xref: /linux/tools/lib/bpf/libbpf.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
64 
65 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
66 
67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
68  * compilation if user enables corresponding warning. Disable it explicitly.
69  */
70 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
71 
72 #define __printf(a, b)	__attribute__((format(printf, a, b)))
73 
74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
76 static int map_set_def_max_entries(struct bpf_map *map);
77 
78 static const char * const attach_type_name[] = {
79 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
80 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
81 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
82 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
83 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
84 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
85 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
86 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
87 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
88 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
89 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
90 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
91 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
92 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
93 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
94 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
95 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
96 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
97 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
98 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
99 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
100 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
101 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
102 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
103 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
104 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
105 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
106 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
107 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
108 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
109 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
110 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
111 	[BPF_LIRC_MODE2]		= "lirc_mode2",
112 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
113 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
114 	[BPF_TRACE_FENTRY]		= "trace_fentry",
115 	[BPF_TRACE_FEXIT]		= "trace_fexit",
116 	[BPF_MODIFY_RETURN]		= "modify_return",
117 	[BPF_LSM_MAC]			= "lsm_mac",
118 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
119 	[BPF_SK_LOOKUP]			= "sk_lookup",
120 	[BPF_TRACE_ITER]		= "trace_iter",
121 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
122 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
123 	[BPF_XDP]			= "xdp",
124 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
125 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
126 	[BPF_PERF_EVENT]		= "perf_event",
127 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
128 	[BPF_STRUCT_OPS]		= "struct_ops",
129 	[BPF_NETFILTER]			= "netfilter",
130 	[BPF_TCX_INGRESS]		= "tcx_ingress",
131 	[BPF_TCX_EGRESS]		= "tcx_egress",
132 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
133 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
134 	[BPF_NETKIT_PEER]		= "netkit_peer",
135 };
136 
137 static const char * const link_type_name[] = {
138 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
139 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
140 	[BPF_LINK_TYPE_TRACING]			= "tracing",
141 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
142 	[BPF_LINK_TYPE_ITER]			= "iter",
143 	[BPF_LINK_TYPE_NETNS]			= "netns",
144 	[BPF_LINK_TYPE_XDP]			= "xdp",
145 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
146 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
147 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
148 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
149 	[BPF_LINK_TYPE_TCX]			= "tcx",
150 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
151 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
152 };
153 
154 static const char * const map_type_name[] = {
155 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
156 	[BPF_MAP_TYPE_HASH]			= "hash",
157 	[BPF_MAP_TYPE_ARRAY]			= "array",
158 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
159 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
160 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
161 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
162 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
163 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
164 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
165 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
166 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
167 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
168 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
169 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
170 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
171 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
172 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
173 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
174 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
175 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
176 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
177 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
178 	[BPF_MAP_TYPE_QUEUE]			= "queue",
179 	[BPF_MAP_TYPE_STACK]			= "stack",
180 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
181 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
182 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
183 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
184 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
185 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
186 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
187 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
188 	[BPF_MAP_TYPE_ARENA]			= "arena",
189 };
190 
191 static const char * const prog_type_name[] = {
192 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
193 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
194 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
195 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
196 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
197 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
198 	[BPF_PROG_TYPE_XDP]			= "xdp",
199 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
200 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
201 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
202 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
203 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
204 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
205 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
206 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
207 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
208 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
209 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
210 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
211 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
212 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
213 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
214 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
215 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
216 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
217 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
218 	[BPF_PROG_TYPE_TRACING]			= "tracing",
219 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
220 	[BPF_PROG_TYPE_EXT]			= "ext",
221 	[BPF_PROG_TYPE_LSM]			= "lsm",
222 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
223 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
224 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
225 };
226 
227 static int __base_pr(enum libbpf_print_level level, const char *format,
228 		     va_list args)
229 {
230 	if (level == LIBBPF_DEBUG)
231 		return 0;
232 
233 	return vfprintf(stderr, format, args);
234 }
235 
236 static libbpf_print_fn_t __libbpf_pr = __base_pr;
237 
238 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
239 {
240 	libbpf_print_fn_t old_print_fn;
241 
242 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
243 
244 	return old_print_fn;
245 }
246 
247 __printf(2, 3)
248 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
249 {
250 	va_list args;
251 	int old_errno;
252 	libbpf_print_fn_t print_fn;
253 
254 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
255 	if (!print_fn)
256 		return;
257 
258 	old_errno = errno;
259 
260 	va_start(args, format);
261 	__libbpf_pr(level, format, args);
262 	va_end(args);
263 
264 	errno = old_errno;
265 }
266 
267 static void pr_perm_msg(int err)
268 {
269 	struct rlimit limit;
270 	char buf[100];
271 
272 	if (err != -EPERM || geteuid() != 0)
273 		return;
274 
275 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
276 	if (err)
277 		return;
278 
279 	if (limit.rlim_cur == RLIM_INFINITY)
280 		return;
281 
282 	if (limit.rlim_cur < 1024)
283 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
284 	else if (limit.rlim_cur < 1024*1024)
285 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
286 	else
287 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
288 
289 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
290 		buf);
291 }
292 
293 #define STRERR_BUFSIZE  128
294 
295 /* Copied from tools/perf/util/util.h */
296 #ifndef zfree
297 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
298 #endif
299 
300 #ifndef zclose
301 # define zclose(fd) ({			\
302 	int ___err = 0;			\
303 	if ((fd) >= 0)			\
304 		___err = close((fd));	\
305 	fd = -1;			\
306 	___err; })
307 #endif
308 
309 static inline __u64 ptr_to_u64(const void *ptr)
310 {
311 	return (__u64) (unsigned long) ptr;
312 }
313 
314 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
315 {
316 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
317 	return 0;
318 }
319 
320 __u32 libbpf_major_version(void)
321 {
322 	return LIBBPF_MAJOR_VERSION;
323 }
324 
325 __u32 libbpf_minor_version(void)
326 {
327 	return LIBBPF_MINOR_VERSION;
328 }
329 
330 const char *libbpf_version_string(void)
331 {
332 #define __S(X) #X
333 #define _S(X) __S(X)
334 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
335 #undef _S
336 #undef __S
337 }
338 
339 enum reloc_type {
340 	RELO_LD64,
341 	RELO_CALL,
342 	RELO_DATA,
343 	RELO_EXTERN_LD64,
344 	RELO_EXTERN_CALL,
345 	RELO_SUBPROG_ADDR,
346 	RELO_CORE,
347 };
348 
349 struct reloc_desc {
350 	enum reloc_type type;
351 	int insn_idx;
352 	union {
353 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
354 		struct {
355 			int map_idx;
356 			int sym_off;
357 			int ext_idx;
358 		};
359 	};
360 };
361 
362 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
363 enum sec_def_flags {
364 	SEC_NONE = 0,
365 	/* expected_attach_type is optional, if kernel doesn't support that */
366 	SEC_EXP_ATTACH_OPT = 1,
367 	/* legacy, only used by libbpf_get_type_names() and
368 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
369 	 * This used to be associated with cgroup (and few other) BPF programs
370 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
371 	 * meaningless nowadays, though.
372 	 */
373 	SEC_ATTACHABLE = 2,
374 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
375 	/* attachment target is specified through BTF ID in either kernel or
376 	 * other BPF program's BTF object
377 	 */
378 	SEC_ATTACH_BTF = 4,
379 	/* BPF program type allows sleeping/blocking in kernel */
380 	SEC_SLEEPABLE = 8,
381 	/* BPF program support non-linear XDP buffer */
382 	SEC_XDP_FRAGS = 16,
383 	/* Setup proper attach type for usdt probes. */
384 	SEC_USDT = 32,
385 };
386 
387 struct bpf_sec_def {
388 	char *sec;
389 	enum bpf_prog_type prog_type;
390 	enum bpf_attach_type expected_attach_type;
391 	long cookie;
392 	int handler_id;
393 
394 	libbpf_prog_setup_fn_t prog_setup_fn;
395 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
396 	libbpf_prog_attach_fn_t prog_attach_fn;
397 };
398 
399 /*
400  * bpf_prog should be a better name but it has been used in
401  * linux/filter.h.
402  */
403 struct bpf_program {
404 	char *name;
405 	char *sec_name;
406 	size_t sec_idx;
407 	const struct bpf_sec_def *sec_def;
408 	/* this program's instruction offset (in number of instructions)
409 	 * within its containing ELF section
410 	 */
411 	size_t sec_insn_off;
412 	/* number of original instructions in ELF section belonging to this
413 	 * program, not taking into account subprogram instructions possible
414 	 * appended later during relocation
415 	 */
416 	size_t sec_insn_cnt;
417 	/* Offset (in number of instructions) of the start of instruction
418 	 * belonging to this BPF program  within its containing main BPF
419 	 * program. For the entry-point (main) BPF program, this is always
420 	 * zero. For a sub-program, this gets reset before each of main BPF
421 	 * programs are processed and relocated and is used to determined
422 	 * whether sub-program was already appended to the main program, and
423 	 * if yes, at which instruction offset.
424 	 */
425 	size_t sub_insn_off;
426 
427 	/* instructions that belong to BPF program; insns[0] is located at
428 	 * sec_insn_off instruction within its ELF section in ELF file, so
429 	 * when mapping ELF file instruction index to the local instruction,
430 	 * one needs to subtract sec_insn_off; and vice versa.
431 	 */
432 	struct bpf_insn *insns;
433 	/* actual number of instruction in this BPF program's image; for
434 	 * entry-point BPF programs this includes the size of main program
435 	 * itself plus all the used sub-programs, appended at the end
436 	 */
437 	size_t insns_cnt;
438 
439 	struct reloc_desc *reloc_desc;
440 	int nr_reloc;
441 
442 	/* BPF verifier log settings */
443 	char *log_buf;
444 	size_t log_size;
445 	__u32 log_level;
446 
447 	struct bpf_object *obj;
448 
449 	int fd;
450 	bool autoload;
451 	bool autoattach;
452 	bool sym_global;
453 	bool mark_btf_static;
454 	enum bpf_prog_type type;
455 	enum bpf_attach_type expected_attach_type;
456 	int exception_cb_idx;
457 
458 	int prog_ifindex;
459 	__u32 attach_btf_obj_fd;
460 	__u32 attach_btf_id;
461 	__u32 attach_prog_fd;
462 
463 	void *func_info;
464 	__u32 func_info_rec_size;
465 	__u32 func_info_cnt;
466 
467 	void *line_info;
468 	__u32 line_info_rec_size;
469 	__u32 line_info_cnt;
470 	__u32 prog_flags;
471 };
472 
473 struct bpf_struct_ops {
474 	const char *tname;
475 	const struct btf_type *type;
476 	struct bpf_program **progs;
477 	__u32 *kern_func_off;
478 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
479 	void *data;
480 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
481 	 *      btf_vmlinux's format.
482 	 * struct bpf_struct_ops_tcp_congestion_ops {
483 	 *	[... some other kernel fields ...]
484 	 *	struct tcp_congestion_ops data;
485 	 * }
486 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
487 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
488 	 * from "data".
489 	 */
490 	void *kern_vdata;
491 	__u32 type_id;
492 };
493 
494 #define DATA_SEC ".data"
495 #define BSS_SEC ".bss"
496 #define RODATA_SEC ".rodata"
497 #define KCONFIG_SEC ".kconfig"
498 #define KSYMS_SEC ".ksyms"
499 #define STRUCT_OPS_SEC ".struct_ops"
500 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
501 #define ARENA_SEC ".addr_space.1"
502 
503 enum libbpf_map_type {
504 	LIBBPF_MAP_UNSPEC,
505 	LIBBPF_MAP_DATA,
506 	LIBBPF_MAP_BSS,
507 	LIBBPF_MAP_RODATA,
508 	LIBBPF_MAP_KCONFIG,
509 };
510 
511 struct bpf_map_def {
512 	unsigned int type;
513 	unsigned int key_size;
514 	unsigned int value_size;
515 	unsigned int max_entries;
516 	unsigned int map_flags;
517 };
518 
519 struct bpf_map {
520 	struct bpf_object *obj;
521 	char *name;
522 	/* real_name is defined for special internal maps (.rodata*,
523 	 * .data*, .bss, .kconfig) and preserves their original ELF section
524 	 * name. This is important to be able to find corresponding BTF
525 	 * DATASEC information.
526 	 */
527 	char *real_name;
528 	int fd;
529 	int sec_idx;
530 	size_t sec_offset;
531 	int map_ifindex;
532 	int inner_map_fd;
533 	struct bpf_map_def def;
534 	__u32 numa_node;
535 	__u32 btf_var_idx;
536 	int mod_btf_fd;
537 	__u32 btf_key_type_id;
538 	__u32 btf_value_type_id;
539 	__u32 btf_vmlinux_value_type_id;
540 	enum libbpf_map_type libbpf_type;
541 	void *mmaped;
542 	struct bpf_struct_ops *st_ops;
543 	struct bpf_map *inner_map;
544 	void **init_slots;
545 	int init_slots_sz;
546 	char *pin_path;
547 	bool pinned;
548 	bool reused;
549 	bool autocreate;
550 	__u64 map_extra;
551 };
552 
553 enum extern_type {
554 	EXT_UNKNOWN,
555 	EXT_KCFG,
556 	EXT_KSYM,
557 };
558 
559 enum kcfg_type {
560 	KCFG_UNKNOWN,
561 	KCFG_CHAR,
562 	KCFG_BOOL,
563 	KCFG_INT,
564 	KCFG_TRISTATE,
565 	KCFG_CHAR_ARR,
566 };
567 
568 struct extern_desc {
569 	enum extern_type type;
570 	int sym_idx;
571 	int btf_id;
572 	int sec_btf_id;
573 	const char *name;
574 	char *essent_name;
575 	bool is_set;
576 	bool is_weak;
577 	union {
578 		struct {
579 			enum kcfg_type type;
580 			int sz;
581 			int align;
582 			int data_off;
583 			bool is_signed;
584 		} kcfg;
585 		struct {
586 			unsigned long long addr;
587 
588 			/* target btf_id of the corresponding kernel var. */
589 			int kernel_btf_obj_fd;
590 			int kernel_btf_id;
591 
592 			/* local btf_id of the ksym extern's type. */
593 			__u32 type_id;
594 			/* BTF fd index to be patched in for insn->off, this is
595 			 * 0 for vmlinux BTF, index in obj->fd_array for module
596 			 * BTF
597 			 */
598 			__s16 btf_fd_idx;
599 		} ksym;
600 	};
601 };
602 
603 struct module_btf {
604 	struct btf *btf;
605 	char *name;
606 	__u32 id;
607 	int fd;
608 	int fd_array_idx;
609 };
610 
611 enum sec_type {
612 	SEC_UNUSED = 0,
613 	SEC_RELO,
614 	SEC_BSS,
615 	SEC_DATA,
616 	SEC_RODATA,
617 	SEC_ST_OPS,
618 };
619 
620 struct elf_sec_desc {
621 	enum sec_type sec_type;
622 	Elf64_Shdr *shdr;
623 	Elf_Data *data;
624 };
625 
626 struct elf_state {
627 	int fd;
628 	const void *obj_buf;
629 	size_t obj_buf_sz;
630 	Elf *elf;
631 	Elf64_Ehdr *ehdr;
632 	Elf_Data *symbols;
633 	Elf_Data *arena_data;
634 	size_t shstrndx; /* section index for section name strings */
635 	size_t strtabidx;
636 	struct elf_sec_desc *secs;
637 	size_t sec_cnt;
638 	int btf_maps_shndx;
639 	__u32 btf_maps_sec_btf_id;
640 	int text_shndx;
641 	int symbols_shndx;
642 	bool has_st_ops;
643 	int arena_data_shndx;
644 };
645 
646 struct usdt_manager;
647 
648 struct bpf_object {
649 	char name[BPF_OBJ_NAME_LEN];
650 	char license[64];
651 	__u32 kern_version;
652 
653 	struct bpf_program *programs;
654 	size_t nr_programs;
655 	struct bpf_map *maps;
656 	size_t nr_maps;
657 	size_t maps_cap;
658 
659 	char *kconfig;
660 	struct extern_desc *externs;
661 	int nr_extern;
662 	int kconfig_map_idx;
663 
664 	bool loaded;
665 	bool has_subcalls;
666 	bool has_rodata;
667 
668 	struct bpf_gen *gen_loader;
669 
670 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
671 	struct elf_state efile;
672 
673 	struct btf *btf;
674 	struct btf_ext *btf_ext;
675 
676 	/* Parse and load BTF vmlinux if any of the programs in the object need
677 	 * it at load time.
678 	 */
679 	struct btf *btf_vmlinux;
680 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
681 	 * override for vmlinux BTF.
682 	 */
683 	char *btf_custom_path;
684 	/* vmlinux BTF override for CO-RE relocations */
685 	struct btf *btf_vmlinux_override;
686 	/* Lazily initialized kernel module BTFs */
687 	struct module_btf *btf_modules;
688 	bool btf_modules_loaded;
689 	size_t btf_module_cnt;
690 	size_t btf_module_cap;
691 
692 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
693 	char *log_buf;
694 	size_t log_size;
695 	__u32 log_level;
696 
697 	int *fd_array;
698 	size_t fd_array_cap;
699 	size_t fd_array_cnt;
700 
701 	struct usdt_manager *usdt_man;
702 
703 	struct bpf_map *arena_map;
704 	void *arena_data;
705 	size_t arena_data_sz;
706 
707 	struct kern_feature_cache *feat_cache;
708 	char *token_path;
709 	int token_fd;
710 
711 	char path[];
712 };
713 
714 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
715 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
716 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
717 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
718 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
719 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
720 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
721 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
722 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
723 
724 void bpf_program__unload(struct bpf_program *prog)
725 {
726 	if (!prog)
727 		return;
728 
729 	zclose(prog->fd);
730 
731 	zfree(&prog->func_info);
732 	zfree(&prog->line_info);
733 }
734 
735 static void bpf_program__exit(struct bpf_program *prog)
736 {
737 	if (!prog)
738 		return;
739 
740 	bpf_program__unload(prog);
741 	zfree(&prog->name);
742 	zfree(&prog->sec_name);
743 	zfree(&prog->insns);
744 	zfree(&prog->reloc_desc);
745 
746 	prog->nr_reloc = 0;
747 	prog->insns_cnt = 0;
748 	prog->sec_idx = -1;
749 }
750 
751 static bool insn_is_subprog_call(const struct bpf_insn *insn)
752 {
753 	return BPF_CLASS(insn->code) == BPF_JMP &&
754 	       BPF_OP(insn->code) == BPF_CALL &&
755 	       BPF_SRC(insn->code) == BPF_K &&
756 	       insn->src_reg == BPF_PSEUDO_CALL &&
757 	       insn->dst_reg == 0 &&
758 	       insn->off == 0;
759 }
760 
761 static bool is_call_insn(const struct bpf_insn *insn)
762 {
763 	return insn->code == (BPF_JMP | BPF_CALL);
764 }
765 
766 static bool insn_is_pseudo_func(struct bpf_insn *insn)
767 {
768 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
769 }
770 
771 static int
772 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
773 		      const char *name, size_t sec_idx, const char *sec_name,
774 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
775 {
776 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
777 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
778 			sec_name, name, sec_off, insn_data_sz);
779 		return -EINVAL;
780 	}
781 
782 	memset(prog, 0, sizeof(*prog));
783 	prog->obj = obj;
784 
785 	prog->sec_idx = sec_idx;
786 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
787 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
788 	/* insns_cnt can later be increased by appending used subprograms */
789 	prog->insns_cnt = prog->sec_insn_cnt;
790 
791 	prog->type = BPF_PROG_TYPE_UNSPEC;
792 	prog->fd = -1;
793 	prog->exception_cb_idx = -1;
794 
795 	/* libbpf's convention for SEC("?abc...") is that it's just like
796 	 * SEC("abc...") but the corresponding bpf_program starts out with
797 	 * autoload set to false.
798 	 */
799 	if (sec_name[0] == '?') {
800 		prog->autoload = false;
801 		/* from now on forget there was ? in section name */
802 		sec_name++;
803 	} else {
804 		prog->autoload = true;
805 	}
806 
807 	prog->autoattach = true;
808 
809 	/* inherit object's log_level */
810 	prog->log_level = obj->log_level;
811 
812 	prog->sec_name = strdup(sec_name);
813 	if (!prog->sec_name)
814 		goto errout;
815 
816 	prog->name = strdup(name);
817 	if (!prog->name)
818 		goto errout;
819 
820 	prog->insns = malloc(insn_data_sz);
821 	if (!prog->insns)
822 		goto errout;
823 	memcpy(prog->insns, insn_data, insn_data_sz);
824 
825 	return 0;
826 errout:
827 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
828 	bpf_program__exit(prog);
829 	return -ENOMEM;
830 }
831 
832 static int
833 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
834 			 const char *sec_name, int sec_idx)
835 {
836 	Elf_Data *symbols = obj->efile.symbols;
837 	struct bpf_program *prog, *progs;
838 	void *data = sec_data->d_buf;
839 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
840 	int nr_progs, err, i;
841 	const char *name;
842 	Elf64_Sym *sym;
843 
844 	progs = obj->programs;
845 	nr_progs = obj->nr_programs;
846 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
847 
848 	for (i = 0; i < nr_syms; i++) {
849 		sym = elf_sym_by_idx(obj, i);
850 
851 		if (sym->st_shndx != sec_idx)
852 			continue;
853 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
854 			continue;
855 
856 		prog_sz = sym->st_size;
857 		sec_off = sym->st_value;
858 
859 		name = elf_sym_str(obj, sym->st_name);
860 		if (!name) {
861 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
862 				sec_name, sec_off);
863 			return -LIBBPF_ERRNO__FORMAT;
864 		}
865 
866 		if (sec_off + prog_sz > sec_sz) {
867 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
868 				sec_name, sec_off);
869 			return -LIBBPF_ERRNO__FORMAT;
870 		}
871 
872 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
873 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
874 			return -ENOTSUP;
875 		}
876 
877 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
878 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
879 
880 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
881 		if (!progs) {
882 			/*
883 			 * In this case the original obj->programs
884 			 * is still valid, so don't need special treat for
885 			 * bpf_close_object().
886 			 */
887 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
888 				sec_name, name);
889 			return -ENOMEM;
890 		}
891 		obj->programs = progs;
892 
893 		prog = &progs[nr_progs];
894 
895 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
896 					    sec_off, data + sec_off, prog_sz);
897 		if (err)
898 			return err;
899 
900 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
901 			prog->sym_global = true;
902 
903 		/* if function is a global/weak symbol, but has restricted
904 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
905 		 * as static to enable more permissive BPF verification mode
906 		 * with more outside context available to BPF verifier
907 		 */
908 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
909 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
910 			prog->mark_btf_static = true;
911 
912 		nr_progs++;
913 		obj->nr_programs = nr_progs;
914 	}
915 
916 	return 0;
917 }
918 
919 static const struct btf_member *
920 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
921 {
922 	struct btf_member *m;
923 	int i;
924 
925 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
926 		if (btf_member_bit_offset(t, i) == bit_offset)
927 			return m;
928 	}
929 
930 	return NULL;
931 }
932 
933 static const struct btf_member *
934 find_member_by_name(const struct btf *btf, const struct btf_type *t,
935 		    const char *name)
936 {
937 	struct btf_member *m;
938 	int i;
939 
940 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
941 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
942 			return m;
943 	}
944 
945 	return NULL;
946 }
947 
948 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
949 			    __u16 kind, struct btf **res_btf,
950 			    struct module_btf **res_mod_btf);
951 
952 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
953 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
954 				   const char *name, __u32 kind);
955 
956 static int
957 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
958 			   struct module_btf **mod_btf,
959 			   const struct btf_type **type, __u32 *type_id,
960 			   const struct btf_type **vtype, __u32 *vtype_id,
961 			   const struct btf_member **data_member)
962 {
963 	const struct btf_type *kern_type, *kern_vtype;
964 	const struct btf_member *kern_data_member;
965 	struct btf *btf;
966 	__s32 kern_vtype_id, kern_type_id;
967 	char tname[256];
968 	__u32 i;
969 
970 	snprintf(tname, sizeof(tname), "%.*s",
971 		 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
972 
973 	kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
974 					&btf, mod_btf);
975 	if (kern_type_id < 0) {
976 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
977 			tname);
978 		return kern_type_id;
979 	}
980 	kern_type = btf__type_by_id(btf, kern_type_id);
981 
982 	/* Find the corresponding "map_value" type that will be used
983 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
984 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
985 	 * btf_vmlinux.
986 	 */
987 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
988 						tname, BTF_KIND_STRUCT);
989 	if (kern_vtype_id < 0) {
990 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
991 			STRUCT_OPS_VALUE_PREFIX, tname);
992 		return kern_vtype_id;
993 	}
994 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
995 
996 	/* Find "struct tcp_congestion_ops" from
997 	 * struct bpf_struct_ops_tcp_congestion_ops {
998 	 *	[ ... ]
999 	 *	struct tcp_congestion_ops data;
1000 	 * }
1001 	 */
1002 	kern_data_member = btf_members(kern_vtype);
1003 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1004 		if (kern_data_member->type == kern_type_id)
1005 			break;
1006 	}
1007 	if (i == btf_vlen(kern_vtype)) {
1008 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1009 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
1010 		return -EINVAL;
1011 	}
1012 
1013 	*type = kern_type;
1014 	*type_id = kern_type_id;
1015 	*vtype = kern_vtype;
1016 	*vtype_id = kern_vtype_id;
1017 	*data_member = kern_data_member;
1018 
1019 	return 0;
1020 }
1021 
1022 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1023 {
1024 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1025 }
1026 
1027 static bool is_valid_st_ops_program(struct bpf_object *obj,
1028 				    const struct bpf_program *prog)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < obj->nr_programs; i++) {
1033 		if (&obj->programs[i] == prog)
1034 			return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1035 	}
1036 
1037 	return false;
1038 }
1039 
1040 /* For each struct_ops program P, referenced from some struct_ops map M,
1041  * enable P.autoload if there are Ms for which M.autocreate is true,
1042  * disable P.autoload if for all Ms M.autocreate is false.
1043  * Don't change P.autoload for programs that are not referenced from any maps.
1044  */
1045 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1046 {
1047 	struct bpf_program *prog, *slot_prog;
1048 	struct bpf_map *map;
1049 	int i, j, k, vlen;
1050 
1051 	for (i = 0; i < obj->nr_programs; ++i) {
1052 		int should_load = false;
1053 		int use_cnt = 0;
1054 
1055 		prog = &obj->programs[i];
1056 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1057 			continue;
1058 
1059 		for (j = 0; j < obj->nr_maps; ++j) {
1060 			map = &obj->maps[j];
1061 			if (!bpf_map__is_struct_ops(map))
1062 				continue;
1063 
1064 			vlen = btf_vlen(map->st_ops->type);
1065 			for (k = 0; k < vlen; ++k) {
1066 				slot_prog = map->st_ops->progs[k];
1067 				if (prog != slot_prog)
1068 					continue;
1069 
1070 				use_cnt++;
1071 				if (map->autocreate)
1072 					should_load = true;
1073 			}
1074 		}
1075 		if (use_cnt)
1076 			prog->autoload = should_load;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 /* Init the map's fields that depend on kern_btf */
1083 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1084 {
1085 	const struct btf_member *member, *kern_member, *kern_data_member;
1086 	const struct btf_type *type, *kern_type, *kern_vtype;
1087 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1088 	struct bpf_object *obj = map->obj;
1089 	const struct btf *btf = obj->btf;
1090 	struct bpf_struct_ops *st_ops;
1091 	const struct btf *kern_btf;
1092 	struct module_btf *mod_btf;
1093 	void *data, *kern_data;
1094 	const char *tname;
1095 	int err;
1096 
1097 	st_ops = map->st_ops;
1098 	type = st_ops->type;
1099 	tname = st_ops->tname;
1100 	err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1101 					 &kern_type, &kern_type_id,
1102 					 &kern_vtype, &kern_vtype_id,
1103 					 &kern_data_member);
1104 	if (err)
1105 		return err;
1106 
1107 	kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1108 
1109 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1110 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1111 
1112 	map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1113 	map->def.value_size = kern_vtype->size;
1114 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1115 
1116 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1117 	if (!st_ops->kern_vdata)
1118 		return -ENOMEM;
1119 
1120 	data = st_ops->data;
1121 	kern_data_off = kern_data_member->offset / 8;
1122 	kern_data = st_ops->kern_vdata + kern_data_off;
1123 
1124 	member = btf_members(type);
1125 	for (i = 0; i < btf_vlen(type); i++, member++) {
1126 		const struct btf_type *mtype, *kern_mtype;
1127 		__u32 mtype_id, kern_mtype_id;
1128 		void *mdata, *kern_mdata;
1129 		__s64 msize, kern_msize;
1130 		__u32 moff, kern_moff;
1131 		__u32 kern_member_idx;
1132 		const char *mname;
1133 
1134 		mname = btf__name_by_offset(btf, member->name_off);
1135 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1136 		if (!kern_member) {
1137 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1138 				map->name, mname);
1139 			return -ENOTSUP;
1140 		}
1141 
1142 		kern_member_idx = kern_member - btf_members(kern_type);
1143 		if (btf_member_bitfield_size(type, i) ||
1144 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1145 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1146 				map->name, mname);
1147 			return -ENOTSUP;
1148 		}
1149 
1150 		moff = member->offset / 8;
1151 		kern_moff = kern_member->offset / 8;
1152 
1153 		mdata = data + moff;
1154 		kern_mdata = kern_data + kern_moff;
1155 
1156 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1157 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1158 						    &kern_mtype_id);
1159 		if (BTF_INFO_KIND(mtype->info) !=
1160 		    BTF_INFO_KIND(kern_mtype->info)) {
1161 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1162 				map->name, mname, BTF_INFO_KIND(mtype->info),
1163 				BTF_INFO_KIND(kern_mtype->info));
1164 			return -ENOTSUP;
1165 		}
1166 
1167 		if (btf_is_ptr(mtype)) {
1168 			struct bpf_program *prog;
1169 
1170 			/* Update the value from the shadow type */
1171 			prog = *(void **)mdata;
1172 			st_ops->progs[i] = prog;
1173 			if (!prog)
1174 				continue;
1175 			if (!is_valid_st_ops_program(obj, prog)) {
1176 				pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1177 					map->name, mname);
1178 				return -ENOTSUP;
1179 			}
1180 
1181 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1182 							    kern_mtype->type,
1183 							    &kern_mtype_id);
1184 
1185 			/* mtype->type must be a func_proto which was
1186 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1187 			 * so only check kern_mtype for func_proto here.
1188 			 */
1189 			if (!btf_is_func_proto(kern_mtype)) {
1190 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1191 					map->name, mname);
1192 				return -ENOTSUP;
1193 			}
1194 
1195 			if (mod_btf)
1196 				prog->attach_btf_obj_fd = mod_btf->fd;
1197 
1198 			/* if we haven't yet processed this BPF program, record proper
1199 			 * attach_btf_id and member_idx
1200 			 */
1201 			if (!prog->attach_btf_id) {
1202 				prog->attach_btf_id = kern_type_id;
1203 				prog->expected_attach_type = kern_member_idx;
1204 			}
1205 
1206 			/* struct_ops BPF prog can be re-used between multiple
1207 			 * .struct_ops & .struct_ops.link as long as it's the
1208 			 * same struct_ops struct definition and the same
1209 			 * function pointer field
1210 			 */
1211 			if (prog->attach_btf_id != kern_type_id) {
1212 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1213 					map->name, mname, prog->name, prog->sec_name, prog->type,
1214 					prog->attach_btf_id, kern_type_id);
1215 				return -EINVAL;
1216 			}
1217 			if (prog->expected_attach_type != kern_member_idx) {
1218 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1219 					map->name, mname, prog->name, prog->sec_name, prog->type,
1220 					prog->expected_attach_type, kern_member_idx);
1221 				return -EINVAL;
1222 			}
1223 
1224 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1225 
1226 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1227 				 map->name, mname, prog->name, moff,
1228 				 kern_moff);
1229 
1230 			continue;
1231 		}
1232 
1233 		msize = btf__resolve_size(btf, mtype_id);
1234 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1235 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1236 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1237 				map->name, mname, (ssize_t)msize,
1238 				(ssize_t)kern_msize);
1239 			return -ENOTSUP;
1240 		}
1241 
1242 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1243 			 map->name, mname, (unsigned int)msize,
1244 			 moff, kern_moff);
1245 		memcpy(kern_mdata, mdata, msize);
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1252 {
1253 	struct bpf_map *map;
1254 	size_t i;
1255 	int err;
1256 
1257 	for (i = 0; i < obj->nr_maps; i++) {
1258 		map = &obj->maps[i];
1259 
1260 		if (!bpf_map__is_struct_ops(map))
1261 			continue;
1262 
1263 		if (!map->autocreate)
1264 			continue;
1265 
1266 		err = bpf_map__init_kern_struct_ops(map);
1267 		if (err)
1268 			return err;
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1275 				int shndx, Elf_Data *data)
1276 {
1277 	const struct btf_type *type, *datasec;
1278 	const struct btf_var_secinfo *vsi;
1279 	struct bpf_struct_ops *st_ops;
1280 	const char *tname, *var_name;
1281 	__s32 type_id, datasec_id;
1282 	const struct btf *btf;
1283 	struct bpf_map *map;
1284 	__u32 i;
1285 
1286 	if (shndx == -1)
1287 		return 0;
1288 
1289 	btf = obj->btf;
1290 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1291 					    BTF_KIND_DATASEC);
1292 	if (datasec_id < 0) {
1293 		pr_warn("struct_ops init: DATASEC %s not found\n",
1294 			sec_name);
1295 		return -EINVAL;
1296 	}
1297 
1298 	datasec = btf__type_by_id(btf, datasec_id);
1299 	vsi = btf_var_secinfos(datasec);
1300 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1301 		type = btf__type_by_id(obj->btf, vsi->type);
1302 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1303 
1304 		type_id = btf__resolve_type(obj->btf, vsi->type);
1305 		if (type_id < 0) {
1306 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1307 				vsi->type, sec_name);
1308 			return -EINVAL;
1309 		}
1310 
1311 		type = btf__type_by_id(obj->btf, type_id);
1312 		tname = btf__name_by_offset(obj->btf, type->name_off);
1313 		if (!tname[0]) {
1314 			pr_warn("struct_ops init: anonymous type is not supported\n");
1315 			return -ENOTSUP;
1316 		}
1317 		if (!btf_is_struct(type)) {
1318 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1319 			return -EINVAL;
1320 		}
1321 
1322 		map = bpf_object__add_map(obj);
1323 		if (IS_ERR(map))
1324 			return PTR_ERR(map);
1325 
1326 		map->sec_idx = shndx;
1327 		map->sec_offset = vsi->offset;
1328 		map->name = strdup(var_name);
1329 		if (!map->name)
1330 			return -ENOMEM;
1331 		map->btf_value_type_id = type_id;
1332 
1333 		/* Follow same convention as for programs autoload:
1334 		 * SEC("?.struct_ops") means map is not created by default.
