1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 /* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to 160 * get all possible values we compensate last +1, and then (2*x - 1) 161 * to get the bit mask 162 */ 163 if (mode != LIBBPF_STRICT_ALL 164 && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1))) 165 return errno = EINVAL, -EINVAL; 166 167 libbpf_mode = mode; 168 return 0; 169 } 170 171 enum kern_feature_id { 172 /* v4.14: kernel support for program & map names. */ 173 FEAT_PROG_NAME, 174 /* v5.2: kernel support for global data sections. */ 175 FEAT_GLOBAL_DATA, 176 /* BTF support */ 177 FEAT_BTF, 178 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 179 FEAT_BTF_FUNC, 180 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 181 FEAT_BTF_DATASEC, 182 /* BTF_FUNC_GLOBAL is supported */ 183 FEAT_BTF_GLOBAL_FUNC, 184 /* BPF_F_MMAPABLE is supported for arrays */ 185 FEAT_ARRAY_MMAP, 186 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 187 FEAT_EXP_ATTACH_TYPE, 188 /* bpf_probe_read_{kernel,user}[_str] helpers */ 189 FEAT_PROBE_READ_KERN, 190 /* BPF_PROG_BIND_MAP is supported */ 191 FEAT_PROG_BIND_MAP, 192 /* Kernel support for module BTFs */ 193 FEAT_MODULE_BTF, 194 /* BTF_KIND_FLOAT support */ 195 FEAT_BTF_FLOAT, 196 __FEAT_CNT, 197 }; 198 199 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id); 200 201 enum reloc_type { 202 RELO_LD64, 203 RELO_CALL, 204 RELO_DATA, 205 RELO_EXTERN_VAR, 206 RELO_EXTERN_FUNC, 207 RELO_SUBPROG_ADDR, 208 }; 209 210 struct reloc_desc { 211 enum reloc_type type; 212 int insn_idx; 213 int map_idx; 214 int sym_off; 215 }; 216 217 struct bpf_sec_def; 218 219 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 220 struct bpf_program *prog); 221 222 struct bpf_sec_def { 223 const char *sec; 224 size_t len; 225 enum bpf_prog_type prog_type; 226 enum bpf_attach_type expected_attach_type; 227 bool is_exp_attach_type_optional; 228 bool is_attachable; 229 bool is_attach_btf; 230 bool is_sleepable; 231 attach_fn_t attach_fn; 232 }; 233 234 /* 235 * bpf_prog should be a better name but it has been used in 236 * linux/filter.h. 237 */ 238 struct bpf_program { 239 const struct bpf_sec_def *sec_def; 240 char *sec_name; 241 size_t sec_idx; 242 /* this program's instruction offset (in number of instructions) 243 * within its containing ELF section 244 */ 245 size_t sec_insn_off; 246 /* number of original instructions in ELF section belonging to this 247 * program, not taking into account subprogram instructions possible 248 * appended later during relocation 249 */ 250 size_t sec_insn_cnt; 251 /* Offset (in number of instructions) of the start of instruction 252 * belonging to this BPF program within its containing main BPF 253 * program. For the entry-point (main) BPF program, this is always 254 * zero. For a sub-program, this gets reset before each of main BPF 255 * programs are processed and relocated and is used to determined 256 * whether sub-program was already appended to the main program, and 257 * if yes, at which instruction offset. 258 */ 259 size_t sub_insn_off; 260 261 char *name; 262 /* sec_name with / replaced by _; makes recursive pinning 263 * in bpf_object__pin_programs easier 264 */ 265 char *pin_name; 266 267 /* instructions that belong to BPF program; insns[0] is located at 268 * sec_insn_off instruction within its ELF section in ELF file, so 269 * when mapping ELF file instruction index to the local instruction, 270 * one needs to subtract sec_insn_off; and vice versa. 271 */ 272 struct bpf_insn *insns; 273 /* actual number of instruction in this BPF program's image; for 274 * entry-point BPF programs this includes the size of main program 275 * itself plus all the used sub-programs, appended at the end 276 */ 277 size_t insns_cnt; 278 279 struct reloc_desc *reloc_desc; 280 int nr_reloc; 281 int log_level; 282 283 struct { 284 int nr; 285 int *fds; 286 } instances; 287 bpf_program_prep_t preprocessor; 288 289 struct bpf_object *obj; 290 void *priv; 291 bpf_program_clear_priv_t clear_priv; 292 293 bool load; 294 bool mark_btf_static; 295 enum bpf_prog_type type; 296 enum bpf_attach_type expected_attach_type; 297 int prog_ifindex; 298 __u32 attach_btf_obj_fd; 299 __u32 attach_btf_id; 300 __u32 attach_prog_fd; 301 void *func_info; 302 __u32 func_info_rec_size; 303 __u32 func_info_cnt; 304 305 void *line_info; 306 __u32 line_info_rec_size; 307 __u32 line_info_cnt; 308 __u32 prog_flags; 309 }; 310 311 struct bpf_struct_ops { 312 const char *tname; 313 const struct btf_type *type; 314 struct bpf_program **progs; 315 __u32 *kern_func_off; 316 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 317 void *data; 318 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 319 * btf_vmlinux's format. 320 * struct bpf_struct_ops_tcp_congestion_ops { 321 * [... some other kernel fields ...] 322 * struct tcp_congestion_ops data; 323 * } 324 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 325 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 326 * from "data". 327 */ 328 void *kern_vdata; 329 __u32 type_id; 330 }; 331 332 #define DATA_SEC ".data" 333 #define BSS_SEC ".bss" 334 #define RODATA_SEC ".rodata" 335 #define KCONFIG_SEC ".kconfig" 336 #define KSYMS_SEC ".ksyms" 337 #define STRUCT_OPS_SEC ".struct_ops" 338 339 enum libbpf_map_type { 340 LIBBPF_MAP_UNSPEC, 341 LIBBPF_MAP_DATA, 342 LIBBPF_MAP_BSS, 343 LIBBPF_MAP_RODATA, 344 LIBBPF_MAP_KCONFIG, 345 }; 346 347 static const char * const libbpf_type_to_btf_name[] = { 348 [LIBBPF_MAP_DATA] = DATA_SEC, 349 [LIBBPF_MAP_BSS] = BSS_SEC, 350 [LIBBPF_MAP_RODATA] = RODATA_SEC, 351 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 352 }; 353 354 struct bpf_map { 355 char *name; 356 int fd; 357 int sec_idx; 358 size_t sec_offset; 359 int map_ifindex; 360 int inner_map_fd; 361 struct bpf_map_def def; 362 __u32 numa_node; 363 __u32 btf_var_idx; 364 __u32 btf_key_type_id; 365 __u32 btf_value_type_id; 366 __u32 btf_vmlinux_value_type_id; 367 void *priv; 368 bpf_map_clear_priv_t clear_priv; 369 enum libbpf_map_type libbpf_type; 370 void *mmaped; 371 struct bpf_struct_ops *st_ops; 372 struct bpf_map *inner_map; 373 void **init_slots; 374 int init_slots_sz; 375 char *pin_path; 376 bool pinned; 377 bool reused; 378 }; 379 380 enum extern_type { 381 EXT_UNKNOWN, 382 EXT_KCFG, 383 EXT_KSYM, 384 }; 385 386 enum kcfg_type { 387 KCFG_UNKNOWN, 388 KCFG_CHAR, 389 KCFG_BOOL, 390 KCFG_INT, 391 KCFG_TRISTATE, 392 KCFG_CHAR_ARR, 393 }; 394 395 struct extern_desc { 396 enum extern_type type; 397 int sym_idx; 398 int btf_id; 399 int sec_btf_id; 400 const char *name; 401 bool is_set; 402 bool is_weak; 403 union { 404 struct { 405 enum kcfg_type type; 406 int sz; 407 int align; 408 int data_off; 409 bool is_signed; 410 } kcfg; 411 struct { 412 unsigned long long addr; 413 414 /* target btf_id of the corresponding kernel var. */ 415 int kernel_btf_obj_fd; 416 int kernel_btf_id; 417 418 /* local btf_id of the ksym extern's type. */ 419 __u32 type_id; 420 } ksym; 421 }; 422 }; 423 424 static LIST_HEAD(bpf_objects_list); 425 426 struct module_btf { 427 struct btf *btf; 428 char *name; 429 __u32 id; 430 int fd; 431 }; 432 433 struct bpf_object { 434 char name[BPF_OBJ_NAME_LEN]; 435 char license[64]; 436 __u32 kern_version; 437 438 struct bpf_program *programs; 439 size_t nr_programs; 440 struct bpf_map *maps; 441 size_t nr_maps; 442 size_t maps_cap; 443 444 char *kconfig; 445 struct extern_desc *externs; 446 int nr_extern; 447 int kconfig_map_idx; 448 int rodata_map_idx; 449 450 bool loaded; 451 bool has_subcalls; 452 453 struct bpf_gen *gen_loader; 454 455 /* 456 * Information when doing elf related work. Only valid if fd 457 * is valid. 458 */ 459 struct { 460 int fd; 461 const void *obj_buf; 462 size_t obj_buf_sz; 463 Elf *elf; 464 GElf_Ehdr ehdr; 465 Elf_Data *symbols; 466 Elf_Data *data; 467 Elf_Data *rodata; 468 Elf_Data *bss; 469 Elf_Data *st_ops_data; 470 size_t shstrndx; /* section index for section name strings */ 471 size_t strtabidx; 472 struct { 473 GElf_Shdr shdr; 474 Elf_Data *data; 475 } *reloc_sects; 476 int nr_reloc_sects; 477 int maps_shndx; 478 int btf_maps_shndx; 479 __u32 btf_maps_sec_btf_id; 480 int text_shndx; 481 int symbols_shndx; 482 int data_shndx; 483 int rodata_shndx; 484 int bss_shndx; 485 int st_ops_shndx; 486 } efile; 487 /* 488 * All loaded bpf_object is linked in a list, which is 489 * hidden to caller. bpf_objects__<func> handlers deal with 490 * all objects. 491 */ 492 struct list_head list; 493 494 struct btf *btf; 495 struct btf_ext *btf_ext; 496 497 /* Parse and load BTF vmlinux if any of the programs in the object need 498 * it at load time. 499 */ 500 struct btf *btf_vmlinux; 501 /* vmlinux BTF override for CO-RE relocations */ 502 struct btf *btf_vmlinux_override; 503 /* Lazily initialized kernel module BTFs */ 504 struct module_btf *btf_modules; 505 bool btf_modules_loaded; 506 size_t btf_module_cnt; 507 size_t btf_module_cap; 508 509 void *priv; 510 bpf_object_clear_priv_t clear_priv; 511 512 char path[]; 513 }; 514 #define obj_elf_valid(o) ((o)->efile.elf) 515 516 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 517 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 518 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 519 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 520 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 521 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 522 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 523 524 void bpf_program__unload(struct bpf_program *prog) 525 { 526 int i; 527 528 if (!prog) 529 return; 530 531 /* 532 * If the object is opened but the program was never loaded, 533 * it is possible that prog->instances.nr == -1. 534 */ 535 if (prog->instances.nr > 0) { 536 for (i = 0; i < prog->instances.nr; i++) 537 zclose(prog->instances.fds[i]); 538 } else if (prog->instances.nr != -1) { 539 pr_warn("Internal error: instances.nr is %d\n", 540 prog->instances.nr); 541 } 542 543 prog->instances.nr = -1; 544 zfree(&prog->instances.fds); 545 546 zfree(&prog->func_info); 547 zfree(&prog->line_info); 548 } 549 550 static void bpf_program__exit(struct bpf_program *prog) 551 { 552 if (!prog) 553 return; 554 555 if (prog->clear_priv) 556 prog->clear_priv(prog, prog->priv); 557 558 prog->priv = NULL; 559 prog->clear_priv = NULL; 560 561 bpf_program__unload(prog); 562 zfree(&prog->name); 563 zfree(&prog->sec_name); 564 zfree(&prog->pin_name); 565 zfree(&prog->insns); 566 zfree(&prog->reloc_desc); 567 568 prog->nr_reloc = 0; 569 prog->insns_cnt = 0; 570 prog->sec_idx = -1; 571 } 572 573 static char *__bpf_program__pin_name(struct bpf_program *prog) 574 { 575 char *name, *p; 576 577 name = p = strdup(prog->sec_name); 578 while ((p = strchr(p, '/'))) 579 *p = '_'; 580 581 return name; 582 } 583 584 static bool insn_is_subprog_call(const struct bpf_insn *insn) 585 { 586 return BPF_CLASS(insn->code) == BPF_JMP && 587 BPF_OP(insn->code) == BPF_CALL && 588 BPF_SRC(insn->code) == BPF_K && 589 insn->src_reg == BPF_PSEUDO_CALL && 590 insn->dst_reg == 0 && 591 insn->off == 0; 592 } 593 594 static bool is_ldimm64_insn(struct bpf_insn *insn) 595 { 596 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 597 } 598 599 static bool is_call_insn(const struct bpf_insn *insn) 600 { 601 return insn->code == (BPF_JMP | BPF_CALL); 602 } 603 604 static bool insn_is_pseudo_func(struct bpf_insn *insn) 605 { 606 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 607 } 608 609 static int 610 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 611 const char *name, size_t sec_idx, const char *sec_name, 612 size_t sec_off, void *insn_data, size_t insn_data_sz) 613 { 614 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 615 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 616 sec_name, name, sec_off, insn_data_sz); 617 return -EINVAL; 618 } 619 620 memset(prog, 0, sizeof(*prog)); 621 prog->obj = obj; 622 623 prog->sec_idx = sec_idx; 624 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 625 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 626 /* insns_cnt can later be increased by appending used subprograms */ 627 prog->insns_cnt = prog->sec_insn_cnt; 628 629 prog->type = BPF_PROG_TYPE_UNSPEC; 630 prog->load = true; 631 632 prog->instances.fds = NULL; 633 prog->instances.nr = -1; 634 635 prog->sec_name = strdup(sec_name); 636 if (!prog->sec_name) 637 goto errout; 638 639 prog->name = strdup(name); 640 if (!prog->name) 641 goto errout; 642 643 prog->pin_name = __bpf_program__pin_name(prog); 644 if (!prog->pin_name) 645 goto errout; 646 647 prog->insns = malloc(insn_data_sz); 648 if (!prog->insns) 649 goto errout; 650 memcpy(prog->insns, insn_data, insn_data_sz); 651 652 return 0; 653 errout: 654 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 655 bpf_program__exit(prog); 656 return -ENOMEM; 657 } 658 659 static int 660 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 661 const char *sec_name, int sec_idx) 662 { 663 Elf_Data *symbols = obj->efile.symbols; 664 struct bpf_program *prog, *progs; 665 void *data = sec_data->d_buf; 666 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 667 int nr_progs, err, i; 668 const char *name; 669 GElf_Sym sym; 670 671 progs = obj->programs; 672 nr_progs = obj->nr_programs; 673 nr_syms = symbols->d_size / sizeof(GElf_Sym); 674 sec_off = 0; 675 676 for (i = 0; i < nr_syms; i++) { 677 if (!gelf_getsym(symbols, i, &sym)) 678 continue; 679 if (sym.st_shndx != sec_idx) 680 continue; 681 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 682 continue; 683 684 prog_sz = sym.st_size; 685 sec_off = sym.st_value; 686 687 name = elf_sym_str(obj, sym.st_name); 688 if (!name) { 689 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 690 sec_name, sec_off); 691 return -LIBBPF_ERRNO__FORMAT; 692 } 693 694 if (sec_off + prog_sz > sec_sz) { 695 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 696 sec_name, sec_off); 697 return -LIBBPF_ERRNO__FORMAT; 698 } 699 700 if (sec_idx != obj->efile.text_shndx && GELF_ST_BIND(sym.st_info) == STB_LOCAL) { 701 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 702 return -ENOTSUP; 703 } 704 705 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 706 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 707 708 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 709 if (!progs) { 710 /* 711 * In this case the original obj->programs 712 * is still valid, so don't need special treat for 713 * bpf_close_object(). 714 */ 715 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 716 sec_name, name); 717 return -ENOMEM; 718 } 719 obj->programs = progs; 720 721 prog = &progs[nr_progs]; 722 723 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 724 sec_off, data + sec_off, prog_sz); 725 if (err) 726 return err; 727 728 /* if function is a global/weak symbol, but has restricted 729 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 730 * as static to enable more permissive BPF verification mode 731 * with more outside context available to BPF verifier 732 */ 733 if (GELF_ST_BIND(sym.st_info) != STB_LOCAL 734 && (GELF_ST_VISIBILITY(sym.st_other) == STV_HIDDEN 735 || GELF_ST_VISIBILITY(sym.st_other) == STV_INTERNAL)) 736 prog->mark_btf_static = true; 737 738 nr_progs++; 739 obj->nr_programs = nr_progs; 740 } 741 742 return 0; 743 } 744 745 static __u32 get_kernel_version(void) 746 { 747 __u32 major, minor, patch; 748 struct utsname info; 749 750 uname(&info); 751 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 752 return 0; 753 return KERNEL_VERSION(major, minor, patch); 754 } 755 756 static const struct btf_member * 757 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 758 { 759 struct btf_member *m; 760 int i; 761 762 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 763 if (btf_member_bit_offset(t, i) == bit_offset) 764 return m; 765 } 766 767 return NULL; 768 } 769 770 static const struct btf_member * 771 find_member_by_name(const struct btf *btf, const struct btf_type *t, 772 const char *name) 773 { 774 struct btf_member *m; 775 int i; 776 777 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 778 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 779 return m; 780 } 781 782 return NULL; 783 } 784 785 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 786 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 787 const char *name, __u32 kind); 788 789 static int 790 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 791 const struct btf_type **type, __u32 *type_id, 792 const struct btf_type **vtype, __u32 *vtype_id, 793 const struct btf_member **data_member) 794 { 795 const struct btf_type *kern_type, *kern_vtype; 796 const struct btf_member *kern_data_member; 797 __s32 kern_vtype_id, kern_type_id; 798 __u32 i; 799 800 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 801 if (kern_type_id < 0) { 802 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 803 tname); 804 return kern_type_id; 805 } 806 kern_type = btf__type_by_id(btf, kern_type_id); 807 808 /* Find the corresponding "map_value" type that will be used 809 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 810 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 811 * btf_vmlinux. 812 */ 813 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 814 tname, BTF_KIND_STRUCT); 815 if (kern_vtype_id < 0) { 816 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 817 STRUCT_OPS_VALUE_PREFIX, tname); 818 return kern_vtype_id; 819 } 820 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 821 822 /* Find "struct tcp_congestion_ops" from 823 * struct bpf_struct_ops_tcp_congestion_ops { 824 * [ ... ] 825 * struct tcp_congestion_ops data; 826 * } 827 */ 828 kern_data_member = btf_members(kern_vtype); 829 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 830 if (kern_data_member->type == kern_type_id) 831 break; 832 } 833 if (i == btf_vlen(kern_vtype)) { 834 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 835 tname, STRUCT_OPS_VALUE_PREFIX, tname); 836 return -EINVAL; 837 } 838 839 *type = kern_type; 840 *type_id = kern_type_id; 841 *vtype = kern_vtype; 842 *vtype_id = kern_vtype_id; 843 *data_member = kern_data_member; 844 845 return 0; 846 } 847 848 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 849 { 850 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 851 } 852 853 /* Init the map's fields that depend on kern_btf */ 854 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 855 const struct btf *btf, 856 const struct btf *kern_btf) 857 { 858 const struct btf_member *member, *kern_member, *kern_data_member; 859 const struct btf_type *type, *kern_type, *kern_vtype; 860 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 861 struct bpf_struct_ops *st_ops; 862 void *data, *kern_data; 863 const char *tname; 864 int err; 865 866 st_ops = map->st_ops; 867 type = st_ops->type; 868 tname = st_ops->tname; 869 err = find_struct_ops_kern_types(kern_btf, tname, 870 &kern_type, &kern_type_id, 871 &kern_vtype, &kern_vtype_id, 872 &kern_data_member); 873 if (err) 874 return err; 875 876 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 877 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 878 879 map->def.value_size = kern_vtype->size; 880 map->btf_vmlinux_value_type_id = kern_vtype_id; 881 882 st_ops->kern_vdata = calloc(1, kern_vtype->size); 883 if (!st_ops->kern_vdata) 884 return -ENOMEM; 885 886 data = st_ops->data; 887 kern_data_off = kern_data_member->offset / 8; 888 kern_data = st_ops->kern_vdata + kern_data_off; 889 890 member = btf_members(type); 891 for (i = 0; i < btf_vlen(type); i++, member++) { 892 const struct btf_type *mtype, *kern_mtype; 893 __u32 mtype_id, kern_mtype_id; 894 void *mdata, *kern_mdata; 895 __s64 msize, kern_msize; 896 __u32 moff, kern_moff; 897 __u32 kern_member_idx; 898 const char *mname; 899 900 mname = btf__name_by_offset(btf, member->name_off); 901 kern_member = find_member_by_name(kern_btf, kern_type, mname); 902 if (!kern_member) { 903 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 904 map->name, mname); 905 return -ENOTSUP; 906 } 907 908 kern_member_idx = kern_member - btf_members(kern_type); 909 if (btf_member_bitfield_size(type, i) || 910 btf_member_bitfield_size(kern_type, kern_member_idx)) { 911 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 912 map->name, mname); 913 return -ENOTSUP; 914 } 915 916 moff = member->offset / 8; 917 kern_moff = kern_member->offset / 8; 918 919 mdata = data + moff; 920 kern_mdata = kern_data + kern_moff; 921 922 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 923 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 924 &kern_mtype_id); 925 if (BTF_INFO_KIND(mtype->info) != 926 BTF_INFO_KIND(kern_mtype->info)) { 927 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 928 map->name, mname, BTF_INFO_KIND(mtype->info), 929 BTF_INFO_KIND(kern_mtype->info)); 930 return -ENOTSUP; 931 } 932 933 if (btf_is_ptr(mtype)) { 934 struct bpf_program *prog; 935 936 prog = st_ops->progs[i]; 937 if (!prog) 938 continue; 939 940 kern_mtype = skip_mods_and_typedefs(kern_btf, 941 kern_mtype->type, 942 &kern_mtype_id); 943 944 /* mtype->type must be a func_proto which was 945 * guaranteed in bpf_object__collect_st_ops_relos(), 946 * so only check kern_mtype for func_proto here. 947 */ 948 if (!btf_is_func_proto(kern_mtype)) { 949 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 950 map->name, mname); 951 return -ENOTSUP; 952 } 953 954 prog->attach_btf_id = kern_type_id; 955 prog->expected_attach_type = kern_member_idx; 956 957 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 958 959 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 960 map->name, mname, prog->name, moff, 961 kern_moff); 962 963 continue; 964 } 965 966 msize = btf__resolve_size(btf, mtype_id); 967 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 968 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 969 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 970 map->name, mname, (ssize_t)msize, 971 (ssize_t)kern_msize); 972 return -ENOTSUP; 973 } 974 975 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 976 map->name, mname, (unsigned int)msize, 977 moff, kern_moff); 978 memcpy(kern_mdata, mdata, msize); 979 } 980 981 return 0; 982 } 983 984 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 985 { 986 struct bpf_map *map; 987 size_t i; 988 int err; 989 990 for (i = 0; i < obj->nr_maps; i++) { 991 map = &obj->maps[i]; 992 993 if (!bpf_map__is_struct_ops(map)) 994 continue; 995 996 err = bpf_map__init_kern_struct_ops(map, obj->btf, 997 obj->btf_vmlinux); 998 if (err) 999 return err; 1000 } 1001 1002 return 0; 1003 } 1004 1005 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1006 { 1007 const struct btf_type *type, *datasec; 1008 const struct btf_var_secinfo *vsi; 1009 struct bpf_struct_ops *st_ops; 1010 const char *tname, *var_name; 1011 __s32 type_id, datasec_id; 1012 const struct btf *btf; 1013 struct bpf_map *map; 1014 __u32 i; 1015 1016 if (obj->efile.st_ops_shndx == -1) 1017 return 0; 1018 1019 btf = obj->btf; 1020 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1021 BTF_KIND_DATASEC); 1022 if (datasec_id < 0) { 1023 pr_warn("struct_ops init: DATASEC %s not found\n", 1024 STRUCT_OPS_SEC); 1025 return -EINVAL; 1026 } 1027 1028 datasec = btf__type_by_id(btf, datasec_id); 1029 vsi = btf_var_secinfos(datasec); 1030 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1031 type = btf__type_by_id(obj->btf, vsi->type); 1032 var_name = btf__name_by_offset(obj->btf, type->name_off); 1033 1034 type_id = btf__resolve_type(obj->btf, vsi->type); 1035 if (type_id < 0) { 1036 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1037 vsi->type, STRUCT_OPS_SEC); 1038 return -EINVAL; 1039 } 1040 1041 type = btf__type_by_id(obj->btf, type_id); 1042 tname = btf__name_by_offset(obj->btf, type->name_off); 1043 if (!tname[0]) { 1044 pr_warn("struct_ops init: anonymous type is not supported\n"); 1045 return -ENOTSUP; 1046 } 1047 if (!btf_is_struct(type)) { 1048 pr_warn("struct_ops init: %s is not a struct\n", tname); 1049 return -EINVAL; 1050 } 1051 1052 map = bpf_object__add_map(obj); 1053 if (IS_ERR(map)) 1054 return PTR_ERR(map); 1055 1056 map->sec_idx = obj->efile.st_ops_shndx; 1057 map->sec_offset = vsi->offset; 1058 map->name = strdup(var_name); 1059 if (!map->name) 1060 return -ENOMEM; 1061 1062 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1063 map->def.key_size = sizeof(int); 1064 map->def.value_size = type->size; 1065 map->def.max_entries = 1; 1066 1067 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1068 if (!map->st_ops) 1069 return -ENOMEM; 1070 st_ops = map->st_ops; 1071 st_ops->data = malloc(type->size); 1072 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1073 st_ops->kern_func_off = malloc(btf_vlen(type) * 1074 sizeof(*st_ops->kern_func_off)); 1075 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1076 return -ENOMEM; 1077 1078 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1079 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1080 var_name, STRUCT_OPS_SEC); 1081 return -EINVAL; 1082 } 1083 1084 memcpy(st_ops->data, 1085 obj->efile.st_ops_data->d_buf + vsi->offset, 1086 type->size); 1087 st_ops->tname = tname; 1088 st_ops->type = type; 1089 st_ops->type_id = type_id; 1090 1091 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1092 tname, type_id, var_name, vsi->offset); 1093 } 1094 1095 return 0; 1096 } 1097 1098 static struct bpf_object *bpf_object__new(const char *path, 1099 const void *obj_buf, 1100 size_t obj_buf_sz, 1101 const char *obj_name) 1102 { 1103 struct bpf_object *obj; 1104 char *end; 1105 1106 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1107 if (!obj) { 1108 pr_warn("alloc memory failed for %s\n", path); 1109 return ERR_PTR(-ENOMEM); 1110 } 1111 1112 strcpy(obj->path, path); 1113 if (obj_name) { 1114 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1115 obj->name[sizeof(obj->name) - 1] = 0; 1116 } else { 1117 /* Using basename() GNU version which doesn't modify arg. */ 1118 strncpy(obj->name, basename((void *)path), 1119 sizeof(obj->name) - 1); 1120 end = strchr(obj->name, '.'); 1121 if (end) 1122 *end = 0; 1123 } 1124 1125 obj->efile.fd = -1; 1126 /* 1127 * Caller of this function should also call 1128 * bpf_object__elf_finish() after data collection to return 1129 * obj_buf to user. If not, we should duplicate the buffer to 1130 * avoid user freeing them before elf finish. 1131 */ 1132 obj->efile.obj_buf = obj_buf; 1133 obj->efile.obj_buf_sz = obj_buf_sz; 1134 obj->efile.maps_shndx = -1; 1135 obj->efile.btf_maps_shndx = -1; 1136 obj->efile.data_shndx = -1; 1137 obj->efile.rodata_shndx = -1; 1138 obj->efile.bss_shndx = -1; 1139 obj->efile.st_ops_shndx = -1; 1140 obj->kconfig_map_idx = -1; 1141 obj->rodata_map_idx = -1; 1142 1143 obj->kern_version = get_kernel_version(); 1144 obj->loaded = false; 1145 1146 INIT_LIST_HEAD(&obj->list); 1147 list_add(&obj->list, &bpf_objects_list); 1148 return obj; 1149 } 1150 1151 static void bpf_object__elf_finish(struct bpf_object *obj) 1152 { 1153 if (!obj_elf_valid(obj)) 1154 return; 1155 1156 if (obj->efile.elf) { 1157 elf_end(obj->efile.elf); 1158 obj->efile.elf = NULL; 1159 } 1160 obj->efile.symbols = NULL; 1161 obj->efile.data = NULL; 1162 obj->efile.rodata = NULL; 1163 obj->efile.bss = NULL; 1164 obj->efile.st_ops_data = NULL; 1165 1166 zfree(&obj->efile.reloc_sects); 1167 obj->efile.nr_reloc_sects = 0; 1168 zclose(obj->efile.fd); 1169 obj->efile.obj_buf = NULL; 1170 obj->efile.obj_buf_sz = 0; 1171 } 1172 1173 static int bpf_object__elf_init(struct bpf_object *obj) 1174 { 1175 int err = 0; 1176 GElf_Ehdr *ep; 1177 1178 if (obj_elf_valid(obj)) { 1179 pr_warn("elf: init internal error\n"); 1180 return -LIBBPF_ERRNO__LIBELF; 1181 } 1182 1183 if (obj->efile.obj_buf_sz > 0) { 1184 /* 1185 * obj_buf should have been validated by 1186 * bpf_object__open_buffer(). 1187 */ 1188 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1189 obj->efile.obj_buf_sz); 1190 } else { 1191 obj->efile.fd = open(obj->path, O_RDONLY); 1192 if (obj->efile.fd < 0) { 1193 char errmsg[STRERR_BUFSIZE], *cp; 1194 1195 err = -errno; 1196 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1197 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1198 return err; 1199 } 1200 1201 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1202 } 1203 1204 if (!obj->efile.elf) { 1205 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1206 err = -LIBBPF_ERRNO__LIBELF; 1207 goto errout; 1208 } 1209 1210 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1211 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1212 err = -LIBBPF_ERRNO__FORMAT; 1213 goto errout; 1214 } 1215 ep = &obj->efile.ehdr; 1216 1217 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1218 pr_warn("elf: failed to get section names section index for %s: %s\n", 1219 obj->path, elf_errmsg(-1)); 1220 err = -LIBBPF_ERRNO__FORMAT; 1221 goto errout; 1222 } 1223 1224 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1225 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1226 pr_warn("elf: failed to get section names strings from %s: %s\n", 1227 obj->path, elf_errmsg(-1)); 1228 err = -LIBBPF_ERRNO__FORMAT; 1229 goto errout; 1230 } 1231 1232 /* Old LLVM set e_machine to EM_NONE */ 1233 if (ep->e_type != ET_REL || 1234 (ep->e_machine && ep->e_machine != EM_BPF)) { 1235 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1236 err = -LIBBPF_ERRNO__FORMAT; 1237 goto errout; 1238 } 1239 1240 return 0; 1241 errout: 1242 bpf_object__elf_finish(obj); 1243 return err; 1244 } 1245 1246 static int bpf_object__check_endianness(struct bpf_object *obj) 1247 { 1248 #if __BYTE_ORDER == __LITTLE_ENDIAN 1249 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1250 return 0; 1251 #elif __BYTE_ORDER == __BIG_ENDIAN 1252 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1253 return 0; 1254 #else 1255 # error "Unrecognized __BYTE_ORDER__" 1256 #endif 1257 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1258 return -LIBBPF_ERRNO__ENDIAN; 1259 } 1260 1261 static int 1262 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1263 { 1264 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1265 pr_debug("license of %s is %s\n", obj->path, obj->license); 1266 return 0; 1267 } 1268 1269 static int 1270 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1271 { 1272 __u32 kver; 1273 1274 if (size != sizeof(kver)) { 1275 pr_warn("invalid kver section in %s\n", obj->path); 1276 return -LIBBPF_ERRNO__FORMAT; 1277 } 1278 memcpy(&kver, data, sizeof(kver)); 1279 obj->kern_version = kver; 1280 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1281 return 0; 1282 } 1283 1284 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1285 { 1286 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1287 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1288 return true; 1289 return false; 1290 } 1291 1292 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1293 __u32 *size) 1294 { 1295 int ret = -ENOENT; 1296 1297 *size = 0; 1298 if (!name) { 1299 return -EINVAL; 1300 } else if (!strcmp(name, DATA_SEC)) { 1301 if (obj->efile.data) 1302 *size = obj->efile.data->d_size; 1303 } else if (!strcmp(name, BSS_SEC)) { 1304 if (obj->efile.bss) 1305 *size = obj->efile.bss->d_size; 1306 } else if (!strcmp(name, RODATA_SEC)) { 1307 if (obj->efile.rodata) 1308 *size = obj->efile.rodata->d_size; 1309 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1310 if (obj->efile.st_ops_data) 1311 *size = obj->efile.st_ops_data->d_size; 1312 } else { 1313 Elf_Scn *scn = elf_sec_by_name(obj, name); 1314 Elf_Data *data = elf_sec_data(obj, scn); 1315 1316 if (data) { 1317 ret = 0; /* found it */ 1318 *size = data->d_size; 1319 } 1320 } 1321 1322 return *size ? 0 : ret; 1323 } 1324 1325 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1326 __u32 *off) 1327 { 1328 Elf_Data *symbols = obj->efile.symbols; 1329 const char *sname; 1330 size_t si; 1331 1332 if (!name || !off) 1333 return -EINVAL; 1334 1335 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1336 GElf_Sym sym; 1337 1338 if (!gelf_getsym(symbols, si, &sym)) 1339 continue; 1340 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1341 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1342 continue; 1343 1344 sname = elf_sym_str(obj, sym.st_name); 1345 if (!sname) { 1346 pr_warn("failed to get sym name string for var %s\n", 1347 name); 1348 return -EIO; 1349 } 1350 if (strcmp(name, sname) == 0) { 1351 *off = sym.st_value; 1352 return 0; 1353 } 1354 } 1355 1356 return -ENOENT; 1357 } 1358 1359 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1360 { 1361 struct bpf_map *new_maps; 1362 size_t new_cap; 1363 int i; 1364 1365 if (obj->nr_maps < obj->maps_cap) 1366 return &obj->maps[obj->nr_maps++]; 1367 1368 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1369 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1370 if (!new_maps) { 1371 pr_warn("alloc maps for object failed\n"); 1372 return ERR_PTR(-ENOMEM); 1373 } 1374 1375 obj->maps_cap = new_cap; 1376 obj->maps = new_maps; 1377 1378 /* zero out new maps */ 1379 memset(obj->maps + obj->nr_maps, 0, 1380 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1381 /* 1382 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1383 * when failure (zclose won't close negative fd)). 1384 */ 1385 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1386 obj->maps[i].fd = -1; 1387 obj->maps[i].inner_map_fd = -1; 1388 } 1389 1390 return &obj->maps[obj->nr_maps++]; 1391 } 1392 1393 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1394 { 1395 long page_sz = sysconf(_SC_PAGE_SIZE); 1396 size_t map_sz; 1397 1398 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1399 map_sz = roundup(map_sz, page_sz); 1400 return map_sz; 1401 } 1402 1403 static char *internal_map_name(struct bpf_object *obj, 1404 enum libbpf_map_type type) 1405 { 1406 char map_name[BPF_OBJ_NAME_LEN], *p; 1407 const char *sfx = libbpf_type_to_btf_name[type]; 1408 int sfx_len = max((size_t)7, strlen(sfx)); 1409 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1410 strlen(obj->name)); 1411 1412 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1413 sfx_len, libbpf_type_to_btf_name[type]); 1414 1415 /* sanitise map name to characters allowed by kernel */ 1416 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1417 if (!isalnum(*p) && *p != '_' && *p != '.') 1418 *p = '_'; 1419 1420 return strdup(map_name); 1421 } 1422 1423 static int 1424 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1425 int sec_idx, void *data, size_t data_sz) 1426 { 1427 struct bpf_map_def *def; 1428 struct bpf_map *map; 1429 int err; 1430 1431 map = bpf_object__add_map(obj); 1432 if (IS_ERR(map)) 1433 return PTR_ERR(map); 1434 1435 map->libbpf_type = type; 1436 map->sec_idx = sec_idx; 1437 map->sec_offset = 0; 1438 map->name = internal_map_name(obj, type); 1439 if (!map->name) { 1440 pr_warn("failed to alloc map name\n"); 1441 return -ENOMEM; 1442 } 1443 1444 def = &map->def; 1445 def->type = BPF_MAP_TYPE_ARRAY; 1446 def->key_size = sizeof(int); 1447 def->value_size = data_sz; 1448 def->max_entries = 1; 1449 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1450 ? BPF_F_RDONLY_PROG : 0; 1451 def->map_flags |= BPF_F_MMAPABLE; 1452 1453 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1454 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1455 1456 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1457 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1458 if (map->mmaped == MAP_FAILED) { 1459 err = -errno; 1460 map->mmaped = NULL; 1461 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1462 map->name, err); 1463 zfree(&map->name); 1464 return err; 1465 } 1466 1467 if (data) 1468 memcpy(map->mmaped, data, data_sz); 1469 1470 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1471 return 0; 1472 } 1473 1474 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1475 { 1476 int err; 1477 1478 /* 1479 * Populate obj->maps with libbpf internal maps. 1480 */ 1481 if (obj->efile.data_shndx >= 0) { 1482 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1483 obj->efile.data_shndx, 1484 obj->efile.data->d_buf, 1485 obj->efile.data->d_size); 1486 if (err) 1487 return err; 1488 } 1489 if (obj->efile.rodata_shndx >= 0) { 1490 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1491 obj->efile.rodata_shndx, 1492 obj->efile.rodata->d_buf, 1493 obj->efile.rodata->d_size); 1494 if (err) 1495 return err; 1496 1497 obj->rodata_map_idx = obj->nr_maps - 1; 1498 } 1499 if (obj->efile.bss_shndx >= 0) { 1500 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1501 obj->efile.bss_shndx, 1502 NULL, 1503 obj->efile.bss->d_size); 1504 if (err) 1505 return err; 1506 } 1507 return 0; 1508 } 1509 1510 1511 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1512 const void *name) 1513 { 1514 int i; 1515 1516 for (i = 0; i < obj->nr_extern; i++) { 1517 if (strcmp(obj->externs[i].name, name) == 0) 1518 return &obj->externs[i]; 1519 } 1520 return NULL; 1521 } 1522 1523 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1524 char value) 1525 { 1526 switch (ext->kcfg.type) { 1527 case KCFG_BOOL: 1528 if (value == 'm') { 1529 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1530 ext->name, value); 1531 return -EINVAL; 1532 } 1533 *(bool *)ext_val = value == 'y' ? true : false; 1534 break; 1535 case KCFG_TRISTATE: 1536 if (value == 'y') 1537 *(enum libbpf_tristate *)ext_val = TRI_YES; 1538 else if (value == 'm') 1539 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1540 else /* value == 'n' */ 1541 *(enum libbpf_tristate *)ext_val = TRI_NO; 1542 break; 1543 case KCFG_CHAR: 1544 *(char *)ext_val = value; 1545 break; 1546 case KCFG_UNKNOWN: 1547 case KCFG_INT: 1548 case KCFG_CHAR_ARR: 1549 default: 1550 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1551 ext->name, value); 1552 return -EINVAL; 1553 } 1554 ext->is_set = true; 1555 return 0; 1556 } 1557 1558 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1559 const char *value) 1560 { 1561 size_t len; 1562 1563 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1564 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1565 return -EINVAL; 1566 } 1567 1568 len = strlen(value); 1569 if (value[len - 1] != '"') { 1570 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1571 ext->name, value); 1572 return -EINVAL; 1573 } 1574 1575 /* strip quotes */ 1576 len -= 2; 1577 if (len >= ext->kcfg.sz) { 1578 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1579 ext->name, value, len, ext->kcfg.sz - 1); 1580 len = ext->kcfg.sz - 1; 1581 } 1582 memcpy(ext_val, value + 1, len); 1583 ext_val[len] = '\0'; 1584 ext->is_set = true; 1585 return 0; 1586 } 1587 1588 static int parse_u64(const char *value, __u64 *res) 1589 { 1590 char *value_end; 1591 int err; 1592 1593 errno = 0; 1594 *res = strtoull(value, &value_end, 0); 1595 if (errno) { 1596 err = -errno; 1597 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1598 return err; 1599 } 1600 if (*value_end) { 1601 pr_warn("failed to parse '%s' as integer completely\n", value); 1602 return -EINVAL; 1603 } 1604 return 0; 1605 } 1606 1607 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1608 { 1609 int bit_sz = ext->kcfg.sz * 8; 1610 1611 if (ext->kcfg.sz == 8) 1612 return true; 1613 1614 /* Validate that value stored in u64 fits in integer of `ext->sz` 1615 * bytes size without any loss of information. If the target integer 1616 * is signed, we rely on the following limits of integer type of 1617 * Y bits and subsequent transformation: 1618 * 1619 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1620 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1621 * 0 <= X + 2^(Y-1) < 2^Y 1622 * 1623 * For unsigned target integer, check that all the (64 - Y) bits are 1624 * zero. 1625 */ 1626 if (ext->kcfg.is_signed) 1627 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1628 else 1629 return (v >> bit_sz) == 0; 1630 } 1631 1632 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1633 __u64 value) 1634 { 1635 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1636 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1637 ext->name, (unsigned long long)value); 1638 return -EINVAL; 1639 } 1640 if (!is_kcfg_value_in_range(ext, value)) { 1641 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1642 ext->name, (unsigned long long)value, ext->kcfg.sz); 1643 return -ERANGE; 1644 } 1645 switch (ext->kcfg.sz) { 1646 case 1: *(__u8 *)ext_val = value; break; 1647 case 2: *(__u16 *)ext_val = value; break; 1648 case 4: *(__u32 *)ext_val = value; break; 1649 case 8: *(__u64 *)ext_val = value; break; 1650 default: 1651 return -EINVAL; 1652 } 1653 ext->is_set = true; 1654 return 0; 1655 } 1656 1657 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1658 char *buf, void *data) 1659 { 1660 struct extern_desc *ext; 1661 char *sep, *value; 1662 int len, err = 0; 1663 void *ext_val; 1664 __u64 num; 1665 1666 if (strncmp(buf, "CONFIG_", 7)) 1667 return 0; 1668 1669 sep = strchr(buf, '='); 1670 if (!sep) { 1671 pr_warn("failed to parse '%s': no separator\n", buf); 1672 return -EINVAL; 1673 } 1674 1675 /* Trim ending '\n' */ 1676 len = strlen(buf); 1677 if (buf[len - 1] == '\n') 1678 buf[len - 1] = '\0'; 1679 /* Split on '=' and ensure that a value is present. */ 1680 *sep = '\0'; 1681 if (!sep[1]) { 1682 *sep = '='; 1683 pr_warn("failed to parse '%s': no value\n", buf); 1684 return -EINVAL; 1685 } 1686 1687 ext = find_extern_by_name(obj, buf); 1688 if (!ext || ext->is_set) 1689 return 0; 1690 1691 ext_val = data + ext->kcfg.data_off; 1692 value = sep + 1; 1693 1694 switch (*value) { 1695 case 'y': case 'n': case 'm': 1696 err = set_kcfg_value_tri(ext, ext_val, *value); 1697 break; 1698 case '"': 1699 err = set_kcfg_value_str(ext, ext_val, value); 1700 break; 1701 default: 1702 /* assume integer */ 1703 err = parse_u64(value, &num); 1704 if (err) { 1705 pr_warn("extern (kcfg) %s=%s should be integer\n", 1706 ext->name, value); 1707 return err; 1708 } 1709 err = set_kcfg_value_num(ext, ext_val, num); 1710 break; 1711 } 1712 if (err) 1713 return err; 1714 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1715 return 0; 1716 } 1717 1718 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1719 { 1720 char buf[PATH_MAX]; 1721 struct utsname uts; 1722 int len, err = 0; 1723 gzFile file; 1724 1725 uname(&uts); 1726 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1727 if (len < 0) 1728 return -EINVAL; 1729 else if (len >= PATH_MAX) 1730 return -ENAMETOOLONG; 1731 1732 /* gzopen also accepts uncompressed files. */ 1733 file = gzopen(buf, "r"); 1734 if (!file) 1735 file = gzopen("/proc/config.gz", "r"); 1736 1737 if (!file) { 1738 pr_warn("failed to open system Kconfig\n"); 1739 return -ENOENT; 1740 } 1741 1742 while (gzgets(file, buf, sizeof(buf))) { 1743 err = bpf_object__process_kconfig_line(obj, buf, data); 1744 if (err) { 1745 pr_warn("error parsing system Kconfig line '%s': %d\n", 1746 buf, err); 1747 goto out; 1748 } 1749 } 1750 1751 out: 1752 gzclose(file); 1753 return err; 1754 } 1755 1756 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1757 const char *config, void *data) 1758 { 1759 char buf[PATH_MAX]; 1760 int err = 0; 1761 FILE *file; 1762 1763 file = fmemopen((void *)config, strlen(config), "r"); 1764 if (!file) { 1765 err = -errno; 1766 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1767 return err; 1768 } 1769 1770 while (fgets(buf, sizeof(buf), file)) { 1771 err = bpf_object__process_kconfig_line(obj, buf, data); 1772 if (err) { 1773 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1774 buf, err); 1775 break; 1776 } 1777 } 1778 1779 fclose(file); 1780 return err; 1781 } 1782 1783 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1784 { 1785 struct extern_desc *last_ext = NULL, *ext; 1786 size_t map_sz; 1787 int i, err; 1788 1789 for (i = 0; i < obj->nr_extern; i++) { 1790 ext = &obj->externs[i]; 1791 if (ext->type == EXT_KCFG) 1792 last_ext = ext; 1793 } 1794 1795 if (!last_ext) 1796 return 0; 1797 1798 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1799 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1800 obj->efile.symbols_shndx, 1801 NULL, map_sz); 1802 if (err) 1803 return err; 1804 1805 obj->kconfig_map_idx = obj->nr_maps - 1; 1806 1807 return 0; 1808 } 1809 1810 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1811 { 1812 Elf_Data *symbols = obj->efile.symbols; 1813 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1814 Elf_Data *data = NULL; 1815 Elf_Scn *scn; 1816 1817 if (obj->efile.maps_shndx < 0) 1818 return 0; 1819 1820 if (!symbols) 1821 return -EINVAL; 1822 1823 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1824 data = elf_sec_data(obj, scn); 1825 if (!scn || !data) { 1826 pr_warn("elf: failed to get legacy map definitions for %s\n", 1827 obj->path); 1828 return -EINVAL; 1829 } 1830 1831 /* 1832 * Count number of maps. Each map has a name. 1833 * Array of maps is not supported: only the first element is 1834 * considered. 