1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define MAX_EVENT_NAME_LEN 64 64 65 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 66 67 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 68 69 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 70 * compilation if user enables corresponding warning. Disable it explicitly. 71 */ 72 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 73 74 #define __printf(a, b) __attribute__((format(printf, a, b))) 75 76 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 77 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 78 static int map_set_def_max_entries(struct bpf_map *map); 79 80 static const char * const attach_type_name[] = { 81 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 82 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 83 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 84 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 85 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 86 [BPF_CGROUP_DEVICE] = "cgroup_device", 87 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 88 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 89 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 90 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 91 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 92 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 93 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 94 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 95 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 96 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 97 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 98 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 99 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 100 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 101 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 102 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 103 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 104 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 105 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 106 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 107 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 108 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 109 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 110 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 111 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 112 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 113 [BPF_LIRC_MODE2] = "lirc_mode2", 114 [BPF_FLOW_DISSECTOR] = "flow_dissector", 115 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 116 [BPF_TRACE_FENTRY] = "trace_fentry", 117 [BPF_TRACE_FEXIT] = "trace_fexit", 118 [BPF_MODIFY_RETURN] = "modify_return", 119 [BPF_LSM_MAC] = "lsm_mac", 120 [BPF_LSM_CGROUP] = "lsm_cgroup", 121 [BPF_SK_LOOKUP] = "sk_lookup", 122 [BPF_TRACE_ITER] = "trace_iter", 123 [BPF_XDP_DEVMAP] = "xdp_devmap", 124 [BPF_XDP_CPUMAP] = "xdp_cpumap", 125 [BPF_XDP] = "xdp", 126 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 127 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 128 [BPF_PERF_EVENT] = "perf_event", 129 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 130 [BPF_STRUCT_OPS] = "struct_ops", 131 [BPF_NETFILTER] = "netfilter", 132 [BPF_TCX_INGRESS] = "tcx_ingress", 133 [BPF_TCX_EGRESS] = "tcx_egress", 134 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 135 [BPF_NETKIT_PRIMARY] = "netkit_primary", 136 [BPF_NETKIT_PEER] = "netkit_peer", 137 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 138 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 139 }; 140 141 static const char * const link_type_name[] = { 142 [BPF_LINK_TYPE_UNSPEC] = "unspec", 143 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 144 [BPF_LINK_TYPE_TRACING] = "tracing", 145 [BPF_LINK_TYPE_CGROUP] = "cgroup", 146 [BPF_LINK_TYPE_ITER] = "iter", 147 [BPF_LINK_TYPE_NETNS] = "netns", 148 [BPF_LINK_TYPE_XDP] = "xdp", 149 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 150 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 151 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 152 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 153 [BPF_LINK_TYPE_TCX] = "tcx", 154 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 155 [BPF_LINK_TYPE_NETKIT] = "netkit", 156 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 157 }; 158 159 static const char * const map_type_name[] = { 160 [BPF_MAP_TYPE_UNSPEC] = "unspec", 161 [BPF_MAP_TYPE_HASH] = "hash", 162 [BPF_MAP_TYPE_ARRAY] = "array", 163 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 164 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 165 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 166 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 167 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 168 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 169 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 170 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 171 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 172 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 173 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 174 [BPF_MAP_TYPE_DEVMAP] = "devmap", 175 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 176 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 177 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 178 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 179 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 180 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 181 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 182 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 183 [BPF_MAP_TYPE_QUEUE] = "queue", 184 [BPF_MAP_TYPE_STACK] = "stack", 185 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 186 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 187 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 188 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 189 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 190 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 191 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 192 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 193 [BPF_MAP_TYPE_ARENA] = "arena", 194 }; 195 196 static const char * const prog_type_name[] = { 197 [BPF_PROG_TYPE_UNSPEC] = "unspec", 198 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 199 [BPF_PROG_TYPE_KPROBE] = "kprobe", 200 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 201 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 202 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 203 [BPF_PROG_TYPE_XDP] = "xdp", 204 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 205 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 206 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 207 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 208 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 209 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 210 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 211 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 212 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 213 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 214 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 215 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 216 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 217 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 218 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 219 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 220 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 221 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 222 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 223 [BPF_PROG_TYPE_TRACING] = "tracing", 224 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 225 [BPF_PROG_TYPE_EXT] = "ext", 226 [BPF_PROG_TYPE_LSM] = "lsm", 227 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 228 [BPF_PROG_TYPE_SYSCALL] = "syscall", 229 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 230 }; 231 232 static int __base_pr(enum libbpf_print_level level, const char *format, 233 va_list args) 234 { 235 const char *env_var = "LIBBPF_LOG_LEVEL"; 236 static enum libbpf_print_level min_level = LIBBPF_INFO; 237 static bool initialized; 238 239 if (!initialized) { 240 char *verbosity; 241 242 initialized = true; 243 verbosity = getenv(env_var); 244 if (verbosity) { 245 if (strcasecmp(verbosity, "warn") == 0) 246 min_level = LIBBPF_WARN; 247 else if (strcasecmp(verbosity, "debug") == 0) 248 min_level = LIBBPF_DEBUG; 249 else if (strcasecmp(verbosity, "info") == 0) 250 min_level = LIBBPF_INFO; 251 else 252 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 253 env_var, verbosity); 254 } 255 } 256 257 /* if too verbose, skip logging */ 258 if (level > min_level) 259 return 0; 260 261 return vfprintf(stderr, format, args); 262 } 263 264 static libbpf_print_fn_t __libbpf_pr = __base_pr; 265 266 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 267 { 268 libbpf_print_fn_t old_print_fn; 269 270 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 271 272 return old_print_fn; 273 } 274 275 __printf(2, 3) 276 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 277 { 278 va_list args; 279 int old_errno; 280 libbpf_print_fn_t print_fn; 281 282 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 283 if (!print_fn) 284 return; 285 286 old_errno = errno; 287 288 va_start(args, format); 289 print_fn(level, format, args); 290 va_end(args); 291 292 errno = old_errno; 293 } 294 295 static void pr_perm_msg(int err) 296 { 297 struct rlimit limit; 298 char buf[100]; 299 300 if (err != -EPERM || geteuid() != 0) 301 return; 302 303 err = getrlimit(RLIMIT_MEMLOCK, &limit); 304 if (err) 305 return; 306 307 if (limit.rlim_cur == RLIM_INFINITY) 308 return; 309 310 if (limit.rlim_cur < 1024) 311 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 312 else if (limit.rlim_cur < 1024*1024) 313 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 314 else 315 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 316 317 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 318 buf); 319 } 320 321 #define STRERR_BUFSIZE 128 322 323 /* Copied from tools/perf/util/util.h */ 324 #ifndef zfree 325 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 326 #endif 327 328 #ifndef zclose 329 # define zclose(fd) ({ \ 330 int ___err = 0; \ 331 if ((fd) >= 0) \ 332 ___err = close((fd)); \ 333 fd = -1; \ 334 ___err; }) 335 #endif 336 337 static inline __u64 ptr_to_u64(const void *ptr) 338 { 339 return (__u64) (unsigned long) ptr; 340 } 341 342 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 343 { 344 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 345 return 0; 346 } 347 348 __u32 libbpf_major_version(void) 349 { 350 return LIBBPF_MAJOR_VERSION; 351 } 352 353 __u32 libbpf_minor_version(void) 354 { 355 return LIBBPF_MINOR_VERSION; 356 } 357 358 const char *libbpf_version_string(void) 359 { 360 #define __S(X) #X 361 #define _S(X) __S(X) 362 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 363 #undef _S 364 #undef __S 365 } 366 367 enum reloc_type { 368 RELO_LD64, 369 RELO_CALL, 370 RELO_DATA, 371 RELO_EXTERN_LD64, 372 RELO_EXTERN_CALL, 373 RELO_SUBPROG_ADDR, 374 RELO_CORE, 375 }; 376 377 struct reloc_desc { 378 enum reloc_type type; 379 int insn_idx; 380 union { 381 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 382 struct { 383 int map_idx; 384 int sym_off; 385 int ext_idx; 386 }; 387 }; 388 }; 389 390 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 391 enum sec_def_flags { 392 SEC_NONE = 0, 393 /* expected_attach_type is optional, if kernel doesn't support that */ 394 SEC_EXP_ATTACH_OPT = 1, 395 /* legacy, only used by libbpf_get_type_names() and 396 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 397 * This used to be associated with cgroup (and few other) BPF programs 398 * that were attachable through BPF_PROG_ATTACH command. Pretty 399 * meaningless nowadays, though. 400 */ 401 SEC_ATTACHABLE = 2, 402 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 403 /* attachment target is specified through BTF ID in either kernel or 404 * other BPF program's BTF object 405 */ 406 SEC_ATTACH_BTF = 4, 407 /* BPF program type allows sleeping/blocking in kernel */ 408 SEC_SLEEPABLE = 8, 409 /* BPF program support non-linear XDP buffer */ 410 SEC_XDP_FRAGS = 16, 411 /* Setup proper attach type for usdt probes. */ 412 SEC_USDT = 32, 413 }; 414 415 struct bpf_sec_def { 416 char *sec; 417 enum bpf_prog_type prog_type; 418 enum bpf_attach_type expected_attach_type; 419 long cookie; 420 int handler_id; 421 422 libbpf_prog_setup_fn_t prog_setup_fn; 423 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 424 libbpf_prog_attach_fn_t prog_attach_fn; 425 }; 426 427 /* 428 * bpf_prog should be a better name but it has been used in 429 * linux/filter.h. 430 */ 431 struct bpf_program { 432 char *name; 433 char *sec_name; 434 size_t sec_idx; 435 const struct bpf_sec_def *sec_def; 436 /* this program's instruction offset (in number of instructions) 437 * within its containing ELF section 438 */ 439 size_t sec_insn_off; 440 /* number of original instructions in ELF section belonging to this 441 * program, not taking into account subprogram instructions possible 442 * appended later during relocation 443 */ 444 size_t sec_insn_cnt; 445 /* Offset (in number of instructions) of the start of instruction 446 * belonging to this BPF program within its containing main BPF 447 * program. For the entry-point (main) BPF program, this is always 448 * zero. For a sub-program, this gets reset before each of main BPF 449 * programs are processed and relocated and is used to determined 450 * whether sub-program was already appended to the main program, and 451 * if yes, at which instruction offset. 452 */ 453 size_t sub_insn_off; 454 455 /* instructions that belong to BPF program; insns[0] is located at 456 * sec_insn_off instruction within its ELF section in ELF file, so 457 * when mapping ELF file instruction index to the local instruction, 458 * one needs to subtract sec_insn_off; and vice versa. 459 */ 460 struct bpf_insn *insns; 461 /* actual number of instruction in this BPF program's image; for 462 * entry-point BPF programs this includes the size of main program 463 * itself plus all the used sub-programs, appended at the end 464 */ 465 size_t insns_cnt; 466 467 struct reloc_desc *reloc_desc; 468 int nr_reloc; 469 470 /* BPF verifier log settings */ 471 char *log_buf; 472 size_t log_size; 473 __u32 log_level; 474 475 struct bpf_object *obj; 476 477 int fd; 478 bool autoload; 479 bool autoattach; 480 bool sym_global; 481 bool mark_btf_static; 482 enum bpf_prog_type type; 483 enum bpf_attach_type expected_attach_type; 484 int exception_cb_idx; 485 486 int prog_ifindex; 487 __u32 attach_btf_obj_fd; 488 __u32 attach_btf_id; 489 __u32 attach_prog_fd; 490 491 void *func_info; 492 __u32 func_info_rec_size; 493 __u32 func_info_cnt; 494 495 void *line_info; 496 __u32 line_info_rec_size; 497 __u32 line_info_cnt; 498 __u32 prog_flags; 499 }; 500 501 struct bpf_struct_ops { 502 struct bpf_program **progs; 503 __u32 *kern_func_off; 504 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 505 void *data; 506 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 507 * btf_vmlinux's format. 508 * struct bpf_struct_ops_tcp_congestion_ops { 509 * [... some other kernel fields ...] 510 * struct tcp_congestion_ops data; 511 * } 512 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 513 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 514 * from "data". 515 */ 516 void *kern_vdata; 517 __u32 type_id; 518 }; 519 520 #define DATA_SEC ".data" 521 #define BSS_SEC ".bss" 522 #define RODATA_SEC ".rodata" 523 #define KCONFIG_SEC ".kconfig" 524 #define KSYMS_SEC ".ksyms" 525 #define STRUCT_OPS_SEC ".struct_ops" 526 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 527 #define ARENA_SEC ".addr_space.1" 528 529 enum libbpf_map_type { 530 LIBBPF_MAP_UNSPEC, 531 LIBBPF_MAP_DATA, 532 LIBBPF_MAP_BSS, 533 LIBBPF_MAP_RODATA, 534 LIBBPF_MAP_KCONFIG, 535 }; 536 537 struct bpf_map_def { 538 unsigned int type; 539 unsigned int key_size; 540 unsigned int value_size; 541 unsigned int max_entries; 542 unsigned int map_flags; 543 }; 544 545 struct bpf_map { 546 struct bpf_object *obj; 547 char *name; 548 /* real_name is defined for special internal maps (.rodata*, 549 * .data*, .bss, .kconfig) and preserves their original ELF section 550 * name. This is important to be able to find corresponding BTF 551 * DATASEC information. 552 */ 553 char *real_name; 554 int fd; 555 int sec_idx; 556 size_t sec_offset; 557 int map_ifindex; 558 int inner_map_fd; 559 struct bpf_map_def def; 560 __u32 numa_node; 561 __u32 btf_var_idx; 562 int mod_btf_fd; 563 __u32 btf_key_type_id; 564 __u32 btf_value_type_id; 565 __u32 btf_vmlinux_value_type_id; 566 enum libbpf_map_type libbpf_type; 567 void *mmaped; 568 struct bpf_struct_ops *st_ops; 569 struct bpf_map *inner_map; 570 void **init_slots; 571 int init_slots_sz; 572 char *pin_path; 573 bool pinned; 574 bool reused; 575 bool autocreate; 576 bool autoattach; 577 __u64 map_extra; 578 }; 579 580 enum extern_type { 581 EXT_UNKNOWN, 582 EXT_KCFG, 583 EXT_KSYM, 584 }; 585 586 enum kcfg_type { 587 KCFG_UNKNOWN, 588 KCFG_CHAR, 589 KCFG_BOOL, 590 KCFG_INT, 591 KCFG_TRISTATE, 592 KCFG_CHAR_ARR, 593 }; 594 595 struct extern_desc { 596 enum extern_type type; 597 int sym_idx; 598 int btf_id; 599 int sec_btf_id; 600 char *name; 601 char *essent_name; 602 bool is_set; 603 bool is_weak; 604 union { 605 struct { 606 enum kcfg_type type; 607 int sz; 608 int align; 609 int data_off; 610 bool is_signed; 611 } kcfg; 612 struct { 613 unsigned long long addr; 614 615 /* target btf_id of the corresponding kernel var. */ 616 int kernel_btf_obj_fd; 617 int kernel_btf_id; 618 619 /* local btf_id of the ksym extern's type. */ 620 __u32 type_id; 621 /* BTF fd index to be patched in for insn->off, this is 622 * 0 for vmlinux BTF, index in obj->fd_array for module 623 * BTF 624 */ 625 __s16 btf_fd_idx; 626 } ksym; 627 }; 628 }; 629 630 struct module_btf { 631 struct btf *btf; 632 char *name; 633 __u32 id; 634 int fd; 635 int fd_array_idx; 636 }; 637 638 enum sec_type { 639 SEC_UNUSED = 0, 640 SEC_RELO, 641 SEC_BSS, 642 SEC_DATA, 643 SEC_RODATA, 644 SEC_ST_OPS, 645 }; 646 647 struct elf_sec_desc { 648 enum sec_type sec_type; 649 Elf64_Shdr *shdr; 650 Elf_Data *data; 651 }; 652 653 struct elf_state { 654 int fd; 655 const void *obj_buf; 656 size_t obj_buf_sz; 657 Elf *elf; 658 Elf64_Ehdr *ehdr; 659 Elf_Data *symbols; 660 Elf_Data *arena_data; 661 size_t shstrndx; /* section index for section name strings */ 662 size_t strtabidx; 663 struct elf_sec_desc *secs; 664 size_t sec_cnt; 665 int btf_maps_shndx; 666 __u32 btf_maps_sec_btf_id; 667 int text_shndx; 668 int symbols_shndx; 669 bool has_st_ops; 670 int arena_data_shndx; 671 }; 672 673 struct usdt_manager; 674 675 enum bpf_object_state { 676 OBJ_OPEN, 677 OBJ_PREPARED, 678 OBJ_LOADED, 679 }; 680 681 struct bpf_object { 682 char name[BPF_OBJ_NAME_LEN]; 683 char license[64]; 684 __u32 kern_version; 685 686 enum bpf_object_state state; 687 struct bpf_program *programs; 688 size_t nr_programs; 689 struct bpf_map *maps; 690 size_t nr_maps; 691 size_t maps_cap; 692 693 char *kconfig; 694 struct extern_desc *externs; 695 int nr_extern; 696 int kconfig_map_idx; 697 698 bool has_subcalls; 699 bool has_rodata; 700 701 struct bpf_gen *gen_loader; 702 703 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 704 struct elf_state efile; 705 706 unsigned char byteorder; 707 708 struct btf *btf; 709 struct btf_ext *btf_ext; 710 711 /* Parse and load BTF vmlinux if any of the programs in the object need 712 * it at load time. 713 */ 714 struct btf *btf_vmlinux; 715 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 716 * override for vmlinux BTF. 717 */ 718 char *btf_custom_path; 719 /* vmlinux BTF override for CO-RE relocations */ 720 struct btf *btf_vmlinux_override; 721 /* Lazily initialized kernel module BTFs */ 722 struct module_btf *btf_modules; 723 bool btf_modules_loaded; 724 size_t btf_module_cnt; 725 size_t btf_module_cap; 726 727 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 728 char *log_buf; 729 size_t log_size; 730 __u32 log_level; 731 732 int *fd_array; 733 size_t fd_array_cap; 734 size_t fd_array_cnt; 735 736 struct usdt_manager *usdt_man; 737 738 struct bpf_map *arena_map; 739 void *arena_data; 740 size_t arena_data_sz; 741 742 struct kern_feature_cache *feat_cache; 743 char *token_path; 744 int token_fd; 745 746 char path[]; 747 }; 748 749 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 750 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 751 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 752 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 753 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 754 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 755 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 756 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 757 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 758 759 void bpf_program__unload(struct bpf_program *prog) 760 { 761 if (!prog) 762 return; 763 764 zclose(prog->fd); 765 766 zfree(&prog->func_info); 767 zfree(&prog->line_info); 768 } 769 770 static void bpf_program__exit(struct bpf_program *prog) 771 { 772 if (!prog) 773 return; 774 775 bpf_program__unload(prog); 776 zfree(&prog->name); 777 zfree(&prog->sec_name); 778 zfree(&prog->insns); 779 zfree(&prog->reloc_desc); 780 781 prog->nr_reloc = 0; 782 prog->insns_cnt = 0; 783 prog->sec_idx = -1; 784 } 785 786 static bool insn_is_subprog_call(const struct bpf_insn *insn) 787 { 788 return BPF_CLASS(insn->code) == BPF_JMP && 789 BPF_OP(insn->code) == BPF_CALL && 790 BPF_SRC(insn->code) == BPF_K && 791 insn->src_reg == BPF_PSEUDO_CALL && 792 insn->dst_reg == 0 && 793 insn->off == 0; 794 } 795 796 static bool is_call_insn(const struct bpf_insn *insn) 797 { 798 return insn->code == (BPF_JMP | BPF_CALL); 799 } 800 801 static bool insn_is_pseudo_func(struct bpf_insn *insn) 802 { 803 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 804 } 805 806 static int 807 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 808 const char *name, size_t sec_idx, const char *sec_name, 809 size_t sec_off, void *insn_data, size_t insn_data_sz) 810 { 811 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 812 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 813 sec_name, name, sec_off, insn_data_sz); 814 return -EINVAL; 815 } 816 817 memset(prog, 0, sizeof(*prog)); 818 prog->obj = obj; 819 820 prog->sec_idx = sec_idx; 821 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 822 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 823 /* insns_cnt can later be increased by appending used subprograms */ 824 prog->insns_cnt = prog->sec_insn_cnt; 825 826 prog->type = BPF_PROG_TYPE_UNSPEC; 827 prog->fd = -1; 828 prog->exception_cb_idx = -1; 829 830 /* libbpf's convention for SEC("?abc...") is that it's just like 831 * SEC("abc...") but the corresponding bpf_program starts out with 832 * autoload set to false. 833 */ 834 if (sec_name[0] == '?') { 835 prog->autoload = false; 836 /* from now on forget there was ? in section name */ 837 sec_name++; 838 } else { 839 prog->autoload = true; 840 } 841 842 prog->autoattach = true; 843 844 /* inherit object's log_level */ 845 prog->log_level = obj->log_level; 846 847 prog->sec_name = strdup(sec_name); 848 if (!prog->sec_name) 849 goto errout; 850 851 prog->name = strdup(name); 852 if (!prog->name) 853 goto errout; 854 855 prog->insns = malloc(insn_data_sz); 856 if (!prog->insns) 857 goto errout; 858 memcpy(prog->insns, insn_data, insn_data_sz); 859 860 return 0; 861 errout: 862 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 863 bpf_program__exit(prog); 864 return -ENOMEM; 865 } 866 867 static int 868 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 869 const char *sec_name, int sec_idx) 870 { 871 Elf_Data *symbols = obj->efile.symbols; 872 struct bpf_program *prog, *progs; 873 void *data = sec_data->d_buf; 874 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 875 int nr_progs, err, i; 876 const char *name; 877 Elf64_Sym *sym; 878 879 progs = obj->programs; 880 nr_progs = obj->nr_programs; 881 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 882 883 for (i = 0; i < nr_syms; i++) { 884 sym = elf_sym_by_idx(obj, i); 885 886 if (sym->st_shndx != sec_idx) 887 continue; 888 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 889 continue; 890 891 prog_sz = sym->st_size; 892 sec_off = sym->st_value; 893 894 name = elf_sym_str(obj, sym->st_name); 895 if (!name) { 896 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 897 sec_name, sec_off); 898 return -LIBBPF_ERRNO__FORMAT; 899 } 900 901 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) { 902 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 903 sec_name, sec_off); 904 return -LIBBPF_ERRNO__FORMAT; 905 } 906 907 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 908 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 909 return -ENOTSUP; 910 } 911 912 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 913 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 914 915 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 916 if (!progs) { 917 /* 918 * In this case the original obj->programs 919 * is still valid, so don't need special treat for 920 * bpf_close_object(). 921 */ 922 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 923 sec_name, name); 924 return -ENOMEM; 925 } 926 obj->programs = progs; 927 928 prog = &progs[nr_progs]; 929 930 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 931 sec_off, data + sec_off, prog_sz); 932 if (err) 933 return err; 934 935 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 936 prog->sym_global = true; 937 938 /* if function is a global/weak symbol, but has restricted 939 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 940 * as static to enable more permissive BPF verification mode 941 * with more outside context available to BPF verifier 942 */ 943 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 944 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 945 prog->mark_btf_static = true; 946 947 nr_progs++; 948 obj->nr_programs = nr_progs; 949 } 950 951 return 0; 952 } 953 954 static void bpf_object_bswap_progs(struct bpf_object *obj) 955 { 956 struct bpf_program *prog = obj->programs; 957 struct bpf_insn *insn; 958 int p, i; 959 960 for (p = 0; p < obj->nr_programs; p++, prog++) { 961 insn = prog->insns; 962 for (i = 0; i < prog->insns_cnt; i++, insn++) 963 bpf_insn_bswap(insn); 964 } 965 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 966 } 967 968 static const struct btf_member * 969 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 970 { 971 struct btf_member *m; 972 int i; 973 974 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 975 if (btf_member_bit_offset(t, i) == bit_offset) 976 return m; 977 } 978 979 return NULL; 980 } 981 982 static const struct btf_member * 983 find_member_by_name(const struct btf *btf, const struct btf_type *t, 984 const char *name) 985 { 986 struct btf_member *m; 987 int i; 988 989 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 990 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 991 return m; 992 } 993 994 return NULL; 995 } 996 997 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 998 __u16 kind, struct btf **res_btf, 999 struct module_btf **res_mod_btf); 1000 1001 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 1002 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 1003 const char *name, __u32 kind); 1004 1005 static int 1006 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 1007 struct module_btf **mod_btf, 1008 const struct btf_type **type, __u32 *type_id, 1009 const struct btf_type **vtype, __u32 *vtype_id, 1010 const struct btf_member **data_member) 1011 { 1012 const struct btf_type *kern_type, *kern_vtype; 1013 const struct btf_member *kern_data_member; 1014 struct btf *btf = NULL; 1015 __s32 kern_vtype_id, kern_type_id; 1016 char tname[256]; 1017 __u32 i; 1018 1019 snprintf(tname, sizeof(tname), "%.*s", 1020 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1021 1022 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 1023 &btf, mod_btf); 1024 if (kern_type_id < 0) { 1025 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1026 tname); 1027 return kern_type_id; 1028 } 1029 kern_type = btf__type_by_id(btf, kern_type_id); 1030 1031 /* Find the corresponding "map_value" type that will be used 1032 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1033 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1034 * btf_vmlinux. 1035 */ 1036 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1037 tname, BTF_KIND_STRUCT); 1038 if (kern_vtype_id < 0) { 1039 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1040 STRUCT_OPS_VALUE_PREFIX, tname); 1041 return kern_vtype_id; 1042 } 1043 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1044 1045 /* Find "struct tcp_congestion_ops" from 1046 * struct bpf_struct_ops_tcp_congestion_ops { 1047 * [ ... ] 1048 * struct tcp_congestion_ops data; 1049 * } 1050 */ 1051 kern_data_member = btf_members(kern_vtype); 1052 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1053 if (kern_data_member->type == kern_type_id) 1054 break; 1055 } 1056 if (i == btf_vlen(kern_vtype)) { 1057 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1058 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1059 return -EINVAL; 1060 } 1061 1062 *type = kern_type; 1063 *type_id = kern_type_id; 1064 *vtype = kern_vtype; 1065 *vtype_id = kern_vtype_id; 1066 *data_member = kern_data_member; 1067 1068 return 0; 1069 } 1070 1071 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1072 { 1073 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1074 } 1075 1076 static bool is_valid_st_ops_program(struct bpf_object *obj, 1077 const struct bpf_program *prog) 1078 { 1079 int i; 1080 1081 for (i = 0; i < obj->nr_programs; i++) { 1082 if (&obj->programs[i] == prog) 1083 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1084 } 1085 1086 return false; 1087 } 1088 1089 /* For each struct_ops program P, referenced from some struct_ops map M, 1090 * enable P.autoload if there are Ms for which M.autocreate is true, 1091 * disable P.autoload if for all Ms M.autocreate is false. 1092 * Don't change P.autoload for programs that are not referenced from any maps. 1093 */ 1094 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1095 { 1096 struct bpf_program *prog, *slot_prog; 1097 struct bpf_map *map; 1098 int i, j, k, vlen; 1099 1100 for (i = 0; i < obj->nr_programs; ++i) { 1101 int should_load = false; 1102 int use_cnt = 0; 1103 1104 prog = &obj->programs[i]; 1105 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1106 continue; 1107 1108 for (j = 0; j < obj->nr_maps; ++j) { 1109 const struct btf_type *type; 1110 1111 map = &obj->maps[j]; 1112 if (!bpf_map__is_struct_ops(map)) 1113 continue; 1114 1115 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1116 vlen = btf_vlen(type); 1117 for (k = 0; k < vlen; ++k) { 1118 slot_prog = map->st_ops->progs[k]; 1119 if (prog != slot_prog) 1120 continue; 1121 1122 use_cnt++; 1123 if (map->autocreate) 1124 should_load = true; 1125 } 1126 } 1127 if (use_cnt) 1128 prog->autoload = should_load; 1129 } 1130 1131 return 0; 1132 } 1133 1134 /* Init the map's fields that depend on kern_btf */ 1135 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1136 { 1137 const struct btf_member *member, *kern_member, *kern_data_member; 1138 const struct btf_type *type, *kern_type, *kern_vtype; 1139 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1140 struct bpf_object *obj = map->obj; 1141 const struct btf *btf = obj->btf; 1142 struct bpf_struct_ops *st_ops; 1143 const struct btf *kern_btf; 1144 struct module_btf *mod_btf = NULL; 1145 void *data, *kern_data; 1146 const char *tname; 1147 int err; 1148 1149 st_ops = map->st_ops; 1150 type = btf__type_by_id(btf, st_ops->type_id); 1151 tname = btf__name_by_offset(btf, type->name_off); 1152 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1153 &kern_type, &kern_type_id, 1154 &kern_vtype, &kern_vtype_id, 1155 &kern_data_member); 1156 if (err) 1157 return err; 1158 1159 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1160 1161 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1162 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1163 1164 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1165 map->def.value_size = kern_vtype->size; 1166 map->btf_vmlinux_value_type_id = kern_vtype_id; 1167 1168 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1169 if (!st_ops->kern_vdata) 1170 return -ENOMEM; 1171 1172 data = st_ops->data; 1173 kern_data_off = kern_data_member->offset / 8; 1174 kern_data = st_ops->kern_vdata + kern_data_off; 1175 1176 member = btf_members(type); 1177 for (i = 0; i < btf_vlen(type); i++, member++) { 1178 const struct btf_type *mtype, *kern_mtype; 1179 __u32 mtype_id, kern_mtype_id; 1180 void *mdata, *kern_mdata; 1181 struct bpf_program *prog; 1182 __s64 msize, kern_msize; 1183 __u32 moff, kern_moff; 1184 __u32 kern_member_idx; 1185 const char *mname; 1186 1187 mname = btf__name_by_offset(btf, member->name_off); 1188 moff = member->offset / 8; 1189 mdata = data + moff; 1190 msize = btf__resolve_size(btf, member->type); 1191 if (msize < 0) { 1192 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1193 map->name, mname); 1194 return msize; 1195 } 1196 1197 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1198 if (!kern_member) { 1199 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1200 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1201 map->name, mname); 1202 return -ENOTSUP; 1203 } 1204 1205 if (st_ops->progs[i]) { 1206 /* If we had declaratively set struct_ops callback, we need to 1207 * force its autoload to false, because it doesn't have 1208 * a chance of succeeding from POV of the current struct_ops map. 1209 * If this program is still referenced somewhere else, though, 1210 * then bpf_object_adjust_struct_ops_autoload() will update its 1211 * autoload accordingly. 1212 */ 1213 st_ops->progs[i]->autoload = false; 1214 st_ops->progs[i] = NULL; 1215 } 1216 1217 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1218 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1219 map->name, mname); 1220 continue; 1221 } 1222 1223 kern_member_idx = kern_member - btf_members(kern_type); 1224 if (btf_member_bitfield_size(type, i) || 1225 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1226 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1227 map->name, mname); 1228 return -ENOTSUP; 1229 } 1230 1231 kern_moff = kern_member->offset / 8; 1232 kern_mdata = kern_data + kern_moff; 1233 1234 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1235 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1236 &kern_mtype_id); 1237 if (BTF_INFO_KIND(mtype->info) != 1238 BTF_INFO_KIND(kern_mtype->info)) { 1239 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1240 map->name, mname, BTF_INFO_KIND(mtype->info), 1241 BTF_INFO_KIND(kern_mtype->info)); 1242 return -ENOTSUP; 1243 } 1244 1245 if (btf_is_ptr(mtype)) { 1246 prog = *(void **)mdata; 1247 /* just like for !kern_member case above, reset declaratively 1248 * set (at compile time) program's autload to false, 1249 * if user replaced it with another program or NULL 1250 */ 1251 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1252 st_ops->progs[i]->autoload = false; 1253 1254 /* Update the value from the shadow type */ 1255 st_ops->progs[i] = prog; 1256 if (!prog) 1257 continue; 1258 1259 if (!is_valid_st_ops_program(obj, prog)) { 1260 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1261 map->name, mname); 1262 return -ENOTSUP; 1263 } 1264 1265 kern_mtype = skip_mods_and_typedefs(kern_btf, 1266 kern_mtype->type, 1267 &kern_mtype_id); 1268 1269 /* mtype->type must be a func_proto which was 1270 * guaranteed in bpf_object__collect_st_ops_relos(), 1271 * so only check kern_mtype for func_proto here. 1272 */ 1273 if (!btf_is_func_proto(kern_mtype)) { 1274 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1275 map->name, mname); 1276 return -ENOTSUP; 1277 } 1278 1279 if (mod_btf) 1280 prog->attach_btf_obj_fd = mod_btf->fd; 1281 1282 /* if we haven't yet processed this BPF program, record proper 1283 * attach_btf_id and member_idx 1284 */ 1285 if (!prog->attach_btf_id) { 1286 prog->attach_btf_id = kern_type_id; 1287 prog->expected_attach_type = kern_member_idx; 1288 } 1289 1290 /* struct_ops BPF prog can be re-used between multiple 1291 * .struct_ops & .struct_ops.link as long as it's the 1292 * same struct_ops struct definition and the same 1293 * function pointer field 1294 */ 1295 if (prog->attach_btf_id != kern_type_id) { 1296 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1297 map->name, mname, prog->name, prog->sec_name, prog->type, 1298 prog->attach_btf_id, kern_type_id); 1299 return -EINVAL; 1300 } 1301 if (prog->expected_attach_type != kern_member_idx) { 1302 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1303 map->name, mname, prog->name, prog->sec_name, prog->type, 1304 prog->expected_attach_type, kern_member_idx); 1305 return -EINVAL; 1306 } 1307 1308 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1309 1310 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1311 map->name, mname, prog->name, moff, 1312 kern_moff); 1313 1314 continue; 1315 } 1316 1317 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1318 if (kern_msize < 0 || msize != kern_msize) { 1319 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1320 map->name, mname, (ssize_t)msize, 1321 (ssize_t)kern_msize); 1322 return -ENOTSUP; 1323 } 1324 1325 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1326 map->name, mname, (unsigned int)msize, 1327 moff, kern_moff); 1328 memcpy(kern_mdata, mdata, msize); 1329 } 1330 1331 return 0; 1332 } 1333 1334 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1335 { 1336 struct bpf_map *map; 1337 size_t i; 1338 int err; 1339 1340 for (i = 0; i < obj->nr_maps; i++) { 1341 map = &obj->maps[i]; 1342 1343 if (!bpf_map__is_struct_ops(map)) 1344 continue; 1345 1346 if (!map->autocreate) 1347 continue; 1348 1349 err = bpf_map__init_kern_struct_ops(map); 1350 if (err) 1351 return err; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1358 int shndx, Elf_Data *data) 1359 { 1360 const struct btf_type *type, *datasec; 1361 const struct btf_var_secinfo *vsi; 1362 struct bpf_struct_ops *st_ops; 1363 const char *tname, *var_name; 1364 __s32 type_id, datasec_id; 1365 const struct btf *btf; 1366 struct bpf_map *map; 1367 __u32 i; 1368 1369 if (shndx == -1) 1370 return 0; 1371 1372 btf = obj->btf; 1373 datasec_id = btf__find_by_name_kind(btf, sec_name, 1374 BTF_KIND_DATASEC); 1375 if (datasec_id < 0) { 1376 pr_warn("struct_ops init: DATASEC %s not found\n", 1377 sec_name); 1378 return -EINVAL; 1379 } 1380 1381 datasec = btf__type_by_id(btf, datasec_id); 1382 vsi = btf_var_secinfos(datasec); 1383 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1384 type = btf__type_by_id(obj->btf, vsi->type); 1385 var_name = btf__name_by_offset(obj->btf, type->name_off); 1386 1387 type_id = btf__resolve_type(obj->btf, vsi->type); 1388 if (type_id < 0) { 1389 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1390 vsi->type, sec_name); 1391 return -EINVAL; 1392 } 1393 1394 type = btf__type_by_id(obj->btf, type_id); 1395 tname = btf__name_by_offset(obj->btf, type->name_off); 1396 if (!tname[0]) { 1397 pr_warn("struct_ops init: anonymous type is not supported\n"); 1398 return -ENOTSUP; 1399 } 1400 if (!btf_is_struct(type)) { 1401 pr_warn("struct_ops init: %s is not a struct\n", tname); 1402 return -EINVAL; 1403 } 1404 1405 map = bpf_object__add_map(obj); 1406 if (IS_ERR(map)) 1407 return PTR_ERR(map); 1408 1409 map->sec_idx = shndx; 1410 map->sec_offset = vsi->offset; 1411 map->name = strdup(var_name); 1412 if (!map->name) 1413 return -ENOMEM; 1414 map->btf_value_type_id = type_id; 1415 1416 /* Follow same convention as for programs autoload: 1417 * SEC("?.struct_ops") means map is not created by default. 1418 */ 1419 if (sec_name[0] == '?') { 1420 map->autocreate = false; 1421 /* from now on forget there was ? in section name */ 1422 sec_name++; 1423 } 1424 1425 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1426 map->def.key_size = sizeof(int); 1427 map->def.value_size = type->size; 1428 map->def.max_entries = 1; 1429 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1430 map->autoattach = true; 1431 1432 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1433 if (!map->st_ops) 1434 return -ENOMEM; 1435 st_ops = map->st_ops; 1436 st_ops->data = malloc(type->size); 1437 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1438 st_ops->kern_func_off = malloc(btf_vlen(type) * 1439 sizeof(*st_ops->kern_func_off)); 1440 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1441 return -ENOMEM; 1442 1443 if (vsi->offset + type->size > data->d_size) { 1444 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1445 var_name, sec_name); 1446 return -EINVAL; 1447 } 1448 1449 memcpy(st_ops->data, 1450 data->d_buf + vsi->offset, 1451 type->size); 1452 st_ops->type_id = type_id; 1453 1454 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1455 tname, type_id, var_name, vsi->offset); 1456 } 1457 1458 return 0; 1459 } 1460 1461 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1462 { 1463 const char *sec_name; 1464 int sec_idx, err; 1465 1466 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1467 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1468 1469 if (desc->sec_type != SEC_ST_OPS) 1470 continue; 1471 1472 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1473 if (!sec_name) 1474 return -LIBBPF_ERRNO__FORMAT; 1475 1476 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1477 if (err) 1478 return err; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static struct bpf_object *bpf_object__new(const char *path, 1485 const void *obj_buf, 1486 size_t obj_buf_sz, 1487 const char *obj_name) 1488 { 1489 struct bpf_object *obj; 1490 char *end; 1491 1492 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1493 if (!obj) { 1494 pr_warn("alloc memory failed for %s\n", path); 1495 return ERR_PTR(-ENOMEM); 1496 } 1497 1498 strcpy(obj->path, path); 1499 if (obj_name) { 1500 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1501 } else { 1502 /* Using basename() GNU version which doesn't modify arg. */ 1503 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1504 end = strchr(obj->name, '.'); 1505 if (end) 1506 *end = 0; 1507 } 1508 1509 obj->efile.fd = -1; 1510 /* 1511 * Caller of this function should also call 1512 * bpf_object__elf_finish() after data collection to return 1513 * obj_buf to user. If not, we should duplicate the buffer to 1514 * avoid user freeing them before elf finish. 1515 */ 1516 obj->efile.obj_buf = obj_buf; 1517 obj->efile.obj_buf_sz = obj_buf_sz; 1518 obj->efile.btf_maps_shndx = -1; 1519 obj->kconfig_map_idx = -1; 1520 1521 obj->kern_version = get_kernel_version(); 1522 obj->state = OBJ_OPEN; 1523 1524 return obj; 1525 } 1526 1527 static void bpf_object__elf_finish(struct bpf_object *obj) 1528 { 1529 if (!obj->efile.elf) 1530 return; 1531 1532 elf_end(obj->efile.elf); 1533 obj->efile.elf = NULL; 1534 obj->efile.ehdr = NULL; 1535 obj->efile.symbols = NULL; 1536 obj->efile.arena_data = NULL; 1537 1538 zfree(&obj->efile.secs); 1539 obj->efile.sec_cnt = 0; 1540 zclose(obj->efile.fd); 1541 obj->efile.obj_buf = NULL; 1542 obj->efile.obj_buf_sz = 0; 1543 } 1544 1545 static int bpf_object__elf_init(struct bpf_object *obj) 1546 { 1547 Elf64_Ehdr *ehdr; 1548 int err = 0; 1549 Elf *elf; 1550 1551 if (obj->efile.elf) { 1552 pr_warn("elf: init internal error\n"); 1553 return -LIBBPF_ERRNO__LIBELF; 1554 } 1555 1556 if (obj->efile.obj_buf_sz > 0) { 1557 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1558 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1559 } else { 1560 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1561 if (obj->efile.fd < 0) { 1562 err = -errno; 1563 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1564 return err; 1565 } 1566 1567 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1568 } 1569 1570 if (!elf) { 1571 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1572 err = -LIBBPF_ERRNO__LIBELF; 1573 goto errout; 1574 } 1575 1576 obj->efile.elf = elf; 1577 1578 if (elf_kind(elf) != ELF_K_ELF) { 1579 err = -LIBBPF_ERRNO__FORMAT; 1580 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1581 goto errout; 1582 } 1583 1584 if (gelf_getclass(elf) != ELFCLASS64) { 1585 err = -LIBBPF_ERRNO__FORMAT; 1586 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1587 goto errout; 1588 } 1589 1590 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1591 if (!obj->efile.ehdr) { 1592 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1593 err = -LIBBPF_ERRNO__FORMAT; 1594 goto errout; 1595 } 1596 1597 /* Validate ELF object endianness... */ 1598 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1599 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1600 err = -LIBBPF_ERRNO__ENDIAN; 1601 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1602 goto errout; 1603 } 1604 /* and save after bpf_object_open() frees ELF data */ 1605 obj->byteorder = ehdr->e_ident[EI_DATA]; 1606 1607 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1608 pr_warn("elf: failed to get section names section index for %s: %s\n", 1609 obj->path, elf_errmsg(-1)); 1610 err = -LIBBPF_ERRNO__FORMAT; 1611 goto errout; 1612 } 1613 1614 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1615 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1616 pr_warn("elf: failed to get section names strings from %s: %s\n", 1617 obj->path, elf_errmsg(-1)); 1618 err = -LIBBPF_ERRNO__FORMAT; 1619 goto errout; 1620 } 1621 1622 /* Old LLVM set e_machine to EM_NONE */ 1623 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1624 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1625 err = -LIBBPF_ERRNO__FORMAT; 1626 goto errout; 1627 } 1628 1629 return 0; 1630 errout: 1631 bpf_object__elf_finish(obj); 1632 return err; 1633 } 1634 1635 static bool is_native_endianness(struct bpf_object *obj) 1636 { 1637 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1638 return obj->byteorder == ELFDATA2LSB; 1639 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1640 return obj->byteorder == ELFDATA2MSB; 1641 #else 1642 # error "Unrecognized __BYTE_ORDER__" 1643 #endif 1644 } 1645 1646 static int 1647 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1648 { 1649 if (!data) { 1650 pr_warn("invalid license section in %s\n", obj->path); 1651 return -LIBBPF_ERRNO__FORMAT; 1652 } 1653 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1654 * go over allowed ELF data section buffer 1655 */ 1656 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1657 pr_debug("license of %s is %s\n", obj->path, obj->license); 1658 return 0; 1659 } 1660 1661 static int 1662 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1663 { 1664 __u32 kver; 1665 1666 if (!data || size != sizeof(kver)) { 1667 pr_warn("invalid kver section in %s\n", obj->path); 1668 return -LIBBPF_ERRNO__FORMAT; 1669 } 1670 memcpy(&kver, data, sizeof(kver)); 1671 obj->kern_version = kver; 1672 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1673 return 0; 1674 } 1675 1676 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1677 { 1678 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1679 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1680 return true; 1681 return false; 1682 } 1683 1684 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1685 { 1686 Elf_Data *data; 1687 Elf_Scn *scn; 1688 1689 if (!name) 1690 return -EINVAL; 1691 1692 scn = elf_sec_by_name(obj, name); 1693 data = elf_sec_data(obj, scn); 1694 if (data) { 1695 *size = data->d_size; 1696 return 0; /* found it */ 1697 } 1698 1699 return -ENOENT; 1700 } 1701 1702 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1703 { 1704 Elf_Data *symbols = obj->efile.symbols; 1705 const char *sname; 1706 size_t si; 1707 1708 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1709 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1710 1711 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1712 continue; 1713 1714 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1715 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1716 continue; 1717 1718 sname = elf_sym_str(obj, sym->st_name); 1719 if (!sname) { 1720 pr_warn("failed to get sym name string for var %s\n", name); 1721 return ERR_PTR(-EIO); 1722 } 1723 if (strcmp(name, sname) == 0) 1724 return sym; 1725 } 1726 1727 return ERR_PTR(-ENOENT); 1728 } 1729 1730 #ifndef MFD_CLOEXEC 1731 #define MFD_CLOEXEC 0x0001U 1732 #endif 1733 #ifndef MFD_NOEXEC_SEAL 1734 #define MFD_NOEXEC_SEAL 0x0008U 1735 #endif 1736 1737 static int create_placeholder_fd(void) 1738 { 1739 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL; 1740 const char *name = "libbpf-placeholder-fd"; 1741 int fd; 1742 1743 fd = ensure_good_fd(sys_memfd_create(name, flags)); 1744 if (fd >= 0) 1745 return fd; 1746 else if (errno != EINVAL) 1747 return -errno; 1748 1749 /* Possibly running on kernel without MFD_NOEXEC_SEAL */ 1750 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL)); 1751 if (fd < 0) 1752 return -errno; 1753 return fd; 1754 } 1755 1756 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1757 { 1758 struct bpf_map *map; 1759 int err; 1760 1761 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1762 sizeof(*obj->maps), obj->nr_maps + 1); 1763 if (err) 1764 return ERR_PTR(err); 1765 1766 map = &obj->maps[obj->nr_maps++]; 1767 map->obj = obj; 1768 /* Preallocate map FD without actually creating BPF map just yet. 1769 * These map FD "placeholders" will be reused later without changing 1770 * FD value when map is actually created in the kernel. 1771 * 1772 * This is useful to be able to perform BPF program relocations 1773 * without having to create BPF maps before that step. This allows us 1774 * to finalize and load BTF very late in BPF object's loading phase, 1775 * right before BPF maps have to be created and BPF programs have to 1776 * be loaded. By having these map FD placeholders we can perform all 1777 * the sanitizations, relocations, and any other adjustments before we 1778 * start creating actual BPF kernel objects (BTF, maps, progs). 1779 */ 1780 map->fd = create_placeholder_fd(); 1781 if (map->fd < 0) 1782 return ERR_PTR(map->fd); 1783 map->inner_map_fd = -1; 1784 map->autocreate = true; 1785 1786 return map; 1787 } 1788 1789 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1790 { 1791 const long page_sz = sysconf(_SC_PAGE_SIZE); 1792 size_t map_sz; 1793 1794 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1795 map_sz = roundup(map_sz, page_sz); 1796 return map_sz; 1797 } 1798 1799 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1800 { 1801 const long page_sz = sysconf(_SC_PAGE_SIZE); 1802 1803 switch (map->def.type) { 1804 case BPF_MAP_TYPE_ARRAY: 1805 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1806 case BPF_MAP_TYPE_ARENA: 1807 return page_sz * map->def.max_entries; 1808 default: 1809 return 0; /* not supported */ 1810 } 1811 } 1812 1813 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1814 { 1815 void *mmaped; 1816 1817 if (!map->mmaped) 1818 return -EINVAL; 1819 1820 if (old_sz == new_sz) 1821 return 0; 1822 1823 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1824 if (mmaped == MAP_FAILED) 1825 return -errno; 1826 1827 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1828 munmap(map->mmaped, old_sz); 1829 map->mmaped = mmaped; 1830 return 0; 1831 } 1832 1833 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1834 { 1835 char map_name[BPF_OBJ_NAME_LEN], *p; 1836 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1837 1838 /* This is one of the more confusing parts of libbpf for various 1839 * reasons, some of which are historical. The original idea for naming 1840 * internal names was to include as much of BPF object name prefix as 1841 * possible, so that it can be distinguished from similar internal 1842 * maps of a different BPF object. 