1707 sec_name, sec_idx, 1708 NULL, 1709 sec_desc->data->d_size); 1710 break; 1711 default: 1712 /* skip */ 1713 break; 1714 } 1715 if (err) 1716 return err; 1717 } 1718 return 0; 1719 } 1720 1721 1722 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1723 const void *name) 1724 { 1725 int i; 1726 1727 for (i = 0; i < obj->nr_extern; i++) { 1728 if (strcmp(obj->externs[i].name, name) == 0) 1729 return &obj->externs[i]; 1730 } 1731 return NULL; 1732 } 1733 1734 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1735 char value) 1736 { 1737 switch (ext->kcfg.type) { 1738 case KCFG_BOOL: 1739 if (value == 'm') { 1740 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1741 ext->name, value); 1742 return -EINVAL; 1743 } 1744 *(bool *)ext_val = value == 'y' ? true : false; 1745 break; 1746 case KCFG_TRISTATE: 1747 if (value == 'y') 1748 *(enum libbpf_tristate *)ext_val = TRI_YES; 1749 else if (value == 'm') 1750 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1751 else /* value == 'n' */ 1752 *(enum libbpf_tristate *)ext_val = TRI_NO; 1753 break; 1754 case KCFG_CHAR: 1755 *(char *)ext_val = value; 1756 break; 1757 case KCFG_UNKNOWN: 1758 case KCFG_INT: 1759 case KCFG_CHAR_ARR: 1760 default: 1761 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1762 ext->name, value); 1763 return -EINVAL; 1764 } 1765 ext->is_set = true; 1766 return 0; 1767 } 1768 1769 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1770 const char *value) 1771 { 1772 size_t len; 1773 1774 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1775 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1776 ext->name, value); 1777 return -EINVAL; 1778 } 1779 1780 len = strlen(value); 1781 if (value[len - 1] != '"') { 1782 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1783 ext->name, value); 1784 return -EINVAL; 1785 } 1786 1787 /* strip quotes */ 1788 len -= 2; 1789 if (len >= ext->kcfg.sz) { 1790 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1791 ext->name, value, len, ext->kcfg.sz - 1); 1792 len = ext->kcfg.sz - 1; 1793 } 1794 memcpy(ext_val, value + 1, len); 1795 ext_val[len] = '\0'; 1796 ext->is_set = true; 1797 return 0; 1798 } 1799 1800 static int parse_u64(const char *value, __u64 *res) 1801 { 1802 char *value_end; 1803 int err; 1804 1805 errno = 0; 1806 *res = strtoull(value, &value_end, 0); 1807 if (errno) { 1808 err = -errno; 1809 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1810 return err; 1811 } 1812 if (*value_end) { 1813 pr_warn("failed to parse '%s' as integer completely\n", value); 1814 return -EINVAL; 1815 } 1816 return 0; 1817 } 1818 1819 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1820 { 1821 int bit_sz = ext->kcfg.sz * 8; 1822 1823 if (ext->kcfg.sz == 8) 1824 return true; 1825 1826 /* Validate that value stored in u64 fits in integer of `ext->sz` 1827 * bytes size without any loss of information. If the target integer 1828 * is signed, we rely on the following limits of integer type of 1829 * Y bits and subsequent transformation: 1830 * 1831 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1832 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1833 * 0 <= X + 2^(Y-1) < 2^Y 1834 * 1835 * For unsigned target integer, check that all the (64 - Y) bits are 1836 * zero. 1837 */ 1838 if (ext->kcfg.is_signed) 1839 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1840 else 1841 return (v >> bit_sz) == 0; 1842 } 1843 1844 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1845 __u64 value) 1846 { 1847 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1848 ext->kcfg.type != KCFG_BOOL) { 1849 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1850 ext->name, (unsigned long long)value); 1851 return -EINVAL; 1852 } 1853 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1854 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1855 ext->name, (unsigned long long)value); 1856 return -EINVAL; 1857 1858 } 1859 if (!is_kcfg_value_in_range(ext, value)) { 1860 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1861 ext->name, (unsigned long long)value, ext->kcfg.sz); 1862 return -ERANGE; 1863 } 1864 switch (ext->kcfg.sz) { 1865 case 1: *(__u8 *)ext_val = value; break; 1866 case 2: *(__u16 *)ext_val = value; break; 1867 case 4: *(__u32 *)ext_val = value; break; 1868 case 8: *(__u64 *)ext_val = value; break; 1869 default: 1870 return -EINVAL; 1871 } 1872 ext->is_set = true; 1873 return 0; 1874 } 1875 1876 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1877 char *buf, void *data) 1878 { 1879 struct extern_desc *ext; 1880 char *sep, *value; 1881 int len, err = 0; 1882 void *ext_val; 1883 __u64 num; 1884 1885 if (!str_has_pfx(buf, "CONFIG_")) 1886 return 0; 1887 1888 sep = strchr(buf, '='); 1889 if (!sep) { 1890 pr_warn("failed to parse '%s': no separator\n", buf); 1891 return -EINVAL; 1892 } 1893 1894 /* Trim ending '\n' */ 1895 len = strlen(buf); 1896 if (buf[len - 1] == '\n') 1897 buf[len - 1] = '\0'; 1898 /* Split on '=' and ensure that a value is present. */ 1899 *sep = '\0'; 1900 if (!sep[1]) { 1901 *sep = '='; 1902 pr_warn("failed to parse '%s': no value\n", buf); 1903 return -EINVAL; 1904 } 1905 1906 ext = find_extern_by_name(obj, buf); 1907 if (!ext || ext->is_set) 1908 return 0; 1909 1910 ext_val = data + ext->kcfg.data_off; 1911 value = sep + 1; 1912 1913 switch (*value) { 1914 case 'y': case 'n': case 'm': 1915 err = set_kcfg_value_tri(ext, ext_val, *value); 1916 break; 1917 case '"': 1918 err = set_kcfg_value_str(ext, ext_val, value); 1919 break; 1920 default: 1921 /* assume integer */ 1922 err = parse_u64(value, &num); 1923 if (err) { 1924 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1925 return err; 1926 } 1927 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1928 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1929 return -EINVAL; 1930 } 1931 err = set_kcfg_value_num(ext, ext_val, num); 1932 break; 1933 } 1934 if (err) 1935 return err; 1936 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1937 return 0; 1938 } 1939 1940 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1941 { 1942 char buf[PATH_MAX]; 1943 struct utsname uts; 1944 int len, err = 0; 1945 gzFile file; 1946 1947 uname(&uts); 1948 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1949 if (len < 0) 1950 return -EINVAL; 1951 else if (len >= PATH_MAX) 1952 return -ENAMETOOLONG; 1953 1954 /* gzopen also accepts uncompressed files. */ 1955 file = gzopen(buf, "r"); 1956 if (!file) 1957 file = gzopen("/proc/config.gz", "r"); 1958 1959 if (!file) { 1960 pr_warn("failed to open system Kconfig\n"); 1961 return -ENOENT; 1962 } 1963 1964 while (gzgets(file, buf, sizeof(buf))) { 1965 err = bpf_object__process_kconfig_line(obj, buf, data); 1966 if (err) { 1967 pr_warn("error parsing system Kconfig line '%s': %d\n", 1968 buf, err); 1969 goto out; 1970 } 1971 } 1972 1973 out: 1974 gzclose(file); 1975 return err; 1976 } 1977 1978 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1979 const char *config, void *data) 1980 { 1981 char buf[PATH_MAX]; 1982 int err = 0; 1983 FILE *file; 1984 1985 file = fmemopen((void *)config, strlen(config), "r"); 1986 if (!file) { 1987 err = -errno; 1988 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1989 return err; 1990 } 1991 1992 while (fgets(buf, sizeof(buf), file)) { 1993 err = bpf_object__process_kconfig_line(obj, buf, data); 1994 if (err) { 1995 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1996 buf, err); 1997 break; 1998 } 1999 } 2000 2001 fclose(file); 2002 return err; 2003 } 2004 2005 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2006 { 2007 struct extern_desc *last_ext = NULL, *ext; 2008 size_t map_sz; 2009 int i, err; 2010 2011 for (i = 0; i < obj->nr_extern; i++) { 2012 ext = &obj->externs[i]; 2013 if (ext->type == EXT_KCFG) 2014 last_ext = ext; 2015 } 2016 2017 if (!last_ext) 2018 return 0; 2019 2020 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2021 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2022 ".kconfig", obj->efile.symbols_shndx, 2023 NULL, map_sz); 2024 if (err) 2025 return err; 2026 2027 obj->kconfig_map_idx = obj->nr_maps - 1; 2028 2029 return 0; 2030 } 2031 2032 const struct btf_type * 2033 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2034 { 2035 const struct btf_type *t = btf__type_by_id(btf, id); 2036 2037 if (res_id) 2038 *res_id = id; 2039 2040 while (btf_is_mod(t) || btf_is_typedef(t)) { 2041 if (res_id) 2042 *res_id = t->type; 2043 t = btf__type_by_id(btf, t->type); 2044 } 2045 2046 return t; 2047 } 2048 2049 static const struct btf_type * 2050 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2051 { 2052 const struct btf_type *t; 2053 2054 t = skip_mods_and_typedefs(btf, id, NULL); 2055 if (!btf_is_ptr(t)) 2056 return NULL; 2057 2058 t = skip_mods_and_typedefs(btf, t->type, res_id); 2059 2060 return btf_is_func_proto(t) ? t : NULL; 2061 } 2062 2063 static const char *__btf_kind_str(__u16 kind) 2064 { 2065 switch (kind) { 2066 case BTF_KIND_UNKN: return "void"; 2067 case BTF_KIND_INT: return "int"; 2068 case BTF_KIND_PTR: return "ptr"; 2069 case BTF_KIND_ARRAY: return "array"; 2070 case BTF_KIND_STRUCT: return "struct"; 2071 case BTF_KIND_UNION: return "union"; 2072 case BTF_KIND_ENUM: return "enum"; 2073 case BTF_KIND_FWD: return "fwd"; 2074 case BTF_KIND_TYPEDEF: return "typedef"; 2075 case BTF_KIND_VOLATILE: return "volatile"; 2076 case BTF_KIND_CONST: return "const"; 2077 case BTF_KIND_RESTRICT: return "restrict"; 2078 case BTF_KIND_FUNC: return "func"; 2079 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2080 case BTF_KIND_VAR: return "var"; 2081 case BTF_KIND_DATASEC: return "datasec"; 2082 case BTF_KIND_FLOAT: return "float"; 2083 case BTF_KIND_DECL_TAG: return "decl_tag"; 2084 case BTF_KIND_TYPE_TAG: return "type_tag"; 2085 case BTF_KIND_ENUM64: return "enum64"; 2086 default: return "unknown"; 2087 } 2088 } 2089 2090 const char *btf_kind_str(const struct btf_type *t) 2091 { 2092 return __btf_kind_str(btf_kind(t)); 2093 } 2094 2095 /* 2096 * Fetch integer attribute of BTF map definition. Such attributes are 2097 * represented using a pointer to an array, in which dimensionality of array 2098 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2099 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2100 * type definition, while using only sizeof(void *) space in ELF data section. 2101 */ 2102 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2103 const struct btf_member *m, __u32 *res) 2104 { 2105 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2106 const char *name = btf__name_by_offset(btf, m->name_off); 2107 const struct btf_array *arr_info; 2108 const struct btf_type *arr_t; 2109 2110 if (!btf_is_ptr(t)) { 2111 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2112 map_name, name, btf_kind_str(t)); 2113 return false; 2114 } 2115 2116 arr_t = btf__type_by_id(btf, t->type); 2117 if (!arr_t) { 2118 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2119 map_name, name, t->type); 2120 return false; 2121 } 2122 if (!btf_is_array(arr_t)) { 2123 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2124 map_name, name, btf_kind_str(arr_t)); 2125 return false; 2126 } 2127 arr_info = btf_array(arr_t); 2128 *res = arr_info->nelems; 2129 return true; 2130 } 2131 2132 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2133 { 2134 int len; 2135 2136 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2137 if (len < 0) 2138 return -EINVAL; 2139 if (len >= buf_sz) 2140 return -ENAMETOOLONG; 2141 2142 return 0; 2143 } 2144 2145 static int build_map_pin_path(struct bpf_map *map, const char *path) 2146 { 2147 char buf[PATH_MAX]; 2148 int err; 2149 2150 if (!path) 2151 path = "/sys/fs/bpf"; 2152 2153 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2154 if (err) 2155 return err; 2156 2157 return bpf_map__set_pin_path(map, buf); 2158 } 2159 2160 /* should match definition in bpf_helpers.h */ 2161 enum libbpf_pin_type { 2162 LIBBPF_PIN_NONE, 2163 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2164 LIBBPF_PIN_BY_NAME, 2165 }; 2166 2167 int parse_btf_map_def(const char *map_name, struct btf *btf, 2168 const struct btf_type *def_t, bool strict, 2169 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2170 { 2171 const struct btf_type *t; 2172 const struct btf_member *m; 2173 bool is_inner = inner_def == NULL; 2174 int vlen, i; 2175 2176 vlen = btf_vlen(def_t); 2177 m = btf_members(def_t); 2178 for (i = 0; i < vlen; i++, m++) { 2179 const char *name = btf__name_by_offset(btf, m->name_off); 2180 2181 if (!name) { 2182 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2183 return -EINVAL; 2184 } 2185 if (strcmp(name, "type") == 0) { 2186 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2187 return -EINVAL; 2188 map_def->parts |= MAP_DEF_MAP_TYPE; 2189 } else if (strcmp(name, "max_entries") == 0) { 2190 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2191 return -EINVAL; 2192 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2193 } else if (strcmp(name, "map_flags") == 0) { 2194 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2195 return -EINVAL; 2196 map_def->parts |= MAP_DEF_MAP_FLAGS; 2197 } else if (strcmp(name, "numa_node") == 0) { 2198 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2199 return -EINVAL; 2200 map_def->parts |= MAP_DEF_NUMA_NODE; 2201 } else if (strcmp(name, "key_size") == 0) { 2202 __u32 sz; 2203 2204 if (!get_map_field_int(map_name, btf, m, &sz)) 2205 return -EINVAL; 2206 if (map_def->key_size && map_def->key_size != sz) { 2207 pr_warn("map '%s': conflicting key size %u != %u.\n", 2208 map_name, map_def->key_size, sz); 2209 return -EINVAL; 2210 } 2211 map_def->key_size = sz; 2212 map_def->parts |= MAP_DEF_KEY_SIZE; 2213 } else if (strcmp(name, "key") == 0) { 2214 __s64 sz; 2215 2216 t = btf__type_by_id(btf, m->type); 2217 if (!t) { 2218 pr_warn("map '%s': key type [%d] not found.\n", 2219 map_name, m->type); 2220 return -EINVAL; 2221 } 2222 if (!btf_is_ptr(t)) { 2223 pr_warn("map '%s': key spec is not PTR: %s.\n", 2224 map_name, btf_kind_str(t)); 2225 return -EINVAL; 2226 } 2227 sz = btf__resolve_size(btf, t->type); 2228 if (sz < 0) { 2229 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2230 map_name, t->type, (ssize_t)sz); 2231 return sz; 2232 } 2233 if (map_def->key_size && map_def->key_size != sz) { 2234 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2235 map_name, map_def->key_size, (ssize_t)sz); 2236 return -EINVAL; 2237 } 2238 map_def->key_size = sz; 2239 map_def->key_type_id = t->type; 2240 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2241 } else if (strcmp(name, "value_size") == 0) { 2242 __u32 sz; 2243 2244 if (!get_map_field_int(map_name, btf, m, &sz)) 2245 return -EINVAL; 2246 if (map_def->value_size && map_def->value_size != sz) { 2247 pr_warn("map '%s': conflicting value size %u != %u.\n", 2248 map_name, map_def->value_size, sz); 2249 return -EINVAL; 2250 } 2251 map_def->value_size = sz; 2252 map_def->parts |= MAP_DEF_VALUE_SIZE; 2253 } else if (strcmp(name, "value") == 0) { 2254 __s64 sz; 2255 2256 t = btf__type_by_id(btf, m->type); 2257 if (!t) { 2258 pr_warn("map '%s': value type [%d] not found.\n", 2259 map_name, m->type); 2260 return -EINVAL; 2261 } 2262 if (!btf_is_ptr(t)) { 2263 pr_warn("map '%s': value spec is not PTR: %s.\n", 2264 map_name, btf_kind_str(t)); 2265 return -EINVAL; 2266 } 2267 sz = btf__resolve_size(btf, t->type); 2268 if (sz < 0) { 2269 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2270 map_name, t->type, (ssize_t)sz); 2271 return sz; 2272 } 2273 if (map_def->value_size && map_def->value_size != sz) { 2274 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2275 map_name, map_def->value_size, (ssize_t)sz); 2276 return -EINVAL; 2277 } 2278 map_def->value_size = sz; 2279 map_def->value_type_id = t->type; 2280 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2281 } 2282 else if (strcmp(name, "values") == 0) { 2283 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2284 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2285 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2286 char inner_map_name[128]; 2287 int err; 2288 2289 if (is_inner) { 2290 pr_warn("map '%s': multi-level inner maps not supported.\n", 2291 map_name); 2292 return -ENOTSUP; 2293 } 2294 if (i != vlen - 1) { 2295 pr_warn("map '%s': '%s' member should be last.\n", 2296 map_name, name); 2297 return -EINVAL; 2298 } 2299 if (!is_map_in_map && !is_prog_array) { 2300 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2301 map_name); 2302 return -ENOTSUP; 2303 } 2304 if (map_def->value_size && map_def->value_size != 4) { 2305 pr_warn("map '%s': conflicting value size %u != 4.\n", 2306 map_name, map_def->value_size); 2307 return -EINVAL; 2308 } 2309 map_def->value_size = 4; 2310 t = btf__type_by_id(btf, m->type); 2311 if (!t) { 2312 pr_warn("map '%s': %s type [%d] not found.\n", 2313 map_name, desc, m->type); 2314 return -EINVAL; 2315 } 2316 if (!btf_is_array(t) || btf_array(t)->nelems) { 2317 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2318 map_name, desc); 2319 return -EINVAL; 2320 } 2321 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2322 if (!btf_is_ptr(t)) { 2323 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2324 map_name, desc, btf_kind_str(t)); 2325 return -EINVAL; 2326 } 2327 t = skip_mods_and_typedefs(btf, t->type, NULL); 2328 if (is_prog_array) { 2329 if (!btf_is_func_proto(t)) { 2330 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2331 map_name, btf_kind_str(t)); 2332 return -EINVAL; 2333 } 2334 continue; 2335 } 2336 if (!btf_is_struct(t)) { 2337 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2338 map_name, btf_kind_str(t)); 2339 return -EINVAL; 2340 } 2341 2342 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2343 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2344 if (err) 2345 return err; 2346 2347 map_def->parts |= MAP_DEF_INNER_MAP; 2348 } else if (strcmp(name, "pinning") == 0) { 2349 __u32 val; 2350 2351 if (is_inner) { 2352 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2353 return -EINVAL; 2354 } 2355 if (!get_map_field_int(map_name, btf, m, &val)) 2356 return -EINVAL; 2357 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2358 pr_warn("map '%s': invalid pinning value %u.\n", 2359 map_name, val); 2360 return -EINVAL; 2361 } 2362 map_def->pinning = val; 2363 map_def->parts |= MAP_DEF_PINNING; 2364 } else if (strcmp(name, "map_extra") == 0) { 2365 __u32 map_extra; 2366 2367 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2368 return -EINVAL; 2369 map_def->map_extra = map_extra; 2370 map_def->parts |= MAP_DEF_MAP_EXTRA; 2371 } else { 2372 if (strict) { 2373 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2374 return -ENOTSUP; 2375 } 2376 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2377 } 2378 } 2379 2380 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2381 pr_warn("map '%s': map type isn't specified.\n", map_name); 2382 return -EINVAL; 2383 } 2384 2385 return 0; 2386 } 2387 2388 static size_t adjust_ringbuf_sz(size_t sz) 2389 { 2390 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2391 __u32 mul; 2392 2393 /* if user forgot to set any size, make sure they see error */ 2394 if (sz == 0) 2395 return 0; 2396 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2397 * a power-of-2 multiple of kernel's page size. If user diligently 2398 * satisified these conditions, pass the size through. 2399 */ 2400 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2401 return sz; 2402 2403 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2404 * user-set size to satisfy both user size request and kernel 2405 * requirements and substitute correct max_entries for map creation. 2406 */ 2407 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2408 if (mul * page_sz > sz) 2409 return mul * page_sz; 2410 } 2411 2412 /* if it's impossible to satisfy the conditions (i.e., user size is 2413 * very close to UINT_MAX but is not a power-of-2 multiple of 2414 * page_size) then just return original size and let kernel reject it 2415 */ 2416 return sz; 2417 } 2418 2419 static bool map_is_ringbuf(const struct bpf_map *map) 2420 { 2421 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2422 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2423 } 2424 2425 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2426 { 2427 map->def.type = def->map_type; 2428 map->def.key_size = def->key_size; 2429 map->def.value_size = def->value_size; 2430 map->def.max_entries = def->max_entries; 2431 map->def.map_flags = def->map_flags; 2432 map->map_extra = def->map_extra; 2433 2434 map->numa_node = def->numa_node; 2435 map->btf_key_type_id = def->key_type_id; 2436 map->btf_value_type_id = def->value_type_id; 2437 2438 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2439 if (map_is_ringbuf(map)) 2440 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2441 2442 if (def->parts & MAP_DEF_MAP_TYPE) 2443 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2444 2445 if (def->parts & MAP_DEF_KEY_TYPE) 2446 pr_debug("map '%s': found key [%u], sz = %u.\n", 2447 map->name, def->key_type_id, def->key_size); 2448 else if (def->parts & MAP_DEF_KEY_SIZE) 2449 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2450 2451 if (def->parts & MAP_DEF_VALUE_TYPE) 2452 pr_debug("map '%s': found value [%u], sz = %u.\n", 2453 map->name, def->value_type_id, def->value_size); 2454 else if (def->parts & MAP_DEF_VALUE_SIZE) 2455 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2456 2457 if (def->parts & MAP_DEF_MAX_ENTRIES) 2458 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2459 if (def->parts & MAP_DEF_MAP_FLAGS) 2460 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2461 if (def->parts & MAP_DEF_MAP_EXTRA) 2462 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2463 (unsigned long long)def->map_extra); 2464 if (def->parts & MAP_DEF_PINNING) 2465 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2466 if (def->parts & MAP_DEF_NUMA_NODE) 2467 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2468 2469 if (def->parts & MAP_DEF_INNER_MAP) 2470 pr_debug("map '%s': found inner map definition.\n", map->name); 2471 } 2472 2473 static const char *btf_var_linkage_str(__u32 linkage) 2474 { 2475 switch (linkage) { 2476 case BTF_VAR_STATIC: return "static"; 2477 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2478 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2479 default: return "unknown"; 2480 } 2481 } 2482 2483 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2484 const struct btf_type *sec, 2485 int var_idx, int sec_idx, 2486 const Elf_Data *data, bool strict, 2487 const char *pin_root_path) 2488 { 2489 struct btf_map_def map_def = {}, inner_def = {}; 2490 const struct btf_type *var, *def; 2491 const struct btf_var_secinfo *vi; 2492 const struct btf_var *var_extra; 2493 const char *map_name; 2494 struct bpf_map *map; 2495 int err; 2496 2497 vi = btf_var_secinfos(sec) + var_idx; 2498 var = btf__type_by_id(obj->btf, vi->type); 2499 var_extra = btf_var(var); 2500 map_name = btf__name_by_offset(obj->btf, var->name_off); 2501 2502 if (map_name == NULL || map_name[0] == '\0') { 2503 pr_warn("map #%d: empty name.\n", var_idx); 2504 return -EINVAL; 2505 } 2506 if ((__u64)vi->offset + vi->size > data->d_size) { 2507 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2508 return -EINVAL; 2509 } 2510 if (!btf_is_var(var)) { 2511 pr_warn("map '%s': unexpected var kind %s.\n", 2512 map_name, btf_kind_str(var)); 2513 return -EINVAL; 2514 } 2515 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2516 pr_warn("map '%s': unsupported map linkage %s.\n", 2517 map_name, btf_var_linkage_str(var_extra->linkage)); 2518 return -EOPNOTSUPP; 2519 } 2520 2521 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2522 if (!btf_is_struct(def)) { 2523 pr_warn("map '%s': unexpected def kind %s.\n", 2524 map_name, btf_kind_str(var)); 2525 return -EINVAL; 2526 } 2527 if (def->size > vi->size) { 2528 pr_warn("map '%s': invalid def size.\n", map_name); 2529 return -EINVAL; 2530 } 2531 2532 map = bpf_object__add_map(obj); 2533 if (IS_ERR(map)) 2534 return PTR_ERR(map); 2535 map->name = strdup(map_name); 2536 if (!map->name) { 2537 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2538 return -ENOMEM; 2539 } 2540 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2541 map->def.type = BPF_MAP_TYPE_UNSPEC; 2542 map->sec_idx = sec_idx; 2543 map->sec_offset = vi->offset; 2544 map->btf_var_idx = var_idx; 2545 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2546 map_name, map->sec_idx, map->sec_offset); 2547 2548 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2549 if (err) 2550 return err; 2551 2552 fill_map_from_def(map, &map_def); 2553 2554 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2555 err = build_map_pin_path(map, pin_root_path); 2556 if (err) { 2557 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2558 return err; 2559 } 2560 } 2561 2562 if (map_def.parts & MAP_DEF_INNER_MAP) { 2563 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2564 if (!map->inner_map) 2565 return -ENOMEM; 2566 map->inner_map->fd = -1; 2567 map->inner_map->sec_idx = sec_idx; 2568 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2569 if (!map->inner_map->name) 2570 return -ENOMEM; 2571 sprintf(map->inner_map->name, "%s.inner", map_name); 2572 2573 fill_map_from_def(map->inner_map, &inner_def); 2574 } 2575 2576 err = map_fill_btf_type_info(obj, map); 2577 if (err) 2578 return err; 2579 2580 return 0; 2581 } 2582 2583 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2584 const char *pin_root_path) 2585 { 2586 const struct btf_type *sec = NULL; 2587 int nr_types, i, vlen, err; 2588 const struct btf_type *t; 2589 const char *name; 2590 Elf_Data *data; 2591 Elf_Scn *scn; 2592 2593 if (obj->efile.btf_maps_shndx < 0) 2594 return 0; 2595 2596 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2597 data = elf_sec_data(obj, scn); 2598 if (!scn || !data) { 2599 pr_warn("elf: failed to get %s map definitions for %s\n", 2600 MAPS_ELF_SEC, obj->path); 2601 return -EINVAL; 2602 } 2603 2604 nr_types = btf__type_cnt(obj->btf); 2605 for (i = 1; i < nr_types; i++) { 2606 t = btf__type_by_id(obj->btf, i); 2607 if (!btf_is_datasec(t)) 2608 continue; 2609 name = btf__name_by_offset(obj->btf, t->name_off); 2610 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2611 sec = t; 2612 obj->efile.btf_maps_sec_btf_id = i; 2613 break; 2614 } 2615 } 2616 2617 if (!sec) { 2618 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2619 return -ENOENT; 2620 } 2621 2622 vlen = btf_vlen(sec); 2623 for (i = 0; i < vlen; i++) { 2624 err = bpf_object__init_user_btf_map(obj, sec, i, 2625 obj->efile.btf_maps_shndx, 2626 data, strict, 2627 pin_root_path); 2628 if (err) 2629 return err; 2630 } 2631 2632 return 0; 2633 } 2634 2635 static int bpf_object__init_maps(struct bpf_object *obj, 2636 const struct bpf_object_open_opts *opts) 2637 { 2638 const char *pin_root_path; 2639 bool strict; 2640 int err = 0; 2641 2642 strict = !OPTS_GET(opts, relaxed_maps, false); 2643 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2644 2645 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2646 err = err ?: bpf_object__init_global_data_maps(obj); 2647 err = err ?: bpf_object__init_kconfig_map(obj); 2648 err = err ?: bpf_object__init_struct_ops_maps(obj); 2649 2650 return err; 2651 } 2652 2653 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2654 { 2655 Elf64_Shdr *sh; 2656 2657 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2658 if (!sh) 2659 return false; 2660 2661 return sh->sh_flags & SHF_EXECINSTR; 2662 } 2663 2664 static bool btf_needs_sanitization(struct bpf_object *obj) 2665 { 2666 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2667 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2668 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2669 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2670 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2671 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2672 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2673 2674 return !has_func || !has_datasec || !has_func_global || !has_float || 2675 !has_decl_tag || !has_type_tag || !has_enum64; 2676 } 2677 2678 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2679 { 2680 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2681 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2682 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2683 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2684 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2685 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2686 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2687 int enum64_placeholder_id = 0; 2688 struct btf_type *t; 2689 int i, j, vlen; 2690 2691 for (i = 1; i < btf__type_cnt(btf); i++) { 2692 t = (struct btf_type *)btf__type_by_id(btf, i); 2693 2694 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2695 /* replace VAR/DECL_TAG with INT */ 2696 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2697 /* 2698 * using size = 1 is the safest choice, 4 will be too 2699 * big and cause kernel BTF validation failure if 2700 * original variable took less than 4 bytes 2701 */ 2702 t->size = 1; 2703 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2704 } else if (!has_datasec && btf_is_datasec(t)) { 2705 /* replace DATASEC with STRUCT */ 2706 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2707 struct btf_member *m = btf_members(t); 2708 struct btf_type *vt; 2709 char *name; 2710 2711 name = (char *)btf__name_by_offset(btf, t->name_off); 2712 while (*name) { 2713 if (*name == '.') 2714 *name = '_'; 2715 name++; 2716 } 2717 2718 vlen = btf_vlen(t); 2719 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2720 for (j = 0; j < vlen; j++, v++, m++) { 2721 /* order of field assignments is important */ 2722 m->offset = v->offset * 8; 2723 m->type = v->type; 2724 /* preserve variable name as member name */ 2725 vt = (void *)btf__type_by_id(btf, v->type); 2726 m->name_off = vt->name_off; 2727 } 2728 } else if (!has_func && btf_is_func_proto(t)) { 2729 /* replace FUNC_PROTO with ENUM */ 2730 vlen = btf_vlen(t); 2731 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2732 t->size = sizeof(__u32); /* kernel enforced */ 2733 } else if (!has_func && btf_is_func(t)) { 2734 /* replace FUNC with TYPEDEF */ 2735 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2736 } else if (!has_func_global && btf_is_func(t)) { 2737 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2738 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2739 } else if (!has_float && btf_is_float(t)) { 2740 /* replace FLOAT with an equally-sized empty STRUCT; 2741 * since C compilers do not accept e.g. "float" as a 2742 * valid struct name, make it anonymous 2743 */ 2744 t->name_off = 0; 2745 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2746 } else if (!has_type_tag && btf_is_type_tag(t)) { 2747 /* replace TYPE_TAG with a CONST */ 2748 t->name_off = 0; 2749 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2750 } else if (!has_enum64 && btf_is_enum(t)) { 2751 /* clear the kflag */ 2752 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2753 } else if (!has_enum64 && btf_is_enum64(t)) { 2754 /* replace ENUM64 with a union */ 2755 struct btf_member *m; 2756 2757 if (enum64_placeholder_id == 0) { 2758 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2759 if (enum64_placeholder_id < 0) 2760 return enum64_placeholder_id; 2761 2762 t = (struct btf_type *)btf__type_by_id(btf, i); 2763 } 2764 2765 m = btf_members(t); 2766 vlen = btf_vlen(t); 2767 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2768 for (j = 0; j < vlen; j++, m++) { 2769 m->type = enum64_placeholder_id; 2770 m->offset = 0; 2771 } 2772 } 2773 } 2774 2775 return 0; 2776 } 2777 2778 static bool libbpf_needs_btf(const struct bpf_object *obj) 2779 { 2780 return obj->efile.btf_maps_shndx >= 0 || 2781 obj->efile.st_ops_shndx >= 0 || 2782 obj->nr_extern > 0; 2783 } 2784 2785 static bool kernel_needs_btf(const struct bpf_object *obj) 2786 { 2787 return obj->efile.st_ops_shndx >= 0; 2788 } 2789 2790 static int bpf_object__init_btf(struct bpf_object *obj, 2791 Elf_Data *btf_data, 2792 Elf_Data *btf_ext_data) 2793 { 2794 int err = -ENOENT; 2795 2796 if (btf_data) { 2797 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2798 err = libbpf_get_error(obj->btf); 2799 if (err) { 2800 obj->btf = NULL; 2801 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2802 goto out; 2803 } 2804 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2805 btf__set_pointer_size(obj->btf, 8); 2806 } 2807 if (btf_ext_data) { 2808 struct btf_ext_info *ext_segs[3]; 2809 int seg_num, sec_num; 2810 2811 if (!obj->btf) { 2812 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2813 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2814 goto out; 2815 } 2816 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2817 err = libbpf_get_error(obj->btf_ext); 2818 if (err) { 2819 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2820 BTF_EXT_ELF_SEC, err); 2821 obj->btf_ext = NULL; 2822 goto out; 2823 } 2824 2825 /* setup .BTF.ext to ELF section mapping */ 2826 ext_segs[0] = &obj->btf_ext->func_info; 2827 ext_segs[1] = &obj->btf_ext->line_info; 2828 ext_segs[2] = &obj->btf_ext->core_relo_info; 2829 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2830 struct btf_ext_info *seg = ext_segs[seg_num]; 2831 const struct btf_ext_info_sec *sec; 2832 const char *sec_name; 2833 Elf_Scn *scn; 2834 2835 if (seg->sec_cnt == 0) 2836 continue; 2837 2838 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2839 if (!seg->sec_idxs) { 2840 err = -ENOMEM; 2841 goto out; 2842 } 2843 2844 sec_num = 0; 2845 for_each_btf_ext_sec(seg, sec) { 2846 /* preventively increment index to avoid doing 2847 * this before every continue below 2848 */ 2849 sec_num++; 2850 2851 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2852 if (str_is_empty(sec_name)) 2853 continue; 2854 scn = elf_sec_by_name(obj, sec_name); 2855 if (!scn) 2856 continue; 2857 2858 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2859 } 2860 } 2861 } 2862 out: 2863 if (err && libbpf_needs_btf(obj)) { 2864 pr_warn("BTF is required, but is missing or corrupted.\n"); 2865 return err; 2866 } 2867 return 0; 2868 } 2869 2870 static int compare_vsi_off(const void *_a, const void *_b) 2871 { 2872 const struct btf_var_secinfo *a = _a; 2873 const struct btf_var_secinfo *b = _b; 2874 2875 return a->offset - b->offset; 2876 } 2877 2878 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2879 struct btf_type *t) 2880 { 2881 __u32 size = 0, i, vars = btf_vlen(t); 2882 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2883 struct btf_var_secinfo *vsi; 2884 bool fixup_offsets = false; 2885 int err; 2886 2887 if (!sec_name) { 2888 pr_debug("No name found in string section for DATASEC kind.\n"); 2889 return -ENOENT; 2890 } 2891 2892 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2893 * variable offsets set at the previous step. Further, not every 2894 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2895 * all fixups altogether for such sections and go straight to sorting 2896 * VARs within their DATASEC. 2897 */ 2898 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2899 goto sort_vars; 2900 2901 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2902 * fix this up. But BPF static linker already fixes this up and fills 2903 * all the sizes and offsets during static linking. So this step has 2904 * to be optional. But the STV_HIDDEN handling is non-optional for any 2905 * non-extern DATASEC, so the variable fixup loop below handles both 2906 * functions at the same time, paying the cost of BTF VAR <-> ELF 2907 * symbol matching just once. 2908 */ 2909 if (t->size == 0) { 2910 err = find_elf_sec_sz(obj, sec_name, &size); 2911 if (err || !size) { 2912 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2913 sec_name, size, err); 2914 return -ENOENT; 2915 } 2916 2917 t->size = size; 2918 fixup_offsets = true; 2919 } 2920 2921 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2922 const struct btf_type *t_var; 2923 struct btf_var *var; 2924 const char *var_name; 2925 Elf64_Sym *sym; 2926 2927 t_var = btf__type_by_id(btf, vsi->type); 2928 if (!t_var || !btf_is_var(t_var)) { 2929 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2930 return -EINVAL; 2931 } 2932 2933 var = btf_var(t_var); 2934 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2935 continue; 2936 2937 var_name = btf__name_by_offset(btf, t_var->name_off); 2938 if (!var_name) { 2939 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2940 sec_name, i); 2941 return -ENOENT; 2942 } 2943 2944 sym = find_elf_var_sym(obj, var_name); 2945 if (IS_ERR(sym)) { 2946 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2947 sec_name, var_name); 2948 return -ENOENT; 2949 } 2950 2951 if (fixup_offsets) 2952 vsi->offset = sym->st_value; 2953 2954 /* if variable is a global/weak symbol, but has restricted 2955 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2956 * as static. This follows similar logic for functions (BPF 2957 * subprogs) and influences libbpf's further decisions about 2958 * whether to make global data BPF array maps as 2959 * BPF_F_MMAPABLE. 2960 */ 2961 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2962 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2963 var->linkage = BTF_VAR_STATIC; 2964 } 2965 2966 sort_vars: 2967 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2968 return 0; 2969 } 2970 2971 static int bpf_object_fixup_btf(struct bpf_object *obj) 2972 { 2973 int i, n, err = 0; 2974 2975 if (!obj->btf) 2976 return 0; 2977 2978 n = btf__type_cnt(obj->btf); 2979 for (i = 1; i < n; i++) { 2980 struct btf_type *t = btf_type_by_id(obj->btf, i); 2981 2982 /* Loader needs to fix up some of the things compiler 2983 * couldn't get its hands on while emitting BTF. This 2984 * is section size and global variable offset. We use 2985 * the info from the ELF itself for this purpose. 