1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 /* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to 160 * get all possible values we compensate last +1, and then (2*x - 1) 161 * to get the bit mask 162 */ 163 if (mode != LIBBPF_STRICT_ALL 164 && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1))) 165 return errno = EINVAL, -EINVAL; 166 167 libbpf_mode = mode; 168 return 0; 169 } 170 171 __u32 libbpf_major_version(void) 172 { 173 return LIBBPF_MAJOR_VERSION; 174 } 175 176 __u32 libbpf_minor_version(void) 177 { 178 return LIBBPF_MINOR_VERSION; 179 } 180 181 const char *libbpf_version_string(void) 182 { 183 #define __S(X) #X 184 #define _S(X) __S(X) 185 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 186 #undef _S 187 #undef __S 188 } 189 190 enum reloc_type { 191 RELO_LD64, 192 RELO_CALL, 193 RELO_DATA, 194 RELO_EXTERN_VAR, 195 RELO_EXTERN_FUNC, 196 RELO_SUBPROG_ADDR, 197 RELO_CORE, 198 }; 199 200 struct reloc_desc { 201 enum reloc_type type; 202 int insn_idx; 203 union { 204 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 205 struct { 206 int map_idx; 207 int sym_off; 208 }; 209 }; 210 }; 211 212 struct bpf_sec_def; 213 214 typedef int (*init_fn_t)(struct bpf_program *prog, long cookie); 215 typedef int (*preload_fn_t)(struct bpf_program *prog, struct bpf_prog_load_opts *opts, long cookie); 216 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_program *prog, long cookie); 217 218 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 219 enum sec_def_flags { 220 SEC_NONE = 0, 221 /* expected_attach_type is optional, if kernel doesn't support that */ 222 SEC_EXP_ATTACH_OPT = 1, 223 /* legacy, only used by libbpf_get_type_names() and 224 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 225 * This used to be associated with cgroup (and few other) BPF programs 226 * that were attachable through BPF_PROG_ATTACH command. Pretty 227 * meaningless nowadays, though. 228 */ 229 SEC_ATTACHABLE = 2, 230 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 231 /* attachment target is specified through BTF ID in either kernel or 232 * other BPF program's BTF object */ 233 SEC_ATTACH_BTF = 4, 234 /* BPF program type allows sleeping/blocking in kernel */ 235 SEC_SLEEPABLE = 8, 236 /* allow non-strict prefix matching */ 237 SEC_SLOPPY_PFX = 16, 238 }; 239 240 struct bpf_sec_def { 241 const char *sec; 242 enum bpf_prog_type prog_type; 243 enum bpf_attach_type expected_attach_type; 244 long cookie; 245 246 init_fn_t init_fn; 247 preload_fn_t preload_fn; 248 attach_fn_t attach_fn; 249 }; 250 251 /* 252 * bpf_prog should be a better name but it has been used in 253 * linux/filter.h. 254 */ 255 struct bpf_program { 256 const struct bpf_sec_def *sec_def; 257 char *sec_name; 258 size_t sec_idx; 259 /* this program's instruction offset (in number of instructions) 260 * within its containing ELF section 261 */ 262 size_t sec_insn_off; 263 /* number of original instructions in ELF section belonging to this 264 * program, not taking into account subprogram instructions possible 265 * appended later during relocation 266 */ 267 size_t sec_insn_cnt; 268 /* Offset (in number of instructions) of the start of instruction 269 * belonging to this BPF program within its containing main BPF 270 * program. For the entry-point (main) BPF program, this is always 271 * zero. For a sub-program, this gets reset before each of main BPF 272 * programs are processed and relocated and is used to determined 273 * whether sub-program was already appended to the main program, and 274 * if yes, at which instruction offset. 275 */ 276 size_t sub_insn_off; 277 278 char *name; 279 /* name with / replaced by _; makes recursive pinning 280 * in bpf_object__pin_programs easier 281 */ 282 char *pin_name; 283 284 /* instructions that belong to BPF program; insns[0] is located at 285 * sec_insn_off instruction within its ELF section in ELF file, so 286 * when mapping ELF file instruction index to the local instruction, 287 * one needs to subtract sec_insn_off; and vice versa. 288 */ 289 struct bpf_insn *insns; 290 /* actual number of instruction in this BPF program's image; for 291 * entry-point BPF programs this includes the size of main program 292 * itself plus all the used sub-programs, appended at the end 293 */ 294 size_t insns_cnt; 295 296 struct reloc_desc *reloc_desc; 297 int nr_reloc; 298 299 /* BPF verifier log settings */ 300 char *log_buf; 301 size_t log_size; 302 __u32 log_level; 303 304 struct { 305 int nr; 306 int *fds; 307 } instances; 308 bpf_program_prep_t preprocessor; 309 310 struct bpf_object *obj; 311 void *priv; 312 bpf_program_clear_priv_t clear_priv; 313 314 bool load; 315 bool mark_btf_static; 316 enum bpf_prog_type type; 317 enum bpf_attach_type expected_attach_type; 318 int prog_ifindex; 319 __u32 attach_btf_obj_fd; 320 __u32 attach_btf_id; 321 __u32 attach_prog_fd; 322 void *func_info; 323 __u32 func_info_rec_size; 324 __u32 func_info_cnt; 325 326 void *line_info; 327 __u32 line_info_rec_size; 328 __u32 line_info_cnt; 329 __u32 prog_flags; 330 }; 331 332 struct bpf_struct_ops { 333 const char *tname; 334 const struct btf_type *type; 335 struct bpf_program **progs; 336 __u32 *kern_func_off; 337 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 338 void *data; 339 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 340 * btf_vmlinux's format. 341 * struct bpf_struct_ops_tcp_congestion_ops { 342 * [... some other kernel fields ...] 343 * struct tcp_congestion_ops data; 344 * } 345 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 346 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 347 * from "data". 348 */ 349 void *kern_vdata; 350 __u32 type_id; 351 }; 352 353 #define DATA_SEC ".data" 354 #define BSS_SEC ".bss" 355 #define RODATA_SEC ".rodata" 356 #define KCONFIG_SEC ".kconfig" 357 #define KSYMS_SEC ".ksyms" 358 #define STRUCT_OPS_SEC ".struct_ops" 359 360 enum libbpf_map_type { 361 LIBBPF_MAP_UNSPEC, 362 LIBBPF_MAP_DATA, 363 LIBBPF_MAP_BSS, 364 LIBBPF_MAP_RODATA, 365 LIBBPF_MAP_KCONFIG, 366 }; 367 368 struct bpf_map { 369 char *name; 370 /* real_name is defined for special internal maps (.rodata*, 371 * .data*, .bss, .kconfig) and preserves their original ELF section 372 * name. This is important to be be able to find corresponding BTF 373 * DATASEC information. 374 */ 375 char *real_name; 376 int fd; 377 int sec_idx; 378 size_t sec_offset; 379 int map_ifindex; 380 int inner_map_fd; 381 struct bpf_map_def def; 382 __u32 numa_node; 383 __u32 btf_var_idx; 384 __u32 btf_key_type_id; 385 __u32 btf_value_type_id; 386 __u32 btf_vmlinux_value_type_id; 387 void *priv; 388 bpf_map_clear_priv_t clear_priv; 389 enum libbpf_map_type libbpf_type; 390 void *mmaped; 391 struct bpf_struct_ops *st_ops; 392 struct bpf_map *inner_map; 393 void **init_slots; 394 int init_slots_sz; 395 char *pin_path; 396 bool pinned; 397 bool reused; 398 bool skipped; 399 __u64 map_extra; 400 }; 401 402 enum extern_type { 403 EXT_UNKNOWN, 404 EXT_KCFG, 405 EXT_KSYM, 406 }; 407 408 enum kcfg_type { 409 KCFG_UNKNOWN, 410 KCFG_CHAR, 411 KCFG_BOOL, 412 KCFG_INT, 413 KCFG_TRISTATE, 414 KCFG_CHAR_ARR, 415 }; 416 417 struct extern_desc { 418 enum extern_type type; 419 int sym_idx; 420 int btf_id; 421 int sec_btf_id; 422 const char *name; 423 bool is_set; 424 bool is_weak; 425 union { 426 struct { 427 enum kcfg_type type; 428 int sz; 429 int align; 430 int data_off; 431 bool is_signed; 432 } kcfg; 433 struct { 434 unsigned long long addr; 435 436 /* target btf_id of the corresponding kernel var. */ 437 int kernel_btf_obj_fd; 438 int kernel_btf_id; 439 440 /* local btf_id of the ksym extern's type. */ 441 __u32 type_id; 442 /* BTF fd index to be patched in for insn->off, this is 443 * 0 for vmlinux BTF, index in obj->fd_array for module 444 * BTF 445 */ 446 __s16 btf_fd_idx; 447 } ksym; 448 }; 449 }; 450 451 static LIST_HEAD(bpf_objects_list); 452 453 struct module_btf { 454 struct btf *btf; 455 char *name; 456 __u32 id; 457 int fd; 458 int fd_array_idx; 459 }; 460 461 enum sec_type { 462 SEC_UNUSED = 0, 463 SEC_RELO, 464 SEC_BSS, 465 SEC_DATA, 466 SEC_RODATA, 467 }; 468 469 struct elf_sec_desc { 470 enum sec_type sec_type; 471 Elf64_Shdr *shdr; 472 Elf_Data *data; 473 }; 474 475 struct elf_state { 476 int fd; 477 const void *obj_buf; 478 size_t obj_buf_sz; 479 Elf *elf; 480 Elf64_Ehdr *ehdr; 481 Elf_Data *symbols; 482 Elf_Data *st_ops_data; 483 size_t shstrndx; /* section index for section name strings */ 484 size_t strtabidx; 485 struct elf_sec_desc *secs; 486 int sec_cnt; 487 int maps_shndx; 488 int btf_maps_shndx; 489 __u32 btf_maps_sec_btf_id; 490 int text_shndx; 491 int symbols_shndx; 492 int st_ops_shndx; 493 }; 494 495 struct bpf_object { 496 char name[BPF_OBJ_NAME_LEN]; 497 char license[64]; 498 __u32 kern_version; 499 500 struct bpf_program *programs; 501 size_t nr_programs; 502 struct bpf_map *maps; 503 size_t nr_maps; 504 size_t maps_cap; 505 506 char *kconfig; 507 struct extern_desc *externs; 508 int nr_extern; 509 int kconfig_map_idx; 510 511 bool loaded; 512 bool has_subcalls; 513 bool has_rodata; 514 515 struct bpf_gen *gen_loader; 516 517 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 518 struct elf_state efile; 519 /* 520 * All loaded bpf_object are linked in a list, which is 521 * hidden to caller. bpf_objects__<func> handlers deal with 522 * all objects. 523 */ 524 struct list_head list; 525 526 struct btf *btf; 527 struct btf_ext *btf_ext; 528 529 /* Parse and load BTF vmlinux if any of the programs in the object need 530 * it at load time. 531 */ 532 struct btf *btf_vmlinux; 533 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 534 * override for vmlinux BTF. 535 */ 536 char *btf_custom_path; 537 /* vmlinux BTF override for CO-RE relocations */ 538 struct btf *btf_vmlinux_override; 539 /* Lazily initialized kernel module BTFs */ 540 struct module_btf *btf_modules; 541 bool btf_modules_loaded; 542 size_t btf_module_cnt; 543 size_t btf_module_cap; 544 545 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 546 char *log_buf; 547 size_t log_size; 548 __u32 log_level; 549 550 void *priv; 551 bpf_object_clear_priv_t clear_priv; 552 553 int *fd_array; 554 size_t fd_array_cap; 555 size_t fd_array_cnt; 556 557 char path[]; 558 }; 559 560 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 561 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 562 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 563 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 564 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 565 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 566 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 567 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 568 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 569 570 void bpf_program__unload(struct bpf_program *prog) 571 { 572 int i; 573 574 if (!prog) 575 return; 576 577 /* 578 * If the object is opened but the program was never loaded, 579 * it is possible that prog->instances.nr == -1. 580 */ 581 if (prog->instances.nr > 0) { 582 for (i = 0; i < prog->instances.nr; i++) 583 zclose(prog->instances.fds[i]); 584 } else if (prog->instances.nr != -1) { 585 pr_warn("Internal error: instances.nr is %d\n", 586 prog->instances.nr); 587 } 588 589 prog->instances.nr = -1; 590 zfree(&prog->instances.fds); 591 592 zfree(&prog->func_info); 593 zfree(&prog->line_info); 594 } 595 596 static void bpf_program__exit(struct bpf_program *prog) 597 { 598 if (!prog) 599 return; 600 601 if (prog->clear_priv) 602 prog->clear_priv(prog, prog->priv); 603 604 prog->priv = NULL; 605 prog->clear_priv = NULL; 606 607 bpf_program__unload(prog); 608 zfree(&prog->name); 609 zfree(&prog->sec_name); 610 zfree(&prog->pin_name); 611 zfree(&prog->insns); 612 zfree(&prog->reloc_desc); 613 614 prog->nr_reloc = 0; 615 prog->insns_cnt = 0; 616 prog->sec_idx = -1; 617 } 618 619 static char *__bpf_program__pin_name(struct bpf_program *prog) 620 { 621 char *name, *p; 622 623 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 624 name = strdup(prog->name); 625 else 626 name = strdup(prog->sec_name); 627 628 if (!name) 629 return NULL; 630 631 p = name; 632 633 while ((p = strchr(p, '/'))) 634 *p = '_'; 635 636 return name; 637 } 638 639 static bool insn_is_subprog_call(const struct bpf_insn *insn) 640 { 641 return BPF_CLASS(insn->code) == BPF_JMP && 642 BPF_OP(insn->code) == BPF_CALL && 643 BPF_SRC(insn->code) == BPF_K && 644 insn->src_reg == BPF_PSEUDO_CALL && 645 insn->dst_reg == 0 && 646 insn->off == 0; 647 } 648 649 static bool is_call_insn(const struct bpf_insn *insn) 650 { 651 return insn->code == (BPF_JMP | BPF_CALL); 652 } 653 654 static bool insn_is_pseudo_func(struct bpf_insn *insn) 655 { 656 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 657 } 658 659 static int 660 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 661 const char *name, size_t sec_idx, const char *sec_name, 662 size_t sec_off, void *insn_data, size_t insn_data_sz) 663 { 664 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 665 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 666 sec_name, name, sec_off, insn_data_sz); 667 return -EINVAL; 668 } 669 670 memset(prog, 0, sizeof(*prog)); 671 prog->obj = obj; 672 673 prog->sec_idx = sec_idx; 674 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 675 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 676 /* insns_cnt can later be increased by appending used subprograms */ 677 prog->insns_cnt = prog->sec_insn_cnt; 678 679 prog->type = BPF_PROG_TYPE_UNSPEC; 680 prog->load = true; 681 682 prog->instances.fds = NULL; 683 prog->instances.nr = -1; 684 685 /* inherit object's log_level */ 686 prog->log_level = obj->log_level; 687 688 prog->sec_name = strdup(sec_name); 689 if (!prog->sec_name) 690 goto errout; 691 692 prog->name = strdup(name); 693 if (!prog->name) 694 goto errout; 695 696 prog->pin_name = __bpf_program__pin_name(prog); 697 if (!prog->pin_name) 698 goto errout; 699 700 prog->insns = malloc(insn_data_sz); 701 if (!prog->insns) 702 goto errout; 703 memcpy(prog->insns, insn_data, insn_data_sz); 704 705 return 0; 706 errout: 707 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 708 bpf_program__exit(prog); 709 return -ENOMEM; 710 } 711 712 static int 713 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 714 const char *sec_name, int sec_idx) 715 { 716 Elf_Data *symbols = obj->efile.symbols; 717 struct bpf_program *prog, *progs; 718 void *data = sec_data->d_buf; 719 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 720 int nr_progs, err, i; 721 const char *name; 722 Elf64_Sym *sym; 723 724 progs = obj->programs; 725 nr_progs = obj->nr_programs; 726 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 727 sec_off = 0; 728 729 for (i = 0; i < nr_syms; i++) { 730 sym = elf_sym_by_idx(obj, i); 731 732 if (sym->st_shndx != sec_idx) 733 continue; 734 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 735 continue; 736 737 prog_sz = sym->st_size; 738 sec_off = sym->st_value; 739 740 name = elf_sym_str(obj, sym->st_name); 741 if (!name) { 742 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 743 sec_name, sec_off); 744 return -LIBBPF_ERRNO__FORMAT; 745 } 746 747 if (sec_off + prog_sz > sec_sz) { 748 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 749 sec_name, sec_off); 750 return -LIBBPF_ERRNO__FORMAT; 751 } 752 753 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 754 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 755 return -ENOTSUP; 756 } 757 758 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 759 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 760 761 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 762 if (!progs) { 763 /* 764 * In this case the original obj->programs 765 * is still valid, so don't need special treat for 766 * bpf_close_object(). 767 */ 768 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 769 sec_name, name); 770 return -ENOMEM; 771 } 772 obj->programs = progs; 773 774 prog = &progs[nr_progs]; 775 776 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 777 sec_off, data + sec_off, prog_sz); 778 if (err) 779 return err; 780 781 /* if function is a global/weak symbol, but has restricted 782 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 783 * as static to enable more permissive BPF verification mode 784 * with more outside context available to BPF verifier 785 */ 786 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 787 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 788 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 789 prog->mark_btf_static = true; 790 791 nr_progs++; 792 obj->nr_programs = nr_progs; 793 } 794 795 return 0; 796 } 797 798 __u32 get_kernel_version(void) 799 { 800 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 801 * but Ubuntu provides /proc/version_signature file, as described at 802 * https://ubuntu.com/kernel, with an example contents below, which we 803 * can use to get a proper LINUX_VERSION_CODE. 804 * 805 * Ubuntu 5.4.0-12.15-generic 5.4.8 806 * 807 * In the above, 5.4.8 is what kernel is actually expecting, while 808 * uname() call will return 5.4.0 in info.release. 809 */ 810 const char *ubuntu_kver_file = "/proc/version_signature"; 811 __u32 major, minor, patch; 812 struct utsname info; 813 814 if (access(ubuntu_kver_file, R_OK) == 0) { 815 FILE *f; 816 817 f = fopen(ubuntu_kver_file, "r"); 818 if (f) { 819 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 820 fclose(f); 821 return KERNEL_VERSION(major, minor, patch); 822 } 823 fclose(f); 824 } 825 /* something went wrong, fall back to uname() approach */ 826 } 827 828 uname(&info); 829 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 830 return 0; 831 return KERNEL_VERSION(major, minor, patch); 832 } 833 834 static const struct btf_member * 835 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 836 { 837 struct btf_member *m; 838 int i; 839 840 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 841 if (btf_member_bit_offset(t, i) == bit_offset) 842 return m; 843 } 844 845 return NULL; 846 } 847 848 static const struct btf_member * 849 find_member_by_name(const struct btf *btf, const struct btf_type *t, 850 const char *name) 851 { 852 struct btf_member *m; 853 int i; 854 855 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 856 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 857 return m; 858 } 859 860 return NULL; 861 } 862 863 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 864 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 865 const char *name, __u32 kind); 866 867 static int 868 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 869 const struct btf_type **type, __u32 *type_id, 870 const struct btf_type **vtype, __u32 *vtype_id, 871 const struct btf_member **data_member) 872 { 873 const struct btf_type *kern_type, *kern_vtype; 874 const struct btf_member *kern_data_member; 875 __s32 kern_vtype_id, kern_type_id; 876 __u32 i; 877 878 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 879 if (kern_type_id < 0) { 880 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 881 tname); 882 return kern_type_id; 883 } 884 kern_type = btf__type_by_id(btf, kern_type_id); 885 886 /* Find the corresponding "map_value" type that will be used 887 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 888 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 889 * btf_vmlinux. 890 */ 891 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 892 tname, BTF_KIND_STRUCT); 893 if (kern_vtype_id < 0) { 894 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 895 STRUCT_OPS_VALUE_PREFIX, tname); 896 return kern_vtype_id; 897 } 898 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 899 900 /* Find "struct tcp_congestion_ops" from 901 * struct bpf_struct_ops_tcp_congestion_ops { 902 * [ ... ] 903 * struct tcp_congestion_ops data; 904 * } 905 */ 906 kern_data_member = btf_members(kern_vtype); 907 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 908 if (kern_data_member->type == kern_type_id) 909 break; 910 } 911 if (i == btf_vlen(kern_vtype)) { 912 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 913 tname, STRUCT_OPS_VALUE_PREFIX, tname); 914 return -EINVAL; 915 } 916 917 *type = kern_type; 918 *type_id = kern_type_id; 919 *vtype = kern_vtype; 920 *vtype_id = kern_vtype_id; 921 *data_member = kern_data_member; 922 923 return 0; 924 } 925 926 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 927 { 928 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 929 } 930 931 /* Init the map's fields that depend on kern_btf */ 932 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 933 const struct btf *btf, 934 const struct btf *kern_btf) 935 { 936 const struct btf_member *member, *kern_member, *kern_data_member; 937 const struct btf_type *type, *kern_type, *kern_vtype; 938 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 939 struct bpf_struct_ops *st_ops; 940 void *data, *kern_data; 941 const char *tname; 942 int err; 943 944 st_ops = map->st_ops; 945 type = st_ops->type; 946 tname = st_ops->tname; 947 err = find_struct_ops_kern_types(kern_btf, tname, 948 &kern_type, &kern_type_id, 949 &kern_vtype, &kern_vtype_id, 950 &kern_data_member); 951 if (err) 952 return err; 953 954 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 955 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 956 957 map->def.value_size = kern_vtype->size; 958 map->btf_vmlinux_value_type_id = kern_vtype_id; 959 960 st_ops->kern_vdata = calloc(1, kern_vtype->size); 961 if (!st_ops->kern_vdata) 962 return -ENOMEM; 963 964 data = st_ops->data; 965 kern_data_off = kern_data_member->offset / 8; 966 kern_data = st_ops->kern_vdata + kern_data_off; 967 968 member = btf_members(type); 969 for (i = 0; i < btf_vlen(type); i++, member++) { 970 const struct btf_type *mtype, *kern_mtype; 971 __u32 mtype_id, kern_mtype_id; 972 void *mdata, *kern_mdata; 973 __s64 msize, kern_msize; 974 __u32 moff, kern_moff; 975 __u32 kern_member_idx; 976 const char *mname; 977 978 mname = btf__name_by_offset(btf, member->name_off); 979 kern_member = find_member_by_name(kern_btf, kern_type, mname); 980 if (!kern_member) { 981 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 982 map->name, mname); 983 return -ENOTSUP; 984 } 985 986 kern_member_idx = kern_member - btf_members(kern_type); 987 if (btf_member_bitfield_size(type, i) || 988 btf_member_bitfield_size(kern_type, kern_member_idx)) { 989 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 990 map->name, mname); 991 return -ENOTSUP; 992 } 993 994 moff = member->offset / 8; 995 kern_moff = kern_member->offset / 8; 996 997 mdata = data + moff; 998 kern_mdata = kern_data + kern_moff; 999 1000 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1001 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1002 &kern_mtype_id); 1003 if (BTF_INFO_KIND(mtype->info) != 1004 BTF_INFO_KIND(kern_mtype->info)) { 1005 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1006 map->name, mname, BTF_INFO_KIND(mtype->info), 1007 BTF_INFO_KIND(kern_mtype->info)); 1008 return -ENOTSUP; 1009 } 1010 1011 if (btf_is_ptr(mtype)) { 1012 struct bpf_program *prog; 1013 1014 prog = st_ops->progs[i]; 1015 if (!prog) 1016 continue; 1017 1018 kern_mtype = skip_mods_and_typedefs(kern_btf, 1019 kern_mtype->type, 1020 &kern_mtype_id); 1021 1022 /* mtype->type must be a func_proto which was 1023 * guaranteed in bpf_object__collect_st_ops_relos(), 1024 * so only check kern_mtype for func_proto here. 1025 */ 1026 if (!btf_is_func_proto(kern_mtype)) { 1027 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1028 map->name, mname); 1029 return -ENOTSUP; 1030 } 1031 1032 prog->attach_btf_id = kern_type_id; 1033 prog->expected_attach_type = kern_member_idx; 1034 1035 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1036 1037 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1038 map->name, mname, prog->name, moff, 1039 kern_moff); 1040 1041 continue; 1042 } 1043 1044 msize = btf__resolve_size(btf, mtype_id); 1045 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1046 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1047 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1048 map->name, mname, (ssize_t)msize, 1049 (ssize_t)kern_msize); 1050 return -ENOTSUP; 1051 } 1052 1053 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1054 map->name, mname, (unsigned int)msize, 1055 moff, kern_moff); 1056 memcpy(kern_mdata, mdata, msize); 1057 } 1058 1059 return 0; 1060 } 1061 1062 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1063 { 1064 struct bpf_map *map; 1065 size_t i; 1066 int err; 1067 1068 for (i = 0; i < obj->nr_maps; i++) { 1069 map = &obj->maps[i]; 1070 1071 if (!bpf_map__is_struct_ops(map)) 1072 continue; 1073 1074 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1075 obj->btf_vmlinux); 1076 if (err) 1077 return err; 1078 } 1079 1080 return 0; 1081 } 1082 1083 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1084 { 1085 const struct btf_type *type, *datasec; 1086 const struct btf_var_secinfo *vsi; 1087 struct bpf_struct_ops *st_ops; 1088 const char *tname, *var_name; 1089 __s32 type_id, datasec_id; 1090 const struct btf *btf; 1091 struct bpf_map *map; 1092 __u32 i; 1093 1094 if (obj->efile.st_ops_shndx == -1) 1095 return 0; 1096 1097 btf = obj->btf; 1098 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1099 BTF_KIND_DATASEC); 1100 if (datasec_id < 0) { 1101 pr_warn("struct_ops init: DATASEC %s not found\n", 1102 STRUCT_OPS_SEC); 1103 return -EINVAL; 1104 } 1105 1106 datasec = btf__type_by_id(btf, datasec_id); 1107 vsi = btf_var_secinfos(datasec); 1108 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1109 type = btf__type_by_id(obj->btf, vsi->type); 1110 var_name = btf__name_by_offset(obj->btf, type->name_off); 1111 1112 type_id = btf__resolve_type(obj->btf, vsi->type); 1113 if (type_id < 0) { 1114 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1115 vsi->type, STRUCT_OPS_SEC); 1116 return -EINVAL; 1117 } 1118 1119 type = btf__type_by_id(obj->btf, type_id); 1120 tname = btf__name_by_offset(obj->btf, type->name_off); 1121 if (!tname[0]) { 1122 pr_warn("struct_ops init: anonymous type is not supported\n"); 1123 return -ENOTSUP; 1124 } 1125 if (!btf_is_struct(type)) { 1126 pr_warn("struct_ops init: %s is not a struct\n", tname); 1127 return -EINVAL; 1128 } 1129 1130 map = bpf_object__add_map(obj); 1131 if (IS_ERR(map)) 1132 return PTR_ERR(map); 1133 1134 map->sec_idx = obj->efile.st_ops_shndx; 1135 map->sec_offset = vsi->offset; 1136 map->name = strdup(var_name); 1137 if (!map->name) 1138 return -ENOMEM; 1139 1140 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1141 map->def.key_size = sizeof(int); 1142 map->def.value_size = type->size; 1143 map->def.max_entries = 1; 1144 1145 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1146 if (!map->st_ops) 1147 return -ENOMEM; 1148 st_ops = map->st_ops; 1149 st_ops->data = malloc(type->size); 1150 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1151 st_ops->kern_func_off = malloc(btf_vlen(type) * 1152 sizeof(*st_ops->kern_func_off)); 1153 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1154 return -ENOMEM; 1155 1156 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1157 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1158 var_name, STRUCT_OPS_SEC); 1159 return -EINVAL; 1160 } 1161 1162 memcpy(st_ops->data, 1163 obj->efile.st_ops_data->d_buf + vsi->offset, 1164 type->size); 1165 st_ops->tname = tname; 1166 st_ops->type = type; 1167 st_ops->type_id = type_id; 1168 1169 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1170 tname, type_id, var_name, vsi->offset); 1171 } 1172 1173 return 0; 1174 } 1175 1176 static struct bpf_object *bpf_object__new(const char *path, 1177 const void *obj_buf, 1178 size_t obj_buf_sz, 1179 const char *obj_name) 1180 { 1181 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1182 struct bpf_object *obj; 1183 char *end; 1184 1185 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1186 if (!obj) { 1187 pr_warn("alloc memory failed for %s\n", path); 1188 return ERR_PTR(-ENOMEM); 1189 } 1190 1191 strcpy(obj->path, path); 1192 if (obj_name) { 1193 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1194 } else { 1195 /* Using basename() GNU version which doesn't modify arg. */ 1196 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1197 end = strchr(obj->name, '.'); 1198 if (end) 1199 *end = 0; 1200 } 1201 1202 obj->efile.fd = -1; 1203 /* 1204 * Caller of this function should also call 1205 * bpf_object__elf_finish() after data collection to return 1206 * obj_buf to user. If not, we should duplicate the buffer to 1207 * avoid user freeing them before elf finish. 1208 */ 1209 obj->efile.obj_buf = obj_buf; 1210 obj->efile.obj_buf_sz = obj_buf_sz; 1211 obj->efile.maps_shndx = -1; 1212 obj->efile.btf_maps_shndx = -1; 1213 obj->efile.st_ops_shndx = -1; 1214 obj->kconfig_map_idx = -1; 1215 1216 obj->kern_version = get_kernel_version(); 1217 obj->loaded = false; 1218 1219 INIT_LIST_HEAD(&obj->list); 1220 if (!strict) 1221 list_add(&obj->list, &bpf_objects_list); 1222 return obj; 1223 } 1224 1225 static void bpf_object__elf_finish(struct bpf_object *obj) 1226 { 1227 if (!obj->efile.elf) 1228 return; 1229 1230 if (obj->efile.elf) { 1231 elf_end(obj->efile.elf); 1232 obj->efile.elf = NULL; 1233 } 1234 obj->efile.symbols = NULL; 1235 obj->efile.st_ops_data = NULL; 1236 1237 zfree(&obj->efile.secs); 1238 obj->efile.sec_cnt = 0; 1239 zclose(obj->efile.fd); 1240 obj->efile.obj_buf = NULL; 1241 obj->efile.obj_buf_sz = 0; 1242 } 1243 1244 static int bpf_object__elf_init(struct bpf_object *obj) 1245 { 1246 Elf64_Ehdr *ehdr; 1247 int err = 0; 1248 Elf *elf; 1249 1250 if (obj->efile.elf) { 1251 pr_warn("elf: init internal error\n"); 1252 return -LIBBPF_ERRNO__LIBELF; 1253 } 1254 1255 if (obj->efile.obj_buf_sz > 0) { 1256 /* 1257 * obj_buf should have been validated by 1258 * bpf_object__open_buffer(). 1259 */ 1260 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1261 } else { 1262 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1263 if (obj->efile.fd < 0) { 1264 char errmsg[STRERR_BUFSIZE], *cp; 1265 1266 err = -errno; 1267 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1268 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1269 return err; 1270 } 1271 1272 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1273 } 1274 1275 if (!elf) { 1276 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1277 err = -LIBBPF_ERRNO__LIBELF; 1278 goto errout; 1279 } 1280 1281 obj->efile.elf = elf; 1282 1283 if (elf_kind(elf) != ELF_K_ELF) { 1284 err = -LIBBPF_ERRNO__FORMAT; 1285 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1286 goto errout; 1287 } 1288 1289 if (gelf_getclass(elf) != ELFCLASS64) { 1290 err = -LIBBPF_ERRNO__FORMAT; 1291 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1292 goto errout; 1293 } 1294 1295 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1296 if (!obj->efile.ehdr) { 1297 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1298 err = -LIBBPF_ERRNO__FORMAT; 1299 goto errout; 1300 } 1301 1302 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1303 pr_warn("elf: failed to get section names section index for %s: %s\n", 1304 obj->path, elf_errmsg(-1)); 1305 err = -LIBBPF_ERRNO__FORMAT; 1306 goto errout; 1307 } 1308 1309 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1310 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1311 pr_warn("elf: failed to get section names strings from %s: %s\n", 1312 obj->path, elf_errmsg(-1)); 1313 err = -LIBBPF_ERRNO__FORMAT; 1314 goto errout; 1315 } 1316 1317 /* Old LLVM set e_machine to EM_NONE */ 1318 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1319 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1320 err = -LIBBPF_ERRNO__FORMAT; 1321 goto errout; 1322 } 1323 1324 return 0; 1325 errout: 1326 bpf_object__elf_finish(obj); 1327 return err; 1328 } 1329 1330 static int bpf_object__check_endianness(struct bpf_object *obj) 1331 { 1332 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1333 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1334 return 0; 1335 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1336 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1337 return 0; 1338 #else 1339 # error "Unrecognized __BYTE_ORDER__" 1340 #endif 1341 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1342 return -LIBBPF_ERRNO__ENDIAN; 1343 } 1344 1345 static int 1346 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1347 { 1348 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1349 * go over allowed ELF data section buffer 1350 */ 1351 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1352 pr_debug("license of %s is %s\n", obj->path, obj->license); 1353 return 0; 1354 } 1355 1356 static int 1357 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1358 { 1359 __u32 kver; 1360 1361 if (size != sizeof(kver)) { 1362 pr_warn("invalid kver section in %s\n", obj->path); 1363 return -LIBBPF_ERRNO__FORMAT; 1364 } 1365 memcpy(&kver, data, sizeof(kver)); 1366 obj->kern_version = kver; 1367 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1368 return 0; 1369 } 1370 1371 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1372 { 1373 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1374 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1375 return true; 1376 return false; 1377 } 1378 1379 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1380 { 1381 int ret = -ENOENT; 1382 Elf_Data *data; 1383 Elf_Scn *scn; 1384 1385 *size = 0; 1386 if (!name) 1387 return -EINVAL; 1388 1389 scn = elf_sec_by_name(obj, name); 1390 data = elf_sec_data(obj, scn); 1391 if (data) { 1392 ret = 0; /* found it */ 1393 *size = data->d_size; 1394 } 1395 1396 return *size ? 0 : ret; 1397 } 1398 1399 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1400 { 1401 Elf_Data *symbols = obj->efile.symbols; 1402 const char *sname; 1403 size_t si; 1404 1405 if (!name || !off) 1406 return -EINVAL; 1407 1408 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1409 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1410 1411 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL || 1412 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1413 continue; 1414 1415 sname = elf_sym_str(obj, sym->st_name); 1416 if (!sname) { 1417 pr_warn("failed to get sym name string for var %s\n", name); 1418 return -EIO; 1419 } 1420 if (strcmp(name, sname) == 0) { 1421 *off = sym->st_value; 1422 return 0; 1423 } 1424 } 1425 1426 return -ENOENT; 1427 } 1428 1429 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1430 { 1431 struct bpf_map *new_maps; 1432 size_t new_cap; 1433 int i; 1434 1435 if (obj->nr_maps < obj->maps_cap) 1436 return &obj->maps[obj->nr_maps++]; 1437 1438 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1439 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1440 if (!new_maps) { 1441 pr_warn("alloc maps for object failed\n"); 1442 return ERR_PTR(-ENOMEM); 1443 } 1444 1445 obj->maps_cap = new_cap; 1446 obj->maps = new_maps; 1447 1448 /* zero out new maps */ 1449 memset(obj->maps + obj->nr_maps, 0, 1450 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1451 /* 1452 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1453 * when failure (zclose won't close negative fd)). 1454 */ 1455 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1456 obj->maps[i].fd = -1; 1457 obj->maps[i].inner_map_fd = -1; 1458 } 1459 1460 return &obj->maps[obj->nr_maps++]; 1461 } 1462 1463 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1464 { 1465 long page_sz = sysconf(_SC_PAGE_SIZE); 1466 size_t map_sz; 1467 1468 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1469 map_sz = roundup(map_sz, page_sz); 1470 return map_sz; 1471 } 1472 1473 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1474 { 1475 char map_name[BPF_OBJ_NAME_LEN], *p; 1476 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1477 1478 /* This is one of the more confusing parts of libbpf for various 1479 * reasons, some of which are historical. The original idea for naming 1480 * internal names was to include as much of BPF object name prefix as 1481 * possible, so that it can be distinguished from similar internal 1482 * maps of a different BPF object. 1483 * As an example, let's say we have bpf_object named 'my_object_name' 1484 * and internal map corresponding to '.rodata' ELF section. The final 1485 * map name advertised to user and to the kernel will be 1486 * 'my_objec.rodata', taking first 8 characters of object name and 1487 * entire 7 characters of '.rodata'. 1488 * Somewhat confusingly, if internal map ELF section name is shorter 1489 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1490 * for the suffix, even though we only have 4 actual characters, and 1491 * resulting map will be called 'my_objec.bss', not even using all 15 1492 * characters allowed by the kernel. Oh well, at least the truncated 1493 * object name is somewhat consistent in this case. But if the map 1494 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1495 * (8 chars) and thus will be left with only first 7 characters of the 1496 * object name ('my_obje'). Happy guessing, user, that the final map 1497 * name will be "my_obje.kconfig". 1498 * Now, with libbpf starting to support arbitrarily named .rodata.* 1499 * and .data.* data sections, it's possible that ELF section name is 1500 * longer than allowed 15 chars, so we now need to be careful to take 1501 * only up to 15 first characters of ELF name, taking no BPF object 1502 * name characters at all. So '.rodata.abracadabra' will result in 1503 * '.rodata.abracad' kernel and user-visible name. 1504 * We need to keep this convoluted logic intact for .data, .bss and 1505 * .rodata maps, but for new custom .data.custom and .rodata.custom 1506 * maps we use their ELF names as is, not prepending bpf_object name 1507 * in front. We still need to truncate them to 15 characters for the 1508 * kernel. Full name can be recovered for such maps by using DATASEC 1509 * BTF type associated with such map's value type, though. 1510 */ 1511 if (sfx_len >= BPF_OBJ_NAME_LEN) 1512 sfx_len = BPF_OBJ_NAME_LEN - 1; 1513 1514 /* if there are two or more dots in map name, it's a custom dot map */ 1515 if (strchr(real_name + 1, '.') != NULL) 1516 pfx_len = 0; 1517 else 1518 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1519 1520 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1521 sfx_len, real_name); 1522 1523 /* sanitise map name to characters allowed by kernel */ 1524 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1525 if (!isalnum(*p) && *p != '_' && *p != '.') 