1843 * As an example, let's say we have bpf_object named 'my_object_name' 1844 * and internal map corresponding to '.rodata' ELF section. The final 1845 * map name advertised to user and to the kernel will be 1846 * 'my_objec.rodata', taking first 8 characters of object name and 1847 * entire 7 characters of '.rodata'. 1848 * Somewhat confusingly, if internal map ELF section name is shorter 1849 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1850 * for the suffix, even though we only have 4 actual characters, and 1851 * resulting map will be called 'my_objec.bss', not even using all 15 1852 * characters allowed by the kernel. Oh well, at least the truncated 1853 * object name is somewhat consistent in this case. But if the map 1854 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1855 * (8 chars) and thus will be left with only first 7 characters of the 1856 * object name ('my_obje'). Happy guessing, user, that the final map 1857 * name will be "my_obje.kconfig". 1858 * Now, with libbpf starting to support arbitrarily named .rodata.* 1859 * and .data.* data sections, it's possible that ELF section name is 1860 * longer than allowed 15 chars, so we now need to be careful to take 1861 * only up to 15 first characters of ELF name, taking no BPF object 1862 * name characters at all. So '.rodata.abracadabra' will result in 1863 * '.rodata.abracad' kernel and user-visible name. 1864 * We need to keep this convoluted logic intact for .data, .bss and 1865 * .rodata maps, but for new custom .data.custom and .rodata.custom 1866 * maps we use their ELF names as is, not prepending bpf_object name 1867 * in front. We still need to truncate them to 15 characters for the 1868 * kernel. Full name can be recovered for such maps by using DATASEC 1869 * BTF type associated with such map's value type, though. 1870 */ 1871 if (sfx_len >= BPF_OBJ_NAME_LEN) 1872 sfx_len = BPF_OBJ_NAME_LEN - 1; 1873 1874 /* if there are two or more dots in map name, it's a custom dot map */ 1875 if (strchr(real_name + 1, '.') != NULL) 1876 pfx_len = 0; 1877 else 1878 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1879 1880 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1881 sfx_len, real_name); 1882 1883 /* sanities map name to characters allowed by kernel */ 1884 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1885 if (!isalnum(*p) && *p != '_' && *p != '.') 1886 *p = '_'; 1887 1888 return strdup(map_name); 1889 } 1890 1891 static int 1892 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1893 1894 /* Internal BPF map is mmap()'able only if at least one of corresponding 1895 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1896 * variable and it's not marked as __hidden (which turns it into, effectively, 1897 * a STATIC variable). 1898 */ 1899 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1900 { 1901 const struct btf_type *t, *vt; 1902 struct btf_var_secinfo *vsi; 1903 int i, n; 1904 1905 if (!map->btf_value_type_id) 1906 return false; 1907 1908 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1909 if (!btf_is_datasec(t)) 1910 return false; 1911 1912 vsi = btf_var_secinfos(t); 1913 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1914 vt = btf__type_by_id(obj->btf, vsi->type); 1915 if (!btf_is_var(vt)) 1916 continue; 1917 1918 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1919 return true; 1920 } 1921 1922 return false; 1923 } 1924 1925 static int 1926 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1927 const char *real_name, int sec_idx, void *data, size_t data_sz) 1928 { 1929 struct bpf_map_def *def; 1930 struct bpf_map *map; 1931 size_t mmap_sz; 1932 int err; 1933 1934 map = bpf_object__add_map(obj); 1935 if (IS_ERR(map)) 1936 return PTR_ERR(map); 1937 1938 map->libbpf_type = type; 1939 map->sec_idx = sec_idx; 1940 map->sec_offset = 0; 1941 map->real_name = strdup(real_name); 1942 map->name = internal_map_name(obj, real_name); 1943 if (!map->real_name || !map->name) { 1944 zfree(&map->real_name); 1945 zfree(&map->name); 1946 return -ENOMEM; 1947 } 1948 1949 def = &map->def; 1950 def->type = BPF_MAP_TYPE_ARRAY; 1951 def->key_size = sizeof(int); 1952 def->value_size = data_sz; 1953 def->max_entries = 1; 1954 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1955 ? BPF_F_RDONLY_PROG : 0; 1956 1957 /* failures are fine because of maps like .rodata.str1.1 */ 1958 (void) map_fill_btf_type_info(obj, map); 1959 1960 if (map_is_mmapable(obj, map)) 1961 def->map_flags |= BPF_F_MMAPABLE; 1962 1963 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1964 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1965 1966 mmap_sz = bpf_map_mmap_sz(map); 1967 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1968 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1969 if (map->mmaped == MAP_FAILED) { 1970 err = -errno; 1971 map->mmaped = NULL; 1972 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 1973 zfree(&map->real_name); 1974 zfree(&map->name); 1975 return err; 1976 } 1977 1978 if (data) 1979 memcpy(map->mmaped, data, data_sz); 1980 1981 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1982 return 0; 1983 } 1984 1985 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1986 { 1987 struct elf_sec_desc *sec_desc; 1988 const char *sec_name; 1989 int err = 0, sec_idx; 1990 1991 /* 1992 * Populate obj->maps with libbpf internal maps. 1993 */ 1994 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1995 sec_desc = &obj->efile.secs[sec_idx]; 1996 1997 /* Skip recognized sections with size 0. */ 1998 if (!sec_desc->data || sec_desc->data->d_size == 0) 1999 continue; 2000 2001 switch (sec_desc->sec_type) { 2002 case SEC_DATA: 2003 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2004 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 2005 sec_name, sec_idx, 2006 sec_desc->data->d_buf, 2007 sec_desc->data->d_size); 2008 break; 2009 case SEC_RODATA: 2010 obj->has_rodata = true; 2011 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2012 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2013 sec_name, sec_idx, 2014 sec_desc->data->d_buf, 2015 sec_desc->data->d_size); 2016 break; 2017 case SEC_BSS: 2018 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2019 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2020 sec_name, sec_idx, 2021 NULL, 2022 sec_desc->data->d_size); 2023 break; 2024 default: 2025 /* skip */ 2026 break; 2027 } 2028 if (err) 2029 return err; 2030 } 2031 return 0; 2032 } 2033 2034 2035 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2036 const void *name) 2037 { 2038 int i; 2039 2040 for (i = 0; i < obj->nr_extern; i++) { 2041 if (strcmp(obj->externs[i].name, name) == 0) 2042 return &obj->externs[i]; 2043 } 2044 return NULL; 2045 } 2046 2047 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2048 const void *name, int len) 2049 { 2050 const char *ext_name; 2051 int i; 2052 2053 for (i = 0; i < obj->nr_extern; i++) { 2054 ext_name = obj->externs[i].name; 2055 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2056 return &obj->externs[i]; 2057 } 2058 return NULL; 2059 } 2060 2061 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2062 char value) 2063 { 2064 switch (ext->kcfg.type) { 2065 case KCFG_BOOL: 2066 if (value == 'm') { 2067 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2068 ext->name, value); 2069 return -EINVAL; 2070 } 2071 *(bool *)ext_val = value == 'y' ? true : false; 2072 break; 2073 case KCFG_TRISTATE: 2074 if (value == 'y') 2075 *(enum libbpf_tristate *)ext_val = TRI_YES; 2076 else if (value == 'm') 2077 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2078 else /* value == 'n' */ 2079 *(enum libbpf_tristate *)ext_val = TRI_NO; 2080 break; 2081 case KCFG_CHAR: 2082 *(char *)ext_val = value; 2083 break; 2084 case KCFG_UNKNOWN: 2085 case KCFG_INT: 2086 case KCFG_CHAR_ARR: 2087 default: 2088 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2089 ext->name, value); 2090 return -EINVAL; 2091 } 2092 ext->is_set = true; 2093 return 0; 2094 } 2095 2096 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2097 const char *value) 2098 { 2099 size_t len; 2100 2101 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2102 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2103 ext->name, value); 2104 return -EINVAL; 2105 } 2106 2107 len = strlen(value); 2108 if (len < 2 || value[len - 1] != '"') { 2109 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2110 ext->name, value); 2111 return -EINVAL; 2112 } 2113 2114 /* strip quotes */ 2115 len -= 2; 2116 if (len >= ext->kcfg.sz) { 2117 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2118 ext->name, value, len, ext->kcfg.sz - 1); 2119 len = ext->kcfg.sz - 1; 2120 } 2121 memcpy(ext_val, value + 1, len); 2122 ext_val[len] = '\0'; 2123 ext->is_set = true; 2124 return 0; 2125 } 2126 2127 static int parse_u64(const char *value, __u64 *res) 2128 { 2129 char *value_end; 2130 int err; 2131 2132 errno = 0; 2133 *res = strtoull(value, &value_end, 0); 2134 if (errno) { 2135 err = -errno; 2136 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2137 return err; 2138 } 2139 if (*value_end) { 2140 pr_warn("failed to parse '%s' as integer completely\n", value); 2141 return -EINVAL; 2142 } 2143 return 0; 2144 } 2145 2146 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2147 { 2148 int bit_sz = ext->kcfg.sz * 8; 2149 2150 if (ext->kcfg.sz == 8) 2151 return true; 2152 2153 /* Validate that value stored in u64 fits in integer of `ext->sz` 2154 * bytes size without any loss of information. If the target integer 2155 * is signed, we rely on the following limits of integer type of 2156 * Y bits and subsequent transformation: 2157 * 2158 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2159 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2160 * 0 <= X + 2^(Y-1) < 2^Y 2161 * 2162 * For unsigned target integer, check that all the (64 - Y) bits are 2163 * zero. 2164 */ 2165 if (ext->kcfg.is_signed) 2166 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2167 else 2168 return (v >> bit_sz) == 0; 2169 } 2170 2171 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2172 __u64 value) 2173 { 2174 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2175 ext->kcfg.type != KCFG_BOOL) { 2176 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2177 ext->name, (unsigned long long)value); 2178 return -EINVAL; 2179 } 2180 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2181 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2182 ext->name, (unsigned long long)value); 2183 return -EINVAL; 2184 2185 } 2186 if (!is_kcfg_value_in_range(ext, value)) { 2187 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2188 ext->name, (unsigned long long)value, ext->kcfg.sz); 2189 return -ERANGE; 2190 } 2191 switch (ext->kcfg.sz) { 2192 case 1: 2193 *(__u8 *)ext_val = value; 2194 break; 2195 case 2: 2196 *(__u16 *)ext_val = value; 2197 break; 2198 case 4: 2199 *(__u32 *)ext_val = value; 2200 break; 2201 case 8: 2202 *(__u64 *)ext_val = value; 2203 break; 2204 default: 2205 return -EINVAL; 2206 } 2207 ext->is_set = true; 2208 return 0; 2209 } 2210 2211 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2212 char *buf, void *data) 2213 { 2214 struct extern_desc *ext; 2215 char *sep, *value; 2216 int len, err = 0; 2217 void *ext_val; 2218 __u64 num; 2219 2220 if (!str_has_pfx(buf, "CONFIG_")) 2221 return 0; 2222 2223 sep = strchr(buf, '='); 2224 if (!sep) { 2225 pr_warn("failed to parse '%s': no separator\n", buf); 2226 return -EINVAL; 2227 } 2228 2229 /* Trim ending '\n' */ 2230 len = strlen(buf); 2231 if (buf[len - 1] == '\n') 2232 buf[len - 1] = '\0'; 2233 /* Split on '=' and ensure that a value is present. */ 2234 *sep = '\0'; 2235 if (!sep[1]) { 2236 *sep = '='; 2237 pr_warn("failed to parse '%s': no value\n", buf); 2238 return -EINVAL; 2239 } 2240 2241 ext = find_extern_by_name(obj, buf); 2242 if (!ext || ext->is_set) 2243 return 0; 2244 2245 ext_val = data + ext->kcfg.data_off; 2246 value = sep + 1; 2247 2248 switch (*value) { 2249 case 'y': case 'n': case 'm': 2250 err = set_kcfg_value_tri(ext, ext_val, *value); 2251 break; 2252 case '"': 2253 err = set_kcfg_value_str(ext, ext_val, value); 2254 break; 2255 default: 2256 /* assume integer */ 2257 err = parse_u64(value, &num); 2258 if (err) { 2259 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2260 return err; 2261 } 2262 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2263 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2264 return -EINVAL; 2265 } 2266 err = set_kcfg_value_num(ext, ext_val, num); 2267 break; 2268 } 2269 if (err) 2270 return err; 2271 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2272 return 0; 2273 } 2274 2275 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2276 { 2277 char buf[PATH_MAX]; 2278 struct utsname uts; 2279 int len, err = 0; 2280 gzFile file; 2281 2282 uname(&uts); 2283 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2284 if (len < 0) 2285 return -EINVAL; 2286 else if (len >= PATH_MAX) 2287 return -ENAMETOOLONG; 2288 2289 /* gzopen also accepts uncompressed files. */ 2290 file = gzopen(buf, "re"); 2291 if (!file) 2292 file = gzopen("/proc/config.gz", "re"); 2293 2294 if (!file) { 2295 pr_warn("failed to open system Kconfig\n"); 2296 return -ENOENT; 2297 } 2298 2299 while (gzgets(file, buf, sizeof(buf))) { 2300 err = bpf_object__process_kconfig_line(obj, buf, data); 2301 if (err) { 2302 pr_warn("error parsing system Kconfig line '%s': %s\n", 2303 buf, errstr(err)); 2304 goto out; 2305 } 2306 } 2307 2308 out: 2309 gzclose(file); 2310 return err; 2311 } 2312 2313 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2314 const char *config, void *data) 2315 { 2316 char buf[PATH_MAX]; 2317 int err = 0; 2318 FILE *file; 2319 2320 file = fmemopen((void *)config, strlen(config), "r"); 2321 if (!file) { 2322 err = -errno; 2323 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2324 return err; 2325 } 2326 2327 while (fgets(buf, sizeof(buf), file)) { 2328 err = bpf_object__process_kconfig_line(obj, buf, data); 2329 if (err) { 2330 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2331 buf, errstr(err)); 2332 break; 2333 } 2334 } 2335 2336 fclose(file); 2337 return err; 2338 } 2339 2340 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2341 { 2342 struct extern_desc *last_ext = NULL, *ext; 2343 size_t map_sz; 2344 int i, err; 2345 2346 for (i = 0; i < obj->nr_extern; i++) { 2347 ext = &obj->externs[i]; 2348 if (ext->type == EXT_KCFG) 2349 last_ext = ext; 2350 } 2351 2352 if (!last_ext) 2353 return 0; 2354 2355 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2356 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2357 ".kconfig", obj->efile.symbols_shndx, 2358 NULL, map_sz); 2359 if (err) 2360 return err; 2361 2362 obj->kconfig_map_idx = obj->nr_maps - 1; 2363 2364 return 0; 2365 } 2366 2367 const struct btf_type * 2368 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2369 { 2370 const struct btf_type *t = btf__type_by_id(btf, id); 2371 2372 if (res_id) 2373 *res_id = id; 2374 2375 while (btf_is_mod(t) || btf_is_typedef(t)) { 2376 if (res_id) 2377 *res_id = t->type; 2378 t = btf__type_by_id(btf, t->type); 2379 } 2380 2381 return t; 2382 } 2383 2384 static const struct btf_type * 2385 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2386 { 2387 const struct btf_type *t; 2388 2389 t = skip_mods_and_typedefs(btf, id, NULL); 2390 if (!btf_is_ptr(t)) 2391 return NULL; 2392 2393 t = skip_mods_and_typedefs(btf, t->type, res_id); 2394 2395 return btf_is_func_proto(t) ? t : NULL; 2396 } 2397 2398 static const char *__btf_kind_str(__u16 kind) 2399 { 2400 switch (kind) { 2401 case BTF_KIND_UNKN: return "void"; 2402 case BTF_KIND_INT: return "int"; 2403 case BTF_KIND_PTR: return "ptr"; 2404 case BTF_KIND_ARRAY: return "array"; 2405 case BTF_KIND_STRUCT: return "struct"; 2406 case BTF_KIND_UNION: return "union"; 2407 case BTF_KIND_ENUM: return "enum"; 2408 case BTF_KIND_FWD: return "fwd"; 2409 case BTF_KIND_TYPEDEF: return "typedef"; 2410 case BTF_KIND_VOLATILE: return "volatile"; 2411 case BTF_KIND_CONST: return "const"; 2412 case BTF_KIND_RESTRICT: return "restrict"; 2413 case BTF_KIND_FUNC: return "func"; 2414 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2415 case BTF_KIND_VAR: return "var"; 2416 case BTF_KIND_DATASEC: return "datasec"; 2417 case BTF_KIND_FLOAT: return "float"; 2418 case BTF_KIND_DECL_TAG: return "decl_tag"; 2419 case BTF_KIND_TYPE_TAG: return "type_tag"; 2420 case BTF_KIND_ENUM64: return "enum64"; 2421 default: return "unknown"; 2422 } 2423 } 2424 2425 const char *btf_kind_str(const struct btf_type *t) 2426 { 2427 return __btf_kind_str(btf_kind(t)); 2428 } 2429 2430 /* 2431 * Fetch integer attribute of BTF map definition. Such attributes are 2432 * represented using a pointer to an array, in which dimensionality of array 2433 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2434 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2435 * type definition, while using only sizeof(void *) space in ELF data section. 2436 */ 2437 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2438 const struct btf_member *m, __u32 *res) 2439 { 2440 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2441 const char *name = btf__name_by_offset(btf, m->name_off); 2442 const struct btf_array *arr_info; 2443 const struct btf_type *arr_t; 2444 2445 if (!btf_is_ptr(t)) { 2446 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2447 map_name, name, btf_kind_str(t)); 2448 return false; 2449 } 2450 2451 arr_t = btf__type_by_id(btf, t->type); 2452 if (!arr_t) { 2453 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2454 map_name, name, t->type); 2455 return false; 2456 } 2457 if (!btf_is_array(arr_t)) { 2458 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2459 map_name, name, btf_kind_str(arr_t)); 2460 return false; 2461 } 2462 arr_info = btf_array(arr_t); 2463 *res = arr_info->nelems; 2464 return true; 2465 } 2466 2467 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2468 const struct btf_member *m, __u64 *res) 2469 { 2470 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2471 const char *name = btf__name_by_offset(btf, m->name_off); 2472 2473 if (btf_is_ptr(t)) { 2474 __u32 res32; 2475 bool ret; 2476 2477 ret = get_map_field_int(map_name, btf, m, &res32); 2478 if (ret) 2479 *res = (__u64)res32; 2480 return ret; 2481 } 2482 2483 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2484 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2485 map_name, name, btf_kind_str(t)); 2486 return false; 2487 } 2488 2489 if (btf_vlen(t) != 1) { 2490 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2491 map_name, name); 2492 return false; 2493 } 2494 2495 if (btf_is_enum(t)) { 2496 const struct btf_enum *e = btf_enum(t); 2497 2498 *res = e->val; 2499 } else { 2500 const struct btf_enum64 *e = btf_enum64(t); 2501 2502 *res = btf_enum64_value(e); 2503 } 2504 return true; 2505 } 2506 2507 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2508 { 2509 int len; 2510 2511 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2512 if (len < 0) 2513 return -EINVAL; 2514 if (len >= buf_sz) 2515 return -ENAMETOOLONG; 2516 2517 return 0; 2518 } 2519 2520 static int build_map_pin_path(struct bpf_map *map, const char *path) 2521 { 2522 char buf[PATH_MAX]; 2523 int err; 2524 2525 if (!path) 2526 path = BPF_FS_DEFAULT_PATH; 2527 2528 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2529 if (err) 2530 return err; 2531 2532 return bpf_map__set_pin_path(map, buf); 2533 } 2534 2535 /* should match definition in bpf_helpers.h */ 2536 enum libbpf_pin_type { 2537 LIBBPF_PIN_NONE, 2538 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2539 LIBBPF_PIN_BY_NAME, 2540 }; 2541 2542 int parse_btf_map_def(const char *map_name, struct btf *btf, 2543 const struct btf_type *def_t, bool strict, 2544 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2545 { 2546 const struct btf_type *t; 2547 const struct btf_member *m; 2548 bool is_inner = inner_def == NULL; 2549 int vlen, i; 2550 2551 vlen = btf_vlen(def_t); 2552 m = btf_members(def_t); 2553 for (i = 0; i < vlen; i++, m++) { 2554 const char *name = btf__name_by_offset(btf, m->name_off); 2555 2556 if (!name) { 2557 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2558 return -EINVAL; 2559 } 2560 if (strcmp(name, "type") == 0) { 2561 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2562 return -EINVAL; 2563 map_def->parts |= MAP_DEF_MAP_TYPE; 2564 } else if (strcmp(name, "max_entries") == 0) { 2565 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2566 return -EINVAL; 2567 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2568 } else if (strcmp(name, "map_flags") == 0) { 2569 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2570 return -EINVAL; 2571 map_def->parts |= MAP_DEF_MAP_FLAGS; 2572 } else if (strcmp(name, "numa_node") == 0) { 2573 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2574 return -EINVAL; 2575 map_def->parts |= MAP_DEF_NUMA_NODE; 2576 } else if (strcmp(name, "key_size") == 0) { 2577 __u32 sz; 2578 2579 if (!get_map_field_int(map_name, btf, m, &sz)) 2580 return -EINVAL; 2581 if (map_def->key_size && map_def->key_size != sz) { 2582 pr_warn("map '%s': conflicting key size %u != %u.\n", 2583 map_name, map_def->key_size, sz); 2584 return -EINVAL; 2585 } 2586 map_def->key_size = sz; 2587 map_def->parts |= MAP_DEF_KEY_SIZE; 2588 } else if (strcmp(name, "key") == 0) { 2589 __s64 sz; 2590 2591 t = btf__type_by_id(btf, m->type); 2592 if (!t) { 2593 pr_warn("map '%s': key type [%d] not found.\n", 2594 map_name, m->type); 2595 return -EINVAL; 2596 } 2597 if (!btf_is_ptr(t)) { 2598 pr_warn("map '%s': key spec is not PTR: %s.\n", 2599 map_name, btf_kind_str(t)); 2600 return -EINVAL; 2601 } 2602 sz = btf__resolve_size(btf, t->type); 2603 if (sz < 0) { 2604 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2605 map_name, t->type, (ssize_t)sz); 2606 return sz; 2607 } 2608 if (map_def->key_size && map_def->key_size != sz) { 2609 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2610 map_name, map_def->key_size, (ssize_t)sz); 2611 return -EINVAL; 2612 } 2613 map_def->key_size = sz; 2614 map_def->key_type_id = t->type; 2615 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2616 } else if (strcmp(name, "value_size") == 0) { 2617 __u32 sz; 2618 2619 if (!get_map_field_int(map_name, btf, m, &sz)) 2620 return -EINVAL; 2621 if (map_def->value_size && map_def->value_size != sz) { 2622 pr_warn("map '%s': conflicting value size %u != %u.\n", 2623 map_name, map_def->value_size, sz); 2624 return -EINVAL; 2625 } 2626 map_def->value_size = sz; 2627 map_def->parts |= MAP_DEF_VALUE_SIZE; 2628 } else if (strcmp(name, "value") == 0) { 2629 __s64 sz; 2630 2631 t = btf__type_by_id(btf, m->type); 2632 if (!t) { 2633 pr_warn("map '%s': value type [%d] not found.\n", 2634 map_name, m->type); 2635 return -EINVAL; 2636 } 2637 if (!btf_is_ptr(t)) { 2638 pr_warn("map '%s': value spec is not PTR: %s.\n", 2639 map_name, btf_kind_str(t)); 2640 return -EINVAL; 2641 } 2642 sz = btf__resolve_size(btf, t->type); 2643 if (sz < 0) { 2644 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2645 map_name, t->type, (ssize_t)sz); 2646 return sz; 2647 } 2648 if (map_def->value_size && map_def->value_size != sz) { 2649 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2650 map_name, map_def->value_size, (ssize_t)sz); 2651 return -EINVAL; 2652 } 2653 map_def->value_size = sz; 2654 map_def->value_type_id = t->type; 2655 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2656 } 2657 else if (strcmp(name, "values") == 0) { 2658 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2659 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2660 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2661 char inner_map_name[128]; 2662 int err; 2663 2664 if (is_inner) { 2665 pr_warn("map '%s': multi-level inner maps not supported.\n", 2666 map_name); 2667 return -ENOTSUP; 2668 } 2669 if (i != vlen - 1) { 2670 pr_warn("map '%s': '%s' member should be last.\n", 2671 map_name, name); 2672 return -EINVAL; 2673 } 2674 if (!is_map_in_map && !is_prog_array) { 2675 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2676 map_name); 2677 return -ENOTSUP; 2678 } 2679 if (map_def->value_size && map_def->value_size != 4) { 2680 pr_warn("map '%s': conflicting value size %u != 4.\n", 2681 map_name, map_def->value_size); 2682 return -EINVAL; 2683 } 2684 map_def->value_size = 4; 2685 t = btf__type_by_id(btf, m->type); 2686 if (!t) { 2687 pr_warn("map '%s': %s type [%d] not found.\n", 2688 map_name, desc, m->type); 2689 return -EINVAL; 2690 } 2691 if (!btf_is_array(t) || btf_array(t)->nelems) { 2692 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2693 map_name, desc); 2694 return -EINVAL; 2695 } 2696 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2697 if (!btf_is_ptr(t)) { 2698 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2699 map_name, desc, btf_kind_str(t)); 2700 return -EINVAL; 2701 } 2702 t = skip_mods_and_typedefs(btf, t->type, NULL); 2703 if (is_prog_array) { 2704 if (!btf_is_func_proto(t)) { 2705 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2706 map_name, btf_kind_str(t)); 2707 return -EINVAL; 2708 } 2709 continue; 2710 } 2711 if (!btf_is_struct(t)) { 2712 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2713 map_name, btf_kind_str(t)); 2714 return -EINVAL; 2715 } 2716 2717 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2718 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2719 if (err) 2720 return err; 2721 2722 map_def->parts |= MAP_DEF_INNER_MAP; 2723 } else if (strcmp(name, "pinning") == 0) { 2724 __u32 val; 2725 2726 if (is_inner) { 2727 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2728 return -EINVAL; 2729 } 2730 if (!get_map_field_int(map_name, btf, m, &val)) 2731 return -EINVAL; 2732 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2733 pr_warn("map '%s': invalid pinning value %u.\n", 2734 map_name, val); 2735 return -EINVAL; 2736 } 2737 map_def->pinning = val; 2738 map_def->parts |= MAP_DEF_PINNING; 2739 } else if (strcmp(name, "map_extra") == 0) { 2740 __u64 map_extra; 2741 2742 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2743 return -EINVAL; 2744 map_def->map_extra = map_extra; 2745 map_def->parts |= MAP_DEF_MAP_EXTRA; 2746 } else { 2747 if (strict) { 2748 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2749 return -ENOTSUP; 2750 } 2751 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2752 } 2753 } 2754 2755 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2756 pr_warn("map '%s': map type isn't specified.\n", map_name); 2757 return -EINVAL; 2758 } 2759 2760 return 0; 2761 } 2762 2763 static size_t adjust_ringbuf_sz(size_t sz) 2764 { 2765 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2766 __u32 mul; 2767 2768 /* if user forgot to set any size, make sure they see error */ 2769 if (sz == 0) 2770 return 0; 2771 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2772 * a power-of-2 multiple of kernel's page size. If user diligently 2773 * satisified these conditions, pass the size through. 2774 */ 2775 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2776 return sz; 2777 2778 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2779 * user-set size to satisfy both user size request and kernel 2780 * requirements and substitute correct max_entries for map creation. 2781 */ 2782 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2783 if (mul * page_sz > sz) 2784 return mul * page_sz; 2785 } 2786 2787 /* if it's impossible to satisfy the conditions (i.e., user size is 2788 * very close to UINT_MAX but is not a power-of-2 multiple of 2789 * page_size) then just return original size and let kernel reject it 2790 */ 2791 return sz; 2792 } 2793 2794 static bool map_is_ringbuf(const struct bpf_map *map) 2795 { 2796 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2797 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2798 } 2799 2800 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2801 { 2802 map->def.type = def->map_type; 2803 map->def.key_size = def->key_size; 2804 map->def.value_size = def->value_size; 2805 map->def.max_entries = def->max_entries; 2806 map->def.map_flags = def->map_flags; 2807 map->map_extra = def->map_extra; 2808 2809 map->numa_node = def->numa_node; 2810 map->btf_key_type_id = def->key_type_id; 2811 map->btf_value_type_id = def->value_type_id; 2812 2813 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2814 if (map_is_ringbuf(map)) 2815 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2816 2817 if (def->parts & MAP_DEF_MAP_TYPE) 2818 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2819 2820 if (def->parts & MAP_DEF_KEY_TYPE) 2821 pr_debug("map '%s': found key [%u], sz = %u.\n", 2822 map->name, def->key_type_id, def->key_size); 2823 else if (def->parts & MAP_DEF_KEY_SIZE) 2824 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2825 2826 if (def->parts & MAP_DEF_VALUE_TYPE) 2827 pr_debug("map '%s': found value [%u], sz = %u.\n", 2828 map->name, def->value_type_id, def->value_size); 2829 else if (def->parts & MAP_DEF_VALUE_SIZE) 2830 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2831 2832 if (def->parts & MAP_DEF_MAX_ENTRIES) 2833 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2834 if (def->parts & MAP_DEF_MAP_FLAGS) 2835 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2836 if (def->parts & MAP_DEF_MAP_EXTRA) 2837 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2838 (unsigned long long)def->map_extra); 2839 if (def->parts & MAP_DEF_PINNING) 2840 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2841 if (def->parts & MAP_DEF_NUMA_NODE) 2842 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2843 2844 if (def->parts & MAP_DEF_INNER_MAP) 2845 pr_debug("map '%s': found inner map definition.\n", map->name); 2846 } 2847 2848 static const char *btf_var_linkage_str(__u32 linkage) 2849 { 2850 switch (linkage) { 2851 case BTF_VAR_STATIC: return "static"; 2852 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2853 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2854 default: return "unknown"; 2855 } 2856 } 2857 2858 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2859 const struct btf_type *sec, 2860 int var_idx, int sec_idx, 2861 const Elf_Data *data, bool strict, 2862 const char *pin_root_path) 2863 { 2864 struct btf_map_def map_def = {}, inner_def = {}; 2865 const struct btf_type *var, *def; 2866 const struct btf_var_secinfo *vi; 2867 const struct btf_var *var_extra; 2868 const char *map_name; 2869 struct bpf_map *map; 2870 int err; 2871 2872 vi = btf_var_secinfos(sec) + var_idx; 2873 var = btf__type_by_id(obj->btf, vi->type); 2874 var_extra = btf_var(var); 2875 map_name = btf__name_by_offset(obj->btf, var->name_off); 2876 2877 if (map_name == NULL || map_name[0] == '\0') { 2878 pr_warn("map #%d: empty name.\n", var_idx); 2879 return -EINVAL; 2880 } 2881 if ((__u64)vi->offset + vi->size > data->d_size) { 2882 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2883 return -EINVAL; 2884 } 2885 if (!btf_is_var(var)) { 2886 pr_warn("map '%s': unexpected var kind %s.\n", 2887 map_name, btf_kind_str(var)); 2888 return -EINVAL; 2889 } 2890 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2891 pr_warn("map '%s': unsupported map linkage %s.\n", 2892 map_name, btf_var_linkage_str(var_extra->linkage)); 2893 return -EOPNOTSUPP; 2894 } 2895 2896 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2897 if (!btf_is_struct(def)) { 2898 pr_warn("map '%s': unexpected def kind %s.\n", 2899 map_name, btf_kind_str(var)); 2900 return -EINVAL; 2901 } 2902 if (def->size > vi->size) { 2903 pr_warn("map '%s': invalid def size.\n", map_name); 2904 return -EINVAL; 2905 } 2906 2907 map = bpf_object__add_map(obj); 2908 if (IS_ERR(map)) 2909 return PTR_ERR(map); 2910 map->name = strdup(map_name); 2911 if (!map->name) { 2912 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2913 return -ENOMEM; 2914 } 2915 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2916 map->def.type = BPF_MAP_TYPE_UNSPEC; 2917 map->sec_idx = sec_idx; 2918 map->sec_offset = vi->offset; 2919 map->btf_var_idx = var_idx; 2920 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2921 map_name, map->sec_idx, map->sec_offset); 2922 2923 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2924 if (err) 2925 return err; 2926 2927 fill_map_from_def(map, &map_def); 2928 2929 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2930 err = build_map_pin_path(map, pin_root_path); 2931 if (err) { 2932 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2933 return err; 2934 } 2935 } 2936 2937 if (map_def.parts & MAP_DEF_INNER_MAP) { 2938 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2939 if (!map->inner_map) 2940 return -ENOMEM; 2941 map->inner_map->fd = create_placeholder_fd(); 2942 if (map->inner_map->fd < 0) 2943 return map->inner_map->fd; 2944 map->inner_map->sec_idx = sec_idx; 2945 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2946 if (!map->inner_map->name) 2947 return -ENOMEM; 2948 sprintf(map->inner_map->name, "%s.inner", map_name); 2949 2950 fill_map_from_def(map->inner_map, &inner_def); 2951 } 2952 2953 err = map_fill_btf_type_info(obj, map); 2954 if (err) 2955 return err; 2956 2957 return 0; 2958 } 2959 2960 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2961 const char *sec_name, int sec_idx, 2962 void *data, size_t data_sz) 2963 { 2964 const long page_sz = sysconf(_SC_PAGE_SIZE); 2965 size_t mmap_sz; 2966 2967 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2968 if (roundup(data_sz, page_sz) > mmap_sz) { 2969 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2970 sec_name, mmap_sz, data_sz); 2971 return -E2BIG; 2972 } 2973 2974 obj->arena_data = malloc(data_sz); 2975 if (!obj->arena_data) 2976 return -ENOMEM; 2977 memcpy(obj->arena_data, data, data_sz); 2978 obj->arena_data_sz = data_sz; 2979 2980 /* make bpf_map__init_value() work for ARENA maps */ 2981 map->mmaped = obj->arena_data; 2982 2983 return 0; 2984 } 2985 2986 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2987 const char *pin_root_path) 2988 { 2989 const struct btf_type *sec = NULL; 2990 int nr_types, i, vlen, err; 2991 const struct btf_type *t; 2992 const char *name; 2993 Elf_Data *data; 2994 Elf_Scn *scn; 2995 2996 if (obj->efile.btf_maps_shndx < 0) 2997 return 0; 2998 2999 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 3000 data = elf_sec_data(obj, scn); 3001 if (!scn || !data) { 3002 pr_warn("elf: failed to get %s map definitions for %s\n", 3003 MAPS_ELF_SEC, obj->path); 3004 return -EINVAL; 3005 } 3006 3007 nr_types = btf__type_cnt(obj->btf); 3008 for (i = 1; i < nr_types; i++) { 3009 t = btf__type_by_id(obj->btf, i); 3010 if (!btf_is_datasec(t)) 3011 continue; 3012 name = btf__name_by_offset(obj->btf, t->name_off); 3013 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3014 sec = t; 3015 obj->efile.btf_maps_sec_btf_id = i; 3016 break; 3017 } 3018 } 3019 3020 if (!sec) { 3021 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3022 return -ENOENT; 3023 } 3024 3025 vlen = btf_vlen(sec); 3026 for (i = 0; i < vlen; i++) { 3027 err = bpf_object__init_user_btf_map(obj, sec, i, 3028 obj->efile.btf_maps_shndx, 3029 data, strict, 3030 pin_root_path); 3031 if (err) 3032 return err; 3033 } 3034 3035 for (i = 0; i < obj->nr_maps; i++) { 3036 struct bpf_map *map = &obj->maps[i]; 3037 3038 if (map->def.type != BPF_MAP_TYPE_ARENA) 3039 continue; 3040 3041 if (obj->arena_map) { 3042 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3043 map->name, obj->arena_map->name); 3044 return -EINVAL; 3045 } 3046 obj->arena_map = map; 3047 3048 if (obj->efile.arena_data) { 3049 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3050 obj->efile.arena_data->d_buf, 3051 obj->efile.arena_data->d_size); 3052 if (err) 3053 return err; 3054 } 3055 } 3056 if (obj->efile.arena_data && !obj->arena_map) { 3057 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3058 ARENA_SEC); 3059 return -ENOENT; 3060 } 3061 3062 return 0; 3063 } 3064 3065 static int bpf_object__init_maps(struct bpf_object *obj, 3066 const struct bpf_object_open_opts *opts) 3067 { 3068 const char *pin_root_path; 3069 bool strict; 3070 int err = 0; 3071 3072 strict = !OPTS_GET(opts, relaxed_maps, false); 3073 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3074 3075 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3076 err = err ?: bpf_object__init_global_data_maps(obj); 3077 err = err ?: bpf_object__init_kconfig_map(obj); 3078 err = err ?: bpf_object_init_struct_ops(obj); 3079 3080 return err; 3081 } 3082 3083 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3084 { 3085 Elf64_Shdr *sh; 3086 3087 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3088 if (!sh) 3089 return false; 3090 3091 return sh->sh_flags & SHF_EXECINSTR; 3092 } 3093 3094 static bool starts_with_qmark(const char *s) 3095 { 3096 return s && s[0] == '?'; 3097 } 3098 3099 static bool btf_needs_sanitization(struct bpf_object *obj) 3100 { 3101 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3102 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3103 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3104 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3105 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3106 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3107 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3108 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3109 3110 return !has_func || !has_datasec || !has_func_global || !has_float || 3111 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3112 } 3113 3114 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3115 { 3116 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3117 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3118 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3119 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3120 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3121 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3122 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3123 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3124 int enum64_placeholder_id = 0; 3125 struct btf_type *t; 3126 int i, j, vlen; 3127 3128 for (i = 1; i < btf__type_cnt(btf); i++) { 3129 t = (struct btf_type *)btf__type_by_id(btf, i); 3130 3131 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3132 /* replace VAR/DECL_TAG with INT */ 3133 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3134 /* 3135 * using size = 1 is the safest choice, 4 will be too 3136 * big and cause kernel BTF validation failure if 3137 * original variable took less than 4 bytes 3138 */ 3139 t->size = 1; 3140 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3141 } else if (!has_datasec && btf_is_datasec(t)) { 3142 /* replace DATASEC with STRUCT */ 3143 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3144 struct btf_member *m = btf_members(t); 3145 struct btf_type *vt; 3146 char *name; 3147 3148 name = (char *)btf__name_by_offset(btf, t->name_off); 3149 while (*name) { 3150 if (*name == '.' || *name == '?') 3151 *name = '_'; 3152 name++; 3153 } 3154 3155 vlen = btf_vlen(t); 3156 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3157 for (j = 0; j < vlen; j++, v++, m++) { 3158 /* order of field assignments is important */ 3159 m->offset = v->offset * 8; 3160 m->type = v->type; 3161 /* preserve variable name as member name */ 3162 vt = (void *)btf__type_by_id(btf, v->type); 3163 m->name_off = vt->name_off; 3164 } 3165 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3166 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3167 /* replace '?' prefix with '_' for DATASEC names */ 3168 char *name; 3169 3170 name = (char *)btf__name_by_offset(btf, t->name_off); 3171 if (name[0] == '?') 3172 name[0] = '_'; 3173 } else if (!has_func && btf_is_func_proto(t)) { 3174 /* replace FUNC_PROTO with ENUM */ 3175 vlen = btf_vlen(t); 3176 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3177 t->size = sizeof(__u32); /* kernel enforced */ 3178 } else if (!has_func && btf_is_func(t)) { 3179 /* replace FUNC with TYPEDEF */ 3180 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3181 } else if (!has_func_global && btf_is_func(t)) { 3182 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3183 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3184 } else if (!has_float && btf_is_float(t)) { 3185 /* replace FLOAT with an equally-sized empty STRUCT; 3186 * since C compilers do not accept e.g. "float" as a 3187 * valid struct name, make it anonymous 3188 */ 3189 t->name_off = 0; 3190 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3191 } else if (!has_type_tag && btf_is_type_tag(t)) { 3192 /* replace TYPE_TAG with a CONST */ 3193 t->name_off = 0; 3194 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3195 } else if (!has_enum64 && btf_is_enum(t)) { 3196 /* clear the kflag */ 3197 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3198 } else if (!has_enum64 && btf_is_enum64(t)) { 3199 /* replace ENUM64 with a union */ 3200 struct btf_member *m; 3201 3202 if (enum64_placeholder_id == 0) { 3203 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3204 if (enum64_placeholder_id < 0) 3205 return enum64_placeholder_id; 3206 3207 t = (struct btf_type *)btf__type_by_id(btf, i); 3208 } 3209 3210 m = btf_members(t); 3211 vlen = btf_vlen(t); 3212 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3213 for (j = 0; j < vlen; j++, m++) { 3214 m->type = enum64_placeholder_id; 3215 m->offset = 0; 3216 } 3217 } 3218 } 3219 3220 return 0; 3221 } 3222 3223 static bool libbpf_needs_btf(const struct bpf_object *obj) 3224 { 3225 return obj->efile.btf_maps_shndx >= 0 || 3226 obj->efile.has_st_ops || 3227 obj->nr_extern > 0; 3228 } 3229 3230 static bool kernel_needs_btf(const struct bpf_object *obj) 3231 { 3232 return obj->efile.has_st_ops; 3233 } 3234 3235 static int bpf_object__init_btf(struct bpf_object *obj, 3236 Elf_Data *btf_data, 3237 Elf_Data *btf_ext_data) 3238 { 3239 int err = -ENOENT; 3240 3241 if (btf_data) { 3242 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3243 err = libbpf_get_error(obj->btf); 3244 if (err) { 3245 obj->btf = NULL; 3246 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3247 goto out; 3248 } 3249 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3250 btf__set_pointer_size(obj->btf, 8); 3251 } 3252 if (btf_ext_data) { 3253 struct btf_ext_info *ext_segs[3]; 3254 int seg_num, sec_num; 3255 3256 if (!obj->btf) { 3257 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3258 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3259 goto out; 3260 } 3261 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3262 err = libbpf_get_error(obj->btf_ext); 3263 if (err) { 3264 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3265 BTF_EXT_ELF_SEC, errstr(err)); 3266 obj->btf_ext = NULL; 3267 goto out; 3268 } 3269 3270 /* setup .BTF.ext to ELF section mapping */ 3271 ext_segs[0] = &obj->btf_ext->func_info; 3272 ext_segs[1] = &obj->btf_ext->line_info; 3273 ext_segs[2] = &obj->btf_ext->core_relo_info; 3274 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3275 struct btf_ext_info *seg = ext_segs[seg_num]; 3276 const struct btf_ext_info_sec *sec; 3277 const char *sec_name; 3278 Elf_Scn *scn; 3279 3280 if (seg->sec_cnt == 0) 3281 continue; 3282 3283 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3284 if (!seg->sec_idxs) { 3285 err = -ENOMEM; 3286 goto out; 3287 } 3288 3289 sec_num = 0; 3290 for_each_btf_ext_sec(seg, sec) { 3291 /* preventively increment index to avoid doing 3292 * this before every continue below 3293 */ 3294 sec_num++; 3295 3296 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3297 if (str_is_empty(sec_name)) 3298 continue; 3299 scn = elf_sec_by_name(obj, sec_name); 3300 if (!scn) 3301 continue; 3302 3303 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3304 } 3305 } 3306 } 3307 out: 3308 if (err && libbpf_needs_btf(obj)) { 3309 pr_warn("BTF is required, but is missing or corrupted.\n"); 3310 return err; 3311 } 3312 return 0; 3313 } 3314 3315 static int compare_vsi_off(const void *_a, const void *_b) 3316 { 3317 const struct btf_var_secinfo *a = _a; 3318 const struct btf_var_secinfo *b = _b; 3319 3320 return a->offset - b->offset; 3321 } 3322 3323 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3324 struct btf_type *t) 3325 { 3326 __u32 size = 0, i, vars = btf_vlen(t); 3327 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3328 struct btf_var_secinfo *vsi; 3329 bool fixup_offsets = false; 3330 int err; 3331 3332 if (!sec_name) { 3333 pr_debug("No name found in string section for DATASEC kind.\n"); 3334 return -ENOENT; 3335 } 3336 3337 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3338 * variable offsets set at the previous step. Further, not every 3339 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3340 * all fixups altogether for such sections and go straight to sorting 3341 * VARs within their DATASEC. 3342 */ 3343 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3344 goto sort_vars; 3345 3346 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3347 * fix this up. But BPF static linker already fixes this up and fills 3348 * all the sizes and offsets during static linking. So this step has 3349 * to be optional. But the STV_HIDDEN handling is non-optional for any 3350 * non-extern DATASEC, so the variable fixup loop below handles both 3351 * functions at the same time, paying the cost of BTF VAR <-> ELF 3352 * symbol matching just once. 3353 */ 3354 if (t->size == 0) { 3355 err = find_elf_sec_sz(obj, sec_name, &size); 3356 if (err || !size) { 3357 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3358 sec_name, size, errstr(err)); 3359 return -ENOENT; 3360 } 3361 3362 t->size = size; 3363 fixup_offsets = true; 3364 } 3365 3366 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3367 const struct btf_type *t_var; 3368 struct btf_var *var; 3369 const char *var_name; 3370 Elf64_Sym *sym; 3371 3372 t_var = btf__type_by_id(btf, vsi->type); 3373 if (!t_var || !btf_is_var(t_var)) { 3374 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3375 return -EINVAL; 3376 } 3377 3378 var = btf_var(t_var); 3379 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3380 continue; 3381 3382 var_name = btf__name_by_offset(btf, t_var->name_off); 3383 if (!var_name) { 3384 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3385 sec_name, i); 3386 return -ENOENT; 3387 } 3388 3389 sym = find_elf_var_sym(obj, var_name); 3390 if (IS_ERR(sym)) { 3391 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3392 sec_name, var_name); 3393 return -ENOENT; 3394 } 3395 3396 if (fixup_offsets) 3397 vsi->offset = sym->st_value; 3398 3399 /* if variable is a global/weak symbol, but has restricted 3400 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3401 * as static. This follows similar logic for functions (BPF 3402 * subprogs) and influences libbpf's further decisions about 3403 * whether to make global data BPF array maps as 3404 * BPF_F_MMAPABLE. 3405 */ 3406 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3407 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3408 var->linkage = BTF_VAR_STATIC; 3409 } 3410 3411 sort_vars: 3412 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3413 return 0; 3414 } 3415 3416 static int bpf_object_fixup_btf(struct bpf_object *obj) 3417 { 3418 int i, n, err = 0; 3419 3420 if (!obj->btf) 3421 return 0; 3422 3423 n = btf__type_cnt(obj->btf); 3424 for (i = 1; i < n; i++) { 3425 struct btf_type *t = btf_type_by_id(obj->btf, i); 3426 3427 /* Loader needs to fix up some of the things compiler 3428 * couldn't get its hands on while emitting BTF. This 3429 * is section size and global variable offset. We use 3430 * the info from the ELF itself for this purpose. 3431 */ 3432 if (btf_is_datasec(t)) { 3433 err = btf_fixup_datasec(obj, obj->btf, t); 3434 if (err) 3435 return err; 3436 } 3437 } 3438 3439 return 0; 3440 } 3441 3442 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3443 { 3444 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3445 prog->type == BPF_PROG_TYPE_LSM) 3446 return true; 3447 3448 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3449 * also need vmlinux BTF 3450 */ 3451 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3452 return true; 3453 3454 return false; 3455 } 3456 3457 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3458 { 3459 return bpf_map__is_struct_ops(map); 3460 } 3461 3462 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3463 { 3464 struct bpf_program *prog; 3465 struct bpf_map *map; 3466 int i; 3467 3468 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3469 * is not specified 3470 */ 3471 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3472 return true; 3473 3474 /* Support for typed ksyms needs kernel BTF */ 3475 for (i = 0; i < obj->nr_extern; i++) { 3476 const struct extern_desc *ext; 3477 3478 ext = &obj->externs[i]; 3479 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3480 return true; 3481 } 3482 3483 bpf_object__for_each_program(prog, obj) { 3484 if (!prog->autoload) 3485 continue; 3486 if (prog_needs_vmlinux_btf(prog)) 3487 return true; 3488 } 3489 3490 bpf_object__for_each_map(map, obj) { 3491 if (map_needs_vmlinux_btf(map)) 3492 return true; 3493 } 3494 3495 return false; 3496 } 3497 3498 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3499 { 3500 int err; 3501 3502 /* btf_vmlinux could be loaded earlier */ 3503 if (obj->btf_vmlinux || obj->gen_loader) 3504 return 0; 3505 3506 if (!force && !obj_needs_vmlinux_btf(obj)) 3507 return 0; 3508 3509 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3510 err = libbpf_get_error(obj->btf_vmlinux); 3511 if (err) { 3512 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3513 obj->btf_vmlinux = NULL; 3514 return err; 3515 } 3516 return 0; 3517 } 3518 3519 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3520 { 3521 struct btf *kern_btf = obj->btf; 3522 bool btf_mandatory, sanitize; 3523 int i, err = 0; 3524 3525 if (!obj->btf) 3526 return 0; 3527 3528 if (!kernel_supports(obj, FEAT_BTF)) { 3529 if (kernel_needs_btf(obj)) { 3530 err = -EOPNOTSUPP; 3531 goto report; 3532 } 3533 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3534 return 0; 3535 } 3536 3537 /* Even though some subprogs are global/weak, user might prefer more 3538 * permissive BPF verification process that BPF verifier performs for 3539 * static functions, taking into account more context from the caller 3540 * functions. In such case, they need to mark such subprogs with 3541 * __attribute__((visibility("hidden"))) and libbpf will adjust 3542 * corresponding FUNC BTF type to be marked as static and trigger more 3543 * involved BPF verification process. 