1335 		 */
1336 		if (sec_name[0] == '?') {
1337 			map->autocreate = false;
1338 			/* from now on forget there was ? in section name */
1339 			sec_name++;
1340 		}
1341 
1342 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1343 		map->def.key_size = sizeof(int);
1344 		map->def.value_size = type->size;
1345 		map->def.max_entries = 1;
1346 		map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1347 
1348 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1349 		if (!map->st_ops)
1350 			return -ENOMEM;
1351 		st_ops = map->st_ops;
1352 		st_ops->data = malloc(type->size);
1353 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1354 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1355 					       sizeof(*st_ops->kern_func_off));
1356 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1357 			return -ENOMEM;
1358 
1359 		if (vsi->offset + type->size > data->d_size) {
1360 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1361 				var_name, sec_name);
1362 			return -EINVAL;
1363 		}
1364 
1365 		memcpy(st_ops->data,
1366 		       data->d_buf + vsi->offset,
1367 		       type->size);
1368 		st_ops->tname = tname;
1369 		st_ops->type = type;
1370 		st_ops->type_id = type_id;
1371 
1372 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1373 			 tname, type_id, var_name, vsi->offset);
1374 	}
1375 
1376 	return 0;
1377 }
1378 
1379 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1380 {
1381 	const char *sec_name;
1382 	int sec_idx, err;
1383 
1384 	for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1385 		struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1386 
1387 		if (desc->sec_type != SEC_ST_OPS)
1388 			continue;
1389 
1390 		sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1391 		if (!sec_name)
1392 			return -LIBBPF_ERRNO__FORMAT;
1393 
1394 		err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1395 		if (err)
1396 			return err;
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static struct bpf_object *bpf_object__new(const char *path,
1403 					  const void *obj_buf,
1404 					  size_t obj_buf_sz,
1405 					  const char *obj_name)
1406 {
1407 	struct bpf_object *obj;
1408 	char *end;
1409 
1410 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1411 	if (!obj) {
1412 		pr_warn("alloc memory failed for %s\n", path);
1413 		return ERR_PTR(-ENOMEM);
1414 	}
1415 
1416 	strcpy(obj->path, path);
1417 	if (obj_name) {
1418 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1419 	} else {
1420 		/* Using basename() GNU version which doesn't modify arg. */
1421 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1422 		end = strchr(obj->name, '.');
1423 		if (end)
1424 			*end = 0;
1425 	}
1426 
1427 	obj->efile.fd = -1;
1428 	/*
1429 	 * Caller of this function should also call
1430 	 * bpf_object__elf_finish() after data collection to return
1431 	 * obj_buf to user. If not, we should duplicate the buffer to
1432 	 * avoid user freeing them before elf finish.
1433 	 */
1434 	obj->efile.obj_buf = obj_buf;
1435 	obj->efile.obj_buf_sz = obj_buf_sz;
1436 	obj->efile.btf_maps_shndx = -1;
1437 	obj->kconfig_map_idx = -1;
1438 
1439 	obj->kern_version = get_kernel_version();
1440 	obj->loaded = false;
1441 
1442 	return obj;
1443 }
1444 
1445 static void bpf_object__elf_finish(struct bpf_object *obj)
1446 {
1447 	if (!obj->efile.elf)
1448 		return;
1449 
1450 	elf_end(obj->efile.elf);
1451 	obj->efile.elf = NULL;
1452 	obj->efile.symbols = NULL;
1453 	obj->efile.arena_data = NULL;
1454 
1455 	zfree(&obj->efile.secs);
1456 	obj->efile.sec_cnt = 0;
1457 	zclose(obj->efile.fd);
1458 	obj->efile.obj_buf = NULL;
1459 	obj->efile.obj_buf_sz = 0;
1460 }
1461 
1462 static int bpf_object__elf_init(struct bpf_object *obj)
1463 {
1464 	Elf64_Ehdr *ehdr;
1465 	int err = 0;
1466 	Elf *elf;
1467 
1468 	if (obj->efile.elf) {
1469 		pr_warn("elf: init internal error\n");
1470 		return -LIBBPF_ERRNO__LIBELF;
1471 	}
1472 
1473 	if (obj->efile.obj_buf_sz > 0) {
1474 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1475 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1476 	} else {
1477 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1478 		if (obj->efile.fd < 0) {
1479 			char errmsg[STRERR_BUFSIZE], *cp;
1480 
1481 			err = -errno;
1482 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1483 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1484 			return err;
1485 		}
1486 
1487 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1488 	}
1489 
1490 	if (!elf) {
1491 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1492 		err = -LIBBPF_ERRNO__LIBELF;
1493 		goto errout;
1494 	}
1495 
1496 	obj->efile.elf = elf;
1497 
1498 	if (elf_kind(elf) != ELF_K_ELF) {
1499 		err = -LIBBPF_ERRNO__FORMAT;
1500 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1501 		goto errout;
1502 	}
1503 
1504 	if (gelf_getclass(elf) != ELFCLASS64) {
1505 		err = -LIBBPF_ERRNO__FORMAT;
1506 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1507 		goto errout;
1508 	}
1509 
1510 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1511 	if (!obj->efile.ehdr) {
1512 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1513 		err = -LIBBPF_ERRNO__FORMAT;
1514 		goto errout;
1515 	}
1516 
1517 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1518 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1519 			obj->path, elf_errmsg(-1));
1520 		err = -LIBBPF_ERRNO__FORMAT;
1521 		goto errout;
1522 	}
1523 
1524 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1525 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1526 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1527 			obj->path, elf_errmsg(-1));
1528 		err = -LIBBPF_ERRNO__FORMAT;
1529 		goto errout;
1530 	}
1531 
1532 	/* Old LLVM set e_machine to EM_NONE */
1533 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1534 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1535 		err = -LIBBPF_ERRNO__FORMAT;
1536 		goto errout;
1537 	}
1538 
1539 	return 0;
1540 errout:
1541 	bpf_object__elf_finish(obj);
1542 	return err;
1543 }
1544 
1545 static int bpf_object__check_endianness(struct bpf_object *obj)
1546 {
1547 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1548 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1549 		return 0;
1550 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1551 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1552 		return 0;
1553 #else
1554 # error "Unrecognized __BYTE_ORDER__"
1555 #endif
1556 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1557 	return -LIBBPF_ERRNO__ENDIAN;
1558 }
1559 
1560 static int
1561 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1562 {
1563 	if (!data) {
1564 		pr_warn("invalid license section in %s\n", obj->path);
1565 		return -LIBBPF_ERRNO__FORMAT;
1566 	}
1567 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1568 	 * go over allowed ELF data section buffer
1569 	 */
1570 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1571 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1572 	return 0;
1573 }
1574 
1575 static int
1576 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1577 {
1578 	__u32 kver;
1579 
1580 	if (!data || size != sizeof(kver)) {
1581 		pr_warn("invalid kver section in %s\n", obj->path);
1582 		return -LIBBPF_ERRNO__FORMAT;
1583 	}
1584 	memcpy(&kver, data, sizeof(kver));
1585 	obj->kern_version = kver;
1586 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1587 	return 0;
1588 }
1589 
1590 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1591 {
1592 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1593 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1594 		return true;
1595 	return false;
1596 }
1597 
1598 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1599 {
1600 	Elf_Data *data;
1601 	Elf_Scn *scn;
1602 
1603 	if (!name)
1604 		return -EINVAL;
1605 
1606 	scn = elf_sec_by_name(obj, name);
1607 	data = elf_sec_data(obj, scn);
1608 	if (data) {
1609 		*size = data->d_size;
1610 		return 0; /* found it */
1611 	}
1612 
1613 	return -ENOENT;
1614 }
1615 
1616 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1617 {
1618 	Elf_Data *symbols = obj->efile.symbols;
1619 	const char *sname;
1620 	size_t si;
1621 
1622 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1623 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1624 
1625 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1626 			continue;
1627 
1628 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1629 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1630 			continue;
1631 
1632 		sname = elf_sym_str(obj, sym->st_name);
1633 		if (!sname) {
1634 			pr_warn("failed to get sym name string for var %s\n", name);
1635 			return ERR_PTR(-EIO);
1636 		}
1637 		if (strcmp(name, sname) == 0)
1638 			return sym;
1639 	}
1640 
1641 	return ERR_PTR(-ENOENT);
1642 }
1643 
1644 /* Some versions of Android don't provide memfd_create() in their libc
1645  * implementation, so avoid complications and just go straight to Linux
1646  * syscall.
1647  */
1648 static int sys_memfd_create(const char *name, unsigned flags)
1649 {
1650 	return syscall(__NR_memfd_create, name, flags);
1651 }
1652 
1653 #ifndef MFD_CLOEXEC
1654 #define MFD_CLOEXEC 0x0001U
1655 #endif
1656 
1657 static int create_placeholder_fd(void)
1658 {
1659 	int fd;
1660 
1661 	fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1662 	if (fd < 0)
1663 		return -errno;
1664 	return fd;
1665 }
1666 
1667 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1668 {
1669 	struct bpf_map *map;
1670 	int err;
1671 
1672 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1673 				sizeof(*obj->maps), obj->nr_maps + 1);
1674 	if (err)
1675 		return ERR_PTR(err);
1676 
1677 	map = &obj->maps[obj->nr_maps++];
1678 	map->obj = obj;
1679 	/* Preallocate map FD without actually creating BPF map just yet.
1680 	 * These map FD "placeholders" will be reused later without changing
1681 	 * FD value when map is actually created in the kernel.
1682 	 *
1683 	 * This is useful to be able to perform BPF program relocations
1684 	 * without having to create BPF maps before that step. This allows us
1685 	 * to finalize and load BTF very late in BPF object's loading phase,
1686 	 * right before BPF maps have to be created and BPF programs have to
1687 	 * be loaded. By having these map FD placeholders we can perform all
1688 	 * the sanitizations, relocations, and any other adjustments before we
1689 	 * start creating actual BPF kernel objects (BTF, maps, progs).
1690 	 */
1691 	map->fd = create_placeholder_fd();
1692 	if (map->fd < 0)
1693 		return ERR_PTR(map->fd);
1694 	map->inner_map_fd = -1;
1695 	map->autocreate = true;
1696 
1697 	return map;
1698 }
1699 
1700 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1701 {
1702 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1703 	size_t map_sz;
1704 
1705 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1706 	map_sz = roundup(map_sz, page_sz);
1707 	return map_sz;
1708 }
1709 
1710 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1711 {
1712 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1713 
1714 	switch (map->def.type) {
1715 	case BPF_MAP_TYPE_ARRAY:
1716 		return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1717 	case BPF_MAP_TYPE_ARENA:
1718 		return page_sz * map->def.max_entries;
1719 	default:
1720 		return 0; /* not supported */
1721 	}
1722 }
1723 
1724 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1725 {
1726 	void *mmaped;
1727 
1728 	if (!map->mmaped)
1729 		return -EINVAL;
1730 
1731 	if (old_sz == new_sz)
1732 		return 0;
1733 
1734 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1735 	if (mmaped == MAP_FAILED)
1736 		return -errno;
1737 
1738 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1739 	munmap(map->mmaped, old_sz);
1740 	map->mmaped = mmaped;
1741 	return 0;
1742 }
1743 
1744 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1745 {
1746 	char map_name[BPF_OBJ_NAME_LEN], *p;
1747 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1748 
1749 	/* This is one of the more confusing parts of libbpf for various
1750 	 * reasons, some of which are historical. The original idea for naming
1751 	 * internal names was to include as much of BPF object name prefix as
1752 	 * possible, so that it can be distinguished from similar internal
1753 	 * maps of a different BPF object.
1754 	 * As an example, let's say we have bpf_object named 'my_object_name'
1755 	 * and internal map corresponding to '.rodata' ELF section. The final
1756 	 * map name advertised to user and to the kernel will be
1757 	 * 'my_objec.rodata', taking first 8 characters of object name and
1758 	 * entire 7 characters of '.rodata'.
1759 	 * Somewhat confusingly, if internal map ELF section name is shorter
1760 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1761 	 * for the suffix, even though we only have 4 actual characters, and
1762 	 * resulting map will be called 'my_objec.bss', not even using all 15
1763 	 * characters allowed by the kernel. Oh well, at least the truncated
1764 	 * object name is somewhat consistent in this case. But if the map
1765 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1766 	 * (8 chars) and thus will be left with only first 7 characters of the
1767 	 * object name ('my_obje'). Happy guessing, user, that the final map
1768 	 * name will be "my_obje.kconfig".
1769 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1770 	 * and .data.* data sections, it's possible that ELF section name is
1771 	 * longer than allowed 15 chars, so we now need to be careful to take
1772 	 * only up to 15 first characters of ELF name, taking no BPF object
1773 	 * name characters at all. So '.rodata.abracadabra' will result in
1774 	 * '.rodata.abracad' kernel and user-visible name.
1775 	 * We need to keep this convoluted logic intact for .data, .bss and
1776 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1777 	 * maps we use their ELF names as is, not prepending bpf_object name
1778 	 * in front. We still need to truncate them to 15 characters for the
1779 	 * kernel. Full name can be recovered for such maps by using DATASEC
1780 	 * BTF type associated with such map's value type, though.
1781 	 */
1782 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1783 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1784 
1785 	/* if there are two or more dots in map name, it's a custom dot map */
1786 	if (strchr(real_name + 1, '.') != NULL)
1787 		pfx_len = 0;
1788 	else
1789 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1790 
1791 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1792 		 sfx_len, real_name);
1793 
1794 	/* sanitise map name to characters allowed by kernel */
1795 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1796 		if (!isalnum(*p) && *p != '_' && *p != '.')
1797 			*p = '_';
1798 
1799 	return strdup(map_name);
1800 }
1801 
1802 static int
1803 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1804 
1805 /* Internal BPF map is mmap()'able only if at least one of corresponding
1806  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1807  * variable and it's not marked as __hidden (which turns it into, effectively,
1808  * a STATIC variable).
1809  */
1810 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1811 {
1812 	const struct btf_type *t, *vt;
1813 	struct btf_var_secinfo *vsi;
1814 	int i, n;
1815 
1816 	if (!map->btf_value_type_id)
1817 		return false;
1818 
1819 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1820 	if (!btf_is_datasec(t))
1821 		return false;
1822 
1823 	vsi = btf_var_secinfos(t);
1824 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1825 		vt = btf__type_by_id(obj->btf, vsi->type);
1826 		if (!btf_is_var(vt))
1827 			continue;
1828 
1829 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1830 			return true;
1831 	}
1832 
1833 	return false;
1834 }
1835 
1836 static int
1837 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1838 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1839 {
1840 	struct bpf_map_def *def;
1841 	struct bpf_map *map;
1842 	size_t mmap_sz;
1843 	int err;
1844 
1845 	map = bpf_object__add_map(obj);
1846 	if (IS_ERR(map))
1847 		return PTR_ERR(map);
1848 
1849 	map->libbpf_type = type;
1850 	map->sec_idx = sec_idx;
1851 	map->sec_offset = 0;
1852 	map->real_name = strdup(real_name);
1853 	map->name = internal_map_name(obj, real_name);
1854 	if (!map->real_name || !map->name) {
1855 		zfree(&map->real_name);
1856 		zfree(&map->name);
1857 		return -ENOMEM;
1858 	}
1859 
1860 	def = &map->def;
1861 	def->type = BPF_MAP_TYPE_ARRAY;
1862 	def->key_size = sizeof(int);
1863 	def->value_size = data_sz;
1864 	def->max_entries = 1;
1865 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1866 		? BPF_F_RDONLY_PROG : 0;
1867 
1868 	/* failures are fine because of maps like .rodata.str1.1 */
1869 	(void) map_fill_btf_type_info(obj, map);
1870 
1871 	if (map_is_mmapable(obj, map))
1872 		def->map_flags |= BPF_F_MMAPABLE;
1873 
1874 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1875 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1876 
1877 	mmap_sz = bpf_map_mmap_sz(map);
1878 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1879 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1880 	if (map->mmaped == MAP_FAILED) {
1881 		err = -errno;
1882 		map->mmaped = NULL;
1883 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1884 			map->name, err);
1885 		zfree(&map->real_name);
1886 		zfree(&map->name);
1887 		return err;
1888 	}
1889 
1890 	if (data)
1891 		memcpy(map->mmaped, data, data_sz);
1892 
1893 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1894 	return 0;
1895 }
1896 
1897 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1898 {
1899 	struct elf_sec_desc *sec_desc;
1900 	const char *sec_name;
1901 	int err = 0, sec_idx;
1902 
1903 	/*
1904 	 * Populate obj->maps with libbpf internal maps.
1905 	 */
1906 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1907 		sec_desc = &obj->efile.secs[sec_idx];
1908 
1909 		/* Skip recognized sections with size 0. */
1910 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1911 			continue;
1912 
1913 		switch (sec_desc->sec_type) {
1914 		case SEC_DATA:
1915 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1916 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1917 							    sec_name, sec_idx,
1918 							    sec_desc->data->d_buf,
1919 							    sec_desc->data->d_size);
1920 			break;
1921 		case SEC_RODATA:
1922 			obj->has_rodata = true;
1923 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1924 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1925 							    sec_name, sec_idx,
1926 							    sec_desc->data->d_buf,
1927 							    sec_desc->data->d_size);
1928 			break;
1929 		case SEC_BSS:
1930 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1931 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1932 							    sec_name, sec_idx,
1933 							    NULL,
1934 							    sec_desc->data->d_size);
1935 			break;
1936 		default:
1937 			/* skip */
1938 			break;
1939 		}
1940 		if (err)
1941 			return err;
1942 	}
1943 	return 0;
1944 }
1945 
1946 
1947 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1948 					       const void *name)
1949 {
1950 	int i;
1951 
1952 	for (i = 0; i < obj->nr_extern; i++) {
1953 		if (strcmp(obj->externs[i].name, name) == 0)
1954 			return &obj->externs[i];
1955 	}
1956 	return NULL;
1957 }
1958 
1959 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1960 			      char value)
1961 {
1962 	switch (ext->kcfg.type) {
1963 	case KCFG_BOOL:
1964 		if (value == 'm') {
1965 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1966 				ext->name, value);
1967 			return -EINVAL;
1968 		}
1969 		*(bool *)ext_val = value == 'y' ? true : false;
1970 		break;
1971 	case KCFG_TRISTATE:
1972 		if (value == 'y')
1973 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1974 		else if (value == 'm')
1975 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1976 		else /* value == 'n' */
1977 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1978 		break;
1979 	case KCFG_CHAR:
1980 		*(char *)ext_val = value;
1981 		break;
1982 	case KCFG_UNKNOWN:
1983 	case KCFG_INT:
1984 	case KCFG_CHAR_ARR:
1985 	default:
1986 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1987 			ext->name, value);
1988 		return -EINVAL;
1989 	}
1990 	ext->is_set = true;
1991 	return 0;
1992 }
1993 
1994 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1995 			      const char *value)
1996 {
1997 	size_t len;
1998 
1999 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
2000 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2001 			ext->name, value);
2002 		return -EINVAL;
2003 	}
2004 
2005 	len = strlen(value);
2006 	if (value[len - 1] != '"') {
2007 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2008 			ext->name, value);
2009 		return -EINVAL;
2010 	}
2011 
2012 	/* strip quotes */
2013 	len -= 2;
2014 	if (len >= ext->kcfg.sz) {
2015 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2016 			ext->name, value, len, ext->kcfg.sz - 1);
2017 		len = ext->kcfg.sz - 1;
2018 	}
2019 	memcpy(ext_val, value + 1, len);
2020 	ext_val[len] = '\0';
2021 	ext->is_set = true;
2022 	return 0;
2023 }
2024 
2025 static int parse_u64(const char *value, __u64 *res)
2026 {
2027 	char *value_end;
2028 	int err;
2029 
2030 	errno = 0;
2031 	*res = strtoull(value, &value_end, 0);
2032 	if (errno) {
2033 		err = -errno;
2034 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
2035 		return err;
2036 	}
2037 	if (*value_end) {
2038 		pr_warn("failed to parse '%s' as integer completely\n", value);
2039 		return -EINVAL;
2040 	}
2041 	return 0;
2042 }
2043 
2044 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2045 {
2046 	int bit_sz = ext->kcfg.sz * 8;
2047 
2048 	if (ext->kcfg.sz == 8)
2049 		return true;
2050 
2051 	/* Validate that value stored in u64 fits in integer of `ext->sz`
2052 	 * bytes size without any loss of information. If the target integer
2053 	 * is signed, we rely on the following limits of integer type of
2054 	 * Y bits and subsequent transformation:
2055 	 *
2056 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2057 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
2058 	 *            0 <= X + 2^(Y-1) <  2^Y
2059 	 *
2060 	 *  For unsigned target integer, check that all the (64 - Y) bits are
2061 	 *  zero.
2062 	 */
2063 	if (ext->kcfg.is_signed)
2064 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2065 	else
2066 		return (v >> bit_sz) == 0;
2067 }
2068 
2069 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2070 			      __u64 value)
2071 {
2072 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2073 	    ext->kcfg.type != KCFG_BOOL) {
2074 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2075 			ext->name, (unsigned long long)value);
2076 		return -EINVAL;
2077 	}
2078 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2079 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2080 			ext->name, (unsigned long long)value);
2081 		return -EINVAL;
2082 
2083 	}
2084 	if (!is_kcfg_value_in_range(ext, value)) {
2085 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2086 			ext->name, (unsigned long long)value, ext->kcfg.sz);
2087 		return -ERANGE;
2088 	}
2089 	switch (ext->kcfg.sz) {
2090 	case 1:
2091 		*(__u8 *)ext_val = value;
2092 		break;
2093 	case 2:
2094 		*(__u16 *)ext_val = value;
2095 		break;
2096 	case 4:
2097 		*(__u32 *)ext_val = value;
2098 		break;
2099 	case 8:
2100 		*(__u64 *)ext_val = value;
2101 		break;
2102 	default:
2103 		return -EINVAL;
2104 	}
2105 	ext->is_set = true;
2106 	return 0;
2107 }
2108 
2109 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2110 					    char *buf, void *data)
2111 {
2112 	struct extern_desc *ext;
2113 	char *sep, *value;
2114 	int len, err = 0;
2115 	void *ext_val;
2116 	__u64 num;
2117 
2118 	if (!str_has_pfx(buf, "CONFIG_"))
2119 		return 0;
2120 
2121 	sep = strchr(buf, '=');
2122 	if (!sep) {
2123 		pr_warn("failed to parse '%s': no separator\n", buf);
2124 		return -EINVAL;
2125 	}
2126 
2127 	/* Trim ending '\n' */
2128 	len = strlen(buf);
2129 	if (buf[len - 1] == '\n')
2130 		buf[len - 1] = '\0';
2131 	/* Split on '=' and ensure that a value is present. */
2132 	*sep = '\0';
2133 	if (!sep[1]) {
2134 		*sep = '=';
2135 		pr_warn("failed to parse '%s': no value\n", buf);
2136 		return -EINVAL;
2137 	}
2138 
2139 	ext = find_extern_by_name(obj, buf);
2140 	if (!ext || ext->is_set)
2141 		return 0;
2142 
2143 	ext_val = data + ext->kcfg.data_off;
2144 	value = sep + 1;
2145 
2146 	switch (*value) {
2147 	case 'y': case 'n': case 'm':
2148 		err = set_kcfg_value_tri(ext, ext_val, *value);
2149 		break;
2150 	case '"':
2151 		err = set_kcfg_value_str(ext, ext_val, value);
2152 		break;
2153 	default:
2154 		/* assume integer */
2155 		err = parse_u64(value, &num);
2156 		if (err) {
2157 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2158 			return err;
2159 		}
2160 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2161 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2162 			return -EINVAL;
2163 		}
2164 		err = set_kcfg_value_num(ext, ext_val, num);
2165 		break;
2166 	}
2167 	if (err)
2168 		return err;
2169 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2170 	return 0;
2171 }
2172 
2173 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2174 {
2175 	char buf[PATH_MAX];
2176 	struct utsname uts;
2177 	int len, err = 0;
2178 	gzFile file;
2179 
2180 	uname(&uts);
2181 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2182 	if (len < 0)
2183 		return -EINVAL;
2184 	else if (len >= PATH_MAX)
2185 		return -ENAMETOOLONG;
2186 
2187 	/* gzopen also accepts uncompressed files. */
2188 	file = gzopen(buf, "re");
2189 	if (!file)
2190 		file = gzopen("/proc/config.gz", "re");
2191 
2192 	if (!file) {
2193 		pr_warn("failed to open system Kconfig\n");
2194 		return -ENOENT;
2195 	}
2196 
2197 	while (gzgets(file, buf, sizeof(buf))) {
2198 		err = bpf_object__process_kconfig_line(obj, buf, data);
2199 		if (err) {
2200 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2201 				buf, err);
2202 			goto out;
2203 		}
2204 	}
2205 
2206 out:
2207 	gzclose(file);
2208 	return err;
2209 }
2210 
2211 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2212 					const char *config, void *data)
2213 {
2214 	char buf[PATH_MAX];
2215 	int err = 0;
2216 	FILE *file;
2217 
2218 	file = fmemopen((void *)config, strlen(config), "r");
2219 	if (!file) {
2220 		err = -errno;
2221 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2222 		return err;
2223 	}
2224 
2225 	while (fgets(buf, sizeof(buf), file)) {
2226 		err = bpf_object__process_kconfig_line(obj, buf, data);
2227 		if (err) {
2228 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2229 				buf, err);
2230 			break;
2231 		}
2232 	}
2233 
2234 	fclose(file);
2235 	return err;
2236 }
2237 
2238 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2239 {
2240 	struct extern_desc *last_ext = NULL, *ext;
2241 	size_t map_sz;
2242 	int i, err;
2243 
2244 	for (i = 0; i < obj->nr_extern; i++) {
2245 		ext = &obj->externs[i];
2246 		if (ext->type == EXT_KCFG)
2247 			last_ext = ext;
2248 	}
2249 
2250 	if (!last_ext)
2251 		return 0;
2252 
2253 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2254 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2255 					    ".kconfig", obj->efile.symbols_shndx,
2256 					    NULL, map_sz);
2257 	if (err)
2258 		return err;
2259 
2260 	obj->kconfig_map_idx = obj->nr_maps - 1;
2261 
2262 	return 0;
2263 }
2264 
2265 const struct btf_type *
2266 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2267 {
2268 	const struct btf_type *t = btf__type_by_id(btf, id);
2269 
2270 	if (res_id)
2271 		*res_id = id;
2272 
2273 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2274 		if (res_id)
2275 			*res_id = t->type;
2276 		t = btf__type_by_id(btf, t->type);
2277 	}
2278 
2279 	return t;
2280 }
2281 
2282 static const struct btf_type *
2283 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2284 {
2285 	const struct btf_type *t;
2286 
2287 	t = skip_mods_and_typedefs(btf, id, NULL);
2288 	if (!btf_is_ptr(t))
2289 		return NULL;
2290 
2291 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2292 
2293 	return btf_is_func_proto(t) ? t : NULL;
2294 }
2295 
2296 static const char *__btf_kind_str(__u16 kind)
2297 {
2298 	switch (kind) {
2299 	case BTF_KIND_UNKN: return "void";
2300 	case BTF_KIND_INT: return "int";
2301 	case BTF_KIND_PTR: return "ptr";
2302 	case BTF_KIND_ARRAY: return "array";
2303 	case BTF_KIND_STRUCT: return "struct";
2304 	case BTF_KIND_UNION: return "union";
2305 	case BTF_KIND_ENUM: return "enum";
2306 	case BTF_KIND_FWD: return "fwd";
2307 	case BTF_KIND_TYPEDEF: return "typedef";
2308 	case BTF_KIND_VOLATILE: return "volatile";
2309 	case BTF_KIND_CONST: return "const";
2310 	case BTF_KIND_RESTRICT: return "restrict";
2311 	case BTF_KIND_FUNC: return "func";
2312 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2313 	case BTF_KIND_VAR: return "var";
2314 	case BTF_KIND_DATASEC: return "datasec";
2315 	case BTF_KIND_FLOAT: return "float";
2316 	case BTF_KIND_DECL_TAG: return "decl_tag";
2317 	case BTF_KIND_TYPE_TAG: return "type_tag";
2318 	case BTF_KIND_ENUM64: return "enum64";
2319 	default: return "unknown";
2320 	}
2321 }
2322 
2323 const char *btf_kind_str(const struct btf_type *t)
2324 {
2325 	return __btf_kind_str(btf_kind(t));
2326 }
2327 
2328 /*
2329  * Fetch integer attribute of BTF map definition. Such attributes are
2330  * represented using a pointer to an array, in which dimensionality of array
2331  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2332  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2333  * type definition, while using only sizeof(void *) space in ELF data section.