1526 *p = '_'; 1527 1528 return strdup(map_name); 1529 } 1530 1531 static int 1532 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1533 const char *real_name, int sec_idx, void *data, size_t data_sz) 1534 { 1535 struct bpf_map_def *def; 1536 struct bpf_map *map; 1537 int err; 1538 1539 map = bpf_object__add_map(obj); 1540 if (IS_ERR(map)) 1541 return PTR_ERR(map); 1542 1543 map->libbpf_type = type; 1544 map->sec_idx = sec_idx; 1545 map->sec_offset = 0; 1546 map->real_name = strdup(real_name); 1547 map->name = internal_map_name(obj, real_name); 1548 if (!map->real_name || !map->name) { 1549 zfree(&map->real_name); 1550 zfree(&map->name); 1551 return -ENOMEM; 1552 } 1553 1554 def = &map->def; 1555 def->type = BPF_MAP_TYPE_ARRAY; 1556 def->key_size = sizeof(int); 1557 def->value_size = data_sz; 1558 def->max_entries = 1; 1559 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1560 ? BPF_F_RDONLY_PROG : 0; 1561 def->map_flags |= BPF_F_MMAPABLE; 1562 1563 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1564 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1565 1566 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1567 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1568 if (map->mmaped == MAP_FAILED) { 1569 err = -errno; 1570 map->mmaped = NULL; 1571 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1572 map->name, err); 1573 zfree(&map->real_name); 1574 zfree(&map->name); 1575 return err; 1576 } 1577 1578 if (data) 1579 memcpy(map->mmaped, data, data_sz); 1580 1581 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1582 return 0; 1583 } 1584 1585 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1586 { 1587 struct elf_sec_desc *sec_desc; 1588 const char *sec_name; 1589 int err = 0, sec_idx; 1590 1591 /* 1592 * Populate obj->maps with libbpf internal maps. 1593 */ 1594 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1595 sec_desc = &obj->efile.secs[sec_idx]; 1596 1597 switch (sec_desc->sec_type) { 1598 case SEC_DATA: 1599 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1600 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1601 sec_name, sec_idx, 1602 sec_desc->data->d_buf, 1603 sec_desc->data->d_size); 1604 break; 1605 case SEC_RODATA: 1606 obj->has_rodata = true; 1607 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1608 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1609 sec_name, sec_idx, 1610 sec_desc->data->d_buf, 1611 sec_desc->data->d_size); 1612 break; 1613 case SEC_BSS: 1614 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1615 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1616 sec_name, sec_idx, 1617 NULL, 1618 sec_desc->data->d_size); 1619 break; 1620 default: 1621 /* skip */ 1622 break; 1623 } 1624 if (err) 1625 return err; 1626 } 1627 return 0; 1628 } 1629 1630 1631 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1632 const void *name) 1633 { 1634 int i; 1635 1636 for (i = 0; i < obj->nr_extern; i++) { 1637 if (strcmp(obj->externs[i].name, name) == 0) 1638 return &obj->externs[i]; 1639 } 1640 return NULL; 1641 } 1642 1643 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1644 char value) 1645 { 1646 switch (ext->kcfg.type) { 1647 case KCFG_BOOL: 1648 if (value == 'm') { 1649 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1650 ext->name, value); 1651 return -EINVAL; 1652 } 1653 *(bool *)ext_val = value == 'y' ? true : false; 1654 break; 1655 case KCFG_TRISTATE: 1656 if (value == 'y') 1657 *(enum libbpf_tristate *)ext_val = TRI_YES; 1658 else if (value == 'm') 1659 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1660 else /* value == 'n' */ 1661 *(enum libbpf_tristate *)ext_val = TRI_NO; 1662 break; 1663 case KCFG_CHAR: 1664 *(char *)ext_val = value; 1665 break; 1666 case KCFG_UNKNOWN: 1667 case KCFG_INT: 1668 case KCFG_CHAR_ARR: 1669 default: 1670 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1671 ext->name, value); 1672 return -EINVAL; 1673 } 1674 ext->is_set = true; 1675 return 0; 1676 } 1677 1678 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1679 const char *value) 1680 { 1681 size_t len; 1682 1683 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1684 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1685 return -EINVAL; 1686 } 1687 1688 len = strlen(value); 1689 if (value[len - 1] != '"') { 1690 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1691 ext->name, value); 1692 return -EINVAL; 1693 } 1694 1695 /* strip quotes */ 1696 len -= 2; 1697 if (len >= ext->kcfg.sz) { 1698 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1699 ext->name, value, len, ext->kcfg.sz - 1); 1700 len = ext->kcfg.sz - 1; 1701 } 1702 memcpy(ext_val, value + 1, len); 1703 ext_val[len] = '\0'; 1704 ext->is_set = true; 1705 return 0; 1706 } 1707 1708 static int parse_u64(const char *value, __u64 *res) 1709 { 1710 char *value_end; 1711 int err; 1712 1713 errno = 0; 1714 *res = strtoull(value, &value_end, 0); 1715 if (errno) { 1716 err = -errno; 1717 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1718 return err; 1719 } 1720 if (*value_end) { 1721 pr_warn("failed to parse '%s' as integer completely\n", value); 1722 return -EINVAL; 1723 } 1724 return 0; 1725 } 1726 1727 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1728 { 1729 int bit_sz = ext->kcfg.sz * 8; 1730 1731 if (ext->kcfg.sz == 8) 1732 return true; 1733 1734 /* Validate that value stored in u64 fits in integer of `ext->sz` 1735 * bytes size without any loss of information. If the target integer 1736 * is signed, we rely on the following limits of integer type of 1737 * Y bits and subsequent transformation: 1738 * 1739 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1740 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1741 * 0 <= X + 2^(Y-1) < 2^Y 1742 * 1743 * For unsigned target integer, check that all the (64 - Y) bits are 1744 * zero. 1745 */ 1746 if (ext->kcfg.is_signed) 1747 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1748 else 1749 return (v >> bit_sz) == 0; 1750 } 1751 1752 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1753 __u64 value) 1754 { 1755 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1756 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1757 ext->name, (unsigned long long)value); 1758 return -EINVAL; 1759 } 1760 if (!is_kcfg_value_in_range(ext, value)) { 1761 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1762 ext->name, (unsigned long long)value, ext->kcfg.sz); 1763 return -ERANGE; 1764 } 1765 switch (ext->kcfg.sz) { 1766 case 1: *(__u8 *)ext_val = value; break; 1767 case 2: *(__u16 *)ext_val = value; break; 1768 case 4: *(__u32 *)ext_val = value; break; 1769 case 8: *(__u64 *)ext_val = value; break; 1770 default: 1771 return -EINVAL; 1772 } 1773 ext->is_set = true; 1774 return 0; 1775 } 1776 1777 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1778 char *buf, void *data) 1779 { 1780 struct extern_desc *ext; 1781 char *sep, *value; 1782 int len, err = 0; 1783 void *ext_val; 1784 __u64 num; 1785 1786 if (!str_has_pfx(buf, "CONFIG_")) 1787 return 0; 1788 1789 sep = strchr(buf, '='); 1790 if (!sep) { 1791 pr_warn("failed to parse '%s': no separator\n", buf); 1792 return -EINVAL; 1793 } 1794 1795 /* Trim ending '\n' */ 1796 len = strlen(buf); 1797 if (buf[len - 1] == '\n') 1798 buf[len - 1] = '\0'; 1799 /* Split on '=' and ensure that a value is present. */ 1800 *sep = '\0'; 1801 if (!sep[1]) { 1802 *sep = '='; 1803 pr_warn("failed to parse '%s': no value\n", buf); 1804 return -EINVAL; 1805 } 1806 1807 ext = find_extern_by_name(obj, buf); 1808 if (!ext || ext->is_set) 1809 return 0; 1810 1811 ext_val = data + ext->kcfg.data_off; 1812 value = sep + 1; 1813 1814 switch (*value) { 1815 case 'y': case 'n': case 'm': 1816 err = set_kcfg_value_tri(ext, ext_val, *value); 1817 break; 1818 case '"': 1819 err = set_kcfg_value_str(ext, ext_val, value); 1820 break; 1821 default: 1822 /* assume integer */ 1823 err = parse_u64(value, &num); 1824 if (err) { 1825 pr_warn("extern (kcfg) %s=%s should be integer\n", 1826 ext->name, value); 1827 return err; 1828 } 1829 err = set_kcfg_value_num(ext, ext_val, num); 1830 break; 1831 } 1832 if (err) 1833 return err; 1834 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1835 return 0; 1836 } 1837 1838 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1839 { 1840 char buf[PATH_MAX]; 1841 struct utsname uts; 1842 int len, err = 0; 1843 gzFile file; 1844 1845 uname(&uts); 1846 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1847 if (len < 0) 1848 return -EINVAL; 1849 else if (len >= PATH_MAX) 1850 return -ENAMETOOLONG; 1851 1852 /* gzopen also accepts uncompressed files. */ 1853 file = gzopen(buf, "r"); 1854 if (!file) 1855 file = gzopen("/proc/config.gz", "r"); 1856 1857 if (!file) { 1858 pr_warn("failed to open system Kconfig\n"); 1859 return -ENOENT; 1860 } 1861 1862 while (gzgets(file, buf, sizeof(buf))) { 1863 err = bpf_object__process_kconfig_line(obj, buf, data); 1864 if (err) { 1865 pr_warn("error parsing system Kconfig line '%s': %d\n", 1866 buf, err); 1867 goto out; 1868 } 1869 } 1870 1871 out: 1872 gzclose(file); 1873 return err; 1874 } 1875 1876 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1877 const char *config, void *data) 1878 { 1879 char buf[PATH_MAX]; 1880 int err = 0; 1881 FILE *file; 1882 1883 file = fmemopen((void *)config, strlen(config), "r"); 1884 if (!file) { 1885 err = -errno; 1886 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1887 return err; 1888 } 1889 1890 while (fgets(buf, sizeof(buf), file)) { 1891 err = bpf_object__process_kconfig_line(obj, buf, data); 1892 if (err) { 1893 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1894 buf, err); 1895 break; 1896 } 1897 } 1898 1899 fclose(file); 1900 return err; 1901 } 1902 1903 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1904 { 1905 struct extern_desc *last_ext = NULL, *ext; 1906 size_t map_sz; 1907 int i, err; 1908 1909 for (i = 0; i < obj->nr_extern; i++) { 1910 ext = &obj->externs[i]; 1911 if (ext->type == EXT_KCFG) 1912 last_ext = ext; 1913 } 1914 1915 if (!last_ext) 1916 return 0; 1917 1918 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1919 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1920 ".kconfig", obj->efile.symbols_shndx, 1921 NULL, map_sz); 1922 if (err) 1923 return err; 1924 1925 obj->kconfig_map_idx = obj->nr_maps - 1; 1926 1927 return 0; 1928 } 1929 1930 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1931 { 1932 Elf_Data *symbols = obj->efile.symbols; 1933 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1934 Elf_Data *data = NULL; 1935 Elf_Scn *scn; 1936 1937 if (obj->efile.maps_shndx < 0) 1938 return 0; 1939 1940 if (!symbols) 1941 return -EINVAL; 1942 1943 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1944 data = elf_sec_data(obj, scn); 1945 if (!scn || !data) { 1946 pr_warn("elf: failed to get legacy map definitions for %s\n", 1947 obj->path); 1948 return -EINVAL; 1949 } 1950 1951 /* 1952 * Count number of maps. Each map has a name. 1953 * Array of maps is not supported: only the first element is 1954 * considered. 1955 * 1956 * TODO: Detect array of map and report error. 1957 */ 1958 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1959 for (i = 0; i < nr_syms; i++) { 1960 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1961 1962 if (sym->st_shndx != obj->efile.maps_shndx) 1963 continue; 1964 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1965 continue; 1966 nr_maps++; 1967 } 1968 /* Assume equally sized map definitions */ 1969 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1970 nr_maps, data->d_size, obj->path); 1971 1972 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1973 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1974 obj->path); 1975 return -EINVAL; 1976 } 1977 map_def_sz = data->d_size / nr_maps; 1978 1979 /* Fill obj->maps using data in "maps" section. */ 1980 for (i = 0; i < nr_syms; i++) { 1981 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1982 const char *map_name; 1983 struct bpf_map_def *def; 1984 struct bpf_map *map; 1985 1986 if (sym->st_shndx != obj->efile.maps_shndx) 1987 continue; 1988 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1989 continue; 1990 1991 map = bpf_object__add_map(obj); 1992 if (IS_ERR(map)) 1993 return PTR_ERR(map); 1994 1995 map_name = elf_sym_str(obj, sym->st_name); 1996 if (!map_name) { 1997 pr_warn("failed to get map #%d name sym string for obj %s\n", 1998 i, obj->path); 1999 return -LIBBPF_ERRNO__FORMAT; 2000 } 2001 2002 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2003 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2004 return -ENOTSUP; 2005 } 2006 2007 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2008 map->sec_idx = sym->st_shndx; 2009 map->sec_offset = sym->st_value; 2010 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2011 map_name, map->sec_idx, map->sec_offset); 2012 if (sym->st_value + map_def_sz > data->d_size) { 2013 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2014 obj->path, map_name); 2015 return -EINVAL; 2016 } 2017 2018 map->name = strdup(map_name); 2019 if (!map->name) { 2020 pr_warn("map '%s': failed to alloc map name\n", map_name); 2021 return -ENOMEM; 2022 } 2023 pr_debug("map %d is \"%s\"\n", i, map->name); 2024 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2025 /* 2026 * If the definition of the map in the object file fits in 2027 * bpf_map_def, copy it. Any extra fields in our version 2028 * of bpf_map_def will default to zero as a result of the 2029 * calloc above. 2030 */ 2031 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2032 memcpy(&map->def, def, map_def_sz); 2033 } else { 2034 /* 2035 * Here the map structure being read is bigger than what 2036 * we expect, truncate if the excess bits are all zero. 2037 * If they are not zero, reject this map as 2038 * incompatible. 2039 */ 2040 char *b; 2041 2042 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2043 b < ((char *)def) + map_def_sz; b++) { 2044 if (*b != 0) { 2045 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2046 obj->path, map_name); 2047 if (strict) 2048 return -EINVAL; 2049 } 2050 } 2051 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2052 } 2053 } 2054 return 0; 2055 } 2056 2057 const struct btf_type * 2058 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2059 { 2060 const struct btf_type *t = btf__type_by_id(btf, id); 2061 2062 if (res_id) 2063 *res_id = id; 2064 2065 while (btf_is_mod(t) || btf_is_typedef(t)) { 2066 if (res_id) 2067 *res_id = t->type; 2068 t = btf__type_by_id(btf, t->type); 2069 } 2070 2071 return t; 2072 } 2073 2074 static const struct btf_type * 2075 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2076 { 2077 const struct btf_type *t; 2078 2079 t = skip_mods_and_typedefs(btf, id, NULL); 2080 if (!btf_is_ptr(t)) 2081 return NULL; 2082 2083 t = skip_mods_and_typedefs(btf, t->type, res_id); 2084 2085 return btf_is_func_proto(t) ? t : NULL; 2086 } 2087 2088 static const char *__btf_kind_str(__u16 kind) 2089 { 2090 switch (kind) { 2091 case BTF_KIND_UNKN: return "void"; 2092 case BTF_KIND_INT: return "int"; 2093 case BTF_KIND_PTR: return "ptr"; 2094 case BTF_KIND_ARRAY: return "array"; 2095 case BTF_KIND_STRUCT: return "struct"; 2096 case BTF_KIND_UNION: return "union"; 2097 case BTF_KIND_ENUM: return "enum"; 2098 case BTF_KIND_FWD: return "fwd"; 2099 case BTF_KIND_TYPEDEF: return "typedef"; 2100 case BTF_KIND_VOLATILE: return "volatile"; 2101 case BTF_KIND_CONST: return "const"; 2102 case BTF_KIND_RESTRICT: return "restrict"; 2103 case BTF_KIND_FUNC: return "func"; 2104 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2105 case BTF_KIND_VAR: return "var"; 2106 case BTF_KIND_DATASEC: return "datasec"; 2107 case BTF_KIND_FLOAT: return "float"; 2108 case BTF_KIND_DECL_TAG: return "decl_tag"; 2109 case BTF_KIND_TYPE_TAG: return "type_tag"; 2110 default: return "unknown"; 2111 } 2112 } 2113 2114 const char *btf_kind_str(const struct btf_type *t) 2115 { 2116 return __btf_kind_str(btf_kind(t)); 2117 } 2118 2119 /* 2120 * Fetch integer attribute of BTF map definition. Such attributes are 2121 * represented using a pointer to an array, in which dimensionality of array 2122 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2123 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2124 * type definition, while using only sizeof(void *) space in ELF data section. 2125 */ 2126 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2127 const struct btf_member *m, __u32 *res) 2128 { 2129 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2130 const char *name = btf__name_by_offset(btf, m->name_off); 2131 const struct btf_array *arr_info; 2132 const struct btf_type *arr_t; 2133 2134 if (!btf_is_ptr(t)) { 2135 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2136 map_name, name, btf_kind_str(t)); 2137 return false; 2138 } 2139 2140 arr_t = btf__type_by_id(btf, t->type); 2141 if (!arr_t) { 2142 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2143 map_name, name, t->type); 2144 return false; 2145 } 2146 if (!btf_is_array(arr_t)) { 2147 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2148 map_name, name, btf_kind_str(arr_t)); 2149 return false; 2150 } 2151 arr_info = btf_array(arr_t); 2152 *res = arr_info->nelems; 2153 return true; 2154 } 2155 2156 static int build_map_pin_path(struct bpf_map *map, const char *path) 2157 { 2158 char buf[PATH_MAX]; 2159 int len; 2160 2161 if (!path) 2162 path = "/sys/fs/bpf"; 2163 2164 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2165 if (len < 0) 2166 return -EINVAL; 2167 else if (len >= PATH_MAX) 2168 return -ENAMETOOLONG; 2169 2170 return bpf_map__set_pin_path(map, buf); 2171 } 2172 2173 int parse_btf_map_def(const char *map_name, struct btf *btf, 2174 const struct btf_type *def_t, bool strict, 2175 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2176 { 2177 const struct btf_type *t; 2178 const struct btf_member *m; 2179 bool is_inner = inner_def == NULL; 2180 int vlen, i; 2181 2182 vlen = btf_vlen(def_t); 2183 m = btf_members(def_t); 2184 for (i = 0; i < vlen; i++, m++) { 2185 const char *name = btf__name_by_offset(btf, m->name_off); 2186 2187 if (!name) { 2188 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2189 return -EINVAL; 2190 } 2191 if (strcmp(name, "type") == 0) { 2192 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2193 return -EINVAL; 2194 map_def->parts |= MAP_DEF_MAP_TYPE; 2195 } else if (strcmp(name, "max_entries") == 0) { 2196 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2197 return -EINVAL; 2198 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2199 } else if (strcmp(name, "map_flags") == 0) { 2200 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2201 return -EINVAL; 2202 map_def->parts |= MAP_DEF_MAP_FLAGS; 2203 } else if (strcmp(name, "numa_node") == 0) { 2204 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2205 return -EINVAL; 2206 map_def->parts |= MAP_DEF_NUMA_NODE; 2207 } else if (strcmp(name, "key_size") == 0) { 2208 __u32 sz; 2209 2210 if (!get_map_field_int(map_name, btf, m, &sz)) 2211 return -EINVAL; 2212 if (map_def->key_size && map_def->key_size != sz) { 2213 pr_warn("map '%s': conflicting key size %u != %u.\n", 2214 map_name, map_def->key_size, sz); 2215 return -EINVAL; 2216 } 2217 map_def->key_size = sz; 2218 map_def->parts |= MAP_DEF_KEY_SIZE; 2219 } else if (strcmp(name, "key") == 0) { 2220 __s64 sz; 2221 2222 t = btf__type_by_id(btf, m->type); 2223 if (!t) { 2224 pr_warn("map '%s': key type [%d] not found.\n", 2225 map_name, m->type); 2226 return -EINVAL; 2227 } 2228 if (!btf_is_ptr(t)) { 2229 pr_warn("map '%s': key spec is not PTR: %s.\n", 2230 map_name, btf_kind_str(t)); 2231 return -EINVAL; 2232 } 2233 sz = btf__resolve_size(btf, t->type); 2234 if (sz < 0) { 2235 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2236 map_name, t->type, (ssize_t)sz); 2237 return sz; 2238 } 2239 if (map_def->key_size && map_def->key_size != sz) { 2240 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2241 map_name, map_def->key_size, (ssize_t)sz); 2242 return -EINVAL; 2243 } 2244 map_def->key_size = sz; 2245 map_def->key_type_id = t->type; 2246 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2247 } else if (strcmp(name, "value_size") == 0) { 2248 __u32 sz; 2249 2250 if (!get_map_field_int(map_name, btf, m, &sz)) 2251 return -EINVAL; 2252 if (map_def->value_size && map_def->value_size != sz) { 2253 pr_warn("map '%s': conflicting value size %u != %u.\n", 2254 map_name, map_def->value_size, sz); 2255 return -EINVAL; 2256 } 2257 map_def->value_size = sz; 2258 map_def->parts |= MAP_DEF_VALUE_SIZE; 2259 } else if (strcmp(name, "value") == 0) { 2260 __s64 sz; 2261 2262 t = btf__type_by_id(btf, m->type); 2263 if (!t) { 2264 pr_warn("map '%s': value type [%d] not found.\n", 2265 map_name, m->type); 2266 return -EINVAL; 2267 } 2268 if (!btf_is_ptr(t)) { 2269 pr_warn("map '%s': value spec is not PTR: %s.\n", 2270 map_name, btf_kind_str(t)); 2271 return -EINVAL; 2272 } 2273 sz = btf__resolve_size(btf, t->type); 2274 if (sz < 0) { 2275 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2276 map_name, t->type, (ssize_t)sz); 2277 return sz; 2278 } 2279 if (map_def->value_size && map_def->value_size != sz) { 2280 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2281 map_name, map_def->value_size, (ssize_t)sz); 2282 return -EINVAL; 2283 } 2284 map_def->value_size = sz; 2285 map_def->value_type_id = t->type; 2286 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2287 } 2288 else if (strcmp(name, "values") == 0) { 2289 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2290 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2291 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2292 char inner_map_name[128]; 2293 int err; 2294 2295 if (is_inner) { 2296 pr_warn("map '%s': multi-level inner maps not supported.\n", 2297 map_name); 2298 return -ENOTSUP; 2299 } 2300 if (i != vlen - 1) { 2301 pr_warn("map '%s': '%s' member should be last.\n", 2302 map_name, name); 2303 return -EINVAL; 2304 } 2305 if (!is_map_in_map && !is_prog_array) { 2306 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2307 map_name); 2308 return -ENOTSUP; 2309 } 2310 if (map_def->value_size && map_def->value_size != 4) { 2311 pr_warn("map '%s': conflicting value size %u != 4.\n", 2312 map_name, map_def->value_size); 2313 return -EINVAL; 2314 } 2315 map_def->value_size = 4; 2316 t = btf__type_by_id(btf, m->type); 2317 if (!t) { 2318 pr_warn("map '%s': %s type [%d] not found.\n", 2319 map_name, desc, m->type); 2320 return -EINVAL; 2321 } 2322 if (!btf_is_array(t) || btf_array(t)->nelems) { 2323 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2324 map_name, desc); 2325 return -EINVAL; 2326 } 2327 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2328 if (!btf_is_ptr(t)) { 2329 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2330 map_name, desc, btf_kind_str(t)); 2331 return -EINVAL; 2332 } 2333 t = skip_mods_and_typedefs(btf, t->type, NULL); 2334 if (is_prog_array) { 2335 if (!btf_is_func_proto(t)) { 2336 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2337 map_name, btf_kind_str(t)); 2338 return -EINVAL; 2339 } 2340 continue; 2341 } 2342 if (!btf_is_struct(t)) { 2343 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2344 map_name, btf_kind_str(t)); 2345 return -EINVAL; 2346 } 2347 2348 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2349 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2350 if (err) 2351 return err; 2352 2353 map_def->parts |= MAP_DEF_INNER_MAP; 2354 } else if (strcmp(name, "pinning") == 0) { 2355 __u32 val; 2356 2357 if (is_inner) { 2358 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2359 return -EINVAL; 2360 } 2361 if (!get_map_field_int(map_name, btf, m, &val)) 2362 return -EINVAL; 2363 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2364 pr_warn("map '%s': invalid pinning value %u.\n", 2365 map_name, val); 2366 return -EINVAL; 2367 } 2368 map_def->pinning = val; 2369 map_def->parts |= MAP_DEF_PINNING; 2370 } else if (strcmp(name, "map_extra") == 0) { 2371 __u32 map_extra; 2372 2373 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2374 return -EINVAL; 2375 map_def->map_extra = map_extra; 2376 map_def->parts |= MAP_DEF_MAP_EXTRA; 2377 } else { 2378 if (strict) { 2379 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2380 return -ENOTSUP; 2381 } 2382 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2383 } 2384 } 2385 2386 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2387 pr_warn("map '%s': map type isn't specified.\n", map_name); 2388 return -EINVAL; 2389 } 2390 2391 return 0; 2392 } 2393 2394 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2395 { 2396 map->def.type = def->map_type; 2397 map->def.key_size = def->key_size; 2398 map->def.value_size = def->value_size; 2399 map->def.max_entries = def->max_entries; 2400 map->def.map_flags = def->map_flags; 2401 map->map_extra = def->map_extra; 2402 2403 map->numa_node = def->numa_node; 2404 map->btf_key_type_id = def->key_type_id; 2405 map->btf_value_type_id = def->value_type_id; 2406 2407 if (def->parts & MAP_DEF_MAP_TYPE) 2408 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2409 2410 if (def->parts & MAP_DEF_KEY_TYPE) 2411 pr_debug("map '%s': found key [%u], sz = %u.\n", 2412 map->name, def->key_type_id, def->key_size); 2413 else if (def->parts & MAP_DEF_KEY_SIZE) 2414 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2415 2416 if (def->parts & MAP_DEF_VALUE_TYPE) 2417 pr_debug("map '%s': found value [%u], sz = %u.\n", 2418 map->name, def->value_type_id, def->value_size); 2419 else if (def->parts & MAP_DEF_VALUE_SIZE) 2420 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2421 2422 if (def->parts & MAP_DEF_MAX_ENTRIES) 2423 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2424 if (def->parts & MAP_DEF_MAP_FLAGS) 2425 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2426 if (def->parts & MAP_DEF_MAP_EXTRA) 2427 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2428 (unsigned long long)def->map_extra); 2429 if (def->parts & MAP_DEF_PINNING) 2430 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2431 if (def->parts & MAP_DEF_NUMA_NODE) 2432 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2433 2434 if (def->parts & MAP_DEF_INNER_MAP) 2435 pr_debug("map '%s': found inner map definition.\n", map->name); 2436 } 2437 2438 static const char *btf_var_linkage_str(__u32 linkage) 2439 { 2440 switch (linkage) { 2441 case BTF_VAR_STATIC: return "static"; 2442 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2443 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2444 default: return "unknown"; 2445 } 2446 } 2447 2448 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2449 const struct btf_type *sec, 2450 int var_idx, int sec_idx, 2451 const Elf_Data *data, bool strict, 2452 const char *pin_root_path) 2453 { 2454 struct btf_map_def map_def = {}, inner_def = {}; 2455 const struct btf_type *var, *def; 2456 const struct btf_var_secinfo *vi; 2457 const struct btf_var *var_extra; 2458 const char *map_name; 2459 struct bpf_map *map; 2460 int err; 2461 2462 vi = btf_var_secinfos(sec) + var_idx; 2463 var = btf__type_by_id(obj->btf, vi->type); 2464 var_extra = btf_var(var); 2465 map_name = btf__name_by_offset(obj->btf, var->name_off); 2466 2467 if (map_name == NULL || map_name[0] == '\0') { 2468 pr_warn("map #%d: empty name.\n", var_idx); 2469 return -EINVAL; 2470 } 2471 if ((__u64)vi->offset + vi->size > data->d_size) { 2472 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2473 return -EINVAL; 2474 } 2475 if (!btf_is_var(var)) { 2476 pr_warn("map '%s': unexpected var kind %s.\n", 2477 map_name, btf_kind_str(var)); 2478 return -EINVAL; 2479 } 2480 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2481 pr_warn("map '%s': unsupported map linkage %s.\n", 2482 map_name, btf_var_linkage_str(var_extra->linkage)); 2483 return -EOPNOTSUPP; 2484 } 2485 2486 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2487 if (!btf_is_struct(def)) { 2488 pr_warn("map '%s': unexpected def kind %s.\n", 2489 map_name, btf_kind_str(var)); 2490 return -EINVAL; 2491 } 2492 if (def->size > vi->size) { 2493 pr_warn("map '%s': invalid def size.\n", map_name); 2494 return -EINVAL; 2495 } 2496 2497 map = bpf_object__add_map(obj); 2498 if (IS_ERR(map)) 2499 return PTR_ERR(map); 2500 map->name = strdup(map_name); 2501 if (!map->name) { 2502 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2503 return -ENOMEM; 2504 } 2505 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2506 map->def.type = BPF_MAP_TYPE_UNSPEC; 2507 map->sec_idx = sec_idx; 2508 map->sec_offset = vi->offset; 2509 map->btf_var_idx = var_idx; 2510 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2511 map_name, map->sec_idx, map->sec_offset); 2512 2513 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2514 if (err) 2515 return err; 2516 2517 fill_map_from_def(map, &map_def); 2518 2519 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2520 err = build_map_pin_path(map, pin_root_path); 2521 if (err) { 2522 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2523 return err; 2524 } 2525 } 2526 2527 if (map_def.parts & MAP_DEF_INNER_MAP) { 2528 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2529 if (!map->inner_map) 2530 return -ENOMEM; 2531 map->inner_map->fd = -1; 2532 map->inner_map->sec_idx = sec_idx; 2533 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2534 if (!map->inner_map->name) 2535 return -ENOMEM; 2536 sprintf(map->inner_map->name, "%s.inner", map_name); 2537 2538 fill_map_from_def(map->inner_map, &inner_def); 2539 } 2540 2541 return 0; 2542 } 2543 2544 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2545 const char *pin_root_path) 2546 { 2547 const struct btf_type *sec = NULL; 2548 int nr_types, i, vlen, err; 2549 const struct btf_type *t; 2550 const char *name; 2551 Elf_Data *data; 2552 Elf_Scn *scn; 2553 2554 if (obj->efile.btf_maps_shndx < 0) 2555 return 0; 2556 2557 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2558 data = elf_sec_data(obj, scn); 2559 if (!scn || !data) { 2560 pr_warn("elf: failed to get %s map definitions for %s\n", 2561 MAPS_ELF_SEC, obj->path); 2562 return -EINVAL; 2563 } 2564 2565 nr_types = btf__type_cnt(obj->btf); 2566 for (i = 1; i < nr_types; i++) { 2567 t = btf__type_by_id(obj->btf, i); 2568 if (!btf_is_datasec(t)) 2569 continue; 2570 name = btf__name_by_offset(obj->btf, t->name_off); 2571 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2572 sec = t; 2573 obj->efile.btf_maps_sec_btf_id = i; 2574 break; 2575 } 2576 } 2577 2578 if (!sec) { 2579 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2580 return -ENOENT; 2581 } 2582 2583 vlen = btf_vlen(sec); 2584 for (i = 0; i < vlen; i++) { 2585 err = bpf_object__init_user_btf_map(obj, sec, i, 2586 obj->efile.btf_maps_shndx, 2587 data, strict, 2588 pin_root_path); 2589 if (err) 2590 return err; 2591 } 2592 2593 return 0; 2594 } 2595 2596 static int bpf_object__init_maps(struct bpf_object *obj, 2597 const struct bpf_object_open_opts *opts) 2598 { 2599 const char *pin_root_path; 2600 bool strict; 2601 int err; 2602 2603 strict = !OPTS_GET(opts, relaxed_maps, false); 2604 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2605 2606 err = bpf_object__init_user_maps(obj, strict); 2607 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2608 err = err ?: bpf_object__init_global_data_maps(obj); 2609 err = err ?: bpf_object__init_kconfig_map(obj); 2610 err = err ?: bpf_object__init_struct_ops_maps(obj); 2611 2612 return err; 2613 } 2614 2615 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2616 { 2617 Elf64_Shdr *sh; 2618 2619 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2620 if (!sh) 2621 return false; 2622 2623 return sh->sh_flags & SHF_EXECINSTR; 2624 } 2625 2626 static bool btf_needs_sanitization(struct bpf_object *obj) 2627 { 2628 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2629 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2630 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2631 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2632 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2633 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2634 2635 return !has_func || !has_datasec || !has_func_global || !has_float || 2636 !has_decl_tag || !has_type_tag; 2637 } 2638 2639 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2640 { 2641 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2642 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2643 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2644 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2645 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2646 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2647 struct btf_type *t; 2648 int i, j, vlen; 2649 2650 for (i = 1; i < btf__type_cnt(btf); i++) { 2651 t = (struct btf_type *)btf__type_by_id(btf, i); 2652 2653 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2654 /* replace VAR/DECL_TAG with INT */ 2655 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2656 /* 2657 * using size = 1 is the safest choice, 4 will be too 2658 * big and cause kernel BTF validation failure if 2659 * original variable took less than 4 bytes 2660 */ 2661 t->size = 1; 2662 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2663 } else if (!has_datasec && btf_is_datasec(t)) { 2664 /* replace DATASEC with STRUCT */ 2665 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2666 struct btf_member *m = btf_members(t); 2667 struct btf_type *vt; 2668 char *name; 2669 2670 name = (char *)btf__name_by_offset(btf, t->name_off); 2671 while (*name) { 2672 if (*name == '.') 2673 *name = '_'; 2674 name++; 2675 } 2676 2677 vlen = btf_vlen(t); 2678 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2679 for (j = 0; j < vlen; j++, v++, m++) { 2680 /* order of field assignments is important */ 2681 m->offset = v->offset * 8; 2682 m->type = v->type; 2683 /* preserve variable name as member name */ 2684 vt = (void *)btf__type_by_id(btf, v->type); 2685 m->name_off = vt->name_off; 2686 } 2687 } else if (!has_func && btf_is_func_proto(t)) { 2688 /* replace FUNC_PROTO with ENUM */ 2689 vlen = btf_vlen(t); 2690 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2691 t->size = sizeof(__u32); /* kernel enforced */ 2692 } else if (!has_func && btf_is_func(t)) { 2693 /* replace FUNC with TYPEDEF */ 2694 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2695 } else if (!has_func_global && btf_is_func(t)) { 2696 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2697 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2698 } else if (!has_float && btf_is_float(t)) { 2699 /* replace FLOAT with an equally-sized empty STRUCT; 2700 * since C compilers do not accept e.g. "float" as a 2701 * valid struct name, make it anonymous 2702 */ 2703 t->name_off = 0; 2704 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2705 } else if (!has_type_tag && btf_is_type_tag(t)) { 2706 /* replace TYPE_TAG with a CONST */ 2707 t->name_off = 0; 2708 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2709 } 2710 } 2711 } 2712 2713 static bool libbpf_needs_btf(const struct bpf_object *obj) 2714 { 2715 return obj->efile.btf_maps_shndx >= 0 || 2716 obj->efile.st_ops_shndx >= 0 || 2717 obj->nr_extern > 0; 2718 } 2719 2720 static bool kernel_needs_btf(const struct bpf_object *obj) 2721 { 2722 return obj->efile.st_ops_shndx >= 0; 2723 } 2724 2725 static int bpf_object__init_btf(struct bpf_object *obj, 2726 Elf_Data *btf_data, 2727 Elf_Data *btf_ext_data) 2728 { 2729 int err = -ENOENT; 2730 2731 if (btf_data) { 2732 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2733 err = libbpf_get_error(obj->btf); 2734 if (err) { 2735 obj->btf = NULL; 2736 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2737 goto out; 2738 } 2739 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2740 btf__set_pointer_size(obj->btf, 8); 2741 } 2742 if (btf_ext_data) { 2743 if (!obj->btf) { 2744 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2745 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2746 goto out; 2747 } 2748 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2749 err = libbpf_get_error(obj->btf_ext); 2750 if (err) { 2751 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2752 BTF_EXT_ELF_SEC, err); 2753 obj->btf_ext = NULL; 2754 goto out; 2755 } 2756 } 2757 out: 2758 if (err && libbpf_needs_btf(obj)) { 2759 pr_warn("BTF is required, but is missing or corrupted.\n"); 2760 return err; 2761 } 2762 return 0; 2763 } 2764 2765 static int compare_vsi_off(const void *_a, const void *_b) 2766 { 2767 const struct btf_var_secinfo *a = _a; 2768 const struct btf_var_secinfo *b = _b; 2769 2770 return a->offset - b->offset; 2771 } 2772 2773 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2774 struct btf_type *t) 2775 { 2776 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2777 const char *name = btf__name_by_offset(btf, t->name_off); 2778 const struct btf_type *t_var; 2779 struct btf_var_secinfo *vsi; 2780 const struct btf_var *var; 2781 int ret; 2782 2783 if (!name) { 2784 pr_debug("No name found in string section for DATASEC kind.\n"); 2785 return -ENOENT; 2786 } 2787 2788 /* .extern datasec size and var offsets were set correctly during 2789 * extern collection step, so just skip straight to sorting variables 2790 */ 2791 if (t->size) 2792 goto sort_vars; 2793 2794 ret = find_elf_sec_sz(obj, name, &size); 2795 if (ret || !size || (t->size && t->size != size)) { 2796 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2797 return -ENOENT; 2798 } 2799 2800 t->size = size; 2801 2802 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2803 t_var = btf__type_by_id(btf, vsi->type); 2804 if (!t_var || !btf_is_var(t_var)) { 2805 pr_debug("Non-VAR type seen in section %s\n", name); 2806 return -EINVAL; 2807 } 2808 2809 var = btf_var(t_var); 2810 if (var->linkage == BTF_VAR_STATIC) 2811 continue; 2812 2813 name = btf__name_by_offset(btf, t_var->name_off); 2814 if (!name) { 2815 pr_debug("No name found in string section for VAR kind\n"); 2816 return -ENOENT; 2817 } 2818 2819 ret = find_elf_var_offset(obj, name, &off); 2820 if (ret) { 2821 pr_debug("No offset found in symbol table for VAR %s\n", 2822 name); 2823 return -ENOENT; 2824 } 2825 2826 vsi->offset = off; 2827 } 2828 2829 sort_vars: 2830 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2831 return 0; 2832 } 2833 2834 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2835 { 2836 int err = 0; 2837 __u32 i, n = btf__type_cnt(btf); 2838 2839 for (i = 1; i < n; i++) { 2840 struct btf_type *t = btf_type_by_id(btf, i); 2841 2842 /* Loader needs to fix up some of the things compiler 2843 * couldn't get its hands on while emitting BTF. This 2844 * is section size and global variable offset. We use 2845 * the info from the ELF itself for this purpose. 2846 */ 2847 if (btf_is_datasec(t)) { 2848 err = btf_fixup_datasec(obj, btf, t); 2849 if (err) 2850 break; 2851 } 2852 } 2853 2854 return libbpf_err(err); 2855 } 2856 2857 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2858 { 2859 return btf_finalize_data(obj, btf); 2860 } 2861 2862 static int bpf_object__finalize_btf(struct bpf_object *obj) 2863 { 2864 int err; 2865 2866 if (!obj->btf) 2867 return 0; 2868 2869 err = btf_finalize_data(obj, obj->btf); 2870 if (err) { 2871 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2872 return err; 2873 } 2874 2875 return 0; 2876 } 2877 2878 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2879 { 2880 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2881 prog->type == BPF_PROG_TYPE_LSM) 2882 return true; 2883 2884 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2885 * also need vmlinux BTF 2886 */ 2887 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2888 return true; 2889 2890 return false; 2891 } 2892 2893 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2894 { 2895 struct bpf_program *prog; 2896 int i; 2897 2898 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2899 * is not specified 2900 */ 2901 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2902 return true; 2903 2904 /* Support for typed ksyms needs kernel BTF */ 2905 for (i = 0; i < obj->nr_extern; i++) { 2906 const struct extern_desc *ext; 2907 2908 ext = &obj->externs[i]; 2909 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2910 return true; 2911 } 2912 2913 bpf_object__for_each_program(prog, obj) { 2914 if (!prog->load) 2915 continue; 2916 if (prog_needs_vmlinux_btf(prog)) 2917 return true; 2918 } 2919 2920 return false; 2921 } 2922 2923 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2924 { 2925 int err; 2926 2927 /* btf_vmlinux could be loaded earlier */ 2928 if (obj->btf_vmlinux || obj->gen_loader) 2929 return 0; 2930 2931 if (!force && !obj_needs_vmlinux_btf(obj)) 2932 return 0; 2933 2934 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2935 err = libbpf_get_error(obj->btf_vmlinux); 2936 if (err) { 2937 pr_warn("Error loading vmlinux BTF: %d\n", err); 2938 obj->btf_vmlinux = NULL; 2939 return err; 2940 } 2941 return 0; 2942 } 2943 2944 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2945 { 2946 struct btf *kern_btf = obj->btf; 2947 bool btf_mandatory, sanitize; 2948 int i, err = 0; 2949 2950 if (!obj->btf) 2951 return 0; 2952 2953 if (!kernel_supports(obj, FEAT_BTF)) { 2954 if (kernel_needs_btf(obj)) { 2955 err = -EOPNOTSUPP; 2956 goto report; 2957 } 2958 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2959 return 0; 2960 } 2961 2962 /* Even though some subprogs are global/weak, user might prefer more 2963 * permissive BPF verification process that BPF verifier performs for 2964 * static functions, taking into account more context from the caller 2965 * functions. In such case, they need to mark such subprogs with 2966 * __attribute__((visibility("hidden"))) and libbpf will adjust 2967 * corresponding FUNC BTF type to be marked as static and trigger more 2968 * involved BPF verification process. 2969 */ 2970 for (i = 0; i < obj->nr_programs; i++) { 2971 struct bpf_program *prog = &obj->programs[i]; 2972 struct btf_type *t; 2973 const char *name; 2974 int j, n; 2975 2976 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2977 continue; 2978 2979 n = btf__type_cnt(obj->btf); 2980 for (j = 1; j < n; j++) { 2981 t = btf_type_by_id(obj->btf, j); 2982 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2983 continue; 2984 2985 name = btf__str_by_offset(obj->btf, t->name_off); 2986 if (strcmp(name, prog->name) != 0) 2987 continue; 2988 2989 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2990 break; 2991 } 2992 } 2993 2994 sanitize = btf_needs_sanitization(obj); 2995 if (sanitize) { 2996 const void *raw_data; 2997 __u32 sz; 2998 2999 /* clone BTF to sanitize a copy and leave the original intact */ 3000 raw_data = btf__raw_data(obj->btf, &sz); 3001 kern_btf = btf__new(raw_data, sz); 3002 err = libbpf_get_error(kern_btf); 3003 if (err) 3004 return err; 3005 3006 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3007 btf__set_pointer_size(obj->btf, 8); 3008 bpf_object__sanitize_btf(obj, kern_btf); 3009 } 3010 3011 if (obj->gen_loader) { 3012 __u32 raw_size = 0; 3013 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3014 3015 if (!raw_data) 3016 return -ENOMEM; 3017 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3018 /* Pretend to have valid FD to pass various fd >= 0 checks. 3019 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3020 */ 3021 btf__set_fd(kern_btf, 0); 3022 } else { 3023 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3024 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3025 obj->log_level ? 1 : 0); 3026 } 3027 if (sanitize) { 3028 if (!err) { 3029 /* move fd to libbpf's BTF */ 3030 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3031 btf__set_fd(kern_btf, -1); 3032 } 3033 btf__free(kern_btf); 3034 } 3035 report: 3036 if (err) { 3037 btf_mandatory = kernel_needs_btf(obj); 3038 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3039 btf_mandatory ? "BTF is mandatory, can't proceed." 