1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <linux/version.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const link_type_name[] = { 122 [BPF_LINK_TYPE_UNSPEC] = "unspec", 123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 124 [BPF_LINK_TYPE_TRACING] = "tracing", 125 [BPF_LINK_TYPE_CGROUP] = "cgroup", 126 [BPF_LINK_TYPE_ITER] = "iter", 127 [BPF_LINK_TYPE_NETNS] = "netns", 128 [BPF_LINK_TYPE_XDP] = "xdp", 129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 132 }; 133 134 static const char * const map_type_name[] = { 135 [BPF_MAP_TYPE_UNSPEC] = "unspec", 136 [BPF_MAP_TYPE_HASH] = "hash", 137 [BPF_MAP_TYPE_ARRAY] = "array", 138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 149 [BPF_MAP_TYPE_DEVMAP] = "devmap", 150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 152 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 153 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 158 [BPF_MAP_TYPE_QUEUE] = "queue", 159 [BPF_MAP_TYPE_STACK] = "stack", 160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 166 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 167 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 168 }; 169 170 static const char * const prog_type_name[] = { 171 [BPF_PROG_TYPE_UNSPEC] = "unspec", 172 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 173 [BPF_PROG_TYPE_KPROBE] = "kprobe", 174 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 175 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 176 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 177 [BPF_PROG_TYPE_XDP] = "xdp", 178 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 179 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 180 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 181 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 182 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 183 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 184 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 185 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 186 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 187 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 188 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 189 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 190 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 191 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 192 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 193 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 194 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 195 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 196 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 197 [BPF_PROG_TYPE_TRACING] = "tracing", 198 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 199 [BPF_PROG_TYPE_EXT] = "ext", 200 [BPF_PROG_TYPE_LSM] = "lsm", 201 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 202 [BPF_PROG_TYPE_SYSCALL] = "syscall", 203 }; 204 205 static int __base_pr(enum libbpf_print_level level, const char *format, 206 va_list args) 207 { 208 if (level == LIBBPF_DEBUG) 209 return 0; 210 211 return vfprintf(stderr, format, args); 212 } 213 214 static libbpf_print_fn_t __libbpf_pr = __base_pr; 215 216 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 217 { 218 libbpf_print_fn_t old_print_fn = __libbpf_pr; 219 220 __libbpf_pr = fn; 221 return old_print_fn; 222 } 223 224 __printf(2, 3) 225 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 226 { 227 va_list args; 228 int old_errno; 229 230 if (!__libbpf_pr) 231 return; 232 233 old_errno = errno; 234 235 va_start(args, format); 236 __libbpf_pr(level, format, args); 237 va_end(args); 238 239 errno = old_errno; 240 } 241 242 static void pr_perm_msg(int err) 243 { 244 struct rlimit limit; 245 char buf[100]; 246 247 if (err != -EPERM || geteuid() != 0) 248 return; 249 250 err = getrlimit(RLIMIT_MEMLOCK, &limit); 251 if (err) 252 return; 253 254 if (limit.rlim_cur == RLIM_INFINITY) 255 return; 256 257 if (limit.rlim_cur < 1024) 258 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 259 else if (limit.rlim_cur < 1024*1024) 260 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 261 else 262 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 263 264 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 265 buf); 266 } 267 268 #define STRERR_BUFSIZE 128 269 270 /* Copied from tools/perf/util/util.h */ 271 #ifndef zfree 272 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 273 #endif 274 275 #ifndef zclose 276 # define zclose(fd) ({ \ 277 int ___err = 0; \ 278 if ((fd) >= 0) \ 279 ___err = close((fd)); \ 280 fd = -1; \ 281 ___err; }) 282 #endif 283 284 static inline __u64 ptr_to_u64(const void *ptr) 285 { 286 return (__u64) (unsigned long) ptr; 287 } 288 289 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 290 { 291 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 292 return 0; 293 } 294 295 __u32 libbpf_major_version(void) 296 { 297 return LIBBPF_MAJOR_VERSION; 298 } 299 300 __u32 libbpf_minor_version(void) 301 { 302 return LIBBPF_MINOR_VERSION; 303 } 304 305 const char *libbpf_version_string(void) 306 { 307 #define __S(X) #X 308 #define _S(X) __S(X) 309 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 310 #undef _S 311 #undef __S 312 } 313 314 enum reloc_type { 315 RELO_LD64, 316 RELO_CALL, 317 RELO_DATA, 318 RELO_EXTERN_VAR, 319 RELO_EXTERN_FUNC, 320 RELO_SUBPROG_ADDR, 321 RELO_CORE, 322 }; 323 324 struct reloc_desc { 325 enum reloc_type type; 326 int insn_idx; 327 union { 328 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 329 struct { 330 int map_idx; 331 int sym_off; 332 }; 333 }; 334 }; 335 336 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 337 enum sec_def_flags { 338 SEC_NONE = 0, 339 /* expected_attach_type is optional, if kernel doesn't support that */ 340 SEC_EXP_ATTACH_OPT = 1, 341 /* legacy, only used by libbpf_get_type_names() and 342 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 343 * This used to be associated with cgroup (and few other) BPF programs 344 * that were attachable through BPF_PROG_ATTACH command. Pretty 345 * meaningless nowadays, though. 346 */ 347 SEC_ATTACHABLE = 2, 348 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 349 /* attachment target is specified through BTF ID in either kernel or 350 * other BPF program's BTF object 351 */ 352 SEC_ATTACH_BTF = 4, 353 /* BPF program type allows sleeping/blocking in kernel */ 354 SEC_SLEEPABLE = 8, 355 /* BPF program support non-linear XDP buffer */ 356 SEC_XDP_FRAGS = 16, 357 }; 358 359 struct bpf_sec_def { 360 char *sec; 361 enum bpf_prog_type prog_type; 362 enum bpf_attach_type expected_attach_type; 363 long cookie; 364 int handler_id; 365 366 libbpf_prog_setup_fn_t prog_setup_fn; 367 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 368 libbpf_prog_attach_fn_t prog_attach_fn; 369 }; 370 371 /* 372 * bpf_prog should be a better name but it has been used in 373 * linux/filter.h. 374 */ 375 struct bpf_program { 376 char *name; 377 char *sec_name; 378 size_t sec_idx; 379 const struct bpf_sec_def *sec_def; 380 /* this program's instruction offset (in number of instructions) 381 * within its containing ELF section 382 */ 383 size_t sec_insn_off; 384 /* number of original instructions in ELF section belonging to this 385 * program, not taking into account subprogram instructions possible 386 * appended later during relocation 387 */ 388 size_t sec_insn_cnt; 389 /* Offset (in number of instructions) of the start of instruction 390 * belonging to this BPF program within its containing main BPF 391 * program. For the entry-point (main) BPF program, this is always 392 * zero. For a sub-program, this gets reset before each of main BPF 393 * programs are processed and relocated and is used to determined 394 * whether sub-program was already appended to the main program, and 395 * if yes, at which instruction offset. 396 */ 397 size_t sub_insn_off; 398 399 /* instructions that belong to BPF program; insns[0] is located at 400 * sec_insn_off instruction within its ELF section in ELF file, so 401 * when mapping ELF file instruction index to the local instruction, 402 * one needs to subtract sec_insn_off; and vice versa. 403 */ 404 struct bpf_insn *insns; 405 /* actual number of instruction in this BPF program's image; for 406 * entry-point BPF programs this includes the size of main program 407 * itself plus all the used sub-programs, appended at the end 408 */ 409 size_t insns_cnt; 410 411 struct reloc_desc *reloc_desc; 412 int nr_reloc; 413 414 /* BPF verifier log settings */ 415 char *log_buf; 416 size_t log_size; 417 __u32 log_level; 418 419 struct bpf_object *obj; 420 421 int fd; 422 bool autoload; 423 bool autoattach; 424 bool mark_btf_static; 425 enum bpf_prog_type type; 426 enum bpf_attach_type expected_attach_type; 427 428 int prog_ifindex; 429 __u32 attach_btf_obj_fd; 430 __u32 attach_btf_id; 431 __u32 attach_prog_fd; 432 433 void *func_info; 434 __u32 func_info_rec_size; 435 __u32 func_info_cnt; 436 437 void *line_info; 438 __u32 line_info_rec_size; 439 __u32 line_info_cnt; 440 __u32 prog_flags; 441 }; 442 443 struct bpf_struct_ops { 444 const char *tname; 445 const struct btf_type *type; 446 struct bpf_program **progs; 447 __u32 *kern_func_off; 448 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 449 void *data; 450 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 451 * btf_vmlinux's format. 452 * struct bpf_struct_ops_tcp_congestion_ops { 453 * [... some other kernel fields ...] 454 * struct tcp_congestion_ops data; 455 * } 456 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 457 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 458 * from "data". 459 */ 460 void *kern_vdata; 461 __u32 type_id; 462 }; 463 464 #define DATA_SEC ".data" 465 #define BSS_SEC ".bss" 466 #define RODATA_SEC ".rodata" 467 #define KCONFIG_SEC ".kconfig" 468 #define KSYMS_SEC ".ksyms" 469 #define STRUCT_OPS_SEC ".struct_ops" 470 471 enum libbpf_map_type { 472 LIBBPF_MAP_UNSPEC, 473 LIBBPF_MAP_DATA, 474 LIBBPF_MAP_BSS, 475 LIBBPF_MAP_RODATA, 476 LIBBPF_MAP_KCONFIG, 477 }; 478 479 struct bpf_map_def { 480 unsigned int type; 481 unsigned int key_size; 482 unsigned int value_size; 483 unsigned int max_entries; 484 unsigned int map_flags; 485 }; 486 487 struct bpf_map { 488 struct bpf_object *obj; 489 char *name; 490 /* real_name is defined for special internal maps (.rodata*, 491 * .data*, .bss, .kconfig) and preserves their original ELF section 492 * name. This is important to be able to find corresponding BTF 493 * DATASEC information. 494 */ 495 char *real_name; 496 int fd; 497 int sec_idx; 498 size_t sec_offset; 499 int map_ifindex; 500 int inner_map_fd; 501 struct bpf_map_def def; 502 __u32 numa_node; 503 __u32 btf_var_idx; 504 __u32 btf_key_type_id; 505 __u32 btf_value_type_id; 506 __u32 btf_vmlinux_value_type_id; 507 enum libbpf_map_type libbpf_type; 508 void *mmaped; 509 struct bpf_struct_ops *st_ops; 510 struct bpf_map *inner_map; 511 void **init_slots; 512 int init_slots_sz; 513 char *pin_path; 514 bool pinned; 515 bool reused; 516 bool autocreate; 517 __u64 map_extra; 518 }; 519 520 enum extern_type { 521 EXT_UNKNOWN, 522 EXT_KCFG, 523 EXT_KSYM, 524 }; 525 526 enum kcfg_type { 527 KCFG_UNKNOWN, 528 KCFG_CHAR, 529 KCFG_BOOL, 530 KCFG_INT, 531 KCFG_TRISTATE, 532 KCFG_CHAR_ARR, 533 }; 534 535 struct extern_desc { 536 enum extern_type type; 537 int sym_idx; 538 int btf_id; 539 int sec_btf_id; 540 const char *name; 541 bool is_set; 542 bool is_weak; 543 union { 544 struct { 545 enum kcfg_type type; 546 int sz; 547 int align; 548 int data_off; 549 bool is_signed; 550 } kcfg; 551 struct { 552 unsigned long long addr; 553 554 /* target btf_id of the corresponding kernel var. */ 555 int kernel_btf_obj_fd; 556 int kernel_btf_id; 557 558 /* local btf_id of the ksym extern's type. */ 559 __u32 type_id; 560 /* BTF fd index to be patched in for insn->off, this is 561 * 0 for vmlinux BTF, index in obj->fd_array for module 562 * BTF 563 */ 564 __s16 btf_fd_idx; 565 } ksym; 566 }; 567 }; 568 569 struct module_btf { 570 struct btf *btf; 571 char *name; 572 __u32 id; 573 int fd; 574 int fd_array_idx; 575 }; 576 577 enum sec_type { 578 SEC_UNUSED = 0, 579 SEC_RELO, 580 SEC_BSS, 581 SEC_DATA, 582 SEC_RODATA, 583 }; 584 585 struct elf_sec_desc { 586 enum sec_type sec_type; 587 Elf64_Shdr *shdr; 588 Elf_Data *data; 589 }; 590 591 struct elf_state { 592 int fd; 593 const void *obj_buf; 594 size_t obj_buf_sz; 595 Elf *elf; 596 Elf64_Ehdr *ehdr; 597 Elf_Data *symbols; 598 Elf_Data *st_ops_data; 599 size_t shstrndx; /* section index for section name strings */ 600 size_t strtabidx; 601 struct elf_sec_desc *secs; 602 size_t sec_cnt; 603 int btf_maps_shndx; 604 __u32 btf_maps_sec_btf_id; 605 int text_shndx; 606 int symbols_shndx; 607 int st_ops_shndx; 608 }; 609 610 struct usdt_manager; 611 612 struct bpf_object { 613 char name[BPF_OBJ_NAME_LEN]; 614 char license[64]; 615 __u32 kern_version; 616 617 struct bpf_program *programs; 618 size_t nr_programs; 619 struct bpf_map *maps; 620 size_t nr_maps; 621 size_t maps_cap; 622 623 char *kconfig; 624 struct extern_desc *externs; 625 int nr_extern; 626 int kconfig_map_idx; 627 628 bool loaded; 629 bool has_subcalls; 630 bool has_rodata; 631 632 struct bpf_gen *gen_loader; 633 634 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 635 struct elf_state efile; 636 637 struct btf *btf; 638 struct btf_ext *btf_ext; 639 640 /* Parse and load BTF vmlinux if any of the programs in the object need 641 * it at load time. 642 */ 643 struct btf *btf_vmlinux; 644 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 645 * override for vmlinux BTF. 646 */ 647 char *btf_custom_path; 648 /* vmlinux BTF override for CO-RE relocations */ 649 struct btf *btf_vmlinux_override; 650 /* Lazily initialized kernel module BTFs */ 651 struct module_btf *btf_modules; 652 bool btf_modules_loaded; 653 size_t btf_module_cnt; 654 size_t btf_module_cap; 655 656 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 657 char *log_buf; 658 size_t log_size; 659 __u32 log_level; 660 661 int *fd_array; 662 size_t fd_array_cap; 663 size_t fd_array_cnt; 664 665 struct usdt_manager *usdt_man; 666 667 char path[]; 668 }; 669 670 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 671 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 672 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 673 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 674 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 675 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 676 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 677 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 678 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 679 680 void bpf_program__unload(struct bpf_program *prog) 681 { 682 if (!prog) 683 return; 684 685 zclose(prog->fd); 686 687 zfree(&prog->func_info); 688 zfree(&prog->line_info); 689 } 690 691 static void bpf_program__exit(struct bpf_program *prog) 692 { 693 if (!prog) 694 return; 695 696 bpf_program__unload(prog); 697 zfree(&prog->name); 698 zfree(&prog->sec_name); 699 zfree(&prog->insns); 700 zfree(&prog->reloc_desc); 701 702 prog->nr_reloc = 0; 703 prog->insns_cnt = 0; 704 prog->sec_idx = -1; 705 } 706 707 static bool insn_is_subprog_call(const struct bpf_insn *insn) 708 { 709 return BPF_CLASS(insn->code) == BPF_JMP && 710 BPF_OP(insn->code) == BPF_CALL && 711 BPF_SRC(insn->code) == BPF_K && 712 insn->src_reg == BPF_PSEUDO_CALL && 713 insn->dst_reg == 0 && 714 insn->off == 0; 715 } 716 717 static bool is_call_insn(const struct bpf_insn *insn) 718 { 719 return insn->code == (BPF_JMP | BPF_CALL); 720 } 721 722 static bool insn_is_pseudo_func(struct bpf_insn *insn) 723 { 724 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 725 } 726 727 static int 728 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 729 const char *name, size_t sec_idx, const char *sec_name, 730 size_t sec_off, void *insn_data, size_t insn_data_sz) 731 { 732 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 733 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 734 sec_name, name, sec_off, insn_data_sz); 735 return -EINVAL; 736 } 737 738 memset(prog, 0, sizeof(*prog)); 739 prog->obj = obj; 740 741 prog->sec_idx = sec_idx; 742 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 743 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 744 /* insns_cnt can later be increased by appending used subprograms */ 745 prog->insns_cnt = prog->sec_insn_cnt; 746 747 prog->type = BPF_PROG_TYPE_UNSPEC; 748 prog->fd = -1; 749 750 /* libbpf's convention for SEC("?abc...") is that it's just like 751 * SEC("abc...") but the corresponding bpf_program starts out with 752 * autoload set to false. 753 */ 754 if (sec_name[0] == '?') { 755 prog->autoload = false; 756 /* from now on forget there was ? in section name */ 757 sec_name++; 758 } else { 759 prog->autoload = true; 760 } 761 762 prog->autoattach = true; 763 764 /* inherit object's log_level */ 765 prog->log_level = obj->log_level; 766 767 prog->sec_name = strdup(sec_name); 768 if (!prog->sec_name) 769 goto errout; 770 771 prog->name = strdup(name); 772 if (!prog->name) 773 goto errout; 774 775 prog->insns = malloc(insn_data_sz); 776 if (!prog->insns) 777 goto errout; 778 memcpy(prog->insns, insn_data, insn_data_sz); 779 780 return 0; 781 errout: 782 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 783 bpf_program__exit(prog); 784 return -ENOMEM; 785 } 786 787 static int 788 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 789 const char *sec_name, int sec_idx) 790 { 791 Elf_Data *symbols = obj->efile.symbols; 792 struct bpf_program *prog, *progs; 793 void *data = sec_data->d_buf; 794 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 795 int nr_progs, err, i; 796 const char *name; 797 Elf64_Sym *sym; 798 799 progs = obj->programs; 800 nr_progs = obj->nr_programs; 801 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 802 sec_off = 0; 803 804 for (i = 0; i < nr_syms; i++) { 805 sym = elf_sym_by_idx(obj, i); 806 807 if (sym->st_shndx != sec_idx) 808 continue; 809 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 810 continue; 811 812 prog_sz = sym->st_size; 813 sec_off = sym->st_value; 814 815 name = elf_sym_str(obj, sym->st_name); 816 if (!name) { 817 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 818 sec_name, sec_off); 819 return -LIBBPF_ERRNO__FORMAT; 820 } 821 822 if (sec_off + prog_sz > sec_sz) { 823 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 824 sec_name, sec_off); 825 return -LIBBPF_ERRNO__FORMAT; 826 } 827 828 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 829 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 830 return -ENOTSUP; 831 } 832 833 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 834 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 835 836 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 837 if (!progs) { 838 /* 839 * In this case the original obj->programs 840 * is still valid, so don't need special treat for 841 * bpf_close_object(). 842 */ 843 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 844 sec_name, name); 845 return -ENOMEM; 846 } 847 obj->programs = progs; 848 849 prog = &progs[nr_progs]; 850 851 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 852 sec_off, data + sec_off, prog_sz); 853 if (err) 854 return err; 855 856 /* if function is a global/weak symbol, but has restricted 857 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 858 * as static to enable more permissive BPF verification mode 859 * with more outside context available to BPF verifier 860 */ 861 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 862 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 863 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 864 prog->mark_btf_static = true; 865 866 nr_progs++; 867 obj->nr_programs = nr_progs; 868 } 869 870 return 0; 871 } 872 873 __u32 get_kernel_version(void) 874 { 875 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 876 * but Ubuntu provides /proc/version_signature file, as described at 877 * https://ubuntu.com/kernel, with an example contents below, which we 878 * can use to get a proper LINUX_VERSION_CODE. 879 * 880 * Ubuntu 5.4.0-12.15-generic 5.4.8 881 * 882 * In the above, 5.4.8 is what kernel is actually expecting, while 883 * uname() call will return 5.4.0 in info.release. 884 */ 885 const char *ubuntu_kver_file = "/proc/version_signature"; 886 __u32 major, minor, patch; 887 struct utsname info; 888 889 if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) { 890 FILE *f; 891 892 f = fopen(ubuntu_kver_file, "r"); 893 if (f) { 894 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 895 fclose(f); 896 return KERNEL_VERSION(major, minor, patch); 897 } 898 fclose(f); 899 } 900 /* something went wrong, fall back to uname() approach */ 901 } 902 903 uname(&info); 904 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 905 return 0; 906 return KERNEL_VERSION(major, minor, patch); 907 } 908 909 static const struct btf_member * 910 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 911 { 912 struct btf_member *m; 913 int i; 914 915 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 916 if (btf_member_bit_offset(t, i) == bit_offset) 917 return m; 918 } 919 920 return NULL; 921 } 922 923 static const struct btf_member * 924 find_member_by_name(const struct btf *btf, const struct btf_type *t, 925 const char *name) 926 { 927 struct btf_member *m; 928 int i; 929 930 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 931 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 932 return m; 933 } 934 935 return NULL; 936 } 937 938 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 939 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 940 const char *name, __u32 kind); 941 942 static int 943 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 944 const struct btf_type **type, __u32 *type_id, 945 const struct btf_type **vtype, __u32 *vtype_id, 946 const struct btf_member **data_member) 947 { 948 const struct btf_type *kern_type, *kern_vtype; 949 const struct btf_member *kern_data_member; 950 __s32 kern_vtype_id, kern_type_id; 951 __u32 i; 952 953 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 954 if (kern_type_id < 0) { 955 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 956 tname); 957 return kern_type_id; 958 } 959 kern_type = btf__type_by_id(btf, kern_type_id); 960 961 /* Find the corresponding "map_value" type that will be used 962 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 963 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 964 * btf_vmlinux. 965 */ 966 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 967 tname, BTF_KIND_STRUCT); 968 if (kern_vtype_id < 0) { 969 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 970 STRUCT_OPS_VALUE_PREFIX, tname); 971 return kern_vtype_id; 972 } 973 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 974 975 /* Find "struct tcp_congestion_ops" from 976 * struct bpf_struct_ops_tcp_congestion_ops { 977 * [ ... ] 978 * struct tcp_congestion_ops data; 979 * } 980 */ 981 kern_data_member = btf_members(kern_vtype); 982 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 983 if (kern_data_member->type == kern_type_id) 984 break; 985 } 986 if (i == btf_vlen(kern_vtype)) { 987 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 988 tname, STRUCT_OPS_VALUE_PREFIX, tname); 989 return -EINVAL; 990 } 991 992 *type = kern_type; 993 *type_id = kern_type_id; 994 *vtype = kern_vtype; 995 *vtype_id = kern_vtype_id; 996 *data_member = kern_data_member; 997 998 return 0; 999 } 1000 1001 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1002 { 1003 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1004 } 1005 1006 /* Init the map's fields that depend on kern_btf */ 1007 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1008 const struct btf *btf, 1009 const struct btf *kern_btf) 1010 { 1011 const struct btf_member *member, *kern_member, *kern_data_member; 1012 const struct btf_type *type, *kern_type, *kern_vtype; 1013 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1014 struct bpf_struct_ops *st_ops; 1015 void *data, *kern_data; 1016 const char *tname; 1017 int err; 1018 1019 st_ops = map->st_ops; 1020 type = st_ops->type; 1021 tname = st_ops->tname; 1022 err = find_struct_ops_kern_types(kern_btf, tname, 1023 &kern_type, &kern_type_id, 1024 &kern_vtype, &kern_vtype_id, 1025 &kern_data_member); 1026 if (err) 1027 return err; 1028 1029 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1030 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1031 1032 map->def.value_size = kern_vtype->size; 1033 map->btf_vmlinux_value_type_id = kern_vtype_id; 1034 1035 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1036 if (!st_ops->kern_vdata) 1037 return -ENOMEM; 1038 1039 data = st_ops->data; 1040 kern_data_off = kern_data_member->offset / 8; 1041 kern_data = st_ops->kern_vdata + kern_data_off; 1042 1043 member = btf_members(type); 1044 for (i = 0; i < btf_vlen(type); i++, member++) { 1045 const struct btf_type *mtype, *kern_mtype; 1046 __u32 mtype_id, kern_mtype_id; 1047 void *mdata, *kern_mdata; 1048 __s64 msize, kern_msize; 1049 __u32 moff, kern_moff; 1050 __u32 kern_member_idx; 1051 const char *mname; 1052 1053 mname = btf__name_by_offset(btf, member->name_off); 1054 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1055 if (!kern_member) { 1056 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1057 map->name, mname); 1058 return -ENOTSUP; 1059 } 1060 1061 kern_member_idx = kern_member - btf_members(kern_type); 1062 if (btf_member_bitfield_size(type, i) || 1063 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1064 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1065 map->name, mname); 1066 return -ENOTSUP; 1067 } 1068 1069 moff = member->offset / 8; 1070 kern_moff = kern_member->offset / 8; 1071 1072 mdata = data + moff; 1073 kern_mdata = kern_data + kern_moff; 1074 1075 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1076 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1077 &kern_mtype_id); 1078 if (BTF_INFO_KIND(mtype->info) != 1079 BTF_INFO_KIND(kern_mtype->info)) { 1080 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1081 map->name, mname, BTF_INFO_KIND(mtype->info), 1082 BTF_INFO_KIND(kern_mtype->info)); 1083 return -ENOTSUP; 1084 } 1085 1086 if (btf_is_ptr(mtype)) { 1087 struct bpf_program *prog; 1088 1089 prog = st_ops->progs[i]; 1090 if (!prog) 1091 continue; 1092 1093 kern_mtype = skip_mods_and_typedefs(kern_btf, 1094 kern_mtype->type, 1095 &kern_mtype_id); 1096 1097 /* mtype->type must be a func_proto which was 1098 * guaranteed in bpf_object__collect_st_ops_relos(), 1099 * so only check kern_mtype for func_proto here. 1100 */ 1101 if (!btf_is_func_proto(kern_mtype)) { 1102 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1103 map->name, mname); 1104 return -ENOTSUP; 1105 } 1106 1107 prog->attach_btf_id = kern_type_id; 1108 prog->expected_attach_type = kern_member_idx; 1109 1110 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1111 1112 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1113 map->name, mname, prog->name, moff, 1114 kern_moff); 1115 1116 continue; 1117 } 1118 1119 msize = btf__resolve_size(btf, mtype_id); 1120 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1121 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1122 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1123 map->name, mname, (ssize_t)msize, 1124 (ssize_t)kern_msize); 1125 return -ENOTSUP; 1126 } 1127 1128 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1129 map->name, mname, (unsigned int)msize, 1130 moff, kern_moff); 1131 memcpy(kern_mdata, mdata, msize); 1132 } 1133 1134 return 0; 1135 } 1136 1137 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1138 { 1139 struct bpf_map *map; 1140 size_t i; 1141 int err; 1142 1143 for (i = 0; i < obj->nr_maps; i++) { 1144 map = &obj->maps[i]; 1145 1146 if (!bpf_map__is_struct_ops(map)) 1147 continue; 1148 1149 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1150 obj->btf_vmlinux); 1151 if (err) 1152 return err; 1153 } 1154 1155 return 0; 1156 } 1157 1158 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1159 { 1160 const struct btf_type *type, *datasec; 1161 const struct btf_var_secinfo *vsi; 1162 struct bpf_struct_ops *st_ops; 1163 const char *tname, *var_name; 1164 __s32 type_id, datasec_id; 1165 const struct btf *btf; 1166 struct bpf_map *map; 1167 __u32 i; 1168 1169 if (obj->efile.st_ops_shndx == -1) 1170 return 0; 1171 1172 btf = obj->btf; 1173 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1174 BTF_KIND_DATASEC); 1175 if (datasec_id < 0) { 1176 pr_warn("struct_ops init: DATASEC %s not found\n", 1177 STRUCT_OPS_SEC); 1178 return -EINVAL; 1179 } 1180 1181 datasec = btf__type_by_id(btf, datasec_id); 1182 vsi = btf_var_secinfos(datasec); 1183 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1184 type = btf__type_by_id(obj->btf, vsi->type); 1185 var_name = btf__name_by_offset(obj->btf, type->name_off); 1186 1187 type_id = btf__resolve_type(obj->btf, vsi->type); 1188 if (type_id < 0) { 1189 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1190 vsi->type, STRUCT_OPS_SEC); 1191 return -EINVAL; 1192 } 1193 1194 type = btf__type_by_id(obj->btf, type_id); 1195 tname = btf__name_by_offset(obj->btf, type->name_off); 1196 if (!tname[0]) { 1197 pr_warn("struct_ops init: anonymous type is not supported\n"); 1198 return -ENOTSUP; 1199 } 1200 if (!btf_is_struct(type)) { 1201 pr_warn("struct_ops init: %s is not a struct\n", tname); 1202 return -EINVAL; 1203 } 1204 1205 map = bpf_object__add_map(obj); 1206 if (IS_ERR(map)) 1207 return PTR_ERR(map); 1208 1209 map->sec_idx = obj->efile.st_ops_shndx; 1210 map->sec_offset = vsi->offset; 1211 map->name = strdup(var_name); 1212 if (!map->name) 1213 return -ENOMEM; 1214 1215 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1216 map->def.key_size = sizeof(int); 1217 map->def.value_size = type->size; 1218 map->def.max_entries = 1; 1219 1220 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1221 if (!map->st_ops) 1222 return -ENOMEM; 1223 st_ops = map->st_ops; 1224 st_ops->data = malloc(type->size); 1225 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1226 st_ops->kern_func_off = malloc(btf_vlen(type) * 1227 sizeof(*st_ops->kern_func_off)); 1228 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1229 return -ENOMEM; 1230 1231 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1232 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1233 var_name, STRUCT_OPS_SEC); 1234 return -EINVAL; 1235 } 1236 1237 memcpy(st_ops->data, 1238 obj->efile.st_ops_data->d_buf + vsi->offset, 1239 type->size); 1240 st_ops->tname = tname; 1241 st_ops->type = type; 1242 st_ops->type_id = type_id; 1243 1244 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1245 tname, type_id, var_name, vsi->offset); 1246 } 1247 1248 return 0; 1249 } 1250 1251 static struct bpf_object *bpf_object__new(const char *path, 1252 const void *obj_buf, 1253 size_t obj_buf_sz, 1254 const char *obj_name) 1255 { 1256 struct bpf_object *obj; 1257 char *end; 1258 1259 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1260 if (!obj) { 1261 pr_warn("alloc memory failed for %s\n", path); 1262 return ERR_PTR(-ENOMEM); 1263 } 1264 1265 strcpy(obj->path, path); 1266 if (obj_name) { 1267 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1268 } else { 1269 /* Using basename() GNU version which doesn't modify arg. */ 1270 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1271 end = strchr(obj->name, '.'); 1272 if (end) 1273 *end = 0; 1274 } 1275 1276 obj->efile.fd = -1; 1277 /* 1278 * Caller of this function should also call 1279 * bpf_object__elf_finish() after data collection to return 1280 * obj_buf to user. If not, we should duplicate the buffer to 1281 * avoid user freeing them before elf finish. 1282 */ 1283 obj->efile.obj_buf = obj_buf; 1284 obj->efile.obj_buf_sz = obj_buf_sz; 1285 obj->efile.btf_maps_shndx = -1; 1286 obj->efile.st_ops_shndx = -1; 1287 obj->kconfig_map_idx = -1; 1288 1289 obj->kern_version = get_kernel_version(); 1290 obj->loaded = false; 1291 1292 return obj; 1293 } 1294 1295 static void bpf_object__elf_finish(struct bpf_object *obj) 1296 { 1297 if (!obj->efile.elf) 1298 return; 1299 1300 elf_end(obj->efile.elf); 1301 obj->efile.elf = NULL; 1302 obj->efile.symbols = NULL; 1303 obj->efile.st_ops_data = NULL; 1304 1305 zfree(&obj->efile.secs); 1306 obj->efile.sec_cnt = 0; 1307 zclose(obj->efile.fd); 1308 obj->efile.obj_buf = NULL; 1309 obj->efile.obj_buf_sz = 0; 1310 } 1311 1312 static int bpf_object__elf_init(struct bpf_object *obj) 1313 { 1314 Elf64_Ehdr *ehdr; 1315 int err = 0; 1316 Elf *elf; 1317 1318 if (obj->efile.elf) { 1319 pr_warn("elf: init internal error\n"); 1320 return -LIBBPF_ERRNO__LIBELF; 1321 } 1322 1323 if (obj->efile.obj_buf_sz > 0) { 1324 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1325 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1326 } else { 1327 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1328 if (obj->efile.fd < 0) { 1329 char errmsg[STRERR_BUFSIZE], *cp; 1330 1331 err = -errno; 1332 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1333 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1334 return err; 1335 } 1336 1337 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1338 } 1339 1340 if (!elf) { 1341 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1342 err = -LIBBPF_ERRNO__LIBELF; 1343 goto errout; 1344 } 1345 1346 obj->efile.elf = elf; 1347 1348 if (elf_kind(elf) != ELF_K_ELF) { 1349 err = -LIBBPF_ERRNO__FORMAT; 1350 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1351 goto errout; 1352 } 1353 1354 if (gelf_getclass(elf) != ELFCLASS64) { 1355 err = -LIBBPF_ERRNO__FORMAT; 1356 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1357 goto errout; 1358 } 1359 1360 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1361 if (!obj->efile.ehdr) { 1362 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1363 err = -LIBBPF_ERRNO__FORMAT; 1364 goto errout; 1365 } 1366 1367 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1368 pr_warn("elf: failed to get section names section index for %s: %s\n", 1369 obj->path, elf_errmsg(-1)); 1370 err = -LIBBPF_ERRNO__FORMAT; 1371 goto errout; 1372 } 1373 1374 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1375 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1376 pr_warn("elf: failed to get section names strings from %s: %s\n", 1377 obj->path, elf_errmsg(-1)); 1378 err = -LIBBPF_ERRNO__FORMAT; 1379 goto errout; 1380 } 1381 1382 /* Old LLVM set e_machine to EM_NONE */ 1383 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1384 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1385 err = -LIBBPF_ERRNO__FORMAT; 1386 goto errout; 1387 } 1388 1389 return 0; 1390 errout: 1391 bpf_object__elf_finish(obj); 1392 return err; 1393 } 1394 1395 static int bpf_object__check_endianness(struct bpf_object *obj) 1396 { 1397 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1398 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1399 return 0; 1400 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1401 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1402 return 0; 1403 #else 1404 # error "Unrecognized __BYTE_ORDER__" 1405 #endif 1406 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1407 return -LIBBPF_ERRNO__ENDIAN; 1408 } 1409 1410 static int 1411 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1412 { 1413 if (!data) { 1414 pr_warn("invalid license section in %s\n", obj->path); 1415 return -LIBBPF_ERRNO__FORMAT; 1416 } 1417 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1418 * go over allowed ELF data section buffer 1419 */ 1420 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1421 pr_debug("license of %s is %s\n", obj->path, obj->license); 1422 return 0; 1423 } 1424 1425 static int 1426 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1427 { 1428 __u32 kver; 1429 1430 if (!data || size != sizeof(kver)) { 1431 pr_warn("invalid kver section in %s\n", obj->path); 1432 return -LIBBPF_ERRNO__FORMAT; 1433 } 1434 memcpy(&kver, data, sizeof(kver)); 1435 obj->kern_version = kver; 1436 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1437 return 0; 1438 } 1439 1440 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1441 { 1442 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1443 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1444 return true; 1445 return false; 1446 } 1447 1448 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1449 { 1450 Elf_Data *data; 1451 Elf_Scn *scn; 1452 1453 if (!name) 1454 return -EINVAL; 1455 1456 scn = elf_sec_by_name(obj, name); 1457 data = elf_sec_data(obj, scn); 1458 if (data) { 1459 *size = data->d_size; 1460 return 0; /* found it */ 1461 } 1462 1463 return -ENOENT; 1464 } 1465 1466 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1467 { 1468 Elf_Data *symbols = obj->efile.symbols; 1469 const char *sname; 1470 size_t si; 1471 1472 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1473 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1474 1475 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1476 continue; 1477 1478 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1479 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1480 continue; 1481 1482 sname = elf_sym_str(obj, sym->st_name); 1483 if (!sname) { 1484 pr_warn("failed to get sym name string for var %s\n", name); 1485 return ERR_PTR(-EIO); 1486 } 1487 if (strcmp(name, sname) == 0) 1488 return sym; 1489 } 1490 1491 return ERR_PTR(-ENOENT); 1492 } 1493 1494 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1495 { 1496 struct bpf_map *map; 1497 int err; 1498 1499 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1500 sizeof(*obj->maps), obj->nr_maps + 1); 1501 if (err) 1502 return ERR_PTR(err); 1503 1504 map = &obj->maps[obj->nr_maps++]; 1505 map->obj = obj; 1506 map->fd = -1; 1507 map->inner_map_fd = -1; 1508 map->autocreate = true; 1509 1510 return map; 1511 } 1512 1513 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1514 { 1515 long page_sz = sysconf(_SC_PAGE_SIZE); 1516 size_t map_sz; 1517 1518 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1519 map_sz = roundup(map_sz, page_sz); 1520 return map_sz; 1521 } 1522 1523 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1524 { 1525 char map_name[BPF_OBJ_NAME_LEN], *p; 1526 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1527 1528 /* This is one of the more confusing parts of libbpf for various 1529 * reasons, some of which are historical. The original idea for naming 1530 * internal names was to include as much of BPF object name prefix as 1531 * possible, so that it can be distinguished from similar internal 1532 * maps of a different BPF object. 1533 * As an example, let's say we have bpf_object named 'my_object_name' 1534 * and internal map corresponding to '.rodata' ELF section. The final 1535 * map name advertised to user and to the kernel will be 1536 * 'my_objec.rodata', taking first 8 characters of object name and 1537 * entire 7 characters of '.rodata'. 1538 * Somewhat confusingly, if internal map ELF section name is shorter 1539 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1540 * for the suffix, even though we only have 4 actual characters, and 1541 * resulting map will be called 'my_objec.bss', not even using all 15 1542 * characters allowed by the kernel. Oh well, at least the truncated 1543 * object name is somewhat consistent in this case. But if the map 1544 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1545 * (8 chars) and thus will be left with only first 7 characters of the 1546 * object name ('my_obje'). Happy guessing, user, that the final map 1547 * name will be "my_obje.kconfig". 1548 * Now, with libbpf starting to support arbitrarily named .rodata.* 1549 * and .data.* data sections, it's possible that ELF section name is 1550 * longer than allowed 15 chars, so we now need to be careful to take 1551 * only up to 15 first characters of ELF name, taking no BPF object 1552 * name characters at all. So '.rodata.abracadabra' will result in 1553 * '.rodata.abracad' kernel and user-visible name. 1554 * We need to keep this convoluted logic intact for .data, .bss and 1555 * .rodata maps, but for new custom .data.custom and .rodata.custom 1556 * maps we use their ELF names as is, not prepending bpf_object name 1557 * in front. We still need to truncate them to 15 characters for the 1558 * kernel. Full name can be recovered for such maps by using DATASEC 1559 * BTF type associated with such map's value type, though. 1560 */ 1561 if (sfx_len >= BPF_OBJ_NAME_LEN) 1562 sfx_len = BPF_OBJ_NAME_LEN - 1; 1563 1564 /* if there are two or more dots in map name, it's a custom dot map */ 1565 if (strchr(real_name + 1, '.') != NULL) 1566 pfx_len = 0; 1567 else 1568 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1569 1570 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1571 sfx_len, real_name); 1572 1573 /* sanitise map name to characters allowed by kernel */ 1574 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1575 if (!isalnum(*p) && *p != '_' && *p != '.') 1576 *p = '_'; 1577 1578 return strdup(map_name); 1579 } 1580 1581 static int 1582 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1583 1584 /* Internal BPF map is mmap()'able only if at least one of corresponding 1585 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1586 * variable and it's not marked as __hidden (which turns it into, effectively, 1587 * a STATIC variable). 