2334  */
2335 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2336 			      const struct btf_member *m, __u32 *res)
2337 {
2338 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2339 	const char *name = btf__name_by_offset(btf, m->name_off);
2340 	const struct btf_array *arr_info;
2341 	const struct btf_type *arr_t;
2342 
2343 	if (!btf_is_ptr(t)) {
2344 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2345 			map_name, name, btf_kind_str(t));
2346 		return false;
2347 	}
2348 
2349 	arr_t = btf__type_by_id(btf, t->type);
2350 	if (!arr_t) {
2351 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2352 			map_name, name, t->type);
2353 		return false;
2354 	}
2355 	if (!btf_is_array(arr_t)) {
2356 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2357 			map_name, name, btf_kind_str(arr_t));
2358 		return false;
2359 	}
2360 	arr_info = btf_array(arr_t);
2361 	*res = arr_info->nelems;
2362 	return true;
2363 }
2364 
2365 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2366 			       const struct btf_member *m, __u64 *res)
2367 {
2368 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2369 	const char *name = btf__name_by_offset(btf, m->name_off);
2370 
2371 	if (btf_is_ptr(t)) {
2372 		__u32 res32;
2373 		bool ret;
2374 
2375 		ret = get_map_field_int(map_name, btf, m, &res32);
2376 		if (ret)
2377 			*res = (__u64)res32;
2378 		return ret;
2379 	}
2380 
2381 	if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2382 		pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2383 			map_name, name, btf_kind_str(t));
2384 		return false;
2385 	}
2386 
2387 	if (btf_vlen(t) != 1) {
2388 		pr_warn("map '%s': attr '%s': invalid __ulong\n",
2389 			map_name, name);
2390 		return false;
2391 	}
2392 
2393 	if (btf_is_enum(t)) {
2394 		const struct btf_enum *e = btf_enum(t);
2395 
2396 		*res = e->val;
2397 	} else {
2398 		const struct btf_enum64 *e = btf_enum64(t);
2399 
2400 		*res = btf_enum64_value(e);
2401 	}
2402 	return true;
2403 }
2404 
2405 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2406 {
2407 	int len;
2408 
2409 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2410 	if (len < 0)
2411 		return -EINVAL;
2412 	if (len >= buf_sz)
2413 		return -ENAMETOOLONG;
2414 
2415 	return 0;
2416 }
2417 
2418 static int build_map_pin_path(struct bpf_map *map, const char *path)
2419 {
2420 	char buf[PATH_MAX];
2421 	int err;
2422 
2423 	if (!path)
2424 		path = BPF_FS_DEFAULT_PATH;
2425 
2426 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2427 	if (err)
2428 		return err;
2429 
2430 	return bpf_map__set_pin_path(map, buf);
2431 }
2432 
2433 /* should match definition in bpf_helpers.h */
2434 enum libbpf_pin_type {
2435 	LIBBPF_PIN_NONE,
2436 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2437 	LIBBPF_PIN_BY_NAME,
2438 };
2439 
2440 int parse_btf_map_def(const char *map_name, struct btf *btf,
2441 		      const struct btf_type *def_t, bool strict,
2442 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2443 {
2444 	const struct btf_type *t;
2445 	const struct btf_member *m;
2446 	bool is_inner = inner_def == NULL;
2447 	int vlen, i;
2448 
2449 	vlen = btf_vlen(def_t);
2450 	m = btf_members(def_t);
2451 	for (i = 0; i < vlen; i++, m++) {
2452 		const char *name = btf__name_by_offset(btf, m->name_off);
2453 
2454 		if (!name) {
2455 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2456 			return -EINVAL;
2457 		}
2458 		if (strcmp(name, "type") == 0) {
2459 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2460 				return -EINVAL;
2461 			map_def->parts |= MAP_DEF_MAP_TYPE;
2462 		} else if (strcmp(name, "max_entries") == 0) {
2463 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2464 				return -EINVAL;
2465 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2466 		} else if (strcmp(name, "map_flags") == 0) {
2467 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2468 				return -EINVAL;
2469 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2470 		} else if (strcmp(name, "numa_node") == 0) {
2471 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2472 				return -EINVAL;
2473 			map_def->parts |= MAP_DEF_NUMA_NODE;
2474 		} else if (strcmp(name, "key_size") == 0) {
2475 			__u32 sz;
2476 
2477 			if (!get_map_field_int(map_name, btf, m, &sz))
2478 				return -EINVAL;
2479 			if (map_def->key_size && map_def->key_size != sz) {
2480 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2481 					map_name, map_def->key_size, sz);
2482 				return -EINVAL;
2483 			}
2484 			map_def->key_size = sz;
2485 			map_def->parts |= MAP_DEF_KEY_SIZE;
2486 		} else if (strcmp(name, "key") == 0) {
2487 			__s64 sz;
2488 
2489 			t = btf__type_by_id(btf, m->type);
2490 			if (!t) {
2491 				pr_warn("map '%s': key type [%d] not found.\n",
2492 					map_name, m->type);
2493 				return -EINVAL;
2494 			}
2495 			if (!btf_is_ptr(t)) {
2496 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2497 					map_name, btf_kind_str(t));
2498 				return -EINVAL;
2499 			}
2500 			sz = btf__resolve_size(btf, t->type);
2501 			if (sz < 0) {
2502 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2503 					map_name, t->type, (ssize_t)sz);
2504 				return sz;
2505 			}
2506 			if (map_def->key_size && map_def->key_size != sz) {
2507 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2508 					map_name, map_def->key_size, (ssize_t)sz);
2509 				return -EINVAL;
2510 			}
2511 			map_def->key_size = sz;
2512 			map_def->key_type_id = t->type;
2513 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2514 		} else if (strcmp(name, "value_size") == 0) {
2515 			__u32 sz;
2516 
2517 			if (!get_map_field_int(map_name, btf, m, &sz))
2518 				return -EINVAL;
2519 			if (map_def->value_size && map_def->value_size != sz) {
2520 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2521 					map_name, map_def->value_size, sz);
2522 				return -EINVAL;
2523 			}
2524 			map_def->value_size = sz;
2525 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2526 		} else if (strcmp(name, "value") == 0) {
2527 			__s64 sz;
2528 
2529 			t = btf__type_by_id(btf, m->type);
2530 			if (!t) {
2531 				pr_warn("map '%s': value type [%d] not found.\n",
2532 					map_name, m->type);
2533 				return -EINVAL;
2534 			}
2535 			if (!btf_is_ptr(t)) {
2536 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2537 					map_name, btf_kind_str(t));
2538 				return -EINVAL;
2539 			}
2540 			sz = btf__resolve_size(btf, t->type);
2541 			if (sz < 0) {
2542 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2543 					map_name, t->type, (ssize_t)sz);
2544 				return sz;
2545 			}
2546 			if (map_def->value_size && map_def->value_size != sz) {
2547 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2548 					map_name, map_def->value_size, (ssize_t)sz);
2549 				return -EINVAL;
2550 			}
2551 			map_def->value_size = sz;
2552 			map_def->value_type_id = t->type;
2553 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2554 		}
2555 		else if (strcmp(name, "values") == 0) {
2556 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2557 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2558 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2559 			char inner_map_name[128];
2560 			int err;
2561 
2562 			if (is_inner) {
2563 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2564 					map_name);
2565 				return -ENOTSUP;
2566 			}
2567 			if (i != vlen - 1) {
2568 				pr_warn("map '%s': '%s' member should be last.\n",
2569 					map_name, name);
2570 				return -EINVAL;
2571 			}
2572 			if (!is_map_in_map && !is_prog_array) {
2573 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2574 					map_name);
2575 				return -ENOTSUP;
2576 			}
2577 			if (map_def->value_size && map_def->value_size != 4) {
2578 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2579 					map_name, map_def->value_size);
2580 				return -EINVAL;
2581 			}
2582 			map_def->value_size = 4;
2583 			t = btf__type_by_id(btf, m->type);
2584 			if (!t) {
2585 				pr_warn("map '%s': %s type [%d] not found.\n",
2586 					map_name, desc, m->type);
2587 				return -EINVAL;
2588 			}
2589 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2590 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2591 					map_name, desc);
2592 				return -EINVAL;
2593 			}
2594 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2595 			if (!btf_is_ptr(t)) {
2596 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2597 					map_name, desc, btf_kind_str(t));
2598 				return -EINVAL;
2599 			}
2600 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2601 			if (is_prog_array) {
2602 				if (!btf_is_func_proto(t)) {
2603 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2604 						map_name, btf_kind_str(t));
2605 					return -EINVAL;
2606 				}
2607 				continue;
2608 			}
2609 			if (!btf_is_struct(t)) {
2610 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2611 					map_name, btf_kind_str(t));
2612 				return -EINVAL;
2613 			}
2614 
2615 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2616 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2617 			if (err)
2618 				return err;
2619 
2620 			map_def->parts |= MAP_DEF_INNER_MAP;
2621 		} else if (strcmp(name, "pinning") == 0) {
2622 			__u32 val;
2623 
2624 			if (is_inner) {
2625 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2626 				return -EINVAL;
2627 			}
2628 			if (!get_map_field_int(map_name, btf, m, &val))
2629 				return -EINVAL;
2630 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2631 				pr_warn("map '%s': invalid pinning value %u.\n",
2632 					map_name, val);
2633 				return -EINVAL;
2634 			}
2635 			map_def->pinning = val;
2636 			map_def->parts |= MAP_DEF_PINNING;
2637 		} else if (strcmp(name, "map_extra") == 0) {
2638 			__u64 map_extra;
2639 
2640 			if (!get_map_field_long(map_name, btf, m, &map_extra))
2641 				return -EINVAL;
2642 			map_def->map_extra = map_extra;
2643 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2644 		} else {
2645 			if (strict) {
2646 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2647 				return -ENOTSUP;
2648 			}
2649 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2650 		}
2651 	}
2652 
2653 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2654 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2655 		return -EINVAL;
2656 	}
2657 
2658 	return 0;
2659 }
2660 
2661 static size_t adjust_ringbuf_sz(size_t sz)
2662 {
2663 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2664 	__u32 mul;
2665 
2666 	/* if user forgot to set any size, make sure they see error */
2667 	if (sz == 0)
2668 		return 0;
2669 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2670 	 * a power-of-2 multiple of kernel's page size. If user diligently
2671 	 * satisified these conditions, pass the size through.
2672 	 */
2673 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2674 		return sz;
2675 
2676 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2677 	 * user-set size to satisfy both user size request and kernel
2678 	 * requirements and substitute correct max_entries for map creation.
2679 	 */
2680 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2681 		if (mul * page_sz > sz)
2682 			return mul * page_sz;
2683 	}
2684 
2685 	/* if it's impossible to satisfy the conditions (i.e., user size is
2686 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2687 	 * page_size) then just return original size and let kernel reject it
2688 	 */
2689 	return sz;
2690 }
2691 
2692 static bool map_is_ringbuf(const struct bpf_map *map)
2693 {
2694 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2695 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2696 }
2697 
2698 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2699 {
2700 	map->def.type = def->map_type;
2701 	map->def.key_size = def->key_size;
2702 	map->def.value_size = def->value_size;
2703 	map->def.max_entries = def->max_entries;
2704 	map->def.map_flags = def->map_flags;
2705 	map->map_extra = def->map_extra;
2706 
2707 	map->numa_node = def->numa_node;
2708 	map->btf_key_type_id = def->key_type_id;
2709 	map->btf_value_type_id = def->value_type_id;
2710 
2711 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2712 	if (map_is_ringbuf(map))
2713 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2714 
2715 	if (def->parts & MAP_DEF_MAP_TYPE)
2716 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2717 
2718 	if (def->parts & MAP_DEF_KEY_TYPE)
2719 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2720 			 map->name, def->key_type_id, def->key_size);
2721 	else if (def->parts & MAP_DEF_KEY_SIZE)
2722 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2723 
2724 	if (def->parts & MAP_DEF_VALUE_TYPE)
2725 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2726 			 map->name, def->value_type_id, def->value_size);
2727 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2728 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2729 
2730 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2731 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2732 	if (def->parts & MAP_DEF_MAP_FLAGS)
2733 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2734 	if (def->parts & MAP_DEF_MAP_EXTRA)
2735 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2736 			 (unsigned long long)def->map_extra);
2737 	if (def->parts & MAP_DEF_PINNING)
2738 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2739 	if (def->parts & MAP_DEF_NUMA_NODE)
2740 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2741 
2742 	if (def->parts & MAP_DEF_INNER_MAP)
2743 		pr_debug("map '%s': found inner map definition.\n", map->name);
2744 }
2745 
2746 static const char *btf_var_linkage_str(__u32 linkage)
2747 {
2748 	switch (linkage) {
2749 	case BTF_VAR_STATIC: return "static";
2750 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2751 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2752 	default: return "unknown";
2753 	}
2754 }
2755 
2756 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2757 					 const struct btf_type *sec,
2758 					 int var_idx, int sec_idx,
2759 					 const Elf_Data *data, bool strict,
2760 					 const char *pin_root_path)
2761 {
2762 	struct btf_map_def map_def = {}, inner_def = {};
2763 	const struct btf_type *var, *def;
2764 	const struct btf_var_secinfo *vi;
2765 	const struct btf_var *var_extra;
2766 	const char *map_name;
2767 	struct bpf_map *map;
2768 	int err;
2769 
2770 	vi = btf_var_secinfos(sec) + var_idx;
2771 	var = btf__type_by_id(obj->btf, vi->type);
2772 	var_extra = btf_var(var);
2773 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2774 
2775 	if (map_name == NULL || map_name[0] == '\0') {
2776 		pr_warn("map #%d: empty name.\n", var_idx);
2777 		return -EINVAL;
2778 	}
2779 	if ((__u64)vi->offset + vi->size > data->d_size) {
2780 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2781 		return -EINVAL;
2782 	}
2783 	if (!btf_is_var(var)) {
2784 		pr_warn("map '%s': unexpected var kind %s.\n",
2785 			map_name, btf_kind_str(var));
2786 		return -EINVAL;
2787 	}
2788 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2789 		pr_warn("map '%s': unsupported map linkage %s.\n",
2790 			map_name, btf_var_linkage_str(var_extra->linkage));
2791 		return -EOPNOTSUPP;
2792 	}
2793 
2794 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2795 	if (!btf_is_struct(def)) {
2796 		pr_warn("map '%s': unexpected def kind %s.\n",
2797 			map_name, btf_kind_str(var));
2798 		return -EINVAL;
2799 	}
2800 	if (def->size > vi->size) {
2801 		pr_warn("map '%s': invalid def size.\n", map_name);
2802 		return -EINVAL;
2803 	}
2804 
2805 	map = bpf_object__add_map(obj);
2806 	if (IS_ERR(map))
2807 		return PTR_ERR(map);
2808 	map->name = strdup(map_name);
2809 	if (!map->name) {
2810 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2811 		return -ENOMEM;
2812 	}
2813 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2814 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2815 	map->sec_idx = sec_idx;
2816 	map->sec_offset = vi->offset;
2817 	map->btf_var_idx = var_idx;
2818 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2819 		 map_name, map->sec_idx, map->sec_offset);
2820 
2821 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2822 	if (err)
2823 		return err;
2824 
2825 	fill_map_from_def(map, &map_def);
2826 
2827 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2828 		err = build_map_pin_path(map, pin_root_path);
2829 		if (err) {
2830 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2831 			return err;
2832 		}
2833 	}
2834 
2835 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2836 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2837 		if (!map->inner_map)
2838 			return -ENOMEM;
2839 		map->inner_map->fd = create_placeholder_fd();
2840 		if (map->inner_map->fd < 0)
2841 			return map->inner_map->fd;
2842 		map->inner_map->sec_idx = sec_idx;
2843 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2844 		if (!map->inner_map->name)
2845 			return -ENOMEM;
2846 		sprintf(map->inner_map->name, "%s.inner", map_name);
2847 
2848 		fill_map_from_def(map->inner_map, &inner_def);
2849 	}
2850 
2851 	err = map_fill_btf_type_info(obj, map);
2852 	if (err)
2853 		return err;
2854 
2855 	return 0;
2856 }
2857 
2858 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2859 			       const char *sec_name, int sec_idx,
2860 			       void *data, size_t data_sz)
2861 {
2862 	const long page_sz = sysconf(_SC_PAGE_SIZE);
2863 	size_t mmap_sz;
2864 
2865 	mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2866 	if (roundup(data_sz, page_sz) > mmap_sz) {
2867 		pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2868 			sec_name, mmap_sz, data_sz);
2869 		return -E2BIG;
2870 	}
2871 
2872 	obj->arena_data = malloc(data_sz);
2873 	if (!obj->arena_data)
2874 		return -ENOMEM;
2875 	memcpy(obj->arena_data, data, data_sz);
2876 	obj->arena_data_sz = data_sz;
2877 
2878 	/* make bpf_map__init_value() work for ARENA maps */
2879 	map->mmaped = obj->arena_data;
2880 
2881 	return 0;
2882 }
2883 
2884 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2885 					  const char *pin_root_path)
2886 {
2887 	const struct btf_type *sec = NULL;
2888 	int nr_types, i, vlen, err;
2889 	const struct btf_type *t;
2890 	const char *name;
2891 	Elf_Data *data;
2892 	Elf_Scn *scn;
2893 
2894 	if (obj->efile.btf_maps_shndx < 0)
2895 		return 0;
2896 
2897 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2898 	data = elf_sec_data(obj, scn);
2899 	if (!scn || !data) {
2900 		pr_warn("elf: failed to get %s map definitions for %s\n",
2901 			MAPS_ELF_SEC, obj->path);
2902 		return -EINVAL;
2903 	}
2904 
2905 	nr_types = btf__type_cnt(obj->btf);
2906 	for (i = 1; i < nr_types; i++) {
2907 		t = btf__type_by_id(obj->btf, i);
2908 		if (!btf_is_datasec(t))
2909 			continue;
2910 		name = btf__name_by_offset(obj->btf, t->name_off);
2911 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2912 			sec = t;
2913 			obj->efile.btf_maps_sec_btf_id = i;
2914 			break;
2915 		}
2916 	}
2917 
2918 	if (!sec) {
2919 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2920 		return -ENOENT;
2921 	}
2922 
2923 	vlen = btf_vlen(sec);
2924 	for (i = 0; i < vlen; i++) {
2925 		err = bpf_object__init_user_btf_map(obj, sec, i,
2926 						    obj->efile.btf_maps_shndx,
2927 						    data, strict,
2928 						    pin_root_path);
2929 		if (err)
2930 			return err;
2931 	}
2932 
2933 	for (i = 0; i < obj->nr_maps; i++) {
2934 		struct bpf_map *map = &obj->maps[i];
2935 
2936 		if (map->def.type != BPF_MAP_TYPE_ARENA)
2937 			continue;
2938 
2939 		if (obj->arena_map) {
2940 			pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
2941 				map->name, obj->arena_map->name);
2942 			return -EINVAL;
2943 		}
2944 		obj->arena_map = map;
2945 
2946 		if (obj->efile.arena_data) {
2947 			err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
2948 						  obj->efile.arena_data->d_buf,
2949 						  obj->efile.arena_data->d_size);
2950 			if (err)
2951 				return err;
2952 		}
2953 	}
2954 	if (obj->efile.arena_data && !obj->arena_map) {
2955 		pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
2956 			ARENA_SEC);
2957 		return -ENOENT;
2958 	}
2959 
2960 	return 0;
2961 }
2962 
2963 static int bpf_object__init_maps(struct bpf_object *obj,
2964 				 const struct bpf_object_open_opts *opts)
2965 {
2966 	const char *pin_root_path;
2967 	bool strict;
2968 	int err = 0;
2969 
2970 	strict = !OPTS_GET(opts, relaxed_maps, false);
2971 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2972 
2973 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2974 	err = err ?: bpf_object__init_global_data_maps(obj);
2975 	err = err ?: bpf_object__init_kconfig_map(obj);
2976 	err = err ?: bpf_object_init_struct_ops(obj);
2977 
2978 	return err;
2979 }
2980 
2981 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2982 {
2983 	Elf64_Shdr *sh;
2984 
2985 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2986 	if (!sh)
2987 		return false;
2988 
2989 	return sh->sh_flags & SHF_EXECINSTR;
2990 }
2991 
2992 static bool starts_with_qmark(const char *s)
2993 {
2994 	return s && s[0] == '?';
2995 }
2996 
2997 static bool btf_needs_sanitization(struct bpf_object *obj)
2998 {
2999 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3000 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3001 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3002 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3003 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3004 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3005 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3006 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3007 
3008 	return !has_func || !has_datasec || !has_func_global || !has_float ||
3009 	       !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3010 }
3011 
3012 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3013 {
3014 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3015 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3016 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3017 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3018 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3019 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3020 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3021 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3022 	int enum64_placeholder_id = 0;
3023 	struct btf_type *t;
3024 	int i, j, vlen;
3025 
3026 	for (i = 1; i < btf__type_cnt(btf); i++) {
3027 		t = (struct btf_type *)btf__type_by_id(btf, i);
3028 
3029 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3030 			/* replace VAR/DECL_TAG with INT */
3031 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3032 			/*
3033 			 * using size = 1 is the safest choice, 4 will be too
3034 			 * big and cause kernel BTF validation failure if
3035 			 * original variable took less than 4 bytes
3036 			 */
3037 			t->size = 1;
3038 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3039 		} else if (!has_datasec && btf_is_datasec(t)) {
3040 			/* replace DATASEC with STRUCT */
3041 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
3042 			struct btf_member *m = btf_members(t);
3043 			struct btf_type *vt;
3044 			char *name;
3045 
3046 			name = (char *)btf__name_by_offset(btf, t->name_off);
3047 			while (*name) {
3048 				if (*name == '.' || *name == '?')
3049 					*name = '_';
3050 				name++;
3051 			}
3052 
3053 			vlen = btf_vlen(t);
3054 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3055 			for (j = 0; j < vlen; j++, v++, m++) {
3056 				/* order of field assignments is important */
3057 				m->offset = v->offset * 8;
3058 				m->type = v->type;
3059 				/* preserve variable name as member name */
3060 				vt = (void *)btf__type_by_id(btf, v->type);
3061 				m->name_off = vt->name_off;
3062 			}
3063 		} else if (!has_qmark_datasec && btf_is_datasec(t) &&
3064 			   starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3065 			/* replace '?' prefix with '_' for DATASEC names */
3066 			char *name;
3067 
3068 			name = (char *)btf__name_by_offset(btf, t->name_off);
3069 			if (name[0] == '?')
3070 				name[0] = '_';
3071 		} else if (!has_func && btf_is_func_proto(t)) {
3072 			/* replace FUNC_PROTO with ENUM */
3073 			vlen = btf_vlen(t);
3074 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3075 			t->size = sizeof(__u32); /* kernel enforced */
3076 		} else if (!has_func && btf_is_func(t)) {
3077 			/* replace FUNC with TYPEDEF */
3078 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3079 		} else if (!has_func_global && btf_is_func(t)) {
3080 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3081 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3082 		} else if (!has_float && btf_is_float(t)) {
3083 			/* replace FLOAT with an equally-sized empty STRUCT;
3084 			 * since C compilers do not accept e.g. "float" as a
3085 			 * valid struct name, make it anonymous
3086 			 */
3087 			t->name_off = 0;
3088 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3089 		} else if (!has_type_tag && btf_is_type_tag(t)) {
3090 			/* replace TYPE_TAG with a CONST */
3091 			t->name_off = 0;
3092 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3093 		} else if (!has_enum64 && btf_is_enum(t)) {
3094 			/* clear the kflag */
3095 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3096 		} else if (!has_enum64 && btf_is_enum64(t)) {
3097 			/* replace ENUM64 with a union */
3098 			struct btf_member *m;
3099 
3100 			if (enum64_placeholder_id == 0) {
3101 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3102 				if (enum64_placeholder_id < 0)
3103 					return enum64_placeholder_id;
3104 
3105 				t = (struct btf_type *)btf__type_by_id(btf, i);
3106 			}
3107 
3108 			m = btf_members(t);
3109 			vlen = btf_vlen(t);
3110 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3111 			for (j = 0; j < vlen; j++, m++) {
3112 				m->type = enum64_placeholder_id;
3113 				m->offset = 0;
3114 			}
3115 		}
3116 	}
3117 
3118 	return 0;
3119 }
3120 
3121 static bool libbpf_needs_btf(const struct bpf_object *obj)
3122 {
3123 	return obj->efile.btf_maps_shndx >= 0 ||
3124 	       obj->efile.has_st_ops ||
3125 	       obj->nr_extern > 0;
3126 }
3127 
3128 static bool kernel_needs_btf(const struct bpf_object *obj)
3129 {
3130 	return obj->efile.has_st_ops;
3131 }
3132 
3133 static int bpf_object__init_btf(struct bpf_object *obj,
3134 				Elf_Data *btf_data,
3135 				Elf_Data *btf_ext_data)
3136 {
3137 	int err = -ENOENT;
3138 
3139 	if (btf_data) {
3140 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3141 		err = libbpf_get_error(obj->btf);
3142 		if (err) {
3143 			obj->btf = NULL;
3144 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
3145 			goto out;
3146 		}
3147 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3148 		btf__set_pointer_size(obj->btf, 8);
3149 	}
3150 	if (btf_ext_data) {
3151 		struct btf_ext_info *ext_segs[3];
3152 		int seg_num, sec_num;
3153 
3154 		if (!obj->btf) {
3155 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3156 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3157 			goto out;
3158 		}
3159 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3160 		err = libbpf_get_error(obj->btf_ext);
3161 		if (err) {
3162 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
3163 				BTF_EXT_ELF_SEC, err);
3164 			obj->btf_ext = NULL;
3165 			goto out;
3166 		}
3167 
3168 		/* setup .BTF.ext to ELF section mapping */
3169 		ext_segs[0] = &obj->btf_ext->func_info;
3170 		ext_segs[1] = &obj->btf_ext->line_info;
3171 		ext_segs[2] = &obj->btf_ext->core_relo_info;
3172 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3173 			struct btf_ext_info *seg = ext_segs[seg_num];
3174 			const struct btf_ext_info_sec *sec;
3175 			const char *sec_name;
3176 			Elf_Scn *scn;
3177 
3178 			if (seg->sec_cnt == 0)
3179 				continue;
3180 
3181 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3182 			if (!seg->sec_idxs) {
3183 				err = -ENOMEM;
3184 				goto out;
3185 			}
3186 
3187 			sec_num = 0;
3188 			for_each_btf_ext_sec(seg, sec) {
3189 				/* preventively increment index to avoid doing
3190 				 * this before every continue below
3191 				 */
3192 				sec_num++;
3193 
3194 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3195 				if (str_is_empty(sec_name))
3196 					continue;
3197 				scn = elf_sec_by_name(obj, sec_name);
3198 				if (!scn)
3199 					continue;
3200 
3201 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3202 			}
3203 		}
3204 	}
3205 out:
3206 	if (err && libbpf_needs_btf(obj)) {
3207 		pr_warn("BTF is required, but is missing or corrupted.\n");
3208 		return err;
3209 	}
3210 	return 0;
3211 }
3212 
3213 static int compare_vsi_off(const void *_a, const void *_b)
3214 {
3215 	const struct btf_var_secinfo *a = _a;
3216 	const struct btf_var_secinfo *b = _b;
3217 
3218 	return a->offset - b->offset;
3219 }
3220 
3221 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3222 			     struct btf_type *t)
3223 {
3224 	__u32 size = 0, i, vars = btf_vlen(t);
3225 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
3226 	struct btf_var_secinfo *vsi;
3227 	bool fixup_offsets = false;
3228 	int err;
3229 
3230 	if (!sec_name) {
3231 		pr_debug("No name found in string section for DATASEC kind.\n");
3232 		return -ENOENT;
3233 	}
3234 
3235 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3236 	 * variable offsets set at the previous step. Further, not every
3237 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3238 	 * all fixups altogether for such sections and go straight to sorting
3239 	 * VARs within their DATASEC.
3240 	 */
3241 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3242 		goto sort_vars;
3243 
3244 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3245 	 * fix this up. But BPF static linker already fixes this up and fills
3246 	 * all the sizes and offsets during static linking. So this step has
3247 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
3248 	 * non-extern DATASEC, so the variable fixup loop below handles both
3249 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
3250 	 * symbol matching just once.
3251 	 */
3252 	if (t->size == 0) {
3253 		err = find_elf_sec_sz(obj, sec_name, &size);
3254 		if (err || !size) {
3255 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
3256 				 sec_name, size, err);
3257 			return -ENOENT;
3258 		}
3259 
3260 		t->size = size;
3261 		fixup_offsets = true;
3262 	}
3263 
3264 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3265 		const struct btf_type *t_var;
3266 		struct btf_var *var;
3267 		const char *var_name;
3268 		Elf64_Sym *sym;
3269 
3270 		t_var = btf__type_by_id(btf, vsi->type);
3271 		if (!t_var || !btf_is_var(t_var)) {
3272 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3273 			return -EINVAL;
3274 		}
3275 
3276 		var = btf_var(t_var);
3277 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3278 			continue;
3279 
3280 		var_name = btf__name_by_offset(btf, t_var->name_off);
3281 		if (!var_name) {
3282 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3283 				 sec_name, i);
3284 			return -ENOENT;
3285 		}
3286 
3287 		sym = find_elf_var_sym(obj, var_name);
3288 		if (IS_ERR(sym)) {
3289 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3290 				 sec_name, var_name);
3291 			return -ENOENT;
3292 		}
3293 
3294 		if (fixup_offsets)
3295 			vsi->offset = sym->st_value;
3296 
3297 		/* if variable is a global/weak symbol, but has restricted
3298 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3299 		 * as static. This follows similar logic for functions (BPF
3300 		 * subprogs) and influences libbpf's further decisions about
3301 		 * whether to make global data BPF array maps as
3302 		 * BPF_F_MMAPABLE.
3303 		 */
3304 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3305 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3306 			var->linkage = BTF_VAR_STATIC;
3307 	}
3308 
3309 sort_vars:
3310 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3311 	return 0;
3312 }
3313 
3314 static int bpf_object_fixup_btf(struct bpf_object *obj)
3315 {
3316 	int i, n, err = 0;
3317 
3318 	if (!obj->btf)
3319 		return 0;
3320 
3321 	n = btf__type_cnt(obj->btf);
3322 	for (i = 1; i < n; i++) {
3323 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3324 
3325 		/* Loader needs to fix up some of the things compiler
3326 		 * couldn't get its hands on while emitting BTF. This
3327 		 * is section size and global variable offset. We use
3328 		 * the info from the ELF itself for this purpose.
3329 		 */
3330 		if (btf_is_datasec(t)) {
3331 			err = btf_fixup_datasec(obj, obj->btf, t);
3332 			if (err)
3333 				return err;
3334 		}
3335 	}
3336 
3337 	return 0;
3338 }
3339 
3340 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3341 {
3342 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3343 	    prog->type == BPF_PROG_TYPE_LSM)
3344 		return true;
3345 
3346 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3347 	 * also need vmlinux BTF
3348 	 */
3349 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3350 		return true;
3351 
3352 	return false;
3353 }
3354 
3355 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3356 {
3357 	return bpf_map__is_struct_ops(map);
3358 }
3359 
3360 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3361 {
3362 	struct bpf_program *prog;
3363 	struct bpf_map *map;
3364 	int i;
3365 
3366 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3367 	 * is not specified
3368 	 */
3369 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3370 		return true;
3371 
3372 	/* Support for typed ksyms needs kernel BTF */
3373 	for (i = 0; i < obj->nr_extern; i++) {
3374 		const struct extern_desc *ext;
3375 
3376 		ext = &obj->externs[i];
3377 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3378 			return true;
3379 	}
3380 
3381 	bpf_object__for_each_program(prog, obj) {
3382 		if (!prog->autoload)
3383 			continue;
3384 		if (prog_needs_vmlinux_btf(prog))
3385 			return true;
3386 	}
3387 
3388 	bpf_object__for_each_map(map, obj) {
3389 		if (map_needs_vmlinux_btf(map))
3390 			return true;
3391 	}
3392 
3393 	return false;
3394 }
3395 
3396 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3397 {
3398 	int err;
3399 
3400 	/* btf_vmlinux could be loaded earlier */
3401 	if (obj->btf_vmlinux || obj->gen_loader)
3402 		return 0;
3403 
3404 	if (!force && !obj_needs_vmlinux_btf(obj))
3405 		return 0;
3406 
3407 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3408 	err = libbpf_get_error(obj->btf_vmlinux);
3409 	if (err) {
3410 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3411 		obj->btf_vmlinux = NULL;
3412 		return err;
3413 	}
3414 	return 0;
3415 }
3416 
3417 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3418 {
3419 	struct btf *kern_btf = obj->btf;
3420 	bool btf_mandatory, sanitize;
3421 	int i, err = 0;
3422 
3423 	if (!obj->btf)
3424 		return 0;
3425 
3426 	if (!kernel_supports(obj, FEAT_BTF)) {
3427 		if (kernel_needs_btf(obj)) {
3428 			err = -EOPNOTSUPP;
3429 			goto report;
3430 		}
3431 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3432 		return 0;
3433 	}
3434 
3435 	/* Even though some subprogs are global/weak, user might prefer more
3436 	 * permissive BPF verification process that BPF verifier performs for
3437 	 * static functions, taking into account more context from the caller
3438 	 * functions. In such case, they need to mark such subprogs with
3439 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3440 	 * corresponding FUNC BTF type to be marked as static and trigger more
3441 	 * involved BPF verification process.
3442 	 */
3443 	for (i = 0; i < obj->nr_programs; i++) {
3444 		struct bpf_program *prog = &obj->programs[i];
3445 		struct btf_type *t;
3446 		const char *name;
3447 		int j, n;
3448 
3449 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3450 			continue;
3451 
3452 		n = btf__type_cnt(obj->btf);
3453 		for (j = 1; j < n; j++) {
3454 			t = btf_type_by_id(obj->btf, j);
3455 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3456 				continue;
3457 
3458 			name = btf__str_by_offset(obj->btf, t->name_off);
3459 			if (strcmp(name, prog->name) != 0)
3460 				continue;
3461 
3462 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3463 			break;
3464 		}
3465 	}
3466 
3467 	sanitize = btf_needs_sanitization(obj);
3468 	if (sanitize) {
3469 		const void *raw_data;
3470 		__u32 sz;
3471 
3472 		/* clone BTF to sanitize a copy and leave the original intact */
3473 		raw_data = btf__raw_data(obj->btf, &sz);
3474 		kern_btf = btf__new(raw_data, sz);
3475 		err = libbpf_get_error(kern_btf);
3476 		if (err)
3477 			return err;
3478 
3479 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3480 		btf__set_pointer_size(obj->btf, 8);
3481 		err = bpf_object__sanitize_btf(obj, kern_btf);
3482 		if (err)
3483 			return err;
3484 	}
3485 
3486 	if (obj->gen_loader) {
3487 		__u32 raw_size = 0;
3488 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3489 
3490 		if (!raw_data)
3491 			return -ENOMEM;
3492 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3493 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3494 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3495 		 */
3496 		btf__set_fd(kern_btf, 0);
3497 	} else {
3498 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3499 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3500 					   obj->log_level ? 1 : 0, obj->token_fd);
3501 	}
3502 	if (sanitize) {
3503 		if (!err) {
3504 			/* move fd to libbpf's BTF */
3505 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3506 			btf__set_fd(kern_btf, -1);
3507 		}
3508 		btf__free(kern_btf);
3509 	}
3510 report:
3511 	if (err) {
3512 		btf_mandatory = kernel_needs_btf(obj);
3513 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3514 			btf_mandatory ? "BTF is mandatory, can't proceed."