3040 : "BTF is optional, ignoring."); 3041 if (!btf_mandatory) 3042 err = 0; 3043 } 3044 return err; 3045 } 3046 3047 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3048 { 3049 const char *name; 3050 3051 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3052 if (!name) { 3053 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3054 off, obj->path, elf_errmsg(-1)); 3055 return NULL; 3056 } 3057 3058 return name; 3059 } 3060 3061 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3062 { 3063 const char *name; 3064 3065 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3066 if (!name) { 3067 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3068 off, obj->path, elf_errmsg(-1)); 3069 return NULL; 3070 } 3071 3072 return name; 3073 } 3074 3075 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3076 { 3077 Elf_Scn *scn; 3078 3079 scn = elf_getscn(obj->efile.elf, idx); 3080 if (!scn) { 3081 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3082 idx, obj->path, elf_errmsg(-1)); 3083 return NULL; 3084 } 3085 return scn; 3086 } 3087 3088 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3089 { 3090 Elf_Scn *scn = NULL; 3091 Elf *elf = obj->efile.elf; 3092 const char *sec_name; 3093 3094 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3095 sec_name = elf_sec_name(obj, scn); 3096 if (!sec_name) 3097 return NULL; 3098 3099 if (strcmp(sec_name, name) != 0) 3100 continue; 3101 3102 return scn; 3103 } 3104 return NULL; 3105 } 3106 3107 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3108 { 3109 Elf64_Shdr *shdr; 3110 3111 if (!scn) 3112 return NULL; 3113 3114 shdr = elf64_getshdr(scn); 3115 if (!shdr) { 3116 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3117 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3118 return NULL; 3119 } 3120 3121 return shdr; 3122 } 3123 3124 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3125 { 3126 const char *name; 3127 Elf64_Shdr *sh; 3128 3129 if (!scn) 3130 return NULL; 3131 3132 sh = elf_sec_hdr(obj, scn); 3133 if (!sh) 3134 return NULL; 3135 3136 name = elf_sec_str(obj, sh->sh_name); 3137 if (!name) { 3138 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3139 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3140 return NULL; 3141 } 3142 3143 return name; 3144 } 3145 3146 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3147 { 3148 Elf_Data *data; 3149 3150 if (!scn) 3151 return NULL; 3152 3153 data = elf_getdata(scn, 0); 3154 if (!data) { 3155 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3156 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3157 obj->path, elf_errmsg(-1)); 3158 return NULL; 3159 } 3160 3161 return data; 3162 } 3163 3164 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3165 { 3166 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3167 return NULL; 3168 3169 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3170 } 3171 3172 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3173 { 3174 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3175 return NULL; 3176 3177 return (Elf64_Rel *)data->d_buf + idx; 3178 } 3179 3180 static bool is_sec_name_dwarf(const char *name) 3181 { 3182 /* approximation, but the actual list is too long */ 3183 return str_has_pfx(name, ".debug_"); 3184 } 3185 3186 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3187 { 3188 /* no special handling of .strtab */ 3189 if (hdr->sh_type == SHT_STRTAB) 3190 return true; 3191 3192 /* ignore .llvm_addrsig section as well */ 3193 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3194 return true; 3195 3196 /* no subprograms will lead to an empty .text section, ignore it */ 3197 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3198 strcmp(name, ".text") == 0) 3199 return true; 3200 3201 /* DWARF sections */ 3202 if (is_sec_name_dwarf(name)) 3203 return true; 3204 3205 if (str_has_pfx(name, ".rel")) { 3206 name += sizeof(".rel") - 1; 3207 /* DWARF section relocations */ 3208 if (is_sec_name_dwarf(name)) 3209 return true; 3210 3211 /* .BTF and .BTF.ext don't need relocations */ 3212 if (strcmp(name, BTF_ELF_SEC) == 0 || 3213 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3214 return true; 3215 } 3216 3217 return false; 3218 } 3219 3220 static int cmp_progs(const void *_a, const void *_b) 3221 { 3222 const struct bpf_program *a = _a; 3223 const struct bpf_program *b = _b; 3224 3225 if (a->sec_idx != b->sec_idx) 3226 return a->sec_idx < b->sec_idx ? -1 : 1; 3227 3228 /* sec_insn_off can't be the same within the section */ 3229 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3230 } 3231 3232 static int bpf_object__elf_collect(struct bpf_object *obj) 3233 { 3234 struct elf_sec_desc *sec_desc; 3235 Elf *elf = obj->efile.elf; 3236 Elf_Data *btf_ext_data = NULL; 3237 Elf_Data *btf_data = NULL; 3238 int idx = 0, err = 0; 3239 const char *name; 3240 Elf_Data *data; 3241 Elf_Scn *scn; 3242 Elf64_Shdr *sh; 3243 3244 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3245 * section. e_shnum does include sec #0, so e_shnum is the necessary 3246 * size of an array to keep all the sections. 3247 */ 3248 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3249 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3250 if (!obj->efile.secs) 3251 return -ENOMEM; 3252 3253 /* a bunch of ELF parsing functionality depends on processing symbols, 3254 * so do the first pass and find the symbol table 3255 */ 3256 scn = NULL; 3257 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3258 sh = elf_sec_hdr(obj, scn); 3259 if (!sh) 3260 return -LIBBPF_ERRNO__FORMAT; 3261 3262 if (sh->sh_type == SHT_SYMTAB) { 3263 if (obj->efile.symbols) { 3264 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3265 return -LIBBPF_ERRNO__FORMAT; 3266 } 3267 3268 data = elf_sec_data(obj, scn); 3269 if (!data) 3270 return -LIBBPF_ERRNO__FORMAT; 3271 3272 idx = elf_ndxscn(scn); 3273 3274 obj->efile.symbols = data; 3275 obj->efile.symbols_shndx = idx; 3276 obj->efile.strtabidx = sh->sh_link; 3277 } 3278 } 3279 3280 if (!obj->efile.symbols) { 3281 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3282 obj->path); 3283 return -ENOENT; 3284 } 3285 3286 scn = NULL; 3287 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3288 idx = elf_ndxscn(scn); 3289 sec_desc = &obj->efile.secs[idx]; 3290 3291 sh = elf_sec_hdr(obj, scn); 3292 if (!sh) 3293 return -LIBBPF_ERRNO__FORMAT; 3294 3295 name = elf_sec_str(obj, sh->sh_name); 3296 if (!name) 3297 return -LIBBPF_ERRNO__FORMAT; 3298 3299 if (ignore_elf_section(sh, name)) 3300 continue; 3301 3302 data = elf_sec_data(obj, scn); 3303 if (!data) 3304 return -LIBBPF_ERRNO__FORMAT; 3305 3306 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3307 idx, name, (unsigned long)data->d_size, 3308 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3309 (int)sh->sh_type); 3310 3311 if (strcmp(name, "license") == 0) { 3312 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3313 if (err) 3314 return err; 3315 } else if (strcmp(name, "version") == 0) { 3316 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3317 if (err) 3318 return err; 3319 } else if (strcmp(name, "maps") == 0) { 3320 obj->efile.maps_shndx = idx; 3321 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3322 obj->efile.btf_maps_shndx = idx; 3323 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3324 if (sh->sh_type != SHT_PROGBITS) 3325 return -LIBBPF_ERRNO__FORMAT; 3326 btf_data = data; 3327 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3328 if (sh->sh_type != SHT_PROGBITS) 3329 return -LIBBPF_ERRNO__FORMAT; 3330 btf_ext_data = data; 3331 } else if (sh->sh_type == SHT_SYMTAB) { 3332 /* already processed during the first pass above */ 3333 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3334 if (sh->sh_flags & SHF_EXECINSTR) { 3335 if (strcmp(name, ".text") == 0) 3336 obj->efile.text_shndx = idx; 3337 err = bpf_object__add_programs(obj, data, name, idx); 3338 if (err) 3339 return err; 3340 } else if (strcmp(name, DATA_SEC) == 0 || 3341 str_has_pfx(name, DATA_SEC ".")) { 3342 sec_desc->sec_type = SEC_DATA; 3343 sec_desc->shdr = sh; 3344 sec_desc->data = data; 3345 } else if (strcmp(name, RODATA_SEC) == 0 || 3346 str_has_pfx(name, RODATA_SEC ".")) { 3347 sec_desc->sec_type = SEC_RODATA; 3348 sec_desc->shdr = sh; 3349 sec_desc->data = data; 3350 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3351 obj->efile.st_ops_data = data; 3352 obj->efile.st_ops_shndx = idx; 3353 } else { 3354 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3355 idx, name); 3356 } 3357 } else if (sh->sh_type == SHT_REL) { 3358 int targ_sec_idx = sh->sh_info; /* points to other section */ 3359 3360 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3361 targ_sec_idx >= obj->efile.sec_cnt) 3362 return -LIBBPF_ERRNO__FORMAT; 3363 3364 /* Only do relo for section with exec instructions */ 3365 if (!section_have_execinstr(obj, targ_sec_idx) && 3366 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3367 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3368 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3369 idx, name, targ_sec_idx, 3370 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3371 continue; 3372 } 3373 3374 sec_desc->sec_type = SEC_RELO; 3375 sec_desc->shdr = sh; 3376 sec_desc->data = data; 3377 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3378 sec_desc->sec_type = SEC_BSS; 3379 sec_desc->shdr = sh; 3380 sec_desc->data = data; 3381 } else { 3382 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3383 (size_t)sh->sh_size); 3384 } 3385 } 3386 3387 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3388 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3389 return -LIBBPF_ERRNO__FORMAT; 3390 } 3391 3392 /* sort BPF programs by section name and in-section instruction offset 3393 * for faster search */ 3394 if (obj->nr_programs) 3395 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3396 3397 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3398 } 3399 3400 static bool sym_is_extern(const Elf64_Sym *sym) 3401 { 3402 int bind = ELF64_ST_BIND(sym->st_info); 3403 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3404 return sym->st_shndx == SHN_UNDEF && 3405 (bind == STB_GLOBAL || bind == STB_WEAK) && 3406 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3407 } 3408 3409 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3410 { 3411 int bind = ELF64_ST_BIND(sym->st_info); 3412 int type = ELF64_ST_TYPE(sym->st_info); 3413 3414 /* in .text section */ 3415 if (sym->st_shndx != text_shndx) 3416 return false; 3417 3418 /* local function */ 3419 if (bind == STB_LOCAL && type == STT_SECTION) 3420 return true; 3421 3422 /* global function */ 3423 return bind == STB_GLOBAL && type == STT_FUNC; 3424 } 3425 3426 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3427 { 3428 const struct btf_type *t; 3429 const char *tname; 3430 int i, n; 3431 3432 if (!btf) 3433 return -ESRCH; 3434 3435 n = btf__type_cnt(btf); 3436 for (i = 1; i < n; i++) { 3437 t = btf__type_by_id(btf, i); 3438 3439 if (!btf_is_var(t) && !btf_is_func(t)) 3440 continue; 3441 3442 tname = btf__name_by_offset(btf, t->name_off); 3443 if (strcmp(tname, ext_name)) 3444 continue; 3445 3446 if (btf_is_var(t) && 3447 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3448 return -EINVAL; 3449 3450 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3451 return -EINVAL; 3452 3453 return i; 3454 } 3455 3456 return -ENOENT; 3457 } 3458 3459 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3460 const struct btf_var_secinfo *vs; 3461 const struct btf_type *t; 3462 int i, j, n; 3463 3464 if (!btf) 3465 return -ESRCH; 3466 3467 n = btf__type_cnt(btf); 3468 for (i = 1; i < n; i++) { 3469 t = btf__type_by_id(btf, i); 3470 3471 if (!btf_is_datasec(t)) 3472 continue; 3473 3474 vs = btf_var_secinfos(t); 3475 for (j = 0; j < btf_vlen(t); j++, vs++) { 3476 if (vs->type == ext_btf_id) 3477 return i; 3478 } 3479 } 3480 3481 return -ENOENT; 3482 } 3483 3484 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3485 bool *is_signed) 3486 { 3487 const struct btf_type *t; 3488 const char *name; 3489 3490 t = skip_mods_and_typedefs(btf, id, NULL); 3491 name = btf__name_by_offset(btf, t->name_off); 3492 3493 if (is_signed) 3494 *is_signed = false; 3495 switch (btf_kind(t)) { 3496 case BTF_KIND_INT: { 3497 int enc = btf_int_encoding(t); 3498 3499 if (enc & BTF_INT_BOOL) 3500 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3501 if (is_signed) 3502 *is_signed = enc & BTF_INT_SIGNED; 3503 if (t->size == 1) 3504 return KCFG_CHAR; 3505 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3506 return KCFG_UNKNOWN; 3507 return KCFG_INT; 3508 } 3509 case BTF_KIND_ENUM: 3510 if (t->size != 4) 3511 return KCFG_UNKNOWN; 3512 if (strcmp(name, "libbpf_tristate")) 3513 return KCFG_UNKNOWN; 3514 return KCFG_TRISTATE; 3515 case BTF_KIND_ARRAY: 3516 if (btf_array(t)->nelems == 0) 3517 return KCFG_UNKNOWN; 3518 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3519 return KCFG_UNKNOWN; 3520 return KCFG_CHAR_ARR; 3521 default: 3522 return KCFG_UNKNOWN; 3523 } 3524 } 3525 3526 static int cmp_externs(const void *_a, const void *_b) 3527 { 3528 const struct extern_desc *a = _a; 3529 const struct extern_desc *b = _b; 3530 3531 if (a->type != b->type) 3532 return a->type < b->type ? -1 : 1; 3533 3534 if (a->type == EXT_KCFG) { 3535 /* descending order by alignment requirements */ 3536 if (a->kcfg.align != b->kcfg.align) 3537 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3538 /* ascending order by size, within same alignment class */ 3539 if (a->kcfg.sz != b->kcfg.sz) 3540 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3541 } 3542 3543 /* resolve ties by name */ 3544 return strcmp(a->name, b->name); 3545 } 3546 3547 static int find_int_btf_id(const struct btf *btf) 3548 { 3549 const struct btf_type *t; 3550 int i, n; 3551 3552 n = btf__type_cnt(btf); 3553 for (i = 1; i < n; i++) { 3554 t = btf__type_by_id(btf, i); 3555 3556 if (btf_is_int(t) && btf_int_bits(t) == 32) 3557 return i; 3558 } 3559 3560 return 0; 3561 } 3562 3563 static int add_dummy_ksym_var(struct btf *btf) 3564 { 3565 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3566 const struct btf_var_secinfo *vs; 3567 const struct btf_type *sec; 3568 3569 if (!btf) 3570 return 0; 3571 3572 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3573 BTF_KIND_DATASEC); 3574 if (sec_btf_id < 0) 3575 return 0; 3576 3577 sec = btf__type_by_id(btf, sec_btf_id); 3578 vs = btf_var_secinfos(sec); 3579 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3580 const struct btf_type *vt; 3581 3582 vt = btf__type_by_id(btf, vs->type); 3583 if (btf_is_func(vt)) 3584 break; 3585 } 3586 3587 /* No func in ksyms sec. No need to add dummy var. */ 3588 if (i == btf_vlen(sec)) 3589 return 0; 3590 3591 int_btf_id = find_int_btf_id(btf); 3592 dummy_var_btf_id = btf__add_var(btf, 3593 "dummy_ksym", 3594 BTF_VAR_GLOBAL_ALLOCATED, 3595 int_btf_id); 3596 if (dummy_var_btf_id < 0) 3597 pr_warn("cannot create a dummy_ksym var\n"); 3598 3599 return dummy_var_btf_id; 3600 } 3601 3602 static int bpf_object__collect_externs(struct bpf_object *obj) 3603 { 3604 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3605 const struct btf_type *t; 3606 struct extern_desc *ext; 3607 int i, n, off, dummy_var_btf_id; 3608 const char *ext_name, *sec_name; 3609 Elf_Scn *scn; 3610 Elf64_Shdr *sh; 3611 3612 if (!obj->efile.symbols) 3613 return 0; 3614 3615 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3616 sh = elf_sec_hdr(obj, scn); 3617 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3618 return -LIBBPF_ERRNO__FORMAT; 3619 3620 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3621 if (dummy_var_btf_id < 0) 3622 return dummy_var_btf_id; 3623 3624 n = sh->sh_size / sh->sh_entsize; 3625 pr_debug("looking for externs among %d symbols...\n", n); 3626 3627 for (i = 0; i < n; i++) { 3628 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3629 3630 if (!sym) 3631 return -LIBBPF_ERRNO__FORMAT; 3632 if (!sym_is_extern(sym)) 3633 continue; 3634 ext_name = elf_sym_str(obj, sym->st_name); 3635 if (!ext_name || !ext_name[0]) 3636 continue; 3637 3638 ext = obj->externs; 3639 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3640 if (!ext) 3641 return -ENOMEM; 3642 obj->externs = ext; 3643 ext = &ext[obj->nr_extern]; 3644 memset(ext, 0, sizeof(*ext)); 3645 obj->nr_extern++; 3646 3647 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3648 if (ext->btf_id <= 0) { 3649 pr_warn("failed to find BTF for extern '%s': %d\n", 3650 ext_name, ext->btf_id); 3651 return ext->btf_id; 3652 } 3653 t = btf__type_by_id(obj->btf, ext->btf_id); 3654 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3655 ext->sym_idx = i; 3656 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3657 3658 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3659 if (ext->sec_btf_id <= 0) { 3660 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3661 ext_name, ext->btf_id, ext->sec_btf_id); 3662 return ext->sec_btf_id; 3663 } 3664 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3665 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3666 3667 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3668 if (btf_is_func(t)) { 3669 pr_warn("extern function %s is unsupported under %s section\n", 3670 ext->name, KCONFIG_SEC); 3671 return -ENOTSUP; 3672 } 3673 kcfg_sec = sec; 3674 ext->type = EXT_KCFG; 3675 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3676 if (ext->kcfg.sz <= 0) { 3677 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3678 ext_name, ext->kcfg.sz); 3679 return ext->kcfg.sz; 3680 } 3681 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3682 if (ext->kcfg.align <= 0) { 3683 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3684 ext_name, ext->kcfg.align); 3685 return -EINVAL; 3686 } 3687 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3688 &ext->kcfg.is_signed); 3689 if (ext->kcfg.type == KCFG_UNKNOWN) { 3690 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3691 return -ENOTSUP; 3692 } 3693 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3694 ksym_sec = sec; 3695 ext->type = EXT_KSYM; 3696 skip_mods_and_typedefs(obj->btf, t->type, 3697 &ext->ksym.type_id); 3698 } else { 3699 pr_warn("unrecognized extern section '%s'\n", sec_name); 3700 return -ENOTSUP; 3701 } 3702 } 3703 pr_debug("collected %d externs total\n", obj->nr_extern); 3704 3705 if (!obj->nr_extern) 3706 return 0; 3707 3708 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3709 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3710 3711 /* for .ksyms section, we need to turn all externs into allocated 3712 * variables in BTF to pass kernel verification; we do this by 3713 * pretending that each extern is a 8-byte variable 3714 */ 3715 if (ksym_sec) { 3716 /* find existing 4-byte integer type in BTF to use for fake 3717 * extern variables in DATASEC 3718 */ 3719 int int_btf_id = find_int_btf_id(obj->btf); 3720 /* For extern function, a dummy_var added earlier 3721 * will be used to replace the vs->type and 3722 * its name string will be used to refill 3723 * the missing param's name. 3724 */ 3725 const struct btf_type *dummy_var; 3726 3727 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3728 for (i = 0; i < obj->nr_extern; i++) { 3729 ext = &obj->externs[i]; 3730 if (ext->type != EXT_KSYM) 3731 continue; 3732 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3733 i, ext->sym_idx, ext->name); 3734 } 3735 3736 sec = ksym_sec; 3737 n = btf_vlen(sec); 3738 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3739 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3740 struct btf_type *vt; 3741 3742 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3743 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3744 ext = find_extern_by_name(obj, ext_name); 3745 if (!ext) { 3746 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3747 btf_kind_str(vt), ext_name); 3748 return -ESRCH; 3749 } 3750 if (btf_is_func(vt)) { 3751 const struct btf_type *func_proto; 3752 struct btf_param *param; 3753 int j; 3754 3755 func_proto = btf__type_by_id(obj->btf, 3756 vt->type); 3757 param = btf_params(func_proto); 3758 /* Reuse the dummy_var string if the 3759 * func proto does not have param name. 3760 */ 3761 for (j = 0; j < btf_vlen(func_proto); j++) 3762 if (param[j].type && !param[j].name_off) 3763 param[j].name_off = 3764 dummy_var->name_off; 3765 vs->type = dummy_var_btf_id; 3766 vt->info &= ~0xffff; 3767 vt->info |= BTF_FUNC_GLOBAL; 3768 } else { 3769 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3770 vt->type = int_btf_id; 3771 } 3772 vs->offset = off; 3773 vs->size = sizeof(int); 3774 } 3775 sec->size = off; 3776 } 3777 3778 if (kcfg_sec) { 3779 sec = kcfg_sec; 3780 /* for kcfg externs calculate their offsets within a .kconfig map */ 3781 off = 0; 3782 for (i = 0; i < obj->nr_extern; i++) { 3783 ext = &obj->externs[i]; 3784 if (ext->type != EXT_KCFG) 3785 continue; 3786 3787 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3788 off = ext->kcfg.data_off + ext->kcfg.sz; 3789 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3790 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3791 } 3792 sec->size = off; 3793 n = btf_vlen(sec); 3794 for (i = 0; i < n; i++) { 3795 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3796 3797 t = btf__type_by_id(obj->btf, vs->type); 3798 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3799 ext = find_extern_by_name(obj, ext_name); 3800 if (!ext) { 3801 pr_warn("failed to find extern definition for BTF var '%s'\n", 3802 ext_name); 3803 return -ESRCH; 3804 } 3805 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3806 vs->offset = ext->kcfg.data_off; 3807 } 3808 } 3809 return 0; 3810 } 3811 3812 struct bpf_program * 3813 bpf_object__find_program_by_title(const struct bpf_object *obj, 3814 const char *title) 3815 { 3816 struct bpf_program *pos; 3817 3818 bpf_object__for_each_program(pos, obj) { 3819 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3820 return pos; 3821 } 3822 return errno = ENOENT, NULL; 3823 } 3824 3825 static bool prog_is_subprog(const struct bpf_object *obj, 3826 const struct bpf_program *prog) 3827 { 3828 /* For legacy reasons, libbpf supports an entry-point BPF programs 3829 * without SEC() attribute, i.e., those in the .text section. But if 3830 * there are 2 or more such programs in the .text section, they all 3831 * must be subprograms called from entry-point BPF programs in 3832 * designated SEC()'tions, otherwise there is no way to distinguish 3833 * which of those programs should be loaded vs which are a subprogram. 3834 * Similarly, if there is a function/program in .text and at least one 3835 * other BPF program with custom SEC() attribute, then we just assume 3836 * .text programs are subprograms (even if they are not called from 3837 * other programs), because libbpf never explicitly supported mixing 3838 * SEC()-designated BPF programs and .text entry-point BPF programs. 3839 */ 3840 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3841 } 3842 3843 struct bpf_program * 3844 bpf_object__find_program_by_name(const struct bpf_object *obj, 3845 const char *name) 3846 { 3847 struct bpf_program *prog; 3848 3849 bpf_object__for_each_program(prog, obj) { 3850 if (prog_is_subprog(obj, prog)) 3851 continue; 3852 if (!strcmp(prog->name, name)) 3853 return prog; 3854 } 3855 return errno = ENOENT, NULL; 3856 } 3857 3858 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3859 int shndx) 3860 { 3861 switch (obj->efile.secs[shndx].sec_type) { 3862 case SEC_BSS: 3863 case SEC_DATA: 3864 case SEC_RODATA: 3865 return true; 3866 default: 3867 return false; 3868 } 3869 } 3870 3871 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3872 int shndx) 3873 { 3874 return shndx == obj->efile.maps_shndx || 3875 shndx == obj->efile.btf_maps_shndx; 3876 } 3877 3878 static enum libbpf_map_type 3879 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3880 { 3881 if (shndx == obj->efile.symbols_shndx) 3882 return LIBBPF_MAP_KCONFIG; 3883 3884 switch (obj->efile.secs[shndx].sec_type) { 3885 case SEC_BSS: 3886 return LIBBPF_MAP_BSS; 3887 case SEC_DATA: 3888 return LIBBPF_MAP_DATA; 3889 case SEC_RODATA: 3890 return LIBBPF_MAP_RODATA; 3891 default: 3892 return LIBBPF_MAP_UNSPEC; 3893 } 3894 } 3895 3896 static int bpf_program__record_reloc(struct bpf_program *prog, 3897 struct reloc_desc *reloc_desc, 3898 __u32 insn_idx, const char *sym_name, 3899 const Elf64_Sym *sym, const Elf64_Rel *rel) 3900 { 3901 struct bpf_insn *insn = &prog->insns[insn_idx]; 3902 size_t map_idx, nr_maps = prog->obj->nr_maps; 3903 struct bpf_object *obj = prog->obj; 3904 __u32 shdr_idx = sym->st_shndx; 3905 enum libbpf_map_type type; 3906 const char *sym_sec_name; 3907 struct bpf_map *map; 3908 3909 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3910 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3911 prog->name, sym_name, insn_idx, insn->code); 3912 return -LIBBPF_ERRNO__RELOC; 3913 } 3914 3915 if (sym_is_extern(sym)) { 3916 int sym_idx = ELF64_R_SYM(rel->r_info); 3917 int i, n = obj->nr_extern; 3918 struct extern_desc *ext; 3919 3920 for (i = 0; i < n; i++) { 3921 ext = &obj->externs[i]; 3922 if (ext->sym_idx == sym_idx) 3923 break; 3924 } 3925 if (i >= n) { 3926 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3927 prog->name, sym_name, sym_idx); 3928 return -LIBBPF_ERRNO__RELOC; 3929 } 3930 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3931 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3932 if (insn->code == (BPF_JMP | BPF_CALL)) 3933 reloc_desc->type = RELO_EXTERN_FUNC; 3934 else 3935 reloc_desc->type = RELO_EXTERN_VAR; 3936 reloc_desc->insn_idx = insn_idx; 3937 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3938 return 0; 3939 } 3940 3941 /* sub-program call relocation */ 3942 if (is_call_insn(insn)) { 3943 if (insn->src_reg != BPF_PSEUDO_CALL) { 3944 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3945 return -LIBBPF_ERRNO__RELOC; 3946 } 3947 /* text_shndx can be 0, if no default "main" program exists */ 3948 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3949 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3950 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3951 prog->name, sym_name, sym_sec_name); 3952 return -LIBBPF_ERRNO__RELOC; 3953 } 3954 if (sym->st_value % BPF_INSN_SZ) { 3955 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3956 prog->name, sym_name, (size_t)sym->st_value); 3957 return -LIBBPF_ERRNO__RELOC; 3958 } 3959 reloc_desc->type = RELO_CALL; 3960 reloc_desc->insn_idx = insn_idx; 3961 reloc_desc->sym_off = sym->st_value; 3962 return 0; 3963 } 3964 3965 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3966 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3967 prog->name, sym_name, shdr_idx); 3968 return -LIBBPF_ERRNO__RELOC; 3969 } 3970 3971 /* loading subprog addresses */ 3972 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3973 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3974 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3975 */ 3976 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3977 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3978 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3979 return -LIBBPF_ERRNO__RELOC; 3980 } 3981 3982 reloc_desc->type = RELO_SUBPROG_ADDR; 3983 reloc_desc->insn_idx = insn_idx; 3984 reloc_desc->sym_off = sym->st_value; 3985 return 0; 3986 } 3987 3988 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3989 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3990 3991 /* generic map reference relocation */ 3992 if (type == LIBBPF_MAP_UNSPEC) { 3993 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3994 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3995 prog->name, sym_name, sym_sec_name); 3996 return -LIBBPF_ERRNO__RELOC; 3997 } 3998 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3999 map = &obj->maps[map_idx]; 4000 if (map->libbpf_type != type || 4001 map->sec_idx != sym->st_shndx || 4002 map->sec_offset != sym->st_value) 4003 continue; 4004 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4005 prog->name, map_idx, map->name, map->sec_idx, 4006 map->sec_offset, insn_idx); 4007 break; 4008 } 4009 if (map_idx >= nr_maps) { 4010 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4011 prog->name, sym_sec_name, (size_t)sym->st_value); 4012 return -LIBBPF_ERRNO__RELOC; 4013 } 4014 reloc_desc->type = RELO_LD64; 4015 reloc_desc->insn_idx = insn_idx; 4016 reloc_desc->map_idx = map_idx; 4017 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4018 return 0; 4019 } 4020 4021 /* global data map relocation */ 4022 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4023 pr_warn("prog '%s': bad data relo against section '%s'\n", 4024 prog->name, sym_sec_name); 4025 return -LIBBPF_ERRNO__RELOC; 4026 } 4027 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4028 map = &obj->maps[map_idx]; 4029 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4030 continue; 4031 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4032 prog->name, map_idx, map->name, map->sec_idx, 4033 map->sec_offset, insn_idx); 4034 break; 4035 } 4036 if (map_idx >= nr_maps) { 4037 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4038 prog->name, sym_sec_name); 4039 return -LIBBPF_ERRNO__RELOC; 4040 } 4041 4042 reloc_desc->type = RELO_DATA; 4043 reloc_desc->insn_idx = insn_idx; 4044 reloc_desc->map_idx = map_idx; 4045 reloc_desc->sym_off = sym->st_value; 4046 return 0; 4047 } 4048 4049 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4050 { 4051 return insn_idx >= prog->sec_insn_off && 4052 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4053 } 4054 4055 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4056 size_t sec_idx, size_t insn_idx) 4057 { 4058 int l = 0, r = obj->nr_programs - 1, m; 4059 struct bpf_program *prog; 4060 4061 while (l < r) { 4062 m = l + (r - l + 1) / 2; 4063 prog = &obj->programs[m]; 4064 4065 if (prog->sec_idx < sec_idx || 4066 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4067 l = m; 4068 else 4069 r = m - 1; 4070 } 4071 /* matching program could be at index l, but it still might be the 4072 * wrong one, so we need to double check conditions for the last time 4073 */ 4074 prog = &obj->programs[l]; 4075 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4076 return prog; 4077 return NULL; 4078 } 4079 4080 static int 4081 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4082 { 4083 const char *relo_sec_name, *sec_name; 4084 size_t sec_idx = shdr->sh_info, sym_idx; 4085 struct bpf_program *prog; 4086 struct reloc_desc *relos; 4087 int err, i, nrels; 4088 const char *sym_name; 4089 __u32 insn_idx; 4090 Elf_Scn *scn; 4091 Elf_Data *scn_data; 4092 Elf64_Sym *sym; 4093 Elf64_Rel *rel; 4094 4095 if (sec_idx >= obj->efile.sec_cnt) 4096 return -EINVAL; 4097 4098 scn = elf_sec_by_idx(obj, sec_idx); 4099 scn_data = elf_sec_data(obj, scn); 4100 4101 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4102 sec_name = elf_sec_name(obj, scn); 4103 if (!relo_sec_name || !sec_name) 4104 return -EINVAL; 4105 4106 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4107 relo_sec_name, sec_idx, sec_name); 4108 nrels = shdr->sh_size / shdr->sh_entsize; 4109 4110 for (i = 0; i < nrels; i++) { 4111 rel = elf_rel_by_idx(data, i); 4112 if (!rel) { 4113 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4114 return -LIBBPF_ERRNO__FORMAT; 4115 } 4116 4117 sym_idx = ELF64_R_SYM(rel->r_info); 4118 sym = elf_sym_by_idx(obj, sym_idx); 4119 if (!sym) { 4120 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4121 relo_sec_name, sym_idx, i); 4122 return -LIBBPF_ERRNO__FORMAT; 4123 } 4124 4125 if (sym->st_shndx >= obj->efile.sec_cnt) { 4126 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4127 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4128 return -LIBBPF_ERRNO__FORMAT; 4129 } 4130 4131 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4132 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4133 relo_sec_name, (size_t)rel->r_offset, i); 4134 return -LIBBPF_ERRNO__FORMAT; 4135 } 4136 4137 insn_idx = rel->r_offset / BPF_INSN_SZ; 4138 /* relocations against static functions are recorded as 4139 * relocations against the section that contains a function; 4140 * in such case, symbol will be STT_SECTION and sym.st_name 4141 * will point to empty string (0), so fetch section name 4142 * instead 4143 */ 4144 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4145 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4146 else 4147 sym_name = elf_sym_str(obj, sym->st_name); 4148 sym_name = sym_name ?: "<?"; 4149 4150 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4151 relo_sec_name, i, insn_idx, sym_name); 4152 4153 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4154 if (!prog) { 4155 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4156 relo_sec_name, i, sec_name, insn_idx); 4157 continue; 4158 } 4159 4160 relos = libbpf_reallocarray(prog->reloc_desc, 4161 prog->nr_reloc + 1, sizeof(*relos)); 4162 if (!relos) 4163 return -ENOMEM; 4164 prog->reloc_desc = relos; 4165 4166 /* adjust insn_idx to local BPF program frame of reference */ 4167 insn_idx -= prog->sec_insn_off; 4168 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4169 insn_idx, sym_name, sym, rel); 4170 if (err) 4171 return err; 4172 4173 prog->nr_reloc++; 4174 } 4175 return 0; 4176 } 4177 4178 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4179 { 4180 struct bpf_map_def *def = &map->def; 4181 __u32 key_type_id = 0, value_type_id = 0; 4182 int ret; 4183 4184 /* if it's BTF-defined map, we don't need to search for type IDs. 4185 * For struct_ops map, it does not need btf_key_type_id and 4186 * btf_value_type_id. 4187 */ 4188 if (map->sec_idx == obj->efile.btf_maps_shndx || 4189 bpf_map__is_struct_ops(map)) 4190 return 0; 4191 4192 if (!bpf_map__is_internal(map)) { 4193 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4194 def->value_size, &key_type_id, 4195 &value_type_id); 4196 } else { 4197 /* 4198 * LLVM annotates global data differently in BTF, that is, 4199 * only as '.data', '.bss' or '.rodata'. 4200 */ 4201 ret = btf__find_by_name(obj->btf, map->real_name); 4202 } 4203 if (ret < 0) 4204 return ret; 4205 4206 map->btf_key_type_id = key_type_id; 4207 map->btf_value_type_id = bpf_map__is_internal(map) ? 4208 ret : value_type_id; 4209 return 0; 4210 } 4211 4212 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4213 { 4214 char file[PATH_MAX], buff[4096]; 4215 FILE *fp; 4216 __u32 val; 4217 int err; 4218 4219 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4220 memset(info, 0, sizeof(*info)); 4221 4222 fp = fopen(file, "r"); 4223 if (!fp) { 4224 err = -errno; 4225 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4226 err); 4227 return err; 4228 } 4229 4230 while (fgets(buff, sizeof(buff), fp)) { 4231 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4232 info->type = val; 4233 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4234 info->key_size = val; 4235 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4236 info->value_size = val; 4237 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4238 info->max_entries = val; 4239 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4240 info->map_flags = val; 4241 } 4242 4243 fclose(fp); 4244 4245 return 0; 4246 } 4247 4248 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4249 { 4250 struct bpf_map_info info = {}; 4251 __u32 len = sizeof(info); 4252 int new_fd, err; 4253 char *new_name; 4254 4255 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4256 if (err && errno == EINVAL) 4257 err = bpf_get_map_info_from_fdinfo(fd, &info); 4258 if (err) 4259 return libbpf_err(err); 4260 4261 new_name = strdup(info.name); 4262 if (!new_name) 4263 return libbpf_err(-errno); 4264 4265 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4266 if (new_fd < 0) { 4267 err = -errno; 4268 goto err_free_new_name; 4269 } 4270 4271 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4272 if (new_fd < 0) { 4273 err = -errno; 4274 goto err_close_new_fd; 4275 } 4276 4277 err = zclose(map->fd); 4278 if (err) { 4279 err = -errno; 4280 goto err_close_new_fd; 4281 } 4282 free(map->name); 4283 4284 map->fd = new_fd; 4285 map->name = new_name; 4286 map->def.type = info.type; 4287 map->def.key_size = info.key_size; 4288 map->def.value_size = info.value_size; 4289 map->def.max_entries = info.max_entries; 4290 map->def.map_flags = info.map_flags; 4291 map->btf_key_type_id = info.btf_key_type_id; 4292 map->btf_value_type_id = info.btf_value_type_id; 4293 map->reused = true; 4294 map->map_extra = info.map_extra; 4295 4296 return 0; 4297 4298 err_close_new_fd: 4299 close(new_fd); 4300 err_free_new_name: 4301 free(new_name); 4302 return libbpf_err(err); 4303 } 4304 4305 __u32 bpf_map__max_entries(const struct bpf_map *map) 4306 { 4307 return map->def.max_entries; 4308 } 4309 4310 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4311 { 4312 if (!bpf_map_type__is_map_in_map(map->def.type)) 4313 return errno = EINVAL, NULL; 4314 4315 return map->inner_map; 4316 } 4317 4318 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4319 { 4320 if (map->fd >= 0) 4321 return libbpf_err(-EBUSY); 4322 map->def.max_entries = max_entries; 4323 return 0; 4324 } 4325 4326 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4327 { 4328 if (!map || !max_entries) 4329 return libbpf_err(-EINVAL); 4330 4331 return bpf_map__set_max_entries(map, max_entries); 4332 } 4333 4334 static int 4335 bpf_object__probe_loading(struct bpf_object *obj) 4336 { 4337 char *cp, errmsg[STRERR_BUFSIZE]; 4338 struct bpf_insn insns[] = { 4339 BPF_MOV64_IMM(BPF_REG_0, 0), 4340 BPF_EXIT_INSN(), 4341 }; 4342 int ret, insn_cnt = ARRAY_SIZE(insns); 4343 4344 if (obj->gen_loader) 4345 return 0; 4346 4347 ret = bump_rlimit_memlock(); 4348 if (ret) 4349 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4350 4351 /* make sure basic loading works */ 4352 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4353 if (ret < 0) 4354 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4355 if (ret < 0) { 4356 ret = errno; 4357 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4358 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4359 "program. Make sure your kernel supports BPF " 4360 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4361 "set to big enough value.