1588 */ 1589 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1590 { 1591 const struct btf_type *t, *vt; 1592 struct btf_var_secinfo *vsi; 1593 int i, n; 1594 1595 if (!map->btf_value_type_id) 1596 return false; 1597 1598 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1599 if (!btf_is_datasec(t)) 1600 return false; 1601 1602 vsi = btf_var_secinfos(t); 1603 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1604 vt = btf__type_by_id(obj->btf, vsi->type); 1605 if (!btf_is_var(vt)) 1606 continue; 1607 1608 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1609 return true; 1610 } 1611 1612 return false; 1613 } 1614 1615 static int 1616 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1617 const char *real_name, int sec_idx, void *data, size_t data_sz) 1618 { 1619 struct bpf_map_def *def; 1620 struct bpf_map *map; 1621 int err; 1622 1623 map = bpf_object__add_map(obj); 1624 if (IS_ERR(map)) 1625 return PTR_ERR(map); 1626 1627 map->libbpf_type = type; 1628 map->sec_idx = sec_idx; 1629 map->sec_offset = 0; 1630 map->real_name = strdup(real_name); 1631 map->name = internal_map_name(obj, real_name); 1632 if (!map->real_name || !map->name) { 1633 zfree(&map->real_name); 1634 zfree(&map->name); 1635 return -ENOMEM; 1636 } 1637 1638 def = &map->def; 1639 def->type = BPF_MAP_TYPE_ARRAY; 1640 def->key_size = sizeof(int); 1641 def->value_size = data_sz; 1642 def->max_entries = 1; 1643 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1644 ? BPF_F_RDONLY_PROG : 0; 1645 1646 /* failures are fine because of maps like .rodata.str1.1 */ 1647 (void) map_fill_btf_type_info(obj, map); 1648 1649 if (map_is_mmapable(obj, map)) 1650 def->map_flags |= BPF_F_MMAPABLE; 1651 1652 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1653 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1654 1655 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1656 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1657 if (map->mmaped == MAP_FAILED) { 1658 err = -errno; 1659 map->mmaped = NULL; 1660 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1661 map->name, err); 1662 zfree(&map->real_name); 1663 zfree(&map->name); 1664 return err; 1665 } 1666 1667 if (data) 1668 memcpy(map->mmaped, data, data_sz); 1669 1670 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1671 return 0; 1672 } 1673 1674 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1675 { 1676 struct elf_sec_desc *sec_desc; 1677 const char *sec_name; 1678 int err = 0, sec_idx; 1679 1680 /* 1681 * Populate obj->maps with libbpf internal maps. 1682 */ 1683 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1684 sec_desc = &obj->efile.secs[sec_idx]; 1685 1686 /* Skip recognized sections with size 0. */ 1687 if (!sec_desc->data || sec_desc->data->d_size == 0) 1688 continue; 1689 1690 switch (sec_desc->sec_type) { 1691 case SEC_DATA: 1692 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1693 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1694 sec_name, sec_idx, 1695 sec_desc->data->d_buf, 1696 sec_desc->data->d_size); 1697 break; 1698 case SEC_RODATA: 1699 obj->has_rodata = true; 1700 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1701 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1702 sec_name, sec_idx, 1703 sec_desc->data->d_buf, 1704 sec_desc->data->d_size); 1705 break; 1706 case SEC_BSS: 1707 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1708 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1709 sec_name, sec_idx, 1710 NULL, 1711 sec_desc->data->d_size); 1712 break; 1713 default: 1714 /* skip */ 1715 break; 1716 } 1717 if (err) 1718 return err; 1719 } 1720 return 0; 1721 } 1722 1723 1724 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1725 const void *name) 1726 { 1727 int i; 1728 1729 for (i = 0; i < obj->nr_extern; i++) { 1730 if (strcmp(obj->externs[i].name, name) == 0) 1731 return &obj->externs[i]; 1732 } 1733 return NULL; 1734 } 1735 1736 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1737 char value) 1738 { 1739 switch (ext->kcfg.type) { 1740 case KCFG_BOOL: 1741 if (value == 'm') { 1742 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1743 ext->name, value); 1744 return -EINVAL; 1745 } 1746 *(bool *)ext_val = value == 'y' ? true : false; 1747 break; 1748 case KCFG_TRISTATE: 1749 if (value == 'y') 1750 *(enum libbpf_tristate *)ext_val = TRI_YES; 1751 else if (value == 'm') 1752 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1753 else /* value == 'n' */ 1754 *(enum libbpf_tristate *)ext_val = TRI_NO; 1755 break; 1756 case KCFG_CHAR: 1757 *(char *)ext_val = value; 1758 break; 1759 case KCFG_UNKNOWN: 1760 case KCFG_INT: 1761 case KCFG_CHAR_ARR: 1762 default: 1763 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1764 ext->name, value); 1765 return -EINVAL; 1766 } 1767 ext->is_set = true; 1768 return 0; 1769 } 1770 1771 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1772 const char *value) 1773 { 1774 size_t len; 1775 1776 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1777 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1778 ext->name, value); 1779 return -EINVAL; 1780 } 1781 1782 len = strlen(value); 1783 if (value[len - 1] != '"') { 1784 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1785 ext->name, value); 1786 return -EINVAL; 1787 } 1788 1789 /* strip quotes */ 1790 len -= 2; 1791 if (len >= ext->kcfg.sz) { 1792 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1793 ext->name, value, len, ext->kcfg.sz - 1); 1794 len = ext->kcfg.sz - 1; 1795 } 1796 memcpy(ext_val, value + 1, len); 1797 ext_val[len] = '\0'; 1798 ext->is_set = true; 1799 return 0; 1800 } 1801 1802 static int parse_u64(const char *value, __u64 *res) 1803 { 1804 char *value_end; 1805 int err; 1806 1807 errno = 0; 1808 *res = strtoull(value, &value_end, 0); 1809 if (errno) { 1810 err = -errno; 1811 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1812 return err; 1813 } 1814 if (*value_end) { 1815 pr_warn("failed to parse '%s' as integer completely\n", value); 1816 return -EINVAL; 1817 } 1818 return 0; 1819 } 1820 1821 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1822 { 1823 int bit_sz = ext->kcfg.sz * 8; 1824 1825 if (ext->kcfg.sz == 8) 1826 return true; 1827 1828 /* Validate that value stored in u64 fits in integer of `ext->sz` 1829 * bytes size without any loss of information. If the target integer 1830 * is signed, we rely on the following limits of integer type of 1831 * Y bits and subsequent transformation: 1832 * 1833 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1834 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1835 * 0 <= X + 2^(Y-1) < 2^Y 1836 * 1837 * For unsigned target integer, check that all the (64 - Y) bits are 1838 * zero. 1839 */ 1840 if (ext->kcfg.is_signed) 1841 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1842 else 1843 return (v >> bit_sz) == 0; 1844 } 1845 1846 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1847 __u64 value) 1848 { 1849 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1850 ext->kcfg.type != KCFG_BOOL) { 1851 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1852 ext->name, (unsigned long long)value); 1853 return -EINVAL; 1854 } 1855 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1856 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1857 ext->name, (unsigned long long)value); 1858 return -EINVAL; 1859 1860 } 1861 if (!is_kcfg_value_in_range(ext, value)) { 1862 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1863 ext->name, (unsigned long long)value, ext->kcfg.sz); 1864 return -ERANGE; 1865 } 1866 switch (ext->kcfg.sz) { 1867 case 1: 1868 *(__u8 *)ext_val = value; 1869 break; 1870 case 2: 1871 *(__u16 *)ext_val = value; 1872 break; 1873 case 4: 1874 *(__u32 *)ext_val = value; 1875 break; 1876 case 8: 1877 *(__u64 *)ext_val = value; 1878 break; 1879 default: 1880 return -EINVAL; 1881 } 1882 ext->is_set = true; 1883 return 0; 1884 } 1885 1886 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1887 char *buf, void *data) 1888 { 1889 struct extern_desc *ext; 1890 char *sep, *value; 1891 int len, err = 0; 1892 void *ext_val; 1893 __u64 num; 1894 1895 if (!str_has_pfx(buf, "CONFIG_")) 1896 return 0; 1897 1898 sep = strchr(buf, '='); 1899 if (!sep) { 1900 pr_warn("failed to parse '%s': no separator\n", buf); 1901 return -EINVAL; 1902 } 1903 1904 /* Trim ending '\n' */ 1905 len = strlen(buf); 1906 if (buf[len - 1] == '\n') 1907 buf[len - 1] = '\0'; 1908 /* Split on '=' and ensure that a value is present. */ 1909 *sep = '\0'; 1910 if (!sep[1]) { 1911 *sep = '='; 1912 pr_warn("failed to parse '%s': no value\n", buf); 1913 return -EINVAL; 1914 } 1915 1916 ext = find_extern_by_name(obj, buf); 1917 if (!ext || ext->is_set) 1918 return 0; 1919 1920 ext_val = data + ext->kcfg.data_off; 1921 value = sep + 1; 1922 1923 switch (*value) { 1924 case 'y': case 'n': case 'm': 1925 err = set_kcfg_value_tri(ext, ext_val, *value); 1926 break; 1927 case '"': 1928 err = set_kcfg_value_str(ext, ext_val, value); 1929 break; 1930 default: 1931 /* assume integer */ 1932 err = parse_u64(value, &num); 1933 if (err) { 1934 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1935 return err; 1936 } 1937 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1938 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1939 return -EINVAL; 1940 } 1941 err = set_kcfg_value_num(ext, ext_val, num); 1942 break; 1943 } 1944 if (err) 1945 return err; 1946 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1947 return 0; 1948 } 1949 1950 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1951 { 1952 char buf[PATH_MAX]; 1953 struct utsname uts; 1954 int len, err = 0; 1955 gzFile file; 1956 1957 uname(&uts); 1958 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1959 if (len < 0) 1960 return -EINVAL; 1961 else if (len >= PATH_MAX) 1962 return -ENAMETOOLONG; 1963 1964 /* gzopen also accepts uncompressed files. */ 1965 file = gzopen(buf, "r"); 1966 if (!file) 1967 file = gzopen("/proc/config.gz", "r"); 1968 1969 if (!file) { 1970 pr_warn("failed to open system Kconfig\n"); 1971 return -ENOENT; 1972 } 1973 1974 while (gzgets(file, buf, sizeof(buf))) { 1975 err = bpf_object__process_kconfig_line(obj, buf, data); 1976 if (err) { 1977 pr_warn("error parsing system Kconfig line '%s': %d\n", 1978 buf, err); 1979 goto out; 1980 } 1981 } 1982 1983 out: 1984 gzclose(file); 1985 return err; 1986 } 1987 1988 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1989 const char *config, void *data) 1990 { 1991 char buf[PATH_MAX]; 1992 int err = 0; 1993 FILE *file; 1994 1995 file = fmemopen((void *)config, strlen(config), "r"); 1996 if (!file) { 1997 err = -errno; 1998 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1999 return err; 2000 } 2001 2002 while (fgets(buf, sizeof(buf), file)) { 2003 err = bpf_object__process_kconfig_line(obj, buf, data); 2004 if (err) { 2005 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2006 buf, err); 2007 break; 2008 } 2009 } 2010 2011 fclose(file); 2012 return err; 2013 } 2014 2015 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2016 { 2017 struct extern_desc *last_ext = NULL, *ext; 2018 size_t map_sz; 2019 int i, err; 2020 2021 for (i = 0; i < obj->nr_extern; i++) { 2022 ext = &obj->externs[i]; 2023 if (ext->type == EXT_KCFG) 2024 last_ext = ext; 2025 } 2026 2027 if (!last_ext) 2028 return 0; 2029 2030 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2031 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2032 ".kconfig", obj->efile.symbols_shndx, 2033 NULL, map_sz); 2034 if (err) 2035 return err; 2036 2037 obj->kconfig_map_idx = obj->nr_maps - 1; 2038 2039 return 0; 2040 } 2041 2042 const struct btf_type * 2043 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2044 { 2045 const struct btf_type *t = btf__type_by_id(btf, id); 2046 2047 if (res_id) 2048 *res_id = id; 2049 2050 while (btf_is_mod(t) || btf_is_typedef(t)) { 2051 if (res_id) 2052 *res_id = t->type; 2053 t = btf__type_by_id(btf, t->type); 2054 } 2055 2056 return t; 2057 } 2058 2059 static const struct btf_type * 2060 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2061 { 2062 const struct btf_type *t; 2063 2064 t = skip_mods_and_typedefs(btf, id, NULL); 2065 if (!btf_is_ptr(t)) 2066 return NULL; 2067 2068 t = skip_mods_and_typedefs(btf, t->type, res_id); 2069 2070 return btf_is_func_proto(t) ? t : NULL; 2071 } 2072 2073 static const char *__btf_kind_str(__u16 kind) 2074 { 2075 switch (kind) { 2076 case BTF_KIND_UNKN: return "void"; 2077 case BTF_KIND_INT: return "int"; 2078 case BTF_KIND_PTR: return "ptr"; 2079 case BTF_KIND_ARRAY: return "array"; 2080 case BTF_KIND_STRUCT: return "struct"; 2081 case BTF_KIND_UNION: return "union"; 2082 case BTF_KIND_ENUM: return "enum"; 2083 case BTF_KIND_FWD: return "fwd"; 2084 case BTF_KIND_TYPEDEF: return "typedef"; 2085 case BTF_KIND_VOLATILE: return "volatile"; 2086 case BTF_KIND_CONST: return "const"; 2087 case BTF_KIND_RESTRICT: return "restrict"; 2088 case BTF_KIND_FUNC: return "func"; 2089 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2090 case BTF_KIND_VAR: return "var"; 2091 case BTF_KIND_DATASEC: return "datasec"; 2092 case BTF_KIND_FLOAT: return "float"; 2093 case BTF_KIND_DECL_TAG: return "decl_tag"; 2094 case BTF_KIND_TYPE_TAG: return "type_tag"; 2095 case BTF_KIND_ENUM64: return "enum64"; 2096 default: return "unknown"; 2097 } 2098 } 2099 2100 const char *btf_kind_str(const struct btf_type *t) 2101 { 2102 return __btf_kind_str(btf_kind(t)); 2103 } 2104 2105 /* 2106 * Fetch integer attribute of BTF map definition. Such attributes are 2107 * represented using a pointer to an array, in which dimensionality of array 2108 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2109 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2110 * type definition, while using only sizeof(void *) space in ELF data section. 2111 */ 2112 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2113 const struct btf_member *m, __u32 *res) 2114 { 2115 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2116 const char *name = btf__name_by_offset(btf, m->name_off); 2117 const struct btf_array *arr_info; 2118 const struct btf_type *arr_t; 2119 2120 if (!btf_is_ptr(t)) { 2121 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2122 map_name, name, btf_kind_str(t)); 2123 return false; 2124 } 2125 2126 arr_t = btf__type_by_id(btf, t->type); 2127 if (!arr_t) { 2128 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2129 map_name, name, t->type); 2130 return false; 2131 } 2132 if (!btf_is_array(arr_t)) { 2133 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2134 map_name, name, btf_kind_str(arr_t)); 2135 return false; 2136 } 2137 arr_info = btf_array(arr_t); 2138 *res = arr_info->nelems; 2139 return true; 2140 } 2141 2142 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2143 { 2144 int len; 2145 2146 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2147 if (len < 0) 2148 return -EINVAL; 2149 if (len >= buf_sz) 2150 return -ENAMETOOLONG; 2151 2152 return 0; 2153 } 2154 2155 static int build_map_pin_path(struct bpf_map *map, const char *path) 2156 { 2157 char buf[PATH_MAX]; 2158 int err; 2159 2160 if (!path) 2161 path = "/sys/fs/bpf"; 2162 2163 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2164 if (err) 2165 return err; 2166 2167 return bpf_map__set_pin_path(map, buf); 2168 } 2169 2170 /* should match definition in bpf_helpers.h */ 2171 enum libbpf_pin_type { 2172 LIBBPF_PIN_NONE, 2173 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2174 LIBBPF_PIN_BY_NAME, 2175 }; 2176 2177 int parse_btf_map_def(const char *map_name, struct btf *btf, 2178 const struct btf_type *def_t, bool strict, 2179 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2180 { 2181 const struct btf_type *t; 2182 const struct btf_member *m; 2183 bool is_inner = inner_def == NULL; 2184 int vlen, i; 2185 2186 vlen = btf_vlen(def_t); 2187 m = btf_members(def_t); 2188 for (i = 0; i < vlen; i++, m++) { 2189 const char *name = btf__name_by_offset(btf, m->name_off); 2190 2191 if (!name) { 2192 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2193 return -EINVAL; 2194 } 2195 if (strcmp(name, "type") == 0) { 2196 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2197 return -EINVAL; 2198 map_def->parts |= MAP_DEF_MAP_TYPE; 2199 } else if (strcmp(name, "max_entries") == 0) { 2200 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2201 return -EINVAL; 2202 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2203 } else if (strcmp(name, "map_flags") == 0) { 2204 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2205 return -EINVAL; 2206 map_def->parts |= MAP_DEF_MAP_FLAGS; 2207 } else if (strcmp(name, "numa_node") == 0) { 2208 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2209 return -EINVAL; 2210 map_def->parts |= MAP_DEF_NUMA_NODE; 2211 } else if (strcmp(name, "key_size") == 0) { 2212 __u32 sz; 2213 2214 if (!get_map_field_int(map_name, btf, m, &sz)) 2215 return -EINVAL; 2216 if (map_def->key_size && map_def->key_size != sz) { 2217 pr_warn("map '%s': conflicting key size %u != %u.\n", 2218 map_name, map_def->key_size, sz); 2219 return -EINVAL; 2220 } 2221 map_def->key_size = sz; 2222 map_def->parts |= MAP_DEF_KEY_SIZE; 2223 } else if (strcmp(name, "key") == 0) { 2224 __s64 sz; 2225 2226 t = btf__type_by_id(btf, m->type); 2227 if (!t) { 2228 pr_warn("map '%s': key type [%d] not found.\n", 2229 map_name, m->type); 2230 return -EINVAL; 2231 } 2232 if (!btf_is_ptr(t)) { 2233 pr_warn("map '%s': key spec is not PTR: %s.\n", 2234 map_name, btf_kind_str(t)); 2235 return -EINVAL; 2236 } 2237 sz = btf__resolve_size(btf, t->type); 2238 if (sz < 0) { 2239 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2240 map_name, t->type, (ssize_t)sz); 2241 return sz; 2242 } 2243 if (map_def->key_size && map_def->key_size != sz) { 2244 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2245 map_name, map_def->key_size, (ssize_t)sz); 2246 return -EINVAL; 2247 } 2248 map_def->key_size = sz; 2249 map_def->key_type_id = t->type; 2250 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2251 } else if (strcmp(name, "value_size") == 0) { 2252 __u32 sz; 2253 2254 if (!get_map_field_int(map_name, btf, m, &sz)) 2255 return -EINVAL; 2256 if (map_def->value_size && map_def->value_size != sz) { 2257 pr_warn("map '%s': conflicting value size %u != %u.\n", 2258 map_name, map_def->value_size, sz); 2259 return -EINVAL; 2260 } 2261 map_def->value_size = sz; 2262 map_def->parts |= MAP_DEF_VALUE_SIZE; 2263 } else if (strcmp(name, "value") == 0) { 2264 __s64 sz; 2265 2266 t = btf__type_by_id(btf, m->type); 2267 if (!t) { 2268 pr_warn("map '%s': value type [%d] not found.\n", 2269 map_name, m->type); 2270 return -EINVAL; 2271 } 2272 if (!btf_is_ptr(t)) { 2273 pr_warn("map '%s': value spec is not PTR: %s.\n", 2274 map_name, btf_kind_str(t)); 2275 return -EINVAL; 2276 } 2277 sz = btf__resolve_size(btf, t->type); 2278 if (sz < 0) { 2279 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2280 map_name, t->type, (ssize_t)sz); 2281 return sz; 2282 } 2283 if (map_def->value_size && map_def->value_size != sz) { 2284 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2285 map_name, map_def->value_size, (ssize_t)sz); 2286 return -EINVAL; 2287 } 2288 map_def->value_size = sz; 2289 map_def->value_type_id = t->type; 2290 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2291 } 2292 else if (strcmp(name, "values") == 0) { 2293 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2294 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2295 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2296 char inner_map_name[128]; 2297 int err; 2298 2299 if (is_inner) { 2300 pr_warn("map '%s': multi-level inner maps not supported.\n", 2301 map_name); 2302 return -ENOTSUP; 2303 } 2304 if (i != vlen - 1) { 2305 pr_warn("map '%s': '%s' member should be last.\n", 2306 map_name, name); 2307 return -EINVAL; 2308 } 2309 if (!is_map_in_map && !is_prog_array) { 2310 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2311 map_name); 2312 return -ENOTSUP; 2313 } 2314 if (map_def->value_size && map_def->value_size != 4) { 2315 pr_warn("map '%s': conflicting value size %u != 4.\n", 2316 map_name, map_def->value_size); 2317 return -EINVAL; 2318 } 2319 map_def->value_size = 4; 2320 t = btf__type_by_id(btf, m->type); 2321 if (!t) { 2322 pr_warn("map '%s': %s type [%d] not found.\n", 2323 map_name, desc, m->type); 2324 return -EINVAL; 2325 } 2326 if (!btf_is_array(t) || btf_array(t)->nelems) { 2327 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2328 map_name, desc); 2329 return -EINVAL; 2330 } 2331 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2332 if (!btf_is_ptr(t)) { 2333 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2334 map_name, desc, btf_kind_str(t)); 2335 return -EINVAL; 2336 } 2337 t = skip_mods_and_typedefs(btf, t->type, NULL); 2338 if (is_prog_array) { 2339 if (!btf_is_func_proto(t)) { 2340 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2341 map_name, btf_kind_str(t)); 2342 return -EINVAL; 2343 } 2344 continue; 2345 } 2346 if (!btf_is_struct(t)) { 2347 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2348 map_name, btf_kind_str(t)); 2349 return -EINVAL; 2350 } 2351 2352 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2353 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2354 if (err) 2355 return err; 2356 2357 map_def->parts |= MAP_DEF_INNER_MAP; 2358 } else if (strcmp(name, "pinning") == 0) { 2359 __u32 val; 2360 2361 if (is_inner) { 2362 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2363 return -EINVAL; 2364 } 2365 if (!get_map_field_int(map_name, btf, m, &val)) 2366 return -EINVAL; 2367 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2368 pr_warn("map '%s': invalid pinning value %u.\n", 2369 map_name, val); 2370 return -EINVAL; 2371 } 2372 map_def->pinning = val; 2373 map_def->parts |= MAP_DEF_PINNING; 2374 } else if (strcmp(name, "map_extra") == 0) { 2375 __u32 map_extra; 2376 2377 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2378 return -EINVAL; 2379 map_def->map_extra = map_extra; 2380 map_def->parts |= MAP_DEF_MAP_EXTRA; 2381 } else { 2382 if (strict) { 2383 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2384 return -ENOTSUP; 2385 } 2386 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2387 } 2388 } 2389 2390 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2391 pr_warn("map '%s': map type isn't specified.\n", map_name); 2392 return -EINVAL; 2393 } 2394 2395 return 0; 2396 } 2397 2398 static size_t adjust_ringbuf_sz(size_t sz) 2399 { 2400 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2401 __u32 mul; 2402 2403 /* if user forgot to set any size, make sure they see error */ 2404 if (sz == 0) 2405 return 0; 2406 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2407 * a power-of-2 multiple of kernel's page size. If user diligently 2408 * satisified these conditions, pass the size through. 2409 */ 2410 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2411 return sz; 2412 2413 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2414 * user-set size to satisfy both user size request and kernel 2415 * requirements and substitute correct max_entries for map creation. 2416 */ 2417 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2418 if (mul * page_sz > sz) 2419 return mul * page_sz; 2420 } 2421 2422 /* if it's impossible to satisfy the conditions (i.e., user size is 2423 * very close to UINT_MAX but is not a power-of-2 multiple of 2424 * page_size) then just return original size and let kernel reject it 2425 */ 2426 return sz; 2427 } 2428 2429 static bool map_is_ringbuf(const struct bpf_map *map) 2430 { 2431 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2432 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2433 } 2434 2435 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2436 { 2437 map->def.type = def->map_type; 2438 map->def.key_size = def->key_size; 2439 map->def.value_size = def->value_size; 2440 map->def.max_entries = def->max_entries; 2441 map->def.map_flags = def->map_flags; 2442 map->map_extra = def->map_extra; 2443 2444 map->numa_node = def->numa_node; 2445 map->btf_key_type_id = def->key_type_id; 2446 map->btf_value_type_id = def->value_type_id; 2447 2448 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2449 if (map_is_ringbuf(map)) 2450 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2451 2452 if (def->parts & MAP_DEF_MAP_TYPE) 2453 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2454 2455 if (def->parts & MAP_DEF_KEY_TYPE) 2456 pr_debug("map '%s': found key [%u], sz = %u.\n", 2457 map->name, def->key_type_id, def->key_size); 2458 else if (def->parts & MAP_DEF_KEY_SIZE) 2459 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2460 2461 if (def->parts & MAP_DEF_VALUE_TYPE) 2462 pr_debug("map '%s': found value [%u], sz = %u.\n", 2463 map->name, def->value_type_id, def->value_size); 2464 else if (def->parts & MAP_DEF_VALUE_SIZE) 2465 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2466 2467 if (def->parts & MAP_DEF_MAX_ENTRIES) 2468 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2469 if (def->parts & MAP_DEF_MAP_FLAGS) 2470 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2471 if (def->parts & MAP_DEF_MAP_EXTRA) 2472 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2473 (unsigned long long)def->map_extra); 2474 if (def->parts & MAP_DEF_PINNING) 2475 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2476 if (def->parts & MAP_DEF_NUMA_NODE) 2477 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2478 2479 if (def->parts & MAP_DEF_INNER_MAP) 2480 pr_debug("map '%s': found inner map definition.\n", map->name); 2481 } 2482 2483 static const char *btf_var_linkage_str(__u32 linkage) 2484 { 2485 switch (linkage) { 2486 case BTF_VAR_STATIC: return "static"; 2487 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2488 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2489 default: return "unknown"; 2490 } 2491 } 2492 2493 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2494 const struct btf_type *sec, 2495 int var_idx, int sec_idx, 2496 const Elf_Data *data, bool strict, 2497 const char *pin_root_path) 2498 { 2499 struct btf_map_def map_def = {}, inner_def = {}; 2500 const struct btf_type *var, *def; 2501 const struct btf_var_secinfo *vi; 2502 const struct btf_var *var_extra; 2503 const char *map_name; 2504 struct bpf_map *map; 2505 int err; 2506 2507 vi = btf_var_secinfos(sec) + var_idx; 2508 var = btf__type_by_id(obj->btf, vi->type); 2509 var_extra = btf_var(var); 2510 map_name = btf__name_by_offset(obj->btf, var->name_off); 2511 2512 if (map_name == NULL || map_name[0] == '\0') { 2513 pr_warn("map #%d: empty name.\n", var_idx); 2514 return -EINVAL; 2515 } 2516 if ((__u64)vi->offset + vi->size > data->d_size) { 2517 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2518 return -EINVAL; 2519 } 2520 if (!btf_is_var(var)) { 2521 pr_warn("map '%s': unexpected var kind %s.\n", 2522 map_name, btf_kind_str(var)); 2523 return -EINVAL; 2524 } 2525 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2526 pr_warn("map '%s': unsupported map linkage %s.\n", 2527 map_name, btf_var_linkage_str(var_extra->linkage)); 2528 return -EOPNOTSUPP; 2529 } 2530 2531 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2532 if (!btf_is_struct(def)) { 2533 pr_warn("map '%s': unexpected def kind %s.\n", 2534 map_name, btf_kind_str(var)); 2535 return -EINVAL; 2536 } 2537 if (def->size > vi->size) { 2538 pr_warn("map '%s': invalid def size.\n", map_name); 2539 return -EINVAL; 2540 } 2541 2542 map = bpf_object__add_map(obj); 2543 if (IS_ERR(map)) 2544 return PTR_ERR(map); 2545 map->name = strdup(map_name); 2546 if (!map->name) { 2547 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2548 return -ENOMEM; 2549 } 2550 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2551 map->def.type = BPF_MAP_TYPE_UNSPEC; 2552 map->sec_idx = sec_idx; 2553 map->sec_offset = vi->offset; 2554 map->btf_var_idx = var_idx; 2555 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2556 map_name, map->sec_idx, map->sec_offset); 2557 2558 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2559 if (err) 2560 return err; 2561 2562 fill_map_from_def(map, &map_def); 2563 2564 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2565 err = build_map_pin_path(map, pin_root_path); 2566 if (err) { 2567 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2568 return err; 2569 } 2570 } 2571 2572 if (map_def.parts & MAP_DEF_INNER_MAP) { 2573 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2574 if (!map->inner_map) 2575 return -ENOMEM; 2576 map->inner_map->fd = -1; 2577 map->inner_map->sec_idx = sec_idx; 2578 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2579 if (!map->inner_map->name) 2580 return -ENOMEM; 2581 sprintf(map->inner_map->name, "%s.inner", map_name); 2582 2583 fill_map_from_def(map->inner_map, &inner_def); 2584 } 2585 2586 err = map_fill_btf_type_info(obj, map); 2587 if (err) 2588 return err; 2589 2590 return 0; 2591 } 2592 2593 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2594 const char *pin_root_path) 2595 { 2596 const struct btf_type *sec = NULL; 2597 int nr_types, i, vlen, err; 2598 const struct btf_type *t; 2599 const char *name; 2600 Elf_Data *data; 2601 Elf_Scn *scn; 2602 2603 if (obj->efile.btf_maps_shndx < 0) 2604 return 0; 2605 2606 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2607 data = elf_sec_data(obj, scn); 2608 if (!scn || !data) { 2609 pr_warn("elf: failed to get %s map definitions for %s\n", 2610 MAPS_ELF_SEC, obj->path); 2611 return -EINVAL; 2612 } 2613 2614 nr_types = btf__type_cnt(obj->btf); 2615 for (i = 1; i < nr_types; i++) { 2616 t = btf__type_by_id(obj->btf, i); 2617 if (!btf_is_datasec(t)) 2618 continue; 2619 name = btf__name_by_offset(obj->btf, t->name_off); 2620 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2621 sec = t; 2622 obj->efile.btf_maps_sec_btf_id = i; 2623 break; 2624 } 2625 } 2626 2627 if (!sec) { 2628 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2629 return -ENOENT; 2630 } 2631 2632 vlen = btf_vlen(sec); 2633 for (i = 0; i < vlen; i++) { 2634 err = bpf_object__init_user_btf_map(obj, sec, i, 2635 obj->efile.btf_maps_shndx, 2636 data, strict, 2637 pin_root_path); 2638 if (err) 2639 return err; 2640 } 2641 2642 return 0; 2643 } 2644 2645 static int bpf_object__init_maps(struct bpf_object *obj, 2646 const struct bpf_object_open_opts *opts) 2647 { 2648 const char *pin_root_path; 2649 bool strict; 2650 int err = 0; 2651 2652 strict = !OPTS_GET(opts, relaxed_maps, false); 2653 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2654 2655 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2656 err = err ?: bpf_object__init_global_data_maps(obj); 2657 err = err ?: bpf_object__init_kconfig_map(obj); 2658 err = err ?: bpf_object__init_struct_ops_maps(obj); 2659 2660 return err; 2661 } 2662 2663 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2664 { 2665 Elf64_Shdr *sh; 2666 2667 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2668 if (!sh) 2669 return false; 2670 2671 return sh->sh_flags & SHF_EXECINSTR; 2672 } 2673 2674 static bool btf_needs_sanitization(struct bpf_object *obj) 2675 { 2676 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2677 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2678 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2679 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2680 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2681 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2682 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2683 2684 return !has_func || !has_datasec || !has_func_global || !has_float || 2685 !has_decl_tag || !has_type_tag || !has_enum64; 2686 } 2687 2688 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2689 { 2690 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2691 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2692 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2693 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2694 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2695 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2696 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2697 int enum64_placeholder_id = 0; 2698 struct btf_type *t; 2699 int i, j, vlen; 2700 2701 for (i = 1; i < btf__type_cnt(btf); i++) { 2702 t = (struct btf_type *)btf__type_by_id(btf, i); 2703 2704 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2705 /* replace VAR/DECL_TAG with INT */ 2706 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2707 /* 2708 * using size = 1 is the safest choice, 4 will be too 2709 * big and cause kernel BTF validation failure if 2710 * original variable took less than 4 bytes 2711 */ 2712 t->size = 1; 2713 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2714 } else if (!has_datasec && btf_is_datasec(t)) { 2715 /* replace DATASEC with STRUCT */ 2716 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2717 struct btf_member *m = btf_members(t); 2718 struct btf_type *vt; 2719 char *name; 2720 2721 name = (char *)btf__name_by_offset(btf, t->name_off); 2722 while (*name) { 2723 if (*name == '.') 2724 *name = '_'; 2725 name++; 2726 } 2727 2728 vlen = btf_vlen(t); 2729 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2730 for (j = 0; j < vlen; j++, v++, m++) { 2731 /* order of field assignments is important */ 2732 m->offset = v->offset * 8; 2733 m->type = v->type; 2734 /* preserve variable name as member name */ 2735 vt = (void *)btf__type_by_id(btf, v->type); 2736 m->name_off = vt->name_off; 2737 } 2738 } else if (!has_func && btf_is_func_proto(t)) { 2739 /* replace FUNC_PROTO with ENUM */ 2740 vlen = btf_vlen(t); 2741 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2742 t->size = sizeof(__u32); /* kernel enforced */ 2743 } else if (!has_func && btf_is_func(t)) { 2744 /* replace FUNC with TYPEDEF */ 2745 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2746 } else if (!has_func_global && btf_is_func(t)) { 2747 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2748 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2749 } else if (!has_float && btf_is_float(t)) { 2750 /* replace FLOAT with an equally-sized empty STRUCT; 2751 * since C compilers do not accept e.g. "float" as a 2752 * valid struct name, make it anonymous 2753 */ 2754 t->name_off = 0; 2755 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2756 } else if (!has_type_tag && btf_is_type_tag(t)) { 2757 /* replace TYPE_TAG with a CONST */ 2758 t->name_off = 0; 2759 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2760 } else if (!has_enum64 && btf_is_enum(t)) { 2761 /* clear the kflag */ 2762 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2763 } else if (!has_enum64 && btf_is_enum64(t)) { 2764 /* replace ENUM64 with a union */ 2765 struct btf_member *m; 2766 2767 if (enum64_placeholder_id == 0) { 2768 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2769 if (enum64_placeholder_id < 0) 2770 return enum64_placeholder_id; 2771 2772 t = (struct btf_type *)btf__type_by_id(btf, i); 2773 } 2774 2775 m = btf_members(t); 2776 vlen = btf_vlen(t); 2777 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2778 for (j = 0; j < vlen; j++, m++) { 2779 m->type = enum64_placeholder_id; 2780 m->offset = 0; 2781 } 2782 } 2783 } 2784 2785 return 0; 2786 } 2787 2788 static bool libbpf_needs_btf(const struct bpf_object *obj) 2789 { 2790 return obj->efile.btf_maps_shndx >= 0 || 2791 obj->efile.st_ops_shndx >= 0 || 2792 obj->nr_extern > 0; 2793 } 2794 2795 static bool kernel_needs_btf(const struct bpf_object *obj) 2796 { 2797 return obj->efile.st_ops_shndx >= 0; 2798 } 2799 2800 static int bpf_object__init_btf(struct bpf_object *obj, 2801 Elf_Data *btf_data, 2802 Elf_Data *btf_ext_data) 2803 { 2804 int err = -ENOENT; 2805 2806 if (btf_data) { 2807 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2808 err = libbpf_get_error(obj->btf); 2809 if (err) { 2810 obj->btf = NULL; 2811 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2812 goto out; 2813 } 2814 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2815 btf__set_pointer_size(obj->btf, 8); 2816 } 2817 if (btf_ext_data) { 2818 struct btf_ext_info *ext_segs[3]; 2819 int seg_num, sec_num; 2820 2821 if (!obj->btf) { 2822 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2823 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2824 goto out; 2825 } 2826 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2827 err = libbpf_get_error(obj->btf_ext); 2828 if (err) { 2829 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2830 BTF_EXT_ELF_SEC, err); 2831 obj->btf_ext = NULL; 2832 goto out; 2833 } 2834 2835 /* setup .BTF.ext to ELF section mapping */ 2836 ext_segs[0] = &obj->btf_ext->func_info; 2837 ext_segs[1] = &obj->btf_ext->line_info; 2838 ext_segs[2] = &obj->btf_ext->core_relo_info; 2839 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2840 struct btf_ext_info *seg = ext_segs[seg_num]; 2841 const struct btf_ext_info_sec *sec; 2842 const char *sec_name; 2843 Elf_Scn *scn; 2844 2845 if (seg->sec_cnt == 0) 2846 continue; 2847 2848 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2849 if (!seg->sec_idxs) { 2850 err = -ENOMEM; 2851 goto out; 2852 } 2853 2854 sec_num = 0; 2855 for_each_btf_ext_sec(seg, sec) { 2856 /* preventively increment index to avoid doing 2857 * this before every continue below 2858 */ 2859 sec_num++; 2860 2861 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2862 if (str_is_empty(sec_name)) 2863 continue; 2864 scn = elf_sec_by_name(obj, sec_name); 2865 if (!scn) 2866 continue; 2867 2868 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2869 } 2870 } 2871 } 2872 out: 2873 if (err && libbpf_needs_btf(obj)) { 2874 pr_warn("BTF is required, but is missing or corrupted.\n"); 2875 return err; 2876 } 2877 return 0; 2878 } 2879 2880 static int compare_vsi_off(const void *_a, const void *_b) 2881 { 2882 const struct btf_var_secinfo *a = _a; 2883 const struct btf_var_secinfo *b = _b; 2884 2885 return a->offset - b->offset; 2886 } 2887 2888 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2889 struct btf_type *t) 2890 { 2891 __u32 size = 0, i, vars = btf_vlen(t); 2892 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2893 struct btf_var_secinfo *vsi; 2894 bool fixup_offsets = false; 2895 int err; 2896 2897 if (!sec_name) { 2898 pr_debug("No name found in string section for DATASEC kind.\n"); 2899 return -ENOENT; 2900 } 2901 2902 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2903 * variable offsets set at the previous step. Further, not every 2904 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2905 * all fixups altogether for such sections and go straight to sorting 2906 * VARs within their DATASEC. 2907 */ 2908 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2909 goto sort_vars; 2910 2911 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2912 * fix this up. But BPF static linker already fixes this up and fills 2913 * all the sizes and offsets during static linking. So this step has 2914 * to be optional. But the STV_HIDDEN handling is non-optional for any 2915 * non-extern DATASEC, so the variable fixup loop below handles both 2916 * functions at the same time, paying the cost of BTF VAR <-> ELF 2917 * symbol matching just once. 2918 */ 2919 if (t->size == 0) { 2920 err = find_elf_sec_sz(obj, sec_name, &size); 2921 if (err || !size) { 2922 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2923 sec_name, size, err); 2924 return -ENOENT; 2925 } 2926 2927 t->size = size; 2928 fixup_offsets = true; 2929 } 2930 2931 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2932 const struct btf_type *t_var; 2933 struct btf_var *var; 2934 const char *var_name; 2935 Elf64_Sym *sym; 2936 2937 t_var = btf__type_by_id(btf, vsi->type); 2938 if (!t_var || !btf_is_var(t_var)) { 2939 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2940 return -EINVAL; 2941 } 2942 2943 var = btf_var(t_var); 2944 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2945 continue; 2946 2947 var_name = btf__name_by_offset(btf, t_var->name_off); 2948 if (!var_name) { 2949 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2950 sec_name, i); 2951 return -ENOENT; 2952 } 2953 2954 sym = find_elf_var_sym(obj, var_name); 2955 if (IS_ERR(sym)) { 2956 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2957 sec_name, var_name); 2958 return -ENOENT; 2959 } 2960 2961 if (fixup_offsets) 2962 vsi->offset = sym->st_value; 2963 2964 /* if variable is a global/weak symbol, but has restricted 2965 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2966 * as static. This follows similar logic for functions (BPF 2967 * subprogs) and influences libbpf's further decisions about 2968 * whether to make global data BPF array maps as 2969 * BPF_F_MMAPABLE. 2970 */ 2971 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2972 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2973 var->linkage = BTF_VAR_STATIC; 2974 } 2975 2976 sort_vars: 2977 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2978 return 0; 2979 } 2980 2981 static int bpf_object_fixup_btf(struct bpf_object *obj) 2982 { 2983 int i, n, err = 0; 2984 2985 if (!obj->btf) 2986 return 0; 2987 2988 n = btf__type_cnt(obj->btf); 2989 for (i = 1; i < n; i++) { 2990 struct btf_type *t = btf_type_by_id(obj->btf, i); 2991 2992 /* Loader needs to fix up some of the things compiler 2993 * couldn't get its hands on while emitting BTF. This 2994 * is section size and global variable offset. We use 2995 * the info from the ELF itself for this purpose. 2996 */ 2997 if (btf_is_datasec(t)) { 2998 err = btf_fixup_datasec(obj, obj->btf, t); 2999 if (err) 3000 return err; 3001 } 3002 } 3003 3004 return 0; 3005 } 3006 3007 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3008 { 3009 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3010 prog->type == BPF_PROG_TYPE_LSM) 3011 return true; 3012 3013 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3014 * also need vmlinux BTF 3015 */ 3016 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3017 return true; 3018 3019 return false; 3020 } 3021 3022 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3023 { 3024 struct bpf_program *prog; 3025 int i; 3026 3027 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3028 * is not specified 3029 */ 3030 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3031 return true; 3032 3033 /* Support for typed ksyms needs kernel BTF */ 3034 for (i = 0; i < obj->nr_extern; i++) { 3035 const struct extern_desc *ext; 3036 3037 ext = &obj->externs[i]; 3038 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3039 return true; 3040 } 3041 3042 bpf_object__for_each_program(prog, obj) { 3043 if (!prog->autoload) 3044 continue; 3045 if (prog_needs_vmlinux_btf(prog)) 3046 return true; 3047 } 3048 3049 return false; 3050 } 3051 3052 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3053 { 3054 int err; 3055 3056 /* btf_vmlinux could be loaded earlier */ 3057 if (obj->btf_vmlinux || obj->gen_loader) 3058 return 0; 3059 3060 if (!force && !obj_needs_vmlinux_btf(obj)) 3061 return 0; 3062 3063 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3064 err = libbpf_get_error(obj->btf_vmlinux); 3065 if (err) { 3066 pr_warn("Error loading vmlinux BTF: %d\n", err); 3067 obj->btf_vmlinux = NULL; 3068 return err; 3069 } 3070 return 0; 3071 } 3072 3073 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3074 { 3075 struct btf *kern_btf = obj->btf; 3076 bool btf_mandatory, sanitize; 3077 int i, err = 0; 3078 3079 if (!obj->btf) 3080 return 0; 3081 3082 if (!kernel_supports(obj, FEAT_BTF)) { 3083 if (kernel_needs_btf(obj)) { 3084 err = -EOPNOTSUPP; 3085 goto report; 3086 } 3087 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3088 return 0; 3089 } 3090 3091 /* Even though some subprogs are global/weak, user might prefer more 3092 * permissive BPF verification process that BPF verifier performs for 3093 * static functions, taking into account more context from the caller 3094 * functions. In such case, they need to mark such subprogs with 3095 * __attribute__((visibility("hidden"))) and libbpf will adjust 3096 * corresponding FUNC BTF type to be marked as static and trigger more 3097 * involved BPF verification process. 3098 */ 3099 for (i = 0; i < obj->nr_programs; i++) { 3100 struct bpf_program *prog = &obj->programs[i]; 3101 struct btf_type *t; 3102 const char *name; 3103 int j, n; 3104 3105 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3106 continue; 3107 3108 n = btf__type_cnt(obj->btf); 3109 for (j = 1; j < n; j++) { 3110 t = btf_type_by_id(obj->btf, j); 3111 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3112 continue; 3113 3114 name = btf__str_by_offset(obj->btf, t->name_off); 3115 if (strcmp(name, prog->name) != 0) 3116 continue; 3117 3118 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3119 break; 3120 } 3121 } 3122 3123 sanitize = btf_needs_sanitization(obj); 3124 if (sanitize) { 3125 const void *raw_data; 3126 __u32 sz; 3127 3128 /* clone BTF to sanitize a copy and leave the original intact */ 3129 raw_data = btf__raw_data(obj->btf, &sz); 3130 kern_btf = btf__new(raw_data, sz); 3131 err = libbpf_get_error(kern_btf); 3132 if (err) 3133 return err; 3134 3135 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3136 btf__set_pointer_size(obj->btf, 8); 3137 err = bpf_object__sanitize_btf(obj, kern_btf); 3138 if (err) 3139 return err; 3140 } 3141 3142 if (obj->gen_loader) { 3143 __u32 raw_size = 0; 3144 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3145 3146 if (!raw_data) 3147 return -ENOMEM; 3148 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3149 /* Pretend to have valid FD to pass various fd >= 0 checks. 3150 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3151 */ 3152 btf__set_fd(kern_btf, 0); 3153 } else { 3154 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3155 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3156 obj->log_level ? 1 : 0); 3157 } 3158 if (sanitize) { 3159 if (!err) { 3160 /* move fd to libbpf's BTF */ 3161 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3162 btf__set_fd(kern_btf, -1); 3163 } 3164 btf__free(kern_btf); 3165 } 3166 report: 3167 if (err) { 3168 btf_mandatory = kernel_needs_btf(obj); 3169 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3170 btf_mandatory ? "BTF is mandatory, can't proceed." 