3515 				      : "BTF is optional, ignoring.");
3516 		if (!btf_mandatory)
3517 			err = 0;
3518 	}
3519 	return err;
3520 }
3521 
3522 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3523 {
3524 	const char *name;
3525 
3526 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3527 	if (!name) {
3528 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3529 			off, obj->path, elf_errmsg(-1));
3530 		return NULL;
3531 	}
3532 
3533 	return name;
3534 }
3535 
3536 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3537 {
3538 	const char *name;
3539 
3540 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3541 	if (!name) {
3542 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3543 			off, obj->path, elf_errmsg(-1));
3544 		return NULL;
3545 	}
3546 
3547 	return name;
3548 }
3549 
3550 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3551 {
3552 	Elf_Scn *scn;
3553 
3554 	scn = elf_getscn(obj->efile.elf, idx);
3555 	if (!scn) {
3556 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3557 			idx, obj->path, elf_errmsg(-1));
3558 		return NULL;
3559 	}
3560 	return scn;
3561 }
3562 
3563 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3564 {
3565 	Elf_Scn *scn = NULL;
3566 	Elf *elf = obj->efile.elf;
3567 	const char *sec_name;
3568 
3569 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3570 		sec_name = elf_sec_name(obj, scn);
3571 		if (!sec_name)
3572 			return NULL;
3573 
3574 		if (strcmp(sec_name, name) != 0)
3575 			continue;
3576 
3577 		return scn;
3578 	}
3579 	return NULL;
3580 }
3581 
3582 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3583 {
3584 	Elf64_Shdr *shdr;
3585 
3586 	if (!scn)
3587 		return NULL;
3588 
3589 	shdr = elf64_getshdr(scn);
3590 	if (!shdr) {
3591 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3592 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3593 		return NULL;
3594 	}
3595 
3596 	return shdr;
3597 }
3598 
3599 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3600 {
3601 	const char *name;
3602 	Elf64_Shdr *sh;
3603 
3604 	if (!scn)
3605 		return NULL;
3606 
3607 	sh = elf_sec_hdr(obj, scn);
3608 	if (!sh)
3609 		return NULL;
3610 
3611 	name = elf_sec_str(obj, sh->sh_name);
3612 	if (!name) {
3613 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3614 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3615 		return NULL;
3616 	}
3617 
3618 	return name;
3619 }
3620 
3621 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3622 {
3623 	Elf_Data *data;
3624 
3625 	if (!scn)
3626 		return NULL;
3627 
3628 	data = elf_getdata(scn, 0);
3629 	if (!data) {
3630 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3631 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3632 			obj->path, elf_errmsg(-1));
3633 		return NULL;
3634 	}
3635 
3636 	return data;
3637 }
3638 
3639 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3640 {
3641 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3642 		return NULL;
3643 
3644 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3645 }
3646 
3647 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3648 {
3649 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3650 		return NULL;
3651 
3652 	return (Elf64_Rel *)data->d_buf + idx;
3653 }
3654 
3655 static bool is_sec_name_dwarf(const char *name)
3656 {
3657 	/* approximation, but the actual list is too long */
3658 	return str_has_pfx(name, ".debug_");
3659 }
3660 
3661 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3662 {
3663 	/* no special handling of .strtab */
3664 	if (hdr->sh_type == SHT_STRTAB)
3665 		return true;
3666 
3667 	/* ignore .llvm_addrsig section as well */
3668 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3669 		return true;
3670 
3671 	/* no subprograms will lead to an empty .text section, ignore it */
3672 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3673 	    strcmp(name, ".text") == 0)
3674 		return true;
3675 
3676 	/* DWARF sections */
3677 	if (is_sec_name_dwarf(name))
3678 		return true;
3679 
3680 	if (str_has_pfx(name, ".rel")) {
3681 		name += sizeof(".rel") - 1;
3682 		/* DWARF section relocations */
3683 		if (is_sec_name_dwarf(name))
3684 			return true;
3685 
3686 		/* .BTF and .BTF.ext don't need relocations */
3687 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3688 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3689 			return true;
3690 	}
3691 
3692 	return false;
3693 }
3694 
3695 static int cmp_progs(const void *_a, const void *_b)
3696 {
3697 	const struct bpf_program *a = _a;
3698 	const struct bpf_program *b = _b;
3699 
3700 	if (a->sec_idx != b->sec_idx)
3701 		return a->sec_idx < b->sec_idx ? -1 : 1;
3702 
3703 	/* sec_insn_off can't be the same within the section */
3704 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3705 }
3706 
3707 static int bpf_object__elf_collect(struct bpf_object *obj)
3708 {
3709 	struct elf_sec_desc *sec_desc;
3710 	Elf *elf = obj->efile.elf;
3711 	Elf_Data *btf_ext_data = NULL;
3712 	Elf_Data *btf_data = NULL;
3713 	int idx = 0, err = 0;
3714 	const char *name;
3715 	Elf_Data *data;
3716 	Elf_Scn *scn;
3717 	Elf64_Shdr *sh;
3718 
3719 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3720 	 * section. Since section count retrieved by elf_getshdrnum() does
3721 	 * include sec #0, it is already the necessary size of an array to keep
3722 	 * all the sections.
3723 	 */
3724 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3725 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3726 			obj->path, elf_errmsg(-1));
3727 		return -LIBBPF_ERRNO__FORMAT;
3728 	}
3729 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3730 	if (!obj->efile.secs)
3731 		return -ENOMEM;
3732 
3733 	/* a bunch of ELF parsing functionality depends on processing symbols,
3734 	 * so do the first pass and find the symbol table
3735 	 */
3736 	scn = NULL;
3737 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3738 		sh = elf_sec_hdr(obj, scn);
3739 		if (!sh)
3740 			return -LIBBPF_ERRNO__FORMAT;
3741 
3742 		if (sh->sh_type == SHT_SYMTAB) {
3743 			if (obj->efile.symbols) {
3744 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3745 				return -LIBBPF_ERRNO__FORMAT;
3746 			}
3747 
3748 			data = elf_sec_data(obj, scn);
3749 			if (!data)
3750 				return -LIBBPF_ERRNO__FORMAT;
3751 
3752 			idx = elf_ndxscn(scn);
3753 
3754 			obj->efile.symbols = data;
3755 			obj->efile.symbols_shndx = idx;
3756 			obj->efile.strtabidx = sh->sh_link;
3757 		}
3758 	}
3759 
3760 	if (!obj->efile.symbols) {
3761 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3762 			obj->path);
3763 		return -ENOENT;
3764 	}
3765 
3766 	scn = NULL;
3767 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3768 		idx = elf_ndxscn(scn);
3769 		sec_desc = &obj->efile.secs[idx];
3770 
3771 		sh = elf_sec_hdr(obj, scn);
3772 		if (!sh)
3773 			return -LIBBPF_ERRNO__FORMAT;
3774 
3775 		name = elf_sec_str(obj, sh->sh_name);
3776 		if (!name)
3777 			return -LIBBPF_ERRNO__FORMAT;
3778 
3779 		if (ignore_elf_section(sh, name))
3780 			continue;
3781 
3782 		data = elf_sec_data(obj, scn);
3783 		if (!data)
3784 			return -LIBBPF_ERRNO__FORMAT;
3785 
3786 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3787 			 idx, name, (unsigned long)data->d_size,
3788 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3789 			 (int)sh->sh_type);
3790 
3791 		if (strcmp(name, "license") == 0) {
3792 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3793 			if (err)
3794 				return err;
3795 		} else if (strcmp(name, "version") == 0) {
3796 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3797 			if (err)
3798 				return err;
3799 		} else if (strcmp(name, "maps") == 0) {
3800 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3801 			return -ENOTSUP;
3802 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3803 			obj->efile.btf_maps_shndx = idx;
3804 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3805 			if (sh->sh_type != SHT_PROGBITS)
3806 				return -LIBBPF_ERRNO__FORMAT;
3807 			btf_data = data;
3808 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3809 			if (sh->sh_type != SHT_PROGBITS)
3810 				return -LIBBPF_ERRNO__FORMAT;
3811 			btf_ext_data = data;
3812 		} else if (sh->sh_type == SHT_SYMTAB) {
3813 			/* already processed during the first pass above */
3814 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3815 			if (sh->sh_flags & SHF_EXECINSTR) {
3816 				if (strcmp(name, ".text") == 0)
3817 					obj->efile.text_shndx = idx;
3818 				err = bpf_object__add_programs(obj, data, name, idx);
3819 				if (err)
3820 					return err;
3821 			} else if (strcmp(name, DATA_SEC) == 0 ||
3822 				   str_has_pfx(name, DATA_SEC ".")) {
3823 				sec_desc->sec_type = SEC_DATA;
3824 				sec_desc->shdr = sh;
3825 				sec_desc->data = data;
3826 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3827 				   str_has_pfx(name, RODATA_SEC ".")) {
3828 				sec_desc->sec_type = SEC_RODATA;
3829 				sec_desc->shdr = sh;
3830 				sec_desc->data = data;
3831 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3832 				   strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3833 				   strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3834 				   strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3835 				sec_desc->sec_type = SEC_ST_OPS;
3836 				sec_desc->shdr = sh;
3837 				sec_desc->data = data;
3838 				obj->efile.has_st_ops = true;
3839 			} else if (strcmp(name, ARENA_SEC) == 0) {
3840 				obj->efile.arena_data = data;
3841 				obj->efile.arena_data_shndx = idx;
3842 			} else {
3843 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3844 					idx, name);
3845 			}
3846 		} else if (sh->sh_type == SHT_REL) {
3847 			int targ_sec_idx = sh->sh_info; /* points to other section */
3848 
3849 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3850 			    targ_sec_idx >= obj->efile.sec_cnt)
3851 				return -LIBBPF_ERRNO__FORMAT;
3852 
3853 			/* Only do relo for section with exec instructions */
3854 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3855 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3856 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3857 			    strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3858 			    strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3859 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3860 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3861 					idx, name, targ_sec_idx,
3862 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3863 				continue;
3864 			}
3865 
3866 			sec_desc->sec_type = SEC_RELO;
3867 			sec_desc->shdr = sh;
3868 			sec_desc->data = data;
3869 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3870 							 str_has_pfx(name, BSS_SEC "."))) {
3871 			sec_desc->sec_type = SEC_BSS;
3872 			sec_desc->shdr = sh;
3873 			sec_desc->data = data;
3874 		} else {
3875 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3876 				(size_t)sh->sh_size);
3877 		}
3878 	}
3879 
3880 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3881 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3882 		return -LIBBPF_ERRNO__FORMAT;
3883 	}
3884 
3885 	/* sort BPF programs by section name and in-section instruction offset
3886 	 * for faster search
3887 	 */
3888 	if (obj->nr_programs)
3889 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3890 
3891 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3892 }
3893 
3894 static bool sym_is_extern(const Elf64_Sym *sym)
3895 {
3896 	int bind = ELF64_ST_BIND(sym->st_info);
3897 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3898 	return sym->st_shndx == SHN_UNDEF &&
3899 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3900 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3901 }
3902 
3903 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3904 {
3905 	int bind = ELF64_ST_BIND(sym->st_info);
3906 	int type = ELF64_ST_TYPE(sym->st_info);
3907 
3908 	/* in .text section */
3909 	if (sym->st_shndx != text_shndx)
3910 		return false;
3911 
3912 	/* local function */
3913 	if (bind == STB_LOCAL && type == STT_SECTION)
3914 		return true;
3915 
3916 	/* global function */
3917 	return bind == STB_GLOBAL && type == STT_FUNC;
3918 }
3919 
3920 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3921 {
3922 	const struct btf_type *t;
3923 	const char *tname;
3924 	int i, n;
3925 
3926 	if (!btf)
3927 		return -ESRCH;
3928 
3929 	n = btf__type_cnt(btf);
3930 	for (i = 1; i < n; i++) {
3931 		t = btf__type_by_id(btf, i);
3932 
3933 		if (!btf_is_var(t) && !btf_is_func(t))
3934 			continue;
3935 
3936 		tname = btf__name_by_offset(btf, t->name_off);
3937 		if (strcmp(tname, ext_name))
3938 			continue;
3939 
3940 		if (btf_is_var(t) &&
3941 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3942 			return -EINVAL;
3943 
3944 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3945 			return -EINVAL;
3946 
3947 		return i;
3948 	}
3949 
3950 	return -ENOENT;
3951 }
3952 
3953 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3954 	const struct btf_var_secinfo *vs;
3955 	const struct btf_type *t;
3956 	int i, j, n;
3957 
3958 	if (!btf)
3959 		return -ESRCH;
3960 
3961 	n = btf__type_cnt(btf);
3962 	for (i = 1; i < n; i++) {
3963 		t = btf__type_by_id(btf, i);
3964 
3965 		if (!btf_is_datasec(t))
3966 			continue;
3967 
3968 		vs = btf_var_secinfos(t);
3969 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3970 			if (vs->type == ext_btf_id)
3971 				return i;
3972 		}
3973 	}
3974 
3975 	return -ENOENT;
3976 }
3977 
3978 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3979 				     bool *is_signed)
3980 {
3981 	const struct btf_type *t;
3982 	const char *name;
3983 
3984 	t = skip_mods_and_typedefs(btf, id, NULL);
3985 	name = btf__name_by_offset(btf, t->name_off);
3986 
3987 	if (is_signed)
3988 		*is_signed = false;
3989 	switch (btf_kind(t)) {
3990 	case BTF_KIND_INT: {
3991 		int enc = btf_int_encoding(t);
3992 
3993 		if (enc & BTF_INT_BOOL)
3994 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3995 		if (is_signed)
3996 			*is_signed = enc & BTF_INT_SIGNED;
3997 		if (t->size == 1)
3998 			return KCFG_CHAR;
3999 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4000 			return KCFG_UNKNOWN;
4001 		return KCFG_INT;
4002 	}
4003 	case BTF_KIND_ENUM:
4004 		if (t->size != 4)
4005 			return KCFG_UNKNOWN;
4006 		if (strcmp(name, "libbpf_tristate"))
4007 			return KCFG_UNKNOWN;
4008 		return KCFG_TRISTATE;
4009 	case BTF_KIND_ENUM64:
4010 		if (strcmp(name, "libbpf_tristate"))
4011 			return KCFG_UNKNOWN;
4012 		return KCFG_TRISTATE;
4013 	case BTF_KIND_ARRAY:
4014 		if (btf_array(t)->nelems == 0)
4015 			return KCFG_UNKNOWN;
4016 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4017 			return KCFG_UNKNOWN;
4018 		return KCFG_CHAR_ARR;
4019 	default:
4020 		return KCFG_UNKNOWN;
4021 	}
4022 }
4023 
4024 static int cmp_externs(const void *_a, const void *_b)
4025 {
4026 	const struct extern_desc *a = _a;
4027 	const struct extern_desc *b = _b;
4028 
4029 	if (a->type != b->type)
4030 		return a->type < b->type ? -1 : 1;
4031 
4032 	if (a->type == EXT_KCFG) {
4033 		/* descending order by alignment requirements */
4034 		if (a->kcfg.align != b->kcfg.align)
4035 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
4036 		/* ascending order by size, within same alignment class */
4037 		if (a->kcfg.sz != b->kcfg.sz)
4038 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4039 	}
4040 
4041 	/* resolve ties by name */
4042 	return strcmp(a->name, b->name);
4043 }
4044 
4045 static int find_int_btf_id(const struct btf *btf)
4046 {
4047 	const struct btf_type *t;
4048 	int i, n;
4049 
4050 	n = btf__type_cnt(btf);
4051 	for (i = 1; i < n; i++) {
4052 		t = btf__type_by_id(btf, i);
4053 
4054 		if (btf_is_int(t) && btf_int_bits(t) == 32)
4055 			return i;
4056 	}
4057 
4058 	return 0;
4059 }
4060 
4061 static int add_dummy_ksym_var(struct btf *btf)
4062 {
4063 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4064 	const struct btf_var_secinfo *vs;
4065 	const struct btf_type *sec;
4066 
4067 	if (!btf)
4068 		return 0;
4069 
4070 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4071 					    BTF_KIND_DATASEC);
4072 	if (sec_btf_id < 0)
4073 		return 0;
4074 
4075 	sec = btf__type_by_id(btf, sec_btf_id);
4076 	vs = btf_var_secinfos(sec);
4077 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
4078 		const struct btf_type *vt;
4079 
4080 		vt = btf__type_by_id(btf, vs->type);
4081 		if (btf_is_func(vt))
4082 			break;
4083 	}
4084 
4085 	/* No func in ksyms sec.  No need to add dummy var. */
4086 	if (i == btf_vlen(sec))
4087 		return 0;
4088 
4089 	int_btf_id = find_int_btf_id(btf);
4090 	dummy_var_btf_id = btf__add_var(btf,
4091 					"dummy_ksym",
4092 					BTF_VAR_GLOBAL_ALLOCATED,
4093 					int_btf_id);
4094 	if (dummy_var_btf_id < 0)
4095 		pr_warn("cannot create a dummy_ksym var\n");
4096 
4097 	return dummy_var_btf_id;
4098 }
4099 
4100 static int bpf_object__collect_externs(struct bpf_object *obj)
4101 {
4102 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4103 	const struct btf_type *t;
4104 	struct extern_desc *ext;
4105 	int i, n, off, dummy_var_btf_id;
4106 	const char *ext_name, *sec_name;
4107 	size_t ext_essent_len;
4108 	Elf_Scn *scn;
4109 	Elf64_Shdr *sh;
4110 
4111 	if (!obj->efile.symbols)
4112 		return 0;
4113 
4114 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4115 	sh = elf_sec_hdr(obj, scn);
4116 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4117 		return -LIBBPF_ERRNO__FORMAT;
4118 
4119 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4120 	if (dummy_var_btf_id < 0)
4121 		return dummy_var_btf_id;
4122 
4123 	n = sh->sh_size / sh->sh_entsize;
4124 	pr_debug("looking for externs among %d symbols...\n", n);
4125 
4126 	for (i = 0; i < n; i++) {
4127 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4128 
4129 		if (!sym)
4130 			return -LIBBPF_ERRNO__FORMAT;
4131 		if (!sym_is_extern(sym))
4132 			continue;
4133 		ext_name = elf_sym_str(obj, sym->st_name);
4134 		if (!ext_name || !ext_name[0])
4135 			continue;
4136 
4137 		ext = obj->externs;
4138 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4139 		if (!ext)
4140 			return -ENOMEM;
4141 		obj->externs = ext;
4142 		ext = &ext[obj->nr_extern];
4143 		memset(ext, 0, sizeof(*ext));
4144 		obj->nr_extern++;
4145 
4146 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4147 		if (ext->btf_id <= 0) {
4148 			pr_warn("failed to find BTF for extern '%s': %d\n",
4149 				ext_name, ext->btf_id);
4150 			return ext->btf_id;
4151 		}
4152 		t = btf__type_by_id(obj->btf, ext->btf_id);
4153 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
4154 		ext->sym_idx = i;
4155 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4156 
4157 		ext_essent_len = bpf_core_essential_name_len(ext->name);
4158 		ext->essent_name = NULL;
4159 		if (ext_essent_len != strlen(ext->name)) {
4160 			ext->essent_name = strndup(ext->name, ext_essent_len);
4161 			if (!ext->essent_name)
4162 				return -ENOMEM;
4163 		}
4164 
4165 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4166 		if (ext->sec_btf_id <= 0) {
4167 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4168 				ext_name, ext->btf_id, ext->sec_btf_id);
4169 			return ext->sec_btf_id;
4170 		}
4171 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4172 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4173 
4174 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4175 			if (btf_is_func(t)) {
4176 				pr_warn("extern function %s is unsupported under %s section\n",
4177 					ext->name, KCONFIG_SEC);
4178 				return -ENOTSUP;
4179 			}
4180 			kcfg_sec = sec;
4181 			ext->type = EXT_KCFG;
4182 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4183 			if (ext->kcfg.sz <= 0) {
4184 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4185 					ext_name, ext->kcfg.sz);
4186 				return ext->kcfg.sz;
4187 			}
4188 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
4189 			if (ext->kcfg.align <= 0) {
4190 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4191 					ext_name, ext->kcfg.align);
4192 				return -EINVAL;
4193 			}
4194 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4195 							&ext->kcfg.is_signed);
4196 			if (ext->kcfg.type == KCFG_UNKNOWN) {
4197 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4198 				return -ENOTSUP;
4199 			}
4200 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4201 			ksym_sec = sec;
4202 			ext->type = EXT_KSYM;
4203 			skip_mods_and_typedefs(obj->btf, t->type,
4204 					       &ext->ksym.type_id);
4205 		} else {
4206 			pr_warn("unrecognized extern section '%s'\n", sec_name);
4207 			return -ENOTSUP;
4208 		}
4209 	}
4210 	pr_debug("collected %d externs total\n", obj->nr_extern);
4211 
4212 	if (!obj->nr_extern)
4213 		return 0;
4214 
4215 	/* sort externs by type, for kcfg ones also by (align, size, name) */
4216 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4217 
4218 	/* for .ksyms section, we need to turn all externs into allocated
4219 	 * variables in BTF to pass kernel verification; we do this by
4220 	 * pretending that each extern is a 8-byte variable
4221 	 */
4222 	if (ksym_sec) {
4223 		/* find existing 4-byte integer type in BTF to use for fake
4224 		 * extern variables in DATASEC
4225 		 */
4226 		int int_btf_id = find_int_btf_id(obj->btf);
4227 		/* For extern function, a dummy_var added earlier
4228 		 * will be used to replace the vs->type and
4229 		 * its name string will be used to refill
4230 		 * the missing param's name.
4231 		 */
4232 		const struct btf_type *dummy_var;
4233 
4234 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4235 		for (i = 0; i < obj->nr_extern; i++) {
4236 			ext = &obj->externs[i];
4237 			if (ext->type != EXT_KSYM)
4238 				continue;
4239 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4240 				 i, ext->sym_idx, ext->name);
4241 		}
4242 
4243 		sec = ksym_sec;
4244 		n = btf_vlen(sec);
4245 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4246 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4247 			struct btf_type *vt;
4248 
4249 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4250 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4251 			ext = find_extern_by_name(obj, ext_name);
4252 			if (!ext) {
4253 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4254 					btf_kind_str(vt), ext_name);
4255 				return -ESRCH;
4256 			}
4257 			if (btf_is_func(vt)) {
4258 				const struct btf_type *func_proto;
4259 				struct btf_param *param;
4260 				int j;
4261 
4262 				func_proto = btf__type_by_id(obj->btf,
4263 							     vt->type);
4264 				param = btf_params(func_proto);
4265 				/* Reuse the dummy_var string if the
4266 				 * func proto does not have param name.
4267 				 */
4268 				for (j = 0; j < btf_vlen(func_proto); j++)
4269 					if (param[j].type && !param[j].name_off)
4270 						param[j].name_off =
4271 							dummy_var->name_off;
4272 				vs->type = dummy_var_btf_id;
4273 				vt->info &= ~0xffff;
4274 				vt->info |= BTF_FUNC_GLOBAL;
4275 			} else {
4276 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4277 				vt->type = int_btf_id;
4278 			}
4279 			vs->offset = off;
4280 			vs->size = sizeof(int);
4281 		}
4282 		sec->size = off;
4283 	}
4284 
4285 	if (kcfg_sec) {
4286 		sec = kcfg_sec;
4287 		/* for kcfg externs calculate their offsets within a .kconfig map */
4288 		off = 0;
4289 		for (i = 0; i < obj->nr_extern; i++) {
4290 			ext = &obj->externs[i];
4291 			if (ext->type != EXT_KCFG)
4292 				continue;
4293 
4294 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4295 			off = ext->kcfg.data_off + ext->kcfg.sz;
4296 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4297 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4298 		}
4299 		sec->size = off;
4300 		n = btf_vlen(sec);
4301 		for (i = 0; i < n; i++) {
4302 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4303 
4304 			t = btf__type_by_id(obj->btf, vs->type);
4305 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4306 			ext = find_extern_by_name(obj, ext_name);
4307 			if (!ext) {
4308 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4309 					ext_name);
4310 				return -ESRCH;
4311 			}
4312 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4313 			vs->offset = ext->kcfg.data_off;
4314 		}
4315 	}
4316 	return 0;
4317 }
4318 
4319 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4320 {
4321 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4322 }
4323 
4324 struct bpf_program *
4325 bpf_object__find_program_by_name(const struct bpf_object *obj,
4326 				 const char *name)
4327 {
4328 	struct bpf_program *prog;
4329 
4330 	bpf_object__for_each_program(prog, obj) {
4331 		if (prog_is_subprog(obj, prog))
4332 			continue;
4333 		if (!strcmp(prog->name, name))
4334 			return prog;
4335 	}
4336 	return errno = ENOENT, NULL;
4337 }
4338 
4339 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4340 				      int shndx)
4341 {
4342 	switch (obj->efile.secs[shndx].sec_type) {
4343 	case SEC_BSS:
4344 	case SEC_DATA:
4345 	case SEC_RODATA:
4346 		return true;
4347 	default:
4348 		return false;
4349 	}
4350 }
4351 
4352 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4353 				      int shndx)
4354 {
4355 	return shndx == obj->efile.btf_maps_shndx;
4356 }
4357 
4358 static enum libbpf_map_type
4359 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4360 {
4361 	if (shndx == obj->efile.symbols_shndx)
4362 		return LIBBPF_MAP_KCONFIG;
4363 
4364 	switch (obj->efile.secs[shndx].sec_type) {
4365 	case SEC_BSS:
4366 		return LIBBPF_MAP_BSS;
4367 	case SEC_DATA:
4368 		return LIBBPF_MAP_DATA;
4369 	case SEC_RODATA:
4370 		return LIBBPF_MAP_RODATA;
4371 	default:
4372 		return LIBBPF_MAP_UNSPEC;
4373 	}
4374 }
4375 
4376 static int bpf_program__record_reloc(struct bpf_program *prog,
4377 				     struct reloc_desc *reloc_desc,
4378 				     __u32 insn_idx, const char *sym_name,
4379 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4380 {
4381 	struct bpf_insn *insn = &prog->insns[insn_idx];
4382 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4383 	struct bpf_object *obj = prog->obj;
4384 	__u32 shdr_idx = sym->st_shndx;
4385 	enum libbpf_map_type type;
4386 	const char *sym_sec_name;
4387 	struct bpf_map *map;
4388 
4389 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4390 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4391 			prog->name, sym_name, insn_idx, insn->code);
4392 		return -LIBBPF_ERRNO__RELOC;
4393 	}
4394 
4395 	if (sym_is_extern(sym)) {
4396 		int sym_idx = ELF64_R_SYM(rel->r_info);
4397 		int i, n = obj->nr_extern;
4398 		struct extern_desc *ext;
4399 
4400 		for (i = 0; i < n; i++) {
4401 			ext = &obj->externs[i];
4402 			if (ext->sym_idx == sym_idx)
4403 				break;
4404 		}
4405 		if (i >= n) {
4406 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4407 				prog->name, sym_name, sym_idx);
4408 			return -LIBBPF_ERRNO__RELOC;
4409 		}
4410 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4411 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4412 		if (insn->code == (BPF_JMP | BPF_CALL))
4413 			reloc_desc->type = RELO_EXTERN_CALL;
4414 		else
4415 			reloc_desc->type = RELO_EXTERN_LD64;
4416 		reloc_desc->insn_idx = insn_idx;
4417 		reloc_desc->ext_idx = i;
4418 		return 0;
4419 	}
4420 
4421 	/* sub-program call relocation */
4422 	if (is_call_insn(insn)) {
4423 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4424 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4425 			return -LIBBPF_ERRNO__RELOC;
4426 		}
4427 		/* text_shndx can be 0, if no default "main" program exists */
4428 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4429 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4430 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4431 				prog->name, sym_name, sym_sec_name);
4432 			return -LIBBPF_ERRNO__RELOC;
4433 		}
4434 		if (sym->st_value % BPF_INSN_SZ) {
4435 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4436 				prog->name, sym_name, (size_t)sym->st_value);
4437 			return -LIBBPF_ERRNO__RELOC;
4438 		}
4439 		reloc_desc->type = RELO_CALL;
4440 		reloc_desc->insn_idx = insn_idx;
4441 		reloc_desc->sym_off = sym->st_value;
4442 		return 0;
4443 	}
4444 
4445 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4446 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4447 			prog->name, sym_name, shdr_idx);
4448 		return -LIBBPF_ERRNO__RELOC;
4449 	}
4450 
4451 	/* loading subprog addresses */
4452 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4453 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4454 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4455 		 */
4456 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4457 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4458 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4459 			return -LIBBPF_ERRNO__RELOC;
4460 		}
4461 
4462 		reloc_desc->type = RELO_SUBPROG_ADDR;
4463 		reloc_desc->insn_idx = insn_idx;
4464 		reloc_desc->sym_off = sym->st_value;
4465 		return 0;
4466 	}
4467 
4468 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4469 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4470 
4471 	/* arena data relocation */
4472 	if (shdr_idx == obj->efile.arena_data_shndx) {
4473 		reloc_desc->type = RELO_DATA;
4474 		reloc_desc->insn_idx = insn_idx;
4475 		reloc_desc->map_idx = obj->arena_map - obj->maps;
4476 		reloc_desc->sym_off = sym->st_value;
4477 		return 0;
4478 	}
4479 
4480 	/* generic map reference relocation */
4481 	if (type == LIBBPF_MAP_UNSPEC) {
4482 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4483 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4484 				prog->name, sym_name, sym_sec_name);
4485 			return -LIBBPF_ERRNO__RELOC;
4486 		}
4487 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4488 			map = &obj->maps[map_idx];
4489 			if (map->libbpf_type != type ||
4490 			    map->sec_idx != sym->st_shndx ||
4491 			    map->sec_offset != sym->st_value)
4492 				continue;
4493 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4494 				 prog->name, map_idx, map->name, map->sec_idx,
4495 				 map->sec_offset, insn_idx);
4496 			break;
4497 		}
4498 		if (map_idx >= nr_maps) {
4499 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4500 				prog->name, sym_sec_name, (size_t)sym->st_value);
4501 			return -LIBBPF_ERRNO__RELOC;
4502 		}
4503 		reloc_desc->type = RELO_LD64;
4504 		reloc_desc->insn_idx = insn_idx;
4505 		reloc_desc->map_idx = map_idx;
4506 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4507 		return 0;
4508 	}
4509 
4510 	/* global data map relocation */
4511 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4512 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4513 			prog->name, sym_sec_name);
4514 		return -LIBBPF_ERRNO__RELOC;
4515 	}
4516 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4517 		map = &obj->maps[map_idx];
4518 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4519 			continue;
4520 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4521 			 prog->name, map_idx, map->name, map->sec_idx,
4522 			 map->sec_offset, insn_idx);
4523 		break;
4524 	}
4525 	if (map_idx >= nr_maps) {
4526 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4527 			prog->name, sym_sec_name);
4528 		return -LIBBPF_ERRNO__RELOC;
4529 	}
4530 
4531 	reloc_desc->type = RELO_DATA;
4532 	reloc_desc->insn_idx = insn_idx;
4533 	reloc_desc->map_idx = map_idx;
4534 	reloc_desc->sym_off = sym->st_value;
4535 	return 0;
4536 }
4537 
4538 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4539 {
4540 	return insn_idx >= prog->sec_insn_off &&
4541 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4542 }
4543 
4544 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4545 						 size_t sec_idx, size_t insn_idx)
4546 {
4547 	int l = 0, r = obj->nr_programs - 1, m;
4548 	struct bpf_program *prog;
4549 
4550 	if (!obj->nr_programs)
4551 		return NULL;
4552 
4553 	while (l < r) {
4554 		m = l + (r - l + 1) / 2;
4555 		prog = &obj->programs[m];
4556 
4557 		if (prog->sec_idx < sec_idx ||
4558 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4559 			l = m;
4560 		else
4561 			r = m - 1;
4562 	}
4563 	/* matching program could be at index l, but it still might be the
4564 	 * wrong one, so we need to double check conditions for the last time
4565 	 */
4566 	prog = &obj->programs[l];
4567 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4568 		return prog;
4569 	return NULL;
4570 }
4571 
4572 static int
4573 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4574 {
4575 	const char *relo_sec_name, *sec_name;
4576 	size_t sec_idx = shdr->sh_info, sym_idx;
4577 	struct bpf_program *prog;
4578 	struct reloc_desc *relos;
4579 	int err, i, nrels;
4580 	const char *sym_name;
4581 	__u32 insn_idx;
4582 	Elf_Scn *scn;
4583 	Elf_Data *scn_data;
4584 	Elf64_Sym *sym;
4585 	Elf64_Rel *rel;
4586 
4587 	if (sec_idx >= obj->efile.sec_cnt)
4588 		return -EINVAL;
4589 
4590 	scn = elf_sec_by_idx(obj, sec_idx);
4591 	scn_data = elf_sec_data(obj, scn);
4592 	if (!scn_data)
4593 		return -LIBBPF_ERRNO__FORMAT;
4594 
4595 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4596 	sec_name = elf_sec_name(obj, scn);
4597 	if (!relo_sec_name || !sec_name)
4598 		return -EINVAL;
4599 
4600 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4601 		 relo_sec_name, sec_idx, sec_name);
4602 	nrels = shdr->sh_size / shdr->sh_entsize;
4603 
4604 	for (i = 0; i < nrels; i++) {
4605 		rel = elf_rel_by_idx(data, i);
4606 		if (!rel) {
4607 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4608 			return -LIBBPF_ERRNO__FORMAT;
4609 		}
4610 
4611 		sym_idx = ELF64_R_SYM(rel->r_info);
4612 		sym = elf_sym_by_idx(obj, sym_idx);
4613 		if (!sym) {
4614 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4615 				relo_sec_name, sym_idx, i);
4616 			return -LIBBPF_ERRNO__FORMAT;
4617 		}
4618 
4619 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4620 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4621 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4622 			return -LIBBPF_ERRNO__FORMAT;
4623 		}
4624 
4625 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4626 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4627 				relo_sec_name, (size_t)rel->r_offset, i);
4628 			return -LIBBPF_ERRNO__FORMAT;
4629 		}
4630 
4631 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4632 		/* relocations against static functions are recorded as
4633 		 * relocations against the section that contains a function;
4634 		 * in such case, symbol will be STT_SECTION and sym.st_name
4635 		 * will point to empty string (0), so fetch section name
4636 		 * instead
4637 		 */
4638 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4639 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4640 		else
4641 			sym_name = elf_sym_str(obj, sym->st_name);
4642 		sym_name = sym_name ?: "<?";
4643 
4644 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4645 			 relo_sec_name, i, insn_idx, sym_name);
4646 
4647 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4648 		if (!prog) {
4649 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4650 				relo_sec_name, i, sec_name, insn_idx);
4651 			continue;
4652 		}
4653 
4654 		relos = libbpf_reallocarray(prog->reloc_desc,
4655 					    prog->nr_reloc + 1, sizeof(*relos));
4656 		if (!relos)
4657 			return -ENOMEM;
4658 		prog->reloc_desc = relos;
4659 
4660 		/* adjust insn_idx to local BPF program frame of reference */
4661 		insn_idx -= prog->sec_insn_off;
4662 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4663 						insn_idx, sym_name, sym, rel);
4664 		if (err)
4665 			return err;
4666 
4667 		prog->nr_reloc++;
4668 	}
4669 	return 0;
4670 }
4671 
4672 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4673 {
4674 	int id;
4675 
4676 	if (!obj->btf)
4677 		return -ENOENT;
4678 
4679 	/* if it's BTF-defined map, we don't need to search for type IDs.