3544 */ 3545 for (i = 0; i < obj->nr_programs; i++) { 3546 struct bpf_program *prog = &obj->programs[i]; 3547 struct btf_type *t; 3548 const char *name; 3549 int j, n; 3550 3551 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3552 continue; 3553 3554 n = btf__type_cnt(obj->btf); 3555 for (j = 1; j < n; j++) { 3556 t = btf_type_by_id(obj->btf, j); 3557 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3558 continue; 3559 3560 name = btf__str_by_offset(obj->btf, t->name_off); 3561 if (strcmp(name, prog->name) != 0) 3562 continue; 3563 3564 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3565 break; 3566 } 3567 } 3568 3569 sanitize = btf_needs_sanitization(obj); 3570 if (sanitize) { 3571 const void *raw_data; 3572 __u32 sz; 3573 3574 /* clone BTF to sanitize a copy and leave the original intact */ 3575 raw_data = btf__raw_data(obj->btf, &sz); 3576 kern_btf = btf__new(raw_data, sz); 3577 err = libbpf_get_error(kern_btf); 3578 if (err) 3579 return err; 3580 3581 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3582 btf__set_pointer_size(obj->btf, 8); 3583 err = bpf_object__sanitize_btf(obj, kern_btf); 3584 if (err) 3585 return err; 3586 } 3587 3588 if (obj->gen_loader) { 3589 __u32 raw_size = 0; 3590 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3591 3592 if (!raw_data) 3593 return -ENOMEM; 3594 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3595 /* Pretend to have valid FD to pass various fd >= 0 checks. 3596 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3597 */ 3598 btf__set_fd(kern_btf, 0); 3599 } else { 3600 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3601 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3602 obj->log_level ? 1 : 0, obj->token_fd); 3603 } 3604 if (sanitize) { 3605 if (!err) { 3606 /* move fd to libbpf's BTF */ 3607 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3608 btf__set_fd(kern_btf, -1); 3609 } 3610 btf__free(kern_btf); 3611 } 3612 report: 3613 if (err) { 3614 btf_mandatory = kernel_needs_btf(obj); 3615 if (btf_mandatory) { 3616 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3617 errstr(err)); 3618 } else { 3619 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3620 errstr(err)); 3621 err = 0; 3622 } 3623 } 3624 return err; 3625 } 3626 3627 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3628 { 3629 const char *name; 3630 3631 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3632 if (!name) { 3633 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3634 off, obj->path, elf_errmsg(-1)); 3635 return NULL; 3636 } 3637 3638 return name; 3639 } 3640 3641 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3642 { 3643 const char *name; 3644 3645 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3646 if (!name) { 3647 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3648 off, obj->path, elf_errmsg(-1)); 3649 return NULL; 3650 } 3651 3652 return name; 3653 } 3654 3655 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3656 { 3657 Elf_Scn *scn; 3658 3659 scn = elf_getscn(obj->efile.elf, idx); 3660 if (!scn) { 3661 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3662 idx, obj->path, elf_errmsg(-1)); 3663 return NULL; 3664 } 3665 return scn; 3666 } 3667 3668 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3669 { 3670 Elf_Scn *scn = NULL; 3671 Elf *elf = obj->efile.elf; 3672 const char *sec_name; 3673 3674 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3675 sec_name = elf_sec_name(obj, scn); 3676 if (!sec_name) 3677 return NULL; 3678 3679 if (strcmp(sec_name, name) != 0) 3680 continue; 3681 3682 return scn; 3683 } 3684 return NULL; 3685 } 3686 3687 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3688 { 3689 Elf64_Shdr *shdr; 3690 3691 if (!scn) 3692 return NULL; 3693 3694 shdr = elf64_getshdr(scn); 3695 if (!shdr) { 3696 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3697 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3698 return NULL; 3699 } 3700 3701 return shdr; 3702 } 3703 3704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3705 { 3706 const char *name; 3707 Elf64_Shdr *sh; 3708 3709 if (!scn) 3710 return NULL; 3711 3712 sh = elf_sec_hdr(obj, scn); 3713 if (!sh) 3714 return NULL; 3715 3716 name = elf_sec_str(obj, sh->sh_name); 3717 if (!name) { 3718 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3719 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3720 return NULL; 3721 } 3722 3723 return name; 3724 } 3725 3726 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3727 { 3728 Elf_Data *data; 3729 3730 if (!scn) 3731 return NULL; 3732 3733 data = elf_getdata(scn, 0); 3734 if (!data) { 3735 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3736 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3737 obj->path, elf_errmsg(-1)); 3738 return NULL; 3739 } 3740 3741 return data; 3742 } 3743 3744 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3745 { 3746 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3747 return NULL; 3748 3749 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3750 } 3751 3752 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3753 { 3754 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3755 return NULL; 3756 3757 return (Elf64_Rel *)data->d_buf + idx; 3758 } 3759 3760 static bool is_sec_name_dwarf(const char *name) 3761 { 3762 /* approximation, but the actual list is too long */ 3763 return str_has_pfx(name, ".debug_"); 3764 } 3765 3766 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3767 { 3768 /* no special handling of .strtab */ 3769 if (hdr->sh_type == SHT_STRTAB) 3770 return true; 3771 3772 /* ignore .llvm_addrsig section as well */ 3773 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3774 return true; 3775 3776 /* no subprograms will lead to an empty .text section, ignore it */ 3777 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3778 strcmp(name, ".text") == 0) 3779 return true; 3780 3781 /* DWARF sections */ 3782 if (is_sec_name_dwarf(name)) 3783 return true; 3784 3785 if (str_has_pfx(name, ".rel")) { 3786 name += sizeof(".rel") - 1; 3787 /* DWARF section relocations */ 3788 if (is_sec_name_dwarf(name)) 3789 return true; 3790 3791 /* .BTF and .BTF.ext don't need relocations */ 3792 if (strcmp(name, BTF_ELF_SEC) == 0 || 3793 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3794 return true; 3795 } 3796 3797 return false; 3798 } 3799 3800 static int cmp_progs(const void *_a, const void *_b) 3801 { 3802 const struct bpf_program *a = _a; 3803 const struct bpf_program *b = _b; 3804 3805 if (a->sec_idx != b->sec_idx) 3806 return a->sec_idx < b->sec_idx ? -1 : 1; 3807 3808 /* sec_insn_off can't be the same within the section */ 3809 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3810 } 3811 3812 static int bpf_object__elf_collect(struct bpf_object *obj) 3813 { 3814 struct elf_sec_desc *sec_desc; 3815 Elf *elf = obj->efile.elf; 3816 Elf_Data *btf_ext_data = NULL; 3817 Elf_Data *btf_data = NULL; 3818 int idx = 0, err = 0; 3819 const char *name; 3820 Elf_Data *data; 3821 Elf_Scn *scn; 3822 Elf64_Shdr *sh; 3823 3824 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3825 * section. Since section count retrieved by elf_getshdrnum() does 3826 * include sec #0, it is already the necessary size of an array to keep 3827 * all the sections. 3828 */ 3829 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3830 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3831 obj->path, elf_errmsg(-1)); 3832 return -LIBBPF_ERRNO__FORMAT; 3833 } 3834 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3835 if (!obj->efile.secs) 3836 return -ENOMEM; 3837 3838 /* a bunch of ELF parsing functionality depends on processing symbols, 3839 * so do the first pass and find the symbol table 3840 */ 3841 scn = NULL; 3842 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3843 sh = elf_sec_hdr(obj, scn); 3844 if (!sh) 3845 return -LIBBPF_ERRNO__FORMAT; 3846 3847 if (sh->sh_type == SHT_SYMTAB) { 3848 if (obj->efile.symbols) { 3849 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3850 return -LIBBPF_ERRNO__FORMAT; 3851 } 3852 3853 data = elf_sec_data(obj, scn); 3854 if (!data) 3855 return -LIBBPF_ERRNO__FORMAT; 3856 3857 idx = elf_ndxscn(scn); 3858 3859 obj->efile.symbols = data; 3860 obj->efile.symbols_shndx = idx; 3861 obj->efile.strtabidx = sh->sh_link; 3862 } 3863 } 3864 3865 if (!obj->efile.symbols) { 3866 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3867 obj->path); 3868 return -ENOENT; 3869 } 3870 3871 scn = NULL; 3872 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3873 idx = elf_ndxscn(scn); 3874 sec_desc = &obj->efile.secs[idx]; 3875 3876 sh = elf_sec_hdr(obj, scn); 3877 if (!sh) 3878 return -LIBBPF_ERRNO__FORMAT; 3879 3880 name = elf_sec_str(obj, sh->sh_name); 3881 if (!name) 3882 return -LIBBPF_ERRNO__FORMAT; 3883 3884 if (ignore_elf_section(sh, name)) 3885 continue; 3886 3887 data = elf_sec_data(obj, scn); 3888 if (!data) 3889 return -LIBBPF_ERRNO__FORMAT; 3890 3891 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3892 idx, name, (unsigned long)data->d_size, 3893 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3894 (int)sh->sh_type); 3895 3896 if (strcmp(name, "license") == 0) { 3897 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3898 if (err) 3899 return err; 3900 } else if (strcmp(name, "version") == 0) { 3901 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3902 if (err) 3903 return err; 3904 } else if (strcmp(name, "maps") == 0) { 3905 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3906 return -ENOTSUP; 3907 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3908 obj->efile.btf_maps_shndx = idx; 3909 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3910 if (sh->sh_type != SHT_PROGBITS) 3911 return -LIBBPF_ERRNO__FORMAT; 3912 btf_data = data; 3913 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3914 if (sh->sh_type != SHT_PROGBITS) 3915 return -LIBBPF_ERRNO__FORMAT; 3916 btf_ext_data = data; 3917 } else if (sh->sh_type == SHT_SYMTAB) { 3918 /* already processed during the first pass above */ 3919 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3920 if (sh->sh_flags & SHF_EXECINSTR) { 3921 if (strcmp(name, ".text") == 0) 3922 obj->efile.text_shndx = idx; 3923 err = bpf_object__add_programs(obj, data, name, idx); 3924 if (err) 3925 return err; 3926 } else if (strcmp(name, DATA_SEC) == 0 || 3927 str_has_pfx(name, DATA_SEC ".")) { 3928 sec_desc->sec_type = SEC_DATA; 3929 sec_desc->shdr = sh; 3930 sec_desc->data = data; 3931 } else if (strcmp(name, RODATA_SEC) == 0 || 3932 str_has_pfx(name, RODATA_SEC ".")) { 3933 sec_desc->sec_type = SEC_RODATA; 3934 sec_desc->shdr = sh; 3935 sec_desc->data = data; 3936 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3937 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3938 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3939 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3940 sec_desc->sec_type = SEC_ST_OPS; 3941 sec_desc->shdr = sh; 3942 sec_desc->data = data; 3943 obj->efile.has_st_ops = true; 3944 } else if (strcmp(name, ARENA_SEC) == 0) { 3945 obj->efile.arena_data = data; 3946 obj->efile.arena_data_shndx = idx; 3947 } else { 3948 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3949 idx, name); 3950 } 3951 } else if (sh->sh_type == SHT_REL) { 3952 int targ_sec_idx = sh->sh_info; /* points to other section */ 3953 3954 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3955 targ_sec_idx >= obj->efile.sec_cnt) 3956 return -LIBBPF_ERRNO__FORMAT; 3957 3958 /* Only do relo for section with exec instructions */ 3959 if (!section_have_execinstr(obj, targ_sec_idx) && 3960 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3961 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3962 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3963 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3964 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3965 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3966 idx, name, targ_sec_idx, 3967 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3968 continue; 3969 } 3970 3971 sec_desc->sec_type = SEC_RELO; 3972 sec_desc->shdr = sh; 3973 sec_desc->data = data; 3974 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3975 str_has_pfx(name, BSS_SEC "."))) { 3976 sec_desc->sec_type = SEC_BSS; 3977 sec_desc->shdr = sh; 3978 sec_desc->data = data; 3979 } else { 3980 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3981 (size_t)sh->sh_size); 3982 } 3983 } 3984 3985 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3986 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3987 return -LIBBPF_ERRNO__FORMAT; 3988 } 3989 3990 /* change BPF program insns to native endianness for introspection */ 3991 if (!is_native_endianness(obj)) 3992 bpf_object_bswap_progs(obj); 3993 3994 /* sort BPF programs by section name and in-section instruction offset 3995 * for faster search 3996 */ 3997 if (obj->nr_programs) 3998 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3999 4000 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 4001 } 4002 4003 static bool sym_is_extern(const Elf64_Sym *sym) 4004 { 4005 int bind = ELF64_ST_BIND(sym->st_info); 4006 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 4007 return sym->st_shndx == SHN_UNDEF && 4008 (bind == STB_GLOBAL || bind == STB_WEAK) && 4009 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4010 } 4011 4012 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4013 { 4014 int bind = ELF64_ST_BIND(sym->st_info); 4015 int type = ELF64_ST_TYPE(sym->st_info); 4016 4017 /* in .text section */ 4018 if (sym->st_shndx != text_shndx) 4019 return false; 4020 4021 /* local function */ 4022 if (bind == STB_LOCAL && type == STT_SECTION) 4023 return true; 4024 4025 /* global function */ 4026 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4027 } 4028 4029 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4030 { 4031 const struct btf_type *t; 4032 const char *tname; 4033 int i, n; 4034 4035 if (!btf) 4036 return -ESRCH; 4037 4038 n = btf__type_cnt(btf); 4039 for (i = 1; i < n; i++) { 4040 t = btf__type_by_id(btf, i); 4041 4042 if (!btf_is_var(t) && !btf_is_func(t)) 4043 continue; 4044 4045 tname = btf__name_by_offset(btf, t->name_off); 4046 if (strcmp(tname, ext_name)) 4047 continue; 4048 4049 if (btf_is_var(t) && 4050 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4051 return -EINVAL; 4052 4053 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4054 return -EINVAL; 4055 4056 return i; 4057 } 4058 4059 return -ENOENT; 4060 } 4061 4062 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4063 const struct btf_var_secinfo *vs; 4064 const struct btf_type *t; 4065 int i, j, n; 4066 4067 if (!btf) 4068 return -ESRCH; 4069 4070 n = btf__type_cnt(btf); 4071 for (i = 1; i < n; i++) { 4072 t = btf__type_by_id(btf, i); 4073 4074 if (!btf_is_datasec(t)) 4075 continue; 4076 4077 vs = btf_var_secinfos(t); 4078 for (j = 0; j < btf_vlen(t); j++, vs++) { 4079 if (vs->type == ext_btf_id) 4080 return i; 4081 } 4082 } 4083 4084 return -ENOENT; 4085 } 4086 4087 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4088 bool *is_signed) 4089 { 4090 const struct btf_type *t; 4091 const char *name; 4092 4093 t = skip_mods_and_typedefs(btf, id, NULL); 4094 name = btf__name_by_offset(btf, t->name_off); 4095 4096 if (is_signed) 4097 *is_signed = false; 4098 switch (btf_kind(t)) { 4099 case BTF_KIND_INT: { 4100 int enc = btf_int_encoding(t); 4101 4102 if (enc & BTF_INT_BOOL) 4103 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4104 if (is_signed) 4105 *is_signed = enc & BTF_INT_SIGNED; 4106 if (t->size == 1) 4107 return KCFG_CHAR; 4108 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4109 return KCFG_UNKNOWN; 4110 return KCFG_INT; 4111 } 4112 case BTF_KIND_ENUM: 4113 if (t->size != 4) 4114 return KCFG_UNKNOWN; 4115 if (strcmp(name, "libbpf_tristate")) 4116 return KCFG_UNKNOWN; 4117 return KCFG_TRISTATE; 4118 case BTF_KIND_ENUM64: 4119 if (strcmp(name, "libbpf_tristate")) 4120 return KCFG_UNKNOWN; 4121 return KCFG_TRISTATE; 4122 case BTF_KIND_ARRAY: 4123 if (btf_array(t)->nelems == 0) 4124 return KCFG_UNKNOWN; 4125 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4126 return KCFG_UNKNOWN; 4127 return KCFG_CHAR_ARR; 4128 default: 4129 return KCFG_UNKNOWN; 4130 } 4131 } 4132 4133 static int cmp_externs(const void *_a, const void *_b) 4134 { 4135 const struct extern_desc *a = _a; 4136 const struct extern_desc *b = _b; 4137 4138 if (a->type != b->type) 4139 return a->type < b->type ? -1 : 1; 4140 4141 if (a->type == EXT_KCFG) { 4142 /* descending order by alignment requirements */ 4143 if (a->kcfg.align != b->kcfg.align) 4144 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4145 /* ascending order by size, within same alignment class */ 4146 if (a->kcfg.sz != b->kcfg.sz) 4147 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4148 } 4149 4150 /* resolve ties by name */ 4151 return strcmp(a->name, b->name); 4152 } 4153 4154 static int find_int_btf_id(const struct btf *btf) 4155 { 4156 const struct btf_type *t; 4157 int i, n; 4158 4159 n = btf__type_cnt(btf); 4160 for (i = 1; i < n; i++) { 4161 t = btf__type_by_id(btf, i); 4162 4163 if (btf_is_int(t) && btf_int_bits(t) == 32) 4164 return i; 4165 } 4166 4167 return 0; 4168 } 4169 4170 static int add_dummy_ksym_var(struct btf *btf) 4171 { 4172 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4173 const struct btf_var_secinfo *vs; 4174 const struct btf_type *sec; 4175 4176 if (!btf) 4177 return 0; 4178 4179 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4180 BTF_KIND_DATASEC); 4181 if (sec_btf_id < 0) 4182 return 0; 4183 4184 sec = btf__type_by_id(btf, sec_btf_id); 4185 vs = btf_var_secinfos(sec); 4186 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4187 const struct btf_type *vt; 4188 4189 vt = btf__type_by_id(btf, vs->type); 4190 if (btf_is_func(vt)) 4191 break; 4192 } 4193 4194 /* No func in ksyms sec. No need to add dummy var. */ 4195 if (i == btf_vlen(sec)) 4196 return 0; 4197 4198 int_btf_id = find_int_btf_id(btf); 4199 dummy_var_btf_id = btf__add_var(btf, 4200 "dummy_ksym", 4201 BTF_VAR_GLOBAL_ALLOCATED, 4202 int_btf_id); 4203 if (dummy_var_btf_id < 0) 4204 pr_warn("cannot create a dummy_ksym var\n"); 4205 4206 return dummy_var_btf_id; 4207 } 4208 4209 static int bpf_object__collect_externs(struct bpf_object *obj) 4210 { 4211 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4212 const struct btf_type *t; 4213 struct extern_desc *ext; 4214 int i, n, off, dummy_var_btf_id; 4215 const char *ext_name, *sec_name; 4216 size_t ext_essent_len; 4217 Elf_Scn *scn; 4218 Elf64_Shdr *sh; 4219 4220 if (!obj->efile.symbols) 4221 return 0; 4222 4223 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4224 sh = elf_sec_hdr(obj, scn); 4225 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4226 return -LIBBPF_ERRNO__FORMAT; 4227 4228 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4229 if (dummy_var_btf_id < 0) 4230 return dummy_var_btf_id; 4231 4232 n = sh->sh_size / sh->sh_entsize; 4233 pr_debug("looking for externs among %d symbols...\n", n); 4234 4235 for (i = 0; i < n; i++) { 4236 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4237 4238 if (!sym) 4239 return -LIBBPF_ERRNO__FORMAT; 4240 if (!sym_is_extern(sym)) 4241 continue; 4242 ext_name = elf_sym_str(obj, sym->st_name); 4243 if (!ext_name || !ext_name[0]) 4244 continue; 4245 4246 ext = obj->externs; 4247 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4248 if (!ext) 4249 return -ENOMEM; 4250 obj->externs = ext; 4251 ext = &ext[obj->nr_extern]; 4252 memset(ext, 0, sizeof(*ext)); 4253 obj->nr_extern++; 4254 4255 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4256 if (ext->btf_id <= 0) { 4257 pr_warn("failed to find BTF for extern '%s': %d\n", 4258 ext_name, ext->btf_id); 4259 return ext->btf_id; 4260 } 4261 t = btf__type_by_id(obj->btf, ext->btf_id); 4262 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off)); 4263 if (!ext->name) 4264 return -ENOMEM; 4265 ext->sym_idx = i; 4266 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4267 4268 ext_essent_len = bpf_core_essential_name_len(ext->name); 4269 ext->essent_name = NULL; 4270 if (ext_essent_len != strlen(ext->name)) { 4271 ext->essent_name = strndup(ext->name, ext_essent_len); 4272 if (!ext->essent_name) 4273 return -ENOMEM; 4274 } 4275 4276 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4277 if (ext->sec_btf_id <= 0) { 4278 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4279 ext_name, ext->btf_id, ext->sec_btf_id); 4280 return ext->sec_btf_id; 4281 } 4282 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4283 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4284 4285 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4286 if (btf_is_func(t)) { 4287 pr_warn("extern function %s is unsupported under %s section\n", 4288 ext->name, KCONFIG_SEC); 4289 return -ENOTSUP; 4290 } 4291 kcfg_sec = sec; 4292 ext->type = EXT_KCFG; 4293 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4294 if (ext->kcfg.sz <= 0) { 4295 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4296 ext_name, ext->kcfg.sz); 4297 return ext->kcfg.sz; 4298 } 4299 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4300 if (ext->kcfg.align <= 0) { 4301 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4302 ext_name, ext->kcfg.align); 4303 return -EINVAL; 4304 } 4305 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4306 &ext->kcfg.is_signed); 4307 if (ext->kcfg.type == KCFG_UNKNOWN) { 4308 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4309 return -ENOTSUP; 4310 } 4311 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4312 ksym_sec = sec; 4313 ext->type = EXT_KSYM; 4314 skip_mods_and_typedefs(obj->btf, t->type, 4315 &ext->ksym.type_id); 4316 } else { 4317 pr_warn("unrecognized extern section '%s'\n", sec_name); 4318 return -ENOTSUP; 4319 } 4320 } 4321 pr_debug("collected %d externs total\n", obj->nr_extern); 4322 4323 if (!obj->nr_extern) 4324 return 0; 4325 4326 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4327 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4328 4329 /* for .ksyms section, we need to turn all externs into allocated 4330 * variables in BTF to pass kernel verification; we do this by 4331 * pretending that each extern is a 8-byte variable 4332 */ 4333 if (ksym_sec) { 4334 /* find existing 4-byte integer type in BTF to use for fake 4335 * extern variables in DATASEC 4336 */ 4337 int int_btf_id = find_int_btf_id(obj->btf); 4338 /* For extern function, a dummy_var added earlier 4339 * will be used to replace the vs->type and 4340 * its name string will be used to refill 4341 * the missing param's name. 4342 */ 4343 const struct btf_type *dummy_var; 4344 4345 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4346 for (i = 0; i < obj->nr_extern; i++) { 4347 ext = &obj->externs[i]; 4348 if (ext->type != EXT_KSYM) 4349 continue; 4350 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4351 i, ext->sym_idx, ext->name); 4352 } 4353 4354 sec = ksym_sec; 4355 n = btf_vlen(sec); 4356 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4357 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4358 struct btf_type *vt; 4359 4360 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4361 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4362 ext = find_extern_by_name(obj, ext_name); 4363 if (!ext) { 4364 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4365 btf_kind_str(vt), ext_name); 4366 return -ESRCH; 4367 } 4368 if (btf_is_func(vt)) { 4369 const struct btf_type *func_proto; 4370 struct btf_param *param; 4371 int j; 4372 4373 func_proto = btf__type_by_id(obj->btf, 4374 vt->type); 4375 param = btf_params(func_proto); 4376 /* Reuse the dummy_var string if the 4377 * func proto does not have param name. 4378 */ 4379 for (j = 0; j < btf_vlen(func_proto); j++) 4380 if (param[j].type && !param[j].name_off) 4381 param[j].name_off = 4382 dummy_var->name_off; 4383 vs->type = dummy_var_btf_id; 4384 vt->info &= ~0xffff; 4385 vt->info |= BTF_FUNC_GLOBAL; 4386 } else { 4387 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4388 vt->type = int_btf_id; 4389 } 4390 vs->offset = off; 4391 vs->size = sizeof(int); 4392 } 4393 sec->size = off; 4394 } 4395 4396 if (kcfg_sec) { 4397 sec = kcfg_sec; 4398 /* for kcfg externs calculate their offsets within a .kconfig map */ 4399 off = 0; 4400 for (i = 0; i < obj->nr_extern; i++) { 4401 ext = &obj->externs[i]; 4402 if (ext->type != EXT_KCFG) 4403 continue; 4404 4405 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4406 off = ext->kcfg.data_off + ext->kcfg.sz; 4407 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4408 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4409 } 4410 sec->size = off; 4411 n = btf_vlen(sec); 4412 for (i = 0; i < n; i++) { 4413 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4414 4415 t = btf__type_by_id(obj->btf, vs->type); 4416 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4417 ext = find_extern_by_name(obj, ext_name); 4418 if (!ext) { 4419 pr_warn("failed to find extern definition for BTF var '%s'\n", 4420 ext_name); 4421 return -ESRCH; 4422 } 4423 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4424 vs->offset = ext->kcfg.data_off; 4425 } 4426 } 4427 return 0; 4428 } 4429 4430 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4431 { 4432 return prog->sec_idx == obj->efile.text_shndx; 4433 } 4434 4435 struct bpf_program * 4436 bpf_object__find_program_by_name(const struct bpf_object *obj, 4437 const char *name) 4438 { 4439 struct bpf_program *prog; 4440 4441 bpf_object__for_each_program(prog, obj) { 4442 if (prog_is_subprog(obj, prog)) 4443 continue; 4444 if (!strcmp(prog->name, name)) 4445 return prog; 4446 } 4447 return errno = ENOENT, NULL; 4448 } 4449 4450 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4451 int shndx) 4452 { 4453 switch (obj->efile.secs[shndx].sec_type) { 4454 case SEC_BSS: 4455 case SEC_DATA: 4456 case SEC_RODATA: 4457 return true; 4458 default: 4459 return false; 4460 } 4461 } 4462 4463 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4464 int shndx) 4465 { 4466 return shndx == obj->efile.btf_maps_shndx; 4467 } 4468 4469 static enum libbpf_map_type 4470 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4471 { 4472 if (shndx == obj->efile.symbols_shndx) 4473 return LIBBPF_MAP_KCONFIG; 4474 4475 switch (obj->efile.secs[shndx].sec_type) { 4476 case SEC_BSS: 4477 return LIBBPF_MAP_BSS; 4478 case SEC_DATA: 4479 return LIBBPF_MAP_DATA; 4480 case SEC_RODATA: 4481 return LIBBPF_MAP_RODATA; 4482 default: 4483 return LIBBPF_MAP_UNSPEC; 4484 } 4485 } 4486 4487 static int bpf_program__record_reloc(struct bpf_program *prog, 4488 struct reloc_desc *reloc_desc, 4489 __u32 insn_idx, const char *sym_name, 4490 const Elf64_Sym *sym, const Elf64_Rel *rel) 4491 { 4492 struct bpf_insn *insn = &prog->insns[insn_idx]; 4493 size_t map_idx, nr_maps = prog->obj->nr_maps; 4494 struct bpf_object *obj = prog->obj; 4495 __u32 shdr_idx = sym->st_shndx; 4496 enum libbpf_map_type type; 4497 const char *sym_sec_name; 4498 struct bpf_map *map; 4499 4500 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4501 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4502 prog->name, sym_name, insn_idx, insn->code); 4503 return -LIBBPF_ERRNO__RELOC; 4504 } 4505 4506 if (sym_is_extern(sym)) { 4507 int sym_idx = ELF64_R_SYM(rel->r_info); 4508 int i, n = obj->nr_extern; 4509 struct extern_desc *ext; 4510 4511 for (i = 0; i < n; i++) { 4512 ext = &obj->externs[i]; 4513 if (ext->sym_idx == sym_idx) 4514 break; 4515 } 4516 if (i >= n) { 4517 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4518 prog->name, sym_name, sym_idx); 4519 return -LIBBPF_ERRNO__RELOC; 4520 } 4521 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4522 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4523 if (insn->code == (BPF_JMP | BPF_CALL)) 4524 reloc_desc->type = RELO_EXTERN_CALL; 4525 else 4526 reloc_desc->type = RELO_EXTERN_LD64; 4527 reloc_desc->insn_idx = insn_idx; 4528 reloc_desc->ext_idx = i; 4529 return 0; 4530 } 4531 4532 /* sub-program call relocation */ 4533 if (is_call_insn(insn)) { 4534 if (insn->src_reg != BPF_PSEUDO_CALL) { 4535 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4536 return -LIBBPF_ERRNO__RELOC; 4537 } 4538 /* text_shndx can be 0, if no default "main" program exists */ 4539 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4540 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4541 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4542 prog->name, sym_name, sym_sec_name); 4543 return -LIBBPF_ERRNO__RELOC; 4544 } 4545 if (sym->st_value % BPF_INSN_SZ) { 4546 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4547 prog->name, sym_name, (size_t)sym->st_value); 4548 return -LIBBPF_ERRNO__RELOC; 4549 } 4550 reloc_desc->type = RELO_CALL; 4551 reloc_desc->insn_idx = insn_idx; 4552 reloc_desc->sym_off = sym->st_value; 4553 return 0; 4554 } 4555 4556 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4557 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4558 prog->name, sym_name, shdr_idx); 4559 return -LIBBPF_ERRNO__RELOC; 4560 } 4561 4562 /* loading subprog addresses */ 4563 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4564 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4565 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4566 */ 4567 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4568 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4569 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4570 return -LIBBPF_ERRNO__RELOC; 4571 } 4572 4573 reloc_desc->type = RELO_SUBPROG_ADDR; 4574 reloc_desc->insn_idx = insn_idx; 4575 reloc_desc->sym_off = sym->st_value; 4576 return 0; 4577 } 4578 4579 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4580 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4581 4582 /* arena data relocation */ 4583 if (shdr_idx == obj->efile.arena_data_shndx) { 4584 reloc_desc->type = RELO_DATA; 4585 reloc_desc->insn_idx = insn_idx; 4586 reloc_desc->map_idx = obj->arena_map - obj->maps; 4587 reloc_desc->sym_off = sym->st_value; 4588 return 0; 4589 } 4590 4591 /* generic map reference relocation */ 4592 if (type == LIBBPF_MAP_UNSPEC) { 4593 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4594 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4595 prog->name, sym_name, sym_sec_name); 4596 return -LIBBPF_ERRNO__RELOC; 4597 } 4598 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4599 map = &obj->maps[map_idx]; 4600 if (map->libbpf_type != type || 4601 map->sec_idx != sym->st_shndx || 4602 map->sec_offset != sym->st_value) 4603 continue; 4604 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4605 prog->name, map_idx, map->name, map->sec_idx, 4606 map->sec_offset, insn_idx); 4607 break; 4608 } 4609 if (map_idx >= nr_maps) { 4610 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4611 prog->name, sym_sec_name, (size_t)sym->st_value); 4612 return -LIBBPF_ERRNO__RELOC; 4613 } 4614 reloc_desc->type = RELO_LD64; 4615 reloc_desc->insn_idx = insn_idx; 4616 reloc_desc->map_idx = map_idx; 4617 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4618 return 0; 4619 } 4620 4621 /* global data map relocation */ 4622 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4623 pr_warn("prog '%s': bad data relo against section '%s'\n", 4624 prog->name, sym_sec_name); 4625 return -LIBBPF_ERRNO__RELOC; 4626 } 4627 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4628 map = &obj->maps[map_idx]; 4629 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4630 continue; 4631 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4632 prog->name, map_idx, map->name, map->sec_idx, 4633 map->sec_offset, insn_idx); 4634 break; 4635 } 4636 if (map_idx >= nr_maps) { 4637 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4638 prog->name, sym_sec_name); 4639 return -LIBBPF_ERRNO__RELOC; 4640 } 4641 4642 reloc_desc->type = RELO_DATA; 4643 reloc_desc->insn_idx = insn_idx; 4644 reloc_desc->map_idx = map_idx; 4645 reloc_desc->sym_off = sym->st_value; 4646 return 0; 4647 } 4648 4649 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4650 { 4651 return insn_idx >= prog->sec_insn_off && 4652 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4653 } 4654 4655 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4656 size_t sec_idx, size_t insn_idx) 4657 { 4658 int l = 0, r = obj->nr_programs - 1, m; 4659 struct bpf_program *prog; 4660 4661 if (!obj->nr_programs) 4662 return NULL; 4663 4664 while (l < r) { 4665 m = l + (r - l + 1) / 2; 4666 prog = &obj->programs[m]; 4667 4668 if (prog->sec_idx < sec_idx || 4669 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4670 l = m; 4671 else 4672 r = m - 1; 4673 } 4674 /* matching program could be at index l, but it still might be the 4675 * wrong one, so we need to double check conditions for the last time 4676 */ 4677 prog = &obj->programs[l]; 4678 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4679 return prog; 4680 return NULL; 4681 } 4682 4683 static int 4684 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4685 { 4686 const char *relo_sec_name, *sec_name; 4687 size_t sec_idx = shdr->sh_info, sym_idx; 4688 struct bpf_program *prog; 4689 struct reloc_desc *relos; 4690 int err, i, nrels; 4691 const char *sym_name; 4692 __u32 insn_idx; 4693 Elf_Scn *scn; 4694 Elf_Data *scn_data; 4695 Elf64_Sym *sym; 4696 Elf64_Rel *rel; 4697 4698 if (sec_idx >= obj->efile.sec_cnt) 4699 return -EINVAL; 4700 4701 scn = elf_sec_by_idx(obj, sec_idx); 4702 scn_data = elf_sec_data(obj, scn); 4703 if (!scn_data) 4704 return -LIBBPF_ERRNO__FORMAT; 4705 4706 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4707 sec_name = elf_sec_name(obj, scn); 4708 if (!relo_sec_name || !sec_name) 4709 return -EINVAL; 4710 4711 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4712 relo_sec_name, sec_idx, sec_name); 4713 nrels = shdr->sh_size / shdr->sh_entsize; 4714 4715 for (i = 0; i < nrels; i++) { 4716 rel = elf_rel_by_idx(data, i); 4717 if (!rel) { 4718 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4719 return -LIBBPF_ERRNO__FORMAT; 4720 } 4721 4722 sym_idx = ELF64_R_SYM(rel->r_info); 4723 sym = elf_sym_by_idx(obj, sym_idx); 4724 if (!sym) { 4725 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4726 relo_sec_name, sym_idx, i); 4727 return -LIBBPF_ERRNO__FORMAT; 4728 } 4729 4730 if (sym->st_shndx >= obj->efile.sec_cnt) { 4731 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4732 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4733 return -LIBBPF_ERRNO__FORMAT; 4734 } 4735 4736 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4737 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4738 relo_sec_name, (size_t)rel->r_offset, i); 4739 return -LIBBPF_ERRNO__FORMAT; 4740 } 4741 4742 insn_idx = rel->r_offset / BPF_INSN_SZ; 4743 /* relocations against static functions are recorded as 4744 * relocations against the section that contains a function; 4745 * in such case, symbol will be STT_SECTION and sym.st_name 4746 * will point to empty string (0), so fetch section name 4747 * instead 4748 */ 4749 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4750 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4751 else 4752 sym_name = elf_sym_str(obj, sym->st_name); 4753 sym_name = sym_name ?: "<?"; 4754 4755 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4756 relo_sec_name, i, insn_idx, sym_name); 4757 4758 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4759 if (!prog) { 4760 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4761 relo_sec_name, i, sec_name, insn_idx); 4762 continue; 4763 } 4764 4765 relos = libbpf_reallocarray(prog->reloc_desc, 4766 prog->nr_reloc + 1, sizeof(*relos)); 4767 if (!relos) 4768 return -ENOMEM; 4769 prog->reloc_desc = relos; 4770 4771 /* adjust insn_idx to local BPF program frame of reference */ 4772 insn_idx -= prog->sec_insn_off; 4773 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4774 insn_idx, sym_name, sym, rel); 4775 if (err) 4776 return err; 4777 4778 prog->nr_reloc++; 4779 } 4780 return 0; 4781 } 4782 4783 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4784 { 4785 int id; 4786 4787 if (!obj->btf) 4788 return -ENOENT; 4789 4790 /* if it's BTF-defined map, we don't need to search for type IDs. 4791 * For struct_ops map, it does not need btf_key_type_id and 4792 * btf_value_type_id. 4793 */ 4794 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4795 return 0; 4796 4797 /* 4798 * LLVM annotates global data differently in BTF, that is, 4799 * only as '.data', '.bss' or '.rodata'. 4800 */ 4801 if (!bpf_map__is_internal(map)) 4802 return -ENOENT; 4803 4804 id = btf__find_by_name(obj->btf, map->real_name); 4805 if (id < 0) 4806 return id; 4807 4808 map->btf_key_type_id = 0; 4809 map->btf_value_type_id = id; 4810 return 0; 4811 } 4812 4813 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4814 { 4815 char file[PATH_MAX], buff[4096]; 4816 FILE *fp; 4817 __u32 val; 4818 int err; 4819 4820 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4821 memset(info, 0, sizeof(*info)); 4822 4823 fp = fopen(file, "re"); 4824 if (!fp) { 4825 err = -errno; 4826 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4827 errstr(err)); 4828 return err; 4829 } 4830 4831 while (fgets(buff, sizeof(buff), fp)) { 4832 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4833 info->type = val; 4834 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4835 info->key_size = val; 4836 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4837 info->value_size = val; 4838 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4839 info->max_entries = val; 4840 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4841 info->map_flags = val; 4842 } 4843 4844 fclose(fp); 4845 4846 return 0; 4847 } 4848 4849 static bool map_is_created(const struct bpf_map *map) 4850 { 4851 return map->obj->state >= OBJ_PREPARED || map->reused; 4852 } 4853 4854 bool bpf_map__autocreate(const struct bpf_map *map) 4855 { 4856 return map->autocreate; 4857 } 4858 4859 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4860 { 4861 if (map_is_created(map)) 4862 return libbpf_err(-EBUSY); 4863 4864 map->autocreate = autocreate; 4865 return 0; 4866 } 4867 4868 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4869 { 4870 if (!bpf_map__is_struct_ops(map)) 4871 return libbpf_err(-EINVAL); 4872 4873 map->autoattach = autoattach; 4874 return 0; 4875 } 4876 4877 bool bpf_map__autoattach(const struct bpf_map *map) 4878 { 4879 return map->autoattach; 4880 } 4881 4882 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4883 { 4884 struct bpf_map_info info; 4885 __u32 len = sizeof(info), name_len; 4886 int new_fd, err; 4887 char *new_name; 4888 4889 memset(&info, 0, len); 4890 err = bpf_map_get_info_by_fd(fd, &info, &len); 4891 if (err && errno == EINVAL) 4892 err = bpf_get_map_info_from_fdinfo(fd, &info); 4893 if (err) 4894 return libbpf_err(err); 4895 4896 name_len = strlen(info.name); 4897 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4898 new_name = strdup(map->name); 4899 else 4900 new_name = strdup(info.name); 4901 4902 if (!new_name) 4903 return libbpf_err(-errno); 4904 4905 /* 4906 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4907 * This is similar to what we do in ensure_good_fd(), but without 4908 * closing original FD. 4909 */ 4910 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4911 if (new_fd < 0) { 4912 err = -errno; 4913 goto err_free_new_name; 4914 } 4915 4916 err = reuse_fd(map->fd, new_fd); 4917 if (err) 4918 goto err_free_new_name; 4919 4920 free(map->name); 4921 4922 map->name = new_name; 4923 map->def.type = info.type; 4924 map->def.key_size = info.key_size; 4925 map->def.value_size = info.value_size; 4926 map->def.max_entries = info.max_entries; 4927 map->def.map_flags = info.map_flags; 4928 map->btf_key_type_id = info.btf_key_type_id; 4929 map->btf_value_type_id = info.btf_value_type_id; 4930 map->reused = true; 4931 map->map_extra = info.map_extra; 4932 4933 return 0; 4934 4935 err_free_new_name: 4936 free(new_name); 4937 return libbpf_err(err); 4938 } 4939 4940 __u32 bpf_map__max_entries(const struct bpf_map *map) 4941 { 4942 return map->def.max_entries; 4943 } 4944 4945 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4946 { 4947 if (!bpf_map_type__is_map_in_map(map->def.type)) 4948 return errno = EINVAL, NULL; 4949 4950 return map->inner_map; 4951 } 4952 4953 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4954 { 4955 if (map_is_created(map)) 4956 return libbpf_err(-EBUSY); 4957 4958 map->def.max_entries = max_entries; 4959 4960 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4961 if (map_is_ringbuf(map)) 4962 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4963 4964 return 0; 4965 } 4966 4967 static int bpf_object_prepare_token(struct bpf_object *obj) 4968 { 4969 const char *bpffs_path; 4970 int bpffs_fd = -1, token_fd, err; 4971 bool mandatory; 4972 enum libbpf_print_level level; 4973 4974 /* token is explicitly prevented */ 4975 if (obj->token_path && obj->token_path[0] == '\0') { 4976 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4977 return 0; 4978 } 4979 4980 mandatory = obj->token_path != NULL; 4981 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4982 4983 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4984 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4985 if (bpffs_fd < 0) { 4986 err = -errno; 4987 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 4988 obj->name, errstr(err), bpffs_path, 4989 mandatory ? "" : ", skipping optional step..."); 4990 return mandatory ? err : 0; 4991 } 4992 4993 token_fd = bpf_token_create(bpffs_fd, 0); 4994 close(bpffs_fd); 4995 if (token_fd < 0) { 4996 if (!mandatory && token_fd == -ENOENT) { 4997 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4998 obj->name, bpffs_path); 4999 return 0; 5000 } 5001 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 5002 obj->name, token_fd, bpffs_path, 5003 mandatory ? "" : ", skipping optional step..."); 5004 return mandatory ? token_fd : 0; 5005 } 5006 5007 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 5008 if (!obj->feat_cache) { 5009 close(token_fd); 5010 return -ENOMEM; 5011 } 5012 5013 obj->token_fd = token_fd; 5014 obj->feat_cache->token_fd = token_fd; 5015 5016 return 0; 5017 } 5018 5019 static int 5020 bpf_object__probe_loading(struct bpf_object *obj) 5021 { 5022 struct bpf_insn insns[] = { 5023 BPF_MOV64_IMM(BPF_REG_0, 0), 5024 BPF_EXIT_INSN(), 5025 }; 5026 int ret, insn_cnt = ARRAY_SIZE(insns); 5027 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5028 .token_fd = obj->token_fd, 5029 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5030 ); 5031 5032 if (obj->gen_loader) 5033 return 0; 5034 5035 ret = bump_rlimit_memlock(); 5036 if (ret) 5037 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5038 errstr(ret)); 5039 5040 /* make sure basic loading works */ 5041 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5042 if (ret < 0) 5043 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5044 if (ret < 0) { 5045 ret = errno; 5046 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5047 __func__, errstr(ret)); 5048 return -ret; 5049 } 5050 close(ret); 5051 5052 return 0; 5053 } 5054 5055 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5056 { 5057 if (obj->gen_loader) 5058 /* To generate loader program assume the latest kernel 5059 * to avoid doing extra prog_load, map_create syscalls. 5060 */ 5061 return true; 5062 5063 if (obj->token_fd) 5064 return feat_supported(obj->feat_cache, feat_id); 5065 5066 return feat_supported(NULL, feat_id); 5067 } 5068 5069 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5070 { 5071 struct bpf_map_info map_info; 5072 __u32 map_info_len = sizeof(map_info); 5073 int err; 5074 5075 memset(&map_info, 0, map_info_len); 5076 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5077 if (err && errno == EINVAL) 5078 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5079 if (err) { 5080 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5081 errstr(err)); 5082 return false; 5083 } 5084 5085 return (map_info.type == map->def.type && 5086 map_info.key_size == map->def.key_size && 5087 map_info.value_size == map->def.value_size && 5088 map_info.max_entries == map->def.max_entries && 5089 map_info.map_flags == map->def.map_flags && 5090 map_info.map_extra == map->map_extra); 5091 } 5092 5093 static int 5094 bpf_object__reuse_map(struct bpf_map *map) 5095 { 5096 int err, pin_fd; 5097 5098 pin_fd = bpf_obj_get(map->pin_path); 5099 if (pin_fd < 0) { 5100 err = -errno; 5101 if (err == -ENOENT) { 5102 pr_debug("found no pinned map to reuse at '%s'\n", 5103 map->pin_path); 5104 return 0; 5105 } 5106 5107 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5108 map->pin_path, errstr(err)); 5109 return err; 5110 } 5111 5112 if (!map_is_reuse_compat(map, pin_fd)) { 5113 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5114 map->pin_path); 5115 close(pin_fd); 5116 return -EINVAL; 5117 } 5118 5119 err = bpf_map__reuse_fd(map, pin_fd); 5120 close(pin_fd); 5121 if (err) 5122 return err; 5123 5124 map->pinned = true; 5125 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5126 5127 return 0; 5128 } 5129 5130 static int 5131 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5132 { 5133 enum libbpf_map_type map_type = map->libbpf_type; 5134 int err, zero = 0; 5135 size_t mmap_sz; 5136 5137 if (obj->gen_loader) { 5138 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5139 map->mmaped, map->def.value_size); 5140 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5141 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5142 return 0; 5143 } 5144 5145 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5146 if (err) { 5147 err = -errno; 5148 pr_warn("map '%s': failed to set initial contents: %s\n", 5149 bpf_map__name(map), errstr(err)); 5150 return err; 5151 } 5152 5153 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5154 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5155 err = bpf_map_freeze(map->fd); 5156 if (err) { 5157 err = -errno; 5158 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5159 bpf_map__name(map), errstr(err)); 5160 return err; 5161 } 5162 } 5163 5164 /* Remap anonymous mmap()-ed "map initialization image" as 5165 * a BPF map-backed mmap()-ed memory, but preserving the same 5166 * memory address. This will cause kernel to change process' 5167 * page table to point to a different piece of kernel memory, 5168 * but from userspace point of view memory address (and its 5169 * contents, being identical at this point) will stay the 5170 * same. This mapping will be released by bpf_object__close() 5171 * as per normal clean up procedure. 5172 */ 5173 mmap_sz = bpf_map_mmap_sz(map); 5174 if (map->def.map_flags & BPF_F_MMAPABLE) { 5175 void *mmaped; 5176 int prot; 5177 5178 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5179 prot = PROT_READ; 5180 else 5181 prot = PROT_READ | PROT_WRITE; 5182 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5183 if (mmaped == MAP_FAILED) { 5184 err = -errno; 5185 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5186 bpf_map__name(map), errstr(err)); 5187 return err; 5188 } 5189 map->mmaped = mmaped; 5190 } else if (map->mmaped) { 5191 munmap(map->mmaped, mmap_sz); 5192 map->mmaped = NULL; 5193 } 5194 5195 return 0; 5196 } 5197 5198 static void bpf_map__destroy(struct bpf_map *map); 5199 5200 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5201 { 5202 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5203 struct bpf_map_def *def = &map->def; 5204 const char *map_name = NULL; 5205 int err = 0, map_fd; 5206 5207 if (kernel_supports(obj, FEAT_PROG_NAME)) 5208 map_name = map->name; 5209 create_attr.map_ifindex = map->map_ifindex; 5210 create_attr.map_flags = def->map_flags; 5211 create_attr.numa_node = map->numa_node; 5212 create_attr.map_extra = map->map_extra; 5213 create_attr.token_fd = obj->token_fd; 5214 if (obj->token_fd) 5215 create_attr.map_flags |= BPF_F_TOKEN_FD; 5216 5217 if (bpf_map__is_struct_ops(map)) { 5218 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5219 if (map->mod_btf_fd >= 0) { 5220 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5221 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5222 } 5223 } 5224 5225 if (obj->btf && btf__fd(obj->btf) >= 0) { 5226 create_attr.btf_fd = btf__fd(obj->btf); 5227 create_attr.btf_key_type_id = map->btf_key_type_id; 5228 create_attr.btf_value_type_id = map->btf_value_type_id; 5229 } 5230 5231 if (bpf_map_type__is_map_in_map(def->type)) { 5232 if (map->inner_map) { 5233 err = map_set_def_max_entries(map->inner_map); 5234 if (err) 5235 return err; 5236 err = bpf_object__create_map(obj, map->inner_map, true); 5237 if (err) { 5238 pr_warn("map '%s': failed to create inner map: %s\n", 5239 map->name, errstr(err)); 5240 return err; 5241 } 5242 map->inner_map_fd = map->inner_map->fd; 5243 } 5244 if (map->inner_map_fd >= 0) 5245 create_attr.inner_map_fd = map->inner_map_fd; 5246 } 5247 5248 switch (def->type) { 5249 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5250 case BPF_MAP_TYPE_CGROUP_ARRAY: 5251 case BPF_MAP_TYPE_STACK_TRACE: 5252 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5253 case BPF_MAP_TYPE_HASH_OF_MAPS: 5254 case BPF_MAP_TYPE_DEVMAP: 5255 case BPF_MAP_TYPE_DEVMAP_HASH: 5256 case BPF_MAP_TYPE_CPUMAP: 5257 case BPF_MAP_TYPE_XSKMAP: 5258 case BPF_MAP_TYPE_SOCKMAP: 5259 case BPF_MAP_TYPE_SOCKHASH: 5260 case BPF_MAP_TYPE_QUEUE: 5261 case BPF_MAP_TYPE_STACK: 5262 case BPF_MAP_TYPE_ARENA: 5263 create_attr.btf_fd = 0; 5264 create_attr.btf_key_type_id = 0; 5265 create_attr.btf_value_type_id = 0; 5266 map->btf_key_type_id = 0; 5267 map->btf_value_type_id = 0; 5268 break; 5269 case BPF_MAP_TYPE_STRUCT_OPS: 5270 create_attr.btf_value_type_id = 0; 5271 break; 5272 default: 5273 break; 5274 } 5275 5276 if (obj->gen_loader) { 5277 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5278 def->key_size, def->value_size, def->max_entries, 5279 &create_attr, is_inner ? -1 : map - obj->maps); 5280 /* We keep pretenting we have valid FD to pass various fd >= 0 5281 * checks by just keeping original placeholder FDs in place. 5282 * See bpf_object__add_map() comment. 5283 * This placeholder fd will not be used with any syscall and 5284 * will be reset to -1 eventually. 5285 */ 5286 map_fd = map->fd; 5287 } else { 5288 map_fd = bpf_map_create(def->type, map_name, 5289 def->key_size, def->value_size, 5290 def->max_entries, &create_attr); 5291 } 5292 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5293 err = -errno; 5294 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5295 map->name, errstr(err)); 5296 create_attr.btf_fd = 0; 5297 create_attr.btf_key_type_id = 0; 5298 create_attr.btf_value_type_id = 0; 5299 map->btf_key_type_id = 0; 5300 map->btf_value_type_id = 0; 5301 map_fd = bpf_map_create(def->type, map_name, 5302 def->key_size, def->value_size, 5303 def->max_entries, &create_attr); 5304 } 5305 5306 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5307 if (obj->gen_loader) 5308 map->inner_map->fd = -1; 5309 bpf_map__destroy(map->inner_map); 5310 zfree(&map->inner_map); 5311 } 5312 5313 if (map_fd < 0) 5314 return map_fd; 5315 5316 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5317 if (map->fd == map_fd) 5318 return 0; 5319 5320 /* Keep placeholder FD value but now point it to the BPF map object. 5321 * This way everything that relied on this map's FD (e.g., relocated 5322 * ldimm64 instructions) will stay valid and won't need adjustments. 