\n", __func__, cp, ret); 4362 return -ret; 4363 } 4364 close(ret); 4365 4366 return 0; 4367 } 4368 4369 static int probe_fd(int fd) 4370 { 4371 if (fd >= 0) 4372 close(fd); 4373 return fd >= 0; 4374 } 4375 4376 static int probe_kern_prog_name(void) 4377 { 4378 struct bpf_insn insns[] = { 4379 BPF_MOV64_IMM(BPF_REG_0, 0), 4380 BPF_EXIT_INSN(), 4381 }; 4382 int ret, insn_cnt = ARRAY_SIZE(insns); 4383 4384 /* make sure loading with name works */ 4385 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4386 return probe_fd(ret); 4387 } 4388 4389 static int probe_kern_global_data(void) 4390 { 4391 char *cp, errmsg[STRERR_BUFSIZE]; 4392 struct bpf_insn insns[] = { 4393 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4394 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4395 BPF_MOV64_IMM(BPF_REG_0, 0), 4396 BPF_EXIT_INSN(), 4397 }; 4398 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4399 4400 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4401 if (map < 0) { 4402 ret = -errno; 4403 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4404 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4405 __func__, cp, -ret); 4406 return ret; 4407 } 4408 4409 insns[0].imm = map; 4410 4411 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4412 close(map); 4413 return probe_fd(ret); 4414 } 4415 4416 static int probe_kern_btf(void) 4417 { 4418 static const char strs[] = "\0int"; 4419 __u32 types[] = { 4420 /* int */ 4421 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4422 }; 4423 4424 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4425 strs, sizeof(strs))); 4426 } 4427 4428 static int probe_kern_btf_func(void) 4429 { 4430 static const char strs[] = "\0int\0x\0a"; 4431 /* void x(int a) {} */ 4432 __u32 types[] = { 4433 /* int */ 4434 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4435 /* FUNC_PROTO */ /* [2] */ 4436 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4437 BTF_PARAM_ENC(7, 1), 4438 /* FUNC x */ /* [3] */ 4439 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4440 }; 4441 4442 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4443 strs, sizeof(strs))); 4444 } 4445 4446 static int probe_kern_btf_func_global(void) 4447 { 4448 static const char strs[] = "\0int\0x\0a"; 4449 /* static void x(int a) {} */ 4450 __u32 types[] = { 4451 /* int */ 4452 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4453 /* FUNC_PROTO */ /* [2] */ 4454 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4455 BTF_PARAM_ENC(7, 1), 4456 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4457 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4458 }; 4459 4460 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4461 strs, sizeof(strs))); 4462 } 4463 4464 static int probe_kern_btf_datasec(void) 4465 { 4466 static const char strs[] = "\0x\0.data"; 4467 /* static int a; */ 4468 __u32 types[] = { 4469 /* int */ 4470 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4471 /* VAR x */ /* [2] */ 4472 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4473 BTF_VAR_STATIC, 4474 /* DATASEC val */ /* [3] */ 4475 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4476 BTF_VAR_SECINFO_ENC(2, 0, 4), 4477 }; 4478 4479 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4480 strs, sizeof(strs))); 4481 } 4482 4483 static int probe_kern_btf_float(void) 4484 { 4485 static const char strs[] = "\0float"; 4486 __u32 types[] = { 4487 /* float */ 4488 BTF_TYPE_FLOAT_ENC(1, 4), 4489 }; 4490 4491 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4492 strs, sizeof(strs))); 4493 } 4494 4495 static int probe_kern_btf_decl_tag(void) 4496 { 4497 static const char strs[] = "\0tag"; 4498 __u32 types[] = { 4499 /* int */ 4500 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4501 /* VAR x */ /* [2] */ 4502 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4503 BTF_VAR_STATIC, 4504 /* attr */ 4505 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4506 }; 4507 4508 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4509 strs, sizeof(strs))); 4510 } 4511 4512 static int probe_kern_btf_type_tag(void) 4513 { 4514 static const char strs[] = "\0tag"; 4515 __u32 types[] = { 4516 /* int */ 4517 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4518 /* attr */ 4519 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4520 /* ptr */ 4521 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4522 }; 4523 4524 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4525 strs, sizeof(strs))); 4526 } 4527 4528 static int probe_kern_array_mmap(void) 4529 { 4530 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4531 int fd; 4532 4533 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4534 return probe_fd(fd); 4535 } 4536 4537 static int probe_kern_exp_attach_type(void) 4538 { 4539 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4540 struct bpf_insn insns[] = { 4541 BPF_MOV64_IMM(BPF_REG_0, 0), 4542 BPF_EXIT_INSN(), 4543 }; 4544 int fd, insn_cnt = ARRAY_SIZE(insns); 4545 4546 /* use any valid combination of program type and (optional) 4547 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4548 * to see if kernel supports expected_attach_type field for 4549 * BPF_PROG_LOAD command 4550 */ 4551 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4552 return probe_fd(fd); 4553 } 4554 4555 static int probe_kern_probe_read_kernel(void) 4556 { 4557 struct bpf_insn insns[] = { 4558 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4559 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4560 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4561 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4562 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4563 BPF_EXIT_INSN(), 4564 }; 4565 int fd, insn_cnt = ARRAY_SIZE(insns); 4566 4567 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4568 return probe_fd(fd); 4569 } 4570 4571 static int probe_prog_bind_map(void) 4572 { 4573 char *cp, errmsg[STRERR_BUFSIZE]; 4574 struct bpf_insn insns[] = { 4575 BPF_MOV64_IMM(BPF_REG_0, 0), 4576 BPF_EXIT_INSN(), 4577 }; 4578 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4579 4580 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4581 if (map < 0) { 4582 ret = -errno; 4583 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4584 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4585 __func__, cp, -ret); 4586 return ret; 4587 } 4588 4589 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4590 if (prog < 0) { 4591 close(map); 4592 return 0; 4593 } 4594 4595 ret = bpf_prog_bind_map(prog, map, NULL); 4596 4597 close(map); 4598 close(prog); 4599 4600 return ret >= 0; 4601 } 4602 4603 static int probe_module_btf(void) 4604 { 4605 static const char strs[] = "\0int"; 4606 __u32 types[] = { 4607 /* int */ 4608 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4609 }; 4610 struct bpf_btf_info info; 4611 __u32 len = sizeof(info); 4612 char name[16]; 4613 int fd, err; 4614 4615 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4616 if (fd < 0) 4617 return 0; /* BTF not supported at all */ 4618 4619 memset(&info, 0, sizeof(info)); 4620 info.name = ptr_to_u64(name); 4621 info.name_len = sizeof(name); 4622 4623 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4624 * kernel's module BTF support coincides with support for 4625 * name/name_len fields in struct bpf_btf_info. 4626 */ 4627 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4628 close(fd); 4629 return !err; 4630 } 4631 4632 static int probe_perf_link(void) 4633 { 4634 struct bpf_insn insns[] = { 4635 BPF_MOV64_IMM(BPF_REG_0, 0), 4636 BPF_EXIT_INSN(), 4637 }; 4638 int prog_fd, link_fd, err; 4639 4640 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4641 insns, ARRAY_SIZE(insns), NULL); 4642 if (prog_fd < 0) 4643 return -errno; 4644 4645 /* use invalid perf_event FD to get EBADF, if link is supported; 4646 * otherwise EINVAL should be returned 4647 */ 4648 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4649 err = -errno; /* close() can clobber errno */ 4650 4651 if (link_fd >= 0) 4652 close(link_fd); 4653 close(prog_fd); 4654 4655 return link_fd < 0 && err == -EBADF; 4656 } 4657 4658 enum kern_feature_result { 4659 FEAT_UNKNOWN = 0, 4660 FEAT_SUPPORTED = 1, 4661 FEAT_MISSING = 2, 4662 }; 4663 4664 typedef int (*feature_probe_fn)(void); 4665 4666 static struct kern_feature_desc { 4667 const char *desc; 4668 feature_probe_fn probe; 4669 enum kern_feature_result res; 4670 } feature_probes[__FEAT_CNT] = { 4671 [FEAT_PROG_NAME] = { 4672 "BPF program name", probe_kern_prog_name, 4673 }, 4674 [FEAT_GLOBAL_DATA] = { 4675 "global variables", probe_kern_global_data, 4676 }, 4677 [FEAT_BTF] = { 4678 "minimal BTF", probe_kern_btf, 4679 }, 4680 [FEAT_BTF_FUNC] = { 4681 "BTF functions", probe_kern_btf_func, 4682 }, 4683 [FEAT_BTF_GLOBAL_FUNC] = { 4684 "BTF global function", probe_kern_btf_func_global, 4685 }, 4686 [FEAT_BTF_DATASEC] = { 4687 "BTF data section and variable", probe_kern_btf_datasec, 4688 }, 4689 [FEAT_ARRAY_MMAP] = { 4690 "ARRAY map mmap()", probe_kern_array_mmap, 4691 }, 4692 [FEAT_EXP_ATTACH_TYPE] = { 4693 "BPF_PROG_LOAD expected_attach_type attribute", 4694 probe_kern_exp_attach_type, 4695 }, 4696 [FEAT_PROBE_READ_KERN] = { 4697 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4698 }, 4699 [FEAT_PROG_BIND_MAP] = { 4700 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4701 }, 4702 [FEAT_MODULE_BTF] = { 4703 "module BTF support", probe_module_btf, 4704 }, 4705 [FEAT_BTF_FLOAT] = { 4706 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4707 }, 4708 [FEAT_PERF_LINK] = { 4709 "BPF perf link support", probe_perf_link, 4710 }, 4711 [FEAT_BTF_DECL_TAG] = { 4712 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4713 }, 4714 [FEAT_BTF_TYPE_TAG] = { 4715 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4716 }, 4717 [FEAT_MEMCG_ACCOUNT] = { 4718 "memcg-based memory accounting", probe_memcg_account, 4719 }, 4720 }; 4721 4722 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4723 { 4724 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4725 int ret; 4726 4727 if (obj && obj->gen_loader) 4728 /* To generate loader program assume the latest kernel 4729 * to avoid doing extra prog_load, map_create syscalls. 4730 */ 4731 return true; 4732 4733 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4734 ret = feat->probe(); 4735 if (ret > 0) { 4736 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4737 } else if (ret == 0) { 4738 WRITE_ONCE(feat->res, FEAT_MISSING); 4739 } else { 4740 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4741 WRITE_ONCE(feat->res, FEAT_MISSING); 4742 } 4743 } 4744 4745 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4746 } 4747 4748 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4749 { 4750 struct bpf_map_info map_info = {}; 4751 char msg[STRERR_BUFSIZE]; 4752 __u32 map_info_len; 4753 int err; 4754 4755 map_info_len = sizeof(map_info); 4756 4757 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4758 if (err && errno == EINVAL) 4759 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4760 if (err) { 4761 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4762 libbpf_strerror_r(errno, msg, sizeof(msg))); 4763 return false; 4764 } 4765 4766 return (map_info.type == map->def.type && 4767 map_info.key_size == map->def.key_size && 4768 map_info.value_size == map->def.value_size && 4769 map_info.max_entries == map->def.max_entries && 4770 map_info.map_flags == map->def.map_flags && 4771 map_info.map_extra == map->map_extra); 4772 } 4773 4774 static int 4775 bpf_object__reuse_map(struct bpf_map *map) 4776 { 4777 char *cp, errmsg[STRERR_BUFSIZE]; 4778 int err, pin_fd; 4779 4780 pin_fd = bpf_obj_get(map->pin_path); 4781 if (pin_fd < 0) { 4782 err = -errno; 4783 if (err == -ENOENT) { 4784 pr_debug("found no pinned map to reuse at '%s'\n", 4785 map->pin_path); 4786 return 0; 4787 } 4788 4789 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4790 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4791 map->pin_path, cp); 4792 return err; 4793 } 4794 4795 if (!map_is_reuse_compat(map, pin_fd)) { 4796 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4797 map->pin_path); 4798 close(pin_fd); 4799 return -EINVAL; 4800 } 4801 4802 err = bpf_map__reuse_fd(map, pin_fd); 4803 if (err) { 4804 close(pin_fd); 4805 return err; 4806 } 4807 map->pinned = true; 4808 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4809 4810 return 0; 4811 } 4812 4813 static int 4814 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4815 { 4816 enum libbpf_map_type map_type = map->libbpf_type; 4817 char *cp, errmsg[STRERR_BUFSIZE]; 4818 int err, zero = 0; 4819 4820 if (obj->gen_loader) { 4821 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4822 map->mmaped, map->def.value_size); 4823 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4824 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4825 return 0; 4826 } 4827 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4828 if (err) { 4829 err = -errno; 4830 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4831 pr_warn("Error setting initial map(%s) contents: %s\n", 4832 map->name, cp); 4833 return err; 4834 } 4835 4836 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4837 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4838 err = bpf_map_freeze(map->fd); 4839 if (err) { 4840 err = -errno; 4841 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4842 pr_warn("Error freezing map(%s) as read-only: %s\n", 4843 map->name, cp); 4844 return err; 4845 } 4846 } 4847 return 0; 4848 } 4849 4850 static void bpf_map__destroy(struct bpf_map *map); 4851 4852 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4853 { 4854 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4855 struct bpf_map_def *def = &map->def; 4856 const char *map_name = NULL; 4857 __u32 max_entries; 4858 int err = 0; 4859 4860 if (kernel_supports(obj, FEAT_PROG_NAME)) 4861 map_name = map->name; 4862 create_attr.map_ifindex = map->map_ifindex; 4863 create_attr.map_flags = def->map_flags; 4864 create_attr.numa_node = map->numa_node; 4865 create_attr.map_extra = map->map_extra; 4866 4867 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4868 int nr_cpus; 4869 4870 nr_cpus = libbpf_num_possible_cpus(); 4871 if (nr_cpus < 0) { 4872 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4873 map->name, nr_cpus); 4874 return nr_cpus; 4875 } 4876 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4877 max_entries = nr_cpus; 4878 } else { 4879 max_entries = def->max_entries; 4880 } 4881 4882 if (bpf_map__is_struct_ops(map)) 4883 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4884 4885 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4886 create_attr.btf_fd = btf__fd(obj->btf); 4887 create_attr.btf_key_type_id = map->btf_key_type_id; 4888 create_attr.btf_value_type_id = map->btf_value_type_id; 4889 } 4890 4891 if (bpf_map_type__is_map_in_map(def->type)) { 4892 if (map->inner_map) { 4893 err = bpf_object__create_map(obj, map->inner_map, true); 4894 if (err) { 4895 pr_warn("map '%s': failed to create inner map: %d\n", 4896 map->name, err); 4897 return err; 4898 } 4899 map->inner_map_fd = bpf_map__fd(map->inner_map); 4900 } 4901 if (map->inner_map_fd >= 0) 4902 create_attr.inner_map_fd = map->inner_map_fd; 4903 } 4904 4905 switch (def->type) { 4906 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4907 case BPF_MAP_TYPE_CGROUP_ARRAY: 4908 case BPF_MAP_TYPE_STACK_TRACE: 4909 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4910 case BPF_MAP_TYPE_HASH_OF_MAPS: 4911 case BPF_MAP_TYPE_DEVMAP: 4912 case BPF_MAP_TYPE_DEVMAP_HASH: 4913 case BPF_MAP_TYPE_CPUMAP: 4914 case BPF_MAP_TYPE_XSKMAP: 4915 case BPF_MAP_TYPE_SOCKMAP: 4916 case BPF_MAP_TYPE_SOCKHASH: 4917 case BPF_MAP_TYPE_QUEUE: 4918 case BPF_MAP_TYPE_STACK: 4919 case BPF_MAP_TYPE_RINGBUF: 4920 create_attr.btf_fd = 0; 4921 create_attr.btf_key_type_id = 0; 4922 create_attr.btf_value_type_id = 0; 4923 map->btf_key_type_id = 0; 4924 map->btf_value_type_id = 0; 4925 default: 4926 break; 4927 } 4928 4929 if (obj->gen_loader) { 4930 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4931 def->key_size, def->value_size, max_entries, 4932 &create_attr, is_inner ? -1 : map - obj->maps); 4933 /* Pretend to have valid FD to pass various fd >= 0 checks. 4934 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4935 */ 4936 map->fd = 0; 4937 } else { 4938 map->fd = bpf_map_create(def->type, map_name, 4939 def->key_size, def->value_size, 4940 max_entries, &create_attr); 4941 } 4942 if (map->fd < 0 && (create_attr.btf_key_type_id || 4943 create_attr.btf_value_type_id)) { 4944 char *cp, errmsg[STRERR_BUFSIZE]; 4945 4946 err = -errno; 4947 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4948 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4949 map->name, cp, err); 4950 create_attr.btf_fd = 0; 4951 create_attr.btf_key_type_id = 0; 4952 create_attr.btf_value_type_id = 0; 4953 map->btf_key_type_id = 0; 4954 map->btf_value_type_id = 0; 4955 map->fd = bpf_map_create(def->type, map_name, 4956 def->key_size, def->value_size, 4957 max_entries, &create_attr); 4958 } 4959 4960 err = map->fd < 0 ? -errno : 0; 4961 4962 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4963 if (obj->gen_loader) 4964 map->inner_map->fd = -1; 4965 bpf_map__destroy(map->inner_map); 4966 zfree(&map->inner_map); 4967 } 4968 4969 return err; 4970 } 4971 4972 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 4973 { 4974 const struct bpf_map *targ_map; 4975 unsigned int i; 4976 int fd, err = 0; 4977 4978 for (i = 0; i < map->init_slots_sz; i++) { 4979 if (!map->init_slots[i]) 4980 continue; 4981 4982 targ_map = map->init_slots[i]; 4983 fd = bpf_map__fd(targ_map); 4984 4985 if (obj->gen_loader) { 4986 bpf_gen__populate_outer_map(obj->gen_loader, 4987 map - obj->maps, i, 4988 targ_map - obj->maps); 4989 } else { 4990 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4991 } 4992 if (err) { 4993 err = -errno; 4994 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4995 map->name, i, targ_map->name, fd, err); 4996 return err; 4997 } 4998 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4999 map->name, i, targ_map->name, fd); 5000 } 5001 5002 zfree(&map->init_slots); 5003 map->init_slots_sz = 0; 5004 5005 return 0; 5006 } 5007 5008 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5009 { 5010 const struct bpf_program *targ_prog; 5011 unsigned int i; 5012 int fd, err; 5013 5014 if (obj->gen_loader) 5015 return -ENOTSUP; 5016 5017 for (i = 0; i < map->init_slots_sz; i++) { 5018 if (!map->init_slots[i]) 5019 continue; 5020 5021 targ_prog = map->init_slots[i]; 5022 fd = bpf_program__fd(targ_prog); 5023 5024 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5025 if (err) { 5026 err = -errno; 5027 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5028 map->name, i, targ_prog->name, fd, err); 5029 return err; 5030 } 5031 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5032 map->name, i, targ_prog->name, fd); 5033 } 5034 5035 zfree(&map->init_slots); 5036 map->init_slots_sz = 0; 5037 5038 return 0; 5039 } 5040 5041 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5042 { 5043 struct bpf_map *map; 5044 int i, err; 5045 5046 for (i = 0; i < obj->nr_maps; i++) { 5047 map = &obj->maps[i]; 5048 5049 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5050 continue; 5051 5052 err = init_prog_array_slots(obj, map); 5053 if (err < 0) { 5054 zclose(map->fd); 5055 return err; 5056 } 5057 } 5058 return 0; 5059 } 5060 5061 static int 5062 bpf_object__create_maps(struct bpf_object *obj) 5063 { 5064 struct bpf_map *map; 5065 char *cp, errmsg[STRERR_BUFSIZE]; 5066 unsigned int i, j; 5067 int err; 5068 bool retried; 5069 5070 for (i = 0; i < obj->nr_maps; i++) { 5071 map = &obj->maps[i]; 5072 5073 /* To support old kernels, we skip creating global data maps 5074 * (.rodata, .data, .kconfig, etc); later on, during program 5075 * loading, if we detect that at least one of the to-be-loaded 5076 * programs is referencing any global data map, we'll error 5077 * out with program name and relocation index logged. 5078 * This approach allows to accommodate Clang emitting 5079 * unnecessary .rodata.str1.1 sections for string literals, 5080 * but also it allows to have CO-RE applications that use 5081 * global variables in some of BPF programs, but not others. 5082 * If those global variable-using programs are not loaded at 5083 * runtime due to bpf_program__set_autoload(prog, false), 5084 * bpf_object loading will succeed just fine even on old 5085 * kernels. 5086 */ 5087 if (bpf_map__is_internal(map) && 5088 !kernel_supports(obj, FEAT_GLOBAL_DATA)) { 5089 map->skipped = true; 5090 continue; 5091 } 5092 5093 retried = false; 5094 retry: 5095 if (map->pin_path) { 5096 err = bpf_object__reuse_map(map); 5097 if (err) { 5098 pr_warn("map '%s': error reusing pinned map\n", 5099 map->name); 5100 goto err_out; 5101 } 5102 if (retried && map->fd < 0) { 5103 pr_warn("map '%s': cannot find pinned map\n", 5104 map->name); 5105 err = -ENOENT; 5106 goto err_out; 5107 } 5108 } 5109 5110 if (map->fd >= 0) { 5111 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5112 map->name, map->fd); 5113 } else { 5114 err = bpf_object__create_map(obj, map, false); 5115 if (err) 5116 goto err_out; 5117 5118 pr_debug("map '%s': created successfully, fd=%d\n", 5119 map->name, map->fd); 5120 5121 if (bpf_map__is_internal(map)) { 5122 err = bpf_object__populate_internal_map(obj, map); 5123 if (err < 0) { 5124 zclose(map->fd); 5125 goto err_out; 5126 } 5127 } 5128 5129 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5130 err = init_map_in_map_slots(obj, map); 5131 if (err < 0) { 5132 zclose(map->fd); 5133 goto err_out; 5134 } 5135 } 5136 } 5137 5138 if (map->pin_path && !map->pinned) { 5139 err = bpf_map__pin(map, NULL); 5140 if (err) { 5141 zclose(map->fd); 5142 if (!retried && err == -EEXIST) { 5143 retried = true; 5144 goto retry; 5145 } 5146 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5147 map->name, map->pin_path, err); 5148 goto err_out; 5149 } 5150 } 5151 } 5152 5153 return 0; 5154 5155 err_out: 5156 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5157 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5158 pr_perm_msg(err); 5159 for (j = 0; j < i; j++) 5160 zclose(obj->maps[j].fd); 5161 return err; 5162 } 5163 5164 static bool bpf_core_is_flavor_sep(const char *s) 5165 { 5166 /* check X___Y name pattern, where X and Y are not underscores */ 5167 return s[0] != '_' && /* X */ 5168 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5169 s[4] != '_'; /* Y */ 5170 } 5171 5172 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5173 * before last triple underscore. Struct name part after last triple 5174 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5175 */ 5176 size_t bpf_core_essential_name_len(const char *name) 5177 { 5178 size_t n = strlen(name); 5179 int i; 5180 5181 for (i = n - 5; i >= 0; i--) { 5182 if (bpf_core_is_flavor_sep(name + i)) 5183 return i + 1; 5184 } 5185 return n; 5186 } 5187 5188 static void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5189 { 5190 free(cands->cands); 5191 free(cands); 5192 } 5193 5194 static int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5195 size_t local_essent_len, 5196 const struct btf *targ_btf, 5197 const char *targ_btf_name, 5198 int targ_start_id, 5199 struct bpf_core_cand_list *cands) 5200 { 5201 struct bpf_core_cand *new_cands, *cand; 5202 const struct btf_type *t, *local_t; 5203 const char *targ_name, *local_name; 5204 size_t targ_essent_len; 5205 int n, i; 5206 5207 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5208 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5209 5210 n = btf__type_cnt(targ_btf); 5211 for (i = targ_start_id; i < n; i++) { 5212 t = btf__type_by_id(targ_btf, i); 5213 if (btf_kind(t) != btf_kind(local_t)) 5214 continue; 5215 5216 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5217 if (str_is_empty(targ_name)) 5218 continue; 5219 5220 targ_essent_len = bpf_core_essential_name_len(targ_name); 5221 if (targ_essent_len != local_essent_len) 5222 continue; 5223 5224 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5225 continue; 5226 5227 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5228 local_cand->id, btf_kind_str(local_t), 5229 local_name, i, btf_kind_str(t), targ_name, 5230 targ_btf_name); 5231 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5232 sizeof(*cands->cands)); 5233 if (!new_cands) 5234 return -ENOMEM; 5235 5236 cand = &new_cands[cands->len]; 5237 cand->btf = targ_btf; 5238 cand->id = i; 5239 5240 cands->cands = new_cands; 5241 cands->len++; 5242 } 5243 return 0; 5244 } 5245 5246 static int load_module_btfs(struct bpf_object *obj) 5247 { 5248 struct bpf_btf_info info; 5249 struct module_btf *mod_btf; 5250 struct btf *btf; 5251 char name[64]; 5252 __u32 id = 0, len; 5253 int err, fd; 5254 5255 if (obj->btf_modules_loaded) 5256 return 0; 5257 5258 if (obj->gen_loader) 5259 return 0; 5260 5261 /* don't do this again, even if we find no module BTFs */ 5262 obj->btf_modules_loaded = true; 5263 5264 /* kernel too old to support module BTFs */ 5265 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5266 return 0; 5267 5268 while (true) { 5269 err = bpf_btf_get_next_id(id, &id); 5270 if (err && errno == ENOENT) 5271 return 0; 5272 if (err) { 5273 err = -errno; 5274 pr_warn("failed to iterate BTF objects: %d\n", err); 5275 return err; 5276 } 5277 5278 fd = bpf_btf_get_fd_by_id(id); 5279 if (fd < 0) { 5280 if (errno == ENOENT) 5281 continue; /* expected race: BTF was unloaded */ 5282 err = -errno; 5283 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5284 return err; 5285 } 5286 5287 len = sizeof(info); 5288 memset(&info, 0, sizeof(info)); 5289 info.name = ptr_to_u64(name); 5290 info.name_len = sizeof(name); 5291 5292 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5293 if (err) { 5294 err = -errno; 5295 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5296 goto err_out; 5297 } 5298 5299 /* ignore non-module BTFs */ 5300 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5301 close(fd); 5302 continue; 5303 } 5304 5305 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5306 err = libbpf_get_error(btf); 5307 if (err) { 5308 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5309 name, id, err); 5310 goto err_out; 5311 } 5312 5313 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5314 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5315 if (err) 5316 goto err_out; 5317 5318 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5319 5320 mod_btf->btf = btf; 5321 mod_btf->id = id; 5322 mod_btf->fd = fd; 5323 mod_btf->name = strdup(name); 5324 if (!mod_btf->name) { 5325 err = -ENOMEM; 5326 goto err_out; 5327 } 5328 continue; 5329 5330 err_out: 5331 close(fd); 5332 return err; 5333 } 5334 5335 return 0; 5336 } 5337 5338 static struct bpf_core_cand_list * 5339 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5340 { 5341 struct bpf_core_cand local_cand = {}; 5342 struct bpf_core_cand_list *cands; 5343 const struct btf *main_btf; 5344 const struct btf_type *local_t; 5345 const char *local_name; 5346 size_t local_essent_len; 5347 int err, i; 5348 5349 local_cand.btf = local_btf; 5350 local_cand.id = local_type_id; 5351 local_t = btf__type_by_id(local_btf, local_type_id); 5352 if (!local_t) 5353 return ERR_PTR(-EINVAL); 5354 5355 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5356 if (str_is_empty(local_name)) 5357 return ERR_PTR(-EINVAL); 5358 local_essent_len = bpf_core_essential_name_len(local_name); 5359 5360 cands = calloc(1, sizeof(*cands)); 5361 if (!cands) 5362 return ERR_PTR(-ENOMEM); 5363 5364 /* Attempt to find target candidates in vmlinux BTF first */ 5365 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5366 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5367 if (err) 5368 goto err_out; 5369 5370 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5371 if (cands->len) 5372 return cands; 5373 5374 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5375 if (obj->btf_vmlinux_override) 5376 return cands; 5377 5378 /* now look through module BTFs, trying to still find candidates */ 5379 err = load_module_btfs(obj); 5380 if (err) 5381 goto err_out; 5382 5383 for (i = 0; i < obj->btf_module_cnt; i++) { 5384 err = bpf_core_add_cands(&local_cand, local_essent_len, 5385 obj->btf_modules[i].btf, 5386 obj->btf_modules[i].name, 5387 btf__type_cnt(obj->btf_vmlinux), 5388 cands); 5389 if (err) 5390 goto err_out; 5391 } 5392 5393 return cands; 5394 err_out: 5395 bpf_core_free_cands(cands); 5396 return ERR_PTR(err); 5397 } 5398 5399 /* Check local and target types for compatibility. This check is used for 5400 * type-based CO-RE relocations and follow slightly different rules than 5401 * field-based relocations. This function assumes that root types were already 5402 * checked for name match. Beyond that initial root-level name check, names 5403 * are completely ignored. Compatibility rules are as follows: 5404 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5405 * kind should match for local and target types (i.e., STRUCT is not 5406 * compatible with UNION); 5407 * - for ENUMs, the size is ignored; 5408 * - for INT, size and signedness are ignored; 5409 * - for ARRAY, dimensionality is ignored, element types are checked for 5410 * compatibility recursively; 5411 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5412 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5413 * - FUNC_PROTOs are compatible if they have compatible signature: same 5414 * number of input args and compatible return and argument types. 5415 * These rules are not set in stone and probably will be adjusted as we get 5416 * more experience with using BPF CO-RE relocations. 5417 */ 5418 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5419 const struct btf *targ_btf, __u32 targ_id) 5420 { 5421 const struct btf_type *local_type, *targ_type; 5422 int depth = 32; /* max recursion depth */ 5423 5424 /* caller made sure that names match (ignoring flavor suffix) */ 5425 local_type = btf__type_by_id(local_btf, local_id); 5426 targ_type = btf__type_by_id(targ_btf, targ_id); 5427 if (btf_kind(local_type) != btf_kind(targ_type)) 5428 return 0; 5429 5430 recur: 5431 depth--; 5432 if (depth < 0) 5433 return -EINVAL; 5434 5435 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5436 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5437 if (!local_type || !targ_type) 5438 return -EINVAL; 5439 5440 if (btf_kind(local_type) != btf_kind(targ_type)) 5441 return 0; 5442 5443 switch (btf_kind(local_type)) { 5444 case BTF_KIND_UNKN: 5445 case BTF_KIND_STRUCT: 5446 case BTF_KIND_UNION: 5447 case BTF_KIND_ENUM: 5448 case BTF_KIND_FWD: 5449 return 1; 5450 case BTF_KIND_INT: 5451 /* just reject deprecated bitfield-like integers; all other 5452 * integers are by default compatible between each other 5453 */ 5454 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5455 case BTF_KIND_PTR: 5456 local_id = local_type->type; 5457 targ_id = targ_type->type; 5458 goto recur; 5459 case BTF_KIND_ARRAY: 5460 local_id = btf_array(local_type)->type; 5461 targ_id = btf_array(targ_type)->type; 5462 goto recur; 5463 case BTF_KIND_FUNC_PROTO: { 5464 struct btf_param *local_p = btf_params(local_type); 5465 struct btf_param *targ_p = btf_params(targ_type); 5466 __u16 local_vlen = btf_vlen(local_type); 5467 __u16 targ_vlen = btf_vlen(targ_type); 5468 int i, err; 5469 5470 if (local_vlen != targ_vlen) 5471 return 0; 5472 5473 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5474 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5475 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5476 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5477 if (err <= 0) 5478 return err; 5479 } 5480 5481 /* tail recurse for return type check */ 5482 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5483 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5484 goto recur; 5485 } 5486 default: 5487 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5488 btf_kind_str(local_type), local_id, targ_id); 5489 return 0; 5490 } 5491 } 5492 5493 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5494 { 5495 return (size_t)key; 5496 } 5497 5498 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5499 { 5500 return k1 == k2; 5501 } 5502 5503 static void *u32_as_hash_key(__u32 x) 5504 { 5505 return (void *)(uintptr_t)x; 5506 } 5507 5508 static int record_relo_core(struct bpf_program *prog, 5509 const struct bpf_core_relo *core_relo, int insn_idx) 5510 { 5511 struct reloc_desc *relos, *relo; 5512 5513 relos = libbpf_reallocarray(prog->reloc_desc, 5514 prog->nr_reloc + 1, sizeof(*relos)); 5515 if (!relos) 5516 return -ENOMEM; 5517 relo = &relos[prog->nr_reloc]; 5518 relo->type = RELO_CORE; 5519 relo->insn_idx = insn_idx; 5520 relo->core_relo = core_relo; 5521 prog->reloc_desc = relos; 5522 prog->nr_reloc++; 5523 return 0; 5524 } 5525 5526 static int bpf_core_apply_relo(struct bpf_program *prog, 5527 const struct bpf_core_relo *relo, 5528 int relo_idx, 5529 const struct btf *local_btf, 5530 struct hashmap *cand_cache) 5531 { 5532 struct bpf_core_spec specs_scratch[3] = {}; 5533 const void *type_key = u32_as_hash_key(relo->type_id); 5534 struct bpf_core_cand_list *cands = NULL; 5535 const char *prog_name = prog->name; 5536 const struct btf_type *local_type; 5537 const char *local_name; 5538 __u32 local_id = relo->type_id; 5539 struct bpf_insn *insn; 5540 int insn_idx, err; 5541 5542 if (relo->insn_off % BPF_INSN_SZ) 5543 return -EINVAL; 5544 insn_idx = relo->insn_off / BPF_INSN_SZ; 5545 /* adjust insn_idx from section frame of reference to the local 5546 * program's frame of reference; (sub-)program code is not yet 5547 * relocated, so it's enough to just subtract in-section offset 5548 */ 5549 insn_idx = insn_idx - prog->sec_insn_off; 5550 if (insn_idx >= prog->insns_cnt) 5551 return -EINVAL; 5552 insn = &prog->insns[insn_idx]; 5553 5554 local_type = btf__type_by_id(local_btf, local_id); 5555 if (!local_type) 5556 return -EINVAL; 5557 5558 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5559 if (!local_name) 5560 return -EINVAL; 5561 5562 if (prog->obj->gen_loader) { 5563 const char *spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5564 5565 pr_debug("record_relo_core: prog %td insn[%d] %s %s %s final insn_idx %d\n", 5566 prog - prog->obj->programs, relo->insn_off / 8, 5567 btf_kind_str(local_type), local_name, spec_str, insn_idx); 5568 return record_relo_core(prog, relo, insn_idx); 5569 } 5570 5571 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5572 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5573 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5574 if (IS_ERR(cands)) { 5575 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5576 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5577 local_name, PTR_ERR(cands)); 5578 return PTR_ERR(cands); 5579 } 5580 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5581 if (err) { 5582 bpf_core_free_cands(cands); 5583 return err; 5584 } 5585 } 5586 5587 return bpf_core_apply_relo_insn(prog_name, insn, insn_idx, relo, 5588 relo_idx, local_btf, cands, specs_scratch); 5589 } 5590 5591 static int 5592 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5593 { 5594 const struct btf_ext_info_sec *sec; 5595 const struct bpf_core_relo *rec; 5596 const struct btf_ext_info *seg; 5597 struct hashmap_entry *entry; 5598 struct hashmap *cand_cache = NULL; 5599 struct bpf_program *prog; 5600 const char *sec_name; 5601 int i, err = 0, insn_idx, sec_idx; 5602 5603 if (obj->btf_ext->core_relo_info.len == 0) 5604 return 0; 5605 5606 if (targ_btf_path) { 5607 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5608 err = libbpf_get_error(obj->btf_vmlinux_override); 5609 if (err) { 5610 pr_warn("failed to parse target BTF: %d\n", err); 5611 return err; 5612 } 5613 } 5614 5615 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5616 if (IS_ERR(cand_cache)) { 5617 err = PTR_ERR(cand_cache); 5618 goto out; 5619 } 5620 5621 seg = &obj->btf_ext->core_relo_info; 5622 for_each_btf_ext_sec(seg, sec) { 5623 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5624 if (str_is_empty(sec_name)) { 5625 err = -EINVAL; 5626 goto out; 5627 } 5628 /* bpf_object's ELF is gone by now so it's not easy to find 5629 * section index by section name, but we can find *any* 5630 * bpf_program within desired section name and use it's 5631 * prog->sec_idx to do a proper search by section index and 5632 * instruction offset 5633 */ 5634 prog = NULL; 5635 for (i = 0; i < obj->nr_programs; i++) { 5636 prog = &obj->programs[i]; 5637 if (strcmp(prog->sec_name, sec_name) == 0) 5638 break; 5639 } 5640 if (!prog) { 5641 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5642 return -ENOENT; 5643 } 5644 sec_idx = prog->sec_idx; 5645 5646 pr_debug("sec '%s': found %d CO-RE relocations\n", 5647 sec_name, sec->num_info); 5648 5649 for_each_btf_ext_rec(seg, sec, i, rec) { 5650 insn_idx = rec->insn_off / BPF_INSN_SZ; 5651 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5652 if (!prog) { 5653 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5654 sec_name, insn_idx, i); 5655 err = -EINVAL; 5656 goto out; 5657 } 5658 /* no need to apply CO-RE relocation if the program is 5659 * not going to be loaded 5660 */ 5661 if (!prog->load) 5662 continue; 5663 5664 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 5665 if (err) { 5666 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5667 prog->name, i, err); 5668 goto out; 5669 } 5670 } 5671 } 5672 5673 out: 5674 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5675 btf__free(obj->btf_vmlinux_override); 5676 obj->btf_vmlinux_override = NULL; 5677 5678 if (!IS_ERR_OR_NULL(cand_cache)) { 5679 hashmap__for_each_entry(cand_cache, entry, i) { 5680 bpf_core_free_cands(entry->value); 5681 } 5682 hashmap__free(cand_cache); 5683 } 5684 return err; 5685 } 5686 5687 /* Relocate data references within program code: 5688 * - map references; 5689 * - global variable references; 5690 * - extern references. 5691 */ 5692 static int 5693 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5694 { 5695 int i; 5696 5697 for (i = 0; i < prog->nr_reloc; i++) { 5698 struct reloc_desc *relo = &prog->reloc_desc[i]; 5699 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5700 struct extern_desc *ext; 5701 5702 switch (relo->type) { 5703 case RELO_LD64: 5704 if (obj->gen_loader) { 5705 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5706 insn[0].imm = relo->map_idx; 5707 } else { 5708 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5709 insn[0].imm = obj->maps[relo->map_idx].fd; 5710 } 5711 break; 5712 case RELO_DATA: 5713 insn[1].imm = insn[0].imm + relo->sym_off; 5714 if (obj->gen_loader) { 5715 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5716 insn[0].imm = relo->map_idx; 5717 } else { 5718 const struct bpf_map *map = &obj->maps[relo->map_idx]; 5719 5720 if (map->skipped) { 5721 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n", 5722 prog->name, i); 5723 return -ENOTSUP; 5724 } 5725 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5726 insn[0].imm = obj->maps[relo->map_idx].fd; 5727 } 5728 break; 5729 case RELO_EXTERN_VAR: 5730 ext = &obj->externs[relo->sym_off]; 5731 if (ext->type == EXT_KCFG) { 5732 if (obj->gen_loader) { 5733 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5734 insn[0].imm = obj->kconfig_map_idx; 5735 } else { 5736 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5737 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5738 } 5739 insn[1].imm = ext->kcfg.data_off; 5740 } else /* EXT_KSYM */ { 5741 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5742 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5743 insn[0].imm = ext->ksym.kernel_btf_id; 5744 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5745 } else { /* typeless ksyms or unresolved typed ksyms */ 5746 insn[0].imm = (__u32)ext->ksym.addr; 5747 insn[1].imm = ext->ksym.addr >> 32; 5748 } 5749 } 5750 break; 5751 case RELO_EXTERN_FUNC: 5752 ext = &obj->externs[relo->sym_off]; 5753 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5754 if (ext->is_set) { 5755 insn[0].imm = ext->ksym.kernel_btf_id; 5756 insn[0].off = ext->ksym.btf_fd_idx; 5757 } else { /* unresolved weak kfunc */ 5758 insn[0].imm = 0; 5759 insn[0].off = 0; 5760 } 5761 break; 5762 case RELO_SUBPROG_ADDR: 5763 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5764 pr_warn("prog '%s': relo #%d: bad insn\n", 5765 prog->name, i); 5766 return -EINVAL; 5767 } 5768 /* handled already */ 5769 break; 5770 case RELO_CALL: 5771 /* handled already */ 5772 break; 5773 case RELO_CORE: 5774 /* will be handled by bpf_program_record_relos() */ 5775 break; 5776 default: 5777 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5778 prog->name, i, relo->type); 5779 return -EINVAL; 5780 } 5781 } 5782 5783 return 0; 5784 } 5785 5786 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5787 const struct bpf_program *prog, 5788 const struct btf_ext_info *ext_info, 5789 void **prog_info, __u32 *prog_rec_cnt, 5790 __u32 *prog_rec_sz) 5791 { 5792 void *copy_start = NULL, *copy_end = NULL; 5793 void *rec, *rec_end, *new_prog_info; 5794 const struct btf_ext_info_sec *sec; 5795 size_t old_sz, new_sz; 5796 const char *sec_name; 5797 int i, off_adj; 5798 5799 for_each_btf_ext_sec(ext_info, sec) { 5800 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5801 if (!sec_name) 5802 return -EINVAL; 5803 if (strcmp(sec_name, prog->sec_name) != 0) 5804 continue; 5805 5806 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5807 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5808 5809 if (insn_off < prog->sec_insn_off) 5810 continue; 5811 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5812 break; 5813 5814 if (!copy_start) 5815 copy_start = rec; 5816 copy_end = rec + ext_info->rec_size; 5817 } 5818 5819 if (!copy_start) 5820 return -ENOENT; 5821 5822 /* append func/line info of a given (sub-)program to the main 5823 * program func/line info 5824 */ 5825 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5826 new_sz = old_sz + (copy_end - copy_start); 5827 new_prog_info = realloc(*prog_info, new_sz); 5828 if (!new_prog_info) 5829 return -ENOMEM; 5830 *prog_info = new_prog_info; 5831 *prog_rec_cnt = new_sz / ext_info->rec_size; 5832 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5833 5834 /* Kernel instruction offsets are in units of 8-byte 5835 * instructions, while .BTF.ext instruction offsets generated 5836 * by Clang are in units of bytes. So convert Clang offsets 5837 * into kernel offsets and adjust offset according to program 5838 * relocated position. 5839 */ 5840 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5841 rec = new_prog_info + old_sz; 5842 rec_end = new_prog_info + new_sz; 5843 for (; rec < rec_end; rec += ext_info->rec_size) { 5844 __u32 *insn_off = rec; 5845 5846 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5847 } 5848 *prog_rec_sz = ext_info->rec_size; 5849 return 0; 5850 } 5851 5852 return -ENOENT; 5853 } 5854 5855 static int 5856 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5857 struct bpf_program *main_prog, 5858 const struct bpf_program *prog) 5859 { 5860 int err; 5861 5862 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5863 * supprot func/line info 5864 */ 5865 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5866 return 0; 5867 5868 /* only attempt func info relocation if main program's func_info 5869 * relocation was successful 5870 */ 5871 if (main_prog != prog && !main_prog->func_info) 5872 goto line_info; 5873 5874 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5875 &main_prog->func_info, 5876 &main_prog->func_info_cnt, 5877 &main_prog->func_info_rec_size); 5878 if (err) { 5879 if (err != -ENOENT) { 5880 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5881 prog->name, err); 5882 return err; 5883 } 5884 if (main_prog->func_info) { 5885 /* 5886 * Some info has already been found but has problem 5887 * in the last btf_ext reloc. Must have to error out. 5888 */ 5889 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5890 return err; 5891 } 5892 /* Have problem loading the very first info. Ignore the rest. */ 5893 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5894 prog->name); 5895 } 5896 5897 line_info: 5898 /* don't relocate line info if main program's relocation failed */ 5899 if (main_prog != prog && !main_prog->line_info) 5900 return 0; 5901 5902 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5903 &main_prog->line_info, 5904 &main_prog->line_info_cnt, 5905 &main_prog->line_info_rec_size); 5906 if (err) { 5907 if (err != -ENOENT) { 5908 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5909 prog->name, err); 5910 return err; 5911 } 5912 if (main_prog->line_info) { 5913 /* 5914 * Some info has already been found but has problem 5915 * in the last btf_ext reloc. Must have to error out. 5916 */ 5917 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5918 return err; 5919 } 5920 /* Have problem loading the very first info. Ignore the rest. */ 5921 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5922 prog->name); 5923 } 5924 return 0; 5925 } 5926 5927 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5928 { 5929 size_t insn_idx = *(const size_t *)key; 5930 const struct reloc_desc *relo = elem; 5931 5932 if (insn_idx == relo->insn_idx) 5933 return 0; 5934 return insn_idx < relo->insn_idx ? -1 : 1; 5935 } 5936 5937 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5938 { 5939 if (!prog->nr_reloc) 5940 return NULL; 5941 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5942 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5943 } 5944 5945 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5946 { 5947 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5948 struct reloc_desc *relos; 5949 int i; 5950 5951 if (main_prog == subprog) 5952 return 0; 5953 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5954 if (!relos) 5955 return -ENOMEM; 5956 if (subprog->nr_reloc) 5957 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5958 sizeof(*relos) * subprog->nr_reloc); 5959 5960 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5961 relos[i].insn_idx += subprog->sub_insn_off; 5962 /* After insn_idx adjustment the 'relos' array is still sorted 5963 * by insn_idx and doesn't break bsearch. 