4680 	 * For struct_ops map, it does not need btf_key_type_id and
4681 	 * btf_value_type_id.
4682 	 */
4683 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4684 		return 0;
4685 
4686 	/*
4687 	 * LLVM annotates global data differently in BTF, that is,
4688 	 * only as '.data', '.bss' or '.rodata'.
4689 	 */
4690 	if (!bpf_map__is_internal(map))
4691 		return -ENOENT;
4692 
4693 	id = btf__find_by_name(obj->btf, map->real_name);
4694 	if (id < 0)
4695 		return id;
4696 
4697 	map->btf_key_type_id = 0;
4698 	map->btf_value_type_id = id;
4699 	return 0;
4700 }
4701 
4702 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4703 {
4704 	char file[PATH_MAX], buff[4096];
4705 	FILE *fp;
4706 	__u32 val;
4707 	int err;
4708 
4709 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4710 	memset(info, 0, sizeof(*info));
4711 
4712 	fp = fopen(file, "re");
4713 	if (!fp) {
4714 		err = -errno;
4715 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4716 			err);
4717 		return err;
4718 	}
4719 
4720 	while (fgets(buff, sizeof(buff), fp)) {
4721 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4722 			info->type = val;
4723 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4724 			info->key_size = val;
4725 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4726 			info->value_size = val;
4727 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4728 			info->max_entries = val;
4729 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4730 			info->map_flags = val;
4731 	}
4732 
4733 	fclose(fp);
4734 
4735 	return 0;
4736 }
4737 
4738 bool bpf_map__autocreate(const struct bpf_map *map)
4739 {
4740 	return map->autocreate;
4741 }
4742 
4743 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4744 {
4745 	if (map->obj->loaded)
4746 		return libbpf_err(-EBUSY);
4747 
4748 	map->autocreate = autocreate;
4749 	return 0;
4750 }
4751 
4752 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4753 {
4754 	struct bpf_map_info info;
4755 	__u32 len = sizeof(info), name_len;
4756 	int new_fd, err;
4757 	char *new_name;
4758 
4759 	memset(&info, 0, len);
4760 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4761 	if (err && errno == EINVAL)
4762 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4763 	if (err)
4764 		return libbpf_err(err);
4765 
4766 	name_len = strlen(info.name);
4767 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4768 		new_name = strdup(map->name);
4769 	else
4770 		new_name = strdup(info.name);
4771 
4772 	if (!new_name)
4773 		return libbpf_err(-errno);
4774 
4775 	/*
4776 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4777 	 * This is similar to what we do in ensure_good_fd(), but without
4778 	 * closing original FD.
4779 	 */
4780 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4781 	if (new_fd < 0) {
4782 		err = -errno;
4783 		goto err_free_new_name;
4784 	}
4785 
4786 	err = reuse_fd(map->fd, new_fd);
4787 	if (err)
4788 		goto err_free_new_name;
4789 
4790 	free(map->name);
4791 
4792 	map->name = new_name;
4793 	map->def.type = info.type;
4794 	map->def.key_size = info.key_size;
4795 	map->def.value_size = info.value_size;
4796 	map->def.max_entries = info.max_entries;
4797 	map->def.map_flags = info.map_flags;
4798 	map->btf_key_type_id = info.btf_key_type_id;
4799 	map->btf_value_type_id = info.btf_value_type_id;
4800 	map->reused = true;
4801 	map->map_extra = info.map_extra;
4802 
4803 	return 0;
4804 
4805 err_free_new_name:
4806 	free(new_name);
4807 	return libbpf_err(err);
4808 }
4809 
4810 __u32 bpf_map__max_entries(const struct bpf_map *map)
4811 {
4812 	return map->def.max_entries;
4813 }
4814 
4815 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4816 {
4817 	if (!bpf_map_type__is_map_in_map(map->def.type))
4818 		return errno = EINVAL, NULL;
4819 
4820 	return map->inner_map;
4821 }
4822 
4823 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4824 {
4825 	if (map->obj->loaded)
4826 		return libbpf_err(-EBUSY);
4827 
4828 	map->def.max_entries = max_entries;
4829 
4830 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4831 	if (map_is_ringbuf(map))
4832 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4833 
4834 	return 0;
4835 }
4836 
4837 static int bpf_object_prepare_token(struct bpf_object *obj)
4838 {
4839 	const char *bpffs_path;
4840 	int bpffs_fd = -1, token_fd, err;
4841 	bool mandatory;
4842 	enum libbpf_print_level level;
4843 
4844 	/* token is explicitly prevented */
4845 	if (obj->token_path && obj->token_path[0] == '\0') {
4846 		pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4847 		return 0;
4848 	}
4849 
4850 	mandatory = obj->token_path != NULL;
4851 	level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4852 
4853 	bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4854 	bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4855 	if (bpffs_fd < 0) {
4856 		err = -errno;
4857 		__pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n",
4858 		     obj->name, err, bpffs_path,
4859 		     mandatory ? "" : ", skipping optional step...");
4860 		return mandatory ? err : 0;
4861 	}
4862 
4863 	token_fd = bpf_token_create(bpffs_fd, 0);
4864 	close(bpffs_fd);
4865 	if (token_fd < 0) {
4866 		if (!mandatory && token_fd == -ENOENT) {
4867 			pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4868 				 obj->name, bpffs_path);
4869 			return 0;
4870 		}
4871 		__pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
4872 		     obj->name, token_fd, bpffs_path,
4873 		     mandatory ? "" : ", skipping optional step...");
4874 		return mandatory ? token_fd : 0;
4875 	}
4876 
4877 	obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
4878 	if (!obj->feat_cache) {
4879 		close(token_fd);
4880 		return -ENOMEM;
4881 	}
4882 
4883 	obj->token_fd = token_fd;
4884 	obj->feat_cache->token_fd = token_fd;
4885 
4886 	return 0;
4887 }
4888 
4889 static int
4890 bpf_object__probe_loading(struct bpf_object *obj)
4891 {
4892 	char *cp, errmsg[STRERR_BUFSIZE];
4893 	struct bpf_insn insns[] = {
4894 		BPF_MOV64_IMM(BPF_REG_0, 0),
4895 		BPF_EXIT_INSN(),
4896 	};
4897 	int ret, insn_cnt = ARRAY_SIZE(insns);
4898 	LIBBPF_OPTS(bpf_prog_load_opts, opts,
4899 		.token_fd = obj->token_fd,
4900 		.prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
4901 	);
4902 
4903 	if (obj->gen_loader)
4904 		return 0;
4905 
4906 	ret = bump_rlimit_memlock();
4907 	if (ret)
4908 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4909 
4910 	/* make sure basic loading works */
4911 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
4912 	if (ret < 0)
4913 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
4914 	if (ret < 0) {
4915 		ret = errno;
4916 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4917 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4918 			"program. Make sure your kernel supports BPF "
4919 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4920 			"set to big enough value.\n", __func__, cp, ret);
4921 		return -ret;
4922 	}
4923 	close(ret);
4924 
4925 	return 0;
4926 }
4927 
4928 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4929 {
4930 	if (obj->gen_loader)
4931 		/* To generate loader program assume the latest kernel
4932 		 * to avoid doing extra prog_load, map_create syscalls.
4933 		 */
4934 		return true;
4935 
4936 	if (obj->token_fd)
4937 		return feat_supported(obj->feat_cache, feat_id);
4938 
4939 	return feat_supported(NULL, feat_id);
4940 }
4941 
4942 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4943 {
4944 	struct bpf_map_info map_info;
4945 	char msg[STRERR_BUFSIZE];
4946 	__u32 map_info_len = sizeof(map_info);
4947 	int err;
4948 
4949 	memset(&map_info, 0, map_info_len);
4950 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
4951 	if (err && errno == EINVAL)
4952 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4953 	if (err) {
4954 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4955 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4956 		return false;
4957 	}
4958 
4959 	return (map_info.type == map->def.type &&
4960 		map_info.key_size == map->def.key_size &&
4961 		map_info.value_size == map->def.value_size &&
4962 		map_info.max_entries == map->def.max_entries &&
4963 		map_info.map_flags == map->def.map_flags &&
4964 		map_info.map_extra == map->map_extra);
4965 }
4966 
4967 static int
4968 bpf_object__reuse_map(struct bpf_map *map)
4969 {
4970 	char *cp, errmsg[STRERR_BUFSIZE];
4971 	int err, pin_fd;
4972 
4973 	pin_fd = bpf_obj_get(map->pin_path);
4974 	if (pin_fd < 0) {
4975 		err = -errno;
4976 		if (err == -ENOENT) {
4977 			pr_debug("found no pinned map to reuse at '%s'\n",
4978 				 map->pin_path);
4979 			return 0;
4980 		}
4981 
4982 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4983 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4984 			map->pin_path, cp);
4985 		return err;
4986 	}
4987 
4988 	if (!map_is_reuse_compat(map, pin_fd)) {
4989 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4990 			map->pin_path);
4991 		close(pin_fd);
4992 		return -EINVAL;
4993 	}
4994 
4995 	err = bpf_map__reuse_fd(map, pin_fd);
4996 	close(pin_fd);
4997 	if (err)
4998 		return err;
4999 
5000 	map->pinned = true;
5001 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5002 
5003 	return 0;
5004 }
5005 
5006 static int
5007 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5008 {
5009 	enum libbpf_map_type map_type = map->libbpf_type;
5010 	char *cp, errmsg[STRERR_BUFSIZE];
5011 	int err, zero = 0;
5012 
5013 	if (obj->gen_loader) {
5014 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5015 					 map->mmaped, map->def.value_size);
5016 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5017 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5018 		return 0;
5019 	}
5020 
5021 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5022 	if (err) {
5023 		err = -errno;
5024 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5025 		pr_warn("Error setting initial map(%s) contents: %s\n",
5026 			map->name, cp);
5027 		return err;
5028 	}
5029 
5030 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5031 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5032 		err = bpf_map_freeze(map->fd);
5033 		if (err) {
5034 			err = -errno;
5035 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5036 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5037 				map->name, cp);
5038 			return err;
5039 		}
5040 	}
5041 	return 0;
5042 }
5043 
5044 static void bpf_map__destroy(struct bpf_map *map);
5045 
5046 static bool map_is_created(const struct bpf_map *map)
5047 {
5048 	return map->obj->loaded || map->reused;
5049 }
5050 
5051 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5052 {
5053 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5054 	struct bpf_map_def *def = &map->def;
5055 	const char *map_name = NULL;
5056 	int err = 0, map_fd;
5057 
5058 	if (kernel_supports(obj, FEAT_PROG_NAME))
5059 		map_name = map->name;
5060 	create_attr.map_ifindex = map->map_ifindex;
5061 	create_attr.map_flags = def->map_flags;
5062 	create_attr.numa_node = map->numa_node;
5063 	create_attr.map_extra = map->map_extra;
5064 	create_attr.token_fd = obj->token_fd;
5065 	if (obj->token_fd)
5066 		create_attr.map_flags |= BPF_F_TOKEN_FD;
5067 
5068 	if (bpf_map__is_struct_ops(map)) {
5069 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5070 		if (map->mod_btf_fd >= 0) {
5071 			create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5072 			create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5073 		}
5074 	}
5075 
5076 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5077 		create_attr.btf_fd = btf__fd(obj->btf);
5078 		create_attr.btf_key_type_id = map->btf_key_type_id;
5079 		create_attr.btf_value_type_id = map->btf_value_type_id;
5080 	}
5081 
5082 	if (bpf_map_type__is_map_in_map(def->type)) {
5083 		if (map->inner_map) {
5084 			err = map_set_def_max_entries(map->inner_map);
5085 			if (err)
5086 				return err;
5087 			err = bpf_object__create_map(obj, map->inner_map, true);
5088 			if (err) {
5089 				pr_warn("map '%s': failed to create inner map: %d\n",
5090 					map->name, err);
5091 				return err;
5092 			}
5093 			map->inner_map_fd = map->inner_map->fd;
5094 		}
5095 		if (map->inner_map_fd >= 0)
5096 			create_attr.inner_map_fd = map->inner_map_fd;
5097 	}
5098 
5099 	switch (def->type) {
5100 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5101 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5102 	case BPF_MAP_TYPE_STACK_TRACE:
5103 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5104 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5105 	case BPF_MAP_TYPE_DEVMAP:
5106 	case BPF_MAP_TYPE_DEVMAP_HASH:
5107 	case BPF_MAP_TYPE_CPUMAP:
5108 	case BPF_MAP_TYPE_XSKMAP:
5109 	case BPF_MAP_TYPE_SOCKMAP:
5110 	case BPF_MAP_TYPE_SOCKHASH:
5111 	case BPF_MAP_TYPE_QUEUE:
5112 	case BPF_MAP_TYPE_STACK:
5113 	case BPF_MAP_TYPE_ARENA:
5114 		create_attr.btf_fd = 0;
5115 		create_attr.btf_key_type_id = 0;
5116 		create_attr.btf_value_type_id = 0;
5117 		map->btf_key_type_id = 0;
5118 		map->btf_value_type_id = 0;
5119 		break;
5120 	case BPF_MAP_TYPE_STRUCT_OPS:
5121 		create_attr.btf_value_type_id = 0;
5122 		break;
5123 	default:
5124 		break;
5125 	}
5126 
5127 	if (obj->gen_loader) {
5128 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5129 				    def->key_size, def->value_size, def->max_entries,
5130 				    &create_attr, is_inner ? -1 : map - obj->maps);
5131 		/* We keep pretenting we have valid FD to pass various fd >= 0
5132 		 * checks by just keeping original placeholder FDs in place.
5133 		 * See bpf_object__add_map() comment.
5134 		 * This placeholder fd will not be used with any syscall and
5135 		 * will be reset to -1 eventually.
5136 		 */
5137 		map_fd = map->fd;
5138 	} else {
5139 		map_fd = bpf_map_create(def->type, map_name,
5140 					def->key_size, def->value_size,
5141 					def->max_entries, &create_attr);
5142 	}
5143 	if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5144 		char *cp, errmsg[STRERR_BUFSIZE];
5145 
5146 		err = -errno;
5147 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5148 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5149 			map->name, cp, err);
5150 		create_attr.btf_fd = 0;
5151 		create_attr.btf_key_type_id = 0;
5152 		create_attr.btf_value_type_id = 0;
5153 		map->btf_key_type_id = 0;
5154 		map->btf_value_type_id = 0;
5155 		map_fd = bpf_map_create(def->type, map_name,
5156 					def->key_size, def->value_size,
5157 					def->max_entries, &create_attr);
5158 	}
5159 
5160 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5161 		if (obj->gen_loader)
5162 			map->inner_map->fd = -1;
5163 		bpf_map__destroy(map->inner_map);
5164 		zfree(&map->inner_map);
5165 	}
5166 
5167 	if (map_fd < 0)
5168 		return map_fd;
5169 
5170 	/* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5171 	if (map->fd == map_fd)
5172 		return 0;
5173 
5174 	/* Keep placeholder FD value but now point it to the BPF map object.
5175 	 * This way everything that relied on this map's FD (e.g., relocated
5176 	 * ldimm64 instructions) will stay valid and won't need adjustments.
5177 	 * map->fd stays valid but now point to what map_fd points to.
5178 	 */
5179 	return reuse_fd(map->fd, map_fd);
5180 }
5181 
5182 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5183 {
5184 	const struct bpf_map *targ_map;
5185 	unsigned int i;
5186 	int fd, err = 0;
5187 
5188 	for (i = 0; i < map->init_slots_sz; i++) {
5189 		if (!map->init_slots[i])
5190 			continue;
5191 
5192 		targ_map = map->init_slots[i];
5193 		fd = targ_map->fd;
5194 
5195 		if (obj->gen_loader) {
5196 			bpf_gen__populate_outer_map(obj->gen_loader,
5197 						    map - obj->maps, i,
5198 						    targ_map - obj->maps);
5199 		} else {
5200 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5201 		}
5202 		if (err) {
5203 			err = -errno;
5204 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5205 				map->name, i, targ_map->name, fd, err);
5206 			return err;
5207 		}
5208 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5209 			 map->name, i, targ_map->name, fd);
5210 	}
5211 
5212 	zfree(&map->init_slots);
5213 	map->init_slots_sz = 0;
5214 
5215 	return 0;
5216 }
5217 
5218 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5219 {
5220 	const struct bpf_program *targ_prog;
5221 	unsigned int i;
5222 	int fd, err;
5223 
5224 	if (obj->gen_loader)
5225 		return -ENOTSUP;
5226 
5227 	for (i = 0; i < map->init_slots_sz; i++) {
5228 		if (!map->init_slots[i])
5229 			continue;
5230 
5231 		targ_prog = map->init_slots[i];
5232 		fd = bpf_program__fd(targ_prog);
5233 
5234 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5235 		if (err) {
5236 			err = -errno;
5237 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5238 				map->name, i, targ_prog->name, fd, err);
5239 			return err;
5240 		}
5241 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5242 			 map->name, i, targ_prog->name, fd);
5243 	}
5244 
5245 	zfree(&map->init_slots);
5246 	map->init_slots_sz = 0;
5247 
5248 	return 0;
5249 }
5250 
5251 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5252 {
5253 	struct bpf_map *map;
5254 	int i, err;
5255 
5256 	for (i = 0; i < obj->nr_maps; i++) {
5257 		map = &obj->maps[i];
5258 
5259 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5260 			continue;
5261 
5262 		err = init_prog_array_slots(obj, map);
5263 		if (err < 0)
5264 			return err;
5265 	}
5266 	return 0;
5267 }
5268 
5269 static int map_set_def_max_entries(struct bpf_map *map)
5270 {
5271 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5272 		int nr_cpus;
5273 
5274 		nr_cpus = libbpf_num_possible_cpus();
5275 		if (nr_cpus < 0) {
5276 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5277 				map->name, nr_cpus);
5278 			return nr_cpus;
5279 		}
5280 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5281 		map->def.max_entries = nr_cpus;
5282 	}
5283 
5284 	return 0;
5285 }
5286 
5287 static int
5288 bpf_object__create_maps(struct bpf_object *obj)
5289 {
5290 	struct bpf_map *map;
5291 	char *cp, errmsg[STRERR_BUFSIZE];
5292 	unsigned int i, j;
5293 	int err;
5294 	bool retried;
5295 
5296 	for (i = 0; i < obj->nr_maps; i++) {
5297 		map = &obj->maps[i];
5298 
5299 		/* To support old kernels, we skip creating global data maps
5300 		 * (.rodata, .data, .kconfig, etc); later on, during program
5301 		 * loading, if we detect that at least one of the to-be-loaded
5302 		 * programs is referencing any global data map, we'll error
5303 		 * out with program name and relocation index logged.
5304 		 * This approach allows to accommodate Clang emitting
5305 		 * unnecessary .rodata.str1.1 sections for string literals,
5306 		 * but also it allows to have CO-RE applications that use
5307 		 * global variables in some of BPF programs, but not others.
5308 		 * If those global variable-using programs are not loaded at
5309 		 * runtime due to bpf_program__set_autoload(prog, false),
5310 		 * bpf_object loading will succeed just fine even on old
5311 		 * kernels.
5312 		 */
5313 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5314 			map->autocreate = false;
5315 
5316 		if (!map->autocreate) {
5317 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5318 			continue;
5319 		}
5320 
5321 		err = map_set_def_max_entries(map);
5322 		if (err)
5323 			goto err_out;
5324 
5325 		retried = false;
5326 retry:
5327 		if (map->pin_path) {
5328 			err = bpf_object__reuse_map(map);
5329 			if (err) {
5330 				pr_warn("map '%s': error reusing pinned map\n",
5331 					map->name);
5332 				goto err_out;
5333 			}
5334 			if (retried && map->fd < 0) {
5335 				pr_warn("map '%s': cannot find pinned map\n",
5336 					map->name);
5337 				err = -ENOENT;
5338 				goto err_out;
5339 			}
5340 		}
5341 
5342 		if (map->reused) {
5343 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5344 				 map->name, map->fd);
5345 		} else {
5346 			err = bpf_object__create_map(obj, map, false);
5347 			if (err)
5348 				goto err_out;
5349 
5350 			pr_debug("map '%s': created successfully, fd=%d\n",
5351 				 map->name, map->fd);
5352 
5353 			if (bpf_map__is_internal(map)) {
5354 				err = bpf_object__populate_internal_map(obj, map);
5355 				if (err < 0)
5356 					goto err_out;
5357 			}
5358 			if (map->def.type == BPF_MAP_TYPE_ARENA) {
5359 				map->mmaped = mmap((void *)(long)map->map_extra,
5360 						   bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5361 						   map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5362 						   map->fd, 0);
5363 				if (map->mmaped == MAP_FAILED) {
5364 					err = -errno;
5365 					map->mmaped = NULL;
5366 					pr_warn("map '%s': failed to mmap arena: %d\n",
5367 						map->name, err);
5368 					return err;
5369 				}
5370 				if (obj->arena_data) {
5371 					memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5372 					zfree(&obj->arena_data);
5373 				}
5374 			}
5375 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5376 				err = init_map_in_map_slots(obj, map);
5377 				if (err < 0)
5378 					goto err_out;
5379 			}
5380 		}
5381 
5382 		if (map->pin_path && !map->pinned) {
5383 			err = bpf_map__pin(map, NULL);
5384 			if (err) {
5385 				if (!retried && err == -EEXIST) {
5386 					retried = true;
5387 					goto retry;
5388 				}
5389 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5390 					map->name, map->pin_path, err);
5391 				goto err_out;
5392 			}
5393 		}
5394 	}
5395 
5396 	return 0;
5397 
5398 err_out:
5399 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5400 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5401 	pr_perm_msg(err);
5402 	for (j = 0; j < i; j++)
5403 		zclose(obj->maps[j].fd);
5404 	return err;
5405 }
5406 
5407 static bool bpf_core_is_flavor_sep(const char *s)
5408 {
5409 	/* check X___Y name pattern, where X and Y are not underscores */
5410 	return s[0] != '_' &&				      /* X */
5411 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5412 	       s[4] != '_';				      /* Y */
5413 }
5414 
5415 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5416  * before last triple underscore. Struct name part after last triple
5417  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5418  */
5419 size_t bpf_core_essential_name_len(const char *name)
5420 {
5421 	size_t n = strlen(name);
5422 	int i;
5423 
5424 	for (i = n - 5; i >= 0; i--) {
5425 		if (bpf_core_is_flavor_sep(name + i))
5426 			return i + 1;
5427 	}
5428 	return n;
5429 }
5430 
5431 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5432 {
5433 	if (!cands)
5434 		return;
5435 
5436 	free(cands->cands);
5437 	free(cands);
5438 }
5439 
5440 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5441 		       size_t local_essent_len,
5442 		       const struct btf *targ_btf,
5443 		       const char *targ_btf_name,
5444 		       int targ_start_id,
5445 		       struct bpf_core_cand_list *cands)
5446 {
5447 	struct bpf_core_cand *new_cands, *cand;
5448 	const struct btf_type *t, *local_t;
5449 	const char *targ_name, *local_name;
5450 	size_t targ_essent_len;
5451 	int n, i;
5452 
5453 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5454 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5455 
5456 	n = btf__type_cnt(targ_btf);
5457 	for (i = targ_start_id; i < n; i++) {
5458 		t = btf__type_by_id(targ_btf, i);
5459 		if (!btf_kind_core_compat(t, local_t))
5460 			continue;
5461 
5462 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5463 		if (str_is_empty(targ_name))
5464 			continue;
5465 
5466 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5467 		if (targ_essent_len != local_essent_len)
5468 			continue;
5469 
5470 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5471 			continue;
5472 
5473 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5474 			 local_cand->id, btf_kind_str(local_t),
5475 			 local_name, i, btf_kind_str(t), targ_name,
5476 			 targ_btf_name);
5477 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5478 					      sizeof(*cands->cands));
5479 		if (!new_cands)
5480 			return -ENOMEM;
5481 
5482 		cand = &new_cands[cands->len];
5483 		cand->btf = targ_btf;
5484 		cand->id = i;
5485 
5486 		cands->cands = new_cands;
5487 		cands->len++;
5488 	}
5489 	return 0;
5490 }
5491 
5492 static int load_module_btfs(struct bpf_object *obj)
5493 {
5494 	struct bpf_btf_info info;
5495 	struct module_btf *mod_btf;
5496 	struct btf *btf;
5497 	char name[64];
5498 	__u32 id = 0, len;
5499 	int err, fd;
5500 
5501 	if (obj->btf_modules_loaded)
5502 		return 0;
5503 
5504 	if (obj->gen_loader)
5505 		return 0;
5506 
5507 	/* don't do this again, even if we find no module BTFs */
5508 	obj->btf_modules_loaded = true;
5509 
5510 	/* kernel too old to support module BTFs */
5511 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5512 		return 0;
5513 
5514 	while (true) {
5515 		err = bpf_btf_get_next_id(id, &id);
5516 		if (err && errno == ENOENT)
5517 			return 0;
5518 		if (err && errno == EPERM) {
5519 			pr_debug("skipping module BTFs loading, missing privileges\n");
5520 			return 0;
5521 		}
5522 		if (err) {
5523 			err = -errno;
5524 			pr_warn("failed to iterate BTF objects: %d\n", err);
5525 			return err;
5526 		}
5527 
5528 		fd = bpf_btf_get_fd_by_id(id);
5529 		if (fd < 0) {
5530 			if (errno == ENOENT)
5531 				continue; /* expected race: BTF was unloaded */
5532 			err = -errno;
5533 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5534 			return err;
5535 		}
5536 
5537 		len = sizeof(info);
5538 		memset(&info, 0, sizeof(info));
5539 		info.name = ptr_to_u64(name);
5540 		info.name_len = sizeof(name);
5541 
5542 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5543 		if (err) {
5544 			err = -errno;
5545 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5546 			goto err_out;
5547 		}
5548 
5549 		/* ignore non-module BTFs */
5550 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5551 			close(fd);
5552 			continue;
5553 		}
5554 
5555 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5556 		err = libbpf_get_error(btf);
5557 		if (err) {
5558 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5559 				name, id, err);
5560 			goto err_out;
5561 		}
5562 
5563 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5564 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5565 		if (err)
5566 			goto err_out;
5567 
5568 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5569 
5570 		mod_btf->btf = btf;
5571 		mod_btf->id = id;
5572 		mod_btf->fd = fd;
5573 		mod_btf->name = strdup(name);
5574 		if (!mod_btf->name) {
5575 			err = -ENOMEM;
5576 			goto err_out;
5577 		}
5578 		continue;
5579 
5580 err_out:
5581 		close(fd);
5582 		return err;
5583 	}
5584 
5585 	return 0;
5586 }
5587 
5588 static struct bpf_core_cand_list *
5589 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5590 {
5591 	struct bpf_core_cand local_cand = {};
5592 	struct bpf_core_cand_list *cands;
5593 	const struct btf *main_btf;
5594 	const struct btf_type *local_t;
5595 	const char *local_name;
5596 	size_t local_essent_len;
5597 	int err, i;
5598 
5599 	local_cand.btf = local_btf;
5600 	local_cand.id = local_type_id;
5601 	local_t = btf__type_by_id(local_btf, local_type_id);
5602 	if (!local_t)
5603 		return ERR_PTR(-EINVAL);
5604 
5605 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5606 	if (str_is_empty(local_name))
5607 		return ERR_PTR(-EINVAL);
5608 	local_essent_len = bpf_core_essential_name_len(local_name);
5609 
5610 	cands = calloc(1, sizeof(*cands));
5611 	if (!cands)
5612 		return ERR_PTR(-ENOMEM);
5613 
5614 	/* Attempt to find target candidates in vmlinux BTF first */
5615 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5616 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5617 	if (err)
5618 		goto err_out;
5619 
5620 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5621 	if (cands->len)
5622 		return cands;
5623 
5624 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5625 	if (obj->btf_vmlinux_override)
5626 		return cands;
5627 
5628 	/* now look through module BTFs, trying to still find candidates */
5629 	err = load_module_btfs(obj);
5630 	if (err)
5631 		goto err_out;
5632 
5633 	for (i = 0; i < obj->btf_module_cnt; i++) {
5634 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5635 					 obj->btf_modules[i].btf,
5636 					 obj->btf_modules[i].name,
5637 					 btf__type_cnt(obj->btf_vmlinux),
5638 					 cands);
5639 		if (err)
5640 			goto err_out;
5641 	}
5642 
5643 	return cands;
5644 err_out:
5645 	bpf_core_free_cands(cands);
5646 	return ERR_PTR(err);
5647 }
5648 
5649 /* Check local and target types for compatibility. This check is used for
5650  * type-based CO-RE relocations and follow slightly different rules than
5651  * field-based relocations. This function assumes that root types were already
5652  * checked for name match. Beyond that initial root-level name check, names
5653  * are completely ignored. Compatibility rules are as follows:
5654  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5655  *     kind should match for local and target types (i.e., STRUCT is not
5656  *     compatible with UNION);
5657  *   - for ENUMs, the size is ignored;
5658  *   - for INT, size and signedness are ignored;
5659  *   - for ARRAY, dimensionality is ignored, element types are checked for
5660  *     compatibility recursively;
5661  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5662  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5663  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5664  *     number of input args and compatible return and argument types.
5665  * These rules are not set in stone and probably will be adjusted as we get
5666  * more experience with using BPF CO-RE relocations.