2986 */ 2987 if (btf_is_datasec(t)) { 2988 err = btf_fixup_datasec(obj, obj->btf, t); 2989 if (err) 2990 return err; 2991 } 2992 } 2993 2994 return 0; 2995 } 2996 2997 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2998 { 2999 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3000 prog->type == BPF_PROG_TYPE_LSM) 3001 return true; 3002 3003 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3004 * also need vmlinux BTF 3005 */ 3006 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3007 return true; 3008 3009 return false; 3010 } 3011 3012 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3013 { 3014 struct bpf_program *prog; 3015 int i; 3016 3017 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3018 * is not specified 3019 */ 3020 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3021 return true; 3022 3023 /* Support for typed ksyms needs kernel BTF */ 3024 for (i = 0; i < obj->nr_extern; i++) { 3025 const struct extern_desc *ext; 3026 3027 ext = &obj->externs[i]; 3028 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3029 return true; 3030 } 3031 3032 bpf_object__for_each_program(prog, obj) { 3033 if (!prog->autoload) 3034 continue; 3035 if (prog_needs_vmlinux_btf(prog)) 3036 return true; 3037 } 3038 3039 return false; 3040 } 3041 3042 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3043 { 3044 int err; 3045 3046 /* btf_vmlinux could be loaded earlier */ 3047 if (obj->btf_vmlinux || obj->gen_loader) 3048 return 0; 3049 3050 if (!force && !obj_needs_vmlinux_btf(obj)) 3051 return 0; 3052 3053 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3054 err = libbpf_get_error(obj->btf_vmlinux); 3055 if (err) { 3056 pr_warn("Error loading vmlinux BTF: %d\n", err); 3057 obj->btf_vmlinux = NULL; 3058 return err; 3059 } 3060 return 0; 3061 } 3062 3063 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3064 { 3065 struct btf *kern_btf = obj->btf; 3066 bool btf_mandatory, sanitize; 3067 int i, err = 0; 3068 3069 if (!obj->btf) 3070 return 0; 3071 3072 if (!kernel_supports(obj, FEAT_BTF)) { 3073 if (kernel_needs_btf(obj)) { 3074 err = -EOPNOTSUPP; 3075 goto report; 3076 } 3077 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3078 return 0; 3079 } 3080 3081 /* Even though some subprogs are global/weak, user might prefer more 3082 * permissive BPF verification process that BPF verifier performs for 3083 * static functions, taking into account more context from the caller 3084 * functions. In such case, they need to mark such subprogs with 3085 * __attribute__((visibility("hidden"))) and libbpf will adjust 3086 * corresponding FUNC BTF type to be marked as static and trigger more 3087 * involved BPF verification process. 3088 */ 3089 for (i = 0; i < obj->nr_programs; i++) { 3090 struct bpf_program *prog = &obj->programs[i]; 3091 struct btf_type *t; 3092 const char *name; 3093 int j, n; 3094 3095 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3096 continue; 3097 3098 n = btf__type_cnt(obj->btf); 3099 for (j = 1; j < n; j++) { 3100 t = btf_type_by_id(obj->btf, j); 3101 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3102 continue; 3103 3104 name = btf__str_by_offset(obj->btf, t->name_off); 3105 if (strcmp(name, prog->name) != 0) 3106 continue; 3107 3108 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3109 break; 3110 } 3111 } 3112 3113 sanitize = btf_needs_sanitization(obj); 3114 if (sanitize) { 3115 const void *raw_data; 3116 __u32 sz; 3117 3118 /* clone BTF to sanitize a copy and leave the original intact */ 3119 raw_data = btf__raw_data(obj->btf, &sz); 3120 kern_btf = btf__new(raw_data, sz); 3121 err = libbpf_get_error(kern_btf); 3122 if (err) 3123 return err; 3124 3125 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3126 btf__set_pointer_size(obj->btf, 8); 3127 err = bpf_object__sanitize_btf(obj, kern_btf); 3128 if (err) 3129 return err; 3130 } 3131 3132 if (obj->gen_loader) { 3133 __u32 raw_size = 0; 3134 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3135 3136 if (!raw_data) 3137 return -ENOMEM; 3138 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3139 /* Pretend to have valid FD to pass various fd >= 0 checks. 3140 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3141 */ 3142 btf__set_fd(kern_btf, 0); 3143 } else { 3144 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3145 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3146 obj->log_level ? 1 : 0); 3147 } 3148 if (sanitize) { 3149 if (!err) { 3150 /* move fd to libbpf's BTF */ 3151 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3152 btf__set_fd(kern_btf, -1); 3153 } 3154 btf__free(kern_btf); 3155 } 3156 report: 3157 if (err) { 3158 btf_mandatory = kernel_needs_btf(obj); 3159 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3160 btf_mandatory ? "BTF is mandatory, can't proceed." 3161 : "BTF is optional, ignoring."); 3162 if (!btf_mandatory) 3163 err = 0; 3164 } 3165 return err; 3166 } 3167 3168 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3169 { 3170 const char *name; 3171 3172 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3173 if (!name) { 3174 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3175 off, obj->path, elf_errmsg(-1)); 3176 return NULL; 3177 } 3178 3179 return name; 3180 } 3181 3182 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3183 { 3184 const char *name; 3185 3186 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3187 if (!name) { 3188 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3189 off, obj->path, elf_errmsg(-1)); 3190 return NULL; 3191 } 3192 3193 return name; 3194 } 3195 3196 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3197 { 3198 Elf_Scn *scn; 3199 3200 scn = elf_getscn(obj->efile.elf, idx); 3201 if (!scn) { 3202 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3203 idx, obj->path, elf_errmsg(-1)); 3204 return NULL; 3205 } 3206 return scn; 3207 } 3208 3209 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3210 { 3211 Elf_Scn *scn = NULL; 3212 Elf *elf = obj->efile.elf; 3213 const char *sec_name; 3214 3215 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3216 sec_name = elf_sec_name(obj, scn); 3217 if (!sec_name) 3218 return NULL; 3219 3220 if (strcmp(sec_name, name) != 0) 3221 continue; 3222 3223 return scn; 3224 } 3225 return NULL; 3226 } 3227 3228 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3229 { 3230 Elf64_Shdr *shdr; 3231 3232 if (!scn) 3233 return NULL; 3234 3235 shdr = elf64_getshdr(scn); 3236 if (!shdr) { 3237 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3238 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3239 return NULL; 3240 } 3241 3242 return shdr; 3243 } 3244 3245 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3246 { 3247 const char *name; 3248 Elf64_Shdr *sh; 3249 3250 if (!scn) 3251 return NULL; 3252 3253 sh = elf_sec_hdr(obj, scn); 3254 if (!sh) 3255 return NULL; 3256 3257 name = elf_sec_str(obj, sh->sh_name); 3258 if (!name) { 3259 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3260 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3261 return NULL; 3262 } 3263 3264 return name; 3265 } 3266 3267 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3268 { 3269 Elf_Data *data; 3270 3271 if (!scn) 3272 return NULL; 3273 3274 data = elf_getdata(scn, 0); 3275 if (!data) { 3276 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3277 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3278 obj->path, elf_errmsg(-1)); 3279 return NULL; 3280 } 3281 3282 return data; 3283 } 3284 3285 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3286 { 3287 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3288 return NULL; 3289 3290 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3291 } 3292 3293 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3294 { 3295 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3296 return NULL; 3297 3298 return (Elf64_Rel *)data->d_buf + idx; 3299 } 3300 3301 static bool is_sec_name_dwarf(const char *name) 3302 { 3303 /* approximation, but the actual list is too long */ 3304 return str_has_pfx(name, ".debug_"); 3305 } 3306 3307 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3308 { 3309 /* no special handling of .strtab */ 3310 if (hdr->sh_type == SHT_STRTAB) 3311 return true; 3312 3313 /* ignore .llvm_addrsig section as well */ 3314 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3315 return true; 3316 3317 /* no subprograms will lead to an empty .text section, ignore it */ 3318 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3319 strcmp(name, ".text") == 0) 3320 return true; 3321 3322 /* DWARF sections */ 3323 if (is_sec_name_dwarf(name)) 3324 return true; 3325 3326 if (str_has_pfx(name, ".rel")) { 3327 name += sizeof(".rel") - 1; 3328 /* DWARF section relocations */ 3329 if (is_sec_name_dwarf(name)) 3330 return true; 3331 3332 /* .BTF and .BTF.ext don't need relocations */ 3333 if (strcmp(name, BTF_ELF_SEC) == 0 || 3334 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3335 return true; 3336 } 3337 3338 return false; 3339 } 3340 3341 static int cmp_progs(const void *_a, const void *_b) 3342 { 3343 const struct bpf_program *a = _a; 3344 const struct bpf_program *b = _b; 3345 3346 if (a->sec_idx != b->sec_idx) 3347 return a->sec_idx < b->sec_idx ? -1 : 1; 3348 3349 /* sec_insn_off can't be the same within the section */ 3350 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3351 } 3352 3353 static int bpf_object__elf_collect(struct bpf_object *obj) 3354 { 3355 struct elf_sec_desc *sec_desc; 3356 Elf *elf = obj->efile.elf; 3357 Elf_Data *btf_ext_data = NULL; 3358 Elf_Data *btf_data = NULL; 3359 int idx = 0, err = 0; 3360 const char *name; 3361 Elf_Data *data; 3362 Elf_Scn *scn; 3363 Elf64_Shdr *sh; 3364 3365 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3366 * section. Since section count retrieved by elf_getshdrnum() does 3367 * include sec #0, it is already the necessary size of an array to keep 3368 * all the sections. 3369 */ 3370 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3371 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3372 obj->path, elf_errmsg(-1)); 3373 return -LIBBPF_ERRNO__FORMAT; 3374 } 3375 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3376 if (!obj->efile.secs) 3377 return -ENOMEM; 3378 3379 /* a bunch of ELF parsing functionality depends on processing symbols, 3380 * so do the first pass and find the symbol table 3381 */ 3382 scn = NULL; 3383 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3384 sh = elf_sec_hdr(obj, scn); 3385 if (!sh) 3386 return -LIBBPF_ERRNO__FORMAT; 3387 3388 if (sh->sh_type == SHT_SYMTAB) { 3389 if (obj->efile.symbols) { 3390 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3391 return -LIBBPF_ERRNO__FORMAT; 3392 } 3393 3394 data = elf_sec_data(obj, scn); 3395 if (!data) 3396 return -LIBBPF_ERRNO__FORMAT; 3397 3398 idx = elf_ndxscn(scn); 3399 3400 obj->efile.symbols = data; 3401 obj->efile.symbols_shndx = idx; 3402 obj->efile.strtabidx = sh->sh_link; 3403 } 3404 } 3405 3406 if (!obj->efile.symbols) { 3407 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3408 obj->path); 3409 return -ENOENT; 3410 } 3411 3412 scn = NULL; 3413 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3414 idx = elf_ndxscn(scn); 3415 sec_desc = &obj->efile.secs[idx]; 3416 3417 sh = elf_sec_hdr(obj, scn); 3418 if (!sh) 3419 return -LIBBPF_ERRNO__FORMAT; 3420 3421 name = elf_sec_str(obj, sh->sh_name); 3422 if (!name) 3423 return -LIBBPF_ERRNO__FORMAT; 3424 3425 if (ignore_elf_section(sh, name)) 3426 continue; 3427 3428 data = elf_sec_data(obj, scn); 3429 if (!data) 3430 return -LIBBPF_ERRNO__FORMAT; 3431 3432 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3433 idx, name, (unsigned long)data->d_size, 3434 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3435 (int)sh->sh_type); 3436 3437 if (strcmp(name, "license") == 0) { 3438 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3439 if (err) 3440 return err; 3441 } else if (strcmp(name, "version") == 0) { 3442 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3443 if (err) 3444 return err; 3445 } else if (strcmp(name, "maps") == 0) { 3446 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3447 return -ENOTSUP; 3448 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3449 obj->efile.btf_maps_shndx = idx; 3450 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3451 if (sh->sh_type != SHT_PROGBITS) 3452 return -LIBBPF_ERRNO__FORMAT; 3453 btf_data = data; 3454 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3455 if (sh->sh_type != SHT_PROGBITS) 3456 return -LIBBPF_ERRNO__FORMAT; 3457 btf_ext_data = data; 3458 } else if (sh->sh_type == SHT_SYMTAB) { 3459 /* already processed during the first pass above */ 3460 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3461 if (sh->sh_flags & SHF_EXECINSTR) { 3462 if (strcmp(name, ".text") == 0) 3463 obj->efile.text_shndx = idx; 3464 err = bpf_object__add_programs(obj, data, name, idx); 3465 if (err) 3466 return err; 3467 } else if (strcmp(name, DATA_SEC) == 0 || 3468 str_has_pfx(name, DATA_SEC ".")) { 3469 sec_desc->sec_type = SEC_DATA; 3470 sec_desc->shdr = sh; 3471 sec_desc->data = data; 3472 } else if (strcmp(name, RODATA_SEC) == 0 || 3473 str_has_pfx(name, RODATA_SEC ".")) { 3474 sec_desc->sec_type = SEC_RODATA; 3475 sec_desc->shdr = sh; 3476 sec_desc->data = data; 3477 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3478 obj->efile.st_ops_data = data; 3479 obj->efile.st_ops_shndx = idx; 3480 } else { 3481 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3482 idx, name); 3483 } 3484 } else if (sh->sh_type == SHT_REL) { 3485 int targ_sec_idx = sh->sh_info; /* points to other section */ 3486 3487 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3488 targ_sec_idx >= obj->efile.sec_cnt) 3489 return -LIBBPF_ERRNO__FORMAT; 3490 3491 /* Only do relo for section with exec instructions */ 3492 if (!section_have_execinstr(obj, targ_sec_idx) && 3493 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3494 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3495 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3496 idx, name, targ_sec_idx, 3497 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3498 continue; 3499 } 3500 3501 sec_desc->sec_type = SEC_RELO; 3502 sec_desc->shdr = sh; 3503 sec_desc->data = data; 3504 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3505 sec_desc->sec_type = SEC_BSS; 3506 sec_desc->shdr = sh; 3507 sec_desc->data = data; 3508 } else { 3509 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3510 (size_t)sh->sh_size); 3511 } 3512 } 3513 3514 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3515 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3516 return -LIBBPF_ERRNO__FORMAT; 3517 } 3518 3519 /* sort BPF programs by section name and in-section instruction offset 3520 * for faster search */ 3521 if (obj->nr_programs) 3522 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3523 3524 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3525 } 3526 3527 static bool sym_is_extern(const Elf64_Sym *sym) 3528 { 3529 int bind = ELF64_ST_BIND(sym->st_info); 3530 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3531 return sym->st_shndx == SHN_UNDEF && 3532 (bind == STB_GLOBAL || bind == STB_WEAK) && 3533 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3534 } 3535 3536 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3537 { 3538 int bind = ELF64_ST_BIND(sym->st_info); 3539 int type = ELF64_ST_TYPE(sym->st_info); 3540 3541 /* in .text section */ 3542 if (sym->st_shndx != text_shndx) 3543 return false; 3544 3545 /* local function */ 3546 if (bind == STB_LOCAL && type == STT_SECTION) 3547 return true; 3548 3549 /* global function */ 3550 return bind == STB_GLOBAL && type == STT_FUNC; 3551 } 3552 3553 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3554 { 3555 const struct btf_type *t; 3556 const char *tname; 3557 int i, n; 3558 3559 if (!btf) 3560 return -ESRCH; 3561 3562 n = btf__type_cnt(btf); 3563 for (i = 1; i < n; i++) { 3564 t = btf__type_by_id(btf, i); 3565 3566 if (!btf_is_var(t) && !btf_is_func(t)) 3567 continue; 3568 3569 tname = btf__name_by_offset(btf, t->name_off); 3570 if (strcmp(tname, ext_name)) 3571 continue; 3572 3573 if (btf_is_var(t) && 3574 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3575 return -EINVAL; 3576 3577 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3578 return -EINVAL; 3579 3580 return i; 3581 } 3582 3583 return -ENOENT; 3584 } 3585 3586 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3587 const struct btf_var_secinfo *vs; 3588 const struct btf_type *t; 3589 int i, j, n; 3590 3591 if (!btf) 3592 return -ESRCH; 3593 3594 n = btf__type_cnt(btf); 3595 for (i = 1; i < n; i++) { 3596 t = btf__type_by_id(btf, i); 3597 3598 if (!btf_is_datasec(t)) 3599 continue; 3600 3601 vs = btf_var_secinfos(t); 3602 for (j = 0; j < btf_vlen(t); j++, vs++) { 3603 if (vs->type == ext_btf_id) 3604 return i; 3605 } 3606 } 3607 3608 return -ENOENT; 3609 } 3610 3611 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3612 bool *is_signed) 3613 { 3614 const struct btf_type *t; 3615 const char *name; 3616 3617 t = skip_mods_and_typedefs(btf, id, NULL); 3618 name = btf__name_by_offset(btf, t->name_off); 3619 3620 if (is_signed) 3621 *is_signed = false; 3622 switch (btf_kind(t)) { 3623 case BTF_KIND_INT: { 3624 int enc = btf_int_encoding(t); 3625 3626 if (enc & BTF_INT_BOOL) 3627 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3628 if (is_signed) 3629 *is_signed = enc & BTF_INT_SIGNED; 3630 if (t->size == 1) 3631 return KCFG_CHAR; 3632 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3633 return KCFG_UNKNOWN; 3634 return KCFG_INT; 3635 } 3636 case BTF_KIND_ENUM: 3637 if (t->size != 4) 3638 return KCFG_UNKNOWN; 3639 if (strcmp(name, "libbpf_tristate")) 3640 return KCFG_UNKNOWN; 3641 return KCFG_TRISTATE; 3642 case BTF_KIND_ENUM64: 3643 if (strcmp(name, "libbpf_tristate")) 3644 return KCFG_UNKNOWN; 3645 return KCFG_TRISTATE; 3646 case BTF_KIND_ARRAY: 3647 if (btf_array(t)->nelems == 0) 3648 return KCFG_UNKNOWN; 3649 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3650 return KCFG_UNKNOWN; 3651 return KCFG_CHAR_ARR; 3652 default: 3653 return KCFG_UNKNOWN; 3654 } 3655 } 3656 3657 static int cmp_externs(const void *_a, const void *_b) 3658 { 3659 const struct extern_desc *a = _a; 3660 const struct extern_desc *b = _b; 3661 3662 if (a->type != b->type) 3663 return a->type < b->type ? -1 : 1; 3664 3665 if (a->type == EXT_KCFG) { 3666 /* descending order by alignment requirements */ 3667 if (a->kcfg.align != b->kcfg.align) 3668 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3669 /* ascending order by size, within same alignment class */ 3670 if (a->kcfg.sz != b->kcfg.sz) 3671 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3672 } 3673 3674 /* resolve ties by name */ 3675 return strcmp(a->name, b->name); 3676 } 3677 3678 static int find_int_btf_id(const struct btf *btf) 3679 { 3680 const struct btf_type *t; 3681 int i, n; 3682 3683 n = btf__type_cnt(btf); 3684 for (i = 1; i < n; i++) { 3685 t = btf__type_by_id(btf, i); 3686 3687 if (btf_is_int(t) && btf_int_bits(t) == 32) 3688 return i; 3689 } 3690 3691 return 0; 3692 } 3693 3694 static int add_dummy_ksym_var(struct btf *btf) 3695 { 3696 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3697 const struct btf_var_secinfo *vs; 3698 const struct btf_type *sec; 3699 3700 if (!btf) 3701 return 0; 3702 3703 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3704 BTF_KIND_DATASEC); 3705 if (sec_btf_id < 0) 3706 return 0; 3707 3708 sec = btf__type_by_id(btf, sec_btf_id); 3709 vs = btf_var_secinfos(sec); 3710 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3711 const struct btf_type *vt; 3712 3713 vt = btf__type_by_id(btf, vs->type); 3714 if (btf_is_func(vt)) 3715 break; 3716 } 3717 3718 /* No func in ksyms sec. No need to add dummy var. */ 3719 if (i == btf_vlen(sec)) 3720 return 0; 3721 3722 int_btf_id = find_int_btf_id(btf); 3723 dummy_var_btf_id = btf__add_var(btf, 3724 "dummy_ksym", 3725 BTF_VAR_GLOBAL_ALLOCATED, 3726 int_btf_id); 3727 if (dummy_var_btf_id < 0) 3728 pr_warn("cannot create a dummy_ksym var\n"); 3729 3730 return dummy_var_btf_id; 3731 } 3732 3733 static int bpf_object__collect_externs(struct bpf_object *obj) 3734 { 3735 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3736 const struct btf_type *t; 3737 struct extern_desc *ext; 3738 int i, n, off, dummy_var_btf_id; 3739 const char *ext_name, *sec_name; 3740 Elf_Scn *scn; 3741 Elf64_Shdr *sh; 3742 3743 if (!obj->efile.symbols) 3744 return 0; 3745 3746 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3747 sh = elf_sec_hdr(obj, scn); 3748 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3749 return -LIBBPF_ERRNO__FORMAT; 3750 3751 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3752 if (dummy_var_btf_id < 0) 3753 return dummy_var_btf_id; 3754 3755 n = sh->sh_size / sh->sh_entsize; 3756 pr_debug("looking for externs among %d symbols...\n", n); 3757 3758 for (i = 0; i < n; i++) { 3759 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3760 3761 if (!sym) 3762 return -LIBBPF_ERRNO__FORMAT; 3763 if (!sym_is_extern(sym)) 3764 continue; 3765 ext_name = elf_sym_str(obj, sym->st_name); 3766 if (!ext_name || !ext_name[0]) 3767 continue; 3768 3769 ext = obj->externs; 3770 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3771 if (!ext) 3772 return -ENOMEM; 3773 obj->externs = ext; 3774 ext = &ext[obj->nr_extern]; 3775 memset(ext, 0, sizeof(*ext)); 3776 obj->nr_extern++; 3777 3778 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3779 if (ext->btf_id <= 0) { 3780 pr_warn("failed to find BTF for extern '%s': %d\n", 3781 ext_name, ext->btf_id); 3782 return ext->btf_id; 3783 } 3784 t = btf__type_by_id(obj->btf, ext->btf_id); 3785 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3786 ext->sym_idx = i; 3787 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3788 3789 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3790 if (ext->sec_btf_id <= 0) { 3791 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3792 ext_name, ext->btf_id, ext->sec_btf_id); 3793 return ext->sec_btf_id; 3794 } 3795 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3796 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3797 3798 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3799 if (btf_is_func(t)) { 3800 pr_warn("extern function %s is unsupported under %s section\n", 3801 ext->name, KCONFIG_SEC); 3802 return -ENOTSUP; 3803 } 3804 kcfg_sec = sec; 3805 ext->type = EXT_KCFG; 3806 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3807 if (ext->kcfg.sz <= 0) { 3808 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3809 ext_name, ext->kcfg.sz); 3810 return ext->kcfg.sz; 3811 } 3812 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3813 if (ext->kcfg.align <= 0) { 3814 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3815 ext_name, ext->kcfg.align); 3816 return -EINVAL; 3817 } 3818 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3819 &ext->kcfg.is_signed); 3820 if (ext->kcfg.type == KCFG_UNKNOWN) { 3821 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3822 return -ENOTSUP; 3823 } 3824 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3825 ksym_sec = sec; 3826 ext->type = EXT_KSYM; 3827 skip_mods_and_typedefs(obj->btf, t->type, 3828 &ext->ksym.type_id); 3829 } else { 3830 pr_warn("unrecognized extern section '%s'\n", sec_name); 3831 return -ENOTSUP; 3832 } 3833 } 3834 pr_debug("collected %d externs total\n", obj->nr_extern); 3835 3836 if (!obj->nr_extern) 3837 return 0; 3838 3839 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3840 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3841 3842 /* for .ksyms section, we need to turn all externs into allocated 3843 * variables in BTF to pass kernel verification; we do this by 3844 * pretending that each extern is a 8-byte variable 3845 */ 3846 if (ksym_sec) { 3847 /* find existing 4-byte integer type in BTF to use for fake 3848 * extern variables in DATASEC 3849 */ 3850 int int_btf_id = find_int_btf_id(obj->btf); 3851 /* For extern function, a dummy_var added earlier 3852 * will be used to replace the vs->type and 3853 * its name string will be used to refill 3854 * the missing param's name. 3855 */ 3856 const struct btf_type *dummy_var; 3857 3858 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3859 for (i = 0; i < obj->nr_extern; i++) { 3860 ext = &obj->externs[i]; 3861 if (ext->type != EXT_KSYM) 3862 continue; 3863 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3864 i, ext->sym_idx, ext->name); 3865 } 3866 3867 sec = ksym_sec; 3868 n = btf_vlen(sec); 3869 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3870 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3871 struct btf_type *vt; 3872 3873 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3874 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3875 ext = find_extern_by_name(obj, ext_name); 3876 if (!ext) { 3877 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3878 btf_kind_str(vt), ext_name); 3879 return -ESRCH; 3880 } 3881 if (btf_is_func(vt)) { 3882 const struct btf_type *func_proto; 3883 struct btf_param *param; 3884 int j; 3885 3886 func_proto = btf__type_by_id(obj->btf, 3887 vt->type); 3888 param = btf_params(func_proto); 3889 /* Reuse the dummy_var string if the 3890 * func proto does not have param name. 3891 */ 3892 for (j = 0; j < btf_vlen(func_proto); j++) 3893 if (param[j].type && !param[j].name_off) 3894 param[j].name_off = 3895 dummy_var->name_off; 3896 vs->type = dummy_var_btf_id; 3897 vt->info &= ~0xffff; 3898 vt->info |= BTF_FUNC_GLOBAL; 3899 } else { 3900 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3901 vt->type = int_btf_id; 3902 } 3903 vs->offset = off; 3904 vs->size = sizeof(int); 3905 } 3906 sec->size = off; 3907 } 3908 3909 if (kcfg_sec) { 3910 sec = kcfg_sec; 3911 /* for kcfg externs calculate their offsets within a .kconfig map */ 3912 off = 0; 3913 for (i = 0; i < obj->nr_extern; i++) { 3914 ext = &obj->externs[i]; 3915 if (ext->type != EXT_KCFG) 3916 continue; 3917 3918 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3919 off = ext->kcfg.data_off + ext->kcfg.sz; 3920 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3921 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3922 } 3923 sec->size = off; 3924 n = btf_vlen(sec); 3925 for (i = 0; i < n; i++) { 3926 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3927 3928 t = btf__type_by_id(obj->btf, vs->type); 3929 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3930 ext = find_extern_by_name(obj, ext_name); 3931 if (!ext) { 3932 pr_warn("failed to find extern definition for BTF var '%s'\n", 3933 ext_name); 3934 return -ESRCH; 3935 } 3936 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3937 vs->offset = ext->kcfg.data_off; 3938 } 3939 } 3940 return 0; 3941 } 3942 3943 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3944 { 3945 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3946 } 3947 3948 struct bpf_program * 3949 bpf_object__find_program_by_name(const struct bpf_object *obj, 3950 const char *name) 3951 { 3952 struct bpf_program *prog; 3953 3954 bpf_object__for_each_program(prog, obj) { 3955 if (prog_is_subprog(obj, prog)) 3956 continue; 3957 if (!strcmp(prog->name, name)) 3958 return prog; 3959 } 3960 return errno = ENOENT, NULL; 3961 } 3962 3963 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3964 int shndx) 3965 { 3966 switch (obj->efile.secs[shndx].sec_type) { 3967 case SEC_BSS: 3968 case SEC_DATA: 3969 case SEC_RODATA: 3970 return true; 3971 default: 3972 return false; 3973 } 3974 } 3975 3976 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3977 int shndx) 3978 { 3979 return shndx == obj->efile.btf_maps_shndx; 3980 } 3981 3982 static enum libbpf_map_type 3983 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3984 { 3985 if (shndx == obj->efile.symbols_shndx) 3986 return LIBBPF_MAP_KCONFIG; 3987 3988 switch (obj->efile.secs[shndx].sec_type) { 3989 case SEC_BSS: 3990 return LIBBPF_MAP_BSS; 3991 case SEC_DATA: 3992 return LIBBPF_MAP_DATA; 3993 case SEC_RODATA: 3994 return LIBBPF_MAP_RODATA; 3995 default: 3996 return LIBBPF_MAP_UNSPEC; 3997 } 3998 } 3999 4000 static int bpf_program__record_reloc(struct bpf_program *prog, 4001 struct reloc_desc *reloc_desc, 4002 __u32 insn_idx, const char *sym_name, 4003 const Elf64_Sym *sym, const Elf64_Rel *rel) 4004 { 4005 struct bpf_insn *insn = &prog->insns[insn_idx]; 4006 size_t map_idx, nr_maps = prog->obj->nr_maps; 4007 struct bpf_object *obj = prog->obj; 4008 __u32 shdr_idx = sym->st_shndx; 4009 enum libbpf_map_type type; 4010 const char *sym_sec_name; 4011 struct bpf_map *map; 4012 4013 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4014 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4015 prog->name, sym_name, insn_idx, insn->code); 4016 return -LIBBPF_ERRNO__RELOC; 4017 } 4018 4019 if (sym_is_extern(sym)) { 4020 int sym_idx = ELF64_R_SYM(rel->r_info); 4021 int i, n = obj->nr_extern; 4022 struct extern_desc *ext; 4023 4024 for (i = 0; i < n; i++) { 4025 ext = &obj->externs[i]; 4026 if (ext->sym_idx == sym_idx) 4027 break; 4028 } 4029 if (i >= n) { 4030 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4031 prog->name, sym_name, sym_idx); 4032 return -LIBBPF_ERRNO__RELOC; 4033 } 4034 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4035 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4036 if (insn->code == (BPF_JMP | BPF_CALL)) 4037 reloc_desc->type = RELO_EXTERN_FUNC; 4038 else 4039 reloc_desc->type = RELO_EXTERN_VAR; 4040 reloc_desc->insn_idx = insn_idx; 4041 reloc_desc->sym_off = i; /* sym_off stores extern index */ 4042 return 0; 4043 } 4044 4045 /* sub-program call relocation */ 4046 if (is_call_insn(insn)) { 4047 if (insn->src_reg != BPF_PSEUDO_CALL) { 4048 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4049 return -LIBBPF_ERRNO__RELOC; 4050 } 4051 /* text_shndx can be 0, if no default "main" program exists */ 4052 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4053 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4054 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4055 prog->name, sym_name, sym_sec_name); 4056 return -LIBBPF_ERRNO__RELOC; 4057 } 4058 if (sym->st_value % BPF_INSN_SZ) { 4059 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4060 prog->name, sym_name, (size_t)sym->st_value); 4061 return -LIBBPF_ERRNO__RELOC; 4062 } 4063 reloc_desc->type = RELO_CALL; 4064 reloc_desc->insn_idx = insn_idx; 4065 reloc_desc->sym_off = sym->st_value; 4066 return 0; 4067 } 4068 4069 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4070 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4071 prog->name, sym_name, shdr_idx); 4072 return -LIBBPF_ERRNO__RELOC; 4073 } 4074 4075 /* loading subprog addresses */ 4076 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4077 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4078 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4079 */ 4080 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4081 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4082 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4083 return -LIBBPF_ERRNO__RELOC; 4084 } 4085 4086 reloc_desc->type = RELO_SUBPROG_ADDR; 4087 reloc_desc->insn_idx = insn_idx; 4088 reloc_desc->sym_off = sym->st_value; 4089 return 0; 4090 } 4091 4092 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4093 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4094 4095 /* generic map reference relocation */ 4096 if (type == LIBBPF_MAP_UNSPEC) { 4097 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4098 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4099 prog->name, sym_name, sym_sec_name); 4100 return -LIBBPF_ERRNO__RELOC; 4101 } 4102 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4103 map = &obj->maps[map_idx]; 4104 if (map->libbpf_type != type || 4105 map->sec_idx != sym->st_shndx || 4106 map->sec_offset != sym->st_value) 4107 continue; 4108 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4109 prog->name, map_idx, map->name, map->sec_idx, 4110 map->sec_offset, insn_idx); 4111 break; 4112 } 4113 if (map_idx >= nr_maps) { 4114 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4115 prog->name, sym_sec_name, (size_t)sym->st_value); 4116 return -LIBBPF_ERRNO__RELOC; 4117 } 4118 reloc_desc->type = RELO_LD64; 4119 reloc_desc->insn_idx = insn_idx; 4120 reloc_desc->map_idx = map_idx; 4121 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4122 return 0; 4123 } 4124 4125 /* global data map relocation */ 4126 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4127 pr_warn("prog '%s': bad data relo against section '%s'\n", 4128 prog->name, sym_sec_name); 4129 return -LIBBPF_ERRNO__RELOC; 4130 } 4131 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4132 map = &obj->maps[map_idx]; 4133 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4134 continue; 4135 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4136 prog->name, map_idx, map->name, map->sec_idx, 4137 map->sec_offset, insn_idx); 4138 break; 4139 } 4140 if (map_idx >= nr_maps) { 4141 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4142 prog->name, sym_sec_name); 4143 return -LIBBPF_ERRNO__RELOC; 4144 } 4145 4146 reloc_desc->type = RELO_DATA; 4147 reloc_desc->insn_idx = insn_idx; 4148 reloc_desc->map_idx = map_idx; 4149 reloc_desc->sym_off = sym->st_value; 4150 return 0; 4151 } 4152 4153 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4154 { 4155 return insn_idx >= prog->sec_insn_off && 4156 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4157 } 4158 4159 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4160 size_t sec_idx, size_t insn_idx) 4161 { 4162 int l = 0, r = obj->nr_programs - 1, m; 4163 struct bpf_program *prog; 4164 4165 if (!obj->nr_programs) 4166 return NULL; 4167 4168 while (l < r) { 4169 m = l + (r - l + 1) / 2; 4170 prog = &obj->programs[m]; 4171 4172 if (prog->sec_idx < sec_idx || 4173 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4174 l = m; 4175 else 4176 r = m - 1; 4177 } 4178 /* matching program could be at index l, but it still might be the 4179 * wrong one, so we need to double check conditions for the last time 4180 */ 4181 prog = &obj->programs[l]; 4182 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4183 return prog; 4184 return NULL; 4185 } 4186 4187 static int 4188 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4189 { 4190 const char *relo_sec_name, *sec_name; 4191 size_t sec_idx = shdr->sh_info, sym_idx; 4192 struct bpf_program *prog; 4193 struct reloc_desc *relos; 4194 int err, i, nrels; 4195 const char *sym_name; 4196 __u32 insn_idx; 4197 Elf_Scn *scn; 4198 Elf_Data *scn_data; 4199 Elf64_Sym *sym; 4200 Elf64_Rel *rel; 4201 4202 if (sec_idx >= obj->efile.sec_cnt) 4203 return -EINVAL; 4204 4205 scn = elf_sec_by_idx(obj, sec_idx); 4206 scn_data = elf_sec_data(obj, scn); 4207 4208 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4209 sec_name = elf_sec_name(obj, scn); 4210 if (!relo_sec_name || !sec_name) 4211 return -EINVAL; 4212 4213 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4214 relo_sec_name, sec_idx, sec_name); 4215 nrels = shdr->sh_size / shdr->sh_entsize; 4216 4217 for (i = 0; i < nrels; i++) { 4218 rel = elf_rel_by_idx(data, i); 4219 if (!rel) { 4220 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4221 return -LIBBPF_ERRNO__FORMAT; 4222 } 4223 4224 sym_idx = ELF64_R_SYM(rel->r_info); 4225 sym = elf_sym_by_idx(obj, sym_idx); 4226 if (!sym) { 4227 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4228 relo_sec_name, sym_idx, i); 4229 return -LIBBPF_ERRNO__FORMAT; 4230 } 4231 4232 if (sym->st_shndx >= obj->efile.sec_cnt) { 4233 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4234 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4235 return -LIBBPF_ERRNO__FORMAT; 4236 } 4237 4238 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4239 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4240 relo_sec_name, (size_t)rel->r_offset, i); 4241 return -LIBBPF_ERRNO__FORMAT; 4242 } 4243 4244 insn_idx = rel->r_offset / BPF_INSN_SZ; 4245 /* relocations against static functions are recorded as 4246 * relocations against the section that contains a function; 4247 * in such case, symbol will be STT_SECTION and sym.st_name 4248 * will point to empty string (0), so fetch section name 4249 * instead 4250 */ 4251 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4252 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4253 else 4254 sym_name = elf_sym_str(obj, sym->st_name); 4255 sym_name = sym_name ?: "<?"; 4256 4257 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4258 relo_sec_name, i, insn_idx, sym_name); 4259 4260 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4261 if (!prog) { 4262 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4263 relo_sec_name, i, sec_name, insn_idx); 4264 continue; 4265 } 4266 4267 relos = libbpf_reallocarray(prog->reloc_desc, 4268 prog->nr_reloc + 1, sizeof(*relos)); 4269 if (!relos) 4270 return -ENOMEM; 4271 prog->reloc_desc = relos; 4272 4273 /* adjust insn_idx to local BPF program frame of reference */ 4274 insn_idx -= prog->sec_insn_off; 4275 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4276 insn_idx, sym_name, sym, rel); 4277 if (err) 4278 return err; 4279 4280 prog->nr_reloc++; 4281 } 4282 return 0; 4283 } 4284 4285 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4286 { 4287 int id; 4288 4289 if (!obj->btf) 4290 return -ENOENT; 4291 4292 /* if it's BTF-defined map, we don't need to search for type IDs. 4293 * For struct_ops map, it does not need btf_key_type_id and 4294 * btf_value_type_id. 4295 */ 4296 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4297 return 0; 4298 4299 /* 4300 * LLVM annotates global data differently in BTF, that is, 4301 * only as '.data', '.bss' or '.rodata'. 