5323 * map->fd stays valid but now point to what map_fd points to. 5324 */ 5325 return reuse_fd(map->fd, map_fd); 5326 } 5327 5328 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5329 { 5330 const struct bpf_map *targ_map; 5331 unsigned int i; 5332 int fd, err = 0; 5333 5334 for (i = 0; i < map->init_slots_sz; i++) { 5335 if (!map->init_slots[i]) 5336 continue; 5337 5338 targ_map = map->init_slots[i]; 5339 fd = targ_map->fd; 5340 5341 if (obj->gen_loader) { 5342 bpf_gen__populate_outer_map(obj->gen_loader, 5343 map - obj->maps, i, 5344 targ_map - obj->maps); 5345 } else { 5346 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5347 } 5348 if (err) { 5349 err = -errno; 5350 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5351 map->name, i, targ_map->name, fd, errstr(err)); 5352 return err; 5353 } 5354 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5355 map->name, i, targ_map->name, fd); 5356 } 5357 5358 zfree(&map->init_slots); 5359 map->init_slots_sz = 0; 5360 5361 return 0; 5362 } 5363 5364 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5365 { 5366 const struct bpf_program *targ_prog; 5367 unsigned int i; 5368 int fd, err; 5369 5370 if (obj->gen_loader) 5371 return -ENOTSUP; 5372 5373 for (i = 0; i < map->init_slots_sz; i++) { 5374 if (!map->init_slots[i]) 5375 continue; 5376 5377 targ_prog = map->init_slots[i]; 5378 fd = bpf_program__fd(targ_prog); 5379 5380 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5381 if (err) { 5382 err = -errno; 5383 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5384 map->name, i, targ_prog->name, fd, errstr(err)); 5385 return err; 5386 } 5387 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5388 map->name, i, targ_prog->name, fd); 5389 } 5390 5391 zfree(&map->init_slots); 5392 map->init_slots_sz = 0; 5393 5394 return 0; 5395 } 5396 5397 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5398 { 5399 struct bpf_map *map; 5400 int i, err; 5401 5402 for (i = 0; i < obj->nr_maps; i++) { 5403 map = &obj->maps[i]; 5404 5405 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5406 continue; 5407 5408 err = init_prog_array_slots(obj, map); 5409 if (err < 0) 5410 return err; 5411 } 5412 return 0; 5413 } 5414 5415 static int map_set_def_max_entries(struct bpf_map *map) 5416 { 5417 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5418 int nr_cpus; 5419 5420 nr_cpus = libbpf_num_possible_cpus(); 5421 if (nr_cpus < 0) { 5422 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5423 map->name, nr_cpus); 5424 return nr_cpus; 5425 } 5426 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5427 map->def.max_entries = nr_cpus; 5428 } 5429 5430 return 0; 5431 } 5432 5433 static int 5434 bpf_object__create_maps(struct bpf_object *obj) 5435 { 5436 struct bpf_map *map; 5437 unsigned int i, j; 5438 int err; 5439 bool retried; 5440 5441 for (i = 0; i < obj->nr_maps; i++) { 5442 map = &obj->maps[i]; 5443 5444 /* To support old kernels, we skip creating global data maps 5445 * (.rodata, .data, .kconfig, etc); later on, during program 5446 * loading, if we detect that at least one of the to-be-loaded 5447 * programs is referencing any global data map, we'll error 5448 * out with program name and relocation index logged. 5449 * This approach allows to accommodate Clang emitting 5450 * unnecessary .rodata.str1.1 sections for string literals, 5451 * but also it allows to have CO-RE applications that use 5452 * global variables in some of BPF programs, but not others. 5453 * If those global variable-using programs are not loaded at 5454 * runtime due to bpf_program__set_autoload(prog, false), 5455 * bpf_object loading will succeed just fine even on old 5456 * kernels. 5457 */ 5458 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5459 map->autocreate = false; 5460 5461 if (!map->autocreate) { 5462 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5463 continue; 5464 } 5465 5466 err = map_set_def_max_entries(map); 5467 if (err) 5468 goto err_out; 5469 5470 retried = false; 5471 retry: 5472 if (map->pin_path) { 5473 err = bpf_object__reuse_map(map); 5474 if (err) { 5475 pr_warn("map '%s': error reusing pinned map\n", 5476 map->name); 5477 goto err_out; 5478 } 5479 if (retried && map->fd < 0) { 5480 pr_warn("map '%s': cannot find pinned map\n", 5481 map->name); 5482 err = -ENOENT; 5483 goto err_out; 5484 } 5485 } 5486 5487 if (map->reused) { 5488 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5489 map->name, map->fd); 5490 } else { 5491 err = bpf_object__create_map(obj, map, false); 5492 if (err) 5493 goto err_out; 5494 5495 pr_debug("map '%s': created successfully, fd=%d\n", 5496 map->name, map->fd); 5497 5498 if (bpf_map__is_internal(map)) { 5499 err = bpf_object__populate_internal_map(obj, map); 5500 if (err < 0) 5501 goto err_out; 5502 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5503 map->mmaped = mmap((void *)(long)map->map_extra, 5504 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5505 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5506 map->fd, 0); 5507 if (map->mmaped == MAP_FAILED) { 5508 err = -errno; 5509 map->mmaped = NULL; 5510 pr_warn("map '%s': failed to mmap arena: %s\n", 5511 map->name, errstr(err)); 5512 return err; 5513 } 5514 if (obj->arena_data) { 5515 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5516 zfree(&obj->arena_data); 5517 } 5518 } 5519 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5520 err = init_map_in_map_slots(obj, map); 5521 if (err < 0) 5522 goto err_out; 5523 } 5524 } 5525 5526 if (map->pin_path && !map->pinned) { 5527 err = bpf_map__pin(map, NULL); 5528 if (err) { 5529 if (!retried && err == -EEXIST) { 5530 retried = true; 5531 goto retry; 5532 } 5533 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5534 map->name, map->pin_path, errstr(err)); 5535 goto err_out; 5536 } 5537 } 5538 } 5539 5540 return 0; 5541 5542 err_out: 5543 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5544 pr_perm_msg(err); 5545 for (j = 0; j < i; j++) 5546 zclose(obj->maps[j].fd); 5547 return err; 5548 } 5549 5550 static bool bpf_core_is_flavor_sep(const char *s) 5551 { 5552 /* check X___Y name pattern, where X and Y are not underscores */ 5553 return s[0] != '_' && /* X */ 5554 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5555 s[4] != '_'; /* Y */ 5556 } 5557 5558 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5559 * before last triple underscore. Struct name part after last triple 5560 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5561 */ 5562 size_t bpf_core_essential_name_len(const char *name) 5563 { 5564 size_t n = strlen(name); 5565 int i; 5566 5567 for (i = n - 5; i >= 0; i--) { 5568 if (bpf_core_is_flavor_sep(name + i)) 5569 return i + 1; 5570 } 5571 return n; 5572 } 5573 5574 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5575 { 5576 if (!cands) 5577 return; 5578 5579 free(cands->cands); 5580 free(cands); 5581 } 5582 5583 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5584 size_t local_essent_len, 5585 const struct btf *targ_btf, 5586 const char *targ_btf_name, 5587 int targ_start_id, 5588 struct bpf_core_cand_list *cands) 5589 { 5590 struct bpf_core_cand *new_cands, *cand; 5591 const struct btf_type *t, *local_t; 5592 const char *targ_name, *local_name; 5593 size_t targ_essent_len; 5594 int n, i; 5595 5596 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5597 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5598 5599 n = btf__type_cnt(targ_btf); 5600 for (i = targ_start_id; i < n; i++) { 5601 t = btf__type_by_id(targ_btf, i); 5602 if (!btf_kind_core_compat(t, local_t)) 5603 continue; 5604 5605 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5606 if (str_is_empty(targ_name)) 5607 continue; 5608 5609 targ_essent_len = bpf_core_essential_name_len(targ_name); 5610 if (targ_essent_len != local_essent_len) 5611 continue; 5612 5613 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5614 continue; 5615 5616 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5617 local_cand->id, btf_kind_str(local_t), 5618 local_name, i, btf_kind_str(t), targ_name, 5619 targ_btf_name); 5620 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5621 sizeof(*cands->cands)); 5622 if (!new_cands) 5623 return -ENOMEM; 5624 5625 cand = &new_cands[cands->len]; 5626 cand->btf = targ_btf; 5627 cand->id = i; 5628 5629 cands->cands = new_cands; 5630 cands->len++; 5631 } 5632 return 0; 5633 } 5634 5635 static int load_module_btfs(struct bpf_object *obj) 5636 { 5637 struct bpf_btf_info info; 5638 struct module_btf *mod_btf; 5639 struct btf *btf; 5640 char name[64]; 5641 __u32 id = 0, len; 5642 int err, fd; 5643 5644 if (obj->btf_modules_loaded) 5645 return 0; 5646 5647 if (obj->gen_loader) 5648 return 0; 5649 5650 /* don't do this again, even if we find no module BTFs */ 5651 obj->btf_modules_loaded = true; 5652 5653 /* kernel too old to support module BTFs */ 5654 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5655 return 0; 5656 5657 while (true) { 5658 err = bpf_btf_get_next_id(id, &id); 5659 if (err && errno == ENOENT) 5660 return 0; 5661 if (err && errno == EPERM) { 5662 pr_debug("skipping module BTFs loading, missing privileges\n"); 5663 return 0; 5664 } 5665 if (err) { 5666 err = -errno; 5667 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5668 return err; 5669 } 5670 5671 fd = bpf_btf_get_fd_by_id(id); 5672 if (fd < 0) { 5673 if (errno == ENOENT) 5674 continue; /* expected race: BTF was unloaded */ 5675 err = -errno; 5676 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5677 return err; 5678 } 5679 5680 len = sizeof(info); 5681 memset(&info, 0, sizeof(info)); 5682 info.name = ptr_to_u64(name); 5683 info.name_len = sizeof(name); 5684 5685 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5686 if (err) { 5687 err = -errno; 5688 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5689 goto err_out; 5690 } 5691 5692 /* ignore non-module BTFs */ 5693 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5694 close(fd); 5695 continue; 5696 } 5697 5698 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5699 err = libbpf_get_error(btf); 5700 if (err) { 5701 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5702 name, id, errstr(err)); 5703 goto err_out; 5704 } 5705 5706 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5707 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5708 if (err) 5709 goto err_out; 5710 5711 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5712 5713 mod_btf->btf = btf; 5714 mod_btf->id = id; 5715 mod_btf->fd = fd; 5716 mod_btf->name = strdup(name); 5717 if (!mod_btf->name) { 5718 err = -ENOMEM; 5719 goto err_out; 5720 } 5721 continue; 5722 5723 err_out: 5724 close(fd); 5725 return err; 5726 } 5727 5728 return 0; 5729 } 5730 5731 static struct bpf_core_cand_list * 5732 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5733 { 5734 struct bpf_core_cand local_cand = {}; 5735 struct bpf_core_cand_list *cands; 5736 const struct btf *main_btf; 5737 const struct btf_type *local_t; 5738 const char *local_name; 5739 size_t local_essent_len; 5740 int err, i; 5741 5742 local_cand.btf = local_btf; 5743 local_cand.id = local_type_id; 5744 local_t = btf__type_by_id(local_btf, local_type_id); 5745 if (!local_t) 5746 return ERR_PTR(-EINVAL); 5747 5748 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5749 if (str_is_empty(local_name)) 5750 return ERR_PTR(-EINVAL); 5751 local_essent_len = bpf_core_essential_name_len(local_name); 5752 5753 cands = calloc(1, sizeof(*cands)); 5754 if (!cands) 5755 return ERR_PTR(-ENOMEM); 5756 5757 /* Attempt to find target candidates in vmlinux BTF first */ 5758 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5759 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5760 if (err) 5761 goto err_out; 5762 5763 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5764 if (cands->len) 5765 return cands; 5766 5767 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5768 if (obj->btf_vmlinux_override) 5769 return cands; 5770 5771 /* now look through module BTFs, trying to still find candidates */ 5772 err = load_module_btfs(obj); 5773 if (err) 5774 goto err_out; 5775 5776 for (i = 0; i < obj->btf_module_cnt; i++) { 5777 err = bpf_core_add_cands(&local_cand, local_essent_len, 5778 obj->btf_modules[i].btf, 5779 obj->btf_modules[i].name, 5780 btf__type_cnt(obj->btf_vmlinux), 5781 cands); 5782 if (err) 5783 goto err_out; 5784 } 5785 5786 return cands; 5787 err_out: 5788 bpf_core_free_cands(cands); 5789 return ERR_PTR(err); 5790 } 5791 5792 /* Check local and target types for compatibility. This check is used for 5793 * type-based CO-RE relocations and follow slightly different rules than 5794 * field-based relocations. This function assumes that root types were already 5795 * checked for name match. Beyond that initial root-level name check, names 5796 * are completely ignored. Compatibility rules are as follows: 5797 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5798 * kind should match for local and target types (i.e., STRUCT is not 5799 * compatible with UNION); 5800 * - for ENUMs, the size is ignored; 5801 * - for INT, size and signedness are ignored; 5802 * - for ARRAY, dimensionality is ignored, element types are checked for 5803 * compatibility recursively; 5804 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5805 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5806 * - FUNC_PROTOs are compatible if they have compatible signature: same 5807 * number of input args and compatible return and argument types. 5808 * These rules are not set in stone and probably will be adjusted as we get 5809 * more experience with using BPF CO-RE relocations. 5810 */ 5811 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5812 const struct btf *targ_btf, __u32 targ_id) 5813 { 5814 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5815 } 5816 5817 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5818 const struct btf *targ_btf, __u32 targ_id) 5819 { 5820 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5821 } 5822 5823 static size_t bpf_core_hash_fn(const long key, void *ctx) 5824 { 5825 return key; 5826 } 5827 5828 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5829 { 5830 return k1 == k2; 5831 } 5832 5833 static int record_relo_core(struct bpf_program *prog, 5834 const struct bpf_core_relo *core_relo, int insn_idx) 5835 { 5836 struct reloc_desc *relos, *relo; 5837 5838 relos = libbpf_reallocarray(prog->reloc_desc, 5839 prog->nr_reloc + 1, sizeof(*relos)); 5840 if (!relos) 5841 return -ENOMEM; 5842 relo = &relos[prog->nr_reloc]; 5843 relo->type = RELO_CORE; 5844 relo->insn_idx = insn_idx; 5845 relo->core_relo = core_relo; 5846 prog->reloc_desc = relos; 5847 prog->nr_reloc++; 5848 return 0; 5849 } 5850 5851 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5852 { 5853 struct reloc_desc *relo; 5854 int i; 5855 5856 for (i = 0; i < prog->nr_reloc; i++) { 5857 relo = &prog->reloc_desc[i]; 5858 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5859 continue; 5860 5861 return relo->core_relo; 5862 } 5863 5864 return NULL; 5865 } 5866 5867 static int bpf_core_resolve_relo(struct bpf_program *prog, 5868 const struct bpf_core_relo *relo, 5869 int relo_idx, 5870 const struct btf *local_btf, 5871 struct hashmap *cand_cache, 5872 struct bpf_core_relo_res *targ_res) 5873 { 5874 struct bpf_core_spec specs_scratch[3] = {}; 5875 struct bpf_core_cand_list *cands = NULL; 5876 const char *prog_name = prog->name; 5877 const struct btf_type *local_type; 5878 const char *local_name; 5879 __u32 local_id = relo->type_id; 5880 int err; 5881 5882 local_type = btf__type_by_id(local_btf, local_id); 5883 if (!local_type) 5884 return -EINVAL; 5885 5886 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5887 if (!local_name) 5888 return -EINVAL; 5889 5890 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5891 !hashmap__find(cand_cache, local_id, &cands)) { 5892 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5893 if (IS_ERR(cands)) { 5894 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5895 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5896 local_name, PTR_ERR(cands)); 5897 return PTR_ERR(cands); 5898 } 5899 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5900 if (err) { 5901 bpf_core_free_cands(cands); 5902 return err; 5903 } 5904 } 5905 5906 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5907 targ_res); 5908 } 5909 5910 static int 5911 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5912 { 5913 const struct btf_ext_info_sec *sec; 5914 struct bpf_core_relo_res targ_res; 5915 const struct bpf_core_relo *rec; 5916 const struct btf_ext_info *seg; 5917 struct hashmap_entry *entry; 5918 struct hashmap *cand_cache = NULL; 5919 struct bpf_program *prog; 5920 struct bpf_insn *insn; 5921 const char *sec_name; 5922 int i, err = 0, insn_idx, sec_idx, sec_num; 5923 5924 if (obj->btf_ext->core_relo_info.len == 0) 5925 return 0; 5926 5927 if (targ_btf_path) { 5928 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5929 err = libbpf_get_error(obj->btf_vmlinux_override); 5930 if (err) { 5931 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 5932 return err; 5933 } 5934 } 5935 5936 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5937 if (IS_ERR(cand_cache)) { 5938 err = PTR_ERR(cand_cache); 5939 goto out; 5940 } 5941 5942 seg = &obj->btf_ext->core_relo_info; 5943 sec_num = 0; 5944 for_each_btf_ext_sec(seg, sec) { 5945 sec_idx = seg->sec_idxs[sec_num]; 5946 sec_num++; 5947 5948 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5949 if (str_is_empty(sec_name)) { 5950 err = -EINVAL; 5951 goto out; 5952 } 5953 5954 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5955 5956 for_each_btf_ext_rec(seg, sec, i, rec) { 5957 if (rec->insn_off % BPF_INSN_SZ) 5958 return -EINVAL; 5959 insn_idx = rec->insn_off / BPF_INSN_SZ; 5960 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5961 if (!prog) { 5962 /* When __weak subprog is "overridden" by another instance 5963 * of the subprog from a different object file, linker still 5964 * appends all the .BTF.ext info that used to belong to that 5965 * eliminated subprogram. 5966 * This is similar to what x86-64 linker does for relocations. 5967 * So just ignore such relocations just like we ignore 5968 * subprog instructions when discovering subprograms. 5969 */ 5970 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5971 sec_name, i, insn_idx); 5972 continue; 5973 } 5974 /* no need to apply CO-RE relocation if the program is 5975 * not going to be loaded 5976 */ 5977 if (!prog->autoload) 5978 continue; 5979 5980 /* adjust insn_idx from section frame of reference to the local 5981 * program's frame of reference; (sub-)program code is not yet 5982 * relocated, so it's enough to just subtract in-section offset 5983 */ 5984 insn_idx = insn_idx - prog->sec_insn_off; 5985 if (insn_idx >= prog->insns_cnt) 5986 return -EINVAL; 5987 insn = &prog->insns[insn_idx]; 5988 5989 err = record_relo_core(prog, rec, insn_idx); 5990 if (err) { 5991 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 5992 prog->name, i, errstr(err)); 5993 goto out; 5994 } 5995 5996 if (prog->obj->gen_loader) 5997 continue; 5998 5999 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 6000 if (err) { 6001 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 6002 prog->name, i, errstr(err)); 6003 goto out; 6004 } 6005 6006 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 6007 if (err) { 6008 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 6009 prog->name, i, insn_idx, errstr(err)); 6010 goto out; 6011 } 6012 } 6013 } 6014 6015 out: 6016 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6017 btf__free(obj->btf_vmlinux_override); 6018 obj->btf_vmlinux_override = NULL; 6019 6020 if (!IS_ERR_OR_NULL(cand_cache)) { 6021 hashmap__for_each_entry(cand_cache, entry, i) { 6022 bpf_core_free_cands(entry->pvalue); 6023 } 6024 hashmap__free(cand_cache); 6025 } 6026 return err; 6027 } 6028 6029 /* base map load ldimm64 special constant, used also for log fixup logic */ 6030 #define POISON_LDIMM64_MAP_BASE 2001000000 6031 #define POISON_LDIMM64_MAP_PFX "200100" 6032 6033 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6034 int insn_idx, struct bpf_insn *insn, 6035 int map_idx, const struct bpf_map *map) 6036 { 6037 int i; 6038 6039 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6040 prog->name, relo_idx, insn_idx, map_idx, map->name); 6041 6042 /* we turn single ldimm64 into two identical invalid calls */ 6043 for (i = 0; i < 2; i++) { 6044 insn->code = BPF_JMP | BPF_CALL; 6045 insn->dst_reg = 0; 6046 insn->src_reg = 0; 6047 insn->off = 0; 6048 /* if this instruction is reachable (not a dead code), 6049 * verifier will complain with something like: 6050 * invalid func unknown#2001000123 6051 * where lower 123 is map index into obj->maps[] array 6052 */ 6053 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6054 6055 insn++; 6056 } 6057 } 6058 6059 /* unresolved kfunc call special constant, used also for log fixup logic */ 6060 #define POISON_CALL_KFUNC_BASE 2002000000 6061 #define POISON_CALL_KFUNC_PFX "2002" 6062 6063 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6064 int insn_idx, struct bpf_insn *insn, 6065 int ext_idx, const struct extern_desc *ext) 6066 { 6067 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6068 prog->name, relo_idx, insn_idx, ext->name); 6069 6070 /* we turn kfunc call into invalid helper call with identifiable constant */ 6071 insn->code = BPF_JMP | BPF_CALL; 6072 insn->dst_reg = 0; 6073 insn->src_reg = 0; 6074 insn->off = 0; 6075 /* if this instruction is reachable (not a dead code), 6076 * verifier will complain with something like: 6077 * invalid func unknown#2001000123 6078 * where lower 123 is extern index into obj->externs[] array 6079 */ 6080 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6081 } 6082 6083 /* Relocate data references within program code: 6084 * - map references; 6085 * - global variable references; 6086 * - extern references. 6087 */ 6088 static int 6089 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6090 { 6091 int i; 6092 6093 for (i = 0; i < prog->nr_reloc; i++) { 6094 struct reloc_desc *relo = &prog->reloc_desc[i]; 6095 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6096 const struct bpf_map *map; 6097 struct extern_desc *ext; 6098 6099 switch (relo->type) { 6100 case RELO_LD64: 6101 map = &obj->maps[relo->map_idx]; 6102 if (obj->gen_loader) { 6103 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6104 insn[0].imm = relo->map_idx; 6105 } else if (map->autocreate) { 6106 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6107 insn[0].imm = map->fd; 6108 } else { 6109 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6110 relo->map_idx, map); 6111 } 6112 break; 6113 case RELO_DATA: 6114 map = &obj->maps[relo->map_idx]; 6115 insn[1].imm = insn[0].imm + relo->sym_off; 6116 if (obj->gen_loader) { 6117 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6118 insn[0].imm = relo->map_idx; 6119 } else if (map->autocreate) { 6120 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6121 insn[0].imm = map->fd; 6122 } else { 6123 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6124 relo->map_idx, map); 6125 } 6126 break; 6127 case RELO_EXTERN_LD64: 6128 ext = &obj->externs[relo->ext_idx]; 6129 if (ext->type == EXT_KCFG) { 6130 if (obj->gen_loader) { 6131 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6132 insn[0].imm = obj->kconfig_map_idx; 6133 } else { 6134 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6135 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6136 } 6137 insn[1].imm = ext->kcfg.data_off; 6138 } else /* EXT_KSYM */ { 6139 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6140 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6141 insn[0].imm = ext->ksym.kernel_btf_id; 6142 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6143 } else { /* typeless ksyms or unresolved typed ksyms */ 6144 insn[0].imm = (__u32)ext->ksym.addr; 6145 insn[1].imm = ext->ksym.addr >> 32; 6146 } 6147 } 6148 break; 6149 case RELO_EXTERN_CALL: 6150 ext = &obj->externs[relo->ext_idx]; 6151 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6152 if (ext->is_set) { 6153 insn[0].imm = ext->ksym.kernel_btf_id; 6154 insn[0].off = ext->ksym.btf_fd_idx; 6155 } else { /* unresolved weak kfunc call */ 6156 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6157 relo->ext_idx, ext); 6158 } 6159 break; 6160 case RELO_SUBPROG_ADDR: 6161 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6162 pr_warn("prog '%s': relo #%d: bad insn\n", 6163 prog->name, i); 6164 return -EINVAL; 6165 } 6166 /* handled already */ 6167 break; 6168 case RELO_CALL: 6169 /* handled already */ 6170 break; 6171 case RELO_CORE: 6172 /* will be handled by bpf_program_record_relos() */ 6173 break; 6174 default: 6175 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6176 prog->name, i, relo->type); 6177 return -EINVAL; 6178 } 6179 } 6180 6181 return 0; 6182 } 6183 6184 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6185 const struct bpf_program *prog, 6186 const struct btf_ext_info *ext_info, 6187 void **prog_info, __u32 *prog_rec_cnt, 6188 __u32 *prog_rec_sz) 6189 { 6190 void *copy_start = NULL, *copy_end = NULL; 6191 void *rec, *rec_end, *new_prog_info; 6192 const struct btf_ext_info_sec *sec; 6193 size_t old_sz, new_sz; 6194 int i, sec_num, sec_idx, off_adj; 6195 6196 sec_num = 0; 6197 for_each_btf_ext_sec(ext_info, sec) { 6198 sec_idx = ext_info->sec_idxs[sec_num]; 6199 sec_num++; 6200 if (prog->sec_idx != sec_idx) 6201 continue; 6202 6203 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6204 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6205 6206 if (insn_off < prog->sec_insn_off) 6207 continue; 6208 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6209 break; 6210 6211 if (!copy_start) 6212 copy_start = rec; 6213 copy_end = rec + ext_info->rec_size; 6214 } 6215 6216 if (!copy_start) 6217 return -ENOENT; 6218 6219 /* append func/line info of a given (sub-)program to the main 6220 * program func/line info 6221 */ 6222 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6223 new_sz = old_sz + (copy_end - copy_start); 6224 new_prog_info = realloc(*prog_info, new_sz); 6225 if (!new_prog_info) 6226 return -ENOMEM; 6227 *prog_info = new_prog_info; 6228 *prog_rec_cnt = new_sz / ext_info->rec_size; 6229 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6230 6231 /* Kernel instruction offsets are in units of 8-byte 6232 * instructions, while .BTF.ext instruction offsets generated 6233 * by Clang are in units of bytes. So convert Clang offsets 6234 * into kernel offsets and adjust offset according to program 6235 * relocated position. 6236 */ 6237 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6238 rec = new_prog_info + old_sz; 6239 rec_end = new_prog_info + new_sz; 6240 for (; rec < rec_end; rec += ext_info->rec_size) { 6241 __u32 *insn_off = rec; 6242 6243 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6244 } 6245 *prog_rec_sz = ext_info->rec_size; 6246 return 0; 6247 } 6248 6249 return -ENOENT; 6250 } 6251 6252 static int 6253 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6254 struct bpf_program *main_prog, 6255 const struct bpf_program *prog) 6256 { 6257 int err; 6258 6259 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6260 * support func/line info 6261 */ 6262 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6263 return 0; 6264 6265 /* only attempt func info relocation if main program's func_info 6266 * relocation was successful 6267 */ 6268 if (main_prog != prog && !main_prog->func_info) 6269 goto line_info; 6270 6271 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6272 &main_prog->func_info, 6273 &main_prog->func_info_cnt, 6274 &main_prog->func_info_rec_size); 6275 if (err) { 6276 if (err != -ENOENT) { 6277 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6278 prog->name, errstr(err)); 6279 return err; 6280 } 6281 if (main_prog->func_info) { 6282 /* 6283 * Some info has already been found but has problem 6284 * in the last btf_ext reloc. Must have to error out. 6285 */ 6286 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6287 return err; 6288 } 6289 /* Have problem loading the very first info. Ignore the rest. */ 6290 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6291 prog->name); 6292 } 6293 6294 line_info: 6295 /* don't relocate line info if main program's relocation failed */ 6296 if (main_prog != prog && !main_prog->line_info) 6297 return 0; 6298 6299 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6300 &main_prog->line_info, 6301 &main_prog->line_info_cnt, 6302 &main_prog->line_info_rec_size); 6303 if (err) { 6304 if (err != -ENOENT) { 6305 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6306 prog->name, errstr(err)); 6307 return err; 6308 } 6309 if (main_prog->line_info) { 6310 /* 6311 * Some info has already been found but has problem 6312 * in the last btf_ext reloc. Must have to error out. 6313 */ 6314 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6315 return err; 6316 } 6317 /* Have problem loading the very first info. Ignore the rest. */ 6318 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6319 prog->name); 6320 } 6321 return 0; 6322 } 6323 6324 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6325 { 6326 size_t insn_idx = *(const size_t *)key; 6327 const struct reloc_desc *relo = elem; 6328 6329 if (insn_idx == relo->insn_idx) 6330 return 0; 6331 return insn_idx < relo->insn_idx ? -1 : 1; 6332 } 6333 6334 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6335 { 6336 if (!prog->nr_reloc) 6337 return NULL; 6338 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6339 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6340 } 6341 6342 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6343 { 6344 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6345 struct reloc_desc *relos; 6346 int i; 6347 6348 if (main_prog == subprog) 6349 return 0; 6350 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6351 /* if new count is zero, reallocarray can return a valid NULL result; 6352 * in this case the previous pointer will be freed, so we *have to* 6353 * reassign old pointer to the new value (even if it's NULL) 6354 */ 6355 if (!relos && new_cnt) 6356 return -ENOMEM; 6357 if (subprog->nr_reloc) 6358 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6359 sizeof(*relos) * subprog->nr_reloc); 6360 6361 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6362 relos[i].insn_idx += subprog->sub_insn_off; 6363 /* After insn_idx adjustment the 'relos' array is still sorted 6364 * by insn_idx and doesn't break bsearch. 6365 */ 6366 main_prog->reloc_desc = relos; 6367 main_prog->nr_reloc = new_cnt; 6368 return 0; 6369 } 6370 6371 static int 6372 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6373 struct bpf_program *subprog) 6374 { 6375 struct bpf_insn *insns; 6376 size_t new_cnt; 6377 int err; 6378 6379 subprog->sub_insn_off = main_prog->insns_cnt; 6380 6381 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6382 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6383 if (!insns) { 6384 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6385 return -ENOMEM; 6386 } 6387 main_prog->insns = insns; 6388 main_prog->insns_cnt = new_cnt; 6389 6390 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6391 subprog->insns_cnt * sizeof(*insns)); 6392 6393 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6394 main_prog->name, subprog->insns_cnt, subprog->name); 6395 6396 /* The subprog insns are now appended. Append its relos too. */ 6397 err = append_subprog_relos(main_prog, subprog); 6398 if (err) 6399 return err; 6400 return 0; 6401 } 6402 6403 static int 6404 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6405 struct bpf_program *prog) 6406 { 6407 size_t sub_insn_idx, insn_idx; 6408 struct bpf_program *subprog; 6409 struct reloc_desc *relo; 6410 struct bpf_insn *insn; 6411 int err; 6412 6413 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6414 if (err) 6415 return err; 6416 6417 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6418 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6419 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6420 continue; 6421 6422 relo = find_prog_insn_relo(prog, insn_idx); 6423 if (relo && relo->type == RELO_EXTERN_CALL) 6424 /* kfunc relocations will be handled later 6425 * in bpf_object__relocate_data() 6426 */ 6427 continue; 6428 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6429 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6430 prog->name, insn_idx, relo->type); 6431 return -LIBBPF_ERRNO__RELOC; 6432 } 6433 if (relo) { 6434 /* sub-program instruction index is a combination of 6435 * an offset of a symbol pointed to by relocation and 6436 * call instruction's imm field; for global functions, 6437 * call always has imm = -1, but for static functions 6438 * relocation is against STT_SECTION and insn->imm 6439 * points to a start of a static function 6440 * 6441 * for subprog addr relocation, the relo->sym_off + insn->imm is 6442 * the byte offset in the corresponding section. 6443 */ 6444 if (relo->type == RELO_CALL) 6445 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6446 else 6447 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6448 } else if (insn_is_pseudo_func(insn)) { 6449 /* 6450 * RELO_SUBPROG_ADDR relo is always emitted even if both 6451 * functions are in the same section, so it shouldn't reach here. 6452 */ 6453 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6454 prog->name, insn_idx); 6455 return -LIBBPF_ERRNO__RELOC; 6456 } else { 6457 /* if subprogram call is to a static function within 6458 * the same ELF section, there won't be any relocation 6459 * emitted, but it also means there is no additional 6460 * offset necessary, insns->imm is relative to 6461 * instruction's original position within the section 6462 */ 6463 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6464 } 6465 6466 /* we enforce that sub-programs should be in .text section */ 6467 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6468 if (!subprog) { 6469 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6470 prog->name); 6471 return -LIBBPF_ERRNO__RELOC; 6472 } 6473 6474 /* if it's the first call instruction calling into this 6475 * subprogram (meaning this subprog hasn't been processed 6476 * yet) within the context of current main program: 6477 * - append it at the end of main program's instructions blog; 6478 * - process is recursively, while current program is put on hold; 6479 * - if that subprogram calls some other not yet processes 6480 * subprogram, same thing will happen recursively until 6481 * there are no more unprocesses subprograms left to append 6482 * and relocate. 6483 */ 6484 if (subprog->sub_insn_off == 0) { 6485 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6486 if (err) 6487 return err; 6488 err = bpf_object__reloc_code(obj, main_prog, subprog); 6489 if (err) 6490 return err; 6491 } 6492 6493 /* main_prog->insns memory could have been re-allocated, so 6494 * calculate pointer again 6495 */ 6496 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6497 /* calculate correct instruction position within current main 6498 * prog; each main prog can have a different set of 6499 * subprograms appended (potentially in different order as 6500 * well), so position of any subprog can be different for 6501 * different main programs 6502 */ 6503 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6504 6505 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6506 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6507 } 6508 6509 return 0; 6510 } 6511 6512 /* 6513 * Relocate sub-program calls. 6514 * 6515 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6516 * main prog) is processed separately. For each subprog (non-entry functions, 6517 * that can be called from either entry progs or other subprogs) gets their 6518 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6519 * hasn't been yet appended and relocated within current main prog. Once its 6520 * relocated, sub_insn_off will point at the position within current main prog 6521 * where given subprog was appended. This will further be used to relocate all 6522 * the call instructions jumping into this subprog. 6523 * 6524 * We start with main program and process all call instructions. If the call 6525 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6526 * is zero), subprog instructions are appended at the end of main program's 6527 * instruction array. Then main program is "put on hold" while we recursively 6528 * process newly appended subprogram. If that subprogram calls into another 6529 * subprogram that hasn't been appended, new subprogram is appended again to 6530 * the *main* prog's instructions (subprog's instructions are always left 6531 * untouched, as they need to be in unmodified state for subsequent main progs 6532 * and subprog instructions are always sent only as part of a main prog) and 6533 * the process continues recursively. Once all the subprogs called from a main 6534 * prog or any of its subprogs are appended (and relocated), all their 6535 * positions within finalized instructions array are known, so it's easy to 6536 * rewrite call instructions with correct relative offsets, corresponding to 6537 * desired target subprog. 6538 * 6539 * Its important to realize that some subprogs might not be called from some 6540 * main prog and any of its called/used subprogs. Those will keep their 6541 * subprog->sub_insn_off as zero at all times and won't be appended to current 6542 * main prog and won't be relocated within the context of current main prog. 6543 * They might still be used from other main progs later. 6544 * 6545 * Visually this process can be shown as below. Suppose we have two main 6546 * programs mainA and mainB and BPF object contains three subprogs: subA, 6547 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6548 * subC both call subB: 6549 * 6550 * +--------+ +-------+ 6551 * | v v | 6552 * +--+---+ +--+-+-+ +---+--+ 6553 * | subA | | subB | | subC | 6554 * +--+---+ +------+ +---+--+ 6555 * ^ ^ 6556 * | | 6557 * +---+-------+ +------+----+ 6558 * | mainA | | mainB | 6559 * +-----------+ +-----------+ 6560 * 6561 * We'll start relocating mainA, will find subA, append it and start 6562 * processing sub A recursively: 6563 * 6564 * +-----------+------+ 6565 * | mainA | subA | 6566 * +-----------+------+ 6567 * 6568 * At this point we notice that subB is used from subA, so we append it and 6569 * relocate (there are no further subcalls from subB): 6570 * 6571 * +-----------+------+------+ 6572 * | mainA | subA | subB | 6573 * +-----------+------+------+ 6574 * 6575 * At this point, we relocate subA calls, then go one level up and finish with 6576 * relocatin mainA calls. mainA is done. 6577 * 6578 * For mainB process is similar but results in different order. We start with 6579 * mainB and skip subA and subB, as mainB never calls them (at least 6580 * directly), but we see subC is needed, so we append and start processing it: 6581 * 6582 * +-----------+------+ 6583 * | mainB | subC | 6584 * +-----------+------+ 6585 * Now we see subC needs subB, so we go back to it, append and relocate it: 6586 * 6587 * +-----------+------+------+ 6588 * | mainB | subC | subB | 6589 * +-----------+------+------+ 6590 * 6591 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6592 */ 6593 static int 6594 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6595 { 6596 struct bpf_program *subprog; 6597 int i, err; 6598 6599 /* mark all subprogs as not relocated (yet) within the context of 6600 * current main program 6601 */ 6602 for (i = 0; i < obj->nr_programs; i++) { 6603 subprog = &obj->programs[i]; 6604 if (!prog_is_subprog(obj, subprog)) 6605 continue; 6606 6607 subprog->sub_insn_off = 0; 6608 } 6609 6610 err = bpf_object__reloc_code(obj, prog, prog); 6611 if (err) 6612 return err; 6613 6614 return 0; 6615 } 6616 6617 static void 6618 bpf_object__free_relocs(struct bpf_object *obj) 6619 { 6620 struct bpf_program *prog; 6621 int i; 6622 6623 /* free up relocation descriptors */ 6624 for (i = 0; i < obj->nr_programs; i++) { 6625 prog = &obj->programs[i]; 6626 zfree(&prog->reloc_desc); 6627 prog->nr_reloc = 0; 6628 } 6629 } 6630 6631 static int cmp_relocs(const void *_a, const void *_b) 6632 { 6633 const struct reloc_desc *a = _a; 6634 const struct reloc_desc *b = _b; 6635 6636 if (a->insn_idx != b->insn_idx) 6637 return a->insn_idx < b->insn_idx ? -1 : 1; 6638 6639 /* no two relocations should have the same insn_idx, but ... */ 6640 if (a->type != b->type) 6641 return a->type < b->type ? -1 : 1; 6642 6643 return 0; 6644 } 6645 6646 static void bpf_object__sort_relos(struct bpf_object *obj) 6647 { 6648 int i; 6649 6650 for (i = 0; i < obj->nr_programs; i++) { 6651 struct bpf_program *p = &obj->programs[i]; 6652 6653 if (!p->nr_reloc) 6654 continue; 6655 6656 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6657 } 6658 } 6659 6660 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6661 { 6662 const char *str = "exception_callback:"; 6663 size_t pfx_len = strlen(str); 6664 int i, j, n; 6665 6666 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6667 return 0; 6668 6669 n = btf__type_cnt(obj->btf); 6670 for (i = 1; i < n; i++) { 6671 const char *name; 6672 struct btf_type *t; 6673 6674 t = btf_type_by_id(obj->btf, i); 6675 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6676 continue; 6677 6678 name = btf__str_by_offset(obj->btf, t->name_off); 6679 if (strncmp(name, str, pfx_len) != 0) 6680 continue; 6681 6682 t = btf_type_by_id(obj->btf, t->type); 6683 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6684 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6685 prog->name); 6686 return -EINVAL; 6687 } 6688 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6689 continue; 6690 /* Multiple callbacks are specified for the same prog, 6691 * the verifier will eventually return an error for this 6692 * case, hence simply skip appending a subprog. 6693 */ 6694 if (prog->exception_cb_idx >= 0) { 6695 prog->exception_cb_idx = -1; 6696 break; 6697 } 6698 6699 name += pfx_len; 6700 if (str_is_empty(name)) { 6701 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6702 prog->name); 6703 return -EINVAL; 6704 } 6705 6706 for (j = 0; j < obj->nr_programs; j++) { 6707 struct bpf_program *subprog = &obj->programs[j]; 6708 6709 if (!prog_is_subprog(obj, subprog)) 6710 continue; 6711 if (strcmp(name, subprog->name) != 0) 6712 continue; 6713 /* Enforce non-hidden, as from verifier point of 6714 * view it expects global functions, whereas the 6715 * mark_btf_static fixes up linkage as static. 6716 */ 6717 if (!subprog->sym_global || subprog->mark_btf_static) { 6718 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6719 prog->name, subprog->name); 6720 return -EINVAL; 6721 } 6722 /* Let's see if we already saw a static exception callback with the same name */ 6723 if (prog->exception_cb_idx >= 0) { 6724 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6725 prog->name, subprog->name); 6726 return -EINVAL; 6727 } 6728 prog->exception_cb_idx = j; 6729 break; 6730 } 6731 6732 if (prog->exception_cb_idx >= 0) 6733 continue; 6734 6735 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6736 return -ENOENT; 6737 } 6738 6739 return 0; 6740 } 6741 6742 static struct { 6743 enum bpf_prog_type prog_type; 6744 const char *ctx_name; 6745 } global_ctx_map[] = { 6746 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6747 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6748 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6749 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6750 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6751 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6752 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6753 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6754 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6755 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6756 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6757 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6758 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6759 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6760 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6761 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6762 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6763 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6764 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6765 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6766 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6767 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6768 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6769 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6770 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6771 /* all other program types don't have "named" context structs */ 6772 }; 6773 6774 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6775 * for below __builtin_types_compatible_p() checks; 6776 * with this approach we don't need any extra arch-specific #ifdef guards 6777 */ 6778 struct pt_regs; 6779 struct user_pt_regs; 6780 struct user_regs_struct; 6781 6782 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6783 const char *subprog_name, int arg_idx, 6784 int arg_type_id, const char *ctx_name) 6785 { 6786 const struct btf_type *t; 6787 const char *tname; 6788 6789 /* check if existing parameter already matches verifier expectations */ 6790 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6791 if (!btf_is_ptr(t)) 6792 goto out_warn; 6793 6794 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6795 * and perf_event programs, so check this case early on and forget 6796 * about it for subsequent checks 6797 */ 6798 while (btf_is_mod(t)) 6799 t = btf__type_by_id(btf, t->type); 6800 if (btf_is_typedef(t) && 6801 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6802 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6803 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6804 return false; /* canonical type for kprobe/perf_event */ 6805 } 6806 6807 /* now we can ignore typedefs moving forward */ 6808 t = skip_mods_and_typedefs(btf, t->type, NULL); 6809 6810 /* if it's `void *`, definitely fix up BTF info */ 6811 if (btf_is_void(t)) 6812 return true; 6813 6814 /* if it's already proper canonical type, no need to fix up */ 6815 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6816 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6817 return false; 6818 6819 /* special cases */ 6820 switch (prog->type) { 6821 case BPF_PROG_TYPE_KPROBE: 6822 /* `struct pt_regs *` is expected, but we need to fix up */ 6823 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6824 return true; 6825 break; 6826 case BPF_PROG_TYPE_PERF_EVENT: 6827 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6828 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6829 return true; 6830 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6831 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6832 return true; 6833 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6834 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6835 return true; 6836 break; 6837 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6838 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6839 /* allow u64* as ctx */ 6840 if (btf_is_int(t) && t->size == 8) 6841 return true; 6842 break; 6843 default: 6844 break; 6845 } 6846 6847 out_warn: 6848 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6849 prog->name, subprog_name, arg_idx, ctx_name); 6850 return false; 6851 } 6852 6853 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6854 { 6855 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6856 int i, err, arg_cnt, fn_name_off, linkage; 6857 struct btf_type *fn_t, *fn_proto_t, *t; 6858 struct btf_param *p; 6859 6860 /* caller already validated FUNC -> FUNC_PROTO validity */ 6861 fn_t = btf_type_by_id(btf, orig_fn_id); 6862 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6863 6864 /* Note that each btf__add_xxx() operation invalidates 6865 * all btf_type and string pointers, so we need to be 6866 * very careful when cloning BTF types. BTF type 6867 * pointers have to be always refetched. And to avoid 6868 * problems with invalidated string pointers, we 6869 * add empty strings initially, then just fix up 6870 * name_off offsets in place. Offsets are stable for 6871 * existing strings, so that works out. 6872 */ 6873 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6874 linkage = btf_func_linkage(fn_t); 6875 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6876 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6877 arg_cnt = btf_vlen(fn_proto_t); 6878 6879 /* clone FUNC_PROTO and its params */ 6880 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6881 if (fn_proto_id < 0) 6882 return -EINVAL; 6883 6884 for (i = 0; i < arg_cnt; i++) { 6885 int name_off; 6886 6887 /* copy original parameter data */ 6888 t = btf_type_by_id(btf, orig_proto_id); 6889 p = &btf_params(t)[i]; 6890 name_off = p->name_off; 6891 6892 err = btf__add_func_param(btf, "", p->type); 6893 if (err) 6894 return err; 6895 6896 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6897 p = &btf_params(fn_proto_t)[i]; 6898 p->name_off = name_off; /* use remembered str offset */ 6899 } 6900 6901 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6902 * entry program's name as a placeholder, which we replace immediately 6903 * with original name_off 6904 */ 6905 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6906 if (fn_id < 0) 6907 return -EINVAL; 6908 6909 fn_t = btf_type_by_id(btf, fn_id); 6910 fn_t->name_off = fn_name_off; /* reuse original string */ 6911 6912 return fn_id; 6913 } 6914 6915 /* Check if main program or global subprog's function prototype has `arg:ctx` 6916 * argument tags, and, if necessary, substitute correct type to match what BPF 6917 * verifier would expect, taking into account specific program type. This 6918 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6919 * have a native support for it in the verifier, making user's life much 6920 * easier. 