5667  */
5668 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5669 			      const struct btf *targ_btf, __u32 targ_id)
5670 {
5671 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5672 }
5673 
5674 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5675 			 const struct btf *targ_btf, __u32 targ_id)
5676 {
5677 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5678 }
5679 
5680 static size_t bpf_core_hash_fn(const long key, void *ctx)
5681 {
5682 	return key;
5683 }
5684 
5685 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5686 {
5687 	return k1 == k2;
5688 }
5689 
5690 static int record_relo_core(struct bpf_program *prog,
5691 			    const struct bpf_core_relo *core_relo, int insn_idx)
5692 {
5693 	struct reloc_desc *relos, *relo;
5694 
5695 	relos = libbpf_reallocarray(prog->reloc_desc,
5696 				    prog->nr_reloc + 1, sizeof(*relos));
5697 	if (!relos)
5698 		return -ENOMEM;
5699 	relo = &relos[prog->nr_reloc];
5700 	relo->type = RELO_CORE;
5701 	relo->insn_idx = insn_idx;
5702 	relo->core_relo = core_relo;
5703 	prog->reloc_desc = relos;
5704 	prog->nr_reloc++;
5705 	return 0;
5706 }
5707 
5708 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5709 {
5710 	struct reloc_desc *relo;
5711 	int i;
5712 
5713 	for (i = 0; i < prog->nr_reloc; i++) {
5714 		relo = &prog->reloc_desc[i];
5715 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5716 			continue;
5717 
5718 		return relo->core_relo;
5719 	}
5720 
5721 	return NULL;
5722 }
5723 
5724 static int bpf_core_resolve_relo(struct bpf_program *prog,
5725 				 const struct bpf_core_relo *relo,
5726 				 int relo_idx,
5727 				 const struct btf *local_btf,
5728 				 struct hashmap *cand_cache,
5729 				 struct bpf_core_relo_res *targ_res)
5730 {
5731 	struct bpf_core_spec specs_scratch[3] = {};
5732 	struct bpf_core_cand_list *cands = NULL;
5733 	const char *prog_name = prog->name;
5734 	const struct btf_type *local_type;
5735 	const char *local_name;
5736 	__u32 local_id = relo->type_id;
5737 	int err;
5738 
5739 	local_type = btf__type_by_id(local_btf, local_id);
5740 	if (!local_type)
5741 		return -EINVAL;
5742 
5743 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5744 	if (!local_name)
5745 		return -EINVAL;
5746 
5747 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5748 	    !hashmap__find(cand_cache, local_id, &cands)) {
5749 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5750 		if (IS_ERR(cands)) {
5751 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5752 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5753 				local_name, PTR_ERR(cands));
5754 			return PTR_ERR(cands);
5755 		}
5756 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5757 		if (err) {
5758 			bpf_core_free_cands(cands);
5759 			return err;
5760 		}
5761 	}
5762 
5763 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5764 				       targ_res);
5765 }
5766 
5767 static int
5768 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5769 {
5770 	const struct btf_ext_info_sec *sec;
5771 	struct bpf_core_relo_res targ_res;
5772 	const struct bpf_core_relo *rec;
5773 	const struct btf_ext_info *seg;
5774 	struct hashmap_entry *entry;
5775 	struct hashmap *cand_cache = NULL;
5776 	struct bpf_program *prog;
5777 	struct bpf_insn *insn;
5778 	const char *sec_name;
5779 	int i, err = 0, insn_idx, sec_idx, sec_num;
5780 
5781 	if (obj->btf_ext->core_relo_info.len == 0)
5782 		return 0;
5783 
5784 	if (targ_btf_path) {
5785 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5786 		err = libbpf_get_error(obj->btf_vmlinux_override);
5787 		if (err) {
5788 			pr_warn("failed to parse target BTF: %d\n", err);
5789 			return err;
5790 		}
5791 	}
5792 
5793 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5794 	if (IS_ERR(cand_cache)) {
5795 		err = PTR_ERR(cand_cache);
5796 		goto out;
5797 	}
5798 
5799 	seg = &obj->btf_ext->core_relo_info;
5800 	sec_num = 0;
5801 	for_each_btf_ext_sec(seg, sec) {
5802 		sec_idx = seg->sec_idxs[sec_num];
5803 		sec_num++;
5804 
5805 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5806 		if (str_is_empty(sec_name)) {
5807 			err = -EINVAL;
5808 			goto out;
5809 		}
5810 
5811 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5812 
5813 		for_each_btf_ext_rec(seg, sec, i, rec) {
5814 			if (rec->insn_off % BPF_INSN_SZ)
5815 				return -EINVAL;
5816 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5817 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5818 			if (!prog) {
5819 				/* When __weak subprog is "overridden" by another instance
5820 				 * of the subprog from a different object file, linker still
5821 				 * appends all the .BTF.ext info that used to belong to that
5822 				 * eliminated subprogram.
5823 				 * This is similar to what x86-64 linker does for relocations.
5824 				 * So just ignore such relocations just like we ignore
5825 				 * subprog instructions when discovering subprograms.
5826 				 */
5827 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5828 					 sec_name, i, insn_idx);
5829 				continue;
5830 			}
5831 			/* no need to apply CO-RE relocation if the program is
5832 			 * not going to be loaded
5833 			 */
5834 			if (!prog->autoload)
5835 				continue;
5836 
5837 			/* adjust insn_idx from section frame of reference to the local
5838 			 * program's frame of reference; (sub-)program code is not yet
5839 			 * relocated, so it's enough to just subtract in-section offset
5840 			 */
5841 			insn_idx = insn_idx - prog->sec_insn_off;
5842 			if (insn_idx >= prog->insns_cnt)
5843 				return -EINVAL;
5844 			insn = &prog->insns[insn_idx];
5845 
5846 			err = record_relo_core(prog, rec, insn_idx);
5847 			if (err) {
5848 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5849 					prog->name, i, err);
5850 				goto out;
5851 			}
5852 
5853 			if (prog->obj->gen_loader)
5854 				continue;
5855 
5856 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5857 			if (err) {
5858 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5859 					prog->name, i, err);
5860 				goto out;
5861 			}
5862 
5863 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5864 			if (err) {
5865 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5866 					prog->name, i, insn_idx, err);
5867 				goto out;
5868 			}
5869 		}
5870 	}
5871 
5872 out:
5873 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5874 	btf__free(obj->btf_vmlinux_override);
5875 	obj->btf_vmlinux_override = NULL;
5876 
5877 	if (!IS_ERR_OR_NULL(cand_cache)) {
5878 		hashmap__for_each_entry(cand_cache, entry, i) {
5879 			bpf_core_free_cands(entry->pvalue);
5880 		}
5881 		hashmap__free(cand_cache);
5882 	}
5883 	return err;
5884 }
5885 
5886 /* base map load ldimm64 special constant, used also for log fixup logic */
5887 #define POISON_LDIMM64_MAP_BASE 2001000000
5888 #define POISON_LDIMM64_MAP_PFX "200100"
5889 
5890 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5891 			       int insn_idx, struct bpf_insn *insn,
5892 			       int map_idx, const struct bpf_map *map)
5893 {
5894 	int i;
5895 
5896 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5897 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5898 
5899 	/* we turn single ldimm64 into two identical invalid calls */
5900 	for (i = 0; i < 2; i++) {
5901 		insn->code = BPF_JMP | BPF_CALL;
5902 		insn->dst_reg = 0;
5903 		insn->src_reg = 0;
5904 		insn->off = 0;
5905 		/* if this instruction is reachable (not a dead code),
5906 		 * verifier will complain with something like:
5907 		 * invalid func unknown#2001000123
5908 		 * where lower 123 is map index into obj->maps[] array
5909 		 */
5910 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5911 
5912 		insn++;
5913 	}
5914 }
5915 
5916 /* unresolved kfunc call special constant, used also for log fixup logic */
5917 #define POISON_CALL_KFUNC_BASE 2002000000
5918 #define POISON_CALL_KFUNC_PFX "2002"
5919 
5920 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5921 			      int insn_idx, struct bpf_insn *insn,
5922 			      int ext_idx, const struct extern_desc *ext)
5923 {
5924 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5925 		 prog->name, relo_idx, insn_idx, ext->name);
5926 
5927 	/* we turn kfunc call into invalid helper call with identifiable constant */
5928 	insn->code = BPF_JMP | BPF_CALL;
5929 	insn->dst_reg = 0;
5930 	insn->src_reg = 0;
5931 	insn->off = 0;
5932 	/* if this instruction is reachable (not a dead code),
5933 	 * verifier will complain with something like:
5934 	 * invalid func unknown#2001000123
5935 	 * where lower 123 is extern index into obj->externs[] array
5936 	 */
5937 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5938 }
5939 
5940 /* Relocate data references within program code:
5941  *  - map references;
5942  *  - global variable references;
5943  *  - extern references.
5944  */
5945 static int
5946 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5947 {
5948 	int i;
5949 
5950 	for (i = 0; i < prog->nr_reloc; i++) {
5951 		struct reloc_desc *relo = &prog->reloc_desc[i];
5952 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5953 		const struct bpf_map *map;
5954 		struct extern_desc *ext;
5955 
5956 		switch (relo->type) {
5957 		case RELO_LD64:
5958 			map = &obj->maps[relo->map_idx];
5959 			if (obj->gen_loader) {
5960 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5961 				insn[0].imm = relo->map_idx;
5962 			} else if (map->autocreate) {
5963 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5964 				insn[0].imm = map->fd;
5965 			} else {
5966 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5967 						   relo->map_idx, map);
5968 			}
5969 			break;
5970 		case RELO_DATA:
5971 			map = &obj->maps[relo->map_idx];
5972 			insn[1].imm = insn[0].imm + relo->sym_off;
5973 			if (obj->gen_loader) {
5974 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5975 				insn[0].imm = relo->map_idx;
5976 			} else if (map->autocreate) {
5977 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5978 				insn[0].imm = map->fd;
5979 			} else {
5980 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5981 						   relo->map_idx, map);
5982 			}
5983 			break;
5984 		case RELO_EXTERN_LD64:
5985 			ext = &obj->externs[relo->ext_idx];
5986 			if (ext->type == EXT_KCFG) {
5987 				if (obj->gen_loader) {
5988 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5989 					insn[0].imm = obj->kconfig_map_idx;
5990 				} else {
5991 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5992 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5993 				}
5994 				insn[1].imm = ext->kcfg.data_off;
5995 			} else /* EXT_KSYM */ {
5996 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5997 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5998 					insn[0].imm = ext->ksym.kernel_btf_id;
5999 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6000 				} else { /* typeless ksyms or unresolved typed ksyms */
6001 					insn[0].imm = (__u32)ext->ksym.addr;
6002 					insn[1].imm = ext->ksym.addr >> 32;
6003 				}
6004 			}
6005 			break;
6006 		case RELO_EXTERN_CALL:
6007 			ext = &obj->externs[relo->ext_idx];
6008 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6009 			if (ext->is_set) {
6010 				insn[0].imm = ext->ksym.kernel_btf_id;
6011 				insn[0].off = ext->ksym.btf_fd_idx;
6012 			} else { /* unresolved weak kfunc call */
6013 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6014 						  relo->ext_idx, ext);
6015 			}
6016 			break;
6017 		case RELO_SUBPROG_ADDR:
6018 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6019 				pr_warn("prog '%s': relo #%d: bad insn\n",
6020 					prog->name, i);
6021 				return -EINVAL;
6022 			}
6023 			/* handled already */
6024 			break;
6025 		case RELO_CALL:
6026 			/* handled already */
6027 			break;
6028 		case RELO_CORE:
6029 			/* will be handled by bpf_program_record_relos() */
6030 			break;
6031 		default:
6032 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6033 				prog->name, i, relo->type);
6034 			return -EINVAL;
6035 		}
6036 	}
6037 
6038 	return 0;
6039 }
6040 
6041 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6042 				    const struct bpf_program *prog,
6043 				    const struct btf_ext_info *ext_info,
6044 				    void **prog_info, __u32 *prog_rec_cnt,
6045 				    __u32 *prog_rec_sz)
6046 {
6047 	void *copy_start = NULL, *copy_end = NULL;
6048 	void *rec, *rec_end, *new_prog_info;
6049 	const struct btf_ext_info_sec *sec;
6050 	size_t old_sz, new_sz;
6051 	int i, sec_num, sec_idx, off_adj;
6052 
6053 	sec_num = 0;
6054 	for_each_btf_ext_sec(ext_info, sec) {
6055 		sec_idx = ext_info->sec_idxs[sec_num];
6056 		sec_num++;
6057 		if (prog->sec_idx != sec_idx)
6058 			continue;
6059 
6060 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6061 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6062 
6063 			if (insn_off < prog->sec_insn_off)
6064 				continue;
6065 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6066 				break;
6067 
6068 			if (!copy_start)
6069 				copy_start = rec;
6070 			copy_end = rec + ext_info->rec_size;
6071 		}
6072 
6073 		if (!copy_start)
6074 			return -ENOENT;
6075 
6076 		/* append func/line info of a given (sub-)program to the main
6077 		 * program func/line info
6078 		 */
6079 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6080 		new_sz = old_sz + (copy_end - copy_start);
6081 		new_prog_info = realloc(*prog_info, new_sz);
6082 		if (!new_prog_info)
6083 			return -ENOMEM;
6084 		*prog_info = new_prog_info;
6085 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6086 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6087 
6088 		/* Kernel instruction offsets are in units of 8-byte
6089 		 * instructions, while .BTF.ext instruction offsets generated
6090 		 * by Clang are in units of bytes. So convert Clang offsets
6091 		 * into kernel offsets and adjust offset according to program
6092 		 * relocated position.
6093 		 */
6094 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6095 		rec = new_prog_info + old_sz;
6096 		rec_end = new_prog_info + new_sz;
6097 		for (; rec < rec_end; rec += ext_info->rec_size) {
6098 			__u32 *insn_off = rec;
6099 
6100 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6101 		}
6102 		*prog_rec_sz = ext_info->rec_size;
6103 		return 0;
6104 	}
6105 
6106 	return -ENOENT;
6107 }
6108 
6109 static int
6110 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6111 			      struct bpf_program *main_prog,
6112 			      const struct bpf_program *prog)
6113 {
6114 	int err;
6115 
6116 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6117 	 * support func/line info
6118 	 */
6119 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6120 		return 0;
6121 
6122 	/* only attempt func info relocation if main program's func_info
6123 	 * relocation was successful
6124 	 */
6125 	if (main_prog != prog && !main_prog->func_info)
6126 		goto line_info;
6127 
6128 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6129 				       &main_prog->func_info,
6130 				       &main_prog->func_info_cnt,
6131 				       &main_prog->func_info_rec_size);
6132 	if (err) {
6133 		if (err != -ENOENT) {
6134 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6135 				prog->name, err);
6136 			return err;
6137 		}
6138 		if (main_prog->func_info) {
6139 			/*
6140 			 * Some info has already been found but has problem
6141 			 * in the last btf_ext reloc. Must have to error out.
6142 			 */
6143 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6144 			return err;
6145 		}
6146 		/* Have problem loading the very first info. Ignore the rest. */
6147 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6148 			prog->name);
6149 	}
6150 
6151 line_info:
6152 	/* don't relocate line info if main program's relocation failed */
6153 	if (main_prog != prog && !main_prog->line_info)
6154 		return 0;
6155 
6156 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6157 				       &main_prog->line_info,
6158 				       &main_prog->line_info_cnt,
6159 				       &main_prog->line_info_rec_size);
6160 	if (err) {
6161 		if (err != -ENOENT) {
6162 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6163 				prog->name, err);
6164 			return err;
6165 		}
6166 		if (main_prog->line_info) {
6167 			/*
6168 			 * Some info has already been found but has problem
6169 			 * in the last btf_ext reloc. Must have to error out.
6170 			 */
6171 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6172 			return err;
6173 		}
6174 		/* Have problem loading the very first info. Ignore the rest. */
6175 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6176 			prog->name);
6177 	}
6178 	return 0;
6179 }
6180 
6181 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6182 {
6183 	size_t insn_idx = *(const size_t *)key;
6184 	const struct reloc_desc *relo = elem;
6185 
6186 	if (insn_idx == relo->insn_idx)
6187 		return 0;
6188 	return insn_idx < relo->insn_idx ? -1 : 1;
6189 }
6190 
6191 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6192 {
6193 	if (!prog->nr_reloc)
6194 		return NULL;
6195 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6196 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6197 }
6198 
6199 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6200 {
6201 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6202 	struct reloc_desc *relos;
6203 	int i;
6204 
6205 	if (main_prog == subprog)
6206 		return 0;
6207 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6208 	/* if new count is zero, reallocarray can return a valid NULL result;
6209 	 * in this case the previous pointer will be freed, so we *have to*
6210 	 * reassign old pointer to the new value (even if it's NULL)
6211 	 */
6212 	if (!relos && new_cnt)
6213 		return -ENOMEM;
6214 	if (subprog->nr_reloc)
6215 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6216 		       sizeof(*relos) * subprog->nr_reloc);
6217 
6218 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6219 		relos[i].insn_idx += subprog->sub_insn_off;
6220 	/* After insn_idx adjustment the 'relos' array is still sorted
6221 	 * by insn_idx and doesn't break bsearch.
6222 	 */
6223 	main_prog->reloc_desc = relos;
6224 	main_prog->nr_reloc = new_cnt;
6225 	return 0;
6226 }
6227 
6228 static int
6229 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6230 				struct bpf_program *subprog)
6231 {
6232        struct bpf_insn *insns;
6233        size_t new_cnt;
6234        int err;
6235 
6236        subprog->sub_insn_off = main_prog->insns_cnt;
6237 
6238        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6239        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6240        if (!insns) {
6241                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6242                return -ENOMEM;
6243        }
6244        main_prog->insns = insns;
6245        main_prog->insns_cnt = new_cnt;
6246 
6247        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6248               subprog->insns_cnt * sizeof(*insns));
6249 
6250        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6251                 main_prog->name, subprog->insns_cnt, subprog->name);
6252 
6253        /* The subprog insns are now appended. Append its relos too. */
6254        err = append_subprog_relos(main_prog, subprog);
6255        if (err)
6256                return err;
6257        return 0;
6258 }
6259 
6260 static int
6261 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6262 		       struct bpf_program *prog)
6263 {
6264 	size_t sub_insn_idx, insn_idx;
6265 	struct bpf_program *subprog;
6266 	struct reloc_desc *relo;
6267 	struct bpf_insn *insn;
6268 	int err;
6269 
6270 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6271 	if (err)
6272 		return err;
6273 
6274 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6275 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6276 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6277 			continue;
6278 
6279 		relo = find_prog_insn_relo(prog, insn_idx);
6280 		if (relo && relo->type == RELO_EXTERN_CALL)
6281 			/* kfunc relocations will be handled later
6282 			 * in bpf_object__relocate_data()
6283 			 */
6284 			continue;
6285 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6286 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6287 				prog->name, insn_idx, relo->type);
6288 			return -LIBBPF_ERRNO__RELOC;
6289 		}
6290 		if (relo) {
6291 			/* sub-program instruction index is a combination of
6292 			 * an offset of a symbol pointed to by relocation and
6293 			 * call instruction's imm field; for global functions,
6294 			 * call always has imm = -1, but for static functions
6295 			 * relocation is against STT_SECTION and insn->imm
6296 			 * points to a start of a static function
6297 			 *
6298 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6299 			 * the byte offset in the corresponding section.
6300 			 */
6301 			if (relo->type == RELO_CALL)
6302 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6303 			else
6304 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6305 		} else if (insn_is_pseudo_func(insn)) {
6306 			/*
6307 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6308 			 * functions are in the same section, so it shouldn't reach here.
6309 			 */
6310 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6311 				prog->name, insn_idx);
6312 			return -LIBBPF_ERRNO__RELOC;
6313 		} else {
6314 			/* if subprogram call is to a static function within
6315 			 * the same ELF section, there won't be any relocation
6316 			 * emitted, but it also means there is no additional
6317 			 * offset necessary, insns->imm is relative to
6318 			 * instruction's original position within the section
6319 			 */
6320 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6321 		}
6322 
6323 		/* we enforce that sub-programs should be in .text section */
6324 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6325 		if (!subprog) {
6326 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6327 				prog->name);
6328 			return -LIBBPF_ERRNO__RELOC;
6329 		}
6330 
6331 		/* if it's the first call instruction calling into this
6332 		 * subprogram (meaning this subprog hasn't been processed
6333 		 * yet) within the context of current main program:
6334 		 *   - append it at the end of main program's instructions blog;
6335 		 *   - process is recursively, while current program is put on hold;
6336 		 *   - if that subprogram calls some other not yet processes
6337 		 *   subprogram, same thing will happen recursively until
6338 		 *   there are no more unprocesses subprograms left to append
6339 		 *   and relocate.
6340 		 */
6341 		if (subprog->sub_insn_off == 0) {
6342 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6343 			if (err)
6344 				return err;
6345 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6346 			if (err)
6347 				return err;
6348 		}
6349 
6350 		/* main_prog->insns memory could have been re-allocated, so
6351 		 * calculate pointer again
6352 		 */
6353 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6354 		/* calculate correct instruction position within current main
6355 		 * prog; each main prog can have a different set of
6356 		 * subprograms appended (potentially in different order as
6357 		 * well), so position of any subprog can be different for
6358 		 * different main programs
6359 		 */
6360 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6361 
6362 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6363 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6364 	}
6365 
6366 	return 0;
6367 }
6368 
6369 /*
6370  * Relocate sub-program calls.
6371  *
6372  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6373  * main prog) is processed separately. For each subprog (non-entry functions,
6374  * that can be called from either entry progs or other subprogs) gets their
6375  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6376  * hasn't been yet appended and relocated within current main prog. Once its
6377  * relocated, sub_insn_off will point at the position within current main prog
6378  * where given subprog was appended. This will further be used to relocate all
6379  * the call instructions jumping into this subprog.
6380  *
6381  * We start with main program and process all call instructions. If the call
6382  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6383  * is zero), subprog instructions are appended at the end of main program's
6384  * instruction array. Then main program is "put on hold" while we recursively
6385  * process newly appended subprogram. If that subprogram calls into another
6386  * subprogram that hasn't been appended, new subprogram is appended again to
6387  * the *main* prog's instructions (subprog's instructions are always left
6388  * untouched, as they need to be in unmodified state for subsequent main progs
6389  * and subprog instructions are always sent only as part of a main prog) and
6390  * the process continues recursively. Once all the subprogs called from a main
6391  * prog or any of its subprogs are appended (and relocated), all their
6392  * positions within finalized instructions array are known, so it's easy to
6393  * rewrite call instructions with correct relative offsets, corresponding to
6394  * desired target subprog.
6395  *
6396  * Its important to realize that some subprogs might not be called from some
6397  * main prog and any of its called/used subprogs. Those will keep their
6398  * subprog->sub_insn_off as zero at all times and won't be appended to current
6399  * main prog and won't be relocated within the context of current main prog.
6400  * They might still be used from other main progs later.
6401  *
6402  * Visually this process can be shown as below. Suppose we have two main
6403  * programs mainA and mainB and BPF object contains three subprogs: subA,
6404  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6405  * subC both call subB:
6406  *
6407  *        +--------+ +-------+
6408  *        |        v v       |
6409  *     +--+---+ +--+-+-+ +---+--+
6410  *     | subA | | subB | | subC |
6411  *     +--+---+ +------+ +---+--+
6412  *        ^                  ^
6413  *        |                  |
6414  *    +---+-------+   +------+----+
6415  *    |   mainA   |   |   mainB   |
6416  *    +-----------+   +-----------+
6417  *
6418  * We'll start relocating mainA, will find subA, append it and start
6419  * processing sub A recursively:
6420  *
6421  *    +-----------+------+
6422  *    |   mainA   | subA |
6423  *    +-----------+------+
6424  *
6425  * At this point we notice that subB is used from subA, so we append it and
6426  * relocate (there are no further subcalls from subB):
6427  *
6428  *    +-----------+------+------+
6429  *    |   mainA   | subA | subB |
6430  *    +-----------+------+------+
6431  *
6432  * At this point, we relocate subA calls, then go one level up and finish with
6433  * relocatin mainA calls. mainA is done.
6434  *
6435  * For mainB process is similar but results in different order. We start with
6436  * mainB and skip subA and subB, as mainB never calls them (at least
6437  * directly), but we see subC is needed, so we append and start processing it:
6438  *
6439  *    +-----------+------+
6440  *    |   mainB   | subC |
6441  *    +-----------+------+
6442  * Now we see subC needs subB, so we go back to it, append and relocate it:
6443  *
6444  *    +-----------+------+------+
6445  *    |   mainB   | subC | subB |
6446  *    +-----------+------+------+
6447  *
6448  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6449  */
6450 static int
6451 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6452 {
6453 	struct bpf_program *subprog;
6454 	int i, err;
6455 
6456 	/* mark all subprogs as not relocated (yet) within the context of
6457 	 * current main program
6458 	 */
6459 	for (i = 0; i < obj->nr_programs; i++) {
6460 		subprog = &obj->programs[i];
6461 		if (!prog_is_subprog(obj, subprog))
6462 			continue;
6463 
6464 		subprog->sub_insn_off = 0;
6465 	}
6466 
6467 	err = bpf_object__reloc_code(obj, prog, prog);
6468 	if (err)
6469 		return err;
6470 
6471 	return 0;
6472 }
6473 
6474 static void
6475 bpf_object__free_relocs(struct bpf_object *obj)
6476 {
6477 	struct bpf_program *prog;
6478 	int i;
6479 
6480 	/* free up relocation descriptors */
6481 	for (i = 0; i < obj->nr_programs; i++) {
6482 		prog = &obj->programs[i];
6483 		zfree(&prog->reloc_desc);
6484 		prog->nr_reloc = 0;
6485 	}
6486 }
6487 
6488 static int cmp_relocs(const void *_a, const void *_b)
6489 {
6490 	const struct reloc_desc *a = _a;
6491 	const struct reloc_desc *b = _b;
6492 
6493 	if (a->insn_idx != b->insn_idx)
6494 		return a->insn_idx < b->insn_idx ? -1 : 1;
6495 
6496 	/* no two relocations should have the same insn_idx, but ... */
6497 	if (a->type != b->type)
6498 		return a->type < b->type ? -1 : 1;
6499 
6500 	return 0;
6501 }
6502 
6503 static void bpf_object__sort_relos(struct bpf_object *obj)
6504 {
6505 	int i;
6506 
6507 	for (i = 0; i < obj->nr_programs; i++) {
6508 		struct bpf_program *p = &obj->programs[i];
6509 
6510 		if (!p->nr_reloc)
6511 			continue;
6512 
6513 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6514 	}
6515 }
6516 
6517 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6518 {
6519 	const char *str = "exception_callback:";
6520 	size_t pfx_len = strlen(str);
6521 	int i, j, n;
6522 
6523 	if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6524 		return 0;
6525 
6526 	n = btf__type_cnt(obj->btf);
6527 	for (i = 1; i < n; i++) {
6528 		const char *name;
6529 		struct btf_type *t;
6530 
6531 		t = btf_type_by_id(obj->btf, i);
6532 		if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6533 			continue;
6534 
6535 		name = btf__str_by_offset(obj->btf, t->name_off);
6536 		if (strncmp(name, str, pfx_len) != 0)
6537 			continue;
6538 
6539 		t = btf_type_by_id(obj->btf, t->type);
6540 		if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6541 			pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6542 				prog->name);
6543 			return -EINVAL;
6544 		}
6545 		if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6546 			continue;
6547 		/* Multiple callbacks are specified for the same prog,
6548 		 * the verifier will eventually return an error for this
6549 		 * case, hence simply skip appending a subprog.
6550 		 */
6551 		if (prog->exception_cb_idx >= 0) {
6552 			prog->exception_cb_idx = -1;
6553 			break;
6554 		}
6555 
6556 		name += pfx_len;
6557 		if (str_is_empty(name)) {
6558 			pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6559 				prog->name);
6560 			return -EINVAL;
6561 		}
6562 
6563 		for (j = 0; j < obj->nr_programs; j++) {
6564 			struct bpf_program *subprog = &obj->programs[j];
6565 
6566 			if (!prog_is_subprog(obj, subprog))
6567 				continue;
6568 			if (strcmp(name, subprog->name) != 0)
6569 				continue;
6570 			/* Enforce non-hidden, as from verifier point of
6571 			 * view it expects global functions, whereas the
6572 			 * mark_btf_static fixes up linkage as static.
6573 			 */
6574 			if (!subprog->sym_global || subprog->mark_btf_static) {
6575 				pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6576 					prog->name, subprog->name);
6577 				return -EINVAL;
6578 			}
6579 			/* Let's see if we already saw a static exception callback with the same name */
6580 			if (prog->exception_cb_idx >= 0) {
6581 				pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6582 					prog->name, subprog->name);
6583 				return -EINVAL;
6584 			}
6585 			prog->exception_cb_idx = j;
6586 			break;
6587 		}
6588 
6589 		if (prog->exception_cb_idx >= 0)
6590 			continue;
6591 
6592 		pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6593 		return -ENOENT;
6594 	}
6595 
6596 	return 0;
6597 }
6598 
6599 static struct {
6600 	enum bpf_prog_type prog_type;
6601 	const char *ctx_name;
6602 } global_ctx_map[] = {
6603 	{ BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6604 	{ BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6605 	{ BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6606 	{ BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6607 	{ BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6608 	{ BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6609 	{ BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6610 	{ BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6611 	{ BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6612 	{ BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6613 	{ BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6614 	{ BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6615 	{ BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6616 	{ BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6617 	{ BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6618 	{ BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6619 	{ BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6620 	{ BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6621 	{ BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6622 	{ BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6623 	{ BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6624 	{ BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6625 	{ BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6626 	{ BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6627 	{ BPF_PROG_TYPE_XDP,                     "xdp_md" },
6628 	/* all other program types don't have "named" context structs */
6629 };
6630 
6631 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6632  * for below __builtin_types_compatible_p() checks;
6633  * with this approach we don't need any extra arch-specific #ifdef guards
6634  */
6635 struct pt_regs;
6636 struct user_pt_regs;
6637 struct user_regs_struct;
6638 
6639 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6640 				     const char *subprog_name, int arg_idx,
6641 				     int arg_type_id, const char *ctx_name)
6642 {
6643 	const struct btf_type *t;
6644 	const char *tname;
6645 
6646 	/* check if existing parameter already matches verifier expectations */
6647 	t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6648 	if (!btf_is_ptr(t))
6649 		goto out_warn;
6650 
6651 	/* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6652 	 * and perf_event programs, so check this case early on and forget
6653 	 * about it for subsequent checks
6654 	 */
6655 	while (btf_is_mod(t))
6656 		t = btf__type_by_id(btf, t->type);
6657 	if (btf_is_typedef(t) &&
6658 	    (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6659 		tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6660 		if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6661 			return false; /* canonical type for kprobe/perf_event */
6662 	}
6663 
6664 	/* now we can ignore typedefs moving forward */
6665 	t = skip_mods_and_typedefs(btf, t->type, NULL);
6666 
6667 	/* if it's `void *`, definitely fix up BTF info */
6668 	if (btf_is_void(t))
6669 		return true;
6670 
6671 	/* if it's already proper canonical type, no need to fix up */
6672 	tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6673 	if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6674 		return false;
6675 
6676 	/* special cases */
6677 	switch (prog->type) {
6678 	case BPF_PROG_TYPE_KPROBE:
6679 		/* `struct pt_regs *` is expected, but we need to fix up */
6680 		if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6681 			return true;
6682 		break;
6683 	case BPF_PROG_TYPE_PERF_EVENT:
6684 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6685 		    btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6686 			return true;
6687 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6688 		    btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6689 			return true;
6690 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6691 		    btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6692 			return true;
6693 		break;
6694 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6695 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6696 		/* allow u64* as ctx */
6697 		if (btf_is_int(t) && t->size == 8)
6698 			return true;
6699 		break;
6700 	default:
6701 		break;
6702 	}
6703 
6704 out_warn:
6705 	pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6706 		prog->name, subprog_name, arg_idx, ctx_name);
6707 	return false;
6708 }
6709 
6710 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6711 {
6712 	int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6713 	int i, err, arg_cnt, fn_name_off, linkage;
6714 	struct btf_type *fn_t, *fn_proto_t, *t;
6715 	struct btf_param *p;
6716 
6717 	/* caller already validated FUNC -> FUNC_PROTO validity */
6718 	fn_t = btf_type_by_id(btf, orig_fn_id);
6719 	fn_proto_t = btf_type_by_id(btf, fn_t->type);
6720 
6721 	/* Note that each btf__add_xxx() operation invalidates
6722 	 * all btf_type and string pointers, so we need to be
6723 	 * very careful when cloning BTF types. BTF type
6724 	 * pointers have to be always refetched. And to avoid
6725 	 * problems with invalidated string pointers, we
6726 	 * add empty strings initially, then just fix up
6727 	 * name_off offsets in place. Offsets are stable for
6728 	 * existing strings, so that works out.