3171 : "BTF is optional, ignoring."); 3172 if (!btf_mandatory) 3173 err = 0; 3174 } 3175 return err; 3176 } 3177 3178 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3179 { 3180 const char *name; 3181 3182 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3183 if (!name) { 3184 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3185 off, obj->path, elf_errmsg(-1)); 3186 return NULL; 3187 } 3188 3189 return name; 3190 } 3191 3192 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3193 { 3194 const char *name; 3195 3196 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3197 if (!name) { 3198 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3199 off, obj->path, elf_errmsg(-1)); 3200 return NULL; 3201 } 3202 3203 return name; 3204 } 3205 3206 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3207 { 3208 Elf_Scn *scn; 3209 3210 scn = elf_getscn(obj->efile.elf, idx); 3211 if (!scn) { 3212 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3213 idx, obj->path, elf_errmsg(-1)); 3214 return NULL; 3215 } 3216 return scn; 3217 } 3218 3219 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3220 { 3221 Elf_Scn *scn = NULL; 3222 Elf *elf = obj->efile.elf; 3223 const char *sec_name; 3224 3225 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3226 sec_name = elf_sec_name(obj, scn); 3227 if (!sec_name) 3228 return NULL; 3229 3230 if (strcmp(sec_name, name) != 0) 3231 continue; 3232 3233 return scn; 3234 } 3235 return NULL; 3236 } 3237 3238 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3239 { 3240 Elf64_Shdr *shdr; 3241 3242 if (!scn) 3243 return NULL; 3244 3245 shdr = elf64_getshdr(scn); 3246 if (!shdr) { 3247 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3248 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3249 return NULL; 3250 } 3251 3252 return shdr; 3253 } 3254 3255 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3256 { 3257 const char *name; 3258 Elf64_Shdr *sh; 3259 3260 if (!scn) 3261 return NULL; 3262 3263 sh = elf_sec_hdr(obj, scn); 3264 if (!sh) 3265 return NULL; 3266 3267 name = elf_sec_str(obj, sh->sh_name); 3268 if (!name) { 3269 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3270 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3271 return NULL; 3272 } 3273 3274 return name; 3275 } 3276 3277 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3278 { 3279 Elf_Data *data; 3280 3281 if (!scn) 3282 return NULL; 3283 3284 data = elf_getdata(scn, 0); 3285 if (!data) { 3286 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3287 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3288 obj->path, elf_errmsg(-1)); 3289 return NULL; 3290 } 3291 3292 return data; 3293 } 3294 3295 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3296 { 3297 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3298 return NULL; 3299 3300 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3301 } 3302 3303 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3304 { 3305 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3306 return NULL; 3307 3308 return (Elf64_Rel *)data->d_buf + idx; 3309 } 3310 3311 static bool is_sec_name_dwarf(const char *name) 3312 { 3313 /* approximation, but the actual list is too long */ 3314 return str_has_pfx(name, ".debug_"); 3315 } 3316 3317 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3318 { 3319 /* no special handling of .strtab */ 3320 if (hdr->sh_type == SHT_STRTAB) 3321 return true; 3322 3323 /* ignore .llvm_addrsig section as well */ 3324 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3325 return true; 3326 3327 /* no subprograms will lead to an empty .text section, ignore it */ 3328 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3329 strcmp(name, ".text") == 0) 3330 return true; 3331 3332 /* DWARF sections */ 3333 if (is_sec_name_dwarf(name)) 3334 return true; 3335 3336 if (str_has_pfx(name, ".rel")) { 3337 name += sizeof(".rel") - 1; 3338 /* DWARF section relocations */ 3339 if (is_sec_name_dwarf(name)) 3340 return true; 3341 3342 /* .BTF and .BTF.ext don't need relocations */ 3343 if (strcmp(name, BTF_ELF_SEC) == 0 || 3344 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3345 return true; 3346 } 3347 3348 return false; 3349 } 3350 3351 static int cmp_progs(const void *_a, const void *_b) 3352 { 3353 const struct bpf_program *a = _a; 3354 const struct bpf_program *b = _b; 3355 3356 if (a->sec_idx != b->sec_idx) 3357 return a->sec_idx < b->sec_idx ? -1 : 1; 3358 3359 /* sec_insn_off can't be the same within the section */ 3360 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3361 } 3362 3363 static int bpf_object__elf_collect(struct bpf_object *obj) 3364 { 3365 struct elf_sec_desc *sec_desc; 3366 Elf *elf = obj->efile.elf; 3367 Elf_Data *btf_ext_data = NULL; 3368 Elf_Data *btf_data = NULL; 3369 int idx = 0, err = 0; 3370 const char *name; 3371 Elf_Data *data; 3372 Elf_Scn *scn; 3373 Elf64_Shdr *sh; 3374 3375 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3376 * section. Since section count retrieved by elf_getshdrnum() does 3377 * include sec #0, it is already the necessary size of an array to keep 3378 * all the sections. 3379 */ 3380 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3381 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3382 obj->path, elf_errmsg(-1)); 3383 return -LIBBPF_ERRNO__FORMAT; 3384 } 3385 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3386 if (!obj->efile.secs) 3387 return -ENOMEM; 3388 3389 /* a bunch of ELF parsing functionality depends on processing symbols, 3390 * so do the first pass and find the symbol table 3391 */ 3392 scn = NULL; 3393 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3394 sh = elf_sec_hdr(obj, scn); 3395 if (!sh) 3396 return -LIBBPF_ERRNO__FORMAT; 3397 3398 if (sh->sh_type == SHT_SYMTAB) { 3399 if (obj->efile.symbols) { 3400 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3401 return -LIBBPF_ERRNO__FORMAT; 3402 } 3403 3404 data = elf_sec_data(obj, scn); 3405 if (!data) 3406 return -LIBBPF_ERRNO__FORMAT; 3407 3408 idx = elf_ndxscn(scn); 3409 3410 obj->efile.symbols = data; 3411 obj->efile.symbols_shndx = idx; 3412 obj->efile.strtabidx = sh->sh_link; 3413 } 3414 } 3415 3416 if (!obj->efile.symbols) { 3417 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3418 obj->path); 3419 return -ENOENT; 3420 } 3421 3422 scn = NULL; 3423 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3424 idx = elf_ndxscn(scn); 3425 sec_desc = &obj->efile.secs[idx]; 3426 3427 sh = elf_sec_hdr(obj, scn); 3428 if (!sh) 3429 return -LIBBPF_ERRNO__FORMAT; 3430 3431 name = elf_sec_str(obj, sh->sh_name); 3432 if (!name) 3433 return -LIBBPF_ERRNO__FORMAT; 3434 3435 if (ignore_elf_section(sh, name)) 3436 continue; 3437 3438 data = elf_sec_data(obj, scn); 3439 if (!data) 3440 return -LIBBPF_ERRNO__FORMAT; 3441 3442 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3443 idx, name, (unsigned long)data->d_size, 3444 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3445 (int)sh->sh_type); 3446 3447 if (strcmp(name, "license") == 0) { 3448 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3449 if (err) 3450 return err; 3451 } else if (strcmp(name, "version") == 0) { 3452 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3453 if (err) 3454 return err; 3455 } else if (strcmp(name, "maps") == 0) { 3456 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3457 return -ENOTSUP; 3458 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3459 obj->efile.btf_maps_shndx = idx; 3460 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3461 if (sh->sh_type != SHT_PROGBITS) 3462 return -LIBBPF_ERRNO__FORMAT; 3463 btf_data = data; 3464 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3465 if (sh->sh_type != SHT_PROGBITS) 3466 return -LIBBPF_ERRNO__FORMAT; 3467 btf_ext_data = data; 3468 } else if (sh->sh_type == SHT_SYMTAB) { 3469 /* already processed during the first pass above */ 3470 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3471 if (sh->sh_flags & SHF_EXECINSTR) { 3472 if (strcmp(name, ".text") == 0) 3473 obj->efile.text_shndx = idx; 3474 err = bpf_object__add_programs(obj, data, name, idx); 3475 if (err) 3476 return err; 3477 } else if (strcmp(name, DATA_SEC) == 0 || 3478 str_has_pfx(name, DATA_SEC ".")) { 3479 sec_desc->sec_type = SEC_DATA; 3480 sec_desc->shdr = sh; 3481 sec_desc->data = data; 3482 } else if (strcmp(name, RODATA_SEC) == 0 || 3483 str_has_pfx(name, RODATA_SEC ".")) { 3484 sec_desc->sec_type = SEC_RODATA; 3485 sec_desc->shdr = sh; 3486 sec_desc->data = data; 3487 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3488 obj->efile.st_ops_data = data; 3489 obj->efile.st_ops_shndx = idx; 3490 } else { 3491 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3492 idx, name); 3493 } 3494 } else if (sh->sh_type == SHT_REL) { 3495 int targ_sec_idx = sh->sh_info; /* points to other section */ 3496 3497 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3498 targ_sec_idx >= obj->efile.sec_cnt) 3499 return -LIBBPF_ERRNO__FORMAT; 3500 3501 /* Only do relo for section with exec instructions */ 3502 if (!section_have_execinstr(obj, targ_sec_idx) && 3503 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3504 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3505 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3506 idx, name, targ_sec_idx, 3507 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3508 continue; 3509 } 3510 3511 sec_desc->sec_type = SEC_RELO; 3512 sec_desc->shdr = sh; 3513 sec_desc->data = data; 3514 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3515 sec_desc->sec_type = SEC_BSS; 3516 sec_desc->shdr = sh; 3517 sec_desc->data = data; 3518 } else { 3519 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3520 (size_t)sh->sh_size); 3521 } 3522 } 3523 3524 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3525 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3526 return -LIBBPF_ERRNO__FORMAT; 3527 } 3528 3529 /* sort BPF programs by section name and in-section instruction offset 3530 * for faster search 3531 */ 3532 if (obj->nr_programs) 3533 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3534 3535 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3536 } 3537 3538 static bool sym_is_extern(const Elf64_Sym *sym) 3539 { 3540 int bind = ELF64_ST_BIND(sym->st_info); 3541 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3542 return sym->st_shndx == SHN_UNDEF && 3543 (bind == STB_GLOBAL || bind == STB_WEAK) && 3544 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3545 } 3546 3547 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3548 { 3549 int bind = ELF64_ST_BIND(sym->st_info); 3550 int type = ELF64_ST_TYPE(sym->st_info); 3551 3552 /* in .text section */ 3553 if (sym->st_shndx != text_shndx) 3554 return false; 3555 3556 /* local function */ 3557 if (bind == STB_LOCAL && type == STT_SECTION) 3558 return true; 3559 3560 /* global function */ 3561 return bind == STB_GLOBAL && type == STT_FUNC; 3562 } 3563 3564 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3565 { 3566 const struct btf_type *t; 3567 const char *tname; 3568 int i, n; 3569 3570 if (!btf) 3571 return -ESRCH; 3572 3573 n = btf__type_cnt(btf); 3574 for (i = 1; i < n; i++) { 3575 t = btf__type_by_id(btf, i); 3576 3577 if (!btf_is_var(t) && !btf_is_func(t)) 3578 continue; 3579 3580 tname = btf__name_by_offset(btf, t->name_off); 3581 if (strcmp(tname, ext_name)) 3582 continue; 3583 3584 if (btf_is_var(t) && 3585 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3586 return -EINVAL; 3587 3588 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3589 return -EINVAL; 3590 3591 return i; 3592 } 3593 3594 return -ENOENT; 3595 } 3596 3597 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3598 const struct btf_var_secinfo *vs; 3599 const struct btf_type *t; 3600 int i, j, n; 3601 3602 if (!btf) 3603 return -ESRCH; 3604 3605 n = btf__type_cnt(btf); 3606 for (i = 1; i < n; i++) { 3607 t = btf__type_by_id(btf, i); 3608 3609 if (!btf_is_datasec(t)) 3610 continue; 3611 3612 vs = btf_var_secinfos(t); 3613 for (j = 0; j < btf_vlen(t); j++, vs++) { 3614 if (vs->type == ext_btf_id) 3615 return i; 3616 } 3617 } 3618 3619 return -ENOENT; 3620 } 3621 3622 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3623 bool *is_signed) 3624 { 3625 const struct btf_type *t; 3626 const char *name; 3627 3628 t = skip_mods_and_typedefs(btf, id, NULL); 3629 name = btf__name_by_offset(btf, t->name_off); 3630 3631 if (is_signed) 3632 *is_signed = false; 3633 switch (btf_kind(t)) { 3634 case BTF_KIND_INT: { 3635 int enc = btf_int_encoding(t); 3636 3637 if (enc & BTF_INT_BOOL) 3638 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3639 if (is_signed) 3640 *is_signed = enc & BTF_INT_SIGNED; 3641 if (t->size == 1) 3642 return KCFG_CHAR; 3643 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3644 return KCFG_UNKNOWN; 3645 return KCFG_INT; 3646 } 3647 case BTF_KIND_ENUM: 3648 if (t->size != 4) 3649 return KCFG_UNKNOWN; 3650 if (strcmp(name, "libbpf_tristate")) 3651 return KCFG_UNKNOWN; 3652 return KCFG_TRISTATE; 3653 case BTF_KIND_ENUM64: 3654 if (strcmp(name, "libbpf_tristate")) 3655 return KCFG_UNKNOWN; 3656 return KCFG_TRISTATE; 3657 case BTF_KIND_ARRAY: 3658 if (btf_array(t)->nelems == 0) 3659 return KCFG_UNKNOWN; 3660 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3661 return KCFG_UNKNOWN; 3662 return KCFG_CHAR_ARR; 3663 default: 3664 return KCFG_UNKNOWN; 3665 } 3666 } 3667 3668 static int cmp_externs(const void *_a, const void *_b) 3669 { 3670 const struct extern_desc *a = _a; 3671 const struct extern_desc *b = _b; 3672 3673 if (a->type != b->type) 3674 return a->type < b->type ? -1 : 1; 3675 3676 if (a->type == EXT_KCFG) { 3677 /* descending order by alignment requirements */ 3678 if (a->kcfg.align != b->kcfg.align) 3679 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3680 /* ascending order by size, within same alignment class */ 3681 if (a->kcfg.sz != b->kcfg.sz) 3682 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3683 } 3684 3685 /* resolve ties by name */ 3686 return strcmp(a->name, b->name); 3687 } 3688 3689 static int find_int_btf_id(const struct btf *btf) 3690 { 3691 const struct btf_type *t; 3692 int i, n; 3693 3694 n = btf__type_cnt(btf); 3695 for (i = 1; i < n; i++) { 3696 t = btf__type_by_id(btf, i); 3697 3698 if (btf_is_int(t) && btf_int_bits(t) == 32) 3699 return i; 3700 } 3701 3702 return 0; 3703 } 3704 3705 static int add_dummy_ksym_var(struct btf *btf) 3706 { 3707 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3708 const struct btf_var_secinfo *vs; 3709 const struct btf_type *sec; 3710 3711 if (!btf) 3712 return 0; 3713 3714 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3715 BTF_KIND_DATASEC); 3716 if (sec_btf_id < 0) 3717 return 0; 3718 3719 sec = btf__type_by_id(btf, sec_btf_id); 3720 vs = btf_var_secinfos(sec); 3721 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3722 const struct btf_type *vt; 3723 3724 vt = btf__type_by_id(btf, vs->type); 3725 if (btf_is_func(vt)) 3726 break; 3727 } 3728 3729 /* No func in ksyms sec. No need to add dummy var. */ 3730 if (i == btf_vlen(sec)) 3731 return 0; 3732 3733 int_btf_id = find_int_btf_id(btf); 3734 dummy_var_btf_id = btf__add_var(btf, 3735 "dummy_ksym", 3736 BTF_VAR_GLOBAL_ALLOCATED, 3737 int_btf_id); 3738 if (dummy_var_btf_id < 0) 3739 pr_warn("cannot create a dummy_ksym var\n"); 3740 3741 return dummy_var_btf_id; 3742 } 3743 3744 static int bpf_object__collect_externs(struct bpf_object *obj) 3745 { 3746 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3747 const struct btf_type *t; 3748 struct extern_desc *ext; 3749 int i, n, off, dummy_var_btf_id; 3750 const char *ext_name, *sec_name; 3751 Elf_Scn *scn; 3752 Elf64_Shdr *sh; 3753 3754 if (!obj->efile.symbols) 3755 return 0; 3756 3757 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3758 sh = elf_sec_hdr(obj, scn); 3759 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3760 return -LIBBPF_ERRNO__FORMAT; 3761 3762 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3763 if (dummy_var_btf_id < 0) 3764 return dummy_var_btf_id; 3765 3766 n = sh->sh_size / sh->sh_entsize; 3767 pr_debug("looking for externs among %d symbols...\n", n); 3768 3769 for (i = 0; i < n; i++) { 3770 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3771 3772 if (!sym) 3773 return -LIBBPF_ERRNO__FORMAT; 3774 if (!sym_is_extern(sym)) 3775 continue; 3776 ext_name = elf_sym_str(obj, sym->st_name); 3777 if (!ext_name || !ext_name[0]) 3778 continue; 3779 3780 ext = obj->externs; 3781 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3782 if (!ext) 3783 return -ENOMEM; 3784 obj->externs = ext; 3785 ext = &ext[obj->nr_extern]; 3786 memset(ext, 0, sizeof(*ext)); 3787 obj->nr_extern++; 3788 3789 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3790 if (ext->btf_id <= 0) { 3791 pr_warn("failed to find BTF for extern '%s': %d\n", 3792 ext_name, ext->btf_id); 3793 return ext->btf_id; 3794 } 3795 t = btf__type_by_id(obj->btf, ext->btf_id); 3796 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3797 ext->sym_idx = i; 3798 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3799 3800 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3801 if (ext->sec_btf_id <= 0) { 3802 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3803 ext_name, ext->btf_id, ext->sec_btf_id); 3804 return ext->sec_btf_id; 3805 } 3806 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3807 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3808 3809 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3810 if (btf_is_func(t)) { 3811 pr_warn("extern function %s is unsupported under %s section\n", 3812 ext->name, KCONFIG_SEC); 3813 return -ENOTSUP; 3814 } 3815 kcfg_sec = sec; 3816 ext->type = EXT_KCFG; 3817 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3818 if (ext->kcfg.sz <= 0) { 3819 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3820 ext_name, ext->kcfg.sz); 3821 return ext->kcfg.sz; 3822 } 3823 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3824 if (ext->kcfg.align <= 0) { 3825 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3826 ext_name, ext->kcfg.align); 3827 return -EINVAL; 3828 } 3829 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3830 &ext->kcfg.is_signed); 3831 if (ext->kcfg.type == KCFG_UNKNOWN) { 3832 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3833 return -ENOTSUP; 3834 } 3835 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3836 ksym_sec = sec; 3837 ext->type = EXT_KSYM; 3838 skip_mods_and_typedefs(obj->btf, t->type, 3839 &ext->ksym.type_id); 3840 } else { 3841 pr_warn("unrecognized extern section '%s'\n", sec_name); 3842 return -ENOTSUP; 3843 } 3844 } 3845 pr_debug("collected %d externs total\n", obj->nr_extern); 3846 3847 if (!obj->nr_extern) 3848 return 0; 3849 3850 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3851 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3852 3853 /* for .ksyms section, we need to turn all externs into allocated 3854 * variables in BTF to pass kernel verification; we do this by 3855 * pretending that each extern is a 8-byte variable 3856 */ 3857 if (ksym_sec) { 3858 /* find existing 4-byte integer type in BTF to use for fake 3859 * extern variables in DATASEC 3860 */ 3861 int int_btf_id = find_int_btf_id(obj->btf); 3862 /* For extern function, a dummy_var added earlier 3863 * will be used to replace the vs->type and 3864 * its name string will be used to refill 3865 * the missing param's name. 3866 */ 3867 const struct btf_type *dummy_var; 3868 3869 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3870 for (i = 0; i < obj->nr_extern; i++) { 3871 ext = &obj->externs[i]; 3872 if (ext->type != EXT_KSYM) 3873 continue; 3874 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3875 i, ext->sym_idx, ext->name); 3876 } 3877 3878 sec = ksym_sec; 3879 n = btf_vlen(sec); 3880 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3881 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3882 struct btf_type *vt; 3883 3884 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3885 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3886 ext = find_extern_by_name(obj, ext_name); 3887 if (!ext) { 3888 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3889 btf_kind_str(vt), ext_name); 3890 return -ESRCH; 3891 } 3892 if (btf_is_func(vt)) { 3893 const struct btf_type *func_proto; 3894 struct btf_param *param; 3895 int j; 3896 3897 func_proto = btf__type_by_id(obj->btf, 3898 vt->type); 3899 param = btf_params(func_proto); 3900 /* Reuse the dummy_var string if the 3901 * func proto does not have param name. 3902 */ 3903 for (j = 0; j < btf_vlen(func_proto); j++) 3904 if (param[j].type && !param[j].name_off) 3905 param[j].name_off = 3906 dummy_var->name_off; 3907 vs->type = dummy_var_btf_id; 3908 vt->info &= ~0xffff; 3909 vt->info |= BTF_FUNC_GLOBAL; 3910 } else { 3911 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3912 vt->type = int_btf_id; 3913 } 3914 vs->offset = off; 3915 vs->size = sizeof(int); 3916 } 3917 sec->size = off; 3918 } 3919 3920 if (kcfg_sec) { 3921 sec = kcfg_sec; 3922 /* for kcfg externs calculate their offsets within a .kconfig map */ 3923 off = 0; 3924 for (i = 0; i < obj->nr_extern; i++) { 3925 ext = &obj->externs[i]; 3926 if (ext->type != EXT_KCFG) 3927 continue; 3928 3929 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3930 off = ext->kcfg.data_off + ext->kcfg.sz; 3931 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3932 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3933 } 3934 sec->size = off; 3935 n = btf_vlen(sec); 3936 for (i = 0; i < n; i++) { 3937 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3938 3939 t = btf__type_by_id(obj->btf, vs->type); 3940 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3941 ext = find_extern_by_name(obj, ext_name); 3942 if (!ext) { 3943 pr_warn("failed to find extern definition for BTF var '%s'\n", 3944 ext_name); 3945 return -ESRCH; 3946 } 3947 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3948 vs->offset = ext->kcfg.data_off; 3949 } 3950 } 3951 return 0; 3952 } 3953 3954 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3955 { 3956 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3957 } 3958 3959 struct bpf_program * 3960 bpf_object__find_program_by_name(const struct bpf_object *obj, 3961 const char *name) 3962 { 3963 struct bpf_program *prog; 3964 3965 bpf_object__for_each_program(prog, obj) { 3966 if (prog_is_subprog(obj, prog)) 3967 continue; 3968 if (!strcmp(prog->name, name)) 3969 return prog; 3970 } 3971 return errno = ENOENT, NULL; 3972 } 3973 3974 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3975 int shndx) 3976 { 3977 switch (obj->efile.secs[shndx].sec_type) { 3978 case SEC_BSS: 3979 case SEC_DATA: 3980 case SEC_RODATA: 3981 return true; 3982 default: 3983 return false; 3984 } 3985 } 3986 3987 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3988 int shndx) 3989 { 3990 return shndx == obj->efile.btf_maps_shndx; 3991 } 3992 3993 static enum libbpf_map_type 3994 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3995 { 3996 if (shndx == obj->efile.symbols_shndx) 3997 return LIBBPF_MAP_KCONFIG; 3998 3999 switch (obj->efile.secs[shndx].sec_type) { 4000 case SEC_BSS: 4001 return LIBBPF_MAP_BSS; 4002 case SEC_DATA: 4003 return LIBBPF_MAP_DATA; 4004 case SEC_RODATA: 4005 return LIBBPF_MAP_RODATA; 4006 default: 4007 return LIBBPF_MAP_UNSPEC; 4008 } 4009 } 4010 4011 static int bpf_program__record_reloc(struct bpf_program *prog, 4012 struct reloc_desc *reloc_desc, 4013 __u32 insn_idx, const char *sym_name, 4014 const Elf64_Sym *sym, const Elf64_Rel *rel) 4015 { 4016 struct bpf_insn *insn = &prog->insns[insn_idx]; 4017 size_t map_idx, nr_maps = prog->obj->nr_maps; 4018 struct bpf_object *obj = prog->obj; 4019 __u32 shdr_idx = sym->st_shndx; 4020 enum libbpf_map_type type; 4021 const char *sym_sec_name; 4022 struct bpf_map *map; 4023 4024 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4025 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4026 prog->name, sym_name, insn_idx, insn->code); 4027 return -LIBBPF_ERRNO__RELOC; 4028 } 4029 4030 if (sym_is_extern(sym)) { 4031 int sym_idx = ELF64_R_SYM(rel->r_info); 4032 int i, n = obj->nr_extern; 4033 struct extern_desc *ext; 4034 4035 for (i = 0; i < n; i++) { 4036 ext = &obj->externs[i]; 4037 if (ext->sym_idx == sym_idx) 4038 break; 4039 } 4040 if (i >= n) { 4041 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4042 prog->name, sym_name, sym_idx); 4043 return -LIBBPF_ERRNO__RELOC; 4044 } 4045 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4046 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4047 if (insn->code == (BPF_JMP | BPF_CALL)) 4048 reloc_desc->type = RELO_EXTERN_FUNC; 4049 else 4050 reloc_desc->type = RELO_EXTERN_VAR; 4051 reloc_desc->insn_idx = insn_idx; 4052 reloc_desc->sym_off = i; /* sym_off stores extern index */ 4053 return 0; 4054 } 4055 4056 /* sub-program call relocation */ 4057 if (is_call_insn(insn)) { 4058 if (insn->src_reg != BPF_PSEUDO_CALL) { 4059 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4060 return -LIBBPF_ERRNO__RELOC; 4061 } 4062 /* text_shndx can be 0, if no default "main" program exists */ 4063 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4064 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4065 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4066 prog->name, sym_name, sym_sec_name); 4067 return -LIBBPF_ERRNO__RELOC; 4068 } 4069 if (sym->st_value % BPF_INSN_SZ) { 4070 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4071 prog->name, sym_name, (size_t)sym->st_value); 4072 return -LIBBPF_ERRNO__RELOC; 4073 } 4074 reloc_desc->type = RELO_CALL; 4075 reloc_desc->insn_idx = insn_idx; 4076 reloc_desc->sym_off = sym->st_value; 4077 return 0; 4078 } 4079 4080 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4081 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4082 prog->name, sym_name, shdr_idx); 4083 return -LIBBPF_ERRNO__RELOC; 4084 } 4085 4086 /* loading subprog addresses */ 4087 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4088 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4089 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4090 */ 4091 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4092 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4093 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4094 return -LIBBPF_ERRNO__RELOC; 4095 } 4096 4097 reloc_desc->type = RELO_SUBPROG_ADDR; 4098 reloc_desc->insn_idx = insn_idx; 4099 reloc_desc->sym_off = sym->st_value; 4100 return 0; 4101 } 4102 4103 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4104 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4105 4106 /* generic map reference relocation */ 4107 if (type == LIBBPF_MAP_UNSPEC) { 4108 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4109 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4110 prog->name, sym_name, sym_sec_name); 4111 return -LIBBPF_ERRNO__RELOC; 4112 } 4113 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4114 map = &obj->maps[map_idx]; 4115 if (map->libbpf_type != type || 4116 map->sec_idx != sym->st_shndx || 4117 map->sec_offset != sym->st_value) 4118 continue; 4119 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4120 prog->name, map_idx, map->name, map->sec_idx, 4121 map->sec_offset, insn_idx); 4122 break; 4123 } 4124 if (map_idx >= nr_maps) { 4125 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4126 prog->name, sym_sec_name, (size_t)sym->st_value); 4127 return -LIBBPF_ERRNO__RELOC; 4128 } 4129 reloc_desc->type = RELO_LD64; 4130 reloc_desc->insn_idx = insn_idx; 4131 reloc_desc->map_idx = map_idx; 4132 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4133 return 0; 4134 } 4135 4136 /* global data map relocation */ 4137 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4138 pr_warn("prog '%s': bad data relo against section '%s'\n", 4139 prog->name, sym_sec_name); 4140 return -LIBBPF_ERRNO__RELOC; 4141 } 4142 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4143 map = &obj->maps[map_idx]; 4144 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4145 continue; 4146 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4147 prog->name, map_idx, map->name, map->sec_idx, 4148 map->sec_offset, insn_idx); 4149 break; 4150 } 4151 if (map_idx >= nr_maps) { 4152 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4153 prog->name, sym_sec_name); 4154 return -LIBBPF_ERRNO__RELOC; 4155 } 4156 4157 reloc_desc->type = RELO_DATA; 4158 reloc_desc->insn_idx = insn_idx; 4159 reloc_desc->map_idx = map_idx; 4160 reloc_desc->sym_off = sym->st_value; 4161 return 0; 4162 } 4163 4164 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4165 { 4166 return insn_idx >= prog->sec_insn_off && 4167 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4168 } 4169 4170 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4171 size_t sec_idx, size_t insn_idx) 4172 { 4173 int l = 0, r = obj->nr_programs - 1, m; 4174 struct bpf_program *prog; 4175 4176 if (!obj->nr_programs) 4177 return NULL; 4178 4179 while (l < r) { 4180 m = l + (r - l + 1) / 2; 4181 prog = &obj->programs[m]; 4182 4183 if (prog->sec_idx < sec_idx || 4184 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4185 l = m; 4186 else 4187 r = m - 1; 4188 } 4189 /* matching program could be at index l, but it still might be the 4190 * wrong one, so we need to double check conditions for the last time 4191 */ 4192 prog = &obj->programs[l]; 4193 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4194 return prog; 4195 return NULL; 4196 } 4197 4198 static int 4199 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4200 { 4201 const char *relo_sec_name, *sec_name; 4202 size_t sec_idx = shdr->sh_info, sym_idx; 4203 struct bpf_program *prog; 4204 struct reloc_desc *relos; 4205 int err, i, nrels; 4206 const char *sym_name; 4207 __u32 insn_idx; 4208 Elf_Scn *scn; 4209 Elf_Data *scn_data; 4210 Elf64_Sym *sym; 4211 Elf64_Rel *rel; 4212 4213 if (sec_idx >= obj->efile.sec_cnt) 4214 return -EINVAL; 4215 4216 scn = elf_sec_by_idx(obj, sec_idx); 4217 scn_data = elf_sec_data(obj, scn); 4218 4219 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4220 sec_name = elf_sec_name(obj, scn); 4221 if (!relo_sec_name || !sec_name) 4222 return -EINVAL; 4223 4224 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4225 relo_sec_name, sec_idx, sec_name); 4226 nrels = shdr->sh_size / shdr->sh_entsize; 4227 4228 for (i = 0; i < nrels; i++) { 4229 rel = elf_rel_by_idx(data, i); 4230 if (!rel) { 4231 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4232 return -LIBBPF_ERRNO__FORMAT; 4233 } 4234 4235 sym_idx = ELF64_R_SYM(rel->r_info); 4236 sym = elf_sym_by_idx(obj, sym_idx); 4237 if (!sym) { 4238 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4239 relo_sec_name, sym_idx, i); 4240 return -LIBBPF_ERRNO__FORMAT; 4241 } 4242 4243 if (sym->st_shndx >= obj->efile.sec_cnt) { 4244 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4245 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4246 return -LIBBPF_ERRNO__FORMAT; 4247 } 4248 4249 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4250 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4251 relo_sec_name, (size_t)rel->r_offset, i); 4252 return -LIBBPF_ERRNO__FORMAT; 4253 } 4254 4255 insn_idx = rel->r_offset / BPF_INSN_SZ; 4256 /* relocations against static functions are recorded as 4257 * relocations against the section that contains a function; 4258 * in such case, symbol will be STT_SECTION and sym.st_name 4259 * will point to empty string (0), so fetch section name 4260 * instead 4261 */ 4262 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4263 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4264 else 4265 sym_name = elf_sym_str(obj, sym->st_name); 4266 sym_name = sym_name ?: "<?"; 4267 4268 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4269 relo_sec_name, i, insn_idx, sym_name); 4270 4271 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4272 if (!prog) { 4273 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4274 relo_sec_name, i, sec_name, insn_idx); 4275 continue; 4276 } 4277 4278 relos = libbpf_reallocarray(prog->reloc_desc, 4279 prog->nr_reloc + 1, sizeof(*relos)); 4280 if (!relos) 4281 return -ENOMEM; 4282 prog->reloc_desc = relos; 4283 4284 /* adjust insn_idx to local BPF program frame of reference */ 4285 insn_idx -= prog->sec_insn_off; 4286 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4287 insn_idx, sym_name, sym, rel); 4288 if (err) 4289 return err; 4290 4291 prog->nr_reloc++; 4292 } 4293 return 0; 4294 } 4295 4296 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4297 { 4298 int id; 4299 4300 if (!obj->btf) 4301 return -ENOENT; 4302 4303 /* if it's BTF-defined map, we don't need to search for type IDs. 4304 * For struct_ops map, it does not need btf_key_type_id and 4305 * btf_value_type_id. 4306 */ 4307 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4308 return 0; 4309 4310 /* 4311 * LLVM annotates global data differently in BTF, that is, 4312 * only as '.data', '.bss' or '.rodata'. 4313 */ 4314 if (!bpf_map__is_internal(map)) 4315 return -ENOENT; 4316 4317 id = btf__find_by_name(obj->btf, map->real_name); 4318 if (id < 0) 4319 return id; 4320 4321 map->btf_key_type_id = 0; 4322 map->btf_value_type_id = id; 4323 return 0; 4324 } 4325 4326 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4327 { 4328 char file[PATH_MAX], buff[4096]; 4329 FILE *fp; 4330 __u32 val; 4331 int err; 4332 4333 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4334 memset(info, 0, sizeof(*info)); 4335 4336 fp = fopen(file, "r"); 4337 if (!fp) { 4338 err = -errno; 4339 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4340 err); 4341 return err; 4342 } 4343 4344 while (fgets(buff, sizeof(buff), fp)) { 4345 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4346 info->type = val; 4347 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4348 info->key_size = val; 4349 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4350 info->value_size = val; 4351 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4352 info->max_entries = val; 4353 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4354 info->map_flags = val; 4355 } 4356 4357 fclose(fp); 4358 4359 return 0; 4360 } 4361 4362 bool bpf_map__autocreate(const struct bpf_map *map) 4363 { 4364 return map->autocreate; 4365 } 4366 4367 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4368 { 4369 if (map->obj->loaded) 4370 return libbpf_err(-EBUSY); 4371 4372 map->autocreate = autocreate; 4373 return 0; 4374 } 4375 4376 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4377 { 4378 struct bpf_map_info info; 4379 __u32 len = sizeof(info), name_len; 4380 int new_fd, err; 4381 char *new_name; 4382 4383 memset(&info, 0, len); 4384 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4385 if (err && errno == EINVAL) 4386 err = bpf_get_map_info_from_fdinfo(fd, &info); 4387 if (err) 4388 return libbpf_err(err); 4389 4390 name_len = strlen(info.name); 4391 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4392 new_name = strdup(map->name); 4393 else 4394 new_name = strdup(info.name); 4395 4396 if (!new_name) 4397 return libbpf_err(-errno); 4398 4399 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4400 if (new_fd < 0) { 4401 err = -errno; 4402 goto err_free_new_name; 4403 } 4404 4405 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4406 if (new_fd < 0) { 4407 err = -errno; 4408 goto err_close_new_fd; 4409 } 4410 4411 err = zclose(map->fd); 4412 if (err) { 4413 err = -errno; 4414 goto err_close_new_fd; 4415 } 4416 free(map->name); 4417 4418 map->fd = new_fd; 4419 map->name = new_name; 4420 map->def.type = info.type; 4421 map->def.key_size = info.key_size; 4422 map->def.value_size = info.value_size; 4423 map->def.max_entries = info.max_entries; 4424 map->def.map_flags = info.map_flags; 4425 map->btf_key_type_id = info.btf_key_type_id; 4426 map->btf_value_type_id = info.btf_value_type_id; 4427 map->reused = true; 4428 map->map_extra = info.map_extra; 4429 4430 return 0; 4431 4432 err_close_new_fd: 4433 close(new_fd); 4434 err_free_new_name: 4435 free(new_name); 4436 return libbpf_err(err); 4437 } 4438 4439 __u32 bpf_map__max_entries(const struct bpf_map *map) 4440 { 4441 return map->def.max_entries; 4442 } 4443 4444 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4445 { 4446 if (!bpf_map_type__is_map_in_map(map->def.type)) 4447 return errno = EINVAL, NULL; 4448 4449 return map->inner_map; 4450 } 4451 4452 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4453 { 4454 if (map->obj->loaded) 4455 return libbpf_err(-EBUSY); 4456 4457 map->def.max_entries = max_entries; 4458 4459 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4460 if (map_is_ringbuf(map)) 4461 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4462 4463 return 0; 4464 } 4465 4466 static int 4467 bpf_object__probe_loading(struct bpf_object *obj) 4468 { 4469 char *cp, errmsg[STRERR_BUFSIZE]; 4470 struct bpf_insn insns[] = { 4471 BPF_MOV64_IMM(BPF_REG_0, 0), 4472 BPF_EXIT_INSN(), 4473 }; 4474 int ret, insn_cnt = ARRAY_SIZE(insns); 4475 4476 if (obj->gen_loader) 4477 return 0; 4478 4479 ret = bump_rlimit_memlock(); 4480 if (ret) 4481 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4482 4483 /* make sure basic loading works */ 4484 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4485 if (ret < 0) 4486 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4487 if (ret < 0) { 4488 ret = errno; 4489 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4490 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4491 "program. Make sure your kernel supports BPF " 4492 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4493 "set to big enough value.\n", __func__, cp, ret); 4494 return -ret; 4495 } 4496 close(ret); 4497 4498 return 0; 4499 } 4500 4501 static int probe_fd(int fd) 4502 { 4503 if (fd >= 0) 4504 close(fd); 4505 return fd >= 0; 4506 } 4507 4508 static int probe_kern_prog_name(void) 4509 { 4510 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4511 struct bpf_insn insns[] = { 4512 BPF_MOV64_IMM(BPF_REG_0, 0), 4513 BPF_EXIT_INSN(), 4514 }; 4515 union bpf_attr attr; 4516 int ret; 4517 4518 memset(&attr, 0, attr_sz); 4519 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4520 attr.license = ptr_to_u64("GPL"); 4521 attr.insns = ptr_to_u64(insns); 4522 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4523 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4524 4525 /* make sure loading with name works */ 4526 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4527 return probe_fd(ret); 4528 } 4529 4530 static int probe_kern_global_data(void) 4531 { 4532 char *cp, errmsg[STRERR_BUFSIZE]; 4533 struct bpf_insn insns[] = { 4534 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4535 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4536 BPF_MOV64_IMM(BPF_REG_0, 0), 4537 BPF_EXIT_INSN(), 4538 }; 4539 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4540 4541 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4542 if (map < 0) { 4543 ret = -errno; 4544 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4545 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4546 __func__, cp, -ret); 4547 return ret; 4548 } 4549 4550 insns[0].imm = map; 4551 4552 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4553 close(map); 4554 return probe_fd(ret); 4555 } 4556 4557 static int probe_kern_btf(void) 4558 { 4559 static const char strs[] = "\0int"; 4560 __u32 types[] = { 4561 /* int */ 4562 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4563 }; 4564 4565 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4566 strs, sizeof(strs))); 4567 } 4568 4569 static int probe_kern_btf_func(void) 4570 { 4571 static const char strs[] = "\0int\0x\0a"; 4572 /* void x(int a) {} */ 4573 __u32 types[] = { 4574 /* int */ 4575 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4576 /* FUNC_PROTO */ /* [2] */ 4577 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4578 BTF_PARAM_ENC(7, 1), 4579 /* FUNC x */ /* [3] */ 4580 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4581 }; 4582 4583 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4584 strs, sizeof(strs))); 4585 } 4586 4587 static int probe_kern_btf_func_global(void) 4588 { 4589 static const char strs[] = "\0int\0x\0a"; 4590 /* static void x(int a) {} */ 4591 __u32 types[] = { 4592 /* int */ 4593 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4594 /* FUNC_PROTO */ /* [2] */ 4595 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4596 BTF_PARAM_ENC(7, 1), 4597 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4598 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4599 }; 4600 4601 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4602 strs, sizeof(strs))); 4603 } 4604 4605 static int probe_kern_btf_datasec(void) 4606 { 4607 static const char strs[] = "\0x\0.data"; 4608 /* static int a; */ 4609 __u32 types[] = { 4610 /* int */ 4611 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4612 /* VAR x */ /* [2] */ 4613 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4614 BTF_VAR_STATIC, 4615 /* DATASEC val */ /* [3] */ 4616 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4617 BTF_VAR_SECINFO_ENC(2, 0, 4), 4618 }; 4619 4620 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4621 strs, sizeof(strs))); 4622 } 4623 4624 static int probe_kern_btf_float(void) 4625 { 4626 static const char strs[] = "\0float"; 4627 __u32 types[] = { 4628 /* float */ 4629 BTF_TYPE_FLOAT_ENC(1, 4), 4630 }; 4631 4632 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4633 strs, sizeof(strs))); 4634 } 4635 4636 static int probe_kern_btf_decl_tag(void) 4637 { 4638 static const char strs[] = "\0tag"; 4639 __u32 types[] = { 4640 /* int */ 4641 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4642 /* VAR x */ /* [2] */ 4643 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4644 BTF_VAR_STATIC, 4645 /* attr */ 4646 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4647 }; 4648 4649 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4650 strs, sizeof(strs))); 4651 } 4652 4653 static int probe_kern_btf_type_tag(void) 4654 { 4655 static const char strs[] = "\0tag"; 4656 __u32 types[] = { 4657 /* int */ 4658 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4659 /* attr */ 4660 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4661 /* ptr */ 4662 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4663 }; 4664 4665 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4666 strs, sizeof(strs))); 4667 } 4668 4669 static int probe_kern_array_mmap(void) 4670 { 4671 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4672 int fd; 4673 4674 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4675 return probe_fd(fd); 4676 } 4677 4678 static int probe_kern_exp_attach_type(void) 4679 { 4680 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4681 struct bpf_insn insns[] = { 4682 BPF_MOV64_IMM(BPF_REG_0, 0), 4683 BPF_EXIT_INSN(), 4684 }; 4685 int fd, insn_cnt = ARRAY_SIZE(insns); 4686 4687 /* use any valid combination of program type and (optional) 4688 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4689 * to see if kernel supports expected_attach_type field for 4690 * BPF_PROG_LOAD command 4691 */ 4692 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4693 return probe_fd(fd); 4694 } 4695 4696 static int probe_kern_probe_read_kernel(void) 4697 { 4698 struct bpf_insn insns[] = { 4699 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4700 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4701 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4702 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4703 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4704 BPF_EXIT_INSN(), 4705 }; 4706 int fd, insn_cnt = ARRAY_SIZE(insns); 4707 4708 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4709 return probe_fd(fd); 4710 } 4711 4712 static int probe_prog_bind_map(void) 4713 { 4714 char *cp, errmsg[STRERR_BUFSIZE]; 4715 struct bpf_insn insns[] = { 4716 BPF_MOV64_IMM(BPF_REG_0, 0), 4717 BPF_EXIT_INSN(), 4718 }; 4719 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4720 4721 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4722 if (map < 0) { 4723 ret = -errno; 4724 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4725 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4726 __func__, cp, -ret); 4727 return ret; 4728 } 4729 4730 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4731 if (prog < 0) { 4732 close(map); 4733 return 0; 4734 } 4735 4736 ret = bpf_prog_bind_map(prog, map, NULL); 4737 4738 close(map); 4739 close(prog); 4740 4741 return ret >= 0; 4742 } 4743 4744 static int probe_module_btf(void) 4745 { 4746 static const char strs[] = "\0int"; 4747 __u32 types[] = { 4748 /* int */ 4749 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4750 }; 4751 struct bpf_btf_info info; 4752 __u32 len = sizeof(info); 4753 char name[16]; 4754 int fd, err; 4755 4756 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4757 if (fd < 0) 4758 return 0; /* BTF not supported at all */ 4759 4760 memset(&info, 0, sizeof(info)); 4761 info.name = ptr_to_u64(name); 4762 info.name_len = sizeof(name); 4763 4764 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4765 * kernel's module BTF support coincides with support for 4766 * name/name_len fields in struct bpf_btf_info. 4767 */ 4768 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4769 close(fd); 4770 return !err; 4771 } 4772 4773 static int probe_perf_link(void) 4774 { 4775 struct bpf_insn insns[] = { 4776 BPF_MOV64_IMM(BPF_REG_0, 0), 4777 BPF_EXIT_INSN(), 4778 }; 4779 int prog_fd, link_fd, err; 4780 4781 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4782 insns, ARRAY_SIZE(insns), NULL); 4783 if (prog_fd < 0) 4784 return -errno; 4785 4786 /* use invalid perf_event FD to get EBADF, if link is supported; 4787 * otherwise EINVAL should be returned 4788 */ 4789 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4790 err = -errno; /* close() can clobber errno */ 4791 4792 if (link_fd >= 0) 4793 close(link_fd); 4794 close(prog_fd); 4795 4796 return link_fd < 0 && err == -EBADF; 4797 } 4798 4799 static int probe_kern_bpf_cookie(void) 4800 { 4801 struct bpf_insn insns[] = { 4802 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4803 BPF_EXIT_INSN(), 4804 }; 4805 int ret, insn_cnt = ARRAY_SIZE(insns); 4806 4807 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4808 return probe_fd(ret); 4809 } 4810 4811 static int probe_kern_btf_enum64(void) 4812 { 4813 static const char strs[] = "\0enum64"; 4814 __u32 types[] = { 4815 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4816 }; 4817 4818 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4819 strs, sizeof(strs))); 4820 } 4821 4822 static int probe_kern_syscall_wrapper(void); 4823 4824 enum kern_feature_result { 4825 FEAT_UNKNOWN = 0, 4826 FEAT_SUPPORTED = 1, 4827 FEAT_MISSING = 2, 4828 }; 4829 4830 typedef int (*feature_probe_fn)(void); 4831 4832 static struct kern_feature_desc { 4833 const char *desc; 4834 feature_probe_fn probe; 4835 enum kern_feature_result res; 4836 } feature_probes[__FEAT_CNT] = { 4837 [FEAT_PROG_NAME] = { 4838 "BPF program name", probe_kern_prog_name, 4839 }, 4840 [FEAT_GLOBAL_DATA] = { 4841 "global variables", probe_kern_global_data, 4842 }, 4843 [FEAT_BTF] = { 4844 "minimal BTF", probe_kern_btf, 4845 }, 4846 [FEAT_BTF_FUNC] = { 4847 "BTF functions", probe_kern_btf_func, 4848 }, 4849 [FEAT_BTF_GLOBAL_FUNC] = { 4850 "BTF global function", probe_kern_btf_func_global, 4851 }, 4852 [FEAT_BTF_DATASEC] = { 4853 "BTF data section and variable", probe_kern_btf_datasec, 4854 }, 4855 [FEAT_ARRAY_MMAP] = { 4856 "ARRAY map mmap()", probe_kern_array_mmap, 4857 }, 4858 [FEAT_EXP_ATTACH_TYPE] = { 4859 "BPF_PROG_LOAD expected_attach_type attribute", 4860 probe_kern_exp_attach_type, 4861 }, 4862 [FEAT_PROBE_READ_KERN] = { 4863 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4864 }, 4865 [FEAT_PROG_BIND_MAP] = { 4866 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4867 }, 4868 [FEAT_MODULE_BTF] = { 4869 "module BTF support", probe_module_btf, 4870 }, 4871 [FEAT_BTF_FLOAT] = { 4872 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4873 }, 4874 [FEAT_PERF_LINK] = { 4875 "BPF perf link support", probe_perf_link, 4876 }, 4877 [FEAT_BTF_DECL_TAG] = { 4878 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4879 }, 4880 [FEAT_BTF_TYPE_TAG] = { 4881 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4882 }, 4883 [FEAT_MEMCG_ACCOUNT] = { 4884 "memcg-based memory accounting", probe_memcg_account, 4885 }, 4886 [FEAT_BPF_COOKIE] = { 4887 "BPF cookie support", probe_kern_bpf_cookie, 4888 }, 4889 [FEAT_BTF_ENUM64] = { 4890 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4891 }, 4892 [FEAT_SYSCALL_WRAPPER] = { 4893 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4894 }, 4895 }; 4896 4897 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4898 { 4899 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4900 int ret; 4901 4902 if (obj && obj->gen_loader) 4903 /* To generate loader program assume the latest kernel 4904 * to avoid doing extra prog_load, map_create syscalls. 