5964 */ 5965 main_prog->reloc_desc = relos; 5966 main_prog->nr_reloc = new_cnt; 5967 return 0; 5968 } 5969 5970 static int 5971 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5972 struct bpf_program *prog) 5973 { 5974 size_t sub_insn_idx, insn_idx, new_cnt; 5975 struct bpf_program *subprog; 5976 struct bpf_insn *insns, *insn; 5977 struct reloc_desc *relo; 5978 int err; 5979 5980 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 5981 if (err) 5982 return err; 5983 5984 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 5985 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5986 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 5987 continue; 5988 5989 relo = find_prog_insn_relo(prog, insn_idx); 5990 if (relo && relo->type == RELO_EXTERN_FUNC) 5991 /* kfunc relocations will be handled later 5992 * in bpf_object__relocate_data() 5993 */ 5994 continue; 5995 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 5996 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 5997 prog->name, insn_idx, relo->type); 5998 return -LIBBPF_ERRNO__RELOC; 5999 } 6000 if (relo) { 6001 /* sub-program instruction index is a combination of 6002 * an offset of a symbol pointed to by relocation and 6003 * call instruction's imm field; for global functions, 6004 * call always has imm = -1, but for static functions 6005 * relocation is against STT_SECTION and insn->imm 6006 * points to a start of a static function 6007 * 6008 * for subprog addr relocation, the relo->sym_off + insn->imm is 6009 * the byte offset in the corresponding section. 6010 */ 6011 if (relo->type == RELO_CALL) 6012 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6013 else 6014 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6015 } else if (insn_is_pseudo_func(insn)) { 6016 /* 6017 * RELO_SUBPROG_ADDR relo is always emitted even if both 6018 * functions are in the same section, so it shouldn't reach here. 6019 */ 6020 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6021 prog->name, insn_idx); 6022 return -LIBBPF_ERRNO__RELOC; 6023 } else { 6024 /* if subprogram call is to a static function within 6025 * the same ELF section, there won't be any relocation 6026 * emitted, but it also means there is no additional 6027 * offset necessary, insns->imm is relative to 6028 * instruction's original position within the section 6029 */ 6030 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6031 } 6032 6033 /* we enforce that sub-programs should be in .text section */ 6034 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6035 if (!subprog) { 6036 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6037 prog->name); 6038 return -LIBBPF_ERRNO__RELOC; 6039 } 6040 6041 /* if it's the first call instruction calling into this 6042 * subprogram (meaning this subprog hasn't been processed 6043 * yet) within the context of current main program: 6044 * - append it at the end of main program's instructions blog; 6045 * - process is recursively, while current program is put on hold; 6046 * - if that subprogram calls some other not yet processes 6047 * subprogram, same thing will happen recursively until 6048 * there are no more unprocesses subprograms left to append 6049 * and relocate. 6050 */ 6051 if (subprog->sub_insn_off == 0) { 6052 subprog->sub_insn_off = main_prog->insns_cnt; 6053 6054 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6055 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6056 if (!insns) { 6057 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6058 return -ENOMEM; 6059 } 6060 main_prog->insns = insns; 6061 main_prog->insns_cnt = new_cnt; 6062 6063 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6064 subprog->insns_cnt * sizeof(*insns)); 6065 6066 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6067 main_prog->name, subprog->insns_cnt, subprog->name); 6068 6069 /* The subprog insns are now appended. Append its relos too. */ 6070 err = append_subprog_relos(main_prog, subprog); 6071 if (err) 6072 return err; 6073 err = bpf_object__reloc_code(obj, main_prog, subprog); 6074 if (err) 6075 return err; 6076 } 6077 6078 /* main_prog->insns memory could have been re-allocated, so 6079 * calculate pointer again 6080 */ 6081 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6082 /* calculate correct instruction position within current main 6083 * prog; each main prog can have a different set of 6084 * subprograms appended (potentially in different order as 6085 * well), so position of any subprog can be different for 6086 * different main programs */ 6087 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6088 6089 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6090 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6091 } 6092 6093 return 0; 6094 } 6095 6096 /* 6097 * Relocate sub-program calls. 6098 * 6099 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6100 * main prog) is processed separately. For each subprog (non-entry functions, 6101 * that can be called from either entry progs or other subprogs) gets their 6102 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6103 * hasn't been yet appended and relocated within current main prog. Once its 6104 * relocated, sub_insn_off will point at the position within current main prog 6105 * where given subprog was appended. This will further be used to relocate all 6106 * the call instructions jumping into this subprog. 6107 * 6108 * We start with main program and process all call instructions. If the call 6109 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6110 * is zero), subprog instructions are appended at the end of main program's 6111 * instruction array. Then main program is "put on hold" while we recursively 6112 * process newly appended subprogram. If that subprogram calls into another 6113 * subprogram that hasn't been appended, new subprogram is appended again to 6114 * the *main* prog's instructions (subprog's instructions are always left 6115 * untouched, as they need to be in unmodified state for subsequent main progs 6116 * and subprog instructions are always sent only as part of a main prog) and 6117 * the process continues recursively. Once all the subprogs called from a main 6118 * prog or any of its subprogs are appended (and relocated), all their 6119 * positions within finalized instructions array are known, so it's easy to 6120 * rewrite call instructions with correct relative offsets, corresponding to 6121 * desired target subprog. 6122 * 6123 * Its important to realize that some subprogs might not be called from some 6124 * main prog and any of its called/used subprogs. Those will keep their 6125 * subprog->sub_insn_off as zero at all times and won't be appended to current 6126 * main prog and won't be relocated within the context of current main prog. 6127 * They might still be used from other main progs later. 6128 * 6129 * Visually this process can be shown as below. Suppose we have two main 6130 * programs mainA and mainB and BPF object contains three subprogs: subA, 6131 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6132 * subC both call subB: 6133 * 6134 * +--------+ +-------+ 6135 * | v v | 6136 * +--+---+ +--+-+-+ +---+--+ 6137 * | subA | | subB | | subC | 6138 * +--+---+ +------+ +---+--+ 6139 * ^ ^ 6140 * | | 6141 * +---+-------+ +------+----+ 6142 * | mainA | | mainB | 6143 * +-----------+ +-----------+ 6144 * 6145 * We'll start relocating mainA, will find subA, append it and start 6146 * processing sub A recursively: 6147 * 6148 * +-----------+------+ 6149 * | mainA | subA | 6150 * +-----------+------+ 6151 * 6152 * At this point we notice that subB is used from subA, so we append it and 6153 * relocate (there are no further subcalls from subB): 6154 * 6155 * +-----------+------+------+ 6156 * | mainA | subA | subB | 6157 * +-----------+------+------+ 6158 * 6159 * At this point, we relocate subA calls, then go one level up and finish with 6160 * relocatin mainA calls. mainA is done. 6161 * 6162 * For mainB process is similar but results in different order. We start with 6163 * mainB and skip subA and subB, as mainB never calls them (at least 6164 * directly), but we see subC is needed, so we append and start processing it: 6165 * 6166 * +-----------+------+ 6167 * | mainB | subC | 6168 * +-----------+------+ 6169 * Now we see subC needs subB, so we go back to it, append and relocate it: 6170 * 6171 * +-----------+------+------+ 6172 * | mainB | subC | subB | 6173 * +-----------+------+------+ 6174 * 6175 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6176 */ 6177 static int 6178 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6179 { 6180 struct bpf_program *subprog; 6181 int i, err; 6182 6183 /* mark all subprogs as not relocated (yet) within the context of 6184 * current main program 6185 */ 6186 for (i = 0; i < obj->nr_programs; i++) { 6187 subprog = &obj->programs[i]; 6188 if (!prog_is_subprog(obj, subprog)) 6189 continue; 6190 6191 subprog->sub_insn_off = 0; 6192 } 6193 6194 err = bpf_object__reloc_code(obj, prog, prog); 6195 if (err) 6196 return err; 6197 6198 6199 return 0; 6200 } 6201 6202 static void 6203 bpf_object__free_relocs(struct bpf_object *obj) 6204 { 6205 struct bpf_program *prog; 6206 int i; 6207 6208 /* free up relocation descriptors */ 6209 for (i = 0; i < obj->nr_programs; i++) { 6210 prog = &obj->programs[i]; 6211 zfree(&prog->reloc_desc); 6212 prog->nr_reloc = 0; 6213 } 6214 } 6215 6216 static int cmp_relocs(const void *_a, const void *_b) 6217 { 6218 const struct reloc_desc *a = _a; 6219 const struct reloc_desc *b = _b; 6220 6221 if (a->insn_idx != b->insn_idx) 6222 return a->insn_idx < b->insn_idx ? -1 : 1; 6223 6224 /* no two relocations should have the same insn_idx, but ... */ 6225 if (a->type != b->type) 6226 return a->type < b->type ? -1 : 1; 6227 6228 return 0; 6229 } 6230 6231 static void bpf_object__sort_relos(struct bpf_object *obj) 6232 { 6233 int i; 6234 6235 for (i = 0; i < obj->nr_programs; i++) { 6236 struct bpf_program *p = &obj->programs[i]; 6237 6238 if (!p->nr_reloc) 6239 continue; 6240 6241 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6242 } 6243 } 6244 6245 static int 6246 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6247 { 6248 struct bpf_program *prog; 6249 size_t i, j; 6250 int err; 6251 6252 if (obj->btf_ext) { 6253 err = bpf_object__relocate_core(obj, targ_btf_path); 6254 if (err) { 6255 pr_warn("failed to perform CO-RE relocations: %d\n", 6256 err); 6257 return err; 6258 } 6259 if (obj->gen_loader) 6260 bpf_object__sort_relos(obj); 6261 } 6262 6263 /* Before relocating calls pre-process relocations and mark 6264 * few ld_imm64 instructions that points to subprogs. 6265 * Otherwise bpf_object__reloc_code() later would have to consider 6266 * all ld_imm64 insns as relocation candidates. That would 6267 * reduce relocation speed, since amount of find_prog_insn_relo() 6268 * would increase and most of them will fail to find a relo. 6269 */ 6270 for (i = 0; i < obj->nr_programs; i++) { 6271 prog = &obj->programs[i]; 6272 for (j = 0; j < prog->nr_reloc; j++) { 6273 struct reloc_desc *relo = &prog->reloc_desc[j]; 6274 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6275 6276 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6277 if (relo->type == RELO_SUBPROG_ADDR) 6278 insn[0].src_reg = BPF_PSEUDO_FUNC; 6279 } 6280 } 6281 6282 /* relocate subprogram calls and append used subprograms to main 6283 * programs; each copy of subprogram code needs to be relocated 6284 * differently for each main program, because its code location might 6285 * have changed. 6286 * Append subprog relos to main programs to allow data relos to be 6287 * processed after text is completely relocated. 6288 */ 6289 for (i = 0; i < obj->nr_programs; i++) { 6290 prog = &obj->programs[i]; 6291 /* sub-program's sub-calls are relocated within the context of 6292 * its main program only 6293 */ 6294 if (prog_is_subprog(obj, prog)) 6295 continue; 6296 if (!prog->load) 6297 continue; 6298 6299 err = bpf_object__relocate_calls(obj, prog); 6300 if (err) { 6301 pr_warn("prog '%s': failed to relocate calls: %d\n", 6302 prog->name, err); 6303 return err; 6304 } 6305 } 6306 /* Process data relos for main programs */ 6307 for (i = 0; i < obj->nr_programs; i++) { 6308 prog = &obj->programs[i]; 6309 if (prog_is_subprog(obj, prog)) 6310 continue; 6311 if (!prog->load) 6312 continue; 6313 err = bpf_object__relocate_data(obj, prog); 6314 if (err) { 6315 pr_warn("prog '%s': failed to relocate data references: %d\n", 6316 prog->name, err); 6317 return err; 6318 } 6319 } 6320 if (!obj->gen_loader) 6321 bpf_object__free_relocs(obj); 6322 return 0; 6323 } 6324 6325 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6326 Elf64_Shdr *shdr, Elf_Data *data); 6327 6328 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6329 Elf64_Shdr *shdr, Elf_Data *data) 6330 { 6331 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6332 int i, j, nrels, new_sz; 6333 const struct btf_var_secinfo *vi = NULL; 6334 const struct btf_type *sec, *var, *def; 6335 struct bpf_map *map = NULL, *targ_map = NULL; 6336 struct bpf_program *targ_prog = NULL; 6337 bool is_prog_array, is_map_in_map; 6338 const struct btf_member *member; 6339 const char *name, *mname, *type; 6340 unsigned int moff; 6341 Elf64_Sym *sym; 6342 Elf64_Rel *rel; 6343 void *tmp; 6344 6345 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6346 return -EINVAL; 6347 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6348 if (!sec) 6349 return -EINVAL; 6350 6351 nrels = shdr->sh_size / shdr->sh_entsize; 6352 for (i = 0; i < nrels; i++) { 6353 rel = elf_rel_by_idx(data, i); 6354 if (!rel) { 6355 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6356 return -LIBBPF_ERRNO__FORMAT; 6357 } 6358 6359 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6360 if (!sym) { 6361 pr_warn(".maps relo #%d: symbol %zx not found\n", 6362 i, (size_t)ELF64_R_SYM(rel->r_info)); 6363 return -LIBBPF_ERRNO__FORMAT; 6364 } 6365 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6366 6367 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6368 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6369 (size_t)rel->r_offset, sym->st_name, name); 6370 6371 for (j = 0; j < obj->nr_maps; j++) { 6372 map = &obj->maps[j]; 6373 if (map->sec_idx != obj->efile.btf_maps_shndx) 6374 continue; 6375 6376 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6377 if (vi->offset <= rel->r_offset && 6378 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6379 break; 6380 } 6381 if (j == obj->nr_maps) { 6382 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6383 i, name, (size_t)rel->r_offset); 6384 return -EINVAL; 6385 } 6386 6387 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6388 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6389 type = is_map_in_map ? "map" : "prog"; 6390 if (is_map_in_map) { 6391 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6392 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6393 i, name); 6394 return -LIBBPF_ERRNO__RELOC; 6395 } 6396 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6397 map->def.key_size != sizeof(int)) { 6398 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6399 i, map->name, sizeof(int)); 6400 return -EINVAL; 6401 } 6402 targ_map = bpf_object__find_map_by_name(obj, name); 6403 if (!targ_map) { 6404 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6405 i, name); 6406 return -ESRCH; 6407 } 6408 } else if (is_prog_array) { 6409 targ_prog = bpf_object__find_program_by_name(obj, name); 6410 if (!targ_prog) { 6411 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6412 i, name); 6413 return -ESRCH; 6414 } 6415 if (targ_prog->sec_idx != sym->st_shndx || 6416 targ_prog->sec_insn_off * 8 != sym->st_value || 6417 prog_is_subprog(obj, targ_prog)) { 6418 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6419 i, name); 6420 return -LIBBPF_ERRNO__RELOC; 6421 } 6422 } else { 6423 return -EINVAL; 6424 } 6425 6426 var = btf__type_by_id(obj->btf, vi->type); 6427 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6428 if (btf_vlen(def) == 0) 6429 return -EINVAL; 6430 member = btf_members(def) + btf_vlen(def) - 1; 6431 mname = btf__name_by_offset(obj->btf, member->name_off); 6432 if (strcmp(mname, "values")) 6433 return -EINVAL; 6434 6435 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6436 if (rel->r_offset - vi->offset < moff) 6437 return -EINVAL; 6438 6439 moff = rel->r_offset - vi->offset - moff; 6440 /* here we use BPF pointer size, which is always 64 bit, as we 6441 * are parsing ELF that was built for BPF target 6442 */ 6443 if (moff % bpf_ptr_sz) 6444 return -EINVAL; 6445 moff /= bpf_ptr_sz; 6446 if (moff >= map->init_slots_sz) { 6447 new_sz = moff + 1; 6448 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6449 if (!tmp) 6450 return -ENOMEM; 6451 map->init_slots = tmp; 6452 memset(map->init_slots + map->init_slots_sz, 0, 6453 (new_sz - map->init_slots_sz) * host_ptr_sz); 6454 map->init_slots_sz = new_sz; 6455 } 6456 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6457 6458 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6459 i, map->name, moff, type, name); 6460 } 6461 6462 return 0; 6463 } 6464 6465 static int bpf_object__collect_relos(struct bpf_object *obj) 6466 { 6467 int i, err; 6468 6469 for (i = 0; i < obj->efile.sec_cnt; i++) { 6470 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6471 Elf64_Shdr *shdr; 6472 Elf_Data *data; 6473 int idx; 6474 6475 if (sec_desc->sec_type != SEC_RELO) 6476 continue; 6477 6478 shdr = sec_desc->shdr; 6479 data = sec_desc->data; 6480 idx = shdr->sh_info; 6481 6482 if (shdr->sh_type != SHT_REL) { 6483 pr_warn("internal error at %d\n", __LINE__); 6484 return -LIBBPF_ERRNO__INTERNAL; 6485 } 6486 6487 if (idx == obj->efile.st_ops_shndx) 6488 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6489 else if (idx == obj->efile.btf_maps_shndx) 6490 err = bpf_object__collect_map_relos(obj, shdr, data); 6491 else 6492 err = bpf_object__collect_prog_relos(obj, shdr, data); 6493 if (err) 6494 return err; 6495 } 6496 6497 bpf_object__sort_relos(obj); 6498 return 0; 6499 } 6500 6501 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6502 { 6503 if (BPF_CLASS(insn->code) == BPF_JMP && 6504 BPF_OP(insn->code) == BPF_CALL && 6505 BPF_SRC(insn->code) == BPF_K && 6506 insn->src_reg == 0 && 6507 insn->dst_reg == 0) { 6508 *func_id = insn->imm; 6509 return true; 6510 } 6511 return false; 6512 } 6513 6514 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6515 { 6516 struct bpf_insn *insn = prog->insns; 6517 enum bpf_func_id func_id; 6518 int i; 6519 6520 if (obj->gen_loader) 6521 return 0; 6522 6523 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6524 if (!insn_is_helper_call(insn, &func_id)) 6525 continue; 6526 6527 /* on kernels that don't yet support 6528 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6529 * to bpf_probe_read() which works well for old kernels 6530 */ 6531 switch (func_id) { 6532 case BPF_FUNC_probe_read_kernel: 6533 case BPF_FUNC_probe_read_user: 6534 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6535 insn->imm = BPF_FUNC_probe_read; 6536 break; 6537 case BPF_FUNC_probe_read_kernel_str: 6538 case BPF_FUNC_probe_read_user_str: 6539 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6540 insn->imm = BPF_FUNC_probe_read_str; 6541 break; 6542 default: 6543 break; 6544 } 6545 } 6546 return 0; 6547 } 6548 6549 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6550 int *btf_obj_fd, int *btf_type_id); 6551 6552 /* this is called as prog->sec_def->preload_fn for libbpf-supported sec_defs */ 6553 static int libbpf_preload_prog(struct bpf_program *prog, 6554 struct bpf_prog_load_opts *opts, long cookie) 6555 { 6556 enum sec_def_flags def = cookie; 6557 6558 /* old kernels might not support specifying expected_attach_type */ 6559 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6560 opts->expected_attach_type = 0; 6561 6562 if (def & SEC_SLEEPABLE) 6563 opts->prog_flags |= BPF_F_SLEEPABLE; 6564 6565 if ((prog->type == BPF_PROG_TYPE_TRACING || 6566 prog->type == BPF_PROG_TYPE_LSM || 6567 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6568 int btf_obj_fd = 0, btf_type_id = 0, err; 6569 const char *attach_name; 6570 6571 attach_name = strchr(prog->sec_name, '/') + 1; 6572 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6573 if (err) 6574 return err; 6575 6576 /* cache resolved BTF FD and BTF type ID in the prog */ 6577 prog->attach_btf_obj_fd = btf_obj_fd; 6578 prog->attach_btf_id = btf_type_id; 6579 6580 /* but by now libbpf common logic is not utilizing 6581 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6582 * this callback is called after opts were populated by 6583 * libbpf, so this callback has to update opts explicitly here 6584 */ 6585 opts->attach_btf_obj_fd = btf_obj_fd; 6586 opts->attach_btf_id = btf_type_id; 6587 } 6588 return 0; 6589 } 6590 6591 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6592 struct bpf_insn *insns, int insns_cnt, 6593 const char *license, __u32 kern_version, 6594 int *prog_fd) 6595 { 6596 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6597 const char *prog_name = NULL; 6598 char *cp, errmsg[STRERR_BUFSIZE]; 6599 size_t log_buf_size = 0; 6600 char *log_buf = NULL, *tmp; 6601 int btf_fd, ret, err; 6602 bool own_log_buf = true; 6603 __u32 log_level = prog->log_level; 6604 6605 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6606 /* 6607 * The program type must be set. Most likely we couldn't find a proper 6608 * section definition at load time, and thus we didn't infer the type. 6609 */ 6610 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6611 prog->name, prog->sec_name); 6612 return -EINVAL; 6613 } 6614 6615 if (!insns || !insns_cnt) 6616 return -EINVAL; 6617 6618 load_attr.expected_attach_type = prog->expected_attach_type; 6619 if (kernel_supports(obj, FEAT_PROG_NAME)) 6620 prog_name = prog->name; 6621 load_attr.attach_prog_fd = prog->attach_prog_fd; 6622 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6623 load_attr.attach_btf_id = prog->attach_btf_id; 6624 load_attr.kern_version = kern_version; 6625 load_attr.prog_ifindex = prog->prog_ifindex; 6626 6627 /* specify func_info/line_info only if kernel supports them */ 6628 btf_fd = bpf_object__btf_fd(obj); 6629 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6630 load_attr.prog_btf_fd = btf_fd; 6631 load_attr.func_info = prog->func_info; 6632 load_attr.func_info_rec_size = prog->func_info_rec_size; 6633 load_attr.func_info_cnt = prog->func_info_cnt; 6634 load_attr.line_info = prog->line_info; 6635 load_attr.line_info_rec_size = prog->line_info_rec_size; 6636 load_attr.line_info_cnt = prog->line_info_cnt; 6637 } 6638 load_attr.log_level = log_level; 6639 load_attr.prog_flags = prog->prog_flags; 6640 load_attr.fd_array = obj->fd_array; 6641 6642 /* adjust load_attr if sec_def provides custom preload callback */ 6643 if (prog->sec_def && prog->sec_def->preload_fn) { 6644 err = prog->sec_def->preload_fn(prog, &load_attr, prog->sec_def->cookie); 6645 if (err < 0) { 6646 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6647 prog->name, err); 6648 return err; 6649 } 6650 } 6651 6652 if (obj->gen_loader) { 6653 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6654 license, insns, insns_cnt, &load_attr, 6655 prog - obj->programs); 6656 *prog_fd = -1; 6657 return 0; 6658 } 6659 6660 retry_load: 6661 /* if log_level is zero, we don't request logs initiallly even if 6662 * custom log_buf is specified; if the program load fails, then we'll 6663 * bump log_level to 1 and use either custom log_buf or we'll allocate 6664 * our own and retry the load to get details on what failed 6665 */ 6666 if (log_level) { 6667 if (prog->log_buf) { 6668 log_buf = prog->log_buf; 6669 log_buf_size = prog->log_size; 6670 own_log_buf = false; 6671 } else if (obj->log_buf) { 6672 log_buf = obj->log_buf; 6673 log_buf_size = obj->log_size; 6674 own_log_buf = false; 6675 } else { 6676 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6677 tmp = realloc(log_buf, log_buf_size); 6678 if (!tmp) { 6679 ret = -ENOMEM; 6680 goto out; 6681 } 6682 log_buf = tmp; 6683 log_buf[0] = '\0'; 6684 own_log_buf = true; 6685 } 6686 } 6687 6688 load_attr.log_buf = log_buf; 6689 load_attr.log_size = log_buf_size; 6690 load_attr.log_level = log_level; 6691 6692 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6693 if (ret >= 0) { 6694 if (log_level && own_log_buf) { 6695 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6696 prog->name, log_buf); 6697 } 6698 6699 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6700 struct bpf_map *map; 6701 int i; 6702 6703 for (i = 0; i < obj->nr_maps; i++) { 6704 map = &prog->obj->maps[i]; 6705 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6706 continue; 6707 6708 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6709 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6710 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6711 prog->name, map->real_name, cp); 6712 /* Don't fail hard if can't bind rodata. */ 6713 } 6714 } 6715 } 6716 6717 *prog_fd = ret; 6718 ret = 0; 6719 goto out; 6720 } 6721 6722 if (log_level == 0) { 6723 log_level = 1; 6724 goto retry_load; 6725 } 6726 /* On ENOSPC, increase log buffer size and retry, unless custom 6727 * log_buf is specified. 6728 * Be careful to not overflow u32, though. Kernel's log buf size limit 6729 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6730 * multiply by 2 unless we are sure we'll fit within 32 bits. 6731 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6732 */ 6733 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6734 goto retry_load; 6735 6736 ret = -errno; 6737 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6738 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6739 pr_perm_msg(ret); 6740 6741 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6742 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6743 prog->name, log_buf); 6744 } 6745 if (insns_cnt >= BPF_MAXINSNS) { 6746 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n", 6747 prog->name, insns_cnt, BPF_MAXINSNS); 6748 } 6749 6750 out: 6751 if (own_log_buf) 6752 free(log_buf); 6753 return ret; 6754 } 6755 6756 static int bpf_program_record_relos(struct bpf_program *prog) 6757 { 6758 struct bpf_object *obj = prog->obj; 6759 int i; 6760 6761 for (i = 0; i < prog->nr_reloc; i++) { 6762 struct reloc_desc *relo = &prog->reloc_desc[i]; 6763 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6764 6765 switch (relo->type) { 6766 case RELO_EXTERN_VAR: 6767 if (ext->type != EXT_KSYM) 6768 continue; 6769 bpf_gen__record_extern(obj->gen_loader, ext->name, 6770 ext->is_weak, !ext->ksym.type_id, 6771 BTF_KIND_VAR, relo->insn_idx); 6772 break; 6773 case RELO_EXTERN_FUNC: 6774 bpf_gen__record_extern(obj->gen_loader, ext->name, 6775 ext->is_weak, false, BTF_KIND_FUNC, 6776 relo->insn_idx); 6777 break; 6778 case RELO_CORE: { 6779 struct bpf_core_relo cr = { 6780 .insn_off = relo->insn_idx * 8, 6781 .type_id = relo->core_relo->type_id, 6782 .access_str_off = relo->core_relo->access_str_off, 6783 .kind = relo->core_relo->kind, 6784 }; 6785 6786 bpf_gen__record_relo_core(obj->gen_loader, &cr); 6787 break; 6788 } 6789 default: 6790 continue; 6791 } 6792 } 6793 return 0; 6794 } 6795 6796 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6797 const char *license, __u32 kern_ver) 6798 { 6799 int err = 0, fd, i; 6800 6801 if (obj->loaded) { 6802 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6803 return libbpf_err(-EINVAL); 6804 } 6805 6806 if (prog->instances.nr < 0 || !prog->instances.fds) { 6807 if (prog->preprocessor) { 6808 pr_warn("Internal error: can't load program '%s'\n", 6809 prog->name); 6810 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6811 } 6812 6813 prog->instances.fds = malloc(sizeof(int)); 6814 if (!prog->instances.fds) { 6815 pr_warn("Not enough memory for BPF fds\n"); 6816 return libbpf_err(-ENOMEM); 6817 } 6818 prog->instances.nr = 1; 6819 prog->instances.fds[0] = -1; 6820 } 6821 6822 if (!prog->preprocessor) { 6823 if (prog->instances.nr != 1) { 6824 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6825 prog->name, prog->instances.nr); 6826 } 6827 if (obj->gen_loader) 6828 bpf_program_record_relos(prog); 6829 err = bpf_object_load_prog_instance(obj, prog, 6830 prog->insns, prog->insns_cnt, 6831 license, kern_ver, &fd); 6832 if (!err) 6833 prog->instances.fds[0] = fd; 6834 goto out; 6835 } 6836 6837 for (i = 0; i < prog->instances.nr; i++) { 6838 struct bpf_prog_prep_result result; 6839 bpf_program_prep_t preprocessor = prog->preprocessor; 6840 6841 memset(&result, 0, sizeof(result)); 6842 err = preprocessor(prog, i, prog->insns, 6843 prog->insns_cnt, &result); 6844 if (err) { 6845 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6846 i, prog->name); 6847 goto out; 6848 } 6849 6850 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6851 pr_debug("Skip loading the %dth instance of program '%s'\n", 6852 i, prog->name); 6853 prog->instances.fds[i] = -1; 6854 if (result.pfd) 6855 *result.pfd = -1; 6856 continue; 6857 } 6858 6859 err = bpf_object_load_prog_instance(obj, prog, 6860 result.new_insn_ptr, result.new_insn_cnt, 6861 license, kern_ver, &fd); 6862 if (err) { 6863 pr_warn("Loading the %dth instance of program '%s' failed\n", 6864 i, prog->name); 6865 goto out; 6866 } 6867 6868 if (result.pfd) 6869 *result.pfd = fd; 6870 prog->instances.fds[i] = fd; 6871 } 6872 out: 6873 if (err) 6874 pr_warn("failed to load program '%s'\n", prog->name); 6875 return libbpf_err(err); 6876 } 6877 6878 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 6879 { 6880 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 6881 } 6882 6883 static int 6884 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6885 { 6886 struct bpf_program *prog; 6887 size_t i; 6888 int err; 6889 6890 for (i = 0; i < obj->nr_programs; i++) { 6891 prog = &obj->programs[i]; 6892 err = bpf_object__sanitize_prog(obj, prog); 6893 if (err) 6894 return err; 6895 } 6896 6897 for (i = 0; i < obj->nr_programs; i++) { 6898 prog = &obj->programs[i]; 6899 if (prog_is_subprog(obj, prog)) 6900 continue; 6901 if (!prog->load) { 6902 pr_debug("prog '%s': skipped loading\n", prog->name); 6903 continue; 6904 } 6905 prog->log_level |= log_level; 6906 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 6907 if (err) 6908 return err; 6909 } 6910 if (obj->gen_loader) 6911 bpf_object__free_relocs(obj); 6912 return 0; 6913 } 6914 6915 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6916 6917 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6918 { 6919 struct bpf_program *prog; 6920 int err; 6921 6922 bpf_object__for_each_program(prog, obj) { 6923 prog->sec_def = find_sec_def(prog->sec_name); 6924 if (!prog->sec_def) { 6925 /* couldn't guess, but user might manually specify */ 6926 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6927 prog->name, prog->sec_name); 6928 continue; 6929 } 6930 6931 bpf_program__set_type(prog, prog->sec_def->prog_type); 6932 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6933 6934 #pragma GCC diagnostic push 6935 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6936 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6937 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6938 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6939 #pragma GCC diagnostic pop 6940 6941 /* sec_def can have custom callback which should be called 6942 * after bpf_program is initialized to adjust its properties 6943 */ 6944 if (prog->sec_def->init_fn) { 6945 err = prog->sec_def->init_fn(prog, prog->sec_def->cookie); 6946 if (err < 0) { 6947 pr_warn("prog '%s': failed to initialize: %d\n", 6948 prog->name, err); 6949 return err; 6950 } 6951 } 6952 } 6953 6954 return 0; 6955 } 6956 6957 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6958 const struct bpf_object_open_opts *opts) 6959 { 6960 const char *obj_name, *kconfig, *btf_tmp_path; 6961 struct bpf_object *obj; 6962 char tmp_name[64]; 6963 int err; 6964 char *log_buf; 6965 size_t log_size; 6966 __u32 log_level; 6967 6968 if (elf_version(EV_CURRENT) == EV_NONE) { 6969 pr_warn("failed to init libelf for %s\n", 6970 path ? : "(mem buf)"); 6971 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6972 } 6973 6974 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6975 return ERR_PTR(-EINVAL); 6976 6977 obj_name = OPTS_GET(opts, object_name, NULL); 6978 if (obj_buf) { 6979 if (!obj_name) { 6980 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6981 (unsigned long)obj_buf, 6982 (unsigned long)obj_buf_sz); 6983 obj_name = tmp_name; 6984 } 6985 path = obj_name; 6986 pr_debug("loading object '%s' from buffer\n", obj_name); 6987 } 6988 6989 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 6990 log_size = OPTS_GET(opts, kernel_log_size, 0); 6991 log_level = OPTS_GET(opts, kernel_log_level, 0); 6992 if (log_size > UINT_MAX) 6993 return ERR_PTR(-EINVAL); 6994 if (log_size && !log_buf) 6995 return ERR_PTR(-EINVAL); 6996 6997 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 6998 if (IS_ERR(obj)) 6999 return obj; 7000 7001 obj->log_buf = log_buf; 7002 obj->log_size = log_size; 7003 obj->log_level = log_level; 7004 7005 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7006 if (btf_tmp_path) { 7007 if (strlen(btf_tmp_path) >= PATH_MAX) { 7008 err = -ENAMETOOLONG; 7009 goto out; 7010 } 7011 obj->btf_custom_path = strdup(btf_tmp_path); 7012 if (!obj->btf_custom_path) { 7013 err = -ENOMEM; 7014 goto out; 7015 } 7016 } 7017 7018 kconfig = OPTS_GET(opts, kconfig, NULL); 7019 if (kconfig) { 7020 obj->kconfig = strdup(kconfig); 7021 if (!obj->kconfig) { 7022 err = -ENOMEM; 7023 goto out; 7024 } 7025 } 7026 7027 err = bpf_object__elf_init(obj); 7028 err = err ? : bpf_object__check_endianness(obj); 7029 err = err ? : bpf_object__elf_collect(obj); 7030 err = err ? : bpf_object__collect_externs(obj); 7031 err = err ? : bpf_object__finalize_btf(obj); 7032 err = err ? : bpf_object__init_maps(obj, opts); 7033 err = err ? : bpf_object_init_progs(obj, opts); 7034 err = err ? : bpf_object__collect_relos(obj); 7035 if (err) 7036 goto out; 7037 7038 bpf_object__elf_finish(obj); 7039 7040 return obj; 7041 out: 7042 bpf_object__close(obj); 7043 return ERR_PTR(err); 7044 } 7045 7046 static struct bpf_object * 7047 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7048 { 7049 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7050 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7051 ); 7052 7053 /* param validation */ 7054 if (!attr->file) 7055 return NULL; 7056 7057 pr_debug("loading %s\n", attr->file); 7058 return bpf_object_open(attr->file, NULL, 0, &opts); 7059 } 7060 7061 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7062 { 7063 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7064 } 7065 7066 struct bpf_object *bpf_object__open(const char *path) 7067 { 7068 struct bpf_object_open_attr attr = { 7069 .file = path, 7070 .prog_type = BPF_PROG_TYPE_UNSPEC, 7071 }; 7072 7073 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7074 } 7075 7076 struct bpf_object * 7077 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7078 { 7079 if (!path) 7080 return libbpf_err_ptr(-EINVAL); 7081 7082 pr_debug("loading %s\n", path); 7083 7084 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7085 } 7086 7087 struct bpf_object * 7088 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7089 const struct bpf_object_open_opts *opts) 7090 { 7091 if (!obj_buf || obj_buf_sz == 0) 7092 return libbpf_err_ptr(-EINVAL); 7093 7094 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7095 } 7096 7097 struct bpf_object * 7098 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7099 const char *name) 7100 { 7101 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7102 .object_name = name, 7103 /* wrong default, but backwards-compatible */ 7104 .relaxed_maps = true, 7105 ); 7106 7107 /* returning NULL is wrong, but backwards-compatible */ 7108 if (!obj_buf || obj_buf_sz == 0) 7109 return errno = EINVAL, NULL; 7110 7111 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7112 } 7113 7114 static int bpf_object_unload(struct bpf_object *obj) 7115 { 7116 size_t i; 7117 7118 if (!obj) 7119 return libbpf_err(-EINVAL); 7120 7121 for (i = 0; i < obj->nr_maps; i++) { 7122 zclose(obj->maps[i].fd); 7123 if (obj->maps[i].st_ops) 7124 zfree(&obj->maps[i].st_ops->kern_vdata); 7125 } 7126 7127 for (i = 0; i < obj->nr_programs; i++) 7128 bpf_program__unload(&obj->programs[i]); 7129 7130 return 0; 7131 } 7132 7133 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7134 7135 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7136 { 7137 struct bpf_map *m; 7138 7139 bpf_object__for_each_map(m, obj) { 7140 if (!bpf_map__is_internal(m)) 7141 continue; 7142 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7143 m->def.map_flags ^= BPF_F_MMAPABLE; 7144 } 7145 7146 return 0; 7147 } 7148 7149 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7150 { 7151 char sym_type, sym_name[500]; 7152 unsigned long long sym_addr; 7153 const struct btf_type *t; 7154 struct extern_desc *ext; 7155 int ret, err = 0; 7156 FILE *f; 7157 7158 f = fopen("/proc/kallsyms", "r"); 7159 if (!f) { 7160 err = -errno; 7161 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7162 return err; 7163 } 7164 7165 while (true) { 7166 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7167 &sym_addr, &sym_type, sym_name); 7168 if (ret == EOF && feof(f)) 7169 break; 7170 if (ret != 3) { 7171 pr_warn("failed to read kallsyms entry: %d\n", ret); 7172 err = -EINVAL; 7173 goto out; 7174 } 7175 7176 ext = find_extern_by_name(obj, sym_name); 7177 if (!ext || ext->type != EXT_KSYM) 7178 continue; 7179 7180 t = btf__type_by_id(obj->btf, ext->btf_id); 7181 if (!btf_is_var(t)) 7182 continue; 7183 7184 if (ext->is_set && ext->ksym.addr != sym_addr) { 7185 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7186 sym_name, ext->ksym.addr, sym_addr); 7187 err = -EINVAL; 7188 goto out; 7189 } 7190 if (!ext->is_set) { 7191 ext->is_set = true; 7192 ext->ksym.addr = sym_addr; 7193 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7194 } 7195 } 7196 7197 out: 7198 fclose(f); 7199 return err; 7200 } 7201 7202 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7203 __u16 kind, struct btf **res_btf, 7204 struct module_btf **res_mod_btf) 7205 { 7206 struct module_btf *mod_btf; 7207 struct btf *btf; 7208 int i, id, err; 7209 7210 btf = obj->btf_vmlinux; 7211 mod_btf = NULL; 7212 id = btf__find_by_name_kind(btf, ksym_name, kind); 7213 7214 if (id == -ENOENT) { 7215 err = load_module_btfs(obj); 7216 if (err) 7217 return err; 7218 7219 for (i = 0; i < obj->btf_module_cnt; i++) { 7220 /* we assume module_btf's BTF FD is always >0 */ 7221 mod_btf = &obj->btf_modules[i]; 7222 btf = mod_btf->btf; 7223 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7224 if (id != -ENOENT) 7225 break; 7226 } 7227 } 7228 if (id <= 0) 7229 return -ESRCH; 7230 7231 *res_btf = btf; 7232 *res_mod_btf = mod_btf; 7233 return id; 7234 } 7235 7236 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7237 struct extern_desc *ext) 7238 { 7239 const struct btf_type *targ_var, *targ_type; 7240 __u32 targ_type_id, local_type_id; 7241 struct module_btf *mod_btf = NULL; 7242 const char *targ_var_name; 7243 struct btf *btf = NULL; 7244 int id, err; 7245 7246 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7247 if (id < 0) { 7248 if (id == -ESRCH && ext->is_weak) 7249 return 0; 7250 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7251 ext->name); 7252 return id; 7253 } 7254 7255 /* find local type_id */ 7256 local_type_id = ext->ksym.type_id; 7257 7258 /* find target type_id */ 7259 targ_var = btf__type_by_id(btf, id); 7260 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7261 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7262 7263 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7264 btf, targ_type_id); 7265 if (err <= 0) { 7266 const struct btf_type *local_type; 7267 const char *targ_name, *local_name; 7268 7269 local_type = btf__type_by_id(obj->btf, local_type_id); 7270 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7271 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7272 7273 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7274 ext->name, local_type_id, 7275 btf_kind_str(local_type), local_name, targ_type_id, 7276 btf_kind_str(targ_type), targ_name); 7277 return -EINVAL; 7278 } 7279 7280 ext->is_set = true; 7281 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7282 ext->ksym.kernel_btf_id = id; 7283 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7284 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7285 7286 return 0; 7287 } 7288 7289 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7290 