6729 	 */
6730 	fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6731 	linkage = btf_func_linkage(fn_t);
6732 	orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6733 	ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6734 	arg_cnt = btf_vlen(fn_proto_t);
6735 
6736 	/* clone FUNC_PROTO and its params */
6737 	fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6738 	if (fn_proto_id < 0)
6739 		return -EINVAL;
6740 
6741 	for (i = 0; i < arg_cnt; i++) {
6742 		int name_off;
6743 
6744 		/* copy original parameter data */
6745 		t = btf_type_by_id(btf, orig_proto_id);
6746 		p = &btf_params(t)[i];
6747 		name_off = p->name_off;
6748 
6749 		err = btf__add_func_param(btf, "", p->type);
6750 		if (err)
6751 			return err;
6752 
6753 		fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6754 		p = &btf_params(fn_proto_t)[i];
6755 		p->name_off = name_off; /* use remembered str offset */
6756 	}
6757 
6758 	/* clone FUNC now, btf__add_func() enforces non-empty name, so use
6759 	 * entry program's name as a placeholder, which we replace immediately
6760 	 * with original name_off
6761 	 */
6762 	fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6763 	if (fn_id < 0)
6764 		return -EINVAL;
6765 
6766 	fn_t = btf_type_by_id(btf, fn_id);
6767 	fn_t->name_off = fn_name_off; /* reuse original string */
6768 
6769 	return fn_id;
6770 }
6771 
6772 /* Check if main program or global subprog's function prototype has `arg:ctx`
6773  * argument tags, and, if necessary, substitute correct type to match what BPF
6774  * verifier would expect, taking into account specific program type. This
6775  * allows to support __arg_ctx tag transparently on old kernels that don't yet
6776  * have a native support for it in the verifier, making user's life much
6777  * easier.
6778  */
6779 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6780 {
6781 	const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6782 	struct bpf_func_info_min *func_rec;
6783 	struct btf_type *fn_t, *fn_proto_t;
6784 	struct btf *btf = obj->btf;
6785 	const struct btf_type *t;
6786 	struct btf_param *p;
6787 	int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6788 	int i, n, arg_idx, arg_cnt, err, rec_idx;
6789 	int *orig_ids;
6790 
6791 	/* no .BTF.ext, no problem */
6792 	if (!obj->btf_ext || !prog->func_info)
6793 		return 0;
6794 
6795 	/* don't do any fix ups if kernel natively supports __arg_ctx */
6796 	if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6797 		return 0;
6798 
6799 	/* some BPF program types just don't have named context structs, so
6800 	 * this fallback mechanism doesn't work for them
6801 	 */
6802 	for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6803 		if (global_ctx_map[i].prog_type != prog->type)
6804 			continue;
6805 		ctx_name = global_ctx_map[i].ctx_name;
6806 		break;
6807 	}
6808 	if (!ctx_name)
6809 		return 0;
6810 
6811 	/* remember original func BTF IDs to detect if we already cloned them */
6812 	orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6813 	if (!orig_ids)
6814 		return -ENOMEM;
6815 	for (i = 0; i < prog->func_info_cnt; i++) {
6816 		func_rec = prog->func_info + prog->func_info_rec_size * i;
6817 		orig_ids[i] = func_rec->type_id;
6818 	}
6819 
6820 	/* go through each DECL_TAG with "arg:ctx" and see if it points to one
6821 	 * of our subprogs; if yes and subprog is global and needs adjustment,
6822 	 * clone and adjust FUNC -> FUNC_PROTO combo
6823 	 */
6824 	for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6825 		/* only DECL_TAG with "arg:ctx" value are interesting */
6826 		t = btf__type_by_id(btf, i);
6827 		if (!btf_is_decl_tag(t))
6828 			continue;
6829 		if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6830 			continue;
6831 
6832 		/* only global funcs need adjustment, if at all */
6833 		orig_fn_id = t->type;
6834 		fn_t = btf_type_by_id(btf, orig_fn_id);
6835 		if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6836 			continue;
6837 
6838 		/* sanity check FUNC -> FUNC_PROTO chain, just in case */
6839 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6840 		if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6841 			continue;
6842 
6843 		/* find corresponding func_info record */
6844 		func_rec = NULL;
6845 		for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6846 			if (orig_ids[rec_idx] == t->type) {
6847 				func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6848 				break;
6849 			}
6850 		}
6851 		/* current main program doesn't call into this subprog */
6852 		if (!func_rec)
6853 			continue;
6854 
6855 		/* some more sanity checking of DECL_TAG */
6856 		arg_cnt = btf_vlen(fn_proto_t);
6857 		arg_idx = btf_decl_tag(t)->component_idx;
6858 		if (arg_idx < 0 || arg_idx >= arg_cnt)
6859 			continue;
6860 
6861 		/* check if we should fix up argument type */
6862 		p = &btf_params(fn_proto_t)[arg_idx];
6863 		fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6864 		if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6865 			continue;
6866 
6867 		/* clone fn/fn_proto, unless we already did it for another arg */
6868 		if (func_rec->type_id == orig_fn_id) {
6869 			int fn_id;
6870 
6871 			fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
6872 			if (fn_id < 0) {
6873 				err = fn_id;
6874 				goto err_out;
6875 			}
6876 
6877 			/* point func_info record to a cloned FUNC type */
6878 			func_rec->type_id = fn_id;
6879 		}
6880 
6881 		/* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
6882 		 * we do it just once per main BPF program, as all global
6883 		 * funcs share the same program type, so need only PTR ->
6884 		 * STRUCT type chain
6885 		 */
6886 		if (ptr_id == 0) {
6887 			struct_id = btf__add_struct(btf, ctx_name, 0);
6888 			ptr_id = btf__add_ptr(btf, struct_id);
6889 			if (ptr_id < 0 || struct_id < 0) {
6890 				err = -EINVAL;
6891 				goto err_out;
6892 			}
6893 		}
6894 
6895 		/* for completeness, clone DECL_TAG and point it to cloned param */
6896 		tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
6897 		if (tag_id < 0) {
6898 			err = -EINVAL;
6899 			goto err_out;
6900 		}
6901 
6902 		/* all the BTF manipulations invalidated pointers, refetch them */
6903 		fn_t = btf_type_by_id(btf, func_rec->type_id);
6904 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6905 
6906 		/* fix up type ID pointed to by param */
6907 		p = &btf_params(fn_proto_t)[arg_idx];
6908 		p->type = ptr_id;
6909 	}
6910 
6911 	free(orig_ids);
6912 	return 0;
6913 err_out:
6914 	free(orig_ids);
6915 	return err;
6916 }
6917 
6918 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6919 {
6920 	struct bpf_program *prog;
6921 	size_t i, j;
6922 	int err;
6923 
6924 	if (obj->btf_ext) {
6925 		err = bpf_object__relocate_core(obj, targ_btf_path);
6926 		if (err) {
6927 			pr_warn("failed to perform CO-RE relocations: %d\n",
6928 				err);
6929 			return err;
6930 		}
6931 		bpf_object__sort_relos(obj);
6932 	}
6933 
6934 	/* Before relocating calls pre-process relocations and mark
6935 	 * few ld_imm64 instructions that points to subprogs.
6936 	 * Otherwise bpf_object__reloc_code() later would have to consider
6937 	 * all ld_imm64 insns as relocation candidates. That would
6938 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6939 	 * would increase and most of them will fail to find a relo.
6940 	 */
6941 	for (i = 0; i < obj->nr_programs; i++) {
6942 		prog = &obj->programs[i];
6943 		for (j = 0; j < prog->nr_reloc; j++) {
6944 			struct reloc_desc *relo = &prog->reloc_desc[j];
6945 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6946 
6947 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6948 			if (relo->type == RELO_SUBPROG_ADDR)
6949 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6950 		}
6951 	}
6952 
6953 	/* relocate subprogram calls and append used subprograms to main
6954 	 * programs; each copy of subprogram code needs to be relocated
6955 	 * differently for each main program, because its code location might
6956 	 * have changed.
6957 	 * Append subprog relos to main programs to allow data relos to be
6958 	 * processed after text is completely relocated.
6959 	 */
6960 	for (i = 0; i < obj->nr_programs; i++) {
6961 		prog = &obj->programs[i];
6962 		/* sub-program's sub-calls are relocated within the context of
6963 		 * its main program only
6964 		 */
6965 		if (prog_is_subprog(obj, prog))
6966 			continue;
6967 		if (!prog->autoload)
6968 			continue;
6969 
6970 		err = bpf_object__relocate_calls(obj, prog);
6971 		if (err) {
6972 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6973 				prog->name, err);
6974 			return err;
6975 		}
6976 
6977 		err = bpf_prog_assign_exc_cb(obj, prog);
6978 		if (err)
6979 			return err;
6980 		/* Now, also append exception callback if it has not been done already. */
6981 		if (prog->exception_cb_idx >= 0) {
6982 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
6983 
6984 			/* Calling exception callback directly is disallowed, which the
6985 			 * verifier will reject later. In case it was processed already,
6986 			 * we can skip this step, otherwise for all other valid cases we
6987 			 * have to append exception callback now.
6988 			 */
6989 			if (subprog->sub_insn_off == 0) {
6990 				err = bpf_object__append_subprog_code(obj, prog, subprog);
6991 				if (err)
6992 					return err;
6993 				err = bpf_object__reloc_code(obj, prog, subprog);
6994 				if (err)
6995 					return err;
6996 			}
6997 		}
6998 	}
6999 	for (i = 0; i < obj->nr_programs; i++) {
7000 		prog = &obj->programs[i];
7001 		if (prog_is_subprog(obj, prog))
7002 			continue;
7003 		if (!prog->autoload)
7004 			continue;
7005 
7006 		/* Process data relos for main programs */
7007 		err = bpf_object__relocate_data(obj, prog);
7008 		if (err) {
7009 			pr_warn("prog '%s': failed to relocate data references: %d\n",
7010 				prog->name, err);
7011 			return err;
7012 		}
7013 
7014 		/* Fix up .BTF.ext information, if necessary */
7015 		err = bpf_program_fixup_func_info(obj, prog);
7016 		if (err) {
7017 			pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7018 				prog->name, err);
7019 			return err;
7020 		}
7021 	}
7022 
7023 	return 0;
7024 }
7025 
7026 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7027 					    Elf64_Shdr *shdr, Elf_Data *data);
7028 
7029 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7030 					 Elf64_Shdr *shdr, Elf_Data *data)
7031 {
7032 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7033 	int i, j, nrels, new_sz;
7034 	const struct btf_var_secinfo *vi = NULL;
7035 	const struct btf_type *sec, *var, *def;
7036 	struct bpf_map *map = NULL, *targ_map = NULL;
7037 	struct bpf_program *targ_prog = NULL;
7038 	bool is_prog_array, is_map_in_map;
7039 	const struct btf_member *member;
7040 	const char *name, *mname, *type;
7041 	unsigned int moff;
7042 	Elf64_Sym *sym;
7043 	Elf64_Rel *rel;
7044 	void *tmp;
7045 
7046 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7047 		return -EINVAL;
7048 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7049 	if (!sec)
7050 		return -EINVAL;
7051 
7052 	nrels = shdr->sh_size / shdr->sh_entsize;
7053 	for (i = 0; i < nrels; i++) {
7054 		rel = elf_rel_by_idx(data, i);
7055 		if (!rel) {
7056 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7057 			return -LIBBPF_ERRNO__FORMAT;
7058 		}
7059 
7060 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7061 		if (!sym) {
7062 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7063 				i, (size_t)ELF64_R_SYM(rel->r_info));
7064 			return -LIBBPF_ERRNO__FORMAT;
7065 		}
7066 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7067 
7068 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7069 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7070 			 (size_t)rel->r_offset, sym->st_name, name);
7071 
7072 		for (j = 0; j < obj->nr_maps; j++) {
7073 			map = &obj->maps[j];
7074 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7075 				continue;
7076 
7077 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7078 			if (vi->offset <= rel->r_offset &&
7079 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7080 				break;
7081 		}
7082 		if (j == obj->nr_maps) {
7083 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7084 				i, name, (size_t)rel->r_offset);
7085 			return -EINVAL;
7086 		}
7087 
7088 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7089 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7090 		type = is_map_in_map ? "map" : "prog";
7091 		if (is_map_in_map) {
7092 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7093 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7094 					i, name);
7095 				return -LIBBPF_ERRNO__RELOC;
7096 			}
7097 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7098 			    map->def.key_size != sizeof(int)) {
7099 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7100 					i, map->name, sizeof(int));
7101 				return -EINVAL;
7102 			}
7103 			targ_map = bpf_object__find_map_by_name(obj, name);
7104 			if (!targ_map) {
7105 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7106 					i, name);
7107 				return -ESRCH;
7108 			}
7109 		} else if (is_prog_array) {
7110 			targ_prog = bpf_object__find_program_by_name(obj, name);
7111 			if (!targ_prog) {
7112 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7113 					i, name);
7114 				return -ESRCH;
7115 			}
7116 			if (targ_prog->sec_idx != sym->st_shndx ||
7117 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
7118 			    prog_is_subprog(obj, targ_prog)) {
7119 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7120 					i, name);
7121 				return -LIBBPF_ERRNO__RELOC;
7122 			}
7123 		} else {
7124 			return -EINVAL;
7125 		}
7126 
7127 		var = btf__type_by_id(obj->btf, vi->type);
7128 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7129 		if (btf_vlen(def) == 0)
7130 			return -EINVAL;
7131 		member = btf_members(def) + btf_vlen(def) - 1;
7132 		mname = btf__name_by_offset(obj->btf, member->name_off);
7133 		if (strcmp(mname, "values"))
7134 			return -EINVAL;
7135 
7136 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7137 		if (rel->r_offset - vi->offset < moff)
7138 			return -EINVAL;
7139 
7140 		moff = rel->r_offset - vi->offset - moff;
7141 		/* here we use BPF pointer size, which is always 64 bit, as we
7142 		 * are parsing ELF that was built for BPF target
7143 		 */
7144 		if (moff % bpf_ptr_sz)
7145 			return -EINVAL;
7146 		moff /= bpf_ptr_sz;
7147 		if (moff >= map->init_slots_sz) {
7148 			new_sz = moff + 1;
7149 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7150 			if (!tmp)
7151 				return -ENOMEM;
7152 			map->init_slots = tmp;
7153 			memset(map->init_slots + map->init_slots_sz, 0,
7154 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7155 			map->init_slots_sz = new_sz;
7156 		}
7157 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7158 
7159 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7160 			 i, map->name, moff, type, name);
7161 	}
7162 
7163 	return 0;
7164 }
7165 
7166 static int bpf_object__collect_relos(struct bpf_object *obj)
7167 {
7168 	int i, err;
7169 
7170 	for (i = 0; i < obj->efile.sec_cnt; i++) {
7171 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7172 		Elf64_Shdr *shdr;
7173 		Elf_Data *data;
7174 		int idx;
7175 
7176 		if (sec_desc->sec_type != SEC_RELO)
7177 			continue;
7178 
7179 		shdr = sec_desc->shdr;
7180 		data = sec_desc->data;
7181 		idx = shdr->sh_info;
7182 
7183 		if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7184 			pr_warn("internal error at %d\n", __LINE__);
7185 			return -LIBBPF_ERRNO__INTERNAL;
7186 		}
7187 
7188 		if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7189 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7190 		else if (idx == obj->efile.btf_maps_shndx)
7191 			err = bpf_object__collect_map_relos(obj, shdr, data);
7192 		else
7193 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7194 		if (err)
7195 			return err;
7196 	}
7197 
7198 	bpf_object__sort_relos(obj);
7199 	return 0;
7200 }
7201 
7202 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7203 {
7204 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7205 	    BPF_OP(insn->code) == BPF_CALL &&
7206 	    BPF_SRC(insn->code) == BPF_K &&
7207 	    insn->src_reg == 0 &&
7208 	    insn->dst_reg == 0) {
7209 		    *func_id = insn->imm;
7210 		    return true;
7211 	}
7212 	return false;
7213 }
7214 
7215 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7216 {
7217 	struct bpf_insn *insn = prog->insns;
7218 	enum bpf_func_id func_id;
7219 	int i;
7220 
7221 	if (obj->gen_loader)
7222 		return 0;
7223 
7224 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7225 		if (!insn_is_helper_call(insn, &func_id))
7226 			continue;
7227 
7228 		/* on kernels that don't yet support
7229 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7230 		 * to bpf_probe_read() which works well for old kernels
7231 		 */
7232 		switch (func_id) {
7233 		case BPF_FUNC_probe_read_kernel:
7234 		case BPF_FUNC_probe_read_user:
7235 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7236 				insn->imm = BPF_FUNC_probe_read;
7237 			break;
7238 		case BPF_FUNC_probe_read_kernel_str:
7239 		case BPF_FUNC_probe_read_user_str:
7240 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7241 				insn->imm = BPF_FUNC_probe_read_str;
7242 			break;
7243 		default:
7244 			break;
7245 		}
7246 	}
7247 	return 0;
7248 }
7249 
7250 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7251 				     int *btf_obj_fd, int *btf_type_id);
7252 
7253 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7254 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7255 				    struct bpf_prog_load_opts *opts, long cookie)
7256 {
7257 	enum sec_def_flags def = cookie;
7258 
7259 	/* old kernels might not support specifying expected_attach_type */
7260 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7261 		opts->expected_attach_type = 0;
7262 
7263 	if (def & SEC_SLEEPABLE)
7264 		opts->prog_flags |= BPF_F_SLEEPABLE;
7265 
7266 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7267 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7268 
7269 	/* special check for usdt to use uprobe_multi link */
7270 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7271 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7272 
7273 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7274 		int btf_obj_fd = 0, btf_type_id = 0, err;
7275 		const char *attach_name;
7276 
7277 		attach_name = strchr(prog->sec_name, '/');
7278 		if (!attach_name) {
7279 			/* if BPF program is annotated with just SEC("fentry")
7280 			 * (or similar) without declaratively specifying
7281 			 * target, then it is expected that target will be
7282 			 * specified with bpf_program__set_attach_target() at
7283 			 * runtime before BPF object load step. If not, then
7284 			 * there is nothing to load into the kernel as BPF
7285 			 * verifier won't be able to validate BPF program
7286 			 * correctness anyways.
7287 			 */
7288 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7289 				prog->name);
7290 			return -EINVAL;
7291 		}
7292 		attach_name++; /* skip over / */
7293 
7294 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7295 		if (err)
7296 			return err;
7297 
7298 		/* cache resolved BTF FD and BTF type ID in the prog */
7299 		prog->attach_btf_obj_fd = btf_obj_fd;
7300 		prog->attach_btf_id = btf_type_id;
7301 
7302 		/* but by now libbpf common logic is not utilizing
7303 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7304 		 * this callback is called after opts were populated by
7305 		 * libbpf, so this callback has to update opts explicitly here
7306 		 */
7307 		opts->attach_btf_obj_fd = btf_obj_fd;
7308 		opts->attach_btf_id = btf_type_id;
7309 	}
7310 	return 0;
7311 }
7312 
7313 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7314 
7315 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7316 				struct bpf_insn *insns, int insns_cnt,
7317 				const char *license, __u32 kern_version, int *prog_fd)
7318 {
7319 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7320 	const char *prog_name = NULL;
7321 	char *cp, errmsg[STRERR_BUFSIZE];
7322 	size_t log_buf_size = 0;
7323 	char *log_buf = NULL, *tmp;
7324 	int btf_fd, ret, err;
7325 	bool own_log_buf = true;
7326 	__u32 log_level = prog->log_level;
7327 
7328 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7329 		/*
7330 		 * The program type must be set.  Most likely we couldn't find a proper
7331 		 * section definition at load time, and thus we didn't infer the type.
7332 		 */
7333 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7334 			prog->name, prog->sec_name);
7335 		return -EINVAL;
7336 	}
7337 
7338 	if (!insns || !insns_cnt)
7339 		return -EINVAL;
7340 
7341 	if (kernel_supports(obj, FEAT_PROG_NAME))
7342 		prog_name = prog->name;
7343 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7344 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7345 	load_attr.attach_btf_id = prog->attach_btf_id;
7346 	load_attr.kern_version = kern_version;
7347 	load_attr.prog_ifindex = prog->prog_ifindex;
7348 
7349 	/* specify func_info/line_info only if kernel supports them */
7350 	btf_fd = btf__fd(obj->btf);
7351 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7352 		load_attr.prog_btf_fd = btf_fd;
7353 		load_attr.func_info = prog->func_info;
7354 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7355 		load_attr.func_info_cnt = prog->func_info_cnt;
7356 		load_attr.line_info = prog->line_info;
7357 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7358 		load_attr.line_info_cnt = prog->line_info_cnt;
7359 	}
7360 	load_attr.log_level = log_level;
7361 	load_attr.prog_flags = prog->prog_flags;
7362 	load_attr.fd_array = obj->fd_array;
7363 
7364 	load_attr.token_fd = obj->token_fd;
7365 	if (obj->token_fd)
7366 		load_attr.prog_flags |= BPF_F_TOKEN_FD;
7367 
7368 	/* adjust load_attr if sec_def provides custom preload callback */
7369 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7370 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7371 		if (err < 0) {
7372 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7373 				prog->name, err);
7374 			return err;
7375 		}
7376 		insns = prog->insns;
7377 		insns_cnt = prog->insns_cnt;
7378 	}
7379 
7380 	/* allow prog_prepare_load_fn to change expected_attach_type */
7381 	load_attr.expected_attach_type = prog->expected_attach_type;
7382 
7383 	if (obj->gen_loader) {
7384 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7385 				   license, insns, insns_cnt, &load_attr,
7386 				   prog - obj->programs);
7387 		*prog_fd = -1;
7388 		return 0;
7389 	}
7390 
7391 retry_load:
7392 	/* if log_level is zero, we don't request logs initially even if
7393 	 * custom log_buf is specified; if the program load fails, then we'll
7394 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7395 	 * our own and retry the load to get details on what failed
7396 	 */
7397 	if (log_level) {
7398 		if (prog->log_buf) {
7399 			log_buf = prog->log_buf;
7400 			log_buf_size = prog->log_size;
7401 			own_log_buf = false;
7402 		} else if (obj->log_buf) {
7403 			log_buf = obj->log_buf;
7404 			log_buf_size = obj->log_size;
7405 			own_log_buf = false;
7406 		} else {
7407 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7408 			tmp = realloc(log_buf, log_buf_size);
7409 			if (!tmp) {
7410 				ret = -ENOMEM;
7411 				goto out;
7412 			}
7413 			log_buf = tmp;
7414 			log_buf[0] = '\0';
7415 			own_log_buf = true;
7416 		}
7417 	}
7418 
7419 	load_attr.log_buf = log_buf;
7420 	load_attr.log_size = log_buf_size;
7421 	load_attr.log_level = log_level;
7422 
7423 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7424 	if (ret >= 0) {
7425 		if (log_level && own_log_buf) {
7426 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7427 				 prog->name, log_buf);
7428 		}
7429 
7430 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7431 			struct bpf_map *map;
7432 			int i;
7433 
7434 			for (i = 0; i < obj->nr_maps; i++) {
7435 				map = &prog->obj->maps[i];
7436 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7437 					continue;
7438 
7439 				if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7440 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7441 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7442 						prog->name, map->real_name, cp);
7443 					/* Don't fail hard if can't bind rodata. */
7444 				}
7445 			}
7446 		}
7447 
7448 		*prog_fd = ret;
7449 		ret = 0;
7450 		goto out;
7451 	}
7452 
7453 	if (log_level == 0) {
7454 		log_level = 1;
7455 		goto retry_load;
7456 	}
7457 	/* On ENOSPC, increase log buffer size and retry, unless custom
7458 	 * log_buf is specified.
7459 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7460 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7461 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7462 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7463 	 */
7464 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7465 		goto retry_load;
7466 
7467 	ret = -errno;
7468 
7469 	/* post-process verifier log to improve error descriptions */
7470 	fixup_verifier_log(prog, log_buf, log_buf_size);
7471 
7472 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7473 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7474 	pr_perm_msg(ret);
7475 
7476 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7477 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7478 			prog->name, log_buf);
7479 	}
7480 
7481 out:
7482 	if (own_log_buf)
7483 		free(log_buf);
7484 	return ret;
7485 }
7486 
7487 static char *find_prev_line(char *buf, char *cur)
7488 {
7489 	char *p;
7490 
7491 	if (cur == buf) /* end of a log buf */
7492 		return NULL;
7493 
7494 	p = cur - 1;
7495 	while (p - 1 >= buf && *(p - 1) != '\n')
7496 		p--;
7497 
7498 	return p;
7499 }
7500 
7501 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7502 		      char *orig, size_t orig_sz, const char *patch)
7503 {
7504 	/* size of the remaining log content to the right from the to-be-replaced part */
7505 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7506 	size_t patch_sz = strlen(patch);
7507 
7508 	if (patch_sz != orig_sz) {
7509 		/* If patch line(s) are longer than original piece of verifier log,
7510 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7511 		 * starting from after to-be-replaced part of the log.
7512 		 *
7513 		 * If patch line(s) are shorter than original piece of verifier log,
7514 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7515 		 * starting from after to-be-replaced part of the log
7516 		 *
7517 		 * We need to be careful about not overflowing available
7518 		 * buf_sz capacity. If that's the case, we'll truncate the end
7519 		 * of the original log, as necessary.
7520 		 */
7521 		if (patch_sz > orig_sz) {
7522 			if (orig + patch_sz >= buf + buf_sz) {
7523 				/* patch is big enough to cover remaining space completely */
7524 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7525 				rem_sz = 0;
7526 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7527 				/* patch causes part of remaining log to be truncated */
7528 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7529 			}
7530 		}
7531 		/* shift remaining log to the right by calculated amount */
7532 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7533 	}
7534 
7535 	memcpy(orig, patch, patch_sz);
7536 }
7537 
7538 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7539 				       char *buf, size_t buf_sz, size_t log_sz,
7540 				       char *line1, char *line2, char *line3)
7541 {
7542 	/* Expected log for failed and not properly guarded CO-RE relocation:
7543 	 * line1 -> 123: (85) call unknown#195896080
7544 	 * line2 -> invalid func unknown#195896080
7545 	 * line3 -> <anything else or end of buffer>
7546 	 *
7547 	 * "123" is the index of the instruction that was poisoned. We extract
7548 	 * instruction index to find corresponding CO-RE relocation and
7549 	 * replace this part of the log with more relevant information about
7550 	 * failed CO-RE relocation.
7551 	 */
7552 	const struct bpf_core_relo *relo;
7553 	struct bpf_core_spec spec;
7554 	char patch[512], spec_buf[256];
7555 	int insn_idx, err, spec_len;
7556 
7557 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7558 		return;
7559 
7560 	relo = find_relo_core(prog, insn_idx);
7561 	if (!relo)
7562 		return;
7563 
7564 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7565 	if (err)
7566 		return;
7567 
7568 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7569 	snprintf(patch, sizeof(patch),
7570 		 "%d: <invalid CO-RE relocation>\n"
7571 		 "failed to resolve CO-RE relocation %s%s\n",
7572 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7573 
7574 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7575 }
7576 
7577 static void fixup_log_missing_map_load(struct bpf_program *prog,
7578 				       char *buf, size_t buf_sz, size_t log_sz,
7579 				       char *line1, char *line2, char *line3)
7580 {
7581 	/* Expected log for failed and not properly guarded map reference:
7582 	 * line1 -> 123: (85) call unknown#2001000345
7583 	 * line2 -> invalid func unknown#2001000345
7584 	 * line3 -> <anything else or end of buffer>
7585 	 *
7586 	 * "123" is the index of the instruction that was poisoned.
7587 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7588 	 */
7589 	struct bpf_object *obj = prog->obj;
7590 	const struct bpf_map *map;
7591 	int insn_idx, map_idx;
7592 	char patch[128];
7593 
7594 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7595 		return;
7596 
7597 	map_idx -= POISON_LDIMM64_MAP_BASE;
7598 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7599 		return;
7600 	map = &obj->maps[map_idx];
7601 
7602 	snprintf(patch, sizeof(patch),
7603 		 "%d: <invalid BPF map reference>\n"
7604 		 "BPF map '%s' is referenced but wasn't created\n",
7605 		 insn_idx, map->name);
7606 
7607 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7608 }
7609 
7610 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7611 					 char *buf, size_t buf_sz, size_t log_sz,
7612 					 char *line1, char *line2, char *line3)
7613 {
7614 	/* Expected log for failed and not properly guarded kfunc call:
7615 	 * line1 -> 123: (85) call unknown#2002000345
7616 	 * line2 -> invalid func unknown#2002000345
7617 	 * line3 -> <anything else or end of buffer>
7618 	 *
7619 	 * "123" is the index of the instruction that was poisoned.