4905 */ 4906 return true; 4907 4908 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4909 ret = feat->probe(); 4910 if (ret > 0) { 4911 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4912 } else if (ret == 0) { 4913 WRITE_ONCE(feat->res, FEAT_MISSING); 4914 } else { 4915 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4916 WRITE_ONCE(feat->res, FEAT_MISSING); 4917 } 4918 } 4919 4920 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4921 } 4922 4923 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4924 { 4925 struct bpf_map_info map_info; 4926 char msg[STRERR_BUFSIZE]; 4927 __u32 map_info_len = sizeof(map_info); 4928 int err; 4929 4930 memset(&map_info, 0, map_info_len); 4931 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4932 if (err && errno == EINVAL) 4933 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4934 if (err) { 4935 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4936 libbpf_strerror_r(errno, msg, sizeof(msg))); 4937 return false; 4938 } 4939 4940 return (map_info.type == map->def.type && 4941 map_info.key_size == map->def.key_size && 4942 map_info.value_size == map->def.value_size && 4943 map_info.max_entries == map->def.max_entries && 4944 map_info.map_flags == map->def.map_flags && 4945 map_info.map_extra == map->map_extra); 4946 } 4947 4948 static int 4949 bpf_object__reuse_map(struct bpf_map *map) 4950 { 4951 char *cp, errmsg[STRERR_BUFSIZE]; 4952 int err, pin_fd; 4953 4954 pin_fd = bpf_obj_get(map->pin_path); 4955 if (pin_fd < 0) { 4956 err = -errno; 4957 if (err == -ENOENT) { 4958 pr_debug("found no pinned map to reuse at '%s'\n", 4959 map->pin_path); 4960 return 0; 4961 } 4962 4963 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4964 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4965 map->pin_path, cp); 4966 return err; 4967 } 4968 4969 if (!map_is_reuse_compat(map, pin_fd)) { 4970 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4971 map->pin_path); 4972 close(pin_fd); 4973 return -EINVAL; 4974 } 4975 4976 err = bpf_map__reuse_fd(map, pin_fd); 4977 close(pin_fd); 4978 if (err) 4979 return err; 4980 4981 map->pinned = true; 4982 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4983 4984 return 0; 4985 } 4986 4987 static int 4988 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4989 { 4990 enum libbpf_map_type map_type = map->libbpf_type; 4991 char *cp, errmsg[STRERR_BUFSIZE]; 4992 int err, zero = 0; 4993 4994 if (obj->gen_loader) { 4995 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4996 map->mmaped, map->def.value_size); 4997 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4998 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4999 return 0; 5000 } 5001 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5002 if (err) { 5003 err = -errno; 5004 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5005 pr_warn("Error setting initial map(%s) contents: %s\n", 5006 map->name, cp); 5007 return err; 5008 } 5009 5010 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5011 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5012 err = bpf_map_freeze(map->fd); 5013 if (err) { 5014 err = -errno; 5015 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5016 pr_warn("Error freezing map(%s) as read-only: %s\n", 5017 map->name, cp); 5018 return err; 5019 } 5020 } 5021 return 0; 5022 } 5023 5024 static void bpf_map__destroy(struct bpf_map *map); 5025 5026 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5027 { 5028 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5029 struct bpf_map_def *def = &map->def; 5030 const char *map_name = NULL; 5031 int err = 0; 5032 5033 if (kernel_supports(obj, FEAT_PROG_NAME)) 5034 map_name = map->name; 5035 create_attr.map_ifindex = map->map_ifindex; 5036 create_attr.map_flags = def->map_flags; 5037 create_attr.numa_node = map->numa_node; 5038 create_attr.map_extra = map->map_extra; 5039 5040 if (bpf_map__is_struct_ops(map)) 5041 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5042 5043 if (obj->btf && btf__fd(obj->btf) >= 0) { 5044 create_attr.btf_fd = btf__fd(obj->btf); 5045 create_attr.btf_key_type_id = map->btf_key_type_id; 5046 create_attr.btf_value_type_id = map->btf_value_type_id; 5047 } 5048 5049 if (bpf_map_type__is_map_in_map(def->type)) { 5050 if (map->inner_map) { 5051 err = bpf_object__create_map(obj, map->inner_map, true); 5052 if (err) { 5053 pr_warn("map '%s': failed to create inner map: %d\n", 5054 map->name, err); 5055 return err; 5056 } 5057 map->inner_map_fd = bpf_map__fd(map->inner_map); 5058 } 5059 if (map->inner_map_fd >= 0) 5060 create_attr.inner_map_fd = map->inner_map_fd; 5061 } 5062 5063 switch (def->type) { 5064 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5065 case BPF_MAP_TYPE_CGROUP_ARRAY: 5066 case BPF_MAP_TYPE_STACK_TRACE: 5067 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5068 case BPF_MAP_TYPE_HASH_OF_MAPS: 5069 case BPF_MAP_TYPE_DEVMAP: 5070 case BPF_MAP_TYPE_DEVMAP_HASH: 5071 case BPF_MAP_TYPE_CPUMAP: 5072 case BPF_MAP_TYPE_XSKMAP: 5073 case BPF_MAP_TYPE_SOCKMAP: 5074 case BPF_MAP_TYPE_SOCKHASH: 5075 case BPF_MAP_TYPE_QUEUE: 5076 case BPF_MAP_TYPE_STACK: 5077 create_attr.btf_fd = 0; 5078 create_attr.btf_key_type_id = 0; 5079 create_attr.btf_value_type_id = 0; 5080 map->btf_key_type_id = 0; 5081 map->btf_value_type_id = 0; 5082 default: 5083 break; 5084 } 5085 5086 if (obj->gen_loader) { 5087 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5088 def->key_size, def->value_size, def->max_entries, 5089 &create_attr, is_inner ? -1 : map - obj->maps); 5090 /* Pretend to have valid FD to pass various fd >= 0 checks. 5091 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5092 */ 5093 map->fd = 0; 5094 } else { 5095 map->fd = bpf_map_create(def->type, map_name, 5096 def->key_size, def->value_size, 5097 def->max_entries, &create_attr); 5098 } 5099 if (map->fd < 0 && (create_attr.btf_key_type_id || 5100 create_attr.btf_value_type_id)) { 5101 char *cp, errmsg[STRERR_BUFSIZE]; 5102 5103 err = -errno; 5104 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5105 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5106 map->name, cp, err); 5107 create_attr.btf_fd = 0; 5108 create_attr.btf_key_type_id = 0; 5109 create_attr.btf_value_type_id = 0; 5110 map->btf_key_type_id = 0; 5111 map->btf_value_type_id = 0; 5112 map->fd = bpf_map_create(def->type, map_name, 5113 def->key_size, def->value_size, 5114 def->max_entries, &create_attr); 5115 } 5116 5117 err = map->fd < 0 ? -errno : 0; 5118 5119 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5120 if (obj->gen_loader) 5121 map->inner_map->fd = -1; 5122 bpf_map__destroy(map->inner_map); 5123 zfree(&map->inner_map); 5124 } 5125 5126 return err; 5127 } 5128 5129 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5130 { 5131 const struct bpf_map *targ_map; 5132 unsigned int i; 5133 int fd, err = 0; 5134 5135 for (i = 0; i < map->init_slots_sz; i++) { 5136 if (!map->init_slots[i]) 5137 continue; 5138 5139 targ_map = map->init_slots[i]; 5140 fd = bpf_map__fd(targ_map); 5141 5142 if (obj->gen_loader) { 5143 bpf_gen__populate_outer_map(obj->gen_loader, 5144 map - obj->maps, i, 5145 targ_map - obj->maps); 5146 } else { 5147 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5148 } 5149 if (err) { 5150 err = -errno; 5151 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5152 map->name, i, targ_map->name, fd, err); 5153 return err; 5154 } 5155 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5156 map->name, i, targ_map->name, fd); 5157 } 5158 5159 zfree(&map->init_slots); 5160 map->init_slots_sz = 0; 5161 5162 return 0; 5163 } 5164 5165 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5166 { 5167 const struct bpf_program *targ_prog; 5168 unsigned int i; 5169 int fd, err; 5170 5171 if (obj->gen_loader) 5172 return -ENOTSUP; 5173 5174 for (i = 0; i < map->init_slots_sz; i++) { 5175 if (!map->init_slots[i]) 5176 continue; 5177 5178 targ_prog = map->init_slots[i]; 5179 fd = bpf_program__fd(targ_prog); 5180 5181 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5182 if (err) { 5183 err = -errno; 5184 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5185 map->name, i, targ_prog->name, fd, err); 5186 return err; 5187 } 5188 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5189 map->name, i, targ_prog->name, fd); 5190 } 5191 5192 zfree(&map->init_slots); 5193 map->init_slots_sz = 0; 5194 5195 return 0; 5196 } 5197 5198 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5199 { 5200 struct bpf_map *map; 5201 int i, err; 5202 5203 for (i = 0; i < obj->nr_maps; i++) { 5204 map = &obj->maps[i]; 5205 5206 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5207 continue; 5208 5209 err = init_prog_array_slots(obj, map); 5210 if (err < 0) { 5211 zclose(map->fd); 5212 return err; 5213 } 5214 } 5215 return 0; 5216 } 5217 5218 static int map_set_def_max_entries(struct bpf_map *map) 5219 { 5220 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5221 int nr_cpus; 5222 5223 nr_cpus = libbpf_num_possible_cpus(); 5224 if (nr_cpus < 0) { 5225 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5226 map->name, nr_cpus); 5227 return nr_cpus; 5228 } 5229 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5230 map->def.max_entries = nr_cpus; 5231 } 5232 5233 return 0; 5234 } 5235 5236 static int 5237 bpf_object__create_maps(struct bpf_object *obj) 5238 { 5239 struct bpf_map *map; 5240 char *cp, errmsg[STRERR_BUFSIZE]; 5241 unsigned int i, j; 5242 int err; 5243 bool retried; 5244 5245 for (i = 0; i < obj->nr_maps; i++) { 5246 map = &obj->maps[i]; 5247 5248 /* To support old kernels, we skip creating global data maps 5249 * (.rodata, .data, .kconfig, etc); later on, during program 5250 * loading, if we detect that at least one of the to-be-loaded 5251 * programs is referencing any global data map, we'll error 5252 * out with program name and relocation index logged. 5253 * This approach allows to accommodate Clang emitting 5254 * unnecessary .rodata.str1.1 sections for string literals, 5255 * but also it allows to have CO-RE applications that use 5256 * global variables in some of BPF programs, but not others. 5257 * If those global variable-using programs are not loaded at 5258 * runtime due to bpf_program__set_autoload(prog, false), 5259 * bpf_object loading will succeed just fine even on old 5260 * kernels. 5261 */ 5262 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5263 map->autocreate = false; 5264 5265 if (!map->autocreate) { 5266 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5267 continue; 5268 } 5269 5270 err = map_set_def_max_entries(map); 5271 if (err) 5272 goto err_out; 5273 5274 retried = false; 5275 retry: 5276 if (map->pin_path) { 5277 err = bpf_object__reuse_map(map); 5278 if (err) { 5279 pr_warn("map '%s': error reusing pinned map\n", 5280 map->name); 5281 goto err_out; 5282 } 5283 if (retried && map->fd < 0) { 5284 pr_warn("map '%s': cannot find pinned map\n", 5285 map->name); 5286 err = -ENOENT; 5287 goto err_out; 5288 } 5289 } 5290 5291 if (map->fd >= 0) { 5292 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5293 map->name, map->fd); 5294 } else { 5295 err = bpf_object__create_map(obj, map, false); 5296 if (err) 5297 goto err_out; 5298 5299 pr_debug("map '%s': created successfully, fd=%d\n", 5300 map->name, map->fd); 5301 5302 if (bpf_map__is_internal(map)) { 5303 err = bpf_object__populate_internal_map(obj, map); 5304 if (err < 0) { 5305 zclose(map->fd); 5306 goto err_out; 5307 } 5308 } 5309 5310 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5311 err = init_map_in_map_slots(obj, map); 5312 if (err < 0) { 5313 zclose(map->fd); 5314 goto err_out; 5315 } 5316 } 5317 } 5318 5319 if (map->pin_path && !map->pinned) { 5320 err = bpf_map__pin(map, NULL); 5321 if (err) { 5322 zclose(map->fd); 5323 if (!retried && err == -EEXIST) { 5324 retried = true; 5325 goto retry; 5326 } 5327 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5328 map->name, map->pin_path, err); 5329 goto err_out; 5330 } 5331 } 5332 } 5333 5334 return 0; 5335 5336 err_out: 5337 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5338 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5339 pr_perm_msg(err); 5340 for (j = 0; j < i; j++) 5341 zclose(obj->maps[j].fd); 5342 return err; 5343 } 5344 5345 static bool bpf_core_is_flavor_sep(const char *s) 5346 { 5347 /* check X___Y name pattern, where X and Y are not underscores */ 5348 return s[0] != '_' && /* X */ 5349 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5350 s[4] != '_'; /* Y */ 5351 } 5352 5353 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5354 * before last triple underscore. Struct name part after last triple 5355 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5356 */ 5357 size_t bpf_core_essential_name_len(const char *name) 5358 { 5359 size_t n = strlen(name); 5360 int i; 5361 5362 for (i = n - 5; i >= 0; i--) { 5363 if (bpf_core_is_flavor_sep(name + i)) 5364 return i + 1; 5365 } 5366 return n; 5367 } 5368 5369 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5370 { 5371 if (!cands) 5372 return; 5373 5374 free(cands->cands); 5375 free(cands); 5376 } 5377 5378 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5379 size_t local_essent_len, 5380 const struct btf *targ_btf, 5381 const char *targ_btf_name, 5382 int targ_start_id, 5383 struct bpf_core_cand_list *cands) 5384 { 5385 struct bpf_core_cand *new_cands, *cand; 5386 const struct btf_type *t, *local_t; 5387 const char *targ_name, *local_name; 5388 size_t targ_essent_len; 5389 int n, i; 5390 5391 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5392 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5393 5394 n = btf__type_cnt(targ_btf); 5395 for (i = targ_start_id; i < n; i++) { 5396 t = btf__type_by_id(targ_btf, i); 5397 if (!btf_kind_core_compat(t, local_t)) 5398 continue; 5399 5400 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5401 if (str_is_empty(targ_name)) 5402 continue; 5403 5404 targ_essent_len = bpf_core_essential_name_len(targ_name); 5405 if (targ_essent_len != local_essent_len) 5406 continue; 5407 5408 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5409 continue; 5410 5411 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5412 local_cand->id, btf_kind_str(local_t), 5413 local_name, i, btf_kind_str(t), targ_name, 5414 targ_btf_name); 5415 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5416 sizeof(*cands->cands)); 5417 if (!new_cands) 5418 return -ENOMEM; 5419 5420 cand = &new_cands[cands->len]; 5421 cand->btf = targ_btf; 5422 cand->id = i; 5423 5424 cands->cands = new_cands; 5425 cands->len++; 5426 } 5427 return 0; 5428 } 5429 5430 static int load_module_btfs(struct bpf_object *obj) 5431 { 5432 struct bpf_btf_info info; 5433 struct module_btf *mod_btf; 5434 struct btf *btf; 5435 char name[64]; 5436 __u32 id = 0, len; 5437 int err, fd; 5438 5439 if (obj->btf_modules_loaded) 5440 return 0; 5441 5442 if (obj->gen_loader) 5443 return 0; 5444 5445 /* don't do this again, even if we find no module BTFs */ 5446 obj->btf_modules_loaded = true; 5447 5448 /* kernel too old to support module BTFs */ 5449 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5450 return 0; 5451 5452 while (true) { 5453 err = bpf_btf_get_next_id(id, &id); 5454 if (err && errno == ENOENT) 5455 return 0; 5456 if (err) { 5457 err = -errno; 5458 pr_warn("failed to iterate BTF objects: %d\n", err); 5459 return err; 5460 } 5461 5462 fd = bpf_btf_get_fd_by_id(id); 5463 if (fd < 0) { 5464 if (errno == ENOENT) 5465 continue; /* expected race: BTF was unloaded */ 5466 err = -errno; 5467 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5468 return err; 5469 } 5470 5471 len = sizeof(info); 5472 memset(&info, 0, sizeof(info)); 5473 info.name = ptr_to_u64(name); 5474 info.name_len = sizeof(name); 5475 5476 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5477 if (err) { 5478 err = -errno; 5479 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5480 goto err_out; 5481 } 5482 5483 /* ignore non-module BTFs */ 5484 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5485 close(fd); 5486 continue; 5487 } 5488 5489 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5490 err = libbpf_get_error(btf); 5491 if (err) { 5492 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5493 name, id, err); 5494 goto err_out; 5495 } 5496 5497 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5498 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5499 if (err) 5500 goto err_out; 5501 5502 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5503 5504 mod_btf->btf = btf; 5505 mod_btf->id = id; 5506 mod_btf->fd = fd; 5507 mod_btf->name = strdup(name); 5508 if (!mod_btf->name) { 5509 err = -ENOMEM; 5510 goto err_out; 5511 } 5512 continue; 5513 5514 err_out: 5515 close(fd); 5516 return err; 5517 } 5518 5519 return 0; 5520 } 5521 5522 static struct bpf_core_cand_list * 5523 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5524 { 5525 struct bpf_core_cand local_cand = {}; 5526 struct bpf_core_cand_list *cands; 5527 const struct btf *main_btf; 5528 const struct btf_type *local_t; 5529 const char *local_name; 5530 size_t local_essent_len; 5531 int err, i; 5532 5533 local_cand.btf = local_btf; 5534 local_cand.id = local_type_id; 5535 local_t = btf__type_by_id(local_btf, local_type_id); 5536 if (!local_t) 5537 return ERR_PTR(-EINVAL); 5538 5539 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5540 if (str_is_empty(local_name)) 5541 return ERR_PTR(-EINVAL); 5542 local_essent_len = bpf_core_essential_name_len(local_name); 5543 5544 cands = calloc(1, sizeof(*cands)); 5545 if (!cands) 5546 return ERR_PTR(-ENOMEM); 5547 5548 /* Attempt to find target candidates in vmlinux BTF first */ 5549 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5550 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5551 if (err) 5552 goto err_out; 5553 5554 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5555 if (cands->len) 5556 return cands; 5557 5558 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5559 if (obj->btf_vmlinux_override) 5560 return cands; 5561 5562 /* now look through module BTFs, trying to still find candidates */ 5563 err = load_module_btfs(obj); 5564 if (err) 5565 goto err_out; 5566 5567 for (i = 0; i < obj->btf_module_cnt; i++) { 5568 err = bpf_core_add_cands(&local_cand, local_essent_len, 5569 obj->btf_modules[i].btf, 5570 obj->btf_modules[i].name, 5571 btf__type_cnt(obj->btf_vmlinux), 5572 cands); 5573 if (err) 5574 goto err_out; 5575 } 5576 5577 return cands; 5578 err_out: 5579 bpf_core_free_cands(cands); 5580 return ERR_PTR(err); 5581 } 5582 5583 /* Check local and target types for compatibility. This check is used for 5584 * type-based CO-RE relocations and follow slightly different rules than 5585 * field-based relocations. This function assumes that root types were already 5586 * checked for name match. Beyond that initial root-level name check, names 5587 * are completely ignored. Compatibility rules are as follows: 5588 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5589 * kind should match for local and target types (i.e., STRUCT is not 5590 * compatible with UNION); 5591 * - for ENUMs, the size is ignored; 5592 * - for INT, size and signedness are ignored; 5593 * - for ARRAY, dimensionality is ignored, element types are checked for 5594 * compatibility recursively; 5595 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5596 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5597 * - FUNC_PROTOs are compatible if they have compatible signature: same 5598 * number of input args and compatible return and argument types. 5599 * These rules are not set in stone and probably will be adjusted as we get 5600 * more experience with using BPF CO-RE relocations. 5601 */ 5602 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5603 const struct btf *targ_btf, __u32 targ_id) 5604 { 5605 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5606 } 5607 5608 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5609 const struct btf *targ_btf, __u32 targ_id) 5610 { 5611 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5612 } 5613 5614 static size_t bpf_core_hash_fn(const long key, void *ctx) 5615 { 5616 return key; 5617 } 5618 5619 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5620 { 5621 return k1 == k2; 5622 } 5623 5624 static int record_relo_core(struct bpf_program *prog, 5625 const struct bpf_core_relo *core_relo, int insn_idx) 5626 { 5627 struct reloc_desc *relos, *relo; 5628 5629 relos = libbpf_reallocarray(prog->reloc_desc, 5630 prog->nr_reloc + 1, sizeof(*relos)); 5631 if (!relos) 5632 return -ENOMEM; 5633 relo = &relos[prog->nr_reloc]; 5634 relo->type = RELO_CORE; 5635 relo->insn_idx = insn_idx; 5636 relo->core_relo = core_relo; 5637 prog->reloc_desc = relos; 5638 prog->nr_reloc++; 5639 return 0; 5640 } 5641 5642 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5643 { 5644 struct reloc_desc *relo; 5645 int i; 5646 5647 for (i = 0; i < prog->nr_reloc; i++) { 5648 relo = &prog->reloc_desc[i]; 5649 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5650 continue; 5651 5652 return relo->core_relo; 5653 } 5654 5655 return NULL; 5656 } 5657 5658 static int bpf_core_resolve_relo(struct bpf_program *prog, 5659 const struct bpf_core_relo *relo, 5660 int relo_idx, 5661 const struct btf *local_btf, 5662 struct hashmap *cand_cache, 5663 struct bpf_core_relo_res *targ_res) 5664 { 5665 struct bpf_core_spec specs_scratch[3] = {}; 5666 struct bpf_core_cand_list *cands = NULL; 5667 const char *prog_name = prog->name; 5668 const struct btf_type *local_type; 5669 const char *local_name; 5670 __u32 local_id = relo->type_id; 5671 int err; 5672 5673 local_type = btf__type_by_id(local_btf, local_id); 5674 if (!local_type) 5675 return -EINVAL; 5676 5677 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5678 if (!local_name) 5679 return -EINVAL; 5680 5681 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5682 !hashmap__find(cand_cache, local_id, &cands)) { 5683 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5684 if (IS_ERR(cands)) { 5685 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5686 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5687 local_name, PTR_ERR(cands)); 5688 return PTR_ERR(cands); 5689 } 5690 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5691 if (err) { 5692 bpf_core_free_cands(cands); 5693 return err; 5694 } 5695 } 5696 5697 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5698 targ_res); 5699 } 5700 5701 static int 5702 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5703 { 5704 const struct btf_ext_info_sec *sec; 5705 struct bpf_core_relo_res targ_res; 5706 const struct bpf_core_relo *rec; 5707 const struct btf_ext_info *seg; 5708 struct hashmap_entry *entry; 5709 struct hashmap *cand_cache = NULL; 5710 struct bpf_program *prog; 5711 struct bpf_insn *insn; 5712 const char *sec_name; 5713 int i, err = 0, insn_idx, sec_idx, sec_num; 5714 5715 if (obj->btf_ext->core_relo_info.len == 0) 5716 return 0; 5717 5718 if (targ_btf_path) { 5719 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5720 err = libbpf_get_error(obj->btf_vmlinux_override); 5721 if (err) { 5722 pr_warn("failed to parse target BTF: %d\n", err); 5723 return err; 5724 } 5725 } 5726 5727 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5728 if (IS_ERR(cand_cache)) { 5729 err = PTR_ERR(cand_cache); 5730 goto out; 5731 } 5732 5733 seg = &obj->btf_ext->core_relo_info; 5734 sec_num = 0; 5735 for_each_btf_ext_sec(seg, sec) { 5736 sec_idx = seg->sec_idxs[sec_num]; 5737 sec_num++; 5738 5739 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5740 if (str_is_empty(sec_name)) { 5741 err = -EINVAL; 5742 goto out; 5743 } 5744 5745 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5746 5747 for_each_btf_ext_rec(seg, sec, i, rec) { 5748 if (rec->insn_off % BPF_INSN_SZ) 5749 return -EINVAL; 5750 insn_idx = rec->insn_off / BPF_INSN_SZ; 5751 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5752 if (!prog) { 5753 /* When __weak subprog is "overridden" by another instance 5754 * of the subprog from a different object file, linker still 5755 * appends all the .BTF.ext info that used to belong to that 5756 * eliminated subprogram. 5757 * This is similar to what x86-64 linker does for relocations. 5758 * So just ignore such relocations just like we ignore 5759 * subprog instructions when discovering subprograms. 5760 */ 5761 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5762 sec_name, i, insn_idx); 5763 continue; 5764 } 5765 /* no need to apply CO-RE relocation if the program is 5766 * not going to be loaded 5767 */ 5768 if (!prog->autoload) 5769 continue; 5770 5771 /* adjust insn_idx from section frame of reference to the local 5772 * program's frame of reference; (sub-)program code is not yet 5773 * relocated, so it's enough to just subtract in-section offset 5774 */ 5775 insn_idx = insn_idx - prog->sec_insn_off; 5776 if (insn_idx >= prog->insns_cnt) 5777 return -EINVAL; 5778 insn = &prog->insns[insn_idx]; 5779 5780 err = record_relo_core(prog, rec, insn_idx); 5781 if (err) { 5782 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5783 prog->name, i, err); 5784 goto out; 5785 } 5786 5787 if (prog->obj->gen_loader) 5788 continue; 5789 5790 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5791 if (err) { 5792 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5793 prog->name, i, err); 5794 goto out; 5795 } 5796 5797 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5798 if (err) { 5799 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5800 prog->name, i, insn_idx, err); 5801 goto out; 5802 } 5803 } 5804 } 5805 5806 out: 5807 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5808 btf__free(obj->btf_vmlinux_override); 5809 obj->btf_vmlinux_override = NULL; 5810 5811 if (!IS_ERR_OR_NULL(cand_cache)) { 5812 hashmap__for_each_entry(cand_cache, entry, i) { 5813 bpf_core_free_cands(entry->pvalue); 5814 } 5815 hashmap__free(cand_cache); 5816 } 5817 return err; 5818 } 5819 5820 /* base map load ldimm64 special constant, used also for log fixup logic */ 5821 #define MAP_LDIMM64_POISON_BASE 2001000000 5822 #define MAP_LDIMM64_POISON_PFX "200100" 5823 5824 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5825 int insn_idx, struct bpf_insn *insn, 5826 int map_idx, const struct bpf_map *map) 5827 { 5828 int i; 5829 5830 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5831 prog->name, relo_idx, insn_idx, map_idx, map->name); 5832 5833 /* we turn single ldimm64 into two identical invalid calls */ 5834 for (i = 0; i < 2; i++) { 5835 insn->code = BPF_JMP | BPF_CALL; 5836 insn->dst_reg = 0; 5837 insn->src_reg = 0; 5838 insn->off = 0; 5839 /* if this instruction is reachable (not a dead code), 5840 * verifier will complain with something like: 5841 * invalid func unknown#2001000123 5842 * where lower 123 is map index into obj->maps[] array 5843 */ 5844 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5845 5846 insn++; 5847 } 5848 } 5849 5850 /* Relocate data references within program code: 5851 * - map references; 5852 * - global variable references; 5853 * - extern references. 5854 */ 5855 static int 5856 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5857 { 5858 int i; 5859 5860 for (i = 0; i < prog->nr_reloc; i++) { 5861 struct reloc_desc *relo = &prog->reloc_desc[i]; 5862 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5863 const struct bpf_map *map; 5864 struct extern_desc *ext; 5865 5866 switch (relo->type) { 5867 case RELO_LD64: 5868 map = &obj->maps[relo->map_idx]; 5869 if (obj->gen_loader) { 5870 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5871 insn[0].imm = relo->map_idx; 5872 } else if (map->autocreate) { 5873 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5874 insn[0].imm = map->fd; 5875 } else { 5876 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5877 relo->map_idx, map); 5878 } 5879 break; 5880 case RELO_DATA: 5881 map = &obj->maps[relo->map_idx]; 5882 insn[1].imm = insn[0].imm + relo->sym_off; 5883 if (obj->gen_loader) { 5884 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5885 insn[0].imm = relo->map_idx; 5886 } else if (map->autocreate) { 5887 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5888 insn[0].imm = map->fd; 5889 } else { 5890 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5891 relo->map_idx, map); 5892 } 5893 break; 5894 case RELO_EXTERN_VAR: 5895 ext = &obj->externs[relo->sym_off]; 5896 if (ext->type == EXT_KCFG) { 5897 if (obj->gen_loader) { 5898 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5899 insn[0].imm = obj->kconfig_map_idx; 5900 } else { 5901 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5902 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5903 } 5904 insn[1].imm = ext->kcfg.data_off; 5905 } else /* EXT_KSYM */ { 5906 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5907 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5908 insn[0].imm = ext->ksym.kernel_btf_id; 5909 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5910 } else { /* typeless ksyms or unresolved typed ksyms */ 5911 insn[0].imm = (__u32)ext->ksym.addr; 5912 insn[1].imm = ext->ksym.addr >> 32; 5913 } 5914 } 5915 break; 5916 case RELO_EXTERN_FUNC: 5917 ext = &obj->externs[relo->sym_off]; 5918 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5919 if (ext->is_set) { 5920 insn[0].imm = ext->ksym.kernel_btf_id; 5921 insn[0].off = ext->ksym.btf_fd_idx; 5922 } else { /* unresolved weak kfunc */ 5923 insn[0].imm = 0; 5924 insn[0].off = 0; 5925 } 5926 break; 5927 case RELO_SUBPROG_ADDR: 5928 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5929 pr_warn("prog '%s': relo #%d: bad insn\n", 5930 prog->name, i); 5931 return -EINVAL; 5932 } 5933 /* handled already */ 5934 break; 5935 case RELO_CALL: 5936 /* handled already */ 5937 break; 5938 case RELO_CORE: 5939 /* will be handled by bpf_program_record_relos() */ 5940 break; 5941 default: 5942 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5943 prog->name, i, relo->type); 5944 return -EINVAL; 5945 } 5946 } 5947 5948 return 0; 5949 } 5950 5951 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5952 const struct bpf_program *prog, 5953 const struct btf_ext_info *ext_info, 5954 void **prog_info, __u32 *prog_rec_cnt, 5955 __u32 *prog_rec_sz) 5956 { 5957 void *copy_start = NULL, *copy_end = NULL; 5958 void *rec, *rec_end, *new_prog_info; 5959 const struct btf_ext_info_sec *sec; 5960 size_t old_sz, new_sz; 5961 int i, sec_num, sec_idx, off_adj; 5962 5963 sec_num = 0; 5964 for_each_btf_ext_sec(ext_info, sec) { 5965 sec_idx = ext_info->sec_idxs[sec_num]; 5966 sec_num++; 5967 if (prog->sec_idx != sec_idx) 5968 continue; 5969 5970 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5971 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5972 5973 if (insn_off < prog->sec_insn_off) 5974 continue; 5975 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5976 break; 5977 5978 if (!copy_start) 5979 copy_start = rec; 5980 copy_end = rec + ext_info->rec_size; 5981 } 5982 5983 if (!copy_start) 5984 return -ENOENT; 5985 5986 /* append func/line info of a given (sub-)program to the main 5987 * program func/line info 5988 */ 5989 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5990 new_sz = old_sz + (copy_end - copy_start); 5991 new_prog_info = realloc(*prog_info, new_sz); 5992 if (!new_prog_info) 5993 return -ENOMEM; 5994 *prog_info = new_prog_info; 5995 *prog_rec_cnt = new_sz / ext_info->rec_size; 5996 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5997 5998 /* Kernel instruction offsets are in units of 8-byte 5999 * instructions, while .BTF.ext instruction offsets generated 6000 * by Clang are in units of bytes. So convert Clang offsets 6001 * into kernel offsets and adjust offset according to program 6002 * relocated position. 6003 */ 6004 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6005 rec = new_prog_info + old_sz; 6006 rec_end = new_prog_info + new_sz; 6007 for (; rec < rec_end; rec += ext_info->rec_size) { 6008 __u32 *insn_off = rec; 6009 6010 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6011 } 6012 *prog_rec_sz = ext_info->rec_size; 6013 return 0; 6014 } 6015 6016 return -ENOENT; 6017 } 6018 6019 static int 6020 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6021 struct bpf_program *main_prog, 6022 const struct bpf_program *prog) 6023 { 6024 int err; 6025 6026 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6027 * supprot func/line info 6028 */ 6029 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6030 return 0; 6031 6032 /* only attempt func info relocation if main program's func_info 6033 * relocation was successful 6034 */ 6035 if (main_prog != prog && !main_prog->func_info) 6036 goto line_info; 6037 6038 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6039 &main_prog->func_info, 6040 &main_prog->func_info_cnt, 6041 &main_prog->func_info_rec_size); 6042 if (err) { 6043 if (err != -ENOENT) { 6044 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6045 prog->name, err); 6046 return err; 6047 } 6048 if (main_prog->func_info) { 6049 /* 6050 * Some info has already been found but has problem 6051 * in the last btf_ext reloc. Must have to error out. 6052 */ 6053 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6054 return err; 6055 } 6056 /* Have problem loading the very first info. Ignore the rest. */ 6057 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6058 prog->name); 6059 } 6060 6061 line_info: 6062 /* don't relocate line info if main program's relocation failed */ 6063 if (main_prog != prog && !main_prog->line_info) 6064 return 0; 6065 6066 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6067 &main_prog->line_info, 6068 &main_prog->line_info_cnt, 6069 &main_prog->line_info_rec_size); 6070 if (err) { 6071 if (err != -ENOENT) { 6072 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6073 prog->name, err); 6074 return err; 6075 } 6076 if (main_prog->line_info) { 6077 /* 6078 * Some info has already been found but has problem 6079 * in the last btf_ext reloc. Must have to error out. 6080 */ 6081 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6082 return err; 6083 } 6084 /* Have problem loading the very first info. Ignore the rest. */ 6085 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6086 prog->name); 6087 } 6088 return 0; 6089 } 6090 6091 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6092 { 6093 size_t insn_idx = *(const size_t *)key; 6094 const struct reloc_desc *relo = elem; 6095 6096 if (insn_idx == relo->insn_idx) 6097 return 0; 6098 return insn_idx < relo->insn_idx ? -1 : 1; 6099 } 6100 6101 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6102 { 6103 if (!prog->nr_reloc) 6104 return NULL; 6105 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6106 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6107 } 6108 6109 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6110 { 6111 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6112 struct reloc_desc *relos; 6113 int i; 6114 6115 if (main_prog == subprog) 6116 return 0; 6117 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6118 if (!relos) 6119 return -ENOMEM; 6120 if (subprog->nr_reloc) 6121 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6122 sizeof(*relos) * subprog->nr_reloc); 6123 6124 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6125 relos[i].insn_idx += subprog->sub_insn_off; 6126 /* After insn_idx adjustment the 'relos' array is still sorted 6127 * by insn_idx and doesn't break bsearch. 6128 */ 6129 main_prog->reloc_desc = relos; 6130 main_prog->nr_reloc = new_cnt; 6131 return 0; 6132 } 6133 6134 static int 6135 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6136 struct bpf_program *prog) 6137 { 6138 size_t sub_insn_idx, insn_idx, new_cnt; 6139 struct bpf_program *subprog; 6140 struct bpf_insn *insns, *insn; 6141 struct reloc_desc *relo; 6142 int err; 6143 6144 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6145 if (err) 6146 return err; 6147 6148 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6149 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6150 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6151 continue; 6152 6153 relo = find_prog_insn_relo(prog, insn_idx); 6154 if (relo && relo->type == RELO_EXTERN_FUNC) 6155 /* kfunc relocations will be handled later 6156 * in bpf_object__relocate_data() 6157 */ 6158 continue; 6159 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6160 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6161 prog->name, insn_idx, relo->type); 6162 return -LIBBPF_ERRNO__RELOC; 6163 } 6164 if (relo) { 6165 /* sub-program instruction index is a combination of 6166 * an offset of a symbol pointed to by relocation and 6167 * call instruction's imm field; for global functions, 6168 * call always has imm = -1, but for static functions 6169 * relocation is against STT_SECTION and insn->imm 6170 * points to a start of a static function 6171 * 6172 * for subprog addr relocation, the relo->sym_off + insn->imm is 6173 * the byte offset in the corresponding section. 6174 */ 6175 if (relo->type == RELO_CALL) 6176 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6177 else 6178 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6179 } else if (insn_is_pseudo_func(insn)) { 6180 /* 6181 * RELO_SUBPROG_ADDR relo is always emitted even if both 6182 * functions are in the same section, so it shouldn't reach here. 6183 */ 6184 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6185 prog->name, insn_idx); 6186 return -LIBBPF_ERRNO__RELOC; 6187 } else { 6188 /* if subprogram call is to a static function within 6189 * the same ELF section, there won't be any relocation 6190 * emitted, but it also means there is no additional 6191 * offset necessary, insns->imm is relative to 6192 * instruction's original position within the section 6193 */ 6194 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6195 } 6196 6197 /* we enforce that sub-programs should be in .text section */ 6198 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6199 if (!subprog) { 6200 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6201 prog->name); 6202 return -LIBBPF_ERRNO__RELOC; 6203 } 6204 6205 /* if it's the first call instruction calling into this 6206 * subprogram (meaning this subprog hasn't been processed 6207 * yet) within the context of current main program: 6208 * - append it at the end of main program's instructions blog; 6209 * - process is recursively, while current program is put on hold; 6210 * - if that subprogram calls some other not yet processes 6211 * subprogram, same thing will happen recursively until 6212 * there are no more unprocesses subprograms left to append 6213 * and relocate. 6214 */ 6215 if (subprog->sub_insn_off == 0) { 6216 subprog->sub_insn_off = main_prog->insns_cnt; 6217 6218 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6219 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6220 if (!insns) { 6221 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6222 return -ENOMEM; 6223 } 6224 main_prog->insns = insns; 6225 main_prog->insns_cnt = new_cnt; 6226 6227 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6228 subprog->insns_cnt * sizeof(*insns)); 6229 6230 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6231 main_prog->name, subprog->insns_cnt, subprog->name); 6232 6233 /* The subprog insns are now appended. Append its relos too. */ 6234 err = append_subprog_relos(main_prog, subprog); 6235 if (err) 6236 return err; 6237 err = bpf_object__reloc_code(obj, main_prog, subprog); 6238 if (err) 6239 return err; 6240 } 6241 6242 /* main_prog->insns memory could have been re-allocated, so 6243 * calculate pointer again 6244 */ 6245 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6246 /* calculate correct instruction position within current main 6247 * prog; each main prog can have a different set of 6248 * subprograms appended (potentially in different order as 6249 * well), so position of any subprog can be different for 6250 * different main programs 6251 */ 6252 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6253 6254 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6255 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6256 } 6257 6258 return 0; 6259 } 6260 6261 /* 6262 * Relocate sub-program calls. 