4302 */ 4303 if (!bpf_map__is_internal(map)) 4304 return -ENOENT; 4305 4306 id = btf__find_by_name(obj->btf, map->real_name); 4307 if (id < 0) 4308 return id; 4309 4310 map->btf_key_type_id = 0; 4311 map->btf_value_type_id = id; 4312 return 0; 4313 } 4314 4315 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4316 { 4317 char file[PATH_MAX], buff[4096]; 4318 FILE *fp; 4319 __u32 val; 4320 int err; 4321 4322 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4323 memset(info, 0, sizeof(*info)); 4324 4325 fp = fopen(file, "r"); 4326 if (!fp) { 4327 err = -errno; 4328 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4329 err); 4330 return err; 4331 } 4332 4333 while (fgets(buff, sizeof(buff), fp)) { 4334 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4335 info->type = val; 4336 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4337 info->key_size = val; 4338 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4339 info->value_size = val; 4340 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4341 info->max_entries = val; 4342 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4343 info->map_flags = val; 4344 } 4345 4346 fclose(fp); 4347 4348 return 0; 4349 } 4350 4351 bool bpf_map__autocreate(const struct bpf_map *map) 4352 { 4353 return map->autocreate; 4354 } 4355 4356 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4357 { 4358 if (map->obj->loaded) 4359 return libbpf_err(-EBUSY); 4360 4361 map->autocreate = autocreate; 4362 return 0; 4363 } 4364 4365 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4366 { 4367 struct bpf_map_info info; 4368 __u32 len = sizeof(info), name_len; 4369 int new_fd, err; 4370 char *new_name; 4371 4372 memset(&info, 0, len); 4373 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4374 if (err && errno == EINVAL) 4375 err = bpf_get_map_info_from_fdinfo(fd, &info); 4376 if (err) 4377 return libbpf_err(err); 4378 4379 name_len = strlen(info.name); 4380 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4381 new_name = strdup(map->name); 4382 else 4383 new_name = strdup(info.name); 4384 4385 if (!new_name) 4386 return libbpf_err(-errno); 4387 4388 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4389 if (new_fd < 0) { 4390 err = -errno; 4391 goto err_free_new_name; 4392 } 4393 4394 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4395 if (new_fd < 0) { 4396 err = -errno; 4397 goto err_close_new_fd; 4398 } 4399 4400 err = zclose(map->fd); 4401 if (err) { 4402 err = -errno; 4403 goto err_close_new_fd; 4404 } 4405 free(map->name); 4406 4407 map->fd = new_fd; 4408 map->name = new_name; 4409 map->def.type = info.type; 4410 map->def.key_size = info.key_size; 4411 map->def.value_size = info.value_size; 4412 map->def.max_entries = info.max_entries; 4413 map->def.map_flags = info.map_flags; 4414 map->btf_key_type_id = info.btf_key_type_id; 4415 map->btf_value_type_id = info.btf_value_type_id; 4416 map->reused = true; 4417 map->map_extra = info.map_extra; 4418 4419 return 0; 4420 4421 err_close_new_fd: 4422 close(new_fd); 4423 err_free_new_name: 4424 free(new_name); 4425 return libbpf_err(err); 4426 } 4427 4428 __u32 bpf_map__max_entries(const struct bpf_map *map) 4429 { 4430 return map->def.max_entries; 4431 } 4432 4433 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4434 { 4435 if (!bpf_map_type__is_map_in_map(map->def.type)) 4436 return errno = EINVAL, NULL; 4437 4438 return map->inner_map; 4439 } 4440 4441 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4442 { 4443 if (map->obj->loaded) 4444 return libbpf_err(-EBUSY); 4445 4446 map->def.max_entries = max_entries; 4447 4448 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4449 if (map_is_ringbuf(map)) 4450 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4451 4452 return 0; 4453 } 4454 4455 static int 4456 bpf_object__probe_loading(struct bpf_object *obj) 4457 { 4458 char *cp, errmsg[STRERR_BUFSIZE]; 4459 struct bpf_insn insns[] = { 4460 BPF_MOV64_IMM(BPF_REG_0, 0), 4461 BPF_EXIT_INSN(), 4462 }; 4463 int ret, insn_cnt = ARRAY_SIZE(insns); 4464 4465 if (obj->gen_loader) 4466 return 0; 4467 4468 ret = bump_rlimit_memlock(); 4469 if (ret) 4470 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4471 4472 /* make sure basic loading works */ 4473 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4474 if (ret < 0) 4475 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4476 if (ret < 0) { 4477 ret = errno; 4478 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4479 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4480 "program. Make sure your kernel supports BPF " 4481 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4482 "set to big enough value.\n", __func__, cp, ret); 4483 return -ret; 4484 } 4485 close(ret); 4486 4487 return 0; 4488 } 4489 4490 static int probe_fd(int fd) 4491 { 4492 if (fd >= 0) 4493 close(fd); 4494 return fd >= 0; 4495 } 4496 4497 static int probe_kern_prog_name(void) 4498 { 4499 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4500 struct bpf_insn insns[] = { 4501 BPF_MOV64_IMM(BPF_REG_0, 0), 4502 BPF_EXIT_INSN(), 4503 }; 4504 union bpf_attr attr; 4505 int ret; 4506 4507 memset(&attr, 0, attr_sz); 4508 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4509 attr.license = ptr_to_u64("GPL"); 4510 attr.insns = ptr_to_u64(insns); 4511 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4512 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4513 4514 /* make sure loading with name works */ 4515 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4516 return probe_fd(ret); 4517 } 4518 4519 static int probe_kern_global_data(void) 4520 { 4521 char *cp, errmsg[STRERR_BUFSIZE]; 4522 struct bpf_insn insns[] = { 4523 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4524 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4525 BPF_MOV64_IMM(BPF_REG_0, 0), 4526 BPF_EXIT_INSN(), 4527 }; 4528 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4529 4530 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4531 if (map < 0) { 4532 ret = -errno; 4533 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4534 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4535 __func__, cp, -ret); 4536 return ret; 4537 } 4538 4539 insns[0].imm = map; 4540 4541 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4542 close(map); 4543 return probe_fd(ret); 4544 } 4545 4546 static int probe_kern_btf(void) 4547 { 4548 static const char strs[] = "\0int"; 4549 __u32 types[] = { 4550 /* int */ 4551 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4552 }; 4553 4554 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4555 strs, sizeof(strs))); 4556 } 4557 4558 static int probe_kern_btf_func(void) 4559 { 4560 static const char strs[] = "\0int\0x\0a"; 4561 /* void x(int a) {} */ 4562 __u32 types[] = { 4563 /* int */ 4564 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4565 /* FUNC_PROTO */ /* [2] */ 4566 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4567 BTF_PARAM_ENC(7, 1), 4568 /* FUNC x */ /* [3] */ 4569 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4570 }; 4571 4572 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4573 strs, sizeof(strs))); 4574 } 4575 4576 static int probe_kern_btf_func_global(void) 4577 { 4578 static const char strs[] = "\0int\0x\0a"; 4579 /* static void x(int a) {} */ 4580 __u32 types[] = { 4581 /* int */ 4582 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4583 /* FUNC_PROTO */ /* [2] */ 4584 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4585 BTF_PARAM_ENC(7, 1), 4586 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4587 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4588 }; 4589 4590 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4591 strs, sizeof(strs))); 4592 } 4593 4594 static int probe_kern_btf_datasec(void) 4595 { 4596 static const char strs[] = "\0x\0.data"; 4597 /* static int a; */ 4598 __u32 types[] = { 4599 /* int */ 4600 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4601 /* VAR x */ /* [2] */ 4602 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4603 BTF_VAR_STATIC, 4604 /* DATASEC val */ /* [3] */ 4605 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4606 BTF_VAR_SECINFO_ENC(2, 0, 4), 4607 }; 4608 4609 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4610 strs, sizeof(strs))); 4611 } 4612 4613 static int probe_kern_btf_float(void) 4614 { 4615 static const char strs[] = "\0float"; 4616 __u32 types[] = { 4617 /* float */ 4618 BTF_TYPE_FLOAT_ENC(1, 4), 4619 }; 4620 4621 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4622 strs, sizeof(strs))); 4623 } 4624 4625 static int probe_kern_btf_decl_tag(void) 4626 { 4627 static const char strs[] = "\0tag"; 4628 __u32 types[] = { 4629 /* int */ 4630 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4631 /* VAR x */ /* [2] */ 4632 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4633 BTF_VAR_STATIC, 4634 /* attr */ 4635 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4636 }; 4637 4638 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4639 strs, sizeof(strs))); 4640 } 4641 4642 static int probe_kern_btf_type_tag(void) 4643 { 4644 static const char strs[] = "\0tag"; 4645 __u32 types[] = { 4646 /* int */ 4647 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4648 /* attr */ 4649 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4650 /* ptr */ 4651 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4652 }; 4653 4654 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4655 strs, sizeof(strs))); 4656 } 4657 4658 static int probe_kern_array_mmap(void) 4659 { 4660 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4661 int fd; 4662 4663 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4664 return probe_fd(fd); 4665 } 4666 4667 static int probe_kern_exp_attach_type(void) 4668 { 4669 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4670 struct bpf_insn insns[] = { 4671 BPF_MOV64_IMM(BPF_REG_0, 0), 4672 BPF_EXIT_INSN(), 4673 }; 4674 int fd, insn_cnt = ARRAY_SIZE(insns); 4675 4676 /* use any valid combination of program type and (optional) 4677 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4678 * to see if kernel supports expected_attach_type field for 4679 * BPF_PROG_LOAD command 4680 */ 4681 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4682 return probe_fd(fd); 4683 } 4684 4685 static int probe_kern_probe_read_kernel(void) 4686 { 4687 struct bpf_insn insns[] = { 4688 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4689 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4690 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4691 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4692 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4693 BPF_EXIT_INSN(), 4694 }; 4695 int fd, insn_cnt = ARRAY_SIZE(insns); 4696 4697 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4698 return probe_fd(fd); 4699 } 4700 4701 static int probe_prog_bind_map(void) 4702 { 4703 char *cp, errmsg[STRERR_BUFSIZE]; 4704 struct bpf_insn insns[] = { 4705 BPF_MOV64_IMM(BPF_REG_0, 0), 4706 BPF_EXIT_INSN(), 4707 }; 4708 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4709 4710 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4711 if (map < 0) { 4712 ret = -errno; 4713 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4714 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4715 __func__, cp, -ret); 4716 return ret; 4717 } 4718 4719 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4720 if (prog < 0) { 4721 close(map); 4722 return 0; 4723 } 4724 4725 ret = bpf_prog_bind_map(prog, map, NULL); 4726 4727 close(map); 4728 close(prog); 4729 4730 return ret >= 0; 4731 } 4732 4733 static int probe_module_btf(void) 4734 { 4735 static const char strs[] = "\0int"; 4736 __u32 types[] = { 4737 /* int */ 4738 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4739 }; 4740 struct bpf_btf_info info; 4741 __u32 len = sizeof(info); 4742 char name[16]; 4743 int fd, err; 4744 4745 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4746 if (fd < 0) 4747 return 0; /* BTF not supported at all */ 4748 4749 memset(&info, 0, sizeof(info)); 4750 info.name = ptr_to_u64(name); 4751 info.name_len = sizeof(name); 4752 4753 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4754 * kernel's module BTF support coincides with support for 4755 * name/name_len fields in struct bpf_btf_info. 4756 */ 4757 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4758 close(fd); 4759 return !err; 4760 } 4761 4762 static int probe_perf_link(void) 4763 { 4764 struct bpf_insn insns[] = { 4765 BPF_MOV64_IMM(BPF_REG_0, 0), 4766 BPF_EXIT_INSN(), 4767 }; 4768 int prog_fd, link_fd, err; 4769 4770 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4771 insns, ARRAY_SIZE(insns), NULL); 4772 if (prog_fd < 0) 4773 return -errno; 4774 4775 /* use invalid perf_event FD to get EBADF, if link is supported; 4776 * otherwise EINVAL should be returned 4777 */ 4778 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4779 err = -errno; /* close() can clobber errno */ 4780 4781 if (link_fd >= 0) 4782 close(link_fd); 4783 close(prog_fd); 4784 4785 return link_fd < 0 && err == -EBADF; 4786 } 4787 4788 static int probe_kern_bpf_cookie(void) 4789 { 4790 struct bpf_insn insns[] = { 4791 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4792 BPF_EXIT_INSN(), 4793 }; 4794 int ret, insn_cnt = ARRAY_SIZE(insns); 4795 4796 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4797 return probe_fd(ret); 4798 } 4799 4800 static int probe_kern_btf_enum64(void) 4801 { 4802 static const char strs[] = "\0enum64"; 4803 __u32 types[] = { 4804 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4805 }; 4806 4807 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4808 strs, sizeof(strs))); 4809 } 4810 4811 static int probe_kern_syscall_wrapper(void); 4812 4813 enum kern_feature_result { 4814 FEAT_UNKNOWN = 0, 4815 FEAT_SUPPORTED = 1, 4816 FEAT_MISSING = 2, 4817 }; 4818 4819 typedef int (*feature_probe_fn)(void); 4820 4821 static struct kern_feature_desc { 4822 const char *desc; 4823 feature_probe_fn probe; 4824 enum kern_feature_result res; 4825 } feature_probes[__FEAT_CNT] = { 4826 [FEAT_PROG_NAME] = { 4827 "BPF program name", probe_kern_prog_name, 4828 }, 4829 [FEAT_GLOBAL_DATA] = { 4830 "global variables", probe_kern_global_data, 4831 }, 4832 [FEAT_BTF] = { 4833 "minimal BTF", probe_kern_btf, 4834 }, 4835 [FEAT_BTF_FUNC] = { 4836 "BTF functions", probe_kern_btf_func, 4837 }, 4838 [FEAT_BTF_GLOBAL_FUNC] = { 4839 "BTF global function", probe_kern_btf_func_global, 4840 }, 4841 [FEAT_BTF_DATASEC] = { 4842 "BTF data section and variable", probe_kern_btf_datasec, 4843 }, 4844 [FEAT_ARRAY_MMAP] = { 4845 "ARRAY map mmap()", probe_kern_array_mmap, 4846 }, 4847 [FEAT_EXP_ATTACH_TYPE] = { 4848 "BPF_PROG_LOAD expected_attach_type attribute", 4849 probe_kern_exp_attach_type, 4850 }, 4851 [FEAT_PROBE_READ_KERN] = { 4852 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4853 }, 4854 [FEAT_PROG_BIND_MAP] = { 4855 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4856 }, 4857 [FEAT_MODULE_BTF] = { 4858 "module BTF support", probe_module_btf, 4859 }, 4860 [FEAT_BTF_FLOAT] = { 4861 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4862 }, 4863 [FEAT_PERF_LINK] = { 4864 "BPF perf link support", probe_perf_link, 4865 }, 4866 [FEAT_BTF_DECL_TAG] = { 4867 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4868 }, 4869 [FEAT_BTF_TYPE_TAG] = { 4870 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4871 }, 4872 [FEAT_MEMCG_ACCOUNT] = { 4873 "memcg-based memory accounting", probe_memcg_account, 4874 }, 4875 [FEAT_BPF_COOKIE] = { 4876 "BPF cookie support", probe_kern_bpf_cookie, 4877 }, 4878 [FEAT_BTF_ENUM64] = { 4879 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4880 }, 4881 [FEAT_SYSCALL_WRAPPER] = { 4882 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4883 }, 4884 }; 4885 4886 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4887 { 4888 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4889 int ret; 4890 4891 if (obj && obj->gen_loader) 4892 /* To generate loader program assume the latest kernel 4893 * to avoid doing extra prog_load, map_create syscalls. 4894 */ 4895 return true; 4896 4897 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4898 ret = feat->probe(); 4899 if (ret > 0) { 4900 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4901 } else if (ret == 0) { 4902 WRITE_ONCE(feat->res, FEAT_MISSING); 4903 } else { 4904 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4905 WRITE_ONCE(feat->res, FEAT_MISSING); 4906 } 4907 } 4908 4909 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4910 } 4911 4912 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4913 { 4914 struct bpf_map_info map_info; 4915 char msg[STRERR_BUFSIZE]; 4916 __u32 map_info_len = sizeof(map_info); 4917 int err; 4918 4919 memset(&map_info, 0, map_info_len); 4920 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4921 if (err && errno == EINVAL) 4922 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4923 if (err) { 4924 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4925 libbpf_strerror_r(errno, msg, sizeof(msg))); 4926 return false; 4927 } 4928 4929 return (map_info.type == map->def.type && 4930 map_info.key_size == map->def.key_size && 4931 map_info.value_size == map->def.value_size && 4932 map_info.max_entries == map->def.max_entries && 4933 map_info.map_flags == map->def.map_flags && 4934 map_info.map_extra == map->map_extra); 4935 } 4936 4937 static int 4938 bpf_object__reuse_map(struct bpf_map *map) 4939 { 4940 char *cp, errmsg[STRERR_BUFSIZE]; 4941 int err, pin_fd; 4942 4943 pin_fd = bpf_obj_get(map->pin_path); 4944 if (pin_fd < 0) { 4945 err = -errno; 4946 if (err == -ENOENT) { 4947 pr_debug("found no pinned map to reuse at '%s'\n", 4948 map->pin_path); 4949 return 0; 4950 } 4951 4952 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4953 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4954 map->pin_path, cp); 4955 return err; 4956 } 4957 4958 if (!map_is_reuse_compat(map, pin_fd)) { 4959 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4960 map->pin_path); 4961 close(pin_fd); 4962 return -EINVAL; 4963 } 4964 4965 err = bpf_map__reuse_fd(map, pin_fd); 4966 close(pin_fd); 4967 if (err) { 4968 return err; 4969 } 4970 map->pinned = true; 4971 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4972 4973 return 0; 4974 } 4975 4976 static int 4977 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4978 { 4979 enum libbpf_map_type map_type = map->libbpf_type; 4980 char *cp, errmsg[STRERR_BUFSIZE]; 4981 int err, zero = 0; 4982 4983 if (obj->gen_loader) { 4984 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4985 map->mmaped, map->def.value_size); 4986 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4987 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4988 return 0; 4989 } 4990 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4991 if (err) { 4992 err = -errno; 4993 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4994 pr_warn("Error setting initial map(%s) contents: %s\n", 4995 map->name, cp); 4996 return err; 4997 } 4998 4999 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5000 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5001 err = bpf_map_freeze(map->fd); 5002 if (err) { 5003 err = -errno; 5004 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5005 pr_warn("Error freezing map(%s) as read-only: %s\n", 5006 map->name, cp); 5007 return err; 5008 } 5009 } 5010 return 0; 5011 } 5012 5013 static void bpf_map__destroy(struct bpf_map *map); 5014 5015 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5016 { 5017 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5018 struct bpf_map_def *def = &map->def; 5019 const char *map_name = NULL; 5020 int err = 0; 5021 5022 if (kernel_supports(obj, FEAT_PROG_NAME)) 5023 map_name = map->name; 5024 create_attr.map_ifindex = map->map_ifindex; 5025 create_attr.map_flags = def->map_flags; 5026 create_attr.numa_node = map->numa_node; 5027 create_attr.map_extra = map->map_extra; 5028 5029 if (bpf_map__is_struct_ops(map)) 5030 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5031 5032 if (obj->btf && btf__fd(obj->btf) >= 0) { 5033 create_attr.btf_fd = btf__fd(obj->btf); 5034 create_attr.btf_key_type_id = map->btf_key_type_id; 5035 create_attr.btf_value_type_id = map->btf_value_type_id; 5036 } 5037 5038 if (bpf_map_type__is_map_in_map(def->type)) { 5039 if (map->inner_map) { 5040 err = bpf_object__create_map(obj, map->inner_map, true); 5041 if (err) { 5042 pr_warn("map '%s': failed to create inner map: %d\n", 5043 map->name, err); 5044 return err; 5045 } 5046 map->inner_map_fd = bpf_map__fd(map->inner_map); 5047 } 5048 if (map->inner_map_fd >= 0) 5049 create_attr.inner_map_fd = map->inner_map_fd; 5050 } 5051 5052 switch (def->type) { 5053 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5054 case BPF_MAP_TYPE_CGROUP_ARRAY: 5055 case BPF_MAP_TYPE_STACK_TRACE: 5056 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5057 case BPF_MAP_TYPE_HASH_OF_MAPS: 5058 case BPF_MAP_TYPE_DEVMAP: 5059 case BPF_MAP_TYPE_DEVMAP_HASH: 5060 case BPF_MAP_TYPE_CPUMAP: 5061 case BPF_MAP_TYPE_XSKMAP: 5062 case BPF_MAP_TYPE_SOCKMAP: 5063 case BPF_MAP_TYPE_SOCKHASH: 5064 case BPF_MAP_TYPE_QUEUE: 5065 case BPF_MAP_TYPE_STACK: 5066 create_attr.btf_fd = 0; 5067 create_attr.btf_key_type_id = 0; 5068 create_attr.btf_value_type_id = 0; 5069 map->btf_key_type_id = 0; 5070 map->btf_value_type_id = 0; 5071 default: 5072 break; 5073 } 5074 5075 if (obj->gen_loader) { 5076 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5077 def->key_size, def->value_size, def->max_entries, 5078 &create_attr, is_inner ? -1 : map - obj->maps); 5079 /* Pretend to have valid FD to pass various fd >= 0 checks. 5080 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5081 */ 5082 map->fd = 0; 5083 } else { 5084 map->fd = bpf_map_create(def->type, map_name, 5085 def->key_size, def->value_size, 5086 def->max_entries, &create_attr); 5087 } 5088 if (map->fd < 0 && (create_attr.btf_key_type_id || 5089 create_attr.btf_value_type_id)) { 5090 char *cp, errmsg[STRERR_BUFSIZE]; 5091 5092 err = -errno; 5093 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5094 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5095 map->name, cp, err); 5096 create_attr.btf_fd = 0; 5097 create_attr.btf_key_type_id = 0; 5098 create_attr.btf_value_type_id = 0; 5099 map->btf_key_type_id = 0; 5100 map->btf_value_type_id = 0; 5101 map->fd = bpf_map_create(def->type, map_name, 5102 def->key_size, def->value_size, 5103 def->max_entries, &create_attr); 5104 } 5105 5106 err = map->fd < 0 ? -errno : 0; 5107 5108 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5109 if (obj->gen_loader) 5110 map->inner_map->fd = -1; 5111 bpf_map__destroy(map->inner_map); 5112 zfree(&map->inner_map); 5113 } 5114 5115 return err; 5116 } 5117 5118 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5119 { 5120 const struct bpf_map *targ_map; 5121 unsigned int i; 5122 int fd, err = 0; 5123 5124 for (i = 0; i < map->init_slots_sz; i++) { 5125 if (!map->init_slots[i]) 5126 continue; 5127 5128 targ_map = map->init_slots[i]; 5129 fd = bpf_map__fd(targ_map); 5130 5131 if (obj->gen_loader) { 5132 bpf_gen__populate_outer_map(obj->gen_loader, 5133 map - obj->maps, i, 5134 targ_map - obj->maps); 5135 } else { 5136 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5137 } 5138 if (err) { 5139 err = -errno; 5140 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5141 map->name, i, targ_map->name, fd, err); 5142 return err; 5143 } 5144 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5145 map->name, i, targ_map->name, fd); 5146 } 5147 5148 zfree(&map->init_slots); 5149 map->init_slots_sz = 0; 5150 5151 return 0; 5152 } 5153 5154 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5155 { 5156 const struct bpf_program *targ_prog; 5157 unsigned int i; 5158 int fd, err; 5159 5160 if (obj->gen_loader) 5161 return -ENOTSUP; 5162 5163 for (i = 0; i < map->init_slots_sz; i++) { 5164 if (!map->init_slots[i]) 5165 continue; 5166 5167 targ_prog = map->init_slots[i]; 5168 fd = bpf_program__fd(targ_prog); 5169 5170 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5171 if (err) { 5172 err = -errno; 5173 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5174 map->name, i, targ_prog->name, fd, err); 5175 return err; 5176 } 5177 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5178 map->name, i, targ_prog->name, fd); 5179 } 5180 5181 zfree(&map->init_slots); 5182 map->init_slots_sz = 0; 5183 5184 return 0; 5185 } 5186 5187 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5188 { 5189 struct bpf_map *map; 5190 int i, err; 5191 5192 for (i = 0; i < obj->nr_maps; i++) { 5193 map = &obj->maps[i]; 5194 5195 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5196 continue; 5197 5198 err = init_prog_array_slots(obj, map); 5199 if (err < 0) { 5200 zclose(map->fd); 5201 return err; 5202 } 5203 } 5204 return 0; 5205 } 5206 5207 static int map_set_def_max_entries(struct bpf_map *map) 5208 { 5209 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5210 int nr_cpus; 5211 5212 nr_cpus = libbpf_num_possible_cpus(); 5213 if (nr_cpus < 0) { 5214 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5215 map->name, nr_cpus); 5216 return nr_cpus; 5217 } 5218 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5219 map->def.max_entries = nr_cpus; 5220 } 5221 5222 return 0; 5223 } 5224 5225 static int 5226 bpf_object__create_maps(struct bpf_object *obj) 5227 { 5228 struct bpf_map *map; 5229 char *cp, errmsg[STRERR_BUFSIZE]; 5230 unsigned int i, j; 5231 int err; 5232 bool retried; 5233 5234 for (i = 0; i < obj->nr_maps; i++) { 5235 map = &obj->maps[i]; 5236 5237 /* To support old kernels, we skip creating global data maps 5238 * (.rodata, .data, .kconfig, etc); later on, during program 5239 * loading, if we detect that at least one of the to-be-loaded 5240 * programs is referencing any global data map, we'll error 5241 * out with program name and relocation index logged. 5242 * This approach allows to accommodate Clang emitting 5243 * unnecessary .rodata.str1.1 sections for string literals, 5244 * but also it allows to have CO-RE applications that use 5245 * global variables in some of BPF programs, but not others. 5246 * If those global variable-using programs are not loaded at 5247 * runtime due to bpf_program__set_autoload(prog, false), 5248 * bpf_object loading will succeed just fine even on old 5249 * kernels. 5250 */ 5251 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5252 map->autocreate = false; 5253 5254 if (!map->autocreate) { 5255 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5256 continue; 5257 } 5258 5259 err = map_set_def_max_entries(map); 5260 if (err) 5261 goto err_out; 5262 5263 retried = false; 5264 retry: 5265 if (map->pin_path) { 5266 err = bpf_object__reuse_map(map); 5267 if (err) { 5268 pr_warn("map '%s': error reusing pinned map\n", 5269 map->name); 5270 goto err_out; 5271 } 5272 if (retried && map->fd < 0) { 5273 pr_warn("map '%s': cannot find pinned map\n", 5274 map->name); 5275 err = -ENOENT; 5276 goto err_out; 5277 } 5278 } 5279 5280 if (map->fd >= 0) { 5281 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5282 map->name, map->fd); 5283 } else { 5284 err = bpf_object__create_map(obj, map, false); 5285 if (err) 5286 goto err_out; 5287 5288 pr_debug("map '%s': created successfully, fd=%d\n", 5289 map->name, map->fd); 5290 5291 if (bpf_map__is_internal(map)) { 5292 err = bpf_object__populate_internal_map(obj, map); 5293 if (err < 0) { 5294 zclose(map->fd); 5295 goto err_out; 5296 } 5297 } 5298 5299 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5300 err = init_map_in_map_slots(obj, map); 5301 if (err < 0) { 5302 zclose(map->fd); 5303 goto err_out; 5304 } 5305 } 5306 } 5307 5308 if (map->pin_path && !map->pinned) { 5309 err = bpf_map__pin(map, NULL); 5310 if (err) { 5311 zclose(map->fd); 5312 if (!retried && err == -EEXIST) { 5313 retried = true; 5314 goto retry; 5315 } 5316 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5317 map->name, map->pin_path, err); 5318 goto err_out; 5319 } 5320 } 5321 } 5322 5323 return 0; 5324 5325 err_out: 5326 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5327 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5328 pr_perm_msg(err); 5329 for (j = 0; j < i; j++) 5330 zclose(obj->maps[j].fd); 5331 return err; 5332 } 5333 5334 static bool bpf_core_is_flavor_sep(const char *s) 5335 { 5336 /* check X___Y name pattern, where X and Y are not underscores */ 5337 return s[0] != '_' && /* X */ 5338 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5339 s[4] != '_'; /* Y */ 5340 } 5341 5342 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5343 * before last triple underscore. Struct name part after last triple 5344 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5345 */ 5346 size_t bpf_core_essential_name_len(const char *name) 5347 { 5348 size_t n = strlen(name); 5349 int i; 5350 5351 for (i = n - 5; i >= 0; i--) { 5352 if (bpf_core_is_flavor_sep(name + i)) 5353 return i + 1; 5354 } 5355 return n; 5356 } 5357 5358 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5359 { 5360 if (!cands) 5361 return; 5362 5363 free(cands->cands); 5364 free(cands); 5365 } 5366 5367 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5368 size_t local_essent_len, 5369 const struct btf *targ_btf, 5370 const char *targ_btf_name, 5371 int targ_start_id, 5372 struct bpf_core_cand_list *cands) 5373 { 5374 struct bpf_core_cand *new_cands, *cand; 5375 const struct btf_type *t, *local_t; 5376 const char *targ_name, *local_name; 5377 size_t targ_essent_len; 5378 int n, i; 5379 5380 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5381 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5382 5383 n = btf__type_cnt(targ_btf); 5384 for (i = targ_start_id; i < n; i++) { 5385 t = btf__type_by_id(targ_btf, i); 5386 if (!btf_kind_core_compat(t, local_t)) 5387 continue; 5388 5389 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5390 if (str_is_empty(targ_name)) 5391 continue; 5392 5393 targ_essent_len = bpf_core_essential_name_len(targ_name); 5394 if (targ_essent_len != local_essent_len) 5395 continue; 5396 5397 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5398 continue; 5399 5400 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5401 local_cand->id, btf_kind_str(local_t), 5402 local_name, i, btf_kind_str(t), targ_name, 5403 targ_btf_name); 5404 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5405 sizeof(*cands->cands)); 5406 if (!new_cands) 5407 return -ENOMEM; 5408 5409 cand = &new_cands[cands->len]; 5410 cand->btf = targ_btf; 5411 cand->id = i; 5412 5413 cands->cands = new_cands; 5414 cands->len++; 5415 } 5416 return 0; 5417 } 5418 5419 static int load_module_btfs(struct bpf_object *obj) 5420 { 5421 struct bpf_btf_info info; 5422 struct module_btf *mod_btf; 5423 struct btf *btf; 5424 char name[64]; 5425 __u32 id = 0, len; 5426 int err, fd; 5427 5428 if (obj->btf_modules_loaded) 5429 return 0; 5430 5431 if (obj->gen_loader) 5432 return 0; 5433 5434 /* don't do this again, even if we find no module BTFs */ 5435 obj->btf_modules_loaded = true; 5436 5437 /* kernel too old to support module BTFs */ 5438 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5439 return 0; 5440 5441 while (true) { 5442 err = bpf_btf_get_next_id(id, &id); 5443 if (err && errno == ENOENT) 5444 return 0; 5445 if (err) { 5446 err = -errno; 5447 pr_warn("failed to iterate BTF objects: %d\n", err); 5448 return err; 5449 } 5450 5451 fd = bpf_btf_get_fd_by_id(id); 5452 if (fd < 0) { 5453 if (errno == ENOENT) 5454 continue; /* expected race: BTF was unloaded */ 5455 err = -errno; 5456 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5457 return err; 5458 } 5459 5460 len = sizeof(info); 5461 memset(&info, 0, sizeof(info)); 5462 info.name = ptr_to_u64(name); 5463 info.name_len = sizeof(name); 5464 5465 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5466 if (err) { 5467 err = -errno; 5468 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5469 goto err_out; 5470 } 5471 5472 /* ignore non-module BTFs */ 5473 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5474 close(fd); 5475 continue; 5476 } 5477 5478 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5479 err = libbpf_get_error(btf); 5480 if (err) { 5481 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5482 name, id, err); 5483 goto err_out; 5484 } 5485 5486 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5487 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5488 if (err) 5489 goto err_out; 5490 5491 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5492 5493 mod_btf->btf = btf; 5494 mod_btf->id = id; 5495 mod_btf->fd = fd; 5496 mod_btf->name = strdup(name); 5497 if (!mod_btf->name) { 5498 err = -ENOMEM; 5499 goto err_out; 5500 } 5501 continue; 5502 5503 err_out: 5504 close(fd); 5505 return err; 5506 } 5507 5508 return 0; 5509 } 5510 5511 static struct bpf_core_cand_list * 5512 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5513 { 5514 struct bpf_core_cand local_cand = {}; 5515 struct bpf_core_cand_list *cands; 5516 const struct btf *main_btf; 5517 const struct btf_type *local_t; 5518 const char *local_name; 5519 size_t local_essent_len; 5520 int err, i; 5521 5522 local_cand.btf = local_btf; 5523 local_cand.id = local_type_id; 5524 local_t = btf__type_by_id(local_btf, local_type_id); 5525 if (!local_t) 5526 return ERR_PTR(-EINVAL); 5527 5528 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5529 if (str_is_empty(local_name)) 5530 return ERR_PTR(-EINVAL); 5531 local_essent_len = bpf_core_essential_name_len(local_name); 5532 5533 cands = calloc(1, sizeof(*cands)); 5534 if (!cands) 5535 return ERR_PTR(-ENOMEM); 5536 5537 /* Attempt to find target candidates in vmlinux BTF first */ 5538 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5539 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5540 if (err) 5541 goto err_out; 5542 5543 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5544 if (cands->len) 5545 return cands; 5546 5547 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5548 if (obj->btf_vmlinux_override) 5549 return cands; 5550 5551 /* now look through module BTFs, trying to still find candidates */ 5552 err = load_module_btfs(obj); 5553 if (err) 5554 goto err_out; 5555 5556 for (i = 0; i < obj->btf_module_cnt; i++) { 5557 err = bpf_core_add_cands(&local_cand, local_essent_len, 5558 obj->btf_modules[i].btf, 5559 obj->btf_modules[i].name, 5560 btf__type_cnt(obj->btf_vmlinux), 5561 cands); 5562 if (err) 5563 goto err_out; 5564 } 5565 5566 return cands; 5567 err_out: 5568 bpf_core_free_cands(cands); 5569 return ERR_PTR(err); 5570 } 5571 5572 /* Check local and target types for compatibility. This check is used for 5573 * type-based CO-RE relocations and follow slightly different rules than 5574 * field-based relocations. This function assumes that root types were already 5575 * checked for name match. Beyond that initial root-level name check, names 5576 * are completely ignored. Compatibility rules are as follows: 5577 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5578 * kind should match for local and target types (i.e., STRUCT is not 5579 * compatible with UNION); 5580 * - for ENUMs, the size is ignored; 5581 * - for INT, size and signedness are ignored; 5582 * - for ARRAY, dimensionality is ignored, element types are checked for 5583 * compatibility recursively; 5584 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5585 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5586 * - FUNC_PROTOs are compatible if they have compatible signature: same 5587 * number of input args and compatible return and argument types. 5588 * These rules are not set in stone and probably will be adjusted as we get 5589 * more experience with using BPF CO-RE relocations. 5590 */ 5591 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5592 const struct btf *targ_btf, __u32 targ_id) 5593 { 5594 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5595 } 5596 5597 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5598 const struct btf *targ_btf, __u32 targ_id) 5599 { 5600 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5601 } 5602 5603 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5604 { 5605 return (size_t)key; 5606 } 5607 5608 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5609 { 5610 return k1 == k2; 5611 } 5612 5613 static void *u32_as_hash_key(__u32 x) 5614 { 5615 return (void *)(uintptr_t)x; 5616 } 5617 5618 static int record_relo_core(struct bpf_program *prog, 5619 const struct bpf_core_relo *core_relo, int insn_idx) 5620 { 5621 struct reloc_desc *relos, *relo; 5622 5623 relos = libbpf_reallocarray(prog->reloc_desc, 5624 prog->nr_reloc + 1, sizeof(*relos)); 5625 if (!relos) 5626 return -ENOMEM; 5627 relo = &relos[prog->nr_reloc]; 5628 relo->type = RELO_CORE; 5629 relo->insn_idx = insn_idx; 5630 relo->core_relo = core_relo; 5631 prog->reloc_desc = relos; 5632 prog->nr_reloc++; 5633 return 0; 5634 } 5635 5636 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5637 { 5638 struct reloc_desc *relo; 5639 int i; 5640 5641 for (i = 0; i < prog->nr_reloc; i++) { 5642 relo = &prog->reloc_desc[i]; 5643 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5644 continue; 5645 5646 return relo->core_relo; 5647 } 5648 5649 return NULL; 5650 } 5651 5652 static int bpf_core_resolve_relo(struct bpf_program *prog, 5653 const struct bpf_core_relo *relo, 5654 int relo_idx, 5655 const struct btf *local_btf, 5656 struct hashmap *cand_cache, 5657 struct bpf_core_relo_res *targ_res) 5658 { 5659 struct bpf_core_spec specs_scratch[3] = {}; 5660 const void *type_key = u32_as_hash_key(relo->type_id); 5661 struct bpf_core_cand_list *cands = NULL; 5662 const char *prog_name = prog->name; 5663 const struct btf_type *local_type; 5664 const char *local_name; 5665 __u32 local_id = relo->type_id; 5666 int err; 5667 5668 local_type = btf__type_by_id(local_btf, local_id); 5669 if (!local_type) 5670 return -EINVAL; 5671 5672 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5673 if (!local_name) 5674 return -EINVAL; 5675 5676 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5677 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5678 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5679 if (IS_ERR(cands)) { 5680 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5681 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5682 local_name, PTR_ERR(cands)); 5683 return PTR_ERR(cands); 5684 } 5685 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5686 if (err) { 5687 bpf_core_free_cands(cands); 5688 return err; 5689 } 5690 } 5691 5692 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5693 targ_res); 5694 } 5695 5696 static int 5697 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5698 { 5699 const struct btf_ext_info_sec *sec; 5700 struct bpf_core_relo_res targ_res; 5701 const struct bpf_core_relo *rec; 5702 const struct btf_ext_info *seg; 5703 struct hashmap_entry *entry; 5704 struct hashmap *cand_cache = NULL; 5705 struct bpf_program *prog; 5706 struct bpf_insn *insn; 5707 const char *sec_name; 5708 int i, err = 0, insn_idx, sec_idx, sec_num; 5709 5710 if (obj->btf_ext->core_relo_info.len == 0) 5711 return 0; 5712 5713 if (targ_btf_path) { 5714 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5715 err = libbpf_get_error(obj->btf_vmlinux_override); 5716 if (err) { 5717 pr_warn("failed to parse target BTF: %d\n", err); 5718 return err; 5719 } 5720 } 5721 5722 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5723 if (IS_ERR(cand_cache)) { 5724 err = PTR_ERR(cand_cache); 5725 goto out; 5726 } 5727 5728 seg = &obj->btf_ext->core_relo_info; 5729 sec_num = 0; 5730 for_each_btf_ext_sec(seg, sec) { 5731 sec_idx = seg->sec_idxs[sec_num]; 5732 sec_num++; 5733 5734 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5735 if (str_is_empty(sec_name)) { 5736 err = -EINVAL; 5737 goto out; 5738 } 5739 5740 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5741 5742 for_each_btf_ext_rec(seg, sec, i, rec) { 5743 if (rec->insn_off % BPF_INSN_SZ) 5744 return -EINVAL; 5745 insn_idx = rec->insn_off / BPF_INSN_SZ; 5746 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5747 if (!prog) { 5748 /* When __weak subprog is "overridden" by another instance 5749 * of the subprog from a different object file, linker still 5750 * appends all the .BTF.ext info that used to belong to that 5751 * eliminated subprogram. 