1835 * 1836 * TODO: Detect array of map and report error. 1837 */ 1838 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1839 for (i = 0; i < nr_syms; i++) { 1840 GElf_Sym sym; 1841 1842 if (!gelf_getsym(symbols, i, &sym)) 1843 continue; 1844 if (sym.st_shndx != obj->efile.maps_shndx) 1845 continue; 1846 nr_maps++; 1847 } 1848 /* Assume equally sized map definitions */ 1849 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1850 nr_maps, data->d_size, obj->path); 1851 1852 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1853 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1854 obj->path); 1855 return -EINVAL; 1856 } 1857 map_def_sz = data->d_size / nr_maps; 1858 1859 /* Fill obj->maps using data in "maps" section. */ 1860 for (i = 0; i < nr_syms; i++) { 1861 GElf_Sym sym; 1862 const char *map_name; 1863 struct bpf_map_def *def; 1864 struct bpf_map *map; 1865 1866 if (!gelf_getsym(symbols, i, &sym)) 1867 continue; 1868 if (sym.st_shndx != obj->efile.maps_shndx) 1869 continue; 1870 1871 map = bpf_object__add_map(obj); 1872 if (IS_ERR(map)) 1873 return PTR_ERR(map); 1874 1875 map_name = elf_sym_str(obj, sym.st_name); 1876 if (!map_name) { 1877 pr_warn("failed to get map #%d name sym string for obj %s\n", 1878 i, obj->path); 1879 return -LIBBPF_ERRNO__FORMAT; 1880 } 1881 1882 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION 1883 || GELF_ST_BIND(sym.st_info) == STB_LOCAL) { 1884 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 1885 return -ENOTSUP; 1886 } 1887 1888 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1889 map->sec_idx = sym.st_shndx; 1890 map->sec_offset = sym.st_value; 1891 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1892 map_name, map->sec_idx, map->sec_offset); 1893 if (sym.st_value + map_def_sz > data->d_size) { 1894 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1895 obj->path, map_name); 1896 return -EINVAL; 1897 } 1898 1899 map->name = strdup(map_name); 1900 if (!map->name) { 1901 pr_warn("failed to alloc map name\n"); 1902 return -ENOMEM; 1903 } 1904 pr_debug("map %d is \"%s\"\n", i, map->name); 1905 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1906 /* 1907 * If the definition of the map in the object file fits in 1908 * bpf_map_def, copy it. Any extra fields in our version 1909 * of bpf_map_def will default to zero as a result of the 1910 * calloc above. 1911 */ 1912 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1913 memcpy(&map->def, def, map_def_sz); 1914 } else { 1915 /* 1916 * Here the map structure being read is bigger than what 1917 * we expect, truncate if the excess bits are all zero. 1918 * If they are not zero, reject this map as 1919 * incompatible. 1920 */ 1921 char *b; 1922 1923 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1924 b < ((char *)def) + map_def_sz; b++) { 1925 if (*b != 0) { 1926 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1927 obj->path, map_name); 1928 if (strict) 1929 return -EINVAL; 1930 } 1931 } 1932 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1933 } 1934 } 1935 return 0; 1936 } 1937 1938 const struct btf_type * 1939 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1940 { 1941 const struct btf_type *t = btf__type_by_id(btf, id); 1942 1943 if (res_id) 1944 *res_id = id; 1945 1946 while (btf_is_mod(t) || btf_is_typedef(t)) { 1947 if (res_id) 1948 *res_id = t->type; 1949 t = btf__type_by_id(btf, t->type); 1950 } 1951 1952 return t; 1953 } 1954 1955 static const struct btf_type * 1956 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1957 { 1958 const struct btf_type *t; 1959 1960 t = skip_mods_and_typedefs(btf, id, NULL); 1961 if (!btf_is_ptr(t)) 1962 return NULL; 1963 1964 t = skip_mods_and_typedefs(btf, t->type, res_id); 1965 1966 return btf_is_func_proto(t) ? t : NULL; 1967 } 1968 1969 static const char *__btf_kind_str(__u16 kind) 1970 { 1971 switch (kind) { 1972 case BTF_KIND_UNKN: return "void"; 1973 case BTF_KIND_INT: return "int"; 1974 case BTF_KIND_PTR: return "ptr"; 1975 case BTF_KIND_ARRAY: return "array"; 1976 case BTF_KIND_STRUCT: return "struct"; 1977 case BTF_KIND_UNION: return "union"; 1978 case BTF_KIND_ENUM: return "enum"; 1979 case BTF_KIND_FWD: return "fwd"; 1980 case BTF_KIND_TYPEDEF: return "typedef"; 1981 case BTF_KIND_VOLATILE: return "volatile"; 1982 case BTF_KIND_CONST: return "const"; 1983 case BTF_KIND_RESTRICT: return "restrict"; 1984 case BTF_KIND_FUNC: return "func"; 1985 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1986 case BTF_KIND_VAR: return "var"; 1987 case BTF_KIND_DATASEC: return "datasec"; 1988 case BTF_KIND_FLOAT: return "float"; 1989 default: return "unknown"; 1990 } 1991 } 1992 1993 const char *btf_kind_str(const struct btf_type *t) 1994 { 1995 return __btf_kind_str(btf_kind(t)); 1996 } 1997 1998 /* 1999 * Fetch integer attribute of BTF map definition. Such attributes are 2000 * represented using a pointer to an array, in which dimensionality of array 2001 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2002 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2003 * type definition, while using only sizeof(void *) space in ELF data section. 2004 */ 2005 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2006 const struct btf_member *m, __u32 *res) 2007 { 2008 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2009 const char *name = btf__name_by_offset(btf, m->name_off); 2010 const struct btf_array *arr_info; 2011 const struct btf_type *arr_t; 2012 2013 if (!btf_is_ptr(t)) { 2014 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2015 map_name, name, btf_kind_str(t)); 2016 return false; 2017 } 2018 2019 arr_t = btf__type_by_id(btf, t->type); 2020 if (!arr_t) { 2021 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2022 map_name, name, t->type); 2023 return false; 2024 } 2025 if (!btf_is_array(arr_t)) { 2026 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2027 map_name, name, btf_kind_str(arr_t)); 2028 return false; 2029 } 2030 arr_info = btf_array(arr_t); 2031 *res = arr_info->nelems; 2032 return true; 2033 } 2034 2035 static int build_map_pin_path(struct bpf_map *map, const char *path) 2036 { 2037 char buf[PATH_MAX]; 2038 int len; 2039 2040 if (!path) 2041 path = "/sys/fs/bpf"; 2042 2043 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2044 if (len < 0) 2045 return -EINVAL; 2046 else if (len >= PATH_MAX) 2047 return -ENAMETOOLONG; 2048 2049 return bpf_map__set_pin_path(map, buf); 2050 } 2051 2052 int parse_btf_map_def(const char *map_name, struct btf *btf, 2053 const struct btf_type *def_t, bool strict, 2054 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2055 { 2056 const struct btf_type *t; 2057 const struct btf_member *m; 2058 bool is_inner = inner_def == NULL; 2059 int vlen, i; 2060 2061 vlen = btf_vlen(def_t); 2062 m = btf_members(def_t); 2063 for (i = 0; i < vlen; i++, m++) { 2064 const char *name = btf__name_by_offset(btf, m->name_off); 2065 2066 if (!name) { 2067 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2068 return -EINVAL; 2069 } 2070 if (strcmp(name, "type") == 0) { 2071 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2072 return -EINVAL; 2073 map_def->parts |= MAP_DEF_MAP_TYPE; 2074 } else if (strcmp(name, "max_entries") == 0) { 2075 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2076 return -EINVAL; 2077 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2078 } else if (strcmp(name, "map_flags") == 0) { 2079 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2080 return -EINVAL; 2081 map_def->parts |= MAP_DEF_MAP_FLAGS; 2082 } else if (strcmp(name, "numa_node") == 0) { 2083 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2084 return -EINVAL; 2085 map_def->parts |= MAP_DEF_NUMA_NODE; 2086 } else if (strcmp(name, "key_size") == 0) { 2087 __u32 sz; 2088 2089 if (!get_map_field_int(map_name, btf, m, &sz)) 2090 return -EINVAL; 2091 if (map_def->key_size && map_def->key_size != sz) { 2092 pr_warn("map '%s': conflicting key size %u != %u.\n", 2093 map_name, map_def->key_size, sz); 2094 return -EINVAL; 2095 } 2096 map_def->key_size = sz; 2097 map_def->parts |= MAP_DEF_KEY_SIZE; 2098 } else if (strcmp(name, "key") == 0) { 2099 __s64 sz; 2100 2101 t = btf__type_by_id(btf, m->type); 2102 if (!t) { 2103 pr_warn("map '%s': key type [%d] not found.\n", 2104 map_name, m->type); 2105 return -EINVAL; 2106 } 2107 if (!btf_is_ptr(t)) { 2108 pr_warn("map '%s': key spec is not PTR: %s.\n", 2109 map_name, btf_kind_str(t)); 2110 return -EINVAL; 2111 } 2112 sz = btf__resolve_size(btf, t->type); 2113 if (sz < 0) { 2114 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2115 map_name, t->type, (ssize_t)sz); 2116 return sz; 2117 } 2118 if (map_def->key_size && map_def->key_size != sz) { 2119 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2120 map_name, map_def->key_size, (ssize_t)sz); 2121 return -EINVAL; 2122 } 2123 map_def->key_size = sz; 2124 map_def->key_type_id = t->type; 2125 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2126 } else if (strcmp(name, "value_size") == 0) { 2127 __u32 sz; 2128 2129 if (!get_map_field_int(map_name, btf, m, &sz)) 2130 return -EINVAL; 2131 if (map_def->value_size && map_def->value_size != sz) { 2132 pr_warn("map '%s': conflicting value size %u != %u.\n", 2133 map_name, map_def->value_size, sz); 2134 return -EINVAL; 2135 } 2136 map_def->value_size = sz; 2137 map_def->parts |= MAP_DEF_VALUE_SIZE; 2138 } else if (strcmp(name, "value") == 0) { 2139 __s64 sz; 2140 2141 t = btf__type_by_id(btf, m->type); 2142 if (!t) { 2143 pr_warn("map '%s': value type [%d] not found.\n", 2144 map_name, m->type); 2145 return -EINVAL; 2146 } 2147 if (!btf_is_ptr(t)) { 2148 pr_warn("map '%s': value spec is not PTR: %s.\n", 2149 map_name, btf_kind_str(t)); 2150 return -EINVAL; 2151 } 2152 sz = btf__resolve_size(btf, t->type); 2153 if (sz < 0) { 2154 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2155 map_name, t->type, (ssize_t)sz); 2156 return sz; 2157 } 2158 if (map_def->value_size && map_def->value_size != sz) { 2159 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2160 map_name, map_def->value_size, (ssize_t)sz); 2161 return -EINVAL; 2162 } 2163 map_def->value_size = sz; 2164 map_def->value_type_id = t->type; 2165 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2166 } 2167 else if (strcmp(name, "values") == 0) { 2168 char inner_map_name[128]; 2169 int err; 2170 2171 if (is_inner) { 2172 pr_warn("map '%s': multi-level inner maps not supported.\n", 2173 map_name); 2174 return -ENOTSUP; 2175 } 2176 if (i != vlen - 1) { 2177 pr_warn("map '%s': '%s' member should be last.\n", 2178 map_name, name); 2179 return -EINVAL; 2180 } 2181 if (!bpf_map_type__is_map_in_map(map_def->map_type)) { 2182 pr_warn("map '%s': should be map-in-map.\n", 2183 map_name); 2184 return -ENOTSUP; 2185 } 2186 if (map_def->value_size && map_def->value_size != 4) { 2187 pr_warn("map '%s': conflicting value size %u != 4.\n", 2188 map_name, map_def->value_size); 2189 return -EINVAL; 2190 } 2191 map_def->value_size = 4; 2192 t = btf__type_by_id(btf, m->type); 2193 if (!t) { 2194 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2195 map_name, m->type); 2196 return -EINVAL; 2197 } 2198 if (!btf_is_array(t) || btf_array(t)->nelems) { 2199 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2200 map_name); 2201 return -EINVAL; 2202 } 2203 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2204 if (!btf_is_ptr(t)) { 2205 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2206 map_name, btf_kind_str(t)); 2207 return -EINVAL; 2208 } 2209 t = skip_mods_and_typedefs(btf, t->type, NULL); 2210 if (!btf_is_struct(t)) { 2211 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2212 map_name, btf_kind_str(t)); 2213 return -EINVAL; 2214 } 2215 2216 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2217 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2218 if (err) 2219 return err; 2220 2221 map_def->parts |= MAP_DEF_INNER_MAP; 2222 } else if (strcmp(name, "pinning") == 0) { 2223 __u32 val; 2224 2225 if (is_inner) { 2226 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2227 return -EINVAL; 2228 } 2229 if (!get_map_field_int(map_name, btf, m, &val)) 2230 return -EINVAL; 2231 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2232 pr_warn("map '%s': invalid pinning value %u.\n", 2233 map_name, val); 2234 return -EINVAL; 2235 } 2236 map_def->pinning = val; 2237 map_def->parts |= MAP_DEF_PINNING; 2238 } else { 2239 if (strict) { 2240 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2241 return -ENOTSUP; 2242 } 2243 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2244 } 2245 } 2246 2247 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2248 pr_warn("map '%s': map type isn't specified.\n", map_name); 2249 return -EINVAL; 2250 } 2251 2252 return 0; 2253 } 2254 2255 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2256 { 2257 map->def.type = def->map_type; 2258 map->def.key_size = def->key_size; 2259 map->def.value_size = def->value_size; 2260 map->def.max_entries = def->max_entries; 2261 map->def.map_flags = def->map_flags; 2262 2263 map->numa_node = def->numa_node; 2264 map->btf_key_type_id = def->key_type_id; 2265 map->btf_value_type_id = def->value_type_id; 2266 2267 if (def->parts & MAP_DEF_MAP_TYPE) 2268 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2269 2270 if (def->parts & MAP_DEF_KEY_TYPE) 2271 pr_debug("map '%s': found key [%u], sz = %u.\n", 2272 map->name, def->key_type_id, def->key_size); 2273 else if (def->parts & MAP_DEF_KEY_SIZE) 2274 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2275 2276 if (def->parts & MAP_DEF_VALUE_TYPE) 2277 pr_debug("map '%s': found value [%u], sz = %u.\n", 2278 map->name, def->value_type_id, def->value_size); 2279 else if (def->parts & MAP_DEF_VALUE_SIZE) 2280 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2281 2282 if (def->parts & MAP_DEF_MAX_ENTRIES) 2283 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2284 if (def->parts & MAP_DEF_MAP_FLAGS) 2285 pr_debug("map '%s': found map_flags = %u.\n", map->name, def->map_flags); 2286 if (def->parts & MAP_DEF_PINNING) 2287 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2288 if (def->parts & MAP_DEF_NUMA_NODE) 2289 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2290 2291 if (def->parts & MAP_DEF_INNER_MAP) 2292 pr_debug("map '%s': found inner map definition.\n", map->name); 2293 } 2294 2295 static const char *btf_var_linkage_str(__u32 linkage) 2296 { 2297 switch (linkage) { 2298 case BTF_VAR_STATIC: return "static"; 2299 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2300 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2301 default: return "unknown"; 2302 } 2303 } 2304 2305 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2306 const struct btf_type *sec, 2307 int var_idx, int sec_idx, 2308 const Elf_Data *data, bool strict, 2309 const char *pin_root_path) 2310 { 2311 struct btf_map_def map_def = {}, inner_def = {}; 2312 const struct btf_type *var, *def; 2313 const struct btf_var_secinfo *vi; 2314 const struct btf_var *var_extra; 2315 const char *map_name; 2316 struct bpf_map *map; 2317 int err; 2318 2319 vi = btf_var_secinfos(sec) + var_idx; 2320 var = btf__type_by_id(obj->btf, vi->type); 2321 var_extra = btf_var(var); 2322 map_name = btf__name_by_offset(obj->btf, var->name_off); 2323 2324 if (map_name == NULL || map_name[0] == '\0') { 2325 pr_warn("map #%d: empty name.\n", var_idx); 2326 return -EINVAL; 2327 } 2328 if ((__u64)vi->offset + vi->size > data->d_size) { 2329 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2330 return -EINVAL; 2331 } 2332 if (!btf_is_var(var)) { 2333 pr_warn("map '%s': unexpected var kind %s.\n", 2334 map_name, btf_kind_str(var)); 2335 return -EINVAL; 2336 } 2337 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2338 pr_warn("map '%s': unsupported map linkage %s.\n", 2339 map_name, btf_var_linkage_str(var_extra->linkage)); 2340 return -EOPNOTSUPP; 2341 } 2342 2343 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2344 if (!btf_is_struct(def)) { 2345 pr_warn("map '%s': unexpected def kind %s.\n", 2346 map_name, btf_kind_str(var)); 2347 return -EINVAL; 2348 } 2349 if (def->size > vi->size) { 2350 pr_warn("map '%s': invalid def size.\n", map_name); 2351 return -EINVAL; 2352 } 2353 2354 map = bpf_object__add_map(obj); 2355 if (IS_ERR(map)) 2356 return PTR_ERR(map); 2357 map->name = strdup(map_name); 2358 if (!map->name) { 2359 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2360 return -ENOMEM; 2361 } 2362 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2363 map->def.type = BPF_MAP_TYPE_UNSPEC; 2364 map->sec_idx = sec_idx; 2365 map->sec_offset = vi->offset; 2366 map->btf_var_idx = var_idx; 2367 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2368 map_name, map->sec_idx, map->sec_offset); 2369 2370 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2371 if (err) 2372 return err; 2373 2374 fill_map_from_def(map, &map_def); 2375 2376 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2377 err = build_map_pin_path(map, pin_root_path); 2378 if (err) { 2379 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2380 return err; 2381 } 2382 } 2383 2384 if (map_def.parts & MAP_DEF_INNER_MAP) { 2385 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2386 if (!map->inner_map) 2387 return -ENOMEM; 2388 map->inner_map->fd = -1; 2389 map->inner_map->sec_idx = sec_idx; 2390 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2391 if (!map->inner_map->name) 2392 return -ENOMEM; 2393 sprintf(map->inner_map->name, "%s.inner", map_name); 2394 2395 fill_map_from_def(map->inner_map, &inner_def); 2396 } 2397 2398 return 0; 2399 } 2400 2401 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2402 const char *pin_root_path) 2403 { 2404 const struct btf_type *sec = NULL; 2405 int nr_types, i, vlen, err; 2406 const struct btf_type *t; 2407 const char *name; 2408 Elf_Data *data; 2409 Elf_Scn *scn; 2410 2411 if (obj->efile.btf_maps_shndx < 0) 2412 return 0; 2413 2414 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2415 data = elf_sec_data(obj, scn); 2416 if (!scn || !data) { 2417 pr_warn("elf: failed to get %s map definitions for %s\n", 2418 MAPS_ELF_SEC, obj->path); 2419 return -EINVAL; 2420 } 2421 2422 nr_types = btf__get_nr_types(obj->btf); 2423 for (i = 1; i <= nr_types; i++) { 2424 t = btf__type_by_id(obj->btf, i); 2425 if (!btf_is_datasec(t)) 2426 continue; 2427 name = btf__name_by_offset(obj->btf, t->name_off); 2428 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2429 sec = t; 2430 obj->efile.btf_maps_sec_btf_id = i; 2431 break; 2432 } 2433 } 2434 2435 if (!sec) { 2436 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2437 return -ENOENT; 2438 } 2439 2440 vlen = btf_vlen(sec); 2441 for (i = 0; i < vlen; i++) { 2442 err = bpf_object__init_user_btf_map(obj, sec, i, 2443 obj->efile.btf_maps_shndx, 2444 data, strict, 2445 pin_root_path); 2446 if (err) 2447 return err; 2448 } 2449 2450 return 0; 2451 } 2452 2453 static int bpf_object__init_maps(struct bpf_object *obj, 2454 const struct bpf_object_open_opts *opts) 2455 { 2456 const char *pin_root_path; 2457 bool strict; 2458 int err; 2459 2460 strict = !OPTS_GET(opts, relaxed_maps, false); 2461 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2462 2463 err = bpf_object__init_user_maps(obj, strict); 2464 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2465 err = err ?: bpf_object__init_global_data_maps(obj); 2466 err = err ?: bpf_object__init_kconfig_map(obj); 2467 err = err ?: bpf_object__init_struct_ops_maps(obj); 2468 2469 return err; 2470 } 2471 2472 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2473 { 2474 GElf_Shdr sh; 2475 2476 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2477 return false; 2478 2479 return sh.sh_flags & SHF_EXECINSTR; 2480 } 2481 2482 static bool btf_needs_sanitization(struct bpf_object *obj) 2483 { 2484 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2485 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2486 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2487 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2488 2489 return !has_func || !has_datasec || !has_func_global || !has_float; 2490 } 2491 2492 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2493 { 2494 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2495 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2496 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2497 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2498 struct btf_type *t; 2499 int i, j, vlen; 2500 2501 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2502 t = (struct btf_type *)btf__type_by_id(btf, i); 2503 2504 if (!has_datasec && btf_is_var(t)) { 2505 /* replace VAR with INT */ 2506 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2507 /* 2508 * using size = 1 is the safest choice, 4 will be too 2509 * big and cause kernel BTF validation failure if 2510 * original variable took less than 4 bytes 2511 */ 2512 t->size = 1; 2513 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2514 } else if (!has_datasec && btf_is_datasec(t)) { 2515 /* replace DATASEC with STRUCT */ 2516 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2517 struct btf_member *m = btf_members(t); 2518 struct btf_type *vt; 2519 char *name; 2520 2521 name = (char *)btf__name_by_offset(btf, t->name_off); 2522 while (*name) { 2523 if (*name == '.') 2524 *name = '_'; 2525 name++; 2526 } 2527 2528 vlen = btf_vlen(t); 2529 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2530 for (j = 0; j < vlen; j++, v++, m++) { 2531 /* order of field assignments is important */ 2532 m->offset = v->offset * 8; 2533 m->type = v->type; 2534 /* preserve variable name as member name */ 2535 vt = (void *)btf__type_by_id(btf, v->type); 2536 m->name_off = vt->name_off; 2537 } 2538 } else if (!has_func && btf_is_func_proto(t)) { 2539 /* replace FUNC_PROTO with ENUM */ 2540 vlen = btf_vlen(t); 2541 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2542 t->size = sizeof(__u32); /* kernel enforced */ 2543 } else if (!has_func && btf_is_func(t)) { 2544 /* replace FUNC with TYPEDEF */ 2545 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2546 } else if (!has_func_global && btf_is_func(t)) { 2547 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2548 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2549 } else if (!has_float && btf_is_float(t)) { 2550 /* replace FLOAT with an equally-sized empty STRUCT; 2551 * since C compilers do not accept e.g. "float" as a 2552 * valid struct name, make it anonymous 2553 */ 2554 t->name_off = 0; 2555 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2556 } 2557 } 2558 } 2559 2560 static bool libbpf_needs_btf(const struct bpf_object *obj) 2561 { 2562 return obj->efile.btf_maps_shndx >= 0 || 2563 obj->efile.st_ops_shndx >= 0 || 2564 obj->nr_extern > 0; 2565 } 2566 2567 static bool kernel_needs_btf(const struct bpf_object *obj) 2568 { 2569 return obj->efile.st_ops_shndx >= 0; 2570 } 2571 2572 static int bpf_object__init_btf(struct bpf_object *obj, 2573 Elf_Data *btf_data, 2574 Elf_Data *btf_ext_data) 2575 { 2576 int err = -ENOENT; 2577 2578 if (btf_data) { 2579 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2580 err = libbpf_get_error(obj->btf); 2581 if (err) { 2582 obj->btf = NULL; 2583 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2584 goto out; 2585 } 2586 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2587 btf__set_pointer_size(obj->btf, 8); 2588 } 2589 if (btf_ext_data) { 2590 if (!obj->btf) { 2591 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2592 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2593 goto out; 2594 } 2595 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2596 err = libbpf_get_error(obj->btf_ext); 2597 if (err) { 2598 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2599 BTF_EXT_ELF_SEC, err); 2600 obj->btf_ext = NULL; 2601 goto out; 2602 } 2603 } 2604 out: 2605 if (err && libbpf_needs_btf(obj)) { 2606 pr_warn("BTF is required, but is missing or corrupted.\n"); 2607 return err; 2608 } 2609 return 0; 2610 } 2611 2612 static int bpf_object__finalize_btf(struct bpf_object *obj) 2613 { 2614 int err; 2615 2616 if (!obj->btf) 2617 return 0; 2618 2619 err = btf__finalize_data(obj, obj->btf); 2620 if (err) { 2621 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2622 return err; 2623 } 2624 2625 return 0; 2626 } 2627 2628 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2629 { 2630 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2631 prog->type == BPF_PROG_TYPE_LSM) 2632 return true; 2633 2634 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2635 * also need vmlinux BTF 2636 */ 2637 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2638 return true; 2639 2640 return false; 2641 } 2642 2643 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2644 { 2645 struct bpf_program *prog; 2646 int i; 2647 2648 /* CO-RE relocations need kernel BTF */ 2649 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2650 return true; 2651 2652 /* Support for typed ksyms needs kernel BTF */ 2653 for (i = 0; i < obj->nr_extern; i++) { 2654 const struct extern_desc *ext; 2655 2656 ext = &obj->externs[i]; 2657 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2658 return true; 2659 } 2660 2661 bpf_object__for_each_program(prog, obj) { 2662 if (!prog->load) 2663 continue; 2664 if (prog_needs_vmlinux_btf(prog)) 2665 return true; 2666 } 2667 2668 return false; 2669 } 2670 2671 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2672 { 2673 int err; 2674 2675 /* btf_vmlinux could be loaded earlier */ 2676 if (obj->btf_vmlinux || obj->gen_loader) 2677 return 0; 2678 2679 if (!force && !obj_needs_vmlinux_btf(obj)) 2680 return 0; 2681 2682 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2683 err = libbpf_get_error(obj->btf_vmlinux); 2684 if (err) { 2685 pr_warn("Error loading vmlinux BTF: %d\n", err); 2686 obj->btf_vmlinux = NULL; 2687 return err; 2688 } 2689 return 0; 2690 } 2691 2692 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2693 { 2694 struct btf *kern_btf = obj->btf; 2695 bool btf_mandatory, sanitize; 2696 int i, err = 0; 2697 2698 if (!obj->btf) 2699 return 0; 2700 2701 if (!kernel_supports(obj, FEAT_BTF)) { 2702 if (kernel_needs_btf(obj)) { 2703 err = -EOPNOTSUPP; 2704 goto report; 2705 } 2706 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2707 return 0; 2708 } 2709 2710 /* Even though some subprogs are global/weak, user might prefer more 2711 * permissive BPF verification process that BPF verifier performs for 2712 * static functions, taking into account more context from the caller 2713 * functions. In such case, they need to mark such subprogs with 2714 * __attribute__((visibility("hidden"))) and libbpf will adjust 2715 * corresponding FUNC BTF type to be marked as static and trigger more 2716 * involved BPF verification process. 2717 */ 2718 for (i = 0; i < obj->nr_programs; i++) { 2719 struct bpf_program *prog = &obj->programs[i]; 2720 struct btf_type *t; 2721 const char *name; 2722 int j, n; 2723 2724 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2725 continue; 2726 2727 n = btf__get_nr_types(obj->btf); 2728 for (j = 1; j <= n; j++) { 2729 t = btf_type_by_id(obj->btf, j); 2730 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2731 continue; 2732 2733 name = btf__str_by_offset(obj->btf, t->name_off); 2734 if (strcmp(name, prog->name) != 0) 2735 continue; 2736 2737 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2738 break; 2739 } 2740 } 2741 2742 sanitize = btf_needs_sanitization(obj); 2743 if (sanitize) { 2744 const void *raw_data; 2745 __u32 sz; 2746 2747 /* clone BTF to sanitize a copy and leave the original intact */ 2748 raw_data = btf__get_raw_data(obj->btf, &sz); 2749 kern_btf = btf__new(raw_data, sz); 2750 err = libbpf_get_error(kern_btf); 2751 if (err) 2752 return err; 2753 2754 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2755 btf__set_pointer_size(obj->btf, 8); 2756 bpf_object__sanitize_btf(obj, kern_btf); 2757 } 2758 2759 if (obj->gen_loader) { 2760 __u32 raw_size = 0; 2761 const void *raw_data = btf__get_raw_data(kern_btf, &raw_size); 2762 2763 if (!raw_data) 2764 return -ENOMEM; 2765 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 2766 /* Pretend to have valid FD to pass various fd >= 0 checks. 2767 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 2768 */ 2769 btf__set_fd(kern_btf, 0); 2770 } else { 2771 err = btf__load(kern_btf); 2772 } 2773 if (sanitize) { 2774 if (!err) { 2775 /* move fd to libbpf's BTF */ 2776 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2777 btf__set_fd(kern_btf, -1); 2778 } 2779 btf__free(kern_btf); 2780 } 2781 report: 2782 if (err) { 2783 btf_mandatory = kernel_needs_btf(obj); 2784 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2785 btf_mandatory ? "BTF is mandatory, can't proceed." 2786 : "BTF is optional, ignoring."); 2787 if (!btf_mandatory) 2788 err = 0; 2789 } 2790 return err; 2791 } 2792 2793 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2794 { 2795 const char *name; 2796 2797 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2798 if (!name) { 2799 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2800 off, obj->path, elf_errmsg(-1)); 2801 return NULL; 2802 } 2803 2804 return name; 2805 } 2806 2807 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2808 { 2809 const char *name; 2810 2811 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2812 if (!name) { 2813 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2814 off, obj->path, elf_errmsg(-1)); 2815 return NULL; 2816 } 2817 2818 return name; 2819 } 2820 2821 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2822 { 2823 Elf_Scn *scn; 2824 2825 scn = elf_getscn(obj->efile.elf, idx); 2826 if (!scn) { 2827 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2828 idx, obj->path, elf_errmsg(-1)); 2829 return NULL; 2830 } 2831 return scn; 2832 } 2833 2834 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2835 { 2836 Elf_Scn *scn = NULL; 2837 Elf *elf = obj->efile.elf; 2838 const char *sec_name; 2839 2840 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2841 sec_name = elf_sec_name(obj, scn); 2842 if (!sec_name) 2843 return NULL; 2844 2845 if (strcmp(sec_name, name) != 0) 2846 continue; 2847 2848 return scn; 2849 } 2850 return NULL; 2851 } 2852 2853 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2854 { 2855 if (!scn) 2856 return -EINVAL; 2857 2858 if (gelf_getshdr(scn, hdr) != hdr) { 2859 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2860 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2861 return -EINVAL; 2862 } 2863 2864 return 0; 2865 } 2866 2867 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2868 { 2869 const char *name; 2870 GElf_Shdr sh; 2871 2872 if (!scn) 2873 return NULL; 2874 2875 if (elf_sec_hdr(obj, scn, &sh)) 2876 return NULL; 2877 2878 name = elf_sec_str(obj, sh.sh_name); 2879 if (!name) { 2880 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2881 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2882 return NULL; 2883 } 2884 2885 return name; 2886 } 2887 2888 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2889 { 2890 Elf_Data *data; 2891 2892 if (!scn) 2893 return NULL; 2894 2895 data = elf_getdata(scn, 0); 2896 if (!data) { 2897 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2898 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2899 obj->path, elf_errmsg(-1)); 2900 return NULL; 2901 } 2902 2903 return data; 2904 } 2905 2906 static bool is_sec_name_dwarf(const char *name) 2907 { 2908 /* approximation, but the actual list is too long */ 2909 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2910 } 2911 2912 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2913 { 2914 /* no special handling of .strtab */ 2915 if (hdr->sh_type == SHT_STRTAB) 2916 return true; 2917 2918 /* ignore .llvm_addrsig section as well */ 2919 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 2920 return true; 2921 2922 /* no subprograms will lead to an empty .text section, ignore it */ 2923 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2924 strcmp(name, ".text") == 0) 2925 return true; 2926 2927 /* DWARF sections */ 2928 if (is_sec_name_dwarf(name)) 2929 return true; 2930 2931 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2932 name += sizeof(".rel") - 1; 2933 /* DWARF section relocations */ 2934 if (is_sec_name_dwarf(name)) 2935 return true; 2936 2937 /* .BTF and .BTF.ext don't need relocations */ 2938 if (strcmp(name, BTF_ELF_SEC) == 0 || 2939 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2940 return true; 2941 } 2942 2943 return false; 2944 } 2945 2946 static int cmp_progs(const void *_a, const void *_b) 2947 { 2948 const struct bpf_program *a = _a; 2949 const struct bpf_program *b = _b; 2950 2951 if (a->sec_idx != b->sec_idx) 2952 return a->sec_idx < b->sec_idx ? -1 : 1; 2953 2954 /* sec_insn_off can't be the same within the section */ 2955 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2956 } 2957 2958 static int bpf_object__elf_collect(struct bpf_object *obj) 2959 { 2960 Elf *elf = obj->efile.elf; 2961 Elf_Data *btf_ext_data = NULL; 2962 Elf_Data *btf_data = NULL; 2963 int idx = 0, err = 0; 2964 const char *name; 2965 Elf_Data *data; 2966 Elf_Scn *scn; 2967 GElf_Shdr sh; 2968 2969 /* a bunch of ELF parsing functionality depends on processing symbols, 2970 * so do the first pass and find the symbol table 2971 */ 2972 scn = NULL; 2973 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2974 if (elf_sec_hdr(obj, scn, &sh)) 2975 return -LIBBPF_ERRNO__FORMAT; 2976 2977 if (sh.sh_type == SHT_SYMTAB) { 2978 if (obj->efile.symbols) { 2979 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2980 return -LIBBPF_ERRNO__FORMAT; 2981 } 2982 2983 data = elf_sec_data(obj, scn); 2984 if (!data) 2985 return -LIBBPF_ERRNO__FORMAT; 2986 2987 obj->efile.symbols = data; 2988 obj->efile.symbols_shndx = elf_ndxscn(scn); 2989 obj->efile.strtabidx = sh.sh_link; 2990 } 2991 } 2992 2993 scn = NULL; 2994 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2995 idx++; 2996 2997 if (elf_sec_hdr(obj, scn, &sh)) 2998 return -LIBBPF_ERRNO__FORMAT; 2999 3000 name = elf_sec_str(obj, sh.sh_name); 3001 if (!name) 3002 return -LIBBPF_ERRNO__FORMAT; 3003 3004 if (ignore_elf_section(&sh, name)) 3005 continue; 3006 3007 data = elf_sec_data(obj, scn); 3008 if (!data) 3009 return -LIBBPF_ERRNO__FORMAT; 3010 3011 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3012 idx, name, (unsigned long)data->d_size, 3013 (int)sh.sh_link, (unsigned long)sh.sh_flags, 3014 (int)sh.sh_type); 3015 3016 if (strcmp(name, "license") == 0) { 3017 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3018 if (err) 3019 return err; 3020 } else if (strcmp(name, "version") == 0) { 3021 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3022 if (err) 3023 return err; 3024 } else if (strcmp(name, "maps") == 0) { 3025 obj->efile.maps_shndx = idx; 3026 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3027 obj->efile.btf_maps_shndx = idx; 3028 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3029 btf_data = data; 3030 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3031 btf_ext_data = data; 3032 } else if (sh.sh_type == SHT_SYMTAB) { 3033 /* already processed during the first pass above */ 3034 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 3035 if (sh.sh_flags & SHF_EXECINSTR) { 3036 if (strcmp(name, ".text") == 0) 3037 obj->efile.text_shndx = idx; 3038 err = bpf_object__add_programs(obj, data, name, idx); 3039 if (err) 3040 return err; 3041 } else if (strcmp(name, DATA_SEC) == 0) { 3042 obj->efile.data = data; 3043 obj->efile.data_shndx = idx; 3044 } else if (strcmp(name, RODATA_SEC) == 0) { 3045 obj->efile.rodata = data; 3046 obj->efile.rodata_shndx = idx; 3047 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3048 obj->efile.st_ops_data = data; 3049 obj->efile.st_ops_shndx = idx; 3050 } else { 3051 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3052 idx, name); 3053 } 3054 } else if (sh.sh_type == SHT_REL) { 3055 int nr_sects = obj->efile.nr_reloc_sects; 3056 void *sects = obj->efile.reloc_sects; 3057 int sec = sh.sh_info; /* points to other section */ 3058 3059 /* Only do relo for section with exec instructions */ 3060 if (!section_have_execinstr(obj, sec) && 3061 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3062 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3063 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3064 idx, name, sec, 3065 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 3066 continue; 3067 } 3068 3069 sects = libbpf_reallocarray(sects, nr_sects + 1, 3070 sizeof(*obj->efile.reloc_sects)); 3071 if (!sects) 3072 return -ENOMEM; 3073 3074 obj->efile.reloc_sects = sects; 3075 obj->efile.nr_reloc_sects++; 3076 3077 obj->efile.reloc_sects[nr_sects].shdr = sh; 3078 obj->efile.reloc_sects[nr_sects].data = data; 3079 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3080 obj->efile.bss = data; 3081 obj->efile.bss_shndx = idx; 3082 } else { 3083 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3084 (size_t)sh.sh_size); 3085 } 3086 } 3087 3088 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3089 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3090 return -LIBBPF_ERRNO__FORMAT; 3091 } 3092 3093 /* sort BPF programs by section name and in-section instruction offset 3094 * for faster search */ 3095 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3096 3097 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3098 } 3099 3100 static bool sym_is_extern(const GElf_Sym *sym) 3101 { 3102 int bind = GELF_ST_BIND(sym->st_info); 3103 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3104 return sym->st_shndx == SHN_UNDEF && 3105 (bind == STB_GLOBAL || bind == STB_WEAK) && 3106 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 3107 } 3108 3109 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx) 3110 { 3111 int bind = GELF_ST_BIND(sym->st_info); 3112 int type = GELF_ST_TYPE(sym->st_info); 3113 3114 /* in .text section */ 3115 if (sym->st_shndx != text_shndx) 3116 return false; 3117 3118 /* local function */ 3119 if (bind == STB_LOCAL && type == STT_SECTION) 3120 return true; 3121 3122 /* global function */ 3123 return bind == STB_GLOBAL && type == STT_FUNC; 3124 } 3125 3126 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3127 { 3128 const struct btf_type *t; 3129 const char *tname; 3130 int i, n; 3131 3132 if (!btf) 3133 return -ESRCH; 3134 3135 n = btf__get_nr_types(btf); 3136 for (i = 1; i <= n; i++) { 3137 t = btf__type_by_id(btf, i); 3138 3139 if (!btf_is_var(t) && !btf_is_func(t)) 3140 continue; 3141 3142 tname = btf__name_by_offset(btf, t->name_off); 3143 if (strcmp(tname, ext_name)) 3144 continue; 3145 3146 if (btf_is_var(t) && 3147 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3148 return -EINVAL; 3149 3150 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3151 return -EINVAL; 3152 3153 return i; 3154 } 3155 3156 return -ENOENT; 3157 } 3158 3159 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3160 const struct btf_var_secinfo *vs; 3161 const struct btf_type *t; 3162 int i, j, n; 3163 3164 if (!btf) 3165 return -ESRCH; 3166 3167 n = btf__get_nr_types(btf); 3168 for (i = 1; i <= n; i++) { 3169 t = btf__type_by_id(btf, i); 3170 3171 if (!btf_is_datasec(t)) 3172 continue; 3173 3174 vs = btf_var_secinfos(t); 3175 for (j = 0; j < btf_vlen(t); j++, vs++) { 3176 if (vs->type == ext_btf_id) 3177 return i; 3178 } 3179 } 3180 3181 return -ENOENT; 3182 } 3183 3184 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3185 bool *is_signed) 3186 { 3187 const struct btf_type *t; 3188 const char *name; 3189 3190 t = skip_mods_and_typedefs(btf, id, NULL); 3191 name = btf__name_by_offset(btf, t->name_off); 3192 3193 if (is_signed) 3194 *is_signed = false; 3195 switch (btf_kind(t)) { 3196 case BTF_KIND_INT: { 3197 int enc = btf_int_encoding(t); 3198 3199 if (enc & BTF_INT_BOOL) 3200 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3201 if (is_signed) 3202 *is_signed = enc & BTF_INT_SIGNED; 3203 if (t->size == 1) 3204 return KCFG_CHAR; 3205 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3206 return KCFG_UNKNOWN; 3207 return KCFG_INT; 3208 } 3209 case BTF_KIND_ENUM: 3210 if (t->size != 4) 3211 return KCFG_UNKNOWN; 3212 if (strcmp(name, "libbpf_tristate")) 3213 return KCFG_UNKNOWN; 3214 return KCFG_TRISTATE; 3215 case BTF_KIND_ARRAY: 3216 if (btf_array(t)->nelems == 0) 3217 return KCFG_UNKNOWN; 3218 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3219 return KCFG_UNKNOWN; 3220 return KCFG_CHAR_ARR; 3221 default: 3222 return KCFG_UNKNOWN; 3223 } 3224 } 3225 3226 static int cmp_externs(const void *_a, const void *_b) 3227 { 3228 const struct extern_desc *a = _a; 3229 const struct extern_desc *b = _b; 3230 3231 if (a->type != b->type) 3232 return a->type < b->type ? -1 : 1; 3233 3234 if (a->type == EXT_KCFG) { 3235 /* descending order by alignment requirements */ 3236 if (a->kcfg.align != b->kcfg.align) 3237 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3238 /* ascending order by size, within same alignment class */ 3239 if (a->kcfg.sz != b->kcfg.sz) 3240 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3241 } 3242 3243 /* resolve ties by name */ 3244 return strcmp(a->name, b->name); 3245 } 3246 3247 static int find_int_btf_id(const struct btf *btf) 3248 { 3249 const struct btf_type *t; 3250 int i, n; 3251 3252 n = btf__get_nr_types(btf); 3253 for (i = 1; i <= n; i++) { 3254 t = btf__type_by_id(btf, i); 3255 3256 if (btf_is_int(t) && btf_int_bits(t) == 32) 3257 return i; 3258 } 3259 3260 return 0; 3261 } 3262 3263 static int add_dummy_ksym_var(struct btf *btf) 3264 { 3265 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3266 const struct btf_var_secinfo *vs; 3267 const struct btf_type *sec; 3268 3269 if (!btf) 3270 return 0; 3271 3272 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3273 BTF_KIND_DATASEC); 3274 if (sec_btf_id < 0) 3275 return 0; 3276 3277 sec = btf__type_by_id(btf, sec_btf_id); 3278 vs = btf_var_secinfos(sec); 3279 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3280 const struct btf_type *vt; 3281 3282 vt = btf__type_by_id(btf, vs->type); 3283 if (btf_is_func(vt)) 3284 break; 3285 } 3286 3287 /* No func in ksyms sec. No need to add dummy var. */ 3288 if (i == btf_vlen(sec)) 3289 return 0; 3290 3291 int_btf_id = find_int_btf_id(btf); 3292 dummy_var_btf_id = btf__add_var(btf, 3293 "dummy_ksym", 3294 BTF_VAR_GLOBAL_ALLOCATED, 3295 int_btf_id); 3296 if (dummy_var_btf_id < 0) 3297 pr_warn("cannot create a dummy_ksym var\n"); 3298 3299 return dummy_var_btf_id; 3300 } 3301 3302 static int bpf_object__collect_externs(struct bpf_object *obj) 3303 { 3304 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3305 const struct btf_type *t; 3306 struct extern_desc *ext; 3307 int i, n, off, dummy_var_btf_id; 3308 const char *ext_name, *sec_name; 3309 Elf_Scn *scn; 3310 GElf_Shdr sh; 3311 3312 if (!obj->efile.symbols) 3313 return 0; 3314 3315 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3316 if (elf_sec_hdr(obj, scn, &sh)) 3317 return -LIBBPF_ERRNO__FORMAT; 3318 3319 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3320 if (dummy_var_btf_id < 0) 3321 return dummy_var_btf_id; 3322 3323 n = sh.sh_size / sh.sh_entsize; 3324 pr_debug("looking for externs among %d symbols...