6921 */ 6922 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6923 { 6924 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6925 struct bpf_func_info_min *func_rec; 6926 struct btf_type *fn_t, *fn_proto_t; 6927 struct btf *btf = obj->btf; 6928 const struct btf_type *t; 6929 struct btf_param *p; 6930 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6931 int i, n, arg_idx, arg_cnt, err, rec_idx; 6932 int *orig_ids; 6933 6934 /* no .BTF.ext, no problem */ 6935 if (!obj->btf_ext || !prog->func_info) 6936 return 0; 6937 6938 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6939 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6940 return 0; 6941 6942 /* some BPF program types just don't have named context structs, so 6943 * this fallback mechanism doesn't work for them 6944 */ 6945 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6946 if (global_ctx_map[i].prog_type != prog->type) 6947 continue; 6948 ctx_name = global_ctx_map[i].ctx_name; 6949 break; 6950 } 6951 if (!ctx_name) 6952 return 0; 6953 6954 /* remember original func BTF IDs to detect if we already cloned them */ 6955 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6956 if (!orig_ids) 6957 return -ENOMEM; 6958 for (i = 0; i < prog->func_info_cnt; i++) { 6959 func_rec = prog->func_info + prog->func_info_rec_size * i; 6960 orig_ids[i] = func_rec->type_id; 6961 } 6962 6963 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6964 * of our subprogs; if yes and subprog is global and needs adjustment, 6965 * clone and adjust FUNC -> FUNC_PROTO combo 6966 */ 6967 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6968 /* only DECL_TAG with "arg:ctx" value are interesting */ 6969 t = btf__type_by_id(btf, i); 6970 if (!btf_is_decl_tag(t)) 6971 continue; 6972 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6973 continue; 6974 6975 /* only global funcs need adjustment, if at all */ 6976 orig_fn_id = t->type; 6977 fn_t = btf_type_by_id(btf, orig_fn_id); 6978 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6979 continue; 6980 6981 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6982 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6983 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6984 continue; 6985 6986 /* find corresponding func_info record */ 6987 func_rec = NULL; 6988 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6989 if (orig_ids[rec_idx] == t->type) { 6990 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6991 break; 6992 } 6993 } 6994 /* current main program doesn't call into this subprog */ 6995 if (!func_rec) 6996 continue; 6997 6998 /* some more sanity checking of DECL_TAG */ 6999 arg_cnt = btf_vlen(fn_proto_t); 7000 arg_idx = btf_decl_tag(t)->component_idx; 7001 if (arg_idx < 0 || arg_idx >= arg_cnt) 7002 continue; 7003 7004 /* check if we should fix up argument type */ 7005 p = &btf_params(fn_proto_t)[arg_idx]; 7006 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 7007 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 7008 continue; 7009 7010 /* clone fn/fn_proto, unless we already did it for another arg */ 7011 if (func_rec->type_id == orig_fn_id) { 7012 int fn_id; 7013 7014 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7015 if (fn_id < 0) { 7016 err = fn_id; 7017 goto err_out; 7018 } 7019 7020 /* point func_info record to a cloned FUNC type */ 7021 func_rec->type_id = fn_id; 7022 } 7023 7024 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7025 * we do it just once per main BPF program, as all global 7026 * funcs share the same program type, so need only PTR -> 7027 * STRUCT type chain 7028 */ 7029 if (ptr_id == 0) { 7030 struct_id = btf__add_struct(btf, ctx_name, 0); 7031 ptr_id = btf__add_ptr(btf, struct_id); 7032 if (ptr_id < 0 || struct_id < 0) { 7033 err = -EINVAL; 7034 goto err_out; 7035 } 7036 } 7037 7038 /* for completeness, clone DECL_TAG and point it to cloned param */ 7039 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7040 if (tag_id < 0) { 7041 err = -EINVAL; 7042 goto err_out; 7043 } 7044 7045 /* all the BTF manipulations invalidated pointers, refetch them */ 7046 fn_t = btf_type_by_id(btf, func_rec->type_id); 7047 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7048 7049 /* fix up type ID pointed to by param */ 7050 p = &btf_params(fn_proto_t)[arg_idx]; 7051 p->type = ptr_id; 7052 } 7053 7054 free(orig_ids); 7055 return 0; 7056 err_out: 7057 free(orig_ids); 7058 return err; 7059 } 7060 7061 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7062 { 7063 struct bpf_program *prog; 7064 size_t i, j; 7065 int err; 7066 7067 if (obj->btf_ext) { 7068 err = bpf_object__relocate_core(obj, targ_btf_path); 7069 if (err) { 7070 pr_warn("failed to perform CO-RE relocations: %s\n", 7071 errstr(err)); 7072 return err; 7073 } 7074 bpf_object__sort_relos(obj); 7075 } 7076 7077 /* Before relocating calls pre-process relocations and mark 7078 * few ld_imm64 instructions that points to subprogs. 7079 * Otherwise bpf_object__reloc_code() later would have to consider 7080 * all ld_imm64 insns as relocation candidates. That would 7081 * reduce relocation speed, since amount of find_prog_insn_relo() 7082 * would increase and most of them will fail to find a relo. 7083 */ 7084 for (i = 0; i < obj->nr_programs; i++) { 7085 prog = &obj->programs[i]; 7086 for (j = 0; j < prog->nr_reloc; j++) { 7087 struct reloc_desc *relo = &prog->reloc_desc[j]; 7088 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7089 7090 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7091 if (relo->type == RELO_SUBPROG_ADDR) 7092 insn[0].src_reg = BPF_PSEUDO_FUNC; 7093 } 7094 } 7095 7096 /* relocate subprogram calls and append used subprograms to main 7097 * programs; each copy of subprogram code needs to be relocated 7098 * differently for each main program, because its code location might 7099 * have changed. 7100 * Append subprog relos to main programs to allow data relos to be 7101 * processed after text is completely relocated. 7102 */ 7103 for (i = 0; i < obj->nr_programs; i++) { 7104 prog = &obj->programs[i]; 7105 /* sub-program's sub-calls are relocated within the context of 7106 * its main program only 7107 */ 7108 if (prog_is_subprog(obj, prog)) 7109 continue; 7110 if (!prog->autoload) 7111 continue; 7112 7113 err = bpf_object__relocate_calls(obj, prog); 7114 if (err) { 7115 pr_warn("prog '%s': failed to relocate calls: %s\n", 7116 prog->name, errstr(err)); 7117 return err; 7118 } 7119 7120 err = bpf_prog_assign_exc_cb(obj, prog); 7121 if (err) 7122 return err; 7123 /* Now, also append exception callback if it has not been done already. */ 7124 if (prog->exception_cb_idx >= 0) { 7125 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7126 7127 /* Calling exception callback directly is disallowed, which the 7128 * verifier will reject later. In case it was processed already, 7129 * we can skip this step, otherwise for all other valid cases we 7130 * have to append exception callback now. 7131 */ 7132 if (subprog->sub_insn_off == 0) { 7133 err = bpf_object__append_subprog_code(obj, prog, subprog); 7134 if (err) 7135 return err; 7136 err = bpf_object__reloc_code(obj, prog, subprog); 7137 if (err) 7138 return err; 7139 } 7140 } 7141 } 7142 for (i = 0; i < obj->nr_programs; i++) { 7143 prog = &obj->programs[i]; 7144 if (prog_is_subprog(obj, prog)) 7145 continue; 7146 if (!prog->autoload) 7147 continue; 7148 7149 /* Process data relos for main programs */ 7150 err = bpf_object__relocate_data(obj, prog); 7151 if (err) { 7152 pr_warn("prog '%s': failed to relocate data references: %s\n", 7153 prog->name, errstr(err)); 7154 return err; 7155 } 7156 7157 /* Fix up .BTF.ext information, if necessary */ 7158 err = bpf_program_fixup_func_info(obj, prog); 7159 if (err) { 7160 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7161 prog->name, errstr(err)); 7162 return err; 7163 } 7164 } 7165 7166 return 0; 7167 } 7168 7169 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7170 Elf64_Shdr *shdr, Elf_Data *data); 7171 7172 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7173 Elf64_Shdr *shdr, Elf_Data *data) 7174 { 7175 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7176 int i, j, nrels, new_sz; 7177 const struct btf_var_secinfo *vi = NULL; 7178 const struct btf_type *sec, *var, *def; 7179 struct bpf_map *map = NULL, *targ_map = NULL; 7180 struct bpf_program *targ_prog = NULL; 7181 bool is_prog_array, is_map_in_map; 7182 const struct btf_member *member; 7183 const char *name, *mname, *type; 7184 unsigned int moff; 7185 Elf64_Sym *sym; 7186 Elf64_Rel *rel; 7187 void *tmp; 7188 7189 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7190 return -EINVAL; 7191 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7192 if (!sec) 7193 return -EINVAL; 7194 7195 nrels = shdr->sh_size / shdr->sh_entsize; 7196 for (i = 0; i < nrels; i++) { 7197 rel = elf_rel_by_idx(data, i); 7198 if (!rel) { 7199 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7200 return -LIBBPF_ERRNO__FORMAT; 7201 } 7202 7203 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7204 if (!sym) { 7205 pr_warn(".maps relo #%d: symbol %zx not found\n", 7206 i, (size_t)ELF64_R_SYM(rel->r_info)); 7207 return -LIBBPF_ERRNO__FORMAT; 7208 } 7209 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7210 7211 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7212 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7213 (size_t)rel->r_offset, sym->st_name, name); 7214 7215 for (j = 0; j < obj->nr_maps; j++) { 7216 map = &obj->maps[j]; 7217 if (map->sec_idx != obj->efile.btf_maps_shndx) 7218 continue; 7219 7220 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7221 if (vi->offset <= rel->r_offset && 7222 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7223 break; 7224 } 7225 if (j == obj->nr_maps) { 7226 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7227 i, name, (size_t)rel->r_offset); 7228 return -EINVAL; 7229 } 7230 7231 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7232 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7233 type = is_map_in_map ? "map" : "prog"; 7234 if (is_map_in_map) { 7235 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7236 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7237 i, name); 7238 return -LIBBPF_ERRNO__RELOC; 7239 } 7240 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7241 map->def.key_size != sizeof(int)) { 7242 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7243 i, map->name, sizeof(int)); 7244 return -EINVAL; 7245 } 7246 targ_map = bpf_object__find_map_by_name(obj, name); 7247 if (!targ_map) { 7248 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7249 i, name); 7250 return -ESRCH; 7251 } 7252 } else if (is_prog_array) { 7253 targ_prog = bpf_object__find_program_by_name(obj, name); 7254 if (!targ_prog) { 7255 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7256 i, name); 7257 return -ESRCH; 7258 } 7259 if (targ_prog->sec_idx != sym->st_shndx || 7260 targ_prog->sec_insn_off * 8 != sym->st_value || 7261 prog_is_subprog(obj, targ_prog)) { 7262 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7263 i, name); 7264 return -LIBBPF_ERRNO__RELOC; 7265 } 7266 } else { 7267 return -EINVAL; 7268 } 7269 7270 var = btf__type_by_id(obj->btf, vi->type); 7271 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7272 if (btf_vlen(def) == 0) 7273 return -EINVAL; 7274 member = btf_members(def) + btf_vlen(def) - 1; 7275 mname = btf__name_by_offset(obj->btf, member->name_off); 7276 if (strcmp(mname, "values")) 7277 return -EINVAL; 7278 7279 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7280 if (rel->r_offset - vi->offset < moff) 7281 return -EINVAL; 7282 7283 moff = rel->r_offset - vi->offset - moff; 7284 /* here we use BPF pointer size, which is always 64 bit, as we 7285 * are parsing ELF that was built for BPF target 7286 */ 7287 if (moff % bpf_ptr_sz) 7288 return -EINVAL; 7289 moff /= bpf_ptr_sz; 7290 if (moff >= map->init_slots_sz) { 7291 new_sz = moff + 1; 7292 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7293 if (!tmp) 7294 return -ENOMEM; 7295 map->init_slots = tmp; 7296 memset(map->init_slots + map->init_slots_sz, 0, 7297 (new_sz - map->init_slots_sz) * host_ptr_sz); 7298 map->init_slots_sz = new_sz; 7299 } 7300 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7301 7302 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7303 i, map->name, moff, type, name); 7304 } 7305 7306 return 0; 7307 } 7308 7309 static int bpf_object__collect_relos(struct bpf_object *obj) 7310 { 7311 int i, err; 7312 7313 for (i = 0; i < obj->efile.sec_cnt; i++) { 7314 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7315 Elf64_Shdr *shdr; 7316 Elf_Data *data; 7317 int idx; 7318 7319 if (sec_desc->sec_type != SEC_RELO) 7320 continue; 7321 7322 shdr = sec_desc->shdr; 7323 data = sec_desc->data; 7324 idx = shdr->sh_info; 7325 7326 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7327 pr_warn("internal error at %d\n", __LINE__); 7328 return -LIBBPF_ERRNO__INTERNAL; 7329 } 7330 7331 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7332 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7333 else if (idx == obj->efile.btf_maps_shndx) 7334 err = bpf_object__collect_map_relos(obj, shdr, data); 7335 else 7336 err = bpf_object__collect_prog_relos(obj, shdr, data); 7337 if (err) 7338 return err; 7339 } 7340 7341 bpf_object__sort_relos(obj); 7342 return 0; 7343 } 7344 7345 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7346 { 7347 if (BPF_CLASS(insn->code) == BPF_JMP && 7348 BPF_OP(insn->code) == BPF_CALL && 7349 BPF_SRC(insn->code) == BPF_K && 7350 insn->src_reg == 0 && 7351 insn->dst_reg == 0) { 7352 *func_id = insn->imm; 7353 return true; 7354 } 7355 return false; 7356 } 7357 7358 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7359 { 7360 struct bpf_insn *insn = prog->insns; 7361 enum bpf_func_id func_id; 7362 int i; 7363 7364 if (obj->gen_loader) 7365 return 0; 7366 7367 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7368 if (!insn_is_helper_call(insn, &func_id)) 7369 continue; 7370 7371 /* on kernels that don't yet support 7372 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7373 * to bpf_probe_read() which works well for old kernels 7374 */ 7375 switch (func_id) { 7376 case BPF_FUNC_probe_read_kernel: 7377 case BPF_FUNC_probe_read_user: 7378 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7379 insn->imm = BPF_FUNC_probe_read; 7380 break; 7381 case BPF_FUNC_probe_read_kernel_str: 7382 case BPF_FUNC_probe_read_user_str: 7383 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7384 insn->imm = BPF_FUNC_probe_read_str; 7385 break; 7386 default: 7387 break; 7388 } 7389 } 7390 return 0; 7391 } 7392 7393 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7394 int *btf_obj_fd, int *btf_type_id); 7395 7396 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7397 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7398 struct bpf_prog_load_opts *opts, long cookie) 7399 { 7400 enum sec_def_flags def = cookie; 7401 7402 /* old kernels might not support specifying expected_attach_type */ 7403 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7404 opts->expected_attach_type = 0; 7405 7406 if (def & SEC_SLEEPABLE) 7407 opts->prog_flags |= BPF_F_SLEEPABLE; 7408 7409 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7410 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7411 7412 /* special check for usdt to use uprobe_multi link */ 7413 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7414 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7415 * in prog, and expected_attach_type we set in kernel is from opts, so we 7416 * update both. 7417 */ 7418 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7419 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7420 } 7421 7422 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7423 int btf_obj_fd = 0, btf_type_id = 0, err; 7424 const char *attach_name; 7425 7426 attach_name = strchr(prog->sec_name, '/'); 7427 if (!attach_name) { 7428 /* if BPF program is annotated with just SEC("fentry") 7429 * (or similar) without declaratively specifying 7430 * target, then it is expected that target will be 7431 * specified with bpf_program__set_attach_target() at 7432 * runtime before BPF object load step. If not, then 7433 * there is nothing to load into the kernel as BPF 7434 * verifier won't be able to validate BPF program 7435 * correctness anyways. 7436 */ 7437 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7438 prog->name); 7439 return -EINVAL; 7440 } 7441 attach_name++; /* skip over / */ 7442 7443 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7444 if (err) 7445 return err; 7446 7447 /* cache resolved BTF FD and BTF type ID in the prog */ 7448 prog->attach_btf_obj_fd = btf_obj_fd; 7449 prog->attach_btf_id = btf_type_id; 7450 7451 /* but by now libbpf common logic is not utilizing 7452 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7453 * this callback is called after opts were populated by 7454 * libbpf, so this callback has to update opts explicitly here 7455 */ 7456 opts->attach_btf_obj_fd = btf_obj_fd; 7457 opts->attach_btf_id = btf_type_id; 7458 } 7459 return 0; 7460 } 7461 7462 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7463 7464 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7465 struct bpf_insn *insns, int insns_cnt, 7466 const char *license, __u32 kern_version, int *prog_fd) 7467 { 7468 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7469 const char *prog_name = NULL; 7470 size_t log_buf_size = 0; 7471 char *log_buf = NULL, *tmp; 7472 bool own_log_buf = true; 7473 __u32 log_level = prog->log_level; 7474 int ret, err; 7475 7476 /* Be more helpful by rejecting programs that can't be validated early 7477 * with more meaningful and actionable error message. 7478 */ 7479 switch (prog->type) { 7480 case BPF_PROG_TYPE_UNSPEC: 7481 /* 7482 * The program type must be set. Most likely we couldn't find a proper 7483 * section definition at load time, and thus we didn't infer the type. 7484 */ 7485 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7486 prog->name, prog->sec_name); 7487 return -EINVAL; 7488 case BPF_PROG_TYPE_STRUCT_OPS: 7489 if (prog->attach_btf_id == 0) { 7490 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7491 prog->name); 7492 return -EINVAL; 7493 } 7494 break; 7495 default: 7496 break; 7497 } 7498 7499 if (!insns || !insns_cnt) 7500 return -EINVAL; 7501 7502 if (kernel_supports(obj, FEAT_PROG_NAME)) 7503 prog_name = prog->name; 7504 load_attr.attach_prog_fd = prog->attach_prog_fd; 7505 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7506 load_attr.attach_btf_id = prog->attach_btf_id; 7507 load_attr.kern_version = kern_version; 7508 load_attr.prog_ifindex = prog->prog_ifindex; 7509 load_attr.expected_attach_type = prog->expected_attach_type; 7510 7511 /* specify func_info/line_info only if kernel supports them */ 7512 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7513 load_attr.prog_btf_fd = btf__fd(obj->btf); 7514 load_attr.func_info = prog->func_info; 7515 load_attr.func_info_rec_size = prog->func_info_rec_size; 7516 load_attr.func_info_cnt = prog->func_info_cnt; 7517 load_attr.line_info = prog->line_info; 7518 load_attr.line_info_rec_size = prog->line_info_rec_size; 7519 load_attr.line_info_cnt = prog->line_info_cnt; 7520 } 7521 load_attr.log_level = log_level; 7522 load_attr.prog_flags = prog->prog_flags; 7523 load_attr.fd_array = obj->fd_array; 7524 7525 load_attr.token_fd = obj->token_fd; 7526 if (obj->token_fd) 7527 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7528 7529 /* adjust load_attr if sec_def provides custom preload callback */ 7530 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7531 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7532 if (err < 0) { 7533 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7534 prog->name, errstr(err)); 7535 return err; 7536 } 7537 insns = prog->insns; 7538 insns_cnt = prog->insns_cnt; 7539 } 7540 7541 if (obj->gen_loader) { 7542 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7543 license, insns, insns_cnt, &load_attr, 7544 prog - obj->programs); 7545 *prog_fd = -1; 7546 return 0; 7547 } 7548 7549 retry_load: 7550 /* if log_level is zero, we don't request logs initially even if 7551 * custom log_buf is specified; if the program load fails, then we'll 7552 * bump log_level to 1 and use either custom log_buf or we'll allocate 7553 * our own and retry the load to get details on what failed 7554 */ 7555 if (log_level) { 7556 if (prog->log_buf) { 7557 log_buf = prog->log_buf; 7558 log_buf_size = prog->log_size; 7559 own_log_buf = false; 7560 } else if (obj->log_buf) { 7561 log_buf = obj->log_buf; 7562 log_buf_size = obj->log_size; 7563 own_log_buf = false; 7564 } else { 7565 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7566 tmp = realloc(log_buf, log_buf_size); 7567 if (!tmp) { 7568 ret = -ENOMEM; 7569 goto out; 7570 } 7571 log_buf = tmp; 7572 log_buf[0] = '\0'; 7573 own_log_buf = true; 7574 } 7575 } 7576 7577 load_attr.log_buf = log_buf; 7578 load_attr.log_size = log_buf_size; 7579 load_attr.log_level = log_level; 7580 7581 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7582 if (ret >= 0) { 7583 if (log_level && own_log_buf) { 7584 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7585 prog->name, log_buf); 7586 } 7587 7588 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7589 struct bpf_map *map; 7590 int i; 7591 7592 for (i = 0; i < obj->nr_maps; i++) { 7593 map = &prog->obj->maps[i]; 7594 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7595 continue; 7596 7597 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7598 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7599 prog->name, map->real_name, errstr(errno)); 7600 /* Don't fail hard if can't bind rodata. */ 7601 } 7602 } 7603 } 7604 7605 *prog_fd = ret; 7606 ret = 0; 7607 goto out; 7608 } 7609 7610 if (log_level == 0) { 7611 log_level = 1; 7612 goto retry_load; 7613 } 7614 /* On ENOSPC, increase log buffer size and retry, unless custom 7615 * log_buf is specified. 7616 * Be careful to not overflow u32, though. Kernel's log buf size limit 7617 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7618 * multiply by 2 unless we are sure we'll fit within 32 bits. 7619 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7620 */ 7621 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7622 goto retry_load; 7623 7624 ret = -errno; 7625 7626 /* post-process verifier log to improve error descriptions */ 7627 fixup_verifier_log(prog, log_buf, log_buf_size); 7628 7629 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7630 pr_perm_msg(ret); 7631 7632 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7633 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7634 prog->name, log_buf); 7635 } 7636 7637 out: 7638 if (own_log_buf) 7639 free(log_buf); 7640 return ret; 7641 } 7642 7643 static char *find_prev_line(char *buf, char *cur) 7644 { 7645 char *p; 7646 7647 if (cur == buf) /* end of a log buf */ 7648 return NULL; 7649 7650 p = cur - 1; 7651 while (p - 1 >= buf && *(p - 1) != '\n') 7652 p--; 7653 7654 return p; 7655 } 7656 7657 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7658 char *orig, size_t orig_sz, const char *patch) 7659 { 7660 /* size of the remaining log content to the right from the to-be-replaced part */ 7661 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7662 size_t patch_sz = strlen(patch); 7663 7664 if (patch_sz != orig_sz) { 7665 /* If patch line(s) are longer than original piece of verifier log, 7666 * shift log contents by (patch_sz - orig_sz) bytes to the right 7667 * starting from after to-be-replaced part of the log. 7668 * 7669 * If patch line(s) are shorter than original piece of verifier log, 7670 * shift log contents by (orig_sz - patch_sz) bytes to the left 7671 * starting from after to-be-replaced part of the log 7672 * 7673 * We need to be careful about not overflowing available 7674 * buf_sz capacity. If that's the case, we'll truncate the end 7675 * of the original log, as necessary. 7676 */ 7677 if (patch_sz > orig_sz) { 7678 if (orig + patch_sz >= buf + buf_sz) { 7679 /* patch is big enough to cover remaining space completely */ 7680 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7681 rem_sz = 0; 7682 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7683 /* patch causes part of remaining log to be truncated */ 7684 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7685 } 7686 } 7687 /* shift remaining log to the right by calculated amount */ 7688 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7689 } 7690 7691 memcpy(orig, patch, patch_sz); 7692 } 7693 7694 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7695 char *buf, size_t buf_sz, size_t log_sz, 7696 char *line1, char *line2, char *line3) 7697 { 7698 /* Expected log for failed and not properly guarded CO-RE relocation: 7699 * line1 -> 123: (85) call unknown#195896080 7700 * line2 -> invalid func unknown#195896080 7701 * line3 -> <anything else or end of buffer> 7702 * 7703 * "123" is the index of the instruction that was poisoned. We extract 7704 * instruction index to find corresponding CO-RE relocation and 7705 * replace this part of the log with more relevant information about 7706 * failed CO-RE relocation. 7707 */ 7708 const struct bpf_core_relo *relo; 7709 struct bpf_core_spec spec; 7710 char patch[512], spec_buf[256]; 7711 int insn_idx, err, spec_len; 7712 7713 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7714 return; 7715 7716 relo = find_relo_core(prog, insn_idx); 7717 if (!relo) 7718 return; 7719 7720 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7721 if (err) 7722 return; 7723 7724 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7725 snprintf(patch, sizeof(patch), 7726 "%d: <invalid CO-RE relocation>\n" 7727 "failed to resolve CO-RE relocation %s%s\n", 7728 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7729 7730 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7731 } 7732 7733 static void fixup_log_missing_map_load(struct bpf_program *prog, 7734 char *buf, size_t buf_sz, size_t log_sz, 7735 char *line1, char *line2, char *line3) 7736 { 7737 /* Expected log for failed and not properly guarded map reference: 7738 * line1 -> 123: (85) call unknown#2001000345 7739 * line2 -> invalid func unknown#2001000345 7740 * line3 -> <anything else or end of buffer> 7741 * 7742 * "123" is the index of the instruction that was poisoned. 7743 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7744 */ 7745 struct bpf_object *obj = prog->obj; 7746 const struct bpf_map *map; 7747 int insn_idx, map_idx; 7748 char patch[128]; 7749 7750 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7751 return; 7752 7753 map_idx -= POISON_LDIMM64_MAP_BASE; 7754 if (map_idx < 0 || map_idx >= obj->nr_maps) 7755 return; 7756 map = &obj->maps[map_idx]; 7757 7758 snprintf(patch, sizeof(patch), 7759 "%d: <invalid BPF map reference>\n" 7760 "BPF map '%s' is referenced but wasn't created\n", 7761 insn_idx, map->name); 7762 7763 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7764 } 7765 7766 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7767 char *buf, size_t buf_sz, size_t log_sz, 7768 char *line1, char *line2, char *line3) 7769 { 7770 /* Expected log for failed and not properly guarded kfunc call: 7771 * line1 -> 123: (85) call unknown#2002000345 7772 * line2 -> invalid func unknown#2002000345 7773 * line3 -> <anything else or end of buffer> 7774 * 7775 * "123" is the index of the instruction that was poisoned. 7776 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7777 */ 7778 struct bpf_object *obj = prog->obj; 7779 const struct extern_desc *ext; 7780 int insn_idx, ext_idx; 7781 char patch[128]; 7782 7783 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7784 return; 7785 7786 ext_idx -= POISON_CALL_KFUNC_BASE; 7787 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7788 return; 7789 ext = &obj->externs[ext_idx]; 7790 7791 snprintf(patch, sizeof(patch), 7792 "%d: <invalid kfunc call>\n" 7793 "kfunc '%s' is referenced but wasn't resolved\n", 7794 insn_idx, ext->name); 7795 7796 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7797 } 7798 7799 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7800 { 7801 /* look for familiar error patterns in last N lines of the log */ 7802 const size_t max_last_line_cnt = 10; 7803 char *prev_line, *cur_line, *next_line; 7804 size_t log_sz; 7805 int i; 7806 7807 if (!buf) 7808 return; 7809 7810 log_sz = strlen(buf) + 1; 7811 next_line = buf + log_sz - 1; 7812 7813 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7814 cur_line = find_prev_line(buf, next_line); 7815 if (!cur_line) 7816 return; 7817 7818 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7819 prev_line = find_prev_line(buf, cur_line); 7820 if (!prev_line) 7821 continue; 7822 7823 /* failed CO-RE relocation case */ 7824 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7825 prev_line, cur_line, next_line); 7826 return; 7827 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7828 prev_line = find_prev_line(buf, cur_line); 7829 if (!prev_line) 7830 continue; 7831 7832 /* reference to uncreated BPF map */ 7833 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7834 prev_line, cur_line, next_line); 7835 return; 7836 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7837 prev_line = find_prev_line(buf, cur_line); 7838 if (!prev_line) 7839 continue; 7840 7841 /* reference to unresolved kfunc */ 7842 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7843 prev_line, cur_line, next_line); 7844 return; 7845 } 7846 } 7847 } 7848 7849 static int bpf_program_record_relos(struct bpf_program *prog) 7850 { 7851 struct bpf_object *obj = prog->obj; 7852 int i; 7853 7854 for (i = 0; i < prog->nr_reloc; i++) { 7855 struct reloc_desc *relo = &prog->reloc_desc[i]; 7856 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7857 int kind; 7858 7859 switch (relo->type) { 7860 case RELO_EXTERN_LD64: 7861 if (ext->type != EXT_KSYM) 7862 continue; 7863 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7864 BTF_KIND_VAR : BTF_KIND_FUNC; 7865 bpf_gen__record_extern(obj->gen_loader, ext->name, 7866 ext->is_weak, !ext->ksym.type_id, 7867 true, kind, relo->insn_idx); 7868 break; 7869 case RELO_EXTERN_CALL: 7870 bpf_gen__record_extern(obj->gen_loader, ext->name, 7871 ext->is_weak, false, false, BTF_KIND_FUNC, 7872 relo->insn_idx); 7873 break; 7874 case RELO_CORE: { 7875 struct bpf_core_relo cr = { 7876 .insn_off = relo->insn_idx * 8, 7877 .type_id = relo->core_relo->type_id, 7878 .access_str_off = relo->core_relo->access_str_off, 7879 .kind = relo->core_relo->kind, 7880 }; 7881 7882 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7883 break; 7884 } 7885 default: 7886 continue; 7887 } 7888 } 7889 return 0; 7890 } 7891 7892 static int 7893 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7894 { 7895 struct bpf_program *prog; 7896 size_t i; 7897 int err; 7898 7899 for (i = 0; i < obj->nr_programs; i++) { 7900 prog = &obj->programs[i]; 7901 if (prog_is_subprog(obj, prog)) 7902 continue; 7903 if (!prog->autoload) { 7904 pr_debug("prog '%s': skipped loading\n", prog->name); 7905 continue; 7906 } 7907 prog->log_level |= log_level; 7908 7909 if (obj->gen_loader) 7910 bpf_program_record_relos(prog); 7911 7912 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7913 obj->license, obj->kern_version, &prog->fd); 7914 if (err) { 7915 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 7916 return err; 7917 } 7918 } 7919 7920 bpf_object__free_relocs(obj); 7921 return 0; 7922 } 7923 7924 static int bpf_object_prepare_progs(struct bpf_object *obj) 7925 { 7926 struct bpf_program *prog; 7927 size_t i; 7928 int err; 7929 7930 for (i = 0; i < obj->nr_programs; i++) { 7931 prog = &obj->programs[i]; 7932 err = bpf_object__sanitize_prog(obj, prog); 7933 if (err) 7934 return err; 7935 } 7936 return 0; 7937 } 7938 7939 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7940 7941 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7942 { 7943 struct bpf_program *prog; 7944 int err; 7945 7946 bpf_object__for_each_program(prog, obj) { 7947 prog->sec_def = find_sec_def(prog->sec_name); 7948 if (!prog->sec_def) { 7949 /* couldn't guess, but user might manually specify */ 7950 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7951 prog->name, prog->sec_name); 7952 continue; 7953 } 7954 7955 prog->type = prog->sec_def->prog_type; 7956 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7957 7958 /* sec_def can have custom callback which should be called 7959 * after bpf_program is initialized to adjust its properties 7960 */ 7961 if (prog->sec_def->prog_setup_fn) { 7962 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7963 if (err < 0) { 7964 pr_warn("prog '%s': failed to initialize: %s\n", 7965 prog->name, errstr(err)); 7966 return err; 7967 } 7968 } 7969 } 7970 7971 return 0; 7972 } 7973 7974 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7975 const char *obj_name, 7976 const struct bpf_object_open_opts *opts) 7977 { 7978 const char *kconfig, *btf_tmp_path, *token_path; 7979 struct bpf_object *obj; 7980 int err; 7981 char *log_buf; 7982 size_t log_size; 7983 __u32 log_level; 7984 7985 if (obj_buf && !obj_name) 7986 return ERR_PTR(-EINVAL); 7987 7988 if (elf_version(EV_CURRENT) == EV_NONE) { 7989 pr_warn("failed to init libelf for %s\n", 7990 path ? : "(mem buf)"); 7991 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7992 } 7993 7994 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7995 return ERR_PTR(-EINVAL); 7996 7997 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 7998 if (obj_buf) { 7999 path = obj_name; 8000 pr_debug("loading object '%s' from buffer\n", obj_name); 8001 } else { 8002 pr_debug("loading object from %s\n", path); 8003 } 8004 8005 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 8006 log_size = OPTS_GET(opts, kernel_log_size, 0); 8007 log_level = OPTS_GET(opts, kernel_log_level, 0); 8008 if (log_size > UINT_MAX) 8009 return ERR_PTR(-EINVAL); 8010 if (log_size && !log_buf) 8011 return ERR_PTR(-EINVAL); 8012 8013 token_path = OPTS_GET(opts, bpf_token_path, NULL); 8014 /* if user didn't specify bpf_token_path explicitly, check if 8015 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 8016 * option 8017 */ 8018 if (!token_path) 8019 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 8020 if (token_path && strlen(token_path) >= PATH_MAX) 8021 return ERR_PTR(-ENAMETOOLONG); 8022 8023 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8024 if (IS_ERR(obj)) 8025 return obj; 8026 8027 obj->log_buf = log_buf; 8028 obj->log_size = log_size; 8029 obj->log_level = log_level; 8030 8031 if (token_path) { 8032 obj->token_path = strdup(token_path); 8033 if (!obj->token_path) { 8034 err = -ENOMEM; 8035 goto out; 8036 } 8037 } 8038 8039 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8040 if (btf_tmp_path) { 8041 if (strlen(btf_tmp_path) >= PATH_MAX) { 8042 err = -ENAMETOOLONG; 8043 goto out; 8044 } 8045 obj->btf_custom_path = strdup(btf_tmp_path); 8046 if (!obj->btf_custom_path) { 8047 err = -ENOMEM; 8048 goto out; 8049 } 8050 } 8051 8052 kconfig = OPTS_GET(opts, kconfig, NULL); 8053 if (kconfig) { 8054 obj->kconfig = strdup(kconfig); 8055 if (!obj->kconfig) { 8056 err = -ENOMEM; 8057 goto out; 8058 } 8059 } 8060 8061 err = bpf_object__elf_init(obj); 8062 err = err ? : bpf_object__elf_collect(obj); 8063 err = err ? : bpf_object__collect_externs(obj); 8064 err = err ? : bpf_object_fixup_btf(obj); 8065 err = err ? : bpf_object__init_maps(obj, opts); 8066 err = err ? : bpf_object_init_progs(obj, opts); 8067 err = err ? : bpf_object__collect_relos(obj); 8068 if (err) 8069 goto out; 8070 8071 bpf_object__elf_finish(obj); 8072 8073 return obj; 8074 out: 8075 bpf_object__close(obj); 8076 return ERR_PTR(err); 8077 } 8078 8079 struct bpf_object * 8080 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8081 { 8082 if (!path) 8083 return libbpf_err_ptr(-EINVAL); 8084 8085 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8086 } 8087 8088 struct bpf_object *bpf_object__open(const char *path) 8089 { 8090 return bpf_object__open_file(path, NULL); 8091 } 8092 8093 struct bpf_object * 8094 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8095 const struct bpf_object_open_opts *opts) 8096 { 8097 char tmp_name[64]; 8098 8099 if (!obj_buf || obj_buf_sz == 0) 8100 return libbpf_err_ptr(-EINVAL); 8101 8102 /* create a (quite useless) default "name" for this memory buffer object */ 8103 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8104 8105 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8106 } 8107 8108 static int bpf_object_unload(struct bpf_object *obj) 8109 { 8110 size_t i; 8111 8112 if (!obj) 8113 return libbpf_err(-EINVAL); 8114 8115 for (i = 0; i < obj->nr_maps; i++) { 8116 zclose(obj->maps[i].fd); 8117 if (obj->maps[i].st_ops) 8118 zfree(&obj->maps[i].st_ops->kern_vdata); 8119 } 8120 8121 for (i = 0; i < obj->nr_programs; i++) 8122 bpf_program__unload(&obj->programs[i]); 8123 8124 return 0; 8125 } 8126 8127 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8128 { 8129 struct bpf_map *m; 8130 8131 bpf_object__for_each_map(m, obj) { 8132 if (!bpf_map__is_internal(m)) 8133 continue; 8134 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8135 m->def.map_flags &= ~BPF_F_MMAPABLE; 8136 } 8137 8138 return 0; 8139 } 8140 8141 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8142 const char *sym_name, void *ctx); 8143 8144 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8145 { 8146 char sym_type, sym_name[500]; 8147 unsigned long long sym_addr; 8148 int ret, err = 0; 8149 FILE *f; 8150 8151 f = fopen("/proc/kallsyms", "re"); 8152 if (!f) { 8153 err = -errno; 8154 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8155 return err; 8156 } 8157 8158 while (true) { 8159 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8160 &sym_addr, &sym_type, sym_name); 8161 if (ret == EOF && feof(f)) 8162 break; 8163 if (ret != 3) { 8164 pr_warn("failed to read kallsyms entry: %d\n", ret); 8165 err = -EINVAL; 8166 break; 8167 } 8168 8169 err = cb(sym_addr, sym_type, sym_name, ctx); 8170 if (err) 8171 break; 8172 } 8173 8174 fclose(f); 8175 return err; 8176 } 8177 8178 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8179 const char *sym_name, void *ctx) 8180 { 8181 struct bpf_object *obj = ctx; 8182 const struct btf_type *t; 8183 struct extern_desc *ext; 8184 char *res; 8185 8186 res = strstr(sym_name, ".llvm."); 8187 if (sym_type == 'd' && res) 8188 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8189 else 8190 ext = find_extern_by_name(obj, sym_name); 8191 if (!ext || ext->type != EXT_KSYM) 8192 return 0; 8193 8194 t = btf__type_by_id(obj->btf, ext->btf_id); 8195 if (!btf_is_var(t)) 8196 return 0; 8197 8198 if (ext->is_set && ext->ksym.addr != sym_addr) { 8199 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8200 sym_name, ext->ksym.addr, sym_addr); 8201 return -EINVAL; 8202 } 8203 if (!ext->is_set) { 8204 ext->is_set = true; 8205 ext->ksym.addr = sym_addr; 8206 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8207 } 8208 return 0; 8209 } 8210 8211 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8212 { 8213 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8214 } 8215 8216 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8217 __u16 kind, struct btf **res_btf, 8218 struct module_btf **res_mod_btf) 8219 { 8220 struct module_btf *mod_btf; 8221 struct btf *btf; 8222 int i, id, err; 8223 8224 btf = obj->btf_vmlinux; 8225 mod_btf = NULL; 8226 id = btf__find_by_name_kind(btf, ksym_name, kind); 8227 8228 if (id == -ENOENT) { 8229 err = load_module_btfs(obj); 8230 if (err) 8231 return err; 8232 8233 for (i = 0; i < obj->btf_module_cnt; i++) { 8234 /* we assume module_btf's BTF FD is always >0 */ 8235 mod_btf = &obj->btf_modules[i]; 8236 btf = mod_btf->btf; 8237 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8238 if (id != -ENOENT) 8239 break; 8240 } 8241 } 8242 if (id <= 0) 8243 return -ESRCH; 8244 8245 *res_btf = btf; 8246 *res_mod_btf = mod_btf; 8247 return id; 8248 } 8249 8250 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8251 struct extern_desc *ext) 8252 { 8253 const struct btf_type *targ_var, *targ_type; 8254 __u32 targ_type_id, local_type_id; 8255 struct module_btf *mod_btf = NULL; 8256 const char *targ_var_name; 8257 struct btf *btf = NULL; 8258 int id, err; 8259 8260 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8261 if (id < 0) { 8262 if (id == -ESRCH && ext->is_weak) 8263 return 0; 8264 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8265 ext->name); 8266 return id; 8267 } 8268 8269 /* find local type_id */ 8270 local_type_id = ext->ksym.type_id; 8271 8272 /* find target type_id */ 8273 targ_var = btf__type_by_id(btf, id); 8274 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8275 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8276 8277 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8278 btf, targ_type_id); 8279 if (err <= 0) { 8280 const struct btf_type *local_type; 8281 const char *targ_name, *local_name; 8282 8283 local_type = btf__type_by_id(obj->btf, local_type_id); 8284 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8285 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8286 8287 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8288 ext->name, local_type_id, 8289 btf_kind_str(local_type), local_name, targ_type_id, 8290 btf_kind_str(targ_type), targ_name); 8291 return -EINVAL; 8292 } 8293 8294 ext->is_set = true; 8295 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8296 ext->ksym.kernel_btf_id = id; 8297 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8298 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8299 8300 return 0; 8301 } 8302 8303 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8304 struct extern_desc *ext) 8305 { 8306 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8307 struct module_btf *mod_btf = NULL; 8308 const struct btf_type *kern_func; 8309 struct btf *kern_btf = NULL; 8310 int ret; 8311 8312 local_func_proto_id = ext->ksym.type_id; 8313 8314 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8315 &mod_btf); 8316 if (kfunc_id < 0) { 8317 if (kfunc_id == -ESRCH && ext->is_weak) 8318 return 0; 8319 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8320 ext->name); 8321 return kfunc_id; 8322 } 8323 8324 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8325 kfunc_proto_id = kern_func->type; 8326 8327 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8328 kern_btf, kfunc_proto_id); 8329 if (ret <= 0) { 8330 if (ext->is_weak) 8331 return 0; 8332 8333 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8334 ext->name, local_func_proto_id, 8335 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8336 return -EINVAL; 8337 } 8338 8339 /* set index for module BTF fd in fd_array, if unset */ 8340 if (mod_btf && !mod_btf->fd_array_idx) { 8341 /* insn->off is s16 */ 8342 if (obj->fd_array_cnt == INT16_MAX) { 8343 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8344 ext->name, mod_btf->fd_array_idx); 8345 return -E2BIG; 8346 } 8347 /* Cannot use index 0 for module BTF fd */ 8348 if (!obj->fd_array_cnt) 8349 obj->fd_array_cnt = 1; 8350 8351 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8352 obj->fd_array_cnt + 1); 8353 if (ret) 8354 return ret; 8355 mod_btf->fd_array_idx = obj->fd_array_cnt; 8356 /* we assume module BTF FD is always >0 */ 8357 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8358 } 8359 8360 ext->is_set = true; 8361 ext->ksym.kernel_btf_id = kfunc_id; 8362 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8363 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8364 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8365 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8366 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8367 */ 8368 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8369 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8370 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8371 8372 return 0; 8373 } 8374 8375 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8376 { 8377 const struct btf_type *t; 8378 struct extern_desc *ext; 8379 int i, err; 8380 8381 for (i = 0; i < obj->nr_extern; i++) { 8382 ext = &obj->externs[i]; 8383 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8384 continue; 8385 8386 if (obj->gen_loader) { 8387 ext->is_set = true; 8388 ext->ksym.kernel_btf_obj_fd = 0; 8389 ext->ksym.kernel_btf_id = 0; 8390 continue; 8391 } 8392 t = btf__type_by_id(obj->btf, ext->btf_id); 8393 if (btf_is_var(t)) 8394 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8395 else 8396 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8397 if (err) 8398 return err; 8399 } 8400 return 0; 8401 } 8402 8403 static int bpf_object__resolve_externs(struct bpf_object *obj, 8404 const char *extra_kconfig) 8405 { 8406 bool need_config = false, need_kallsyms = false; 8407 bool need_vmlinux_btf = false; 8408 struct extern_desc *ext; 8409 void *kcfg_data = NULL; 8410 int err, i; 8411 8412 if (obj->nr_extern == 0) 8413 return 0; 8414 8415 if (obj->kconfig_map_idx >= 0) 8416 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8417 8418 for (i = 0; i < obj->nr_extern; i++) { 8419 ext = &obj->externs[i]; 8420 8421 if (ext->type == EXT_KSYM) { 8422 if (ext->ksym.type_id) 8423 need_vmlinux_btf = true; 8424 else 8425 need_kallsyms = true; 8426 continue; 8427 } else if (ext->type == EXT_KCFG) { 8428 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8429 __u64 value = 0; 8430 8431 /* Kconfig externs need actual /proc/config.gz */ 8432 if (str_has_pfx(ext->name, "CONFIG_")) { 8433 need_config = true; 8434 continue; 8435 } 8436 8437 /* Virtual kcfg externs are customly handled by libbpf */ 8438 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8439 value = get_kernel_version(); 8440 if (!value) { 8441 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8442 return -EINVAL; 8443 } 8444 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8445 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8446 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8447 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8448 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8449 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8450 * __kconfig externs, where LINUX_ ones are virtual and filled out 8451 * customly by libbpf (their values don't come from Kconfig). 8452 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8453 * __weak, it defaults to zero value, just like for CONFIG_xxx 8454 * externs. 8455 */ 8456 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8457 return -EINVAL; 8458 } 8459 8460 err = set_kcfg_value_num(ext, ext_ptr, value); 8461 if (err) 8462 return err; 8463 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8464 ext->name, (long long)value); 8465 } else { 8466 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8467 return -EINVAL; 8468 } 8469 } 8470 if (need_config && extra_kconfig) { 8471 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8472 if (err) 8473 return -EINVAL; 8474 need_config = false; 8475 for (i = 0; i < obj->nr_extern; i++) { 8476 ext = &obj->externs[i]; 8477 if (ext->type == EXT_KCFG && !ext->is_set) { 8478 need_config = true; 8479 break; 8480 } 8481 } 8482 } 8483 if (need_config) { 8484 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8485 if (err) 8486 return -EINVAL; 8487 } 8488 if (need_kallsyms) { 8489 err = bpf_object__read_kallsyms_file(obj); 8490 if (err) 8491 return -EINVAL; 8492 } 8493 if (need_vmlinux_btf) { 8494 err = bpf_object__resolve_ksyms_btf_id(obj); 8495 if (err) 8496 return -EINVAL; 8497 } 8498 for (i = 0; i < obj->nr_extern; i++) { 8499 ext = &obj->externs[i]; 8500 8501 if (!ext->is_set && !ext->is_weak) { 8502 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8503 return -ESRCH; 8504 } else if (!ext->is_set) { 8505 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8506 ext->name); 8507 } 8508 } 8509 8510 return 0; 8511 } 8512 8513 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8514 { 8515 const struct btf_type *type; 8516 struct bpf_struct_ops *st_ops; 8517 __u32 i; 8518 8519 st_ops = map->st_ops; 8520 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8521 for (i = 0; i < btf_vlen(type); i++) { 8522 struct bpf_program *prog = st_ops->progs[i]; 8523 void *kern_data; 8524 int prog_fd; 8525 8526 if (!prog) 8527 continue; 8528 8529 prog_fd = bpf_program__fd(prog); 8530 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8531 *(unsigned long *)kern_data = prog_fd; 8532 } 8533 } 8534 8535 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8536 { 8537 struct bpf_map *map; 8538 int i; 8539 8540 for (i = 0; i < obj->nr_maps; i++) { 8541 map = &obj->maps[i]; 8542 8543 if (!bpf_map__is_struct_ops(map)) 8544 continue; 8545 8546 if (!map->autocreate) 8547 continue; 8548 8549 bpf_map_prepare_vdata(map); 8550 } 8551 8552 return 0; 8553 } 8554 8555 static void bpf_object_unpin(struct bpf_object *obj) 8556 { 8557 int i; 8558 8559 /* unpin any maps that were auto-pinned during load */ 8560 for (i = 0; i < obj->nr_maps; i++) 8561 if (obj->maps[i].pinned && !obj->maps[i].reused) 8562 bpf_map__unpin(&obj->maps[i], NULL); 8563 } 8564 8565 static void bpf_object_post_load_cleanup(struct bpf_object *obj) 8566 { 8567 int i; 8568 8569 /* clean up fd_array */ 8570 zfree(&obj->fd_array); 8571 8572 /* clean up module BTFs */ 8573 for (i = 0; i < obj->btf_module_cnt; i++) { 8574 close(obj->btf_modules[i].fd); 8575 btf__free(obj->btf_modules[i].btf); 8576 free(obj->btf_modules[i].name); 8577 } 8578 obj->btf_module_cnt = 0; 8579 zfree(&obj->btf_modules); 8580 8581 /* clean up vmlinux BTF */ 8582 btf__free(obj->btf_vmlinux); 8583 obj->btf_vmlinux = NULL; 8584 } 8585 8586 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path) 8587 { 8588 int err; 8589 8590 if (obj->state >= OBJ_PREPARED) { 8591 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name); 8592 return -EINVAL; 8593 } 8594 8595 err = bpf_object_prepare_token(obj); 8596 err = err ? : bpf_object__probe_loading(obj); 8597 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8598 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8599 err = err ? : bpf_object__sanitize_maps(obj); 8600 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8601 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8602 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8603 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8604 err = err ? : bpf_object__create_maps(obj); 8605 err = err ? : bpf_object_prepare_progs(obj); 8606 8607 if (err) { 8608 bpf_object_unpin(obj); 8609 bpf_object_unload(obj); 8610 obj->state = OBJ_LOADED; 8611 return err; 8612 } 8613 8614 obj->state = OBJ_PREPARED; 8615 return 0; 8616 } 8617 8618 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8619 { 8620 int err; 8621 8622 if (!obj) 8623 return libbpf_err(-EINVAL); 8624 8625 if (obj->state >= OBJ_LOADED) { 8626 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8627 return libbpf_err(-EINVAL); 8628 } 8629 8630 /* Disallow kernel loading programs of non-native endianness but 8631 * permit cross-endian creation of "light skeleton". 