5752 * This is similar to what x86-64 linker does for relocations. 5753 * So just ignore such relocations just like we ignore 5754 * subprog instructions when discovering subprograms. 5755 */ 5756 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5757 sec_name, i, insn_idx); 5758 continue; 5759 } 5760 /* no need to apply CO-RE relocation if the program is 5761 * not going to be loaded 5762 */ 5763 if (!prog->autoload) 5764 continue; 5765 5766 /* adjust insn_idx from section frame of reference to the local 5767 * program's frame of reference; (sub-)program code is not yet 5768 * relocated, so it's enough to just subtract in-section offset 5769 */ 5770 insn_idx = insn_idx - prog->sec_insn_off; 5771 if (insn_idx >= prog->insns_cnt) 5772 return -EINVAL; 5773 insn = &prog->insns[insn_idx]; 5774 5775 err = record_relo_core(prog, rec, insn_idx); 5776 if (err) { 5777 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5778 prog->name, i, err); 5779 goto out; 5780 } 5781 5782 if (prog->obj->gen_loader) 5783 continue; 5784 5785 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5786 if (err) { 5787 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5788 prog->name, i, err); 5789 goto out; 5790 } 5791 5792 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5793 if (err) { 5794 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5795 prog->name, i, insn_idx, err); 5796 goto out; 5797 } 5798 } 5799 } 5800 5801 out: 5802 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5803 btf__free(obj->btf_vmlinux_override); 5804 obj->btf_vmlinux_override = NULL; 5805 5806 if (!IS_ERR_OR_NULL(cand_cache)) { 5807 hashmap__for_each_entry(cand_cache, entry, i) { 5808 bpf_core_free_cands(entry->value); 5809 } 5810 hashmap__free(cand_cache); 5811 } 5812 return err; 5813 } 5814 5815 /* base map load ldimm64 special constant, used also for log fixup logic */ 5816 #define MAP_LDIMM64_POISON_BASE 2001000000 5817 #define MAP_LDIMM64_POISON_PFX "200100" 5818 5819 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5820 int insn_idx, struct bpf_insn *insn, 5821 int map_idx, const struct bpf_map *map) 5822 { 5823 int i; 5824 5825 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5826 prog->name, relo_idx, insn_idx, map_idx, map->name); 5827 5828 /* we turn single ldimm64 into two identical invalid calls */ 5829 for (i = 0; i < 2; i++) { 5830 insn->code = BPF_JMP | BPF_CALL; 5831 insn->dst_reg = 0; 5832 insn->src_reg = 0; 5833 insn->off = 0; 5834 /* if this instruction is reachable (not a dead code), 5835 * verifier will complain with something like: 5836 * invalid func unknown#2001000123 5837 * where lower 123 is map index into obj->maps[] array 5838 */ 5839 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5840 5841 insn++; 5842 } 5843 } 5844 5845 /* Relocate data references within program code: 5846 * - map references; 5847 * - global variable references; 5848 * - extern references. 5849 */ 5850 static int 5851 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5852 { 5853 int i; 5854 5855 for (i = 0; i < prog->nr_reloc; i++) { 5856 struct reloc_desc *relo = &prog->reloc_desc[i]; 5857 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5858 const struct bpf_map *map; 5859 struct extern_desc *ext; 5860 5861 switch (relo->type) { 5862 case RELO_LD64: 5863 map = &obj->maps[relo->map_idx]; 5864 if (obj->gen_loader) { 5865 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5866 insn[0].imm = relo->map_idx; 5867 } else if (map->autocreate) { 5868 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5869 insn[0].imm = map->fd; 5870 } else { 5871 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5872 relo->map_idx, map); 5873 } 5874 break; 5875 case RELO_DATA: 5876 map = &obj->maps[relo->map_idx]; 5877 insn[1].imm = insn[0].imm + relo->sym_off; 5878 if (obj->gen_loader) { 5879 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5880 insn[0].imm = relo->map_idx; 5881 } else if (map->autocreate) { 5882 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5883 insn[0].imm = map->fd; 5884 } else { 5885 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5886 relo->map_idx, map); 5887 } 5888 break; 5889 case RELO_EXTERN_VAR: 5890 ext = &obj->externs[relo->sym_off]; 5891 if (ext->type == EXT_KCFG) { 5892 if (obj->gen_loader) { 5893 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5894 insn[0].imm = obj->kconfig_map_idx; 5895 } else { 5896 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5897 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5898 } 5899 insn[1].imm = ext->kcfg.data_off; 5900 } else /* EXT_KSYM */ { 5901 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5902 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5903 insn[0].imm = ext->ksym.kernel_btf_id; 5904 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5905 } else { /* typeless ksyms or unresolved typed ksyms */ 5906 insn[0].imm = (__u32)ext->ksym.addr; 5907 insn[1].imm = ext->ksym.addr >> 32; 5908 } 5909 } 5910 break; 5911 case RELO_EXTERN_FUNC: 5912 ext = &obj->externs[relo->sym_off]; 5913 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5914 if (ext->is_set) { 5915 insn[0].imm = ext->ksym.kernel_btf_id; 5916 insn[0].off = ext->ksym.btf_fd_idx; 5917 } else { /* unresolved weak kfunc */ 5918 insn[0].imm = 0; 5919 insn[0].off = 0; 5920 } 5921 break; 5922 case RELO_SUBPROG_ADDR: 5923 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5924 pr_warn("prog '%s': relo #%d: bad insn\n", 5925 prog->name, i); 5926 return -EINVAL; 5927 } 5928 /* handled already */ 5929 break; 5930 case RELO_CALL: 5931 /* handled already */ 5932 break; 5933 case RELO_CORE: 5934 /* will be handled by bpf_program_record_relos() */ 5935 break; 5936 default: 5937 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5938 prog->name, i, relo->type); 5939 return -EINVAL; 5940 } 5941 } 5942 5943 return 0; 5944 } 5945 5946 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5947 const struct bpf_program *prog, 5948 const struct btf_ext_info *ext_info, 5949 void **prog_info, __u32 *prog_rec_cnt, 5950 __u32 *prog_rec_sz) 5951 { 5952 void *copy_start = NULL, *copy_end = NULL; 5953 void *rec, *rec_end, *new_prog_info; 5954 const struct btf_ext_info_sec *sec; 5955 size_t old_sz, new_sz; 5956 int i, sec_num, sec_idx, off_adj; 5957 5958 sec_num = 0; 5959 for_each_btf_ext_sec(ext_info, sec) { 5960 sec_idx = ext_info->sec_idxs[sec_num]; 5961 sec_num++; 5962 if (prog->sec_idx != sec_idx) 5963 continue; 5964 5965 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5966 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5967 5968 if (insn_off < prog->sec_insn_off) 5969 continue; 5970 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5971 break; 5972 5973 if (!copy_start) 5974 copy_start = rec; 5975 copy_end = rec + ext_info->rec_size; 5976 } 5977 5978 if (!copy_start) 5979 return -ENOENT; 5980 5981 /* append func/line info of a given (sub-)program to the main 5982 * program func/line info 5983 */ 5984 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5985 new_sz = old_sz + (copy_end - copy_start); 5986 new_prog_info = realloc(*prog_info, new_sz); 5987 if (!new_prog_info) 5988 return -ENOMEM; 5989 *prog_info = new_prog_info; 5990 *prog_rec_cnt = new_sz / ext_info->rec_size; 5991 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5992 5993 /* Kernel instruction offsets are in units of 8-byte 5994 * instructions, while .BTF.ext instruction offsets generated 5995 * by Clang are in units of bytes. So convert Clang offsets 5996 * into kernel offsets and adjust offset according to program 5997 * relocated position. 5998 */ 5999 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6000 rec = new_prog_info + old_sz; 6001 rec_end = new_prog_info + new_sz; 6002 for (; rec < rec_end; rec += ext_info->rec_size) { 6003 __u32 *insn_off = rec; 6004 6005 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6006 } 6007 *prog_rec_sz = ext_info->rec_size; 6008 return 0; 6009 } 6010 6011 return -ENOENT; 6012 } 6013 6014 static int 6015 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6016 struct bpf_program *main_prog, 6017 const struct bpf_program *prog) 6018 { 6019 int err; 6020 6021 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6022 * supprot func/line info 6023 */ 6024 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6025 return 0; 6026 6027 /* only attempt func info relocation if main program's func_info 6028 * relocation was successful 6029 */ 6030 if (main_prog != prog && !main_prog->func_info) 6031 goto line_info; 6032 6033 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6034 &main_prog->func_info, 6035 &main_prog->func_info_cnt, 6036 &main_prog->func_info_rec_size); 6037 if (err) { 6038 if (err != -ENOENT) { 6039 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6040 prog->name, err); 6041 return err; 6042 } 6043 if (main_prog->func_info) { 6044 /* 6045 * Some info has already been found but has problem 6046 * in the last btf_ext reloc. Must have to error out. 6047 */ 6048 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6049 return err; 6050 } 6051 /* Have problem loading the very first info. Ignore the rest. */ 6052 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6053 prog->name); 6054 } 6055 6056 line_info: 6057 /* don't relocate line info if main program's relocation failed */ 6058 if (main_prog != prog && !main_prog->line_info) 6059 return 0; 6060 6061 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6062 &main_prog->line_info, 6063 &main_prog->line_info_cnt, 6064 &main_prog->line_info_rec_size); 6065 if (err) { 6066 if (err != -ENOENT) { 6067 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6068 prog->name, err); 6069 return err; 6070 } 6071 if (main_prog->line_info) { 6072 /* 6073 * Some info has already been found but has problem 6074 * in the last btf_ext reloc. Must have to error out. 6075 */ 6076 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6077 return err; 6078 } 6079 /* Have problem loading the very first info. Ignore the rest. */ 6080 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6081 prog->name); 6082 } 6083 return 0; 6084 } 6085 6086 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6087 { 6088 size_t insn_idx = *(const size_t *)key; 6089 const struct reloc_desc *relo = elem; 6090 6091 if (insn_idx == relo->insn_idx) 6092 return 0; 6093 return insn_idx < relo->insn_idx ? -1 : 1; 6094 } 6095 6096 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6097 { 6098 if (!prog->nr_reloc) 6099 return NULL; 6100 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6101 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6102 } 6103 6104 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6105 { 6106 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6107 struct reloc_desc *relos; 6108 int i; 6109 6110 if (main_prog == subprog) 6111 return 0; 6112 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6113 if (!relos) 6114 return -ENOMEM; 6115 if (subprog->nr_reloc) 6116 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6117 sizeof(*relos) * subprog->nr_reloc); 6118 6119 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6120 relos[i].insn_idx += subprog->sub_insn_off; 6121 /* After insn_idx adjustment the 'relos' array is still sorted 6122 * by insn_idx and doesn't break bsearch. 6123 */ 6124 main_prog->reloc_desc = relos; 6125 main_prog->nr_reloc = new_cnt; 6126 return 0; 6127 } 6128 6129 static int 6130 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6131 struct bpf_program *prog) 6132 { 6133 size_t sub_insn_idx, insn_idx, new_cnt; 6134 struct bpf_program *subprog; 6135 struct bpf_insn *insns, *insn; 6136 struct reloc_desc *relo; 6137 int err; 6138 6139 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6140 if (err) 6141 return err; 6142 6143 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6144 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6145 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6146 continue; 6147 6148 relo = find_prog_insn_relo(prog, insn_idx); 6149 if (relo && relo->type == RELO_EXTERN_FUNC) 6150 /* kfunc relocations will be handled later 6151 * in bpf_object__relocate_data() 6152 */ 6153 continue; 6154 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6155 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6156 prog->name, insn_idx, relo->type); 6157 return -LIBBPF_ERRNO__RELOC; 6158 } 6159 if (relo) { 6160 /* sub-program instruction index is a combination of 6161 * an offset of a symbol pointed to by relocation and 6162 * call instruction's imm field; for global functions, 6163 * call always has imm = -1, but for static functions 6164 * relocation is against STT_SECTION and insn->imm 6165 * points to a start of a static function 6166 * 6167 * for subprog addr relocation, the relo->sym_off + insn->imm is 6168 * the byte offset in the corresponding section. 6169 */ 6170 if (relo->type == RELO_CALL) 6171 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6172 else 6173 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6174 } else if (insn_is_pseudo_func(insn)) { 6175 /* 6176 * RELO_SUBPROG_ADDR relo is always emitted even if both 6177 * functions are in the same section, so it shouldn't reach here. 6178 */ 6179 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6180 prog->name, insn_idx); 6181 return -LIBBPF_ERRNO__RELOC; 6182 } else { 6183 /* if subprogram call is to a static function within 6184 * the same ELF section, there won't be any relocation 6185 * emitted, but it also means there is no additional 6186 * offset necessary, insns->imm is relative to 6187 * instruction's original position within the section 6188 */ 6189 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6190 } 6191 6192 /* we enforce that sub-programs should be in .text section */ 6193 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6194 if (!subprog) { 6195 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6196 prog->name); 6197 return -LIBBPF_ERRNO__RELOC; 6198 } 6199 6200 /* if it's the first call instruction calling into this 6201 * subprogram (meaning this subprog hasn't been processed 6202 * yet) within the context of current main program: 6203 * - append it at the end of main program's instructions blog; 6204 * - process is recursively, while current program is put on hold; 6205 * - if that subprogram calls some other not yet processes 6206 * subprogram, same thing will happen recursively until 6207 * there are no more unprocesses subprograms left to append 6208 * and relocate. 6209 */ 6210 if (subprog->sub_insn_off == 0) { 6211 subprog->sub_insn_off = main_prog->insns_cnt; 6212 6213 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6214 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6215 if (!insns) { 6216 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6217 return -ENOMEM; 6218 } 6219 main_prog->insns = insns; 6220 main_prog->insns_cnt = new_cnt; 6221 6222 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6223 subprog->insns_cnt * sizeof(*insns)); 6224 6225 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6226 main_prog->name, subprog->insns_cnt, subprog->name); 6227 6228 /* The subprog insns are now appended. Append its relos too. */ 6229 err = append_subprog_relos(main_prog, subprog); 6230 if (err) 6231 return err; 6232 err = bpf_object__reloc_code(obj, main_prog, subprog); 6233 if (err) 6234 return err; 6235 } 6236 6237 /* main_prog->insns memory could have been re-allocated, so 6238 * calculate pointer again 6239 */ 6240 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6241 /* calculate correct instruction position within current main 6242 * prog; each main prog can have a different set of 6243 * subprograms appended (potentially in different order as 6244 * well), so position of any subprog can be different for 6245 * different main programs */ 6246 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6247 6248 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6249 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6250 } 6251 6252 return 0; 6253 } 6254 6255 /* 6256 * Relocate sub-program calls. 6257 * 6258 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6259 * main prog) is processed separately. For each subprog (non-entry functions, 6260 * that can be called from either entry progs or other subprogs) gets their 6261 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6262 * hasn't been yet appended and relocated within current main prog. Once its 6263 * relocated, sub_insn_off will point at the position within current main prog 6264 * where given subprog was appended. This will further be used to relocate all 6265 * the call instructions jumping into this subprog. 6266 * 6267 * We start with main program and process all call instructions. If the call 6268 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6269 * is zero), subprog instructions are appended at the end of main program's 6270 * instruction array. Then main program is "put on hold" while we recursively 6271 * process newly appended subprogram. If that subprogram calls into another 6272 * subprogram that hasn't been appended, new subprogram is appended again to 6273 * the *main* prog's instructions (subprog's instructions are always left 6274 * untouched, as they need to be in unmodified state for subsequent main progs 6275 * and subprog instructions are always sent only as part of a main prog) and 6276 * the process continues recursively. Once all the subprogs called from a main 6277 * prog or any of its subprogs are appended (and relocated), all their 6278 * positions within finalized instructions array are known, so it's easy to 6279 * rewrite call instructions with correct relative offsets, corresponding to 6280 * desired target subprog. 6281 * 6282 * Its important to realize that some subprogs might not be called from some 6283 * main prog and any of its called/used subprogs. Those will keep their 6284 * subprog->sub_insn_off as zero at all times and won't be appended to current 6285 * main prog and won't be relocated within the context of current main prog. 6286 * They might still be used from other main progs later. 6287 * 6288 * Visually this process can be shown as below. Suppose we have two main 6289 * programs mainA and mainB and BPF object contains three subprogs: subA, 6290 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6291 * subC both call subB: 6292 * 6293 * +--------+ +-------+ 6294 * | v v | 6295 * +--+---+ +--+-+-+ +---+--+ 6296 * | subA | | subB | | subC | 6297 * +--+---+ +------+ +---+--+ 6298 * ^ ^ 6299 * | | 6300 * +---+-------+ +------+----+ 6301 * | mainA | | mainB | 6302 * +-----------+ +-----------+ 6303 * 6304 * We'll start relocating mainA, will find subA, append it and start 6305 * processing sub A recursively: 6306 * 6307 * +-----------+------+ 6308 * | mainA | subA | 6309 * +-----------+------+ 6310 * 6311 * At this point we notice that subB is used from subA, so we append it and 6312 * relocate (there are no further subcalls from subB): 6313 * 6314 * +-----------+------+------+ 6315 * | mainA | subA | subB | 6316 * +-----------+------+------+ 6317 * 6318 * At this point, we relocate subA calls, then go one level up and finish with 6319 * relocatin mainA calls. mainA is done. 6320 * 6321 * For mainB process is similar but results in different order. We start with 6322 * mainB and skip subA and subB, as mainB never calls them (at least 6323 * directly), but we see subC is needed, so we append and start processing it: 6324 * 6325 * +-----------+------+ 6326 * | mainB | subC | 6327 * +-----------+------+ 6328 * Now we see subC needs subB, so we go back to it, append and relocate it: 6329 * 6330 * +-----------+------+------+ 6331 * | mainB | subC | subB | 6332 * +-----------+------+------+ 6333 * 6334 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6335 */ 6336 static int 6337 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6338 { 6339 struct bpf_program *subprog; 6340 int i, err; 6341 6342 /* mark all subprogs as not relocated (yet) within the context of 6343 * current main program 6344 */ 6345 for (i = 0; i < obj->nr_programs; i++) { 6346 subprog = &obj->programs[i]; 6347 if (!prog_is_subprog(obj, subprog)) 6348 continue; 6349 6350 subprog->sub_insn_off = 0; 6351 } 6352 6353 err = bpf_object__reloc_code(obj, prog, prog); 6354 if (err) 6355 return err; 6356 6357 return 0; 6358 } 6359 6360 static void 6361 bpf_object__free_relocs(struct bpf_object *obj) 6362 { 6363 struct bpf_program *prog; 6364 int i; 6365 6366 /* free up relocation descriptors */ 6367 for (i = 0; i < obj->nr_programs; i++) { 6368 prog = &obj->programs[i]; 6369 zfree(&prog->reloc_desc); 6370 prog->nr_reloc = 0; 6371 } 6372 } 6373 6374 static int cmp_relocs(const void *_a, const void *_b) 6375 { 6376 const struct reloc_desc *a = _a; 6377 const struct reloc_desc *b = _b; 6378 6379 if (a->insn_idx != b->insn_idx) 6380 return a->insn_idx < b->insn_idx ? -1 : 1; 6381 6382 /* no two relocations should have the same insn_idx, but ... */ 6383 if (a->type != b->type) 6384 return a->type < b->type ? -1 : 1; 6385 6386 return 0; 6387 } 6388 6389 static void bpf_object__sort_relos(struct bpf_object *obj) 6390 { 6391 int i; 6392 6393 for (i = 0; i < obj->nr_programs; i++) { 6394 struct bpf_program *p = &obj->programs[i]; 6395 6396 if (!p->nr_reloc) 6397 continue; 6398 6399 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6400 } 6401 } 6402 6403 static int 6404 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6405 { 6406 struct bpf_program *prog; 6407 size_t i, j; 6408 int err; 6409 6410 if (obj->btf_ext) { 6411 err = bpf_object__relocate_core(obj, targ_btf_path); 6412 if (err) { 6413 pr_warn("failed to perform CO-RE relocations: %d\n", 6414 err); 6415 return err; 6416 } 6417 bpf_object__sort_relos(obj); 6418 } 6419 6420 /* Before relocating calls pre-process relocations and mark 6421 * few ld_imm64 instructions that points to subprogs. 6422 * Otherwise bpf_object__reloc_code() later would have to consider 6423 * all ld_imm64 insns as relocation candidates. That would 6424 * reduce relocation speed, since amount of find_prog_insn_relo() 6425 * would increase and most of them will fail to find a relo. 6426 */ 6427 for (i = 0; i < obj->nr_programs; i++) { 6428 prog = &obj->programs[i]; 6429 for (j = 0; j < prog->nr_reloc; j++) { 6430 struct reloc_desc *relo = &prog->reloc_desc[j]; 6431 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6432 6433 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6434 if (relo->type == RELO_SUBPROG_ADDR) 6435 insn[0].src_reg = BPF_PSEUDO_FUNC; 6436 } 6437 } 6438 6439 /* relocate subprogram calls and append used subprograms to main 6440 * programs; each copy of subprogram code needs to be relocated 6441 * differently for each main program, because its code location might 6442 * have changed. 6443 * Append subprog relos to main programs to allow data relos to be 6444 * processed after text is completely relocated. 6445 */ 6446 for (i = 0; i < obj->nr_programs; i++) { 6447 prog = &obj->programs[i]; 6448 /* sub-program's sub-calls are relocated within the context of 6449 * its main program only 6450 */ 6451 if (prog_is_subprog(obj, prog)) 6452 continue; 6453 if (!prog->autoload) 6454 continue; 6455 6456 err = bpf_object__relocate_calls(obj, prog); 6457 if (err) { 6458 pr_warn("prog '%s': failed to relocate calls: %d\n", 6459 prog->name, err); 6460 return err; 6461 } 6462 } 6463 /* Process data relos for main programs */ 6464 for (i = 0; i < obj->nr_programs; i++) { 6465 prog = &obj->programs[i]; 6466 if (prog_is_subprog(obj, prog)) 6467 continue; 6468 if (!prog->autoload) 6469 continue; 6470 err = bpf_object__relocate_data(obj, prog); 6471 if (err) { 6472 pr_warn("prog '%s': failed to relocate data references: %d\n", 6473 prog->name, err); 6474 return err; 6475 } 6476 } 6477 6478 return 0; 6479 } 6480 6481 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6482 Elf64_Shdr *shdr, Elf_Data *data); 6483 6484 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6485 Elf64_Shdr *shdr, Elf_Data *data) 6486 { 6487 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6488 int i, j, nrels, new_sz; 6489 const struct btf_var_secinfo *vi = NULL; 6490 const struct btf_type *sec, *var, *def; 6491 struct bpf_map *map = NULL, *targ_map = NULL; 6492 struct bpf_program *targ_prog = NULL; 6493 bool is_prog_array, is_map_in_map; 6494 const struct btf_member *member; 6495 const char *name, *mname, *type; 6496 unsigned int moff; 6497 Elf64_Sym *sym; 6498 Elf64_Rel *rel; 6499 void *tmp; 6500 6501 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6502 return -EINVAL; 6503 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6504 if (!sec) 6505 return -EINVAL; 6506 6507 nrels = shdr->sh_size / shdr->sh_entsize; 6508 for (i = 0; i < nrels; i++) { 6509 rel = elf_rel_by_idx(data, i); 6510 if (!rel) { 6511 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6512 return -LIBBPF_ERRNO__FORMAT; 6513 } 6514 6515 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6516 if (!sym) { 6517 pr_warn(".maps relo #%d: symbol %zx not found\n", 6518 i, (size_t)ELF64_R_SYM(rel->r_info)); 6519 return -LIBBPF_ERRNO__FORMAT; 6520 } 6521 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6522 6523 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6524 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6525 (size_t)rel->r_offset, sym->st_name, name); 6526 6527 for (j = 0; j < obj->nr_maps; j++) { 6528 map = &obj->maps[j]; 6529 if (map->sec_idx != obj->efile.btf_maps_shndx) 6530 continue; 6531 6532 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6533 if (vi->offset <= rel->r_offset && 6534 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6535 break; 6536 } 6537 if (j == obj->nr_maps) { 6538 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6539 i, name, (size_t)rel->r_offset); 6540 return -EINVAL; 6541 } 6542 6543 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6544 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6545 type = is_map_in_map ? "map" : "prog"; 6546 if (is_map_in_map) { 6547 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6548 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6549 i, name); 6550 return -LIBBPF_ERRNO__RELOC; 6551 } 6552 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6553 map->def.key_size != sizeof(int)) { 6554 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6555 i, map->name, sizeof(int)); 6556 return -EINVAL; 6557 } 6558 targ_map = bpf_object__find_map_by_name(obj, name); 6559 if (!targ_map) { 6560 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6561 i, name); 6562 return -ESRCH; 6563 } 6564 } else if (is_prog_array) { 6565 targ_prog = bpf_object__find_program_by_name(obj, name); 6566 if (!targ_prog) { 6567 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6568 i, name); 6569 return -ESRCH; 6570 } 6571 if (targ_prog->sec_idx != sym->st_shndx || 6572 targ_prog->sec_insn_off * 8 != sym->st_value || 6573 prog_is_subprog(obj, targ_prog)) { 6574 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6575 i, name); 6576 return -LIBBPF_ERRNO__RELOC; 6577 } 6578 } else { 6579 return -EINVAL; 6580 } 6581 6582 var = btf__type_by_id(obj->btf, vi->type); 6583 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6584 if (btf_vlen(def) == 0) 6585 return -EINVAL; 6586 member = btf_members(def) + btf_vlen(def) - 1; 6587 mname = btf__name_by_offset(obj->btf, member->name_off); 6588 if (strcmp(mname, "values")) 6589 return -EINVAL; 6590 6591 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6592 if (rel->r_offset - vi->offset < moff) 6593 return -EINVAL; 6594 6595 moff = rel->r_offset - vi->offset - moff; 6596 /* here we use BPF pointer size, which is always 64 bit, as we 6597 * are parsing ELF that was built for BPF target 6598 */ 6599 if (moff % bpf_ptr_sz) 6600 return -EINVAL; 6601 moff /= bpf_ptr_sz; 6602 if (moff >= map->init_slots_sz) { 6603 new_sz = moff + 1; 6604 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6605 if (!tmp) 6606 return -ENOMEM; 6607 map->init_slots = tmp; 6608 memset(map->init_slots + map->init_slots_sz, 0, 6609 (new_sz - map->init_slots_sz) * host_ptr_sz); 6610 map->init_slots_sz = new_sz; 6611 } 6612 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6613 6614 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6615 i, map->name, moff, type, name); 6616 } 6617 6618 return 0; 6619 } 6620 6621 static int bpf_object__collect_relos(struct bpf_object *obj) 6622 { 6623 int i, err; 6624 6625 for (i = 0; i < obj->efile.sec_cnt; i++) { 6626 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6627 Elf64_Shdr *shdr; 6628 Elf_Data *data; 6629 int idx; 6630 6631 if (sec_desc->sec_type != SEC_RELO) 6632 continue; 6633 6634 shdr = sec_desc->shdr; 6635 data = sec_desc->data; 6636 idx = shdr->sh_info; 6637 6638 if (shdr->sh_type != SHT_REL) { 6639 pr_warn("internal error at %d\n", __LINE__); 6640 return -LIBBPF_ERRNO__INTERNAL; 6641 } 6642 6643 if (idx == obj->efile.st_ops_shndx) 6644 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6645 else if (idx == obj->efile.btf_maps_shndx) 6646 err = bpf_object__collect_map_relos(obj, shdr, data); 6647 else 6648 err = bpf_object__collect_prog_relos(obj, shdr, data); 6649 if (err) 6650 return err; 6651 } 6652 6653 bpf_object__sort_relos(obj); 6654 return 0; 6655 } 6656 6657 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6658 { 6659 if (BPF_CLASS(insn->code) == BPF_JMP && 6660 BPF_OP(insn->code) == BPF_CALL && 6661 BPF_SRC(insn->code) == BPF_K && 6662 insn->src_reg == 0 && 6663 insn->dst_reg == 0) { 6664 *func_id = insn->imm; 6665 return true; 6666 } 6667 return false; 6668 } 6669 6670 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6671 { 6672 struct bpf_insn *insn = prog->insns; 6673 enum bpf_func_id func_id; 6674 int i; 6675 6676 if (obj->gen_loader) 6677 return 0; 6678 6679 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6680 if (!insn_is_helper_call(insn, &func_id)) 6681 continue; 6682 6683 /* on kernels that don't yet support 6684 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6685 * to bpf_probe_read() which works well for old kernels 6686 */ 6687 switch (func_id) { 6688 case BPF_FUNC_probe_read_kernel: 6689 case BPF_FUNC_probe_read_user: 6690 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6691 insn->imm = BPF_FUNC_probe_read; 6692 break; 6693 case BPF_FUNC_probe_read_kernel_str: 6694 case BPF_FUNC_probe_read_user_str: 6695 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6696 insn->imm = BPF_FUNC_probe_read_str; 6697 break; 6698 default: 6699 break; 6700 } 6701 } 6702 return 0; 6703 } 6704 6705 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6706 int *btf_obj_fd, int *btf_type_id); 6707 6708 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6709 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6710 struct bpf_prog_load_opts *opts, long cookie) 6711 { 6712 enum sec_def_flags def = cookie; 6713 6714 /* old kernels might not support specifying expected_attach_type */ 6715 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6716 opts->expected_attach_type = 0; 6717 6718 if (def & SEC_SLEEPABLE) 6719 opts->prog_flags |= BPF_F_SLEEPABLE; 6720 6721 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6722 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6723 6724 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6725 int btf_obj_fd = 0, btf_type_id = 0, err; 6726 const char *attach_name; 6727 6728 attach_name = strchr(prog->sec_name, '/'); 6729 if (!attach_name) { 6730 /* if BPF program is annotated with just SEC("fentry") 6731 * (or similar) without declaratively specifying 6732 * target, then it is expected that target will be 6733 * specified with bpf_program__set_attach_target() at 6734 * runtime before BPF object load step. If not, then 6735 * there is nothing to load into the kernel as BPF 6736 * verifier won't be able to validate BPF program 6737 * correctness anyways. 6738 */ 6739 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6740 prog->name); 6741 return -EINVAL; 6742 } 6743 attach_name++; /* skip over / */ 6744 6745 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6746 if (err) 6747 return err; 6748 6749 /* cache resolved BTF FD and BTF type ID in the prog */ 6750 prog->attach_btf_obj_fd = btf_obj_fd; 6751 prog->attach_btf_id = btf_type_id; 6752 6753 /* but by now libbpf common logic is not utilizing 6754 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6755 * this callback is called after opts were populated by 6756 * libbpf, so this callback has to update opts explicitly here 6757 */ 6758 opts->attach_btf_obj_fd = btf_obj_fd; 6759 opts->attach_btf_id = btf_type_id; 6760 } 6761 return 0; 6762 } 6763 6764 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6765 6766 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6767 struct bpf_insn *insns, int insns_cnt, 6768 const char *license, __u32 kern_version, int *prog_fd) 6769 { 6770 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6771 const char *prog_name = NULL; 6772 char *cp, errmsg[STRERR_BUFSIZE]; 6773 size_t log_buf_size = 0; 6774 char *log_buf = NULL, *tmp; 6775 int btf_fd, ret, err; 6776 bool own_log_buf = true; 6777 __u32 log_level = prog->log_level; 6778 6779 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6780 /* 6781 * The program type must be set. Most likely we couldn't find a proper 6782 * section definition at load time, and thus we didn't infer the type. 6783 */ 6784 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6785 prog->name, prog->sec_name); 6786 return -EINVAL; 6787 } 6788 6789 if (!insns || !insns_cnt) 6790 return -EINVAL; 6791 6792 load_attr.expected_attach_type = prog->expected_attach_type; 6793 if (kernel_supports(obj, FEAT_PROG_NAME)) 6794 prog_name = prog->name; 6795 load_attr.attach_prog_fd = prog->attach_prog_fd; 6796 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6797 load_attr.attach_btf_id = prog->attach_btf_id; 6798 load_attr.kern_version = kern_version; 6799 load_attr.prog_ifindex = prog->prog_ifindex; 6800 6801 /* specify func_info/line_info only if kernel supports them */ 6802 btf_fd = bpf_object__btf_fd(obj); 6803 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6804 load_attr.prog_btf_fd = btf_fd; 6805 load_attr.func_info = prog->func_info; 6806 load_attr.func_info_rec_size = prog->func_info_rec_size; 6807 load_attr.func_info_cnt = prog->func_info_cnt; 6808 load_attr.line_info = prog->line_info; 6809 load_attr.line_info_rec_size = prog->line_info_rec_size; 6810 load_attr.line_info_cnt = prog->line_info_cnt; 6811 } 6812 load_attr.log_level = log_level; 6813 load_attr.prog_flags = prog->prog_flags; 6814 load_attr.fd_array = obj->fd_array; 6815 6816 /* adjust load_attr if sec_def provides custom preload callback */ 6817 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6818 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6819 if (err < 0) { 6820 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6821 prog->name, err); 6822 return err; 6823 } 6824 insns = prog->insns; 6825 insns_cnt = prog->insns_cnt; 6826 } 6827 6828 if (obj->gen_loader) { 6829 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6830 license, insns, insns_cnt, &load_attr, 6831 prog - obj->programs); 6832 *prog_fd = -1; 6833 return 0; 6834 } 6835 6836 retry_load: 6837 /* if log_level is zero, we don't request logs initially even if 6838 * custom log_buf is specified; if the program load fails, then we'll 6839 * bump log_level to 1 and use either custom log_buf or we'll allocate 6840 * our own and retry the load to get details on what failed 6841 */ 6842 if (log_level) { 6843 if (prog->log_buf) { 6844 log_buf = prog->log_buf; 6845 log_buf_size = prog->log_size; 6846 own_log_buf = false; 6847 } else if (obj->log_buf) { 6848 log_buf = obj->log_buf; 6849 log_buf_size = obj->log_size; 6850 own_log_buf = false; 6851 } else { 6852 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6853 tmp = realloc(log_buf, log_buf_size); 6854 if (!tmp) { 6855 ret = -ENOMEM; 6856 goto out; 6857 } 6858 log_buf = tmp; 6859 log_buf[0] = '\0'; 6860 own_log_buf = true; 6861 } 6862 } 6863 6864 load_attr.log_buf = log_buf; 6865 load_attr.log_size = log_buf_size; 6866 load_attr.log_level = log_level; 6867 6868 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6869 if (ret >= 0) { 6870 if (log_level && own_log_buf) { 6871 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6872 prog->name, log_buf); 6873 } 6874 6875 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6876 struct bpf_map *map; 6877 int i; 6878 6879 for (i = 0; i < obj->nr_maps; i++) { 6880 map = &prog->obj->maps[i]; 6881 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6882 continue; 6883 6884 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6885 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6886 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6887 prog->name, map->real_name, cp); 6888 /* Don't fail hard if can't bind rodata. */ 6889 } 6890 } 6891 } 6892 6893 *prog_fd = ret; 6894 ret = 0; 6895 goto out; 6896 } 6897 6898 if (log_level == 0) { 6899 log_level = 1; 6900 goto retry_load; 6901 } 6902 /* On ENOSPC, increase log buffer size and retry, unless custom 6903 * log_buf is specified. 6904 * Be careful to not overflow u32, though. Kernel's log buf size limit 6905 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6906 * multiply by 2 unless we are sure we'll fit within 32 bits. 6907 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6908 */ 6909 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6910 goto retry_load; 6911 6912 ret = -errno; 6913 6914 /* post-process verifier log to improve error descriptions */ 6915 fixup_verifier_log(prog, log_buf, log_buf_size); 6916 6917 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6918 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6919 pr_perm_msg(ret); 6920 6921 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6922 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6923 prog->name, log_buf); 6924 } 6925 6926 out: 6927 if (own_log_buf) 6928 free(log_buf); 6929 return ret; 6930 } 6931 6932 static char *find_prev_line(char *buf, char *cur) 6933 { 6934 char *p; 6935 6936 if (cur == buf) /* end of a log buf */ 6937 return NULL; 6938 6939 p = cur - 1; 6940 while (p - 1 >= buf && *(p - 1) != '\n') 6941 p--; 6942 6943 return p; 6944 } 6945 6946 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6947 char *orig, size_t orig_sz, const char *patch) 6948 { 6949 /* size of the remaining log content to the right from the to-be-replaced part */ 6950 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6951 size_t patch_sz = strlen(patch); 6952 6953 if (patch_sz != orig_sz) { 6954 /* If patch line(s) are longer than original piece of verifier log, 6955 * shift log contents by (patch_sz - orig_sz) bytes to the right 6956 * starting from after to-be-replaced part of the log. 6957 * 6958 * If patch line(s) are shorter than original piece of verifier log, 6959 * shift log contents by (orig_sz - patch_sz) bytes to the left 6960 * starting from after to-be-replaced part of the log 6961 * 6962 * We need to be careful about not overflowing available 6963 * buf_sz capacity. If that's the case, we'll truncate the end 6964 * of the original log, as necessary. 