\n", n); 3325 3326 for (i = 0; i < n; i++) { 3327 GElf_Sym sym; 3328 3329 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3330 return -LIBBPF_ERRNO__FORMAT; 3331 if (!sym_is_extern(&sym)) 3332 continue; 3333 ext_name = elf_sym_str(obj, sym.st_name); 3334 if (!ext_name || !ext_name[0]) 3335 continue; 3336 3337 ext = obj->externs; 3338 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3339 if (!ext) 3340 return -ENOMEM; 3341 obj->externs = ext; 3342 ext = &ext[obj->nr_extern]; 3343 memset(ext, 0, sizeof(*ext)); 3344 obj->nr_extern++; 3345 3346 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3347 if (ext->btf_id <= 0) { 3348 pr_warn("failed to find BTF for extern '%s': %d\n", 3349 ext_name, ext->btf_id); 3350 return ext->btf_id; 3351 } 3352 t = btf__type_by_id(obj->btf, ext->btf_id); 3353 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3354 ext->sym_idx = i; 3355 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3356 3357 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3358 if (ext->sec_btf_id <= 0) { 3359 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3360 ext_name, ext->btf_id, ext->sec_btf_id); 3361 return ext->sec_btf_id; 3362 } 3363 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3364 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3365 3366 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3367 if (btf_is_func(t)) { 3368 pr_warn("extern function %s is unsupported under %s section\n", 3369 ext->name, KCONFIG_SEC); 3370 return -ENOTSUP; 3371 } 3372 kcfg_sec = sec; 3373 ext->type = EXT_KCFG; 3374 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3375 if (ext->kcfg.sz <= 0) { 3376 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3377 ext_name, ext->kcfg.sz); 3378 return ext->kcfg.sz; 3379 } 3380 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3381 if (ext->kcfg.align <= 0) { 3382 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3383 ext_name, ext->kcfg.align); 3384 return -EINVAL; 3385 } 3386 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3387 &ext->kcfg.is_signed); 3388 if (ext->kcfg.type == KCFG_UNKNOWN) { 3389 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3390 return -ENOTSUP; 3391 } 3392 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3393 if (btf_is_func(t) && ext->is_weak) { 3394 pr_warn("extern weak function %s is unsupported\n", 3395 ext->name); 3396 return -ENOTSUP; 3397 } 3398 ksym_sec = sec; 3399 ext->type = EXT_KSYM; 3400 skip_mods_and_typedefs(obj->btf, t->type, 3401 &ext->ksym.type_id); 3402 } else { 3403 pr_warn("unrecognized extern section '%s'\n", sec_name); 3404 return -ENOTSUP; 3405 } 3406 } 3407 pr_debug("collected %d externs total\n", obj->nr_extern); 3408 3409 if (!obj->nr_extern) 3410 return 0; 3411 3412 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3413 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3414 3415 /* for .ksyms section, we need to turn all externs into allocated 3416 * variables in BTF to pass kernel verification; we do this by 3417 * pretending that each extern is a 8-byte variable 3418 */ 3419 if (ksym_sec) { 3420 /* find existing 4-byte integer type in BTF to use for fake 3421 * extern variables in DATASEC 3422 */ 3423 int int_btf_id = find_int_btf_id(obj->btf); 3424 /* For extern function, a dummy_var added earlier 3425 * will be used to replace the vs->type and 3426 * its name string will be used to refill 3427 * the missing param's name. 3428 */ 3429 const struct btf_type *dummy_var; 3430 3431 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3432 for (i = 0; i < obj->nr_extern; i++) { 3433 ext = &obj->externs[i]; 3434 if (ext->type != EXT_KSYM) 3435 continue; 3436 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3437 i, ext->sym_idx, ext->name); 3438 } 3439 3440 sec = ksym_sec; 3441 n = btf_vlen(sec); 3442 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3443 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3444 struct btf_type *vt; 3445 3446 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3447 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3448 ext = find_extern_by_name(obj, ext_name); 3449 if (!ext) { 3450 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3451 btf_kind_str(vt), ext_name); 3452 return -ESRCH; 3453 } 3454 if (btf_is_func(vt)) { 3455 const struct btf_type *func_proto; 3456 struct btf_param *param; 3457 int j; 3458 3459 func_proto = btf__type_by_id(obj->btf, 3460 vt->type); 3461 param = btf_params(func_proto); 3462 /* Reuse the dummy_var string if the 3463 * func proto does not have param name. 3464 */ 3465 for (j = 0; j < btf_vlen(func_proto); j++) 3466 if (param[j].type && !param[j].name_off) 3467 param[j].name_off = 3468 dummy_var->name_off; 3469 vs->type = dummy_var_btf_id; 3470 vt->info &= ~0xffff; 3471 vt->info |= BTF_FUNC_GLOBAL; 3472 } else { 3473 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3474 vt->type = int_btf_id; 3475 } 3476 vs->offset = off; 3477 vs->size = sizeof(int); 3478 } 3479 sec->size = off; 3480 } 3481 3482 if (kcfg_sec) { 3483 sec = kcfg_sec; 3484 /* for kcfg externs calculate their offsets within a .kconfig map */ 3485 off = 0; 3486 for (i = 0; i < obj->nr_extern; i++) { 3487 ext = &obj->externs[i]; 3488 if (ext->type != EXT_KCFG) 3489 continue; 3490 3491 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3492 off = ext->kcfg.data_off + ext->kcfg.sz; 3493 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3494 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3495 } 3496 sec->size = off; 3497 n = btf_vlen(sec); 3498 for (i = 0; i < n; i++) { 3499 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3500 3501 t = btf__type_by_id(obj->btf, vs->type); 3502 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3503 ext = find_extern_by_name(obj, ext_name); 3504 if (!ext) { 3505 pr_warn("failed to find extern definition for BTF var '%s'\n", 3506 ext_name); 3507 return -ESRCH; 3508 } 3509 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3510 vs->offset = ext->kcfg.data_off; 3511 } 3512 } 3513 return 0; 3514 } 3515 3516 struct bpf_program * 3517 bpf_object__find_program_by_title(const struct bpf_object *obj, 3518 const char *title) 3519 { 3520 struct bpf_program *pos; 3521 3522 bpf_object__for_each_program(pos, obj) { 3523 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3524 return pos; 3525 } 3526 return errno = ENOENT, NULL; 3527 } 3528 3529 static bool prog_is_subprog(const struct bpf_object *obj, 3530 const struct bpf_program *prog) 3531 { 3532 /* For legacy reasons, libbpf supports an entry-point BPF programs 3533 * without SEC() attribute, i.e., those in the .text section. But if 3534 * there are 2 or more such programs in the .text section, they all 3535 * must be subprograms called from entry-point BPF programs in 3536 * designated SEC()'tions, otherwise there is no way to distinguish 3537 * which of those programs should be loaded vs which are a subprogram. 3538 * Similarly, if there is a function/program in .text and at least one 3539 * other BPF program with custom SEC() attribute, then we just assume 3540 * .text programs are subprograms (even if they are not called from 3541 * other programs), because libbpf never explicitly supported mixing 3542 * SEC()-designated BPF programs and .text entry-point BPF programs. 3543 */ 3544 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3545 } 3546 3547 struct bpf_program * 3548 bpf_object__find_program_by_name(const struct bpf_object *obj, 3549 const char *name) 3550 { 3551 struct bpf_program *prog; 3552 3553 bpf_object__for_each_program(prog, obj) { 3554 if (prog_is_subprog(obj, prog)) 3555 continue; 3556 if (!strcmp(prog->name, name)) 3557 return prog; 3558 } 3559 return errno = ENOENT, NULL; 3560 } 3561 3562 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3563 int shndx) 3564 { 3565 return shndx == obj->efile.data_shndx || 3566 shndx == obj->efile.bss_shndx || 3567 shndx == obj->efile.rodata_shndx; 3568 } 3569 3570 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3571 int shndx) 3572 { 3573 return shndx == obj->efile.maps_shndx || 3574 shndx == obj->efile.btf_maps_shndx; 3575 } 3576 3577 static enum libbpf_map_type 3578 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3579 { 3580 if (shndx == obj->efile.data_shndx) 3581 return LIBBPF_MAP_DATA; 3582 else if (shndx == obj->efile.bss_shndx) 3583 return LIBBPF_MAP_BSS; 3584 else if (shndx == obj->efile.rodata_shndx) 3585 return LIBBPF_MAP_RODATA; 3586 else if (shndx == obj->efile.symbols_shndx) 3587 return LIBBPF_MAP_KCONFIG; 3588 else 3589 return LIBBPF_MAP_UNSPEC; 3590 } 3591 3592 static int bpf_program__record_reloc(struct bpf_program *prog, 3593 struct reloc_desc *reloc_desc, 3594 __u32 insn_idx, const char *sym_name, 3595 const GElf_Sym *sym, const GElf_Rel *rel) 3596 { 3597 struct bpf_insn *insn = &prog->insns[insn_idx]; 3598 size_t map_idx, nr_maps = prog->obj->nr_maps; 3599 struct bpf_object *obj = prog->obj; 3600 __u32 shdr_idx = sym->st_shndx; 3601 enum libbpf_map_type type; 3602 const char *sym_sec_name; 3603 struct bpf_map *map; 3604 3605 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3606 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3607 prog->name, sym_name, insn_idx, insn->code); 3608 return -LIBBPF_ERRNO__RELOC; 3609 } 3610 3611 if (sym_is_extern(sym)) { 3612 int sym_idx = GELF_R_SYM(rel->r_info); 3613 int i, n = obj->nr_extern; 3614 struct extern_desc *ext; 3615 3616 for (i = 0; i < n; i++) { 3617 ext = &obj->externs[i]; 3618 if (ext->sym_idx == sym_idx) 3619 break; 3620 } 3621 if (i >= n) { 3622 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3623 prog->name, sym_name, sym_idx); 3624 return -LIBBPF_ERRNO__RELOC; 3625 } 3626 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3627 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3628 if (insn->code == (BPF_JMP | BPF_CALL)) 3629 reloc_desc->type = RELO_EXTERN_FUNC; 3630 else 3631 reloc_desc->type = RELO_EXTERN_VAR; 3632 reloc_desc->insn_idx = insn_idx; 3633 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3634 return 0; 3635 } 3636 3637 /* sub-program call relocation */ 3638 if (is_call_insn(insn)) { 3639 if (insn->src_reg != BPF_PSEUDO_CALL) { 3640 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3641 return -LIBBPF_ERRNO__RELOC; 3642 } 3643 /* text_shndx can be 0, if no default "main" program exists */ 3644 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3645 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3646 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3647 prog->name, sym_name, sym_sec_name); 3648 return -LIBBPF_ERRNO__RELOC; 3649 } 3650 if (sym->st_value % BPF_INSN_SZ) { 3651 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3652 prog->name, sym_name, (size_t)sym->st_value); 3653 return -LIBBPF_ERRNO__RELOC; 3654 } 3655 reloc_desc->type = RELO_CALL; 3656 reloc_desc->insn_idx = insn_idx; 3657 reloc_desc->sym_off = sym->st_value; 3658 return 0; 3659 } 3660 3661 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3662 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3663 prog->name, sym_name, shdr_idx); 3664 return -LIBBPF_ERRNO__RELOC; 3665 } 3666 3667 /* loading subprog addresses */ 3668 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3669 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3670 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3671 */ 3672 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3673 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3674 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3675 return -LIBBPF_ERRNO__RELOC; 3676 } 3677 3678 reloc_desc->type = RELO_SUBPROG_ADDR; 3679 reloc_desc->insn_idx = insn_idx; 3680 reloc_desc->sym_off = sym->st_value; 3681 return 0; 3682 } 3683 3684 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3685 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3686 3687 /* generic map reference relocation */ 3688 if (type == LIBBPF_MAP_UNSPEC) { 3689 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3690 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3691 prog->name, sym_name, sym_sec_name); 3692 return -LIBBPF_ERRNO__RELOC; 3693 } 3694 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3695 map = &obj->maps[map_idx]; 3696 if (map->libbpf_type != type || 3697 map->sec_idx != sym->st_shndx || 3698 map->sec_offset != sym->st_value) 3699 continue; 3700 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3701 prog->name, map_idx, map->name, map->sec_idx, 3702 map->sec_offset, insn_idx); 3703 break; 3704 } 3705 if (map_idx >= nr_maps) { 3706 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3707 prog->name, sym_sec_name, (size_t)sym->st_value); 3708 return -LIBBPF_ERRNO__RELOC; 3709 } 3710 reloc_desc->type = RELO_LD64; 3711 reloc_desc->insn_idx = insn_idx; 3712 reloc_desc->map_idx = map_idx; 3713 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3714 return 0; 3715 } 3716 3717 /* global data map relocation */ 3718 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3719 pr_warn("prog '%s': bad data relo against section '%s'\n", 3720 prog->name, sym_sec_name); 3721 return -LIBBPF_ERRNO__RELOC; 3722 } 3723 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3724 map = &obj->maps[map_idx]; 3725 if (map->libbpf_type != type) 3726 continue; 3727 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3728 prog->name, map_idx, map->name, map->sec_idx, 3729 map->sec_offset, insn_idx); 3730 break; 3731 } 3732 if (map_idx >= nr_maps) { 3733 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3734 prog->name, sym_sec_name); 3735 return -LIBBPF_ERRNO__RELOC; 3736 } 3737 3738 reloc_desc->type = RELO_DATA; 3739 reloc_desc->insn_idx = insn_idx; 3740 reloc_desc->map_idx = map_idx; 3741 reloc_desc->sym_off = sym->st_value; 3742 return 0; 3743 } 3744 3745 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3746 { 3747 return insn_idx >= prog->sec_insn_off && 3748 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3749 } 3750 3751 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3752 size_t sec_idx, size_t insn_idx) 3753 { 3754 int l = 0, r = obj->nr_programs - 1, m; 3755 struct bpf_program *prog; 3756 3757 while (l < r) { 3758 m = l + (r - l + 1) / 2; 3759 prog = &obj->programs[m]; 3760 3761 if (prog->sec_idx < sec_idx || 3762 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3763 l = m; 3764 else 3765 r = m - 1; 3766 } 3767 /* matching program could be at index l, but it still might be the 3768 * wrong one, so we need to double check conditions for the last time 3769 */ 3770 prog = &obj->programs[l]; 3771 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3772 return prog; 3773 return NULL; 3774 } 3775 3776 static int 3777 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3778 { 3779 Elf_Data *symbols = obj->efile.symbols; 3780 const char *relo_sec_name, *sec_name; 3781 size_t sec_idx = shdr->sh_info; 3782 struct bpf_program *prog; 3783 struct reloc_desc *relos; 3784 int err, i, nrels; 3785 const char *sym_name; 3786 __u32 insn_idx; 3787 Elf_Scn *scn; 3788 Elf_Data *scn_data; 3789 GElf_Sym sym; 3790 GElf_Rel rel; 3791 3792 scn = elf_sec_by_idx(obj, sec_idx); 3793 scn_data = elf_sec_data(obj, scn); 3794 3795 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3796 sec_name = elf_sec_name(obj, scn); 3797 if (!relo_sec_name || !sec_name) 3798 return -EINVAL; 3799 3800 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3801 relo_sec_name, sec_idx, sec_name); 3802 nrels = shdr->sh_size / shdr->sh_entsize; 3803 3804 for (i = 0; i < nrels; i++) { 3805 if (!gelf_getrel(data, i, &rel)) { 3806 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3807 return -LIBBPF_ERRNO__FORMAT; 3808 } 3809 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3810 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3811 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3812 return -LIBBPF_ERRNO__FORMAT; 3813 } 3814 3815 if (rel.r_offset % BPF_INSN_SZ || rel.r_offset >= scn_data->d_size) { 3816 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3817 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3818 return -LIBBPF_ERRNO__FORMAT; 3819 } 3820 3821 insn_idx = rel.r_offset / BPF_INSN_SZ; 3822 /* relocations against static functions are recorded as 3823 * relocations against the section that contains a function; 3824 * in such case, symbol will be STT_SECTION and sym.st_name 3825 * will point to empty string (0), so fetch section name 3826 * instead 3827 */ 3828 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3829 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3830 else 3831 sym_name = elf_sym_str(obj, sym.st_name); 3832 sym_name = sym_name ?: "<?"; 3833 3834 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3835 relo_sec_name, i, insn_idx, sym_name); 3836 3837 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3838 if (!prog) { 3839 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 3840 relo_sec_name, i, sec_name, insn_idx); 3841 continue; 3842 } 3843 3844 relos = libbpf_reallocarray(prog->reloc_desc, 3845 prog->nr_reloc + 1, sizeof(*relos)); 3846 if (!relos) 3847 return -ENOMEM; 3848 prog->reloc_desc = relos; 3849 3850 /* adjust insn_idx to local BPF program frame of reference */ 3851 insn_idx -= prog->sec_insn_off; 3852 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3853 insn_idx, sym_name, &sym, &rel); 3854 if (err) 3855 return err; 3856 3857 prog->nr_reloc++; 3858 } 3859 return 0; 3860 } 3861 3862 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3863 { 3864 struct bpf_map_def *def = &map->def; 3865 __u32 key_type_id = 0, value_type_id = 0; 3866 int ret; 3867 3868 /* if it's BTF-defined map, we don't need to search for type IDs. 3869 * For struct_ops map, it does not need btf_key_type_id and 3870 * btf_value_type_id. 3871 */ 3872 if (map->sec_idx == obj->efile.btf_maps_shndx || 3873 bpf_map__is_struct_ops(map)) 3874 return 0; 3875 3876 if (!bpf_map__is_internal(map)) { 3877 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3878 def->value_size, &key_type_id, 3879 &value_type_id); 3880 } else { 3881 /* 3882 * LLVM annotates global data differently in BTF, that is, 3883 * only as '.data', '.bss' or '.rodata'. 3884 */ 3885 ret = btf__find_by_name(obj->btf, 3886 libbpf_type_to_btf_name[map->libbpf_type]); 3887 } 3888 if (ret < 0) 3889 return ret; 3890 3891 map->btf_key_type_id = key_type_id; 3892 map->btf_value_type_id = bpf_map__is_internal(map) ? 3893 ret : value_type_id; 3894 return 0; 3895 } 3896 3897 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 3898 { 3899 char file[PATH_MAX], buff[4096]; 3900 FILE *fp; 3901 __u32 val; 3902 int err; 3903 3904 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 3905 memset(info, 0, sizeof(*info)); 3906 3907 fp = fopen(file, "r"); 3908 if (!fp) { 3909 err = -errno; 3910 pr_warn("failed to open %s: %d. No procfs support?\n", file, 3911 err); 3912 return err; 3913 } 3914 3915 while (fgets(buff, sizeof(buff), fp)) { 3916 if (sscanf(buff, "map_type:\t%u", &val) == 1) 3917 info->type = val; 3918 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 3919 info->key_size = val; 3920 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 3921 info->value_size = val; 3922 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 3923 info->max_entries = val; 3924 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 3925 info->map_flags = val; 3926 } 3927 3928 fclose(fp); 3929 3930 return 0; 3931 } 3932 3933 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3934 { 3935 struct bpf_map_info info = {}; 3936 __u32 len = sizeof(info); 3937 int new_fd, err; 3938 char *new_name; 3939 3940 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3941 if (err && errno == EINVAL) 3942 err = bpf_get_map_info_from_fdinfo(fd, &info); 3943 if (err) 3944 return libbpf_err(err); 3945 3946 new_name = strdup(info.name); 3947 if (!new_name) 3948 return libbpf_err(-errno); 3949 3950 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3951 if (new_fd < 0) { 3952 err = -errno; 3953 goto err_free_new_name; 3954 } 3955 3956 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3957 if (new_fd < 0) { 3958 err = -errno; 3959 goto err_close_new_fd; 3960 } 3961 3962 err = zclose(map->fd); 3963 if (err) { 3964 err = -errno; 3965 goto err_close_new_fd; 3966 } 3967 free(map->name); 3968 3969 map->fd = new_fd; 3970 map->name = new_name; 3971 map->def.type = info.type; 3972 map->def.key_size = info.key_size; 3973 map->def.value_size = info.value_size; 3974 map->def.max_entries = info.max_entries; 3975 map->def.map_flags = info.map_flags; 3976 map->btf_key_type_id = info.btf_key_type_id; 3977 map->btf_value_type_id = info.btf_value_type_id; 3978 map->reused = true; 3979 3980 return 0; 3981 3982 err_close_new_fd: 3983 close(new_fd); 3984 err_free_new_name: 3985 free(new_name); 3986 return libbpf_err(err); 3987 } 3988 3989 __u32 bpf_map__max_entries(const struct bpf_map *map) 3990 { 3991 return map->def.max_entries; 3992 } 3993 3994 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 3995 { 3996 if (!bpf_map_type__is_map_in_map(map->def.type)) 3997 return errno = EINVAL, NULL; 3998 3999 return map->inner_map; 4000 } 4001 4002 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4003 { 4004 if (map->fd >= 0) 4005 return libbpf_err(-EBUSY); 4006 map->def.max_entries = max_entries; 4007 return 0; 4008 } 4009 4010 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4011 { 4012 if (!map || !max_entries) 4013 return libbpf_err(-EINVAL); 4014 4015 return bpf_map__set_max_entries(map, max_entries); 4016 } 4017 4018 static int 4019 bpf_object__probe_loading(struct bpf_object *obj) 4020 { 4021 struct bpf_load_program_attr attr; 4022 char *cp, errmsg[STRERR_BUFSIZE]; 4023 struct bpf_insn insns[] = { 4024 BPF_MOV64_IMM(BPF_REG_0, 0), 4025 BPF_EXIT_INSN(), 4026 }; 4027 int ret; 4028 4029 if (obj->gen_loader) 4030 return 0; 4031 4032 /* make sure basic loading works */ 4033 4034 memset(&attr, 0, sizeof(attr)); 4035 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4036 attr.insns = insns; 4037 attr.insns_cnt = ARRAY_SIZE(insns); 4038 attr.license = "GPL"; 4039 4040 ret = bpf_load_program_xattr(&attr, NULL, 0); 4041 if (ret < 0) { 4042 attr.prog_type = BPF_PROG_TYPE_TRACEPOINT; 4043 ret = bpf_load_program_xattr(&attr, NULL, 0); 4044 } 4045 if (ret < 0) { 4046 ret = errno; 4047 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4048 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4049 "program. Make sure your kernel supports BPF " 4050 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4051 "set to big enough value.\n", __func__, cp, ret); 4052 return -ret; 4053 } 4054 close(ret); 4055 4056 return 0; 4057 } 4058 4059 static int probe_fd(int fd) 4060 { 4061 if (fd >= 0) 4062 close(fd); 4063 return fd >= 0; 4064 } 4065 4066 static int probe_kern_prog_name(void) 4067 { 4068 struct bpf_load_program_attr attr; 4069 struct bpf_insn insns[] = { 4070 BPF_MOV64_IMM(BPF_REG_0, 0), 4071 BPF_EXIT_INSN(), 4072 }; 4073 int ret; 4074 4075 /* make sure loading with name works */ 4076 4077 memset(&attr, 0, sizeof(attr)); 4078 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4079 attr.insns = insns; 4080 attr.insns_cnt = ARRAY_SIZE(insns); 4081 attr.license = "GPL"; 4082 attr.name = "test"; 4083 ret = bpf_load_program_xattr(&attr, NULL, 0); 4084 return probe_fd(ret); 4085 } 4086 4087 static int probe_kern_global_data(void) 4088 { 4089 struct bpf_load_program_attr prg_attr; 4090 struct bpf_create_map_attr map_attr; 4091 char *cp, errmsg[STRERR_BUFSIZE]; 4092 struct bpf_insn insns[] = { 4093 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4094 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4095 BPF_MOV64_IMM(BPF_REG_0, 0), 4096 BPF_EXIT_INSN(), 4097 }; 4098 int ret, map; 4099 4100 memset(&map_attr, 0, sizeof(map_attr)); 4101 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4102 map_attr.key_size = sizeof(int); 4103 map_attr.value_size = 32; 4104 map_attr.max_entries = 1; 4105 4106 map = bpf_create_map_xattr(&map_attr); 4107 if (map < 0) { 4108 ret = -errno; 4109 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4110 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4111 __func__, cp, -ret); 4112 return ret; 4113 } 4114 4115 insns[0].imm = map; 4116 4117 memset(&prg_attr, 0, sizeof(prg_attr)); 4118 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4119 prg_attr.insns = insns; 4120 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4121 prg_attr.license = "GPL"; 4122 4123 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 4124 close(map); 4125 return probe_fd(ret); 4126 } 4127 4128 static int probe_kern_btf(void) 4129 { 4130 static const char strs[] = "\0int"; 4131 __u32 types[] = { 4132 /* int */ 4133 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4134 }; 4135 4136 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4137 strs, sizeof(strs))); 4138 } 4139 4140 static int probe_kern_btf_func(void) 4141 { 4142 static const char strs[] = "\0int\0x\0a"; 4143 /* void x(int a) {} */ 4144 __u32 types[] = { 4145 /* int */ 4146 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4147 /* FUNC_PROTO */ /* [2] */ 4148 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4149 BTF_PARAM_ENC(7, 1), 4150 /* FUNC x */ /* [3] */ 4151 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4152 }; 4153 4154 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4155 strs, sizeof(strs))); 4156 } 4157 4158 static int probe_kern_btf_func_global(void) 4159 { 4160 static const char strs[] = "\0int\0x\0a"; 4161 /* static void x(int a) {} */ 4162 __u32 types[] = { 4163 /* int */ 4164 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4165 /* FUNC_PROTO */ /* [2] */ 4166 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4167 BTF_PARAM_ENC(7, 1), 4168 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4169 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4170 }; 4171 4172 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4173 strs, sizeof(strs))); 4174 } 4175 4176 static int probe_kern_btf_datasec(void) 4177 { 4178 static const char strs[] = "\0x\0.data"; 4179 /* static int a; */ 4180 __u32 types[] = { 4181 /* int */ 4182 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4183 /* VAR x */ /* [2] */ 4184 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4185 BTF_VAR_STATIC, 4186 /* DATASEC val */ /* [3] */ 4187 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4188 BTF_VAR_SECINFO_ENC(2, 0, 4), 4189 }; 4190 4191 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4192 strs, sizeof(strs))); 4193 } 4194 4195 static int probe_kern_btf_float(void) 4196 { 4197 static const char strs[] = "\0float"; 4198 __u32 types[] = { 4199 /* float */ 4200 BTF_TYPE_FLOAT_ENC(1, 4), 4201 }; 4202 4203 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4204 strs, sizeof(strs))); 4205 } 4206 4207 static int probe_kern_array_mmap(void) 4208 { 4209 struct bpf_create_map_attr attr = { 4210 .map_type = BPF_MAP_TYPE_ARRAY, 4211 .map_flags = BPF_F_MMAPABLE, 4212 .key_size = sizeof(int), 4213 .value_size = sizeof(int), 4214 .max_entries = 1, 4215 }; 4216 4217 return probe_fd(bpf_create_map_xattr(&attr)); 4218 } 4219 4220 static int probe_kern_exp_attach_type(void) 4221 { 4222 struct bpf_load_program_attr attr; 4223 struct bpf_insn insns[] = { 4224 BPF_MOV64_IMM(BPF_REG_0, 0), 4225 BPF_EXIT_INSN(), 4226 }; 4227 4228 memset(&attr, 0, sizeof(attr)); 4229 /* use any valid combination of program type and (optional) 4230 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4231 * to see if kernel supports expected_attach_type field for 4232 * BPF_PROG_LOAD command 4233 */ 4234 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 4235 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 4236 attr.insns = insns; 4237 attr.insns_cnt = ARRAY_SIZE(insns); 4238 attr.license = "GPL"; 4239 4240 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4241 } 4242 4243 static int probe_kern_probe_read_kernel(void) 4244 { 4245 struct bpf_load_program_attr attr; 4246 struct bpf_insn insns[] = { 4247 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4248 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4249 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4250 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4251 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4252 BPF_EXIT_INSN(), 4253 }; 4254 4255 memset(&attr, 0, sizeof(attr)); 4256 attr.prog_type = BPF_PROG_TYPE_KPROBE; 4257 attr.insns = insns; 4258 attr.insns_cnt = ARRAY_SIZE(insns); 4259 attr.license = "GPL"; 4260 4261 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4262 } 4263 4264 static int probe_prog_bind_map(void) 4265 { 4266 struct bpf_load_program_attr prg_attr; 4267 struct bpf_create_map_attr map_attr; 4268 char *cp, errmsg[STRERR_BUFSIZE]; 4269 struct bpf_insn insns[] = { 4270 BPF_MOV64_IMM(BPF_REG_0, 0), 4271 BPF_EXIT_INSN(), 4272 }; 4273 int ret, map, prog; 4274 4275 memset(&map_attr, 0, sizeof(map_attr)); 4276 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4277 map_attr.key_size = sizeof(int); 4278 map_attr.value_size = 32; 4279 map_attr.max_entries = 1; 4280 4281 map = bpf_create_map_xattr(&map_attr); 4282 if (map < 0) { 4283 ret = -errno; 4284 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4285 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4286 __func__, cp, -ret); 4287 return ret; 4288 } 4289 4290 memset(&prg_attr, 0, sizeof(prg_attr)); 4291 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4292 prg_attr.insns = insns; 4293 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4294 prg_attr.license = "GPL"; 4295 4296 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 4297 if (prog < 0) { 4298 close(map); 4299 return 0; 4300 } 4301 4302 ret = bpf_prog_bind_map(prog, map, NULL); 4303 4304 close(map); 4305 close(prog); 4306 4307 return ret >= 0; 4308 } 4309 4310 static int probe_module_btf(void) 4311 { 4312 static const char strs[] = "\0int"; 4313 __u32 types[] = { 4314 /* int */ 4315 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4316 }; 4317 struct bpf_btf_info info; 4318 __u32 len = sizeof(info); 4319 char name[16]; 4320 int fd, err; 4321 4322 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4323 if (fd < 0) 4324 return 0; /* BTF not supported at all */ 4325 4326 memset(&info, 0, sizeof(info)); 4327 info.name = ptr_to_u64(name); 4328 info.name_len = sizeof(name); 4329 4330 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4331 * kernel's module BTF support coincides with support for 4332 * name/name_len fields in struct bpf_btf_info. 4333 */ 4334 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4335 close(fd); 4336 return !err; 4337 } 4338 4339 enum kern_feature_result { 4340 FEAT_UNKNOWN = 0, 4341 FEAT_SUPPORTED = 1, 4342 FEAT_MISSING = 2, 4343 }; 4344 4345 typedef int (*feature_probe_fn)(void); 4346 4347 static struct kern_feature_desc { 4348 const char *desc; 4349 feature_probe_fn probe; 4350 enum kern_feature_result res; 4351 } feature_probes[__FEAT_CNT] = { 4352 [FEAT_PROG_NAME] = { 4353 "BPF program name", probe_kern_prog_name, 4354 }, 4355 [FEAT_GLOBAL_DATA] = { 4356 "global variables", probe_kern_global_data, 4357 }, 4358 [FEAT_BTF] = { 4359 "minimal BTF", probe_kern_btf, 4360 }, 4361 [FEAT_BTF_FUNC] = { 4362 "BTF functions", probe_kern_btf_func, 4363 }, 4364 [FEAT_BTF_GLOBAL_FUNC] = { 4365 "BTF global function", probe_kern_btf_func_global, 4366 }, 4367 [FEAT_BTF_DATASEC] = { 4368 "BTF data section and variable", probe_kern_btf_datasec, 4369 }, 4370 [FEAT_ARRAY_MMAP] = { 4371 "ARRAY map mmap()", probe_kern_array_mmap, 4372 }, 4373 [FEAT_EXP_ATTACH_TYPE] = { 4374 "BPF_PROG_LOAD expected_attach_type attribute", 4375 probe_kern_exp_attach_type, 4376 }, 4377 [FEAT_PROBE_READ_KERN] = { 4378 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4379 }, 4380 [FEAT_PROG_BIND_MAP] = { 4381 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4382 }, 4383 [FEAT_MODULE_BTF] = { 4384 "module BTF support", probe_module_btf, 4385 }, 4386 [FEAT_BTF_FLOAT] = { 4387 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4388 }, 4389 }; 4390 4391 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4392 { 4393 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4394 int ret; 4395 4396 if (obj->gen_loader) 4397 /* To generate loader program assume the latest kernel 4398 * to avoid doing extra prog_load, map_create syscalls. 4399 */ 4400 return true; 4401 4402 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4403 ret = feat->probe(); 4404 if (ret > 0) { 4405 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4406 } else if (ret == 0) { 4407 WRITE_ONCE(feat->res, FEAT_MISSING); 4408 } else { 4409 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4410 WRITE_ONCE(feat->res, FEAT_MISSING); 4411 } 4412 } 4413 4414 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4415 } 4416 4417 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4418 { 4419 struct bpf_map_info map_info = {}; 4420 char msg[STRERR_BUFSIZE]; 4421 __u32 map_info_len; 4422 int err; 4423 4424 map_info_len = sizeof(map_info); 4425 4426 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4427 if (err && errno == EINVAL) 4428 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4429 if (err) { 4430 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4431 libbpf_strerror_r(errno, msg, sizeof(msg))); 4432 return false; 4433 } 4434 4435 return (map_info.type == map->def.type && 4436 map_info.key_size == map->def.key_size && 4437 map_info.value_size == map->def.value_size && 4438 map_info.max_entries == map->def.max_entries && 4439 map_info.map_flags == map->def.map_flags); 4440 } 4441 4442 static int 4443 bpf_object__reuse_map(struct bpf_map *map) 4444 { 4445 char *cp, errmsg[STRERR_BUFSIZE]; 4446 int err, pin_fd; 4447 4448 pin_fd = bpf_obj_get(map->pin_path); 4449 if (pin_fd < 0) { 4450 err = -errno; 4451 if (err == -ENOENT) { 4452 pr_debug("found no pinned map to reuse at '%s'\n", 4453 map->pin_path); 4454 return 0; 4455 } 4456 4457 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4458 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4459 map->pin_path, cp); 4460 return err; 4461 } 4462 4463 if (!map_is_reuse_compat(map, pin_fd)) { 4464 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4465 map->pin_path); 4466 close(pin_fd); 4467 return -EINVAL; 4468 } 4469 4470 err = bpf_map__reuse_fd(map, pin_fd); 4471 if (err) { 4472 close(pin_fd); 4473 return err; 4474 } 4475 map->pinned = true; 4476 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4477 4478 return 0; 4479 } 4480 4481 static int 4482 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4483 { 4484 enum libbpf_map_type map_type = map->libbpf_type; 4485 char *cp, errmsg[STRERR_BUFSIZE]; 4486 int err, zero = 0; 4487 4488 if (obj->gen_loader) { 4489 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4490 map->mmaped, map->def.value_size); 4491 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4492 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4493 return 0; 4494 } 4495 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4496 if (err) { 4497 err = -errno; 4498 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4499 pr_warn("Error setting initial map(%s) contents: %s\n", 4500 map->name, cp); 4501 return err; 4502 } 4503 4504 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4505 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4506 err = bpf_map_freeze(map->fd); 4507 if (err) { 4508 err = -errno; 4509 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4510 pr_warn("Error freezing map(%s) as read-only: %s\n", 4511 map->name, cp); 4512 return err; 4513 } 4514 } 4515 return 0; 4516 } 4517 4518 static void bpf_map__destroy(struct bpf_map *map); 4519 4520 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4521 { 4522 struct bpf_create_map_attr create_attr; 4523 struct bpf_map_def *def = &map->def; 4524 4525 memset(&create_attr, 0, sizeof(create_attr)); 4526 4527 if (kernel_supports(obj, FEAT_PROG_NAME)) 4528 create_attr.name = map->name; 4529 create_attr.map_ifindex = map->map_ifindex; 4530 create_attr.map_type = def->type; 4531 create_attr.map_flags = def->map_flags; 4532 create_attr.key_size = def->key_size; 4533 create_attr.value_size = def->value_size; 4534 create_attr.numa_node = map->numa_node; 4535 4536 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4537 int nr_cpus; 4538 4539 nr_cpus = libbpf_num_possible_cpus(); 4540 if (nr_cpus < 0) { 4541 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4542 map->name, nr_cpus); 4543 return nr_cpus; 4544 } 4545 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4546 create_attr.max_entries = nr_cpus; 4547 } else { 4548 create_attr.max_entries = def->max_entries; 4549 } 4550 4551 if (bpf_map__is_struct_ops(map)) 4552 create_attr.btf_vmlinux_value_type_id = 4553 map->btf_vmlinux_value_type_id; 4554 4555 create_attr.btf_fd = 0; 4556 create_attr.btf_key_type_id = 0; 4557 create_attr.btf_value_type_id = 0; 4558 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4559 create_attr.btf_fd = btf__fd(obj->btf); 4560 create_attr.btf_key_type_id = map->btf_key_type_id; 4561 create_attr.btf_value_type_id = map->btf_value_type_id; 4562 } 4563 4564 if (bpf_map_type__is_map_in_map(def->type)) { 4565 if (map->inner_map) { 4566 int err; 4567 4568 err = bpf_object__create_map(obj, map->inner_map, true); 4569 if (err) { 4570 pr_warn("map '%s': failed to create inner map: %d\n", 4571 map->name, err); 4572 return err; 4573 } 4574 map->inner_map_fd = bpf_map__fd(map->inner_map); 4575 } 4576 if (map->inner_map_fd >= 0) 4577 create_attr.inner_map_fd = map->inner_map_fd; 4578 } 4579 4580 if (obj->gen_loader) { 4581 bpf_gen__map_create(obj->gen_loader, &create_attr, is_inner ? -1 : map - obj->maps); 4582 /* Pretend to have valid FD to pass various fd >= 0 checks. 