8632 */ 8633 if (obj->gen_loader) { 8634 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8635 } else if (!is_native_endianness(obj)) { 8636 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8637 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8638 } 8639 8640 if (obj->state < OBJ_PREPARED) { 8641 err = bpf_object_prepare(obj, target_btf_path); 8642 if (err) 8643 return libbpf_err(err); 8644 } 8645 err = bpf_object__load_progs(obj, extra_log_level); 8646 err = err ? : bpf_object_init_prog_arrays(obj); 8647 err = err ? : bpf_object_prepare_struct_ops(obj); 8648 8649 if (obj->gen_loader) { 8650 /* reset FDs */ 8651 if (obj->btf) 8652 btf__set_fd(obj->btf, -1); 8653 if (!err) 8654 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8655 } 8656 8657 bpf_object_post_load_cleanup(obj); 8658 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */ 8659 8660 if (err) { 8661 bpf_object_unpin(obj); 8662 bpf_object_unload(obj); 8663 pr_warn("failed to load object '%s'\n", obj->path); 8664 return libbpf_err(err); 8665 } 8666 8667 return 0; 8668 } 8669 8670 int bpf_object__prepare(struct bpf_object *obj) 8671 { 8672 return libbpf_err(bpf_object_prepare(obj, NULL)); 8673 } 8674 8675 int bpf_object__load(struct bpf_object *obj) 8676 { 8677 return bpf_object_load(obj, 0, NULL); 8678 } 8679 8680 static int make_parent_dir(const char *path) 8681 { 8682 char *dname, *dir; 8683 int err = 0; 8684 8685 dname = strdup(path); 8686 if (dname == NULL) 8687 return -ENOMEM; 8688 8689 dir = dirname(dname); 8690 if (mkdir(dir, 0700) && errno != EEXIST) 8691 err = -errno; 8692 8693 free(dname); 8694 if (err) { 8695 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8696 } 8697 return err; 8698 } 8699 8700 static int check_path(const char *path) 8701 { 8702 struct statfs st_fs; 8703 char *dname, *dir; 8704 int err = 0; 8705 8706 if (path == NULL) 8707 return -EINVAL; 8708 8709 dname = strdup(path); 8710 if (dname == NULL) 8711 return -ENOMEM; 8712 8713 dir = dirname(dname); 8714 if (statfs(dir, &st_fs)) { 8715 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 8716 err = -errno; 8717 } 8718 free(dname); 8719 8720 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8721 pr_warn("specified path %s is not on BPF FS\n", path); 8722 err = -EINVAL; 8723 } 8724 8725 return err; 8726 } 8727 8728 int bpf_program__pin(struct bpf_program *prog, const char *path) 8729 { 8730 int err; 8731 8732 if (prog->fd < 0) { 8733 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8734 return libbpf_err(-EINVAL); 8735 } 8736 8737 err = make_parent_dir(path); 8738 if (err) 8739 return libbpf_err(err); 8740 8741 err = check_path(path); 8742 if (err) 8743 return libbpf_err(err); 8744 8745 if (bpf_obj_pin(prog->fd, path)) { 8746 err = -errno; 8747 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 8748 return libbpf_err(err); 8749 } 8750 8751 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8752 return 0; 8753 } 8754 8755 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8756 { 8757 int err; 8758 8759 if (prog->fd < 0) { 8760 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8761 return libbpf_err(-EINVAL); 8762 } 8763 8764 err = check_path(path); 8765 if (err) 8766 return libbpf_err(err); 8767 8768 err = unlink(path); 8769 if (err) 8770 return libbpf_err(-errno); 8771 8772 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8773 return 0; 8774 } 8775 8776 int bpf_map__pin(struct bpf_map *map, const char *path) 8777 { 8778 int err; 8779 8780 if (map == NULL) { 8781 pr_warn("invalid map pointer\n"); 8782 return libbpf_err(-EINVAL); 8783 } 8784 8785 if (map->fd < 0) { 8786 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8787 return libbpf_err(-EINVAL); 8788 } 8789 8790 if (map->pin_path) { 8791 if (path && strcmp(path, map->pin_path)) { 8792 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8793 bpf_map__name(map), map->pin_path, path); 8794 return libbpf_err(-EINVAL); 8795 } else if (map->pinned) { 8796 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8797 bpf_map__name(map), map->pin_path); 8798 return 0; 8799 } 8800 } else { 8801 if (!path) { 8802 pr_warn("missing a path to pin map '%s' at\n", 8803 bpf_map__name(map)); 8804 return libbpf_err(-EINVAL); 8805 } else if (map->pinned) { 8806 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8807 return libbpf_err(-EEXIST); 8808 } 8809 8810 map->pin_path = strdup(path); 8811 if (!map->pin_path) { 8812 err = -errno; 8813 goto out_err; 8814 } 8815 } 8816 8817 err = make_parent_dir(map->pin_path); 8818 if (err) 8819 return libbpf_err(err); 8820 8821 err = check_path(map->pin_path); 8822 if (err) 8823 return libbpf_err(err); 8824 8825 if (bpf_obj_pin(map->fd, map->pin_path)) { 8826 err = -errno; 8827 goto out_err; 8828 } 8829 8830 map->pinned = true; 8831 pr_debug("pinned map '%s'\n", map->pin_path); 8832 8833 return 0; 8834 8835 out_err: 8836 pr_warn("failed to pin map: %s\n", errstr(err)); 8837 return libbpf_err(err); 8838 } 8839 8840 int bpf_map__unpin(struct bpf_map *map, const char *path) 8841 { 8842 int err; 8843 8844 if (map == NULL) { 8845 pr_warn("invalid map pointer\n"); 8846 return libbpf_err(-EINVAL); 8847 } 8848 8849 if (map->pin_path) { 8850 if (path && strcmp(path, map->pin_path)) { 8851 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8852 bpf_map__name(map), map->pin_path, path); 8853 return libbpf_err(-EINVAL); 8854 } 8855 path = map->pin_path; 8856 } else if (!path) { 8857 pr_warn("no path to unpin map '%s' from\n", 8858 bpf_map__name(map)); 8859 return libbpf_err(-EINVAL); 8860 } 8861 8862 err = check_path(path); 8863 if (err) 8864 return libbpf_err(err); 8865 8866 err = unlink(path); 8867 if (err != 0) 8868 return libbpf_err(-errno); 8869 8870 map->pinned = false; 8871 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8872 8873 return 0; 8874 } 8875 8876 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8877 { 8878 char *new = NULL; 8879 8880 if (path) { 8881 new = strdup(path); 8882 if (!new) 8883 return libbpf_err(-errno); 8884 } 8885 8886 free(map->pin_path); 8887 map->pin_path = new; 8888 return 0; 8889 } 8890 8891 __alias(bpf_map__pin_path) 8892 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8893 8894 const char *bpf_map__pin_path(const struct bpf_map *map) 8895 { 8896 return map->pin_path; 8897 } 8898 8899 bool bpf_map__is_pinned(const struct bpf_map *map) 8900 { 8901 return map->pinned; 8902 } 8903 8904 static void sanitize_pin_path(char *s) 8905 { 8906 /* bpffs disallows periods in path names */ 8907 while (*s) { 8908 if (*s == '.') 8909 *s = '_'; 8910 s++; 8911 } 8912 } 8913 8914 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8915 { 8916 struct bpf_map *map; 8917 int err; 8918 8919 if (!obj) 8920 return libbpf_err(-ENOENT); 8921 8922 if (obj->state < OBJ_PREPARED) { 8923 pr_warn("object not yet loaded; load it first\n"); 8924 return libbpf_err(-ENOENT); 8925 } 8926 8927 bpf_object__for_each_map(map, obj) { 8928 char *pin_path = NULL; 8929 char buf[PATH_MAX]; 8930 8931 if (!map->autocreate) 8932 continue; 8933 8934 if (path) { 8935 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8936 if (err) 8937 goto err_unpin_maps; 8938 sanitize_pin_path(buf); 8939 pin_path = buf; 8940 } else if (!map->pin_path) { 8941 continue; 8942 } 8943 8944 err = bpf_map__pin(map, pin_path); 8945 if (err) 8946 goto err_unpin_maps; 8947 } 8948 8949 return 0; 8950 8951 err_unpin_maps: 8952 while ((map = bpf_object__prev_map(obj, map))) { 8953 if (!map->pin_path) 8954 continue; 8955 8956 bpf_map__unpin(map, NULL); 8957 } 8958 8959 return libbpf_err(err); 8960 } 8961 8962 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8963 { 8964 struct bpf_map *map; 8965 int err; 8966 8967 if (!obj) 8968 return libbpf_err(-ENOENT); 8969 8970 bpf_object__for_each_map(map, obj) { 8971 char *pin_path = NULL; 8972 char buf[PATH_MAX]; 8973 8974 if (path) { 8975 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8976 if (err) 8977 return libbpf_err(err); 8978 sanitize_pin_path(buf); 8979 pin_path = buf; 8980 } else if (!map->pin_path) { 8981 continue; 8982 } 8983 8984 err = bpf_map__unpin(map, pin_path); 8985 if (err) 8986 return libbpf_err(err); 8987 } 8988 8989 return 0; 8990 } 8991 8992 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8993 { 8994 struct bpf_program *prog; 8995 char buf[PATH_MAX]; 8996 int err; 8997 8998 if (!obj) 8999 return libbpf_err(-ENOENT); 9000 9001 if (obj->state < OBJ_LOADED) { 9002 pr_warn("object not yet loaded; load it first\n"); 9003 return libbpf_err(-ENOENT); 9004 } 9005 9006 bpf_object__for_each_program(prog, obj) { 9007 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9008 if (err) 9009 goto err_unpin_programs; 9010 9011 err = bpf_program__pin(prog, buf); 9012 if (err) 9013 goto err_unpin_programs; 9014 } 9015 9016 return 0; 9017 9018 err_unpin_programs: 9019 while ((prog = bpf_object__prev_program(obj, prog))) { 9020 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 9021 continue; 9022 9023 bpf_program__unpin(prog, buf); 9024 } 9025 9026 return libbpf_err(err); 9027 } 9028 9029 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 9030 { 9031 struct bpf_program *prog; 9032 int err; 9033 9034 if (!obj) 9035 return libbpf_err(-ENOENT); 9036 9037 bpf_object__for_each_program(prog, obj) { 9038 char buf[PATH_MAX]; 9039 9040 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9041 if (err) 9042 return libbpf_err(err); 9043 9044 err = bpf_program__unpin(prog, buf); 9045 if (err) 9046 return libbpf_err(err); 9047 } 9048 9049 return 0; 9050 } 9051 9052 int bpf_object__pin(struct bpf_object *obj, const char *path) 9053 { 9054 int err; 9055 9056 err = bpf_object__pin_maps(obj, path); 9057 if (err) 9058 return libbpf_err(err); 9059 9060 err = bpf_object__pin_programs(obj, path); 9061 if (err) { 9062 bpf_object__unpin_maps(obj, path); 9063 return libbpf_err(err); 9064 } 9065 9066 return 0; 9067 } 9068 9069 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9070 { 9071 int err; 9072 9073 err = bpf_object__unpin_programs(obj, path); 9074 if (err) 9075 return libbpf_err(err); 9076 9077 err = bpf_object__unpin_maps(obj, path); 9078 if (err) 9079 return libbpf_err(err); 9080 9081 return 0; 9082 } 9083 9084 static void bpf_map__destroy(struct bpf_map *map) 9085 { 9086 if (map->inner_map) { 9087 bpf_map__destroy(map->inner_map); 9088 zfree(&map->inner_map); 9089 } 9090 9091 zfree(&map->init_slots); 9092 map->init_slots_sz = 0; 9093 9094 if (map->mmaped && map->mmaped != map->obj->arena_data) 9095 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9096 map->mmaped = NULL; 9097 9098 if (map->st_ops) { 9099 zfree(&map->st_ops->data); 9100 zfree(&map->st_ops->progs); 9101 zfree(&map->st_ops->kern_func_off); 9102 zfree(&map->st_ops); 9103 } 9104 9105 zfree(&map->name); 9106 zfree(&map->real_name); 9107 zfree(&map->pin_path); 9108 9109 if (map->fd >= 0) 9110 zclose(map->fd); 9111 } 9112 9113 void bpf_object__close(struct bpf_object *obj) 9114 { 9115 size_t i; 9116 9117 if (IS_ERR_OR_NULL(obj)) 9118 return; 9119 9120 /* 9121 * if user called bpf_object__prepare() without ever getting to 9122 * bpf_object__load(), we need to clean up stuff that is normally 9123 * cleaned up at the end of loading step 9124 */ 9125 bpf_object_post_load_cleanup(obj); 9126 9127 usdt_manager_free(obj->usdt_man); 9128 obj->usdt_man = NULL; 9129 9130 bpf_gen__free(obj->gen_loader); 9131 bpf_object__elf_finish(obj); 9132 bpf_object_unload(obj); 9133 btf__free(obj->btf); 9134 btf__free(obj->btf_vmlinux); 9135 btf_ext__free(obj->btf_ext); 9136 9137 for (i = 0; i < obj->nr_maps; i++) 9138 bpf_map__destroy(&obj->maps[i]); 9139 9140 zfree(&obj->btf_custom_path); 9141 zfree(&obj->kconfig); 9142 9143 for (i = 0; i < obj->nr_extern; i++) { 9144 zfree(&obj->externs[i].name); 9145 zfree(&obj->externs[i].essent_name); 9146 } 9147 9148 zfree(&obj->externs); 9149 obj->nr_extern = 0; 9150 9151 zfree(&obj->maps); 9152 obj->nr_maps = 0; 9153 9154 if (obj->programs && obj->nr_programs) { 9155 for (i = 0; i < obj->nr_programs; i++) 9156 bpf_program__exit(&obj->programs[i]); 9157 } 9158 zfree(&obj->programs); 9159 9160 zfree(&obj->feat_cache); 9161 zfree(&obj->token_path); 9162 if (obj->token_fd > 0) 9163 close(obj->token_fd); 9164 9165 zfree(&obj->arena_data); 9166 9167 free(obj); 9168 } 9169 9170 const char *bpf_object__name(const struct bpf_object *obj) 9171 { 9172 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9173 } 9174 9175 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9176 { 9177 return obj ? obj->kern_version : 0; 9178 } 9179 9180 int bpf_object__token_fd(const struct bpf_object *obj) 9181 { 9182 return obj->token_fd ?: -1; 9183 } 9184 9185 struct btf *bpf_object__btf(const struct bpf_object *obj) 9186 { 9187 return obj ? obj->btf : NULL; 9188 } 9189 9190 int bpf_object__btf_fd(const struct bpf_object *obj) 9191 { 9192 return obj->btf ? btf__fd(obj->btf) : -1; 9193 } 9194 9195 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9196 { 9197 if (obj->state >= OBJ_LOADED) 9198 return libbpf_err(-EINVAL); 9199 9200 obj->kern_version = kern_version; 9201 9202 return 0; 9203 } 9204 9205 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9206 { 9207 struct bpf_gen *gen; 9208 9209 if (!opts) 9210 return libbpf_err(-EFAULT); 9211 if (!OPTS_VALID(opts, gen_loader_opts)) 9212 return libbpf_err(-EINVAL); 9213 gen = calloc(sizeof(*gen), 1); 9214 if (!gen) 9215 return libbpf_err(-ENOMEM); 9216 gen->opts = opts; 9217 gen->swapped_endian = !is_native_endianness(obj); 9218 obj->gen_loader = gen; 9219 return 0; 9220 } 9221 9222 static struct bpf_program * 9223 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9224 bool forward) 9225 { 9226 size_t nr_programs = obj->nr_programs; 9227 ssize_t idx; 9228 9229 if (!nr_programs) 9230 return NULL; 9231 9232 if (!p) 9233 /* Iter from the beginning */ 9234 return forward ? &obj->programs[0] : 9235 &obj->programs[nr_programs - 1]; 9236 9237 if (p->obj != obj) { 9238 pr_warn("error: program handler doesn't match object\n"); 9239 return errno = EINVAL, NULL; 9240 } 9241 9242 idx = (p - obj->programs) + (forward ? 1 : -1); 9243 if (idx >= obj->nr_programs || idx < 0) 9244 return NULL; 9245 return &obj->programs[idx]; 9246 } 9247 9248 struct bpf_program * 9249 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9250 { 9251 struct bpf_program *prog = prev; 9252 9253 do { 9254 prog = __bpf_program__iter(prog, obj, true); 9255 } while (prog && prog_is_subprog(obj, prog)); 9256 9257 return prog; 9258 } 9259 9260 struct bpf_program * 9261 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9262 { 9263 struct bpf_program *prog = next; 9264 9265 do { 9266 prog = __bpf_program__iter(prog, obj, false); 9267 } while (prog && prog_is_subprog(obj, prog)); 9268 9269 return prog; 9270 } 9271 9272 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9273 { 9274 prog->prog_ifindex = ifindex; 9275 } 9276 9277 const char *bpf_program__name(const struct bpf_program *prog) 9278 { 9279 return prog->name; 9280 } 9281 9282 const char *bpf_program__section_name(const struct bpf_program *prog) 9283 { 9284 return prog->sec_name; 9285 } 9286 9287 bool bpf_program__autoload(const struct bpf_program *prog) 9288 { 9289 return prog->autoload; 9290 } 9291 9292 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9293 { 9294 if (prog->obj->state >= OBJ_LOADED) 9295 return libbpf_err(-EINVAL); 9296 9297 prog->autoload = autoload; 9298 return 0; 9299 } 9300 9301 bool bpf_program__autoattach(const struct bpf_program *prog) 9302 { 9303 return prog->autoattach; 9304 } 9305 9306 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9307 { 9308 prog->autoattach = autoattach; 9309 } 9310 9311 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9312 { 9313 return prog->insns; 9314 } 9315 9316 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9317 { 9318 return prog->insns_cnt; 9319 } 9320 9321 int bpf_program__set_insns(struct bpf_program *prog, 9322 struct bpf_insn *new_insns, size_t new_insn_cnt) 9323 { 9324 struct bpf_insn *insns; 9325 9326 if (prog->obj->state >= OBJ_LOADED) 9327 return libbpf_err(-EBUSY); 9328 9329 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9330 /* NULL is a valid return from reallocarray if the new count is zero */ 9331 if (!insns && new_insn_cnt) { 9332 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9333 return libbpf_err(-ENOMEM); 9334 } 9335 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9336 9337 prog->insns = insns; 9338 prog->insns_cnt = new_insn_cnt; 9339 return 0; 9340 } 9341 9342 int bpf_program__fd(const struct bpf_program *prog) 9343 { 9344 if (!prog) 9345 return libbpf_err(-EINVAL); 9346 9347 if (prog->fd < 0) 9348 return libbpf_err(-ENOENT); 9349 9350 return prog->fd; 9351 } 9352 9353 __alias(bpf_program__type) 9354 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9355 9356 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9357 { 9358 return prog->type; 9359 } 9360 9361 static size_t custom_sec_def_cnt; 9362 static struct bpf_sec_def *custom_sec_defs; 9363 static struct bpf_sec_def custom_fallback_def; 9364 static bool has_custom_fallback_def; 9365 static int last_custom_sec_def_handler_id; 9366 9367 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9368 { 9369 if (prog->obj->state >= OBJ_LOADED) 9370 return libbpf_err(-EBUSY); 9371 9372 /* if type is not changed, do nothing */ 9373 if (prog->type == type) 9374 return 0; 9375 9376 prog->type = type; 9377 9378 /* If a program type was changed, we need to reset associated SEC() 9379 * handler, as it will be invalid now. The only exception is a generic 9380 * fallback handler, which by definition is program type-agnostic and 9381 * is a catch-all custom handler, optionally set by the application, 9382 * so should be able to handle any type of BPF program. 9383 */ 9384 if (prog->sec_def != &custom_fallback_def) 9385 prog->sec_def = NULL; 9386 return 0; 9387 } 9388 9389 __alias(bpf_program__expected_attach_type) 9390 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9391 9392 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9393 { 9394 return prog->expected_attach_type; 9395 } 9396 9397 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9398 enum bpf_attach_type type) 9399 { 9400 if (prog->obj->state >= OBJ_LOADED) 9401 return libbpf_err(-EBUSY); 9402 9403 prog->expected_attach_type = type; 9404 return 0; 9405 } 9406 9407 __u32 bpf_program__flags(const struct bpf_program *prog) 9408 { 9409 return prog->prog_flags; 9410 } 9411 9412 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9413 { 9414 if (prog->obj->state >= OBJ_LOADED) 9415 return libbpf_err(-EBUSY); 9416 9417 prog->prog_flags = flags; 9418 return 0; 9419 } 9420 9421 __u32 bpf_program__log_level(const struct bpf_program *prog) 9422 { 9423 return prog->log_level; 9424 } 9425 9426 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9427 { 9428 if (prog->obj->state >= OBJ_LOADED) 9429 return libbpf_err(-EBUSY); 9430 9431 prog->log_level = log_level; 9432 return 0; 9433 } 9434 9435 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9436 { 9437 *log_size = prog->log_size; 9438 return prog->log_buf; 9439 } 9440 9441 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9442 { 9443 if (log_size && !log_buf) 9444 return libbpf_err(-EINVAL); 9445 if (prog->log_size > UINT_MAX) 9446 return libbpf_err(-EINVAL); 9447 if (prog->obj->state >= OBJ_LOADED) 9448 return libbpf_err(-EBUSY); 9449 9450 prog->log_buf = log_buf; 9451 prog->log_size = log_size; 9452 return 0; 9453 } 9454 9455 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog) 9456 { 9457 if (prog->func_info_rec_size != sizeof(struct bpf_func_info)) 9458 return libbpf_err_ptr(-EOPNOTSUPP); 9459 return prog->func_info; 9460 } 9461 9462 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog) 9463 { 9464 return prog->func_info_cnt; 9465 } 9466 9467 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog) 9468 { 9469 if (prog->line_info_rec_size != sizeof(struct bpf_line_info)) 9470 return libbpf_err_ptr(-EOPNOTSUPP); 9471 return prog->line_info; 9472 } 9473 9474 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog) 9475 { 9476 return prog->line_info_cnt; 9477 } 9478 9479 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9480 .sec = (char *)sec_pfx, \ 9481 .prog_type = BPF_PROG_TYPE_##ptype, \ 9482 .expected_attach_type = atype, \ 9483 .cookie = (long)(flags), \ 9484 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9485 __VA_ARGS__ \ 9486 } 9487 9488 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9489 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9490 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9491 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9492 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9493 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9494 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9495 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9496 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9497 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9498 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9499 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9500 9501 static const struct bpf_sec_def section_defs[] = { 9502 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9503 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9504 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9505 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9506 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9507 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9508 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9509 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9510 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9511 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9512 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9513 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9514 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9515 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9516 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9517 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9518 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9519 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9520 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9521 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9522 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9523 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9524 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9525 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9526 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9527 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9528 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9529 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9530 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9531 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9532 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9533 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9534 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9535 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9536 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9537 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9538 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9539 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9540 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9541 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9542 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9543 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9544 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9545 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9546 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9547 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9548 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9549 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9550 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9551 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9552 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9553 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9554 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9555 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9556 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9557 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9558 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9559 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9560 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9561 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9562 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9563 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9564 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9565 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9566 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9567 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9568 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9569 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9570 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9571 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9572 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9573 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9574 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9575 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9576 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9577 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9578 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9579 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9580 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9581 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9582 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9583 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9584 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9585 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9586 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9587 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9588 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9589 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9590 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9591 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9592 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9593 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9594 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9595 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9596 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9597 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9598 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9599 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9600 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9601 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9602 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9603 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9604 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9605 }; 9606 9607 int libbpf_register_prog_handler(const char *sec, 9608 enum bpf_prog_type prog_type, 9609 enum bpf_attach_type exp_attach_type, 9610 const struct libbpf_prog_handler_opts *opts) 9611 { 9612 struct bpf_sec_def *sec_def; 9613 9614 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9615 return libbpf_err(-EINVAL); 9616 9617 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9618 return libbpf_err(-E2BIG); 9619 9620 if (sec) { 9621 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9622 sizeof(*sec_def)); 9623 if (!sec_def) 9624 return libbpf_err(-ENOMEM); 9625 9626 custom_sec_defs = sec_def; 9627 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9628 } else { 9629 if (has_custom_fallback_def) 9630 return libbpf_err(-EBUSY); 9631 9632 sec_def = &custom_fallback_def; 9633 } 9634 9635 sec_def->sec = sec ? strdup(sec) : NULL; 9636 if (sec && !sec_def->sec) 9637 return libbpf_err(-ENOMEM); 9638 9639 sec_def->prog_type = prog_type; 9640 sec_def->expected_attach_type = exp_attach_type; 9641 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9642 9643 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9644 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9645 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9646 9647 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9648 9649 if (sec) 9650 custom_sec_def_cnt++; 9651 else 9652 has_custom_fallback_def = true; 9653 9654 return sec_def->handler_id; 9655 } 9656 9657 int libbpf_unregister_prog_handler(int handler_id) 9658 { 9659 struct bpf_sec_def *sec_defs; 9660 int i; 9661 9662 if (handler_id <= 0) 9663 return libbpf_err(-EINVAL); 9664 9665 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9666 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9667 has_custom_fallback_def = false; 9668 return 0; 9669 } 9670 9671 for (i = 0; i < custom_sec_def_cnt; i++) { 9672 if (custom_sec_defs[i].handler_id == handler_id) 9673 break; 9674 } 9675 9676 if (i == custom_sec_def_cnt) 9677 return libbpf_err(-ENOENT); 9678 9679 free(custom_sec_defs[i].sec); 9680 for (i = i + 1; i < custom_sec_def_cnt; i++) 9681 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9682 custom_sec_def_cnt--; 9683 9684 /* try to shrink the array, but it's ok if we couldn't */ 9685 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9686 /* if new count is zero, reallocarray can return a valid NULL result; 9687 * in this case the previous pointer will be freed, so we *have to* 9688 * reassign old pointer to the new value (even if it's NULL) 9689 */ 9690 if (sec_defs || custom_sec_def_cnt == 0) 9691 custom_sec_defs = sec_defs; 9692 9693 return 0; 9694 } 9695 9696 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9697 { 9698 size_t len = strlen(sec_def->sec); 9699 9700 /* "type/" always has to have proper SEC("type/extras") form */ 9701 if (sec_def->sec[len - 1] == '/') { 9702 if (str_has_pfx(sec_name, sec_def->sec)) 9703 return true; 9704 return false; 9705 } 9706 9707 /* "type+" means it can be either exact SEC("type") or 9708 * well-formed SEC("type/extras") with proper '/' separator 9709 */ 9710 if (sec_def->sec[len - 1] == '+') { 9711 len--; 9712 /* not even a prefix */ 9713 if (strncmp(sec_name, sec_def->sec, len) != 0) 9714 return false; 9715 /* exact match or has '/' separator */ 9716 if (sec_name[len] == '\0' || sec_name[len] == '/') 9717 return true; 9718 return false; 9719 } 9720 9721 return strcmp(sec_name, sec_def->sec) == 0; 9722 } 9723 9724 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9725 { 9726 const struct bpf_sec_def *sec_def; 9727 int i, n; 9728 9729 n = custom_sec_def_cnt; 9730 for (i = 0; i < n; i++) { 9731 sec_def = &custom_sec_defs[i]; 9732 if (sec_def_matches(sec_def, sec_name)) 9733 return sec_def; 9734 } 9735 9736 n = ARRAY_SIZE(section_defs); 9737 for (i = 0; i < n; i++) { 9738 sec_def = §ion_defs[i]; 9739 if (sec_def_matches(sec_def, sec_name)) 9740 return sec_def; 9741 } 9742 9743 if (has_custom_fallback_def) 9744 return &custom_fallback_def; 9745 9746 return NULL; 9747 } 9748 9749 #define MAX_TYPE_NAME_SIZE 32 9750 9751 static char *libbpf_get_type_names(bool attach_type) 9752 { 9753 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9754 char *buf; 9755 9756 buf = malloc(len); 9757 if (!buf) 9758 return NULL; 9759 9760 buf[0] = '\0'; 9761 /* Forge string buf with all available names */ 9762 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9763 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9764 9765 if (attach_type) { 9766 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9767 continue; 9768 9769 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9770 continue; 9771 } 9772 9773 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9774 free(buf); 9775 return NULL; 9776 } 9777 strcat(buf, " "); 9778 strcat(buf, section_defs[i].sec); 9779 } 9780 9781 return buf; 9782 } 9783 9784 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9785 enum bpf_attach_type *expected_attach_type) 9786 { 9787 const struct bpf_sec_def *sec_def; 9788 char *type_names; 9789 9790 if (!name) 9791 return libbpf_err(-EINVAL); 9792 9793 sec_def = find_sec_def(name); 9794 if (sec_def) { 9795 *prog_type = sec_def->prog_type; 9796 *expected_attach_type = sec_def->expected_attach_type; 9797 return 0; 9798 } 9799 9800 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9801 type_names = libbpf_get_type_names(false); 9802 if (type_names != NULL) { 9803 pr_debug("supported section(type) names are:%s\n", type_names); 9804 free(type_names); 9805 } 9806 9807 return libbpf_err(-ESRCH); 9808 } 9809 9810 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9811 { 9812 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9813 return NULL; 9814 9815 return attach_type_name[t]; 9816 } 9817 9818 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9819 { 9820 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9821 return NULL; 9822 9823 return link_type_name[t]; 9824 } 9825 9826 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9827 { 9828 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9829 return NULL; 9830 9831 return map_type_name[t]; 9832 } 9833 9834 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9835 { 9836 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9837 return NULL; 9838 9839 return prog_type_name[t]; 9840 } 9841 9842 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9843 int sec_idx, 9844 size_t offset) 9845 { 9846 struct bpf_map *map; 9847 size_t i; 9848 9849 for (i = 0; i < obj->nr_maps; i++) { 9850 map = &obj->maps[i]; 9851 if (!bpf_map__is_struct_ops(map)) 9852 continue; 9853 if (map->sec_idx == sec_idx && 9854 map->sec_offset <= offset && 9855 offset - map->sec_offset < map->def.value_size) 9856 return map; 9857 } 9858 9859 return NULL; 9860 } 9861 9862 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9863 * st_ops->data for shadow type. 9864 */ 9865 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9866 Elf64_Shdr *shdr, Elf_Data *data) 9867 { 9868 const struct btf_type *type; 9869 const struct btf_member *member; 9870 struct bpf_struct_ops *st_ops; 9871 struct bpf_program *prog; 9872 unsigned int shdr_idx; 9873 const struct btf *btf; 9874 struct bpf_map *map; 9875 unsigned int moff, insn_idx; 9876 const char *name; 9877 __u32 member_idx; 9878 Elf64_Sym *sym; 9879 Elf64_Rel *rel; 9880 int i, nrels; 9881 9882 btf = obj->btf; 9883 nrels = shdr->sh_size / shdr->sh_entsize; 9884 for (i = 0; i < nrels; i++) { 9885 rel = elf_rel_by_idx(data, i); 9886 if (!rel) { 9887 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9888 return -LIBBPF_ERRNO__FORMAT; 9889 } 9890 9891 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9892 if (!sym) { 9893 pr_warn("struct_ops reloc: symbol %zx not found\n", 9894 (size_t)ELF64_R_SYM(rel->r_info)); 9895 return -LIBBPF_ERRNO__FORMAT; 9896 } 9897 9898 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9899 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9900 if (!map) { 9901 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9902 (size_t)rel->r_offset); 9903 return -EINVAL; 9904 } 9905 9906 moff = rel->r_offset - map->sec_offset; 9907 shdr_idx = sym->st_shndx; 9908 st_ops = map->st_ops; 9909 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9910 map->name, 9911 (long long)(rel->r_info >> 32), 9912 (long long)sym->st_value, 9913 shdr_idx, (size_t)rel->r_offset, 9914 map->sec_offset, sym->st_name, name); 9915 9916 if (shdr_idx >= SHN_LORESERVE) { 9917 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9918 map->name, (size_t)rel->r_offset, shdr_idx); 9919 return -LIBBPF_ERRNO__RELOC; 9920 } 9921 if (sym->st_value % BPF_INSN_SZ) { 9922 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9923 map->name, (unsigned long long)sym->st_value); 9924 return -LIBBPF_ERRNO__FORMAT; 9925 } 9926 insn_idx = sym->st_value / BPF_INSN_SZ; 9927 9928 type = btf__type_by_id(btf, st_ops->type_id); 9929 member = find_member_by_offset(type, moff * 8); 9930 if (!member) { 9931 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9932 map->name, moff); 9933 return -EINVAL; 9934 } 9935 member_idx = member - btf_members(type); 9936 name = btf__name_by_offset(btf, member->name_off); 9937 9938 if (!resolve_func_ptr(btf, member->type, NULL)) { 9939 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9940 map->name, name); 9941 return -EINVAL; 9942 } 9943 9944 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9945 if (!prog) { 9946 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9947 map->name, shdr_idx, name); 9948 return -EINVAL; 9949 } 9950 9951 /* prevent the use of BPF prog with invalid type */ 9952 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9953 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9954 map->name, prog->name); 9955 return -EINVAL; 9956 } 9957 9958 st_ops->progs[member_idx] = prog; 9959 9960 /* st_ops->data will be exposed to users, being returned by 9961 * bpf_map__initial_value() as a pointer to the shadow 9962 * type. All function pointers in the original struct type 9963 * should be converted to a pointer to struct bpf_program 9964 * in the shadow type. 9965 */ 9966 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9967 } 9968 9969 return 0; 9970 } 9971 9972 #define BTF_TRACE_PREFIX "btf_trace_" 9973 #define BTF_LSM_PREFIX "bpf_lsm_" 9974 #define BTF_ITER_PREFIX "bpf_iter_" 9975 #define BTF_MAX_NAME_SIZE 128 9976 9977 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9978 const char **prefix, int *kind) 9979 { 9980 switch (attach_type) { 9981 case BPF_TRACE_RAW_TP: 9982 *prefix = BTF_TRACE_PREFIX; 9983 *kind = BTF_KIND_TYPEDEF; 9984 break; 9985 case BPF_LSM_MAC: 9986 case BPF_LSM_CGROUP: 9987 *prefix = BTF_LSM_PREFIX; 9988 *kind = BTF_KIND_FUNC; 9989 break; 9990 case BPF_TRACE_ITER: 9991 *prefix = BTF_ITER_PREFIX; 9992 *kind = BTF_KIND_FUNC; 9993 break; 9994 default: 9995 *prefix = ""; 9996 *kind = BTF_KIND_FUNC; 9997 } 9998 } 9999 10000 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 10001 const char *name, __u32 kind) 10002 { 10003 char btf_type_name[BTF_MAX_NAME_SIZE]; 10004 int ret; 10005 10006 ret = snprintf(btf_type_name, sizeof(btf_type_name), 10007 "%s%s", prefix, name); 10008 /* snprintf returns the number of characters written excluding the 10009 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 10010 * indicates truncation. 10011 */ 10012 if (ret < 0 || ret >= sizeof(btf_type_name)) 10013 return -ENAMETOOLONG; 10014 return btf__find_by_name_kind(btf, btf_type_name, kind); 10015 } 10016 10017 static inline int find_attach_btf_id(struct btf *btf, const char *name, 10018 enum bpf_attach_type attach_type) 10019 { 10020 const char *prefix; 10021 int kind; 10022 10023 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 10024 return find_btf_by_prefix_kind(btf, prefix, name, kind); 10025 } 10026 10027 int libbpf_find_vmlinux_btf_id(const char *name, 10028 enum bpf_attach_type attach_type) 10029 { 10030 struct btf *btf; 10031 int err; 10032 10033 btf = btf__load_vmlinux_btf(); 10034 err = libbpf_get_error(btf); 10035 if (err) { 10036 pr_warn("vmlinux BTF is not found\n"); 10037 return libbpf_err(err); 10038 } 10039 10040 err = find_attach_btf_id(btf, name, attach_type); 10041 if (err <= 0) 10042 pr_warn("%s is not found in vmlinux BTF\n", name); 10043 10044 btf__free(btf); 10045 return libbpf_err(err); 10046 } 10047 10048 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd) 10049 { 10050 struct bpf_prog_info info; 10051 __u32 info_len = sizeof(info); 10052 struct btf *btf; 10053 int err; 10054 10055 memset(&info, 0, info_len); 10056 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 10057 if (err) { 10058 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 10059 attach_prog_fd, errstr(err)); 10060 return err; 10061 } 10062 10063 err = -EINVAL; 10064 if (!info.btf_id) { 10065 pr_warn("The target program doesn't have BTF\n"); 10066 goto out; 10067 } 10068 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd); 10069 err = libbpf_get_error(btf); 10070 if (err) { 10071 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 10072 goto out; 10073 } 10074 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 10075 btf__free(btf); 10076 if (err <= 0) { 10077 pr_warn("%s is not found in prog's BTF\n", name); 10078 goto out; 10079 } 10080 out: 10081 return err; 10082 } 10083 10084 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 10085 enum bpf_attach_type attach_type, 10086 int *btf_obj_fd, int *btf_type_id) 10087 { 10088 int ret, i, mod_len; 10089 const char *fn_name, *mod_name = NULL; 10090 10091 fn_name = strchr(attach_name, ':'); 10092 if (fn_name) { 10093 mod_name = attach_name; 10094 mod_len = fn_name - mod_name; 10095 fn_name++; 10096 } 10097 10098 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10099 ret = find_attach_btf_id(obj->btf_vmlinux, 10100 mod_name ? fn_name : attach_name, 10101 attach_type); 10102 if (ret > 0) { 10103 *btf_obj_fd = 0; /* vmlinux BTF */ 10104 *btf_type_id = ret; 10105 return 0; 10106 } 10107 if (ret != -ENOENT) 10108 return ret; 10109 } 10110 10111 ret = load_module_btfs(obj); 10112 if (ret) 10113 return ret; 10114 10115 for (i = 0; i < obj->btf_module_cnt; i++) { 10116 const struct module_btf *mod = &obj->btf_modules[i]; 10117 10118 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10119 continue; 10120 10121 ret = find_attach_btf_id(mod->btf, 10122 mod_name ? fn_name : attach_name, 10123 attach_type); 10124 if (ret > 0) { 10125 *btf_obj_fd = mod->fd; 10126 *btf_type_id = ret; 10127 return 0; 10128 } 10129 if (ret == -ENOENT) 10130 continue; 10131 10132 return ret; 10133 } 10134 10135 return -ESRCH; 10136 } 10137 10138 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10139 int *btf_obj_fd, int *btf_type_id) 10140 { 10141 enum bpf_attach_type attach_type = prog->expected_attach_type; 10142 __u32 attach_prog_fd = prog->attach_prog_fd; 10143 int err = 0; 10144 10145 /* BPF program's BTF ID */ 10146 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10147 if (!attach_prog_fd) { 10148 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10149 return -EINVAL; 10150 } 10151 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd); 10152 if (err < 0) { 10153 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10154 prog->name, attach_prog_fd, attach_name, errstr(err)); 10155 return err; 10156 } 10157 *btf_obj_fd = 0; 10158 *btf_type_id = err; 10159 return 0; 10160 } 10161 10162 /* kernel/module BTF ID */ 10163 if (prog->obj->gen_loader) { 10164 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10165 *btf_obj_fd = 0; 10166 *btf_type_id = 1; 10167 } else { 10168 err = find_kernel_btf_id(prog->obj, attach_name, 10169 attach_type, btf_obj_fd, 10170 btf_type_id); 10171 } 10172 if (err) { 10173 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10174 prog->name, attach_name, errstr(err)); 10175 return err; 10176 } 10177 return 0; 10178 } 10179 10180 int libbpf_attach_type_by_name(const char *name, 10181 enum bpf_attach_type *attach_type) 10182 { 10183 char *type_names; 10184 const struct bpf_sec_def *sec_def; 10185 10186 if (!name) 10187 return libbpf_err(-EINVAL); 10188 10189 sec_def = find_sec_def(name); 10190 if (!sec_def) { 10191 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10192 type_names = libbpf_get_type_names(true); 10193 if (type_names != NULL) { 10194 pr_debug("attachable section(type) names are:%s\n", type_names); 10195 free(type_names); 10196 } 10197 10198 return libbpf_err(-EINVAL); 10199 } 10200 10201 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10202 return libbpf_err(-EINVAL); 10203 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10204 return libbpf_err(-EINVAL); 10205 10206 *attach_type = sec_def->expected_attach_type; 10207 return 0; 10208 } 10209 10210 int bpf_map__fd(const struct bpf_map *map) 10211 { 10212 if (!map) 10213 return libbpf_err(-EINVAL); 10214 if (!map_is_created(map)) 10215 return -1; 10216 return map->fd; 10217 } 10218 10219 static bool map_uses_real_name(const struct bpf_map *map) 10220 { 10221 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10222 * their user-visible name differs from kernel-visible name. Users see 10223 * such map's corresponding ELF section name as a map name. 10224 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10225 * maps to know which name has to be returned to the user. 10226 */ 10227 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10228 return true; 10229 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10230 return true; 10231 return false; 10232 } 10233 10234 const char *bpf_map__name(const struct bpf_map *map) 10235 { 10236 if (!map) 10237 return NULL; 10238 10239 if (map_uses_real_name(map)) 10240 return map->real_name; 10241 10242 return map->name; 10243 } 10244 10245 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10246 { 10247 return map->def.type; 10248 } 10249 10250 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10251 { 10252 if (map_is_created(map)) 10253 return libbpf_err(-EBUSY); 10254 map->def.type = type; 10255 return 0; 10256 } 10257 10258 __u32 bpf_map__map_flags(const struct bpf_map *map) 10259 { 10260 return map->def.map_flags; 10261 } 10262 10263 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10264 { 10265 if (map_is_created(map)) 10266 return libbpf_err(-EBUSY); 10267 map->def.map_flags = flags; 10268 return 0; 10269 } 10270 10271 __u64 bpf_map__map_extra(const struct bpf_map *map) 10272 { 10273 return map->map_extra; 10274 } 10275 10276 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10277 { 10278 if (map_is_created(map)) 10279 return libbpf_err(-EBUSY); 10280 map->map_extra = map_extra; 10281 return 0; 10282 } 10283 10284 __u32 bpf_map__numa_node(const struct bpf_map *map) 10285 { 10286 return map->numa_node; 10287 } 10288 10289 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10290 { 10291 if (map_is_created(map)) 10292 return libbpf_err(-EBUSY); 10293 map->numa_node = numa_node; 10294 return 0; 10295 } 10296 10297 __u32 bpf_map__key_size(const struct bpf_map *map) 10298 { 10299 return map->def.key_size; 10300 } 10301 10302 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10303 { 10304 if (map_is_created(map)) 10305 return libbpf_err(-EBUSY); 10306 map->def.key_size = size; 10307 return 0; 10308 } 10309 10310 __u32 bpf_map__value_size(const struct bpf_map *map) 10311 { 10312 return map->def.value_size; 10313 } 10314 10315 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10316 { 10317 struct btf *btf; 10318 struct btf_type *datasec_type, *var_type; 10319 struct btf_var_secinfo *var; 10320 const struct btf_type *array_type; 10321 const struct btf_array *array; 10322 int vlen, element_sz, new_array_id; 10323 __u32 nr_elements; 10324 10325 /* check btf existence */ 10326 btf = bpf_object__btf(map->obj); 10327 if (!btf) 10328 return -ENOENT; 10329 10330 /* verify map is datasec */ 10331 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10332 if (!btf_is_datasec(datasec_type)) { 10333 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10334 bpf_map__name(map)); 10335 return -EINVAL; 10336 } 10337 10338 /* verify datasec has at least one var */ 10339 vlen = btf_vlen(datasec_type); 10340 if (vlen == 0) { 10341 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10342 bpf_map__name(map)); 10343 return -EINVAL; 10344 } 10345 10346 /* verify last var in the datasec is an array */ 10347 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10348 var_type = btf_type_by_id(btf, var->type); 10349 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10350 if (!btf_is_array(array_type)) { 10351 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10352 bpf_map__name(map)); 10353 return -EINVAL; 10354 } 10355 10356 /* verify request size aligns with array */ 10357 array = btf_array(array_type); 10358 element_sz = btf__resolve_size(btf, array->type); 10359 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10360 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10361 bpf_map__name(map), element_sz, size); 10362 return -EINVAL; 10363 } 10364 10365 /* create a new array based on the existing array, but with new length */ 10366 nr_elements = (size - var->offset) / element_sz; 10367 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10368 if (new_array_id < 0) 10369 return new_array_id; 10370 10371 /* adding a new btf type invalidates existing pointers to btf objects, 10372 * so refresh pointers before proceeding 10373 */ 10374 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10375 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10376 var_type = btf_type_by_id(btf, var->type); 10377 10378 /* finally update btf info */ 10379 datasec_type->size = size; 10380 var->size = size - var->offset; 10381 var_type->type = new_array_id; 10382 10383 return 0; 10384 } 10385 10386 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10387 { 10388 if (map_is_created(map)) 10389 return libbpf_err(-EBUSY); 10390 10391 if (map->mmaped) { 10392 size_t mmap_old_sz, mmap_new_sz; 10393 int err; 10394 10395 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10396 return libbpf_err(-EOPNOTSUPP); 10397 10398 mmap_old_sz = bpf_map_mmap_sz(map); 10399 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10400 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10401 if (err) { 10402 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10403 bpf_map__name(map), errstr(err)); 10404 return libbpf_err(err); 10405 } 10406 err = map_btf_datasec_resize(map, size); 10407 if (err && err != -ENOENT) { 10408 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10409 bpf_map__name(map), errstr(err)); 10410 map->btf_value_type_id = 0; 10411 map->btf_key_type_id = 0; 10412 } 10413 } 10414 10415 map->def.value_size = size; 10416 return 0; 10417 } 10418 10419 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10420 { 10421 return map ? map->btf_key_type_id : 0; 10422 } 10423 10424 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10425 { 10426 return map ? map->btf_value_type_id : 0; 10427 } 10428 10429 int bpf_map__set_initial_value(struct bpf_map *map, 10430 const void *data, size_t size) 10431 { 10432 size_t actual_sz; 10433 10434 if (map_is_created(map)) 10435 return libbpf_err(-EBUSY); 10436 10437 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10438 return libbpf_err(-EINVAL); 10439 10440 if (map->def.type == BPF_MAP_TYPE_ARENA) 10441 actual_sz = map->obj->arena_data_sz; 10442 else 10443 actual_sz = map->def.value_size; 10444 if (size != actual_sz) 10445 return libbpf_err(-EINVAL); 10446 10447 memcpy(map->mmaped, data, size); 10448 return 0; 10449 } 10450 10451 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10452 { 10453 if (bpf_map__is_struct_ops(map)) { 10454 if (psize) 10455 *psize = map->def.value_size; 10456 return map->st_ops->data; 10457 } 10458 10459 if (!map->mmaped) 10460 return NULL; 10461 10462 if (map->def.type == BPF_MAP_TYPE_ARENA) 10463 *psize = map->obj->arena_data_sz; 10464 else 10465 *psize = map->def.value_size; 10466 10467 return map->mmaped; 10468 } 10469 10470 bool bpf_map__is_internal(const struct bpf_map *map) 10471 { 10472 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10473 } 10474 10475 __u32 bpf_map__ifindex(const struct bpf_map *map) 10476 { 10477 return map->map_ifindex; 10478 } 10479 10480 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10481 { 10482 if (map_is_created(map)) 10483 return libbpf_err(-EBUSY); 10484 map->map_ifindex = ifindex; 10485 return 0; 10486 } 10487 10488 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10489 { 10490 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10491 pr_warn("error: unsupported map type\n"); 10492 return libbpf_err(-EINVAL); 10493 } 10494 if (map->inner_map_fd != -1) { 10495 pr_warn("error: inner_map_fd already specified\n"); 10496 return libbpf_err(-EINVAL); 10497 } 10498 if (map->inner_map) { 10499 bpf_map__destroy(map->inner_map); 10500 zfree(&map->inner_map); 10501 } 10502 map->inner_map_fd = fd; 10503 return 0; 10504 } 10505 10506 static struct bpf_map * 10507 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10508 { 10509 ssize_t idx; 10510 struct bpf_map *s, *e; 10511 10512 if (!obj || !obj->maps) 10513 return errno = EINVAL, NULL; 10514 10515 s = obj->maps; 10516 e = obj->maps + obj->nr_maps; 10517 10518 if ((m < s) || (m >= e)) { 10519 pr_warn("error in %s: map handler doesn't belong to object\n", 10520 __func__); 10521 return errno = EINVAL, NULL; 10522 } 10523 10524 idx = (m - obj->maps) + i; 10525 if (idx >= obj->nr_maps || idx < 0) 10526 return NULL; 10527 return &obj->maps[idx]; 10528 } 10529 10530 struct bpf_map * 10531 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10532 { 10533 if (prev == NULL && obj != NULL) 10534 return obj->maps; 10535 10536 return __bpf_map__iter(prev, obj, 1); 10537 } 10538 10539 struct bpf_map * 10540 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10541 { 10542 if (next == NULL && obj != NULL) { 10543 if (!obj->nr_maps) 10544 return NULL; 10545 return obj->maps + obj->nr_maps - 1; 10546 } 10547 10548 return __bpf_map__iter(next, obj, -1); 10549 } 10550 10551 struct bpf_map * 10552 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10553 { 10554 struct bpf_map *pos; 10555 10556 bpf_object__for_each_map(pos, obj) { 10557 /* if it's a special internal map name (which always starts 10558 * with dot) then check if that special name matches the 10559 * real map name (ELF section name) 10560 */ 10561 if (name[0] == '.') { 10562 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10563 return pos; 10564 continue; 10565 } 10566 /* otherwise map name has to be an exact match */ 10567 if (map_uses_real_name(pos)) { 10568 if (strcmp(pos->real_name, name) == 0) 10569 return pos; 10570 continue; 10571 } 10572 if (strcmp(pos->name, name) == 0) 10573 return pos; 10574 } 10575 return errno = ENOENT, NULL; 10576 } 10577 10578 int 10579 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10580 { 10581 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10582 } 10583 10584 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10585 size_t value_sz, bool check_value_sz) 10586 { 10587 if (!map_is_created(map)) /* map is not yet created */ 10588 return -ENOENT; 10589 10590 if (map->def.key_size != key_sz) { 10591 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10592 map->name, key_sz, map->def.key_size); 10593 return -EINVAL; 10594 } 10595 10596 if (map->fd < 0) { 10597 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10598 return -EINVAL; 10599 } 10600 10601 if (!check_value_sz) 10602 return 0; 10603 10604 switch (map->def.type) { 10605 case BPF_MAP_TYPE_PERCPU_ARRAY: 10606 case BPF_MAP_TYPE_PERCPU_HASH: 10607 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10608 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10609 int num_cpu = libbpf_num_possible_cpus(); 10610 size_t elem_sz = roundup(map->def.value_size, 8); 10611 10612 if (value_sz != num_cpu * elem_sz) { 10613 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10614 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10615 return -EINVAL; 10616 } 10617 break; 10618 } 10619 default: 10620 if (map->def.value_size != value_sz) { 10621 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10622 map->name, value_sz, map->def.value_size); 10623 return -EINVAL; 10624 } 10625 break; 10626 } 10627 return 0; 10628 } 10629 10630 int bpf_map__lookup_elem(const struct bpf_map *map, 10631 const void *key, size_t key_sz, 10632 void *value, size_t value_sz, __u64 flags) 10633 { 10634 int err; 10635 10636 err = validate_map_op(map, key_sz, value_sz, true); 10637 if (err) 10638 return libbpf_err(err); 10639 10640 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10641 } 10642 10643 int bpf_map__update_elem(const struct bpf_map *map, 10644 const void *key, size_t key_sz, 10645 const void *value, size_t value_sz, __u64 flags) 10646 { 10647 int err; 10648 10649 err = validate_map_op(map, key_sz, value_sz, true); 10650 if (err) 10651 return libbpf_err(err); 10652 10653 return bpf_map_update_elem(map->fd, key, value, flags); 10654 } 10655 10656 int bpf_map__delete_elem(const struct bpf_map *map, 10657 const void *key, size_t key_sz, __u64 flags) 10658 { 10659 int err; 10660 10661 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10662 if (err) 10663 return libbpf_err(err); 10664 10665 return bpf_map_delete_elem_flags(map->fd, key, flags); 10666 } 10667 10668 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10669 const void *key, size_t key_sz, 10670 void *value, size_t value_sz, __u64 flags) 10671 { 10672 int err; 10673 10674 err = validate_map_op(map, key_sz, value_sz, true); 10675 if (err) 10676 return libbpf_err(err); 10677 10678 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10679 } 10680 10681 int bpf_map__get_next_key(const struct bpf_map *map, 10682 const void *cur_key, void *next_key, size_t key_sz) 10683 { 10684 int err; 10685 10686 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10687 if (err) 10688 return libbpf_err(err); 10689 10690 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10691 } 10692 10693 long libbpf_get_error(const void *ptr) 10694 { 10695 if (!IS_ERR_OR_NULL(ptr)) 10696 return 0; 10697 10698 if (IS_ERR(ptr)) 10699 errno = -PTR_ERR(ptr); 10700 10701 /* If ptr == NULL, then errno should be already set by the failing 10702 * API, because libbpf never returns NULL on success and it now always 10703 * sets errno on error. So no extra errno handling for ptr == NULL 10704 * case. 10705 */ 10706 return -errno; 10707 } 10708 10709 /* Replace link's underlying BPF program with the new one */ 10710 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10711 { 10712 int ret; 10713 int prog_fd = bpf_program__fd(prog); 10714 10715 if (prog_fd < 0) { 10716 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10717 prog->name); 10718 return libbpf_err(-EINVAL); 10719 } 10720 10721 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10722 return libbpf_err_errno(ret); 10723 } 10724 10725 /* Release "ownership" of underlying BPF resource (typically, BPF program 10726 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10727 * link, when destructed through bpf_link__destroy() call won't attempt to 10728 * detach/unregisted that BPF resource. This is useful in situations where, 10729 * say, attached BPF program has to outlive userspace program that attached it 10730 * in the system. Depending on type of BPF program, though, there might be 10731 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10732 * exit of userspace program doesn't trigger automatic detachment and clean up 10733 * inside the kernel. 