6965 */ 6966 if (patch_sz > orig_sz) { 6967 if (orig + patch_sz >= buf + buf_sz) { 6968 /* patch is big enough to cover remaining space completely */ 6969 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6970 rem_sz = 0; 6971 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6972 /* patch causes part of remaining log to be truncated */ 6973 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6974 } 6975 } 6976 /* shift remaining log to the right by calculated amount */ 6977 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6978 } 6979 6980 memcpy(orig, patch, patch_sz); 6981 } 6982 6983 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6984 char *buf, size_t buf_sz, size_t log_sz, 6985 char *line1, char *line2, char *line3) 6986 { 6987 /* Expected log for failed and not properly guarded CO-RE relocation: 6988 * line1 -> 123: (85) call unknown#195896080 6989 * line2 -> invalid func unknown#195896080 6990 * line3 -> <anything else or end of buffer> 6991 * 6992 * "123" is the index of the instruction that was poisoned. We extract 6993 * instruction index to find corresponding CO-RE relocation and 6994 * replace this part of the log with more relevant information about 6995 * failed CO-RE relocation. 6996 */ 6997 const struct bpf_core_relo *relo; 6998 struct bpf_core_spec spec; 6999 char patch[512], spec_buf[256]; 7000 int insn_idx, err, spec_len; 7001 7002 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7003 return; 7004 7005 relo = find_relo_core(prog, insn_idx); 7006 if (!relo) 7007 return; 7008 7009 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7010 if (err) 7011 return; 7012 7013 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7014 snprintf(patch, sizeof(patch), 7015 "%d: <invalid CO-RE relocation>\n" 7016 "failed to resolve CO-RE relocation %s%s\n", 7017 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7018 7019 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7020 } 7021 7022 static void fixup_log_missing_map_load(struct bpf_program *prog, 7023 char *buf, size_t buf_sz, size_t log_sz, 7024 char *line1, char *line2, char *line3) 7025 { 7026 /* Expected log for failed and not properly guarded CO-RE relocation: 7027 * line1 -> 123: (85) call unknown#2001000345 7028 * line2 -> invalid func unknown#2001000345 7029 * line3 -> <anything else or end of buffer> 7030 * 7031 * "123" is the index of the instruction that was poisoned. 7032 * "345" in "2001000345" are map index in obj->maps to fetch map name. 7033 */ 7034 struct bpf_object *obj = prog->obj; 7035 const struct bpf_map *map; 7036 int insn_idx, map_idx; 7037 char patch[128]; 7038 7039 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7040 return; 7041 7042 map_idx -= MAP_LDIMM64_POISON_BASE; 7043 if (map_idx < 0 || map_idx >= obj->nr_maps) 7044 return; 7045 map = &obj->maps[map_idx]; 7046 7047 snprintf(patch, sizeof(patch), 7048 "%d: <invalid BPF map reference>\n" 7049 "BPF map '%s' is referenced but wasn't created\n", 7050 insn_idx, map->name); 7051 7052 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7053 } 7054 7055 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7056 { 7057 /* look for familiar error patterns in last N lines of the log */ 7058 const size_t max_last_line_cnt = 10; 7059 char *prev_line, *cur_line, *next_line; 7060 size_t log_sz; 7061 int i; 7062 7063 if (!buf) 7064 return; 7065 7066 log_sz = strlen(buf) + 1; 7067 next_line = buf + log_sz - 1; 7068 7069 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7070 cur_line = find_prev_line(buf, next_line); 7071 if (!cur_line) 7072 return; 7073 7074 /* failed CO-RE relocation case */ 7075 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7076 prev_line = find_prev_line(buf, cur_line); 7077 if (!prev_line) 7078 continue; 7079 7080 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7081 prev_line, cur_line, next_line); 7082 return; 7083 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7084 prev_line = find_prev_line(buf, cur_line); 7085 if (!prev_line) 7086 continue; 7087 7088 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7089 prev_line, cur_line, next_line); 7090 return; 7091 } 7092 } 7093 } 7094 7095 static int bpf_program_record_relos(struct bpf_program *prog) 7096 { 7097 struct bpf_object *obj = prog->obj; 7098 int i; 7099 7100 for (i = 0; i < prog->nr_reloc; i++) { 7101 struct reloc_desc *relo = &prog->reloc_desc[i]; 7102 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7103 7104 switch (relo->type) { 7105 case RELO_EXTERN_VAR: 7106 if (ext->type != EXT_KSYM) 7107 continue; 7108 bpf_gen__record_extern(obj->gen_loader, ext->name, 7109 ext->is_weak, !ext->ksym.type_id, 7110 BTF_KIND_VAR, relo->insn_idx); 7111 break; 7112 case RELO_EXTERN_FUNC: 7113 bpf_gen__record_extern(obj->gen_loader, ext->name, 7114 ext->is_weak, false, BTF_KIND_FUNC, 7115 relo->insn_idx); 7116 break; 7117 case RELO_CORE: { 7118 struct bpf_core_relo cr = { 7119 .insn_off = relo->insn_idx * 8, 7120 .type_id = relo->core_relo->type_id, 7121 .access_str_off = relo->core_relo->access_str_off, 7122 .kind = relo->core_relo->kind, 7123 }; 7124 7125 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7126 break; 7127 } 7128 default: 7129 continue; 7130 } 7131 } 7132 return 0; 7133 } 7134 7135 static int 7136 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7137 { 7138 struct bpf_program *prog; 7139 size_t i; 7140 int err; 7141 7142 for (i = 0; i < obj->nr_programs; i++) { 7143 prog = &obj->programs[i]; 7144 err = bpf_object__sanitize_prog(obj, prog); 7145 if (err) 7146 return err; 7147 } 7148 7149 for (i = 0; i < obj->nr_programs; i++) { 7150 prog = &obj->programs[i]; 7151 if (prog_is_subprog(obj, prog)) 7152 continue; 7153 if (!prog->autoload) { 7154 pr_debug("prog '%s': skipped loading\n", prog->name); 7155 continue; 7156 } 7157 prog->log_level |= log_level; 7158 7159 if (obj->gen_loader) 7160 bpf_program_record_relos(prog); 7161 7162 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7163 obj->license, obj->kern_version, &prog->fd); 7164 if (err) { 7165 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7166 return err; 7167 } 7168 } 7169 7170 bpf_object__free_relocs(obj); 7171 return 0; 7172 } 7173 7174 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7175 7176 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7177 { 7178 struct bpf_program *prog; 7179 int err; 7180 7181 bpf_object__for_each_program(prog, obj) { 7182 prog->sec_def = find_sec_def(prog->sec_name); 7183 if (!prog->sec_def) { 7184 /* couldn't guess, but user might manually specify */ 7185 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7186 prog->name, prog->sec_name); 7187 continue; 7188 } 7189 7190 prog->type = prog->sec_def->prog_type; 7191 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7192 7193 /* sec_def can have custom callback which should be called 7194 * after bpf_program is initialized to adjust its properties 7195 */ 7196 if (prog->sec_def->prog_setup_fn) { 7197 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7198 if (err < 0) { 7199 pr_warn("prog '%s': failed to initialize: %d\n", 7200 prog->name, err); 7201 return err; 7202 } 7203 } 7204 } 7205 7206 return 0; 7207 } 7208 7209 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7210 const struct bpf_object_open_opts *opts) 7211 { 7212 const char *obj_name, *kconfig, *btf_tmp_path; 7213 struct bpf_object *obj; 7214 char tmp_name[64]; 7215 int err; 7216 char *log_buf; 7217 size_t log_size; 7218 __u32 log_level; 7219 7220 if (elf_version(EV_CURRENT) == EV_NONE) { 7221 pr_warn("failed to init libelf for %s\n", 7222 path ? : "(mem buf)"); 7223 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7224 } 7225 7226 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7227 return ERR_PTR(-EINVAL); 7228 7229 obj_name = OPTS_GET(opts, object_name, NULL); 7230 if (obj_buf) { 7231 if (!obj_name) { 7232 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7233 (unsigned long)obj_buf, 7234 (unsigned long)obj_buf_sz); 7235 obj_name = tmp_name; 7236 } 7237 path = obj_name; 7238 pr_debug("loading object '%s' from buffer\n", obj_name); 7239 } 7240 7241 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7242 log_size = OPTS_GET(opts, kernel_log_size, 0); 7243 log_level = OPTS_GET(opts, kernel_log_level, 0); 7244 if (log_size > UINT_MAX) 7245 return ERR_PTR(-EINVAL); 7246 if (log_size && !log_buf) 7247 return ERR_PTR(-EINVAL); 7248 7249 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7250 if (IS_ERR(obj)) 7251 return obj; 7252 7253 obj->log_buf = log_buf; 7254 obj->log_size = log_size; 7255 obj->log_level = log_level; 7256 7257 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7258 if (btf_tmp_path) { 7259 if (strlen(btf_tmp_path) >= PATH_MAX) { 7260 err = -ENAMETOOLONG; 7261 goto out; 7262 } 7263 obj->btf_custom_path = strdup(btf_tmp_path); 7264 if (!obj->btf_custom_path) { 7265 err = -ENOMEM; 7266 goto out; 7267 } 7268 } 7269 7270 kconfig = OPTS_GET(opts, kconfig, NULL); 7271 if (kconfig) { 7272 obj->kconfig = strdup(kconfig); 7273 if (!obj->kconfig) { 7274 err = -ENOMEM; 7275 goto out; 7276 } 7277 } 7278 7279 err = bpf_object__elf_init(obj); 7280 err = err ? : bpf_object__check_endianness(obj); 7281 err = err ? : bpf_object__elf_collect(obj); 7282 err = err ? : bpf_object__collect_externs(obj); 7283 err = err ? : bpf_object_fixup_btf(obj); 7284 err = err ? : bpf_object__init_maps(obj, opts); 7285 err = err ? : bpf_object_init_progs(obj, opts); 7286 err = err ? : bpf_object__collect_relos(obj); 7287 if (err) 7288 goto out; 7289 7290 bpf_object__elf_finish(obj); 7291 7292 return obj; 7293 out: 7294 bpf_object__close(obj); 7295 return ERR_PTR(err); 7296 } 7297 7298 struct bpf_object * 7299 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7300 { 7301 if (!path) 7302 return libbpf_err_ptr(-EINVAL); 7303 7304 pr_debug("loading %s\n", path); 7305 7306 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7307 } 7308 7309 struct bpf_object *bpf_object__open(const char *path) 7310 { 7311 return bpf_object__open_file(path, NULL); 7312 } 7313 7314 struct bpf_object * 7315 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7316 const struct bpf_object_open_opts *opts) 7317 { 7318 if (!obj_buf || obj_buf_sz == 0) 7319 return libbpf_err_ptr(-EINVAL); 7320 7321 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7322 } 7323 7324 static int bpf_object_unload(struct bpf_object *obj) 7325 { 7326 size_t i; 7327 7328 if (!obj) 7329 return libbpf_err(-EINVAL); 7330 7331 for (i = 0; i < obj->nr_maps; i++) { 7332 zclose(obj->maps[i].fd); 7333 if (obj->maps[i].st_ops) 7334 zfree(&obj->maps[i].st_ops->kern_vdata); 7335 } 7336 7337 for (i = 0; i < obj->nr_programs; i++) 7338 bpf_program__unload(&obj->programs[i]); 7339 7340 return 0; 7341 } 7342 7343 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7344 { 7345 struct bpf_map *m; 7346 7347 bpf_object__for_each_map(m, obj) { 7348 if (!bpf_map__is_internal(m)) 7349 continue; 7350 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7351 m->def.map_flags ^= BPF_F_MMAPABLE; 7352 } 7353 7354 return 0; 7355 } 7356 7357 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7358 { 7359 char sym_type, sym_name[500]; 7360 unsigned long long sym_addr; 7361 int ret, err = 0; 7362 FILE *f; 7363 7364 f = fopen("/proc/kallsyms", "r"); 7365 if (!f) { 7366 err = -errno; 7367 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7368 return err; 7369 } 7370 7371 while (true) { 7372 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7373 &sym_addr, &sym_type, sym_name); 7374 if (ret == EOF && feof(f)) 7375 break; 7376 if (ret != 3) { 7377 pr_warn("failed to read kallsyms entry: %d\n", ret); 7378 err = -EINVAL; 7379 break; 7380 } 7381 7382 err = cb(sym_addr, sym_type, sym_name, ctx); 7383 if (err) 7384 break; 7385 } 7386 7387 fclose(f); 7388 return err; 7389 } 7390 7391 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7392 const char *sym_name, void *ctx) 7393 { 7394 struct bpf_object *obj = ctx; 7395 const struct btf_type *t; 7396 struct extern_desc *ext; 7397 7398 ext = find_extern_by_name(obj, sym_name); 7399 if (!ext || ext->type != EXT_KSYM) 7400 return 0; 7401 7402 t = btf__type_by_id(obj->btf, ext->btf_id); 7403 if (!btf_is_var(t)) 7404 return 0; 7405 7406 if (ext->is_set && ext->ksym.addr != sym_addr) { 7407 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7408 sym_name, ext->ksym.addr, sym_addr); 7409 return -EINVAL; 7410 } 7411 if (!ext->is_set) { 7412 ext->is_set = true; 7413 ext->ksym.addr = sym_addr; 7414 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7415 } 7416 return 0; 7417 } 7418 7419 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7420 { 7421 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7422 } 7423 7424 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7425 __u16 kind, struct btf **res_btf, 7426 struct module_btf **res_mod_btf) 7427 { 7428 struct module_btf *mod_btf; 7429 struct btf *btf; 7430 int i, id, err; 7431 7432 btf = obj->btf_vmlinux; 7433 mod_btf = NULL; 7434 id = btf__find_by_name_kind(btf, ksym_name, kind); 7435 7436 if (id == -ENOENT) { 7437 err = load_module_btfs(obj); 7438 if (err) 7439 return err; 7440 7441 for (i = 0; i < obj->btf_module_cnt; i++) { 7442 /* we assume module_btf's BTF FD is always >0 */ 7443 mod_btf = &obj->btf_modules[i]; 7444 btf = mod_btf->btf; 7445 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7446 if (id != -ENOENT) 7447 break; 7448 } 7449 } 7450 if (id <= 0) 7451 return -ESRCH; 7452 7453 *res_btf = btf; 7454 *res_mod_btf = mod_btf; 7455 return id; 7456 } 7457 7458 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7459 struct extern_desc *ext) 7460 { 7461 const struct btf_type *targ_var, *targ_type; 7462 __u32 targ_type_id, local_type_id; 7463 struct module_btf *mod_btf = NULL; 7464 const char *targ_var_name; 7465 struct btf *btf = NULL; 7466 int id, err; 7467 7468 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7469 if (id < 0) { 7470 if (id == -ESRCH && ext->is_weak) 7471 return 0; 7472 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7473 ext->name); 7474 return id; 7475 } 7476 7477 /* find local type_id */ 7478 local_type_id = ext->ksym.type_id; 7479 7480 /* find target type_id */ 7481 targ_var = btf__type_by_id(btf, id); 7482 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7483 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7484 7485 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7486 btf, targ_type_id); 7487 if (err <= 0) { 7488 const struct btf_type *local_type; 7489 const char *targ_name, *local_name; 7490 7491 local_type = btf__type_by_id(obj->btf, local_type_id); 7492 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7493 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7494 7495 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7496 ext->name, local_type_id, 7497 btf_kind_str(local_type), local_name, targ_type_id, 7498 btf_kind_str(targ_type), targ_name); 7499 return -EINVAL; 7500 } 7501 7502 ext->is_set = true; 7503 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7504 ext->ksym.kernel_btf_id = id; 7505 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7506 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7507 7508 return 0; 7509 } 7510 7511 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7512 struct extern_desc *ext) 7513 { 7514 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7515 struct module_btf *mod_btf = NULL; 7516 const struct btf_type *kern_func; 7517 struct btf *kern_btf = NULL; 7518 int ret; 7519 7520 local_func_proto_id = ext->ksym.type_id; 7521 7522 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7523 if (kfunc_id < 0) { 7524 if (kfunc_id == -ESRCH && ext->is_weak) 7525 return 0; 7526 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7527 ext->name); 7528 return kfunc_id; 7529 } 7530 7531 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7532 kfunc_proto_id = kern_func->type; 7533 7534 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7535 kern_btf, kfunc_proto_id); 7536 if (ret <= 0) { 7537 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7538 ext->name, local_func_proto_id, kfunc_proto_id); 7539 return -EINVAL; 7540 } 7541 7542 /* set index for module BTF fd in fd_array, if unset */ 7543 if (mod_btf && !mod_btf->fd_array_idx) { 7544 /* insn->off is s16 */ 7545 if (obj->fd_array_cnt == INT16_MAX) { 7546 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7547 ext->name, mod_btf->fd_array_idx); 7548 return -E2BIG; 7549 } 7550 /* Cannot use index 0 for module BTF fd */ 7551 if (!obj->fd_array_cnt) 7552 obj->fd_array_cnt = 1; 7553 7554 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7555 obj->fd_array_cnt + 1); 7556 if (ret) 7557 return ret; 7558 mod_btf->fd_array_idx = obj->fd_array_cnt; 7559 /* we assume module BTF FD is always >0 */ 7560 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7561 } 7562 7563 ext->is_set = true; 7564 ext->ksym.kernel_btf_id = kfunc_id; 7565 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7566 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7567 ext->name, kfunc_id); 7568 7569 return 0; 7570 } 7571 7572 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7573 { 7574 const struct btf_type *t; 7575 struct extern_desc *ext; 7576 int i, err; 7577 7578 for (i = 0; i < obj->nr_extern; i++) { 7579 ext = &obj->externs[i]; 7580 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7581 continue; 7582 7583 if (obj->gen_loader) { 7584 ext->is_set = true; 7585 ext->ksym.kernel_btf_obj_fd = 0; 7586 ext->ksym.kernel_btf_id = 0; 7587 continue; 7588 } 7589 t = btf__type_by_id(obj->btf, ext->btf_id); 7590 if (btf_is_var(t)) 7591 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7592 else 7593 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7594 if (err) 7595 return err; 7596 } 7597 return 0; 7598 } 7599 7600 static int bpf_object__resolve_externs(struct bpf_object *obj, 7601 const char *extra_kconfig) 7602 { 7603 bool need_config = false, need_kallsyms = false; 7604 bool need_vmlinux_btf = false; 7605 struct extern_desc *ext; 7606 void *kcfg_data = NULL; 7607 int err, i; 7608 7609 if (obj->nr_extern == 0) 7610 return 0; 7611 7612 if (obj->kconfig_map_idx >= 0) 7613 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7614 7615 for (i = 0; i < obj->nr_extern; i++) { 7616 ext = &obj->externs[i]; 7617 7618 if (ext->type == EXT_KSYM) { 7619 if (ext->ksym.type_id) 7620 need_vmlinux_btf = true; 7621 else 7622 need_kallsyms = true; 7623 continue; 7624 } else if (ext->type == EXT_KCFG) { 7625 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7626 __u64 value = 0; 7627 7628 /* Kconfig externs need actual /proc/config.gz */ 7629 if (str_has_pfx(ext->name, "CONFIG_")) { 7630 need_config = true; 7631 continue; 7632 } 7633 7634 /* Virtual kcfg externs are customly handled by libbpf */ 7635 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7636 value = get_kernel_version(); 7637 if (!value) { 7638 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7639 return -EINVAL; 7640 } 7641 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7642 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7643 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7644 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7645 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7646 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7647 * __kconfig externs, where LINUX_ ones are virtual and filled out 7648 * customly by libbpf (their values don't come from Kconfig). 7649 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7650 * __weak, it defaults to zero value, just like for CONFIG_xxx 7651 * externs. 7652 */ 7653 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7654 return -EINVAL; 7655 } 7656 7657 err = set_kcfg_value_num(ext, ext_ptr, value); 7658 if (err) 7659 return err; 7660 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7661 ext->name, (long long)value); 7662 } else { 7663 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7664 return -EINVAL; 7665 } 7666 } 7667 if (need_config && extra_kconfig) { 7668 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7669 if (err) 7670 return -EINVAL; 7671 need_config = false; 7672 for (i = 0; i < obj->nr_extern; i++) { 7673 ext = &obj->externs[i]; 7674 if (ext->type == EXT_KCFG && !ext->is_set) { 7675 need_config = true; 7676 break; 7677 } 7678 } 7679 } 7680 if (need_config) { 7681 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7682 if (err) 7683 return -EINVAL; 7684 } 7685 if (need_kallsyms) { 7686 err = bpf_object__read_kallsyms_file(obj); 7687 if (err) 7688 return -EINVAL; 7689 } 7690 if (need_vmlinux_btf) { 7691 err = bpf_object__resolve_ksyms_btf_id(obj); 7692 if (err) 7693 return -EINVAL; 7694 } 7695 for (i = 0; i < obj->nr_extern; i++) { 7696 ext = &obj->externs[i]; 7697 7698 if (!ext->is_set && !ext->is_weak) { 7699 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7700 return -ESRCH; 7701 } else if (!ext->is_set) { 7702 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7703 ext->name); 7704 } 7705 } 7706 7707 return 0; 7708 } 7709 7710 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7711 { 7712 int err, i; 7713 7714 if (!obj) 7715 return libbpf_err(-EINVAL); 7716 7717 if (obj->loaded) { 7718 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7719 return libbpf_err(-EINVAL); 7720 } 7721 7722 if (obj->gen_loader) 7723 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7724 7725 err = bpf_object__probe_loading(obj); 7726 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7727 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7728 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7729 err = err ? : bpf_object__sanitize_maps(obj); 7730 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7731 err = err ? : bpf_object__create_maps(obj); 7732 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7733 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7734 err = err ? : bpf_object_init_prog_arrays(obj); 7735 7736 if (obj->gen_loader) { 7737 /* reset FDs */ 7738 if (obj->btf) 7739 btf__set_fd(obj->btf, -1); 7740 for (i = 0; i < obj->nr_maps; i++) 7741 obj->maps[i].fd = -1; 7742 if (!err) 7743 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7744 } 7745 7746 /* clean up fd_array */ 7747 zfree(&obj->fd_array); 7748 7749 /* clean up module BTFs */ 7750 for (i = 0; i < obj->btf_module_cnt; i++) { 7751 close(obj->btf_modules[i].fd); 7752 btf__free(obj->btf_modules[i].btf); 7753 free(obj->btf_modules[i].name); 7754 } 7755 free(obj->btf_modules); 7756 7757 /* clean up vmlinux BTF */ 7758 btf__free(obj->btf_vmlinux); 7759 obj->btf_vmlinux = NULL; 7760 7761 obj->loaded = true; /* doesn't matter if successfully or not */ 7762 7763 if (err) 7764 goto out; 7765 7766 return 0; 7767 out: 7768 /* unpin any maps that were auto-pinned during load */ 7769 for (i = 0; i < obj->nr_maps; i++) 7770 if (obj->maps[i].pinned && !obj->maps[i].reused) 7771 bpf_map__unpin(&obj->maps[i], NULL); 7772 7773 bpf_object_unload(obj); 7774 pr_warn("failed to load object '%s'\n", obj->path); 7775 return libbpf_err(err); 7776 } 7777 7778 int bpf_object__load(struct bpf_object *obj) 7779 { 7780 return bpf_object_load(obj, 0, NULL); 7781 } 7782 7783 static int make_parent_dir(const char *path) 7784 { 7785 char *cp, errmsg[STRERR_BUFSIZE]; 7786 char *dname, *dir; 7787 int err = 0; 7788 7789 dname = strdup(path); 7790 if (dname == NULL) 7791 return -ENOMEM; 7792 7793 dir = dirname(dname); 7794 if (mkdir(dir, 0700) && errno != EEXIST) 7795 err = -errno; 7796 7797 free(dname); 7798 if (err) { 7799 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7800 pr_warn("failed to mkdir %s: %s\n", path, cp); 7801 } 7802 return err; 7803 } 7804 7805 static int check_path(const char *path) 7806 { 7807 char *cp, errmsg[STRERR_BUFSIZE]; 7808 struct statfs st_fs; 7809 char *dname, *dir; 7810 int err = 0; 7811 7812 if (path == NULL) 7813 return -EINVAL; 7814 7815 dname = strdup(path); 7816 if (dname == NULL) 7817 return -ENOMEM; 7818 7819 dir = dirname(dname); 7820 if (statfs(dir, &st_fs)) { 7821 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7822 pr_warn("failed to statfs %s: %s\n", dir, cp); 7823 err = -errno; 7824 } 7825 free(dname); 7826 7827 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7828 pr_warn("specified path %s is not on BPF FS\n", path); 7829 err = -EINVAL; 7830 } 7831 7832 return err; 7833 } 7834 7835 int bpf_program__pin(struct bpf_program *prog, const char *path) 7836 { 7837 char *cp, errmsg[STRERR_BUFSIZE]; 7838 int err; 7839 7840 if (prog->fd < 0) { 7841 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7842 return libbpf_err(-EINVAL); 7843 } 7844 7845 err = make_parent_dir(path); 7846 if (err) 7847 return libbpf_err(err); 7848 7849 err = check_path(path); 7850 if (err) 7851 return libbpf_err(err); 7852 7853 if (bpf_obj_pin(prog->fd, path)) { 7854 err = -errno; 7855 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7856 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7857 return libbpf_err(err); 7858 } 7859 7860 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7861 return 0; 7862 } 7863 7864 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7865 { 7866 int err; 7867 7868 if (prog->fd < 0) { 7869 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7870 return libbpf_err(-EINVAL); 7871 } 7872 7873 err = check_path(path); 7874 if (err) 7875 return libbpf_err(err); 7876 7877 err = unlink(path); 7878 if (err) 7879 return libbpf_err(-errno); 7880 7881 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7882 return 0; 7883 } 7884 7885 int bpf_map__pin(struct bpf_map *map, const char *path) 7886 { 7887 char *cp, errmsg[STRERR_BUFSIZE]; 7888 int err; 7889 7890 if (map == NULL) { 7891 pr_warn("invalid map pointer\n"); 7892 return libbpf_err(-EINVAL); 7893 } 7894 7895 if (map->pin_path) { 7896 if (path && strcmp(path, map->pin_path)) { 7897 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7898 bpf_map__name(map), map->pin_path, path); 7899 return libbpf_err(-EINVAL); 7900 } else if (map->pinned) { 7901 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7902 bpf_map__name(map), map->pin_path); 7903 return 0; 7904 } 7905 } else { 7906 if (!path) { 7907 pr_warn("missing a path to pin map '%s' at\n", 7908 bpf_map__name(map)); 7909 return libbpf_err(-EINVAL); 7910 } else if (map->pinned) { 7911 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7912 return libbpf_err(-EEXIST); 7913 } 7914 7915 map->pin_path = strdup(path); 7916 if (!map->pin_path) { 7917 err = -errno; 7918 goto out_err; 7919 } 7920 } 7921 7922 err = make_parent_dir(map->pin_path); 7923 if (err) 7924 return libbpf_err(err); 7925 7926 err = check_path(map->pin_path); 7927 if (err) 7928 return libbpf_err(err); 7929 7930 if (bpf_obj_pin(map->fd, map->pin_path)) { 7931 err = -errno; 7932 goto out_err; 7933 } 7934 7935 map->pinned = true; 7936 pr_debug("pinned map '%s'\n", map->pin_path); 7937 7938 return 0; 7939 7940 out_err: 7941 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7942 pr_warn("failed to pin map: %s\n", cp); 7943 return libbpf_err(err); 7944 } 7945 7946 int bpf_map__unpin(struct bpf_map *map, const char *path) 7947 { 7948 int err; 7949 7950 if (map == NULL) { 7951 pr_warn("invalid map pointer\n"); 7952 return libbpf_err(-EINVAL); 7953 } 7954 7955 if (map->pin_path) { 7956 if (path && strcmp(path, map->pin_path)) { 7957 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7958 bpf_map__name(map), map->pin_path, path); 7959 return libbpf_err(-EINVAL); 7960 } 7961 path = map->pin_path; 7962 } else if (!path) { 7963 pr_warn("no path to unpin map '%s' from\n", 7964 bpf_map__name(map)); 7965 return libbpf_err(-EINVAL); 7966 } 7967 7968 err = check_path(path); 7969 if (err) 7970 return libbpf_err(err); 7971 7972 err = unlink(path); 7973 if (err != 0) 7974 return libbpf_err(-errno); 7975 7976 map->pinned = false; 7977 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7978 7979 return 0; 7980 } 7981 7982 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7983 { 7984 char *new = NULL; 7985 7986 if (path) { 7987 new = strdup(path); 7988 if (!new) 7989 return libbpf_err(-errno); 7990 } 7991 7992 free(map->pin_path); 7993 map->pin_path = new; 7994 return 0; 7995 } 7996 7997 __alias(bpf_map__pin_path) 7998 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7999 8000 const char *bpf_map__pin_path(const struct bpf_map *map) 8001 { 8002 return map->pin_path; 8003 } 8004 8005 bool bpf_map__is_pinned(const struct bpf_map *map) 8006 { 8007 return map->pinned; 8008 } 8009 8010 static void sanitize_pin_path(char *s) 8011 { 8012 /* bpffs disallows periods in path names */ 8013 while (*s) { 8014 if (*s == '.') 8015 *s = '_'; 8016 s++; 8017 } 8018 } 8019 8020 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8021 { 8022 struct bpf_map *map; 8023 int err; 8024 8025 if (!obj) 8026 return libbpf_err(-ENOENT); 8027 8028 if (!obj->loaded) { 8029 pr_warn("object not yet loaded; load it first\n"); 8030 return libbpf_err(-ENOENT); 8031 } 8032 8033 bpf_object__for_each_map(map, obj) { 8034 char *pin_path = NULL; 8035 char buf[PATH_MAX]; 8036 8037 if (!map->autocreate) 8038 continue; 8039 8040 if (path) { 8041 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8042 if (err) 8043 goto err_unpin_maps; 8044 sanitize_pin_path(buf); 8045 pin_path = buf; 8046 } else if (!map->pin_path) { 8047 continue; 8048 } 8049 8050 err = bpf_map__pin(map, pin_path); 8051 if (err) 8052 goto err_unpin_maps; 8053 } 8054 8055 return 0; 8056 8057 err_unpin_maps: 8058 while ((map = bpf_object__prev_map(obj, map))) { 8059 if (!map->pin_path) 8060 continue; 8061 8062 bpf_map__unpin(map, NULL); 8063 } 8064 8065 return libbpf_err(err); 8066 } 8067 8068 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8069 { 8070 struct bpf_map *map; 8071 int err; 8072 8073 if (!obj) 8074 return libbpf_err(-ENOENT); 8075 8076 bpf_object__for_each_map(map, obj) { 8077 char *pin_path = NULL; 8078 char buf[PATH_MAX]; 8079 8080 if (path) { 8081 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8082 if (err) 8083 return libbpf_err(err); 8084 sanitize_pin_path(buf); 8085 pin_path = buf; 8086 } else if (!map->pin_path) { 8087 continue; 8088 } 8089 8090 err = bpf_map__unpin(map, pin_path); 8091 if (err) 8092 return libbpf_err(err); 8093 } 8094 8095 return 0; 8096 } 8097 8098 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8099 { 8100 struct bpf_program *prog; 8101 char buf[PATH_MAX]; 8102 int err; 8103 8104 if (!obj) 8105 return libbpf_err(-ENOENT); 8106 8107 if (!obj->loaded) { 8108 pr_warn("object not yet loaded; load it first\n"); 8109 return libbpf_err(-ENOENT); 8110 } 8111 8112 bpf_object__for_each_program(prog, obj) { 8113 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8114 if (err) 8115 goto err_unpin_programs; 8116 8117 err = bpf_program__pin(prog, buf); 8118 if (err) 8119 goto err_unpin_programs; 8120 } 8121 8122 return 0; 8123 8124 err_unpin_programs: 8125 while ((prog = bpf_object__prev_program(obj, prog))) { 8126 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8127 continue; 8128 8129 bpf_program__unpin(prog, buf); 8130 } 8131 8132 return libbpf_err(err); 8133 } 8134 8135 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8136 { 8137 struct bpf_program *prog; 8138 int err; 8139 8140 if (!obj) 8141 return libbpf_err(-ENOENT); 8142 8143 bpf_object__for_each_program(prog, obj) { 8144 char buf[PATH_MAX]; 8145 8146 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8147 if (err) 8148 return libbpf_err(err); 8149 8150 err = bpf_program__unpin(prog, buf); 8151 if (err) 8152 return libbpf_err(err); 8153 } 8154 8155 return 0; 8156 } 8157 8158 int bpf_object__pin(struct bpf_object *obj, const char *path) 8159 { 8160 int err; 8161 8162 err = bpf_object__pin_maps(obj, path); 8163 if (err) 8164 return libbpf_err(err); 8165 8166 err = bpf_object__pin_programs(obj, path); 8167 if (err) { 8168 bpf_object__unpin_maps(obj, path); 8169 return libbpf_err(err); 8170 } 8171 8172 return 0; 8173 } 8174 8175 static void bpf_map__destroy(struct bpf_map *map) 8176 { 8177 if (map->inner_map) { 8178 bpf_map__destroy(map->inner_map); 8179 zfree(&map->inner_map); 8180 } 8181 8182 zfree(&map->init_slots); 8183 map->init_slots_sz = 0; 8184 8185 if (map->mmaped) { 8186 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8187 map->mmaped = NULL; 8188 } 8189 8190 if (map->st_ops) { 8191 zfree(&map->st_ops->data); 8192 zfree(&map->st_ops->progs); 8193 zfree(&map->st_ops->kern_func_off); 8194 zfree(&map->st_ops); 8195 } 8196 8197 zfree(&map->name); 8198 zfree(&map->real_name); 8199 zfree(&map->pin_path); 8200 8201 if (map->fd >= 0) 8202 zclose(map->fd); 8203 } 8204 8205 void bpf_object__close(struct bpf_object *obj) 8206 { 8207 size_t i; 8208 8209 if (IS_ERR_OR_NULL(obj)) 8210 return; 8211 8212 usdt_manager_free(obj->usdt_man); 8213 obj->usdt_man = NULL; 8214 8215 bpf_gen__free(obj->gen_loader); 8216 bpf_object__elf_finish(obj); 8217 bpf_object_unload(obj); 8218 btf__free(obj->btf); 8219 btf_ext__free(obj->btf_ext); 8220 8221 for (i = 0; i < obj->nr_maps; i++) 8222 bpf_map__destroy(&obj->maps[i]); 8223 8224 zfree(&obj->btf_custom_path); 8225 zfree(&obj->kconfig); 8226 zfree(&obj->externs); 8227 obj->nr_extern = 0; 8228 8229 zfree(&obj->maps); 8230 obj->nr_maps = 0; 8231 8232 if (obj->programs && obj->nr_programs) { 8233 for (i = 0; i < obj->nr_programs; i++) 8234 bpf_program__exit(&obj->programs[i]); 8235 } 8236 zfree(&obj->programs); 8237 8238 free(obj); 8239 } 8240 8241 const char *bpf_object__name(const struct bpf_object *obj) 8242 { 8243 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8244 } 8245 8246 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8247 { 8248 return obj ? obj->kern_version : 0; 8249 } 8250 8251 struct btf *bpf_object__btf(const struct bpf_object *obj) 8252 { 8253 return obj ? obj->btf : NULL; 8254 } 8255 8256 int bpf_object__btf_fd(const struct bpf_object *obj) 8257 { 8258 return obj->btf ? btf__fd(obj->btf) : -1; 8259 } 8260 8261 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8262 { 8263 if (obj->loaded) 8264 return libbpf_err(-EINVAL); 8265 8266 obj->kern_version = kern_version; 8267 8268 return 0; 8269 } 8270 8271 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8272 { 8273 struct bpf_gen *gen; 8274 8275 if (!opts) 8276 return -EFAULT; 8277 if (!OPTS_VALID(opts, gen_loader_opts)) 8278 return -EINVAL; 8279 gen = calloc(sizeof(*gen), 1); 8280 if (!gen) 8281 return -ENOMEM; 8282 gen->opts = opts; 8283 obj->gen_loader = gen; 8284 return 0; 8285 } 8286 8287 static struct bpf_program * 8288 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8289 bool forward) 8290 { 8291 size_t nr_programs = obj->nr_programs; 8292 ssize_t idx; 8293 8294 if (!nr_programs) 8295 return NULL; 8296 8297 if (!p) 8298 /* Iter from the beginning */ 8299 return forward ? &obj->programs[0] : 8300 &obj->programs[nr_programs - 1]; 8301 8302 if (p->obj != obj) { 8303 pr_warn("error: program handler doesn't match object\n"); 8304 return errno = EINVAL, NULL; 8305 } 8306 8307 idx = (p - obj->programs) + (forward ? 