4583 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4584 */ 4585 map->fd = 0; 4586 } else { 4587 map->fd = bpf_create_map_xattr(&create_attr); 4588 } 4589 if (map->fd < 0 && (create_attr.btf_key_type_id || 4590 create_attr.btf_value_type_id)) { 4591 char *cp, errmsg[STRERR_BUFSIZE]; 4592 int err = -errno; 4593 4594 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4595 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4596 map->name, cp, err); 4597 create_attr.btf_fd = 0; 4598 create_attr.btf_key_type_id = 0; 4599 create_attr.btf_value_type_id = 0; 4600 map->btf_key_type_id = 0; 4601 map->btf_value_type_id = 0; 4602 map->fd = bpf_create_map_xattr(&create_attr); 4603 } 4604 4605 if (map->fd < 0) 4606 return -errno; 4607 4608 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4609 if (obj->gen_loader) 4610 map->inner_map->fd = -1; 4611 bpf_map__destroy(map->inner_map); 4612 zfree(&map->inner_map); 4613 } 4614 4615 return 0; 4616 } 4617 4618 static int init_map_slots(struct bpf_object *obj, struct bpf_map *map) 4619 { 4620 const struct bpf_map *targ_map; 4621 unsigned int i; 4622 int fd, err = 0; 4623 4624 for (i = 0; i < map->init_slots_sz; i++) { 4625 if (!map->init_slots[i]) 4626 continue; 4627 4628 targ_map = map->init_slots[i]; 4629 fd = bpf_map__fd(targ_map); 4630 if (obj->gen_loader) { 4631 pr_warn("// TODO map_update_elem: idx %td key %d value==map_idx %td\n", 4632 map - obj->maps, i, targ_map - obj->maps); 4633 return -ENOTSUP; 4634 } else { 4635 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4636 } 4637 if (err) { 4638 err = -errno; 4639 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4640 map->name, i, targ_map->name, 4641 fd, err); 4642 return err; 4643 } 4644 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4645 map->name, i, targ_map->name, fd); 4646 } 4647 4648 zfree(&map->init_slots); 4649 map->init_slots_sz = 0; 4650 4651 return 0; 4652 } 4653 4654 static int 4655 bpf_object__create_maps(struct bpf_object *obj) 4656 { 4657 struct bpf_map *map; 4658 char *cp, errmsg[STRERR_BUFSIZE]; 4659 unsigned int i, j; 4660 int err; 4661 4662 for (i = 0; i < obj->nr_maps; i++) { 4663 map = &obj->maps[i]; 4664 4665 if (map->pin_path) { 4666 err = bpf_object__reuse_map(map); 4667 if (err) { 4668 pr_warn("map '%s': error reusing pinned map\n", 4669 map->name); 4670 goto err_out; 4671 } 4672 } 4673 4674 if (map->fd >= 0) { 4675 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4676 map->name, map->fd); 4677 } else { 4678 err = bpf_object__create_map(obj, map, false); 4679 if (err) 4680 goto err_out; 4681 4682 pr_debug("map '%s': created successfully, fd=%d\n", 4683 map->name, map->fd); 4684 4685 if (bpf_map__is_internal(map)) { 4686 err = bpf_object__populate_internal_map(obj, map); 4687 if (err < 0) { 4688 zclose(map->fd); 4689 goto err_out; 4690 } 4691 } 4692 4693 if (map->init_slots_sz) { 4694 err = init_map_slots(obj, map); 4695 if (err < 0) { 4696 zclose(map->fd); 4697 goto err_out; 4698 } 4699 } 4700 } 4701 4702 if (map->pin_path && !map->pinned) { 4703 err = bpf_map__pin(map, NULL); 4704 if (err) { 4705 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4706 map->name, map->pin_path, err); 4707 zclose(map->fd); 4708 goto err_out; 4709 } 4710 } 4711 } 4712 4713 return 0; 4714 4715 err_out: 4716 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4717 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4718 pr_perm_msg(err); 4719 for (j = 0; j < i; j++) 4720 zclose(obj->maps[j].fd); 4721 return err; 4722 } 4723 4724 #define BPF_CORE_SPEC_MAX_LEN 64 4725 4726 /* represents BPF CO-RE field or array element accessor */ 4727 struct bpf_core_accessor { 4728 __u32 type_id; /* struct/union type or array element type */ 4729 __u32 idx; /* field index or array index */ 4730 const char *name; /* field name or NULL for array accessor */ 4731 }; 4732 4733 struct bpf_core_spec { 4734 const struct btf *btf; 4735 /* high-level spec: named fields and array indices only */ 4736 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4737 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4738 __u32 root_type_id; 4739 /* CO-RE relocation kind */ 4740 enum bpf_core_relo_kind relo_kind; 4741 /* high-level spec length */ 4742 int len; 4743 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4744 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4745 /* raw spec length */ 4746 int raw_len; 4747 /* field bit offset represented by spec */ 4748 __u32 bit_offset; 4749 }; 4750 4751 static bool str_is_empty(const char *s) 4752 { 4753 return !s || !s[0]; 4754 } 4755 4756 static bool is_flex_arr(const struct btf *btf, 4757 const struct bpf_core_accessor *acc, 4758 const struct btf_array *arr) 4759 { 4760 const struct btf_type *t; 4761 4762 /* not a flexible array, if not inside a struct or has non-zero size */ 4763 if (!acc->name || arr->nelems > 0) 4764 return false; 4765 4766 /* has to be the last member of enclosing struct */ 4767 t = btf__type_by_id(btf, acc->type_id); 4768 return acc->idx == btf_vlen(t) - 1; 4769 } 4770 4771 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4772 { 4773 switch (kind) { 4774 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4775 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4776 case BPF_FIELD_EXISTS: return "field_exists"; 4777 case BPF_FIELD_SIGNED: return "signed"; 4778 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4779 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4780 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4781 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4782 case BPF_TYPE_EXISTS: return "type_exists"; 4783 case BPF_TYPE_SIZE: return "type_size"; 4784 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4785 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4786 default: return "unknown"; 4787 } 4788 } 4789 4790 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4791 { 4792 switch (kind) { 4793 case BPF_FIELD_BYTE_OFFSET: 4794 case BPF_FIELD_BYTE_SIZE: 4795 case BPF_FIELD_EXISTS: 4796 case BPF_FIELD_SIGNED: 4797 case BPF_FIELD_LSHIFT_U64: 4798 case BPF_FIELD_RSHIFT_U64: 4799 return true; 4800 default: 4801 return false; 4802 } 4803 } 4804 4805 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4806 { 4807 switch (kind) { 4808 case BPF_TYPE_ID_LOCAL: 4809 case BPF_TYPE_ID_TARGET: 4810 case BPF_TYPE_EXISTS: 4811 case BPF_TYPE_SIZE: 4812 return true; 4813 default: 4814 return false; 4815 } 4816 } 4817 4818 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4819 { 4820 switch (kind) { 4821 case BPF_ENUMVAL_EXISTS: 4822 case BPF_ENUMVAL_VALUE: 4823 return true; 4824 default: 4825 return false; 4826 } 4827 } 4828 4829 /* 4830 * Turn bpf_core_relo into a low- and high-level spec representation, 4831 * validating correctness along the way, as well as calculating resulting 4832 * field bit offset, specified by accessor string. Low-level spec captures 4833 * every single level of nestedness, including traversing anonymous 4834 * struct/union members. High-level one only captures semantically meaningful 4835 * "turning points": named fields and array indicies. 4836 * E.g., for this case: 4837 * 4838 * struct sample { 4839 * int __unimportant; 4840 * struct { 4841 * int __1; 4842 * int __2; 4843 * int a[7]; 4844 * }; 4845 * }; 4846 * 4847 * struct sample *s = ...; 4848 * 4849 * int x = &s->a[3]; // access string = '0:1:2:3' 4850 * 4851 * Low-level spec has 1:1 mapping with each element of access string (it's 4852 * just a parsed access string representation): [0, 1, 2, 3]. 4853 * 4854 * High-level spec will capture only 3 points: 4855 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4856 * - field 'a' access (corresponds to '2' in low-level spec); 4857 * - array element #3 access (corresponds to '3' in low-level spec). 4858 * 4859 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4860 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4861 * spec and raw_spec are kept empty. 4862 * 4863 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4864 * string to specify enumerator's value index that need to be relocated. 4865 */ 4866 static int bpf_core_parse_spec(const struct btf *btf, 4867 __u32 type_id, 4868 const char *spec_str, 4869 enum bpf_core_relo_kind relo_kind, 4870 struct bpf_core_spec *spec) 4871 { 4872 int access_idx, parsed_len, i; 4873 struct bpf_core_accessor *acc; 4874 const struct btf_type *t; 4875 const char *name; 4876 __u32 id; 4877 __s64 sz; 4878 4879 if (str_is_empty(spec_str) || *spec_str == ':') 4880 return -EINVAL; 4881 4882 memset(spec, 0, sizeof(*spec)); 4883 spec->btf = btf; 4884 spec->root_type_id = type_id; 4885 spec->relo_kind = relo_kind; 4886 4887 /* type-based relocations don't have a field access string */ 4888 if (core_relo_is_type_based(relo_kind)) { 4889 if (strcmp(spec_str, "0")) 4890 return -EINVAL; 4891 return 0; 4892 } 4893 4894 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4895 while (*spec_str) { 4896 if (*spec_str == ':') 4897 ++spec_str; 4898 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4899 return -EINVAL; 4900 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4901 return -E2BIG; 4902 spec_str += parsed_len; 4903 spec->raw_spec[spec->raw_len++] = access_idx; 4904 } 4905 4906 if (spec->raw_len == 0) 4907 return -EINVAL; 4908 4909 t = skip_mods_and_typedefs(btf, type_id, &id); 4910 if (!t) 4911 return -EINVAL; 4912 4913 access_idx = spec->raw_spec[0]; 4914 acc = &spec->spec[0]; 4915 acc->type_id = id; 4916 acc->idx = access_idx; 4917 spec->len++; 4918 4919 if (core_relo_is_enumval_based(relo_kind)) { 4920 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4921 return -EINVAL; 4922 4923 /* record enumerator name in a first accessor */ 4924 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4925 return 0; 4926 } 4927 4928 if (!core_relo_is_field_based(relo_kind)) 4929 return -EINVAL; 4930 4931 sz = btf__resolve_size(btf, id); 4932 if (sz < 0) 4933 return sz; 4934 spec->bit_offset = access_idx * sz * 8; 4935 4936 for (i = 1; i < spec->raw_len; i++) { 4937 t = skip_mods_and_typedefs(btf, id, &id); 4938 if (!t) 4939 return -EINVAL; 4940 4941 access_idx = spec->raw_spec[i]; 4942 acc = &spec->spec[spec->len]; 4943 4944 if (btf_is_composite(t)) { 4945 const struct btf_member *m; 4946 __u32 bit_offset; 4947 4948 if (access_idx >= btf_vlen(t)) 4949 return -EINVAL; 4950 4951 bit_offset = btf_member_bit_offset(t, access_idx); 4952 spec->bit_offset += bit_offset; 4953 4954 m = btf_members(t) + access_idx; 4955 if (m->name_off) { 4956 name = btf__name_by_offset(btf, m->name_off); 4957 if (str_is_empty(name)) 4958 return -EINVAL; 4959 4960 acc->type_id = id; 4961 acc->idx = access_idx; 4962 acc->name = name; 4963 spec->len++; 4964 } 4965 4966 id = m->type; 4967 } else if (btf_is_array(t)) { 4968 const struct btf_array *a = btf_array(t); 4969 bool flex; 4970 4971 t = skip_mods_and_typedefs(btf, a->type, &id); 4972 if (!t) 4973 return -EINVAL; 4974 4975 flex = is_flex_arr(btf, acc - 1, a); 4976 if (!flex && access_idx >= a->nelems) 4977 return -EINVAL; 4978 4979 spec->spec[spec->len].type_id = id; 4980 spec->spec[spec->len].idx = access_idx; 4981 spec->len++; 4982 4983 sz = btf__resolve_size(btf, id); 4984 if (sz < 0) 4985 return sz; 4986 spec->bit_offset += access_idx * sz * 8; 4987 } else { 4988 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4989 type_id, spec_str, i, id, btf_kind_str(t)); 4990 return -EINVAL; 4991 } 4992 } 4993 4994 return 0; 4995 } 4996 4997 static bool bpf_core_is_flavor_sep(const char *s) 4998 { 4999 /* check X___Y name pattern, where X and Y are not underscores */ 5000 return s[0] != '_' && /* X */ 5001 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5002 s[4] != '_'; /* Y */ 5003 } 5004 5005 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5006 * before last triple underscore. Struct name part after last triple 5007 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5008 */ 5009 static size_t bpf_core_essential_name_len(const char *name) 5010 { 5011 size_t n = strlen(name); 5012 int i; 5013 5014 for (i = n - 5; i >= 0; i--) { 5015 if (bpf_core_is_flavor_sep(name + i)) 5016 return i + 1; 5017 } 5018 return n; 5019 } 5020 5021 struct core_cand 5022 { 5023 const struct btf *btf; 5024 const struct btf_type *t; 5025 const char *name; 5026 __u32 id; 5027 }; 5028 5029 /* dynamically sized list of type IDs and its associated struct btf */ 5030 struct core_cand_list { 5031 struct core_cand *cands; 5032 int len; 5033 }; 5034 5035 static void bpf_core_free_cands(struct core_cand_list *cands) 5036 { 5037 free(cands->cands); 5038 free(cands); 5039 } 5040 5041 static int bpf_core_add_cands(struct core_cand *local_cand, 5042 size_t local_essent_len, 5043 const struct btf *targ_btf, 5044 const char *targ_btf_name, 5045 int targ_start_id, 5046 struct core_cand_list *cands) 5047 { 5048 struct core_cand *new_cands, *cand; 5049 const struct btf_type *t; 5050 const char *targ_name; 5051 size_t targ_essent_len; 5052 int n, i; 5053 5054 n = btf__get_nr_types(targ_btf); 5055 for (i = targ_start_id; i <= n; i++) { 5056 t = btf__type_by_id(targ_btf, i); 5057 if (btf_kind(t) != btf_kind(local_cand->t)) 5058 continue; 5059 5060 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5061 if (str_is_empty(targ_name)) 5062 continue; 5063 5064 targ_essent_len = bpf_core_essential_name_len(targ_name); 5065 if (targ_essent_len != local_essent_len) 5066 continue; 5067 5068 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 5069 continue; 5070 5071 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5072 local_cand->id, btf_kind_str(local_cand->t), 5073 local_cand->name, i, btf_kind_str(t), targ_name, 5074 targ_btf_name); 5075 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5076 sizeof(*cands->cands)); 5077 if (!new_cands) 5078 return -ENOMEM; 5079 5080 cand = &new_cands[cands->len]; 5081 cand->btf = targ_btf; 5082 cand->t = t; 5083 cand->name = targ_name; 5084 cand->id = i; 5085 5086 cands->cands = new_cands; 5087 cands->len++; 5088 } 5089 return 0; 5090 } 5091 5092 static int load_module_btfs(struct bpf_object *obj) 5093 { 5094 struct bpf_btf_info info; 5095 struct module_btf *mod_btf; 5096 struct btf *btf; 5097 char name[64]; 5098 __u32 id = 0, len; 5099 int err, fd; 5100 5101 if (obj->btf_modules_loaded) 5102 return 0; 5103 5104 if (obj->gen_loader) 5105 return 0; 5106 5107 /* don't do this again, even if we find no module BTFs */ 5108 obj->btf_modules_loaded = true; 5109 5110 /* kernel too old to support module BTFs */ 5111 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5112 return 0; 5113 5114 while (true) { 5115 err = bpf_btf_get_next_id(id, &id); 5116 if (err && errno == ENOENT) 5117 return 0; 5118 if (err) { 5119 err = -errno; 5120 pr_warn("failed to iterate BTF objects: %d\n", err); 5121 return err; 5122 } 5123 5124 fd = bpf_btf_get_fd_by_id(id); 5125 if (fd < 0) { 5126 if (errno == ENOENT) 5127 continue; /* expected race: BTF was unloaded */ 5128 err = -errno; 5129 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5130 return err; 5131 } 5132 5133 len = sizeof(info); 5134 memset(&info, 0, sizeof(info)); 5135 info.name = ptr_to_u64(name); 5136 info.name_len = sizeof(name); 5137 5138 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5139 if (err) { 5140 err = -errno; 5141 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5142 goto err_out; 5143 } 5144 5145 /* ignore non-module BTFs */ 5146 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5147 close(fd); 5148 continue; 5149 } 5150 5151 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5152 err = libbpf_get_error(btf); 5153 if (err) { 5154 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5155 name, id, err); 5156 goto err_out; 5157 } 5158 5159 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5160 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5161 if (err) 5162 goto err_out; 5163 5164 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5165 5166 mod_btf->btf = btf; 5167 mod_btf->id = id; 5168 mod_btf->fd = fd; 5169 mod_btf->name = strdup(name); 5170 if (!mod_btf->name) { 5171 err = -ENOMEM; 5172 goto err_out; 5173 } 5174 continue; 5175 5176 err_out: 5177 close(fd); 5178 return err; 5179 } 5180 5181 return 0; 5182 } 5183 5184 static struct core_cand_list * 5185 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5186 { 5187 struct core_cand local_cand = {}; 5188 struct core_cand_list *cands; 5189 const struct btf *main_btf; 5190 size_t local_essent_len; 5191 int err, i; 5192 5193 local_cand.btf = local_btf; 5194 local_cand.t = btf__type_by_id(local_btf, local_type_id); 5195 if (!local_cand.t) 5196 return ERR_PTR(-EINVAL); 5197 5198 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 5199 if (str_is_empty(local_cand.name)) 5200 return ERR_PTR(-EINVAL); 5201 local_essent_len = bpf_core_essential_name_len(local_cand.name); 5202 5203 cands = calloc(1, sizeof(*cands)); 5204 if (!cands) 5205 return ERR_PTR(-ENOMEM); 5206 5207 /* Attempt to find target candidates in vmlinux BTF first */ 5208 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5209 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5210 if (err) 5211 goto err_out; 5212 5213 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5214 if (cands->len) 5215 return cands; 5216 5217 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5218 if (obj->btf_vmlinux_override) 5219 return cands; 5220 5221 /* now look through module BTFs, trying to still find candidates */ 5222 err = load_module_btfs(obj); 5223 if (err) 5224 goto err_out; 5225 5226 for (i = 0; i < obj->btf_module_cnt; i++) { 5227 err = bpf_core_add_cands(&local_cand, local_essent_len, 5228 obj->btf_modules[i].btf, 5229 obj->btf_modules[i].name, 5230 btf__get_nr_types(obj->btf_vmlinux) + 1, 5231 cands); 5232 if (err) 5233 goto err_out; 5234 } 5235 5236 return cands; 5237 err_out: 5238 bpf_core_free_cands(cands); 5239 return ERR_PTR(err); 5240 } 5241 5242 /* Check two types for compatibility for the purpose of field access 5243 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 5244 * are relocating semantically compatible entities: 5245 * - any two STRUCTs/UNIONs are compatible and can be mixed; 5246 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 5247 * - any two PTRs are always compatible; 5248 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 5249 * least one of enums should be anonymous; 5250 * - for ENUMs, check sizes, names are ignored; 5251 * - for INT, size and signedness are ignored; 5252 * - any two FLOATs are always compatible; 5253 * - for ARRAY, dimensionality is ignored, element types are checked for 5254 * compatibility recursively; 5255 * - everything else shouldn't be ever a target of relocation. 5256 * These rules are not set in stone and probably will be adjusted as we get 5257 * more experience with using BPF CO-RE relocations. 5258 */ 5259 static int bpf_core_fields_are_compat(const struct btf *local_btf, 5260 __u32 local_id, 5261 const struct btf *targ_btf, 5262 __u32 targ_id) 5263 { 5264 const struct btf_type *local_type, *targ_type; 5265 5266 recur: 5267 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5268 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5269 if (!local_type || !targ_type) 5270 return -EINVAL; 5271 5272 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 5273 return 1; 5274 if (btf_kind(local_type) != btf_kind(targ_type)) 5275 return 0; 5276 5277 switch (btf_kind(local_type)) { 5278 case BTF_KIND_PTR: 5279 case BTF_KIND_FLOAT: 5280 return 1; 5281 case BTF_KIND_FWD: 5282 case BTF_KIND_ENUM: { 5283 const char *local_name, *targ_name; 5284 size_t local_len, targ_len; 5285 5286 local_name = btf__name_by_offset(local_btf, 5287 local_type->name_off); 5288 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 5289 local_len = bpf_core_essential_name_len(local_name); 5290 targ_len = bpf_core_essential_name_len(targ_name); 5291 /* one of them is anonymous or both w/ same flavor-less names */ 5292 return local_len == 0 || targ_len == 0 || 5293 (local_len == targ_len && 5294 strncmp(local_name, targ_name, local_len) == 0); 5295 } 5296 case BTF_KIND_INT: 5297 /* just reject deprecated bitfield-like integers; all other 5298 * integers are by default compatible between each other 5299 */ 5300 return btf_int_offset(local_type) == 0 && 5301 btf_int_offset(targ_type) == 0; 5302 case BTF_KIND_ARRAY: 5303 local_id = btf_array(local_type)->type; 5304 targ_id = btf_array(targ_type)->type; 5305 goto recur; 5306 default: 5307 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 5308 btf_kind(local_type), local_id, targ_id); 5309 return 0; 5310 } 5311 } 5312 5313 /* 5314 * Given single high-level named field accessor in local type, find 5315 * corresponding high-level accessor for a target type. Along the way, 5316 * maintain low-level spec for target as well. Also keep updating target 5317 * bit offset. 5318 * 5319 * Searching is performed through recursive exhaustive enumeration of all 5320 * fields of a struct/union. If there are any anonymous (embedded) 5321 * structs/unions, they are recursively searched as well. If field with 5322 * desired name is found, check compatibility between local and target types, 5323 * before returning result. 5324 * 5325 * 1 is returned, if field is found. 5326 * 0 is returned if no compatible field is found. 5327 * <0 is returned on error. 5328 */ 5329 static int bpf_core_match_member(const struct btf *local_btf, 5330 const struct bpf_core_accessor *local_acc, 5331 const struct btf *targ_btf, 5332 __u32 targ_id, 5333 struct bpf_core_spec *spec, 5334 __u32 *next_targ_id) 5335 { 5336 const struct btf_type *local_type, *targ_type; 5337 const struct btf_member *local_member, *m; 5338 const char *local_name, *targ_name; 5339 __u32 local_id; 5340 int i, n, found; 5341 5342 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5343 if (!targ_type) 5344 return -EINVAL; 5345 if (!btf_is_composite(targ_type)) 5346 return 0; 5347 5348 local_id = local_acc->type_id; 5349 local_type = btf__type_by_id(local_btf, local_id); 5350 local_member = btf_members(local_type) + local_acc->idx; 5351 local_name = btf__name_by_offset(local_btf, local_member->name_off); 5352 5353 n = btf_vlen(targ_type); 5354 m = btf_members(targ_type); 5355 for (i = 0; i < n; i++, m++) { 5356 __u32 bit_offset; 5357 5358 bit_offset = btf_member_bit_offset(targ_type, i); 5359 5360 /* too deep struct/union/array nesting */ 5361 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5362 return -E2BIG; 5363 5364 /* speculate this member will be the good one */ 5365 spec->bit_offset += bit_offset; 5366 spec->raw_spec[spec->raw_len++] = i; 5367 5368 targ_name = btf__name_by_offset(targ_btf, m->name_off); 5369 if (str_is_empty(targ_name)) { 5370 /* embedded struct/union, we need to go deeper */ 5371 found = bpf_core_match_member(local_btf, local_acc, 5372 targ_btf, m->type, 5373 spec, next_targ_id); 5374 if (found) /* either found or error */ 5375 return found; 5376 } else if (strcmp(local_name, targ_name) == 0) { 5377 /* matching named field */ 5378 struct bpf_core_accessor *targ_acc; 5379 5380 targ_acc = &spec->spec[spec->len++]; 5381 targ_acc->type_id = targ_id; 5382 targ_acc->idx = i; 5383 targ_acc->name = targ_name; 5384 5385 *next_targ_id = m->type; 5386 found = bpf_core_fields_are_compat(local_btf, 5387 local_member->type, 5388 targ_btf, m->type); 5389 if (!found) 5390 spec->len--; /* pop accessor */ 5391 return found; 5392 } 5393 /* member turned out not to be what we looked for */ 5394 spec->bit_offset -= bit_offset; 5395 spec->raw_len--; 5396 } 5397 5398 return 0; 5399 } 5400 5401 /* Check local and target types for compatibility. This check is used for 5402 * type-based CO-RE relocations and follow slightly different rules than 5403 * field-based relocations. This function assumes that root types were already 5404 * checked for name match. Beyond that initial root-level name check, names 5405 * are completely ignored. Compatibility rules are as follows: 5406 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5407 * kind should match for local and target types (i.e., STRUCT is not 5408 * compatible with UNION); 5409 * - for ENUMs, the size is ignored; 5410 * - for INT, size and signedness are ignored; 5411 * - for ARRAY, dimensionality is ignored, element types are checked for 5412 * compatibility recursively; 5413 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5414 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5415 * - FUNC_PROTOs are compatible if they have compatible signature: same 5416 * number of input args and compatible return and argument types. 5417 * These rules are not set in stone and probably will be adjusted as we get 5418 * more experience with using BPF CO-RE relocations. 5419 */ 5420 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5421 const struct btf *targ_btf, __u32 targ_id) 5422 { 5423 const struct btf_type *local_type, *targ_type; 5424 int depth = 32; /* max recursion depth */ 5425 5426 /* caller made sure that names match (ignoring flavor suffix) */ 5427 local_type = btf__type_by_id(local_btf, local_id); 5428 targ_type = btf__type_by_id(targ_btf, targ_id); 5429 if (btf_kind(local_type) != btf_kind(targ_type)) 5430 return 0; 5431 5432 recur: 5433 depth--; 5434 if (depth < 0) 5435 return -EINVAL; 5436 5437 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5438 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5439 if (!local_type || !targ_type) 5440 return -EINVAL; 5441 5442 if (btf_kind(local_type) != btf_kind(targ_type)) 5443 return 0; 5444 5445 switch (btf_kind(local_type)) { 5446 case BTF_KIND_UNKN: 5447 case BTF_KIND_STRUCT: 5448 case BTF_KIND_UNION: 5449 case BTF_KIND_ENUM: 5450 case BTF_KIND_FWD: 5451 return 1; 5452 case BTF_KIND_INT: 5453 /* just reject deprecated bitfield-like integers; all other 5454 * integers are by default compatible between each other 5455 */ 5456 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5457 case BTF_KIND_PTR: 5458 local_id = local_type->type; 5459 targ_id = targ_type->type; 5460 goto recur; 5461 case BTF_KIND_ARRAY: 5462 local_id = btf_array(local_type)->type; 5463 targ_id = btf_array(targ_type)->type; 5464 goto recur; 5465 case BTF_KIND_FUNC_PROTO: { 5466 struct btf_param *local_p = btf_params(local_type); 5467 struct btf_param *targ_p = btf_params(targ_type); 5468 __u16 local_vlen = btf_vlen(local_type); 5469 __u16 targ_vlen = btf_vlen(targ_type); 5470 int i, err; 5471 5472 if (local_vlen != targ_vlen) 5473 return 0; 5474 5475 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5476 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5477 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5478 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5479 if (err <= 0) 5480 return err; 5481 } 5482 5483 /* tail recurse for return type check */ 5484 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5485 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5486 goto recur; 5487 } 5488 default: 5489 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5490 btf_kind_str(local_type), local_id, targ_id); 5491 return 0; 5492 } 5493 } 5494 5495 /* 5496 * Try to match local spec to a target type and, if successful, produce full 5497 * target spec (high-level, low-level + bit offset). 5498 */ 5499 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 5500 const struct btf *targ_btf, __u32 targ_id, 5501 struct bpf_core_spec *targ_spec) 5502 { 5503 const struct btf_type *targ_type; 5504 const struct bpf_core_accessor *local_acc; 5505 struct bpf_core_accessor *targ_acc; 5506 int i, sz, matched; 5507 5508 memset(targ_spec, 0, sizeof(*targ_spec)); 5509 targ_spec->btf = targ_btf; 5510 targ_spec->root_type_id = targ_id; 5511 targ_spec->relo_kind = local_spec->relo_kind; 5512 5513 if (core_relo_is_type_based(local_spec->relo_kind)) { 5514 return bpf_core_types_are_compat(local_spec->btf, 5515 local_spec->root_type_id, 5516 targ_btf, targ_id); 5517 } 5518 5519 local_acc = &local_spec->spec[0]; 5520 targ_acc = &targ_spec->spec[0]; 5521 5522 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5523 size_t local_essent_len, targ_essent_len; 5524 const struct btf_enum *e; 5525 const char *targ_name; 5526 5527 /* has to resolve to an enum */ 5528 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5529 if (!btf_is_enum(targ_type)) 5530 return 0; 5531 5532 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5533 5534 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5535 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5536 targ_essent_len = bpf_core_essential_name_len(targ_name); 5537 if (targ_essent_len != local_essent_len) 5538 continue; 5539 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5540 targ_acc->type_id = targ_id; 5541 targ_acc->idx = i; 5542 targ_acc->name = targ_name; 5543 targ_spec->len++; 5544 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5545 targ_spec->raw_len++; 5546 return 1; 5547 } 5548 } 5549 return 0; 5550 } 5551 5552 if (!core_relo_is_field_based(local_spec->relo_kind)) 5553 return -EINVAL; 5554 5555 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5556 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5557 &targ_id); 5558 if (!targ_type) 5559 return -EINVAL; 5560 5561 if (local_acc->name) { 5562 matched = bpf_core_match_member(local_spec->btf, 5563 local_acc, 5564 targ_btf, targ_id, 5565 targ_spec, &targ_id); 5566 if (matched <= 0) 5567 return matched; 5568 } else { 5569 /* for i=0, targ_id is already treated as array element 5570 * type (because it's the original struct), for others 5571 * we should find array element type first 5572 */ 5573 if (i > 0) { 5574 const struct btf_array *a; 5575 bool flex; 5576 5577 if (!btf_is_array(targ_type)) 5578 return 0; 5579 5580 a = btf_array(targ_type); 5581 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5582 if (!flex && local_acc->idx >= a->nelems) 5583 return 0; 5584 if (!skip_mods_and_typedefs(targ_btf, a->type, 5585 &targ_id)) 5586 return -EINVAL; 5587 } 5588 5589 /* too deep struct/union/array nesting */ 5590 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5591 return -E2BIG; 5592 5593 targ_acc->type_id = targ_id; 5594 targ_acc->idx = local_acc->idx; 5595 targ_acc->name = NULL; 5596 targ_spec->len++; 5597 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5598 targ_spec->raw_len++; 5599 5600 sz = btf__resolve_size(targ_btf, targ_id); 5601 if (sz < 0) 5602 return sz; 5603 targ_spec->bit_offset += local_acc->idx * sz * 8; 5604 } 5605 } 5606 5607 return 1; 5608 } 5609 5610 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5611 const struct bpf_core_relo *relo, 5612 const struct bpf_core_spec *spec, 5613 __u32 *val, __u32 *field_sz, __u32 *type_id, 5614 bool *validate) 5615 { 5616 const struct bpf_core_accessor *acc; 5617 const struct btf_type *t; 5618 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5619 const struct btf_member *m; 5620 const struct btf_type *mt; 5621 bool bitfield; 5622 __s64 sz; 5623 5624 *field_sz = 0; 5625 5626 if (relo->kind == BPF_FIELD_EXISTS) { 5627 *val = spec ? 1 : 0; 5628 return 0; 5629 } 5630 5631 if (!spec) 5632 return -EUCLEAN; /* request instruction poisoning */ 5633 5634 acc = &spec->spec[spec->len - 1]; 5635 t = btf__type_by_id(spec->btf, acc->type_id); 5636 5637 /* a[n] accessor needs special handling */ 5638 if (!acc->name) { 5639 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5640 *val = spec->bit_offset / 8; 5641 /* remember field size for load/store mem size */ 5642 sz = btf__resolve_size(spec->btf, acc->type_id); 5643 if (sz < 0) 5644 return -EINVAL; 5645 *field_sz = sz; 5646 *type_id = acc->type_id; 5647 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5648 sz = btf__resolve_size(spec->btf, acc->type_id); 5649 if (sz < 0) 5650 return -EINVAL; 5651 *val = sz; 5652 } else { 5653 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5654 prog->name, relo->kind, relo->insn_off / 8); 5655 return -EINVAL; 5656 } 5657 if (validate) 5658 *validate = true; 5659 return 0; 5660 } 5661 5662 m = btf_members(t) + acc->idx; 5663 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5664 bit_off = spec->bit_offset; 5665 bit_sz = btf_member_bitfield_size(t, acc->idx); 5666 5667 bitfield = bit_sz > 0; 5668 if (bitfield) { 5669 byte_sz = mt->size; 5670 byte_off = bit_off / 8 / byte_sz * byte_sz; 5671 /* figure out smallest int size necessary for bitfield load */ 5672 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5673 if (byte_sz >= 8) { 5674 /* bitfield can't be read with 64-bit read */ 5675 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5676 prog->name, relo->kind, relo->insn_off / 8); 5677 return -E2BIG; 5678 } 5679 byte_sz *= 2; 5680 byte_off = bit_off / 8 / byte_sz * byte_sz; 5681 } 5682 } else { 5683 sz = btf__resolve_size(spec->btf, field_type_id); 5684 if (sz < 0) 5685 return -EINVAL; 5686 byte_sz = sz; 5687 byte_off = spec->bit_offset / 8; 5688 bit_sz = byte_sz * 8; 5689 } 5690 5691 /* for bitfields, all the relocatable aspects are ambiguous and we 5692 * might disagree with compiler, so turn off validation of expected 5693 * value, except for signedness 5694 */ 5695 if (validate) 5696 *validate = !bitfield; 5697 5698 switch (relo->kind) { 5699 case BPF_FIELD_BYTE_OFFSET: 5700 *val = byte_off; 5701 if (!bitfield) { 5702 *field_sz = byte_sz; 5703 *type_id = field_type_id; 5704 } 5705 break; 5706 case BPF_FIELD_BYTE_SIZE: 5707 *val = byte_sz; 5708 break; 5709 case BPF_FIELD_SIGNED: 5710 /* enums will be assumed unsigned */ 5711 *val = btf_is_enum(mt) || 5712 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5713 if (validate) 5714 *validate = true; /* signedness is never ambiguous */ 5715 break; 5716 case BPF_FIELD_LSHIFT_U64: 5717 #if __BYTE_ORDER == __LITTLE_ENDIAN 5718 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5719 #else 5720 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5721 #endif 5722 break; 5723 case BPF_FIELD_RSHIFT_U64: 5724 *val = 64 - bit_sz; 5725 if (validate) 5726 *validate = true; /* right shift is never ambiguous */ 5727 break; 5728 case BPF_FIELD_EXISTS: 5729 default: 5730 return -EOPNOTSUPP; 5731 } 5732 5733 return 0; 5734 } 5735 5736 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5737 const struct bpf_core_spec *spec, 5738 __u32 *val) 5739 { 5740 __s64 sz; 5741 5742 /* type-based relos return zero when target type is not found */ 5743 if (!spec) { 5744 *val = 0; 5745 return 0; 5746 } 5747 5748 switch (relo->kind) { 5749 case BPF_TYPE_ID_TARGET: 5750 *val = spec->root_type_id; 5751 break; 5752 case BPF_TYPE_EXISTS: 5753 *val = 1; 5754 break; 5755 case BPF_TYPE_SIZE: 5756 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5757 if (sz < 0) 5758 return -EINVAL; 5759 *val = sz; 5760 break; 5761 case BPF_TYPE_ID_LOCAL: 5762 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5763 default: 5764 return -EOPNOTSUPP; 5765 } 5766 5767 return 0; 5768 } 5769 5770 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5771 const struct bpf_core_spec *spec, 5772 __u32 *val) 5773 { 5774 const struct btf_type *t; 5775 const struct btf_enum *e; 5776 5777 switch (relo->kind) { 5778 case BPF_ENUMVAL_EXISTS: 5779 *val = spec ? 1 : 0; 5780 break; 5781 case BPF_ENUMVAL_VALUE: 5782 if (!spec) 5783 return -EUCLEAN; /* request instruction poisoning */ 5784 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5785 e = btf_enum(t) + spec->spec[0].idx; 5786 *val = e->val; 5787 break; 5788 default: 5789 return -EOPNOTSUPP; 5790 } 5791 5792 return 0; 5793 } 5794 5795 struct bpf_core_relo_res 5796 { 5797 /* expected value in the instruction, unless validate == false */ 5798 __u32 orig_val; 5799 /* new value that needs to be patched up to */ 5800 __u32 new_val; 5801 /* relocation unsuccessful, poison instruction, but don't fail load */ 5802 bool poison; 5803 /* some relocations can't be validated against orig_val */ 5804 bool validate; 5805 /* for field byte offset relocations or the forms: 5806 * *(T *)(rX + <off>) = rY 5807 * rX = *(T *)(rY + <off>), 5808 * we remember original and resolved field size to adjust direct 5809 * memory loads of pointers and integers; this is necessary for 32-bit 5810 * host kernel architectures, but also allows to automatically 5811 * relocate fields that were resized from, e.g., u32 to u64, etc. 5812 */ 5813 bool fail_memsz_adjust; 5814 __u32 orig_sz; 5815 __u32 orig_type_id; 5816 __u32 new_sz; 5817 __u32 new_type_id; 5818 }; 5819 5820 /* Calculate original and target relocation values, given local and target 5821 * specs and relocation kind. These values are calculated for each candidate. 5822 * If there are multiple candidates, resulting values should all be consistent 5823 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5824 * If instruction has to be poisoned, *poison will be set to true. 5825 */ 5826 static int bpf_core_calc_relo(const struct bpf_program *prog, 5827 const struct bpf_core_relo *relo, 5828 int relo_idx, 5829 const struct bpf_core_spec *local_spec, 5830 const struct bpf_core_spec *targ_spec, 5831 struct bpf_core_relo_res *res) 5832 { 5833 int err = -EOPNOTSUPP; 5834 5835 res->orig_val = 0; 5836 res->new_val = 0; 5837 res->poison = false; 5838 res->validate = true; 5839 res->fail_memsz_adjust = false; 5840 res->orig_sz = res->new_sz = 0; 5841 res->orig_type_id = res->new_type_id = 0; 5842 5843 if (core_relo_is_field_based(relo->kind)) { 5844 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5845 &res->orig_val, &res->orig_sz, 5846 &res->orig_type_id, &res->validate); 5847 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5848 &res->new_val, &res->new_sz, 5849 &res->new_type_id, NULL); 5850 if (err) 5851 goto done; 5852 /* Validate if it's safe to adjust load/store memory size. 5853 * Adjustments are performed only if original and new memory 5854 * sizes differ. 5855 */ 5856 res->fail_memsz_adjust = false; 5857 if (res->orig_sz != res->new_sz) { 5858 const struct btf_type *orig_t, *new_t; 5859 5860 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5861 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5862 5863 /* There are two use cases in which it's safe to 5864 * adjust load/store's mem size: 5865 * - reading a 32-bit kernel pointer, while on BPF 5866 * size pointers are always 64-bit; in this case 5867 * it's safe to "downsize" instruction size due to 5868 * pointer being treated as unsigned integer with 5869 * zero-extended upper 32-bits; 5870 * - reading unsigned integers, again due to 5871 * zero-extension is preserving the value correctly. 5872 * 5873 * In all other cases it's incorrect to attempt to 5874 * load/store field because read value will be 5875 * incorrect, so we poison relocated instruction. 5876 */ 5877 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5878 goto done; 5879 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5880 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5881 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5882 goto done; 5883 5884 /* mark as invalid mem size adjustment, but this will 5885 * only be checked for LDX/STX/ST insns 5886 */ 5887 res->fail_memsz_adjust = true; 5888 } 5889 } else if (core_relo_is_type_based(relo->kind)) { 5890 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5891 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5892 } else if (core_relo_is_enumval_based(relo->kind)) { 5893 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5894 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5895 } 5896 5897 done: 5898 if (err == -EUCLEAN) { 5899 /* EUCLEAN is used to signal instruction poisoning request */ 5900 res->poison = true; 5901 err = 0; 5902 } else if (err == -EOPNOTSUPP) { 5903 /* EOPNOTSUPP means unknown/unsupported relocation */ 5904 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5905 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5906 relo->kind, relo->insn_off / 8); 5907 } 5908 5909 return err; 5910 } 5911 5912 /* 5913 * Turn instruction for which CO_RE relocation failed into invalid one with 5914 * distinct signature. 5915 */ 5916 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5917 int insn_idx, struct bpf_insn *insn) 5918 { 5919 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5920 prog->name, relo_idx, insn_idx); 5921 insn->code = BPF_JMP | BPF_CALL; 5922 insn->dst_reg = 0; 5923 insn->src_reg = 0; 5924 insn->off = 0; 5925 /* if this instruction is reachable (not a dead code), 5926 * verifier will complain with the following message: 5927 * invalid func unknown#195896080 5928 */ 5929 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5930 } 5931 5932 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5933 { 5934 switch (BPF_SIZE(insn->code)) { 5935 case BPF_DW: return 8; 5936 case BPF_W: return 4; 5937 case BPF_H: return 2; 5938 case BPF_B: return 1; 5939 default: return -1; 5940 } 5941 } 5942 5943 static int insn_bytes_to_bpf_size(__u32 sz) 5944 { 5945 switch (sz) { 5946 case 8: return BPF_DW; 5947 case 4: return BPF_W; 5948 case 2: return BPF_H; 5949 case 1: return BPF_B; 5950 default: return -1; 5951 } 5952 } 5953 5954 /* 5955 * Patch relocatable BPF instruction. 5956 * 5957 * Patched value is determined by relocation kind and target specification. 5958 * For existence relocations target spec will be NULL if field/type is not found. 5959 * Expected insn->imm value is determined using relocation kind and local 5960 * spec, and is checked before patching instruction. If actual insn->imm value 5961 * is wrong, bail out with error. 