6263 * 6264 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6265 * main prog) is processed separately. For each subprog (non-entry functions, 6266 * that can be called from either entry progs or other subprogs) gets their 6267 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6268 * hasn't been yet appended and relocated within current main prog. Once its 6269 * relocated, sub_insn_off will point at the position within current main prog 6270 * where given subprog was appended. This will further be used to relocate all 6271 * the call instructions jumping into this subprog. 6272 * 6273 * We start with main program and process all call instructions. If the call 6274 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6275 * is zero), subprog instructions are appended at the end of main program's 6276 * instruction array. Then main program is "put on hold" while we recursively 6277 * process newly appended subprogram. If that subprogram calls into another 6278 * subprogram that hasn't been appended, new subprogram is appended again to 6279 * the *main* prog's instructions (subprog's instructions are always left 6280 * untouched, as they need to be in unmodified state for subsequent main progs 6281 * and subprog instructions are always sent only as part of a main prog) and 6282 * the process continues recursively. Once all the subprogs called from a main 6283 * prog or any of its subprogs are appended (and relocated), all their 6284 * positions within finalized instructions array are known, so it's easy to 6285 * rewrite call instructions with correct relative offsets, corresponding to 6286 * desired target subprog. 6287 * 6288 * Its important to realize that some subprogs might not be called from some 6289 * main prog and any of its called/used subprogs. Those will keep their 6290 * subprog->sub_insn_off as zero at all times and won't be appended to current 6291 * main prog and won't be relocated within the context of current main prog. 6292 * They might still be used from other main progs later. 6293 * 6294 * Visually this process can be shown as below. Suppose we have two main 6295 * programs mainA and mainB and BPF object contains three subprogs: subA, 6296 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6297 * subC both call subB: 6298 * 6299 * +--------+ +-------+ 6300 * | v v | 6301 * +--+---+ +--+-+-+ +---+--+ 6302 * | subA | | subB | | subC | 6303 * +--+---+ +------+ +---+--+ 6304 * ^ ^ 6305 * | | 6306 * +---+-------+ +------+----+ 6307 * | mainA | | mainB | 6308 * +-----------+ +-----------+ 6309 * 6310 * We'll start relocating mainA, will find subA, append it and start 6311 * processing sub A recursively: 6312 * 6313 * +-----------+------+ 6314 * | mainA | subA | 6315 * +-----------+------+ 6316 * 6317 * At this point we notice that subB is used from subA, so we append it and 6318 * relocate (there are no further subcalls from subB): 6319 * 6320 * +-----------+------+------+ 6321 * | mainA | subA | subB | 6322 * +-----------+------+------+ 6323 * 6324 * At this point, we relocate subA calls, then go one level up and finish with 6325 * relocatin mainA calls. mainA is done. 6326 * 6327 * For mainB process is similar but results in different order. We start with 6328 * mainB and skip subA and subB, as mainB never calls them (at least 6329 * directly), but we see subC is needed, so we append and start processing it: 6330 * 6331 * +-----------+------+ 6332 * | mainB | subC | 6333 * +-----------+------+ 6334 * Now we see subC needs subB, so we go back to it, append and relocate it: 6335 * 6336 * +-----------+------+------+ 6337 * | mainB | subC | subB | 6338 * +-----------+------+------+ 6339 * 6340 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6341 */ 6342 static int 6343 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6344 { 6345 struct bpf_program *subprog; 6346 int i, err; 6347 6348 /* mark all subprogs as not relocated (yet) within the context of 6349 * current main program 6350 */ 6351 for (i = 0; i < obj->nr_programs; i++) { 6352 subprog = &obj->programs[i]; 6353 if (!prog_is_subprog(obj, subprog)) 6354 continue; 6355 6356 subprog->sub_insn_off = 0; 6357 } 6358 6359 err = bpf_object__reloc_code(obj, prog, prog); 6360 if (err) 6361 return err; 6362 6363 return 0; 6364 } 6365 6366 static void 6367 bpf_object__free_relocs(struct bpf_object *obj) 6368 { 6369 struct bpf_program *prog; 6370 int i; 6371 6372 /* free up relocation descriptors */ 6373 for (i = 0; i < obj->nr_programs; i++) { 6374 prog = &obj->programs[i]; 6375 zfree(&prog->reloc_desc); 6376 prog->nr_reloc = 0; 6377 } 6378 } 6379 6380 static int cmp_relocs(const void *_a, const void *_b) 6381 { 6382 const struct reloc_desc *a = _a; 6383 const struct reloc_desc *b = _b; 6384 6385 if (a->insn_idx != b->insn_idx) 6386 return a->insn_idx < b->insn_idx ? -1 : 1; 6387 6388 /* no two relocations should have the same insn_idx, but ... */ 6389 if (a->type != b->type) 6390 return a->type < b->type ? -1 : 1; 6391 6392 return 0; 6393 } 6394 6395 static void bpf_object__sort_relos(struct bpf_object *obj) 6396 { 6397 int i; 6398 6399 for (i = 0; i < obj->nr_programs; i++) { 6400 struct bpf_program *p = &obj->programs[i]; 6401 6402 if (!p->nr_reloc) 6403 continue; 6404 6405 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6406 } 6407 } 6408 6409 static int 6410 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6411 { 6412 struct bpf_program *prog; 6413 size_t i, j; 6414 int err; 6415 6416 if (obj->btf_ext) { 6417 err = bpf_object__relocate_core(obj, targ_btf_path); 6418 if (err) { 6419 pr_warn("failed to perform CO-RE relocations: %d\n", 6420 err); 6421 return err; 6422 } 6423 bpf_object__sort_relos(obj); 6424 } 6425 6426 /* Before relocating calls pre-process relocations and mark 6427 * few ld_imm64 instructions that points to subprogs. 6428 * Otherwise bpf_object__reloc_code() later would have to consider 6429 * all ld_imm64 insns as relocation candidates. That would 6430 * reduce relocation speed, since amount of find_prog_insn_relo() 6431 * would increase and most of them will fail to find a relo. 6432 */ 6433 for (i = 0; i < obj->nr_programs; i++) { 6434 prog = &obj->programs[i]; 6435 for (j = 0; j < prog->nr_reloc; j++) { 6436 struct reloc_desc *relo = &prog->reloc_desc[j]; 6437 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6438 6439 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6440 if (relo->type == RELO_SUBPROG_ADDR) 6441 insn[0].src_reg = BPF_PSEUDO_FUNC; 6442 } 6443 } 6444 6445 /* relocate subprogram calls and append used subprograms to main 6446 * programs; each copy of subprogram code needs to be relocated 6447 * differently for each main program, because its code location might 6448 * have changed. 6449 * Append subprog relos to main programs to allow data relos to be 6450 * processed after text is completely relocated. 6451 */ 6452 for (i = 0; i < obj->nr_programs; i++) { 6453 prog = &obj->programs[i]; 6454 /* sub-program's sub-calls are relocated within the context of 6455 * its main program only 6456 */ 6457 if (prog_is_subprog(obj, prog)) 6458 continue; 6459 if (!prog->autoload) 6460 continue; 6461 6462 err = bpf_object__relocate_calls(obj, prog); 6463 if (err) { 6464 pr_warn("prog '%s': failed to relocate calls: %d\n", 6465 prog->name, err); 6466 return err; 6467 } 6468 } 6469 /* Process data relos for main programs */ 6470 for (i = 0; i < obj->nr_programs; i++) { 6471 prog = &obj->programs[i]; 6472 if (prog_is_subprog(obj, prog)) 6473 continue; 6474 if (!prog->autoload) 6475 continue; 6476 err = bpf_object__relocate_data(obj, prog); 6477 if (err) { 6478 pr_warn("prog '%s': failed to relocate data references: %d\n", 6479 prog->name, err); 6480 return err; 6481 } 6482 } 6483 6484 return 0; 6485 } 6486 6487 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6488 Elf64_Shdr *shdr, Elf_Data *data); 6489 6490 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6491 Elf64_Shdr *shdr, Elf_Data *data) 6492 { 6493 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6494 int i, j, nrels, new_sz; 6495 const struct btf_var_secinfo *vi = NULL; 6496 const struct btf_type *sec, *var, *def; 6497 struct bpf_map *map = NULL, *targ_map = NULL; 6498 struct bpf_program *targ_prog = NULL; 6499 bool is_prog_array, is_map_in_map; 6500 const struct btf_member *member; 6501 const char *name, *mname, *type; 6502 unsigned int moff; 6503 Elf64_Sym *sym; 6504 Elf64_Rel *rel; 6505 void *tmp; 6506 6507 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6508 return -EINVAL; 6509 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6510 if (!sec) 6511 return -EINVAL; 6512 6513 nrels = shdr->sh_size / shdr->sh_entsize; 6514 for (i = 0; i < nrels; i++) { 6515 rel = elf_rel_by_idx(data, i); 6516 if (!rel) { 6517 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6518 return -LIBBPF_ERRNO__FORMAT; 6519 } 6520 6521 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6522 if (!sym) { 6523 pr_warn(".maps relo #%d: symbol %zx not found\n", 6524 i, (size_t)ELF64_R_SYM(rel->r_info)); 6525 return -LIBBPF_ERRNO__FORMAT; 6526 } 6527 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6528 6529 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6530 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6531 (size_t)rel->r_offset, sym->st_name, name); 6532 6533 for (j = 0; j < obj->nr_maps; j++) { 6534 map = &obj->maps[j]; 6535 if (map->sec_idx != obj->efile.btf_maps_shndx) 6536 continue; 6537 6538 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6539 if (vi->offset <= rel->r_offset && 6540 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6541 break; 6542 } 6543 if (j == obj->nr_maps) { 6544 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6545 i, name, (size_t)rel->r_offset); 6546 return -EINVAL; 6547 } 6548 6549 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6550 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6551 type = is_map_in_map ? "map" : "prog"; 6552 if (is_map_in_map) { 6553 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6554 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6555 i, name); 6556 return -LIBBPF_ERRNO__RELOC; 6557 } 6558 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6559 map->def.key_size != sizeof(int)) { 6560 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6561 i, map->name, sizeof(int)); 6562 return -EINVAL; 6563 } 6564 targ_map = bpf_object__find_map_by_name(obj, name); 6565 if (!targ_map) { 6566 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6567 i, name); 6568 return -ESRCH; 6569 } 6570 } else if (is_prog_array) { 6571 targ_prog = bpf_object__find_program_by_name(obj, name); 6572 if (!targ_prog) { 6573 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6574 i, name); 6575 return -ESRCH; 6576 } 6577 if (targ_prog->sec_idx != sym->st_shndx || 6578 targ_prog->sec_insn_off * 8 != sym->st_value || 6579 prog_is_subprog(obj, targ_prog)) { 6580 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6581 i, name); 6582 return -LIBBPF_ERRNO__RELOC; 6583 } 6584 } else { 6585 return -EINVAL; 6586 } 6587 6588 var = btf__type_by_id(obj->btf, vi->type); 6589 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6590 if (btf_vlen(def) == 0) 6591 return -EINVAL; 6592 member = btf_members(def) + btf_vlen(def) - 1; 6593 mname = btf__name_by_offset(obj->btf, member->name_off); 6594 if (strcmp(mname, "values")) 6595 return -EINVAL; 6596 6597 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6598 if (rel->r_offset - vi->offset < moff) 6599 return -EINVAL; 6600 6601 moff = rel->r_offset - vi->offset - moff; 6602 /* here we use BPF pointer size, which is always 64 bit, as we 6603 * are parsing ELF that was built for BPF target 6604 */ 6605 if (moff % bpf_ptr_sz) 6606 return -EINVAL; 6607 moff /= bpf_ptr_sz; 6608 if (moff >= map->init_slots_sz) { 6609 new_sz = moff + 1; 6610 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6611 if (!tmp) 6612 return -ENOMEM; 6613 map->init_slots = tmp; 6614 memset(map->init_slots + map->init_slots_sz, 0, 6615 (new_sz - map->init_slots_sz) * host_ptr_sz); 6616 map->init_slots_sz = new_sz; 6617 } 6618 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6619 6620 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6621 i, map->name, moff, type, name); 6622 } 6623 6624 return 0; 6625 } 6626 6627 static int bpf_object__collect_relos(struct bpf_object *obj) 6628 { 6629 int i, err; 6630 6631 for (i = 0; i < obj->efile.sec_cnt; i++) { 6632 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6633 Elf64_Shdr *shdr; 6634 Elf_Data *data; 6635 int idx; 6636 6637 if (sec_desc->sec_type != SEC_RELO) 6638 continue; 6639 6640 shdr = sec_desc->shdr; 6641 data = sec_desc->data; 6642 idx = shdr->sh_info; 6643 6644 if (shdr->sh_type != SHT_REL) { 6645 pr_warn("internal error at %d\n", __LINE__); 6646 return -LIBBPF_ERRNO__INTERNAL; 6647 } 6648 6649 if (idx == obj->efile.st_ops_shndx) 6650 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6651 else if (idx == obj->efile.btf_maps_shndx) 6652 err = bpf_object__collect_map_relos(obj, shdr, data); 6653 else 6654 err = bpf_object__collect_prog_relos(obj, shdr, data); 6655 if (err) 6656 return err; 6657 } 6658 6659 bpf_object__sort_relos(obj); 6660 return 0; 6661 } 6662 6663 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6664 { 6665 if (BPF_CLASS(insn->code) == BPF_JMP && 6666 BPF_OP(insn->code) == BPF_CALL && 6667 BPF_SRC(insn->code) == BPF_K && 6668 insn->src_reg == 0 && 6669 insn->dst_reg == 0) { 6670 *func_id = insn->imm; 6671 return true; 6672 } 6673 return false; 6674 } 6675 6676 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6677 { 6678 struct bpf_insn *insn = prog->insns; 6679 enum bpf_func_id func_id; 6680 int i; 6681 6682 if (obj->gen_loader) 6683 return 0; 6684 6685 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6686 if (!insn_is_helper_call(insn, &func_id)) 6687 continue; 6688 6689 /* on kernels that don't yet support 6690 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6691 * to bpf_probe_read() which works well for old kernels 6692 */ 6693 switch (func_id) { 6694 case BPF_FUNC_probe_read_kernel: 6695 case BPF_FUNC_probe_read_user: 6696 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6697 insn->imm = BPF_FUNC_probe_read; 6698 break; 6699 case BPF_FUNC_probe_read_kernel_str: 6700 case BPF_FUNC_probe_read_user_str: 6701 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6702 insn->imm = BPF_FUNC_probe_read_str; 6703 break; 6704 default: 6705 break; 6706 } 6707 } 6708 return 0; 6709 } 6710 6711 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6712 int *btf_obj_fd, int *btf_type_id); 6713 6714 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6715 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6716 struct bpf_prog_load_opts *opts, long cookie) 6717 { 6718 enum sec_def_flags def = cookie; 6719 6720 /* old kernels might not support specifying expected_attach_type */ 6721 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6722 opts->expected_attach_type = 0; 6723 6724 if (def & SEC_SLEEPABLE) 6725 opts->prog_flags |= BPF_F_SLEEPABLE; 6726 6727 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6728 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6729 6730 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6731 int btf_obj_fd = 0, btf_type_id = 0, err; 6732 const char *attach_name; 6733 6734 attach_name = strchr(prog->sec_name, '/'); 6735 if (!attach_name) { 6736 /* if BPF program is annotated with just SEC("fentry") 6737 * (or similar) without declaratively specifying 6738 * target, then it is expected that target will be 6739 * specified with bpf_program__set_attach_target() at 6740 * runtime before BPF object load step. If not, then 6741 * there is nothing to load into the kernel as BPF 6742 * verifier won't be able to validate BPF program 6743 * correctness anyways. 6744 */ 6745 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6746 prog->name); 6747 return -EINVAL; 6748 } 6749 attach_name++; /* skip over / */ 6750 6751 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6752 if (err) 6753 return err; 6754 6755 /* cache resolved BTF FD and BTF type ID in the prog */ 6756 prog->attach_btf_obj_fd = btf_obj_fd; 6757 prog->attach_btf_id = btf_type_id; 6758 6759 /* but by now libbpf common logic is not utilizing 6760 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6761 * this callback is called after opts were populated by 6762 * libbpf, so this callback has to update opts explicitly here 6763 */ 6764 opts->attach_btf_obj_fd = btf_obj_fd; 6765 opts->attach_btf_id = btf_type_id; 6766 } 6767 return 0; 6768 } 6769 6770 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6771 6772 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6773 struct bpf_insn *insns, int insns_cnt, 6774 const char *license, __u32 kern_version, int *prog_fd) 6775 { 6776 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6777 const char *prog_name = NULL; 6778 char *cp, errmsg[STRERR_BUFSIZE]; 6779 size_t log_buf_size = 0; 6780 char *log_buf = NULL, *tmp; 6781 int btf_fd, ret, err; 6782 bool own_log_buf = true; 6783 __u32 log_level = prog->log_level; 6784 6785 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6786 /* 6787 * The program type must be set. Most likely we couldn't find a proper 6788 * section definition at load time, and thus we didn't infer the type. 6789 */ 6790 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6791 prog->name, prog->sec_name); 6792 return -EINVAL; 6793 } 6794 6795 if (!insns || !insns_cnt) 6796 return -EINVAL; 6797 6798 load_attr.expected_attach_type = prog->expected_attach_type; 6799 if (kernel_supports(obj, FEAT_PROG_NAME)) 6800 prog_name = prog->name; 6801 load_attr.attach_prog_fd = prog->attach_prog_fd; 6802 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6803 load_attr.attach_btf_id = prog->attach_btf_id; 6804 load_attr.kern_version = kern_version; 6805 load_attr.prog_ifindex = prog->prog_ifindex; 6806 6807 /* specify func_info/line_info only if kernel supports them */ 6808 btf_fd = bpf_object__btf_fd(obj); 6809 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6810 load_attr.prog_btf_fd = btf_fd; 6811 load_attr.func_info = prog->func_info; 6812 load_attr.func_info_rec_size = prog->func_info_rec_size; 6813 load_attr.func_info_cnt = prog->func_info_cnt; 6814 load_attr.line_info = prog->line_info; 6815 load_attr.line_info_rec_size = prog->line_info_rec_size; 6816 load_attr.line_info_cnt = prog->line_info_cnt; 6817 } 6818 load_attr.log_level = log_level; 6819 load_attr.prog_flags = prog->prog_flags; 6820 load_attr.fd_array = obj->fd_array; 6821 6822 /* adjust load_attr if sec_def provides custom preload callback */ 6823 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6824 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6825 if (err < 0) { 6826 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6827 prog->name, err); 6828 return err; 6829 } 6830 insns = prog->insns; 6831 insns_cnt = prog->insns_cnt; 6832 } 6833 6834 if (obj->gen_loader) { 6835 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6836 license, insns, insns_cnt, &load_attr, 6837 prog - obj->programs); 6838 *prog_fd = -1; 6839 return 0; 6840 } 6841 6842 retry_load: 6843 /* if log_level is zero, we don't request logs initially even if 6844 * custom log_buf is specified; if the program load fails, then we'll 6845 * bump log_level to 1 and use either custom log_buf or we'll allocate 6846 * our own and retry the load to get details on what failed 6847 */ 6848 if (log_level) { 6849 if (prog->log_buf) { 6850 log_buf = prog->log_buf; 6851 log_buf_size = prog->log_size; 6852 own_log_buf = false; 6853 } else if (obj->log_buf) { 6854 log_buf = obj->log_buf; 6855 log_buf_size = obj->log_size; 6856 own_log_buf = false; 6857 } else { 6858 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6859 tmp = realloc(log_buf, log_buf_size); 6860 if (!tmp) { 6861 ret = -ENOMEM; 6862 goto out; 6863 } 6864 log_buf = tmp; 6865 log_buf[0] = '\0'; 6866 own_log_buf = true; 6867 } 6868 } 6869 6870 load_attr.log_buf = log_buf; 6871 load_attr.log_size = log_buf_size; 6872 load_attr.log_level = log_level; 6873 6874 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6875 if (ret >= 0) { 6876 if (log_level && own_log_buf) { 6877 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6878 prog->name, log_buf); 6879 } 6880 6881 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6882 struct bpf_map *map; 6883 int i; 6884 6885 for (i = 0; i < obj->nr_maps; i++) { 6886 map = &prog->obj->maps[i]; 6887 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6888 continue; 6889 6890 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6891 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6892 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6893 prog->name, map->real_name, cp); 6894 /* Don't fail hard if can't bind rodata. */ 6895 } 6896 } 6897 } 6898 6899 *prog_fd = ret; 6900 ret = 0; 6901 goto out; 6902 } 6903 6904 if (log_level == 0) { 6905 log_level = 1; 6906 goto retry_load; 6907 } 6908 /* On ENOSPC, increase log buffer size and retry, unless custom 6909 * log_buf is specified. 6910 * Be careful to not overflow u32, though. Kernel's log buf size limit 6911 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6912 * multiply by 2 unless we are sure we'll fit within 32 bits. 6913 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6914 */ 6915 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6916 goto retry_load; 6917 6918 ret = -errno; 6919 6920 /* post-process verifier log to improve error descriptions */ 6921 fixup_verifier_log(prog, log_buf, log_buf_size); 6922 6923 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6924 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6925 pr_perm_msg(ret); 6926 6927 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6928 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6929 prog->name, log_buf); 6930 } 6931 6932 out: 6933 if (own_log_buf) 6934 free(log_buf); 6935 return ret; 6936 } 6937 6938 static char *find_prev_line(char *buf, char *cur) 6939 { 6940 char *p; 6941 6942 if (cur == buf) /* end of a log buf */ 6943 return NULL; 6944 6945 p = cur - 1; 6946 while (p - 1 >= buf && *(p - 1) != '\n') 6947 p--; 6948 6949 return p; 6950 } 6951 6952 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6953 char *orig, size_t orig_sz, const char *patch) 6954 { 6955 /* size of the remaining log content to the right from the to-be-replaced part */ 6956 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6957 size_t patch_sz = strlen(patch); 6958 6959 if (patch_sz != orig_sz) { 6960 /* If patch line(s) are longer than original piece of verifier log, 6961 * shift log contents by (patch_sz - orig_sz) bytes to the right 6962 * starting from after to-be-replaced part of the log. 6963 * 6964 * If patch line(s) are shorter than original piece of verifier log, 6965 * shift log contents by (orig_sz - patch_sz) bytes to the left 6966 * starting from after to-be-replaced part of the log 6967 * 6968 * We need to be careful about not overflowing available 6969 * buf_sz capacity. If that's the case, we'll truncate the end 6970 * of the original log, as necessary. 6971 */ 6972 if (patch_sz > orig_sz) { 6973 if (orig + patch_sz >= buf + buf_sz) { 6974 /* patch is big enough to cover remaining space completely */ 6975 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6976 rem_sz = 0; 6977 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6978 /* patch causes part of remaining log to be truncated */ 6979 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6980 } 6981 } 6982 /* shift remaining log to the right by calculated amount */ 6983 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6984 } 6985 6986 memcpy(orig, patch, patch_sz); 6987 } 6988 6989 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6990 char *buf, size_t buf_sz, size_t log_sz, 6991 char *line1, char *line2, char *line3) 6992 { 6993 /* Expected log for failed and not properly guarded CO-RE relocation: 6994 * line1 -> 123: (85) call unknown#195896080 6995 * line2 -> invalid func unknown#195896080 6996 * line3 -> <anything else or end of buffer> 6997 * 6998 * "123" is the index of the instruction that was poisoned. We extract 6999 * instruction index to find corresponding CO-RE relocation and 7000 * replace this part of the log with more relevant information about 7001 * failed CO-RE relocation. 7002 */ 7003 const struct bpf_core_relo *relo; 7004 struct bpf_core_spec spec; 7005 char patch[512], spec_buf[256]; 7006 int insn_idx, err, spec_len; 7007 7008 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7009 return; 7010 7011 relo = find_relo_core(prog, insn_idx); 7012 if (!relo) 7013 return; 7014 7015 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7016 if (err) 7017 return; 7018 7019 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7020 snprintf(patch, sizeof(patch), 7021 "%d: <invalid CO-RE relocation>\n" 7022 "failed to resolve CO-RE relocation %s%s\n", 7023 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7024 7025 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7026 } 7027 7028 static void fixup_log_missing_map_load(struct bpf_program *prog, 7029 char *buf, size_t buf_sz, size_t log_sz, 7030 char *line1, char *line2, char *line3) 7031 { 7032 /* Expected log for failed and not properly guarded CO-RE relocation: 7033 * line1 -> 123: (85) call unknown#2001000345 7034 * line2 -> invalid func unknown#2001000345 7035 * line3 -> <anything else or end of buffer> 7036 * 7037 * "123" is the index of the instruction that was poisoned. 7038 * "345" in "2001000345" are map index in obj->maps to fetch map name. 7039 */ 7040 struct bpf_object *obj = prog->obj; 7041 const struct bpf_map *map; 7042 int insn_idx, map_idx; 7043 char patch[128]; 7044 7045 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7046 return; 7047 7048 map_idx -= MAP_LDIMM64_POISON_BASE; 7049 if (map_idx < 0 || map_idx >= obj->nr_maps) 7050 return; 7051 map = &obj->maps[map_idx]; 7052 7053 snprintf(patch, sizeof(patch), 7054 "%d: <invalid BPF map reference>\n" 7055 "BPF map '%s' is referenced but wasn't created\n", 7056 insn_idx, map->name); 7057 7058 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7059 } 7060 7061 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7062 { 7063 /* look for familiar error patterns in last N lines of the log */ 7064 const size_t max_last_line_cnt = 10; 7065 char *prev_line, *cur_line, *next_line; 7066 size_t log_sz; 7067 int i; 7068 7069 if (!buf) 7070 return; 7071 7072 log_sz = strlen(buf) + 1; 7073 next_line = buf + log_sz - 1; 7074 7075 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7076 cur_line = find_prev_line(buf, next_line); 7077 if (!cur_line) 7078 return; 7079 7080 /* failed CO-RE relocation case */ 7081 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7082 prev_line = find_prev_line(buf, cur_line); 7083 if (!prev_line) 7084 continue; 7085 7086 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7087 prev_line, cur_line, next_line); 7088 return; 7089 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7090 prev_line = find_prev_line(buf, cur_line); 7091 if (!prev_line) 7092 continue; 7093 7094 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7095 prev_line, cur_line, next_line); 7096 return; 7097 } 7098 } 7099 } 7100 7101 static int bpf_program_record_relos(struct bpf_program *prog) 7102 { 7103 struct bpf_object *obj = prog->obj; 7104 int i; 7105 7106 for (i = 0; i < prog->nr_reloc; i++) { 7107 struct reloc_desc *relo = &prog->reloc_desc[i]; 7108 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7109 7110 switch (relo->type) { 7111 case RELO_EXTERN_VAR: 7112 if (ext->type != EXT_KSYM) 7113 continue; 7114 bpf_gen__record_extern(obj->gen_loader, ext->name, 7115 ext->is_weak, !ext->ksym.type_id, 7116 BTF_KIND_VAR, relo->insn_idx); 7117 break; 7118 case RELO_EXTERN_FUNC: 7119 bpf_gen__record_extern(obj->gen_loader, ext->name, 7120 ext->is_weak, false, BTF_KIND_FUNC, 7121 relo->insn_idx); 7122 break; 7123 case RELO_CORE: { 7124 struct bpf_core_relo cr = { 7125 .insn_off = relo->insn_idx * 8, 7126 .type_id = relo->core_relo->type_id, 7127 .access_str_off = relo->core_relo->access_str_off, 7128 .kind = relo->core_relo->kind, 7129 }; 7130 7131 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7132 break; 7133 } 7134 default: 7135 continue; 7136 } 7137 } 7138 return 0; 7139 } 7140 7141 static int 7142 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7143 { 7144 struct bpf_program *prog; 7145 size_t i; 7146 int err; 7147 7148 for (i = 0; i < obj->nr_programs; i++) { 7149 prog = &obj->programs[i]; 7150 err = bpf_object__sanitize_prog(obj, prog); 7151 if (err) 7152 return err; 7153 } 7154 7155 for (i = 0; i < obj->nr_programs; i++) { 7156 prog = &obj->programs[i]; 7157 if (prog_is_subprog(obj, prog)) 7158 continue; 7159 if (!prog->autoload) { 7160 pr_debug("prog '%s': skipped loading\n", prog->name); 7161 continue; 7162 } 7163 prog->log_level |= log_level; 7164 7165 if (obj->gen_loader) 7166 bpf_program_record_relos(prog); 7167 7168 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7169 obj->license, obj->kern_version, &prog->fd); 7170 if (err) { 7171 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7172 return err; 7173 } 7174 } 7175 7176 bpf_object__free_relocs(obj); 7177 return 0; 7178 } 7179 7180 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7181 7182 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7183 { 7184 struct bpf_program *prog; 7185 int err; 7186 7187 bpf_object__for_each_program(prog, obj) { 7188 prog->sec_def = find_sec_def(prog->sec_name); 7189 if (!prog->sec_def) { 7190 /* couldn't guess, but user might manually specify */ 7191 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7192 prog->name, prog->sec_name); 7193 continue; 7194 } 7195 7196 prog->type = prog->sec_def->prog_type; 7197 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7198 7199 /* sec_def can have custom callback which should be called 7200 * after bpf_program is initialized to adjust its properties 7201 */ 7202 if (prog->sec_def->prog_setup_fn) { 7203 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7204 if (err < 0) { 7205 pr_warn("prog '%s': failed to initialize: %d\n", 7206 prog->name, err); 7207 return err; 7208 } 7209 } 7210 } 7211 7212 return 0; 7213 } 7214 7215 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7216 const struct bpf_object_open_opts *opts) 7217 { 7218 const char *obj_name, *kconfig, *btf_tmp_path; 7219 struct bpf_object *obj; 7220 char tmp_name[64]; 7221 int err; 7222 char *log_buf; 7223 size_t log_size; 7224 __u32 log_level; 7225 7226 if (elf_version(EV_CURRENT) == EV_NONE) { 7227 pr_warn("failed to init libelf for %s\n", 7228 path ? : "(mem buf)"); 7229 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7230 } 7231 7232 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7233 return ERR_PTR(-EINVAL); 7234 7235 obj_name = OPTS_GET(opts, object_name, NULL); 7236 if (obj_buf) { 7237 if (!obj_name) { 7238 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7239 (unsigned long)obj_buf, 7240 (unsigned long)obj_buf_sz); 7241 obj_name = tmp_name; 7242 } 7243 path = obj_name; 7244 pr_debug("loading object '%s' from buffer\n", obj_name); 7245 } 7246 7247 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7248 log_size = OPTS_GET(opts, kernel_log_size, 0); 7249 log_level = OPTS_GET(opts, kernel_log_level, 0); 7250 if (log_size > UINT_MAX) 7251 return ERR_PTR(-EINVAL); 7252 if (log_size && !log_buf) 7253 return ERR_PTR(-EINVAL); 7254 7255 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7256 if (IS_ERR(obj)) 7257 return obj; 7258 7259 obj->log_buf = log_buf; 7260 obj->log_size = log_size; 7261 obj->log_level = log_level; 7262 7263 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7264 if (btf_tmp_path) { 7265 if (strlen(btf_tmp_path) >= PATH_MAX) { 7266 err = -ENAMETOOLONG; 7267 goto out; 7268 } 7269 obj->btf_custom_path = strdup(btf_tmp_path); 7270 if (!obj->btf_custom_path) { 7271 err = -ENOMEM; 7272 goto out; 7273 } 7274 } 7275 7276 kconfig = OPTS_GET(opts, kconfig, NULL); 7277 if (kconfig) { 7278 obj->kconfig = strdup(kconfig); 7279 if (!obj->kconfig) { 7280 err = -ENOMEM; 7281 goto out; 7282 } 7283 } 7284 7285 err = bpf_object__elf_init(obj); 7286 err = err ? : bpf_object__check_endianness(obj); 7287 err = err ? : bpf_object__elf_collect(obj); 7288 err = err ? : bpf_object__collect_externs(obj); 7289 err = err ? : bpf_object_fixup_btf(obj); 7290 err = err ? : bpf_object__init_maps(obj, opts); 7291 err = err ? : bpf_object_init_progs(obj, opts); 7292 err = err ? : bpf_object__collect_relos(obj); 7293 if (err) 7294 goto out; 7295 7296 bpf_object__elf_finish(obj); 7297 7298 return obj; 7299 out: 7300 bpf_object__close(obj); 7301 return ERR_PTR(err); 7302 } 7303 7304 struct bpf_object * 7305 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7306 { 7307 if (!path) 7308 return libbpf_err_ptr(-EINVAL); 7309 7310 pr_debug("loading %s\n", path); 7311 7312 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7313 } 7314 7315 struct bpf_object *bpf_object__open(const char *path) 7316 { 7317 return bpf_object__open_file(path, NULL); 7318 } 7319 7320 struct bpf_object * 7321 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7322 const struct bpf_object_open_opts *opts) 7323 { 7324 if (!obj_buf || obj_buf_sz == 0) 7325 return libbpf_err_ptr(-EINVAL); 7326 7327 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7328 } 7329 7330 static int bpf_object_unload(struct bpf_object *obj) 7331 { 7332 size_t i; 7333 7334 if (!obj) 7335 return libbpf_err(-EINVAL); 7336 7337 for (i = 0; i < obj->nr_maps; i++) { 7338 zclose(obj->maps[i].fd); 7339 if (obj->maps[i].st_ops) 7340 zfree(&obj->maps[i].st_ops->kern_vdata); 7341 } 7342 7343 for (i = 0; i < obj->nr_programs; i++) 7344 bpf_program__unload(&obj->programs[i]); 7345 7346 return 0; 7347 } 7348 7349 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7350 { 7351 struct bpf_map *m; 7352 7353 bpf_object__for_each_map(m, obj) { 7354 if (!bpf_map__is_internal(m)) 7355 continue; 7356 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7357 m->def.map_flags ^= BPF_F_MMAPABLE; 7358 } 7359 7360 return 0; 7361 } 7362 7363 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7364 { 7365 char sym_type, sym_name[500]; 7366 unsigned long long sym_addr; 7367 int ret, err = 0; 7368 FILE *f; 7369 7370 f = fopen("/proc/kallsyms", "r"); 7371 if (!f) { 7372 err = -errno; 7373 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7374 return err; 7375 } 7376 7377 while (true) { 7378 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7379 &sym_addr, &sym_type, sym_name); 7380 if (ret == EOF && feof(f)) 7381 break; 7382 if (ret != 3) { 7383 pr_warn("failed to read kallsyms entry: %d\n", ret); 7384 err = -EINVAL; 7385 break; 7386 } 7387 7388 err = cb(sym_addr, sym_type, sym_name, ctx); 7389 if (err) 7390 break; 7391 } 7392 7393 fclose(f); 7394 return err; 7395 } 7396 7397 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7398 const char *sym_name, void *ctx) 7399 { 7400 struct bpf_object *obj = ctx; 7401 const struct btf_type *t; 7402 struct extern_desc *ext; 7403 7404 ext = find_extern_by_name(obj, sym_name); 7405 if (!ext || ext->type != EXT_KSYM) 7406 return 0; 7407 7408 t = btf__type_by_id(obj->btf, ext->btf_id); 7409 if (!btf_is_var(t)) 7410 return 0; 7411 7412 if (ext->is_set && ext->ksym.addr != sym_addr) { 7413 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7414 sym_name, ext->ksym.addr, sym_addr); 7415 return -EINVAL; 7416 } 7417 if (!ext->is_set) { 7418 ext->is_set = true; 7419 ext->ksym.addr = sym_addr; 7420 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7421 } 7422 return 0; 7423 } 7424 7425 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7426 { 7427 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7428 } 7429 7430 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7431 __u16 kind, struct btf **res_btf, 7432 struct module_btf **res_mod_btf) 7433 { 7434 struct module_btf *mod_btf; 7435 struct btf *btf; 7436 int i, id, err; 7437 7438 btf = obj->btf_vmlinux; 7439 mod_btf = NULL; 7440 id = btf__find_by_name_kind(btf, ksym_name, kind); 7441 7442 if (id == -ENOENT) { 7443 err = load_module_btfs(obj); 7444 if (err) 7445 return err; 7446 7447 for (i = 0; i < obj->btf_module_cnt; i++) { 7448 /* we assume module_btf's BTF FD is always >0 */ 7449 mod_btf = &obj->btf_modules[i]; 7450 btf = mod_btf->btf; 7451 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7452 if (id != -ENOENT) 7453 break; 7454 } 7455 } 7456 if (id <= 0) 7457 return -ESRCH; 7458 7459 *res_btf = btf; 7460 *res_mod_btf = mod_btf; 7461 return id; 7462 } 7463 7464 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7465 struct extern_desc *ext) 7466 { 7467 const struct btf_type *targ_var, *targ_type; 7468 __u32 targ_type_id, local_type_id; 7469 struct module_btf *mod_btf = NULL; 7470 const char *targ_var_name; 7471 struct btf *btf = NULL; 7472 int id, err; 7473 7474 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7475 if (id < 0) { 7476 if (id == -ESRCH && ext->is_weak) 7477 return 0; 7478 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7479 ext->name); 7480 return id; 7481 } 7482 7483 /* find local type_id */ 7484 local_type_id = ext->ksym.type_id; 7485 7486 /* find target type_id */ 7487 targ_var = btf__type_by_id(btf, id); 7488 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7489 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7490 7491 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7492 btf, targ_type_id); 7493 if (err <= 0) { 7494 const struct btf_type *local_type; 7495 const char *targ_name, *local_name; 7496 7497 local_type = btf__type_by_id(obj->btf, local_type_id); 7498 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7499 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7500 7501 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7502 ext->name, local_type_id, 7503 btf_kind_str(local_type), local_name, targ_type_id, 7504 btf_kind_str(targ_type), targ_name); 7505 return -EINVAL; 7506 } 7507 7508 ext->is_set = true; 7509 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7510 ext->ksym.kernel_btf_id = id; 7511 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7512 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7513 7514 return 0; 7515 } 7516 7517 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7518 struct extern_desc *ext) 7519 { 7520 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7521 struct module_btf *mod_btf = NULL; 7522 const struct btf_type *kern_func; 7523 struct btf *kern_btf = NULL; 7524 int ret; 7525 7526 local_func_proto_id = ext->ksym.type_id; 7527 7528 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7529 if (kfunc_id < 0) { 7530 if (kfunc_id == -ESRCH && ext->is_weak) 7531 return 0; 7532 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7533 ext->name); 7534 return kfunc_id; 7535 } 7536 7537 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7538 kfunc_proto_id = kern_func->type; 7539 7540 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7541 kern_btf, kfunc_proto_id); 7542 if (ret <= 0) { 7543 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7544 ext->name, local_func_proto_id, kfunc_proto_id); 7545 return -EINVAL; 7546 } 7547 7548 /* set index for module BTF fd in fd_array, if unset */ 7549 if (mod_btf && !mod_btf->fd_array_idx) { 7550 /* insn->off is s16 */ 7551 if (obj->fd_array_cnt == INT16_MAX) { 7552 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7553 ext->name, mod_btf->fd_array_idx); 7554 return -E2BIG; 7555 } 7556 /* Cannot use index 0 for module BTF fd */ 7557 if (!obj->fd_array_cnt) 7558 obj->fd_array_cnt = 1; 7559 7560 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7561 obj->fd_array_cnt + 1); 7562 if (ret) 7563 return ret; 7564 mod_btf->fd_array_idx = obj->fd_array_cnt; 7565 /* we assume module BTF FD is always >0 */ 7566 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7567 } 7568 7569 ext->is_set = true; 7570 ext->ksym.kernel_btf_id = kfunc_id; 7571 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7572 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7573 ext->name, kfunc_id); 7574 7575 return 0; 7576 } 7577 7578 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7579 { 7580 const struct btf_type *t; 7581 struct extern_desc *ext; 7582 int i, err; 7583 7584 for (i = 0; i < obj->nr_extern; i++) { 7585 ext = &obj->externs[i]; 7586 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7587 continue; 7588 7589 if (obj->gen_loader) { 7590 ext->is_set = true; 7591 ext->ksym.kernel_btf_obj_fd = 0; 7592 ext->ksym.kernel_btf_id = 0; 7593 continue; 7594 } 7595 t = btf__type_by_id(obj->btf, ext->btf_id); 7596 if (btf_is_var(t)) 7597 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7598 else 7599 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7600 if (err) 7601 return err; 7602 } 7603 return 0; 7604 } 7605 7606 static int bpf_object__resolve_externs(struct bpf_object *obj, 7607 const char *extra_kconfig) 7608 { 7609 bool need_config = false, need_kallsyms = false; 7610 bool need_vmlinux_btf = false; 7611 struct extern_desc *ext; 7612 void *kcfg_data = NULL; 7613 int err, i; 7614 7615 if (obj->nr_extern == 0) 7616 return 0; 7617 7618 if (obj->kconfig_map_idx >= 0) 7619 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7620 7621 for (i = 0; i < obj->nr_extern; i++) { 7622 ext = &obj->externs[i]; 7623 7624 if (ext->type == EXT_KSYM) { 7625 if (ext->ksym.type_id) 7626 need_vmlinux_btf = true; 7627 else 7628 need_kallsyms = true; 7629 continue; 7630 } else if (ext->type == EXT_KCFG) { 7631 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7632 __u64 value = 0; 7633 7634 /* Kconfig externs need actual /proc/config.gz */ 7635 if (str_has_pfx(ext->name, "CONFIG_")) { 7636 need_config = true; 7637 continue; 7638 } 7639 7640 /* Virtual kcfg externs are customly handled by libbpf */ 7641 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7642 value = get_kernel_version(); 7643 if (!value) { 7644 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7645 return -EINVAL; 7646 } 7647 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7648 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7649 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7650 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7651 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7652 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7653 * __kconfig externs, where LINUX_ ones are virtual and filled out 7654 * customly by libbpf (their values don't come from Kconfig). 7655 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7656 * __weak, it defaults to zero value, just like for CONFIG_xxx 7657 * externs. 