1 : -1); 8308 if (idx >= obj->nr_programs || idx < 0) 8309 return NULL; 8310 return &obj->programs[idx]; 8311 } 8312 8313 struct bpf_program * 8314 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8315 { 8316 struct bpf_program *prog = prev; 8317 8318 do { 8319 prog = __bpf_program__iter(prog, obj, true); 8320 } while (prog && prog_is_subprog(obj, prog)); 8321 8322 return prog; 8323 } 8324 8325 struct bpf_program * 8326 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8327 { 8328 struct bpf_program *prog = next; 8329 8330 do { 8331 prog = __bpf_program__iter(prog, obj, false); 8332 } while (prog && prog_is_subprog(obj, prog)); 8333 8334 return prog; 8335 } 8336 8337 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8338 { 8339 prog->prog_ifindex = ifindex; 8340 } 8341 8342 const char *bpf_program__name(const struct bpf_program *prog) 8343 { 8344 return prog->name; 8345 } 8346 8347 const char *bpf_program__section_name(const struct bpf_program *prog) 8348 { 8349 return prog->sec_name; 8350 } 8351 8352 bool bpf_program__autoload(const struct bpf_program *prog) 8353 { 8354 return prog->autoload; 8355 } 8356 8357 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8358 { 8359 if (prog->obj->loaded) 8360 return libbpf_err(-EINVAL); 8361 8362 prog->autoload = autoload; 8363 return 0; 8364 } 8365 8366 bool bpf_program__autoattach(const struct bpf_program *prog) 8367 { 8368 return prog->autoattach; 8369 } 8370 8371 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8372 { 8373 prog->autoattach = autoattach; 8374 } 8375 8376 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8377 { 8378 return prog->insns; 8379 } 8380 8381 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8382 { 8383 return prog->insns_cnt; 8384 } 8385 8386 int bpf_program__set_insns(struct bpf_program *prog, 8387 struct bpf_insn *new_insns, size_t new_insn_cnt) 8388 { 8389 struct bpf_insn *insns; 8390 8391 if (prog->obj->loaded) 8392 return -EBUSY; 8393 8394 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8395 if (!insns) { 8396 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8397 return -ENOMEM; 8398 } 8399 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8400 8401 prog->insns = insns; 8402 prog->insns_cnt = new_insn_cnt; 8403 return 0; 8404 } 8405 8406 int bpf_program__fd(const struct bpf_program *prog) 8407 { 8408 if (!prog) 8409 return libbpf_err(-EINVAL); 8410 8411 if (prog->fd < 0) 8412 return libbpf_err(-ENOENT); 8413 8414 return prog->fd; 8415 } 8416 8417 __alias(bpf_program__type) 8418 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8419 8420 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8421 { 8422 return prog->type; 8423 } 8424 8425 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8426 { 8427 if (prog->obj->loaded) 8428 return libbpf_err(-EBUSY); 8429 8430 prog->type = type; 8431 return 0; 8432 } 8433 8434 __alias(bpf_program__expected_attach_type) 8435 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8436 8437 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8438 { 8439 return prog->expected_attach_type; 8440 } 8441 8442 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8443 enum bpf_attach_type type) 8444 { 8445 if (prog->obj->loaded) 8446 return libbpf_err(-EBUSY); 8447 8448 prog->expected_attach_type = type; 8449 return 0; 8450 } 8451 8452 __u32 bpf_program__flags(const struct bpf_program *prog) 8453 { 8454 return prog->prog_flags; 8455 } 8456 8457 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8458 { 8459 if (prog->obj->loaded) 8460 return libbpf_err(-EBUSY); 8461 8462 prog->prog_flags = flags; 8463 return 0; 8464 } 8465 8466 __u32 bpf_program__log_level(const struct bpf_program *prog) 8467 { 8468 return prog->log_level; 8469 } 8470 8471 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8472 { 8473 if (prog->obj->loaded) 8474 return libbpf_err(-EBUSY); 8475 8476 prog->log_level = log_level; 8477 return 0; 8478 } 8479 8480 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8481 { 8482 *log_size = prog->log_size; 8483 return prog->log_buf; 8484 } 8485 8486 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8487 { 8488 if (log_size && !log_buf) 8489 return -EINVAL; 8490 if (prog->log_size > UINT_MAX) 8491 return -EINVAL; 8492 if (prog->obj->loaded) 8493 return -EBUSY; 8494 8495 prog->log_buf = log_buf; 8496 prog->log_size = log_size; 8497 return 0; 8498 } 8499 8500 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8501 .sec = (char *)sec_pfx, \ 8502 .prog_type = BPF_PROG_TYPE_##ptype, \ 8503 .expected_attach_type = atype, \ 8504 .cookie = (long)(flags), \ 8505 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8506 __VA_ARGS__ \ 8507 } 8508 8509 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8510 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8511 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8512 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8513 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8514 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8515 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8516 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8517 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8518 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8519 8520 static const struct bpf_sec_def section_defs[] = { 8521 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8522 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8523 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8524 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8525 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8526 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8527 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8528 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8529 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8530 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8531 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8532 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8533 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8534 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8535 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8536 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8537 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8538 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8539 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8540 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8541 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8542 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8543 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8544 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8545 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8546 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8547 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8548 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8549 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8550 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8551 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8552 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8553 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8554 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8555 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8556 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8557 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8558 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8559 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8560 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8561 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8562 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8563 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8564 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8565 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8566 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8567 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8568 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8569 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8570 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8571 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8572 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8573 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8574 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8575 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8576 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8577 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8578 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8579 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8580 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8581 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8582 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8583 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8584 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8585 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8586 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8587 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8588 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8589 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8590 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8591 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8592 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8593 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8594 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8595 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8596 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8597 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8598 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8599 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8600 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8601 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8602 }; 8603 8604 static size_t custom_sec_def_cnt; 8605 static struct bpf_sec_def *custom_sec_defs; 8606 static struct bpf_sec_def custom_fallback_def; 8607 static bool has_custom_fallback_def; 8608 8609 static int last_custom_sec_def_handler_id; 8610 8611 int libbpf_register_prog_handler(const char *sec, 8612 enum bpf_prog_type prog_type, 8613 enum bpf_attach_type exp_attach_type, 8614 const struct libbpf_prog_handler_opts *opts) 8615 { 8616 struct bpf_sec_def *sec_def; 8617 8618 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8619 return libbpf_err(-EINVAL); 8620 8621 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8622 return libbpf_err(-E2BIG); 8623 8624 if (sec) { 8625 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8626 sizeof(*sec_def)); 8627 if (!sec_def) 8628 return libbpf_err(-ENOMEM); 8629 8630 custom_sec_defs = sec_def; 8631 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8632 } else { 8633 if (has_custom_fallback_def) 8634 return libbpf_err(-EBUSY); 8635 8636 sec_def = &custom_fallback_def; 8637 } 8638 8639 sec_def->sec = sec ? strdup(sec) : NULL; 8640 if (sec && !sec_def->sec) 8641 return libbpf_err(-ENOMEM); 8642 8643 sec_def->prog_type = prog_type; 8644 sec_def->expected_attach_type = exp_attach_type; 8645 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8646 8647 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8648 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8649 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8650 8651 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8652 8653 if (sec) 8654 custom_sec_def_cnt++; 8655 else 8656 has_custom_fallback_def = true; 8657 8658 return sec_def->handler_id; 8659 } 8660 8661 int libbpf_unregister_prog_handler(int handler_id) 8662 { 8663 struct bpf_sec_def *sec_defs; 8664 int i; 8665 8666 if (handler_id <= 0) 8667 return libbpf_err(-EINVAL); 8668 8669 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8670 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8671 has_custom_fallback_def = false; 8672 return 0; 8673 } 8674 8675 for (i = 0; i < custom_sec_def_cnt; i++) { 8676 if (custom_sec_defs[i].handler_id == handler_id) 8677 break; 8678 } 8679 8680 if (i == custom_sec_def_cnt) 8681 return libbpf_err(-ENOENT); 8682 8683 free(custom_sec_defs[i].sec); 8684 for (i = i + 1; i < custom_sec_def_cnt; i++) 8685 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8686 custom_sec_def_cnt--; 8687 8688 /* try to shrink the array, but it's ok if we couldn't */ 8689 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8690 if (sec_defs) 8691 custom_sec_defs = sec_defs; 8692 8693 return 0; 8694 } 8695 8696 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8697 { 8698 size_t len = strlen(sec_def->sec); 8699 8700 /* "type/" always has to have proper SEC("type/extras") form */ 8701 if (sec_def->sec[len - 1] == '/') { 8702 if (str_has_pfx(sec_name, sec_def->sec)) 8703 return true; 8704 return false; 8705 } 8706 8707 /* "type+" means it can be either exact SEC("type") or 8708 * well-formed SEC("type/extras") with proper '/' separator 8709 */ 8710 if (sec_def->sec[len - 1] == '+') { 8711 len--; 8712 /* not even a prefix */ 8713 if (strncmp(sec_name, sec_def->sec, len) != 0) 8714 return false; 8715 /* exact match or has '/' separator */ 8716 if (sec_name[len] == '\0' || sec_name[len] == '/') 8717 return true; 8718 return false; 8719 } 8720 8721 return strcmp(sec_name, sec_def->sec) == 0; 8722 } 8723 8724 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8725 { 8726 const struct bpf_sec_def *sec_def; 8727 int i, n; 8728 8729 n = custom_sec_def_cnt; 8730 for (i = 0; i < n; i++) { 8731 sec_def = &custom_sec_defs[i]; 8732 if (sec_def_matches(sec_def, sec_name)) 8733 return sec_def; 8734 } 8735 8736 n = ARRAY_SIZE(section_defs); 8737 for (i = 0; i < n; i++) { 8738 sec_def = §ion_defs[i]; 8739 if (sec_def_matches(sec_def, sec_name)) 8740 return sec_def; 8741 } 8742 8743 if (has_custom_fallback_def) 8744 return &custom_fallback_def; 8745 8746 return NULL; 8747 } 8748 8749 #define MAX_TYPE_NAME_SIZE 32 8750 8751 static char *libbpf_get_type_names(bool attach_type) 8752 { 8753 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8754 char *buf; 8755 8756 buf = malloc(len); 8757 if (!buf) 8758 return NULL; 8759 8760 buf[0] = '\0'; 8761 /* Forge string buf with all available names */ 8762 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8763 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8764 8765 if (attach_type) { 8766 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8767 continue; 8768 8769 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8770 continue; 8771 } 8772 8773 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8774 free(buf); 8775 return NULL; 8776 } 8777 strcat(buf, " "); 8778 strcat(buf, section_defs[i].sec); 8779 } 8780 8781 return buf; 8782 } 8783 8784 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8785 enum bpf_attach_type *expected_attach_type) 8786 { 8787 const struct bpf_sec_def *sec_def; 8788 char *type_names; 8789 8790 if (!name) 8791 return libbpf_err(-EINVAL); 8792 8793 sec_def = find_sec_def(name); 8794 if (sec_def) { 8795 *prog_type = sec_def->prog_type; 8796 *expected_attach_type = sec_def->expected_attach_type; 8797 return 0; 8798 } 8799 8800 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8801 type_names = libbpf_get_type_names(false); 8802 if (type_names != NULL) { 8803 pr_debug("supported section(type) names are:%s\n", type_names); 8804 free(type_names); 8805 } 8806 8807 return libbpf_err(-ESRCH); 8808 } 8809 8810 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8811 { 8812 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8813 return NULL; 8814 8815 return attach_type_name[t]; 8816 } 8817 8818 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8819 { 8820 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8821 return NULL; 8822 8823 return link_type_name[t]; 8824 } 8825 8826 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8827 { 8828 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8829 return NULL; 8830 8831 return map_type_name[t]; 8832 } 8833 8834 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8835 { 8836 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8837 return NULL; 8838 8839 return prog_type_name[t]; 8840 } 8841 8842 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8843 size_t offset) 8844 { 8845 struct bpf_map *map; 8846 size_t i; 8847 8848 for (i = 0; i < obj->nr_maps; i++) { 8849 map = &obj->maps[i]; 8850 if (!bpf_map__is_struct_ops(map)) 8851 continue; 8852 if (map->sec_offset <= offset && 8853 offset - map->sec_offset < map->def.value_size) 8854 return map; 8855 } 8856 8857 return NULL; 8858 } 8859 8860 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8861 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8862 Elf64_Shdr *shdr, Elf_Data *data) 8863 { 8864 const struct btf_member *member; 8865 struct bpf_struct_ops *st_ops; 8866 struct bpf_program *prog; 8867 unsigned int shdr_idx; 8868 const struct btf *btf; 8869 struct bpf_map *map; 8870 unsigned int moff, insn_idx; 8871 const char *name; 8872 __u32 member_idx; 8873 Elf64_Sym *sym; 8874 Elf64_Rel *rel; 8875 int i, nrels; 8876 8877 btf = obj->btf; 8878 nrels = shdr->sh_size / shdr->sh_entsize; 8879 for (i = 0; i < nrels; i++) { 8880 rel = elf_rel_by_idx(data, i); 8881 if (!rel) { 8882 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8883 return -LIBBPF_ERRNO__FORMAT; 8884 } 8885 8886 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8887 if (!sym) { 8888 pr_warn("struct_ops reloc: symbol %zx not found\n", 8889 (size_t)ELF64_R_SYM(rel->r_info)); 8890 return -LIBBPF_ERRNO__FORMAT; 8891 } 8892 8893 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8894 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8895 if (!map) { 8896 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8897 (size_t)rel->r_offset); 8898 return -EINVAL; 8899 } 8900 8901 moff = rel->r_offset - map->sec_offset; 8902 shdr_idx = sym->st_shndx; 8903 st_ops = map->st_ops; 8904 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8905 map->name, 8906 (long long)(rel->r_info >> 32), 8907 (long long)sym->st_value, 8908 shdr_idx, (size_t)rel->r_offset, 8909 map->sec_offset, sym->st_name, name); 8910 8911 if (shdr_idx >= SHN_LORESERVE) { 8912 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8913 map->name, (size_t)rel->r_offset, shdr_idx); 8914 return -LIBBPF_ERRNO__RELOC; 8915 } 8916 if (sym->st_value % BPF_INSN_SZ) { 8917 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8918 map->name, (unsigned long long)sym->st_value); 8919 return -LIBBPF_ERRNO__FORMAT; 8920 } 8921 insn_idx = sym->st_value / BPF_INSN_SZ; 8922 8923 member = find_member_by_offset(st_ops->type, moff * 8); 8924 if (!member) { 8925 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8926 map->name, moff); 8927 return -EINVAL; 8928 } 8929 member_idx = member - btf_members(st_ops->type); 8930 name = btf__name_by_offset(btf, member->name_off); 8931 8932 if (!resolve_func_ptr(btf, member->type, NULL)) { 8933 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8934 map->name, name); 8935 return -EINVAL; 8936 } 8937 8938 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8939 if (!prog) { 8940 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8941 map->name, shdr_idx, name); 8942 return -EINVAL; 8943 } 8944 8945 /* prevent the use of BPF prog with invalid type */ 8946 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8947 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8948 map->name, prog->name); 8949 return -EINVAL; 8950 } 8951 8952 /* if we haven't yet processed this BPF program, record proper 8953 * attach_btf_id and member_idx 8954 */ 8955 if (!prog->attach_btf_id) { 8956 prog->attach_btf_id = st_ops->type_id; 8957 prog->expected_attach_type = member_idx; 8958 } 8959 8960 /* struct_ops BPF prog can be re-used between multiple 8961 * .struct_ops as long as it's the same struct_ops struct 8962 * definition and the same function pointer field 8963 */ 8964 if (prog->attach_btf_id != st_ops->type_id || 8965 prog->expected_attach_type != member_idx) { 8966 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8967 map->name, prog->name, prog->sec_name, prog->type, 8968 prog->attach_btf_id, prog->expected_attach_type, name); 8969 return -EINVAL; 8970 } 8971 8972 st_ops->progs[member_idx] = prog; 8973 } 8974 8975 return 0; 8976 } 8977 8978 #define BTF_TRACE_PREFIX "btf_trace_" 8979 #define BTF_LSM_PREFIX "bpf_lsm_" 8980 #define BTF_ITER_PREFIX "bpf_iter_" 8981 #define BTF_MAX_NAME_SIZE 128 8982 8983 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8984 const char **prefix, int *kind) 8985 { 8986 switch (attach_type) { 8987 case BPF_TRACE_RAW_TP: 8988 *prefix = BTF_TRACE_PREFIX; 8989 *kind = BTF_KIND_TYPEDEF; 8990 break; 8991 case BPF_LSM_MAC: 8992 case BPF_LSM_CGROUP: 8993 *prefix = BTF_LSM_PREFIX; 8994 *kind = BTF_KIND_FUNC; 8995 break; 8996 case BPF_TRACE_ITER: 8997 *prefix = BTF_ITER_PREFIX; 8998 *kind = BTF_KIND_FUNC; 8999 break; 9000 default: 9001 *prefix = ""; 9002 *kind = BTF_KIND_FUNC; 9003 } 9004 } 9005 9006 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9007 const char *name, __u32 kind) 9008 { 9009 char btf_type_name[BTF_MAX_NAME_SIZE]; 9010 int ret; 9011 9012 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9013 "%s%s", prefix, name); 9014 /* snprintf returns the number of characters written excluding the 9015 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9016 * indicates truncation. 9017 */ 9018 if (ret < 0 || ret >= sizeof(btf_type_name)) 9019 return -ENAMETOOLONG; 9020 return btf__find_by_name_kind(btf, btf_type_name, kind); 9021 } 9022 9023 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9024 enum bpf_attach_type attach_type) 9025 { 9026 const char *prefix; 9027 int kind; 9028 9029 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9030 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9031 } 9032 9033 int libbpf_find_vmlinux_btf_id(const char *name, 9034 enum bpf_attach_type attach_type) 9035 { 9036 struct btf *btf; 9037 int err; 9038 9039 btf = btf__load_vmlinux_btf(); 9040 err = libbpf_get_error(btf); 9041 if (err) { 9042 pr_warn("vmlinux BTF is not found\n"); 9043 return libbpf_err(err); 9044 } 9045 9046 err = find_attach_btf_id(btf, name, attach_type); 9047 if (err <= 0) 9048 pr_warn("%s is not found in vmlinux BTF\n", name); 9049 9050 btf__free(btf); 9051 return libbpf_err(err); 9052 } 9053 9054 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9055 { 9056 struct bpf_prog_info info; 9057 __u32 info_len = sizeof(info); 9058 struct btf *btf; 9059 int err; 9060 9061 memset(&info, 0, info_len); 9062 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9063 if (err) { 9064 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9065 attach_prog_fd, err); 9066 return err; 9067 } 9068 9069 err = -EINVAL; 9070 if (!info.btf_id) { 9071 pr_warn("The target program doesn't have BTF\n"); 9072 goto out; 9073 } 9074 btf = btf__load_from_kernel_by_id(info.btf_id); 9075 err = libbpf_get_error(btf); 9076 if (err) { 9077 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9078 goto out; 9079 } 9080 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9081 btf__free(btf); 9082 if (err <= 0) { 9083 pr_warn("%s is not found in prog's BTF\n", name); 9084 goto out; 9085 } 9086 out: 9087 return err; 9088 } 9089 9090 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9091 enum bpf_attach_type attach_type, 9092 int *btf_obj_fd, int *btf_type_id) 9093 { 9094 int ret, i; 9095 9096 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9097 if (ret > 0) { 9098 *btf_obj_fd = 0; /* vmlinux BTF */ 9099 *btf_type_id = ret; 9100 return 0; 9101 } 9102 if (ret != -ENOENT) 9103 return ret; 9104 9105 ret = load_module_btfs(obj); 9106 if (ret) 9107 return ret; 9108 9109 for (i = 0; i < obj->btf_module_cnt; i++) { 9110 const struct module_btf *mod = &obj->btf_modules[i]; 9111 9112 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9113 if (ret > 0) { 9114 *btf_obj_fd = mod->fd; 9115 *btf_type_id = ret; 9116 return 0; 9117 } 9118 if (ret == -ENOENT) 9119 continue; 9120 9121 return ret; 9122 } 9123 9124 return -ESRCH; 9125 } 9126 9127 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9128 int *btf_obj_fd, int *btf_type_id) 9129 { 9130 enum bpf_attach_type attach_type = prog->expected_attach_type; 9131 __u32 attach_prog_fd = prog->attach_prog_fd; 9132 int err = 0; 9133 9134 /* BPF program's BTF ID */ 9135 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9136 if (!attach_prog_fd) { 9137 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9138 return -EINVAL; 9139 } 9140 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9141 if (err < 0) { 9142 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9143 prog->name, attach_prog_fd, attach_name, err); 9144 return err; 9145 } 9146 *btf_obj_fd = 0; 9147 *btf_type_id = err; 9148 return 0; 9149 } 9150 9151 /* kernel/module BTF ID */ 9152 if (prog->obj->gen_loader) { 9153 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9154 *btf_obj_fd = 0; 9155 *btf_type_id = 1; 9156 } else { 9157 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9158 } 9159 if (err) { 9160 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9161 prog->name, attach_name, err); 9162 return err; 9163 } 9164 return 0; 9165 } 9166 9167 int libbpf_attach_type_by_name(const char *name, 9168 enum bpf_attach_type *attach_type) 9169 { 9170 char *type_names; 9171 const struct bpf_sec_def *sec_def; 9172 9173 if (!name) 9174 return libbpf_err(-EINVAL); 9175 9176 sec_def = find_sec_def(name); 9177 if (!sec_def) { 9178 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9179 type_names = libbpf_get_type_names(true); 9180 if (type_names != NULL) { 9181 pr_debug("attachable section(type) names are:%s\n", type_names); 9182 free(type_names); 9183 } 9184 9185 return libbpf_err(-EINVAL); 9186 } 9187 9188 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9189 return libbpf_err(-EINVAL); 9190 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9191 return libbpf_err(-EINVAL); 9192 9193 *attach_type = sec_def->expected_attach_type; 9194 return 0; 9195 } 9196 9197 int bpf_map__fd(const struct bpf_map *map) 9198 { 9199 return map ? map->fd : libbpf_err(-EINVAL); 9200 } 9201 9202 static bool map_uses_real_name(const struct bpf_map *map) 9203 { 9204 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9205 * their user-visible name differs from kernel-visible name. Users see 9206 * such map's corresponding ELF section name as a map name. 9207 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9208 * maps to know which name has to be returned to the user. 9209 */ 9210 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9211 return true; 9212 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9213 return true; 9214 return false; 9215 } 9216 9217 const char *bpf_map__name(const struct bpf_map *map) 9218 { 9219 if (!map) 9220 return NULL; 9221 9222 if (map_uses_real_name(map)) 9223 return map->real_name; 9224 9225 return map->name; 9226 } 9227 9228 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9229 { 9230 return map->def.type; 9231 } 9232 9233 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9234 { 9235 if (map->fd >= 0) 9236 return libbpf_err(-EBUSY); 9237 map->def.type = type; 9238 return 0; 9239 } 9240 9241 __u32 bpf_map__map_flags(const struct bpf_map *map) 9242 { 9243 return map->def.map_flags; 9244 } 9245 9246 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9247 { 9248 if (map->fd >= 0) 9249 return libbpf_err(-EBUSY); 9250 map->def.map_flags = flags; 9251 return 0; 9252 } 9253 9254 __u64 bpf_map__map_extra(const struct bpf_map *map) 9255 { 9256 return map->map_extra; 9257 } 9258 9259 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9260 { 9261 if (map->fd >= 0) 9262 return libbpf_err(-EBUSY); 9263 map->map_extra = map_extra; 9264 return 0; 9265 } 9266 9267 __u32 bpf_map__numa_node(const struct bpf_map *map) 9268 { 9269 return map->numa_node; 9270 } 9271 9272 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9273 { 9274 if (map->fd >= 0) 9275 return libbpf_err(-EBUSY); 9276 map->numa_node = numa_node; 9277 return 0; 9278 } 9279 9280 __u32 bpf_map__key_size(const struct bpf_map *map) 9281 { 9282 return map->def.key_size; 9283 } 9284 9285 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9286 { 9287 if (map->fd >= 0) 9288 return libbpf_err(-EBUSY); 9289 map->def.key_size = size; 9290 return 0; 9291 } 9292 9293 __u32 bpf_map__value_size(const struct bpf_map *map) 9294 { 9295 return map->def.value_size; 9296 } 9297 9298 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9299 { 9300 if (map->fd >= 0) 9301 return libbpf_err(-EBUSY); 9302 map->def.value_size = size; 9303 return 0; 9304 } 9305 9306 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9307 { 9308 return map ? map->btf_key_type_id : 0; 9309 } 9310 9311 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9312 { 9313 return map ? map->btf_value_type_id : 0; 9314 } 9315 9316 int bpf_map__set_initial_value(struct bpf_map *map, 9317 const void *data, size_t size) 9318 { 9319 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9320 size != map->def.value_size || map->fd >= 0) 9321 return libbpf_err(-EINVAL); 9322 9323 memcpy(map->mmaped, data, size); 9324 return 0; 9325 } 9326 9327 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9328 { 9329 if (!map->mmaped) 9330 return NULL; 9331 *psize = map->def.value_size; 9332 return map->mmaped; 9333 } 9334 9335 bool bpf_map__is_internal(const struct bpf_map *map) 9336 { 9337 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9338 } 9339 9340 __u32 bpf_map__ifindex(const struct bpf_map *map) 9341 { 9342 return map->map_ifindex; 9343 } 9344 9345 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9346 { 9347 if (map->fd >= 0) 9348 return libbpf_err(-EBUSY); 9349 map->map_ifindex = ifindex; 9350 return 0; 9351 } 9352 9353 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9354 { 9355 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9356 pr_warn("error: unsupported map type\n"); 9357 return libbpf_err(-EINVAL); 9358 } 9359 if (map->inner_map_fd != -1) { 9360 pr_warn("error: inner_map_fd already specified\n"); 9361 return libbpf_err(-EINVAL); 9362 } 9363 if (map->inner_map) { 9364 bpf_map__destroy(map->inner_map); 9365 zfree(&map->inner_map); 9366 } 9367 map->inner_map_fd = fd; 9368 return 0; 9369 } 9370 9371 static struct bpf_map * 9372 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9373 { 9374 ssize_t idx; 9375 struct bpf_map *s, *e; 9376 9377 if (!obj || !obj->maps) 9378 return errno = EINVAL, NULL; 9379 9380 s = obj->maps; 9381 e = obj->maps + obj->nr_maps; 9382 9383 if ((m < s) || (m >= e)) { 9384 pr_warn("error in %s: map handler doesn't belong to object\n", 9385 __func__); 9386 return errno = EINVAL, NULL; 9387 } 9388 9389 idx = (m - obj->maps) + i; 9390 if (idx >= obj->nr_maps || idx < 0) 9391 return NULL; 9392 return &obj->maps[idx]; 9393 } 9394 9395 struct bpf_map * 9396 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9397 { 9398 if (prev == NULL) 9399 return obj->maps; 9400 9401 return __bpf_map__iter(prev, obj, 1); 9402 } 9403 9404 struct bpf_map * 9405 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9406 { 9407 if (next == NULL) { 9408 if (!obj->nr_maps) 9409 return NULL; 9410 return obj->maps + obj->nr_maps - 1; 9411 } 9412 9413 return __bpf_map__iter(next, obj, -1); 9414 } 9415 9416 struct bpf_map * 9417 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9418 { 9419 struct bpf_map *pos; 9420 9421 bpf_object__for_each_map(pos, obj) { 9422 /* if it's a special internal map name (which always starts 9423 * with dot) then check if that special name matches the 9424 * real map name (ELF section name) 9425 */ 9426 if (name[0] == '.') { 9427 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9428 return pos; 9429 continue; 9430 } 9431 /* otherwise map name has to be an exact match */ 9432 if (map_uses_real_name(pos)) { 9433 if (strcmp(pos->real_name, name) == 0) 9434 return pos; 9435 continue; 9436 } 9437 if (strcmp(pos->name, name) == 0) 9438 return pos; 9439 } 9440 return errno = ENOENT, NULL; 9441 } 9442 9443 int 9444 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9445 { 9446 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9447 } 9448 9449 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9450 size_t value_sz, bool check_value_sz) 9451 { 9452 if (map->fd <= 0) 9453 return -ENOENT; 9454 9455 if (map->def.key_size != key_sz) { 9456 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9457 map->name, key_sz, map->def.key_size); 9458 return -EINVAL; 9459 } 9460 9461 if (!check_value_sz) 9462 return 0; 9463 9464 switch (map->def.type) { 9465 case BPF_MAP_TYPE_PERCPU_ARRAY: 9466 case BPF_MAP_TYPE_PERCPU_HASH: 9467 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9468 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9469 int num_cpu = libbpf_num_possible_cpus(); 9470 size_t elem_sz = roundup(map->def.value_size, 8); 9471 9472 if (value_sz != num_cpu * elem_sz) { 9473 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9474 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9475 return -EINVAL; 9476 } 9477 break; 9478 } 9479 default: 9480 if (map->def.value_size != value_sz) { 9481 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9482 map->name, value_sz, map->def.value_size); 9483 return -EINVAL; 9484 } 9485 break; 9486 } 9487 return 0; 9488 } 9489 9490 int bpf_map__lookup_elem(const struct bpf_map *map, 9491 const void *key, size_t key_sz, 9492 void *value, size_t value_sz, __u64 flags) 9493 { 9494 int err; 9495 9496 err = validate_map_op(map, key_sz, value_sz, true); 9497 if (err) 9498 return libbpf_err(err); 9499 9500 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9501 } 9502 9503 int bpf_map__update_elem(const struct bpf_map *map, 9504 const void *key, size_t key_sz, 9505 const void *value, size_t value_sz, __u64 flags) 9506 { 9507 int err; 9508 9509 err = validate_map_op(map, key_sz, value_sz, true); 9510 if (err) 9511 return libbpf_err(err); 9512 9513 return bpf_map_update_elem(map->fd, key, value, flags); 9514 } 9515 9516 int bpf_map__delete_elem(const struct bpf_map *map, 9517 const void *key, size_t key_sz, __u64 flags) 9518 { 9519 int err; 9520 9521 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9522 if (err) 9523 return libbpf_err(err); 9524 9525 return bpf_map_delete_elem_flags(map->fd, key, flags); 9526 } 9527 9528 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9529 const void *key, size_t key_sz, 9530 void *value, size_t value_sz, __u64 flags) 9531 { 9532 int err; 9533 9534 err = validate_map_op(map, key_sz, value_sz, true); 9535 if (err) 9536 return libbpf_err(err); 9537 9538 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9539 } 9540 9541 int bpf_map__get_next_key(const struct bpf_map *map, 9542 const void *cur_key, void *next_key, size_t key_sz) 9543 { 9544 int err; 9545 9546 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9547 if (err) 9548 return libbpf_err(err); 9549 9550 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9551 } 9552 9553 long libbpf_get_error(const void *ptr) 9554 { 9555 if (!IS_ERR_OR_NULL(ptr)) 9556 return 0; 9557 9558 if (IS_ERR(ptr)) 9559 errno = -PTR_ERR(ptr); 9560 9561 /* If ptr == NULL, then errno should be already set by the failing 9562 * API, because libbpf never returns NULL on success and it now always 9563 * sets errno on error. So no extra errno handling for ptr == NULL 9564 * case. 9565 */ 9566 return -errno; 9567 } 9568 9569 /* Replace link's underlying BPF program with the new one */ 9570 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9571 { 9572 int ret; 9573 9574 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9575 return libbpf_err_errno(ret); 9576 } 9577 9578 /* Release "ownership" of underlying BPF resource (typically, BPF program 9579 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9580 * link, when destructed through bpf_link__destroy() call won't attempt to 9581 * detach/unregisted that BPF resource. This is useful in situations where, 9582 * say, attached BPF program has to outlive userspace program that attached it 9583 * in the system. Depending on type of BPF program, though, there might be 9584 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9585 * exit of userspace program doesn't trigger automatic detachment and clean up 9586 * inside the kernel. 9587 */ 9588 void bpf_link__disconnect(struct bpf_link *link) 9589 { 9590 link->disconnected = true; 9591 } 9592 9593 int bpf_link__destroy(struct bpf_link *link) 9594 { 9595 int err = 0; 9596 9597 if (IS_ERR_OR_NULL(link)) 9598 return 0; 9599 9600 if (!link->disconnected && link->detach) 9601 err = link->detach(link); 9602 if (link->pin_path) 9603 free(link->pin_path); 9604 if (link->dealloc) 9605 link->dealloc(link); 9606 else 9607 free(link); 9608 9609 return libbpf_err(err); 9610 } 9611 9612 int bpf_link__fd(const struct bpf_link *link) 9613 { 9614 return link->fd; 9615 } 9616 9617 const char *bpf_link__pin_path(const struct bpf_link *link) 9618 { 9619 return link->pin_path; 9620 } 9621 9622 static int bpf_link__detach_fd(struct bpf_link *link) 9623 { 9624 return libbpf_err_errno(close(link->fd)); 9625 } 9626 9627 struct bpf_link *bpf_link__open(const char *path) 9628 { 9629 struct bpf_link *link; 9630 int fd; 9631 9632 fd = bpf_obj_get(path); 9633 if (fd < 0) { 9634 fd = -errno; 9635 pr_warn("failed to open link at %s: %d\n", path, fd); 9636 return libbpf_err_ptr(fd); 9637 } 9638 9639 link = calloc(1, sizeof(*link)); 9640 if (!link) { 9641 close(fd); 9642 return libbpf_err_ptr(-ENOMEM); 9643 } 9644 link->detach = &bpf_link__detach_fd; 9645 link->fd = fd; 9646 9647 link->pin_path = strdup(path); 9648 if (!link->pin_path) { 9649 bpf_link__destroy(link); 9650 return libbpf_err_ptr(-ENOMEM); 9651 } 9652 9653 return link; 9654 } 9655 9656 int bpf_link__detach(struct bpf_link *link) 9657 { 9658 return bpf_link_detach(link->fd) ? -errno : 0; 9659 } 9660 9661 int bpf_link__pin(struct bpf_link *link, const char *path) 9662 { 9663 int err; 9664 9665 if (link->pin_path) 9666 return libbpf_err(-EBUSY); 9667 err = make_parent_dir(path); 9668 if (err) 9669 return libbpf_err(err); 9670 err = check_path(path); 9671 if (err) 9672 return libbpf_err(err); 9673 9674 link->pin_path = strdup(path); 9675 if (!link->pin_path) 9676 return libbpf_err(-ENOMEM); 9677 9678 if (bpf_obj_pin(link->fd, link->pin_path)) { 9679 err = -errno; 9680 zfree(&link->pin_path); 9681 return libbpf_err(err); 9682 } 9683 9684 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9685 return 0; 9686 } 9687 9688 int bpf_link__unpin(struct bpf_link *link) 9689 { 9690 int err; 9691 9692 if (!link->pin_path) 9693 return libbpf_err(-EINVAL); 9694 9695 err = unlink(link->pin_path); 9696 if (err != 0) 9697 return -errno; 9698 9699 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9700 zfree(&link->pin_path); 9701 return 0; 9702 } 9703 9704 struct bpf_link_perf { 9705 struct bpf_link link; 9706 int perf_event_fd; 9707 /* legacy kprobe support: keep track of probe identifier and type */ 9708 char *legacy_probe_name; 9709 bool legacy_is_kprobe; 9710 bool legacy_is_retprobe; 9711 }; 9712 9713 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9714 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9715 9716 static int bpf_link_perf_detach(struct bpf_link *link) 9717 { 9718 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9719 int err = 0; 9720 9721 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9722 err = -errno; 9723 9724 if (perf_link->perf_event_fd != link->fd) 9725 close(perf_link->perf_event_fd); 9726 close(link->fd); 9727 9728 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9729 if (perf_link->legacy_probe_name) { 9730 if (perf_link->legacy_is_kprobe) { 9731 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9732 perf_link->legacy_is_retprobe); 9733 } else { 9734 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9735 perf_link->legacy_is_retprobe); 9736 } 9737 } 9738 9739 return err; 9740 } 9741 9742 static void bpf_link_perf_dealloc(struct bpf_link *link) 9743 { 9744 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9745 9746 free(perf_link->legacy_probe_name); 9747 free(perf_link); 9748 } 9749 9750 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9751 const struct bpf_perf_event_opts *opts) 9752 { 9753 char errmsg[STRERR_BUFSIZE]; 9754 struct bpf_link_perf *link; 9755 int prog_fd, link_fd = -1, err; 9756 9757 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9758 return libbpf_err_ptr(-EINVAL); 9759 9760 if (pfd < 0) { 9761 pr_warn("prog '%s': invalid perf event FD %d\n", 9762 prog->name, pfd); 9763 return libbpf_err_ptr(-EINVAL); 9764 } 9765 prog_fd = bpf_program__fd(prog); 9766 if (prog_fd < 0) { 9767 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9768 prog->name); 9769 return libbpf_err_ptr(-EINVAL); 9770 } 9771 9772 link = calloc(1, sizeof(*link)); 9773 if (!link) 9774 return libbpf_err_ptr(-ENOMEM); 9775 link->link.detach = &bpf_link_perf_detach; 9776 link->link.dealloc = &bpf_link_perf_dealloc; 9777 link->perf_event_fd = pfd; 9778 9779 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9780 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9781 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9782 9783 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9784 if (link_fd < 0) { 9785 err = -errno; 9786 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9787 prog->name, pfd, 9788 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9789 goto err_out; 9790 } 9791 link->link.fd = link_fd; 9792 } else { 9793 if (OPTS_GET(opts, bpf_cookie, 0)) { 9794 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9795 err = -EOPNOTSUPP; 9796 goto err_out; 9797 } 9798 9799 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9800 err = -errno; 9801 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9802 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9803 if (err == -EPROTO) 9804 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9805 prog->name, pfd); 9806 goto err_out; 9807 } 9808 link->link.fd = pfd; 9809 } 9810 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9811 err = -errno; 9812 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9813 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9814 goto err_out; 9815 } 9816 9817 return &link->link; 9818 err_out: 9819 if (link_fd >= 0) 9820 close(link_fd); 9821 free(link); 9822 return libbpf_err_ptr(err); 9823 } 9824 9825 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9826 { 9827 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9828 } 9829 9830 /* 9831 * this function is expected to parse integer in the range of [0, 2^31-1] from 9832 * given file using scanf format string fmt. If actual parsed value is 9833 * negative, the result might be indistinguishable from error 9834 */ 9835 static int parse_uint_from_file(const char *file, const char *fmt) 9836 { 9837 char buf[STRERR_BUFSIZE]; 9838 int err, ret; 9839 FILE *f; 9840 9841 f = fopen(file, "r"); 9842 if (!f) { 9843 err = -errno; 9844 pr_debug("failed to open '%s': %s\n", file, 9845 libbpf_strerror_r(err, buf, sizeof(buf))); 9846 return err; 9847 } 9848 err = fscanf(f, fmt, &ret); 9849 if (err != 1) { 9850 err = err == EOF ? -EIO : -errno; 9851 pr_debug("failed to parse '%s': %s\n", file, 9852 libbpf_strerror_r(err, buf, sizeof(buf))); 9853 fclose(f); 9854 return err; 9855 } 9856 fclose(f); 9857 return ret; 9858 } 9859 9860 static int determine_kprobe_perf_type(void) 9861 { 9862 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9863 9864 return parse_uint_from_file(file, "%d\n"); 9865 } 9866 9867 static int determine_uprobe_perf_type(void) 9868 { 9869 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9870 9871 return parse_uint_from_file(file, "%d\n"); 9872 } 9873 9874 static int determine_kprobe_retprobe_bit(void) 9875 { 9876 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9877 9878 return parse_uint_from_file(file, "config:%d\n"); 9879 } 9880 9881 static int determine_uprobe_retprobe_bit(void) 9882 { 9883 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9884 9885 return parse_uint_from_file(file, "config:%d\n"); 9886 } 9887 9888 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9889 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9890 9891 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9892 uint64_t offset, int pid, size_t ref_ctr_off) 9893 { 9894 const size_t attr_sz = sizeof(struct perf_event_attr); 9895 struct perf_event_attr attr; 9896 char errmsg[STRERR_BUFSIZE]; 9897 int type, pfd; 9898 9899 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9900 return -EINVAL; 9901 9902 memset(&attr, 0, attr_sz); 9903 9904 type = uprobe ? determine_uprobe_perf_type() 9905 : determine_kprobe_perf_type(); 9906 if (type < 0) { 9907 pr_warn("failed to determine %s perf type: %s\n", 9908 uprobe ? "uprobe" : "kprobe", 9909 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9910 return type; 9911 } 9912 if (retprobe) { 9913 int bit = uprobe ? determine_uprobe_retprobe_bit() 9914 : determine_kprobe_retprobe_bit(); 9915 9916 if (bit < 0) { 9917 pr_warn("failed to determine %s retprobe bit: %s\n", 9918 uprobe ? "uprobe" : "kprobe", 9919 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9920 return bit; 9921 } 9922 attr.config |= 1 << bit; 9923 } 9924 attr.size = attr_sz; 9925 attr.type = type; 9926 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9927 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9928 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9929 9930 /* pid filter is meaningful only for uprobes */ 9931 pfd = syscall(__NR_perf_event_open, &attr, 9932 pid < 0 ? -1 : pid /* pid */, 9933 pid == -1 ? 