struct extern_desc *ext) 7291 { 7292 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7293 struct module_btf *mod_btf = NULL; 7294 const struct btf_type *kern_func; 7295 struct btf *kern_btf = NULL; 7296 int ret; 7297 7298 local_func_proto_id = ext->ksym.type_id; 7299 7300 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7301 if (kfunc_id < 0) { 7302 if (kfunc_id == -ESRCH && ext->is_weak) 7303 return 0; 7304 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7305 ext->name); 7306 return kfunc_id; 7307 } 7308 7309 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7310 kfunc_proto_id = kern_func->type; 7311 7312 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7313 kern_btf, kfunc_proto_id); 7314 if (ret <= 0) { 7315 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7316 ext->name, local_func_proto_id, kfunc_proto_id); 7317 return -EINVAL; 7318 } 7319 7320 /* set index for module BTF fd in fd_array, if unset */ 7321 if (mod_btf && !mod_btf->fd_array_idx) { 7322 /* insn->off is s16 */ 7323 if (obj->fd_array_cnt == INT16_MAX) { 7324 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7325 ext->name, mod_btf->fd_array_idx); 7326 return -E2BIG; 7327 } 7328 /* Cannot use index 0 for module BTF fd */ 7329 if (!obj->fd_array_cnt) 7330 obj->fd_array_cnt = 1; 7331 7332 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7333 obj->fd_array_cnt + 1); 7334 if (ret) 7335 return ret; 7336 mod_btf->fd_array_idx = obj->fd_array_cnt; 7337 /* we assume module BTF FD is always >0 */ 7338 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7339 } 7340 7341 ext->is_set = true; 7342 ext->ksym.kernel_btf_id = kfunc_id; 7343 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7344 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7345 ext->name, kfunc_id); 7346 7347 return 0; 7348 } 7349 7350 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7351 { 7352 const struct btf_type *t; 7353 struct extern_desc *ext; 7354 int i, err; 7355 7356 for (i = 0; i < obj->nr_extern; i++) { 7357 ext = &obj->externs[i]; 7358 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7359 continue; 7360 7361 if (obj->gen_loader) { 7362 ext->is_set = true; 7363 ext->ksym.kernel_btf_obj_fd = 0; 7364 ext->ksym.kernel_btf_id = 0; 7365 continue; 7366 } 7367 t = btf__type_by_id(obj->btf, ext->btf_id); 7368 if (btf_is_var(t)) 7369 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7370 else 7371 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7372 if (err) 7373 return err; 7374 } 7375 return 0; 7376 } 7377 7378 static int bpf_object__resolve_externs(struct bpf_object *obj, 7379 const char *extra_kconfig) 7380 { 7381 bool need_config = false, need_kallsyms = false; 7382 bool need_vmlinux_btf = false; 7383 struct extern_desc *ext; 7384 void *kcfg_data = NULL; 7385 int err, i; 7386 7387 if (obj->nr_extern == 0) 7388 return 0; 7389 7390 if (obj->kconfig_map_idx >= 0) 7391 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7392 7393 for (i = 0; i < obj->nr_extern; i++) { 7394 ext = &obj->externs[i]; 7395 7396 if (ext->type == EXT_KCFG && 7397 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7398 void *ext_val = kcfg_data + ext->kcfg.data_off; 7399 __u32 kver = get_kernel_version(); 7400 7401 if (!kver) { 7402 pr_warn("failed to get kernel version\n"); 7403 return -EINVAL; 7404 } 7405 err = set_kcfg_value_num(ext, ext_val, kver); 7406 if (err) 7407 return err; 7408 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7409 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7410 need_config = true; 7411 } else if (ext->type == EXT_KSYM) { 7412 if (ext->ksym.type_id) 7413 need_vmlinux_btf = true; 7414 else 7415 need_kallsyms = true; 7416 } else { 7417 pr_warn("unrecognized extern '%s'\n", ext->name); 7418 return -EINVAL; 7419 } 7420 } 7421 if (need_config && extra_kconfig) { 7422 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7423 if (err) 7424 return -EINVAL; 7425 need_config = false; 7426 for (i = 0; i < obj->nr_extern; i++) { 7427 ext = &obj->externs[i]; 7428 if (ext->type == EXT_KCFG && !ext->is_set) { 7429 need_config = true; 7430 break; 7431 } 7432 } 7433 } 7434 if (need_config) { 7435 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7436 if (err) 7437 return -EINVAL; 7438 } 7439 if (need_kallsyms) { 7440 err = bpf_object__read_kallsyms_file(obj); 7441 if (err) 7442 return -EINVAL; 7443 } 7444 if (need_vmlinux_btf) { 7445 err = bpf_object__resolve_ksyms_btf_id(obj); 7446 if (err) 7447 return -EINVAL; 7448 } 7449 for (i = 0; i < obj->nr_extern; i++) { 7450 ext = &obj->externs[i]; 7451 7452 if (!ext->is_set && !ext->is_weak) { 7453 pr_warn("extern %s (strong) not resolved\n", ext->name); 7454 return -ESRCH; 7455 } else if (!ext->is_set) { 7456 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7457 ext->name); 7458 } 7459 } 7460 7461 return 0; 7462 } 7463 7464 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7465 { 7466 int err, i; 7467 7468 if (!obj) 7469 return libbpf_err(-EINVAL); 7470 7471 if (obj->loaded) { 7472 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7473 return libbpf_err(-EINVAL); 7474 } 7475 7476 if (obj->gen_loader) 7477 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7478 7479 err = bpf_object__probe_loading(obj); 7480 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7481 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7482 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7483 err = err ? : bpf_object__sanitize_maps(obj); 7484 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7485 err = err ? : bpf_object__create_maps(obj); 7486 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7487 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7488 err = err ? : bpf_object_init_prog_arrays(obj); 7489 7490 if (obj->gen_loader) { 7491 /* reset FDs */ 7492 if (obj->btf) 7493 btf__set_fd(obj->btf, -1); 7494 for (i = 0; i < obj->nr_maps; i++) 7495 obj->maps[i].fd = -1; 7496 if (!err) 7497 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7498 } 7499 7500 /* clean up fd_array */ 7501 zfree(&obj->fd_array); 7502 7503 /* clean up module BTFs */ 7504 for (i = 0; i < obj->btf_module_cnt; i++) { 7505 close(obj->btf_modules[i].fd); 7506 btf__free(obj->btf_modules[i].btf); 7507 free(obj->btf_modules[i].name); 7508 } 7509 free(obj->btf_modules); 7510 7511 /* clean up vmlinux BTF */ 7512 btf__free(obj->btf_vmlinux); 7513 obj->btf_vmlinux = NULL; 7514 7515 obj->loaded = true; /* doesn't matter if successfully or not */ 7516 7517 if (err) 7518 goto out; 7519 7520 return 0; 7521 out: 7522 /* unpin any maps that were auto-pinned during load */ 7523 for (i = 0; i < obj->nr_maps; i++) 7524 if (obj->maps[i].pinned && !obj->maps[i].reused) 7525 bpf_map__unpin(&obj->maps[i], NULL); 7526 7527 bpf_object_unload(obj); 7528 pr_warn("failed to load object '%s'\n", obj->path); 7529 return libbpf_err(err); 7530 } 7531 7532 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7533 { 7534 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7535 } 7536 7537 int bpf_object__load(struct bpf_object *obj) 7538 { 7539 return bpf_object_load(obj, 0, NULL); 7540 } 7541 7542 static int make_parent_dir(const char *path) 7543 { 7544 char *cp, errmsg[STRERR_BUFSIZE]; 7545 char *dname, *dir; 7546 int err = 0; 7547 7548 dname = strdup(path); 7549 if (dname == NULL) 7550 return -ENOMEM; 7551 7552 dir = dirname(dname); 7553 if (mkdir(dir, 0700) && errno != EEXIST) 7554 err = -errno; 7555 7556 free(dname); 7557 if (err) { 7558 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7559 pr_warn("failed to mkdir %s: %s\n", path, cp); 7560 } 7561 return err; 7562 } 7563 7564 static int check_path(const char *path) 7565 { 7566 char *cp, errmsg[STRERR_BUFSIZE]; 7567 struct statfs st_fs; 7568 char *dname, *dir; 7569 int err = 0; 7570 7571 if (path == NULL) 7572 return -EINVAL; 7573 7574 dname = strdup(path); 7575 if (dname == NULL) 7576 return -ENOMEM; 7577 7578 dir = dirname(dname); 7579 if (statfs(dir, &st_fs)) { 7580 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7581 pr_warn("failed to statfs %s: %s\n", dir, cp); 7582 err = -errno; 7583 } 7584 free(dname); 7585 7586 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7587 pr_warn("specified path %s is not on BPF FS\n", path); 7588 err = -EINVAL; 7589 } 7590 7591 return err; 7592 } 7593 7594 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7595 { 7596 char *cp, errmsg[STRERR_BUFSIZE]; 7597 int err; 7598 7599 err = make_parent_dir(path); 7600 if (err) 7601 return libbpf_err(err); 7602 7603 err = check_path(path); 7604 if (err) 7605 return libbpf_err(err); 7606 7607 if (prog == NULL) { 7608 pr_warn("invalid program pointer\n"); 7609 return libbpf_err(-EINVAL); 7610 } 7611 7612 if (instance < 0 || instance >= prog->instances.nr) { 7613 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7614 instance, prog->name, prog->instances.nr); 7615 return libbpf_err(-EINVAL); 7616 } 7617 7618 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7619 err = -errno; 7620 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7621 pr_warn("failed to pin program: %s\n", cp); 7622 return libbpf_err(err); 7623 } 7624 pr_debug("pinned program '%s'\n", path); 7625 7626 return 0; 7627 } 7628 7629 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7630 { 7631 int err; 7632 7633 err = check_path(path); 7634 if (err) 7635 return libbpf_err(err); 7636 7637 if (prog == NULL) { 7638 pr_warn("invalid program pointer\n"); 7639 return libbpf_err(-EINVAL); 7640 } 7641 7642 if (instance < 0 || instance >= prog->instances.nr) { 7643 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7644 instance, prog->name, prog->instances.nr); 7645 return libbpf_err(-EINVAL); 7646 } 7647 7648 err = unlink(path); 7649 if (err != 0) 7650 return libbpf_err(-errno); 7651 7652 pr_debug("unpinned program '%s'\n", path); 7653 7654 return 0; 7655 } 7656 7657 __attribute__((alias("bpf_program_pin_instance"))) 7658 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7659 7660 __attribute__((alias("bpf_program_unpin_instance"))) 7661 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7662 7663 int bpf_program__pin(struct bpf_program *prog, const char *path) 7664 { 7665 int i, err; 7666 7667 err = make_parent_dir(path); 7668 if (err) 7669 return libbpf_err(err); 7670 7671 err = check_path(path); 7672 if (err) 7673 return libbpf_err(err); 7674 7675 if (prog == NULL) { 7676 pr_warn("invalid program pointer\n"); 7677 return libbpf_err(-EINVAL); 7678 } 7679 7680 if (prog->instances.nr <= 0) { 7681 pr_warn("no instances of prog %s to pin\n", prog->name); 7682 return libbpf_err(-EINVAL); 7683 } 7684 7685 if (prog->instances.nr == 1) { 7686 /* don't create subdirs when pinning single instance */ 7687 return bpf_program_pin_instance(prog, path, 0); 7688 } 7689 7690 for (i = 0; i < prog->instances.nr; i++) { 7691 char buf[PATH_MAX]; 7692 int len; 7693 7694 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7695 if (len < 0) { 7696 err = -EINVAL; 7697 goto err_unpin; 7698 } else if (len >= PATH_MAX) { 7699 err = -ENAMETOOLONG; 7700 goto err_unpin; 7701 } 7702 7703 err = bpf_program_pin_instance(prog, buf, i); 7704 if (err) 7705 goto err_unpin; 7706 } 7707 7708 return 0; 7709 7710 err_unpin: 7711 for (i = i - 1; i >= 0; i--) { 7712 char buf[PATH_MAX]; 7713 int len; 7714 7715 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7716 if (len < 0) 7717 continue; 7718 else if (len >= PATH_MAX) 7719 continue; 7720 7721 bpf_program_unpin_instance(prog, buf, i); 7722 } 7723 7724 rmdir(path); 7725 7726 return libbpf_err(err); 7727 } 7728 7729 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7730 { 7731 int i, err; 7732 7733 err = check_path(path); 7734 if (err) 7735 return libbpf_err(err); 7736 7737 if (prog == NULL) { 7738 pr_warn("invalid program pointer\n"); 7739 return libbpf_err(-EINVAL); 7740 } 7741 7742 if (prog->instances.nr <= 0) { 7743 pr_warn("no instances of prog %s to pin\n", prog->name); 7744 return libbpf_err(-EINVAL); 7745 } 7746 7747 if (prog->instances.nr == 1) { 7748 /* don't create subdirs when pinning single instance */ 7749 return bpf_program_unpin_instance(prog, path, 0); 7750 } 7751 7752 for (i = 0; i < prog->instances.nr; i++) { 7753 char buf[PATH_MAX]; 7754 int len; 7755 7756 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7757 if (len < 0) 7758 return libbpf_err(-EINVAL); 7759 else if (len >= PATH_MAX) 7760 return libbpf_err(-ENAMETOOLONG); 7761 7762 err = bpf_program_unpin_instance(prog, buf, i); 7763 if (err) 7764 return err; 7765 } 7766 7767 err = rmdir(path); 7768 if (err) 7769 return libbpf_err(-errno); 7770 7771 return 0; 7772 } 7773 7774 int bpf_map__pin(struct bpf_map *map, const char *path) 7775 { 7776 char *cp, errmsg[STRERR_BUFSIZE]; 7777 int err; 7778 7779 if (map == NULL) { 7780 pr_warn("invalid map pointer\n"); 7781 return libbpf_err(-EINVAL); 7782 } 7783 7784 if (map->pin_path) { 7785 if (path && strcmp(path, map->pin_path)) { 7786 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7787 bpf_map__name(map), map->pin_path, path); 7788 return libbpf_err(-EINVAL); 7789 } else if (map->pinned) { 7790 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7791 bpf_map__name(map), map->pin_path); 7792 return 0; 7793 } 7794 } else { 7795 if (!path) { 7796 pr_warn("missing a path to pin map '%s' at\n", 7797 bpf_map__name(map)); 7798 return libbpf_err(-EINVAL); 7799 } else if (map->pinned) { 7800 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7801 return libbpf_err(-EEXIST); 7802 } 7803 7804 map->pin_path = strdup(path); 7805 if (!map->pin_path) { 7806 err = -errno; 7807 goto out_err; 7808 } 7809 } 7810 7811 err = make_parent_dir(map->pin_path); 7812 if (err) 7813 return libbpf_err(err); 7814 7815 err = check_path(map->pin_path); 7816 if (err) 7817 return libbpf_err(err); 7818 7819 if (bpf_obj_pin(map->fd, map->pin_path)) { 7820 err = -errno; 7821 goto out_err; 7822 } 7823 7824 map->pinned = true; 7825 pr_debug("pinned map '%s'\n", map->pin_path); 7826 7827 return 0; 7828 7829 out_err: 7830 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7831 pr_warn("failed to pin map: %s\n", cp); 7832 return libbpf_err(err); 7833 } 7834 7835 int bpf_map__unpin(struct bpf_map *map, const char *path) 7836 { 7837 int err; 7838 7839 if (map == NULL) { 7840 pr_warn("invalid map pointer\n"); 7841 return libbpf_err(-EINVAL); 7842 } 7843 7844 if (map->pin_path) { 7845 if (path && strcmp(path, map->pin_path)) { 7846 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7847 bpf_map__name(map), map->pin_path, path); 7848 return libbpf_err(-EINVAL); 7849 } 7850 path = map->pin_path; 7851 } else if (!path) { 7852 pr_warn("no path to unpin map '%s' from\n", 7853 bpf_map__name(map)); 7854 return libbpf_err(-EINVAL); 7855 } 7856 7857 err = check_path(path); 7858 if (err) 7859 return libbpf_err(err); 7860 7861 err = unlink(path); 7862 if (err != 0) 7863 return libbpf_err(-errno); 7864 7865 map->pinned = false; 7866 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7867 7868 return 0; 7869 } 7870 7871 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7872 { 7873 char *new = NULL; 7874 7875 if (path) { 7876 new = strdup(path); 7877 if (!new) 7878 return libbpf_err(-errno); 7879 } 7880 7881 free(map->pin_path); 7882 map->pin_path = new; 7883 return 0; 7884 } 7885 7886 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7887 { 7888 return map->pin_path; 7889 } 7890 7891 const char *bpf_map__pin_path(const struct bpf_map *map) 7892 { 7893 return map->pin_path; 7894 } 7895 7896 bool bpf_map__is_pinned(const struct bpf_map *map) 7897 { 7898 return map->pinned; 7899 } 7900 7901 static void sanitize_pin_path(char *s) 7902 { 7903 /* bpffs disallows periods in path names */ 7904 while (*s) { 7905 if (*s == '.') 7906 *s = '_'; 7907 s++; 7908 } 7909 } 7910 7911 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7912 { 7913 struct bpf_map *map; 7914 int err; 7915 7916 if (!obj) 7917 return libbpf_err(-ENOENT); 7918 7919 if (!obj->loaded) { 7920 pr_warn("object not yet loaded; load it first\n"); 7921 return libbpf_err(-ENOENT); 7922 } 7923 7924 bpf_object__for_each_map(map, obj) { 7925 char *pin_path = NULL; 7926 char buf[PATH_MAX]; 7927 7928 if (map->skipped) 7929 continue; 7930 7931 if (path) { 7932 int len; 7933 7934 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7935 bpf_map__name(map)); 7936 if (len < 0) { 7937 err = -EINVAL; 7938 goto err_unpin_maps; 7939 } else if (len >= PATH_MAX) { 7940 err = -ENAMETOOLONG; 7941 goto err_unpin_maps; 7942 } 7943 sanitize_pin_path(buf); 7944 pin_path = buf; 7945 } else if (!map->pin_path) { 7946 continue; 7947 } 7948 7949 err = bpf_map__pin(map, pin_path); 7950 if (err) 7951 goto err_unpin_maps; 7952 } 7953 7954 return 0; 7955 7956 err_unpin_maps: 7957 while ((map = bpf_object__prev_map(obj, map))) { 7958 if (!map->pin_path) 7959 continue; 7960 7961 bpf_map__unpin(map, NULL); 7962 } 7963 7964 return libbpf_err(err); 7965 } 7966 7967 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7968 { 7969 struct bpf_map *map; 7970 int err; 7971 7972 if (!obj) 7973 return libbpf_err(-ENOENT); 7974 7975 bpf_object__for_each_map(map, obj) { 7976 char *pin_path = NULL; 7977 char buf[PATH_MAX]; 7978 7979 if (path) { 7980 int len; 7981 7982 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7983 bpf_map__name(map)); 7984 if (len < 0) 7985 return libbpf_err(-EINVAL); 7986 else if (len >= PATH_MAX) 7987 return libbpf_err(-ENAMETOOLONG); 7988 sanitize_pin_path(buf); 7989 pin_path = buf; 7990 } else if (!map->pin_path) { 7991 continue; 7992 } 7993 7994 err = bpf_map__unpin(map, pin_path); 7995 if (err) 7996 return libbpf_err(err); 7997 } 7998 7999 return 0; 8000 } 8001 8002 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8003 { 8004 struct bpf_program *prog; 8005 int err; 8006 8007 if (!obj) 8008 return libbpf_err(-ENOENT); 8009 8010 if (!obj->loaded) { 8011 pr_warn("object not yet loaded; load it first\n"); 8012 return libbpf_err(-ENOENT); 8013 } 8014 8015 bpf_object__for_each_program(prog, obj) { 8016 char buf[PATH_MAX]; 8017 int len; 8018 8019 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8020 prog->pin_name); 8021 if (len < 0) { 8022 err = -EINVAL; 8023 goto err_unpin_programs; 8024 } else if (len >= PATH_MAX) { 8025 err = -ENAMETOOLONG; 8026 goto err_unpin_programs; 8027 } 8028 8029 err = bpf_program__pin(prog, buf); 8030 if (err) 8031 goto err_unpin_programs; 8032 } 8033 8034 return 0; 8035 8036 err_unpin_programs: 8037 while ((prog = bpf_object__prev_program(obj, prog))) { 8038 char buf[PATH_MAX]; 8039 int len; 8040 8041 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8042 prog->pin_name); 8043 if (len < 0) 8044 continue; 8045 else if (len >= PATH_MAX) 8046 continue; 8047 8048 bpf_program__unpin(prog, buf); 8049 } 8050 8051 return libbpf_err(err); 8052 } 8053 8054 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8055 { 8056 struct bpf_program *prog; 8057 int err; 8058 8059 if (!obj) 8060 return libbpf_err(-ENOENT); 8061 8062 bpf_object__for_each_program(prog, obj) { 8063 char buf[PATH_MAX]; 8064 int len; 8065 8066 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8067 prog->pin_name); 8068 if (len < 0) 8069 return libbpf_err(-EINVAL); 8070 else if (len >= PATH_MAX) 8071 return libbpf_err(-ENAMETOOLONG); 8072 8073 err = bpf_program__unpin(prog, buf); 8074 if (err) 8075 return libbpf_err(err); 8076 } 8077 8078 return 0; 8079 } 8080 8081 int bpf_object__pin(struct bpf_object *obj, const char *path) 8082 { 8083 int err; 8084 8085 err = bpf_object__pin_maps(obj, path); 8086 if (err) 8087 return libbpf_err(err); 8088 8089 err = bpf_object__pin_programs(obj, path); 8090 if (err) { 8091 bpf_object__unpin_maps(obj, path); 8092 return libbpf_err(err); 8093 } 8094 8095 return 0; 8096 } 8097 8098 static void bpf_map__destroy(struct bpf_map *map) 8099 { 8100 if (map->clear_priv) 8101 map->clear_priv(map, map->priv); 8102 map->priv = NULL; 8103 map->clear_priv = NULL; 8104 8105 if (map->inner_map) { 8106 bpf_map__destroy(map->inner_map); 8107 zfree(&map->inner_map); 8108 } 8109 8110 zfree(&map->init_slots); 8111 map->init_slots_sz = 0; 8112 8113 if (map->mmaped) { 8114 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8115 map->mmaped = NULL; 8116 } 8117 8118 if (map->st_ops) { 8119 zfree(&map->st_ops->data); 8120 zfree(&map->st_ops->progs); 8121 zfree(&map->st_ops->kern_func_off); 8122 zfree(&map->st_ops); 8123 } 8124 8125 zfree(&map->name); 8126 zfree(&map->real_name); 8127 zfree(&map->pin_path); 8128 8129 if (map->fd >= 0) 8130 zclose(map->fd); 8131 } 8132 8133 void bpf_object__close(struct bpf_object *obj) 8134 { 8135 size_t i; 8136 8137 if (IS_ERR_OR_NULL(obj)) 8138 return; 8139 8140 if (obj->clear_priv) 8141 obj->clear_priv(obj, obj->priv); 8142 8143 bpf_gen__free(obj->gen_loader); 8144 bpf_object__elf_finish(obj); 8145 bpf_object_unload(obj); 8146 btf__free(obj->btf); 8147 btf_ext__free(obj->btf_ext); 8148 8149 for (i = 0; i < obj->nr_maps; i++) 8150 bpf_map__destroy(&obj->maps[i]); 8151 8152 zfree(&obj->btf_custom_path); 8153 zfree(&obj->kconfig); 8154 zfree(&obj->externs); 8155 obj->nr_extern = 0; 8156 8157 zfree(&obj->maps); 8158 obj->nr_maps = 0; 8159 8160 if (obj->programs && obj->nr_programs) { 8161 for (i = 0; i < obj->nr_programs; i++) 8162 bpf_program__exit(&obj->programs[i]); 8163 } 8164 zfree(&obj->programs); 8165 8166 list_del(&obj->list); 8167 free(obj); 8168 } 8169 8170 struct bpf_object * 8171 bpf_object__next(struct bpf_object *prev) 8172 { 8173 struct bpf_object *next; 8174 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8175 8176 if (strict) 8177 return NULL; 8178 8179 if (!prev) 8180 next = list_first_entry(&bpf_objects_list, 8181 struct bpf_object, 8182 list); 8183 else 8184 next = list_next_entry(prev, list); 8185 8186 /* Empty list is noticed here so don't need checking on entry. */ 8187 if (&next->list == &bpf_objects_list) 8188 return NULL; 8189 8190 return next; 8191 } 8192 8193 const char *bpf_object__name(const struct bpf_object *obj) 8194 { 8195 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8196 } 8197 8198 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8199 { 8200 return obj ? obj->kern_version : 0; 8201 } 8202 8203 struct btf *bpf_object__btf(const struct bpf_object *obj) 8204 { 8205 return obj ? obj->btf : NULL; 8206 } 8207 8208 int bpf_object__btf_fd(const struct bpf_object *obj) 8209 { 8210 return obj->btf ? btf__fd(obj->btf) : -1; 8211 } 8212 8213 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8214 { 8215 if (obj->loaded) 8216 return libbpf_err(-EINVAL); 8217 8218 obj->kern_version = kern_version; 8219 8220 return 0; 8221 } 8222 8223 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8224 bpf_object_clear_priv_t clear_priv) 8225 { 8226 if (obj->priv && obj->clear_priv) 8227 obj->clear_priv(obj, obj->priv); 8228 8229 obj->priv = priv; 8230 obj->clear_priv = clear_priv; 8231 return 0; 8232 } 8233 8234 void *bpf_object__priv(const struct bpf_object *obj) 8235 { 8236 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8237 } 8238 8239 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8240 { 8241 struct bpf_gen *gen; 8242 8243 if (!opts) 8244 return -EFAULT; 8245 if (!OPTS_VALID(opts, gen_loader_opts)) 8246 return -EINVAL; 8247 gen = calloc(sizeof(*gen), 1); 8248 if (!gen) 8249 return -ENOMEM; 8250 gen->opts = opts; 8251 obj->gen_loader = gen; 8252 return 0; 8253 } 8254 8255 static struct bpf_program * 8256 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8257 bool forward) 8258 { 8259 size_t nr_programs = obj->nr_programs; 8260 ssize_t idx; 8261 8262 if (!nr_programs) 8263 return NULL; 8264 8265 if (!p) 8266 /* Iter from the beginning */ 8267 return forward ? &obj->programs[0] : 8268 &obj->programs[nr_programs - 1]; 8269 8270 if (p->obj != obj) { 8271 pr_warn("error: program handler doesn't match object\n"); 8272 return errno = EINVAL, NULL; 8273 } 8274 8275 idx = (p - obj->programs) + (forward ? 1 : -1); 8276 if (idx >= obj->nr_programs || idx < 0) 8277 return NULL; 8278 return &obj->programs[idx]; 8279 } 8280 8281 struct bpf_program * 8282 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8283 { 8284 return bpf_object__next_program(obj, prev); 8285 } 8286 8287 struct bpf_program * 8288 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8289 { 8290 struct bpf_program *prog = prev; 8291 8292 do { 8293 prog = __bpf_program__iter(prog, obj, true); 8294 } while (prog && prog_is_subprog(obj, prog)); 8295 8296 return prog; 8297 } 8298 8299 struct bpf_program * 8300 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8301 { 8302 return bpf_object__prev_program(obj, next); 8303 } 8304 8305 struct bpf_program * 8306 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8307 { 8308 struct bpf_program *prog = next; 8309 8310 do { 8311 prog = __bpf_program__iter(prog, obj, false); 8312 } while (prog && prog_is_subprog(obj, prog)); 8313 8314 return prog; 8315 } 8316 8317 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8318 bpf_program_clear_priv_t clear_priv) 8319 { 8320 if (prog->priv && prog->clear_priv) 8321 prog->clear_priv(prog, prog->priv); 8322 8323 prog->priv = priv; 8324 prog->clear_priv = clear_priv; 8325 return 0; 8326 } 8327 8328 void *bpf_program__priv(const struct bpf_program *prog) 8329 { 8330 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8331 } 8332 8333 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8334 { 8335 prog->prog_ifindex = ifindex; 8336 } 8337 8338 const char *bpf_program__name(const struct bpf_program *prog) 8339 { 8340 return prog->name; 8341 } 8342 8343 const char *bpf_program__section_name(const struct bpf_program *prog) 8344 { 8345 return prog->sec_name; 8346 } 8347 8348 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8349 { 8350 const char *title; 8351 8352 title = prog->sec_name; 8353 if (needs_copy) { 8354 title = strdup(title); 8355 if (!title) { 8356 pr_warn("failed to strdup program title\n"); 8357 return libbpf_err_ptr(-ENOMEM); 8358 } 8359 } 8360 8361 return title; 8362 } 8363 8364 bool bpf_program__autoload(const struct bpf_program *prog) 8365 { 8366 return prog->load; 8367 } 8368 8369 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8370 { 8371 if (prog->obj->loaded) 8372 return libbpf_err(-EINVAL); 8373 8374 prog->load = autoload; 8375 return 0; 8376 } 8377 8378 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8379 8380 int bpf_program__fd(const struct bpf_program *prog) 8381 { 8382 return bpf_program_nth_fd(prog, 0); 8383 } 8384 8385 size_t bpf_program__size(const struct bpf_program *prog) 8386 { 8387 return prog->insns_cnt * BPF_INSN_SZ; 8388 } 8389 8390 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8391 { 8392 return prog->insns; 8393 } 8394 8395 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8396 { 8397 return prog->insns_cnt; 8398 } 8399 8400 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8401 bpf_program_prep_t prep) 8402 { 8403 int *instances_fds; 8404 8405 if (nr_instances <= 0 || !prep) 8406 return libbpf_err(-EINVAL); 8407 8408 if (prog->instances.nr > 0 || prog->instances.fds) { 8409 pr_warn("Can't set pre-processor after loading\n"); 8410 return libbpf_err(-EINVAL); 8411 } 8412 8413 instances_fds = malloc(sizeof(int) * nr_instances); 8414 if (!instances_fds) { 8415 pr_warn("alloc memory failed for fds\n"); 8416 return libbpf_err(-ENOMEM); 8417 } 8418 8419 /* fill all fd with -1 */ 8420 memset(instances_fds, -1, sizeof(int) * nr_instances); 8421 8422 prog->instances.nr = nr_instances; 8423 prog->instances.fds = instances_fds; 8424 prog->preprocessor = prep; 8425 return 0; 8426 } 8427 8428 __attribute__((alias("bpf_program_nth_fd"))) 8429 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8430 8431 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8432 { 8433 int fd; 8434 8435 if (!prog) 8436 return libbpf_err(-EINVAL); 8437 8438 if (n >= prog->instances.nr || n < 0) { 8439 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8440 n, prog->name, prog->instances.nr); 8441 return libbpf_err(-EINVAL); 8442 } 8443 8444 fd = prog->instances.fds[n]; 8445 if (fd < 0) { 8446 pr_warn("%dth instance of program '%s' is invalid\n", 8447 n, prog->name); 8448 return libbpf_err(-ENOENT); 8449 } 8450 8451 return fd; 8452 } 8453 8454 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 8455 { 8456 return prog->type; 8457 } 8458 8459 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8460 { 8461 prog->type = type; 8462 } 8463 8464 static bool bpf_program__is_type(const struct bpf_program *prog, 8465 enum bpf_prog_type type) 8466 { 8467 return prog ? (prog->type == type) : false; 8468 } 8469 8470 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8471 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8472 { \ 8473 if (!prog) \ 8474 return libbpf_err(-EINVAL); \ 8475 bpf_program__set_type(prog, TYPE); \ 8476 return 0; \ 8477 } \ 8478 \ 8479 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8480 { \ 8481 return bpf_program__is_type(prog, TYPE); \ 8482 } \ 8483 8484 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8485 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8486 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8487 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8488 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8489 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8490 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8491 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8492 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8493 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8494 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8495 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8496 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8497 8498 enum bpf_attach_type 8499 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 8500 { 8501 return prog->expected_attach_type; 8502 } 8503 8504 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8505 enum bpf_attach_type type) 8506 { 8507 prog->expected_attach_type = type; 8508 } 8509 8510 __u32 bpf_program__flags(const struct bpf_program *prog) 8511 { 8512 return prog->prog_flags; 8513 } 8514 8515 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8516 { 8517 if (prog->obj->loaded) 8518 return libbpf_err(-EBUSY); 8519 8520 prog->prog_flags = flags; 8521 return 0; 8522 } 8523 8524 __u32 bpf_program__log_level(const struct bpf_program *prog) 8525 { 8526 return prog->log_level; 8527 } 8528 8529 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8530 { 8531 if (prog->obj->loaded) 8532 return libbpf_err(-EBUSY); 8533 8534 prog->log_level = log_level; 8535 return 0; 8536 } 8537 8538 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8539 { 8540 *log_size = prog->log_size; 8541 return prog->log_buf; 8542 } 8543 8544 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8545 { 8546 if (log_size && !log_buf) 8547 return -EINVAL; 8548 if (prog->log_size > UINT_MAX) 8549 return -EINVAL; 8550 if (prog->obj->loaded) 8551 return -EBUSY; 8552 8553 prog->log_buf = log_buf; 8554 prog->log_size = log_size; 8555 return 0; 8556 } 8557 8558 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8559 .sec = sec_pfx, \ 8560 .prog_type = BPF_PROG_TYPE_##ptype, \ 8561 .expected_attach_type = atype, \ 8562 .cookie = (long)(flags), \ 8563 .preload_fn = libbpf_preload_prog, \ 8564 __VA_ARGS__ \ 8565 } 8566 8567 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie); 8568 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie); 8569 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie); 8570 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie); 8571 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie); 8572 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie); 8573 8574 static const struct bpf_sec_def section_defs[] = { 8575 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8576 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8577 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8578 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8579 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8580 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8581 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8582 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8583 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX), 8584 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8585 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8586 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8587 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8588 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8589 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8590 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8591 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8592 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8593 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8594 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8595 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8596 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8597 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8598 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8599 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8600 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8601 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8602 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8603 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8604 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8605 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8606 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8607 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8608 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8609 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8610 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8611 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8612 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8613 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8614 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8615 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8616 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8617 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8618 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8619 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8620 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8621 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8622 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8623 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8624 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8625 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8626 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8627 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8628 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8629 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8630 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8631 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8632 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8633 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8634 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8635 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8636 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8637 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8638 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8639 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8640 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8641 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8642 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8643 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8644 }; 8645 8646 #define MAX_TYPE_NAME_SIZE 32 8647 8648 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8649 { 8650 const struct bpf_sec_def *sec_def; 8651 enum sec_def_flags sec_flags; 8652 int i, n = ARRAY_SIZE(section_defs), len; 8653 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME; 8654 8655 for (i = 0; i < n; i++) { 8656 sec_def = §ion_defs[i]; 8657 sec_flags = sec_def->cookie; 8658 len = strlen(sec_def->sec); 8659 8660 /* "type/" always has to have proper SEC("type/extras") form */ 8661 if (sec_def->sec[len - 1] == '/') { 8662 if (str_has_pfx(sec_name, sec_def->sec)) 8663 return sec_def; 8664 continue; 8665 } 8666 8667 /* "type+" means it can be either exact SEC("type") or 8668 * well-formed SEC("type/extras") with proper '/' separator 8669 */ 8670 if (sec_def->sec[len - 1] == '+') { 8671 len--; 8672 /* not even a prefix */ 8673 if (strncmp(sec_name, sec_def->sec, len) != 0) 8674 continue; 8675 /* exact match or has '/' separator */ 8676 if (sec_name[len] == '\0' || sec_name[len] == '/') 8677 return sec_def; 8678 continue; 8679 } 8680 8681 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8682 * matches, unless strict section name mode 8683 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8684 * match has to be exact. 8685 */ 8686 if ((sec_flags & SEC_SLOPPY_PFX) && !strict) { 8687 if (str_has_pfx(sec_name, sec_def->sec)) 8688 return sec_def; 8689 continue; 8690 } 8691 8692 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8693 * SEC("syscall")) are exact matches in both modes. 8694 */ 8695 if (strcmp(sec_name, sec_def->sec) == 0) 8696 return sec_def; 8697 } 8698 return NULL; 8699 } 8700 8701 static char *libbpf_get_type_names(bool attach_type) 8702 { 8703 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8704 char *buf; 8705 8706 buf = malloc(len); 8707 if (!buf) 8708 return NULL; 8709 8710 buf[0] = '\0'; 8711 /* Forge string buf with all available names */ 8712 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8713 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8714 8715 if (attach_type) { 8716 if (sec_def->preload_fn != libbpf_preload_prog) 8717 continue; 8718 8719 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8720 continue; 8721 } 8722 8723 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8724 free(buf); 8725 return NULL; 8726 } 8727 strcat(buf, " "); 8728 strcat(buf, section_defs[i].sec); 8729 } 8730 8731 return buf; 8732 } 8733 8734 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8735 enum bpf_attach_type *expected_attach_type) 8736 { 8737 const struct bpf_sec_def *sec_def; 8738 char *type_names; 8739 8740 if (!name) 8741 return libbpf_err(-EINVAL); 8742 8743 sec_def = find_sec_def(name); 8744 if (sec_def) { 8745 *prog_type = sec_def->prog_type; 8746 *expected_attach_type = sec_def->expected_attach_type; 8747 return 0; 8748 } 8749 8750 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8751 type_names = libbpf_get_type_names(false); 8752 if (type_names != NULL) { 8753 pr_debug("supported section(type) names are:%s\n", type_names); 8754 free(type_names); 8755 } 8756 8757 return libbpf_err(-ESRCH); 8758 } 8759 8760 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8761 size_t offset) 8762 { 8763 struct bpf_map *map; 8764 size_t i; 8765 8766 for (i = 0; i < obj->nr_maps; i++) { 8767 map = &obj->maps[i]; 8768 if (!bpf_map__is_struct_ops(map)) 8769 continue; 8770 if (map->sec_offset <= offset && 8771 offset - map->sec_offset < map->def.value_size) 8772 return map; 8773 } 8774 8775 return NULL; 8776 } 8777 8778 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8779 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8780 Elf64_Shdr *shdr, Elf_Data *data) 8781 { 8782 const struct btf_member *member; 8783 struct bpf_struct_ops *st_ops; 8784 struct bpf_program *prog; 8785 unsigned int shdr_idx; 8786 const struct btf *btf; 8787 struct bpf_map *map; 8788 unsigned int moff, insn_idx; 8789 const char *name; 8790 __u32 member_idx; 8791 Elf64_Sym *sym; 8792 Elf64_Rel *rel; 8793 int i, nrels; 8794 8795 btf = obj->btf; 8796 nrels = shdr->sh_size / shdr->sh_entsize; 8797 for (i = 0; i < nrels; i++) { 8798 rel = elf_rel_by_idx(data, i); 8799 if (!rel) { 8800 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8801 return -LIBBPF_ERRNO__FORMAT; 8802 } 8803 8804 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8805 if (!sym) { 8806 pr_warn("struct_ops reloc: symbol %zx not found\n", 8807 (size_t)ELF64_R_SYM(rel->r_info)); 8808 return -LIBBPF_ERRNO__FORMAT; 8809 } 8810 8811 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8812 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8813 if (!map) { 8814 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8815 (size_t)rel->r_offset); 8816 return -EINVAL; 8817 } 8818 8819 moff = rel->r_offset - map->sec_offset; 8820 shdr_idx = sym->st_shndx; 8821 st_ops = map->st_ops; 8822 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8823 map->name, 8824 (long long)(rel->r_info >> 32), 8825 (long long)sym->st_value, 8826 shdr_idx, (size_t)rel->r_offset, 8827 map->sec_offset, sym->st_name, name); 8828 8829 if (shdr_idx >= SHN_LORESERVE) { 8830 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8831 map->name, (size_t)rel->r_offset, shdr_idx); 8832 return -LIBBPF_ERRNO__RELOC; 8833 } 8834 if (sym->st_value % BPF_INSN_SZ) { 8835 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8836 map->name, (unsigned long long)sym->st_value); 8837 return -LIBBPF_ERRNO__FORMAT; 8838 } 8839 insn_idx = sym->st_value / BPF_INSN_SZ; 8840 8841 member = find_member_by_offset(st_ops->type, moff * 8); 8842 if (!member) { 8843 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8844 map->name, moff); 8845 return -EINVAL; 8846 } 8847 member_idx = member - btf_members(st_ops->type); 8848 name = btf__name_by_offset(btf, member->name_off); 8849 8850 if (!resolve_func_ptr(btf, member->type, NULL)) { 8851 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8852 map->name, name); 8853 return -EINVAL; 8854 } 8855 8856 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8857 if (!prog) { 8858 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8859 map->name, shdr_idx, name); 8860 return -EINVAL; 8861 } 8862 8863 /* prevent the use of BPF prog with invalid type */ 8864 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8865 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8866 map->name, prog->name); 8867 return -EINVAL; 8868 } 8869 8870 /* if we haven't yet processed this BPF program, record proper 8871 * attach_btf_id and member_idx 8872 */ 8873 if (!prog->attach_btf_id) { 8874 prog->attach_btf_id = st_ops->type_id; 8875 prog->expected_attach_type = member_idx; 8876 } 8877 8878 /* struct_ops BPF prog can be re-used between multiple 8879 * .struct_ops as long as it's the same struct_ops struct 8880 * definition and the same function pointer field 8881 */ 8882 if (prog->attach_btf_id != st_ops->type_id || 8883 prog->expected_attach_type != member_idx) { 8884 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8885 map->name, prog->name, prog->sec_name, prog->type, 8886 prog->attach_btf_id, prog->expected_attach_type, name); 8887 return -EINVAL; 8888 } 8889 8890 st_ops->progs[member_idx] = prog; 8891 } 8892 8893 return 0; 8894 } 8895 8896 #define BTF_TRACE_PREFIX "btf_trace_" 8897 #define BTF_LSM_PREFIX "bpf_lsm_" 8898 #define BTF_ITER_PREFIX "bpf_iter_" 8899 #define BTF_MAX_NAME_SIZE 128 8900 8901 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8902 const char **prefix, int *kind) 8903 { 8904 switch (attach_type) { 8905 case BPF_TRACE_RAW_TP: 8906 *prefix = BTF_TRACE_PREFIX; 8907 *kind = BTF_KIND_TYPEDEF; 8908 break; 8909 case BPF_LSM_MAC: 8910 *prefix = BTF_LSM_PREFIX; 8911 *kind = BTF_KIND_FUNC; 8912 break; 8913 case BPF_TRACE_ITER: 8914 *prefix = BTF_ITER_PREFIX; 8915 *kind = BTF_KIND_FUNC; 8916 break; 8917 default: 8918 *prefix = ""; 8919 *kind = BTF_KIND_FUNC; 8920 } 8921 } 8922 8923 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8924 const char *name, __u32 kind) 8925 { 8926 char btf_type_name[BTF_MAX_NAME_SIZE]; 8927 int ret; 8928 8929 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8930 "%s%s", prefix, name); 8931 /* snprintf returns the number of characters written excluding the 8932 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8933 * indicates truncation. 