5962 * 5963 * Currently supported classes of BPF instruction are: 5964 * 1. rX = <imm> (assignment with immediate operand); 5965 * 2. rX += <imm> (arithmetic operations with immediate operand); 5966 * 3. rX = <imm64> (load with 64-bit immediate value); 5967 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5968 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5969 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5970 */ 5971 static int bpf_core_patch_insn(struct bpf_program *prog, 5972 const struct bpf_core_relo *relo, 5973 int relo_idx, 5974 const struct bpf_core_relo_res *res) 5975 { 5976 __u32 orig_val, new_val; 5977 struct bpf_insn *insn; 5978 int insn_idx; 5979 __u8 class; 5980 5981 if (relo->insn_off % BPF_INSN_SZ) 5982 return -EINVAL; 5983 insn_idx = relo->insn_off / BPF_INSN_SZ; 5984 /* adjust insn_idx from section frame of reference to the local 5985 * program's frame of reference; (sub-)program code is not yet 5986 * relocated, so it's enough to just subtract in-section offset 5987 */ 5988 insn_idx = insn_idx - prog->sec_insn_off; 5989 insn = &prog->insns[insn_idx]; 5990 class = BPF_CLASS(insn->code); 5991 5992 if (res->poison) { 5993 poison: 5994 /* poison second part of ldimm64 to avoid confusing error from 5995 * verifier about "unknown opcode 00" 5996 */ 5997 if (is_ldimm64_insn(insn)) 5998 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5999 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 6000 return 0; 6001 } 6002 6003 orig_val = res->orig_val; 6004 new_val = res->new_val; 6005 6006 switch (class) { 6007 case BPF_ALU: 6008 case BPF_ALU64: 6009 if (BPF_SRC(insn->code) != BPF_K) 6010 return -EINVAL; 6011 if (res->validate && insn->imm != orig_val) { 6012 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 6013 prog->name, relo_idx, 6014 insn_idx, insn->imm, orig_val, new_val); 6015 return -EINVAL; 6016 } 6017 orig_val = insn->imm; 6018 insn->imm = new_val; 6019 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 6020 prog->name, relo_idx, insn_idx, 6021 orig_val, new_val); 6022 break; 6023 case BPF_LDX: 6024 case BPF_ST: 6025 case BPF_STX: 6026 if (res->validate && insn->off != orig_val) { 6027 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 6028 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 6029 return -EINVAL; 6030 } 6031 if (new_val > SHRT_MAX) { 6032 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 6033 prog->name, relo_idx, insn_idx, new_val); 6034 return -ERANGE; 6035 } 6036 if (res->fail_memsz_adjust) { 6037 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 6038 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 6039 prog->name, relo_idx, insn_idx); 6040 goto poison; 6041 } 6042 6043 orig_val = insn->off; 6044 insn->off = new_val; 6045 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 6046 prog->name, relo_idx, insn_idx, orig_val, new_val); 6047 6048 if (res->new_sz != res->orig_sz) { 6049 int insn_bytes_sz, insn_bpf_sz; 6050 6051 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 6052 if (insn_bytes_sz != res->orig_sz) { 6053 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 6054 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 6055 return -EINVAL; 6056 } 6057 6058 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 6059 if (insn_bpf_sz < 0) { 6060 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 6061 prog->name, relo_idx, insn_idx, res->new_sz); 6062 return -EINVAL; 6063 } 6064 6065 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 6066 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 6067 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 6068 } 6069 break; 6070 case BPF_LD: { 6071 __u64 imm; 6072 6073 if (!is_ldimm64_insn(insn) || 6074 insn[0].src_reg != 0 || insn[0].off != 0 || 6075 insn_idx + 1 >= prog->insns_cnt || 6076 insn[1].code != 0 || insn[1].dst_reg != 0 || 6077 insn[1].src_reg != 0 || insn[1].off != 0) { 6078 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 6079 prog->name, relo_idx, insn_idx); 6080 return -EINVAL; 6081 } 6082 6083 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 6084 if (res->validate && imm != orig_val) { 6085 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 6086 prog->name, relo_idx, 6087 insn_idx, (unsigned long long)imm, 6088 orig_val, new_val); 6089 return -EINVAL; 6090 } 6091 6092 insn[0].imm = new_val; 6093 insn[1].imm = 0; /* currently only 32-bit values are supported */ 6094 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 6095 prog->name, relo_idx, insn_idx, 6096 (unsigned long long)imm, new_val); 6097 break; 6098 } 6099 default: 6100 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 6101 prog->name, relo_idx, insn_idx, insn->code, 6102 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 6103 return -EINVAL; 6104 } 6105 6106 return 0; 6107 } 6108 6109 /* Output spec definition in the format: 6110 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 6111 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 6112 */ 6113 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 6114 { 6115 const struct btf_type *t; 6116 const struct btf_enum *e; 6117 const char *s; 6118 __u32 type_id; 6119 int i; 6120 6121 type_id = spec->root_type_id; 6122 t = btf__type_by_id(spec->btf, type_id); 6123 s = btf__name_by_offset(spec->btf, t->name_off); 6124 6125 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 6126 6127 if (core_relo_is_type_based(spec->relo_kind)) 6128 return; 6129 6130 if (core_relo_is_enumval_based(spec->relo_kind)) { 6131 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 6132 e = btf_enum(t) + spec->raw_spec[0]; 6133 s = btf__name_by_offset(spec->btf, e->name_off); 6134 6135 libbpf_print(level, "::%s = %u", s, e->val); 6136 return; 6137 } 6138 6139 if (core_relo_is_field_based(spec->relo_kind)) { 6140 for (i = 0; i < spec->len; i++) { 6141 if (spec->spec[i].name) 6142 libbpf_print(level, ".%s", spec->spec[i].name); 6143 else if (i > 0 || spec->spec[i].idx > 0) 6144 libbpf_print(level, "[%u]", spec->spec[i].idx); 6145 } 6146 6147 libbpf_print(level, " ("); 6148 for (i = 0; i < spec->raw_len; i++) 6149 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 6150 6151 if (spec->bit_offset % 8) 6152 libbpf_print(level, " @ offset %u.%u)", 6153 spec->bit_offset / 8, spec->bit_offset % 8); 6154 else 6155 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 6156 return; 6157 } 6158 } 6159 6160 static size_t bpf_core_hash_fn(const void *key, void *ctx) 6161 { 6162 return (size_t)key; 6163 } 6164 6165 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 6166 { 6167 return k1 == k2; 6168 } 6169 6170 static void *u32_as_hash_key(__u32 x) 6171 { 6172 return (void *)(uintptr_t)x; 6173 } 6174 6175 /* 6176 * CO-RE relocate single instruction. 6177 * 6178 * The outline and important points of the algorithm: 6179 * 1. For given local type, find corresponding candidate target types. 6180 * Candidate type is a type with the same "essential" name, ignoring 6181 * everything after last triple underscore (___). E.g., `sample`, 6182 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 6183 * for each other. Names with triple underscore are referred to as 6184 * "flavors" and are useful, among other things, to allow to 6185 * specify/support incompatible variations of the same kernel struct, which 6186 * might differ between different kernel versions and/or build 6187 * configurations. 6188 * 6189 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 6190 * converter, when deduplicated BTF of a kernel still contains more than 6191 * one different types with the same name. In that case, ___2, ___3, etc 6192 * are appended starting from second name conflict. But start flavors are 6193 * also useful to be defined "locally", in BPF program, to extract same 6194 * data from incompatible changes between different kernel 6195 * versions/configurations. For instance, to handle field renames between 6196 * kernel versions, one can use two flavors of the struct name with the 6197 * same common name and use conditional relocations to extract that field, 6198 * depending on target kernel version. 6199 * 2. For each candidate type, try to match local specification to this 6200 * candidate target type. Matching involves finding corresponding 6201 * high-level spec accessors, meaning that all named fields should match, 6202 * as well as all array accesses should be within the actual bounds. Also, 6203 * types should be compatible (see bpf_core_fields_are_compat for details). 6204 * 3. It is supported and expected that there might be multiple flavors 6205 * matching the spec. As long as all the specs resolve to the same set of 6206 * offsets across all candidates, there is no error. If there is any 6207 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 6208 * imprefection of BTF deduplication, which can cause slight duplication of 6209 * the same BTF type, if some directly or indirectly referenced (by 6210 * pointer) type gets resolved to different actual types in different 6211 * object files. If such situation occurs, deduplicated BTF will end up 6212 * with two (or more) structurally identical types, which differ only in 6213 * types they refer to through pointer. This should be OK in most cases and 6214 * is not an error. 6215 * 4. Candidate types search is performed by linearly scanning through all 6216 * types in target BTF. It is anticipated that this is overall more 6217 * efficient memory-wise and not significantly worse (if not better) 6218 * CPU-wise compared to prebuilding a map from all local type names to 6219 * a list of candidate type names. It's also sped up by caching resolved 6220 * list of matching candidates per each local "root" type ID, that has at 6221 * least one bpf_core_relo associated with it. This list is shared 6222 * between multiple relocations for the same type ID and is updated as some 6223 * of the candidates are pruned due to structural incompatibility. 6224 */ 6225 static int bpf_core_apply_relo(struct bpf_program *prog, 6226 const struct bpf_core_relo *relo, 6227 int relo_idx, 6228 const struct btf *local_btf, 6229 struct hashmap *cand_cache) 6230 { 6231 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 6232 const void *type_key = u32_as_hash_key(relo->type_id); 6233 struct bpf_core_relo_res cand_res, targ_res; 6234 const struct btf_type *local_type; 6235 const char *local_name; 6236 struct core_cand_list *cands = NULL; 6237 __u32 local_id; 6238 const char *spec_str; 6239 int i, j, err; 6240 6241 local_id = relo->type_id; 6242 local_type = btf__type_by_id(local_btf, local_id); 6243 if (!local_type) 6244 return -EINVAL; 6245 6246 local_name = btf__name_by_offset(local_btf, local_type->name_off); 6247 if (!local_name) 6248 return -EINVAL; 6249 6250 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 6251 if (str_is_empty(spec_str)) 6252 return -EINVAL; 6253 6254 if (prog->obj->gen_loader) { 6255 pr_warn("// TODO core_relo: prog %td insn[%d] %s %s kind %d\n", 6256 prog - prog->obj->programs, relo->insn_off / 8, 6257 local_name, spec_str, relo->kind); 6258 return -ENOTSUP; 6259 } 6260 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 6261 if (err) { 6262 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 6263 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6264 str_is_empty(local_name) ? "<anon>" : local_name, 6265 spec_str, err); 6266 return -EINVAL; 6267 } 6268 6269 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 6270 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6271 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 6272 libbpf_print(LIBBPF_DEBUG, "\n"); 6273 6274 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 6275 if (relo->kind == BPF_TYPE_ID_LOCAL) { 6276 targ_res.validate = true; 6277 targ_res.poison = false; 6278 targ_res.orig_val = local_spec.root_type_id; 6279 targ_res.new_val = local_spec.root_type_id; 6280 goto patch_insn; 6281 } 6282 6283 /* libbpf doesn't support candidate search for anonymous types */ 6284 if (str_is_empty(spec_str)) { 6285 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 6286 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6287 return -EOPNOTSUPP; 6288 } 6289 6290 if (!hashmap__find(cand_cache, type_key, (void **)&cands)) { 6291 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 6292 if (IS_ERR(cands)) { 6293 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 6294 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6295 local_name, PTR_ERR(cands)); 6296 return PTR_ERR(cands); 6297 } 6298 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 6299 if (err) { 6300 bpf_core_free_cands(cands); 6301 return err; 6302 } 6303 } 6304 6305 for (i = 0, j = 0; i < cands->len; i++) { 6306 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 6307 cands->cands[i].id, &cand_spec); 6308 if (err < 0) { 6309 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 6310 prog->name, relo_idx, i); 6311 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 6312 libbpf_print(LIBBPF_WARN, ": %d\n", err); 6313 return err; 6314 } 6315 6316 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 6317 relo_idx, err == 0 ? "non-matching" : "matching", i); 6318 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 6319 libbpf_print(LIBBPF_DEBUG, "\n"); 6320 6321 if (err == 0) 6322 continue; 6323 6324 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 6325 if (err) 6326 return err; 6327 6328 if (j == 0) { 6329 targ_res = cand_res; 6330 targ_spec = cand_spec; 6331 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 6332 /* if there are many field relo candidates, they 6333 * should all resolve to the same bit offset 6334 */ 6335 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 6336 prog->name, relo_idx, cand_spec.bit_offset, 6337 targ_spec.bit_offset); 6338 return -EINVAL; 6339 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 6340 /* all candidates should result in the same relocation 6341 * decision and value, otherwise it's dangerous to 6342 * proceed due to ambiguity 6343 */ 6344 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 6345 prog->name, relo_idx, 6346 cand_res.poison ? "failure" : "success", cand_res.new_val, 6347 targ_res.poison ? "failure" : "success", targ_res.new_val); 6348 return -EINVAL; 6349 } 6350 6351 cands->cands[j++] = cands->cands[i]; 6352 } 6353 6354 /* 6355 * For BPF_FIELD_EXISTS relo or when used BPF program has field 6356 * existence checks or kernel version/config checks, it's expected 6357 * that we might not find any candidates. In this case, if field 6358 * wasn't found in any candidate, the list of candidates shouldn't 6359 * change at all, we'll just handle relocating appropriately, 6360 * depending on relo's kind. 6361 */ 6362 if (j > 0) 6363 cands->len = j; 6364 6365 /* 6366 * If no candidates were found, it might be both a programmer error, 6367 * as well as expected case, depending whether instruction w/ 6368 * relocation is guarded in some way that makes it unreachable (dead 6369 * code) if relocation can't be resolved. This is handled in 6370 * bpf_core_patch_insn() uniformly by replacing that instruction with 6371 * BPF helper call insn (using invalid helper ID). If that instruction 6372 * is indeed unreachable, then it will be ignored and eliminated by 6373 * verifier. If it was an error, then verifier will complain and point 6374 * to a specific instruction number in its log. 6375 */ 6376 if (j == 0) { 6377 pr_debug("prog '%s': relo #%d: no matching targets found\n", 6378 prog->name, relo_idx); 6379 6380 /* calculate single target relo result explicitly */ 6381 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 6382 if (err) 6383 return err; 6384 } 6385 6386 patch_insn: 6387 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 6388 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 6389 if (err) { 6390 pr_warn("prog '%s': relo #%d: failed to patch insn #%zu: %d\n", 6391 prog->name, relo_idx, relo->insn_off / BPF_INSN_SZ, err); 6392 return -EINVAL; 6393 } 6394 6395 return 0; 6396 } 6397 6398 static int 6399 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6400 { 6401 const struct btf_ext_info_sec *sec; 6402 const struct bpf_core_relo *rec; 6403 const struct btf_ext_info *seg; 6404 struct hashmap_entry *entry; 6405 struct hashmap *cand_cache = NULL; 6406 struct bpf_program *prog; 6407 const char *sec_name; 6408 int i, err = 0, insn_idx, sec_idx; 6409 6410 if (obj->btf_ext->core_relo_info.len == 0) 6411 return 0; 6412 6413 if (targ_btf_path) { 6414 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6415 err = libbpf_get_error(obj->btf_vmlinux_override); 6416 if (err) { 6417 pr_warn("failed to parse target BTF: %d\n", err); 6418 return err; 6419 } 6420 } 6421 6422 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6423 if (IS_ERR(cand_cache)) { 6424 err = PTR_ERR(cand_cache); 6425 goto out; 6426 } 6427 6428 seg = &obj->btf_ext->core_relo_info; 6429 for_each_btf_ext_sec(seg, sec) { 6430 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6431 if (str_is_empty(sec_name)) { 6432 err = -EINVAL; 6433 goto out; 6434 } 6435 /* bpf_object's ELF is gone by now so it's not easy to find 6436 * section index by section name, but we can find *any* 6437 * bpf_program within desired section name and use it's 6438 * prog->sec_idx to do a proper search by section index and 6439 * instruction offset 6440 */ 6441 prog = NULL; 6442 for (i = 0; i < obj->nr_programs; i++) { 6443 prog = &obj->programs[i]; 6444 if (strcmp(prog->sec_name, sec_name) == 0) 6445 break; 6446 } 6447 if (!prog) { 6448 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 6449 return -ENOENT; 6450 } 6451 sec_idx = prog->sec_idx; 6452 6453 pr_debug("sec '%s': found %d CO-RE relocations\n", 6454 sec_name, sec->num_info); 6455 6456 for_each_btf_ext_rec(seg, sec, i, rec) { 6457 insn_idx = rec->insn_off / BPF_INSN_SZ; 6458 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6459 if (!prog) { 6460 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 6461 sec_name, insn_idx, i); 6462 err = -EINVAL; 6463 goto out; 6464 } 6465 /* no need to apply CO-RE relocation if the program is 6466 * not going to be loaded 6467 */ 6468 if (!prog->load) 6469 continue; 6470 6471 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 6472 if (err) { 6473 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 6474 prog->name, i, err); 6475 goto out; 6476 } 6477 } 6478 } 6479 6480 out: 6481 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6482 btf__free(obj->btf_vmlinux_override); 6483 obj->btf_vmlinux_override = NULL; 6484 6485 if (!IS_ERR_OR_NULL(cand_cache)) { 6486 hashmap__for_each_entry(cand_cache, entry, i) { 6487 bpf_core_free_cands(entry->value); 6488 } 6489 hashmap__free(cand_cache); 6490 } 6491 return err; 6492 } 6493 6494 /* Relocate data references within program code: 6495 * - map references; 6496 * - global variable references; 6497 * - extern references. 6498 */ 6499 static int 6500 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6501 { 6502 int i; 6503 6504 for (i = 0; i < prog->nr_reloc; i++) { 6505 struct reloc_desc *relo = &prog->reloc_desc[i]; 6506 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6507 struct extern_desc *ext; 6508 6509 switch (relo->type) { 6510 case RELO_LD64: 6511 if (obj->gen_loader) { 6512 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6513 insn[0].imm = relo->map_idx; 6514 } else { 6515 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6516 insn[0].imm = obj->maps[relo->map_idx].fd; 6517 } 6518 break; 6519 case RELO_DATA: 6520 insn[1].imm = insn[0].imm + relo->sym_off; 6521 if (obj->gen_loader) { 6522 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6523 insn[0].imm = relo->map_idx; 6524 } else { 6525 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6526 insn[0].imm = obj->maps[relo->map_idx].fd; 6527 } 6528 break; 6529 case RELO_EXTERN_VAR: 6530 ext = &obj->externs[relo->sym_off]; 6531 if (ext->type == EXT_KCFG) { 6532 if (obj->gen_loader) { 6533 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6534 insn[0].imm = obj->kconfig_map_idx; 6535 } else { 6536 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6537 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6538 } 6539 insn[1].imm = ext->kcfg.data_off; 6540 } else /* EXT_KSYM */ { 6541 if (ext->ksym.type_id) { /* typed ksyms */ 6542 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6543 insn[0].imm = ext->ksym.kernel_btf_id; 6544 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6545 } else { /* typeless ksyms */ 6546 insn[0].imm = (__u32)ext->ksym.addr; 6547 insn[1].imm = ext->ksym.addr >> 32; 6548 } 6549 } 6550 break; 6551 case RELO_EXTERN_FUNC: 6552 ext = &obj->externs[relo->sym_off]; 6553 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6554 insn[0].imm = ext->ksym.kernel_btf_id; 6555 break; 6556 case RELO_SUBPROG_ADDR: 6557 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6558 pr_warn("prog '%s': relo #%d: bad insn\n", 6559 prog->name, i); 6560 return -EINVAL; 6561 } 6562 /* handled already */ 6563 break; 6564 case RELO_CALL: 6565 /* handled already */ 6566 break; 6567 default: 6568 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6569 prog->name, i, relo->type); 6570 return -EINVAL; 6571 } 6572 } 6573 6574 return 0; 6575 } 6576 6577 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6578 const struct bpf_program *prog, 6579 const struct btf_ext_info *ext_info, 6580 void **prog_info, __u32 *prog_rec_cnt, 6581 __u32 *prog_rec_sz) 6582 { 6583 void *copy_start = NULL, *copy_end = NULL; 6584 void *rec, *rec_end, *new_prog_info; 6585 const struct btf_ext_info_sec *sec; 6586 size_t old_sz, new_sz; 6587 const char *sec_name; 6588 int i, off_adj; 6589 6590 for_each_btf_ext_sec(ext_info, sec) { 6591 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6592 if (!sec_name) 6593 return -EINVAL; 6594 if (strcmp(sec_name, prog->sec_name) != 0) 6595 continue; 6596 6597 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6598 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6599 6600 if (insn_off < prog->sec_insn_off) 6601 continue; 6602 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6603 break; 6604 6605 if (!copy_start) 6606 copy_start = rec; 6607 copy_end = rec + ext_info->rec_size; 6608 } 6609 6610 if (!copy_start) 6611 return -ENOENT; 6612 6613 /* append func/line info of a given (sub-)program to the main 6614 * program func/line info 6615 */ 6616 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6617 new_sz = old_sz + (copy_end - copy_start); 6618 new_prog_info = realloc(*prog_info, new_sz); 6619 if (!new_prog_info) 6620 return -ENOMEM; 6621 *prog_info = new_prog_info; 6622 *prog_rec_cnt = new_sz / ext_info->rec_size; 6623 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6624 6625 /* Kernel instruction offsets are in units of 8-byte 6626 * instructions, while .BTF.ext instruction offsets generated 6627 * by Clang are in units of bytes. So convert Clang offsets 6628 * into kernel offsets and adjust offset according to program 6629 * relocated position. 6630 */ 6631 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6632 rec = new_prog_info + old_sz; 6633 rec_end = new_prog_info + new_sz; 6634 for (; rec < rec_end; rec += ext_info->rec_size) { 6635 __u32 *insn_off = rec; 6636 6637 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6638 } 6639 *prog_rec_sz = ext_info->rec_size; 6640 return 0; 6641 } 6642 6643 return -ENOENT; 6644 } 6645 6646 static int 6647 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6648 struct bpf_program *main_prog, 6649 const struct bpf_program *prog) 6650 { 6651 int err; 6652 6653 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6654 * supprot func/line info 6655 */ 6656 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6657 return 0; 6658 6659 /* only attempt func info relocation if main program's func_info 6660 * relocation was successful 6661 */ 6662 if (main_prog != prog && !main_prog->func_info) 6663 goto line_info; 6664 6665 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6666 &main_prog->func_info, 6667 &main_prog->func_info_cnt, 6668 &main_prog->func_info_rec_size); 6669 if (err) { 6670 if (err != -ENOENT) { 6671 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6672 prog->name, err); 6673 return err; 6674 } 6675 if (main_prog->func_info) { 6676 /* 6677 * Some info has already been found but has problem 6678 * in the last btf_ext reloc. Must have to error out. 6679 */ 6680 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6681 return err; 6682 } 6683 /* Have problem loading the very first info. Ignore the rest. */ 6684 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6685 prog->name); 6686 } 6687 6688 line_info: 6689 /* don't relocate line info if main program's relocation failed */ 6690 if (main_prog != prog && !main_prog->line_info) 6691 return 0; 6692 6693 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6694 &main_prog->line_info, 6695 &main_prog->line_info_cnt, 6696 &main_prog->line_info_rec_size); 6697 if (err) { 6698 if (err != -ENOENT) { 6699 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6700 prog->name, err); 6701 return err; 6702 } 6703 if (main_prog->line_info) { 6704 /* 6705 * Some info has already been found but has problem 6706 * in the last btf_ext reloc. Must have to error out. 6707 */ 6708 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6709 return err; 6710 } 6711 /* Have problem loading the very first info. Ignore the rest. */ 6712 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6713 prog->name); 6714 } 6715 return 0; 6716 } 6717 6718 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6719 { 6720 size_t insn_idx = *(const size_t *)key; 6721 const struct reloc_desc *relo = elem; 6722 6723 if (insn_idx == relo->insn_idx) 6724 return 0; 6725 return insn_idx < relo->insn_idx ? -1 : 1; 6726 } 6727 6728 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6729 { 6730 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6731 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6732 } 6733 6734 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6735 { 6736 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6737 struct reloc_desc *relos; 6738 int i; 6739 6740 if (main_prog == subprog) 6741 return 0; 6742 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6743 if (!relos) 6744 return -ENOMEM; 6745 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6746 sizeof(*relos) * subprog->nr_reloc); 6747 6748 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6749 relos[i].insn_idx += subprog->sub_insn_off; 6750 /* After insn_idx adjustment the 'relos' array is still sorted 6751 * by insn_idx and doesn't break bsearch. 6752 */ 6753 main_prog->reloc_desc = relos; 6754 main_prog->nr_reloc = new_cnt; 6755 return 0; 6756 } 6757 6758 static int 6759 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6760 struct bpf_program *prog) 6761 { 6762 size_t sub_insn_idx, insn_idx, new_cnt; 6763 struct bpf_program *subprog; 6764 struct bpf_insn *insns, *insn; 6765 struct reloc_desc *relo; 6766 int err; 6767 6768 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6769 if (err) 6770 return err; 6771 6772 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6773 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6774 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6775 continue; 6776 6777 relo = find_prog_insn_relo(prog, insn_idx); 6778 if (relo && relo->type == RELO_EXTERN_FUNC) 6779 /* kfunc relocations will be handled later 6780 * in bpf_object__relocate_data() 6781 */ 6782 continue; 6783 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6784 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6785 prog->name, insn_idx, relo->type); 6786 return -LIBBPF_ERRNO__RELOC; 6787 } 6788 if (relo) { 6789 /* sub-program instruction index is a combination of 6790 * an offset of a symbol pointed to by relocation and 6791 * call instruction's imm field; for global functions, 6792 * call always has imm = -1, but for static functions 6793 * relocation is against STT_SECTION and insn->imm 6794 * points to a start of a static function 6795 * 6796 * for subprog addr relocation, the relo->sym_off + insn->imm is 6797 * the byte offset in the corresponding section. 6798 */ 6799 if (relo->type == RELO_CALL) 6800 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6801 else 6802 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6803 } else if (insn_is_pseudo_func(insn)) { 6804 /* 6805 * RELO_SUBPROG_ADDR relo is always emitted even if both 6806 * functions are in the same section, so it shouldn't reach here. 6807 */ 6808 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6809 prog->name, insn_idx); 6810 return -LIBBPF_ERRNO__RELOC; 6811 } else { 6812 /* if subprogram call is to a static function within 6813 * the same ELF section, there won't be any relocation 6814 * emitted, but it also means there is no additional 6815 * offset necessary, insns->imm is relative to 6816 * instruction's original position within the section 6817 */ 6818 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6819 } 6820 6821 /* we enforce that sub-programs should be in .text section */ 6822 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6823 if (!subprog) { 6824 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6825 prog->name); 6826 return -LIBBPF_ERRNO__RELOC; 6827 } 6828 6829 /* if it's the first call instruction calling into this 6830 * subprogram (meaning this subprog hasn't been processed 6831 * yet) within the context of current main program: 6832 * - append it at the end of main program's instructions blog; 6833 * - process is recursively, while current program is put on hold; 6834 * - if that subprogram calls some other not yet processes 6835 * subprogram, same thing will happen recursively until 6836 * there are no more unprocesses subprograms left to append 6837 * and relocate. 6838 */ 6839 if (subprog->sub_insn_off == 0) { 6840 subprog->sub_insn_off = main_prog->insns_cnt; 6841 6842 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6843 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6844 if (!insns) { 6845 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6846 return -ENOMEM; 6847 } 6848 main_prog->insns = insns; 6849 main_prog->insns_cnt = new_cnt; 6850 6851 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6852 subprog->insns_cnt * sizeof(*insns)); 6853 6854 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6855 main_prog->name, subprog->insns_cnt, subprog->name); 6856 6857 /* The subprog insns are now appended. Append its relos too. */ 6858 err = append_subprog_relos(main_prog, subprog); 6859 if (err) 6860 return err; 6861 err = bpf_object__reloc_code(obj, main_prog, subprog); 6862 if (err) 6863 return err; 6864 } 6865 6866 /* main_prog->insns memory could have been re-allocated, so 6867 * calculate pointer again 6868 */ 6869 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6870 /* calculate correct instruction position within current main 6871 * prog; each main prog can have a different set of 6872 * subprograms appended (potentially in different order as 6873 * well), so position of any subprog can be different for 6874 * different main programs */ 6875 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6876 6877 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6878 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6879 } 6880 6881 return 0; 6882 } 6883 6884 /* 6885 * Relocate sub-program calls. 6886 * 6887 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6888 * main prog) is processed separately. For each subprog (non-entry functions, 6889 * that can be called from either entry progs or other subprogs) gets their 6890 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6891 * hasn't been yet appended and relocated within current main prog. Once its 6892 * relocated, sub_insn_off will point at the position within current main prog 6893 * where given subprog was appended. This will further be used to relocate all 6894 * the call instructions jumping into this subprog. 6895 * 6896 * We start with main program and process all call instructions. If the call 6897 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6898 * is zero), subprog instructions are appended at the end of main program's 6899 * instruction array. Then main program is "put on hold" while we recursively 6900 * process newly appended subprogram. If that subprogram calls into another 6901 * subprogram that hasn't been appended, new subprogram is appended again to 6902 * the *main* prog's instructions (subprog's instructions are always left 6903 * untouched, as they need to be in unmodified state for subsequent main progs 6904 * and subprog instructions are always sent only as part of a main prog) and 6905 * the process continues recursively. Once all the subprogs called from a main 6906 * prog or any of its subprogs are appended (and relocated), all their 6907 * positions within finalized instructions array are known, so it's easy to 6908 * rewrite call instructions with correct relative offsets, corresponding to 6909 * desired target subprog. 6910 * 6911 * Its important to realize that some subprogs might not be called from some 6912 * main prog and any of its called/used subprogs. Those will keep their 6913 * subprog->sub_insn_off as zero at all times and won't be appended to current 6914 * main prog and won't be relocated within the context of current main prog. 6915 * They might still be used from other main progs later. 6916 * 6917 * Visually this process can be shown as below. Suppose we have two main 6918 * programs mainA and mainB and BPF object contains three subprogs: subA, 6919 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6920 * subC both call subB: 6921 * 6922 * +--------+ +-------+ 6923 * | v v | 6924 * +--+---+ +--+-+-+ +---+--+ 6925 * | subA | | subB | | subC | 6926 * +--+---+ +------+ +---+--+ 6927 * ^ ^ 6928 * | | 6929 * +---+-------+ +------+----+ 6930 * | mainA | | mainB | 6931 * +-----------+ +-----------+ 6932 * 6933 * We'll start relocating mainA, will find subA, append it and start 6934 * processing sub A recursively: 6935 * 6936 * +-----------+------+ 6937 * | mainA | subA | 6938 * +-----------+------+ 6939 * 6940 * At this point we notice that subB is used from subA, so we append it and 6941 * relocate (there are no further subcalls from subB): 6942 * 6943 * +-----------+------+------+ 6944 * | mainA | subA | subB | 6945 * +-----------+------+------+ 6946 * 6947 * At this point, we relocate subA calls, then go one level up and finish with 6948 * relocatin mainA calls. mainA is done. 6949 * 6950 * For mainB process is similar but results in different order. We start with 6951 * mainB and skip subA and subB, as mainB never calls them (at least 6952 * directly), but we see subC is needed, so we append and start processing it: 6953 * 6954 * +-----------+------+ 6955 * | mainB | subC | 6956 * +-----------+------+ 6957 * Now we see subC needs subB, so we go back to it, append and relocate it: 6958 * 6959 * +-----------+------+------+ 6960 * | mainB | subC | subB | 6961 * +-----------+------+------+ 6962 * 6963 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6964 */ 6965 static int 6966 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6967 { 6968 struct bpf_program *subprog; 6969 int i, err; 6970 6971 /* mark all subprogs as not relocated (yet) within the context of 6972 * current main program 6973 */ 6974 for (i = 0; i < obj->nr_programs; i++) { 6975 subprog = &obj->programs[i]; 6976 if (!prog_is_subprog(obj, subprog)) 6977 continue; 6978 6979 subprog->sub_insn_off = 0; 6980 } 6981 6982 err = bpf_object__reloc_code(obj, prog, prog); 6983 if (err) 6984 return err; 6985 6986 6987 return 0; 6988 } 6989 6990 static void 6991 bpf_object__free_relocs(struct bpf_object *obj) 6992 { 6993 struct bpf_program *prog; 6994 int i; 6995 6996 /* free up relocation descriptors */ 6997 for (i = 0; i < obj->nr_programs; i++) { 6998 prog = &obj->programs[i]; 6999 zfree(&prog->reloc_desc); 7000 prog->nr_reloc = 0; 7001 } 7002 } 7003 7004 static int 7005 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7006 { 7007 struct bpf_program *prog; 7008 size_t i, j; 7009 int err; 7010 7011 if (obj->btf_ext) { 7012 err = bpf_object__relocate_core(obj, targ_btf_path); 7013 if (err) { 7014 pr_warn("failed to perform CO-RE relocations: %d\n", 7015 err); 7016 return err; 7017 } 7018 } 7019 7020 /* Before relocating calls pre-process relocations and mark 7021 * few ld_imm64 instructions that points to subprogs. 7022 * Otherwise bpf_object__reloc_code() later would have to consider 7023 * all ld_imm64 insns as relocation candidates. That would 7024 * reduce relocation speed, since amount of find_prog_insn_relo() 7025 * would increase and most of them will fail to find a relo. 7026 */ 7027 for (i = 0; i < obj->nr_programs; i++) { 7028 prog = &obj->programs[i]; 7029 for (j = 0; j < prog->nr_reloc; j++) { 7030 struct reloc_desc *relo = &prog->reloc_desc[j]; 7031 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7032 7033 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7034 if (relo->type == RELO_SUBPROG_ADDR) 7035 insn[0].src_reg = BPF_PSEUDO_FUNC; 7036 } 7037 } 7038 7039 /* relocate subprogram calls and append used subprograms to main 7040 * programs; each copy of subprogram code needs to be relocated 7041 * differently for each main program, because its code location might 7042 * have changed. 7043 * Append subprog relos to main programs to allow data relos to be 7044 * processed after text is completely relocated. 7045 */ 7046 for (i = 0; i < obj->nr_programs; i++) { 7047 prog = &obj->programs[i]; 7048 /* sub-program's sub-calls are relocated within the context of 7049 * its main program only 7050 */ 7051 if (prog_is_subprog(obj, prog)) 7052 continue; 7053 7054 err = bpf_object__relocate_calls(obj, prog); 7055 if (err) { 7056 pr_warn("prog '%s': failed to relocate calls: %d\n", 7057 prog->name, err); 7058 return err; 7059 } 7060 } 7061 /* Process data relos for main programs */ 7062 for (i = 0; i < obj->nr_programs; i++) { 7063 prog = &obj->programs[i]; 7064 if (prog_is_subprog(obj, prog)) 7065 continue; 7066 err = bpf_object__relocate_data(obj, prog); 7067 if (err) { 7068 pr_warn("prog '%s': failed to relocate data references: %d\n", 7069 prog->name, err); 7070 return err; 7071 } 7072 } 7073 if (!obj->gen_loader) 7074 bpf_object__free_relocs(obj); 7075 return 0; 7076 } 7077 7078 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7079 GElf_Shdr *shdr, Elf_Data *data); 7080 7081 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7082 GElf_Shdr *shdr, Elf_Data *data) 7083 { 7084 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7085 int i, j, nrels, new_sz; 7086 const struct btf_var_secinfo *vi = NULL; 7087 const struct btf_type *sec, *var, *def; 7088 struct bpf_map *map = NULL, *targ_map; 7089 const struct btf_member *member; 7090 const char *name, *mname; 7091 Elf_Data *symbols; 7092 unsigned int moff; 7093 GElf_Sym sym; 7094 GElf_Rel rel; 7095 void *tmp; 7096 7097 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7098 return -EINVAL; 7099 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7100 if (!sec) 7101 return -EINVAL; 7102 7103 symbols = obj->efile.symbols; 7104 nrels = shdr->sh_size / shdr->sh_entsize; 7105 for (i = 0; i < nrels; i++) { 7106 if (!gelf_getrel(data, i, &rel)) { 7107 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7108 return -LIBBPF_ERRNO__FORMAT; 7109 } 7110 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 7111 pr_warn(".maps relo #%d: symbol %zx not found\n", 7112 i, (size_t)GELF_R_SYM(rel.r_info)); 7113 return -LIBBPF_ERRNO__FORMAT; 7114 } 7115 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 7116 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 7117 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7118 i, name); 7119 return -LIBBPF_ERRNO__RELOC; 7120 } 7121 7122 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 7123 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 7124 (size_t)rel.r_offset, sym.st_name, name); 7125 7126 for (j = 0; j < obj->nr_maps; j++) { 7127 map = &obj->maps[j]; 7128 if (map->sec_idx != obj->efile.btf_maps_shndx) 7129 continue; 7130 7131 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7132 if (vi->offset <= rel.r_offset && 7133 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7134 break; 7135 } 7136 if (j == obj->nr_maps) { 7137 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 7138 i, name, (size_t)rel.r_offset); 7139 return -EINVAL; 7140 } 7141 7142 if (!bpf_map_type__is_map_in_map(map->def.type)) 7143 return -EINVAL; 7144 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7145 map->def.key_size != sizeof(int)) { 7146 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7147 i, map->name, sizeof(int)); 7148 return -EINVAL; 7149 } 7150 7151 targ_map = bpf_object__find_map_by_name(obj, name); 7152 if (!targ_map) 7153 return -ESRCH; 7154 7155 var = btf__type_by_id(obj->btf, vi->type); 7156 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7157 if (btf_vlen(def) == 0) 7158 return -EINVAL; 7159 member = btf_members(def) + btf_vlen(def) - 1; 7160 mname = btf__name_by_offset(obj->btf, member->name_off); 7161 if (strcmp(mname, "values")) 7162 return -EINVAL; 7163 7164 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7165 if (rel.r_offset - vi->offset < moff) 7166 return -EINVAL; 7167 7168 moff = rel.r_offset - vi->offset - moff; 7169 /* here we use BPF pointer size, which is always 64 bit, as we 7170 * are parsing ELF that was built for BPF target 7171 */ 7172 if (moff % bpf_ptr_sz) 7173 return -EINVAL; 7174 moff /= bpf_ptr_sz; 7175 if (moff >= map->init_slots_sz) { 7176 new_sz = moff + 1; 7177 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7178 if (!tmp) 7179 return -ENOMEM; 7180 map->init_slots = tmp; 7181 memset(map->init_slots + map->init_slots_sz, 0, 7182 (new_sz - map->init_slots_sz) * host_ptr_sz); 7183 map->init_slots_sz = new_sz; 7184 } 7185 map->init_slots[moff] = targ_map; 7186 7187 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 7188 i, map->name, moff, name); 7189 } 7190 7191 return 0; 7192 } 7193 7194 static int cmp_relocs(const void *_a, const void *_b) 7195 { 7196 const struct reloc_desc *a = _a; 7197 const struct reloc_desc *b = _b; 7198 7199 if (a->insn_idx != b->insn_idx) 7200 return a->insn_idx < b->insn_idx ? -1 : 1; 7201 7202 /* no two relocations should have the same insn_idx, but ... */ 7203 if (a->type != b->type) 7204 return a->type < b->type ? -1 : 1; 7205 7206 return 0; 7207 } 7208 7209 static int bpf_object__collect_relos(struct bpf_object *obj) 7210 { 7211 int i, err; 7212 7213 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 7214 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 7215 Elf_Data *data = obj->efile.reloc_sects[i].data; 7216 int idx = shdr->sh_info; 7217 7218 if (shdr->sh_type != SHT_REL) { 7219 pr_warn("internal error at %d\n", __LINE__); 7220 return -LIBBPF_ERRNO__INTERNAL; 7221 } 7222 7223 if (idx == obj->efile.st_ops_shndx) 7224 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7225 else if (idx == obj->efile.btf_maps_shndx) 7226 err = bpf_object__collect_map_relos(obj, shdr, data); 7227 else 7228 err = bpf_object__collect_prog_relos(obj, shdr, data); 7229 if (err) 7230 return err; 7231 } 7232 7233 for (i = 0; i < obj->nr_programs; i++) { 7234 struct bpf_program *p = &obj->programs[i]; 7235 7236 if (!p->nr_reloc) 7237 continue; 7238 7239 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 7240 } 7241 return 0; 7242 } 7243 7244 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7245 { 7246 if (BPF_CLASS(insn->code) == BPF_JMP && 7247 BPF_OP(insn->code) == BPF_CALL && 7248 BPF_SRC(insn->code) == BPF_K && 7249 insn->src_reg == 0 && 7250 insn->dst_reg == 0) { 7251 *func_id = insn->imm; 7252 return true; 7253 } 7254 return false; 7255 } 7256 7257 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7258 { 7259 struct bpf_insn *insn = prog->insns; 7260 enum bpf_func_id func_id; 7261 int i; 7262 7263 if (obj->gen_loader) 7264 return 0; 7265 7266 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7267 if (!insn_is_helper_call(insn, &func_id)) 7268 continue; 7269 7270 /* on kernels that don't yet support 7271 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7272 * to bpf_probe_read() which works well for old kernels 7273 */ 7274 switch (func_id) { 7275 case BPF_FUNC_probe_read_kernel: 7276 case BPF_FUNC_probe_read_user: 7277 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7278 insn->imm = BPF_FUNC_probe_read; 7279 break; 7280 case BPF_FUNC_probe_read_kernel_str: 7281 case BPF_FUNC_probe_read_user_str: 7282 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7283 insn->imm = BPF_FUNC_probe_read_str; 7284 break; 7285 default: 7286 break; 7287 } 7288 } 7289 return 0; 7290 } 7291 7292 static int 7293 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 7294 char *license, __u32 kern_version, int *pfd) 7295 { 7296 struct bpf_prog_load_params load_attr = {}; 7297 char *cp, errmsg[STRERR_BUFSIZE]; 7298 size_t log_buf_size = 0; 7299 char *log_buf = NULL; 7300 int btf_fd, ret; 7301 7302 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7303 /* 7304 * The program type must be set. Most