0 : -1 /* cpu */, 9934 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9935 return pfd >= 0 ? pfd : -errno; 9936 } 9937 9938 static int append_to_file(const char *file, const char *fmt, ...) 9939 { 9940 int fd, n, err = 0; 9941 va_list ap; 9942 9943 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9944 if (fd < 0) 9945 return -errno; 9946 9947 va_start(ap, fmt); 9948 n = vdprintf(fd, fmt, ap); 9949 va_end(ap); 9950 9951 if (n < 0) 9952 err = -errno; 9953 9954 close(fd); 9955 return err; 9956 } 9957 9958 #define DEBUGFS "/sys/kernel/debug/tracing" 9959 #define TRACEFS "/sys/kernel/tracing" 9960 9961 static bool use_debugfs(void) 9962 { 9963 static int has_debugfs = -1; 9964 9965 if (has_debugfs < 0) 9966 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 9967 9968 return has_debugfs == 1; 9969 } 9970 9971 static const char *tracefs_path(void) 9972 { 9973 return use_debugfs() ? DEBUGFS : TRACEFS; 9974 } 9975 9976 static const char *tracefs_kprobe_events(void) 9977 { 9978 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 9979 } 9980 9981 static const char *tracefs_uprobe_events(void) 9982 { 9983 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 9984 } 9985 9986 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9987 const char *kfunc_name, size_t offset) 9988 { 9989 static int index = 0; 9990 9991 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9992 __sync_fetch_and_add(&index, 1)); 9993 } 9994 9995 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9996 const char *kfunc_name, size_t offset) 9997 { 9998 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 9999 retprobe ? 'r' : 'p', 10000 retprobe ? "kretprobes" : "kprobes", 10001 probe_name, kfunc_name, offset); 10002 } 10003 10004 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10005 { 10006 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10007 retprobe ? "kretprobes" : "kprobes", probe_name); 10008 } 10009 10010 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10011 { 10012 char file[256]; 10013 10014 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10015 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10016 10017 return parse_uint_from_file(file, "%d\n"); 10018 } 10019 10020 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10021 const char *kfunc_name, size_t offset, int pid) 10022 { 10023 const size_t attr_sz = sizeof(struct perf_event_attr); 10024 struct perf_event_attr attr; 10025 char errmsg[STRERR_BUFSIZE]; 10026 int type, pfd, err; 10027 10028 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10029 if (err < 0) { 10030 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10031 kfunc_name, offset, 10032 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10033 return err; 10034 } 10035 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10036 if (type < 0) { 10037 err = type; 10038 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10039 kfunc_name, offset, 10040 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10041 goto err_clean_legacy; 10042 } 10043 10044 memset(&attr, 0, attr_sz); 10045 attr.size = attr_sz; 10046 attr.config = type; 10047 attr.type = PERF_TYPE_TRACEPOINT; 10048 10049 pfd = syscall(__NR_perf_event_open, &attr, 10050 pid < 0 ? -1 : pid, /* pid */ 10051 pid == -1 ? 0 : -1, /* cpu */ 10052 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10053 if (pfd < 0) { 10054 err = -errno; 10055 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10056 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10057 goto err_clean_legacy; 10058 } 10059 return pfd; 10060 10061 err_clean_legacy: 10062 /* Clear the newly added legacy kprobe_event */ 10063 remove_kprobe_event_legacy(probe_name, retprobe); 10064 return err; 10065 } 10066 10067 static const char *arch_specific_syscall_pfx(void) 10068 { 10069 #if defined(__x86_64__) 10070 return "x64"; 10071 #elif defined(__i386__) 10072 return "ia32"; 10073 #elif defined(__s390x__) 10074 return "s390x"; 10075 #elif defined(__s390__) 10076 return "s390"; 10077 #elif defined(__arm__) 10078 return "arm"; 10079 #elif defined(__aarch64__) 10080 return "arm64"; 10081 #elif defined(__mips__) 10082 return "mips"; 10083 #elif defined(__riscv) 10084 return "riscv"; 10085 #elif defined(__powerpc__) 10086 return "powerpc"; 10087 #elif defined(__powerpc64__) 10088 return "powerpc64"; 10089 #else 10090 return NULL; 10091 #endif 10092 } 10093 10094 static int probe_kern_syscall_wrapper(void) 10095 { 10096 char syscall_name[64]; 10097 const char *ksys_pfx; 10098 10099 ksys_pfx = arch_specific_syscall_pfx(); 10100 if (!ksys_pfx) 10101 return 0; 10102 10103 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10104 10105 if (determine_kprobe_perf_type() >= 0) { 10106 int pfd; 10107 10108 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10109 if (pfd >= 0) 10110 close(pfd); 10111 10112 return pfd >= 0 ? 1 : 0; 10113 } else { /* legacy mode */ 10114 char probe_name[128]; 10115 10116 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10117 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10118 return 0; 10119 10120 (void)remove_kprobe_event_legacy(probe_name, false); 10121 return 1; 10122 } 10123 } 10124 10125 struct bpf_link * 10126 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10127 const char *func_name, 10128 const struct bpf_kprobe_opts *opts) 10129 { 10130 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10131 char errmsg[STRERR_BUFSIZE]; 10132 char *legacy_probe = NULL; 10133 struct bpf_link *link; 10134 size_t offset; 10135 bool retprobe, legacy; 10136 int pfd, err; 10137 10138 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10139 return libbpf_err_ptr(-EINVAL); 10140 10141 retprobe = OPTS_GET(opts, retprobe, false); 10142 offset = OPTS_GET(opts, offset, 0); 10143 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10144 10145 legacy = determine_kprobe_perf_type() < 0; 10146 if (!legacy) { 10147 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10148 func_name, offset, 10149 -1 /* pid */, 0 /* ref_ctr_off */); 10150 } else { 10151 char probe_name[256]; 10152 10153 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10154 func_name, offset); 10155 10156 legacy_probe = strdup(probe_name); 10157 if (!legacy_probe) 10158 return libbpf_err_ptr(-ENOMEM); 10159 10160 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10161 offset, -1 /* pid */); 10162 } 10163 if (pfd < 0) { 10164 err = -errno; 10165 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10166 prog->name, retprobe ? "kretprobe" : "kprobe", 10167 func_name, offset, 10168 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10169 goto err_out; 10170 } 10171 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10172 err = libbpf_get_error(link); 10173 if (err) { 10174 close(pfd); 10175 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10176 prog->name, retprobe ? "kretprobe" : "kprobe", 10177 func_name, offset, 10178 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10179 goto err_clean_legacy; 10180 } 10181 if (legacy) { 10182 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10183 10184 perf_link->legacy_probe_name = legacy_probe; 10185 perf_link->legacy_is_kprobe = true; 10186 perf_link->legacy_is_retprobe = retprobe; 10187 } 10188 10189 return link; 10190 10191 err_clean_legacy: 10192 if (legacy) 10193 remove_kprobe_event_legacy(legacy_probe, retprobe); 10194 err_out: 10195 free(legacy_probe); 10196 return libbpf_err_ptr(err); 10197 } 10198 10199 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10200 bool retprobe, 10201 const char *func_name) 10202 { 10203 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10204 .retprobe = retprobe, 10205 ); 10206 10207 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10208 } 10209 10210 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10211 const char *syscall_name, 10212 const struct bpf_ksyscall_opts *opts) 10213 { 10214 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10215 char func_name[128]; 10216 10217 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10218 return libbpf_err_ptr(-EINVAL); 10219 10220 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10221 /* arch_specific_syscall_pfx() should never return NULL here 10222 * because it is guarded by kernel_supports(). However, since 10223 * compiler does not know that we have an explicit conditional 10224 * as well. 10225 */ 10226 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10227 arch_specific_syscall_pfx() ? : "", syscall_name); 10228 } else { 10229 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10230 } 10231 10232 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10233 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10234 10235 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10236 } 10237 10238 /* Adapted from perf/util/string.c */ 10239 static bool glob_match(const char *str, const char *pat) 10240 { 10241 while (*str && *pat && *pat != '*') { 10242 if (*pat == '?') { /* Matches any single character */ 10243 str++; 10244 pat++; 10245 continue; 10246 } 10247 if (*str != *pat) 10248 return false; 10249 str++; 10250 pat++; 10251 } 10252 /* Check wild card */ 10253 if (*pat == '*') { 10254 while (*pat == '*') 10255 pat++; 10256 if (!*pat) /* Tail wild card matches all */ 10257 return true; 10258 while (*str) 10259 if (glob_match(str++, pat)) 10260 return true; 10261 } 10262 return !*str && !*pat; 10263 } 10264 10265 struct kprobe_multi_resolve { 10266 const char *pattern; 10267 unsigned long *addrs; 10268 size_t cap; 10269 size_t cnt; 10270 }; 10271 10272 static int 10273 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10274 const char *sym_name, void *ctx) 10275 { 10276 struct kprobe_multi_resolve *res = ctx; 10277 int err; 10278 10279 if (!glob_match(sym_name, res->pattern)) 10280 return 0; 10281 10282 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10283 res->cnt + 1); 10284 if (err) 10285 return err; 10286 10287 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10288 return 0; 10289 } 10290 10291 struct bpf_link * 10292 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10293 const char *pattern, 10294 const struct bpf_kprobe_multi_opts *opts) 10295 { 10296 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10297 struct kprobe_multi_resolve res = { 10298 .pattern = pattern, 10299 }; 10300 struct bpf_link *link = NULL; 10301 char errmsg[STRERR_BUFSIZE]; 10302 const unsigned long *addrs; 10303 int err, link_fd, prog_fd; 10304 const __u64 *cookies; 10305 const char **syms; 10306 bool retprobe; 10307 size_t cnt; 10308 10309 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10310 return libbpf_err_ptr(-EINVAL); 10311 10312 syms = OPTS_GET(opts, syms, false); 10313 addrs = OPTS_GET(opts, addrs, false); 10314 cnt = OPTS_GET(opts, cnt, false); 10315 cookies = OPTS_GET(opts, cookies, false); 10316 10317 if (!pattern && !addrs && !syms) 10318 return libbpf_err_ptr(-EINVAL); 10319 if (pattern && (addrs || syms || cookies || cnt)) 10320 return libbpf_err_ptr(-EINVAL); 10321 if (!pattern && !cnt) 10322 return libbpf_err_ptr(-EINVAL); 10323 if (addrs && syms) 10324 return libbpf_err_ptr(-EINVAL); 10325 10326 if (pattern) { 10327 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10328 if (err) 10329 goto error; 10330 if (!res.cnt) { 10331 err = -ENOENT; 10332 goto error; 10333 } 10334 addrs = res.addrs; 10335 cnt = res.cnt; 10336 } 10337 10338 retprobe = OPTS_GET(opts, retprobe, false); 10339 10340 lopts.kprobe_multi.syms = syms; 10341 lopts.kprobe_multi.addrs = addrs; 10342 lopts.kprobe_multi.cookies = cookies; 10343 lopts.kprobe_multi.cnt = cnt; 10344 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10345 10346 link = calloc(1, sizeof(*link)); 10347 if (!link) { 10348 err = -ENOMEM; 10349 goto error; 10350 } 10351 link->detach = &bpf_link__detach_fd; 10352 10353 prog_fd = bpf_program__fd(prog); 10354 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10355 if (link_fd < 0) { 10356 err = -errno; 10357 pr_warn("prog '%s': failed to attach: %s\n", 10358 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10359 goto error; 10360 } 10361 link->fd = link_fd; 10362 free(res.addrs); 10363 return link; 10364 10365 error: 10366 free(link); 10367 free(res.addrs); 10368 return libbpf_err_ptr(err); 10369 } 10370 10371 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10372 { 10373 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10374 unsigned long offset = 0; 10375 const char *func_name; 10376 char *func; 10377 int n; 10378 10379 *link = NULL; 10380 10381 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10382 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10383 return 0; 10384 10385 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10386 if (opts.retprobe) 10387 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10388 else 10389 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10390 10391 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10392 if (n < 1) { 10393 pr_warn("kprobe name is invalid: %s\n", func_name); 10394 return -EINVAL; 10395 } 10396 if (opts.retprobe && offset != 0) { 10397 free(func); 10398 pr_warn("kretprobes do not support offset specification\n"); 10399 return -EINVAL; 10400 } 10401 10402 opts.offset = offset; 10403 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10404 free(func); 10405 return libbpf_get_error(*link); 10406 } 10407 10408 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10409 { 10410 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10411 const char *syscall_name; 10412 10413 *link = NULL; 10414 10415 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10416 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10417 return 0; 10418 10419 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10420 if (opts.retprobe) 10421 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10422 else 10423 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10424 10425 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10426 return *link ? 0 : -errno; 10427 } 10428 10429 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10430 { 10431 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10432 const char *spec; 10433 char *pattern; 10434 int n; 10435 10436 *link = NULL; 10437 10438 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10439 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10440 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10441 return 0; 10442 10443 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10444 if (opts.retprobe) 10445 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10446 else 10447 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10448 10449 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10450 if (n < 1) { 10451 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10452 return -EINVAL; 10453 } 10454 10455 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10456 free(pattern); 10457 return libbpf_get_error(*link); 10458 } 10459 10460 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10461 const char *binary_path, uint64_t offset) 10462 { 10463 int i; 10464 10465 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10466 10467 /* sanitize binary_path in the probe name */ 10468 for (i = 0; buf[i]; i++) { 10469 if (!isalnum(buf[i])) 10470 buf[i] = '_'; 10471 } 10472 } 10473 10474 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10475 const char *binary_path, size_t offset) 10476 { 10477 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10478 retprobe ? 'r' : 'p', 10479 retprobe ? "uretprobes" : "uprobes", 10480 probe_name, binary_path, offset); 10481 } 10482 10483 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10484 { 10485 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10486 retprobe ? "uretprobes" : "uprobes", probe_name); 10487 } 10488 10489 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10490 { 10491 char file[512]; 10492 10493 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10494 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10495 10496 return parse_uint_from_file(file, "%d\n"); 10497 } 10498 10499 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10500 const char *binary_path, size_t offset, int pid) 10501 { 10502 const size_t attr_sz = sizeof(struct perf_event_attr); 10503 struct perf_event_attr attr; 10504 int type, pfd, err; 10505 10506 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10507 if (err < 0) { 10508 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10509 binary_path, (size_t)offset, err); 10510 return err; 10511 } 10512 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10513 if (type < 0) { 10514 err = type; 10515 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10516 binary_path, offset, err); 10517 goto err_clean_legacy; 10518 } 10519 10520 memset(&attr, 0, attr_sz); 10521 attr.size = attr_sz; 10522 attr.config = type; 10523 attr.type = PERF_TYPE_TRACEPOINT; 10524 10525 pfd = syscall(__NR_perf_event_open, &attr, 10526 pid < 0 ? -1 : pid, /* pid */ 10527 pid == -1 ? 0 : -1, /* cpu */ 10528 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10529 if (pfd < 0) { 10530 err = -errno; 10531 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10532 goto err_clean_legacy; 10533 } 10534 return pfd; 10535 10536 err_clean_legacy: 10537 /* Clear the newly added legacy uprobe_event */ 10538 remove_uprobe_event_legacy(probe_name, retprobe); 10539 return err; 10540 } 10541 10542 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10543 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10544 { 10545 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10546 GElf_Shdr sh; 10547 10548 if (!gelf_getshdr(scn, &sh)) 10549 continue; 10550 if (sh.sh_type == sh_type) 10551 return scn; 10552 } 10553 return NULL; 10554 } 10555 10556 /* Find offset of function name in object specified by path. "name" matches 10557 * symbol name or name@@LIB for library functions. 10558 */ 10559 static long elf_find_func_offset(const char *binary_path, const char *name) 10560 { 10561 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10562 bool is_shared_lib, is_name_qualified; 10563 char errmsg[STRERR_BUFSIZE]; 10564 long ret = -ENOENT; 10565 size_t name_len; 10566 GElf_Ehdr ehdr; 10567 Elf *elf; 10568 10569 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10570 if (fd < 0) { 10571 ret = -errno; 10572 pr_warn("failed to open %s: %s\n", binary_path, 10573 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10574 return ret; 10575 } 10576 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10577 if (!elf) { 10578 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10579 close(fd); 10580 return -LIBBPF_ERRNO__FORMAT; 10581 } 10582 if (!gelf_getehdr(elf, &ehdr)) { 10583 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10584 ret = -LIBBPF_ERRNO__FORMAT; 10585 goto out; 10586 } 10587 /* for shared lib case, we do not need to calculate relative offset */ 10588 is_shared_lib = ehdr.e_type == ET_DYN; 10589 10590 name_len = strlen(name); 10591 /* Does name specify "@@LIB"? */ 10592 is_name_qualified = strstr(name, "@@") != NULL; 10593 10594 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10595 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10596 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10597 * reported as a warning/error. 10598 */ 10599 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10600 size_t nr_syms, strtabidx, idx; 10601 Elf_Data *symbols = NULL; 10602 Elf_Scn *scn = NULL; 10603 int last_bind = -1; 10604 const char *sname; 10605 GElf_Shdr sh; 10606 10607 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10608 if (!scn) { 10609 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10610 binary_path); 10611 continue; 10612 } 10613 if (!gelf_getshdr(scn, &sh)) 10614 continue; 10615 strtabidx = sh.sh_link; 10616 symbols = elf_getdata(scn, 0); 10617 if (!symbols) { 10618 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10619 binary_path, elf_errmsg(-1)); 10620 ret = -LIBBPF_ERRNO__FORMAT; 10621 goto out; 10622 } 10623 nr_syms = symbols->d_size / sh.sh_entsize; 10624 10625 for (idx = 0; idx < nr_syms; idx++) { 10626 int curr_bind; 10627 GElf_Sym sym; 10628 Elf_Scn *sym_scn; 10629 GElf_Shdr sym_sh; 10630 10631 if (!gelf_getsym(symbols, idx, &sym)) 10632 continue; 10633 10634 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10635 continue; 10636 10637 sname = elf_strptr(elf, strtabidx, sym.st_name); 10638 if (!sname) 10639 continue; 10640 10641 curr_bind = GELF_ST_BIND(sym.st_info); 10642 10643 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10644 if (strncmp(sname, name, name_len) != 0) 10645 continue; 10646 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10647 * additional characters in sname should be of the form "@@LIB". 10648 */ 10649 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10650 continue; 10651 10652 if (ret >= 0) { 10653 /* handle multiple matches */ 10654 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10655 /* Only accept one non-weak bind. */ 10656 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10657 sname, name, binary_path); 10658 ret = -LIBBPF_ERRNO__FORMAT; 10659 goto out; 10660 } else if (curr_bind == STB_WEAK) { 10661 /* already have a non-weak bind, and 10662 * this is a weak bind, so ignore. 10663 */ 10664 continue; 10665 } 10666 } 10667 10668 /* Transform symbol's virtual address (absolute for 10669 * binaries and relative for shared libs) into file 10670 * offset, which is what kernel is expecting for 10671 * uprobe/uretprobe attachment. 10672 * See Documentation/trace/uprobetracer.rst for more 10673 * details. 10674 * This is done by looking up symbol's containing 10675 * section's header and using it's virtual address 10676 * (sh_addr) and corresponding file offset (sh_offset) 10677 * to transform sym.st_value (virtual address) into 10678 * desired final file offset. 10679 */ 10680 sym_scn = elf_getscn(elf, sym.st_shndx); 10681 if (!sym_scn) 10682 continue; 10683 if (!gelf_getshdr(sym_scn, &sym_sh)) 10684 continue; 10685 10686 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10687 last_bind = curr_bind; 10688 } 10689 if (ret > 0) 10690 break; 10691 } 10692 10693 if (ret > 0) { 10694 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10695 ret); 10696 } else { 10697 if (ret == 0) { 10698 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10699 is_shared_lib ? "should not be 0 in a shared library" : 10700 "try using shared library path instead"); 10701 ret = -ENOENT; 10702 } else { 10703 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10704 } 10705 } 10706 out: 10707 elf_end(elf); 10708 close(fd); 10709 return ret; 10710 } 10711 10712 static const char *arch_specific_lib_paths(void) 10713 { 10714 /* 10715 * Based on https://packages.debian.org/sid/libc6. 10716 * 10717 * Assume that the traced program is built for the same architecture 10718 * as libbpf, which should cover the vast majority of cases. 10719 */ 10720 #if defined(__x86_64__) 10721 return "/lib/x86_64-linux-gnu"; 10722 #elif defined(__i386__) 10723 return "/lib/i386-linux-gnu"; 10724 #elif defined(__s390x__) 10725 return "/lib/s390x-linux-gnu"; 10726 #elif defined(__s390__) 10727 return "/lib/s390-linux-gnu"; 10728 #elif defined(__arm__) && defined(__SOFTFP__) 10729 return "/lib/arm-linux-gnueabi"; 10730 #elif defined(__arm__) && !defined(__SOFTFP__) 10731 return "/lib/arm-linux-gnueabihf"; 10732 #elif defined(__aarch64__) 10733 return "/lib/aarch64-linux-gnu"; 10734 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10735 return "/lib/mips64el-linux-gnuabi64"; 10736 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10737 return "/lib/mipsel-linux-gnu"; 10738 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10739 return "/lib/powerpc64le-linux-gnu"; 10740 #elif defined(__sparc__) && defined(__arch64__) 10741 return "/lib/sparc64-linux-gnu"; 10742 #elif defined(__riscv) && __riscv_xlen == 64 10743 return "/lib/riscv64-linux-gnu"; 10744 #else 10745 return NULL; 10746 #endif 10747 } 10748 10749 /* Get full path to program/shared library. */ 10750 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10751 { 10752 const char *search_paths[3] = {}; 10753 int i, perm; 10754 10755 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10756 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10757 search_paths[1] = "/usr/lib64:/usr/lib"; 10758 search_paths[2] = arch_specific_lib_paths(); 10759 perm = R_OK; 10760 } else { 10761 search_paths[0] = getenv("PATH"); 10762 search_paths[1] = "/usr/bin:/usr/sbin"; 10763 perm = R_OK | X_OK; 10764 } 10765 10766 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10767 const char *s; 10768 10769 if (!search_paths[i]) 10770 continue; 10771 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10772 char *next_path; 10773 int seg_len; 10774 10775 if (s[0] == ':') 10776 s++; 10777 next_path = strchr(s, ':'); 10778 seg_len = next_path ? next_path - s : strlen(s); 10779 if (!seg_len) 10780 continue; 10781 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10782 /* ensure it has required permissions */ 10783 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 10784 continue; 10785 pr_debug("resolved '%s' to '%s'\n", file, result); 10786 return 0; 10787 } 10788 } 10789 return -ENOENT; 10790 } 10791 10792 LIBBPF_API struct bpf_link * 10793 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10794 const char *binary_path, size_t func_offset, 10795 const struct bpf_uprobe_opts *opts) 10796 { 10797 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10798 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10799 char full_binary_path[PATH_MAX]; 10800 struct bpf_link *link; 10801 size_t ref_ctr_off; 10802 int pfd, err; 10803 bool retprobe, legacy; 10804 const char *func_name; 10805 10806 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10807 return libbpf_err_ptr(-EINVAL); 10808 10809 retprobe = OPTS_GET(opts, retprobe, false); 10810 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10811 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10812 10813 if (!binary_path) 10814 return libbpf_err_ptr(-EINVAL); 10815 10816 if (!strchr(binary_path, '/')) { 10817 err = resolve_full_path(binary_path, full_binary_path, 10818 sizeof(full_binary_path)); 10819 if (err) { 10820 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10821 prog->name, binary_path, err); 10822 return libbpf_err_ptr(err); 10823 } 10824 binary_path = full_binary_path; 10825 } 10826 func_name = OPTS_GET(opts, func_name, NULL); 10827 if (func_name) { 10828 long sym_off; 10829 10830 sym_off = elf_find_func_offset(binary_path, func_name); 10831 if (sym_off < 0) 10832 return libbpf_err_ptr(sym_off); 10833 func_offset += sym_off; 10834 } 10835 10836 legacy = determine_uprobe_perf_type() < 0; 10837 if (!legacy) { 10838 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10839 func_offset, pid, ref_ctr_off); 10840 } else { 10841 char probe_name[PATH_MAX + 64]; 10842 10843 if (ref_ctr_off) 10844 return libbpf_err_ptr(-EINVAL); 10845 10846 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10847 binary_path, func_offset); 10848 10849 legacy_probe = strdup(probe_name); 10850 if (!legacy_probe) 10851 return libbpf_err_ptr(-ENOMEM); 10852 10853 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10854 binary_path, func_offset, pid); 10855 } 10856 if (pfd < 0) { 10857 err = -errno; 10858 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10859 prog->name, retprobe ? "uretprobe" : "uprobe", 10860 binary_path, func_offset, 10861 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10862 goto err_out; 10863 } 10864 10865 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10866 err = libbpf_get_error(link); 10867 if (err) { 10868 close(pfd); 10869 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10870 prog->name, retprobe ? "uretprobe" : "uprobe", 10871 binary_path, func_offset, 10872 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10873 goto err_clean_legacy; 10874 } 10875 if (legacy) { 10876 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10877 10878 perf_link->legacy_probe_name = legacy_probe; 10879 perf_link->legacy_is_kprobe = false; 10880 perf_link->legacy_is_retprobe = retprobe; 10881 } 10882 return link; 10883 10884 err_clean_legacy: 10885 if (legacy) 10886 remove_uprobe_event_legacy(legacy_probe, retprobe); 10887 err_out: 10888 free(legacy_probe); 10889 return libbpf_err_ptr(err); 10890 } 10891 10892 /* Format of u[ret]probe section definition supporting auto-attach: 10893 * u[ret]probe/binary:function[+offset] 10894 * 10895 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10896 * full binary path via bpf_program__attach_uprobe_opts. 10897 * 10898 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10899 * specified (and auto-attach is not possible) or the above format is specified for 10900 * auto-attach. 10901 */ 10902 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10903 { 10904 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10905 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10906 int n, ret = -EINVAL; 10907 long offset = 0; 10908 10909 *link = NULL; 10910 10911 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10912 &probe_type, &binary_path, &func_name, &offset); 10913 switch (n) { 10914 case 1: 10915 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10916 ret = 0; 10917 break; 10918 case 2: 10919 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10920 prog->name, prog->sec_name); 10921 break; 10922 case 3: 10923 case 4: 10924 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 10925 strcmp(probe_type, "uretprobe.s") == 0; 10926 if (opts.retprobe && offset != 0) { 10927 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10928 prog->name); 10929 break; 10930 } 10931 opts.func_name = func_name; 10932 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10933 ret = libbpf_get_error(*link); 10934 break; 10935 default: 10936 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10937 prog->sec_name); 10938 break; 10939 } 10940 free(probe_type); 10941 free(binary_path); 10942 free(func_name); 10943 10944 return ret; 10945 } 10946 10947 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10948 bool retprobe, pid_t pid, 10949 const char *binary_path, 10950 size_t func_offset) 10951 { 10952 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10953 10954 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10955 } 10956 10957 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10958 pid_t pid, const char *binary_path, 10959 const char *usdt_provider, const char *usdt_name, 10960 const struct bpf_usdt_opts *opts) 10961 { 10962 char resolved_path[512]; 10963 struct bpf_object *obj = prog->obj; 10964 struct bpf_link *link; 10965 __u64 usdt_cookie; 10966 int err; 10967 10968 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10969 return libbpf_err_ptr(-EINVAL); 10970 10971 if (bpf_program__fd(prog) < 0) { 10972 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10973 prog->name); 10974 return libbpf_err_ptr(-EINVAL); 10975 } 10976 10977 if (!binary_path) 10978 return libbpf_err_ptr(-EINVAL); 10979 10980 if (!strchr(binary_path, '/')) { 10981 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10982 if (err) { 10983 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10984 prog->name, binary_path, err); 10985 return libbpf_err_ptr(err); 10986 } 10987 binary_path = resolved_path; 10988 } 10989 10990 /* USDT manager is instantiated lazily on first USDT attach. It will 10991 * be destroyed together with BPF object in bpf_object__close(). 