7658 */ 7659 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7660 return -EINVAL; 7661 } 7662 7663 err = set_kcfg_value_num(ext, ext_ptr, value); 7664 if (err) 7665 return err; 7666 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7667 ext->name, (long long)value); 7668 } else { 7669 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7670 return -EINVAL; 7671 } 7672 } 7673 if (need_config && extra_kconfig) { 7674 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7675 if (err) 7676 return -EINVAL; 7677 need_config = false; 7678 for (i = 0; i < obj->nr_extern; i++) { 7679 ext = &obj->externs[i]; 7680 if (ext->type == EXT_KCFG && !ext->is_set) { 7681 need_config = true; 7682 break; 7683 } 7684 } 7685 } 7686 if (need_config) { 7687 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7688 if (err) 7689 return -EINVAL; 7690 } 7691 if (need_kallsyms) { 7692 err = bpf_object__read_kallsyms_file(obj); 7693 if (err) 7694 return -EINVAL; 7695 } 7696 if (need_vmlinux_btf) { 7697 err = bpf_object__resolve_ksyms_btf_id(obj); 7698 if (err) 7699 return -EINVAL; 7700 } 7701 for (i = 0; i < obj->nr_extern; i++) { 7702 ext = &obj->externs[i]; 7703 7704 if (!ext->is_set && !ext->is_weak) { 7705 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7706 return -ESRCH; 7707 } else if (!ext->is_set) { 7708 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7709 ext->name); 7710 } 7711 } 7712 7713 return 0; 7714 } 7715 7716 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7717 { 7718 int err, i; 7719 7720 if (!obj) 7721 return libbpf_err(-EINVAL); 7722 7723 if (obj->loaded) { 7724 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7725 return libbpf_err(-EINVAL); 7726 } 7727 7728 if (obj->gen_loader) 7729 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7730 7731 err = bpf_object__probe_loading(obj); 7732 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7733 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7734 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7735 err = err ? : bpf_object__sanitize_maps(obj); 7736 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7737 err = err ? : bpf_object__create_maps(obj); 7738 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7739 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7740 err = err ? : bpf_object_init_prog_arrays(obj); 7741 7742 if (obj->gen_loader) { 7743 /* reset FDs */ 7744 if (obj->btf) 7745 btf__set_fd(obj->btf, -1); 7746 for (i = 0; i < obj->nr_maps; i++) 7747 obj->maps[i].fd = -1; 7748 if (!err) 7749 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7750 } 7751 7752 /* clean up fd_array */ 7753 zfree(&obj->fd_array); 7754 7755 /* clean up module BTFs */ 7756 for (i = 0; i < obj->btf_module_cnt; i++) { 7757 close(obj->btf_modules[i].fd); 7758 btf__free(obj->btf_modules[i].btf); 7759 free(obj->btf_modules[i].name); 7760 } 7761 free(obj->btf_modules); 7762 7763 /* clean up vmlinux BTF */ 7764 btf__free(obj->btf_vmlinux); 7765 obj->btf_vmlinux = NULL; 7766 7767 obj->loaded = true; /* doesn't matter if successfully or not */ 7768 7769 if (err) 7770 goto out; 7771 7772 return 0; 7773 out: 7774 /* unpin any maps that were auto-pinned during load */ 7775 for (i = 0; i < obj->nr_maps; i++) 7776 if (obj->maps[i].pinned && !obj->maps[i].reused) 7777 bpf_map__unpin(&obj->maps[i], NULL); 7778 7779 bpf_object_unload(obj); 7780 pr_warn("failed to load object '%s'\n", obj->path); 7781 return libbpf_err(err); 7782 } 7783 7784 int bpf_object__load(struct bpf_object *obj) 7785 { 7786 return bpf_object_load(obj, 0, NULL); 7787 } 7788 7789 static int make_parent_dir(const char *path) 7790 { 7791 char *cp, errmsg[STRERR_BUFSIZE]; 7792 char *dname, *dir; 7793 int err = 0; 7794 7795 dname = strdup(path); 7796 if (dname == NULL) 7797 return -ENOMEM; 7798 7799 dir = dirname(dname); 7800 if (mkdir(dir, 0700) && errno != EEXIST) 7801 err = -errno; 7802 7803 free(dname); 7804 if (err) { 7805 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7806 pr_warn("failed to mkdir %s: %s\n", path, cp); 7807 } 7808 return err; 7809 } 7810 7811 static int check_path(const char *path) 7812 { 7813 char *cp, errmsg[STRERR_BUFSIZE]; 7814 struct statfs st_fs; 7815 char *dname, *dir; 7816 int err = 0; 7817 7818 if (path == NULL) 7819 return -EINVAL; 7820 7821 dname = strdup(path); 7822 if (dname == NULL) 7823 return -ENOMEM; 7824 7825 dir = dirname(dname); 7826 if (statfs(dir, &st_fs)) { 7827 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7828 pr_warn("failed to statfs %s: %s\n", dir, cp); 7829 err = -errno; 7830 } 7831 free(dname); 7832 7833 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7834 pr_warn("specified path %s is not on BPF FS\n", path); 7835 err = -EINVAL; 7836 } 7837 7838 return err; 7839 } 7840 7841 int bpf_program__pin(struct bpf_program *prog, const char *path) 7842 { 7843 char *cp, errmsg[STRERR_BUFSIZE]; 7844 int err; 7845 7846 if (prog->fd < 0) { 7847 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7848 return libbpf_err(-EINVAL); 7849 } 7850 7851 err = make_parent_dir(path); 7852 if (err) 7853 return libbpf_err(err); 7854 7855 err = check_path(path); 7856 if (err) 7857 return libbpf_err(err); 7858 7859 if (bpf_obj_pin(prog->fd, path)) { 7860 err = -errno; 7861 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7862 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7863 return libbpf_err(err); 7864 } 7865 7866 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7867 return 0; 7868 } 7869 7870 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7871 { 7872 int err; 7873 7874 if (prog->fd < 0) { 7875 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7876 return libbpf_err(-EINVAL); 7877 } 7878 7879 err = check_path(path); 7880 if (err) 7881 return libbpf_err(err); 7882 7883 err = unlink(path); 7884 if (err) 7885 return libbpf_err(-errno); 7886 7887 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7888 return 0; 7889 } 7890 7891 int bpf_map__pin(struct bpf_map *map, const char *path) 7892 { 7893 char *cp, errmsg[STRERR_BUFSIZE]; 7894 int err; 7895 7896 if (map == NULL) { 7897 pr_warn("invalid map pointer\n"); 7898 return libbpf_err(-EINVAL); 7899 } 7900 7901 if (map->pin_path) { 7902 if (path && strcmp(path, map->pin_path)) { 7903 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7904 bpf_map__name(map), map->pin_path, path); 7905 return libbpf_err(-EINVAL); 7906 } else if (map->pinned) { 7907 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7908 bpf_map__name(map), map->pin_path); 7909 return 0; 7910 } 7911 } else { 7912 if (!path) { 7913 pr_warn("missing a path to pin map '%s' at\n", 7914 bpf_map__name(map)); 7915 return libbpf_err(-EINVAL); 7916 } else if (map->pinned) { 7917 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7918 return libbpf_err(-EEXIST); 7919 } 7920 7921 map->pin_path = strdup(path); 7922 if (!map->pin_path) { 7923 err = -errno; 7924 goto out_err; 7925 } 7926 } 7927 7928 err = make_parent_dir(map->pin_path); 7929 if (err) 7930 return libbpf_err(err); 7931 7932 err = check_path(map->pin_path); 7933 if (err) 7934 return libbpf_err(err); 7935 7936 if (bpf_obj_pin(map->fd, map->pin_path)) { 7937 err = -errno; 7938 goto out_err; 7939 } 7940 7941 map->pinned = true; 7942 pr_debug("pinned map '%s'\n", map->pin_path); 7943 7944 return 0; 7945 7946 out_err: 7947 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7948 pr_warn("failed to pin map: %s\n", cp); 7949 return libbpf_err(err); 7950 } 7951 7952 int bpf_map__unpin(struct bpf_map *map, const char *path) 7953 { 7954 int err; 7955 7956 if (map == NULL) { 7957 pr_warn("invalid map pointer\n"); 7958 return libbpf_err(-EINVAL); 7959 } 7960 7961 if (map->pin_path) { 7962 if (path && strcmp(path, map->pin_path)) { 7963 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7964 bpf_map__name(map), map->pin_path, path); 7965 return libbpf_err(-EINVAL); 7966 } 7967 path = map->pin_path; 7968 } else if (!path) { 7969 pr_warn("no path to unpin map '%s' from\n", 7970 bpf_map__name(map)); 7971 return libbpf_err(-EINVAL); 7972 } 7973 7974 err = check_path(path); 7975 if (err) 7976 return libbpf_err(err); 7977 7978 err = unlink(path); 7979 if (err != 0) 7980 return libbpf_err(-errno); 7981 7982 map->pinned = false; 7983 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7984 7985 return 0; 7986 } 7987 7988 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7989 { 7990 char *new = NULL; 7991 7992 if (path) { 7993 new = strdup(path); 7994 if (!new) 7995 return libbpf_err(-errno); 7996 } 7997 7998 free(map->pin_path); 7999 map->pin_path = new; 8000 return 0; 8001 } 8002 8003 __alias(bpf_map__pin_path) 8004 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8005 8006 const char *bpf_map__pin_path(const struct bpf_map *map) 8007 { 8008 return map->pin_path; 8009 } 8010 8011 bool bpf_map__is_pinned(const struct bpf_map *map) 8012 { 8013 return map->pinned; 8014 } 8015 8016 static void sanitize_pin_path(char *s) 8017 { 8018 /* bpffs disallows periods in path names */ 8019 while (*s) { 8020 if (*s == '.') 8021 *s = '_'; 8022 s++; 8023 } 8024 } 8025 8026 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8027 { 8028 struct bpf_map *map; 8029 int err; 8030 8031 if (!obj) 8032 return libbpf_err(-ENOENT); 8033 8034 if (!obj->loaded) { 8035 pr_warn("object not yet loaded; load it first\n"); 8036 return libbpf_err(-ENOENT); 8037 } 8038 8039 bpf_object__for_each_map(map, obj) { 8040 char *pin_path = NULL; 8041 char buf[PATH_MAX]; 8042 8043 if (!map->autocreate) 8044 continue; 8045 8046 if (path) { 8047 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8048 if (err) 8049 goto err_unpin_maps; 8050 sanitize_pin_path(buf); 8051 pin_path = buf; 8052 } else if (!map->pin_path) { 8053 continue; 8054 } 8055 8056 err = bpf_map__pin(map, pin_path); 8057 if (err) 8058 goto err_unpin_maps; 8059 } 8060 8061 return 0; 8062 8063 err_unpin_maps: 8064 while ((map = bpf_object__prev_map(obj, map))) { 8065 if (!map->pin_path) 8066 continue; 8067 8068 bpf_map__unpin(map, NULL); 8069 } 8070 8071 return libbpf_err(err); 8072 } 8073 8074 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8075 { 8076 struct bpf_map *map; 8077 int err; 8078 8079 if (!obj) 8080 return libbpf_err(-ENOENT); 8081 8082 bpf_object__for_each_map(map, obj) { 8083 char *pin_path = NULL; 8084 char buf[PATH_MAX]; 8085 8086 if (path) { 8087 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8088 if (err) 8089 return libbpf_err(err); 8090 sanitize_pin_path(buf); 8091 pin_path = buf; 8092 } else if (!map->pin_path) { 8093 continue; 8094 } 8095 8096 err = bpf_map__unpin(map, pin_path); 8097 if (err) 8098 return libbpf_err(err); 8099 } 8100 8101 return 0; 8102 } 8103 8104 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8105 { 8106 struct bpf_program *prog; 8107 char buf[PATH_MAX]; 8108 int err; 8109 8110 if (!obj) 8111 return libbpf_err(-ENOENT); 8112 8113 if (!obj->loaded) { 8114 pr_warn("object not yet loaded; load it first\n"); 8115 return libbpf_err(-ENOENT); 8116 } 8117 8118 bpf_object__for_each_program(prog, obj) { 8119 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8120 if (err) 8121 goto err_unpin_programs; 8122 8123 err = bpf_program__pin(prog, buf); 8124 if (err) 8125 goto err_unpin_programs; 8126 } 8127 8128 return 0; 8129 8130 err_unpin_programs: 8131 while ((prog = bpf_object__prev_program(obj, prog))) { 8132 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8133 continue; 8134 8135 bpf_program__unpin(prog, buf); 8136 } 8137 8138 return libbpf_err(err); 8139 } 8140 8141 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8142 { 8143 struct bpf_program *prog; 8144 int err; 8145 8146 if (!obj) 8147 return libbpf_err(-ENOENT); 8148 8149 bpf_object__for_each_program(prog, obj) { 8150 char buf[PATH_MAX]; 8151 8152 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8153 if (err) 8154 return libbpf_err(err); 8155 8156 err = bpf_program__unpin(prog, buf); 8157 if (err) 8158 return libbpf_err(err); 8159 } 8160 8161 return 0; 8162 } 8163 8164 int bpf_object__pin(struct bpf_object *obj, const char *path) 8165 { 8166 int err; 8167 8168 err = bpf_object__pin_maps(obj, path); 8169 if (err) 8170 return libbpf_err(err); 8171 8172 err = bpf_object__pin_programs(obj, path); 8173 if (err) { 8174 bpf_object__unpin_maps(obj, path); 8175 return libbpf_err(err); 8176 } 8177 8178 return 0; 8179 } 8180 8181 static void bpf_map__destroy(struct bpf_map *map) 8182 { 8183 if (map->inner_map) { 8184 bpf_map__destroy(map->inner_map); 8185 zfree(&map->inner_map); 8186 } 8187 8188 zfree(&map->init_slots); 8189 map->init_slots_sz = 0; 8190 8191 if (map->mmaped) { 8192 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8193 map->mmaped = NULL; 8194 } 8195 8196 if (map->st_ops) { 8197 zfree(&map->st_ops->data); 8198 zfree(&map->st_ops->progs); 8199 zfree(&map->st_ops->kern_func_off); 8200 zfree(&map->st_ops); 8201 } 8202 8203 zfree(&map->name); 8204 zfree(&map->real_name); 8205 zfree(&map->pin_path); 8206 8207 if (map->fd >= 0) 8208 zclose(map->fd); 8209 } 8210 8211 void bpf_object__close(struct bpf_object *obj) 8212 { 8213 size_t i; 8214 8215 if (IS_ERR_OR_NULL(obj)) 8216 return; 8217 8218 usdt_manager_free(obj->usdt_man); 8219 obj->usdt_man = NULL; 8220 8221 bpf_gen__free(obj->gen_loader); 8222 bpf_object__elf_finish(obj); 8223 bpf_object_unload(obj); 8224 btf__free(obj->btf); 8225 btf_ext__free(obj->btf_ext); 8226 8227 for (i = 0; i < obj->nr_maps; i++) 8228 bpf_map__destroy(&obj->maps[i]); 8229 8230 zfree(&obj->btf_custom_path); 8231 zfree(&obj->kconfig); 8232 zfree(&obj->externs); 8233 obj->nr_extern = 0; 8234 8235 zfree(&obj->maps); 8236 obj->nr_maps = 0; 8237 8238 if (obj->programs && obj->nr_programs) { 8239 for (i = 0; i < obj->nr_programs; i++) 8240 bpf_program__exit(&obj->programs[i]); 8241 } 8242 zfree(&obj->programs); 8243 8244 free(obj); 8245 } 8246 8247 const char *bpf_object__name(const struct bpf_object *obj) 8248 { 8249 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8250 } 8251 8252 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8253 { 8254 return obj ? obj->kern_version : 0; 8255 } 8256 8257 struct btf *bpf_object__btf(const struct bpf_object *obj) 8258 { 8259 return obj ? obj->btf : NULL; 8260 } 8261 8262 int bpf_object__btf_fd(const struct bpf_object *obj) 8263 { 8264 return obj->btf ? btf__fd(obj->btf) : -1; 8265 } 8266 8267 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8268 { 8269 if (obj->loaded) 8270 return libbpf_err(-EINVAL); 8271 8272 obj->kern_version = kern_version; 8273 8274 return 0; 8275 } 8276 8277 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8278 { 8279 struct bpf_gen *gen; 8280 8281 if (!opts) 8282 return -EFAULT; 8283 if (!OPTS_VALID(opts, gen_loader_opts)) 8284 return -EINVAL; 8285 gen = calloc(sizeof(*gen), 1); 8286 if (!gen) 8287 return -ENOMEM; 8288 gen->opts = opts; 8289 obj->gen_loader = gen; 8290 return 0; 8291 } 8292 8293 static struct bpf_program * 8294 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8295 bool forward) 8296 { 8297 size_t nr_programs = obj->nr_programs; 8298 ssize_t idx; 8299 8300 if (!nr_programs) 8301 return NULL; 8302 8303 if (!p) 8304 /* Iter from the beginning */ 8305 return forward ? &obj->programs[0] : 8306 &obj->programs[nr_programs - 1]; 8307 8308 if (p->obj != obj) { 8309 pr_warn("error: program handler doesn't match object\n"); 8310 return errno = EINVAL, NULL; 8311 } 8312 8313 idx = (p - obj->programs) + (forward ? 1 : -1); 8314 if (idx >= obj->nr_programs || idx < 0) 8315 return NULL; 8316 return &obj->programs[idx]; 8317 } 8318 8319 struct bpf_program * 8320 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8321 { 8322 struct bpf_program *prog = prev; 8323 8324 do { 8325 prog = __bpf_program__iter(prog, obj, true); 8326 } while (prog && prog_is_subprog(obj, prog)); 8327 8328 return prog; 8329 } 8330 8331 struct bpf_program * 8332 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8333 { 8334 struct bpf_program *prog = next; 8335 8336 do { 8337 prog = __bpf_program__iter(prog, obj, false); 8338 } while (prog && prog_is_subprog(obj, prog)); 8339 8340 return prog; 8341 } 8342 8343 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8344 { 8345 prog->prog_ifindex = ifindex; 8346 } 8347 8348 const char *bpf_program__name(const struct bpf_program *prog) 8349 { 8350 return prog->name; 8351 } 8352 8353 const char *bpf_program__section_name(const struct bpf_program *prog) 8354 { 8355 return prog->sec_name; 8356 } 8357 8358 bool bpf_program__autoload(const struct bpf_program *prog) 8359 { 8360 return prog->autoload; 8361 } 8362 8363 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8364 { 8365 if (prog->obj->loaded) 8366 return libbpf_err(-EINVAL); 8367 8368 prog->autoload = autoload; 8369 return 0; 8370 } 8371 8372 bool bpf_program__autoattach(const struct bpf_program *prog) 8373 { 8374 return prog->autoattach; 8375 } 8376 8377 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8378 { 8379 prog->autoattach = autoattach; 8380 } 8381 8382 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8383 { 8384 return prog->insns; 8385 } 8386 8387 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8388 { 8389 return prog->insns_cnt; 8390 } 8391 8392 int bpf_program__set_insns(struct bpf_program *prog, 8393 struct bpf_insn *new_insns, size_t new_insn_cnt) 8394 { 8395 struct bpf_insn *insns; 8396 8397 if (prog->obj->loaded) 8398 return -EBUSY; 8399 8400 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8401 if (!insns) { 8402 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8403 return -ENOMEM; 8404 } 8405 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8406 8407 prog->insns = insns; 8408 prog->insns_cnt = new_insn_cnt; 8409 return 0; 8410 } 8411 8412 int bpf_program__fd(const struct bpf_program *prog) 8413 { 8414 if (!prog) 8415 return libbpf_err(-EINVAL); 8416 8417 if (prog->fd < 0) 8418 return libbpf_err(-ENOENT); 8419 8420 return prog->fd; 8421 } 8422 8423 __alias(bpf_program__type) 8424 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8425 8426 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8427 { 8428 return prog->type; 8429 } 8430 8431 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8432 { 8433 if (prog->obj->loaded) 8434 return libbpf_err(-EBUSY); 8435 8436 prog->type = type; 8437 return 0; 8438 } 8439 8440 __alias(bpf_program__expected_attach_type) 8441 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8442 8443 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8444 { 8445 return prog->expected_attach_type; 8446 } 8447 8448 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8449 enum bpf_attach_type type) 8450 { 8451 if (prog->obj->loaded) 8452 return libbpf_err(-EBUSY); 8453 8454 prog->expected_attach_type = type; 8455 return 0; 8456 } 8457 8458 __u32 bpf_program__flags(const struct bpf_program *prog) 8459 { 8460 return prog->prog_flags; 8461 } 8462 8463 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8464 { 8465 if (prog->obj->loaded) 8466 return libbpf_err(-EBUSY); 8467 8468 prog->prog_flags = flags; 8469 return 0; 8470 } 8471 8472 __u32 bpf_program__log_level(const struct bpf_program *prog) 8473 { 8474 return prog->log_level; 8475 } 8476 8477 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8478 { 8479 if (prog->obj->loaded) 8480 return libbpf_err(-EBUSY); 8481 8482 prog->log_level = log_level; 8483 return 0; 8484 } 8485 8486 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8487 { 8488 *log_size = prog->log_size; 8489 return prog->log_buf; 8490 } 8491 8492 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8493 { 8494 if (log_size && !log_buf) 8495 return -EINVAL; 8496 if (prog->log_size > UINT_MAX) 8497 return -EINVAL; 8498 if (prog->obj->loaded) 8499 return -EBUSY; 8500 8501 prog->log_buf = log_buf; 8502 prog->log_size = log_size; 8503 return 0; 8504 } 8505 8506 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8507 .sec = (char *)sec_pfx, \ 8508 .prog_type = BPF_PROG_TYPE_##ptype, \ 8509 .expected_attach_type = atype, \ 8510 .cookie = (long)(flags), \ 8511 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8512 __VA_ARGS__ \ 8513 } 8514 8515 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8516 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8517 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8518 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8519 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8520 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8521 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8522 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8523 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8524 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8525 8526 static const struct bpf_sec_def section_defs[] = { 8527 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8528 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8529 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8530 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8531 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8532 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8533 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8534 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8535 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8536 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8537 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8538 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8539 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8540 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8541 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8542 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8543 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8544 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8545 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8546 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8547 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8548 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8549 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8550 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8551 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8552 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8553 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8554 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8555 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8556 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8557 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8558 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8559 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8560 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8561 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8562 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8563 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8564 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8565 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8566 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8567 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8568 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8569 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8570 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8571 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8572 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8573 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8574 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8575 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8576 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8577 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8578 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8579 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8580 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8581 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8582 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8583 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8584 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8585 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8586 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8587 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8588 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8589 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8590 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8591 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8592 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8593 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8594 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8595 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8596 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8597 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8598 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8599 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8600 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8601 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8602 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8603 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8604 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8605 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8606 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8607 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8608 }; 8609 8610 static size_t custom_sec_def_cnt; 8611 static struct bpf_sec_def *custom_sec_defs; 8612 static struct bpf_sec_def custom_fallback_def; 8613 static bool has_custom_fallback_def; 8614 8615 static int last_custom_sec_def_handler_id; 8616 8617 int libbpf_register_prog_handler(const char *sec, 8618 enum bpf_prog_type prog_type, 8619 enum bpf_attach_type exp_attach_type, 8620 const struct libbpf_prog_handler_opts *opts) 8621 { 8622 struct bpf_sec_def *sec_def; 8623 8624 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8625 return libbpf_err(-EINVAL); 8626 8627 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8628 return libbpf_err(-E2BIG); 8629 8630 if (sec) { 8631 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8632 sizeof(*sec_def)); 8633 if (!sec_def) 8634 return libbpf_err(-ENOMEM); 8635 8636 custom_sec_defs = sec_def; 8637 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8638 } else { 8639 if (has_custom_fallback_def) 8640 return libbpf_err(-EBUSY); 8641 8642 sec_def = &custom_fallback_def; 8643 } 8644 8645 sec_def->sec = sec ? strdup(sec) : NULL; 8646 if (sec && !sec_def->sec) 8647 return libbpf_err(-ENOMEM); 8648 8649 sec_def->prog_type = prog_type; 8650 sec_def->expected_attach_type = exp_attach_type; 8651 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8652 8653 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8654 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8655 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8656 8657 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8658 8659 if (sec) 8660 custom_sec_def_cnt++; 8661 else 8662 has_custom_fallback_def = true; 8663 8664 return sec_def->handler_id; 8665 } 8666 8667 int libbpf_unregister_prog_handler(int handler_id) 8668 { 8669 struct bpf_sec_def *sec_defs; 8670 int i; 8671 8672 if (handler_id <= 0) 8673 return libbpf_err(-EINVAL); 8674 8675 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8676 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8677 has_custom_fallback_def = false; 8678 return 0; 8679 } 8680 8681 for (i = 0; i < custom_sec_def_cnt; i++) { 8682 if (custom_sec_defs[i].handler_id == handler_id) 8683 break; 8684 } 8685 8686 if (i == custom_sec_def_cnt) 8687 return libbpf_err(-ENOENT); 8688 8689 free(custom_sec_defs[i].sec); 8690 for (i = i + 1; i < custom_sec_def_cnt; i++) 8691 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8692 custom_sec_def_cnt--; 8693 8694 /* try to shrink the array, but it's ok if we couldn't */ 8695 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8696 if (sec_defs) 8697 custom_sec_defs = sec_defs; 8698 8699 return 0; 8700 } 8701 8702 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8703 { 8704 size_t len = strlen(sec_def->sec); 8705 8706 /* "type/" always has to have proper SEC("type/extras") form */ 8707 if (sec_def->sec[len - 1] == '/') { 8708 if (str_has_pfx(sec_name, sec_def->sec)) 8709 return true; 8710 return false; 8711 } 8712 8713 /* "type+" means it can be either exact SEC("type") or 8714 * well-formed SEC("type/extras") with proper '/' separator 8715 */ 8716 if (sec_def->sec[len - 1] == '+') { 8717 len--; 8718 /* not even a prefix */ 8719 if (strncmp(sec_name, sec_def->sec, len) != 0) 8720 return false; 8721 /* exact match or has '/' separator */ 8722 if (sec_name[len] == '\0' || sec_name[len] == '/') 8723 return true; 8724 return false; 8725 } 8726 8727 return strcmp(sec_name, sec_def->sec) == 0; 8728 } 8729 8730 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8731 { 8732 const struct bpf_sec_def *sec_def; 8733 int i, n; 8734 8735 n = custom_sec_def_cnt; 8736 for (i = 0; i < n; i++) { 8737 sec_def = &custom_sec_defs[i]; 8738 if (sec_def_matches(sec_def, sec_name)) 8739 return sec_def; 8740 } 8741 8742 n = ARRAY_SIZE(section_defs); 8743 for (i = 0; i < n; i++) { 8744 sec_def = §ion_defs[i]; 8745 if (sec_def_matches(sec_def, sec_name)) 8746 return sec_def; 8747 } 8748 8749 if (has_custom_fallback_def) 8750 return &custom_fallback_def; 8751 8752 return NULL; 8753 } 8754 8755 #define MAX_TYPE_NAME_SIZE 32 8756 8757 static char *libbpf_get_type_names(bool attach_type) 8758 { 8759 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8760 char *buf; 8761 8762 buf = malloc(len); 8763 if (!buf) 8764 return NULL; 8765 8766 buf[0] = '\0'; 8767 /* Forge string buf with all available names */ 8768 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8769 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8770 8771 if (attach_type) { 8772 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8773 continue; 8774 8775 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8776 continue; 8777 } 8778 8779 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8780 free(buf); 8781 return NULL; 8782 } 8783 strcat(buf, " "); 8784 strcat(buf, section_defs[i].sec); 8785 } 8786 8787 return buf; 8788 } 8789 8790 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8791 enum bpf_attach_type *expected_attach_type) 8792 { 8793 const struct bpf_sec_def *sec_def; 8794 char *type_names; 8795 8796 if (!name) 8797 return libbpf_err(-EINVAL); 8798 8799 sec_def = find_sec_def(name); 8800 if (sec_def) { 8801 *prog_type = sec_def->prog_type; 8802 *expected_attach_type = sec_def->expected_attach_type; 8803 return 0; 8804 } 8805 8806 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8807 type_names = libbpf_get_type_names(false); 8808 if (type_names != NULL) { 8809 pr_debug("supported section(type) names are:%s\n", type_names); 8810 free(type_names); 8811 } 8812 8813 return libbpf_err(-ESRCH); 8814 } 8815 8816 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8817 { 8818 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8819 return NULL; 8820 8821 return attach_type_name[t]; 8822 } 8823 8824 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8825 { 8826 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8827 return NULL; 8828 8829 return link_type_name[t]; 8830 } 8831 8832 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8833 { 8834 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8835 return NULL; 8836 8837 return map_type_name[t]; 8838 } 8839 8840 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8841 { 8842 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8843 return NULL; 8844 8845 return prog_type_name[t]; 8846 } 8847 8848 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8849 size_t offset) 8850 { 8851 struct bpf_map *map; 8852 size_t i; 8853 8854 for (i = 0; i < obj->nr_maps; i++) { 8855 map = &obj->maps[i]; 8856 if (!bpf_map__is_struct_ops(map)) 8857 continue; 8858 if (map->sec_offset <= offset && 8859 offset - map->sec_offset < map->def.value_size) 8860 return map; 8861 } 8862 8863 return NULL; 8864 } 8865 8866 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8867 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8868 Elf64_Shdr *shdr, Elf_Data *data) 8869 { 8870 const struct btf_member *member; 8871 struct bpf_struct_ops *st_ops; 8872 struct bpf_program *prog; 8873 unsigned int shdr_idx; 8874 const struct btf *btf; 8875 struct bpf_map *map; 8876 unsigned int moff, insn_idx; 8877 const char *name; 8878 __u32 member_idx; 8879 Elf64_Sym *sym; 8880 Elf64_Rel *rel; 8881 int i, nrels; 8882 8883 btf = obj->btf; 8884 nrels = shdr->sh_size / shdr->sh_entsize; 8885 for (i = 0; i < nrels; i++) { 8886 rel = elf_rel_by_idx(data, i); 8887 if (!rel) { 8888 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8889 return -LIBBPF_ERRNO__FORMAT; 8890 } 8891 8892 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8893 if (!sym) { 8894 pr_warn("struct_ops reloc: symbol %zx not found\n", 8895 (size_t)ELF64_R_SYM(rel->r_info)); 8896 return -LIBBPF_ERRNO__FORMAT; 8897 } 8898 8899 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8900 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8901 if (!map) { 8902 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8903 (size_t)rel->r_offset); 8904 return -EINVAL; 8905 } 8906 8907 moff = rel->r_offset - map->sec_offset; 8908 shdr_idx = sym->st_shndx; 8909 st_ops = map->st_ops; 8910 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8911 map->name, 8912 (long long)(rel->r_info >> 32), 8913 (long long)sym->st_value, 8914 shdr_idx, (size_t)rel->r_offset, 8915 map->sec_offset, sym->st_name, name); 8916 8917 if (shdr_idx >= SHN_LORESERVE) { 8918 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8919 map->name, (size_t)rel->r_offset, shdr_idx); 8920 return -LIBBPF_ERRNO__RELOC; 8921 } 8922 if (sym->st_value % BPF_INSN_SZ) { 8923 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8924 map->name, (unsigned long long)sym->st_value); 8925 return -LIBBPF_ERRNO__FORMAT; 8926 } 8927 insn_idx = sym->st_value / BPF_INSN_SZ; 8928 8929 member = find_member_by_offset(st_ops->type, moff * 8); 8930 if (!member) { 8931 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8932 map->name, moff); 8933 return -EINVAL; 8934 } 8935 member_idx = member - btf_members(st_ops->type); 8936 name = btf__name_by_offset(btf, member->name_off); 8937 8938 if (!resolve_func_ptr(btf, member->type, NULL)) { 8939 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8940 map->name, name); 8941 return -EINVAL; 8942 } 8943 8944 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8945 if (!prog) { 8946 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8947 map->name, shdr_idx, name); 8948 return -EINVAL; 8949 } 8950 8951 /* prevent the use of BPF prog with invalid type */ 8952 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8953 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8954 map->name, prog->name); 8955 return -EINVAL; 8956 } 8957 8958 /* if we haven't yet processed this BPF program, record proper 8959 * attach_btf_id and member_idx 8960 */ 8961 if (!prog->attach_btf_id) { 8962 prog->attach_btf_id = st_ops->type_id; 8963 prog->expected_attach_type = member_idx; 8964 } 8965 8966 /* struct_ops BPF prog can be re-used between multiple 8967 * .struct_ops as long as it's the same struct_ops struct 8968 * definition and the same function pointer field 8969 */ 8970 if (prog->attach_btf_id != st_ops->type_id || 8971 prog->expected_attach_type != member_idx) { 8972 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8973 map->name, prog->name, prog->sec_name, prog->type, 8974 prog->attach_btf_id, prog->expected_attach_type, name); 8975 return -EINVAL; 8976 } 8977 8978 st_ops->progs[member_idx] = prog; 8979 } 8980 8981 return 0; 8982 } 8983 8984 #define BTF_TRACE_PREFIX "btf_trace_" 8985 #define BTF_LSM_PREFIX "bpf_lsm_" 8986 #define BTF_ITER_PREFIX "bpf_iter_" 8987 #define BTF_MAX_NAME_SIZE 128 8988 8989 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8990 const char **prefix, int *kind) 8991 { 8992 switch (attach_type) { 8993 case BPF_TRACE_RAW_TP: 8994 *prefix = BTF_TRACE_PREFIX; 8995 *kind = BTF_KIND_TYPEDEF; 8996 break; 8997 case BPF_LSM_MAC: 8998 case BPF_LSM_CGROUP: 8999 *prefix = BTF_LSM_PREFIX; 9000 *kind = BTF_KIND_FUNC; 9001 break; 9002 case BPF_TRACE_ITER: 9003 *prefix = BTF_ITER_PREFIX; 9004 *kind = BTF_KIND_FUNC; 9005 break; 9006 default: 9007 *prefix = ""; 9008 *kind = BTF_KIND_FUNC; 9009 } 9010 } 9011 9012 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9013 const char *name, __u32 kind) 9014 { 9015 char btf_type_name[BTF_MAX_NAME_SIZE]; 9016 int ret; 9017 9018 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9019 "%s%s", prefix, name); 9020 /* snprintf returns the number of characters written excluding the 9021 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9022 * indicates truncation. 9023 */ 9024 if (ret < 0 || ret >= sizeof(btf_type_name)) 9025 return -ENAMETOOLONG; 9026 return btf__find_by_name_kind(btf, btf_type_name, kind); 9027 } 9028 9029 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9030 enum bpf_attach_type attach_type) 9031 { 9032 const char *prefix; 9033 int kind; 9034 9035 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9036 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9037 } 9038 9039 int libbpf_find_vmlinux_btf_id(const char *name, 9040 enum bpf_attach_type attach_type) 9041 { 9042 struct btf *btf; 9043 int err; 9044 9045 btf = btf__load_vmlinux_btf(); 9046 err = libbpf_get_error(btf); 9047 if (err) { 9048 pr_warn("vmlinux BTF is not found\n"); 9049 return libbpf_err(err); 9050 } 9051 9052 err = find_attach_btf_id(btf, name, attach_type); 9053 if (err <= 0) 9054 pr_warn("%s is not found in vmlinux BTF\n", name); 9055 9056 btf__free(btf); 9057 return libbpf_err(err); 9058 } 9059 9060 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9061 { 9062 struct bpf_prog_info info; 9063 __u32 info_len = sizeof(info); 9064 struct btf *btf; 9065 int err; 9066 9067 memset(&info, 0, info_len); 9068 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9069 if (err) { 9070 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9071 attach_prog_fd, err); 9072 return err; 9073 } 9074 9075 err = -EINVAL; 9076 if (!info.btf_id) { 9077 pr_warn("The target program doesn't have BTF\n"); 9078 goto out; 9079 } 9080 btf = btf__load_from_kernel_by_id(info.btf_id); 9081 err = libbpf_get_error(btf); 9082 if (err) { 9083 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9084 goto out; 9085 } 9086 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9087 btf__free(btf); 9088 if (err <= 0) { 9089 pr_warn("%s is not found in prog's BTF\n", name); 9090 goto out; 9091 } 9092 out: 9093 return err; 9094 } 9095 9096 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9097 enum bpf_attach_type attach_type, 9098 int *btf_obj_fd, int *btf_type_id) 9099 { 9100 int ret, i; 9101 9102 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9103 if (ret > 0) { 9104 *btf_obj_fd = 0; /* vmlinux BTF */ 9105 *btf_type_id = ret; 9106 return 0; 9107 } 9108 if (ret != -ENOENT) 9109 return ret; 9110 9111 ret = load_module_btfs(obj); 9112 if (ret) 9113 return ret; 9114 9115 for (i = 0; i < obj->btf_module_cnt; i++) { 9116 const struct module_btf *mod = &obj->btf_modules[i]; 9117 9118 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9119 if (ret > 0) { 9120 *btf_obj_fd = mod->fd; 9121 *btf_type_id = ret; 9122 return 0; 9123 } 9124 if (ret == -ENOENT) 9125 continue; 9126 9127 return ret; 9128 } 9129 9130 return -ESRCH; 9131 } 9132 9133 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9134 int *btf_obj_fd, int *btf_type_id) 9135 { 9136 enum bpf_attach_type attach_type = prog->expected_attach_type; 9137 __u32 attach_prog_fd = prog->attach_prog_fd; 9138 int err = 0; 9139 9140 /* BPF program's BTF ID */ 9141 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9142 if (!attach_prog_fd) { 9143 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9144 return -EINVAL; 9145 } 9146 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9147 if (err < 0) { 9148 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9149 prog->name, attach_prog_fd, attach_name, err); 9150 return err; 9151 } 9152 *btf_obj_fd = 0; 9153 *btf_type_id = err; 9154 return 0; 9155 } 9156 9157 /* kernel/module BTF ID */ 9158 if (prog->obj->gen_loader) { 9159 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9160 *btf_obj_fd = 0; 9161 *btf_type_id = 1; 9162 } else { 9163 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9164 } 9165 if (err) { 9166 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9167 prog->name, attach_name, err); 9168 return err; 9169 } 9170 return 0; 9171 } 9172 9173 int libbpf_attach_type_by_name(const char *name, 9174 enum bpf_attach_type *attach_type) 9175 { 9176 char *type_names; 9177 const struct bpf_sec_def *sec_def; 9178 9179 if (!name) 9180 return libbpf_err(-EINVAL); 9181 9182 sec_def = find_sec_def(name); 9183 if (!sec_def) { 9184 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9185 type_names = libbpf_get_type_names(true); 9186 if (type_names != NULL) { 9187 pr_debug("attachable section(type) names are:%s\n", type_names); 9188 free(type_names); 9189 } 9190 9191 return libbpf_err(-EINVAL); 9192 } 9193 9194 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9195 return libbpf_err(-EINVAL); 9196 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9197 return libbpf_err(-EINVAL); 9198 9199 *attach_type = sec_def->expected_attach_type; 9200 return 0; 9201 } 9202 9203 int bpf_map__fd(const struct bpf_map *map) 9204 { 9205 return map ? map->fd : libbpf_err(-EINVAL); 9206 } 9207 9208 static bool map_uses_real_name(const struct bpf_map *map) 9209 { 9210 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9211 * their user-visible name differs from kernel-visible name. Users see 9212 * such map's corresponding ELF section name as a map name. 9213 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9214 * maps to know which name has to be returned to the user. 9215 */ 9216 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9217 return true; 9218 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9219 return true; 9220 return false; 9221 } 9222 9223 const char *bpf_map__name(const struct bpf_map *map) 9224 { 9225 if (!map) 9226 return NULL; 9227 9228 if (map_uses_real_name(map)) 9229 return map->real_name; 9230 9231 return map->name; 9232 } 9233 9234 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9235 { 9236 return map->def.type; 9237 } 9238 9239 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9240 { 9241 if (map->fd >= 0) 9242 return libbpf_err(-EBUSY); 9243 map->def.type = type; 9244 return 0; 9245 } 9246 9247 __u32 bpf_map__map_flags(const struct bpf_map *map) 9248 { 9249 return map->def.map_flags; 9250 } 9251 9252 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9253 { 9254 if (map->fd >= 0) 9255 return libbpf_err(-EBUSY); 9256 map->def.map_flags = flags; 9257 return 0; 9258 } 9259 9260 __u64 bpf_map__map_extra(const struct bpf_map *map) 9261 { 9262 return map->map_extra; 9263 } 9264 9265 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9266 { 9267 if (map->fd >= 0) 9268 return libbpf_err(-EBUSY); 9269 map->map_extra = map_extra; 9270 return 0; 9271 } 9272 9273 __u32 bpf_map__numa_node(const struct bpf_map *map) 9274 { 9275 return map->numa_node; 9276 } 9277 9278 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9279 { 9280 if (map->fd >= 0) 9281 return libbpf_err(-EBUSY); 9282 map->numa_node = numa_node; 9283 return 0; 9284 } 9285 9286 __u32 bpf_map__key_size(const struct bpf_map *map) 9287 { 9288 return map->def.key_size; 9289 } 9290 9291 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9292 { 9293 if (map->fd >= 0) 9294 return libbpf_err(-EBUSY); 9295 map->def.key_size = size; 9296 return 0; 9297 } 9298 9299 __u32 bpf_map__value_size(const struct bpf_map *map) 9300 { 9301 return map->def.value_size; 9302 } 9303 9304 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9305 { 9306 if (map->fd >= 0) 9307 return libbpf_err(-EBUSY); 9308 map->def.value_size = size; 9309 return 0; 9310 } 9311 9312 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9313 { 9314 return map ? map->btf_key_type_id : 0; 9315 } 9316 9317 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9318 { 9319 return map ? map->btf_value_type_id : 0; 9320 } 9321 9322 int bpf_map__set_initial_value(struct bpf_map *map, 9323 const void *data, size_t size) 9324 { 9325 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9326 size != map->def.value_size || map->fd >= 0) 9327 return libbpf_err(-EINVAL); 9328 9329 memcpy(map->mmaped, data, size); 9330 return 0; 9331 } 9332 9333 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9334 { 9335 if (!map->mmaped) 9336 return NULL; 9337 *psize = map->def.value_size; 9338 return map->mmaped; 9339 } 9340 9341 bool bpf_map__is_internal(const struct bpf_map *map) 9342 { 9343 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9344 } 9345 9346 __u32 bpf_map__ifindex(const struct bpf_map *map) 9347 { 9348 return map->map_ifindex; 9349 } 9350 9351 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9352 { 9353 if (map->fd >= 0) 9354 return libbpf_err(-EBUSY); 9355 map->map_ifindex = ifindex; 9356 return 0; 9357 } 9358 9359 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9360 { 9361 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9362 pr_warn("error: unsupported map type\n"); 9363 return libbpf_err(-EINVAL); 9364 } 9365 if (map->inner_map_fd != -1) { 9366 pr_warn("error: inner_map_fd already specified\n"); 9367 return libbpf_err(-EINVAL); 9368 } 9369 if (map->inner_map) { 9370 bpf_map__destroy(map->inner_map); 9371 zfree(&map->inner_map); 9372 } 9373 map->inner_map_fd = fd; 9374 return 0; 9375 } 9376 9377 static struct bpf_map * 9378 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9379 { 9380 ssize_t idx; 9381 struct bpf_map *s, *e; 9382 9383 if (!obj || !obj->maps) 9384 return errno = EINVAL, NULL; 9385 9386 s = obj->maps; 9387 e = obj->maps + obj->nr_maps; 9388 9389 if ((m < s) || (m >= e)) { 9390 pr_warn("error in %s: map handler doesn't belong to object\n", 9391 __func__); 9392 return errno = EINVAL, NULL; 9393 } 9394 9395 idx = (m - obj->maps) + i; 9396 if (idx >= obj->nr_maps || idx < 0) 9397 return NULL; 9398 return &obj->maps[idx]; 9399 } 9400 9401 struct bpf_map * 9402 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9403 { 9404 if (prev == NULL) 9405 return obj->maps; 9406 9407 return __bpf_map__iter(prev, obj, 1); 9408 } 9409 9410 struct bpf_map * 9411 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9412 { 9413 if (next == NULL) { 9414 if (!obj->nr_maps) 9415 return NULL; 9416 return obj->maps + obj->nr_maps - 1; 9417 } 9418 9419 return __bpf_map__iter(next, obj, -1); 9420 } 9421 9422 struct bpf_map * 9423 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9424 { 9425 struct bpf_map *pos; 9426 9427 bpf_object__for_each_map(pos, obj) { 9428 /* if it's a special internal map name (which always starts 9429 * with dot) then check if that special name matches the 9430 * real map name (ELF section name) 9431 */ 9432 if (name[0] == '.') { 9433 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9434 return pos; 9435 continue; 9436 } 9437 /* otherwise map name has to be an exact match */ 9438 if (map_uses_real_name(pos)) { 9439 if (strcmp(pos->real_name, name) == 0) 9440 return pos; 9441 continue; 9442 } 9443 if (strcmp(pos->name, name) == 0) 9444 return pos; 9445 } 9446 return errno = ENOENT, NULL; 9447 } 9448 9449 int 9450 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9451 { 9452 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9453 } 9454 9455 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9456 size_t value_sz, bool check_value_sz) 9457 { 9458 if (map->fd <= 0) 9459 return -ENOENT; 9460 9461 if (map->def.key_size != key_sz) { 9462 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9463 map->name, key_sz, map->def.key_size); 9464 return -EINVAL; 9465 } 9466 9467 if (!check_value_sz) 9468 return 0; 9469 9470 switch (map->def.type) { 9471 case BPF_MAP_TYPE_PERCPU_ARRAY: 9472 case BPF_MAP_TYPE_PERCPU_HASH: 9473 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9474 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9475 int num_cpu = libbpf_num_possible_cpus(); 9476 size_t elem_sz = roundup(map->def.value_size, 8); 9477 9478 if (value_sz != num_cpu * elem_sz) { 9479 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9480 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9481 return -EINVAL; 9482 } 9483 break; 9484 } 9485 default: 9486 if (map->def.value_size != value_sz) { 9487 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9488 map->name, value_sz, map->def.value_size); 9489 return -EINVAL; 9490 } 9491 break; 9492 } 9493 return 0; 9494 } 9495 9496 int bpf_map__lookup_elem(const struct bpf_map *map, 9497 const void *key, size_t key_sz, 9498 void *value, size_t value_sz, __u64 flags) 9499 { 9500 int err; 9501 9502 err = validate_map_op(map, key_sz, value_sz, true); 9503 if (err) 9504 return libbpf_err(err); 9505 9506 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9507 } 9508 9509 int bpf_map__update_elem(const struct bpf_map *map, 9510 const void *key, size_t key_sz, 9511 const void *value, size_t value_sz, __u64 flags) 9512 { 9513 int err; 9514 9515 err = validate_map_op(map, key_sz, value_sz, true); 9516 if (err) 9517 return libbpf_err(err); 9518 9519 return bpf_map_update_elem(map->fd, key, value, flags); 9520 } 9521 9522 int bpf_map__delete_elem(const struct bpf_map *map, 9523 const void *key, size_t key_sz, __u64 flags) 9524 { 9525 int err; 9526 9527 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9528 if (err) 9529 return libbpf_err(err); 9530 9531 return bpf_map_delete_elem_flags(map->fd, key, flags); 9532 } 9533 9534 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9535 const void *key, size_t key_sz, 9536 void *value, size_t value_sz, __u64 flags) 9537 { 9538 int err; 9539 9540 err = validate_map_op(map, key_sz, value_sz, true); 9541 if (err) 9542 return libbpf_err(err); 9543 9544 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9545 } 9546 9547 int bpf_map__get_next_key(const struct bpf_map *map, 9548 const void *cur_key, void *next_key, size_t key_sz) 9549 { 9550 int err; 9551 9552 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9553 if (err) 9554 return libbpf_err(err); 9555 9556 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9557 } 9558 9559 long libbpf_get_error(const void *ptr) 9560 { 9561 if (!IS_ERR_OR_NULL(ptr)) 9562 return 0; 9563 9564 if (IS_ERR(ptr)) 9565 errno = -PTR_ERR(ptr); 9566 9567 /* If ptr == NULL, then errno should be already set by the failing 9568 * API, because libbpf never returns NULL on success and it now always 9569 * sets errno on error. So no extra errno handling for ptr == NULL 9570 * case. 9571 */ 9572 return -errno; 9573 } 9574 9575 /* Replace link's underlying BPF program with the new one */ 9576 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9577 { 9578 int ret; 9579 9580 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9581 return libbpf_err_errno(ret); 9582 } 9583 9584 /* Release "ownership" of underlying BPF resource (typically, BPF program 9585 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9586 * link, when destructed through bpf_link__destroy() call won't attempt to 9587 * detach/unregisted that BPF resource. This is useful in situations where, 9588 * say, attached BPF program has to outlive userspace program that attached it 9589 * in the system. Depending on type of BPF program, though, there might be 9590 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9591 * exit of userspace program doesn't trigger automatic detachment and clean up 9592 * inside the kernel. 