likely we couldn't find a proper 7305 * section definition at load time, and thus we didn't infer the type. 7306 */ 7307 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7308 prog->name, prog->sec_name); 7309 return -EINVAL; 7310 } 7311 7312 if (!insns || !insns_cnt) 7313 return -EINVAL; 7314 7315 load_attr.prog_type = prog->type; 7316 /* old kernels might not support specifying expected_attach_type */ 7317 if (!kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 7318 prog->sec_def->is_exp_attach_type_optional) 7319 load_attr.expected_attach_type = 0; 7320 else 7321 load_attr.expected_attach_type = prog->expected_attach_type; 7322 if (kernel_supports(prog->obj, FEAT_PROG_NAME)) 7323 load_attr.name = prog->name; 7324 load_attr.insns = insns; 7325 load_attr.insn_cnt = insns_cnt; 7326 load_attr.license = license; 7327 load_attr.attach_btf_id = prog->attach_btf_id; 7328 if (prog->attach_prog_fd) 7329 load_attr.attach_prog_fd = prog->attach_prog_fd; 7330 else 7331 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7332 load_attr.attach_btf_id = prog->attach_btf_id; 7333 load_attr.kern_version = kern_version; 7334 load_attr.prog_ifindex = prog->prog_ifindex; 7335 7336 /* specify func_info/line_info only if kernel supports them */ 7337 btf_fd = bpf_object__btf_fd(prog->obj); 7338 if (btf_fd >= 0 && kernel_supports(prog->obj, FEAT_BTF_FUNC)) { 7339 load_attr.prog_btf_fd = btf_fd; 7340 load_attr.func_info = prog->func_info; 7341 load_attr.func_info_rec_size = prog->func_info_rec_size; 7342 load_attr.func_info_cnt = prog->func_info_cnt; 7343 load_attr.line_info = prog->line_info; 7344 load_attr.line_info_rec_size = prog->line_info_rec_size; 7345 load_attr.line_info_cnt = prog->line_info_cnt; 7346 } 7347 load_attr.log_level = prog->log_level; 7348 load_attr.prog_flags = prog->prog_flags; 7349 7350 if (prog->obj->gen_loader) { 7351 bpf_gen__prog_load(prog->obj->gen_loader, &load_attr, 7352 prog - prog->obj->programs); 7353 *pfd = -1; 7354 return 0; 7355 } 7356 retry_load: 7357 if (log_buf_size) { 7358 log_buf = malloc(log_buf_size); 7359 if (!log_buf) 7360 return -ENOMEM; 7361 7362 *log_buf = 0; 7363 } 7364 7365 load_attr.log_buf = log_buf; 7366 load_attr.log_buf_sz = log_buf_size; 7367 ret = libbpf__bpf_prog_load(&load_attr); 7368 7369 if (ret >= 0) { 7370 if (log_buf && load_attr.log_level) 7371 pr_debug("verifier log:\n%s", log_buf); 7372 7373 if (prog->obj->rodata_map_idx >= 0 && 7374 kernel_supports(prog->obj, FEAT_PROG_BIND_MAP)) { 7375 struct bpf_map *rodata_map = 7376 &prog->obj->maps[prog->obj->rodata_map_idx]; 7377 7378 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 7379 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7380 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 7381 prog->name, cp); 7382 /* Don't fail hard if can't bind rodata. */ 7383 } 7384 } 7385 7386 *pfd = ret; 7387 ret = 0; 7388 goto out; 7389 } 7390 7391 if (!log_buf || errno == ENOSPC) { 7392 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 7393 log_buf_size << 1); 7394 7395 free(log_buf); 7396 goto retry_load; 7397 } 7398 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 7399 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7400 pr_warn("load bpf program failed: %s\n", cp); 7401 pr_perm_msg(ret); 7402 7403 if (log_buf && log_buf[0] != '\0') { 7404 ret = -LIBBPF_ERRNO__VERIFY; 7405 pr_warn("-- BEGIN DUMP LOG ---\n"); 7406 pr_warn("\n%s\n", log_buf); 7407 pr_warn("-- END LOG --\n"); 7408 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 7409 pr_warn("Program too large (%zu insns), at most %d insns\n", 7410 load_attr.insn_cnt, BPF_MAXINSNS); 7411 ret = -LIBBPF_ERRNO__PROG2BIG; 7412 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 7413 /* Wrong program type? */ 7414 int fd; 7415 7416 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 7417 load_attr.expected_attach_type = 0; 7418 load_attr.log_buf = NULL; 7419 load_attr.log_buf_sz = 0; 7420 fd = libbpf__bpf_prog_load(&load_attr); 7421 if (fd >= 0) { 7422 close(fd); 7423 ret = -LIBBPF_ERRNO__PROGTYPE; 7424 goto out; 7425 } 7426 } 7427 7428 out: 7429 free(log_buf); 7430 return ret; 7431 } 7432 7433 static int bpf_program__record_externs(struct bpf_program *prog) 7434 { 7435 struct bpf_object *obj = prog->obj; 7436 int i; 7437 7438 for (i = 0; i < prog->nr_reloc; i++) { 7439 struct reloc_desc *relo = &prog->reloc_desc[i]; 7440 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7441 7442 switch (relo->type) { 7443 case RELO_EXTERN_VAR: 7444 if (ext->type != EXT_KSYM) 7445 continue; 7446 if (!ext->ksym.type_id) { 7447 pr_warn("typeless ksym %s is not supported yet\n", 7448 ext->name); 7449 return -ENOTSUP; 7450 } 7451 bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_VAR, 7452 relo->insn_idx); 7453 break; 7454 case RELO_EXTERN_FUNC: 7455 bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_FUNC, 7456 relo->insn_idx); 7457 break; 7458 default: 7459 continue; 7460 } 7461 } 7462 return 0; 7463 } 7464 7465 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id); 7466 7467 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 7468 { 7469 int err = 0, fd, i; 7470 7471 if (prog->obj->loaded) { 7472 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7473 return libbpf_err(-EINVAL); 7474 } 7475 7476 if ((prog->type == BPF_PROG_TYPE_TRACING || 7477 prog->type == BPF_PROG_TYPE_LSM || 7478 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 7479 int btf_obj_fd = 0, btf_type_id = 0; 7480 7481 err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id); 7482 if (err) 7483 return libbpf_err(err); 7484 7485 prog->attach_btf_obj_fd = btf_obj_fd; 7486 prog->attach_btf_id = btf_type_id; 7487 } 7488 7489 if (prog->instances.nr < 0 || !prog->instances.fds) { 7490 if (prog->preprocessor) { 7491 pr_warn("Internal error: can't load program '%s'\n", 7492 prog->name); 7493 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 7494 } 7495 7496 prog->instances.fds = malloc(sizeof(int)); 7497 if (!prog->instances.fds) { 7498 pr_warn("Not enough memory for BPF fds\n"); 7499 return libbpf_err(-ENOMEM); 7500 } 7501 prog->instances.nr = 1; 7502 prog->instances.fds[0] = -1; 7503 } 7504 7505 if (!prog->preprocessor) { 7506 if (prog->instances.nr != 1) { 7507 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7508 prog->name, prog->instances.nr); 7509 } 7510 if (prog->obj->gen_loader) 7511 bpf_program__record_externs(prog); 7512 err = load_program(prog, prog->insns, prog->insns_cnt, 7513 license, kern_ver, &fd); 7514 if (!err) 7515 prog->instances.fds[0] = fd; 7516 goto out; 7517 } 7518 7519 for (i = 0; i < prog->instances.nr; i++) { 7520 struct bpf_prog_prep_result result; 7521 bpf_program_prep_t preprocessor = prog->preprocessor; 7522 7523 memset(&result, 0, sizeof(result)); 7524 err = preprocessor(prog, i, prog->insns, 7525 prog->insns_cnt, &result); 7526 if (err) { 7527 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7528 i, prog->name); 7529 goto out; 7530 } 7531 7532 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7533 pr_debug("Skip loading the %dth instance of program '%s'\n", 7534 i, prog->name); 7535 prog->instances.fds[i] = -1; 7536 if (result.pfd) 7537 *result.pfd = -1; 7538 continue; 7539 } 7540 7541 err = load_program(prog, result.new_insn_ptr, 7542 result.new_insn_cnt, license, kern_ver, &fd); 7543 if (err) { 7544 pr_warn("Loading the %dth instance of program '%s' failed\n", 7545 i, prog->name); 7546 goto out; 7547 } 7548 7549 if (result.pfd) 7550 *result.pfd = fd; 7551 prog->instances.fds[i] = fd; 7552 } 7553 out: 7554 if (err) 7555 pr_warn("failed to load program '%s'\n", prog->name); 7556 zfree(&prog->insns); 7557 prog->insns_cnt = 0; 7558 return libbpf_err(err); 7559 } 7560 7561 static int 7562 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7563 { 7564 struct bpf_program *prog; 7565 size_t i; 7566 int err; 7567 7568 for (i = 0; i < obj->nr_programs; i++) { 7569 prog = &obj->programs[i]; 7570 err = bpf_object__sanitize_prog(obj, prog); 7571 if (err) 7572 return err; 7573 } 7574 7575 for (i = 0; i < obj->nr_programs; i++) { 7576 prog = &obj->programs[i]; 7577 if (prog_is_subprog(obj, prog)) 7578 continue; 7579 if (!prog->load) { 7580 pr_debug("prog '%s': skipped loading\n", prog->name); 7581 continue; 7582 } 7583 prog->log_level |= log_level; 7584 err = bpf_program__load(prog, obj->license, obj->kern_version); 7585 if (err) 7586 return err; 7587 } 7588 if (obj->gen_loader) 7589 bpf_object__free_relocs(obj); 7590 return 0; 7591 } 7592 7593 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7594 7595 static struct bpf_object * 7596 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7597 const struct bpf_object_open_opts *opts) 7598 { 7599 const char *obj_name, *kconfig; 7600 struct bpf_program *prog; 7601 struct bpf_object *obj; 7602 char tmp_name[64]; 7603 int err; 7604 7605 if (elf_version(EV_CURRENT) == EV_NONE) { 7606 pr_warn("failed to init libelf for %s\n", 7607 path ? : "(mem buf)"); 7608 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7609 } 7610 7611 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7612 return ERR_PTR(-EINVAL); 7613 7614 obj_name = OPTS_GET(opts, object_name, NULL); 7615 if (obj_buf) { 7616 if (!obj_name) { 7617 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7618 (unsigned long)obj_buf, 7619 (unsigned long)obj_buf_sz); 7620 obj_name = tmp_name; 7621 } 7622 path = obj_name; 7623 pr_debug("loading object '%s' from buffer\n", obj_name); 7624 } 7625 7626 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7627 if (IS_ERR(obj)) 7628 return obj; 7629 7630 kconfig = OPTS_GET(opts, kconfig, NULL); 7631 if (kconfig) { 7632 obj->kconfig = strdup(kconfig); 7633 if (!obj->kconfig) 7634 return ERR_PTR(-ENOMEM); 7635 } 7636 7637 err = bpf_object__elf_init(obj); 7638 err = err ? : bpf_object__check_endianness(obj); 7639 err = err ? : bpf_object__elf_collect(obj); 7640 err = err ? : bpf_object__collect_externs(obj); 7641 err = err ? : bpf_object__finalize_btf(obj); 7642 err = err ? : bpf_object__init_maps(obj, opts); 7643 err = err ? : bpf_object__collect_relos(obj); 7644 if (err) 7645 goto out; 7646 bpf_object__elf_finish(obj); 7647 7648 bpf_object__for_each_program(prog, obj) { 7649 prog->sec_def = find_sec_def(prog->sec_name); 7650 if (!prog->sec_def) { 7651 /* couldn't guess, but user might manually specify */ 7652 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7653 prog->name, prog->sec_name); 7654 continue; 7655 } 7656 7657 if (prog->sec_def->is_sleepable) 7658 prog->prog_flags |= BPF_F_SLEEPABLE; 7659 bpf_program__set_type(prog, prog->sec_def->prog_type); 7660 bpf_program__set_expected_attach_type(prog, 7661 prog->sec_def->expected_attach_type); 7662 7663 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7664 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7665 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7666 } 7667 7668 return obj; 7669 out: 7670 bpf_object__close(obj); 7671 return ERR_PTR(err); 7672 } 7673 7674 static struct bpf_object * 7675 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7676 { 7677 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7678 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7679 ); 7680 7681 /* param validation */ 7682 if (!attr->file) 7683 return NULL; 7684 7685 pr_debug("loading %s\n", attr->file); 7686 return __bpf_object__open(attr->file, NULL, 0, &opts); 7687 } 7688 7689 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7690 { 7691 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7692 } 7693 7694 struct bpf_object *bpf_object__open(const char *path) 7695 { 7696 struct bpf_object_open_attr attr = { 7697 .file = path, 7698 .prog_type = BPF_PROG_TYPE_UNSPEC, 7699 }; 7700 7701 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7702 } 7703 7704 struct bpf_object * 7705 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7706 { 7707 if (!path) 7708 return libbpf_err_ptr(-EINVAL); 7709 7710 pr_debug("loading %s\n", path); 7711 7712 return libbpf_ptr(__bpf_object__open(path, NULL, 0, opts)); 7713 } 7714 7715 struct bpf_object * 7716 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7717 const struct bpf_object_open_opts *opts) 7718 { 7719 if (!obj_buf || obj_buf_sz == 0) 7720 return libbpf_err_ptr(-EINVAL); 7721 7722 return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, opts)); 7723 } 7724 7725 struct bpf_object * 7726 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7727 const char *name) 7728 { 7729 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7730 .object_name = name, 7731 /* wrong default, but backwards-compatible */ 7732 .relaxed_maps = true, 7733 ); 7734 7735 /* returning NULL is wrong, but backwards-compatible */ 7736 if (!obj_buf || obj_buf_sz == 0) 7737 return errno = EINVAL, NULL; 7738 7739 return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, &opts)); 7740 } 7741 7742 int bpf_object__unload(struct bpf_object *obj) 7743 { 7744 size_t i; 7745 7746 if (!obj) 7747 return libbpf_err(-EINVAL); 7748 7749 for (i = 0; i < obj->nr_maps; i++) { 7750 zclose(obj->maps[i].fd); 7751 if (obj->maps[i].st_ops) 7752 zfree(&obj->maps[i].st_ops->kern_vdata); 7753 } 7754 7755 for (i = 0; i < obj->nr_programs; i++) 7756 bpf_program__unload(&obj->programs[i]); 7757 7758 return 0; 7759 } 7760 7761 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7762 { 7763 struct bpf_map *m; 7764 7765 bpf_object__for_each_map(m, obj) { 7766 if (!bpf_map__is_internal(m)) 7767 continue; 7768 if (!kernel_supports(obj, FEAT_GLOBAL_DATA)) { 7769 pr_warn("kernel doesn't support global data\n"); 7770 return -ENOTSUP; 7771 } 7772 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7773 m->def.map_flags ^= BPF_F_MMAPABLE; 7774 } 7775 7776 return 0; 7777 } 7778 7779 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7780 { 7781 char sym_type, sym_name[500]; 7782 unsigned long long sym_addr; 7783 const struct btf_type *t; 7784 struct extern_desc *ext; 7785 int ret, err = 0; 7786 FILE *f; 7787 7788 f = fopen("/proc/kallsyms", "r"); 7789 if (!f) { 7790 err = -errno; 7791 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7792 return err; 7793 } 7794 7795 while (true) { 7796 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7797 &sym_addr, &sym_type, sym_name); 7798 if (ret == EOF && feof(f)) 7799 break; 7800 if (ret != 3) { 7801 pr_warn("failed to read kallsyms entry: %d\n", ret); 7802 err = -EINVAL; 7803 goto out; 7804 } 7805 7806 ext = find_extern_by_name(obj, sym_name); 7807 if (!ext || ext->type != EXT_KSYM) 7808 continue; 7809 7810 t = btf__type_by_id(obj->btf, ext->btf_id); 7811 if (!btf_is_var(t)) 7812 continue; 7813 7814 if (ext->is_set && ext->ksym.addr != sym_addr) { 7815 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7816 sym_name, ext->ksym.addr, sym_addr); 7817 err = -EINVAL; 7818 goto out; 7819 } 7820 if (!ext->is_set) { 7821 ext->is_set = true; 7822 ext->ksym.addr = sym_addr; 7823 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7824 } 7825 } 7826 7827 out: 7828 fclose(f); 7829 return err; 7830 } 7831 7832 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7833 __u16 kind, struct btf **res_btf, 7834 int *res_btf_fd) 7835 { 7836 int i, id, btf_fd, err; 7837 struct btf *btf; 7838 7839 btf = obj->btf_vmlinux; 7840 btf_fd = 0; 7841 id = btf__find_by_name_kind(btf, ksym_name, kind); 7842 7843 if (id == -ENOENT) { 7844 err = load_module_btfs(obj); 7845 if (err) 7846 return err; 7847 7848 for (i = 0; i < obj->btf_module_cnt; i++) { 7849 btf = obj->btf_modules[i].btf; 7850 /* we assume module BTF FD is always >0 */ 7851 btf_fd = obj->btf_modules[i].fd; 7852 id = btf__find_by_name_kind(btf, ksym_name, kind); 7853 if (id != -ENOENT) 7854 break; 7855 } 7856 } 7857 if (id <= 0) { 7858 pr_warn("extern (%s ksym) '%s': failed to find BTF ID in kernel BTF(s).\n", 7859 __btf_kind_str(kind), ksym_name); 7860 return -ESRCH; 7861 } 7862 7863 *res_btf = btf; 7864 *res_btf_fd = btf_fd; 7865 return id; 7866 } 7867 7868 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7869 struct extern_desc *ext) 7870 { 7871 const struct btf_type *targ_var, *targ_type; 7872 __u32 targ_type_id, local_type_id; 7873 const char *targ_var_name; 7874 int id, btf_fd = 0, err; 7875 struct btf *btf = NULL; 7876 7877 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &btf_fd); 7878 if (id < 0) 7879 return id; 7880 7881 /* find local type_id */ 7882 local_type_id = ext->ksym.type_id; 7883 7884 /* find target type_id */ 7885 targ_var = btf__type_by_id(btf, id); 7886 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7887 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7888 7889 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7890 btf, targ_type_id); 7891 if (err <= 0) { 7892 const struct btf_type *local_type; 7893 const char *targ_name, *local_name; 7894 7895 local_type = btf__type_by_id(obj->btf, local_type_id); 7896 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7897 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7898 7899 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7900 ext->name, local_type_id, 7901 btf_kind_str(local_type), local_name, targ_type_id, 7902 btf_kind_str(targ_type), targ_name); 7903 return -EINVAL; 7904 } 7905 7906 ext->is_set = true; 7907 ext->ksym.kernel_btf_obj_fd = btf_fd; 7908 ext->ksym.kernel_btf_id = id; 7909 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7910 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7911 7912 return 0; 7913 } 7914 7915 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7916 struct extern_desc *ext) 7917 { 7918 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7919 const struct btf_type *kern_func; 7920 struct btf *kern_btf = NULL; 7921 int ret, kern_btf_fd = 0; 7922 7923 local_func_proto_id = ext->ksym.type_id; 7924 7925 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, 7926 &kern_btf, &kern_btf_fd); 7927 if (kfunc_id < 0) { 7928 pr_warn("extern (func ksym) '%s': not found in kernel BTF\n", 7929 ext->name); 7930 return kfunc_id; 7931 } 7932 7933 if (kern_btf != obj->btf_vmlinux) { 7934 pr_warn("extern (func ksym) '%s': function in kernel module is not supported\n", 7935 ext->name); 7936 return -ENOTSUP; 7937 } 7938 7939 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7940 kfunc_proto_id = kern_func->type; 7941 7942 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7943 kern_btf, kfunc_proto_id); 7944 if (ret <= 0) { 7945 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7946 ext->name, local_func_proto_id, kfunc_proto_id); 7947 return -EINVAL; 7948 } 7949 7950 ext->is_set = true; 7951 ext->ksym.kernel_btf_obj_fd = kern_btf_fd; 7952 ext->ksym.kernel_btf_id = kfunc_id; 7953 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7954 ext->name, kfunc_id); 7955 7956 return 0; 7957 } 7958 7959 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7960 { 7961 const struct btf_type *t; 7962 struct extern_desc *ext; 7963 int i, err; 7964 7965 for (i = 0; i < obj->nr_extern; i++) { 7966 ext = &obj->externs[i]; 7967 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7968 continue; 7969 7970 if (obj->gen_loader) { 7971 ext->is_set = true; 7972 ext->ksym.kernel_btf_obj_fd = 0; 7973 ext->ksym.kernel_btf_id = 0; 7974 continue; 7975 } 7976 t = btf__type_by_id(obj->btf, ext->btf_id); 7977 if (btf_is_var(t)) 7978 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7979 else 7980 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7981 if (err) 7982 return err; 7983 } 7984 return 0; 7985 } 7986 7987 static int bpf_object__resolve_externs(struct bpf_object *obj, 7988 const char *extra_kconfig) 7989 { 7990 bool need_config = false, need_kallsyms = false; 7991 bool need_vmlinux_btf = false; 7992 struct extern_desc *ext; 7993 void *kcfg_data = NULL; 7994 int err, i; 7995 7996 if (obj->nr_extern == 0) 7997 return 0; 7998 7999 if (obj->kconfig_map_idx >= 0) 8000 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8001 8002 for (i = 0; i < obj->nr_extern; i++) { 8003 ext = &obj->externs[i]; 8004 8005 if (ext->type == EXT_KCFG && 8006 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8007 void *ext_val = kcfg_data + ext->kcfg.data_off; 8008 __u32 kver = get_kernel_version(); 8009 8010 if (!kver) { 8011 pr_warn("failed to get kernel version\n"); 8012 return -EINVAL; 8013 } 8014 err = set_kcfg_value_num(ext, ext_val, kver); 8015 if (err) 8016 return err; 8017 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 8018 } else if (ext->type == EXT_KCFG && 8019 strncmp(ext->name, "CONFIG_", 7) == 0) { 8020 need_config = true; 8021 } else if (ext->type == EXT_KSYM) { 8022 if (ext->ksym.type_id) 8023 need_vmlinux_btf = true; 8024 else 8025 need_kallsyms = true; 8026 } else { 8027 pr_warn("unrecognized extern '%s'\n", ext->name); 8028 return -EINVAL; 8029 } 8030 } 8031 if (need_config && extra_kconfig) { 8032 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8033 if (err) 8034 return -EINVAL; 8035 need_config = false; 8036 for (i = 0; i < obj->nr_extern; i++) { 8037 ext = &obj->externs[i]; 8038 if (ext->type == EXT_KCFG && !ext->is_set) { 8039 need_config = true; 8040 break; 8041 } 8042 } 8043 } 8044 if (need_config) { 8045 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8046 if (err) 8047 return -EINVAL; 8048 } 8049 if (need_kallsyms) { 8050 err = bpf_object__read_kallsyms_file(obj); 8051 if (err) 8052 return -EINVAL; 8053 } 8054 if (need_vmlinux_btf) { 8055 err = bpf_object__resolve_ksyms_btf_id(obj); 8056 if (err) 8057 return -EINVAL; 8058 } 8059 for (i = 0; i < obj->nr_extern; i++) { 8060 ext = &obj->externs[i]; 8061 8062 if (!ext->is_set && !ext->is_weak) { 8063 pr_warn("extern %s (strong) not resolved\n", ext->name); 8064 return -ESRCH; 8065 } else if (!ext->is_set) { 8066 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 8067 ext->name); 8068 } 8069 } 8070 8071 return 0; 8072 } 8073 8074 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 8075 { 8076 struct bpf_object *obj; 8077 int err, i; 8078 8079 if (!attr) 8080 return libbpf_err(-EINVAL); 8081 obj = attr->obj; 8082 if (!obj) 8083 return libbpf_err(-EINVAL); 8084 8085 if (obj->loaded) { 8086 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8087 return libbpf_err(-EINVAL); 8088 } 8089 8090 if (obj->gen_loader) 8091 bpf_gen__init(obj->gen_loader, attr->log_level); 8092 8093 err = bpf_object__probe_loading(obj); 8094 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8095 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8096 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8097 err = err ? : bpf_object__sanitize_maps(obj); 8098 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8099 err = err ? : bpf_object__create_maps(obj); 8100 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 8101 err = err ? : bpf_object__load_progs(obj, attr->log_level); 8102 8103 if (obj->gen_loader) { 8104 /* reset FDs */ 8105 btf__set_fd(obj->btf, -1); 8106 for (i = 0; i < obj->nr_maps; i++) 8107 obj->maps[i].fd = -1; 8108 if (!err) 8109 err = bpf_gen__finish(obj->gen_loader); 8110 } 8111 8112 /* clean up module BTFs */ 8113 for (i = 0; i < obj->btf_module_cnt; i++) { 8114 close(obj->btf_modules[i].fd); 8115 btf__free(obj->btf_modules[i].btf); 8116 free(obj->btf_modules[i].name); 8117 } 8118 free(obj->btf_modules); 8119 8120 /* clean up vmlinux BTF */ 8121 btf__free(obj->btf_vmlinux); 8122 obj->btf_vmlinux = NULL; 8123 8124 obj->loaded = true; /* doesn't matter if successfully or not */ 8125 8126 if (err) 8127 goto out; 8128 8129 return 0; 8130 out: 8131 /* unpin any maps that were auto-pinned during load */ 8132 for (i = 0; i < obj->nr_maps; i++) 8133 if (obj->maps[i].pinned && !obj->maps[i].reused) 8134 bpf_map__unpin(&obj->maps[i], NULL); 8135 8136 bpf_object__unload(obj); 8137 pr_warn("failed to load object '%s'\n", obj->path); 8138 return libbpf_err(err); 8139 } 8140 8141 int bpf_object__load(struct bpf_object *obj) 8142 { 8143 struct bpf_object_load_attr attr = { 8144 .obj = obj, 8145 }; 8146 8147 return bpf_object__load_xattr(&attr); 8148 } 8149 8150 static int make_parent_dir(const char *path) 8151 { 8152 char *cp, errmsg[STRERR_BUFSIZE]; 8153 char *dname, *dir; 8154 int err = 0; 8155 8156 dname = strdup(path); 8157 if (dname == NULL) 8158 return -ENOMEM; 8159 8160 dir = dirname(dname); 8161 if (mkdir(dir, 0700) && errno != EEXIST) 8162 err = -errno; 8163 8164 free(dname); 8165 if (err) { 8166 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8167 pr_warn("failed to mkdir %s: %s\n", path, cp); 8168 } 8169 return err; 8170 } 8171 8172 static int check_path(const char *path) 8173 { 8174 char *cp, errmsg[STRERR_BUFSIZE]; 8175 struct statfs st_fs; 8176 char *dname, *dir; 8177 int err = 0; 8178 8179 if (path == NULL) 8180 return -EINVAL; 8181 8182 dname = strdup(path); 8183 if (dname == NULL) 8184 return -ENOMEM; 8185 8186 dir = dirname(dname); 8187 if (statfs(dir, &st_fs)) { 8188 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8189 pr_warn("failed to statfs %s: %s\n", dir, cp); 8190 err = -errno; 8191 } 8192 free(dname); 8193 8194 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8195 pr_warn("specified path %s is not on BPF FS\n", path); 8196 err = -EINVAL; 8197 } 8198 8199 return err; 8200 } 8201 8202 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 8203 int instance) 8204 { 8205 char *cp, errmsg[STRERR_BUFSIZE]; 8206 int err; 8207 8208 err = make_parent_dir(path); 8209 if (err) 8210 return libbpf_err(err); 8211 8212 err = check_path(path); 8213 if (err) 8214 return libbpf_err(err); 8215 8216 if (prog == NULL) { 8217 pr_warn("invalid program pointer\n"); 8218 return libbpf_err(-EINVAL); 8219 } 8220 8221 if (instance < 0 || instance >= prog->instances.nr) { 8222 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8223 instance, prog->name, prog->instances.nr); 8224 return libbpf_err(-EINVAL); 8225 } 8226 8227 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 8228 err = -errno; 8229 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8230 pr_warn("failed to pin program: %s\n", cp); 8231 return libbpf_err(err); 8232 } 8233 pr_debug("pinned program '%s'\n", path); 8234 8235 return 0; 8236 } 8237 8238 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 8239 int instance) 8240 { 8241 int err; 8242 8243 err = check_path(path); 8244 if (err) 8245 return libbpf_err(err); 8246 8247 if (prog == NULL) { 8248 pr_warn("invalid program pointer\n"); 8249 return libbpf_err(-EINVAL); 8250 } 8251 8252 if (instance < 0 || instance >= prog->instances.nr) { 8253 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8254 instance, prog->name, prog->instances.nr); 8255 return libbpf_err(-EINVAL); 8256 } 8257 8258 err = unlink(path); 8259 if (err != 0) 8260 return libbpf_err(-errno); 8261 8262 pr_debug("unpinned program '%s'\n", path); 8263 8264 return 0; 8265 } 8266 8267 int bpf_program__pin(struct bpf_program *prog, const char *path) 8268 { 8269 int i, err; 8270 8271 err = make_parent_dir(path); 8272 if (err) 8273 return libbpf_err(err); 8274 8275 err = check_path(path); 8276 if (err) 8277 return libbpf_err(err); 8278 8279 if (prog == NULL) { 8280 pr_warn("invalid program pointer\n"); 8281 return libbpf_err(-EINVAL); 8282 } 8283 8284 if (prog->instances.nr <= 0) { 8285 pr_warn("no instances of prog %s to pin\n", prog->name); 8286 return libbpf_err(-EINVAL); 8287 } 8288 8289 if (prog->instances.nr == 1) { 8290 /* don't create subdirs when pinning single instance */ 8291 return bpf_program__pin_instance(prog, path, 0); 8292 } 8293 8294 for (i = 0; i < prog->instances.nr; i++) { 8295 char buf[PATH_MAX]; 8296 int len; 8297 8298 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8299 if (len < 0) { 8300 err = -EINVAL; 8301 goto err_unpin; 8302 } else if (len >= PATH_MAX) { 8303 err = -ENAMETOOLONG; 8304 goto err_unpin; 8305 } 8306 8307 err = bpf_program__pin_instance(prog, buf, i); 8308 if (err) 8309 goto err_unpin; 8310 } 8311 8312 return 0; 8313 8314 err_unpin: 8315 for (i = i - 1; i >= 0; i--) { 8316 char buf[PATH_MAX]; 8317 int len; 8318 8319 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8320 if (len < 0) 8321 continue; 8322 else if (len >= PATH_MAX) 8323 continue; 8324 8325 bpf_program__unpin_instance(prog, buf, i); 8326 } 8327 8328 rmdir(path); 8329 8330 return libbpf_err(err); 8331 } 8332 8333 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8334 { 8335 int i, err; 8336 8337 err = check_path(path); 8338 if (err) 8339 return libbpf_err(err); 8340 8341 if (prog == NULL) { 8342 pr_warn("invalid program pointer\n"); 8343 return libbpf_err(-EINVAL); 8344 } 8345 8346 if (prog->instances.nr <= 0) { 8347 pr_warn("no instances of prog %s to pin\n", prog->name); 8348 return libbpf_err(-EINVAL); 8349 } 8350 8351 if (prog->instances.nr == 1) { 8352 /* don't create subdirs when pinning single instance */ 8353 return bpf_program__unpin_instance(prog, path, 0); 8354 } 8355 8356 for (i = 0; i < prog->instances.nr; i++) { 8357 char buf[PATH_MAX]; 8358 int len; 8359 8360 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8361 if (len < 0) 8362 return libbpf_err(-EINVAL); 8363 else if (len >= PATH_MAX) 8364 return libbpf_err(-ENAMETOOLONG); 8365 8366 err = bpf_program__unpin_instance(prog, buf, i); 8367 if (err) 8368 return err; 8369 } 8370 8371 err = rmdir(path); 8372 if (err) 8373 return libbpf_err(-errno); 8374 8375 return 0; 8376 } 8377 8378 int bpf_map__pin(struct bpf_map *map, const char *path) 8379 { 8380 char *cp, errmsg[STRERR_BUFSIZE]; 8381 int err; 8382 8383 if (map == NULL) { 8384 pr_warn("invalid map pointer\n"); 8385 return libbpf_err(-EINVAL); 8386 } 8387 8388 if (map->pin_path) { 8389 if (path && strcmp(path, map->pin_path)) { 8390 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8391 bpf_map__name(map), map->pin_path, path); 8392 return libbpf_err(-EINVAL); 8393 } else if (map->pinned) { 8394 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8395 bpf_map__name(map), map->pin_path); 8396 return 0; 8397 } 8398 } else { 8399 if (!path) { 8400 pr_warn("missing a path to pin map '%s' at\n", 8401 bpf_map__name(map)); 8402 return libbpf_err(-EINVAL); 8403 } else if (map->pinned) { 8404 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8405 return libbpf_err(-EEXIST); 8406 } 8407 8408 map->pin_path = strdup(path); 8409 if (!map->pin_path) { 8410 err = -errno; 8411 goto out_err; 8412 } 8413 } 8414 8415 err = make_parent_dir(map->pin_path); 8416 if (err) 8417 return libbpf_err(err); 8418 8419 err = check_path(map->pin_path); 8420 if (err) 8421 return libbpf_err(err); 8422 8423 if (bpf_obj_pin(map->fd, map->pin_path)) { 8424 err = -errno; 8425 goto out_err; 8426 } 8427 8428 map->pinned = true; 8429 pr_debug("pinned map '%s'\n", map->pin_path); 8430 8431 return 0; 8432 8433 out_err: 8434 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8435 pr_warn("failed to pin map: %s\n", cp); 8436 return libbpf_err(err); 8437 } 8438 8439 int bpf_map__unpin(struct bpf_map *map, const char *path) 8440 { 8441 int err; 8442 8443 if (map == NULL) { 8444 pr_warn("invalid map pointer\n"); 8445 return libbpf_err(-EINVAL); 8446 } 8447 8448 if (map->pin_path) { 8449 if (path && strcmp(path, map->pin_path)) { 8450 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8451 bpf_map__name(map), map->pin_path, path); 8452 return libbpf_err(-EINVAL); 8453 } 8454 path = map->pin_path; 8455 } else if (!path) { 8456 pr_warn("no path to unpin map '%s' from\n", 8457 bpf_map__name(map)); 8458 return libbpf_err(-EINVAL); 8459 } 8460 8461 err = check_path(path); 8462 if (err) 8463 return libbpf_err(err); 8464 8465 err = unlink(path); 8466 if (err != 0) 8467 return libbpf_err(-errno); 8468 8469 map->pinned = false; 8470 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8471 8472 return 0; 8473 } 8474 8475 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8476 { 8477 char *new = NULL; 8478 8479 if (path) { 8480 new = strdup(path); 8481 if (!new) 8482 return libbpf_err(-errno); 8483 } 8484 8485 free(map->pin_path); 8486 map->pin_path = new; 8487 return 0; 8488 } 8489 8490 const char *bpf_map__get_pin_path(const struct bpf_map *map) 8491 { 8492 return map->pin_path; 8493 } 8494 8495 bool bpf_map__is_pinned(const struct bpf_map *map) 8496 { 8497 return map->pinned; 8498 } 8499 8500 static void sanitize_pin_path(char *s) 8501 { 8502 /* bpffs disallows periods in path names */ 8503 while (*s) { 8504 if (*s == '.') 8505 *s = '_'; 8506 s++; 8507 } 8508 } 8509 8510 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8511 { 8512 struct bpf_map *map; 8513 int err; 8514 8515 if (!obj) 8516 return libbpf_err(-ENOENT); 8517 8518 if (!obj->loaded) { 8519 pr_warn("object not yet loaded; load it first\n"); 8520 return libbpf_err(-ENOENT); 8521 } 8522 8523 bpf_object__for_each_map(map, obj) { 8524 char *pin_path = NULL; 8525 char buf[PATH_MAX]; 8526 8527 if (path) { 8528 int len; 8529 8530 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8531 bpf_map__name(map)); 8532 if (len < 0) { 8533 err = -EINVAL; 8534 goto err_unpin_maps; 8535 } else if (len >= PATH_MAX) { 8536 err = -ENAMETOOLONG; 8537 goto err_unpin_maps; 8538 } 8539 sanitize_pin_path(buf); 8540 pin_path = buf; 8541 } else if (!map->pin_path) { 8542 continue; 8543 } 8544 8545 err = bpf_map__pin(map, pin_path); 8546 if (err) 8547 goto err_unpin_maps; 8548 } 8549 8550 return 0; 8551 8552 err_unpin_maps: 8553 while ((map = bpf_map__prev(map, obj))) { 8554 if (!map->pin_path) 8555 continue; 8556 8557 bpf_map__unpin(map, NULL); 8558 } 8559 8560 return libbpf_err(err); 8561 } 8562 8563 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8564 { 8565 struct bpf_map *map; 8566 int err; 8567 8568 if (!obj) 8569 return libbpf_err(-ENOENT); 8570 8571 bpf_object__for_each_map(map, obj) { 8572 char *pin_path = NULL; 8573 char buf[PATH_MAX]; 8574 8575 if (path) { 8576 int len; 8577 8578 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8579 bpf_map__name(map)); 8580 if (len < 0) 8581 return libbpf_err(-EINVAL); 8582 else if (len >= PATH_MAX) 8583 return libbpf_err(-ENAMETOOLONG); 8584 sanitize_pin_path(buf); 8585 pin_path = buf; 8586 } else if (!map->pin_path) { 8587 continue; 8588 } 8589 8590 err = bpf_map__unpin(map, pin_path); 8591 if (err) 8592 return libbpf_err(err); 8593 } 8594 8595 return 0; 8596 } 8597 8598 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8599 { 8600 struct bpf_program *prog; 8601 int err; 8602 8603 if (!obj) 8604 return libbpf_err(-ENOENT); 8605 8606 if (!obj->loaded) { 8607 pr_warn("object not yet loaded; load it first\n"); 8608 return libbpf_err(-ENOENT); 8609 } 8610 8611 bpf_object__for_each_program(prog, obj) { 8612 char buf[PATH_MAX]; 8613 int len; 8614 8615 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8616 prog->pin_name); 8617 if (len < 0) { 8618 err = -EINVAL; 8619 goto err_unpin_programs; 8620 } else if (len >= PATH_MAX) { 8621 err = -ENAMETOOLONG; 8622 goto err_unpin_programs; 8623 } 8624 8625 err = bpf_program__pin(prog, buf); 8626 if (err) 8627 goto err_unpin_programs; 8628 } 8629 8630 return 0; 8631 8632 err_unpin_programs: 8633 while ((prog = bpf_program__prev(prog, obj))) { 8634 char buf[PATH_MAX]; 8635 int len; 8636 8637 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8638 prog->pin_name); 8639 if (len < 0) 8640 continue; 8641 else if (len >= PATH_MAX) 8642 continue; 8643 8644 bpf_program__unpin(prog, buf); 8645 } 8646 8647 return libbpf_err(err); 8648 } 8649 8650 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8651 { 8652 struct bpf_program *prog; 8653 int err; 8654 8655 if (!obj) 8656 return libbpf_err(-ENOENT); 8657 8658 bpf_object__for_each_program(prog, obj) { 8659 char buf[PATH_MAX]; 8660 int len; 8661 8662 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8663 prog->pin_name); 8664 if (len < 0) 8665 return libbpf_err(-EINVAL); 8666 else if (len >= PATH_MAX) 8667 return libbpf_err(-ENAMETOOLONG); 8668 8669 err = bpf_program__unpin(prog, buf); 8670 if (err) 8671 return libbpf_err(err); 8672 } 8673 8674 return 0; 8675 } 8676 8677 int bpf_object__pin(struct bpf_object *obj, const char *path) 8678 { 8679 int err; 8680 8681 err = bpf_object__pin_maps(obj, path); 8682 if (err) 8683 return libbpf_err(err); 8684 8685 err = bpf_object__pin_programs(obj, path); 8686 if (err) { 8687 bpf_object__unpin_maps(obj, path); 8688 return libbpf_err(err); 8689 } 8690 8691 return 0; 8692 } 8693 8694 static void bpf_map__destroy(struct bpf_map *map) 8695 { 8696 if (map->clear_priv) 8697 map->clear_priv(map, map->priv); 8698 map->priv = NULL; 8699 map->clear_priv = NULL; 8700 8701 if (map->inner_map) { 8702 bpf_map__destroy(map->inner_map); 8703 zfree(&map->inner_map); 8704 } 8705 8706 zfree(&map->init_slots); 8707 map->init_slots_sz = 0; 8708 8709 if (map->mmaped) { 8710 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8711 map->mmaped = NULL; 8712 } 8713 8714 if (map->st_ops) { 8715 zfree(&map->st_ops->data); 8716 zfree(&map->st_ops->progs); 8717 zfree(&map->st_ops->kern_func_off); 8718 zfree(&map->st_ops); 8719 } 8720 8721 zfree(&map->name); 8722 zfree(&map->pin_path); 8723 8724 if (map->fd >= 0) 8725 zclose(map->fd); 8726 } 8727 8728 void bpf_object__close(struct bpf_object *obj) 8729 { 8730 size_t i; 8731 8732 if (IS_ERR_OR_NULL(obj)) 8733 return; 8734 8735 if (obj->clear_priv) 8736 obj->clear_priv(obj, obj->priv); 8737 8738 bpf_gen__free(obj->gen_loader); 8739 bpf_object__elf_finish(obj); 8740 bpf_object__unload(obj); 8741 btf__free(obj->btf); 8742 btf_ext__free(obj->btf_ext); 8743 8744 for (i = 0; i < obj->nr_maps; i++) 8745 bpf_map__destroy(&obj->maps[i]); 8746 8747 zfree(&obj->kconfig); 8748 zfree(&obj->externs); 8749 obj->nr_extern = 0; 8750 8751 zfree(&obj->maps); 8752 obj->nr_maps = 0; 8753 8754 if (obj->programs && obj->nr_programs) { 8755 for (i = 0; i < obj->nr_programs; i++) 8756 bpf_program__exit(&obj->programs[i]); 8757 } 8758 zfree(&obj->programs); 8759 8760 list_del(&obj->list); 8761 free(obj); 8762 } 8763 8764 struct bpf_object * 8765 bpf_object__next(struct bpf_object *prev) 8766 { 8767 struct bpf_object *next; 8768 8769 if (!prev) 8770 next = list_first_entry(&bpf_objects_list, 8771 struct bpf_object, 8772 list); 8773 else 8774 next = list_next_entry(prev, list); 8775 8776 /* Empty list is noticed here so don't need checking on entry. */ 8777 if (&next->list == &bpf_objects_list) 8778 return NULL; 8779 8780 return next; 8781 } 8782 8783 const char *bpf_object__name(const struct bpf_object *obj) 8784 { 8785 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8786 } 8787 8788 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8789 { 8790 return obj ? obj->kern_version : 0; 8791 } 8792 8793 struct btf *bpf_object__btf(const struct bpf_object *obj) 8794 { 8795 return obj ? obj->btf : NULL; 8796 } 8797 8798 int bpf_object__btf_fd(const struct bpf_object *obj) 8799 { 8800 return obj->btf ? btf__fd(obj->btf) : -1; 8801 } 8802 8803 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8804 { 8805 if (obj->loaded) 8806 return libbpf_err(-EINVAL); 8807 8808 obj->kern_version = kern_version; 8809 8810 return 0; 8811 } 8812 8813 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8814 bpf_object_clear_priv_t clear_priv) 8815 { 8816 if (obj->priv && obj->clear_priv) 8817 obj->clear_priv(obj, obj->priv); 8818 8819 obj->priv = priv; 8820 obj->clear_priv = clear_priv; 8821 return 0; 8822 } 8823 8824 void *bpf_object__priv(const struct bpf_object *obj) 8825 { 8826 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8827 } 8828 8829 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8830 { 8831 struct bpf_gen *gen; 8832 8833 if (!opts) 8834 return -EFAULT; 8835 if (!OPTS_VALID(opts, gen_loader_opts)) 8836 return -EINVAL; 8837 gen = calloc(sizeof(*gen), 1); 8838 if (!gen) 8839 return -ENOMEM; 8840 gen->opts = opts; 8841 obj->gen_loader = gen; 8842 return 0; 8843 } 8844 8845 static struct bpf_program * 8846 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8847 bool forward) 8848 { 8849 size_t nr_programs = obj->nr_programs; 8850 ssize_t idx; 8851 8852 if (!nr_programs) 8853 return NULL; 8854 8855 if (!p) 8856 /* Iter from the beginning */ 8857 return forward ? &obj->programs[0] : 8858 &obj->programs[nr_programs - 1]; 8859 8860 if (p->obj != obj) { 8861 pr_warn("error: program handler doesn't match object\n"); 8862 return errno = EINVAL, NULL; 8863 } 8864 8865 idx = (p - obj->programs) + (forward ? 