8934 */ 8935 if (ret < 0 || ret >= sizeof(btf_type_name)) 8936 return -ENAMETOOLONG; 8937 return btf__find_by_name_kind(btf, btf_type_name, kind); 8938 } 8939 8940 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8941 enum bpf_attach_type attach_type) 8942 { 8943 const char *prefix; 8944 int kind; 8945 8946 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8947 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8948 } 8949 8950 int libbpf_find_vmlinux_btf_id(const char *name, 8951 enum bpf_attach_type attach_type) 8952 { 8953 struct btf *btf; 8954 int err; 8955 8956 btf = btf__load_vmlinux_btf(); 8957 err = libbpf_get_error(btf); 8958 if (err) { 8959 pr_warn("vmlinux BTF is not found\n"); 8960 return libbpf_err(err); 8961 } 8962 8963 err = find_attach_btf_id(btf, name, attach_type); 8964 if (err <= 0) 8965 pr_warn("%s is not found in vmlinux BTF\n", name); 8966 8967 btf__free(btf); 8968 return libbpf_err(err); 8969 } 8970 8971 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8972 { 8973 struct bpf_prog_info info = {}; 8974 __u32 info_len = sizeof(info); 8975 struct btf *btf; 8976 int err; 8977 8978 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 8979 if (err) { 8980 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 8981 attach_prog_fd, err); 8982 return err; 8983 } 8984 8985 err = -EINVAL; 8986 if (!info.btf_id) { 8987 pr_warn("The target program doesn't have BTF\n"); 8988 goto out; 8989 } 8990 btf = btf__load_from_kernel_by_id(info.btf_id); 8991 err = libbpf_get_error(btf); 8992 if (err) { 8993 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 8994 goto out; 8995 } 8996 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8997 btf__free(btf); 8998 if (err <= 0) { 8999 pr_warn("%s is not found in prog's BTF\n", name); 9000 goto out; 9001 } 9002 out: 9003 return err; 9004 } 9005 9006 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9007 enum bpf_attach_type attach_type, 9008 int *btf_obj_fd, int *btf_type_id) 9009 { 9010 int ret, i; 9011 9012 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9013 if (ret > 0) { 9014 *btf_obj_fd = 0; /* vmlinux BTF */ 9015 *btf_type_id = ret; 9016 return 0; 9017 } 9018 if (ret != -ENOENT) 9019 return ret; 9020 9021 ret = load_module_btfs(obj); 9022 if (ret) 9023 return ret; 9024 9025 for (i = 0; i < obj->btf_module_cnt; i++) { 9026 const struct module_btf *mod = &obj->btf_modules[i]; 9027 9028 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9029 if (ret > 0) { 9030 *btf_obj_fd = mod->fd; 9031 *btf_type_id = ret; 9032 return 0; 9033 } 9034 if (ret == -ENOENT) 9035 continue; 9036 9037 return ret; 9038 } 9039 9040 return -ESRCH; 9041 } 9042 9043 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9044 int *btf_obj_fd, int *btf_type_id) 9045 { 9046 enum bpf_attach_type attach_type = prog->expected_attach_type; 9047 __u32 attach_prog_fd = prog->attach_prog_fd; 9048 int err = 0; 9049 9050 /* BPF program's BTF ID */ 9051 if (attach_prog_fd) { 9052 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9053 if (err < 0) { 9054 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9055 attach_prog_fd, attach_name, err); 9056 return err; 9057 } 9058 *btf_obj_fd = 0; 9059 *btf_type_id = err; 9060 return 0; 9061 } 9062 9063 /* kernel/module BTF ID */ 9064 if (prog->obj->gen_loader) { 9065 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9066 *btf_obj_fd = 0; 9067 *btf_type_id = 1; 9068 } else { 9069 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9070 } 9071 if (err) { 9072 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9073 return err; 9074 } 9075 return 0; 9076 } 9077 9078 int libbpf_attach_type_by_name(const char *name, 9079 enum bpf_attach_type *attach_type) 9080 { 9081 char *type_names; 9082 const struct bpf_sec_def *sec_def; 9083 9084 if (!name) 9085 return libbpf_err(-EINVAL); 9086 9087 sec_def = find_sec_def(name); 9088 if (!sec_def) { 9089 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9090 type_names = libbpf_get_type_names(true); 9091 if (type_names != NULL) { 9092 pr_debug("attachable section(type) names are:%s\n", type_names); 9093 free(type_names); 9094 } 9095 9096 return libbpf_err(-EINVAL); 9097 } 9098 9099 if (sec_def->preload_fn != libbpf_preload_prog) 9100 return libbpf_err(-EINVAL); 9101 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9102 return libbpf_err(-EINVAL); 9103 9104 *attach_type = sec_def->expected_attach_type; 9105 return 0; 9106 } 9107 9108 int bpf_map__fd(const struct bpf_map *map) 9109 { 9110 return map ? map->fd : libbpf_err(-EINVAL); 9111 } 9112 9113 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9114 { 9115 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9116 } 9117 9118 static bool map_uses_real_name(const struct bpf_map *map) 9119 { 9120 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9121 * their user-visible name differs from kernel-visible name. Users see 9122 * such map's corresponding ELF section name as a map name. 9123 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9124 * maps to know which name has to be returned to the user. 9125 */ 9126 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9127 return true; 9128 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9129 return true; 9130 return false; 9131 } 9132 9133 const char *bpf_map__name(const struct bpf_map *map) 9134 { 9135 if (!map) 9136 return NULL; 9137 9138 if (map_uses_real_name(map)) 9139 return map->real_name; 9140 9141 return map->name; 9142 } 9143 9144 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9145 { 9146 return map->def.type; 9147 } 9148 9149 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9150 { 9151 if (map->fd >= 0) 9152 return libbpf_err(-EBUSY); 9153 map->def.type = type; 9154 return 0; 9155 } 9156 9157 __u32 bpf_map__map_flags(const struct bpf_map *map) 9158 { 9159 return map->def.map_flags; 9160 } 9161 9162 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9163 { 9164 if (map->fd >= 0) 9165 return libbpf_err(-EBUSY); 9166 map->def.map_flags = flags; 9167 return 0; 9168 } 9169 9170 __u64 bpf_map__map_extra(const struct bpf_map *map) 9171 { 9172 return map->map_extra; 9173 } 9174 9175 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9176 { 9177 if (map->fd >= 0) 9178 return libbpf_err(-EBUSY); 9179 map->map_extra = map_extra; 9180 return 0; 9181 } 9182 9183 __u32 bpf_map__numa_node(const struct bpf_map *map) 9184 { 9185 return map->numa_node; 9186 } 9187 9188 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9189 { 9190 if (map->fd >= 0) 9191 return libbpf_err(-EBUSY); 9192 map->numa_node = numa_node; 9193 return 0; 9194 } 9195 9196 __u32 bpf_map__key_size(const struct bpf_map *map) 9197 { 9198 return map->def.key_size; 9199 } 9200 9201 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9202 { 9203 if (map->fd >= 0) 9204 return libbpf_err(-EBUSY); 9205 map->def.key_size = size; 9206 return 0; 9207 } 9208 9209 __u32 bpf_map__value_size(const struct bpf_map *map) 9210 { 9211 return map->def.value_size; 9212 } 9213 9214 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9215 { 9216 if (map->fd >= 0) 9217 return libbpf_err(-EBUSY); 9218 map->def.value_size = size; 9219 return 0; 9220 } 9221 9222 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9223 { 9224 return map ? map->btf_key_type_id : 0; 9225 } 9226 9227 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9228 { 9229 return map ? map->btf_value_type_id : 0; 9230 } 9231 9232 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9233 bpf_map_clear_priv_t clear_priv) 9234 { 9235 if (!map) 9236 return libbpf_err(-EINVAL); 9237 9238 if (map->priv) { 9239 if (map->clear_priv) 9240 map->clear_priv(map, map->priv); 9241 } 9242 9243 map->priv = priv; 9244 map->clear_priv = clear_priv; 9245 return 0; 9246 } 9247 9248 void *bpf_map__priv(const struct bpf_map *map) 9249 { 9250 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9251 } 9252 9253 int bpf_map__set_initial_value(struct bpf_map *map, 9254 const void *data, size_t size) 9255 { 9256 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9257 size != map->def.value_size || map->fd >= 0) 9258 return libbpf_err(-EINVAL); 9259 9260 memcpy(map->mmaped, data, size); 9261 return 0; 9262 } 9263 9264 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9265 { 9266 if (!map->mmaped) 9267 return NULL; 9268 *psize = map->def.value_size; 9269 return map->mmaped; 9270 } 9271 9272 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9273 { 9274 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9275 } 9276 9277 bool bpf_map__is_internal(const struct bpf_map *map) 9278 { 9279 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9280 } 9281 9282 __u32 bpf_map__ifindex(const struct bpf_map *map) 9283 { 9284 return map->map_ifindex; 9285 } 9286 9287 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9288 { 9289 if (map->fd >= 0) 9290 return libbpf_err(-EBUSY); 9291 map->map_ifindex = ifindex; 9292 return 0; 9293 } 9294 9295 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9296 { 9297 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9298 pr_warn("error: unsupported map type\n"); 9299 return libbpf_err(-EINVAL); 9300 } 9301 if (map->inner_map_fd != -1) { 9302 pr_warn("error: inner_map_fd already specified\n"); 9303 return libbpf_err(-EINVAL); 9304 } 9305 if (map->inner_map) { 9306 bpf_map__destroy(map->inner_map); 9307 zfree(&map->inner_map); 9308 } 9309 map->inner_map_fd = fd; 9310 return 0; 9311 } 9312 9313 static struct bpf_map * 9314 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9315 { 9316 ssize_t idx; 9317 struct bpf_map *s, *e; 9318 9319 if (!obj || !obj->maps) 9320 return errno = EINVAL, NULL; 9321 9322 s = obj->maps; 9323 e = obj->maps + obj->nr_maps; 9324 9325 if ((m < s) || (m >= e)) { 9326 pr_warn("error in %s: map handler doesn't belong to object\n", 9327 __func__); 9328 return errno = EINVAL, NULL; 9329 } 9330 9331 idx = (m - obj->maps) + i; 9332 if (idx >= obj->nr_maps || idx < 0) 9333 return NULL; 9334 return &obj->maps[idx]; 9335 } 9336 9337 struct bpf_map * 9338 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9339 { 9340 return bpf_object__next_map(obj, prev); 9341 } 9342 9343 struct bpf_map * 9344 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9345 { 9346 if (prev == NULL) 9347 return obj->maps; 9348 9349 return __bpf_map__iter(prev, obj, 1); 9350 } 9351 9352 struct bpf_map * 9353 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9354 { 9355 return bpf_object__prev_map(obj, next); 9356 } 9357 9358 struct bpf_map * 9359 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9360 { 9361 if (next == NULL) { 9362 if (!obj->nr_maps) 9363 return NULL; 9364 return obj->maps + obj->nr_maps - 1; 9365 } 9366 9367 return __bpf_map__iter(next, obj, -1); 9368 } 9369 9370 struct bpf_map * 9371 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9372 { 9373 struct bpf_map *pos; 9374 9375 bpf_object__for_each_map(pos, obj) { 9376 /* if it's a special internal map name (which always starts 9377 * with dot) then check if that special name matches the 9378 * real map name (ELF section name) 9379 */ 9380 if (name[0] == '.') { 9381 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9382 return pos; 9383 continue; 9384 } 9385 /* otherwise map name has to be an exact match */ 9386 if (map_uses_real_name(pos)) { 9387 if (strcmp(pos->real_name, name) == 0) 9388 return pos; 9389 continue; 9390 } 9391 if (strcmp(pos->name, name) == 0) 9392 return pos; 9393 } 9394 return errno = ENOENT, NULL; 9395 } 9396 9397 int 9398 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9399 { 9400 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9401 } 9402 9403 struct bpf_map * 9404 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9405 { 9406 return libbpf_err_ptr(-ENOTSUP); 9407 } 9408 9409 long libbpf_get_error(const void *ptr) 9410 { 9411 if (!IS_ERR_OR_NULL(ptr)) 9412 return 0; 9413 9414 if (IS_ERR(ptr)) 9415 errno = -PTR_ERR(ptr); 9416 9417 /* If ptr == NULL, then errno should be already set by the failing 9418 * API, because libbpf never returns NULL on success and it now always 9419 * sets errno on error. So no extra errno handling for ptr == NULL 9420 * case. 9421 */ 9422 return -errno; 9423 } 9424 9425 __attribute__((alias("bpf_prog_load_xattr2"))) 9426 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9427 struct bpf_object **pobj, int *prog_fd); 9428 9429 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9430 struct bpf_object **pobj, int *prog_fd) 9431 { 9432 struct bpf_object_open_attr open_attr = {}; 9433 struct bpf_program *prog, *first_prog = NULL; 9434 struct bpf_object *obj; 9435 struct bpf_map *map; 9436 int err; 9437 9438 if (!attr) 9439 return libbpf_err(-EINVAL); 9440 if (!attr->file) 9441 return libbpf_err(-EINVAL); 9442 9443 open_attr.file = attr->file; 9444 open_attr.prog_type = attr->prog_type; 9445 9446 obj = bpf_object__open_xattr(&open_attr); 9447 err = libbpf_get_error(obj); 9448 if (err) 9449 return libbpf_err(-ENOENT); 9450 9451 bpf_object__for_each_program(prog, obj) { 9452 enum bpf_attach_type attach_type = attr->expected_attach_type; 9453 /* 9454 * to preserve backwards compatibility, bpf_prog_load treats 9455 * attr->prog_type, if specified, as an override to whatever 9456 * bpf_object__open guessed 9457 */ 9458 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9459 bpf_program__set_type(prog, attr->prog_type); 9460 bpf_program__set_expected_attach_type(prog, 9461 attach_type); 9462 } 9463 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9464 /* 9465 * we haven't guessed from section name and user 9466 * didn't provide a fallback type, too bad... 9467 */ 9468 bpf_object__close(obj); 9469 return libbpf_err(-EINVAL); 9470 } 9471 9472 prog->prog_ifindex = attr->ifindex; 9473 prog->log_level = attr->log_level; 9474 prog->prog_flags |= attr->prog_flags; 9475 if (!first_prog) 9476 first_prog = prog; 9477 } 9478 9479 bpf_object__for_each_map(map, obj) { 9480 if (!bpf_map__is_offload_neutral(map)) 9481 map->map_ifindex = attr->ifindex; 9482 } 9483 9484 if (!first_prog) { 9485 pr_warn("object file doesn't contain bpf program\n"); 9486 bpf_object__close(obj); 9487 return libbpf_err(-ENOENT); 9488 } 9489 9490 err = bpf_object__load(obj); 9491 if (err) { 9492 bpf_object__close(obj); 9493 return libbpf_err(err); 9494 } 9495 9496 *pobj = obj; 9497 *prog_fd = bpf_program__fd(first_prog); 9498 return 0; 9499 } 9500 9501 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9502 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9503 struct bpf_object **pobj, int *prog_fd) 9504 { 9505 struct bpf_prog_load_attr attr; 9506 9507 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9508 attr.file = file; 9509 attr.prog_type = type; 9510 attr.expected_attach_type = 0; 9511 9512 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9513 } 9514 9515 struct bpf_link { 9516 int (*detach)(struct bpf_link *link); 9517 void (*dealloc)(struct bpf_link *link); 9518 char *pin_path; /* NULL, if not pinned */ 9519 int fd; /* hook FD, -1 if not applicable */ 9520 bool disconnected; 9521 }; 9522 9523 /* Replace link's underlying BPF program with the new one */ 9524 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9525 { 9526 int ret; 9527 9528 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9529 return libbpf_err_errno(ret); 9530 } 9531 9532 /* Release "ownership" of underlying BPF resource (typically, BPF program 9533 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9534 * link, when destructed through bpf_link__destroy() call won't attempt to 9535 * detach/unregisted that BPF resource. This is useful in situations where, 9536 * say, attached BPF program has to outlive userspace program that attached it 9537 * in the system. Depending on type of BPF program, though, there might be 9538 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9539 * exit of userspace program doesn't trigger automatic detachment and clean up 9540 * inside the kernel. 9541 */ 9542 void bpf_link__disconnect(struct bpf_link *link) 9543 { 9544 link->disconnected = true; 9545 } 9546 9547 int bpf_link__destroy(struct bpf_link *link) 9548 { 9549 int err = 0; 9550 9551 if (IS_ERR_OR_NULL(link)) 9552 return 0; 9553 9554 if (!link->disconnected && link->detach) 9555 err = link->detach(link); 9556 if (link->pin_path) 9557 free(link->pin_path); 9558 if (link->dealloc) 9559 link->dealloc(link); 9560 else 9561 free(link); 9562 9563 return libbpf_err(err); 9564 } 9565 9566 int bpf_link__fd(const struct bpf_link *link) 9567 { 9568 return link->fd; 9569 } 9570 9571 const char *bpf_link__pin_path(const struct bpf_link *link) 9572 { 9573 return link->pin_path; 9574 } 9575 9576 static int bpf_link__detach_fd(struct bpf_link *link) 9577 { 9578 return libbpf_err_errno(close(link->fd)); 9579 } 9580 9581 struct bpf_link *bpf_link__open(const char *path) 9582 { 9583 struct bpf_link *link; 9584 int fd; 9585 9586 fd = bpf_obj_get(path); 9587 if (fd < 0) { 9588 fd = -errno; 9589 pr_warn("failed to open link at %s: %d\n", path, fd); 9590 return libbpf_err_ptr(fd); 9591 } 9592 9593 link = calloc(1, sizeof(*link)); 9594 if (!link) { 9595 close(fd); 9596 return libbpf_err_ptr(-ENOMEM); 9597 } 9598 link->detach = &bpf_link__detach_fd; 9599 link->fd = fd; 9600 9601 link->pin_path = strdup(path); 9602 if (!link->pin_path) { 9603 bpf_link__destroy(link); 9604 return libbpf_err_ptr(-ENOMEM); 9605 } 9606 9607 return link; 9608 } 9609 9610 int bpf_link__detach(struct bpf_link *link) 9611 { 9612 return bpf_link_detach(link->fd) ? -errno : 0; 9613 } 9614 9615 int bpf_link__pin(struct bpf_link *link, const char *path) 9616 { 9617 int err; 9618 9619 if (link->pin_path) 9620 return libbpf_err(-EBUSY); 9621 err = make_parent_dir(path); 9622 if (err) 9623 return libbpf_err(err); 9624 err = check_path(path); 9625 if (err) 9626 return libbpf_err(err); 9627 9628 link->pin_path = strdup(path); 9629 if (!link->pin_path) 9630 return libbpf_err(-ENOMEM); 9631 9632 if (bpf_obj_pin(link->fd, link->pin_path)) { 9633 err = -errno; 9634 zfree(&link->pin_path); 9635 return libbpf_err(err); 9636 } 9637 9638 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9639 return 0; 9640 } 9641 9642 int bpf_link__unpin(struct bpf_link *link) 9643 { 9644 int err; 9645 9646 if (!link->pin_path) 9647 return libbpf_err(-EINVAL); 9648 9649 err = unlink(link->pin_path); 9650 if (err != 0) 9651 return -errno; 9652 9653 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9654 zfree(&link->pin_path); 9655 return 0; 9656 } 9657 9658 struct bpf_link_perf { 9659 struct bpf_link link; 9660 int perf_event_fd; 9661 /* legacy kprobe support: keep track of probe identifier and type */ 9662 char *legacy_probe_name; 9663 bool legacy_is_kprobe; 9664 bool legacy_is_retprobe; 9665 }; 9666 9667 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9668 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9669 9670 static int bpf_link_perf_detach(struct bpf_link *link) 9671 { 9672 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9673 int err = 0; 9674 9675 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9676 err = -errno; 9677 9678 if (perf_link->perf_event_fd != link->fd) 9679 close(perf_link->perf_event_fd); 9680 close(link->fd); 9681 9682 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9683 if (perf_link->legacy_probe_name) { 9684 if (perf_link->legacy_is_kprobe) { 9685 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9686 perf_link->legacy_is_retprobe); 9687 } else { 9688 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9689 perf_link->legacy_is_retprobe); 9690 } 9691 } 9692 9693 return err; 9694 } 9695 9696 static void bpf_link_perf_dealloc(struct bpf_link *link) 9697 { 9698 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9699 9700 free(perf_link->legacy_probe_name); 9701 free(perf_link); 9702 } 9703 9704 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9705 const struct bpf_perf_event_opts *opts) 9706 { 9707 char errmsg[STRERR_BUFSIZE]; 9708 struct bpf_link_perf *link; 9709 int prog_fd, link_fd = -1, err; 9710 9711 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9712 return libbpf_err_ptr(-EINVAL); 9713 9714 if (pfd < 0) { 9715 pr_warn("prog '%s': invalid perf event FD %d\n", 9716 prog->name, pfd); 9717 return libbpf_err_ptr(-EINVAL); 9718 } 9719 prog_fd = bpf_program__fd(prog); 9720 if (prog_fd < 0) { 9721 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9722 prog->name); 9723 return libbpf_err_ptr(-EINVAL); 9724 } 9725 9726 link = calloc(1, sizeof(*link)); 9727 if (!link) 9728 return libbpf_err_ptr(-ENOMEM); 9729 link->link.detach = &bpf_link_perf_detach; 9730 link->link.dealloc = &bpf_link_perf_dealloc; 9731 link->perf_event_fd = pfd; 9732 9733 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9734 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9735 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9736 9737 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9738 if (link_fd < 0) { 9739 err = -errno; 9740 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9741 prog->name, pfd, 9742 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9743 goto err_out; 9744 } 9745 link->link.fd = link_fd; 9746 } else { 9747 if (OPTS_GET(opts, bpf_cookie, 0)) { 9748 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9749 err = -EOPNOTSUPP; 9750 goto err_out; 9751 } 9752 9753 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9754 err = -errno; 9755 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9756 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9757 if (err == -EPROTO) 9758 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9759 prog->name, pfd); 9760 goto err_out; 9761 } 9762 link->link.fd = pfd; 9763 } 9764 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9765 err = -errno; 9766 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9767 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9768 goto err_out; 9769 } 9770 9771 return &link->link; 9772 err_out: 9773 if (link_fd >= 0) 9774 close(link_fd); 9775 free(link); 9776 return libbpf_err_ptr(err); 9777 } 9778 9779 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9780 { 9781 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9782 } 9783 9784 /* 9785 * this function is expected to parse integer in the range of [0, 2^31-1] from 9786 * given file using scanf format string fmt. If actual parsed value is 9787 * negative, the result might be indistinguishable from error 9788 */ 9789 static int parse_uint_from_file(const char *file, const char *fmt) 9790 { 9791 char buf[STRERR_BUFSIZE]; 9792 int err, ret; 9793 FILE *f; 9794 9795 f = fopen(file, "r"); 9796 if (!f) { 9797 err = -errno; 9798 pr_debug("failed to open '%s': %s\n", file, 9799 libbpf_strerror_r(err, buf, sizeof(buf))); 9800 return err; 9801 } 9802 err = fscanf(f, fmt, &ret); 9803 if (err != 1) { 9804 err = err == EOF ? -EIO : -errno; 9805 pr_debug("failed to parse '%s': %s\n", file, 9806 libbpf_strerror_r(err, buf, sizeof(buf))); 9807 fclose(f); 9808 return err; 9809 } 9810 fclose(f); 9811 return ret; 9812 } 9813 9814 static int determine_kprobe_perf_type(void) 9815 { 9816 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9817 9818 return parse_uint_from_file(file, "%d\n"); 9819 } 9820 9821 static int determine_uprobe_perf_type(void) 9822 { 9823 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9824 9825 return parse_uint_from_file(file, "%d\n"); 9826 } 9827 9828 static int determine_kprobe_retprobe_bit(void) 9829 { 9830 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9831 9832 return parse_uint_from_file(file, "config:%d\n"); 9833 } 9834 9835 static int determine_uprobe_retprobe_bit(void) 9836 { 9837 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9838 9839 return parse_uint_from_file(file, "config:%d\n"); 9840 } 9841 9842 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9843 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9844 9845 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9846 uint64_t offset, int pid, size_t ref_ctr_off) 9847 { 9848 struct perf_event_attr attr = {}; 9849 char errmsg[STRERR_BUFSIZE]; 9850 int type, pfd, err; 9851 9852 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9853 return -EINVAL; 9854 9855 type = uprobe ? determine_uprobe_perf_type() 9856 : determine_kprobe_perf_type(); 9857 if (type < 0) { 9858 pr_warn("failed to determine %s perf type: %s\n", 9859 uprobe ? "uprobe" : "kprobe", 9860 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9861 return type; 9862 } 9863 if (retprobe) { 9864 int bit = uprobe ? determine_uprobe_retprobe_bit() 9865 : determine_kprobe_retprobe_bit(); 9866 9867 if (bit < 0) { 9868 pr_warn("failed to determine %s retprobe bit: %s\n", 9869 uprobe ? "uprobe" : "kprobe", 9870 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9871 return bit; 9872 } 9873 attr.config |= 1 << bit; 9874 } 9875 attr.size = sizeof(attr); 9876 attr.type = type; 9877 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9878 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9879 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9880 9881 /* pid filter is meaningful only for uprobes */ 9882 pfd = syscall(__NR_perf_event_open, &attr, 9883 pid < 0 ? -1 : pid /* pid */, 9884 pid == -1 ? 0 : -1 /* cpu */, 9885 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9886 if (pfd < 0) { 9887 err = -errno; 9888 pr_warn("%s perf_event_open() failed: %s\n", 9889 uprobe ? "uprobe" : "kprobe", 9890 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9891 return err; 9892 } 9893 return pfd; 9894 } 9895 9896 static int append_to_file(const char *file, const char *fmt, ...) 9897 { 9898 int fd, n, err = 0; 9899 va_list ap; 9900 9901 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9902 if (fd < 0) 9903 return -errno; 9904 9905 va_start(ap, fmt); 9906 n = vdprintf(fd, fmt, ap); 9907 va_end(ap); 9908 9909 if (n < 0) 9910 err = -errno; 9911 9912 close(fd); 9913 return err; 9914 } 9915 9916 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9917 const char *kfunc_name, size_t offset) 9918 { 9919 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), kfunc_name, offset); 9920 } 9921 9922 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9923 const char *kfunc_name, size_t offset) 9924 { 9925 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9926 9927 return append_to_file(file, "%c:%s/%s %s+0x%zx", 9928 retprobe ? 'r' : 'p', 9929 retprobe ? "kretprobes" : "kprobes", 9930 probe_name, kfunc_name, offset); 9931 } 9932 9933 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9934 { 9935 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9936 9937 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 9938 } 9939 9940 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9941 { 9942 char file[256]; 9943 9944 snprintf(file, sizeof(file), 9945 "/sys/kernel/debug/tracing/events/%s/%s/id", 9946 retprobe ? "kretprobes" : "kprobes", probe_name); 9947 9948 return parse_uint_from_file(file, "%d\n"); 9949 } 9950 9951 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9952 const char *kfunc_name, size_t offset, int pid) 9953 { 9954 struct perf_event_attr attr = {}; 9955 char errmsg[STRERR_BUFSIZE]; 9956 int type, pfd, err; 9957 9958 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9959 if (err < 0) { 9960 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9961 kfunc_name, offset, 9962 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9963 return err; 9964 } 9965 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9966 if (type < 0) { 9967 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9968 kfunc_name, offset, 9969 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9970 return type; 9971 } 9972 attr.size = sizeof(attr); 9973 attr.config = type; 9974 attr.type = PERF_TYPE_TRACEPOINT; 9975 9976 pfd = syscall(__NR_perf_event_open, &attr, 9977 pid < 0 ? -1 : pid, /* pid */ 9978 pid == -1 ? 0 : -1, /* cpu */ 9979 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9980 if (pfd < 0) { 9981 err = -errno; 9982 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 9983 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9984 return err; 9985 } 9986 return pfd; 9987 } 9988 9989 struct bpf_link * 9990 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 9991 const char *func_name, 9992 const struct bpf_kprobe_opts *opts) 9993 { 9994 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 9995 char errmsg[STRERR_BUFSIZE]; 9996 char *legacy_probe = NULL; 9997 struct bpf_link *link; 9998 size_t offset; 9999 bool retprobe, legacy; 10000 int pfd, err; 10001 10002 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10003 return libbpf_err_ptr(-EINVAL); 10004 10005 retprobe = OPTS_GET(opts, retprobe, false); 10006 offset = OPTS_GET(opts, offset, 0); 10007 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10008 10009 legacy = determine_kprobe_perf_type() < 0; 10010 if (!legacy) { 10011 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10012 func_name, offset, 10013 -1 /* pid */, 0 /* ref_ctr_off */); 10014 } else { 10015 char probe_name[256]; 10016 10017 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10018 func_name, offset); 10019 10020 legacy_probe = strdup(func_name); 10021 if (!legacy_probe) 10022 return libbpf_err_ptr(-ENOMEM); 10023 10024 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10025 offset, -1 /* pid */); 10026 } 10027 if (pfd < 0) { 10028 err = -errno; 10029 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10030 prog->name, retprobe ? "kretprobe" : "kprobe", 10031 func_name, offset, 10032 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10033 goto err_out; 10034 } 10035 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10036 err = libbpf_get_error(link); 10037 if (err) { 10038 close(pfd); 10039 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10040 prog->name, retprobe ? "kretprobe" : "kprobe", 10041 func_name, offset, 10042 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10043 goto err_out; 10044 } 10045 if (legacy) { 10046 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10047 10048 perf_link->legacy_probe_name = legacy_probe; 10049 perf_link->legacy_is_kprobe = true; 10050 perf_link->legacy_is_retprobe = retprobe; 10051 } 10052 10053 return link; 10054 err_out: 10055 free(legacy_probe); 10056 return libbpf_err_ptr(err); 10057 } 10058 10059 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10060 bool retprobe, 10061 const char *func_name) 10062 { 10063 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10064 .retprobe = retprobe, 10065 ); 10066 10067 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10068 } 10069 10070 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie) 10071 { 10072 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10073 unsigned long offset = 0; 10074 struct bpf_link *link; 10075 const char *func_name; 10076 char *func; 10077 int n, err; 10078 10079 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10080 if (opts.retprobe) 10081 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10082 else 10083 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10084 10085 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10086 if (n < 1) { 10087 err = -EINVAL; 10088 pr_warn("kprobe name is invalid: %s\n", func_name); 10089 return libbpf_err_ptr(err); 10090 } 10091 if (opts.retprobe && offset != 0) { 10092 free(func); 10093 err = -EINVAL; 10094 pr_warn("kretprobes do not support offset specification\n"); 10095 return libbpf_err_ptr(err); 10096 } 10097 10098 opts.offset = offset; 10099 link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10100 free(func); 10101 return link; 10102 } 10103 10104 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10105 const char *binary_path, uint64_t offset) 10106 { 10107 int i; 10108 10109 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10110 10111 /* sanitize binary_path in the probe name */ 10112 for (i = 0; buf[i]; i++) { 10113 if (!isalnum(buf[i])) 10114 buf[i] = '_'; 10115 } 10116 } 10117 10118 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10119 const char *binary_path, size_t offset) 10120 { 10121 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10122 10123 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10124 retprobe ? 'r' : 'p', 10125 retprobe ? "uretprobes" : "uprobes", 10126 probe_name, binary_path, offset); 10127 } 10128 10129 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10130 { 10131 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10132 10133 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10134 } 10135 10136 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10137 { 10138 char file[512]; 10139 10140 snprintf(file, sizeof(file), 10141 "/sys/kernel/debug/tracing/events/%s/%s/id", 10142 retprobe ? "uretprobes" : "uprobes", probe_name); 10143 10144 return parse_uint_from_file(file, "%d\n"); 10145 } 10146 10147 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10148 const char *binary_path, size_t offset, int pid) 10149 { 10150 struct perf_event_attr attr; 10151 int type, pfd, err; 10152 10153 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10154 if (err < 0) { 10155 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10156 binary_path, (size_t)offset, err); 10157 return err; 10158 } 10159 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10160 if (type < 0) { 10161 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10162 binary_path, offset, err); 10163 return type; 10164 } 10165 10166 memset(&attr, 0, sizeof(attr)); 10167 attr.size = sizeof(attr); 10168 attr.config = type; 10169 attr.type = PERF_TYPE_TRACEPOINT; 10170 10171 pfd = syscall(__NR_perf_event_open, &attr, 10172 pid < 0 ? -1 : pid, /* pid */ 10173 pid == -1 ? 