9593 */ 9594 void bpf_link__disconnect(struct bpf_link *link) 9595 { 9596 link->disconnected = true; 9597 } 9598 9599 int bpf_link__destroy(struct bpf_link *link) 9600 { 9601 int err = 0; 9602 9603 if (IS_ERR_OR_NULL(link)) 9604 return 0; 9605 9606 if (!link->disconnected && link->detach) 9607 err = link->detach(link); 9608 if (link->pin_path) 9609 free(link->pin_path); 9610 if (link->dealloc) 9611 link->dealloc(link); 9612 else 9613 free(link); 9614 9615 return libbpf_err(err); 9616 } 9617 9618 int bpf_link__fd(const struct bpf_link *link) 9619 { 9620 return link->fd; 9621 } 9622 9623 const char *bpf_link__pin_path(const struct bpf_link *link) 9624 { 9625 return link->pin_path; 9626 } 9627 9628 static int bpf_link__detach_fd(struct bpf_link *link) 9629 { 9630 return libbpf_err_errno(close(link->fd)); 9631 } 9632 9633 struct bpf_link *bpf_link__open(const char *path) 9634 { 9635 struct bpf_link *link; 9636 int fd; 9637 9638 fd = bpf_obj_get(path); 9639 if (fd < 0) { 9640 fd = -errno; 9641 pr_warn("failed to open link at %s: %d\n", path, fd); 9642 return libbpf_err_ptr(fd); 9643 } 9644 9645 link = calloc(1, sizeof(*link)); 9646 if (!link) { 9647 close(fd); 9648 return libbpf_err_ptr(-ENOMEM); 9649 } 9650 link->detach = &bpf_link__detach_fd; 9651 link->fd = fd; 9652 9653 link->pin_path = strdup(path); 9654 if (!link->pin_path) { 9655 bpf_link__destroy(link); 9656 return libbpf_err_ptr(-ENOMEM); 9657 } 9658 9659 return link; 9660 } 9661 9662 int bpf_link__detach(struct bpf_link *link) 9663 { 9664 return bpf_link_detach(link->fd) ? -errno : 0; 9665 } 9666 9667 int bpf_link__pin(struct bpf_link *link, const char *path) 9668 { 9669 int err; 9670 9671 if (link->pin_path) 9672 return libbpf_err(-EBUSY); 9673 err = make_parent_dir(path); 9674 if (err) 9675 return libbpf_err(err); 9676 err = check_path(path); 9677 if (err) 9678 return libbpf_err(err); 9679 9680 link->pin_path = strdup(path); 9681 if (!link->pin_path) 9682 return libbpf_err(-ENOMEM); 9683 9684 if (bpf_obj_pin(link->fd, link->pin_path)) { 9685 err = -errno; 9686 zfree(&link->pin_path); 9687 return libbpf_err(err); 9688 } 9689 9690 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9691 return 0; 9692 } 9693 9694 int bpf_link__unpin(struct bpf_link *link) 9695 { 9696 int err; 9697 9698 if (!link->pin_path) 9699 return libbpf_err(-EINVAL); 9700 9701 err = unlink(link->pin_path); 9702 if (err != 0) 9703 return -errno; 9704 9705 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9706 zfree(&link->pin_path); 9707 return 0; 9708 } 9709 9710 struct bpf_link_perf { 9711 struct bpf_link link; 9712 int perf_event_fd; 9713 /* legacy kprobe support: keep track of probe identifier and type */ 9714 char *legacy_probe_name; 9715 bool legacy_is_kprobe; 9716 bool legacy_is_retprobe; 9717 }; 9718 9719 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9720 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9721 9722 static int bpf_link_perf_detach(struct bpf_link *link) 9723 { 9724 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9725 int err = 0; 9726 9727 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9728 err = -errno; 9729 9730 if (perf_link->perf_event_fd != link->fd) 9731 close(perf_link->perf_event_fd); 9732 close(link->fd); 9733 9734 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9735 if (perf_link->legacy_probe_name) { 9736 if (perf_link->legacy_is_kprobe) { 9737 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9738 perf_link->legacy_is_retprobe); 9739 } else { 9740 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9741 perf_link->legacy_is_retprobe); 9742 } 9743 } 9744 9745 return err; 9746 } 9747 9748 static void bpf_link_perf_dealloc(struct bpf_link *link) 9749 { 9750 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9751 9752 free(perf_link->legacy_probe_name); 9753 free(perf_link); 9754 } 9755 9756 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9757 const struct bpf_perf_event_opts *opts) 9758 { 9759 char errmsg[STRERR_BUFSIZE]; 9760 struct bpf_link_perf *link; 9761 int prog_fd, link_fd = -1, err; 9762 9763 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9764 return libbpf_err_ptr(-EINVAL); 9765 9766 if (pfd < 0) { 9767 pr_warn("prog '%s': invalid perf event FD %d\n", 9768 prog->name, pfd); 9769 return libbpf_err_ptr(-EINVAL); 9770 } 9771 prog_fd = bpf_program__fd(prog); 9772 if (prog_fd < 0) { 9773 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9774 prog->name); 9775 return libbpf_err_ptr(-EINVAL); 9776 } 9777 9778 link = calloc(1, sizeof(*link)); 9779 if (!link) 9780 return libbpf_err_ptr(-ENOMEM); 9781 link->link.detach = &bpf_link_perf_detach; 9782 link->link.dealloc = &bpf_link_perf_dealloc; 9783 link->perf_event_fd = pfd; 9784 9785 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9786 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9787 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9788 9789 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9790 if (link_fd < 0) { 9791 err = -errno; 9792 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9793 prog->name, pfd, 9794 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9795 goto err_out; 9796 } 9797 link->link.fd = link_fd; 9798 } else { 9799 if (OPTS_GET(opts, bpf_cookie, 0)) { 9800 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9801 err = -EOPNOTSUPP; 9802 goto err_out; 9803 } 9804 9805 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9806 err = -errno; 9807 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9808 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9809 if (err == -EPROTO) 9810 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9811 prog->name, pfd); 9812 goto err_out; 9813 } 9814 link->link.fd = pfd; 9815 } 9816 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9817 err = -errno; 9818 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9819 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9820 goto err_out; 9821 } 9822 9823 return &link->link; 9824 err_out: 9825 if (link_fd >= 0) 9826 close(link_fd); 9827 free(link); 9828 return libbpf_err_ptr(err); 9829 } 9830 9831 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9832 { 9833 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9834 } 9835 9836 /* 9837 * this function is expected to parse integer in the range of [0, 2^31-1] from 9838 * given file using scanf format string fmt. If actual parsed value is 9839 * negative, the result might be indistinguishable from error 9840 */ 9841 static int parse_uint_from_file(const char *file, const char *fmt) 9842 { 9843 char buf[STRERR_BUFSIZE]; 9844 int err, ret; 9845 FILE *f; 9846 9847 f = fopen(file, "r"); 9848 if (!f) { 9849 err = -errno; 9850 pr_debug("failed to open '%s': %s\n", file, 9851 libbpf_strerror_r(err, buf, sizeof(buf))); 9852 return err; 9853 } 9854 err = fscanf(f, fmt, &ret); 9855 if (err != 1) { 9856 err = err == EOF ? -EIO : -errno; 9857 pr_debug("failed to parse '%s': %s\n", file, 9858 libbpf_strerror_r(err, buf, sizeof(buf))); 9859 fclose(f); 9860 return err; 9861 } 9862 fclose(f); 9863 return ret; 9864 } 9865 9866 static int determine_kprobe_perf_type(void) 9867 { 9868 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9869 9870 return parse_uint_from_file(file, "%d\n"); 9871 } 9872 9873 static int determine_uprobe_perf_type(void) 9874 { 9875 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9876 9877 return parse_uint_from_file(file, "%d\n"); 9878 } 9879 9880 static int determine_kprobe_retprobe_bit(void) 9881 { 9882 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9883 9884 return parse_uint_from_file(file, "config:%d\n"); 9885 } 9886 9887 static int determine_uprobe_retprobe_bit(void) 9888 { 9889 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9890 9891 return parse_uint_from_file(file, "config:%d\n"); 9892 } 9893 9894 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9895 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9896 9897 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9898 uint64_t offset, int pid, size_t ref_ctr_off) 9899 { 9900 const size_t attr_sz = sizeof(struct perf_event_attr); 9901 struct perf_event_attr attr; 9902 char errmsg[STRERR_BUFSIZE]; 9903 int type, pfd; 9904 9905 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9906 return -EINVAL; 9907 9908 memset(&attr, 0, attr_sz); 9909 9910 type = uprobe ? determine_uprobe_perf_type() 9911 : determine_kprobe_perf_type(); 9912 if (type < 0) { 9913 pr_warn("failed to determine %s perf type: %s\n", 9914 uprobe ? "uprobe" : "kprobe", 9915 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9916 return type; 9917 } 9918 if (retprobe) { 9919 int bit = uprobe ? determine_uprobe_retprobe_bit() 9920 : determine_kprobe_retprobe_bit(); 9921 9922 if (bit < 0) { 9923 pr_warn("failed to determine %s retprobe bit: %s\n", 9924 uprobe ? "uprobe" : "kprobe", 9925 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9926 return bit; 9927 } 9928 attr.config |= 1 << bit; 9929 } 9930 attr.size = attr_sz; 9931 attr.type = type; 9932 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9933 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9934 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9935 9936 /* pid filter is meaningful only for uprobes */ 9937 pfd = syscall(__NR_perf_event_open, &attr, 9938 pid < 0 ? -1 : pid /* pid */, 9939 pid == -1 ? 0 : -1 /* cpu */, 9940 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9941 return pfd >= 0 ? pfd : -errno; 9942 } 9943 9944 static int append_to_file(const char *file, const char *fmt, ...) 9945 { 9946 int fd, n, err = 0; 9947 va_list ap; 9948 9949 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9950 if (fd < 0) 9951 return -errno; 9952 9953 va_start(ap, fmt); 9954 n = vdprintf(fd, fmt, ap); 9955 va_end(ap); 9956 9957 if (n < 0) 9958 err = -errno; 9959 9960 close(fd); 9961 return err; 9962 } 9963 9964 #define DEBUGFS "/sys/kernel/debug/tracing" 9965 #define TRACEFS "/sys/kernel/tracing" 9966 9967 static bool use_debugfs(void) 9968 { 9969 static int has_debugfs = -1; 9970 9971 if (has_debugfs < 0) 9972 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 9973 9974 return has_debugfs == 1; 9975 } 9976 9977 static const char *tracefs_path(void) 9978 { 9979 return use_debugfs() ? DEBUGFS : TRACEFS; 9980 } 9981 9982 static const char *tracefs_kprobe_events(void) 9983 { 9984 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 9985 } 9986 9987 static const char *tracefs_uprobe_events(void) 9988 { 9989 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 9990 } 9991 9992 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9993 const char *kfunc_name, size_t offset) 9994 { 9995 static int index = 0; 9996 9997 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9998 __sync_fetch_and_add(&index, 1)); 9999 } 10000 10001 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10002 const char *kfunc_name, size_t offset) 10003 { 10004 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10005 retprobe ? 'r' : 'p', 10006 retprobe ? "kretprobes" : "kprobes", 10007 probe_name, kfunc_name, offset); 10008 } 10009 10010 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10011 { 10012 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10013 retprobe ? "kretprobes" : "kprobes", probe_name); 10014 } 10015 10016 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10017 { 10018 char file[256]; 10019 10020 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10021 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10022 10023 return parse_uint_from_file(file, "%d\n"); 10024 } 10025 10026 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10027 const char *kfunc_name, size_t offset, int pid) 10028 { 10029 const size_t attr_sz = sizeof(struct perf_event_attr); 10030 struct perf_event_attr attr; 10031 char errmsg[STRERR_BUFSIZE]; 10032 int type, pfd, err; 10033 10034 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10035 if (err < 0) { 10036 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10037 kfunc_name, offset, 10038 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10039 return err; 10040 } 10041 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10042 if (type < 0) { 10043 err = type; 10044 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10045 kfunc_name, offset, 10046 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10047 goto err_clean_legacy; 10048 } 10049 10050 memset(&attr, 0, attr_sz); 10051 attr.size = attr_sz; 10052 attr.config = type; 10053 attr.type = PERF_TYPE_TRACEPOINT; 10054 10055 pfd = syscall(__NR_perf_event_open, &attr, 10056 pid < 0 ? -1 : pid, /* pid */ 10057 pid == -1 ? 0 : -1, /* cpu */ 10058 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10059 if (pfd < 0) { 10060 err = -errno; 10061 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10062 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10063 goto err_clean_legacy; 10064 } 10065 return pfd; 10066 10067 err_clean_legacy: 10068 /* Clear the newly added legacy kprobe_event */ 10069 remove_kprobe_event_legacy(probe_name, retprobe); 10070 return err; 10071 } 10072 10073 static const char *arch_specific_syscall_pfx(void) 10074 { 10075 #if defined(__x86_64__) 10076 return "x64"; 10077 #elif defined(__i386__) 10078 return "ia32"; 10079 #elif defined(__s390x__) 10080 return "s390x"; 10081 #elif defined(__s390__) 10082 return "s390"; 10083 #elif defined(__arm__) 10084 return "arm"; 10085 #elif defined(__aarch64__) 10086 return "arm64"; 10087 #elif defined(__mips__) 10088 return "mips"; 10089 #elif defined(__riscv) 10090 return "riscv"; 10091 #elif defined(__powerpc__) 10092 return "powerpc"; 10093 #elif defined(__powerpc64__) 10094 return "powerpc64"; 10095 #else 10096 return NULL; 10097 #endif 10098 } 10099 10100 static int probe_kern_syscall_wrapper(void) 10101 { 10102 char syscall_name[64]; 10103 const char *ksys_pfx; 10104 10105 ksys_pfx = arch_specific_syscall_pfx(); 10106 if (!ksys_pfx) 10107 return 0; 10108 10109 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10110 10111 if (determine_kprobe_perf_type() >= 0) { 10112 int pfd; 10113 10114 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10115 if (pfd >= 0) 10116 close(pfd); 10117 10118 return pfd >= 0 ? 1 : 0; 10119 } else { /* legacy mode */ 10120 char probe_name[128]; 10121 10122 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10123 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10124 return 0; 10125 10126 (void)remove_kprobe_event_legacy(probe_name, false); 10127 return 1; 10128 } 10129 } 10130 10131 struct bpf_link * 10132 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10133 const char *func_name, 10134 const struct bpf_kprobe_opts *opts) 10135 { 10136 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10137 char errmsg[STRERR_BUFSIZE]; 10138 char *legacy_probe = NULL; 10139 struct bpf_link *link; 10140 size_t offset; 10141 bool retprobe, legacy; 10142 int pfd, err; 10143 10144 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10145 return libbpf_err_ptr(-EINVAL); 10146 10147 retprobe = OPTS_GET(opts, retprobe, false); 10148 offset = OPTS_GET(opts, offset, 0); 10149 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10150 10151 legacy = determine_kprobe_perf_type() < 0; 10152 if (!legacy) { 10153 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10154 func_name, offset, 10155 -1 /* pid */, 0 /* ref_ctr_off */); 10156 } else { 10157 char probe_name[256]; 10158 10159 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10160 func_name, offset); 10161 10162 legacy_probe = strdup(probe_name); 10163 if (!legacy_probe) 10164 return libbpf_err_ptr(-ENOMEM); 10165 10166 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10167 offset, -1 /* pid */); 10168 } 10169 if (pfd < 0) { 10170 err = -errno; 10171 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10172 prog->name, retprobe ? "kretprobe" : "kprobe", 10173 func_name, offset, 10174 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10175 goto err_out; 10176 } 10177 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10178 err = libbpf_get_error(link); 10179 if (err) { 10180 close(pfd); 10181 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10182 prog->name, retprobe ? "kretprobe" : "kprobe", 10183 func_name, offset, 10184 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10185 goto err_clean_legacy; 10186 } 10187 if (legacy) { 10188 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10189 10190 perf_link->legacy_probe_name = legacy_probe; 10191 perf_link->legacy_is_kprobe = true; 10192 perf_link->legacy_is_retprobe = retprobe; 10193 } 10194 10195 return link; 10196 10197 err_clean_legacy: 10198 if (legacy) 10199 remove_kprobe_event_legacy(legacy_probe, retprobe); 10200 err_out: 10201 free(legacy_probe); 10202 return libbpf_err_ptr(err); 10203 } 10204 10205 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10206 bool retprobe, 10207 const char *func_name) 10208 { 10209 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10210 .retprobe = retprobe, 10211 ); 10212 10213 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10214 } 10215 10216 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10217 const char *syscall_name, 10218 const struct bpf_ksyscall_opts *opts) 10219 { 10220 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10221 char func_name[128]; 10222 10223 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10224 return libbpf_err_ptr(-EINVAL); 10225 10226 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10227 /* arch_specific_syscall_pfx() should never return NULL here 10228 * because it is guarded by kernel_supports(). However, since 10229 * compiler does not know that we have an explicit conditional 10230 * as well. 10231 */ 10232 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10233 arch_specific_syscall_pfx() ? : "", syscall_name); 10234 } else { 10235 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10236 } 10237 10238 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10239 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10240 10241 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10242 } 10243 10244 /* Adapted from perf/util/string.c */ 10245 static bool glob_match(const char *str, const char *pat) 10246 { 10247 while (*str && *pat && *pat != '*') { 10248 if (*pat == '?') { /* Matches any single character */ 10249 str++; 10250 pat++; 10251 continue; 10252 } 10253 if (*str != *pat) 10254 return false; 10255 str++; 10256 pat++; 10257 } 10258 /* Check wild card */ 10259 if (*pat == '*') { 10260 while (*pat == '*') 10261 pat++; 10262 if (!*pat) /* Tail wild card matches all */ 10263 return true; 10264 while (*str) 10265 if (glob_match(str++, pat)) 10266 return true; 10267 } 10268 return !*str && !*pat; 10269 } 10270 10271 struct kprobe_multi_resolve { 10272 const char *pattern; 10273 unsigned long *addrs; 10274 size_t cap; 10275 size_t cnt; 10276 }; 10277 10278 static int 10279 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10280 const char *sym_name, void *ctx) 10281 { 10282 struct kprobe_multi_resolve *res = ctx; 10283 int err; 10284 10285 if (!glob_match(sym_name, res->pattern)) 10286 return 0; 10287 10288 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10289 res->cnt + 1); 10290 if (err) 10291 return err; 10292 10293 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10294 return 0; 10295 } 10296 10297 struct bpf_link * 10298 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10299 const char *pattern, 10300 const struct bpf_kprobe_multi_opts *opts) 10301 { 10302 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10303 struct kprobe_multi_resolve res = { 10304 .pattern = pattern, 10305 }; 10306 struct bpf_link *link = NULL; 10307 char errmsg[STRERR_BUFSIZE]; 10308 const unsigned long *addrs; 10309 int err, link_fd, prog_fd; 10310 const __u64 *cookies; 10311 const char **syms; 10312 bool retprobe; 10313 size_t cnt; 10314 10315 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10316 return libbpf_err_ptr(-EINVAL); 10317 10318 syms = OPTS_GET(opts, syms, false); 10319 addrs = OPTS_GET(opts, addrs, false); 10320 cnt = OPTS_GET(opts, cnt, false); 10321 cookies = OPTS_GET(opts, cookies, false); 10322 10323 if (!pattern && !addrs && !syms) 10324 return libbpf_err_ptr(-EINVAL); 10325 if (pattern && (addrs || syms || cookies || cnt)) 10326 return libbpf_err_ptr(-EINVAL); 10327 if (!pattern && !cnt) 10328 return libbpf_err_ptr(-EINVAL); 10329 if (addrs && syms) 10330 return libbpf_err_ptr(-EINVAL); 10331 10332 if (pattern) { 10333 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10334 if (err) 10335 goto error; 10336 if (!res.cnt) { 10337 err = -ENOENT; 10338 goto error; 10339 } 10340 addrs = res.addrs; 10341 cnt = res.cnt; 10342 } 10343 10344 retprobe = OPTS_GET(opts, retprobe, false); 10345 10346 lopts.kprobe_multi.syms = syms; 10347 lopts.kprobe_multi.addrs = addrs; 10348 lopts.kprobe_multi.cookies = cookies; 10349 lopts.kprobe_multi.cnt = cnt; 10350 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10351 10352 link = calloc(1, sizeof(*link)); 10353 if (!link) { 10354 err = -ENOMEM; 10355 goto error; 10356 } 10357 link->detach = &bpf_link__detach_fd; 10358 10359 prog_fd = bpf_program__fd(prog); 10360 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10361 if (link_fd < 0) { 10362 err = -errno; 10363 pr_warn("prog '%s': failed to attach: %s\n", 10364 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10365 goto error; 10366 } 10367 link->fd = link_fd; 10368 free(res.addrs); 10369 return link; 10370 10371 error: 10372 free(link); 10373 free(res.addrs); 10374 return libbpf_err_ptr(err); 10375 } 10376 10377 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10378 { 10379 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10380 unsigned long offset = 0; 10381 const char *func_name; 10382 char *func; 10383 int n; 10384 10385 *link = NULL; 10386 10387 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10388 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10389 return 0; 10390 10391 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10392 if (opts.retprobe) 10393 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10394 else 10395 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10396 10397 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10398 if (n < 1) { 10399 pr_warn("kprobe name is invalid: %s\n", func_name); 10400 return -EINVAL; 10401 } 10402 if (opts.retprobe && offset != 0) { 10403 free(func); 10404 pr_warn("kretprobes do not support offset specification\n"); 10405 return -EINVAL; 10406 } 10407 10408 opts.offset = offset; 10409 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10410 free(func); 10411 return libbpf_get_error(*link); 10412 } 10413 10414 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10415 { 10416 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10417 const char *syscall_name; 10418 10419 *link = NULL; 10420 10421 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10422 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10423 return 0; 10424 10425 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10426 if (opts.retprobe) 10427 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10428 else 10429 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10430 10431 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10432 return *link ? 0 : -errno; 10433 } 10434 10435 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10436 { 10437 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10438 const char *spec; 10439 char *pattern; 10440 int n; 10441 10442 *link = NULL; 10443 10444 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10445 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10446 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10447 return 0; 10448 10449 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10450 if (opts.retprobe) 10451 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10452 else 10453 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10454 10455 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10456 if (n < 1) { 10457 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10458 return -EINVAL; 10459 } 10460 10461 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10462 free(pattern); 10463 return libbpf_get_error(*link); 10464 } 10465 10466 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10467 const char *binary_path, uint64_t offset) 10468 { 10469 int i; 10470 10471 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10472 10473 /* sanitize binary_path in the probe name */ 10474 for (i = 0; buf[i]; i++) { 10475 if (!isalnum(buf[i])) 10476 buf[i] = '_'; 10477 } 10478 } 10479 10480 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10481 const char *binary_path, size_t offset) 10482 { 10483 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10484 retprobe ? 'r' : 'p', 10485 retprobe ? "uretprobes" : "uprobes", 10486 probe_name, binary_path, offset); 10487 } 10488 10489 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10490 { 10491 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10492 retprobe ? "uretprobes" : "uprobes", probe_name); 10493 } 10494 10495 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10496 { 10497 char file[512]; 10498 10499 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10500 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10501 10502 return parse_uint_from_file(file, "%d\n"); 10503 } 10504 10505 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10506 const char *binary_path, size_t offset, int pid) 10507 { 10508 const size_t attr_sz = sizeof(struct perf_event_attr); 10509 struct perf_event_attr attr; 10510 int type, pfd, err; 10511 10512 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10513 if (err < 0) { 10514 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10515 binary_path, (size_t)offset, err); 10516 return err; 10517 } 10518 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10519 if (type < 0) { 10520 err = type; 10521 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10522 binary_path, offset, err); 10523 goto err_clean_legacy; 10524 } 10525 10526 memset(&attr, 0, attr_sz); 10527 attr.size = attr_sz; 10528 attr.config = type; 10529 attr.type = PERF_TYPE_TRACEPOINT; 10530 10531 pfd = syscall(__NR_perf_event_open, &attr, 10532 pid < 0 ? -1 : pid, /* pid */ 10533 pid == -1 ? 0 : -1, /* cpu */ 10534 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10535 if (pfd < 0) { 10536 err = -errno; 10537 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10538 goto err_clean_legacy; 10539 } 10540 return pfd; 10541 10542 err_clean_legacy: 10543 /* Clear the newly added legacy uprobe_event */ 10544 remove_uprobe_event_legacy(probe_name, retprobe); 10545 return err; 10546 } 10547 10548 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10549 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10550 { 10551 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10552 GElf_Shdr sh; 10553 10554 if (!gelf_getshdr(scn, &sh)) 10555 continue; 10556 if (sh.sh_type == sh_type) 10557 return scn; 10558 } 10559 return NULL; 10560 } 10561 10562 /* Find offset of function name in object specified by path. "name" matches 10563 * symbol name or name@@LIB for library functions. 10564 */ 10565 static long elf_find_func_offset(const char *binary_path, const char *name) 10566 { 10567 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10568 bool is_shared_lib, is_name_qualified; 10569 char errmsg[STRERR_BUFSIZE]; 10570 long ret = -ENOENT; 10571 size_t name_len; 10572 GElf_Ehdr ehdr; 10573 Elf *elf; 10574 10575 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10576 if (fd < 0) { 10577 ret = -errno; 10578 pr_warn("failed to open %s: %s\n", binary_path, 10579 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10580 return ret; 10581 } 10582 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10583 if (!elf) { 10584 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10585 close(fd); 10586 return -LIBBPF_ERRNO__FORMAT; 10587 } 10588 if (!gelf_getehdr(elf, &ehdr)) { 10589 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10590 ret = -LIBBPF_ERRNO__FORMAT; 10591 goto out; 10592 } 10593 /* for shared lib case, we do not need to calculate relative offset */ 10594 is_shared_lib = ehdr.e_type == ET_DYN; 10595 10596 name_len = strlen(name); 10597 /* Does name specify "@@LIB"? */ 10598 is_name_qualified = strstr(name, "@@") != NULL; 10599 10600 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10601 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10602 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10603 * reported as a warning/error. 10604 */ 10605 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10606 size_t nr_syms, strtabidx, idx; 10607 Elf_Data *symbols = NULL; 10608 Elf_Scn *scn = NULL; 10609 int last_bind = -1; 10610 const char *sname; 10611 GElf_Shdr sh; 10612 10613 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10614 if (!scn) { 10615 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10616 binary_path); 10617 continue; 10618 } 10619 if (!gelf_getshdr(scn, &sh)) 10620 continue; 10621 strtabidx = sh.sh_link; 10622 symbols = elf_getdata(scn, 0); 10623 if (!symbols) { 10624 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10625 binary_path, elf_errmsg(-1)); 10626 ret = -LIBBPF_ERRNO__FORMAT; 10627 goto out; 10628 } 10629 nr_syms = symbols->d_size / sh.sh_entsize; 10630 10631 for (idx = 0; idx < nr_syms; idx++) { 10632 int curr_bind; 10633 GElf_Sym sym; 10634 Elf_Scn *sym_scn; 10635 GElf_Shdr sym_sh; 10636 10637 if (!gelf_getsym(symbols, idx, &sym)) 10638 continue; 10639 10640 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10641 continue; 10642 10643 sname = elf_strptr(elf, strtabidx, sym.st_name); 10644 if (!sname) 10645 continue; 10646 10647 curr_bind = GELF_ST_BIND(sym.st_info); 10648 10649 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10650 if (strncmp(sname, name, name_len) != 0) 10651 continue; 10652 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10653 * additional characters in sname should be of the form "@@LIB". 10654 */ 10655 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10656 continue; 10657 10658 if (ret >= 0) { 10659 /* handle multiple matches */ 10660 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10661 /* Only accept one non-weak bind. */ 10662 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10663 sname, name, binary_path); 10664 ret = -LIBBPF_ERRNO__FORMAT; 10665 goto out; 10666 } else if (curr_bind == STB_WEAK) { 10667 /* already have a non-weak bind, and 10668 * this is a weak bind, so ignore. 10669 */ 10670 continue; 10671 } 10672 } 10673 10674 /* Transform symbol's virtual address (absolute for 10675 * binaries and relative for shared libs) into file 10676 * offset, which is what kernel is expecting for 10677 * uprobe/uretprobe attachment. 10678 * See Documentation/trace/uprobetracer.rst for more 10679 * details. 10680 * This is done by looking up symbol's containing 10681 * section's header and using it's virtual address 10682 * (sh_addr) and corresponding file offset (sh_offset) 10683 * to transform sym.st_value (virtual address) into 10684 * desired final file offset. 10685 */ 10686 sym_scn = elf_getscn(elf, sym.st_shndx); 10687 if (!sym_scn) 10688 continue; 10689 if (!gelf_getshdr(sym_scn, &sym_sh)) 10690 continue; 10691 10692 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10693 last_bind = curr_bind; 10694 } 10695 if (ret > 0) 10696 break; 10697 } 10698 10699 if (ret > 0) { 10700 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10701 ret); 10702 } else { 10703 if (ret == 0) { 10704 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10705 is_shared_lib ? "should not be 0 in a shared library" : 10706 "try using shared library path instead"); 10707 ret = -ENOENT; 10708 } else { 10709 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10710 } 10711 } 10712 out: 10713 elf_end(elf); 10714 close(fd); 10715 return ret; 10716 } 10717 10718 static const char *arch_specific_lib_paths(void) 10719 { 10720 /* 10721 * Based on https://packages.debian.org/sid/libc6. 10722 * 10723 * Assume that the traced program is built for the same architecture 10724 * as libbpf, which should cover the vast majority of cases. 10725 */ 10726 #if defined(__x86_64__) 10727 return "/lib/x86_64-linux-gnu"; 10728 #elif defined(__i386__) 10729 return "/lib/i386-linux-gnu"; 10730 #elif defined(__s390x__) 10731 return "/lib/s390x-linux-gnu"; 10732 #elif defined(__s390__) 10733 return "/lib/s390-linux-gnu"; 10734 #elif defined(__arm__) && defined(__SOFTFP__) 10735 return "/lib/arm-linux-gnueabi"; 10736 #elif defined(__arm__) && !defined(__SOFTFP__) 10737 return "/lib/arm-linux-gnueabihf"; 10738 #elif defined(__aarch64__) 10739 return "/lib/aarch64-linux-gnu"; 10740 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10741 return "/lib/mips64el-linux-gnuabi64"; 10742 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10743 return "/lib/mipsel-linux-gnu"; 10744 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10745 return "/lib/powerpc64le-linux-gnu"; 10746 #elif defined(__sparc__) && defined(__arch64__) 10747 return "/lib/sparc64-linux-gnu"; 10748 #elif defined(__riscv) && __riscv_xlen == 64 10749 return "/lib/riscv64-linux-gnu"; 10750 #else 10751 return NULL; 10752 #endif 10753 } 10754 10755 /* Get full path to program/shared library. */ 10756 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10757 { 10758 const char *search_paths[3] = {}; 10759 int i, perm; 10760 10761 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10762 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10763 search_paths[1] = "/usr/lib64:/usr/lib"; 10764 search_paths[2] = arch_specific_lib_paths(); 10765 perm = R_OK; 10766 } else { 10767 search_paths[0] = getenv("PATH"); 10768 search_paths[1] = "/usr/bin:/usr/sbin"; 10769 perm = R_OK | X_OK; 10770 } 10771 10772 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10773 const char *s; 10774 10775 if (!search_paths[i]) 10776 continue; 10777 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10778 char *next_path; 10779 int seg_len; 10780 10781 if (s[0] == ':') 10782 s++; 10783 next_path = strchr(s, ':'); 10784 seg_len = next_path ? next_path - s : strlen(s); 10785 if (!seg_len) 10786 continue; 10787 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10788 /* ensure it has required permissions */ 10789 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 10790 continue; 10791 pr_debug("resolved '%s' to '%s'\n", file, result); 10792 return 0; 10793 } 10794 } 10795 return -ENOENT; 10796 } 10797 10798 LIBBPF_API struct bpf_link * 10799 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10800 const char *binary_path, size_t func_offset, 10801 const struct bpf_uprobe_opts *opts) 10802 { 10803 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10804 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10805 char full_binary_path[PATH_MAX]; 10806 struct bpf_link *link; 10807 size_t ref_ctr_off; 10808 int pfd, err; 10809 bool retprobe, legacy; 10810 const char *func_name; 10811 10812 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10813 return libbpf_err_ptr(-EINVAL); 10814 10815 retprobe = OPTS_GET(opts, retprobe, false); 10816 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10817 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10818 10819 if (!binary_path) 10820 return libbpf_err_ptr(-EINVAL); 10821 10822 if (!strchr(binary_path, '/')) { 10823 err = resolve_full_path(binary_path, full_binary_path, 10824 sizeof(full_binary_path)); 10825 if (err) { 10826 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10827 prog->name, binary_path, err); 10828 return libbpf_err_ptr(err); 10829 } 10830 binary_path = full_binary_path; 10831 } 10832 func_name = OPTS_GET(opts, func_name, NULL); 10833 if (func_name) { 10834 long sym_off; 10835 10836 sym_off = elf_find_func_offset(binary_path, func_name); 10837 if (sym_off < 0) 10838 return libbpf_err_ptr(sym_off); 10839 func_offset += sym_off; 10840 } 10841 10842 legacy = determine_uprobe_perf_type() < 0; 10843 if (!legacy) { 10844 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10845 func_offset, pid, ref_ctr_off); 10846 } else { 10847 char probe_name[PATH_MAX + 64]; 10848 10849 if (ref_ctr_off) 10850 return libbpf_err_ptr(-EINVAL); 10851 10852 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10853 binary_path, func_offset); 10854 10855 legacy_probe = strdup(probe_name); 10856 if (!legacy_probe) 10857 return libbpf_err_ptr(-ENOMEM); 10858 10859 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10860 binary_path, func_offset, pid); 10861 } 10862 if (pfd < 0) { 10863 err = -errno; 10864 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10865 prog->name, retprobe ? "uretprobe" : "uprobe", 10866 binary_path, func_offset, 10867 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10868 goto err_out; 10869 } 10870 10871 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10872 err = libbpf_get_error(link); 10873 if (err) { 10874 close(pfd); 10875 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10876 prog->name, retprobe ? "uretprobe" : "uprobe", 10877 binary_path, func_offset, 10878 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10879 goto err_clean_legacy; 10880 } 10881 if (legacy) { 10882 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10883 10884 perf_link->legacy_probe_name = legacy_probe; 10885 perf_link->legacy_is_kprobe = false; 10886 perf_link->legacy_is_retprobe = retprobe; 10887 } 10888 return link; 10889 10890 err_clean_legacy: 10891 if (legacy) 10892 remove_uprobe_event_legacy(legacy_probe, retprobe); 10893 err_out: 10894 free(legacy_probe); 10895 return libbpf_err_ptr(err); 10896 } 10897 10898 /* Format of u[ret]probe section definition supporting auto-attach: 10899 * u[ret]probe/binary:function[+offset] 10900 * 10901 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10902 * full binary path via bpf_program__attach_uprobe_opts. 10903 * 10904 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10905 * specified (and auto-attach is not possible) or the above format is specified for 10906 * auto-attach. 