1 : -1); 8866 if (idx >= obj->nr_programs || idx < 0) 8867 return NULL; 8868 return &obj->programs[idx]; 8869 } 8870 8871 struct bpf_program * 8872 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8873 { 8874 struct bpf_program *prog = prev; 8875 8876 do { 8877 prog = __bpf_program__iter(prog, obj, true); 8878 } while (prog && prog_is_subprog(obj, prog)); 8879 8880 return prog; 8881 } 8882 8883 struct bpf_program * 8884 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8885 { 8886 struct bpf_program *prog = next; 8887 8888 do { 8889 prog = __bpf_program__iter(prog, obj, false); 8890 } while (prog && prog_is_subprog(obj, prog)); 8891 8892 return prog; 8893 } 8894 8895 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8896 bpf_program_clear_priv_t clear_priv) 8897 { 8898 if (prog->priv && prog->clear_priv) 8899 prog->clear_priv(prog, prog->priv); 8900 8901 prog->priv = priv; 8902 prog->clear_priv = clear_priv; 8903 return 0; 8904 } 8905 8906 void *bpf_program__priv(const struct bpf_program *prog) 8907 { 8908 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8909 } 8910 8911 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8912 { 8913 prog->prog_ifindex = ifindex; 8914 } 8915 8916 const char *bpf_program__name(const struct bpf_program *prog) 8917 { 8918 return prog->name; 8919 } 8920 8921 const char *bpf_program__section_name(const struct bpf_program *prog) 8922 { 8923 return prog->sec_name; 8924 } 8925 8926 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8927 { 8928 const char *title; 8929 8930 title = prog->sec_name; 8931 if (needs_copy) { 8932 title = strdup(title); 8933 if (!title) { 8934 pr_warn("failed to strdup program title\n"); 8935 return libbpf_err_ptr(-ENOMEM); 8936 } 8937 } 8938 8939 return title; 8940 } 8941 8942 bool bpf_program__autoload(const struct bpf_program *prog) 8943 { 8944 return prog->load; 8945 } 8946 8947 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8948 { 8949 if (prog->obj->loaded) 8950 return libbpf_err(-EINVAL); 8951 8952 prog->load = autoload; 8953 return 0; 8954 } 8955 8956 int bpf_program__fd(const struct bpf_program *prog) 8957 { 8958 return bpf_program__nth_fd(prog, 0); 8959 } 8960 8961 size_t bpf_program__size(const struct bpf_program *prog) 8962 { 8963 return prog->insns_cnt * BPF_INSN_SZ; 8964 } 8965 8966 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8967 bpf_program_prep_t prep) 8968 { 8969 int *instances_fds; 8970 8971 if (nr_instances <= 0 || !prep) 8972 return libbpf_err(-EINVAL); 8973 8974 if (prog->instances.nr > 0 || prog->instances.fds) { 8975 pr_warn("Can't set pre-processor after loading\n"); 8976 return libbpf_err(-EINVAL); 8977 } 8978 8979 instances_fds = malloc(sizeof(int) * nr_instances); 8980 if (!instances_fds) { 8981 pr_warn("alloc memory failed for fds\n"); 8982 return libbpf_err(-ENOMEM); 8983 } 8984 8985 /* fill all fd with -1 */ 8986 memset(instances_fds, -1, sizeof(int) * nr_instances); 8987 8988 prog->instances.nr = nr_instances; 8989 prog->instances.fds = instances_fds; 8990 prog->preprocessor = prep; 8991 return 0; 8992 } 8993 8994 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8995 { 8996 int fd; 8997 8998 if (!prog) 8999 return libbpf_err(-EINVAL); 9000 9001 if (n >= prog->instances.nr || n < 0) { 9002 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 9003 n, prog->name, prog->instances.nr); 9004 return libbpf_err(-EINVAL); 9005 } 9006 9007 fd = prog->instances.fds[n]; 9008 if (fd < 0) { 9009 pr_warn("%dth instance of program '%s' is invalid\n", 9010 n, prog->name); 9011 return libbpf_err(-ENOENT); 9012 } 9013 9014 return fd; 9015 } 9016 9017 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 9018 { 9019 return prog->type; 9020 } 9021 9022 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9023 { 9024 prog->type = type; 9025 } 9026 9027 static bool bpf_program__is_type(const struct bpf_program *prog, 9028 enum bpf_prog_type type) 9029 { 9030 return prog ? (prog->type == type) : false; 9031 } 9032 9033 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 9034 int bpf_program__set_##NAME(struct bpf_program *prog) \ 9035 { \ 9036 if (!prog) \ 9037 return libbpf_err(-EINVAL); \ 9038 bpf_program__set_type(prog, TYPE); \ 9039 return 0; \ 9040 } \ 9041 \ 9042 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 9043 { \ 9044 return bpf_program__is_type(prog, TYPE); \ 9045 } \ 9046 9047 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 9048 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 9049 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 9050 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 9051 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 9052 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 9053 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 9054 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 9055 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 9056 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 9057 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 9058 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 9059 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 9060 9061 enum bpf_attach_type 9062 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 9063 { 9064 return prog->expected_attach_type; 9065 } 9066 9067 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 9068 enum bpf_attach_type type) 9069 { 9070 prog->expected_attach_type = type; 9071 } 9072 9073 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 9074 attachable, attach_btf) \ 9075 { \ 9076 .sec = string, \ 9077 .len = sizeof(string) - 1, \ 9078 .prog_type = ptype, \ 9079 .expected_attach_type = eatype, \ 9080 .is_exp_attach_type_optional = eatype_optional, \ 9081 .is_attachable = attachable, \ 9082 .is_attach_btf = attach_btf, \ 9083 } 9084 9085 /* Programs that can NOT be attached. */ 9086 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 9087 9088 /* Programs that can be attached. */ 9089 #define BPF_APROG_SEC(string, ptype, atype) \ 9090 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 9091 9092 /* Programs that must specify expected attach type at load time. */ 9093 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 9094 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 9095 9096 /* Programs that use BTF to identify attach point */ 9097 #define BPF_PROG_BTF(string, ptype, eatype) \ 9098 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 9099 9100 /* Programs that can be attached but attach type can't be identified by section 9101 * name. Kept for backward compatibility. 9102 */ 9103 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 9104 9105 #define SEC_DEF(sec_pfx, ptype, ...) { \ 9106 .sec = sec_pfx, \ 9107 .len = sizeof(sec_pfx) - 1, \ 9108 .prog_type = BPF_PROG_TYPE_##ptype, \ 9109 __VA_ARGS__ \ 9110 } 9111 9112 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9113 struct bpf_program *prog); 9114 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9115 struct bpf_program *prog); 9116 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9117 struct bpf_program *prog); 9118 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9119 struct bpf_program *prog); 9120 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9121 struct bpf_program *prog); 9122 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9123 struct bpf_program *prog); 9124 9125 static const struct bpf_sec_def section_defs[] = { 9126 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 9127 BPF_EAPROG_SEC("sk_reuseport/migrate", BPF_PROG_TYPE_SK_REUSEPORT, 9128 BPF_SK_REUSEPORT_SELECT_OR_MIGRATE), 9129 BPF_EAPROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT, 9130 BPF_SK_REUSEPORT_SELECT), 9131 SEC_DEF("kprobe/", KPROBE, 9132 .attach_fn = attach_kprobe), 9133 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 9134 SEC_DEF("kretprobe/", KPROBE, 9135 .attach_fn = attach_kprobe), 9136 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 9137 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 9138 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 9139 SEC_DEF("tracepoint/", TRACEPOINT, 9140 .attach_fn = attach_tp), 9141 SEC_DEF("tp/", TRACEPOINT, 9142 .attach_fn = attach_tp), 9143 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 9144 .attach_fn = attach_raw_tp), 9145 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 9146 .attach_fn = attach_raw_tp), 9147 SEC_DEF("tp_btf/", TRACING, 9148 .expected_attach_type = BPF_TRACE_RAW_TP, 9149 .is_attach_btf = true, 9150 .attach_fn = attach_trace), 9151 SEC_DEF("fentry/", TRACING, 9152 .expected_attach_type = BPF_TRACE_FENTRY, 9153 .is_attach_btf = true, 9154 .attach_fn = attach_trace), 9155 SEC_DEF("fmod_ret/", TRACING, 9156 .expected_attach_type = BPF_MODIFY_RETURN, 9157 .is_attach_btf = true, 9158 .attach_fn = attach_trace), 9159 SEC_DEF("fexit/", TRACING, 9160 .expected_attach_type = BPF_TRACE_FEXIT, 9161 .is_attach_btf = true, 9162 .attach_fn = attach_trace), 9163 SEC_DEF("fentry.s/", TRACING, 9164 .expected_attach_type = BPF_TRACE_FENTRY, 9165 .is_attach_btf = true, 9166 .is_sleepable = true, 9167 .attach_fn = attach_trace), 9168 SEC_DEF("fmod_ret.s/", TRACING, 9169 .expected_attach_type = BPF_MODIFY_RETURN, 9170 .is_attach_btf = true, 9171 .is_sleepable = true, 9172 .attach_fn = attach_trace), 9173 SEC_DEF("fexit.s/", TRACING, 9174 .expected_attach_type = BPF_TRACE_FEXIT, 9175 .is_attach_btf = true, 9176 .is_sleepable = true, 9177 .attach_fn = attach_trace), 9178 SEC_DEF("freplace/", EXT, 9179 .is_attach_btf = true, 9180 .attach_fn = attach_trace), 9181 SEC_DEF("lsm/", LSM, 9182 .is_attach_btf = true, 9183 .expected_attach_type = BPF_LSM_MAC, 9184 .attach_fn = attach_lsm), 9185 SEC_DEF("lsm.s/", LSM, 9186 .is_attach_btf = true, 9187 .is_sleepable = true, 9188 .expected_attach_type = BPF_LSM_MAC, 9189 .attach_fn = attach_lsm), 9190 SEC_DEF("iter/", TRACING, 9191 .expected_attach_type = BPF_TRACE_ITER, 9192 .is_attach_btf = true, 9193 .attach_fn = attach_iter), 9194 SEC_DEF("syscall", SYSCALL, 9195 .is_sleepable = true), 9196 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 9197 BPF_XDP_DEVMAP), 9198 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 9199 BPF_XDP_CPUMAP), 9200 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 9201 BPF_XDP), 9202 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 9203 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 9204 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 9205 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 9206 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 9207 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 9208 BPF_CGROUP_INET_INGRESS), 9209 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 9210 BPF_CGROUP_INET_EGRESS), 9211 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 9212 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 9213 BPF_CGROUP_INET_SOCK_CREATE), 9214 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 9215 BPF_CGROUP_INET_SOCK_RELEASE), 9216 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 9217 BPF_CGROUP_INET_SOCK_CREATE), 9218 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 9219 BPF_CGROUP_INET4_POST_BIND), 9220 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 9221 BPF_CGROUP_INET6_POST_BIND), 9222 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 9223 BPF_CGROUP_DEVICE), 9224 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 9225 BPF_CGROUP_SOCK_OPS), 9226 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 9227 BPF_SK_SKB_STREAM_PARSER), 9228 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 9229 BPF_SK_SKB_STREAM_VERDICT), 9230 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 9231 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 9232 BPF_SK_MSG_VERDICT), 9233 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 9234 BPF_LIRC_MODE2), 9235 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 9236 BPF_FLOW_DISSECTOR), 9237 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9238 BPF_CGROUP_INET4_BIND), 9239 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9240 BPF_CGROUP_INET6_BIND), 9241 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9242 BPF_CGROUP_INET4_CONNECT), 9243 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9244 BPF_CGROUP_INET6_CONNECT), 9245 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9246 BPF_CGROUP_UDP4_SENDMSG), 9247 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9248 BPF_CGROUP_UDP6_SENDMSG), 9249 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9250 BPF_CGROUP_UDP4_RECVMSG), 9251 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9252 BPF_CGROUP_UDP6_RECVMSG), 9253 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9254 BPF_CGROUP_INET4_GETPEERNAME), 9255 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9256 BPF_CGROUP_INET6_GETPEERNAME), 9257 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9258 BPF_CGROUP_INET4_GETSOCKNAME), 9259 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 9260 BPF_CGROUP_INET6_GETSOCKNAME), 9261 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 9262 BPF_CGROUP_SYSCTL), 9263 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 9264 BPF_CGROUP_GETSOCKOPT), 9265 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 9266 BPF_CGROUP_SETSOCKOPT), 9267 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 9268 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 9269 BPF_SK_LOOKUP), 9270 }; 9271 9272 #undef BPF_PROG_SEC_IMPL 9273 #undef BPF_PROG_SEC 9274 #undef BPF_APROG_SEC 9275 #undef BPF_EAPROG_SEC 9276 #undef BPF_APROG_COMPAT 9277 #undef SEC_DEF 9278 9279 #define MAX_TYPE_NAME_SIZE 32 9280 9281 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9282 { 9283 int i, n = ARRAY_SIZE(section_defs); 9284 9285 for (i = 0; i < n; i++) { 9286 if (strncmp(sec_name, 9287 section_defs[i].sec, section_defs[i].len)) 9288 continue; 9289 return §ion_defs[i]; 9290 } 9291 return NULL; 9292 } 9293 9294 static char *libbpf_get_type_names(bool attach_type) 9295 { 9296 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9297 char *buf; 9298 9299 buf = malloc(len); 9300 if (!buf) 9301 return NULL; 9302 9303 buf[0] = '\0'; 9304 /* Forge string buf with all available names */ 9305 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9306 if (attach_type && !section_defs[i].is_attachable) 9307 continue; 9308 9309 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9310 free(buf); 9311 return NULL; 9312 } 9313 strcat(buf, " "); 9314 strcat(buf, section_defs[i].sec); 9315 } 9316 9317 return buf; 9318 } 9319 9320 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9321 enum bpf_attach_type *expected_attach_type) 9322 { 9323 const struct bpf_sec_def *sec_def; 9324 char *type_names; 9325 9326 if (!name) 9327 return libbpf_err(-EINVAL); 9328 9329 sec_def = find_sec_def(name); 9330 if (sec_def) { 9331 *prog_type = sec_def->prog_type; 9332 *expected_attach_type = sec_def->expected_attach_type; 9333 return 0; 9334 } 9335 9336 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9337 type_names = libbpf_get_type_names(false); 9338 if (type_names != NULL) { 9339 pr_debug("supported section(type) names are:%s\n", type_names); 9340 free(type_names); 9341 } 9342 9343 return libbpf_err(-ESRCH); 9344 } 9345 9346 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9347 size_t offset) 9348 { 9349 struct bpf_map *map; 9350 size_t i; 9351 9352 for (i = 0; i < obj->nr_maps; i++) { 9353 map = &obj->maps[i]; 9354 if (!bpf_map__is_struct_ops(map)) 9355 continue; 9356 if (map->sec_offset <= offset && 9357 offset - map->sec_offset < map->def.value_size) 9358 return map; 9359 } 9360 9361 return NULL; 9362 } 9363 9364 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9365 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9366 GElf_Shdr *shdr, Elf_Data *data) 9367 { 9368 const struct btf_member *member; 9369 struct bpf_struct_ops *st_ops; 9370 struct bpf_program *prog; 9371 unsigned int shdr_idx; 9372 const struct btf *btf; 9373 struct bpf_map *map; 9374 Elf_Data *symbols; 9375 unsigned int moff, insn_idx; 9376 const char *name; 9377 __u32 member_idx; 9378 GElf_Sym sym; 9379 GElf_Rel rel; 9380 int i, nrels; 9381 9382 symbols = obj->efile.symbols; 9383 btf = obj->btf; 9384 nrels = shdr->sh_size / shdr->sh_entsize; 9385 for (i = 0; i < nrels; i++) { 9386 if (!gelf_getrel(data, i, &rel)) { 9387 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9388 return -LIBBPF_ERRNO__FORMAT; 9389 } 9390 9391 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 9392 pr_warn("struct_ops reloc: symbol %zx not found\n", 9393 (size_t)GELF_R_SYM(rel.r_info)); 9394 return -LIBBPF_ERRNO__FORMAT; 9395 } 9396 9397 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 9398 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 9399 if (!map) { 9400 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 9401 (size_t)rel.r_offset); 9402 return -EINVAL; 9403 } 9404 9405 moff = rel.r_offset - map->sec_offset; 9406 shdr_idx = sym.st_shndx; 9407 st_ops = map->st_ops; 9408 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9409 map->name, 9410 (long long)(rel.r_info >> 32), 9411 (long long)sym.st_value, 9412 shdr_idx, (size_t)rel.r_offset, 9413 map->sec_offset, sym.st_name, name); 9414 9415 if (shdr_idx >= SHN_LORESERVE) { 9416 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 9417 map->name, (size_t)rel.r_offset, shdr_idx); 9418 return -LIBBPF_ERRNO__RELOC; 9419 } 9420 if (sym.st_value % BPF_INSN_SZ) { 9421 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9422 map->name, (unsigned long long)sym.st_value); 9423 return -LIBBPF_ERRNO__FORMAT; 9424 } 9425 insn_idx = sym.st_value / BPF_INSN_SZ; 9426 9427 member = find_member_by_offset(st_ops->type, moff * 8); 9428 if (!member) { 9429 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9430 map->name, moff); 9431 return -EINVAL; 9432 } 9433 member_idx = member - btf_members(st_ops->type); 9434 name = btf__name_by_offset(btf, member->name_off); 9435 9436 if (!resolve_func_ptr(btf, member->type, NULL)) { 9437 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9438 map->name, name); 9439 return -EINVAL; 9440 } 9441 9442 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9443 if (!prog) { 9444 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9445 map->name, shdr_idx, name); 9446 return -EINVAL; 9447 } 9448 9449 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 9450 const struct bpf_sec_def *sec_def; 9451 9452 sec_def = find_sec_def(prog->sec_name); 9453 if (sec_def && 9454 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 9455 /* for pr_warn */ 9456 prog->type = sec_def->prog_type; 9457 goto invalid_prog; 9458 } 9459 9460 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 9461 prog->attach_btf_id = st_ops->type_id; 9462 prog->expected_attach_type = member_idx; 9463 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 9464 prog->attach_btf_id != st_ops->type_id || 9465 prog->expected_attach_type != member_idx) { 9466 goto invalid_prog; 9467 } 9468 st_ops->progs[member_idx] = prog; 9469 } 9470 9471 return 0; 9472 9473 invalid_prog: 9474 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9475 map->name, prog->name, prog->sec_name, prog->type, 9476 prog->attach_btf_id, prog->expected_attach_type, name); 9477 return -EINVAL; 9478 } 9479 9480 #define BTF_TRACE_PREFIX "btf_trace_" 9481 #define BTF_LSM_PREFIX "bpf_lsm_" 9482 #define BTF_ITER_PREFIX "bpf_iter_" 9483 #define BTF_MAX_NAME_SIZE 128 9484 9485 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9486 const char **prefix, int *kind) 9487 { 9488 switch (attach_type) { 9489 case BPF_TRACE_RAW_TP: 9490 *prefix = BTF_TRACE_PREFIX; 9491 *kind = BTF_KIND_TYPEDEF; 9492 break; 9493 case BPF_LSM_MAC: 9494 *prefix = BTF_LSM_PREFIX; 9495 *kind = BTF_KIND_FUNC; 9496 break; 9497 case BPF_TRACE_ITER: 9498 *prefix = BTF_ITER_PREFIX; 9499 *kind = BTF_KIND_FUNC; 9500 break; 9501 default: 9502 *prefix = ""; 9503 *kind = BTF_KIND_FUNC; 9504 } 9505 } 9506 9507 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9508 const char *name, __u32 kind) 9509 { 9510 char btf_type_name[BTF_MAX_NAME_SIZE]; 9511 int ret; 9512 9513 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9514 "%s%s", prefix, name); 9515 /* snprintf returns the number of characters written excluding the 9516 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9517 * indicates truncation. 9518 */ 9519 if (ret < 0 || ret >= sizeof(btf_type_name)) 9520 return -ENAMETOOLONG; 9521 return btf__find_by_name_kind(btf, btf_type_name, kind); 9522 } 9523 9524 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9525 enum bpf_attach_type attach_type) 9526 { 9527 const char *prefix; 9528 int kind; 9529 9530 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9531 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9532 } 9533 9534 int libbpf_find_vmlinux_btf_id(const char *name, 9535 enum bpf_attach_type attach_type) 9536 { 9537 struct btf *btf; 9538 int err; 9539 9540 btf = libbpf_find_kernel_btf(); 9541 err = libbpf_get_error(btf); 9542 if (err) { 9543 pr_warn("vmlinux BTF is not found\n"); 9544 return libbpf_err(err); 9545 } 9546 9547 err = find_attach_btf_id(btf, name, attach_type); 9548 if (err <= 0) 9549 pr_warn("%s is not found in vmlinux BTF\n", name); 9550 9551 btf__free(btf); 9552 return libbpf_err(err); 9553 } 9554 9555 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9556 { 9557 struct bpf_prog_info_linear *info_linear; 9558 struct bpf_prog_info *info; 9559 struct btf *btf = NULL; 9560 int err = -EINVAL; 9561 9562 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 9563 err = libbpf_get_error(info_linear); 9564 if (err) { 9565 pr_warn("failed get_prog_info_linear for FD %d\n", 9566 attach_prog_fd); 9567 return err; 9568 } 9569 info = &info_linear->info; 9570 if (!info->btf_id) { 9571 pr_warn("The target program doesn't have BTF\n"); 9572 goto out; 9573 } 9574 if (btf__get_from_id(info->btf_id, &btf)) { 9575 pr_warn("Failed to get BTF of the program\n"); 9576 goto out; 9577 } 9578 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9579 btf__free(btf); 9580 if (err <= 0) { 9581 pr_warn("%s is not found in prog's BTF\n", name); 9582 goto out; 9583 } 9584 out: 9585 free(info_linear); 9586 return err; 9587 } 9588 9589 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9590 enum bpf_attach_type attach_type, 9591 int *btf_obj_fd, int *btf_type_id) 9592 { 9593 int ret, i; 9594 9595 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9596 if (ret > 0) { 9597 *btf_obj_fd = 0; /* vmlinux BTF */ 9598 *btf_type_id = ret; 9599 return 0; 9600 } 9601 if (ret != -ENOENT) 9602 return ret; 9603 9604 ret = load_module_btfs(obj); 9605 if (ret) 9606 return ret; 9607 9608 for (i = 0; i < obj->btf_module_cnt; i++) { 9609 const struct module_btf *mod = &obj->btf_modules[i]; 9610 9611 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9612 if (ret > 0) { 9613 *btf_obj_fd = mod->fd; 9614 *btf_type_id = ret; 9615 return 0; 9616 } 9617 if (ret == -ENOENT) 9618 continue; 9619 9620 return ret; 9621 } 9622 9623 return -ESRCH; 9624 } 9625 9626 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id) 9627 { 9628 enum bpf_attach_type attach_type = prog->expected_attach_type; 9629 __u32 attach_prog_fd = prog->attach_prog_fd; 9630 const char *name = prog->sec_name, *attach_name; 9631 const struct bpf_sec_def *sec = NULL; 9632 int i, err = 0; 9633 9634 if (!name) 9635 return -EINVAL; 9636 9637 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9638 if (!section_defs[i].is_attach_btf) 9639 continue; 9640 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9641 continue; 9642 9643 sec = §ion_defs[i]; 9644 break; 9645 } 9646 9647 if (!sec) { 9648 pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name); 9649 return -ESRCH; 9650 } 9651 attach_name = name + sec->len; 9652 9653 /* BPF program's BTF ID */ 9654 if (attach_prog_fd) { 9655 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9656 if (err < 0) { 9657 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9658 attach_prog_fd, attach_name, err); 9659 return err; 9660 } 9661 *btf_obj_fd = 0; 9662 *btf_type_id = err; 9663 return 0; 9664 } 9665 9666 /* kernel/module BTF ID */ 9667 if (prog->obj->gen_loader) { 9668 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9669 *btf_obj_fd = 0; 9670 *btf_type_id = 1; 9671 } else { 9672 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9673 } 9674 if (err) { 9675 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9676 return err; 9677 } 9678 return 0; 9679 } 9680 9681 int libbpf_attach_type_by_name(const char *name, 9682 enum bpf_attach_type *attach_type) 9683 { 9684 char *type_names; 9685 int i; 9686 9687 if (!name) 9688 return libbpf_err(-EINVAL); 9689 9690 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9691 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9692 continue; 9693 if (!section_defs[i].is_attachable) 9694 return libbpf_err(-EINVAL); 9695 *attach_type = section_defs[i].expected_attach_type; 9696 return 0; 9697 } 9698 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9699 type_names = libbpf_get_type_names(true); 9700 if (type_names != NULL) { 9701 pr_debug("attachable section(type) names are:%s\n", type_names); 9702 free(type_names); 9703 } 9704 9705 return libbpf_err(-EINVAL); 9706 } 9707 9708 int bpf_map__fd(const struct bpf_map *map) 9709 { 9710 return map ? map->fd : libbpf_err(-EINVAL); 9711 } 9712 9713 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9714 { 9715 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9716 } 9717 9718 const char *bpf_map__name(const struct bpf_map *map) 9719 { 9720 return map ? map->name : NULL; 9721 } 9722 9723 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9724 { 9725 return map->def.type; 9726 } 9727 9728 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9729 { 9730 if (map->fd >= 0) 9731 return libbpf_err(-EBUSY); 9732 map->def.type = type; 9733 return 0; 9734 } 9735 9736 __u32 bpf_map__map_flags(const struct bpf_map *map) 9737 { 9738 return map->def.map_flags; 9739 } 9740 9741 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9742 { 9743 if (map->fd >= 0) 9744 return libbpf_err(-EBUSY); 9745 map->def.map_flags = flags; 9746 return 0; 9747 } 9748 9749 __u32 bpf_map__numa_node(const struct bpf_map *map) 9750 { 9751 return map->numa_node; 9752 } 9753 9754 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9755 { 9756 if (map->fd >= 0) 9757 return libbpf_err(-EBUSY); 9758 map->numa_node = numa_node; 9759 return 0; 9760 } 9761 9762 __u32 bpf_map__key_size(const struct bpf_map *map) 9763 { 9764 return map->def.key_size; 9765 } 9766 9767 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9768 { 9769 if (map->fd >= 0) 9770 return libbpf_err(-EBUSY); 9771 map->def.key_size = size; 9772 return 0; 9773 } 9774 9775 __u32 bpf_map__value_size(const struct bpf_map *map) 9776 { 9777 return map->def.value_size; 9778 } 9779 9780 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9781 { 9782 if (map->fd >= 0) 9783 return libbpf_err(-EBUSY); 9784 map->def.value_size = size; 9785 return 0; 9786 } 9787 9788 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9789 { 9790 return map ? map->btf_key_type_id : 0; 9791 } 9792 9793 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9794 { 9795 return map ? map->btf_value_type_id : 0; 9796 } 9797 9798 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9799 bpf_map_clear_priv_t clear_priv) 9800 { 9801 if (!map) 9802 return libbpf_err(-EINVAL); 9803 9804 if (map->priv) { 9805 if (map->clear_priv) 9806 map->clear_priv(map, map->priv); 9807 } 9808 9809 map->priv = priv; 9810 map->clear_priv = clear_priv; 9811 return 0; 9812 } 9813 9814 void *bpf_map__priv(const struct bpf_map *map) 9815 { 9816 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9817 } 9818 9819 int bpf_map__set_initial_value(struct bpf_map *map, 9820 const void *data, size_t size) 9821 { 9822 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9823 size != map->def.value_size || map->fd >= 0) 9824 return libbpf_err(-EINVAL); 9825 9826 memcpy(map->mmaped, data, size); 9827 return 0; 9828 } 9829 9830 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9831 { 9832 if (!map->mmaped) 9833 return NULL; 9834 *psize = map->def.value_size; 9835 return map->mmaped; 9836 } 9837 9838 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9839 { 9840 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9841 } 9842 9843 bool bpf_map__is_internal(const struct bpf_map *map) 9844 { 9845 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9846 } 9847 9848 __u32 bpf_map__ifindex(const struct bpf_map *map) 9849 { 9850 return map->map_ifindex; 9851 } 9852 9853 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9854 { 9855 if (map->fd >= 0) 9856 return libbpf_err(-EBUSY); 9857 map->map_ifindex = ifindex; 9858 return 0; 9859 } 9860 9861 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9862 { 9863 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9864 pr_warn("error: unsupported map type\n"); 9865 return libbpf_err(-EINVAL); 9866 } 9867 if (map->inner_map_fd != -1) { 9868 pr_warn("error: inner_map_fd already specified\n"); 9869 return libbpf_err(-EINVAL); 9870 } 9871 zfree(&map->inner_map); 9872 map->inner_map_fd = fd; 9873 return 0; 9874 } 9875 9876 static struct bpf_map * 9877 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9878 { 9879 ssize_t idx; 9880 struct bpf_map *s, *e; 9881 9882 if (!obj || !obj->maps) 9883 return errno = EINVAL, NULL; 9884 9885 s = obj->maps; 9886 e = obj->maps + obj->nr_maps; 9887 9888 if ((m < s) || (m >= e)) { 9889 pr_warn("error in %s: map handler doesn't belong to object\n", 9890 __func__); 9891 return errno = EINVAL, NULL; 9892 } 9893 9894 idx = (m - obj->maps) + i; 9895 if (idx >= obj->nr_maps || idx < 0) 9896 return NULL; 9897 return &obj->maps[idx]; 9898 } 9899 9900 struct bpf_map * 9901 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9902 { 9903 if (prev == NULL) 9904 return obj->maps; 9905 9906 return __bpf_map__iter(prev, obj, 1); 9907 } 9908 9909 struct bpf_map * 9910 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9911 { 9912 if (next == NULL) { 9913 if (!obj->nr_maps) 9914 return NULL; 9915 return obj->maps + obj->nr_maps - 1; 9916 } 9917 9918 return __bpf_map__iter(next, obj, -1); 9919 } 9920 9921 struct bpf_map * 9922 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9923 { 9924 struct bpf_map *pos; 9925 9926 bpf_object__for_each_map(pos, obj) { 9927 if (pos->name && !strcmp(pos->name, name)) 9928 return pos; 9929 } 9930 return errno = ENOENT, NULL; 9931 } 9932 9933 int 9934 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9935 { 9936 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9937 } 9938 9939 struct bpf_map * 9940 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9941 { 9942 return libbpf_err_ptr(-ENOTSUP); 9943 } 9944 9945 long libbpf_get_error(const void *ptr) 9946 { 9947 if (!IS_ERR_OR_NULL(ptr)) 9948 return 0; 9949 9950 if (IS_ERR(ptr)) 9951 errno = -PTR_ERR(ptr); 9952 9953 /* If ptr == NULL, then errno should be already set by the failing 9954 * API, because libbpf never returns NULL on success and it now always 9955 * sets errno on error. So no extra errno handling for ptr == NULL 9956 * case. 9957 */ 9958 return -errno; 9959 } 9960 9961 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9962 struct bpf_object **pobj, int *prog_fd) 9963 { 9964 struct bpf_prog_load_attr attr; 9965 9966 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9967 attr.file = file; 9968 attr.prog_type = type; 9969 attr.expected_attach_type = 0; 9970 9971 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9972 } 9973 9974 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9975 struct bpf_object **pobj, int *prog_fd) 9976 { 9977 struct bpf_object_open_attr open_attr = {}; 9978 struct bpf_program *prog, *first_prog = NULL; 9979 struct bpf_object *obj; 9980 struct bpf_map *map; 9981 int err; 9982 9983 if (!attr) 9984 return libbpf_err(-EINVAL); 9985 if (!attr->file) 9986 return libbpf_err(-EINVAL); 9987 9988 open_attr.file = attr->file; 9989 open_attr.prog_type = attr->prog_type; 9990 9991 obj = bpf_object__open_xattr(&open_attr); 9992 err = libbpf_get_error(obj); 9993 if (err) 9994 return libbpf_err(-ENOENT); 9995 9996 bpf_object__for_each_program(prog, obj) { 9997 enum bpf_attach_type attach_type = attr->expected_attach_type; 9998 /* 9999 * to preserve backwards compatibility, bpf_prog_load treats 10000 * attr->prog_type, if specified, as an override to whatever 10001 * bpf_object__open guessed 10002 */ 10003 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 10004 bpf_program__set_type(prog, attr->prog_type); 10005 bpf_program__set_expected_attach_type(prog, 10006 attach_type); 10007 } 10008 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 10009 /* 10010 * we haven't guessed from section name and user 10011 * didn't provide a fallback type, too bad... 10012 */ 10013 bpf_object__close(obj); 10014 return libbpf_err(-EINVAL); 10015 } 10016 10017 prog->prog_ifindex = attr->ifindex; 10018 prog->log_level = attr->log_level; 10019 prog->prog_flags |= attr->prog_flags; 10020 if (!first_prog) 10021 first_prog = prog; 10022 } 10023 10024 bpf_object__for_each_map(map, obj) { 10025 if (!bpf_map__is_offload_neutral(map)) 10026 map->map_ifindex = attr->ifindex; 10027 } 10028 10029 if (!first_prog) { 10030 pr_warn("object file doesn't contain bpf program\n"); 10031 bpf_object__close(obj); 10032 return libbpf_err(-ENOENT); 10033 } 10034 10035 err = bpf_object__load(obj); 10036 if (err) { 10037 bpf_object__close(obj); 10038 return libbpf_err(err); 10039 } 10040 10041 *pobj = obj; 10042 *prog_fd = bpf_program__fd(first_prog); 10043 return 0; 10044 } 10045 10046 struct bpf_link { 10047 int (*detach)(struct bpf_link *link); 10048 int (*destroy)(struct bpf_link *link); 10049 char *pin_path; /* NULL, if not pinned */ 10050 int fd; /* hook FD, -1 if not applicable */ 10051 bool disconnected; 10052 }; 10053 10054 /* Replace link's underlying BPF program with the new one */ 10055 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10056 { 10057 int ret; 10058 10059 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10060 return libbpf_err_errno(ret); 10061 } 10062 10063 /* Release "ownership" of underlying BPF resource (typically, BPF program 10064 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10065 * link, when destructed through bpf_link__destroy() call won't attempt to 10066 * detach/unregisted that BPF resource. This is useful in situations where, 10067 * say, attached BPF program has to outlive userspace program that attached it 10068 * in the system. Depending on type of BPF program, though, there might be 10069 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10070 * exit of userspace program doesn't trigger automatic detachment and clean up 10071 * inside the kernel. 10072 */ 10073 void bpf_link__disconnect(struct bpf_link *link) 10074 { 10075 link->disconnected = true; 10076 } 10077 10078 int bpf_link__destroy(struct bpf_link *link) 10079 { 10080 int err = 0; 10081 10082 if (IS_ERR_OR_NULL(link)) 10083 return 0; 10084 10085 if (!link->disconnected && link->detach) 10086 err = link->detach(link); 10087 if (link->destroy) 10088 link->destroy(link); 10089 if (link->pin_path) 10090 free(link->pin_path); 10091 free(link); 10092 10093 return libbpf_err(err); 10094 } 10095 10096 int bpf_link__fd(const struct bpf_link *link) 10097 { 10098 return link->fd; 10099 } 10100 10101 const char *bpf_link__pin_path(const struct bpf_link *link) 10102 { 10103 return link->pin_path; 10104 } 10105 10106 static int bpf_link__detach_fd(struct bpf_link *link) 10107 { 10108 return libbpf_err_errno(close(link->fd)); 10109 } 10110 10111 struct bpf_link *bpf_link__open(const char *path) 10112 { 10113 struct bpf_link *link; 10114 int fd; 10115 10116 fd = bpf_obj_get(path); 10117 if (fd < 0) { 10118 fd = -errno; 10119 pr_warn("failed to open link at %s: %d\n", path, fd); 10120 return libbpf_err_ptr(fd); 10121 } 10122 10123 link = calloc(1, sizeof(*link)); 10124 if (!link) { 10125 close(fd); 10126 return libbpf_err_ptr(-ENOMEM); 10127 } 10128 link->detach = &bpf_link__detach_fd; 10129 link->fd = fd; 10130 10131 link->pin_path = strdup(path); 10132 if (!link->pin_path) { 10133 bpf_link__destroy(link); 10134 return libbpf_err_ptr(-ENOMEM); 10135 } 10136 10137 return link; 10138 } 10139 10140 int bpf_link__detach(struct bpf_link *link) 10141 { 10142 return bpf_link_detach(link->fd) ? -errno : 0; 10143 } 10144 10145 int bpf_link__pin(struct bpf_link *link, const char *path) 10146 { 10147 int err; 10148 10149 if (link->pin_path) 10150 return libbpf_err(-EBUSY); 10151 err = make_parent_dir(path); 10152 if (err) 10153 return libbpf_err(err); 10154 err = check_path(path); 10155 if (err) 10156 return libbpf_err(err); 10157 10158 link->pin_path = strdup(path); 10159 if (!link->pin_path) 10160 return libbpf_err(-ENOMEM); 10161 10162 if (bpf_obj_pin(link->fd, link->pin_path)) { 10163 err = -errno; 10164 zfree(&link->pin_path); 10165 return libbpf_err(err); 10166 } 10167 10168 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10169 return 0; 10170 } 10171 10172 int bpf_link__unpin(struct bpf_link *link) 10173 { 10174 int err; 10175 10176 if (!link->pin_path) 10177 return libbpf_err(-EINVAL); 10178 10179 err = unlink(link->pin_path); 10180 if (err != 0) 10181 return -errno; 10182 10183 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10184 zfree(&link->pin_path); 10185 return 0; 10186 } 10187 10188 static int bpf_link__detach_perf_event(struct bpf_link *link) 10189 { 10190 int err; 10191 10192 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 10193 if (err) 10194 err = -errno; 10195 10196 close(link->fd); 10197 return libbpf_err(err); 10198 } 10199 10200 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, int pfd) 10201 { 10202 char errmsg[STRERR_BUFSIZE]; 10203 struct bpf_link *link; 10204 int prog_fd, err; 10205 10206 if (pfd < 0) { 10207 pr_warn("prog '%s': invalid perf event FD %d\n", 10208 prog->name, pfd); 10209 return libbpf_err_ptr(-EINVAL); 10210 } 10211 prog_fd = bpf_program__fd(prog); 10212 if (prog_fd < 0) { 10213 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10214 prog->name); 10215 return libbpf_err_ptr(-EINVAL); 10216 } 10217 10218 link = calloc(1, sizeof(*link)); 10219 if (!link) 10220 return libbpf_err_ptr(-ENOMEM); 10221 link->detach = &bpf_link__detach_perf_event; 10222 link->fd = pfd; 10223 10224 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10225 err = -errno; 10226 free(link); 10227 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 10228 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10229 if (err == -EPROTO) 10230 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10231 prog->name, pfd); 10232 return libbpf_err_ptr(err); 10233 } 10234 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10235 err = -errno; 10236 free(link); 10237 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 10238 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10239 return libbpf_err_ptr(err); 10240 } 10241 return link; 10242 } 10243 10244 /* 10245 * this function is expected to parse integer in the range of [0, 2^31-1] from 10246 * given file using scanf format string fmt. If actual parsed value is 10247 * negative, the result might be indistinguishable from error 10248 */ 10249 static int parse_uint_from_file(const char *file, const char *fmt) 10250 { 10251 char buf[STRERR_BUFSIZE]; 10252 int err, ret; 10253 FILE *f; 10254 10255 f = fopen(file, "r"); 10256 if (!f) { 10257 err = -errno; 10258 pr_debug("failed to open '%s': %s\n", file, 10259 libbpf_strerror_r(err, buf, sizeof(buf))); 10260 return err; 10261 } 10262 err = fscanf(f, fmt, &ret); 10263 if (err != 1) { 10264 err = err == EOF ? -EIO : -errno; 10265 pr_debug("failed to parse '%s': %s\n", file, 10266 libbpf_strerror_r(err, buf, sizeof(buf))); 10267 fclose(f); 10268 return err; 10269 } 10270 fclose(f); 10271 return ret; 10272 } 10273 10274 static int determine_kprobe_perf_type(void) 10275 { 10276 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10277 10278 return parse_uint_from_file(file, "%d\n"); 10279 } 10280 10281 static int determine_uprobe_perf_type(void) 10282 { 10283 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10284 10285 return parse_uint_from_file(file, "%d\n"); 10286 } 10287 10288 static int determine_kprobe_retprobe_bit(void) 10289 { 10290 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10291 10292 return parse_uint_from_file(file, "config:%d\n"); 10293 } 10294 10295 static int determine_uprobe_retprobe_bit(void) 10296 { 10297 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10298 10299 return parse_uint_from_file(file, "config:%d\n"); 10300 } 10301 10302 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10303 uint64_t offset, int pid) 10304 { 10305 struct perf_event_attr attr = {}; 10306 char errmsg[STRERR_BUFSIZE]; 10307 int type, pfd, err; 10308 10309 type = uprobe ? determine_uprobe_perf_type() 10310 : determine_kprobe_perf_type(); 10311 if (type < 0) { 10312 pr_warn("failed to determine %s perf type: %s\n", 10313 uprobe ? "uprobe" : "kprobe", 10314 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10315 return type; 10316 } 10317 if (retprobe) { 10318 int bit = uprobe ? determine_uprobe_retprobe_bit() 10319 : determine_kprobe_retprobe_bit(); 10320 10321 if (bit < 0) { 10322 pr_warn("failed to determine %s retprobe bit: %s\n", 10323 uprobe ? "uprobe" : "kprobe", 10324 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10325 return bit; 10326 } 10327 attr.config |= 1 << bit; 10328 } 10329 attr.size = sizeof(attr); 10330 attr.type = type; 10331 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10332 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10333 10334 /* pid filter is meaningful only for uprobes */ 10335 pfd = syscall(__NR_perf_event_open, &attr, 10336 pid < 0 ? -1 : pid /* pid */, 10337 pid == -1 ? 