10734 */ 10735 void bpf_link__disconnect(struct bpf_link *link) 10736 { 10737 link->disconnected = true; 10738 } 10739 10740 int bpf_link__destroy(struct bpf_link *link) 10741 { 10742 int err = 0; 10743 10744 if (IS_ERR_OR_NULL(link)) 10745 return 0; 10746 10747 if (!link->disconnected && link->detach) 10748 err = link->detach(link); 10749 if (link->pin_path) 10750 free(link->pin_path); 10751 if (link->dealloc) 10752 link->dealloc(link); 10753 else 10754 free(link); 10755 10756 return libbpf_err(err); 10757 } 10758 10759 int bpf_link__fd(const struct bpf_link *link) 10760 { 10761 return link->fd; 10762 } 10763 10764 const char *bpf_link__pin_path(const struct bpf_link *link) 10765 { 10766 return link->pin_path; 10767 } 10768 10769 static int bpf_link__detach_fd(struct bpf_link *link) 10770 { 10771 return libbpf_err_errno(close(link->fd)); 10772 } 10773 10774 struct bpf_link *bpf_link__open(const char *path) 10775 { 10776 struct bpf_link *link; 10777 int fd; 10778 10779 fd = bpf_obj_get(path); 10780 if (fd < 0) { 10781 fd = -errno; 10782 pr_warn("failed to open link at %s: %d\n", path, fd); 10783 return libbpf_err_ptr(fd); 10784 } 10785 10786 link = calloc(1, sizeof(*link)); 10787 if (!link) { 10788 close(fd); 10789 return libbpf_err_ptr(-ENOMEM); 10790 } 10791 link->detach = &bpf_link__detach_fd; 10792 link->fd = fd; 10793 10794 link->pin_path = strdup(path); 10795 if (!link->pin_path) { 10796 bpf_link__destroy(link); 10797 return libbpf_err_ptr(-ENOMEM); 10798 } 10799 10800 return link; 10801 } 10802 10803 int bpf_link__detach(struct bpf_link *link) 10804 { 10805 return bpf_link_detach(link->fd) ? -errno : 0; 10806 } 10807 10808 int bpf_link__pin(struct bpf_link *link, const char *path) 10809 { 10810 int err; 10811 10812 if (link->pin_path) 10813 return libbpf_err(-EBUSY); 10814 err = make_parent_dir(path); 10815 if (err) 10816 return libbpf_err(err); 10817 err = check_path(path); 10818 if (err) 10819 return libbpf_err(err); 10820 10821 link->pin_path = strdup(path); 10822 if (!link->pin_path) 10823 return libbpf_err(-ENOMEM); 10824 10825 if (bpf_obj_pin(link->fd, link->pin_path)) { 10826 err = -errno; 10827 zfree(&link->pin_path); 10828 return libbpf_err(err); 10829 } 10830 10831 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10832 return 0; 10833 } 10834 10835 int bpf_link__unpin(struct bpf_link *link) 10836 { 10837 int err; 10838 10839 if (!link->pin_path) 10840 return libbpf_err(-EINVAL); 10841 10842 err = unlink(link->pin_path); 10843 if (err != 0) 10844 return -errno; 10845 10846 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10847 zfree(&link->pin_path); 10848 return 0; 10849 } 10850 10851 struct bpf_link_perf { 10852 struct bpf_link link; 10853 int perf_event_fd; 10854 /* legacy kprobe support: keep track of probe identifier and type */ 10855 char *legacy_probe_name; 10856 bool legacy_is_kprobe; 10857 bool legacy_is_retprobe; 10858 }; 10859 10860 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10861 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10862 10863 static int bpf_link_perf_detach(struct bpf_link *link) 10864 { 10865 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10866 int err = 0; 10867 10868 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10869 err = -errno; 10870 10871 if (perf_link->perf_event_fd != link->fd) 10872 close(perf_link->perf_event_fd); 10873 close(link->fd); 10874 10875 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10876 if (perf_link->legacy_probe_name) { 10877 if (perf_link->legacy_is_kprobe) { 10878 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10879 perf_link->legacy_is_retprobe); 10880 } else { 10881 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10882 perf_link->legacy_is_retprobe); 10883 } 10884 } 10885 10886 return err; 10887 } 10888 10889 static void bpf_link_perf_dealloc(struct bpf_link *link) 10890 { 10891 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10892 10893 free(perf_link->legacy_probe_name); 10894 free(perf_link); 10895 } 10896 10897 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10898 const struct bpf_perf_event_opts *opts) 10899 { 10900 struct bpf_link_perf *link; 10901 int prog_fd, link_fd = -1, err; 10902 bool force_ioctl_attach; 10903 10904 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10905 return libbpf_err_ptr(-EINVAL); 10906 10907 if (pfd < 0) { 10908 pr_warn("prog '%s': invalid perf event FD %d\n", 10909 prog->name, pfd); 10910 return libbpf_err_ptr(-EINVAL); 10911 } 10912 prog_fd = bpf_program__fd(prog); 10913 if (prog_fd < 0) { 10914 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10915 prog->name); 10916 return libbpf_err_ptr(-EINVAL); 10917 } 10918 10919 link = calloc(1, sizeof(*link)); 10920 if (!link) 10921 return libbpf_err_ptr(-ENOMEM); 10922 link->link.detach = &bpf_link_perf_detach; 10923 link->link.dealloc = &bpf_link_perf_dealloc; 10924 link->perf_event_fd = pfd; 10925 10926 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10927 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10928 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10929 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10930 10931 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10932 if (link_fd < 0) { 10933 err = -errno; 10934 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 10935 prog->name, pfd, errstr(err)); 10936 goto err_out; 10937 } 10938 link->link.fd = link_fd; 10939 } else { 10940 if (OPTS_GET(opts, bpf_cookie, 0)) { 10941 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10942 err = -EOPNOTSUPP; 10943 goto err_out; 10944 } 10945 10946 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10947 err = -errno; 10948 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10949 prog->name, pfd, errstr(err)); 10950 if (err == -EPROTO) 10951 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10952 prog->name, pfd); 10953 goto err_out; 10954 } 10955 link->link.fd = pfd; 10956 } 10957 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10958 err = -errno; 10959 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10960 prog->name, pfd, errstr(err)); 10961 goto err_out; 10962 } 10963 10964 return &link->link; 10965 err_out: 10966 if (link_fd >= 0) 10967 close(link_fd); 10968 free(link); 10969 return libbpf_err_ptr(err); 10970 } 10971 10972 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10973 { 10974 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10975 } 10976 10977 /* 10978 * this function is expected to parse integer in the range of [0, 2^31-1] from 10979 * given file using scanf format string fmt. If actual parsed value is 10980 * negative, the result might be indistinguishable from error 10981 */ 10982 static int parse_uint_from_file(const char *file, const char *fmt) 10983 { 10984 int err, ret; 10985 FILE *f; 10986 10987 f = fopen(file, "re"); 10988 if (!f) { 10989 err = -errno; 10990 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 10991 return err; 10992 } 10993 err = fscanf(f, fmt, &ret); 10994 if (err != 1) { 10995 err = err == EOF ? -EIO : -errno; 10996 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 10997 fclose(f); 10998 return err; 10999 } 11000 fclose(f); 11001 return ret; 11002 } 11003 11004 static int determine_kprobe_perf_type(void) 11005 { 11006 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 11007 11008 return parse_uint_from_file(file, "%d\n"); 11009 } 11010 11011 static int determine_uprobe_perf_type(void) 11012 { 11013 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 11014 11015 return parse_uint_from_file(file, "%d\n"); 11016 } 11017 11018 static int determine_kprobe_retprobe_bit(void) 11019 { 11020 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 11021 11022 return parse_uint_from_file(file, "config:%d\n"); 11023 } 11024 11025 static int determine_uprobe_retprobe_bit(void) 11026 { 11027 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 11028 11029 return parse_uint_from_file(file, "config:%d\n"); 11030 } 11031 11032 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 11033 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 11034 11035 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 11036 uint64_t offset, int pid, size_t ref_ctr_off) 11037 { 11038 const size_t attr_sz = sizeof(struct perf_event_attr); 11039 struct perf_event_attr attr; 11040 int type, pfd; 11041 11042 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 11043 return -EINVAL; 11044 11045 memset(&attr, 0, attr_sz); 11046 11047 type = uprobe ? determine_uprobe_perf_type() 11048 : determine_kprobe_perf_type(); 11049 if (type < 0) { 11050 pr_warn("failed to determine %s perf type: %s\n", 11051 uprobe ? "uprobe" : "kprobe", 11052 errstr(type)); 11053 return type; 11054 } 11055 if (retprobe) { 11056 int bit = uprobe ? determine_uprobe_retprobe_bit() 11057 : determine_kprobe_retprobe_bit(); 11058 11059 if (bit < 0) { 11060 pr_warn("failed to determine %s retprobe bit: %s\n", 11061 uprobe ? "uprobe" : "kprobe", 11062 errstr(bit)); 11063 return bit; 11064 } 11065 attr.config |= 1 << bit; 11066 } 11067 attr.size = attr_sz; 11068 attr.type = type; 11069 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11070 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 11071 attr.config2 = offset; /* kprobe_addr or probe_offset */ 11072 11073 /* pid filter is meaningful only for uprobes */ 11074 pfd = syscall(__NR_perf_event_open, &attr, 11075 pid < 0 ? -1 : pid /* pid */, 11076 pid == -1 ? 0 : -1 /* cpu */, 11077 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11078 return pfd >= 0 ? pfd : -errno; 11079 } 11080 11081 static int append_to_file(const char *file, const char *fmt, ...) 11082 { 11083 int fd, n, err = 0; 11084 va_list ap; 11085 char buf[1024]; 11086 11087 va_start(ap, fmt); 11088 n = vsnprintf(buf, sizeof(buf), fmt, ap); 11089 va_end(ap); 11090 11091 if (n < 0 || n >= sizeof(buf)) 11092 return -EINVAL; 11093 11094 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 11095 if (fd < 0) 11096 return -errno; 11097 11098 if (write(fd, buf, n) < 0) 11099 err = -errno; 11100 11101 close(fd); 11102 return err; 11103 } 11104 11105 #define DEBUGFS "/sys/kernel/debug/tracing" 11106 #define TRACEFS "/sys/kernel/tracing" 11107 11108 static bool use_debugfs(void) 11109 { 11110 static int has_debugfs = -1; 11111 11112 if (has_debugfs < 0) 11113 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11114 11115 return has_debugfs == 1; 11116 } 11117 11118 static const char *tracefs_path(void) 11119 { 11120 return use_debugfs() ? DEBUGFS : TRACEFS; 11121 } 11122 11123 static const char *tracefs_kprobe_events(void) 11124 { 11125 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11126 } 11127 11128 static const char *tracefs_uprobe_events(void) 11129 { 11130 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11131 } 11132 11133 static const char *tracefs_available_filter_functions(void) 11134 { 11135 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11136 : TRACEFS"/available_filter_functions"; 11137 } 11138 11139 static const char *tracefs_available_filter_functions_addrs(void) 11140 { 11141 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11142 : TRACEFS"/available_filter_functions_addrs"; 11143 } 11144 11145 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz, 11146 const char *name, size_t offset) 11147 { 11148 static int index = 0; 11149 int i; 11150 11151 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(), 11152 __sync_fetch_and_add(&index, 1), name, offset); 11153 11154 /* sanitize name in the probe name */ 11155 for (i = 0; buf[i]; i++) { 11156 if (!isalnum(buf[i])) 11157 buf[i] = '_'; 11158 } 11159 } 11160 11161 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11162 const char *kfunc_name, size_t offset) 11163 { 11164 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11165 retprobe ? 'r' : 'p', 11166 retprobe ? "kretprobes" : "kprobes", 11167 probe_name, kfunc_name, offset); 11168 } 11169 11170 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11171 { 11172 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11173 retprobe ? "kretprobes" : "kprobes", probe_name); 11174 } 11175 11176 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11177 { 11178 char file[256]; 11179 11180 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11181 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11182 11183 return parse_uint_from_file(file, "%d\n"); 11184 } 11185 11186 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11187 const char *kfunc_name, size_t offset, int pid) 11188 { 11189 const size_t attr_sz = sizeof(struct perf_event_attr); 11190 struct perf_event_attr attr; 11191 int type, pfd, err; 11192 11193 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11194 if (err < 0) { 11195 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11196 kfunc_name, offset, 11197 errstr(err)); 11198 return err; 11199 } 11200 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11201 if (type < 0) { 11202 err = type; 11203 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11204 kfunc_name, offset, 11205 errstr(err)); 11206 goto err_clean_legacy; 11207 } 11208 11209 memset(&attr, 0, attr_sz); 11210 attr.size = attr_sz; 11211 attr.config = type; 11212 attr.type = PERF_TYPE_TRACEPOINT; 11213 11214 pfd = syscall(__NR_perf_event_open, &attr, 11215 pid < 0 ? -1 : pid, /* pid */ 11216 pid == -1 ? 0 : -1, /* cpu */ 11217 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11218 if (pfd < 0) { 11219 err = -errno; 11220 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11221 errstr(err)); 11222 goto err_clean_legacy; 11223 } 11224 return pfd; 11225 11226 err_clean_legacy: 11227 /* Clear the newly added legacy kprobe_event */ 11228 remove_kprobe_event_legacy(probe_name, retprobe); 11229 return err; 11230 } 11231 11232 static const char *arch_specific_syscall_pfx(void) 11233 { 11234 #if defined(__x86_64__) 11235 return "x64"; 11236 #elif defined(__i386__) 11237 return "ia32"; 11238 #elif defined(__s390x__) 11239 return "s390x"; 11240 #elif defined(__s390__) 11241 return "s390"; 11242 #elif defined(__arm__) 11243 return "arm"; 11244 #elif defined(__aarch64__) 11245 return "arm64"; 11246 #elif defined(__mips__) 11247 return "mips"; 11248 #elif defined(__riscv) 11249 return "riscv"; 11250 #elif defined(__powerpc__) 11251 return "powerpc"; 11252 #elif defined(__powerpc64__) 11253 return "powerpc64"; 11254 #else 11255 return NULL; 11256 #endif 11257 } 11258 11259 int probe_kern_syscall_wrapper(int token_fd) 11260 { 11261 char syscall_name[64]; 11262 const char *ksys_pfx; 11263 11264 ksys_pfx = arch_specific_syscall_pfx(); 11265 if (!ksys_pfx) 11266 return 0; 11267 11268 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11269 11270 if (determine_kprobe_perf_type() >= 0) { 11271 int pfd; 11272 11273 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11274 if (pfd >= 0) 11275 close(pfd); 11276 11277 return pfd >= 0 ? 1 : 0; 11278 } else { /* legacy mode */ 11279 char probe_name[MAX_EVENT_NAME_LEN]; 11280 11281 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11282 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11283 return 0; 11284 11285 (void)remove_kprobe_event_legacy(probe_name, false); 11286 return 1; 11287 } 11288 } 11289 11290 struct bpf_link * 11291 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11292 const char *func_name, 11293 const struct bpf_kprobe_opts *opts) 11294 { 11295 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11296 enum probe_attach_mode attach_mode; 11297 char *legacy_probe = NULL; 11298 struct bpf_link *link; 11299 size_t offset; 11300 bool retprobe, legacy; 11301 int pfd, err; 11302 11303 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11304 return libbpf_err_ptr(-EINVAL); 11305 11306 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11307 retprobe = OPTS_GET(opts, retprobe, false); 11308 offset = OPTS_GET(opts, offset, 0); 11309 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11310 11311 legacy = determine_kprobe_perf_type() < 0; 11312 switch (attach_mode) { 11313 case PROBE_ATTACH_MODE_LEGACY: 11314 legacy = true; 11315 pe_opts.force_ioctl_attach = true; 11316 break; 11317 case PROBE_ATTACH_MODE_PERF: 11318 if (legacy) 11319 return libbpf_err_ptr(-ENOTSUP); 11320 pe_opts.force_ioctl_attach = true; 11321 break; 11322 case PROBE_ATTACH_MODE_LINK: 11323 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11324 return libbpf_err_ptr(-ENOTSUP); 11325 break; 11326 case PROBE_ATTACH_MODE_DEFAULT: 11327 break; 11328 default: 11329 return libbpf_err_ptr(-EINVAL); 11330 } 11331 11332 if (!legacy) { 11333 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11334 func_name, offset, 11335 -1 /* pid */, 0 /* ref_ctr_off */); 11336 } else { 11337 char probe_name[MAX_EVENT_NAME_LEN]; 11338 11339 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 11340 func_name, offset); 11341 11342 legacy_probe = strdup(probe_name); 11343 if (!legacy_probe) 11344 return libbpf_err_ptr(-ENOMEM); 11345 11346 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11347 offset, -1 /* pid */); 11348 } 11349 if (pfd < 0) { 11350 err = -errno; 11351 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11352 prog->name, retprobe ? "kretprobe" : "kprobe", 11353 func_name, offset, 11354 errstr(err)); 11355 goto err_out; 11356 } 11357 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11358 err = libbpf_get_error(link); 11359 if (err) { 11360 close(pfd); 11361 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11362 prog->name, retprobe ? "kretprobe" : "kprobe", 11363 func_name, offset, 11364 errstr(err)); 11365 goto err_clean_legacy; 11366 } 11367 if (legacy) { 11368 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11369 11370 perf_link->legacy_probe_name = legacy_probe; 11371 perf_link->legacy_is_kprobe = true; 11372 perf_link->legacy_is_retprobe = retprobe; 11373 } 11374 11375 return link; 11376 11377 err_clean_legacy: 11378 if (legacy) 11379 remove_kprobe_event_legacy(legacy_probe, retprobe); 11380 err_out: 11381 free(legacy_probe); 11382 return libbpf_err_ptr(err); 11383 } 11384 11385 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11386 bool retprobe, 11387 const char *func_name) 11388 { 11389 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11390 .retprobe = retprobe, 11391 ); 11392 11393 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11394 } 11395 11396 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11397 const char *syscall_name, 11398 const struct bpf_ksyscall_opts *opts) 11399 { 11400 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11401 char func_name[128]; 11402 11403 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11404 return libbpf_err_ptr(-EINVAL); 11405 11406 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11407 /* arch_specific_syscall_pfx() should never return NULL here 11408 * because it is guarded by kernel_supports(). However, since 11409 * compiler does not know that we have an explicit conditional 11410 * as well. 11411 */ 11412 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11413 arch_specific_syscall_pfx() ? : "", syscall_name); 11414 } else { 11415 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11416 } 11417 11418 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11419 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11420 11421 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11422 } 11423 11424 /* Adapted from perf/util/string.c */ 11425 bool glob_match(const char *str, const char *pat) 11426 { 11427 while (*str && *pat && *pat != '*') { 11428 if (*pat == '?') { /* Matches any single character */ 11429 str++; 11430 pat++; 11431 continue; 11432 } 11433 if (*str != *pat) 11434 return false; 11435 str++; 11436 pat++; 11437 } 11438 /* Check wild card */ 11439 if (*pat == '*') { 11440 while (*pat == '*') 11441 pat++; 11442 if (!*pat) /* Tail wild card matches all */ 11443 return true; 11444 while (*str) 11445 if (glob_match(str++, pat)) 11446 return true; 11447 } 11448 return !*str && !*pat; 11449 } 11450 11451 struct kprobe_multi_resolve { 11452 const char *pattern; 11453 unsigned long *addrs; 11454 size_t cap; 11455 size_t cnt; 11456 }; 11457 11458 struct avail_kallsyms_data { 11459 char **syms; 11460 size_t cnt; 11461 struct kprobe_multi_resolve *res; 11462 }; 11463 11464 static int avail_func_cmp(const void *a, const void *b) 11465 { 11466 return strcmp(*(const char **)a, *(const char **)b); 11467 } 11468 11469 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11470 const char *sym_name, void *ctx) 11471 { 11472 struct avail_kallsyms_data *data = ctx; 11473 struct kprobe_multi_resolve *res = data->res; 11474 int err; 11475 11476 if (!glob_match(sym_name, res->pattern)) 11477 return 0; 11478 11479 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) { 11480 /* Some versions of kernel strip out .llvm.<hash> suffix from 11481 * function names reported in available_filter_functions, but 11482 * don't do so for kallsyms. While this is clearly a kernel 11483 * bug (fixed by [0]) we try to accommodate that in libbpf to 11484 * make multi-kprobe usability a bit better: if no match is 11485 * found, we will strip .llvm. suffix and try one more time. 11486 * 11487 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG") 11488 */ 11489 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx; 11490 11491 if (!(sym_sfx = strstr(sym_name, ".llvm."))) 11492 return 0; 11493 11494 /* psym_trim vs sym_trim dance is done to avoid pointer vs array 11495 * coercion differences and get proper `const char **` pointer 11496 * which avail_func_cmp() expects 11497 */ 11498 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name); 11499 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11500 return 0; 11501 } 11502 11503 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11504 if (err) 11505 return err; 11506 11507 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11508 return 0; 11509 } 11510 11511 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11512 { 11513 const char *available_functions_file = tracefs_available_filter_functions(); 11514 struct avail_kallsyms_data data; 11515 char sym_name[500]; 11516 FILE *f; 11517 int err = 0, ret, i; 11518 char **syms = NULL; 11519 size_t cap = 0, cnt = 0; 11520 11521 f = fopen(available_functions_file, "re"); 11522 if (!f) { 11523 err = -errno; 11524 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11525 return err; 11526 } 11527 11528 while (true) { 11529 char *name; 11530 11531 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11532 if (ret == EOF && feof(f)) 11533 break; 11534 11535 if (ret != 1) { 11536 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11537 err = -EINVAL; 11538 goto cleanup; 11539 } 11540 11541 if (!glob_match(sym_name, res->pattern)) 11542 continue; 11543 11544 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11545 if (err) 11546 goto cleanup; 11547 11548 name = strdup(sym_name); 11549 if (!name) { 11550 err = -errno; 11551 goto cleanup; 11552 } 11553 11554 syms[cnt++] = name; 11555 } 11556 11557 /* no entries found, bail out */ 11558 if (cnt == 0) { 11559 err = -ENOENT; 11560 goto cleanup; 11561 } 11562 11563 /* sort available functions */ 11564 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11565 11566 data.syms = syms; 11567 data.res = res; 11568 data.cnt = cnt; 11569 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11570 11571 if (res->cnt == 0) 11572 err = -ENOENT; 11573 11574 cleanup: 11575 for (i = 0; i < cnt; i++) 11576 free((char *)syms[i]); 11577 free(syms); 11578 11579 fclose(f); 11580 return err; 11581 } 11582 11583 static bool has_available_filter_functions_addrs(void) 11584 { 11585 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11586 } 11587 11588 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11589 { 11590 const char *available_path = tracefs_available_filter_functions_addrs(); 11591 char sym_name[500]; 11592 FILE *f; 11593 int ret, err = 0; 11594 unsigned long long sym_addr; 11595 11596 f = fopen(available_path, "re"); 11597 if (!f) { 11598 err = -errno; 11599 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11600 return err; 11601 } 11602 11603 while (true) { 11604 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11605 if (ret == EOF && feof(f)) 11606 break; 11607 11608 if (ret != 2) { 11609 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11610 ret); 11611 err = -EINVAL; 11612 goto cleanup; 11613 } 11614 11615 if (!glob_match(sym_name, res->pattern)) 11616 continue; 11617 11618 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11619 sizeof(*res->addrs), res->cnt + 1); 11620 if (err) 11621 goto cleanup; 11622 11623 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11624 } 11625 11626 if (res->cnt == 0) 11627 err = -ENOENT; 11628 11629 cleanup: 11630 fclose(f); 11631 return err; 11632 } 11633 11634 struct bpf_link * 11635 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11636 const char *pattern, 11637 const struct bpf_kprobe_multi_opts *opts) 11638 { 11639 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11640 struct kprobe_multi_resolve res = { 11641 .pattern = pattern, 11642 }; 11643 enum bpf_attach_type attach_type; 11644 struct bpf_link *link = NULL; 11645 const unsigned long *addrs; 11646 int err, link_fd, prog_fd; 11647 bool retprobe, session, unique_match; 11648 const __u64 *cookies; 11649 const char **syms; 11650 size_t cnt; 11651 11652 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11653 return libbpf_err_ptr(-EINVAL); 11654 11655 prog_fd = bpf_program__fd(prog); 11656 if (prog_fd < 0) { 11657 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11658 prog->name); 11659 return libbpf_err_ptr(-EINVAL); 11660 } 11661 11662 syms = OPTS_GET(opts, syms, false); 11663 addrs = OPTS_GET(opts, addrs, false); 11664 cnt = OPTS_GET(opts, cnt, false); 11665 cookies = OPTS_GET(opts, cookies, false); 11666 unique_match = OPTS_GET(opts, unique_match, false); 11667 11668 if (!pattern && !addrs && !syms) 11669 return libbpf_err_ptr(-EINVAL); 11670 if (pattern && (addrs || syms || cookies || cnt)) 11671 return libbpf_err_ptr(-EINVAL); 11672 if (!pattern && !cnt) 11673 return libbpf_err_ptr(-EINVAL); 11674 if (!pattern && unique_match) 11675 return libbpf_err_ptr(-EINVAL); 11676 if (addrs && syms) 11677 return libbpf_err_ptr(-EINVAL); 11678 11679 if (pattern) { 11680 if (has_available_filter_functions_addrs()) 11681 err = libbpf_available_kprobes_parse(&res); 11682 else 11683 err = libbpf_available_kallsyms_parse(&res); 11684 if (err) 11685 goto error; 11686 11687 if (unique_match && res.cnt != 1) { 11688 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n", 11689 prog->name, pattern, res.cnt); 11690 err = -EINVAL; 11691 goto error; 11692 } 11693 11694 addrs = res.addrs; 11695 cnt = res.cnt; 11696 } 11697 11698 retprobe = OPTS_GET(opts, retprobe, false); 11699 session = OPTS_GET(opts, session, false); 11700 11701 if (retprobe && session) 11702 return libbpf_err_ptr(-EINVAL); 11703 11704 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11705 11706 lopts.kprobe_multi.syms = syms; 11707 lopts.kprobe_multi.addrs = addrs; 11708 lopts.kprobe_multi.cookies = cookies; 11709 lopts.kprobe_multi.cnt = cnt; 11710 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11711 11712 link = calloc(1, sizeof(*link)); 11713 if (!link) { 11714 err = -ENOMEM; 11715 goto error; 11716 } 11717 link->detach = &bpf_link__detach_fd; 11718 11719 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11720 if (link_fd < 0) { 11721 err = -errno; 11722 pr_warn("prog '%s': failed to attach: %s\n", 11723 prog->name, errstr(err)); 11724 goto error; 11725 } 11726 link->fd = link_fd; 11727 free(res.addrs); 11728 return link; 11729 11730 error: 11731 free(link); 11732 free(res.addrs); 11733 return libbpf_err_ptr(err); 11734 } 11735 11736 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11737 { 11738 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11739 unsigned long offset = 0; 11740 const char *func_name; 11741 char *func; 11742 int n; 11743 11744 *link = NULL; 11745 11746 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11747 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11748 return 0; 11749 11750 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11751 if (opts.retprobe) 11752 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11753 else 11754 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11755 11756 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11757 if (n < 1) { 11758 pr_warn("kprobe name is invalid: %s\n", func_name); 11759 return -EINVAL; 11760 } 11761 if (opts.retprobe && offset != 0) { 11762 free(func); 11763 pr_warn("kretprobes do not support offset specification\n"); 11764 return -EINVAL; 11765 } 11766 11767 opts.offset = offset; 11768 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11769 free(func); 11770 return libbpf_get_error(*link); 11771 } 11772 11773 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11774 { 11775 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11776 const char *syscall_name; 11777 11778 *link = NULL; 11779 11780 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11781 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11782 return 0; 11783 11784 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11785 if (opts.retprobe) 11786 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11787 else 11788 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11789 11790 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11791 return *link ? 0 : -errno; 11792 } 11793 11794 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11795 { 11796 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11797 const char *spec; 11798 char *pattern; 11799 int n; 11800 11801 *link = NULL; 11802 11803 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11804 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11805 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11806 return 0; 11807 11808 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11809 if (opts.retprobe) 11810 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11811 else 11812 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11813 11814 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11815 if (n < 1) { 11816 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11817 return -EINVAL; 11818 } 11819 11820 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11821 free(pattern); 11822 return libbpf_get_error(*link); 11823 } 11824 11825 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11826 struct bpf_link **link) 11827 { 11828 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11829 const char *spec; 11830 char *pattern; 11831 int n; 11832 11833 *link = NULL; 11834 11835 /* no auto-attach for SEC("kprobe.session") */ 11836 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11837 return 0; 11838 11839 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11840 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11841 if (n < 1) { 11842 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11843 return -EINVAL; 11844 } 11845 11846 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11847 free(pattern); 11848 return *link ? 0 : -errno; 11849 } 11850 11851 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11852 { 11853 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11854 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11855 int n, ret = -EINVAL; 11856 11857 *link = NULL; 11858 11859 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11860 &probe_type, &binary_path, &func_name); 11861 switch (n) { 11862 case 1: 11863 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11864 ret = 0; 11865 break; 11866 case 3: 11867 opts.session = str_has_pfx(probe_type, "uprobe.session"); 11868 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11869 11870 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11871 ret = libbpf_get_error(*link); 11872 break; 11873 default: 11874 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11875 prog->sec_name); 11876 break; 11877 } 11878 free(probe_type); 11879 free(binary_path); 11880 free(func_name); 11881 return ret; 11882 } 11883 11884 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11885 const char *binary_path, size_t offset) 11886 { 11887 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11888 retprobe ? 'r' : 'p', 11889 retprobe ? "uretprobes" : "uprobes", 11890 probe_name, binary_path, offset); 11891 } 11892 11893 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11894 { 11895 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11896 retprobe ? "uretprobes" : "uprobes", probe_name); 11897 } 11898 11899 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11900 { 11901 char file[512]; 11902 11903 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11904 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11905 11906 return parse_uint_from_file(file, "%d\n"); 11907 } 11908 11909 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11910 const char *binary_path, size_t offset, int pid) 11911 { 11912 const size_t attr_sz = sizeof(struct perf_event_attr); 11913 struct perf_event_attr attr; 11914 int type, pfd, err; 11915 11916 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11917 if (err < 0) { 11918 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 11919 binary_path, (size_t)offset, errstr(err)); 11920 return err; 11921 } 11922 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11923 if (type < 0) { 11924 err = type; 11925 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 11926 binary_path, offset, errstr(err)); 11927 goto err_clean_legacy; 11928 } 11929 11930 memset(&attr, 0, attr_sz); 11931 attr.size = attr_sz; 11932 attr.config = type; 11933 attr.type = PERF_TYPE_TRACEPOINT; 11934 11935 pfd = syscall(__NR_perf_event_open, &attr, 11936 pid < 0 ? -1 : pid, /* pid */ 11937 pid == -1 ? 0 : -1, /* cpu */ 11938 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11939 if (pfd < 0) { 11940 err = -errno; 11941 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 11942 goto err_clean_legacy; 11943 } 11944 return pfd; 11945 11946 err_clean_legacy: 11947 /* Clear the newly added legacy uprobe_event */ 11948 remove_uprobe_event_legacy(probe_name, retprobe); 11949 return err; 11950 } 11951 11952 /* Find offset of function name in archive specified by path. Currently 11953 * supported are .zip files that do not compress their contents, as used on 11954 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11955 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11956 * library functions. 11957 * 11958 * An overview of the APK format specifically provided here: 11959 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11960 */ 11961 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11962 const char *func_name) 11963 { 11964 struct zip_archive *archive; 11965 struct zip_entry entry; 11966 long ret; 11967 Elf *elf; 11968 11969 archive = zip_archive_open(archive_path); 11970 if (IS_ERR(archive)) { 11971 ret = PTR_ERR(archive); 11972 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11973 return ret; 11974 } 11975 11976 ret = zip_archive_find_entry(archive, file_name, &entry); 11977 if (ret) { 11978 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11979 archive_path, ret); 11980 goto out; 11981 } 11982 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11983 (unsigned long)entry.data_offset); 11984 11985 if (entry.compression) { 11986 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11987 archive_path); 11988 ret = -LIBBPF_ERRNO__FORMAT; 11989 goto out; 11990 } 11991 11992 elf = elf_memory((void *)entry.data, entry.data_length); 11993 if (!elf) { 11994 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11995 elf_errmsg(-1)); 11996 ret = -LIBBPF_ERRNO__LIBELF; 11997 goto out; 11998 } 11999 12000 ret = elf_find_func_offset(elf, file_name, func_name); 12001 if (ret > 0) { 12002 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 12003 func_name, file_name, archive_path, entry.data_offset, ret, 12004 ret + entry.data_offset); 12005 ret += entry.data_offset; 12006 } 12007 elf_end(elf); 12008 12009 out: 12010 zip_archive_close(archive); 12011 return ret; 12012 } 12013 12014 static const char *arch_specific_lib_paths(void) 12015 { 12016 /* 12017 * Based on https://packages.debian.org/sid/libc6. 12018 * 12019 * Assume that the traced program is built for the same architecture 12020 * as libbpf, which should cover the vast majority of cases. 12021 */ 12022 #if defined(__x86_64__) 12023 return "/lib/x86_64-linux-gnu"; 12024 #elif defined(__i386__) 12025 return "/lib/i386-linux-gnu"; 12026 #elif defined(__s390x__) 12027 return "/lib/s390x-linux-gnu"; 12028 #elif defined(__s390__) 12029 return "/lib/s390-linux-gnu"; 12030 #elif defined(__arm__) && defined(__SOFTFP__) 12031 return "/lib/arm-linux-gnueabi"; 12032 #elif defined(__arm__) && !defined(__SOFTFP__) 12033 return "/lib/arm-linux-gnueabihf"; 12034 #elif defined(__aarch64__) 12035 return "/lib/aarch64-linux-gnu"; 12036 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 12037 return "/lib/mips64el-linux-gnuabi64"; 12038 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 12039 return "/lib/mipsel-linux-gnu"; 12040 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 12041 return "/lib/powerpc64le-linux-gnu"; 12042 #elif defined(__sparc__) && defined(__arch64__) 12043 return "/lib/sparc64-linux-gnu"; 12044 #elif defined(__riscv) && __riscv_xlen == 64 12045 return "/lib/riscv64-linux-gnu"; 12046 #else 12047 return NULL; 12048 #endif 12049 } 12050 12051 /* Get full path to program/shared library. */ 12052 static int resolve_full_path(const char *file, char *result, size_t result_sz) 12053 { 12054 const char *search_paths[3] = {}; 12055 int i, perm; 12056 12057 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 12058 search_paths[0] = getenv("LD_LIBRARY_PATH"); 12059 search_paths[1] = "/usr/lib64:/usr/lib"; 12060 search_paths[2] = arch_specific_lib_paths(); 12061 perm = R_OK; 12062 } else { 12063 search_paths[0] = getenv("PATH"); 12064 search_paths[1] = "/usr/bin:/usr/sbin"; 12065 perm = R_OK | X_OK; 12066 } 12067 12068 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 12069 const char *s; 12070 12071 if (!search_paths[i]) 12072 continue; 12073 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 12074 char *next_path; 12075 int seg_len; 12076 12077 if (s[0] == ':') 12078 s++; 12079 next_path = strchr(s, ':'); 12080 seg_len = next_path ? next_path - s : strlen(s); 12081 if (!seg_len) 12082 continue; 12083 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 12084 /* ensure it has required permissions */ 12085 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 12086 continue; 12087 pr_debug("resolved '%s' to '%s'\n", file, result); 12088 return 0; 12089 } 12090 } 12091 return -ENOENT; 12092 } 12093 12094 struct bpf_link * 12095 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 12096 pid_t pid, 12097 const char *path, 12098 const char *func_pattern, 12099 const struct bpf_uprobe_multi_opts *opts) 12100 { 12101 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 12102 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12103 unsigned long *resolved_offsets = NULL; 12104 enum bpf_attach_type attach_type; 12105 int err = 0, link_fd, prog_fd; 12106 struct bpf_link *link = NULL; 12107 char full_path[PATH_MAX]; 12108 bool retprobe, session; 12109 const __u64 *cookies; 12110 const char **syms; 12111 size_t cnt; 12112 12113 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 12114 return libbpf_err_ptr(-EINVAL); 12115 12116 prog_fd = bpf_program__fd(prog); 12117 if (prog_fd < 0) { 12118 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12119 prog->name); 12120 return libbpf_err_ptr(-EINVAL); 12121 } 12122 12123 syms = OPTS_GET(opts, syms, NULL); 12124 offsets = OPTS_GET(opts, offsets, NULL); 12125 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12126 cookies = OPTS_GET(opts, cookies, NULL); 12127 cnt = OPTS_GET(opts, cnt, 0); 12128 retprobe = OPTS_GET(opts, retprobe, false); 12129 session = OPTS_GET(opts, session, false); 12130 12131 /* 12132 * User can specify 2 mutually exclusive set of inputs: 12133 * 12134 * 1) use only path/func_pattern/pid arguments 12135 * 12136 * 2) use path/pid with allowed combinations of: 12137 * syms/offsets/ref_ctr_offsets/cookies/cnt 12138 * 12139 * - syms and offsets are mutually exclusive 12140 * - ref_ctr_offsets and cookies are optional 12141 * 12142 * Any other usage results in error. 12143 */ 12144 12145 if (!path) 12146 return libbpf_err_ptr(-EINVAL); 12147 if (!func_pattern && cnt == 0) 12148 return libbpf_err_ptr(-EINVAL); 12149 12150 if (func_pattern) { 12151 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12152 return libbpf_err_ptr(-EINVAL); 12153 } else { 12154 if (!!syms == !!offsets) 12155 return libbpf_err_ptr(-EINVAL); 12156 } 12157 12158 if (retprobe && session) 12159 return libbpf_err_ptr(-EINVAL); 12160 12161 if (func_pattern) { 12162 if (!strchr(path, '/')) { 12163 err = resolve_full_path(path, full_path, sizeof(full_path)); 12164 if (err) { 12165 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12166 prog->name, path, errstr(err)); 12167 return libbpf_err_ptr(err); 12168 } 12169 path = full_path; 12170 } 12171 12172 err = elf_resolve_pattern_offsets(path, func_pattern, 12173 &resolved_offsets, &cnt); 12174 if (err < 0) 12175 return libbpf_err_ptr(err); 12176 offsets = resolved_offsets; 12177 } else if (syms) { 12178 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12179 if (err < 0) 12180 return libbpf_err_ptr(err); 12181 offsets = resolved_offsets; 12182 } 12183 12184 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12185 12186 lopts.uprobe_multi.path = path; 12187 lopts.uprobe_multi.offsets = offsets; 12188 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12189 lopts.uprobe_multi.cookies = cookies; 12190 lopts.uprobe_multi.cnt = cnt; 12191 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12192 12193 if (pid == 0) 12194 pid = getpid(); 12195 if (pid > 0) 12196 lopts.uprobe_multi.pid = pid; 12197 12198 link = calloc(1, sizeof(*link)); 12199 if (!link) { 12200 err = -ENOMEM; 12201 goto error; 12202 } 12203 link->detach = &bpf_link__detach_fd; 12204 12205 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12206 if (link_fd < 0) { 12207 err = -errno; 12208 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12209 prog->name, errstr(err)); 12210 goto error; 12211 } 12212 link->fd = link_fd; 12213 free(resolved_offsets); 12214 return link; 12215 12216 error: 12217 free(resolved_offsets); 12218 free(link); 12219 return libbpf_err_ptr(err); 12220 } 12221 12222 LIBBPF_API struct bpf_link * 12223 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12224 const char *binary_path, size_t func_offset, 12225 const struct bpf_uprobe_opts *opts) 12226 { 12227 const char *archive_path = NULL, *archive_sep = NULL; 12228 char *legacy_probe = NULL; 12229 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12230 enum probe_attach_mode attach_mode; 12231 char full_path[PATH_MAX]; 12232 struct bpf_link *link; 12233 size_t ref_ctr_off; 12234 int pfd, err; 12235 bool retprobe, legacy; 12236 const char *func_name; 12237 12238 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12239 return libbpf_err_ptr(-EINVAL); 12240 12241 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12242 retprobe = OPTS_GET(opts, retprobe, false); 12243 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12244 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12245 12246 if (!binary_path) 12247 return libbpf_err_ptr(-EINVAL); 12248 12249 /* Check if "binary_path" refers to an archive. */ 12250 archive_sep = strstr(binary_path, "!/"); 12251 if (archive_sep) { 12252 full_path[0] = '\0'; 12253 libbpf_strlcpy(full_path, binary_path, 12254 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12255 archive_path = full_path; 12256 binary_path = archive_sep + 2; 12257 } else if (!strchr(binary_path, '/')) { 12258 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12259 if (err) { 12260 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12261 prog->name, binary_path, errstr(err)); 12262 return libbpf_err_ptr(err); 12263 } 12264 binary_path = full_path; 12265 } 12266 func_name = OPTS_GET(opts, func_name, NULL); 12267 if (func_name) { 12268 long sym_off; 12269 12270 if (archive_path) { 12271 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12272 func_name); 12273 binary_path = archive_path; 12274 } else { 12275 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12276 } 12277 if (sym_off < 0) 12278 return libbpf_err_ptr(sym_off); 12279 func_offset += sym_off; 12280 } 12281 12282 legacy = determine_uprobe_perf_type() < 0; 12283 switch (attach_mode) { 12284 case PROBE_ATTACH_MODE_LEGACY: 12285 legacy = true; 12286 pe_opts.force_ioctl_attach = true; 12287 break; 12288 case PROBE_ATTACH_MODE_PERF: 12289 if (legacy) 12290 return libbpf_err_ptr(-ENOTSUP); 12291 pe_opts.force_ioctl_attach = true; 12292 break; 12293 case PROBE_ATTACH_MODE_LINK: 12294 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12295 return libbpf_err_ptr(-ENOTSUP); 12296 break; 12297 case PROBE_ATTACH_MODE_DEFAULT: 12298 break; 12299 default: 12300 return libbpf_err_ptr(-EINVAL); 12301 } 12302 12303 if (!legacy) { 12304 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12305 func_offset, pid, ref_ctr_off); 12306 } else { 12307 char probe_name[MAX_EVENT_NAME_LEN]; 12308 12309 if (ref_ctr_off) 12310 return libbpf_err_ptr(-EINVAL); 12311 12312 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 12313 strrchr(binary_path, '/') ? : binary_path, 12314 func_offset); 12315 12316 legacy_probe = strdup(probe_name); 12317 if (!legacy_probe) 12318 return libbpf_err_ptr(-ENOMEM); 12319 12320 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12321 binary_path, func_offset, pid); 12322 } 12323 if (pfd < 0) { 12324 err = -errno; 12325 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12326 prog->name, retprobe ? "uretprobe" : "uprobe", 12327 binary_path, func_offset, 12328 errstr(err)); 12329 goto err_out; 12330 } 12331 12332 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12333 err = libbpf_get_error(link); 12334 if (err) { 12335 close(pfd); 12336 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12337 prog->name, retprobe ? "uretprobe" : "uprobe", 12338 binary_path, func_offset, 12339 errstr(err)); 12340 goto err_clean_legacy; 12341 } 12342 if (legacy) { 12343 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12344 12345 perf_link->legacy_probe_name = legacy_probe; 12346 perf_link->legacy_is_kprobe = false; 12347 perf_link->legacy_is_retprobe = retprobe; 12348 } 12349 return link; 12350 12351 err_clean_legacy: 12352 if (legacy) 12353 remove_uprobe_event_legacy(legacy_probe, retprobe); 12354 err_out: 12355 free(legacy_probe); 12356 return libbpf_err_ptr(err); 12357 } 12358 12359 /* Format of u[ret]probe section definition supporting auto-attach: 12360 * u[ret]probe/binary:function[+offset] 12361 * 12362 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12363 * full binary path via bpf_program__attach_uprobe_opts. 12364 * 12365 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12366 * specified (and auto-attach is not possible) or the above format is specified for 12367 * auto-attach. 