10992 */ 10993 if (IS_ERR(obj->usdt_man)) 10994 return libbpf_ptr(obj->usdt_man); 10995 if (!obj->usdt_man) { 10996 obj->usdt_man = usdt_manager_new(obj); 10997 if (IS_ERR(obj->usdt_man)) 10998 return libbpf_ptr(obj->usdt_man); 10999 } 11000 11001 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11002 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11003 usdt_provider, usdt_name, usdt_cookie); 11004 err = libbpf_get_error(link); 11005 if (err) 11006 return libbpf_err_ptr(err); 11007 return link; 11008 } 11009 11010 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11011 { 11012 char *path = NULL, *provider = NULL, *name = NULL; 11013 const char *sec_name; 11014 int n, err; 11015 11016 sec_name = bpf_program__section_name(prog); 11017 if (strcmp(sec_name, "usdt") == 0) { 11018 /* no auto-attach for just SEC("usdt") */ 11019 *link = NULL; 11020 return 0; 11021 } 11022 11023 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11024 if (n != 3) { 11025 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11026 sec_name); 11027 err = -EINVAL; 11028 } else { 11029 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11030 provider, name, NULL); 11031 err = libbpf_get_error(*link); 11032 } 11033 free(path); 11034 free(provider); 11035 free(name); 11036 return err; 11037 } 11038 11039 static int determine_tracepoint_id(const char *tp_category, 11040 const char *tp_name) 11041 { 11042 char file[PATH_MAX]; 11043 int ret; 11044 11045 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11046 tracefs_path(), tp_category, tp_name); 11047 if (ret < 0) 11048 return -errno; 11049 if (ret >= sizeof(file)) { 11050 pr_debug("tracepoint %s/%s path is too long\n", 11051 tp_category, tp_name); 11052 return -E2BIG; 11053 } 11054 return parse_uint_from_file(file, "%d\n"); 11055 } 11056 11057 static int perf_event_open_tracepoint(const char *tp_category, 11058 const char *tp_name) 11059 { 11060 const size_t attr_sz = sizeof(struct perf_event_attr); 11061 struct perf_event_attr attr; 11062 char errmsg[STRERR_BUFSIZE]; 11063 int tp_id, pfd, err; 11064 11065 tp_id = determine_tracepoint_id(tp_category, tp_name); 11066 if (tp_id < 0) { 11067 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11068 tp_category, tp_name, 11069 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11070 return tp_id; 11071 } 11072 11073 memset(&attr, 0, attr_sz); 11074 attr.type = PERF_TYPE_TRACEPOINT; 11075 attr.size = attr_sz; 11076 attr.config = tp_id; 11077 11078 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11079 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11080 if (pfd < 0) { 11081 err = -errno; 11082 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11083 tp_category, tp_name, 11084 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11085 return err; 11086 } 11087 return pfd; 11088 } 11089 11090 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11091 const char *tp_category, 11092 const char *tp_name, 11093 const struct bpf_tracepoint_opts *opts) 11094 { 11095 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11096 char errmsg[STRERR_BUFSIZE]; 11097 struct bpf_link *link; 11098 int pfd, err; 11099 11100 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11101 return libbpf_err_ptr(-EINVAL); 11102 11103 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11104 11105 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11106 if (pfd < 0) { 11107 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11108 prog->name, tp_category, tp_name, 11109 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11110 return libbpf_err_ptr(pfd); 11111 } 11112 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11113 err = libbpf_get_error(link); 11114 if (err) { 11115 close(pfd); 11116 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11117 prog->name, tp_category, tp_name, 11118 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11119 return libbpf_err_ptr(err); 11120 } 11121 return link; 11122 } 11123 11124 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11125 const char *tp_category, 11126 const char *tp_name) 11127 { 11128 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11129 } 11130 11131 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11132 { 11133 char *sec_name, *tp_cat, *tp_name; 11134 11135 *link = NULL; 11136 11137 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11138 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11139 return 0; 11140 11141 sec_name = strdup(prog->sec_name); 11142 if (!sec_name) 11143 return -ENOMEM; 11144 11145 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11146 if (str_has_pfx(prog->sec_name, "tp/")) 11147 tp_cat = sec_name + sizeof("tp/") - 1; 11148 else 11149 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11150 tp_name = strchr(tp_cat, '/'); 11151 if (!tp_name) { 11152 free(sec_name); 11153 return -EINVAL; 11154 } 11155 *tp_name = '\0'; 11156 tp_name++; 11157 11158 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11159 free(sec_name); 11160 return libbpf_get_error(*link); 11161 } 11162 11163 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11164 const char *tp_name) 11165 { 11166 char errmsg[STRERR_BUFSIZE]; 11167 struct bpf_link *link; 11168 int prog_fd, pfd; 11169 11170 prog_fd = bpf_program__fd(prog); 11171 if (prog_fd < 0) { 11172 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11173 return libbpf_err_ptr(-EINVAL); 11174 } 11175 11176 link = calloc(1, sizeof(*link)); 11177 if (!link) 11178 return libbpf_err_ptr(-ENOMEM); 11179 link->detach = &bpf_link__detach_fd; 11180 11181 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11182 if (pfd < 0) { 11183 pfd = -errno; 11184 free(link); 11185 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11186 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11187 return libbpf_err_ptr(pfd); 11188 } 11189 link->fd = pfd; 11190 return link; 11191 } 11192 11193 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11194 { 11195 static const char *const prefixes[] = { 11196 "raw_tp", 11197 "raw_tracepoint", 11198 "raw_tp.w", 11199 "raw_tracepoint.w", 11200 }; 11201 size_t i; 11202 const char *tp_name = NULL; 11203 11204 *link = NULL; 11205 11206 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11207 size_t pfx_len; 11208 11209 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11210 continue; 11211 11212 pfx_len = strlen(prefixes[i]); 11213 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11214 if (prog->sec_name[pfx_len] == '\0') 11215 return 0; 11216 11217 if (prog->sec_name[pfx_len] != '/') 11218 continue; 11219 11220 tp_name = prog->sec_name + pfx_len + 1; 11221 break; 11222 } 11223 11224 if (!tp_name) { 11225 pr_warn("prog '%s': invalid section name '%s'\n", 11226 prog->name, prog->sec_name); 11227 return -EINVAL; 11228 } 11229 11230 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11231 return libbpf_get_error(link); 11232 } 11233 11234 /* Common logic for all BPF program types that attach to a btf_id */ 11235 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11236 const struct bpf_trace_opts *opts) 11237 { 11238 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11239 char errmsg[STRERR_BUFSIZE]; 11240 struct bpf_link *link; 11241 int prog_fd, pfd; 11242 11243 if (!OPTS_VALID(opts, bpf_trace_opts)) 11244 return libbpf_err_ptr(-EINVAL); 11245 11246 prog_fd = bpf_program__fd(prog); 11247 if (prog_fd < 0) { 11248 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11249 return libbpf_err_ptr(-EINVAL); 11250 } 11251 11252 link = calloc(1, sizeof(*link)); 11253 if (!link) 11254 return libbpf_err_ptr(-ENOMEM); 11255 link->detach = &bpf_link__detach_fd; 11256 11257 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11258 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11259 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11260 if (pfd < 0) { 11261 pfd = -errno; 11262 free(link); 11263 pr_warn("prog '%s': failed to attach: %s\n", 11264 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11265 return libbpf_err_ptr(pfd); 11266 } 11267 link->fd = pfd; 11268 return link; 11269 } 11270 11271 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11272 { 11273 return bpf_program__attach_btf_id(prog, NULL); 11274 } 11275 11276 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11277 const struct bpf_trace_opts *opts) 11278 { 11279 return bpf_program__attach_btf_id(prog, opts); 11280 } 11281 11282 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11283 { 11284 return bpf_program__attach_btf_id(prog, NULL); 11285 } 11286 11287 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11288 { 11289 *link = bpf_program__attach_trace(prog); 11290 return libbpf_get_error(*link); 11291 } 11292 11293 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11294 { 11295 *link = bpf_program__attach_lsm(prog); 11296 return libbpf_get_error(*link); 11297 } 11298 11299 static struct bpf_link * 11300 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11301 const char *target_name) 11302 { 11303 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11304 .target_btf_id = btf_id); 11305 enum bpf_attach_type attach_type; 11306 char errmsg[STRERR_BUFSIZE]; 11307 struct bpf_link *link; 11308 int prog_fd, link_fd; 11309 11310 prog_fd = bpf_program__fd(prog); 11311 if (prog_fd < 0) { 11312 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11313 return libbpf_err_ptr(-EINVAL); 11314 } 11315 11316 link = calloc(1, sizeof(*link)); 11317 if (!link) 11318 return libbpf_err_ptr(-ENOMEM); 11319 link->detach = &bpf_link__detach_fd; 11320 11321 attach_type = bpf_program__expected_attach_type(prog); 11322 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11323 if (link_fd < 0) { 11324 link_fd = -errno; 11325 free(link); 11326 pr_warn("prog '%s': failed to attach to %s: %s\n", 11327 prog->name, target_name, 11328 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11329 return libbpf_err_ptr(link_fd); 11330 } 11331 link->fd = link_fd; 11332 return link; 11333 } 11334 11335 struct bpf_link * 11336 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11337 { 11338 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11339 } 11340 11341 struct bpf_link * 11342 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11343 { 11344 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11345 } 11346 11347 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11348 { 11349 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11350 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11351 } 11352 11353 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11354 int target_fd, 11355 const char *attach_func_name) 11356 { 11357 int btf_id; 11358 11359 if (!!target_fd != !!attach_func_name) { 11360 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11361 prog->name); 11362 return libbpf_err_ptr(-EINVAL); 11363 } 11364 11365 if (prog->type != BPF_PROG_TYPE_EXT) { 11366 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11367 prog->name); 11368 return libbpf_err_ptr(-EINVAL); 11369 } 11370 11371 if (target_fd) { 11372 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11373 if (btf_id < 0) 11374 return libbpf_err_ptr(btf_id); 11375 11376 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11377 } else { 11378 /* no target, so use raw_tracepoint_open for compatibility 11379 * with old kernels 11380 */ 11381 return bpf_program__attach_trace(prog); 11382 } 11383 } 11384 11385 struct bpf_link * 11386 bpf_program__attach_iter(const struct bpf_program *prog, 11387 const struct bpf_iter_attach_opts *opts) 11388 { 11389 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11390 char errmsg[STRERR_BUFSIZE]; 11391 struct bpf_link *link; 11392 int prog_fd, link_fd; 11393 __u32 target_fd = 0; 11394 11395 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11396 return libbpf_err_ptr(-EINVAL); 11397 11398 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11399 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11400 11401 prog_fd = bpf_program__fd(prog); 11402 if (prog_fd < 0) { 11403 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11404 return libbpf_err_ptr(-EINVAL); 11405 } 11406 11407 link = calloc(1, sizeof(*link)); 11408 if (!link) 11409 return libbpf_err_ptr(-ENOMEM); 11410 link->detach = &bpf_link__detach_fd; 11411 11412 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11413 &link_create_opts); 11414 if (link_fd < 0) { 11415 link_fd = -errno; 11416 free(link); 11417 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11418 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11419 return libbpf_err_ptr(link_fd); 11420 } 11421 link->fd = link_fd; 11422 return link; 11423 } 11424 11425 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11426 { 11427 *link = bpf_program__attach_iter(prog, NULL); 11428 return libbpf_get_error(*link); 11429 } 11430 11431 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11432 { 11433 struct bpf_link *link = NULL; 11434 int err; 11435 11436 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11437 return libbpf_err_ptr(-EOPNOTSUPP); 11438 11439 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11440 if (err) 11441 return libbpf_err_ptr(err); 11442 11443 /* When calling bpf_program__attach() explicitly, auto-attach support 11444 * is expected to work, so NULL returned link is considered an error. 11445 * This is different for skeleton's attach, see comment in 11446 * bpf_object__attach_skeleton(). 11447 */ 11448 if (!link) 11449 return libbpf_err_ptr(-EOPNOTSUPP); 11450 11451 return link; 11452 } 11453 11454 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11455 { 11456 __u32 zero = 0; 11457 11458 if (bpf_map_delete_elem(link->fd, &zero)) 11459 return -errno; 11460 11461 return 0; 11462 } 11463 11464 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11465 { 11466 struct bpf_struct_ops *st_ops; 11467 struct bpf_link *link; 11468 __u32 i, zero = 0; 11469 int err; 11470 11471 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11472 return libbpf_err_ptr(-EINVAL); 11473 11474 link = calloc(1, sizeof(*link)); 11475 if (!link) 11476 return libbpf_err_ptr(-EINVAL); 11477 11478 st_ops = map->st_ops; 11479 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11480 struct bpf_program *prog = st_ops->progs[i]; 11481 void *kern_data; 11482 int prog_fd; 11483 11484 if (!prog) 11485 continue; 11486 11487 prog_fd = bpf_program__fd(prog); 11488 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11489 *(unsigned long *)kern_data = prog_fd; 11490 } 11491 11492 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11493 if (err) { 11494 err = -errno; 11495 free(link); 11496 return libbpf_err_ptr(err); 11497 } 11498 11499 link->detach = bpf_link__detach_struct_ops; 11500 link->fd = map->fd; 11501 11502 return link; 11503 } 11504 11505 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11506 void *private_data); 11507 11508 static enum bpf_perf_event_ret 11509 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11510 void **copy_mem, size_t *copy_size, 11511 bpf_perf_event_print_t fn, void *private_data) 11512 { 11513 struct perf_event_mmap_page *header = mmap_mem; 11514 __u64 data_head = ring_buffer_read_head(header); 11515 __u64 data_tail = header->data_tail; 11516 void *base = ((__u8 *)header) + page_size; 11517 int ret = LIBBPF_PERF_EVENT_CONT; 11518 struct perf_event_header *ehdr; 11519 size_t ehdr_size; 11520 11521 while (data_head != data_tail) { 11522 ehdr = base + (data_tail & (mmap_size - 1)); 11523 ehdr_size = ehdr->size; 11524 11525 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11526 void *copy_start = ehdr; 11527 size_t len_first = base + mmap_size - copy_start; 11528 size_t len_secnd = ehdr_size - len_first; 11529 11530 if (*copy_size < ehdr_size) { 11531 free(*copy_mem); 11532 *copy_mem = malloc(ehdr_size); 11533 if (!*copy_mem) { 11534 *copy_size = 0; 11535 ret = LIBBPF_PERF_EVENT_ERROR; 11536 break; 11537 } 11538 *copy_size = ehdr_size; 11539 } 11540 11541 memcpy(*copy_mem, copy_start, len_first); 11542 memcpy(*copy_mem + len_first, base, len_secnd); 11543 ehdr = *copy_mem; 11544 } 11545 11546 ret = fn(ehdr, private_data); 11547 data_tail += ehdr_size; 11548 if (ret != LIBBPF_PERF_EVENT_CONT) 11549 break; 11550 } 11551 11552 ring_buffer_write_tail(header, data_tail); 11553 return libbpf_err(ret); 11554 } 11555 11556 struct perf_buffer; 11557 11558 struct perf_buffer_params { 11559 struct perf_event_attr *attr; 11560 /* if event_cb is specified, it takes precendence */ 11561 perf_buffer_event_fn event_cb; 11562 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11563 perf_buffer_sample_fn sample_cb; 11564 perf_buffer_lost_fn lost_cb; 11565 void *ctx; 11566 int cpu_cnt; 11567 int *cpus; 11568 int *map_keys; 11569 }; 11570 11571 struct perf_cpu_buf { 11572 struct perf_buffer *pb; 11573 void *base; /* mmap()'ed memory */ 11574 void *buf; /* for reconstructing segmented data */ 11575 size_t buf_size; 11576 int fd; 11577 int cpu; 11578 int map_key; 11579 }; 11580 11581 struct perf_buffer { 11582 perf_buffer_event_fn event_cb; 11583 perf_buffer_sample_fn sample_cb; 11584 perf_buffer_lost_fn lost_cb; 11585 void *ctx; /* passed into callbacks */ 11586 11587 size_t page_size; 11588 size_t mmap_size; 11589 struct perf_cpu_buf **cpu_bufs; 11590 struct epoll_event *events; 11591 int cpu_cnt; /* number of allocated CPU buffers */ 11592 int epoll_fd; /* perf event FD */ 11593 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11594 }; 11595 11596 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11597 struct perf_cpu_buf *cpu_buf) 11598 { 11599 if (!cpu_buf) 11600 return; 11601 if (cpu_buf->base && 11602 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11603 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11604 if (cpu_buf->fd >= 0) { 11605 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11606 close(cpu_buf->fd); 11607 } 11608 free(cpu_buf->buf); 11609 free(cpu_buf); 11610 } 11611 11612 void perf_buffer__free(struct perf_buffer *pb) 11613 { 11614 int i; 11615 11616 if (IS_ERR_OR_NULL(pb)) 11617 return; 11618 if (pb->cpu_bufs) { 11619 for (i = 0; i < pb->cpu_cnt; i++) { 11620 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11621 11622 if (!cpu_buf) 11623 continue; 11624 11625 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11626 perf_buffer__free_cpu_buf(pb, cpu_buf); 11627 } 11628 free(pb->cpu_bufs); 11629 } 11630 if (pb->epoll_fd >= 0) 11631 close(pb->epoll_fd); 11632 free(pb->events); 11633 free(pb); 11634 } 11635 11636 static struct perf_cpu_buf * 11637 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11638 int cpu, int map_key) 11639 { 11640 struct perf_cpu_buf *cpu_buf; 11641 char msg[STRERR_BUFSIZE]; 11642 int err; 11643 11644 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11645 if (!cpu_buf) 11646 return ERR_PTR(-ENOMEM); 11647 11648 cpu_buf->pb = pb; 11649 cpu_buf->cpu = cpu; 11650 cpu_buf->map_key = map_key; 11651 11652 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11653 -1, PERF_FLAG_FD_CLOEXEC); 11654 if (cpu_buf->fd < 0) { 11655 err = -errno; 11656 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11657 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11658 goto error; 11659 } 11660 11661 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11662 PROT_READ | PROT_WRITE, MAP_SHARED, 11663 cpu_buf->fd, 0); 11664 if (cpu_buf->base == MAP_FAILED) { 11665 cpu_buf->base = NULL; 11666 err = -errno; 11667 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11668 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11669 goto error; 11670 } 11671 11672 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11673 err = -errno; 11674 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11675 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11676 goto error; 11677 } 11678 11679 return cpu_buf; 11680 11681 error: 11682 perf_buffer__free_cpu_buf(pb, cpu_buf); 11683 return (struct perf_cpu_buf *)ERR_PTR(err); 11684 } 11685 11686 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11687 struct perf_buffer_params *p); 11688 11689 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11690 perf_buffer_sample_fn sample_cb, 11691 perf_buffer_lost_fn lost_cb, 11692 void *ctx, 11693 const struct perf_buffer_opts *opts) 11694 { 11695 const size_t attr_sz = sizeof(struct perf_event_attr); 11696 struct perf_buffer_params p = {}; 11697 struct perf_event_attr attr; 11698 11699 if (!OPTS_VALID(opts, perf_buffer_opts)) 11700 return libbpf_err_ptr(-EINVAL); 11701 11702 memset(&attr, 0, attr_sz); 11703 attr.size = attr_sz; 11704 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11705 attr.type = PERF_TYPE_SOFTWARE; 11706 attr.sample_type = PERF_SAMPLE_RAW; 11707 attr.sample_period = 1; 11708 attr.wakeup_events = 1; 11709 11710 p.attr = &attr; 11711 p.sample_cb = sample_cb; 11712 p.lost_cb = lost_cb; 11713 p.ctx = ctx; 11714 11715 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11716 } 11717 11718 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11719 struct perf_event_attr *attr, 11720 perf_buffer_event_fn event_cb, void *ctx, 11721 const struct perf_buffer_raw_opts *opts) 11722 { 11723 struct perf_buffer_params p = {}; 11724 11725 if (!attr) 11726 return libbpf_err_ptr(-EINVAL); 11727 11728 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11729 return libbpf_err_ptr(-EINVAL); 11730 11731 p.attr = attr; 11732 p.event_cb = event_cb; 11733 p.ctx = ctx; 11734 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11735 p.cpus = OPTS_GET(opts, cpus, NULL); 11736 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11737 11738 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11739 } 11740 11741 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11742 struct perf_buffer_params *p) 11743 { 11744 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11745 struct bpf_map_info map; 11746 char msg[STRERR_BUFSIZE]; 11747 struct perf_buffer *pb; 11748 bool *online = NULL; 11749 __u32 map_info_len; 11750 int err, i, j, n; 11751 11752 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11753 pr_warn("page count should be power of two, but is %zu\n", 11754 page_cnt); 11755 return ERR_PTR(-EINVAL); 11756 } 11757 11758 /* best-effort sanity checks */ 11759 memset(&map, 0, sizeof(map)); 11760 map_info_len = sizeof(map); 11761 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11762 if (err) { 11763 err = -errno; 11764 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11765 * -EBADFD, -EFAULT, or -E2BIG on real error 11766 */ 11767 if (err != -EINVAL) { 11768 pr_warn("failed to get map info for map FD %d: %s\n", 11769 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11770 return ERR_PTR(err); 11771 } 11772 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11773 map_fd); 11774 } else { 11775 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11776 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11777 map.name); 11778 return ERR_PTR(-EINVAL); 11779 } 11780 } 11781 11782 pb = calloc(1, sizeof(*pb)); 11783 if (!pb) 11784 return ERR_PTR(-ENOMEM); 11785 11786 pb->event_cb = p->event_cb; 11787 pb->sample_cb = p->sample_cb; 11788 pb->lost_cb = p->lost_cb; 11789 pb->ctx = p->ctx; 11790 11791 pb->page_size = getpagesize(); 11792 pb->mmap_size = pb->page_size * page_cnt; 11793 pb->map_fd = map_fd; 11794 11795 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11796 if (pb->epoll_fd < 0) { 11797 err = -errno; 11798 pr_warn("failed to create epoll instance: %s\n", 11799 libbpf_strerror_r(err, msg, sizeof(msg))); 11800 goto error; 11801 } 11802 11803 if (p->cpu_cnt > 0) { 11804 pb->cpu_cnt = p->cpu_cnt; 11805 } else { 11806 pb->cpu_cnt = libbpf_num_possible_cpus(); 11807 if (pb->cpu_cnt < 0) { 11808 err = pb->cpu_cnt; 11809 goto error; 11810 } 11811 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11812 pb->cpu_cnt = map.max_entries; 11813 } 11814 11815 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11816 if (!pb->events) { 11817 err = -ENOMEM; 11818 pr_warn("failed to allocate events: out of memory\n"); 11819 goto error; 11820 } 11821 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11822 if (!pb->cpu_bufs) { 11823 err = -ENOMEM; 11824 pr_warn("failed to allocate buffers: out of memory\n"); 11825 goto error; 11826 } 11827 11828 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11829 if (err) { 11830 pr_warn("failed to get online CPU mask: %d\n", err); 11831 goto error; 11832 } 11833 11834 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11835 struct perf_cpu_buf *cpu_buf; 11836 int cpu, map_key; 11837 11838 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11839 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11840 11841 /* in case user didn't explicitly requested particular CPUs to 11842 * be attached to, skip offline/not present CPUs 11843 */ 11844 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11845 continue; 11846 11847 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11848 if (IS_ERR(cpu_buf)) { 11849 err = PTR_ERR(cpu_buf); 11850 goto error; 11851 } 11852 11853 pb->cpu_bufs[j] = cpu_buf; 11854 11855 err = bpf_map_update_elem(pb->map_fd, &map_key, 11856 &cpu_buf->fd, 0); 11857 if (err) { 11858 err = -errno; 11859 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11860 cpu, map_key, cpu_buf->fd, 11861 libbpf_strerror_r(err, msg, sizeof(msg))); 11862 goto error; 11863 } 11864 11865 pb->events[j].events = EPOLLIN; 11866 pb->events[j].data.ptr = cpu_buf; 11867 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11868 &pb->events[j]) < 0) { 11869 err = -errno; 11870 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11871 cpu, cpu_buf->fd, 11872 libbpf_strerror_r(err, msg, sizeof(msg))); 11873 goto error; 11874 } 11875 j++; 11876 } 11877 pb->cpu_cnt = j; 11878 free(online); 11879 11880 return pb; 11881 11882 error: 11883 free(online); 11884 if (pb) 11885 perf_buffer__free(pb); 11886 return ERR_PTR(err); 11887 } 11888 11889 struct perf_sample_raw { 11890 struct perf_event_header header; 11891 uint32_t size; 11892 char data[]; 11893 }; 11894 11895 struct perf_sample_lost { 11896 struct perf_event_header header; 11897 uint64_t id; 11898 uint64_t lost; 11899 uint64_t sample_id; 11900 }; 11901 11902 static enum bpf_perf_event_ret 11903 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11904 { 11905 struct perf_cpu_buf *cpu_buf = ctx; 11906 struct perf_buffer *pb = cpu_buf->pb; 11907 void *data = e; 11908 11909 /* user wants full control over parsing perf event */ 11910 if (pb->event_cb) 11911 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11912 11913 switch (e->type) { 11914 case PERF_RECORD_SAMPLE: { 11915 struct perf_sample_raw *s = data; 11916 11917 if (pb->sample_cb) 11918 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11919 break; 11920 } 11921 case PERF_RECORD_LOST: { 11922 struct perf_sample_lost *s = data; 11923 11924 if (pb->lost_cb) 11925 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11926 break; 11927 } 11928 default: 11929 pr_warn("unknown perf sample type %d\n", e->type); 11930 return LIBBPF_PERF_EVENT_ERROR; 11931 } 11932 return LIBBPF_PERF_EVENT_CONT; 11933 } 11934 11935 static int perf_buffer__process_records(struct perf_buffer *pb, 11936 struct perf_cpu_buf *cpu_buf) 11937 { 11938 enum bpf_perf_event_ret ret; 11939 11940 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11941 pb->page_size, &cpu_buf->buf, 11942 &cpu_buf->buf_size, 11943 perf_buffer__process_record, cpu_buf); 11944 if (ret != LIBBPF_PERF_EVENT_CONT) 11945 return ret; 11946 return 0; 11947 } 11948 11949 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11950 { 11951 return pb->epoll_fd; 11952 } 11953 11954 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11955 { 11956 int i, cnt, err; 11957 11958 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11959 if (cnt < 0) 11960 return -errno; 11961 11962 for (i = 0; i < cnt; i++) { 11963 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11964 11965 err = perf_buffer__process_records(pb, cpu_buf); 11966 if (err) { 11967 pr_warn("error while processing records: %d\n", err); 11968 return libbpf_err(err); 11969 } 11970 } 11971 return cnt; 11972 } 11973 11974 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11975 * manager. 11976 */ 11977 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11978 { 11979 return pb->cpu_cnt; 11980 } 11981 11982 /* 11983 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11984 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11985 * select()/poll()/epoll() Linux syscalls. 11986 */ 11987 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11988 { 11989 struct perf_cpu_buf *cpu_buf; 11990 11991 if (buf_idx >= pb->cpu_cnt) 11992 return libbpf_err(-EINVAL); 11993 11994 cpu_buf = pb->cpu_bufs[buf_idx]; 11995 if (!cpu_buf) 11996 return libbpf_err(-ENOENT); 11997 11998 return cpu_buf->fd; 11999 } 12000 12001 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12002 { 12003 struct perf_cpu_buf *cpu_buf; 12004 12005 if (buf_idx >= pb->cpu_cnt) 12006 return libbpf_err(-EINVAL); 12007 12008 cpu_buf = pb->cpu_bufs[buf_idx]; 12009 if (!cpu_buf) 12010 return libbpf_err(-ENOENT); 12011 12012 *buf = cpu_buf->base; 12013 *buf_size = pb->mmap_size; 12014 return 0; 12015 } 12016 12017 /* 12018 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12019 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12020 * consume, do nothing and return success. 12021 * Returns: 12022 * - 0 on success; 12023 * - <0 on failure. 12024 */ 12025 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12026 { 12027 struct perf_cpu_buf *cpu_buf; 12028 12029 if (buf_idx >= pb->cpu_cnt) 12030 return libbpf_err(-EINVAL); 12031 12032 cpu_buf = pb->cpu_bufs[buf_idx]; 12033 if (!cpu_buf) 12034 return libbpf_err(-ENOENT); 12035 12036 return perf_buffer__process_records(pb, cpu_buf); 12037 } 12038 12039 int perf_buffer__consume(struct perf_buffer *pb) 12040 { 12041 int i, err; 12042 12043 for (i = 0; i < pb->cpu_cnt; i++) { 12044 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12045 12046 if (!cpu_buf) 12047 continue; 12048 12049 err = perf_buffer__process_records(pb, cpu_buf); 12050 if (err) { 12051 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12052 return libbpf_err(err); 12053 } 12054 } 12055 return 0; 12056 } 12057 12058 int bpf_program__set_attach_target(struct bpf_program *prog, 12059 int attach_prog_fd, 12060 const char *attach_func_name) 12061 { 12062 int btf_obj_fd = 0, btf_id = 0, err; 12063 12064 if (!prog || attach_prog_fd < 0) 12065 return libbpf_err(-EINVAL); 12066 12067 if (prog->obj->loaded) 12068 return libbpf_err(-EINVAL); 12069 12070 if (attach_prog_fd && !attach_func_name) { 12071 /* remember attach_prog_fd and let bpf_program__load() find 12072 * BTF ID during the program load 12073 */ 12074 prog->attach_prog_fd = attach_prog_fd; 12075 return 0; 12076 } 12077 12078 if (attach_prog_fd) { 12079 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12080 attach_prog_fd); 12081 if (btf_id < 0) 12082 return libbpf_err(btf_id); 12083 } else { 12084 if (!attach_func_name) 12085 return libbpf_err(-EINVAL); 12086 12087 /* load btf_vmlinux, if not yet */ 12088 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12089 if (err) 12090 return libbpf_err(err); 12091 err = find_kernel_btf_id(prog->obj, attach_func_name, 12092 prog->expected_attach_type, 12093 &btf_obj_fd, &btf_id); 12094 if (err) 12095 return libbpf_err(err); 12096 } 12097 12098 prog->attach_btf_id = btf_id; 12099 prog->attach_btf_obj_fd = btf_obj_fd; 12100 prog->attach_prog_fd = attach_prog_fd; 12101 return 0; 12102 } 12103 12104 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12105 { 12106 int err = 0, n, len, start, end = -1; 12107 bool *tmp; 12108 12109 *mask = NULL; 12110 *mask_sz = 0; 12111 12112 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12113 while (*s) { 12114 if (*s == ',' || *s == '\n') { 12115 s++; 12116 continue; 12117 } 12118 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12119 if (n <= 0 || n > 2) { 12120 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12121 err = -EINVAL; 12122 goto cleanup; 12123 } else if (n == 1) { 12124 end = start; 12125 } 12126 if (start < 0 || start > end) { 12127 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12128 start, end, s); 12129 err = -EINVAL; 12130 goto cleanup; 12131 } 12132 tmp = realloc(*mask, end + 1); 12133 if (!tmp) { 12134 err = -ENOMEM; 12135 goto cleanup; 12136 } 12137 *mask = tmp; 12138 memset(tmp + *mask_sz, 0, start - *mask_sz); 12139 memset(tmp + start, 1, end - start + 1); 12140 *mask_sz = end + 1; 12141 s += len; 12142 } 12143 if (!*mask_sz) { 12144 pr_warn("Empty CPU range\n"); 12145 return -EINVAL; 12146 } 12147 return 0; 12148 cleanup: 12149 free(*mask); 12150 *mask = NULL; 12151 return err; 12152 } 12153 12154 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12155 { 12156 int fd, err = 0, len; 12157 char buf[128]; 12158 12159 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12160 if (fd < 0) { 12161 err = -errno; 12162 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12163 return err; 12164 } 12165 len = read(fd, buf, sizeof(buf)); 12166 close(fd); 12167 if (len <= 0) { 12168 err = len ? -errno : -EINVAL; 12169 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12170 return err; 12171 } 12172 if (len >= sizeof(buf)) { 12173 pr_warn("CPU mask is too big in file %s\n", fcpu); 12174 return -E2BIG; 12175 } 12176 buf[len] = '\0'; 12177 12178 return parse_cpu_mask_str(buf, mask, mask_sz); 12179 } 12180 12181 int libbpf_num_possible_cpus(void) 12182 { 12183 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12184 static int cpus; 12185 int err, n, i, tmp_cpus; 12186 bool *mask; 12187 12188 tmp_cpus = READ_ONCE(cpus); 12189 if (tmp_cpus > 0) 12190 return tmp_cpus; 12191 12192 err = parse_cpu_mask_file(fcpu, &mask, &n); 12193 if (err) 12194 return libbpf_err(err); 12195 12196 tmp_cpus = 0; 12197 for (i = 0; i < n; i++) { 12198 if (mask[i]) 12199 tmp_cpus++; 12200 } 12201 free(mask); 12202 12203 WRITE_ONCE(cpus, tmp_cpus); 12204 return tmp_cpus; 12205 } 12206 12207 static int populate_skeleton_maps(const struct bpf_object *obj, 12208 struct bpf_map_skeleton *maps, 12209 size_t map_cnt) 12210 { 12211 int i; 12212 12213 for (i = 0; i < map_cnt; i++) { 12214 struct bpf_map **map = maps[i].map; 12215 const char *name = maps[i].name; 12216 void **mmaped = maps[i].mmaped; 12217 12218 *map = bpf_object__find_map_by_name(obj, name); 12219 if (!*map) { 12220 pr_warn("failed to find skeleton map '%s'\n", name); 12221 return -ESRCH; 12222 } 12223 12224 /* externs shouldn't be pre-setup from user code */ 12225 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12226 *mmaped = (*map)->mmaped; 12227 } 12228 return 0; 12229 } 12230 12231 static int populate_skeleton_progs(const struct bpf_object *obj, 12232 struct bpf_prog_skeleton *progs, 12233 size_t prog_cnt) 12234 { 12235 int i; 12236 12237 for (i = 0; i < prog_cnt; i++) { 12238 struct bpf_program **prog = progs[i].prog; 12239 const char *name = progs[i].name; 12240 12241 *prog = bpf_object__find_program_by_name(obj, name); 12242 if (!*prog) { 12243 pr_warn("failed to find skeleton program '%s'\n", name); 12244 return -ESRCH; 12245 } 12246 } 12247 return 0; 12248 } 12249 12250 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12251 const struct bpf_object_open_opts *opts) 12252 { 12253 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12254 .object_name = s->name, 12255 ); 12256 struct bpf_object *obj; 12257 int err; 12258 12259 /* Attempt to preserve opts->object_name, unless overriden by user 12260 * explicitly. Overwriting object name for skeletons is discouraged, 12261 * as it breaks global data maps, because they contain object name 12262 * prefix as their own map name prefix. When skeleton is generated, 12263 * bpftool is making an assumption that this name will stay the same. 12264 */ 12265 if (opts) { 12266 memcpy(&skel_opts, opts, sizeof(*opts)); 12267 if (!opts->object_name) 12268 skel_opts.object_name = s->name; 12269 } 12270 12271 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12272 err = libbpf_get_error(obj); 12273 if (err) { 12274 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12275 s->name, err); 12276 return libbpf_err(err); 12277 } 12278 12279 *s->obj = obj; 12280 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12281 if (err) { 12282 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12283 return libbpf_err(err); 12284 } 12285 12286 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12287 if (err) { 12288 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12289 return libbpf_err(err); 12290 } 12291 12292 return 0; 12293 } 12294 12295 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12296 { 12297 int err, len, var_idx, i; 12298 const char *var_name; 12299 const struct bpf_map *map; 12300 struct btf *btf; 12301 __u32 map_type_id; 12302 const struct btf_type *map_type, *var_type; 12303 const struct bpf_var_skeleton *var_skel; 12304 struct btf_var_secinfo *var; 12305 12306 if (!s->obj) 12307 return libbpf_err(-EINVAL); 12308 12309 btf = bpf_object__btf(s->obj); 12310 if (!btf) { 12311 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12312 bpf_object__name(s->obj)); 12313 return libbpf_err(-errno); 12314 } 12315 12316 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12317 if (err) { 12318 pr_warn("failed to populate subskeleton maps: %d\n", err); 12319 return libbpf_err(err); 12320 } 12321 12322 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12323 if (err) { 12324 pr_warn("failed to populate subskeleton maps: %d\n", err); 12325 return libbpf_err(err); 12326 } 12327 12328 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12329 var_skel = &s->vars[var_idx]; 12330 map = *var_skel->map; 12331 map_type_id = bpf_map__btf_value_type_id(map); 12332 map_type = btf__type_by_id(btf, map_type_id); 12333 12334 if (!btf_is_datasec(map_type)) { 12335 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12336 bpf_map__name(map), 12337 __btf_kind_str(btf_kind(map_type))); 12338 return libbpf_err(-EINVAL); 12339 } 12340 12341 len = btf_vlen(map_type); 12342 var = btf_var_secinfos(map_type); 12343 for (i = 0; i < len; i++, var++) { 12344 var_type = btf__type_by_id(btf, var->type); 12345 var_name = btf__name_by_offset(btf, var_type->name_off); 12346 if (strcmp(var_name, var_skel->name) == 0) { 12347 *var_skel->addr = map->mmaped + var->offset; 12348 break; 12349 } 12350 } 12351 } 12352 return 0; 12353 } 12354 12355 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12356 { 12357 if (!s) 12358 return; 12359 free(s->maps); 12360 free(s->progs); 12361 free(s->vars); 12362 free(s); 12363 } 12364 12365 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12366 { 12367 int i, err; 12368 12369 err = bpf_object__load(*s->obj); 12370 if (err) { 12371 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12372 return libbpf_err(err); 12373 } 12374 12375 for (i = 0; i < s->map_cnt; i++) { 12376 struct bpf_map *map = *s->maps[i].map; 12377 size_t mmap_sz = bpf_map_mmap_sz(map); 12378 int prot, map_fd = bpf_map__fd(map); 12379 void **mmaped = s->maps[i].mmaped; 12380 12381 if (!mmaped) 12382 continue; 12383 12384 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12385 *mmaped = NULL; 12386 continue; 12387 } 12388 12389 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12390 prot = PROT_READ; 12391 else 12392 prot = PROT_READ | PROT_WRITE; 12393 12394 /* Remap anonymous mmap()-ed "map initialization image" as 12395 * a BPF map-backed mmap()-ed memory, but preserving the same 12396 * memory address. This will cause kernel to change process' 12397 * page table to point to a different piece of kernel memory, 12398 * but from userspace point of view memory address (and its 12399 * contents, being identical at this point) will stay the 12400 * same. This mapping will be released by bpf_object__close() 12401 * as per normal clean up procedure, so we don't need to worry 12402 * about it from skeleton's clean up perspective. 12403 */ 12404 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12405 MAP_SHARED | MAP_FIXED, map_fd, 0); 12406 if (*mmaped == MAP_FAILED) { 12407 err = -errno; 12408 *mmaped = NULL; 12409 pr_warn("failed to re-mmap() map '%s': %d\n", 12410 bpf_map__name(map), err); 12411 return libbpf_err(err); 12412 } 12413 } 12414 12415 return 0; 12416 } 12417 12418 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12419 { 12420 int i, err; 12421 12422 for (i = 0; i < s->prog_cnt; i++) { 12423 struct bpf_program *prog = *s->progs[i].prog; 12424 struct bpf_link **link = s->progs[i].link; 12425 12426 if (!prog->autoload || !prog->autoattach) 12427 continue; 12428 12429 /* auto-attaching not supported for this program */ 12430 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12431 continue; 12432 12433 /* if user already set the link manually, don't attempt auto-attach */ 12434 if (*link) 12435 continue; 12436 12437 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12438 if (err) { 12439 pr_warn("prog '%s': failed to auto-attach: %d\n", 12440 bpf_program__name(prog), err); 12441 return libbpf_err(err); 12442 } 12443 12444 /* It's possible that for some SEC() definitions auto-attach 12445 * is supported in some cases (e.g., if definition completely 12446 * specifies target information), but is not in other cases. 12447 * SEC("uprobe") is one such case. If user specified target 12448 * binary and function name, such BPF program can be 12449 * auto-attached. But if not, it shouldn't trigger skeleton's 12450 * attach to fail. It should just be skipped. 12451 * attach_fn signals such case with returning 0 (no error) and 12452 * setting link to NULL. 12453 */ 12454 } 12455 12456 return 0; 12457 } 12458 12459 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12460 { 12461 int i; 12462 12463 for (i = 0; i < s->prog_cnt; i++) { 12464 struct bpf_link **link = s->progs[i].link; 12465 12466 bpf_link__destroy(*link); 12467 *link = NULL; 12468 } 12469 } 12470 12471 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12472 { 12473 if (!s) 12474 return; 12475 12476 if (s->progs) 12477 bpf_object__detach_skeleton(s); 12478 if (s->obj) 12479 bpf_object__close(*s->obj); 12480 free(s->maps); 12481 free(s->progs); 12482 free(s); 12483 } 12484