0 : -1 /* cpu */, 10338 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10339 if (pfd < 0) { 10340 err = -errno; 10341 pr_warn("%s perf_event_open() failed: %s\n", 10342 uprobe ? "uprobe" : "kprobe", 10343 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10344 return err; 10345 } 10346 return pfd; 10347 } 10348 10349 struct bpf_program_attach_kprobe_opts { 10350 bool retprobe; 10351 unsigned long offset; 10352 }; 10353 10354 static struct bpf_link* 10355 bpf_program__attach_kprobe_opts(struct bpf_program *prog, 10356 const char *func_name, 10357 struct bpf_program_attach_kprobe_opts *opts) 10358 { 10359 char errmsg[STRERR_BUFSIZE]; 10360 struct bpf_link *link; 10361 int pfd, err; 10362 10363 pfd = perf_event_open_probe(false /* uprobe */, opts->retprobe, func_name, 10364 opts->offset, -1 /* pid */); 10365 if (pfd < 0) { 10366 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 10367 prog->name, opts->retprobe ? "kretprobe" : "kprobe", func_name, 10368 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10369 return libbpf_err_ptr(pfd); 10370 } 10371 link = bpf_program__attach_perf_event(prog, pfd); 10372 err = libbpf_get_error(link); 10373 if (err) { 10374 close(pfd); 10375 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 10376 prog->name, opts->retprobe ? "kretprobe" : "kprobe", func_name, 10377 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10378 return libbpf_err_ptr(err); 10379 } 10380 return link; 10381 } 10382 10383 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 10384 bool retprobe, 10385 const char *func_name) 10386 { 10387 struct bpf_program_attach_kprobe_opts opts = { 10388 .retprobe = retprobe, 10389 }; 10390 10391 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10392 } 10393 10394 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 10395 struct bpf_program *prog) 10396 { 10397 struct bpf_program_attach_kprobe_opts opts; 10398 unsigned long offset = 0; 10399 struct bpf_link *link; 10400 const char *func_name; 10401 char *func; 10402 int n, err; 10403 10404 func_name = prog->sec_name + sec->len; 10405 opts.retprobe = strcmp(sec->sec, "kretprobe/") == 0; 10406 10407 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%lx", &func, &offset); 10408 if (n < 1) { 10409 err = -EINVAL; 10410 pr_warn("kprobe name is invalid: %s\n", func_name); 10411 return libbpf_err_ptr(err); 10412 } 10413 if (opts.retprobe && offset != 0) { 10414 err = -EINVAL; 10415 pr_warn("kretprobes do not support offset specification\n"); 10416 return libbpf_err_ptr(err); 10417 } 10418 10419 opts.offset = offset; 10420 link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10421 free(func); 10422 return link; 10423 } 10424 10425 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 10426 bool retprobe, pid_t pid, 10427 const char *binary_path, 10428 size_t func_offset) 10429 { 10430 char errmsg[STRERR_BUFSIZE]; 10431 struct bpf_link *link; 10432 int pfd, err; 10433 10434 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 10435 binary_path, func_offset, pid); 10436 if (pfd < 0) { 10437 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10438 prog->name, retprobe ? "uretprobe" : "uprobe", 10439 binary_path, func_offset, 10440 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10441 return libbpf_err_ptr(pfd); 10442 } 10443 link = bpf_program__attach_perf_event(prog, pfd); 10444 err = libbpf_get_error(link); 10445 if (err) { 10446 close(pfd); 10447 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10448 prog->name, retprobe ? "uretprobe" : "uprobe", 10449 binary_path, func_offset, 10450 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10451 return libbpf_err_ptr(err); 10452 } 10453 return link; 10454 } 10455 10456 static int determine_tracepoint_id(const char *tp_category, 10457 const char *tp_name) 10458 { 10459 char file[PATH_MAX]; 10460 int ret; 10461 10462 ret = snprintf(file, sizeof(file), 10463 "/sys/kernel/debug/tracing/events/%s/%s/id", 10464 tp_category, tp_name); 10465 if (ret < 0) 10466 return -errno; 10467 if (ret >= sizeof(file)) { 10468 pr_debug("tracepoint %s/%s path is too long\n", 10469 tp_category, tp_name); 10470 return -E2BIG; 10471 } 10472 return parse_uint_from_file(file, "%d\n"); 10473 } 10474 10475 static int perf_event_open_tracepoint(const char *tp_category, 10476 const char *tp_name) 10477 { 10478 struct perf_event_attr attr = {}; 10479 char errmsg[STRERR_BUFSIZE]; 10480 int tp_id, pfd, err; 10481 10482 tp_id = determine_tracepoint_id(tp_category, tp_name); 10483 if (tp_id < 0) { 10484 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10485 tp_category, tp_name, 10486 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10487 return tp_id; 10488 } 10489 10490 attr.type = PERF_TYPE_TRACEPOINT; 10491 attr.size = sizeof(attr); 10492 attr.config = tp_id; 10493 10494 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10495 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10496 if (pfd < 0) { 10497 err = -errno; 10498 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10499 tp_category, tp_name, 10500 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10501 return err; 10502 } 10503 return pfd; 10504 } 10505 10506 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 10507 const char *tp_category, 10508 const char *tp_name) 10509 { 10510 char errmsg[STRERR_BUFSIZE]; 10511 struct bpf_link *link; 10512 int pfd, err; 10513 10514 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10515 if (pfd < 0) { 10516 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10517 prog->name, tp_category, tp_name, 10518 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10519 return libbpf_err_ptr(pfd); 10520 } 10521 link = bpf_program__attach_perf_event(prog, pfd); 10522 err = libbpf_get_error(link); 10523 if (err) { 10524 close(pfd); 10525 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10526 prog->name, tp_category, tp_name, 10527 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10528 return libbpf_err_ptr(err); 10529 } 10530 return link; 10531 } 10532 10533 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 10534 struct bpf_program *prog) 10535 { 10536 char *sec_name, *tp_cat, *tp_name; 10537 struct bpf_link *link; 10538 10539 sec_name = strdup(prog->sec_name); 10540 if (!sec_name) 10541 return libbpf_err_ptr(-ENOMEM); 10542 10543 /* extract "tp/<category>/<name>" */ 10544 tp_cat = sec_name + sec->len; 10545 tp_name = strchr(tp_cat, '/'); 10546 if (!tp_name) { 10547 free(sec_name); 10548 return libbpf_err_ptr(-EINVAL); 10549 } 10550 *tp_name = '\0'; 10551 tp_name++; 10552 10553 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10554 free(sec_name); 10555 return link; 10556 } 10557 10558 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 10559 const char *tp_name) 10560 { 10561 char errmsg[STRERR_BUFSIZE]; 10562 struct bpf_link *link; 10563 int prog_fd, pfd; 10564 10565 prog_fd = bpf_program__fd(prog); 10566 if (prog_fd < 0) { 10567 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10568 return libbpf_err_ptr(-EINVAL); 10569 } 10570 10571 link = calloc(1, sizeof(*link)); 10572 if (!link) 10573 return libbpf_err_ptr(-ENOMEM); 10574 link->detach = &bpf_link__detach_fd; 10575 10576 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10577 if (pfd < 0) { 10578 pfd = -errno; 10579 free(link); 10580 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10581 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10582 return libbpf_err_ptr(pfd); 10583 } 10584 link->fd = pfd; 10585 return link; 10586 } 10587 10588 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 10589 struct bpf_program *prog) 10590 { 10591 const char *tp_name = prog->sec_name + sec->len; 10592 10593 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10594 } 10595 10596 /* Common logic for all BPF program types that attach to a btf_id */ 10597 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 10598 { 10599 char errmsg[STRERR_BUFSIZE]; 10600 struct bpf_link *link; 10601 int prog_fd, pfd; 10602 10603 prog_fd = bpf_program__fd(prog); 10604 if (prog_fd < 0) { 10605 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10606 return libbpf_err_ptr(-EINVAL); 10607 } 10608 10609 link = calloc(1, sizeof(*link)); 10610 if (!link) 10611 return libbpf_err_ptr(-ENOMEM); 10612 link->detach = &bpf_link__detach_fd; 10613 10614 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10615 if (pfd < 0) { 10616 pfd = -errno; 10617 free(link); 10618 pr_warn("prog '%s': failed to attach: %s\n", 10619 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10620 return libbpf_err_ptr(pfd); 10621 } 10622 link->fd = pfd; 10623 return (struct bpf_link *)link; 10624 } 10625 10626 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 10627 { 10628 return bpf_program__attach_btf_id(prog); 10629 } 10630 10631 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 10632 { 10633 return bpf_program__attach_btf_id(prog); 10634 } 10635 10636 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 10637 struct bpf_program *prog) 10638 { 10639 return bpf_program__attach_trace(prog); 10640 } 10641 10642 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 10643 struct bpf_program *prog) 10644 { 10645 return bpf_program__attach_lsm(prog); 10646 } 10647 10648 static struct bpf_link * 10649 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 10650 const char *target_name) 10651 { 10652 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10653 .target_btf_id = btf_id); 10654 enum bpf_attach_type attach_type; 10655 char errmsg[STRERR_BUFSIZE]; 10656 struct bpf_link *link; 10657 int prog_fd, link_fd; 10658 10659 prog_fd = bpf_program__fd(prog); 10660 if (prog_fd < 0) { 10661 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10662 return libbpf_err_ptr(-EINVAL); 10663 } 10664 10665 link = calloc(1, sizeof(*link)); 10666 if (!link) 10667 return libbpf_err_ptr(-ENOMEM); 10668 link->detach = &bpf_link__detach_fd; 10669 10670 attach_type = bpf_program__get_expected_attach_type(prog); 10671 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10672 if (link_fd < 0) { 10673 link_fd = -errno; 10674 free(link); 10675 pr_warn("prog '%s': failed to attach to %s: %s\n", 10676 prog->name, target_name, 10677 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10678 return libbpf_err_ptr(link_fd); 10679 } 10680 link->fd = link_fd; 10681 return link; 10682 } 10683 10684 struct bpf_link * 10685 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 10686 { 10687 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10688 } 10689 10690 struct bpf_link * 10691 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 10692 { 10693 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10694 } 10695 10696 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 10697 { 10698 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10699 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10700 } 10701 10702 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 10703 int target_fd, 10704 const char *attach_func_name) 10705 { 10706 int btf_id; 10707 10708 if (!!target_fd != !!attach_func_name) { 10709 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10710 prog->name); 10711 return libbpf_err_ptr(-EINVAL); 10712 } 10713 10714 if (prog->type != BPF_PROG_TYPE_EXT) { 10715 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10716 prog->name); 10717 return libbpf_err_ptr(-EINVAL); 10718 } 10719 10720 if (target_fd) { 10721 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10722 if (btf_id < 0) 10723 return libbpf_err_ptr(btf_id); 10724 10725 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10726 } else { 10727 /* no target, so use raw_tracepoint_open for compatibility 10728 * with old kernels 10729 */ 10730 return bpf_program__attach_trace(prog); 10731 } 10732 } 10733 10734 struct bpf_link * 10735 bpf_program__attach_iter(struct bpf_program *prog, 10736 const struct bpf_iter_attach_opts *opts) 10737 { 10738 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10739 char errmsg[STRERR_BUFSIZE]; 10740 struct bpf_link *link; 10741 int prog_fd, link_fd; 10742 __u32 target_fd = 0; 10743 10744 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10745 return libbpf_err_ptr(-EINVAL); 10746 10747 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10748 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10749 10750 prog_fd = bpf_program__fd(prog); 10751 if (prog_fd < 0) { 10752 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10753 return libbpf_err_ptr(-EINVAL); 10754 } 10755 10756 link = calloc(1, sizeof(*link)); 10757 if (!link) 10758 return libbpf_err_ptr(-ENOMEM); 10759 link->detach = &bpf_link__detach_fd; 10760 10761 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10762 &link_create_opts); 10763 if (link_fd < 0) { 10764 link_fd = -errno; 10765 free(link); 10766 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10767 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10768 return libbpf_err_ptr(link_fd); 10769 } 10770 link->fd = link_fd; 10771 return link; 10772 } 10773 10774 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 10775 struct bpf_program *prog) 10776 { 10777 return bpf_program__attach_iter(prog, NULL); 10778 } 10779 10780 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 10781 { 10782 const struct bpf_sec_def *sec_def; 10783 10784 sec_def = find_sec_def(prog->sec_name); 10785 if (!sec_def || !sec_def->attach_fn) 10786 return libbpf_err_ptr(-ESRCH); 10787 10788 return sec_def->attach_fn(sec_def, prog); 10789 } 10790 10791 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10792 { 10793 __u32 zero = 0; 10794 10795 if (bpf_map_delete_elem(link->fd, &zero)) 10796 return -errno; 10797 10798 return 0; 10799 } 10800 10801 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 10802 { 10803 struct bpf_struct_ops *st_ops; 10804 struct bpf_link *link; 10805 __u32 i, zero = 0; 10806 int err; 10807 10808 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10809 return libbpf_err_ptr(-EINVAL); 10810 10811 link = calloc(1, sizeof(*link)); 10812 if (!link) 10813 return libbpf_err_ptr(-EINVAL); 10814 10815 st_ops = map->st_ops; 10816 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10817 struct bpf_program *prog = st_ops->progs[i]; 10818 void *kern_data; 10819 int prog_fd; 10820 10821 if (!prog) 10822 continue; 10823 10824 prog_fd = bpf_program__fd(prog); 10825 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10826 *(unsigned long *)kern_data = prog_fd; 10827 } 10828 10829 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10830 if (err) { 10831 err = -errno; 10832 free(link); 10833 return libbpf_err_ptr(err); 10834 } 10835 10836 link->detach = bpf_link__detach_struct_ops; 10837 link->fd = map->fd; 10838 10839 return link; 10840 } 10841 10842 enum bpf_perf_event_ret 10843 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10844 void **copy_mem, size_t *copy_size, 10845 bpf_perf_event_print_t fn, void *private_data) 10846 { 10847 struct perf_event_mmap_page *header = mmap_mem; 10848 __u64 data_head = ring_buffer_read_head(header); 10849 __u64 data_tail = header->data_tail; 10850 void *base = ((__u8 *)header) + page_size; 10851 int ret = LIBBPF_PERF_EVENT_CONT; 10852 struct perf_event_header *ehdr; 10853 size_t ehdr_size; 10854 10855 while (data_head != data_tail) { 10856 ehdr = base + (data_tail & (mmap_size - 1)); 10857 ehdr_size = ehdr->size; 10858 10859 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10860 void *copy_start = ehdr; 10861 size_t len_first = base + mmap_size - copy_start; 10862 size_t len_secnd = ehdr_size - len_first; 10863 10864 if (*copy_size < ehdr_size) { 10865 free(*copy_mem); 10866 *copy_mem = malloc(ehdr_size); 10867 if (!*copy_mem) { 10868 *copy_size = 0; 10869 ret = LIBBPF_PERF_EVENT_ERROR; 10870 break; 10871 } 10872 *copy_size = ehdr_size; 10873 } 10874 10875 memcpy(*copy_mem, copy_start, len_first); 10876 memcpy(*copy_mem + len_first, base, len_secnd); 10877 ehdr = *copy_mem; 10878 } 10879 10880 ret = fn(ehdr, private_data); 10881 data_tail += ehdr_size; 10882 if (ret != LIBBPF_PERF_EVENT_CONT) 10883 break; 10884 } 10885 10886 ring_buffer_write_tail(header, data_tail); 10887 return libbpf_err(ret); 10888 } 10889 10890 struct perf_buffer; 10891 10892 struct perf_buffer_params { 10893 struct perf_event_attr *attr; 10894 /* if event_cb is specified, it takes precendence */ 10895 perf_buffer_event_fn event_cb; 10896 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10897 perf_buffer_sample_fn sample_cb; 10898 perf_buffer_lost_fn lost_cb; 10899 void *ctx; 10900 int cpu_cnt; 10901 int *cpus; 10902 int *map_keys; 10903 }; 10904 10905 struct perf_cpu_buf { 10906 struct perf_buffer *pb; 10907 void *base; /* mmap()'ed memory */ 10908 void *buf; /* for reconstructing segmented data */ 10909 size_t buf_size; 10910 int fd; 10911 int cpu; 10912 int map_key; 10913 }; 10914 10915 struct perf_buffer { 10916 perf_buffer_event_fn event_cb; 10917 perf_buffer_sample_fn sample_cb; 10918 perf_buffer_lost_fn lost_cb; 10919 void *ctx; /* passed into callbacks */ 10920 10921 size_t page_size; 10922 size_t mmap_size; 10923 struct perf_cpu_buf **cpu_bufs; 10924 struct epoll_event *events; 10925 int cpu_cnt; /* number of allocated CPU buffers */ 10926 int epoll_fd; /* perf event FD */ 10927 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10928 }; 10929 10930 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10931 struct perf_cpu_buf *cpu_buf) 10932 { 10933 if (!cpu_buf) 10934 return; 10935 if (cpu_buf->base && 10936 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10937 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10938 if (cpu_buf->fd >= 0) { 10939 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10940 close(cpu_buf->fd); 10941 } 10942 free(cpu_buf->buf); 10943 free(cpu_buf); 10944 } 10945 10946 void perf_buffer__free(struct perf_buffer *pb) 10947 { 10948 int i; 10949 10950 if (IS_ERR_OR_NULL(pb)) 10951 return; 10952 if (pb->cpu_bufs) { 10953 for (i = 0; i < pb->cpu_cnt; i++) { 10954 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10955 10956 if (!cpu_buf) 10957 continue; 10958 10959 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10960 perf_buffer__free_cpu_buf(pb, cpu_buf); 10961 } 10962 free(pb->cpu_bufs); 10963 } 10964 if (pb->epoll_fd >= 0) 10965 close(pb->epoll_fd); 10966 free(pb->events); 10967 free(pb); 10968 } 10969 10970 static struct perf_cpu_buf * 10971 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10972 int cpu, int map_key) 10973 { 10974 struct perf_cpu_buf *cpu_buf; 10975 char msg[STRERR_BUFSIZE]; 10976 int err; 10977 10978 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10979 if (!cpu_buf) 10980 return ERR_PTR(-ENOMEM); 10981 10982 cpu_buf->pb = pb; 10983 cpu_buf->cpu = cpu; 10984 cpu_buf->map_key = map_key; 10985 10986 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10987 -1, PERF_FLAG_FD_CLOEXEC); 10988 if (cpu_buf->fd < 0) { 10989 err = -errno; 10990 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10991 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10992 goto error; 10993 } 10994 10995 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10996 PROT_READ | PROT_WRITE, MAP_SHARED, 10997 cpu_buf->fd, 0); 10998 if (cpu_buf->base == MAP_FAILED) { 10999 cpu_buf->base = NULL; 11000 err = -errno; 11001 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11002 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11003 goto error; 11004 } 11005 11006 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11007 err = -errno; 11008 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11009 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11010 goto error; 11011 } 11012 11013 return cpu_buf; 11014 11015 error: 11016 perf_buffer__free_cpu_buf(pb, cpu_buf); 11017 return (struct perf_cpu_buf *)ERR_PTR(err); 11018 } 11019 11020 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11021 struct perf_buffer_params *p); 11022 11023 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11024 const struct perf_buffer_opts *opts) 11025 { 11026 struct perf_buffer_params p = {}; 11027 struct perf_event_attr attr = { 0, }; 11028 11029 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11030 attr.type = PERF_TYPE_SOFTWARE; 11031 attr.sample_type = PERF_SAMPLE_RAW; 11032 attr.sample_period = 1; 11033 attr.wakeup_events = 1; 11034 11035 p.attr = &attr; 11036 p.sample_cb = opts ? opts->sample_cb : NULL; 11037 p.lost_cb = opts ? opts->lost_cb : NULL; 11038 p.ctx = opts ? opts->ctx : NULL; 11039 11040 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11041 } 11042 11043 struct perf_buffer * 11044 perf_buffer__new_raw(int map_fd, size_t page_cnt, 11045 const struct perf_buffer_raw_opts *opts) 11046 { 11047 struct perf_buffer_params p = {}; 11048 11049 p.attr = opts->attr; 11050 p.event_cb = opts->event_cb; 11051 p.ctx = opts->ctx; 11052 p.cpu_cnt = opts->cpu_cnt; 11053 p.cpus = opts->cpus; 11054 p.map_keys = opts->map_keys; 11055 11056 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11057 } 11058 11059 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11060 struct perf_buffer_params *p) 11061 { 11062 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11063 struct bpf_map_info map; 11064 char msg[STRERR_BUFSIZE]; 11065 struct perf_buffer *pb; 11066 bool *online = NULL; 11067 __u32 map_info_len; 11068 int err, i, j, n; 11069 11070 if (page_cnt & (page_cnt - 1)) { 11071 pr_warn("page count should be power of two, but is %zu\n", 11072 page_cnt); 11073 return ERR_PTR(-EINVAL); 11074 } 11075 11076 /* best-effort sanity checks */ 11077 memset(&map, 0, sizeof(map)); 11078 map_info_len = sizeof(map); 11079 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11080 if (err) { 11081 err = -errno; 11082 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11083 * -EBADFD, -EFAULT, or -E2BIG on real error 11084 */ 11085 if (err != -EINVAL) { 11086 pr_warn("failed to get map info for map FD %d: %s\n", 11087 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11088 return ERR_PTR(err); 11089 } 11090 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11091 map_fd); 11092 } else { 11093 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11094 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11095 map.name); 11096 return ERR_PTR(-EINVAL); 11097 } 11098 } 11099 11100 pb = calloc(1, sizeof(*pb)); 11101 if (!pb) 11102 return ERR_PTR(-ENOMEM); 11103 11104 pb->event_cb = p->event_cb; 11105 pb->sample_cb = p->sample_cb; 11106 pb->lost_cb = p->lost_cb; 11107 pb->ctx = p->ctx; 11108 11109 pb->page_size = getpagesize(); 11110 pb->mmap_size = pb->page_size * page_cnt; 11111 pb->map_fd = map_fd; 11112 11113 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11114 if (pb->epoll_fd < 0) { 11115 err = -errno; 11116 pr_warn("failed to create epoll instance: %s\n", 11117 libbpf_strerror_r(err, msg, sizeof(msg))); 11118 goto error; 11119 } 11120 11121 if (p->cpu_cnt > 0) { 11122 pb->cpu_cnt = p->cpu_cnt; 11123 } else { 11124 pb->cpu_cnt = libbpf_num_possible_cpus(); 11125 if (pb->cpu_cnt < 0) { 11126 err = pb->cpu_cnt; 11127 goto error; 11128 } 11129 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11130 pb->cpu_cnt = map.max_entries; 11131 } 11132 11133 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11134 if (!pb->events) { 11135 err = -ENOMEM; 11136 pr_warn("failed to allocate events: out of memory\n"); 11137 goto error; 11138 } 11139 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11140 if (!pb->cpu_bufs) { 11141 err = -ENOMEM; 11142 pr_warn("failed to allocate buffers: out of memory\n"); 11143 goto error; 11144 } 11145 11146 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11147 if (err) { 11148 pr_warn("failed to get online CPU mask: %d\n", err); 11149 goto error; 11150 } 11151 11152 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11153 struct perf_cpu_buf *cpu_buf; 11154 int cpu, map_key; 11155 11156 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11157 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11158 11159 /* in case user didn't explicitly requested particular CPUs to 11160 * be attached to, skip offline/not present CPUs 11161 */ 11162 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11163 continue; 11164 11165 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11166 if (IS_ERR(cpu_buf)) { 11167 err = PTR_ERR(cpu_buf); 11168 goto error; 11169 } 11170 11171 pb->cpu_bufs[j] = cpu_buf; 11172 11173 err = bpf_map_update_elem(pb->map_fd, &map_key, 11174 &cpu_buf->fd, 0); 11175 if (err) { 11176 err = -errno; 11177 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11178 cpu, map_key, cpu_buf->fd, 11179 libbpf_strerror_r(err, msg, sizeof(msg))); 11180 goto error; 11181 } 11182 11183 pb->events[j].events = EPOLLIN; 11184 pb->events[j].data.ptr = cpu_buf; 11185 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11186 &pb->events[j]) < 0) { 11187 err = -errno; 11188 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11189 cpu, cpu_buf->fd, 11190 libbpf_strerror_r(err, msg, sizeof(msg))); 11191 goto error; 11192 } 11193 j++; 11194 } 11195 pb->cpu_cnt = j; 11196 free(online); 11197 11198 return pb; 11199 11200 error: 11201 free(online); 11202 if (pb) 11203 perf_buffer__free(pb); 11204 return ERR_PTR(err); 11205 } 11206 11207 struct perf_sample_raw { 11208 struct perf_event_header header; 11209 uint32_t size; 11210 char data[]; 11211 }; 11212 11213 struct perf_sample_lost { 11214 struct perf_event_header header; 11215 uint64_t id; 11216 uint64_t lost; 11217 uint64_t sample_id; 11218 }; 11219 11220 static enum bpf_perf_event_ret 11221 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11222 { 11223 struct perf_cpu_buf *cpu_buf = ctx; 11224 struct perf_buffer *pb = cpu_buf->pb; 11225 void *data = e; 11226 11227 /* user wants full control over parsing perf event */ 11228 if (pb->event_cb) 11229 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11230 11231 switch (e->type) { 11232 case PERF_RECORD_SAMPLE: { 11233 struct perf_sample_raw *s = data; 11234 11235 if (pb->sample_cb) 11236 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11237 break; 11238 } 11239 case PERF_RECORD_LOST: { 11240 struct perf_sample_lost *s = data; 11241 11242 if (pb->lost_cb) 11243 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11244 break; 11245 } 11246 default: 11247 pr_warn("unknown perf sample type %d\n", e->type); 11248 return LIBBPF_PERF_EVENT_ERROR; 11249 } 11250 return LIBBPF_PERF_EVENT_CONT; 11251 } 11252 11253 static int perf_buffer__process_records(struct perf_buffer *pb, 11254 struct perf_cpu_buf *cpu_buf) 11255 { 11256 enum bpf_perf_event_ret ret; 11257 11258 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11259 pb->page_size, &cpu_buf->buf, 11260 &cpu_buf->buf_size, 11261 perf_buffer__process_record, cpu_buf); 11262 if (ret != LIBBPF_PERF_EVENT_CONT) 11263 return ret; 11264 return 0; 11265 } 11266 11267 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11268 { 11269 return pb->epoll_fd; 11270 } 11271 11272 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11273 { 11274 int i, cnt, err; 11275 11276 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11277 if (cnt < 0) 11278 return -errno; 11279 11280 for (i = 0; i < cnt; i++) { 11281 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11282 11283 err = perf_buffer__process_records(pb, cpu_buf); 11284 if (err) { 11285 pr_warn("error while processing records: %d\n", err); 11286 return libbpf_err(err); 11287 } 11288 } 11289 return cnt; 11290 } 11291 11292 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11293 * manager. 11294 */ 11295 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11296 { 11297 return pb->cpu_cnt; 11298 } 11299 11300 /* 11301 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11302 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11303 * select()/poll()/epoll() Linux syscalls. 11304 */ 11305 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11306 { 11307 struct perf_cpu_buf *cpu_buf; 11308 11309 if (buf_idx >= pb->cpu_cnt) 11310 return libbpf_err(-EINVAL); 11311 11312 cpu_buf = pb->cpu_bufs[buf_idx]; 11313 if (!cpu_buf) 11314 return libbpf_err(-ENOENT); 11315 11316 return cpu_buf->fd; 11317 } 11318 11319 /* 11320 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11321 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11322 * consume, do nothing and return success. 11323 * Returns: 11324 * - 0 on success; 11325 * - <0 on failure. 11326 */ 11327 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11328 { 11329 struct perf_cpu_buf *cpu_buf; 11330 11331 if (buf_idx >= pb->cpu_cnt) 11332 return libbpf_err(-EINVAL); 11333 11334 cpu_buf = pb->cpu_bufs[buf_idx]; 11335 if (!cpu_buf) 11336 return libbpf_err(-ENOENT); 11337 11338 return perf_buffer__process_records(pb, cpu_buf); 11339 } 11340 11341 int perf_buffer__consume(struct perf_buffer *pb) 11342 { 11343 int i, err; 11344 11345 for (i = 0; i < pb->cpu_cnt; i++) { 11346 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11347 11348 if (!cpu_buf) 11349 continue; 11350 11351 err = perf_buffer__process_records(pb, cpu_buf); 11352 if (err) { 11353 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11354 return libbpf_err(err); 11355 } 11356 } 11357 return 0; 11358 } 11359 11360 struct bpf_prog_info_array_desc { 11361 int array_offset; /* e.g. offset of jited_prog_insns */ 11362 int count_offset; /* e.g. offset of jited_prog_len */ 11363 int size_offset; /* > 0: offset of rec size, 11364 * < 0: fix size of -size_offset 11365 */ 11366 }; 11367 11368 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 11369 [BPF_PROG_INFO_JITED_INSNS] = { 11370 offsetof(struct bpf_prog_info, jited_prog_insns), 11371 offsetof(struct bpf_prog_info, jited_prog_len), 11372 -1, 11373 }, 11374 [BPF_PROG_INFO_XLATED_INSNS] = { 11375 offsetof(struct bpf_prog_info, xlated_prog_insns), 11376 offsetof(struct bpf_prog_info, xlated_prog_len), 11377 -1, 11378 }, 11379 [BPF_PROG_INFO_MAP_IDS] = { 11380 offsetof(struct bpf_prog_info, map_ids), 11381 offsetof(struct bpf_prog_info, nr_map_ids), 11382 -(int)sizeof(__u32), 11383 }, 11384 [BPF_PROG_INFO_JITED_KSYMS] = { 11385 offsetof(struct bpf_prog_info, jited_ksyms), 11386 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11387 -(int)sizeof(__u64), 11388 }, 11389 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11390 offsetof(struct bpf_prog_info, jited_func_lens), 11391 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11392 -(int)sizeof(__u32), 11393 }, 11394 [BPF_PROG_INFO_FUNC_INFO] = { 11395 offsetof(struct bpf_prog_info, func_info), 11396 offsetof(struct bpf_prog_info, nr_func_info), 11397 offsetof(struct bpf_prog_info, func_info_rec_size), 11398 }, 11399 [BPF_PROG_INFO_LINE_INFO] = { 11400 offsetof(struct bpf_prog_info, line_info), 11401 offsetof(struct bpf_prog_info, nr_line_info), 11402 offsetof(struct bpf_prog_info, line_info_rec_size), 11403 }, 11404 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11405 offsetof(struct bpf_prog_info, jited_line_info), 11406 offsetof(struct bpf_prog_info, nr_jited_line_info), 11407 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11408 }, 11409 [BPF_PROG_INFO_PROG_TAGS] = { 11410 offsetof(struct bpf_prog_info, prog_tags), 11411 offsetof(struct bpf_prog_info, nr_prog_tags), 11412 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11413 }, 11414 11415 }; 11416 11417 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11418 int offset) 11419 { 11420 __u32 *array = (__u32 *)info; 11421 11422 if (offset >= 0) 11423 return array[offset / sizeof(__u32)]; 11424 return -(int)offset; 11425 } 11426 11427 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11428 int offset) 11429 { 11430 __u64 *array = (__u64 *)info; 11431 11432 if (offset >= 0) 11433 return array[offset / sizeof(__u64)]; 11434 return -(int)offset; 11435 } 11436 11437 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11438 __u32 val) 11439 { 11440 __u32 *array = (__u32 *)info; 11441 11442 if (offset >= 0) 11443 array[offset / sizeof(__u32)] = val; 11444 } 11445 11446 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11447 __u64 val) 11448 { 11449 __u64 *array = (__u64 *)info; 11450 11451 if (offset >= 0) 11452 array[offset / sizeof(__u64)] = val; 11453 } 11454 11455 struct bpf_prog_info_linear * 11456 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11457 { 11458 struct bpf_prog_info_linear *info_linear; 11459 struct bpf_prog_info info = {}; 11460 __u32 info_len = sizeof(info); 11461 __u32 data_len = 0; 11462 int i, err; 11463 void *ptr; 11464 11465 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11466 return libbpf_err_ptr(-EINVAL); 11467 11468 /* step 1: get array dimensions */ 11469 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11470 if (err) { 11471 pr_debug("can't get prog info: %s", strerror(errno)); 11472 return libbpf_err_ptr(-EFAULT); 11473 } 11474 11475 /* step 2: calculate total size of all arrays */ 11476 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11477 bool include_array = (arrays & (1UL << i)) > 0; 11478 struct bpf_prog_info_array_desc *desc; 11479 __u32 count, size; 11480 11481 desc = bpf_prog_info_array_desc + i; 11482 11483 /* kernel is too old to support this field */ 11484 if (info_len < desc->array_offset + sizeof(__u32) || 11485 info_len < desc->count_offset + sizeof(__u32) || 11486 (desc->size_offset > 0 && info_len < desc->size_offset)) 11487 include_array = false; 11488 11489 if (!include_array) { 11490 arrays &= ~(1UL << i); /* clear the bit */ 11491 continue; 11492 } 11493 11494 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11495 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11496 11497 data_len += count * size; 11498 } 11499 11500 /* step 3: allocate continuous memory */ 11501 data_len = roundup(data_len, sizeof(__u64)); 11502 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11503 if (!info_linear) 11504 return libbpf_err_ptr(-ENOMEM); 11505 11506 /* step 4: fill data to info_linear->info */ 11507 info_linear->arrays = arrays; 11508 memset(&info_linear->info, 0, sizeof(info)); 11509 ptr = info_linear->data; 11510 11511 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11512 struct bpf_prog_info_array_desc *desc; 11513 __u32 count, size; 11514 11515 if ((arrays & (1UL << i)) == 0) 11516 continue; 11517 11518 desc = bpf_prog_info_array_desc + i; 11519 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11520 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11521 bpf_prog_info_set_offset_u32(&info_linear->info, 11522 desc->count_offset, count); 11523 bpf_prog_info_set_offset_u32(&info_linear->info, 11524 desc->size_offset, size); 11525 bpf_prog_info_set_offset_u64(&info_linear->info, 11526 desc->array_offset, 11527 ptr_to_u64(ptr)); 11528 ptr += count * size; 11529 } 11530 11531 /* step 5: call syscall again to get required arrays */ 11532 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11533 if (err) { 11534 pr_debug("can't get prog info: %s", strerror(errno)); 11535 free(info_linear); 11536 return libbpf_err_ptr(-EFAULT); 11537 } 11538 11539 /* step 6: verify the data */ 11540 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11541 struct bpf_prog_info_array_desc *desc; 11542 __u32 v1, v2; 11543 11544 if ((arrays & (1UL << i)) == 0) 11545 continue; 11546 11547 desc = bpf_prog_info_array_desc + i; 11548 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11549 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11550 desc->count_offset); 11551 if (v1 != v2) 11552 pr_warn("%s: mismatch in element count\n", __func__); 11553 11554 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11555 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11556 desc->size_offset); 11557 if (v1 != v2) 11558 pr_warn("%s: mismatch in rec size\n", __func__); 11559 } 11560 11561 /* step 7: update info_len and data_len */ 11562 info_linear->info_len = sizeof(struct bpf_prog_info); 11563 info_linear->data_len = data_len; 11564 11565 return info_linear; 11566 } 11567 11568 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11569 { 11570 int i; 11571 11572 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11573 struct bpf_prog_info_array_desc *desc; 11574 __u64 addr, offs; 11575 11576 if ((info_linear->arrays & (1UL << i)) == 0) 11577 continue; 11578 11579 desc = bpf_prog_info_array_desc + i; 11580 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11581 desc->array_offset); 11582 offs = addr - ptr_to_u64(info_linear->data); 11583 bpf_prog_info_set_offset_u64(&info_linear->info, 11584 desc->array_offset, offs); 11585 } 11586 } 11587 11588 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11589 { 11590 int i; 11591 11592 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11593 struct bpf_prog_info_array_desc *desc; 11594 __u64 addr, offs; 11595 11596 if ((info_linear->arrays & (1UL << i)) == 0) 11597 continue; 11598 11599 desc = bpf_prog_info_array_desc + i; 11600 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11601 desc->array_offset); 11602 addr = offs + ptr_to_u64(info_linear->data); 11603 bpf_prog_info_set_offset_u64(&info_linear->info, 11604 desc->array_offset, addr); 11605 } 11606 } 11607 11608 int bpf_program__set_attach_target(struct bpf_program *prog, 11609 int attach_prog_fd, 11610 const char *attach_func_name) 11611 { 11612 int btf_obj_fd = 0, btf_id = 0, err; 11613 11614 if (!prog || attach_prog_fd < 0 || !attach_func_name) 11615 return libbpf_err(-EINVAL); 11616 11617 if (prog->obj->loaded) 11618 return libbpf_err(-EINVAL); 11619 11620 if (attach_prog_fd) { 11621 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11622 attach_prog_fd); 11623 if (btf_id < 0) 11624 return libbpf_err(btf_id); 11625 } else { 11626 /* load btf_vmlinux, if not yet */ 11627 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11628 if (err) 11629 return libbpf_err(err); 11630 err = find_kernel_btf_id(prog->obj, attach_func_name, 11631 prog->expected_attach_type, 11632 &btf_obj_fd, &btf_id); 11633 if (err) 11634 return libbpf_err(err); 11635 } 11636 11637 prog->attach_btf_id = btf_id; 11638 prog->attach_btf_obj_fd = btf_obj_fd; 11639 prog->attach_prog_fd = attach_prog_fd; 11640 return 0; 11641 } 11642 11643 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11644 { 11645 int err = 0, n, len, start, end = -1; 11646 bool *tmp; 11647 11648 *mask = NULL; 11649 *mask_sz = 0; 11650 11651 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11652 while (*s) { 11653 if (*s == ',' || *s == '\n') { 11654 s++; 11655 continue; 11656 } 11657 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11658 if (n <= 0 || n > 2) { 11659 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11660 err = -EINVAL; 11661 goto cleanup; 11662 } else if (n == 1) { 11663 end = start; 11664 } 11665 if (start < 0 || start > end) { 11666 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11667 start, end, s); 11668 err = -EINVAL; 11669 goto cleanup; 11670 } 11671 tmp = realloc(*mask, end + 1); 11672 if (!tmp) { 11673 err = -ENOMEM; 11674 goto cleanup; 11675 } 11676 *mask = tmp; 11677 memset(tmp + *mask_sz, 0, start - *mask_sz); 11678 memset(tmp + start, 1, end - start + 1); 11679 *mask_sz = end + 1; 11680 s += len; 11681 } 11682 if (!*mask_sz) { 11683 pr_warn("Empty CPU range\n"); 11684 return -EINVAL; 11685 } 11686 return 0; 11687 cleanup: 11688 free(*mask); 11689 *mask = NULL; 11690 return err; 11691 } 11692 11693 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11694 { 11695 int fd, err = 0, len; 11696 char buf[128]; 11697 11698 fd = open(fcpu, O_RDONLY); 11699 if (fd < 0) { 11700 err = -errno; 11701 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11702 return err; 11703 } 11704 len = read(fd, buf, sizeof(buf)); 11705 close(fd); 11706 if (len <= 0) { 11707 err = len ? -errno : -EINVAL; 11708 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11709 return err; 11710 } 11711 if (len >= sizeof(buf)) { 11712 pr_warn("CPU mask is too big in file %s\n", fcpu); 11713 return -E2BIG; 11714 } 11715 buf[len] = '\0'; 11716 11717 return parse_cpu_mask_str(buf, mask, mask_sz); 11718 } 11719 11720 int libbpf_num_possible_cpus(void) 11721 { 11722 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11723 static int cpus; 11724 int err, n, i, tmp_cpus; 11725 bool *mask; 11726 11727 tmp_cpus = READ_ONCE(cpus); 11728 if (tmp_cpus > 0) 11729 return tmp_cpus; 11730 11731 err = parse_cpu_mask_file(fcpu, &mask, &n); 11732 if (err) 11733 return libbpf_err(err); 11734 11735 tmp_cpus = 0; 11736 for (i = 0; i < n; i++) { 11737 if (mask[i]) 11738 tmp_cpus++; 11739 } 11740 free(mask); 11741 11742 WRITE_ONCE(cpus, tmp_cpus); 11743 return tmp_cpus; 11744 } 11745 11746 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11747 const struct bpf_object_open_opts *opts) 11748 { 11749 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11750 .object_name = s->name, 11751 ); 11752 struct bpf_object *obj; 11753 int i, err; 11754 11755 /* Attempt to preserve opts->object_name, unless overriden by user 11756 * explicitly. Overwriting object name for skeletons is discouraged, 11757 * as it breaks global data maps, because they contain object name 11758 * prefix as their own map name prefix. When skeleton is generated, 11759 * bpftool is making an assumption that this name will stay the same. 11760 */ 11761 if (opts) { 11762 memcpy(&skel_opts, opts, sizeof(*opts)); 11763 if (!opts->object_name) 11764 skel_opts.object_name = s->name; 11765 } 11766 11767 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11768 err = libbpf_get_error(obj); 11769 if (err) { 11770 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 11771 s->name, err); 11772 return libbpf_err(err); 11773 } 11774 11775 *s->obj = obj; 11776 11777 for (i = 0; i < s->map_cnt; i++) { 11778 struct bpf_map **map = s->maps[i].map; 11779 const char *name = s->maps[i].name; 11780 void **mmaped = s->maps[i].mmaped; 11781 11782 *map = bpf_object__find_map_by_name(obj, name); 11783 if (!*map) { 11784 pr_warn("failed to find skeleton map '%s'\n", name); 11785 return libbpf_err(-ESRCH); 11786 } 11787 11788 /* externs shouldn't be pre-setup from user code */ 11789 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11790 *mmaped = (*map)->mmaped; 11791 } 11792 11793 for (i = 0; i < s->prog_cnt; i++) { 11794 struct bpf_program **prog = s->progs[i].prog; 11795 const char *name = s->progs[i].name; 11796 11797 *prog = bpf_object__find_program_by_name(obj, name); 11798 if (!*prog) { 11799 pr_warn("failed to find skeleton program '%s'\n", name); 11800 return libbpf_err(-ESRCH); 11801 } 11802 } 11803 11804 return 0; 11805 } 11806 11807 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11808 { 11809 int i, err; 11810 11811 err = bpf_object__load(*s->obj); 11812 if (err) { 11813 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11814 return libbpf_err(err); 11815 } 11816 11817 for (i = 0; i < s->map_cnt; i++) { 11818 struct bpf_map *map = *s->maps[i].map; 11819 size_t mmap_sz = bpf_map_mmap_sz(map); 11820 int prot, map_fd = bpf_map__fd(map); 11821 void **mmaped = s->maps[i].mmaped; 11822 11823 if (!mmaped) 11824 continue; 11825 11826 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11827 *mmaped = NULL; 11828 continue; 11829 } 11830 11831 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11832 prot = PROT_READ; 11833 else 11834 prot = PROT_READ | PROT_WRITE; 11835 11836 /* Remap anonymous mmap()-ed "map initialization image" as 11837 * a BPF map-backed mmap()-ed memory, but preserving the same 11838 * memory address. This will cause kernel to change process' 11839 * page table to point to a different piece of kernel memory, 11840 * but from userspace point of view memory address (and its 11841 * contents, being identical at this point) will stay the 11842 * same. This mapping will be released by bpf_object__close() 11843 * as per normal clean up procedure, so we don't need to worry 11844 * about it from skeleton's clean up perspective. 11845 */ 11846 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11847 MAP_SHARED | MAP_FIXED, map_fd, 0); 11848 if (*mmaped == MAP_FAILED) { 11849 err = -errno; 11850 *mmaped = NULL; 11851 pr_warn("failed to re-mmap() map '%s': %d\n", 11852 bpf_map__name(map), err); 11853 return libbpf_err(err); 11854 } 11855 } 11856 11857 return 0; 11858 } 11859 11860 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11861 { 11862 int i, err; 11863 11864 for (i = 0; i < s->prog_cnt; i++) { 11865 struct bpf_program *prog = *s->progs[i].prog; 11866 struct bpf_link **link = s->progs[i].link; 11867 const struct bpf_sec_def *sec_def; 11868 11869 if (!prog->load) 11870 continue; 11871 11872 sec_def = find_sec_def(prog->sec_name); 11873 if (!sec_def || !sec_def->attach_fn) 11874 continue; 11875 11876 *link = sec_def->attach_fn(sec_def, prog); 11877 err = libbpf_get_error(*link); 11878 if (err) { 11879 pr_warn("failed to auto-attach program '%s': %d\n", 11880 bpf_program__name(prog), err); 11881 return libbpf_err(err); 11882 } 11883 } 11884 11885 return 0; 11886 } 11887 11888 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11889 { 11890 int i; 11891 11892 for (i = 0; i < s->prog_cnt; i++) { 11893 struct bpf_link **link = s->progs[i].link; 11894 11895 bpf_link__destroy(*link); 11896 *link = NULL; 11897 } 11898 } 11899 11900 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11901 { 11902 if (s->progs) 11903 bpf_object__detach_skeleton(s); 11904 if (s->obj) 11905 bpf_object__close(*s->obj); 11906 free(s->maps); 11907 free(s->progs); 11908 free(s); 11909 } 11910