12368 */ 12369 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12370 { 12371 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12372 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12373 int n, c, ret = -EINVAL; 12374 long offset = 0; 12375 12376 *link = NULL; 12377 12378 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12379 &probe_type, &binary_path, &func_name); 12380 switch (n) { 12381 case 1: 12382 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12383 ret = 0; 12384 break; 12385 case 2: 12386 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12387 prog->name, prog->sec_name); 12388 break; 12389 case 3: 12390 /* check if user specifies `+offset`, if yes, this should be 12391 * the last part of the string, make sure sscanf read to EOL 12392 */ 12393 func_off = strrchr(func_name, '+'); 12394 if (func_off) { 12395 n = sscanf(func_off, "+%li%n", &offset, &c); 12396 if (n == 1 && *(func_off + c) == '\0') 12397 func_off[0] = '\0'; 12398 else 12399 offset = 0; 12400 } 12401 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12402 strcmp(probe_type, "uretprobe.s") == 0; 12403 if (opts.retprobe && offset != 0) { 12404 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12405 prog->name); 12406 break; 12407 } 12408 opts.func_name = func_name; 12409 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12410 ret = libbpf_get_error(*link); 12411 break; 12412 default: 12413 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12414 prog->sec_name); 12415 break; 12416 } 12417 free(probe_type); 12418 free(binary_path); 12419 free(func_name); 12420 12421 return ret; 12422 } 12423 12424 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12425 bool retprobe, pid_t pid, 12426 const char *binary_path, 12427 size_t func_offset) 12428 { 12429 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12430 12431 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12432 } 12433 12434 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12435 pid_t pid, const char *binary_path, 12436 const char *usdt_provider, const char *usdt_name, 12437 const struct bpf_usdt_opts *opts) 12438 { 12439 char resolved_path[512]; 12440 struct bpf_object *obj = prog->obj; 12441 struct bpf_link *link; 12442 __u64 usdt_cookie; 12443 int err; 12444 12445 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12446 return libbpf_err_ptr(-EINVAL); 12447 12448 if (bpf_program__fd(prog) < 0) { 12449 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12450 prog->name); 12451 return libbpf_err_ptr(-EINVAL); 12452 } 12453 12454 if (!binary_path) 12455 return libbpf_err_ptr(-EINVAL); 12456 12457 if (!strchr(binary_path, '/')) { 12458 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12459 if (err) { 12460 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12461 prog->name, binary_path, errstr(err)); 12462 return libbpf_err_ptr(err); 12463 } 12464 binary_path = resolved_path; 12465 } 12466 12467 /* USDT manager is instantiated lazily on first USDT attach. It will 12468 * be destroyed together with BPF object in bpf_object__close(). 12469 */ 12470 if (IS_ERR(obj->usdt_man)) 12471 return libbpf_ptr(obj->usdt_man); 12472 if (!obj->usdt_man) { 12473 obj->usdt_man = usdt_manager_new(obj); 12474 if (IS_ERR(obj->usdt_man)) 12475 return libbpf_ptr(obj->usdt_man); 12476 } 12477 12478 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12479 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12480 usdt_provider, usdt_name, usdt_cookie); 12481 err = libbpf_get_error(link); 12482 if (err) 12483 return libbpf_err_ptr(err); 12484 return link; 12485 } 12486 12487 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12488 { 12489 char *path = NULL, *provider = NULL, *name = NULL; 12490 const char *sec_name; 12491 int n, err; 12492 12493 sec_name = bpf_program__section_name(prog); 12494 if (strcmp(sec_name, "usdt") == 0) { 12495 /* no auto-attach for just SEC("usdt") */ 12496 *link = NULL; 12497 return 0; 12498 } 12499 12500 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12501 if (n != 3) { 12502 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12503 sec_name); 12504 err = -EINVAL; 12505 } else { 12506 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12507 provider, name, NULL); 12508 err = libbpf_get_error(*link); 12509 } 12510 free(path); 12511 free(provider); 12512 free(name); 12513 return err; 12514 } 12515 12516 static int determine_tracepoint_id(const char *tp_category, 12517 const char *tp_name) 12518 { 12519 char file[PATH_MAX]; 12520 int ret; 12521 12522 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12523 tracefs_path(), tp_category, tp_name); 12524 if (ret < 0) 12525 return -errno; 12526 if (ret >= sizeof(file)) { 12527 pr_debug("tracepoint %s/%s path is too long\n", 12528 tp_category, tp_name); 12529 return -E2BIG; 12530 } 12531 return parse_uint_from_file(file, "%d\n"); 12532 } 12533 12534 static int perf_event_open_tracepoint(const char *tp_category, 12535 const char *tp_name) 12536 { 12537 const size_t attr_sz = sizeof(struct perf_event_attr); 12538 struct perf_event_attr attr; 12539 int tp_id, pfd, err; 12540 12541 tp_id = determine_tracepoint_id(tp_category, tp_name); 12542 if (tp_id < 0) { 12543 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12544 tp_category, tp_name, 12545 errstr(tp_id)); 12546 return tp_id; 12547 } 12548 12549 memset(&attr, 0, attr_sz); 12550 attr.type = PERF_TYPE_TRACEPOINT; 12551 attr.size = attr_sz; 12552 attr.config = tp_id; 12553 12554 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12555 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12556 if (pfd < 0) { 12557 err = -errno; 12558 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12559 tp_category, tp_name, 12560 errstr(err)); 12561 return err; 12562 } 12563 return pfd; 12564 } 12565 12566 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12567 const char *tp_category, 12568 const char *tp_name, 12569 const struct bpf_tracepoint_opts *opts) 12570 { 12571 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12572 struct bpf_link *link; 12573 int pfd, err; 12574 12575 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12576 return libbpf_err_ptr(-EINVAL); 12577 12578 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12579 12580 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12581 if (pfd < 0) { 12582 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12583 prog->name, tp_category, tp_name, 12584 errstr(pfd)); 12585 return libbpf_err_ptr(pfd); 12586 } 12587 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12588 err = libbpf_get_error(link); 12589 if (err) { 12590 close(pfd); 12591 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12592 prog->name, tp_category, tp_name, 12593 errstr(err)); 12594 return libbpf_err_ptr(err); 12595 } 12596 return link; 12597 } 12598 12599 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12600 const char *tp_category, 12601 const char *tp_name) 12602 { 12603 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12604 } 12605 12606 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12607 { 12608 char *sec_name, *tp_cat, *tp_name; 12609 12610 *link = NULL; 12611 12612 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12613 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12614 return 0; 12615 12616 sec_name = strdup(prog->sec_name); 12617 if (!sec_name) 12618 return -ENOMEM; 12619 12620 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12621 if (str_has_pfx(prog->sec_name, "tp/")) 12622 tp_cat = sec_name + sizeof("tp/") - 1; 12623 else 12624 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12625 tp_name = strchr(tp_cat, '/'); 12626 if (!tp_name) { 12627 free(sec_name); 12628 return -EINVAL; 12629 } 12630 *tp_name = '\0'; 12631 tp_name++; 12632 12633 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12634 free(sec_name); 12635 return libbpf_get_error(*link); 12636 } 12637 12638 struct bpf_link * 12639 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12640 const char *tp_name, 12641 struct bpf_raw_tracepoint_opts *opts) 12642 { 12643 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12644 struct bpf_link *link; 12645 int prog_fd, pfd; 12646 12647 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12648 return libbpf_err_ptr(-EINVAL); 12649 12650 prog_fd = bpf_program__fd(prog); 12651 if (prog_fd < 0) { 12652 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12653 return libbpf_err_ptr(-EINVAL); 12654 } 12655 12656 link = calloc(1, sizeof(*link)); 12657 if (!link) 12658 return libbpf_err_ptr(-ENOMEM); 12659 link->detach = &bpf_link__detach_fd; 12660 12661 raw_opts.tp_name = tp_name; 12662 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12663 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12664 if (pfd < 0) { 12665 pfd = -errno; 12666 free(link); 12667 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12668 prog->name, tp_name, errstr(pfd)); 12669 return libbpf_err_ptr(pfd); 12670 } 12671 link->fd = pfd; 12672 return link; 12673 } 12674 12675 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12676 const char *tp_name) 12677 { 12678 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12679 } 12680 12681 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12682 { 12683 static const char *const prefixes[] = { 12684 "raw_tp", 12685 "raw_tracepoint", 12686 "raw_tp.w", 12687 "raw_tracepoint.w", 12688 }; 12689 size_t i; 12690 const char *tp_name = NULL; 12691 12692 *link = NULL; 12693 12694 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12695 size_t pfx_len; 12696 12697 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12698 continue; 12699 12700 pfx_len = strlen(prefixes[i]); 12701 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12702 if (prog->sec_name[pfx_len] == '\0') 12703 return 0; 12704 12705 if (prog->sec_name[pfx_len] != '/') 12706 continue; 12707 12708 tp_name = prog->sec_name + pfx_len + 1; 12709 break; 12710 } 12711 12712 if (!tp_name) { 12713 pr_warn("prog '%s': invalid section name '%s'\n", 12714 prog->name, prog->sec_name); 12715 return -EINVAL; 12716 } 12717 12718 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12719 return libbpf_get_error(*link); 12720 } 12721 12722 /* Common logic for all BPF program types that attach to a btf_id */ 12723 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12724 const struct bpf_trace_opts *opts) 12725 { 12726 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12727 struct bpf_link *link; 12728 int prog_fd, pfd; 12729 12730 if (!OPTS_VALID(opts, bpf_trace_opts)) 12731 return libbpf_err_ptr(-EINVAL); 12732 12733 prog_fd = bpf_program__fd(prog); 12734 if (prog_fd < 0) { 12735 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12736 return libbpf_err_ptr(-EINVAL); 12737 } 12738 12739 link = calloc(1, sizeof(*link)); 12740 if (!link) 12741 return libbpf_err_ptr(-ENOMEM); 12742 link->detach = &bpf_link__detach_fd; 12743 12744 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12745 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12746 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12747 if (pfd < 0) { 12748 pfd = -errno; 12749 free(link); 12750 pr_warn("prog '%s': failed to attach: %s\n", 12751 prog->name, errstr(pfd)); 12752 return libbpf_err_ptr(pfd); 12753 } 12754 link->fd = pfd; 12755 return link; 12756 } 12757 12758 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12759 { 12760 return bpf_program__attach_btf_id(prog, NULL); 12761 } 12762 12763 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12764 const struct bpf_trace_opts *opts) 12765 { 12766 return bpf_program__attach_btf_id(prog, opts); 12767 } 12768 12769 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12770 { 12771 return bpf_program__attach_btf_id(prog, NULL); 12772 } 12773 12774 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12775 { 12776 *link = bpf_program__attach_trace(prog); 12777 return libbpf_get_error(*link); 12778 } 12779 12780 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12781 { 12782 *link = bpf_program__attach_lsm(prog); 12783 return libbpf_get_error(*link); 12784 } 12785 12786 static struct bpf_link * 12787 bpf_program_attach_fd(const struct bpf_program *prog, 12788 int target_fd, const char *target_name, 12789 const struct bpf_link_create_opts *opts) 12790 { 12791 enum bpf_attach_type attach_type; 12792 struct bpf_link *link; 12793 int prog_fd, link_fd; 12794 12795 prog_fd = bpf_program__fd(prog); 12796 if (prog_fd < 0) { 12797 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12798 return libbpf_err_ptr(-EINVAL); 12799 } 12800 12801 link = calloc(1, sizeof(*link)); 12802 if (!link) 12803 return libbpf_err_ptr(-ENOMEM); 12804 link->detach = &bpf_link__detach_fd; 12805 12806 attach_type = bpf_program__expected_attach_type(prog); 12807 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12808 if (link_fd < 0) { 12809 link_fd = -errno; 12810 free(link); 12811 pr_warn("prog '%s': failed to attach to %s: %s\n", 12812 prog->name, target_name, 12813 errstr(link_fd)); 12814 return libbpf_err_ptr(link_fd); 12815 } 12816 link->fd = link_fd; 12817 return link; 12818 } 12819 12820 struct bpf_link * 12821 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12822 { 12823 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12824 } 12825 12826 struct bpf_link * 12827 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12828 { 12829 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12830 } 12831 12832 struct bpf_link * 12833 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12834 { 12835 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12836 } 12837 12838 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12839 { 12840 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12841 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12842 } 12843 12844 struct bpf_link * 12845 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12846 const struct bpf_tcx_opts *opts) 12847 { 12848 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12849 __u32 relative_id; 12850 int relative_fd; 12851 12852 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12853 return libbpf_err_ptr(-EINVAL); 12854 12855 relative_id = OPTS_GET(opts, relative_id, 0); 12856 relative_fd = OPTS_GET(opts, relative_fd, 0); 12857 12858 /* validate we don't have unexpected combinations of non-zero fields */ 12859 if (!ifindex) { 12860 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12861 prog->name); 12862 return libbpf_err_ptr(-EINVAL); 12863 } 12864 if (relative_fd && relative_id) { 12865 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12866 prog->name); 12867 return libbpf_err_ptr(-EINVAL); 12868 } 12869 12870 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12871 link_create_opts.tcx.relative_fd = relative_fd; 12872 link_create_opts.tcx.relative_id = relative_id; 12873 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12874 12875 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12876 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12877 } 12878 12879 struct bpf_link * 12880 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12881 const struct bpf_netkit_opts *opts) 12882 { 12883 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12884 __u32 relative_id; 12885 int relative_fd; 12886 12887 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12888 return libbpf_err_ptr(-EINVAL); 12889 12890 relative_id = OPTS_GET(opts, relative_id, 0); 12891 relative_fd = OPTS_GET(opts, relative_fd, 0); 12892 12893 /* validate we don't have unexpected combinations of non-zero fields */ 12894 if (!ifindex) { 12895 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12896 prog->name); 12897 return libbpf_err_ptr(-EINVAL); 12898 } 12899 if (relative_fd && relative_id) { 12900 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12901 prog->name); 12902 return libbpf_err_ptr(-EINVAL); 12903 } 12904 12905 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12906 link_create_opts.netkit.relative_fd = relative_fd; 12907 link_create_opts.netkit.relative_id = relative_id; 12908 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12909 12910 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12911 } 12912 12913 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12914 int target_fd, 12915 const char *attach_func_name) 12916 { 12917 int btf_id; 12918 12919 if (!!target_fd != !!attach_func_name) { 12920 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12921 prog->name); 12922 return libbpf_err_ptr(-EINVAL); 12923 } 12924 12925 if (prog->type != BPF_PROG_TYPE_EXT) { 12926 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 12927 prog->name); 12928 return libbpf_err_ptr(-EINVAL); 12929 } 12930 12931 if (target_fd) { 12932 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12933 12934 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd); 12935 if (btf_id < 0) 12936 return libbpf_err_ptr(btf_id); 12937 12938 target_opts.target_btf_id = btf_id; 12939 12940 return bpf_program_attach_fd(prog, target_fd, "freplace", 12941 &target_opts); 12942 } else { 12943 /* no target, so use raw_tracepoint_open for compatibility 12944 * with old kernels 12945 */ 12946 return bpf_program__attach_trace(prog); 12947 } 12948 } 12949 12950 struct bpf_link * 12951 bpf_program__attach_iter(const struct bpf_program *prog, 12952 const struct bpf_iter_attach_opts *opts) 12953 { 12954 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12955 struct bpf_link *link; 12956 int prog_fd, link_fd; 12957 __u32 target_fd = 0; 12958 12959 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12960 return libbpf_err_ptr(-EINVAL); 12961 12962 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12963 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12964 12965 prog_fd = bpf_program__fd(prog); 12966 if (prog_fd < 0) { 12967 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12968 return libbpf_err_ptr(-EINVAL); 12969 } 12970 12971 link = calloc(1, sizeof(*link)); 12972 if (!link) 12973 return libbpf_err_ptr(-ENOMEM); 12974 link->detach = &bpf_link__detach_fd; 12975 12976 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12977 &link_create_opts); 12978 if (link_fd < 0) { 12979 link_fd = -errno; 12980 free(link); 12981 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12982 prog->name, errstr(link_fd)); 12983 return libbpf_err_ptr(link_fd); 12984 } 12985 link->fd = link_fd; 12986 return link; 12987 } 12988 12989 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12990 { 12991 *link = bpf_program__attach_iter(prog, NULL); 12992 return libbpf_get_error(*link); 12993 } 12994 12995 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12996 const struct bpf_netfilter_opts *opts) 12997 { 12998 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12999 struct bpf_link *link; 13000 int prog_fd, link_fd; 13001 13002 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 13003 return libbpf_err_ptr(-EINVAL); 13004 13005 prog_fd = bpf_program__fd(prog); 13006 if (prog_fd < 0) { 13007 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13008 return libbpf_err_ptr(-EINVAL); 13009 } 13010 13011 link = calloc(1, sizeof(*link)); 13012 if (!link) 13013 return libbpf_err_ptr(-ENOMEM); 13014 13015 link->detach = &bpf_link__detach_fd; 13016 13017 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 13018 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 13019 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 13020 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 13021 13022 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 13023 if (link_fd < 0) { 13024 link_fd = -errno; 13025 free(link); 13026 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 13027 prog->name, errstr(link_fd)); 13028 return libbpf_err_ptr(link_fd); 13029 } 13030 link->fd = link_fd; 13031 13032 return link; 13033 } 13034 13035 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 13036 { 13037 struct bpf_link *link = NULL; 13038 int err; 13039 13040 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13041 return libbpf_err_ptr(-EOPNOTSUPP); 13042 13043 if (bpf_program__fd(prog) < 0) { 13044 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 13045 prog->name); 13046 return libbpf_err_ptr(-EINVAL); 13047 } 13048 13049 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 13050 if (err) 13051 return libbpf_err_ptr(err); 13052 13053 /* When calling bpf_program__attach() explicitly, auto-attach support 13054 * is expected to work, so NULL returned link is considered an error. 13055 * This is different for skeleton's attach, see comment in 13056 * bpf_object__attach_skeleton(). 13057 */ 13058 if (!link) 13059 return libbpf_err_ptr(-EOPNOTSUPP); 13060 13061 return link; 13062 } 13063 13064 struct bpf_link_struct_ops { 13065 struct bpf_link link; 13066 int map_fd; 13067 }; 13068 13069 static int bpf_link__detach_struct_ops(struct bpf_link *link) 13070 { 13071 struct bpf_link_struct_ops *st_link; 13072 __u32 zero = 0; 13073 13074 st_link = container_of(link, struct bpf_link_struct_ops, link); 13075 13076 if (st_link->map_fd < 0) 13077 /* w/o a real link */ 13078 return bpf_map_delete_elem(link->fd, &zero); 13079 13080 return close(link->fd); 13081 } 13082 13083 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 13084 { 13085 struct bpf_link_struct_ops *link; 13086 __u32 zero = 0; 13087 int err, fd; 13088 13089 if (!bpf_map__is_struct_ops(map)) { 13090 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 13091 return libbpf_err_ptr(-EINVAL); 13092 } 13093 13094 if (map->fd < 0) { 13095 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 13096 return libbpf_err_ptr(-EINVAL); 13097 } 13098 13099 link = calloc(1, sizeof(*link)); 13100 if (!link) 13101 return libbpf_err_ptr(-EINVAL); 13102 13103 /* kern_vdata should be prepared during the loading phase. */ 13104 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13105 /* It can be EBUSY if the map has been used to create or 13106 * update a link before. We don't allow updating the value of 13107 * a struct_ops once it is set. That ensures that the value 13108 * never changed. So, it is safe to skip EBUSY. 13109 */ 13110 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 13111 free(link); 13112 return libbpf_err_ptr(err); 13113 } 13114 13115 link->link.detach = bpf_link__detach_struct_ops; 13116 13117 if (!(map->def.map_flags & BPF_F_LINK)) { 13118 /* w/o a real link */ 13119 link->link.fd = map->fd; 13120 link->map_fd = -1; 13121 return &link->link; 13122 } 13123 13124 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13125 if (fd < 0) { 13126 free(link); 13127 return libbpf_err_ptr(fd); 13128 } 13129 13130 link->link.fd = fd; 13131 link->map_fd = map->fd; 13132 13133 return &link->link; 13134 } 13135 13136 /* 13137 * Swap the back struct_ops of a link with a new struct_ops map. 13138 */ 13139 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13140 { 13141 struct bpf_link_struct_ops *st_ops_link; 13142 __u32 zero = 0; 13143 int err; 13144 13145 if (!bpf_map__is_struct_ops(map)) 13146 return libbpf_err(-EINVAL); 13147 13148 if (map->fd < 0) { 13149 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13150 return libbpf_err(-EINVAL); 13151 } 13152 13153 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13154 /* Ensure the type of a link is correct */ 13155 if (st_ops_link->map_fd < 0) 13156 return libbpf_err(-EINVAL); 13157 13158 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13159 /* It can be EBUSY if the map has been used to create or 13160 * update a link before. We don't allow updating the value of 13161 * a struct_ops once it is set. That ensures that the value 13162 * never changed. So, it is safe to skip EBUSY. 13163 */ 13164 if (err && err != -EBUSY) 13165 return err; 13166 13167 err = bpf_link_update(link->fd, map->fd, NULL); 13168 if (err < 0) 13169 return err; 13170 13171 st_ops_link->map_fd = map->fd; 13172 13173 return 0; 13174 } 13175 13176 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13177 void *private_data); 13178 13179 static enum bpf_perf_event_ret 13180 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13181 void **copy_mem, size_t *copy_size, 13182 bpf_perf_event_print_t fn, void *private_data) 13183 { 13184 struct perf_event_mmap_page *header = mmap_mem; 13185 __u64 data_head = ring_buffer_read_head(header); 13186 __u64 data_tail = header->data_tail; 13187 void *base = ((__u8 *)header) + page_size; 13188 int ret = LIBBPF_PERF_EVENT_CONT; 13189 struct perf_event_header *ehdr; 13190 size_t ehdr_size; 13191 13192 while (data_head != data_tail) { 13193 ehdr = base + (data_tail & (mmap_size - 1)); 13194 ehdr_size = ehdr->size; 13195 13196 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13197 void *copy_start = ehdr; 13198 size_t len_first = base + mmap_size - copy_start; 13199 size_t len_secnd = ehdr_size - len_first; 13200 13201 if (*copy_size < ehdr_size) { 13202 free(*copy_mem); 13203 *copy_mem = malloc(ehdr_size); 13204 if (!*copy_mem) { 13205 *copy_size = 0; 13206 ret = LIBBPF_PERF_EVENT_ERROR; 13207 break; 13208 } 13209 *copy_size = ehdr_size; 13210 } 13211 13212 memcpy(*copy_mem, copy_start, len_first); 13213 memcpy(*copy_mem + len_first, base, len_secnd); 13214 ehdr = *copy_mem; 13215 } 13216 13217 ret = fn(ehdr, private_data); 13218 data_tail += ehdr_size; 13219 if (ret != LIBBPF_PERF_EVENT_CONT) 13220 break; 13221 } 13222 13223 ring_buffer_write_tail(header, data_tail); 13224 return libbpf_err(ret); 13225 } 13226 13227 struct perf_buffer; 13228 13229 struct perf_buffer_params { 13230 struct perf_event_attr *attr; 13231 /* if event_cb is specified, it takes precendence */ 13232 perf_buffer_event_fn event_cb; 13233 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13234 perf_buffer_sample_fn sample_cb; 13235 perf_buffer_lost_fn lost_cb; 13236 void *ctx; 13237 int cpu_cnt; 13238 int *cpus; 13239 int *map_keys; 13240 }; 13241 13242 struct perf_cpu_buf { 13243 struct perf_buffer *pb; 13244 void *base; /* mmap()'ed memory */ 13245 void *buf; /* for reconstructing segmented data */ 13246 size_t buf_size; 13247 int fd; 13248 int cpu; 13249 int map_key; 13250 }; 13251 13252 struct perf_buffer { 13253 perf_buffer_event_fn event_cb; 13254 perf_buffer_sample_fn sample_cb; 13255 perf_buffer_lost_fn lost_cb; 13256 void *ctx; /* passed into callbacks */ 13257 13258 size_t page_size; 13259 size_t mmap_size; 13260 struct perf_cpu_buf **cpu_bufs; 13261 struct epoll_event *events; 13262 int cpu_cnt; /* number of allocated CPU buffers */ 13263 int epoll_fd; /* perf event FD */ 13264 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13265 }; 13266 13267 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13268 struct perf_cpu_buf *cpu_buf) 13269 { 13270 if (!cpu_buf) 13271 return; 13272 if (cpu_buf->base && 13273 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13274 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13275 if (cpu_buf->fd >= 0) { 13276 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13277 close(cpu_buf->fd); 13278 } 13279 free(cpu_buf->buf); 13280 free(cpu_buf); 13281 } 13282 13283 void perf_buffer__free(struct perf_buffer *pb) 13284 { 13285 int i; 13286 13287 if (IS_ERR_OR_NULL(pb)) 13288 return; 13289 if (pb->cpu_bufs) { 13290 for (i = 0; i < pb->cpu_cnt; i++) { 13291 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13292 13293 if (!cpu_buf) 13294 continue; 13295 13296 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13297 perf_buffer__free_cpu_buf(pb, cpu_buf); 13298 } 13299 free(pb->cpu_bufs); 13300 } 13301 if (pb->epoll_fd >= 0) 13302 close(pb->epoll_fd); 13303 free(pb->events); 13304 free(pb); 13305 } 13306 13307 static struct perf_cpu_buf * 13308 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13309 int cpu, int map_key) 13310 { 13311 struct perf_cpu_buf *cpu_buf; 13312 int err; 13313 13314 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13315 if (!cpu_buf) 13316 return ERR_PTR(-ENOMEM); 13317 13318 cpu_buf->pb = pb; 13319 cpu_buf->cpu = cpu; 13320 cpu_buf->map_key = map_key; 13321 13322 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13323 -1, PERF_FLAG_FD_CLOEXEC); 13324 if (cpu_buf->fd < 0) { 13325 err = -errno; 13326 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13327 cpu, errstr(err)); 13328 goto error; 13329 } 13330 13331 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13332 PROT_READ | PROT_WRITE, MAP_SHARED, 13333 cpu_buf->fd, 0); 13334 if (cpu_buf->base == MAP_FAILED) { 13335 cpu_buf->base = NULL; 13336 err = -errno; 13337 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13338 cpu, errstr(err)); 13339 goto error; 13340 } 13341 13342 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13343 err = -errno; 13344 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13345 cpu, errstr(err)); 13346 goto error; 13347 } 13348 13349 return cpu_buf; 13350 13351 error: 13352 perf_buffer__free_cpu_buf(pb, cpu_buf); 13353 return (struct perf_cpu_buf *)ERR_PTR(err); 13354 } 13355 13356 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13357 struct perf_buffer_params *p); 13358 13359 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13360 perf_buffer_sample_fn sample_cb, 13361 perf_buffer_lost_fn lost_cb, 13362 void *ctx, 13363 const struct perf_buffer_opts *opts) 13364 { 13365 const size_t attr_sz = sizeof(struct perf_event_attr); 13366 struct perf_buffer_params p = {}; 13367 struct perf_event_attr attr; 13368 __u32 sample_period; 13369 13370 if (!OPTS_VALID(opts, perf_buffer_opts)) 13371 return libbpf_err_ptr(-EINVAL); 13372 13373 sample_period = OPTS_GET(opts, sample_period, 1); 13374 if (!sample_period) 13375 sample_period = 1; 13376 13377 memset(&attr, 0, attr_sz); 13378 attr.size = attr_sz; 13379 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13380 attr.type = PERF_TYPE_SOFTWARE; 13381 attr.sample_type = PERF_SAMPLE_RAW; 13382 attr.wakeup_events = sample_period; 13383 13384 p.attr = &attr; 13385 p.sample_cb = sample_cb; 13386 p.lost_cb = lost_cb; 13387 p.ctx = ctx; 13388 13389 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13390 } 13391 13392 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13393 struct perf_event_attr *attr, 13394 perf_buffer_event_fn event_cb, void *ctx, 13395 const struct perf_buffer_raw_opts *opts) 13396 { 13397 struct perf_buffer_params p = {}; 13398 13399 if (!attr) 13400 return libbpf_err_ptr(-EINVAL); 13401 13402 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13403 return libbpf_err_ptr(-EINVAL); 13404 13405 p.attr = attr; 13406 p.event_cb = event_cb; 13407 p.ctx = ctx; 13408 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13409 p.cpus = OPTS_GET(opts, cpus, NULL); 13410 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13411 13412 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13413 } 13414 13415 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13416 struct perf_buffer_params *p) 13417 { 13418 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13419 struct bpf_map_info map; 13420 struct perf_buffer *pb; 13421 bool *online = NULL; 13422 __u32 map_info_len; 13423 int err, i, j, n; 13424 13425 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13426 pr_warn("page count should be power of two, but is %zu\n", 13427 page_cnt); 13428 return ERR_PTR(-EINVAL); 13429 } 13430 13431 /* best-effort sanity checks */ 13432 memset(&map, 0, sizeof(map)); 13433 map_info_len = sizeof(map); 13434 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13435 if (err) { 13436 err = -errno; 13437 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13438 * -EBADFD, -EFAULT, or -E2BIG on real error 13439 */ 13440 if (err != -EINVAL) { 13441 pr_warn("failed to get map info for map FD %d: %s\n", 13442 map_fd, errstr(err)); 13443 return ERR_PTR(err); 13444 } 13445 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13446 map_fd); 13447 } else { 13448 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13449 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13450 map.name); 13451 return ERR_PTR(-EINVAL); 13452 } 13453 } 13454 13455 pb = calloc(1, sizeof(*pb)); 13456 if (!pb) 13457 return ERR_PTR(-ENOMEM); 13458 13459 pb->event_cb = p->event_cb; 13460 pb->sample_cb = p->sample_cb; 13461 pb->lost_cb = p->lost_cb; 13462 pb->ctx = p->ctx; 13463 13464 pb->page_size = getpagesize(); 13465 pb->mmap_size = pb->page_size * page_cnt; 13466 pb->map_fd = map_fd; 13467 13468 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13469 if (pb->epoll_fd < 0) { 13470 err = -errno; 13471 pr_warn("failed to create epoll instance: %s\n", 13472 errstr(err)); 13473 goto error; 13474 } 13475 13476 if (p->cpu_cnt > 0) { 13477 pb->cpu_cnt = p->cpu_cnt; 13478 } else { 13479 pb->cpu_cnt = libbpf_num_possible_cpus(); 13480 if (pb->cpu_cnt < 0) { 13481 err = pb->cpu_cnt; 13482 goto error; 13483 } 13484 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13485 pb->cpu_cnt = map.max_entries; 13486 } 13487 13488 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13489 if (!pb->events) { 13490 err = -ENOMEM; 13491 pr_warn("failed to allocate events: out of memory\n"); 13492 goto error; 13493 } 13494 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13495 if (!pb->cpu_bufs) { 13496 err = -ENOMEM; 13497 pr_warn("failed to allocate buffers: out of memory\n"); 13498 goto error; 13499 } 13500 13501 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13502 if (err) { 13503 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13504 goto error; 13505 } 13506 13507 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13508 struct perf_cpu_buf *cpu_buf; 13509 int cpu, map_key; 13510 13511 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13512 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13513 13514 /* in case user didn't explicitly requested particular CPUs to 13515 * be attached to, skip offline/not present CPUs 13516 */ 13517 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13518 continue; 13519 13520 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13521 if (IS_ERR(cpu_buf)) { 13522 err = PTR_ERR(cpu_buf); 13523 goto error; 13524 } 13525 13526 pb->cpu_bufs[j] = cpu_buf; 13527 13528 err = bpf_map_update_elem(pb->map_fd, &map_key, 13529 &cpu_buf->fd, 0); 13530 if (err) { 13531 err = -errno; 13532 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13533 cpu, map_key, cpu_buf->fd, 13534 errstr(err)); 13535 goto error; 13536 } 13537 13538 pb->events[j].events = EPOLLIN; 13539 pb->events[j].data.ptr = cpu_buf; 13540 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13541 &pb->events[j]) < 0) { 13542 err = -errno; 13543 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13544 cpu, cpu_buf->fd, 13545 errstr(err)); 13546 goto error; 13547 } 13548 j++; 13549 } 13550 pb->cpu_cnt = j; 13551 free(online); 13552 13553 return pb; 13554 13555 error: 13556 free(online); 13557 if (pb) 13558 perf_buffer__free(pb); 13559 return ERR_PTR(err); 13560 } 13561 13562 struct perf_sample_raw { 13563 struct perf_event_header header; 13564 uint32_t size; 13565 char data[]; 13566 }; 13567 13568 struct perf_sample_lost { 13569 struct perf_event_header header; 13570 uint64_t id; 13571 uint64_t lost; 13572 uint64_t sample_id; 13573 }; 13574 13575 static enum bpf_perf_event_ret 13576 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13577 { 13578 struct perf_cpu_buf *cpu_buf = ctx; 13579 struct perf_buffer *pb = cpu_buf->pb; 13580 void *data = e; 13581 13582 /* user wants full control over parsing perf event */ 13583 if (pb->event_cb) 13584 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13585 13586 switch (e->type) { 13587 case PERF_RECORD_SAMPLE: { 13588 struct perf_sample_raw *s = data; 13589 13590 if (pb->sample_cb) 13591 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13592 break; 13593 } 13594 case PERF_RECORD_LOST: { 13595 struct perf_sample_lost *s = data; 13596 13597 if (pb->lost_cb) 13598 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13599 break; 13600 } 13601 default: 13602 pr_warn("unknown perf sample type %d\n", e->type); 13603 return LIBBPF_PERF_EVENT_ERROR; 13604 } 13605 return LIBBPF_PERF_EVENT_CONT; 13606 } 13607 13608 static int perf_buffer__process_records(struct perf_buffer *pb, 13609 struct perf_cpu_buf *cpu_buf) 13610 { 13611 enum bpf_perf_event_ret ret; 13612 13613 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13614 pb->page_size, &cpu_buf->buf, 13615 &cpu_buf->buf_size, 13616 perf_buffer__process_record, cpu_buf); 13617 if (ret != LIBBPF_PERF_EVENT_CONT) 13618 return ret; 13619 return 0; 13620 } 13621 13622 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13623 { 13624 return pb->epoll_fd; 13625 } 13626 13627 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13628 { 13629 int i, cnt, err; 13630 13631 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13632 if (cnt < 0) 13633 return -errno; 13634 13635 for (i = 0; i < cnt; i++) { 13636 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13637 13638 err = perf_buffer__process_records(pb, cpu_buf); 13639 if (err) { 13640 pr_warn("error while processing records: %s\n", errstr(err)); 13641 return libbpf_err(err); 13642 } 13643 } 13644 return cnt; 13645 } 13646 13647 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13648 * manager. 13649 */ 13650 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13651 { 13652 return pb->cpu_cnt; 13653 } 13654 13655 /* 13656 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13657 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13658 * select()/poll()/epoll() Linux syscalls. 13659 */ 13660 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13661 { 13662 struct perf_cpu_buf *cpu_buf; 13663 13664 if (buf_idx >= pb->cpu_cnt) 13665 return libbpf_err(-EINVAL); 13666 13667 cpu_buf = pb->cpu_bufs[buf_idx]; 13668 if (!cpu_buf) 13669 return libbpf_err(-ENOENT); 13670 13671 return cpu_buf->fd; 13672 } 13673 13674 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13675 { 13676 struct perf_cpu_buf *cpu_buf; 13677 13678 if (buf_idx >= pb->cpu_cnt) 13679 return libbpf_err(-EINVAL); 13680 13681 cpu_buf = pb->cpu_bufs[buf_idx]; 13682 if (!cpu_buf) 13683 return libbpf_err(-ENOENT); 13684 13685 *buf = cpu_buf->base; 13686 *buf_size = pb->mmap_size; 13687 return 0; 13688 } 13689 13690 /* 13691 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13692 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13693 * consume, do nothing and return success. 13694 * Returns: 13695 * - 0 on success; 13696 * - <0 on failure. 13697 */ 13698 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13699 { 13700 struct perf_cpu_buf *cpu_buf; 13701 13702 if (buf_idx >= pb->cpu_cnt) 13703 return libbpf_err(-EINVAL); 13704 13705 cpu_buf = pb->cpu_bufs[buf_idx]; 13706 if (!cpu_buf) 13707 return libbpf_err(-ENOENT); 13708 13709 return perf_buffer__process_records(pb, cpu_buf); 13710 } 13711 13712 int perf_buffer__consume(struct perf_buffer *pb) 13713 { 13714 int i, err; 13715 13716 for (i = 0; i < pb->cpu_cnt; i++) { 13717 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13718 13719 if (!cpu_buf) 13720 continue; 13721 13722 err = perf_buffer__process_records(pb, cpu_buf); 13723 if (err) { 13724 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 13725 i, errstr(err)); 13726 return libbpf_err(err); 13727 } 13728 } 13729 return 0; 13730 } 13731 13732 int bpf_program__set_attach_target(struct bpf_program *prog, 13733 int attach_prog_fd, 13734 const char *attach_func_name) 13735 { 13736 int btf_obj_fd = 0, btf_id = 0, err; 13737 13738 if (!prog || attach_prog_fd < 0) 13739 return libbpf_err(-EINVAL); 13740 13741 if (prog->obj->state >= OBJ_LOADED) 13742 return libbpf_err(-EINVAL); 13743 13744 if (attach_prog_fd && !attach_func_name) { 13745 /* remember attach_prog_fd and let bpf_program__load() find 13746 * BTF ID during the program load 13747 */ 13748 prog->attach_prog_fd = attach_prog_fd; 13749 return 0; 13750 } 13751 13752 if (attach_prog_fd) { 13753 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13754 attach_prog_fd, prog->obj->token_fd); 13755 if (btf_id < 0) 13756 return libbpf_err(btf_id); 13757 } else { 13758 if (!attach_func_name) 13759 return libbpf_err(-EINVAL); 13760 13761 /* load btf_vmlinux, if not yet */ 13762 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13763 if (err) 13764 return libbpf_err(err); 13765 err = find_kernel_btf_id(prog->obj, attach_func_name, 13766 prog->expected_attach_type, 13767 &btf_obj_fd, &btf_id); 13768 if (err) 13769 return libbpf_err(err); 13770 } 13771 13772 prog->attach_btf_id = btf_id; 13773 prog->attach_btf_obj_fd = btf_obj_fd; 13774 prog->attach_prog_fd = attach_prog_fd; 13775 return 0; 13776 } 13777 13778 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13779 { 13780 int err = 0, n, len, start, end = -1; 13781 bool *tmp; 13782 13783 *mask = NULL; 13784 *mask_sz = 0; 13785 13786 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13787 while (*s) { 13788 if (*s == ',' || *s == '\n') { 13789 s++; 13790 continue; 13791 } 13792 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13793 if (n <= 0 || n > 2) { 13794 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13795 err = -EINVAL; 13796 goto cleanup; 13797 } else if (n == 1) { 13798 end = start; 13799 } 13800 if (start < 0 || start > end) { 13801 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13802 start, end, s); 13803 err = -EINVAL; 13804 goto cleanup; 13805 } 13806 tmp = realloc(*mask, end + 1); 13807 if (!tmp) { 13808 err = -ENOMEM; 13809 goto cleanup; 13810 } 13811 *mask = tmp; 13812 memset(tmp + *mask_sz, 0, start - *mask_sz); 13813 memset(tmp + start, 1, end - start + 1); 13814 *mask_sz = end + 1; 13815 s += len; 13816 } 13817 if (!*mask_sz) { 13818 pr_warn("Empty CPU range\n"); 13819 return -EINVAL; 13820 } 13821 return 0; 13822 cleanup: 13823 free(*mask); 13824 *mask = NULL; 13825 return err; 13826 } 13827 13828 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13829 { 13830 int fd, err = 0, len; 13831 char buf[128]; 13832 13833 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13834 if (fd < 0) { 13835 err = -errno; 13836 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 13837 return err; 13838 } 13839 len = read(fd, buf, sizeof(buf)); 13840 close(fd); 13841 if (len <= 0) { 13842 err = len ? -errno : -EINVAL; 13843 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 13844 return err; 13845 } 13846 if (len >= sizeof(buf)) { 13847 pr_warn("CPU mask is too big in file %s\n", fcpu); 13848 return -E2BIG; 13849 } 13850 buf[len] = '\0'; 13851 13852 return parse_cpu_mask_str(buf, mask, mask_sz); 13853 } 13854 13855 int libbpf_num_possible_cpus(void) 13856 { 13857 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13858 static int cpus; 13859 int err, n, i, tmp_cpus; 13860 bool *mask; 13861 13862 tmp_cpus = READ_ONCE(cpus); 13863 if (tmp_cpus > 0) 13864 return tmp_cpus; 13865 13866 err = parse_cpu_mask_file(fcpu, &mask, &n); 13867 if (err) 13868 return libbpf_err(err); 13869 13870 tmp_cpus = 0; 13871 for (i = 0; i < n; i++) { 13872 if (mask[i]) 13873 tmp_cpus++; 13874 } 13875 free(mask); 13876 13877 WRITE_ONCE(cpus, tmp_cpus); 13878 return tmp_cpus; 13879 } 13880 13881 static int populate_skeleton_maps(const struct bpf_object *obj, 13882 struct bpf_map_skeleton *maps, 13883 size_t map_cnt, size_t map_skel_sz) 13884 { 13885 int i; 13886 13887 for (i = 0; i < map_cnt; i++) { 13888 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 13889 struct bpf_map **map = map_skel->map; 13890 const char *name = map_skel->name; 13891 void **mmaped = map_skel->mmaped; 13892 13893 *map = bpf_object__find_map_by_name(obj, name); 13894 if (!*map) { 13895 pr_warn("failed to find skeleton map '%s'\n", name); 13896 return -ESRCH; 13897 } 13898 13899 /* externs shouldn't be pre-setup from user code */ 13900 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13901 *mmaped = (*map)->mmaped; 13902 } 13903 return 0; 13904 } 13905 13906 static int populate_skeleton_progs(const struct bpf_object *obj, 13907 struct bpf_prog_skeleton *progs, 13908 size_t prog_cnt, size_t prog_skel_sz) 13909 { 13910 int i; 13911 13912 for (i = 0; i < prog_cnt; i++) { 13913 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 13914 struct bpf_program **prog = prog_skel->prog; 13915 const char *name = prog_skel->name; 13916 13917 *prog = bpf_object__find_program_by_name(obj, name); 13918 if (!*prog) { 13919 pr_warn("failed to find skeleton program '%s'\n", name); 13920 return -ESRCH; 13921 } 13922 } 13923 return 0; 13924 } 13925 13926 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13927 const struct bpf_object_open_opts *opts) 13928 { 13929 struct bpf_object *obj; 13930 int err; 13931 13932 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 13933 if (IS_ERR(obj)) { 13934 err = PTR_ERR(obj); 13935 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 13936 s->name, errstr(err)); 13937 return libbpf_err(err); 13938 } 13939 13940 *s->obj = obj; 13941 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 13942 if (err) { 13943 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 13944 return libbpf_err(err); 13945 } 13946 13947 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13948 if (err) { 13949 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 13950 return libbpf_err(err); 13951 } 13952 13953 return 0; 13954 } 13955 13956 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13957 { 13958 int err, len, var_idx, i; 13959 const char *var_name; 13960 const struct bpf_map *map; 13961 struct btf *btf; 13962 __u32 map_type_id; 13963 const struct btf_type *map_type, *var_type; 13964 const struct bpf_var_skeleton *var_skel; 13965 struct btf_var_secinfo *var; 13966 13967 if (!s->obj) 13968 return libbpf_err(-EINVAL); 13969 13970 btf = bpf_object__btf(s->obj); 13971 if (!btf) { 13972 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13973 bpf_object__name(s->obj)); 13974 return libbpf_err(-errno); 13975 } 13976 13977 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 13978 if (err) { 13979 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13980 return libbpf_err(err); 13981 } 13982 13983 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13984 if (err) { 13985 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13986 return libbpf_err(err); 13987 } 13988 13989 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13990 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 13991 map = *var_skel->map; 13992 map_type_id = bpf_map__btf_value_type_id(map); 13993 map_type = btf__type_by_id(btf, map_type_id); 13994 13995 if (!btf_is_datasec(map_type)) { 13996 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 13997 bpf_map__name(map), 13998 __btf_kind_str(btf_kind(map_type))); 13999 return libbpf_err(-EINVAL); 14000 } 14001 14002 len = btf_vlen(map_type); 14003 var = btf_var_secinfos(map_type); 14004 for (i = 0; i < len; i++, var++) { 14005 var_type = btf__type_by_id(btf, var->type); 14006 var_name = btf__name_by_offset(btf, var_type->name_off); 14007 if (strcmp(var_name, var_skel->name) == 0) { 14008 *var_skel->addr = map->mmaped + var->offset; 14009 break; 14010 } 14011 } 14012 } 14013 return 0; 14014 } 14015 14016 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 14017 { 14018 if (!s) 14019 return; 14020 free(s->maps); 14021 free(s->progs); 14022 free(s->vars); 14023 free(s); 14024 } 14025 14026 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 14027 { 14028 int i, err; 14029 14030 err = bpf_object__load(*s->obj); 14031 if (err) { 14032 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 14033 return libbpf_err(err); 14034 } 14035 14036 for (i = 0; i < s->map_cnt; i++) { 14037 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14038 struct bpf_map *map = *map_skel->map; 14039 14040 if (!map_skel->mmaped) 14041 continue; 14042 14043 *map_skel->mmaped = map->mmaped; 14044 } 14045 14046 return 0; 14047 } 14048 14049 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 14050 { 14051 int i, err; 14052 14053 for (i = 0; i < s->prog_cnt; i++) { 14054 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14055 struct bpf_program *prog = *prog_skel->prog; 14056 struct bpf_link **link = prog_skel->link; 14057 14058 if (!prog->autoload || !prog->autoattach) 14059 continue; 14060 14061 /* auto-attaching not supported for this program */ 14062 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 14063 continue; 14064 14065 /* if user already set the link manually, don't attempt auto-attach */ 14066 if (*link) 14067 continue; 14068 14069 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 14070 if (err) { 14071 pr_warn("prog '%s': failed to auto-attach: %s\n", 14072 bpf_program__name(prog), errstr(err)); 14073 return libbpf_err(err); 14074 } 14075 14076 /* It's possible that for some SEC() definitions auto-attach 14077 * is supported in some cases (e.g., if definition completely 14078 * specifies target information), but is not in other cases. 14079 * SEC("uprobe") is one such case. If user specified target 14080 * binary and function name, such BPF program can be 14081 * auto-attached. But if not, it shouldn't trigger skeleton's 14082 * attach to fail. It should just be skipped. 14083 * attach_fn signals such case with returning 0 (no error) and 14084 * setting link to NULL. 14085 */ 14086 } 14087 14088 14089 for (i = 0; i < s->map_cnt; i++) { 14090 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14091 struct bpf_map *map = *map_skel->map; 14092 struct bpf_link **link; 14093 14094 if (!map->autocreate || !map->autoattach) 14095 continue; 14096 14097 /* only struct_ops maps can be attached */ 14098 if (!bpf_map__is_struct_ops(map)) 14099 continue; 14100 14101 /* skeleton is created with earlier version of bpftool, notify user */ 14102 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14103 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14104 bpf_map__name(map)); 14105 continue; 14106 } 14107 14108 link = map_skel->link; 14109 if (!link) { 14110 pr_warn("map '%s': BPF map skeleton link is uninitialized\n", 14111 bpf_map__name(map)); 14112 continue; 14113 } 14114 14115 if (*link) 14116 continue; 14117 14118 *link = bpf_map__attach_struct_ops(map); 14119 if (!*link) { 14120 err = -errno; 14121 pr_warn("map '%s': failed to auto-attach: %s\n", 14122 bpf_map__name(map), errstr(err)); 14123 return libbpf_err(err); 14124 } 14125 } 14126 14127 return 0; 14128 } 14129 14130 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14131 { 14132 int i; 14133 14134 for (i = 0; i < s->prog_cnt; i++) { 14135 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14136 struct bpf_link **link = prog_skel->link; 14137 14138 bpf_link__destroy(*link); 14139 *link = NULL; 14140 } 14141 14142 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14143 return; 14144 14145 for (i = 0; i < s->map_cnt; i++) { 14146 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14147 struct bpf_link **link = map_skel->link; 14148 14149 if (link) { 14150 bpf_link__destroy(*link); 14151 *link = NULL; 14152 } 14153 } 14154 } 14155 14156 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14157 { 14158 if (!s) 14159 return; 14160 14161 bpf_object__detach_skeleton(s); 14162 if (s->obj) 14163 bpf_object__close(*s->obj); 14164 free(s->maps); 14165 free(s->progs); 14166 free(s); 14167 } 14168