0 : -1, /* cpu */ 10174 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10175 if (pfd < 0) { 10176 err = -errno; 10177 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10178 return err; 10179 } 10180 return pfd; 10181 } 10182 10183 LIBBPF_API struct bpf_link * 10184 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10185 const char *binary_path, size_t func_offset, 10186 const struct bpf_uprobe_opts *opts) 10187 { 10188 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10189 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10190 struct bpf_link *link; 10191 size_t ref_ctr_off; 10192 int pfd, err; 10193 bool retprobe, legacy; 10194 10195 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10196 return libbpf_err_ptr(-EINVAL); 10197 10198 retprobe = OPTS_GET(opts, retprobe, false); 10199 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10200 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10201 10202 legacy = determine_uprobe_perf_type() < 0; 10203 if (!legacy) { 10204 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10205 func_offset, pid, ref_ctr_off); 10206 } else { 10207 char probe_name[512]; 10208 10209 if (ref_ctr_off) 10210 return libbpf_err_ptr(-EINVAL); 10211 10212 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10213 binary_path, func_offset); 10214 10215 legacy_probe = strdup(probe_name); 10216 if (!legacy_probe) 10217 return libbpf_err_ptr(-ENOMEM); 10218 10219 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10220 binary_path, func_offset, pid); 10221 } 10222 if (pfd < 0) { 10223 err = -errno; 10224 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10225 prog->name, retprobe ? "uretprobe" : "uprobe", 10226 binary_path, func_offset, 10227 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10228 goto err_out; 10229 } 10230 10231 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10232 err = libbpf_get_error(link); 10233 if (err) { 10234 close(pfd); 10235 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10236 prog->name, retprobe ? "uretprobe" : "uprobe", 10237 binary_path, func_offset, 10238 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10239 goto err_out; 10240 } 10241 if (legacy) { 10242 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10243 10244 perf_link->legacy_probe_name = legacy_probe; 10245 perf_link->legacy_is_kprobe = false; 10246 perf_link->legacy_is_retprobe = retprobe; 10247 } 10248 return link; 10249 err_out: 10250 free(legacy_probe); 10251 return libbpf_err_ptr(err); 10252 10253 } 10254 10255 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10256 bool retprobe, pid_t pid, 10257 const char *binary_path, 10258 size_t func_offset) 10259 { 10260 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10261 10262 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10263 } 10264 10265 static int determine_tracepoint_id(const char *tp_category, 10266 const char *tp_name) 10267 { 10268 char file[PATH_MAX]; 10269 int ret; 10270 10271 ret = snprintf(file, sizeof(file), 10272 "/sys/kernel/debug/tracing/events/%s/%s/id", 10273 tp_category, tp_name); 10274 if (ret < 0) 10275 return -errno; 10276 if (ret >= sizeof(file)) { 10277 pr_debug("tracepoint %s/%s path is too long\n", 10278 tp_category, tp_name); 10279 return -E2BIG; 10280 } 10281 return parse_uint_from_file(file, "%d\n"); 10282 } 10283 10284 static int perf_event_open_tracepoint(const char *tp_category, 10285 const char *tp_name) 10286 { 10287 struct perf_event_attr attr = {}; 10288 char errmsg[STRERR_BUFSIZE]; 10289 int tp_id, pfd, err; 10290 10291 tp_id = determine_tracepoint_id(tp_category, tp_name); 10292 if (tp_id < 0) { 10293 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10294 tp_category, tp_name, 10295 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10296 return tp_id; 10297 } 10298 10299 attr.type = PERF_TYPE_TRACEPOINT; 10300 attr.size = sizeof(attr); 10301 attr.config = tp_id; 10302 10303 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10304 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10305 if (pfd < 0) { 10306 err = -errno; 10307 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10308 tp_category, tp_name, 10309 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10310 return err; 10311 } 10312 return pfd; 10313 } 10314 10315 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10316 const char *tp_category, 10317 const char *tp_name, 10318 const struct bpf_tracepoint_opts *opts) 10319 { 10320 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10321 char errmsg[STRERR_BUFSIZE]; 10322 struct bpf_link *link; 10323 int pfd, err; 10324 10325 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10326 return libbpf_err_ptr(-EINVAL); 10327 10328 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10329 10330 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10331 if (pfd < 0) { 10332 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10333 prog->name, tp_category, tp_name, 10334 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10335 return libbpf_err_ptr(pfd); 10336 } 10337 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10338 err = libbpf_get_error(link); 10339 if (err) { 10340 close(pfd); 10341 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10342 prog->name, tp_category, tp_name, 10343 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10344 return libbpf_err_ptr(err); 10345 } 10346 return link; 10347 } 10348 10349 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10350 const char *tp_category, 10351 const char *tp_name) 10352 { 10353 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10354 } 10355 10356 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie) 10357 { 10358 char *sec_name, *tp_cat, *tp_name; 10359 struct bpf_link *link; 10360 10361 sec_name = strdup(prog->sec_name); 10362 if (!sec_name) 10363 return libbpf_err_ptr(-ENOMEM); 10364 10365 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10366 if (str_has_pfx(prog->sec_name, "tp/")) 10367 tp_cat = sec_name + sizeof("tp/") - 1; 10368 else 10369 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10370 tp_name = strchr(tp_cat, '/'); 10371 if (!tp_name) { 10372 free(sec_name); 10373 return libbpf_err_ptr(-EINVAL); 10374 } 10375 *tp_name = '\0'; 10376 tp_name++; 10377 10378 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10379 free(sec_name); 10380 return link; 10381 } 10382 10383 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10384 const char *tp_name) 10385 { 10386 char errmsg[STRERR_BUFSIZE]; 10387 struct bpf_link *link; 10388 int prog_fd, pfd; 10389 10390 prog_fd = bpf_program__fd(prog); 10391 if (prog_fd < 0) { 10392 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10393 return libbpf_err_ptr(-EINVAL); 10394 } 10395 10396 link = calloc(1, sizeof(*link)); 10397 if (!link) 10398 return libbpf_err_ptr(-ENOMEM); 10399 link->detach = &bpf_link__detach_fd; 10400 10401 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10402 if (pfd < 0) { 10403 pfd = -errno; 10404 free(link); 10405 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10406 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10407 return libbpf_err_ptr(pfd); 10408 } 10409 link->fd = pfd; 10410 return link; 10411 } 10412 10413 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie) 10414 { 10415 static const char *const prefixes[] = { 10416 "raw_tp/", 10417 "raw_tracepoint/", 10418 "raw_tp.w/", 10419 "raw_tracepoint.w/", 10420 }; 10421 size_t i; 10422 const char *tp_name = NULL; 10423 10424 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10425 if (str_has_pfx(prog->sec_name, prefixes[i])) { 10426 tp_name = prog->sec_name + strlen(prefixes[i]); 10427 break; 10428 } 10429 } 10430 if (!tp_name) { 10431 pr_warn("prog '%s': invalid section name '%s'\n", 10432 prog->name, prog->sec_name); 10433 return libbpf_err_ptr(-EINVAL); 10434 } 10435 10436 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10437 } 10438 10439 /* Common logic for all BPF program types that attach to a btf_id */ 10440 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 10441 { 10442 char errmsg[STRERR_BUFSIZE]; 10443 struct bpf_link *link; 10444 int prog_fd, pfd; 10445 10446 prog_fd = bpf_program__fd(prog); 10447 if (prog_fd < 0) { 10448 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10449 return libbpf_err_ptr(-EINVAL); 10450 } 10451 10452 link = calloc(1, sizeof(*link)); 10453 if (!link) 10454 return libbpf_err_ptr(-ENOMEM); 10455 link->detach = &bpf_link__detach_fd; 10456 10457 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10458 if (pfd < 0) { 10459 pfd = -errno; 10460 free(link); 10461 pr_warn("prog '%s': failed to attach: %s\n", 10462 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10463 return libbpf_err_ptr(pfd); 10464 } 10465 link->fd = pfd; 10466 return (struct bpf_link *)link; 10467 } 10468 10469 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 10470 { 10471 return bpf_program__attach_btf_id(prog); 10472 } 10473 10474 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 10475 { 10476 return bpf_program__attach_btf_id(prog); 10477 } 10478 10479 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie) 10480 { 10481 return bpf_program__attach_trace(prog); 10482 } 10483 10484 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie) 10485 { 10486 return bpf_program__attach_lsm(prog); 10487 } 10488 10489 static struct bpf_link * 10490 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 10491 const char *target_name) 10492 { 10493 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10494 .target_btf_id = btf_id); 10495 enum bpf_attach_type attach_type; 10496 char errmsg[STRERR_BUFSIZE]; 10497 struct bpf_link *link; 10498 int prog_fd, link_fd; 10499 10500 prog_fd = bpf_program__fd(prog); 10501 if (prog_fd < 0) { 10502 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10503 return libbpf_err_ptr(-EINVAL); 10504 } 10505 10506 link = calloc(1, sizeof(*link)); 10507 if (!link) 10508 return libbpf_err_ptr(-ENOMEM); 10509 link->detach = &bpf_link__detach_fd; 10510 10511 attach_type = bpf_program__get_expected_attach_type(prog); 10512 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10513 if (link_fd < 0) { 10514 link_fd = -errno; 10515 free(link); 10516 pr_warn("prog '%s': failed to attach to %s: %s\n", 10517 prog->name, target_name, 10518 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10519 return libbpf_err_ptr(link_fd); 10520 } 10521 link->fd = link_fd; 10522 return link; 10523 } 10524 10525 struct bpf_link * 10526 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 10527 { 10528 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10529 } 10530 10531 struct bpf_link * 10532 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 10533 { 10534 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10535 } 10536 10537 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 10538 { 10539 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10540 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10541 } 10542 10543 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 10544 int target_fd, 10545 const char *attach_func_name) 10546 { 10547 int btf_id; 10548 10549 if (!!target_fd != !!attach_func_name) { 10550 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10551 prog->name); 10552 return libbpf_err_ptr(-EINVAL); 10553 } 10554 10555 if (prog->type != BPF_PROG_TYPE_EXT) { 10556 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10557 prog->name); 10558 return libbpf_err_ptr(-EINVAL); 10559 } 10560 10561 if (target_fd) { 10562 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10563 if (btf_id < 0) 10564 return libbpf_err_ptr(btf_id); 10565 10566 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10567 } else { 10568 /* no target, so use raw_tracepoint_open for compatibility 10569 * with old kernels 10570 */ 10571 return bpf_program__attach_trace(prog); 10572 } 10573 } 10574 10575 struct bpf_link * 10576 bpf_program__attach_iter(const struct bpf_program *prog, 10577 const struct bpf_iter_attach_opts *opts) 10578 { 10579 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10580 char errmsg[STRERR_BUFSIZE]; 10581 struct bpf_link *link; 10582 int prog_fd, link_fd; 10583 __u32 target_fd = 0; 10584 10585 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10586 return libbpf_err_ptr(-EINVAL); 10587 10588 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10589 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10590 10591 prog_fd = bpf_program__fd(prog); 10592 if (prog_fd < 0) { 10593 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10594 return libbpf_err_ptr(-EINVAL); 10595 } 10596 10597 link = calloc(1, sizeof(*link)); 10598 if (!link) 10599 return libbpf_err_ptr(-ENOMEM); 10600 link->detach = &bpf_link__detach_fd; 10601 10602 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10603 &link_create_opts); 10604 if (link_fd < 0) { 10605 link_fd = -errno; 10606 free(link); 10607 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10608 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10609 return libbpf_err_ptr(link_fd); 10610 } 10611 link->fd = link_fd; 10612 return link; 10613 } 10614 10615 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie) 10616 { 10617 return bpf_program__attach_iter(prog, NULL); 10618 } 10619 10620 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 10621 { 10622 if (!prog->sec_def || !prog->sec_def->attach_fn) 10623 return libbpf_err_ptr(-ESRCH); 10624 10625 return prog->sec_def->attach_fn(prog, prog->sec_def->cookie); 10626 } 10627 10628 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10629 { 10630 __u32 zero = 0; 10631 10632 if (bpf_map_delete_elem(link->fd, &zero)) 10633 return -errno; 10634 10635 return 0; 10636 } 10637 10638 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10639 { 10640 struct bpf_struct_ops *st_ops; 10641 struct bpf_link *link; 10642 __u32 i, zero = 0; 10643 int err; 10644 10645 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10646 return libbpf_err_ptr(-EINVAL); 10647 10648 link = calloc(1, sizeof(*link)); 10649 if (!link) 10650 return libbpf_err_ptr(-EINVAL); 10651 10652 st_ops = map->st_ops; 10653 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10654 struct bpf_program *prog = st_ops->progs[i]; 10655 void *kern_data; 10656 int prog_fd; 10657 10658 if (!prog) 10659 continue; 10660 10661 prog_fd = bpf_program__fd(prog); 10662 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10663 *(unsigned long *)kern_data = prog_fd; 10664 } 10665 10666 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10667 if (err) { 10668 err = -errno; 10669 free(link); 10670 return libbpf_err_ptr(err); 10671 } 10672 10673 link->detach = bpf_link__detach_struct_ops; 10674 link->fd = map->fd; 10675 10676 return link; 10677 } 10678 10679 enum bpf_perf_event_ret 10680 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10681 void **copy_mem, size_t *copy_size, 10682 bpf_perf_event_print_t fn, void *private_data) 10683 { 10684 struct perf_event_mmap_page *header = mmap_mem; 10685 __u64 data_head = ring_buffer_read_head(header); 10686 __u64 data_tail = header->data_tail; 10687 void *base = ((__u8 *)header) + page_size; 10688 int ret = LIBBPF_PERF_EVENT_CONT; 10689 struct perf_event_header *ehdr; 10690 size_t ehdr_size; 10691 10692 while (data_head != data_tail) { 10693 ehdr = base + (data_tail & (mmap_size - 1)); 10694 ehdr_size = ehdr->size; 10695 10696 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10697 void *copy_start = ehdr; 10698 size_t len_first = base + mmap_size - copy_start; 10699 size_t len_secnd = ehdr_size - len_first; 10700 10701 if (*copy_size < ehdr_size) { 10702 free(*copy_mem); 10703 *copy_mem = malloc(ehdr_size); 10704 if (!*copy_mem) { 10705 *copy_size = 0; 10706 ret = LIBBPF_PERF_EVENT_ERROR; 10707 break; 10708 } 10709 *copy_size = ehdr_size; 10710 } 10711 10712 memcpy(*copy_mem, copy_start, len_first); 10713 memcpy(*copy_mem + len_first, base, len_secnd); 10714 ehdr = *copy_mem; 10715 } 10716 10717 ret = fn(ehdr, private_data); 10718 data_tail += ehdr_size; 10719 if (ret != LIBBPF_PERF_EVENT_CONT) 10720 break; 10721 } 10722 10723 ring_buffer_write_tail(header, data_tail); 10724 return libbpf_err(ret); 10725 } 10726 10727 struct perf_buffer; 10728 10729 struct perf_buffer_params { 10730 struct perf_event_attr *attr; 10731 /* if event_cb is specified, it takes precendence */ 10732 perf_buffer_event_fn event_cb; 10733 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10734 perf_buffer_sample_fn sample_cb; 10735 perf_buffer_lost_fn lost_cb; 10736 void *ctx; 10737 int cpu_cnt; 10738 int *cpus; 10739 int *map_keys; 10740 }; 10741 10742 struct perf_cpu_buf { 10743 struct perf_buffer *pb; 10744 void *base; /* mmap()'ed memory */ 10745 void *buf; /* for reconstructing segmented data */ 10746 size_t buf_size; 10747 int fd; 10748 int cpu; 10749 int map_key; 10750 }; 10751 10752 struct perf_buffer { 10753 perf_buffer_event_fn event_cb; 10754 perf_buffer_sample_fn sample_cb; 10755 perf_buffer_lost_fn lost_cb; 10756 void *ctx; /* passed into callbacks */ 10757 10758 size_t page_size; 10759 size_t mmap_size; 10760 struct perf_cpu_buf **cpu_bufs; 10761 struct epoll_event *events; 10762 int cpu_cnt; /* number of allocated CPU buffers */ 10763 int epoll_fd; /* perf event FD */ 10764 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10765 }; 10766 10767 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10768 struct perf_cpu_buf *cpu_buf) 10769 { 10770 if (!cpu_buf) 10771 return; 10772 if (cpu_buf->base && 10773 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10774 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10775 if (cpu_buf->fd >= 0) { 10776 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10777 close(cpu_buf->fd); 10778 } 10779 free(cpu_buf->buf); 10780 free(cpu_buf); 10781 } 10782 10783 void perf_buffer__free(struct perf_buffer *pb) 10784 { 10785 int i; 10786 10787 if (IS_ERR_OR_NULL(pb)) 10788 return; 10789 if (pb->cpu_bufs) { 10790 for (i = 0; i < pb->cpu_cnt; i++) { 10791 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10792 10793 if (!cpu_buf) 10794 continue; 10795 10796 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10797 perf_buffer__free_cpu_buf(pb, cpu_buf); 10798 } 10799 free(pb->cpu_bufs); 10800 } 10801 if (pb->epoll_fd >= 0) 10802 close(pb->epoll_fd); 10803 free(pb->events); 10804 free(pb); 10805 } 10806 10807 static struct perf_cpu_buf * 10808 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10809 int cpu, int map_key) 10810 { 10811 struct perf_cpu_buf *cpu_buf; 10812 char msg[STRERR_BUFSIZE]; 10813 int err; 10814 10815 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10816 if (!cpu_buf) 10817 return ERR_PTR(-ENOMEM); 10818 10819 cpu_buf->pb = pb; 10820 cpu_buf->cpu = cpu; 10821 cpu_buf->map_key = map_key; 10822 10823 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10824 -1, PERF_FLAG_FD_CLOEXEC); 10825 if (cpu_buf->fd < 0) { 10826 err = -errno; 10827 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10828 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10829 goto error; 10830 } 10831 10832 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10833 PROT_READ | PROT_WRITE, MAP_SHARED, 10834 cpu_buf->fd, 0); 10835 if (cpu_buf->base == MAP_FAILED) { 10836 cpu_buf->base = NULL; 10837 err = -errno; 10838 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10839 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10840 goto error; 10841 } 10842 10843 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10844 err = -errno; 10845 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10846 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10847 goto error; 10848 } 10849 10850 return cpu_buf; 10851 10852 error: 10853 perf_buffer__free_cpu_buf(pb, cpu_buf); 10854 return (struct perf_cpu_buf *)ERR_PTR(err); 10855 } 10856 10857 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10858 struct perf_buffer_params *p); 10859 10860 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 10861 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 10862 perf_buffer_sample_fn sample_cb, 10863 perf_buffer_lost_fn lost_cb, 10864 void *ctx, 10865 const struct perf_buffer_opts *opts) 10866 { 10867 struct perf_buffer_params p = {}; 10868 struct perf_event_attr attr = {}; 10869 10870 if (!OPTS_VALID(opts, perf_buffer_opts)) 10871 return libbpf_err_ptr(-EINVAL); 10872 10873 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10874 attr.type = PERF_TYPE_SOFTWARE; 10875 attr.sample_type = PERF_SAMPLE_RAW; 10876 attr.sample_period = 1; 10877 attr.wakeup_events = 1; 10878 10879 p.attr = &attr; 10880 p.sample_cb = sample_cb; 10881 p.lost_cb = lost_cb; 10882 p.ctx = ctx; 10883 10884 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10885 } 10886 10887 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 10888 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 10889 const struct perf_buffer_opts *opts) 10890 { 10891 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 10892 opts ? opts->sample_cb : NULL, 10893 opts ? opts->lost_cb : NULL, 10894 opts ? opts->ctx : NULL, 10895 NULL); 10896 } 10897 10898 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 10899 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 10900 struct perf_event_attr *attr, 10901 perf_buffer_event_fn event_cb, void *ctx, 10902 const struct perf_buffer_raw_opts *opts) 10903 { 10904 struct perf_buffer_params p = {}; 10905 10906 if (page_cnt == 0 || !attr) 10907 return libbpf_err_ptr(-EINVAL); 10908 10909 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 10910 return libbpf_err_ptr(-EINVAL); 10911 10912 p.attr = attr; 10913 p.event_cb = event_cb; 10914 p.ctx = ctx; 10915 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 10916 p.cpus = OPTS_GET(opts, cpus, NULL); 10917 p.map_keys = OPTS_GET(opts, map_keys, NULL); 10918 10919 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10920 } 10921 10922 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 10923 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 10924 const struct perf_buffer_raw_opts *opts) 10925 { 10926 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 10927 .cpu_cnt = opts->cpu_cnt, 10928 .cpus = opts->cpus, 10929 .map_keys = opts->map_keys, 10930 ); 10931 10932 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 10933 opts->event_cb, opts->ctx, &inner_opts); 10934 } 10935 10936 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10937 struct perf_buffer_params *p) 10938 { 10939 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10940 struct bpf_map_info map; 10941 char msg[STRERR_BUFSIZE]; 10942 struct perf_buffer *pb; 10943 bool *online = NULL; 10944 __u32 map_info_len; 10945 int err, i, j, n; 10946 10947 if (page_cnt & (page_cnt - 1)) { 10948 pr_warn("page count should be power of two, but is %zu\n", 10949 page_cnt); 10950 return ERR_PTR(-EINVAL); 10951 } 10952 10953 /* best-effort sanity checks */ 10954 memset(&map, 0, sizeof(map)); 10955 map_info_len = sizeof(map); 10956 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10957 if (err) { 10958 err = -errno; 10959 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10960 * -EBADFD, -EFAULT, or -E2BIG on real error 10961 */ 10962 if (err != -EINVAL) { 10963 pr_warn("failed to get map info for map FD %d: %s\n", 10964 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10965 return ERR_PTR(err); 10966 } 10967 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10968 map_fd); 10969 } else { 10970 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10971 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10972 map.name); 10973 return ERR_PTR(-EINVAL); 10974 } 10975 } 10976 10977 pb = calloc(1, sizeof(*pb)); 10978 if (!pb) 10979 return ERR_PTR(-ENOMEM); 10980 10981 pb->event_cb = p->event_cb; 10982 pb->sample_cb = p->sample_cb; 10983 pb->lost_cb = p->lost_cb; 10984 pb->ctx = p->ctx; 10985 10986 pb->page_size = getpagesize(); 10987 pb->mmap_size = pb->page_size * page_cnt; 10988 pb->map_fd = map_fd; 10989 10990 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10991 if (pb->epoll_fd < 0) { 10992 err = -errno; 10993 pr_warn("failed to create epoll instance: %s\n", 10994 libbpf_strerror_r(err, msg, sizeof(msg))); 10995 goto error; 10996 } 10997 10998 if (p->cpu_cnt > 0) { 10999 pb->cpu_cnt = p->cpu_cnt; 11000 } else { 11001 pb->cpu_cnt = libbpf_num_possible_cpus(); 11002 if (pb->cpu_cnt < 0) { 11003 err = pb->cpu_cnt; 11004 goto error; 11005 } 11006 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11007 pb->cpu_cnt = map.max_entries; 11008 } 11009 11010 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11011 if (!pb->events) { 11012 err = -ENOMEM; 11013 pr_warn("failed to allocate events: out of memory\n"); 11014 goto error; 11015 } 11016 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11017 if (!pb->cpu_bufs) { 11018 err = -ENOMEM; 11019 pr_warn("failed to allocate buffers: out of memory\n"); 11020 goto error; 11021 } 11022 11023 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11024 if (err) { 11025 pr_warn("failed to get online CPU mask: %d\n", err); 11026 goto error; 11027 } 11028 11029 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11030 struct perf_cpu_buf *cpu_buf; 11031 int cpu, map_key; 11032 11033 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11034 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11035 11036 /* in case user didn't explicitly requested particular CPUs to 11037 * be attached to, skip offline/not present CPUs 11038 */ 11039 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11040 continue; 11041 11042 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11043 if (IS_ERR(cpu_buf)) { 11044 err = PTR_ERR(cpu_buf); 11045 goto error; 11046 } 11047 11048 pb->cpu_bufs[j] = cpu_buf; 11049 11050 err = bpf_map_update_elem(pb->map_fd, &map_key, 11051 &cpu_buf->fd, 0); 11052 if (err) { 11053 err = -errno; 11054 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11055 cpu, map_key, cpu_buf->fd, 11056 libbpf_strerror_r(err, msg, sizeof(msg))); 11057 goto error; 11058 } 11059 11060 pb->events[j].events = EPOLLIN; 11061 pb->events[j].data.ptr = cpu_buf; 11062 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11063 &pb->events[j]) < 0) { 11064 err = -errno; 11065 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11066 cpu, cpu_buf->fd, 11067 libbpf_strerror_r(err, msg, sizeof(msg))); 11068 goto error; 11069 } 11070 j++; 11071 } 11072 pb->cpu_cnt = j; 11073 free(online); 11074 11075 return pb; 11076 11077 error: 11078 free(online); 11079 if (pb) 11080 perf_buffer__free(pb); 11081 return ERR_PTR(err); 11082 } 11083 11084 struct perf_sample_raw { 11085 struct perf_event_header header; 11086 uint32_t size; 11087 char data[]; 11088 }; 11089 11090 struct perf_sample_lost { 11091 struct perf_event_header header; 11092 uint64_t id; 11093 uint64_t lost; 11094 uint64_t sample_id; 11095 }; 11096 11097 static enum bpf_perf_event_ret 11098 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11099 { 11100 struct perf_cpu_buf *cpu_buf = ctx; 11101 struct perf_buffer *pb = cpu_buf->pb; 11102 void *data = e; 11103 11104 /* user wants full control over parsing perf event */ 11105 if (pb->event_cb) 11106 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11107 11108 switch (e->type) { 11109 case PERF_RECORD_SAMPLE: { 11110 struct perf_sample_raw *s = data; 11111 11112 if (pb->sample_cb) 11113 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11114 break; 11115 } 11116 case PERF_RECORD_LOST: { 11117 struct perf_sample_lost *s = data; 11118 11119 if (pb->lost_cb) 11120 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11121 break; 11122 } 11123 default: 11124 pr_warn("unknown perf sample type %d\n", e->type); 11125 return LIBBPF_PERF_EVENT_ERROR; 11126 } 11127 return LIBBPF_PERF_EVENT_CONT; 11128 } 11129 11130 static int perf_buffer__process_records(struct perf_buffer *pb, 11131 struct perf_cpu_buf *cpu_buf) 11132 { 11133 enum bpf_perf_event_ret ret; 11134 11135 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11136 pb->page_size, &cpu_buf->buf, 11137 &cpu_buf->buf_size, 11138 perf_buffer__process_record, cpu_buf); 11139 if (ret != LIBBPF_PERF_EVENT_CONT) 11140 return ret; 11141 return 0; 11142 } 11143 11144 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11145 { 11146 return pb->epoll_fd; 11147 } 11148 11149 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11150 { 11151 int i, cnt, err; 11152 11153 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11154 if (cnt < 0) 11155 return -errno; 11156 11157 for (i = 0; i < cnt; i++) { 11158 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11159 11160 err = perf_buffer__process_records(pb, cpu_buf); 11161 if (err) { 11162 pr_warn("error while processing records: %d\n", err); 11163 return libbpf_err(err); 11164 } 11165 } 11166 return cnt; 11167 } 11168 11169 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11170 * manager. 11171 */ 11172 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11173 { 11174 return pb->cpu_cnt; 11175 } 11176 11177 /* 11178 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11179 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11180 * select()/poll()/epoll() Linux syscalls. 11181 */ 11182 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11183 { 11184 struct perf_cpu_buf *cpu_buf; 11185 11186 if (buf_idx >= pb->cpu_cnt) 11187 return libbpf_err(-EINVAL); 11188 11189 cpu_buf = pb->cpu_bufs[buf_idx]; 11190 if (!cpu_buf) 11191 return libbpf_err(-ENOENT); 11192 11193 return cpu_buf->fd; 11194 } 11195 11196 /* 11197 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11198 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11199 * consume, do nothing and return success. 11200 * Returns: 11201 * - 0 on success; 11202 * - <0 on failure. 11203 */ 11204 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11205 { 11206 struct perf_cpu_buf *cpu_buf; 11207 11208 if (buf_idx >= pb->cpu_cnt) 11209 return libbpf_err(-EINVAL); 11210 11211 cpu_buf = pb->cpu_bufs[buf_idx]; 11212 if (!cpu_buf) 11213 return libbpf_err(-ENOENT); 11214 11215 return perf_buffer__process_records(pb, cpu_buf); 11216 } 11217 11218 int perf_buffer__consume(struct perf_buffer *pb) 11219 { 11220 int i, err; 11221 11222 for (i = 0; i < pb->cpu_cnt; i++) { 11223 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11224 11225 if (!cpu_buf) 11226 continue; 11227 11228 err = perf_buffer__process_records(pb, cpu_buf); 11229 if (err) { 11230 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11231 return libbpf_err(err); 11232 } 11233 } 11234 return 0; 11235 } 11236 11237 struct bpf_prog_info_array_desc { 11238 int array_offset; /* e.g. offset of jited_prog_insns */ 11239 int count_offset; /* e.g. offset of jited_prog_len */ 11240 int size_offset; /* > 0: offset of rec size, 11241 * < 0: fix size of -size_offset 11242 */ 11243 }; 11244 11245 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 11246 [BPF_PROG_INFO_JITED_INSNS] = { 11247 offsetof(struct bpf_prog_info, jited_prog_insns), 11248 offsetof(struct bpf_prog_info, jited_prog_len), 11249 -1, 11250 }, 11251 [BPF_PROG_INFO_XLATED_INSNS] = { 11252 offsetof(struct bpf_prog_info, xlated_prog_insns), 11253 offsetof(struct bpf_prog_info, xlated_prog_len), 11254 -1, 11255 }, 11256 [BPF_PROG_INFO_MAP_IDS] = { 11257 offsetof(struct bpf_prog_info, map_ids), 11258 offsetof(struct bpf_prog_info, nr_map_ids), 11259 -(int)sizeof(__u32), 11260 }, 11261 [BPF_PROG_INFO_JITED_KSYMS] = { 11262 offsetof(struct bpf_prog_info, jited_ksyms), 11263 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11264 -(int)sizeof(__u64), 11265 }, 11266 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11267 offsetof(struct bpf_prog_info, jited_func_lens), 11268 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11269 -(int)sizeof(__u32), 11270 }, 11271 [BPF_PROG_INFO_FUNC_INFO] = { 11272 offsetof(struct bpf_prog_info, func_info), 11273 offsetof(struct bpf_prog_info, nr_func_info), 11274 offsetof(struct bpf_prog_info, func_info_rec_size), 11275 }, 11276 [BPF_PROG_INFO_LINE_INFO] = { 11277 offsetof(struct bpf_prog_info, line_info), 11278 offsetof(struct bpf_prog_info, nr_line_info), 11279 offsetof(struct bpf_prog_info, line_info_rec_size), 11280 }, 11281 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11282 offsetof(struct bpf_prog_info, jited_line_info), 11283 offsetof(struct bpf_prog_info, nr_jited_line_info), 11284 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11285 }, 11286 [BPF_PROG_INFO_PROG_TAGS] = { 11287 offsetof(struct bpf_prog_info, prog_tags), 11288 offsetof(struct bpf_prog_info, nr_prog_tags), 11289 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11290 }, 11291 11292 }; 11293 11294 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11295 int offset) 11296 { 11297 __u32 *array = (__u32 *)info; 11298 11299 if (offset >= 0) 11300 return array[offset / sizeof(__u32)]; 11301 return -(int)offset; 11302 } 11303 11304 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11305 int offset) 11306 { 11307 __u64 *array = (__u64 *)info; 11308 11309 if (offset >= 0) 11310 return array[offset / sizeof(__u64)]; 11311 return -(int)offset; 11312 } 11313 11314 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11315 __u32 val) 11316 { 11317 __u32 *array = (__u32 *)info; 11318 11319 if (offset >= 0) 11320 array[offset / sizeof(__u32)] = val; 11321 } 11322 11323 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11324 __u64 val) 11325 { 11326 __u64 *array = (__u64 *)info; 11327 11328 if (offset >= 0) 11329 array[offset / sizeof(__u64)] = val; 11330 } 11331 11332 struct bpf_prog_info_linear * 11333 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11334 { 11335 struct bpf_prog_info_linear *info_linear; 11336 struct bpf_prog_info info = {}; 11337 __u32 info_len = sizeof(info); 11338 __u32 data_len = 0; 11339 int i, err; 11340 void *ptr; 11341 11342 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11343 return libbpf_err_ptr(-EINVAL); 11344 11345 /* step 1: get array dimensions */ 11346 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11347 if (err) { 11348 pr_debug("can't get prog info: %s", strerror(errno)); 11349 return libbpf_err_ptr(-EFAULT); 11350 } 11351 11352 /* step 2: calculate total size of all arrays */ 11353 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11354 bool include_array = (arrays & (1UL << i)) > 0; 11355 struct bpf_prog_info_array_desc *desc; 11356 __u32 count, size; 11357 11358 desc = bpf_prog_info_array_desc + i; 11359 11360 /* kernel is too old to support this field */ 11361 if (info_len < desc->array_offset + sizeof(__u32) || 11362 info_len < desc->count_offset + sizeof(__u32) || 11363 (desc->size_offset > 0 && info_len < desc->size_offset)) 11364 include_array = false; 11365 11366 if (!include_array) { 11367 arrays &= ~(1UL << i); /* clear the bit */ 11368 continue; 11369 } 11370 11371 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11372 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11373 11374 data_len += count * size; 11375 } 11376 11377 /* step 3: allocate continuous memory */ 11378 data_len = roundup(data_len, sizeof(__u64)); 11379 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11380 if (!info_linear) 11381 return libbpf_err_ptr(-ENOMEM); 11382 11383 /* step 4: fill data to info_linear->info */ 11384 info_linear->arrays = arrays; 11385 memset(&info_linear->info, 0, sizeof(info)); 11386 ptr = info_linear->data; 11387 11388 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11389 struct bpf_prog_info_array_desc *desc; 11390 __u32 count, size; 11391 11392 if ((arrays & (1UL << i)) == 0) 11393 continue; 11394 11395 desc = bpf_prog_info_array_desc + i; 11396 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11397 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11398 bpf_prog_info_set_offset_u32(&info_linear->info, 11399 desc->count_offset, count); 11400 bpf_prog_info_set_offset_u32(&info_linear->info, 11401 desc->size_offset, size); 11402 bpf_prog_info_set_offset_u64(&info_linear->info, 11403 desc->array_offset, 11404 ptr_to_u64(ptr)); 11405 ptr += count * size; 11406 } 11407 11408 /* step 5: call syscall again to get required arrays */ 11409 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11410 if (err) { 11411 pr_debug("can't get prog info: %s", strerror(errno)); 11412 free(info_linear); 11413 return libbpf_err_ptr(-EFAULT); 11414 } 11415 11416 /* step 6: verify the data */ 11417 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11418 struct bpf_prog_info_array_desc *desc; 11419 __u32 v1, v2; 11420 11421 if ((arrays & (1UL << i)) == 0) 11422 continue; 11423 11424 desc = bpf_prog_info_array_desc + i; 11425 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11426 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11427 desc->count_offset); 11428 if (v1 != v2) 11429 pr_warn("%s: mismatch in element count\n", __func__); 11430 11431 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11432 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11433 desc->size_offset); 11434 if (v1 != v2) 11435 pr_warn("%s: mismatch in rec size\n", __func__); 11436 } 11437 11438 /* step 7: update info_len and data_len */ 11439 info_linear->info_len = sizeof(struct bpf_prog_info); 11440 info_linear->data_len = data_len; 11441 11442 return info_linear; 11443 } 11444 11445 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11446 { 11447 int i; 11448 11449 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11450 struct bpf_prog_info_array_desc *desc; 11451 __u64 addr, offs; 11452 11453 if ((info_linear->arrays & (1UL << i)) == 0) 11454 continue; 11455 11456 desc = bpf_prog_info_array_desc + i; 11457 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11458 desc->array_offset); 11459 offs = addr - ptr_to_u64(info_linear->data); 11460 bpf_prog_info_set_offset_u64(&info_linear->info, 11461 desc->array_offset, offs); 11462 } 11463 } 11464 11465 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11466 { 11467 int i; 11468 11469 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11470 struct bpf_prog_info_array_desc *desc; 11471 __u64 addr, offs; 11472 11473 if ((info_linear->arrays & (1UL << i)) == 0) 11474 continue; 11475 11476 desc = bpf_prog_info_array_desc + i; 11477 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11478 desc->array_offset); 11479 addr = offs + ptr_to_u64(info_linear->data); 11480 bpf_prog_info_set_offset_u64(&info_linear->info, 11481 desc->array_offset, addr); 11482 } 11483 } 11484 11485 int bpf_program__set_attach_target(struct bpf_program *prog, 11486 int attach_prog_fd, 11487 const char *attach_func_name) 11488 { 11489 int btf_obj_fd = 0, btf_id = 0, err; 11490 11491 if (!prog || attach_prog_fd < 0) 11492 return libbpf_err(-EINVAL); 11493 11494 if (prog->obj->loaded) 11495 return libbpf_err(-EINVAL); 11496 11497 if (attach_prog_fd && !attach_func_name) { 11498 /* remember attach_prog_fd and let bpf_program__load() find 11499 * BTF ID during the program load 11500 */ 11501 prog->attach_prog_fd = attach_prog_fd; 11502 return 0; 11503 } 11504 11505 if (attach_prog_fd) { 11506 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11507 attach_prog_fd); 11508 if (btf_id < 0) 11509 return libbpf_err(btf_id); 11510 } else { 11511 if (!attach_func_name) 11512 return libbpf_err(-EINVAL); 11513 11514 /* load btf_vmlinux, if not yet */ 11515 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11516 if (err) 11517 return libbpf_err(err); 11518 err = find_kernel_btf_id(prog->obj, attach_func_name, 11519 prog->expected_attach_type, 11520 &btf_obj_fd, &btf_id); 11521 if (err) 11522 return libbpf_err(err); 11523 } 11524 11525 prog->attach_btf_id = btf_id; 11526 prog->attach_btf_obj_fd = btf_obj_fd; 11527 prog->attach_prog_fd = attach_prog_fd; 11528 return 0; 11529 } 11530 11531 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11532 { 11533 int err = 0, n, len, start, end = -1; 11534 bool *tmp; 11535 11536 *mask = NULL; 11537 *mask_sz = 0; 11538 11539 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11540 while (*s) { 11541 if (*s == ',' || *s == '\n') { 11542 s++; 11543 continue; 11544 } 11545 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11546 if (n <= 0 || n > 2) { 11547 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11548 err = -EINVAL; 11549 goto cleanup; 11550 } else if (n == 1) { 11551 end = start; 11552 } 11553 if (start < 0 || start > end) { 11554 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11555 start, end, s); 11556 err = -EINVAL; 11557 goto cleanup; 11558 } 11559 tmp = realloc(*mask, end + 1); 11560 if (!tmp) { 11561 err = -ENOMEM; 11562 goto cleanup; 11563 } 11564 *mask = tmp; 11565 memset(tmp + *mask_sz, 0, start - *mask_sz); 11566 memset(tmp + start, 1, end - start + 1); 11567 *mask_sz = end + 1; 11568 s += len; 11569 } 11570 if (!*mask_sz) { 11571 pr_warn("Empty CPU range\n"); 11572 return -EINVAL; 11573 } 11574 return 0; 11575 cleanup: 11576 free(*mask); 11577 *mask = NULL; 11578 return err; 11579 } 11580 11581 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11582 { 11583 int fd, err = 0, len; 11584 char buf[128]; 11585 11586 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11587 if (fd < 0) { 11588 err = -errno; 11589 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11590 return err; 11591 } 11592 len = read(fd, buf, sizeof(buf)); 11593 close(fd); 11594 if (len <= 0) { 11595 err = len ? -errno : -EINVAL; 11596 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11597 return err; 11598 } 11599 if (len >= sizeof(buf)) { 11600 pr_warn("CPU mask is too big in file %s\n", fcpu); 11601 return -E2BIG; 11602 } 11603 buf[len] = '\0'; 11604 11605 return parse_cpu_mask_str(buf, mask, mask_sz); 11606 } 11607 11608 int libbpf_num_possible_cpus(void) 11609 { 11610 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11611 static int cpus; 11612 int err, n, i, tmp_cpus; 11613 bool *mask; 11614 11615 tmp_cpus = READ_ONCE(cpus); 11616 if (tmp_cpus > 0) 11617 return tmp_cpus; 11618 11619 err = parse_cpu_mask_file(fcpu, &mask, &n); 11620 if (err) 11621 return libbpf_err(err); 11622 11623 tmp_cpus = 0; 11624 for (i = 0; i < n; i++) { 11625 if (mask[i]) 11626 tmp_cpus++; 11627 } 11628 free(mask); 11629 11630 WRITE_ONCE(cpus, tmp_cpus); 11631 return tmp_cpus; 11632 } 11633 11634 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11635 const struct bpf_object_open_opts *opts) 11636 { 11637 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11638 .object_name = s->name, 11639 ); 11640 struct bpf_object *obj; 11641 int i, err; 11642 11643 /* Attempt to preserve opts->object_name, unless overriden by user 11644 * explicitly. Overwriting object name for skeletons is discouraged, 11645 * as it breaks global data maps, because they contain object name 11646 * prefix as their own map name prefix. When skeleton is generated, 11647 * bpftool is making an assumption that this name will stay the same. 11648 */ 11649 if (opts) { 11650 memcpy(&skel_opts, opts, sizeof(*opts)); 11651 if (!opts->object_name) 11652 skel_opts.object_name = s->name; 11653 } 11654 11655 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11656 err = libbpf_get_error(obj); 11657 if (err) { 11658 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 11659 s->name, err); 11660 return libbpf_err(err); 11661 } 11662 11663 *s->obj = obj; 11664 11665 for (i = 0; i < s->map_cnt; i++) { 11666 struct bpf_map **map = s->maps[i].map; 11667 const char *name = s->maps[i].name; 11668 void **mmaped = s->maps[i].mmaped; 11669 11670 *map = bpf_object__find_map_by_name(obj, name); 11671 if (!*map) { 11672 pr_warn("failed to find skeleton map '%s'\n", name); 11673 return libbpf_err(-ESRCH); 11674 } 11675 11676 /* externs shouldn't be pre-setup from user code */ 11677 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11678 *mmaped = (*map)->mmaped; 11679 } 11680 11681 for (i = 0; i < s->prog_cnt; i++) { 11682 struct bpf_program **prog = s->progs[i].prog; 11683 const char *name = s->progs[i].name; 11684 11685 *prog = bpf_object__find_program_by_name(obj, name); 11686 if (!*prog) { 11687 pr_warn("failed to find skeleton program '%s'\n", name); 11688 return libbpf_err(-ESRCH); 11689 } 11690 } 11691 11692 return 0; 11693 } 11694 11695 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11696 { 11697 int i, err; 11698 11699 err = bpf_object__load(*s->obj); 11700 if (err) { 11701 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11702 return libbpf_err(err); 11703 } 11704 11705 for (i = 0; i < s->map_cnt; i++) { 11706 struct bpf_map *map = *s->maps[i].map; 11707 size_t mmap_sz = bpf_map_mmap_sz(map); 11708 int prot, map_fd = bpf_map__fd(map); 11709 void **mmaped = s->maps[i].mmaped; 11710 11711 if (!mmaped) 11712 continue; 11713 11714 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11715 *mmaped = NULL; 11716 continue; 11717 } 11718 11719 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11720 prot = PROT_READ; 11721 else 11722 prot = PROT_READ | PROT_WRITE; 11723 11724 /* Remap anonymous mmap()-ed "map initialization image" as 11725 * a BPF map-backed mmap()-ed memory, but preserving the same 11726 * memory address. This will cause kernel to change process' 11727 * page table to point to a different piece of kernel memory, 11728 * but from userspace point of view memory address (and its 11729 * contents, being identical at this point) will stay the 11730 * same. This mapping will be released by bpf_object__close() 11731 * as per normal clean up procedure, so we don't need to worry 11732 * about it from skeleton's clean up perspective. 11733 */ 11734 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11735 MAP_SHARED | MAP_FIXED, map_fd, 0); 11736 if (*mmaped == MAP_FAILED) { 11737 err = -errno; 11738 *mmaped = NULL; 11739 pr_warn("failed to re-mmap() map '%s': %d\n", 11740 bpf_map__name(map), err); 11741 return libbpf_err(err); 11742 } 11743 } 11744 11745 return 0; 11746 } 11747 11748 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11749 { 11750 int i, err; 11751 11752 for (i = 0; i < s->prog_cnt; i++) { 11753 struct bpf_program *prog = *s->progs[i].prog; 11754 struct bpf_link **link = s->progs[i].link; 11755 11756 if (!prog->load) 11757 continue; 11758 11759 /* auto-attaching not supported for this program */ 11760 if (!prog->sec_def || !prog->sec_def->attach_fn) 11761 continue; 11762 11763 *link = bpf_program__attach(prog); 11764 err = libbpf_get_error(*link); 11765 if (err) { 11766 pr_warn("failed to auto-attach program '%s': %d\n", 11767 bpf_program__name(prog), err); 11768 return libbpf_err(err); 11769 } 11770 } 11771 11772 return 0; 11773 } 11774 11775 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11776 { 11777 int i; 11778 11779 for (i = 0; i < s->prog_cnt; i++) { 11780 struct bpf_link **link = s->progs[i].link; 11781 11782 bpf_link__destroy(*link); 11783 *link = NULL; 11784 } 11785 } 11786 11787 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11788 { 11789 if (s->progs) 11790 bpf_object__detach_skeleton(s); 11791 if (s->obj) 11792 bpf_object__close(*s->obj); 11793 free(s->maps); 11794 free(s->progs); 11795 free(s); 11796 } 11797