10907 */ 10908 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10909 { 10910 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10911 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10912 int n, ret = -EINVAL; 10913 long offset = 0; 10914 10915 *link = NULL; 10916 10917 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10918 &probe_type, &binary_path, &func_name, &offset); 10919 switch (n) { 10920 case 1: 10921 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10922 ret = 0; 10923 break; 10924 case 2: 10925 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10926 prog->name, prog->sec_name); 10927 break; 10928 case 3: 10929 case 4: 10930 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 10931 strcmp(probe_type, "uretprobe.s") == 0; 10932 if (opts.retprobe && offset != 0) { 10933 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10934 prog->name); 10935 break; 10936 } 10937 opts.func_name = func_name; 10938 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10939 ret = libbpf_get_error(*link); 10940 break; 10941 default: 10942 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10943 prog->sec_name); 10944 break; 10945 } 10946 free(probe_type); 10947 free(binary_path); 10948 free(func_name); 10949 10950 return ret; 10951 } 10952 10953 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10954 bool retprobe, pid_t pid, 10955 const char *binary_path, 10956 size_t func_offset) 10957 { 10958 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10959 10960 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10961 } 10962 10963 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10964 pid_t pid, const char *binary_path, 10965 const char *usdt_provider, const char *usdt_name, 10966 const struct bpf_usdt_opts *opts) 10967 { 10968 char resolved_path[512]; 10969 struct bpf_object *obj = prog->obj; 10970 struct bpf_link *link; 10971 __u64 usdt_cookie; 10972 int err; 10973 10974 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10975 return libbpf_err_ptr(-EINVAL); 10976 10977 if (bpf_program__fd(prog) < 0) { 10978 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10979 prog->name); 10980 return libbpf_err_ptr(-EINVAL); 10981 } 10982 10983 if (!binary_path) 10984 return libbpf_err_ptr(-EINVAL); 10985 10986 if (!strchr(binary_path, '/')) { 10987 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10988 if (err) { 10989 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10990 prog->name, binary_path, err); 10991 return libbpf_err_ptr(err); 10992 } 10993 binary_path = resolved_path; 10994 } 10995 10996 /* USDT manager is instantiated lazily on first USDT attach. It will 10997 * be destroyed together with BPF object in bpf_object__close(). 10998 */ 10999 if (IS_ERR(obj->usdt_man)) 11000 return libbpf_ptr(obj->usdt_man); 11001 if (!obj->usdt_man) { 11002 obj->usdt_man = usdt_manager_new(obj); 11003 if (IS_ERR(obj->usdt_man)) 11004 return libbpf_ptr(obj->usdt_man); 11005 } 11006 11007 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11008 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11009 usdt_provider, usdt_name, usdt_cookie); 11010 err = libbpf_get_error(link); 11011 if (err) 11012 return libbpf_err_ptr(err); 11013 return link; 11014 } 11015 11016 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11017 { 11018 char *path = NULL, *provider = NULL, *name = NULL; 11019 const char *sec_name; 11020 int n, err; 11021 11022 sec_name = bpf_program__section_name(prog); 11023 if (strcmp(sec_name, "usdt") == 0) { 11024 /* no auto-attach for just SEC("usdt") */ 11025 *link = NULL; 11026 return 0; 11027 } 11028 11029 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11030 if (n != 3) { 11031 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11032 sec_name); 11033 err = -EINVAL; 11034 } else { 11035 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11036 provider, name, NULL); 11037 err = libbpf_get_error(*link); 11038 } 11039 free(path); 11040 free(provider); 11041 free(name); 11042 return err; 11043 } 11044 11045 static int determine_tracepoint_id(const char *tp_category, 11046 const char *tp_name) 11047 { 11048 char file[PATH_MAX]; 11049 int ret; 11050 11051 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11052 tracefs_path(), tp_category, tp_name); 11053 if (ret < 0) 11054 return -errno; 11055 if (ret >= sizeof(file)) { 11056 pr_debug("tracepoint %s/%s path is too long\n", 11057 tp_category, tp_name); 11058 return -E2BIG; 11059 } 11060 return parse_uint_from_file(file, "%d\n"); 11061 } 11062 11063 static int perf_event_open_tracepoint(const char *tp_category, 11064 const char *tp_name) 11065 { 11066 const size_t attr_sz = sizeof(struct perf_event_attr); 11067 struct perf_event_attr attr; 11068 char errmsg[STRERR_BUFSIZE]; 11069 int tp_id, pfd, err; 11070 11071 tp_id = determine_tracepoint_id(tp_category, tp_name); 11072 if (tp_id < 0) { 11073 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11074 tp_category, tp_name, 11075 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11076 return tp_id; 11077 } 11078 11079 memset(&attr, 0, attr_sz); 11080 attr.type = PERF_TYPE_TRACEPOINT; 11081 attr.size = attr_sz; 11082 attr.config = tp_id; 11083 11084 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11085 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11086 if (pfd < 0) { 11087 err = -errno; 11088 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11089 tp_category, tp_name, 11090 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11091 return err; 11092 } 11093 return pfd; 11094 } 11095 11096 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11097 const char *tp_category, 11098 const char *tp_name, 11099 const struct bpf_tracepoint_opts *opts) 11100 { 11101 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11102 char errmsg[STRERR_BUFSIZE]; 11103 struct bpf_link *link; 11104 int pfd, err; 11105 11106 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11107 return libbpf_err_ptr(-EINVAL); 11108 11109 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11110 11111 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11112 if (pfd < 0) { 11113 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11114 prog->name, tp_category, tp_name, 11115 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11116 return libbpf_err_ptr(pfd); 11117 } 11118 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11119 err = libbpf_get_error(link); 11120 if (err) { 11121 close(pfd); 11122 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11123 prog->name, tp_category, tp_name, 11124 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11125 return libbpf_err_ptr(err); 11126 } 11127 return link; 11128 } 11129 11130 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11131 const char *tp_category, 11132 const char *tp_name) 11133 { 11134 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11135 } 11136 11137 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11138 { 11139 char *sec_name, *tp_cat, *tp_name; 11140 11141 *link = NULL; 11142 11143 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11144 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11145 return 0; 11146 11147 sec_name = strdup(prog->sec_name); 11148 if (!sec_name) 11149 return -ENOMEM; 11150 11151 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11152 if (str_has_pfx(prog->sec_name, "tp/")) 11153 tp_cat = sec_name + sizeof("tp/") - 1; 11154 else 11155 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11156 tp_name = strchr(tp_cat, '/'); 11157 if (!tp_name) { 11158 free(sec_name); 11159 return -EINVAL; 11160 } 11161 *tp_name = '\0'; 11162 tp_name++; 11163 11164 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11165 free(sec_name); 11166 return libbpf_get_error(*link); 11167 } 11168 11169 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11170 const char *tp_name) 11171 { 11172 char errmsg[STRERR_BUFSIZE]; 11173 struct bpf_link *link; 11174 int prog_fd, pfd; 11175 11176 prog_fd = bpf_program__fd(prog); 11177 if (prog_fd < 0) { 11178 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11179 return libbpf_err_ptr(-EINVAL); 11180 } 11181 11182 link = calloc(1, sizeof(*link)); 11183 if (!link) 11184 return libbpf_err_ptr(-ENOMEM); 11185 link->detach = &bpf_link__detach_fd; 11186 11187 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11188 if (pfd < 0) { 11189 pfd = -errno; 11190 free(link); 11191 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11192 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11193 return libbpf_err_ptr(pfd); 11194 } 11195 link->fd = pfd; 11196 return link; 11197 } 11198 11199 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11200 { 11201 static const char *const prefixes[] = { 11202 "raw_tp", 11203 "raw_tracepoint", 11204 "raw_tp.w", 11205 "raw_tracepoint.w", 11206 }; 11207 size_t i; 11208 const char *tp_name = NULL; 11209 11210 *link = NULL; 11211 11212 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11213 size_t pfx_len; 11214 11215 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11216 continue; 11217 11218 pfx_len = strlen(prefixes[i]); 11219 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11220 if (prog->sec_name[pfx_len] == '\0') 11221 return 0; 11222 11223 if (prog->sec_name[pfx_len] != '/') 11224 continue; 11225 11226 tp_name = prog->sec_name + pfx_len + 1; 11227 break; 11228 } 11229 11230 if (!tp_name) { 11231 pr_warn("prog '%s': invalid section name '%s'\n", 11232 prog->name, prog->sec_name); 11233 return -EINVAL; 11234 } 11235 11236 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11237 return libbpf_get_error(link); 11238 } 11239 11240 /* Common logic for all BPF program types that attach to a btf_id */ 11241 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11242 const struct bpf_trace_opts *opts) 11243 { 11244 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11245 char errmsg[STRERR_BUFSIZE]; 11246 struct bpf_link *link; 11247 int prog_fd, pfd; 11248 11249 if (!OPTS_VALID(opts, bpf_trace_opts)) 11250 return libbpf_err_ptr(-EINVAL); 11251 11252 prog_fd = bpf_program__fd(prog); 11253 if (prog_fd < 0) { 11254 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11255 return libbpf_err_ptr(-EINVAL); 11256 } 11257 11258 link = calloc(1, sizeof(*link)); 11259 if (!link) 11260 return libbpf_err_ptr(-ENOMEM); 11261 link->detach = &bpf_link__detach_fd; 11262 11263 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11264 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11265 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11266 if (pfd < 0) { 11267 pfd = -errno; 11268 free(link); 11269 pr_warn("prog '%s': failed to attach: %s\n", 11270 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11271 return libbpf_err_ptr(pfd); 11272 } 11273 link->fd = pfd; 11274 return link; 11275 } 11276 11277 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11278 { 11279 return bpf_program__attach_btf_id(prog, NULL); 11280 } 11281 11282 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11283 const struct bpf_trace_opts *opts) 11284 { 11285 return bpf_program__attach_btf_id(prog, opts); 11286 } 11287 11288 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11289 { 11290 return bpf_program__attach_btf_id(prog, NULL); 11291 } 11292 11293 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11294 { 11295 *link = bpf_program__attach_trace(prog); 11296 return libbpf_get_error(*link); 11297 } 11298 11299 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11300 { 11301 *link = bpf_program__attach_lsm(prog); 11302 return libbpf_get_error(*link); 11303 } 11304 11305 static struct bpf_link * 11306 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11307 const char *target_name) 11308 { 11309 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11310 .target_btf_id = btf_id); 11311 enum bpf_attach_type attach_type; 11312 char errmsg[STRERR_BUFSIZE]; 11313 struct bpf_link *link; 11314 int prog_fd, link_fd; 11315 11316 prog_fd = bpf_program__fd(prog); 11317 if (prog_fd < 0) { 11318 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11319 return libbpf_err_ptr(-EINVAL); 11320 } 11321 11322 link = calloc(1, sizeof(*link)); 11323 if (!link) 11324 return libbpf_err_ptr(-ENOMEM); 11325 link->detach = &bpf_link__detach_fd; 11326 11327 attach_type = bpf_program__expected_attach_type(prog); 11328 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11329 if (link_fd < 0) { 11330 link_fd = -errno; 11331 free(link); 11332 pr_warn("prog '%s': failed to attach to %s: %s\n", 11333 prog->name, target_name, 11334 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11335 return libbpf_err_ptr(link_fd); 11336 } 11337 link->fd = link_fd; 11338 return link; 11339 } 11340 11341 struct bpf_link * 11342 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11343 { 11344 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11345 } 11346 11347 struct bpf_link * 11348 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11349 { 11350 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11351 } 11352 11353 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11354 { 11355 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11356 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11357 } 11358 11359 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11360 int target_fd, 11361 const char *attach_func_name) 11362 { 11363 int btf_id; 11364 11365 if (!!target_fd != !!attach_func_name) { 11366 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11367 prog->name); 11368 return libbpf_err_ptr(-EINVAL); 11369 } 11370 11371 if (prog->type != BPF_PROG_TYPE_EXT) { 11372 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11373 prog->name); 11374 return libbpf_err_ptr(-EINVAL); 11375 } 11376 11377 if (target_fd) { 11378 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11379 if (btf_id < 0) 11380 return libbpf_err_ptr(btf_id); 11381 11382 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11383 } else { 11384 /* no target, so use raw_tracepoint_open for compatibility 11385 * with old kernels 11386 */ 11387 return bpf_program__attach_trace(prog); 11388 } 11389 } 11390 11391 struct bpf_link * 11392 bpf_program__attach_iter(const struct bpf_program *prog, 11393 const struct bpf_iter_attach_opts *opts) 11394 { 11395 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11396 char errmsg[STRERR_BUFSIZE]; 11397 struct bpf_link *link; 11398 int prog_fd, link_fd; 11399 __u32 target_fd = 0; 11400 11401 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11402 return libbpf_err_ptr(-EINVAL); 11403 11404 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11405 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11406 11407 prog_fd = bpf_program__fd(prog); 11408 if (prog_fd < 0) { 11409 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11410 return libbpf_err_ptr(-EINVAL); 11411 } 11412 11413 link = calloc(1, sizeof(*link)); 11414 if (!link) 11415 return libbpf_err_ptr(-ENOMEM); 11416 link->detach = &bpf_link__detach_fd; 11417 11418 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11419 &link_create_opts); 11420 if (link_fd < 0) { 11421 link_fd = -errno; 11422 free(link); 11423 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11424 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11425 return libbpf_err_ptr(link_fd); 11426 } 11427 link->fd = link_fd; 11428 return link; 11429 } 11430 11431 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11432 { 11433 *link = bpf_program__attach_iter(prog, NULL); 11434 return libbpf_get_error(*link); 11435 } 11436 11437 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11438 { 11439 struct bpf_link *link = NULL; 11440 int err; 11441 11442 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11443 return libbpf_err_ptr(-EOPNOTSUPP); 11444 11445 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11446 if (err) 11447 return libbpf_err_ptr(err); 11448 11449 /* When calling bpf_program__attach() explicitly, auto-attach support 11450 * is expected to work, so NULL returned link is considered an error. 11451 * This is different for skeleton's attach, see comment in 11452 * bpf_object__attach_skeleton(). 11453 */ 11454 if (!link) 11455 return libbpf_err_ptr(-EOPNOTSUPP); 11456 11457 return link; 11458 } 11459 11460 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11461 { 11462 __u32 zero = 0; 11463 11464 if (bpf_map_delete_elem(link->fd, &zero)) 11465 return -errno; 11466 11467 return 0; 11468 } 11469 11470 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11471 { 11472 struct bpf_struct_ops *st_ops; 11473 struct bpf_link *link; 11474 __u32 i, zero = 0; 11475 int err; 11476 11477 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11478 return libbpf_err_ptr(-EINVAL); 11479 11480 link = calloc(1, sizeof(*link)); 11481 if (!link) 11482 return libbpf_err_ptr(-EINVAL); 11483 11484 st_ops = map->st_ops; 11485 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11486 struct bpf_program *prog = st_ops->progs[i]; 11487 void *kern_data; 11488 int prog_fd; 11489 11490 if (!prog) 11491 continue; 11492 11493 prog_fd = bpf_program__fd(prog); 11494 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11495 *(unsigned long *)kern_data = prog_fd; 11496 } 11497 11498 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11499 if (err) { 11500 err = -errno; 11501 free(link); 11502 return libbpf_err_ptr(err); 11503 } 11504 11505 link->detach = bpf_link__detach_struct_ops; 11506 link->fd = map->fd; 11507 11508 return link; 11509 } 11510 11511 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11512 void *private_data); 11513 11514 static enum bpf_perf_event_ret 11515 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11516 void **copy_mem, size_t *copy_size, 11517 bpf_perf_event_print_t fn, void *private_data) 11518 { 11519 struct perf_event_mmap_page *header = mmap_mem; 11520 __u64 data_head = ring_buffer_read_head(header); 11521 __u64 data_tail = header->data_tail; 11522 void *base = ((__u8 *)header) + page_size; 11523 int ret = LIBBPF_PERF_EVENT_CONT; 11524 struct perf_event_header *ehdr; 11525 size_t ehdr_size; 11526 11527 while (data_head != data_tail) { 11528 ehdr = base + (data_tail & (mmap_size - 1)); 11529 ehdr_size = ehdr->size; 11530 11531 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11532 void *copy_start = ehdr; 11533 size_t len_first = base + mmap_size - copy_start; 11534 size_t len_secnd = ehdr_size - len_first; 11535 11536 if (*copy_size < ehdr_size) { 11537 free(*copy_mem); 11538 *copy_mem = malloc(ehdr_size); 11539 if (!*copy_mem) { 11540 *copy_size = 0; 11541 ret = LIBBPF_PERF_EVENT_ERROR; 11542 break; 11543 } 11544 *copy_size = ehdr_size; 11545 } 11546 11547 memcpy(*copy_mem, copy_start, len_first); 11548 memcpy(*copy_mem + len_first, base, len_secnd); 11549 ehdr = *copy_mem; 11550 } 11551 11552 ret = fn(ehdr, private_data); 11553 data_tail += ehdr_size; 11554 if (ret != LIBBPF_PERF_EVENT_CONT) 11555 break; 11556 } 11557 11558 ring_buffer_write_tail(header, data_tail); 11559 return libbpf_err(ret); 11560 } 11561 11562 struct perf_buffer; 11563 11564 struct perf_buffer_params { 11565 struct perf_event_attr *attr; 11566 /* if event_cb is specified, it takes precendence */ 11567 perf_buffer_event_fn event_cb; 11568 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11569 perf_buffer_sample_fn sample_cb; 11570 perf_buffer_lost_fn lost_cb; 11571 void *ctx; 11572 int cpu_cnt; 11573 int *cpus; 11574 int *map_keys; 11575 }; 11576 11577 struct perf_cpu_buf { 11578 struct perf_buffer *pb; 11579 void *base; /* mmap()'ed memory */ 11580 void *buf; /* for reconstructing segmented data */ 11581 size_t buf_size; 11582 int fd; 11583 int cpu; 11584 int map_key; 11585 }; 11586 11587 struct perf_buffer { 11588 perf_buffer_event_fn event_cb; 11589 perf_buffer_sample_fn sample_cb; 11590 perf_buffer_lost_fn lost_cb; 11591 void *ctx; /* passed into callbacks */ 11592 11593 size_t page_size; 11594 size_t mmap_size; 11595 struct perf_cpu_buf **cpu_bufs; 11596 struct epoll_event *events; 11597 int cpu_cnt; /* number of allocated CPU buffers */ 11598 int epoll_fd; /* perf event FD */ 11599 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11600 }; 11601 11602 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11603 struct perf_cpu_buf *cpu_buf) 11604 { 11605 if (!cpu_buf) 11606 return; 11607 if (cpu_buf->base && 11608 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11609 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11610 if (cpu_buf->fd >= 0) { 11611 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11612 close(cpu_buf->fd); 11613 } 11614 free(cpu_buf->buf); 11615 free(cpu_buf); 11616 } 11617 11618 void perf_buffer__free(struct perf_buffer *pb) 11619 { 11620 int i; 11621 11622 if (IS_ERR_OR_NULL(pb)) 11623 return; 11624 if (pb->cpu_bufs) { 11625 for (i = 0; i < pb->cpu_cnt; i++) { 11626 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11627 11628 if (!cpu_buf) 11629 continue; 11630 11631 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11632 perf_buffer__free_cpu_buf(pb, cpu_buf); 11633 } 11634 free(pb->cpu_bufs); 11635 } 11636 if (pb->epoll_fd >= 0) 11637 close(pb->epoll_fd); 11638 free(pb->events); 11639 free(pb); 11640 } 11641 11642 static struct perf_cpu_buf * 11643 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11644 int cpu, int map_key) 11645 { 11646 struct perf_cpu_buf *cpu_buf; 11647 char msg[STRERR_BUFSIZE]; 11648 int err; 11649 11650 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11651 if (!cpu_buf) 11652 return ERR_PTR(-ENOMEM); 11653 11654 cpu_buf->pb = pb; 11655 cpu_buf->cpu = cpu; 11656 cpu_buf->map_key = map_key; 11657 11658 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11659 -1, PERF_FLAG_FD_CLOEXEC); 11660 if (cpu_buf->fd < 0) { 11661 err = -errno; 11662 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11663 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11664 goto error; 11665 } 11666 11667 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11668 PROT_READ | PROT_WRITE, MAP_SHARED, 11669 cpu_buf->fd, 0); 11670 if (cpu_buf->base == MAP_FAILED) { 11671 cpu_buf->base = NULL; 11672 err = -errno; 11673 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11674 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11675 goto error; 11676 } 11677 11678 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11679 err = -errno; 11680 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11681 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11682 goto error; 11683 } 11684 11685 return cpu_buf; 11686 11687 error: 11688 perf_buffer__free_cpu_buf(pb, cpu_buf); 11689 return (struct perf_cpu_buf *)ERR_PTR(err); 11690 } 11691 11692 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11693 struct perf_buffer_params *p); 11694 11695 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11696 perf_buffer_sample_fn sample_cb, 11697 perf_buffer_lost_fn lost_cb, 11698 void *ctx, 11699 const struct perf_buffer_opts *opts) 11700 { 11701 const size_t attr_sz = sizeof(struct perf_event_attr); 11702 struct perf_buffer_params p = {}; 11703 struct perf_event_attr attr; 11704 11705 if (!OPTS_VALID(opts, perf_buffer_opts)) 11706 return libbpf_err_ptr(-EINVAL); 11707 11708 memset(&attr, 0, attr_sz); 11709 attr.size = attr_sz; 11710 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11711 attr.type = PERF_TYPE_SOFTWARE; 11712 attr.sample_type = PERF_SAMPLE_RAW; 11713 attr.sample_period = 1; 11714 attr.wakeup_events = 1; 11715 11716 p.attr = &attr; 11717 p.sample_cb = sample_cb; 11718 p.lost_cb = lost_cb; 11719 p.ctx = ctx; 11720 11721 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11722 } 11723 11724 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11725 struct perf_event_attr *attr, 11726 perf_buffer_event_fn event_cb, void *ctx, 11727 const struct perf_buffer_raw_opts *opts) 11728 { 11729 struct perf_buffer_params p = {}; 11730 11731 if (!attr) 11732 return libbpf_err_ptr(-EINVAL); 11733 11734 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11735 return libbpf_err_ptr(-EINVAL); 11736 11737 p.attr = attr; 11738 p.event_cb = event_cb; 11739 p.ctx = ctx; 11740 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11741 p.cpus = OPTS_GET(opts, cpus, NULL); 11742 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11743 11744 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11745 } 11746 11747 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11748 struct perf_buffer_params *p) 11749 { 11750 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11751 struct bpf_map_info map; 11752 char msg[STRERR_BUFSIZE]; 11753 struct perf_buffer *pb; 11754 bool *online = NULL; 11755 __u32 map_info_len; 11756 int err, i, j, n; 11757 11758 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11759 pr_warn("page count should be power of two, but is %zu\n", 11760 page_cnt); 11761 return ERR_PTR(-EINVAL); 11762 } 11763 11764 /* best-effort sanity checks */ 11765 memset(&map, 0, sizeof(map)); 11766 map_info_len = sizeof(map); 11767 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11768 if (err) { 11769 err = -errno; 11770 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11771 * -EBADFD, -EFAULT, or -E2BIG on real error 11772 */ 11773 if (err != -EINVAL) { 11774 pr_warn("failed to get map info for map FD %d: %s\n", 11775 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11776 return ERR_PTR(err); 11777 } 11778 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11779 map_fd); 11780 } else { 11781 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11782 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11783 map.name); 11784 return ERR_PTR(-EINVAL); 11785 } 11786 } 11787 11788 pb = calloc(1, sizeof(*pb)); 11789 if (!pb) 11790 return ERR_PTR(-ENOMEM); 11791 11792 pb->event_cb = p->event_cb; 11793 pb->sample_cb = p->sample_cb; 11794 pb->lost_cb = p->lost_cb; 11795 pb->ctx = p->ctx; 11796 11797 pb->page_size = getpagesize(); 11798 pb->mmap_size = pb->page_size * page_cnt; 11799 pb->map_fd = map_fd; 11800 11801 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11802 if (pb->epoll_fd < 0) { 11803 err = -errno; 11804 pr_warn("failed to create epoll instance: %s\n", 11805 libbpf_strerror_r(err, msg, sizeof(msg))); 11806 goto error; 11807 } 11808 11809 if (p->cpu_cnt > 0) { 11810 pb->cpu_cnt = p->cpu_cnt; 11811 } else { 11812 pb->cpu_cnt = libbpf_num_possible_cpus(); 11813 if (pb->cpu_cnt < 0) { 11814 err = pb->cpu_cnt; 11815 goto error; 11816 } 11817 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11818 pb->cpu_cnt = map.max_entries; 11819 } 11820 11821 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11822 if (!pb->events) { 11823 err = -ENOMEM; 11824 pr_warn("failed to allocate events: out of memory\n"); 11825 goto error; 11826 } 11827 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11828 if (!pb->cpu_bufs) { 11829 err = -ENOMEM; 11830 pr_warn("failed to allocate buffers: out of memory\n"); 11831 goto error; 11832 } 11833 11834 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11835 if (err) { 11836 pr_warn("failed to get online CPU mask: %d\n", err); 11837 goto error; 11838 } 11839 11840 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11841 struct perf_cpu_buf *cpu_buf; 11842 int cpu, map_key; 11843 11844 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11845 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11846 11847 /* in case user didn't explicitly requested particular CPUs to 11848 * be attached to, skip offline/not present CPUs 11849 */ 11850 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11851 continue; 11852 11853 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11854 if (IS_ERR(cpu_buf)) { 11855 err = PTR_ERR(cpu_buf); 11856 goto error; 11857 } 11858 11859 pb->cpu_bufs[j] = cpu_buf; 11860 11861 err = bpf_map_update_elem(pb->map_fd, &map_key, 11862 &cpu_buf->fd, 0); 11863 if (err) { 11864 err = -errno; 11865 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11866 cpu, map_key, cpu_buf->fd, 11867 libbpf_strerror_r(err, msg, sizeof(msg))); 11868 goto error; 11869 } 11870 11871 pb->events[j].events = EPOLLIN; 11872 pb->events[j].data.ptr = cpu_buf; 11873 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11874 &pb->events[j]) < 0) { 11875 err = -errno; 11876 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11877 cpu, cpu_buf->fd, 11878 libbpf_strerror_r(err, msg, sizeof(msg))); 11879 goto error; 11880 } 11881 j++; 11882 } 11883 pb->cpu_cnt = j; 11884 free(online); 11885 11886 return pb; 11887 11888 error: 11889 free(online); 11890 if (pb) 11891 perf_buffer__free(pb); 11892 return ERR_PTR(err); 11893 } 11894 11895 struct perf_sample_raw { 11896 struct perf_event_header header; 11897 uint32_t size; 11898 char data[]; 11899 }; 11900 11901 struct perf_sample_lost { 11902 struct perf_event_header header; 11903 uint64_t id; 11904 uint64_t lost; 11905 uint64_t sample_id; 11906 }; 11907 11908 static enum bpf_perf_event_ret 11909 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11910 { 11911 struct perf_cpu_buf *cpu_buf = ctx; 11912 struct perf_buffer *pb = cpu_buf->pb; 11913 void *data = e; 11914 11915 /* user wants full control over parsing perf event */ 11916 if (pb->event_cb) 11917 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11918 11919 switch (e->type) { 11920 case PERF_RECORD_SAMPLE: { 11921 struct perf_sample_raw *s = data; 11922 11923 if (pb->sample_cb) 11924 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11925 break; 11926 } 11927 case PERF_RECORD_LOST: { 11928 struct perf_sample_lost *s = data; 11929 11930 if (pb->lost_cb) 11931 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11932 break; 11933 } 11934 default: 11935 pr_warn("unknown perf sample type %d\n", e->type); 11936 return LIBBPF_PERF_EVENT_ERROR; 11937 } 11938 return LIBBPF_PERF_EVENT_CONT; 11939 } 11940 11941 static int perf_buffer__process_records(struct perf_buffer *pb, 11942 struct perf_cpu_buf *cpu_buf) 11943 { 11944 enum bpf_perf_event_ret ret; 11945 11946 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11947 pb->page_size, &cpu_buf->buf, 11948 &cpu_buf->buf_size, 11949 perf_buffer__process_record, cpu_buf); 11950 if (ret != LIBBPF_PERF_EVENT_CONT) 11951 return ret; 11952 return 0; 11953 } 11954 11955 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11956 { 11957 return pb->epoll_fd; 11958 } 11959 11960 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11961 { 11962 int i, cnt, err; 11963 11964 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11965 if (cnt < 0) 11966 return -errno; 11967 11968 for (i = 0; i < cnt; i++) { 11969 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11970 11971 err = perf_buffer__process_records(pb, cpu_buf); 11972 if (err) { 11973 pr_warn("error while processing records: %d\n", err); 11974 return libbpf_err(err); 11975 } 11976 } 11977 return cnt; 11978 } 11979 11980 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11981 * manager. 11982 */ 11983 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11984 { 11985 return pb->cpu_cnt; 11986 } 11987 11988 /* 11989 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11990 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11991 * select()/poll()/epoll() Linux syscalls. 11992 */ 11993 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11994 { 11995 struct perf_cpu_buf *cpu_buf; 11996 11997 if (buf_idx >= pb->cpu_cnt) 11998 return libbpf_err(-EINVAL); 11999 12000 cpu_buf = pb->cpu_bufs[buf_idx]; 12001 if (!cpu_buf) 12002 return libbpf_err(-ENOENT); 12003 12004 return cpu_buf->fd; 12005 } 12006 12007 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12008 { 12009 struct perf_cpu_buf *cpu_buf; 12010 12011 if (buf_idx >= pb->cpu_cnt) 12012 return libbpf_err(-EINVAL); 12013 12014 cpu_buf = pb->cpu_bufs[buf_idx]; 12015 if (!cpu_buf) 12016 return libbpf_err(-ENOENT); 12017 12018 *buf = cpu_buf->base; 12019 *buf_size = pb->mmap_size; 12020 return 0; 12021 } 12022 12023 /* 12024 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12025 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12026 * consume, do nothing and return success. 12027 * Returns: 12028 * - 0 on success; 12029 * - <0 on failure. 12030 */ 12031 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12032 { 12033 struct perf_cpu_buf *cpu_buf; 12034 12035 if (buf_idx >= pb->cpu_cnt) 12036 return libbpf_err(-EINVAL); 12037 12038 cpu_buf = pb->cpu_bufs[buf_idx]; 12039 if (!cpu_buf) 12040 return libbpf_err(-ENOENT); 12041 12042 return perf_buffer__process_records(pb, cpu_buf); 12043 } 12044 12045 int perf_buffer__consume(struct perf_buffer *pb) 12046 { 12047 int i, err; 12048 12049 for (i = 0; i < pb->cpu_cnt; i++) { 12050 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12051 12052 if (!cpu_buf) 12053 continue; 12054 12055 err = perf_buffer__process_records(pb, cpu_buf); 12056 if (err) { 12057 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12058 return libbpf_err(err); 12059 } 12060 } 12061 return 0; 12062 } 12063 12064 int bpf_program__set_attach_target(struct bpf_program *prog, 12065 int attach_prog_fd, 12066 const char *attach_func_name) 12067 { 12068 int btf_obj_fd = 0, btf_id = 0, err; 12069 12070 if (!prog || attach_prog_fd < 0) 12071 return libbpf_err(-EINVAL); 12072 12073 if (prog->obj->loaded) 12074 return libbpf_err(-EINVAL); 12075 12076 if (attach_prog_fd && !attach_func_name) { 12077 /* remember attach_prog_fd and let bpf_program__load() find 12078 * BTF ID during the program load 12079 */ 12080 prog->attach_prog_fd = attach_prog_fd; 12081 return 0; 12082 } 12083 12084 if (attach_prog_fd) { 12085 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12086 attach_prog_fd); 12087 if (btf_id < 0) 12088 return libbpf_err(btf_id); 12089 } else { 12090 if (!attach_func_name) 12091 return libbpf_err(-EINVAL); 12092 12093 /* load btf_vmlinux, if not yet */ 12094 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12095 if (err) 12096 return libbpf_err(err); 12097 err = find_kernel_btf_id(prog->obj, attach_func_name, 12098 prog->expected_attach_type, 12099 &btf_obj_fd, &btf_id); 12100 if (err) 12101 return libbpf_err(err); 12102 } 12103 12104 prog->attach_btf_id = btf_id; 12105 prog->attach_btf_obj_fd = btf_obj_fd; 12106 prog->attach_prog_fd = attach_prog_fd; 12107 return 0; 12108 } 12109 12110 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12111 { 12112 int err = 0, n, len, start, end = -1; 12113 bool *tmp; 12114 12115 *mask = NULL; 12116 *mask_sz = 0; 12117 12118 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12119 while (*s) { 12120 if (*s == ',' || *s == '\n') { 12121 s++; 12122 continue; 12123 } 12124 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12125 if (n <= 0 || n > 2) { 12126 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12127 err = -EINVAL; 12128 goto cleanup; 12129 } else if (n == 1) { 12130 end = start; 12131 } 12132 if (start < 0 || start > end) { 12133 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12134 start, end, s); 12135 err = -EINVAL; 12136 goto cleanup; 12137 } 12138 tmp = realloc(*mask, end + 1); 12139 if (!tmp) { 12140 err = -ENOMEM; 12141 goto cleanup; 12142 } 12143 *mask = tmp; 12144 memset(tmp + *mask_sz, 0, start - *mask_sz); 12145 memset(tmp + start, 1, end - start + 1); 12146 *mask_sz = end + 1; 12147 s += len; 12148 } 12149 if (!*mask_sz) { 12150 pr_warn("Empty CPU range\n"); 12151 return -EINVAL; 12152 } 12153 return 0; 12154 cleanup: 12155 free(*mask); 12156 *mask = NULL; 12157 return err; 12158 } 12159 12160 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12161 { 12162 int fd, err = 0, len; 12163 char buf[128]; 12164 12165 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12166 if (fd < 0) { 12167 err = -errno; 12168 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12169 return err; 12170 } 12171 len = read(fd, buf, sizeof(buf)); 12172 close(fd); 12173 if (len <= 0) { 12174 err = len ? -errno : -EINVAL; 12175 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12176 return err; 12177 } 12178 if (len >= sizeof(buf)) { 12179 pr_warn("CPU mask is too big in file %s\n", fcpu); 12180 return -E2BIG; 12181 } 12182 buf[len] = '\0'; 12183 12184 return parse_cpu_mask_str(buf, mask, mask_sz); 12185 } 12186 12187 int libbpf_num_possible_cpus(void) 12188 { 12189 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12190 static int cpus; 12191 int err, n, i, tmp_cpus; 12192 bool *mask; 12193 12194 tmp_cpus = READ_ONCE(cpus); 12195 if (tmp_cpus > 0) 12196 return tmp_cpus; 12197 12198 err = parse_cpu_mask_file(fcpu, &mask, &n); 12199 if (err) 12200 return libbpf_err(err); 12201 12202 tmp_cpus = 0; 12203 for (i = 0; i < n; i++) { 12204 if (mask[i]) 12205 tmp_cpus++; 12206 } 12207 free(mask); 12208 12209 WRITE_ONCE(cpus, tmp_cpus); 12210 return tmp_cpus; 12211 } 12212 12213 static int populate_skeleton_maps(const struct bpf_object *obj, 12214 struct bpf_map_skeleton *maps, 12215 size_t map_cnt) 12216 { 12217 int i; 12218 12219 for (i = 0; i < map_cnt; i++) { 12220 struct bpf_map **map = maps[i].map; 12221 const char *name = maps[i].name; 12222 void **mmaped = maps[i].mmaped; 12223 12224 *map = bpf_object__find_map_by_name(obj, name); 12225 if (!*map) { 12226 pr_warn("failed to find skeleton map '%s'\n", name); 12227 return -ESRCH; 12228 } 12229 12230 /* externs shouldn't be pre-setup from user code */ 12231 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12232 *mmaped = (*map)->mmaped; 12233 } 12234 return 0; 12235 } 12236 12237 static int populate_skeleton_progs(const struct bpf_object *obj, 12238 struct bpf_prog_skeleton *progs, 12239 size_t prog_cnt) 12240 { 12241 int i; 12242 12243 for (i = 0; i < prog_cnt; i++) { 12244 struct bpf_program **prog = progs[i].prog; 12245 const char *name = progs[i].name; 12246 12247 *prog = bpf_object__find_program_by_name(obj, name); 12248 if (!*prog) { 12249 pr_warn("failed to find skeleton program '%s'\n", name); 12250 return -ESRCH; 12251 } 12252 } 12253 return 0; 12254 } 12255 12256 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12257 const struct bpf_object_open_opts *opts) 12258 { 12259 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12260 .object_name = s->name, 12261 ); 12262 struct bpf_object *obj; 12263 int err; 12264 12265 /* Attempt to preserve opts->object_name, unless overriden by user 12266 * explicitly. Overwriting object name for skeletons is discouraged, 12267 * as it breaks global data maps, because they contain object name 12268 * prefix as their own map name prefix. When skeleton is generated, 12269 * bpftool is making an assumption that this name will stay the same. 12270 */ 12271 if (opts) { 12272 memcpy(&skel_opts, opts, sizeof(*opts)); 12273 if (!opts->object_name) 12274 skel_opts.object_name = s->name; 12275 } 12276 12277 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12278 err = libbpf_get_error(obj); 12279 if (err) { 12280 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12281 s->name, err); 12282 return libbpf_err(err); 12283 } 12284 12285 *s->obj = obj; 12286 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12287 if (err) { 12288 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12289 return libbpf_err(err); 12290 } 12291 12292 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12293 if (err) { 12294 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12295 return libbpf_err(err); 12296 } 12297 12298 return 0; 12299 } 12300 12301 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12302 { 12303 int err, len, var_idx, i; 12304 const char *var_name; 12305 const struct bpf_map *map; 12306 struct btf *btf; 12307 __u32 map_type_id; 12308 const struct btf_type *map_type, *var_type; 12309 const struct bpf_var_skeleton *var_skel; 12310 struct btf_var_secinfo *var; 12311 12312 if (!s->obj) 12313 return libbpf_err(-EINVAL); 12314 12315 btf = bpf_object__btf(s->obj); 12316 if (!btf) { 12317 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12318 bpf_object__name(s->obj)); 12319 return libbpf_err(-errno); 12320 } 12321 12322 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12323 if (err) { 12324 pr_warn("failed to populate subskeleton maps: %d\n", err); 12325 return libbpf_err(err); 12326 } 12327 12328 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12329 if (err) { 12330 pr_warn("failed to populate subskeleton maps: %d\n", err); 12331 return libbpf_err(err); 12332 } 12333 12334 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12335 var_skel = &s->vars[var_idx]; 12336 map = *var_skel->map; 12337 map_type_id = bpf_map__btf_value_type_id(map); 12338 map_type = btf__type_by_id(btf, map_type_id); 12339 12340 if (!btf_is_datasec(map_type)) { 12341 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12342 bpf_map__name(map), 12343 __btf_kind_str(btf_kind(map_type))); 12344 return libbpf_err(-EINVAL); 12345 } 12346 12347 len = btf_vlen(map_type); 12348 var = btf_var_secinfos(map_type); 12349 for (i = 0; i < len; i++, var++) { 12350 var_type = btf__type_by_id(btf, var->type); 12351 var_name = btf__name_by_offset(btf, var_type->name_off); 12352 if (strcmp(var_name, var_skel->name) == 0) { 12353 *var_skel->addr = map->mmaped + var->offset; 12354 break; 12355 } 12356 } 12357 } 12358 return 0; 12359 } 12360 12361 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12362 { 12363 if (!s) 12364 return; 12365 free(s->maps); 12366 free(s->progs); 12367 free(s->vars); 12368 free(s); 12369 } 12370 12371 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12372 { 12373 int i, err; 12374 12375 err = bpf_object__load(*s->obj); 12376 if (err) { 12377 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12378 return libbpf_err(err); 12379 } 12380 12381 for (i = 0; i < s->map_cnt; i++) { 12382 struct bpf_map *map = *s->maps[i].map; 12383 size_t mmap_sz = bpf_map_mmap_sz(map); 12384 int prot, map_fd = bpf_map__fd(map); 12385 void **mmaped = s->maps[i].mmaped; 12386 12387 if (!mmaped) 12388 continue; 12389 12390 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12391 *mmaped = NULL; 12392 continue; 12393 } 12394 12395 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12396 prot = PROT_READ; 12397 else 12398 prot = PROT_READ | PROT_WRITE; 12399 12400 /* Remap anonymous mmap()-ed "map initialization image" as 12401 * a BPF map-backed mmap()-ed memory, but preserving the same 12402 * memory address. This will cause kernel to change process' 12403 * page table to point to a different piece of kernel memory, 12404 * but from userspace point of view memory address (and its 12405 * contents, being identical at this point) will stay the 12406 * same. This mapping will be released by bpf_object__close() 12407 * as per normal clean up procedure, so we don't need to worry 12408 * about it from skeleton's clean up perspective. 12409 */ 12410 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12411 MAP_SHARED | MAP_FIXED, map_fd, 0); 12412 if (*mmaped == MAP_FAILED) { 12413 err = -errno; 12414 *mmaped = NULL; 12415 pr_warn("failed to re-mmap() map '%s': %d\n", 12416 bpf_map__name(map), err); 12417 return libbpf_err(err); 12418 } 12419 } 12420 12421 return 0; 12422 } 12423 12424 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12425 { 12426 int i, err; 12427 12428 for (i = 0; i < s->prog_cnt; i++) { 12429 struct bpf_program *prog = *s->progs[i].prog; 12430 struct bpf_link **link = s->progs[i].link; 12431 12432 if (!prog->autoload || !prog->autoattach) 12433 continue; 12434 12435 /* auto-attaching not supported for this program */ 12436 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12437 continue; 12438 12439 /* if user already set the link manually, don't attempt auto-attach */ 12440 if (*link) 12441 continue; 12442 12443 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12444 if (err) { 12445 pr_warn("prog '%s': failed to auto-attach: %d\n", 12446 bpf_program__name(prog), err); 12447 return libbpf_err(err); 12448 } 12449 12450 /* It's possible that for some SEC() definitions auto-attach 12451 * is supported in some cases (e.g., if definition completely 12452 * specifies target information), but is not in other cases. 12453 * SEC("uprobe") is one such case. If user specified target 12454 * binary and function name, such BPF program can be 12455 * auto-attached. But if not, it shouldn't trigger skeleton's 12456 * attach to fail. It should just be skipped. 12457 * attach_fn signals such case with returning 0 (no error) and 12458 * setting link to NULL. 12459 */ 12460 } 12461 12462 return 0; 12463 } 12464 12465 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12466 { 12467 int i; 12468 12469 for (i = 0; i < s->prog_cnt; i++) { 12470 struct bpf_link **link = s->progs[i].link; 12471 12472 bpf_link__destroy(*link); 12473 *link = NULL; 12474 } 12475 } 12476 12477 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12478 { 12479 if (!s) 12480 return; 12481 12482 if (s->progs) 12483 bpf_object__detach_skeleton(s); 12484 if (s->obj) 12485 bpf_object__close(*s->obj); 12486 free(s->maps); 12487 free(s->progs); 12488 free(s); 12489 } 12490