7620 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7621 	 */
7622 	struct bpf_object *obj = prog->obj;
7623 	const struct extern_desc *ext;
7624 	int insn_idx, ext_idx;
7625 	char patch[128];
7626 
7627 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7628 		return;
7629 
7630 	ext_idx -= POISON_CALL_KFUNC_BASE;
7631 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7632 		return;
7633 	ext = &obj->externs[ext_idx];
7634 
7635 	snprintf(patch, sizeof(patch),
7636 		 "%d: <invalid kfunc call>\n"
7637 		 "kfunc '%s' is referenced but wasn't resolved\n",
7638 		 insn_idx, ext->name);
7639 
7640 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7641 }
7642 
7643 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7644 {
7645 	/* look for familiar error patterns in last N lines of the log */
7646 	const size_t max_last_line_cnt = 10;
7647 	char *prev_line, *cur_line, *next_line;
7648 	size_t log_sz;
7649 	int i;
7650 
7651 	if (!buf)
7652 		return;
7653 
7654 	log_sz = strlen(buf) + 1;
7655 	next_line = buf + log_sz - 1;
7656 
7657 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7658 		cur_line = find_prev_line(buf, next_line);
7659 		if (!cur_line)
7660 			return;
7661 
7662 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7663 			prev_line = find_prev_line(buf, cur_line);
7664 			if (!prev_line)
7665 				continue;
7666 
7667 			/* failed CO-RE relocation case */
7668 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7669 						   prev_line, cur_line, next_line);
7670 			return;
7671 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7672 			prev_line = find_prev_line(buf, cur_line);
7673 			if (!prev_line)
7674 				continue;
7675 
7676 			/* reference to uncreated BPF map */
7677 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7678 						   prev_line, cur_line, next_line);
7679 			return;
7680 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7681 			prev_line = find_prev_line(buf, cur_line);
7682 			if (!prev_line)
7683 				continue;
7684 
7685 			/* reference to unresolved kfunc */
7686 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7687 						     prev_line, cur_line, next_line);
7688 			return;
7689 		}
7690 	}
7691 }
7692 
7693 static int bpf_program_record_relos(struct bpf_program *prog)
7694 {
7695 	struct bpf_object *obj = prog->obj;
7696 	int i;
7697 
7698 	for (i = 0; i < prog->nr_reloc; i++) {
7699 		struct reloc_desc *relo = &prog->reloc_desc[i];
7700 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7701 		int kind;
7702 
7703 		switch (relo->type) {
7704 		case RELO_EXTERN_LD64:
7705 			if (ext->type != EXT_KSYM)
7706 				continue;
7707 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7708 				BTF_KIND_VAR : BTF_KIND_FUNC;
7709 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7710 					       ext->is_weak, !ext->ksym.type_id,
7711 					       true, kind, relo->insn_idx);
7712 			break;
7713 		case RELO_EXTERN_CALL:
7714 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7715 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7716 					       relo->insn_idx);
7717 			break;
7718 		case RELO_CORE: {
7719 			struct bpf_core_relo cr = {
7720 				.insn_off = relo->insn_idx * 8,
7721 				.type_id = relo->core_relo->type_id,
7722 				.access_str_off = relo->core_relo->access_str_off,
7723 				.kind = relo->core_relo->kind,
7724 			};
7725 
7726 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7727 			break;
7728 		}
7729 		default:
7730 			continue;
7731 		}
7732 	}
7733 	return 0;
7734 }
7735 
7736 static int
7737 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7738 {
7739 	struct bpf_program *prog;
7740 	size_t i;
7741 	int err;
7742 
7743 	for (i = 0; i < obj->nr_programs; i++) {
7744 		prog = &obj->programs[i];
7745 		err = bpf_object__sanitize_prog(obj, prog);
7746 		if (err)
7747 			return err;
7748 	}
7749 
7750 	for (i = 0; i < obj->nr_programs; i++) {
7751 		prog = &obj->programs[i];
7752 		if (prog_is_subprog(obj, prog))
7753 			continue;
7754 		if (!prog->autoload) {
7755 			pr_debug("prog '%s': skipped loading\n", prog->name);
7756 			continue;
7757 		}
7758 		prog->log_level |= log_level;
7759 
7760 		if (obj->gen_loader)
7761 			bpf_program_record_relos(prog);
7762 
7763 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7764 					   obj->license, obj->kern_version, &prog->fd);
7765 		if (err) {
7766 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7767 			return err;
7768 		}
7769 	}
7770 
7771 	bpf_object__free_relocs(obj);
7772 	return 0;
7773 }
7774 
7775 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7776 
7777 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7778 {
7779 	struct bpf_program *prog;
7780 	int err;
7781 
7782 	bpf_object__for_each_program(prog, obj) {
7783 		prog->sec_def = find_sec_def(prog->sec_name);
7784 		if (!prog->sec_def) {
7785 			/* couldn't guess, but user might manually specify */
7786 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7787 				prog->name, prog->sec_name);
7788 			continue;
7789 		}
7790 
7791 		prog->type = prog->sec_def->prog_type;
7792 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7793 
7794 		/* sec_def can have custom callback which should be called
7795 		 * after bpf_program is initialized to adjust its properties
7796 		 */
7797 		if (prog->sec_def->prog_setup_fn) {
7798 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7799 			if (err < 0) {
7800 				pr_warn("prog '%s': failed to initialize: %d\n",
7801 					prog->name, err);
7802 				return err;
7803 			}
7804 		}
7805 	}
7806 
7807 	return 0;
7808 }
7809 
7810 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7811 					  const struct bpf_object_open_opts *opts)
7812 {
7813 	const char *obj_name, *kconfig, *btf_tmp_path, *token_path;
7814 	struct bpf_object *obj;
7815 	char tmp_name[64];
7816 	int err;
7817 	char *log_buf;
7818 	size_t log_size;
7819 	__u32 log_level;
7820 
7821 	if (elf_version(EV_CURRENT) == EV_NONE) {
7822 		pr_warn("failed to init libelf for %s\n",
7823 			path ? : "(mem buf)");
7824 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7825 	}
7826 
7827 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7828 		return ERR_PTR(-EINVAL);
7829 
7830 	obj_name = OPTS_GET(opts, object_name, NULL);
7831 	if (obj_buf) {
7832 		if (!obj_name) {
7833 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7834 				 (unsigned long)obj_buf,
7835 				 (unsigned long)obj_buf_sz);
7836 			obj_name = tmp_name;
7837 		}
7838 		path = obj_name;
7839 		pr_debug("loading object '%s' from buffer\n", obj_name);
7840 	}
7841 
7842 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7843 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7844 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7845 	if (log_size > UINT_MAX)
7846 		return ERR_PTR(-EINVAL);
7847 	if (log_size && !log_buf)
7848 		return ERR_PTR(-EINVAL);
7849 
7850 	token_path = OPTS_GET(opts, bpf_token_path, NULL);
7851 	/* if user didn't specify bpf_token_path explicitly, check if
7852 	 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
7853 	 * option
7854 	 */
7855 	if (!token_path)
7856 		token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
7857 	if (token_path && strlen(token_path) >= PATH_MAX)
7858 		return ERR_PTR(-ENAMETOOLONG);
7859 
7860 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7861 	if (IS_ERR(obj))
7862 		return obj;
7863 
7864 	obj->log_buf = log_buf;
7865 	obj->log_size = log_size;
7866 	obj->log_level = log_level;
7867 
7868 	if (token_path) {
7869 		obj->token_path = strdup(token_path);
7870 		if (!obj->token_path) {
7871 			err = -ENOMEM;
7872 			goto out;
7873 		}
7874 	}
7875 
7876 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7877 	if (btf_tmp_path) {
7878 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7879 			err = -ENAMETOOLONG;
7880 			goto out;
7881 		}
7882 		obj->btf_custom_path = strdup(btf_tmp_path);
7883 		if (!obj->btf_custom_path) {
7884 			err = -ENOMEM;
7885 			goto out;
7886 		}
7887 	}
7888 
7889 	kconfig = OPTS_GET(opts, kconfig, NULL);
7890 	if (kconfig) {
7891 		obj->kconfig = strdup(kconfig);
7892 		if (!obj->kconfig) {
7893 			err = -ENOMEM;
7894 			goto out;
7895 		}
7896 	}
7897 
7898 	err = bpf_object__elf_init(obj);
7899 	err = err ? : bpf_object__check_endianness(obj);
7900 	err = err ? : bpf_object__elf_collect(obj);
7901 	err = err ? : bpf_object__collect_externs(obj);
7902 	err = err ? : bpf_object_fixup_btf(obj);
7903 	err = err ? : bpf_object__init_maps(obj, opts);
7904 	err = err ? : bpf_object_init_progs(obj, opts);
7905 	err = err ? : bpf_object__collect_relos(obj);
7906 	if (err)
7907 		goto out;
7908 
7909 	bpf_object__elf_finish(obj);
7910 
7911 	return obj;
7912 out:
7913 	bpf_object__close(obj);
7914 	return ERR_PTR(err);
7915 }
7916 
7917 struct bpf_object *
7918 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7919 {
7920 	if (!path)
7921 		return libbpf_err_ptr(-EINVAL);
7922 
7923 	pr_debug("loading %s\n", path);
7924 
7925 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7926 }
7927 
7928 struct bpf_object *bpf_object__open(const char *path)
7929 {
7930 	return bpf_object__open_file(path, NULL);
7931 }
7932 
7933 struct bpf_object *
7934 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7935 		     const struct bpf_object_open_opts *opts)
7936 {
7937 	if (!obj_buf || obj_buf_sz == 0)
7938 		return libbpf_err_ptr(-EINVAL);
7939 
7940 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7941 }
7942 
7943 static int bpf_object_unload(struct bpf_object *obj)
7944 {
7945 	size_t i;
7946 
7947 	if (!obj)
7948 		return libbpf_err(-EINVAL);
7949 
7950 	for (i = 0; i < obj->nr_maps; i++) {
7951 		zclose(obj->maps[i].fd);
7952 		if (obj->maps[i].st_ops)
7953 			zfree(&obj->maps[i].st_ops->kern_vdata);
7954 	}
7955 
7956 	for (i = 0; i < obj->nr_programs; i++)
7957 		bpf_program__unload(&obj->programs[i]);
7958 
7959 	return 0;
7960 }
7961 
7962 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7963 {
7964 	struct bpf_map *m;
7965 
7966 	bpf_object__for_each_map(m, obj) {
7967 		if (!bpf_map__is_internal(m))
7968 			continue;
7969 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7970 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7971 	}
7972 
7973 	return 0;
7974 }
7975 
7976 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7977 {
7978 	char sym_type, sym_name[500];
7979 	unsigned long long sym_addr;
7980 	int ret, err = 0;
7981 	FILE *f;
7982 
7983 	f = fopen("/proc/kallsyms", "re");
7984 	if (!f) {
7985 		err = -errno;
7986 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7987 		return err;
7988 	}
7989 
7990 	while (true) {
7991 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7992 			     &sym_addr, &sym_type, sym_name);
7993 		if (ret == EOF && feof(f))
7994 			break;
7995 		if (ret != 3) {
7996 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7997 			err = -EINVAL;
7998 			break;
7999 		}
8000 
8001 		err = cb(sym_addr, sym_type, sym_name, ctx);
8002 		if (err)
8003 			break;
8004 	}
8005 
8006 	fclose(f);
8007 	return err;
8008 }
8009 
8010 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8011 		       const char *sym_name, void *ctx)
8012 {
8013 	struct bpf_object *obj = ctx;
8014 	const struct btf_type *t;
8015 	struct extern_desc *ext;
8016 
8017 	ext = find_extern_by_name(obj, sym_name);
8018 	if (!ext || ext->type != EXT_KSYM)
8019 		return 0;
8020 
8021 	t = btf__type_by_id(obj->btf, ext->btf_id);
8022 	if (!btf_is_var(t))
8023 		return 0;
8024 
8025 	if (ext->is_set && ext->ksym.addr != sym_addr) {
8026 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8027 			sym_name, ext->ksym.addr, sym_addr);
8028 		return -EINVAL;
8029 	}
8030 	if (!ext->is_set) {
8031 		ext->is_set = true;
8032 		ext->ksym.addr = sym_addr;
8033 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8034 	}
8035 	return 0;
8036 }
8037 
8038 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8039 {
8040 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
8041 }
8042 
8043 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8044 			    __u16 kind, struct btf **res_btf,
8045 			    struct module_btf **res_mod_btf)
8046 {
8047 	struct module_btf *mod_btf;
8048 	struct btf *btf;
8049 	int i, id, err;
8050 
8051 	btf = obj->btf_vmlinux;
8052 	mod_btf = NULL;
8053 	id = btf__find_by_name_kind(btf, ksym_name, kind);
8054 
8055 	if (id == -ENOENT) {
8056 		err = load_module_btfs(obj);
8057 		if (err)
8058 			return err;
8059 
8060 		for (i = 0; i < obj->btf_module_cnt; i++) {
8061 			/* we assume module_btf's BTF FD is always >0 */
8062 			mod_btf = &obj->btf_modules[i];
8063 			btf = mod_btf->btf;
8064 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8065 			if (id != -ENOENT)
8066 				break;
8067 		}
8068 	}
8069 	if (id <= 0)
8070 		return -ESRCH;
8071 
8072 	*res_btf = btf;
8073 	*res_mod_btf = mod_btf;
8074 	return id;
8075 }
8076 
8077 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8078 					       struct extern_desc *ext)
8079 {
8080 	const struct btf_type *targ_var, *targ_type;
8081 	__u32 targ_type_id, local_type_id;
8082 	struct module_btf *mod_btf = NULL;
8083 	const char *targ_var_name;
8084 	struct btf *btf = NULL;
8085 	int id, err;
8086 
8087 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8088 	if (id < 0) {
8089 		if (id == -ESRCH && ext->is_weak)
8090 			return 0;
8091 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8092 			ext->name);
8093 		return id;
8094 	}
8095 
8096 	/* find local type_id */
8097 	local_type_id = ext->ksym.type_id;
8098 
8099 	/* find target type_id */
8100 	targ_var = btf__type_by_id(btf, id);
8101 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8102 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8103 
8104 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
8105 					btf, targ_type_id);
8106 	if (err <= 0) {
8107 		const struct btf_type *local_type;
8108 		const char *targ_name, *local_name;
8109 
8110 		local_type = btf__type_by_id(obj->btf, local_type_id);
8111 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8112 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
8113 
8114 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8115 			ext->name, local_type_id,
8116 			btf_kind_str(local_type), local_name, targ_type_id,
8117 			btf_kind_str(targ_type), targ_name);
8118 		return -EINVAL;
8119 	}
8120 
8121 	ext->is_set = true;
8122 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8123 	ext->ksym.kernel_btf_id = id;
8124 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8125 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8126 
8127 	return 0;
8128 }
8129 
8130 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8131 						struct extern_desc *ext)
8132 {
8133 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
8134 	struct module_btf *mod_btf = NULL;
8135 	const struct btf_type *kern_func;
8136 	struct btf *kern_btf = NULL;
8137 	int ret;
8138 
8139 	local_func_proto_id = ext->ksym.type_id;
8140 
8141 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8142 				    &mod_btf);
8143 	if (kfunc_id < 0) {
8144 		if (kfunc_id == -ESRCH && ext->is_weak)
8145 			return 0;
8146 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8147 			ext->name);
8148 		return kfunc_id;
8149 	}
8150 
8151 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
8152 	kfunc_proto_id = kern_func->type;
8153 
8154 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8155 					kern_btf, kfunc_proto_id);
8156 	if (ret <= 0) {
8157 		if (ext->is_weak)
8158 			return 0;
8159 
8160 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8161 			ext->name, local_func_proto_id,
8162 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8163 		return -EINVAL;
8164 	}
8165 
8166 	/* set index for module BTF fd in fd_array, if unset */
8167 	if (mod_btf && !mod_btf->fd_array_idx) {
8168 		/* insn->off is s16 */
8169 		if (obj->fd_array_cnt == INT16_MAX) {
8170 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8171 				ext->name, mod_btf->fd_array_idx);
8172 			return -E2BIG;
8173 		}
8174 		/* Cannot use index 0 for module BTF fd */
8175 		if (!obj->fd_array_cnt)
8176 			obj->fd_array_cnt = 1;
8177 
8178 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8179 					obj->fd_array_cnt + 1);
8180 		if (ret)
8181 			return ret;
8182 		mod_btf->fd_array_idx = obj->fd_array_cnt;
8183 		/* we assume module BTF FD is always >0 */
8184 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8185 	}
8186 
8187 	ext->is_set = true;
8188 	ext->ksym.kernel_btf_id = kfunc_id;
8189 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8190 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8191 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8192 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8193 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8194 	 */
8195 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8196 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8197 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8198 
8199 	return 0;
8200 }
8201 
8202 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8203 {
8204 	const struct btf_type *t;
8205 	struct extern_desc *ext;
8206 	int i, err;
8207 
8208 	for (i = 0; i < obj->nr_extern; i++) {
8209 		ext = &obj->externs[i];
8210 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8211 			continue;
8212 
8213 		if (obj->gen_loader) {
8214 			ext->is_set = true;
8215 			ext->ksym.kernel_btf_obj_fd = 0;
8216 			ext->ksym.kernel_btf_id = 0;
8217 			continue;
8218 		}
8219 		t = btf__type_by_id(obj->btf, ext->btf_id);
8220 		if (btf_is_var(t))
8221 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8222 		else
8223 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8224 		if (err)
8225 			return err;
8226 	}
8227 	return 0;
8228 }
8229 
8230 static int bpf_object__resolve_externs(struct bpf_object *obj,
8231 				       const char *extra_kconfig)
8232 {
8233 	bool need_config = false, need_kallsyms = false;
8234 	bool need_vmlinux_btf = false;
8235 	struct extern_desc *ext;
8236 	void *kcfg_data = NULL;
8237 	int err, i;
8238 
8239 	if (obj->nr_extern == 0)
8240 		return 0;
8241 
8242 	if (obj->kconfig_map_idx >= 0)
8243 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8244 
8245 	for (i = 0; i < obj->nr_extern; i++) {
8246 		ext = &obj->externs[i];
8247 
8248 		if (ext->type == EXT_KSYM) {
8249 			if (ext->ksym.type_id)
8250 				need_vmlinux_btf = true;
8251 			else
8252 				need_kallsyms = true;
8253 			continue;
8254 		} else if (ext->type == EXT_KCFG) {
8255 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8256 			__u64 value = 0;
8257 
8258 			/* Kconfig externs need actual /proc/config.gz */
8259 			if (str_has_pfx(ext->name, "CONFIG_")) {
8260 				need_config = true;
8261 				continue;
8262 			}
8263 
8264 			/* Virtual kcfg externs are customly handled by libbpf */
8265 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8266 				value = get_kernel_version();
8267 				if (!value) {
8268 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8269 					return -EINVAL;
8270 				}
8271 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8272 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
8273 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8274 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8275 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8276 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8277 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
8278 				 * customly by libbpf (their values don't come from Kconfig).
8279 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8280 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
8281 				 * externs.
8282 				 */
8283 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8284 				return -EINVAL;
8285 			}
8286 
8287 			err = set_kcfg_value_num(ext, ext_ptr, value);
8288 			if (err)
8289 				return err;
8290 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8291 				 ext->name, (long long)value);
8292 		} else {
8293 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8294 			return -EINVAL;
8295 		}
8296 	}
8297 	if (need_config && extra_kconfig) {
8298 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8299 		if (err)
8300 			return -EINVAL;
8301 		need_config = false;
8302 		for (i = 0; i < obj->nr_extern; i++) {
8303 			ext = &obj->externs[i];
8304 			if (ext->type == EXT_KCFG && !ext->is_set) {
8305 				need_config = true;
8306 				break;
8307 			}
8308 		}
8309 	}
8310 	if (need_config) {
8311 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8312 		if (err)
8313 			return -EINVAL;
8314 	}
8315 	if (need_kallsyms) {
8316 		err = bpf_object__read_kallsyms_file(obj);
8317 		if (err)
8318 			return -EINVAL;
8319 	}
8320 	if (need_vmlinux_btf) {
8321 		err = bpf_object__resolve_ksyms_btf_id(obj);
8322 		if (err)
8323 			return -EINVAL;
8324 	}
8325 	for (i = 0; i < obj->nr_extern; i++) {
8326 		ext = &obj->externs[i];
8327 
8328 		if (!ext->is_set && !ext->is_weak) {
8329 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8330 			return -ESRCH;
8331 		} else if (!ext->is_set) {
8332 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8333 				 ext->name);
8334 		}
8335 	}
8336 
8337 	return 0;
8338 }
8339 
8340 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8341 {
8342 	struct bpf_struct_ops *st_ops;
8343 	__u32 i;
8344 
8345 	st_ops = map->st_ops;
8346 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
8347 		struct bpf_program *prog = st_ops->progs[i];
8348 		void *kern_data;
8349 		int prog_fd;
8350 
8351 		if (!prog)
8352 			continue;
8353 
8354 		prog_fd = bpf_program__fd(prog);
8355 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8356 		*(unsigned long *)kern_data = prog_fd;
8357 	}
8358 }
8359 
8360 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8361 {
8362 	struct bpf_map *map;
8363 	int i;
8364 
8365 	for (i = 0; i < obj->nr_maps; i++) {
8366 		map = &obj->maps[i];
8367 
8368 		if (!bpf_map__is_struct_ops(map))
8369 			continue;
8370 
8371 		if (!map->autocreate)
8372 			continue;
8373 
8374 		bpf_map_prepare_vdata(map);
8375 	}
8376 
8377 	return 0;
8378 }
8379 
8380 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8381 {
8382 	int err, i;
8383 
8384 	if (!obj)
8385 		return libbpf_err(-EINVAL);
8386 
8387 	if (obj->loaded) {
8388 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8389 		return libbpf_err(-EINVAL);
8390 	}
8391 
8392 	if (obj->gen_loader)
8393 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8394 
8395 	err = bpf_object_prepare_token(obj);
8396 	err = err ? : bpf_object__probe_loading(obj);
8397 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8398 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8399 	err = err ? : bpf_object__sanitize_maps(obj);
8400 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8401 	err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8402 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8403 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8404 	err = err ? : bpf_object__create_maps(obj);
8405 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8406 	err = err ? : bpf_object_init_prog_arrays(obj);
8407 	err = err ? : bpf_object_prepare_struct_ops(obj);
8408 
8409 	if (obj->gen_loader) {
8410 		/* reset FDs */
8411 		if (obj->btf)
8412 			btf__set_fd(obj->btf, -1);
8413 		if (!err)
8414 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8415 	}
8416 
8417 	/* clean up fd_array */
8418 	zfree(&obj->fd_array);
8419 
8420 	/* clean up module BTFs */
8421 	for (i = 0; i < obj->btf_module_cnt; i++) {
8422 		close(obj->btf_modules[i].fd);
8423 		btf__free(obj->btf_modules[i].btf);
8424 		free(obj->btf_modules[i].name);
8425 	}
8426 	free(obj->btf_modules);
8427 
8428 	/* clean up vmlinux BTF */
8429 	btf__free(obj->btf_vmlinux);
8430 	obj->btf_vmlinux = NULL;
8431 
8432 	obj->loaded = true; /* doesn't matter if successfully or not */
8433 
8434 	if (err)
8435 		goto out;
8436 
8437 	return 0;
8438 out:
8439 	/* unpin any maps that were auto-pinned during load */
8440 	for (i = 0; i < obj->nr_maps; i++)
8441 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8442 			bpf_map__unpin(&obj->maps[i], NULL);
8443 
8444 	bpf_object_unload(obj);
8445 	pr_warn("failed to load object '%s'\n", obj->path);
8446 	return libbpf_err(err);
8447 }
8448 
8449 int bpf_object__load(struct bpf_object *obj)
8450 {
8451 	return bpf_object_load(obj, 0, NULL);
8452 }
8453 
8454 static int make_parent_dir(const char *path)
8455 {
8456 	char *cp, errmsg[STRERR_BUFSIZE];
8457 	char *dname, *dir;
8458 	int err = 0;
8459 
8460 	dname = strdup(path);
8461 	if (dname == NULL)
8462 		return -ENOMEM;
8463 
8464 	dir = dirname(dname);
8465 	if (mkdir(dir, 0700) && errno != EEXIST)
8466 		err = -errno;
8467 
8468 	free(dname);
8469 	if (err) {
8470 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8471 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8472 	}
8473 	return err;
8474 }
8475 
8476 static int check_path(const char *path)
8477 {
8478 	char *cp, errmsg[STRERR_BUFSIZE];
8479 	struct statfs st_fs;
8480 	char *dname, *dir;
8481 	int err = 0;
8482 
8483 	if (path == NULL)
8484 		return -EINVAL;
8485 
8486 	dname = strdup(path);
8487 	if (dname == NULL)
8488 		return -ENOMEM;
8489 
8490 	dir = dirname(dname);
8491 	if (statfs(dir, &st_fs)) {
8492 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8493 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8494 		err = -errno;
8495 	}
8496 	free(dname);
8497 
8498 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8499 		pr_warn("specified path %s is not on BPF FS\n", path);
8500 		err = -EINVAL;
8501 	}
8502 
8503 	return err;
8504 }
8505 
8506 int bpf_program__pin(struct bpf_program *prog, const char *path)
8507 {
8508 	char *cp, errmsg[STRERR_BUFSIZE];
8509 	int err;
8510 
8511 	if (prog->fd < 0) {
8512 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8513 		return libbpf_err(-EINVAL);
8514 	}
8515 
8516 	err = make_parent_dir(path);
8517 	if (err)
8518 		return libbpf_err(err);
8519 
8520 	err = check_path(path);
8521 	if (err)
8522 		return libbpf_err(err);
8523 
8524 	if (bpf_obj_pin(prog->fd, path)) {
8525 		err = -errno;
8526 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8527 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8528 		return libbpf_err(err);
8529 	}
8530 
8531 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8532 	return 0;
8533 }
8534 
8535 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8536 {
8537 	int err;
8538 
8539 	if (prog->fd < 0) {
8540 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8541 		return libbpf_err(-EINVAL);
8542 	}
8543 
8544 	err = check_path(path);
8545 	if (err)
8546 		return libbpf_err(err);
8547 
8548 	err = unlink(path);
8549 	if (err)
8550 		return libbpf_err(-errno);
8551 
8552 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8553 	return 0;
8554 }
8555 
8556 int bpf_map__pin(struct bpf_map *map, const char *path)
8557 {
8558 	char *cp, errmsg[STRERR_BUFSIZE];
8559 	int err;
8560 
8561 	if (map == NULL) {
8562 		pr_warn("invalid map pointer\n");
8563 		return libbpf_err(-EINVAL);
8564 	}
8565 
8566 	if (map->pin_path) {
8567 		if (path && strcmp(path, map->pin_path)) {
8568 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8569 				bpf_map__name(map), map->pin_path, path);
8570 			return libbpf_err(-EINVAL);
8571 		} else if (map->pinned) {
8572 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8573 				 bpf_map__name(map), map->pin_path);
8574 			return 0;
8575 		}
8576 	} else {
8577 		if (!path) {
8578 			pr_warn("missing a path to pin map '%s' at\n",
8579 				bpf_map__name(map));
8580 			return libbpf_err(-EINVAL);
8581 		} else if (map->pinned) {
8582 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8583 			return libbpf_err(-EEXIST);
8584 		}
8585 
8586 		map->pin_path = strdup(path);
8587 		if (!map->pin_path) {
8588 			err = -errno;
8589 			goto out_err;
8590 		}
8591 	}
8592 
8593 	err = make_parent_dir(map->pin_path);
8594 	if (err)
8595 		return libbpf_err(err);
8596 
8597 	err = check_path(map->pin_path);
8598 	if (err)
8599 		return libbpf_err(err);
8600 
8601 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8602 		err = -errno;
8603 		goto out_err;
8604 	}
8605 
8606 	map->pinned = true;
8607 	pr_debug("pinned map '%s'\n", map->pin_path);
8608 
8609 	return 0;
8610 
8611 out_err:
8612 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8613 	pr_warn("failed to pin map: %s\n", cp);
8614 	return libbpf_err(err);
8615 }
8616 
8617 int bpf_map__unpin(struct bpf_map *map, const char *path)
8618 {
8619 	int err;
8620 
8621 	if (map == NULL) {
8622 		pr_warn("invalid map pointer\n");
8623 		return libbpf_err(-EINVAL);
8624 	}
8625 
8626 	if (map->pin_path) {
8627 		if (path && strcmp(path, map->pin_path)) {
8628 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8629 				bpf_map__name(map), map->pin_path, path);
8630 			return libbpf_err(-EINVAL);
8631 		}
8632 		path = map->pin_path;
8633 	} else if (!path) {
8634 		pr_warn("no path to unpin map '%s' from\n",
8635 			bpf_map__name(map));
8636 		return libbpf_err(-EINVAL);
8637 	}
8638 
8639 	err = check_path(path);
8640 	if (err)
8641 		return libbpf_err(err);
8642 
8643 	err = unlink(path);
8644 	if (err != 0)
8645 		return libbpf_err(-errno);
8646 
8647 	map->pinned = false;
8648 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8649 
8650 	return 0;
8651 }
8652 
8653 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8654 {
8655 	char *new = NULL;
8656 
8657 	if (path) {
8658 		new = strdup(path);
8659 		if (!new)
8660 			return libbpf_err(-errno);
8661 	}
8662 
8663 	free(map->pin_path);
8664 	map->pin_path = new;
8665 	return 0;
8666 }
8667 
8668 __alias(bpf_map__pin_path)
8669 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8670 
8671 const char *bpf_map__pin_path(const struct bpf_map *map)
8672 {
8673 	return map->pin_path;
8674 }
8675 
8676 bool bpf_map__is_pinned(const struct bpf_map *map)
8677 {
8678 	return map->pinned;
8679 }
8680 
8681 static void sanitize_pin_path(char *s)
8682 {
8683 	/* bpffs disallows periods in path names */
8684 	while (*s) {
8685 		if (*s == '.')
8686 			*s = '_';
8687 		s++;
8688 	}
8689 }
8690 
8691 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8692 {
8693 	struct bpf_map *map;
8694 	int err;
8695 
8696 	if (!obj)
8697 		return libbpf_err(-ENOENT);
8698 
8699 	if (!obj->loaded) {
8700 		pr_warn("object not yet loaded; load it first\n");
8701 		return libbpf_err(-ENOENT);
8702 	}
8703 
8704 	bpf_object__for_each_map(map, obj) {
8705 		char *pin_path = NULL;
8706 		char buf[PATH_MAX];
8707 
8708 		if (!map->autocreate)
8709 			continue;
8710 
8711 		if (path) {
8712 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8713 			if (err)
8714 				goto err_unpin_maps;
8715 			sanitize_pin_path(buf);
8716 			pin_path = buf;
8717 		} else if (!map->pin_path) {
8718 			continue;
8719 		}
8720 
8721 		err = bpf_map__pin(map, pin_path);
8722 		if (err)
8723 			goto err_unpin_maps;
8724 	}
8725 
8726 	return 0;
8727 
8728 err_unpin_maps:
8729 	while ((map = bpf_object__prev_map(obj, map))) {
8730 		if (!map->pin_path)
8731 			continue;
8732 
8733 		bpf_map__unpin(map, NULL);
8734 	}
8735 
8736 	return libbpf_err(err);
8737 }
8738 
8739 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8740 {
8741 	struct bpf_map *map;
8742 	int err;
8743 
8744 	if (!obj)
8745 		return libbpf_err(-ENOENT);
8746 
8747 	bpf_object__for_each_map(map, obj) {
8748 		char *pin_path = NULL;
8749 		char buf[PATH_MAX];
8750 
8751 		if (path) {
8752 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8753 			if (err)
8754 				return libbpf_err(err);
8755 			sanitize_pin_path(buf);
8756 			pin_path = buf;
8757 		} else if (!map->pin_path) {
8758 			continue;
8759 		}
8760 
8761 		err = bpf_map__unpin(map, pin_path);
8762 		if (err)
8763 			return libbpf_err(err);
8764 	}
8765 
8766 	return 0;
8767 }
8768 
8769 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8770 {
8771 	struct bpf_program *prog;
8772 	char buf[PATH_MAX];
8773 	int err;
8774 
8775 	if (!obj)
8776 		return libbpf_err(-ENOENT);
8777 
8778 	if (!obj->loaded) {
8779 		pr_warn("object not yet loaded; load it first\n");
8780 		return libbpf_err(-ENOENT);
8781 	}
8782 
8783 	bpf_object__for_each_program(prog, obj) {
8784 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8785 		if (err)
8786 			goto err_unpin_programs;
8787 
8788 		err = bpf_program__pin(prog, buf);
8789 		if (err)
8790 			goto err_unpin_programs;
8791 	}
8792 
8793 	return 0;
8794 
8795 err_unpin_programs:
8796 	while ((prog = bpf_object__prev_program(obj, prog))) {
8797 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8798 			continue;
8799 
8800 		bpf_program__unpin(prog, buf);
8801 	}
8802 
8803 	return libbpf_err(err);
8804 }
8805 
8806 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8807 {
8808 	struct bpf_program *prog;
8809 	int err;
8810 
8811 	if (!obj)
8812 		return libbpf_err(-ENOENT);
8813 
8814 	bpf_object__for_each_program(prog, obj) {
8815 		char buf[PATH_MAX];
8816 
8817 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8818 		if (err)
8819 			return libbpf_err(err);
8820 
8821 		err = bpf_program__unpin(prog, buf);
8822 		if (err)
8823 			return libbpf_err(err);
8824 	}
8825 
8826 	return 0;
8827 }
8828 
8829 int bpf_object__pin(struct bpf_object *obj, const char *path)
8830 {
8831 	int err;
8832 
8833 	err = bpf_object__pin_maps(obj, path);
8834 	if (err)
8835 		return libbpf_err(err);
8836 
8837 	err = bpf_object__pin_programs(obj, path);
8838 	if (err) {
8839 		bpf_object__unpin_maps(obj, path);
8840 		return libbpf_err(err);
8841 	}
8842 
8843 	return 0;
8844 }
8845 
8846 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8847 {
8848 	int err;
8849 
8850 	err = bpf_object__unpin_programs(obj, path);
8851 	if (err)
8852 		return libbpf_err(err);
8853 
8854 	err = bpf_object__unpin_maps(obj, path);
8855 	if (err)
8856 		return libbpf_err(err);
8857 
8858 	return 0;
8859 }
8860 
8861 static void bpf_map__destroy(struct bpf_map *map)
8862 {
8863 	if (map->inner_map) {
8864 		bpf_map__destroy(map->inner_map);
8865 		zfree(&map->inner_map);
8866 	}
8867 
8868 	zfree(&map->init_slots);
8869 	map->init_slots_sz = 0;
8870 
8871 	if (map->mmaped && map->mmaped != map->obj->arena_data)
8872 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8873 	map->mmaped = NULL;
8874 
8875 	if (map->st_ops) {
8876 		zfree(&map->st_ops->data);
8877 		zfree(&map->st_ops->progs);
8878 		zfree(&map->st_ops->kern_func_off);
8879 		zfree(&map->st_ops);
8880 	}
8881 
8882 	zfree(&map->name);
8883 	zfree(&map->real_name);
8884 	zfree(&map->pin_path);
8885 
8886 	if (map->fd >= 0)
8887 		zclose(map->fd);
8888 }
8889 
8890 void bpf_object__close(struct bpf_object *obj)
8891 {
8892 	size_t i;
8893 
8894 	if (IS_ERR_OR_NULL(obj))
8895 		return;
8896 
8897 	usdt_manager_free(obj->usdt_man);
8898 	obj->usdt_man = NULL;
8899 
8900 	bpf_gen__free(obj->gen_loader);
8901 	bpf_object__elf_finish(obj);
8902 	bpf_object_unload(obj);
8903 	btf__free(obj->btf);
8904 	btf__free(obj->btf_vmlinux);
8905 	btf_ext__free(obj->btf_ext);
8906 
8907 	for (i = 0; i < obj->nr_maps; i++)
8908 		bpf_map__destroy(&obj->maps[i]);
8909 
8910 	zfree(&obj->btf_custom_path);
8911 	zfree(&obj->kconfig);
8912 
8913 	for (i = 0; i < obj->nr_extern; i++)
8914 		zfree(&obj->externs[i].essent_name);
8915 
8916 	zfree(&obj->externs);
8917 	obj->nr_extern = 0;
8918 
8919 	zfree(&obj->maps);
8920 	obj->nr_maps = 0;
8921 
8922 	if (obj->programs && obj->nr_programs) {
8923 		for (i = 0; i < obj->nr_programs; i++)
8924 			bpf_program__exit(&obj->programs[i]);
8925 	}
8926 	zfree(&obj->programs);
8927 
8928 	zfree(&obj->feat_cache);
8929 	zfree(&obj->token_path);
8930 	if (obj->token_fd > 0)
8931 		close(obj->token_fd);
8932 
8933 	zfree(&obj->arena_data);
8934 
8935 	free(obj);
8936 }
8937 
8938 const char *bpf_object__name(const struct bpf_object *obj)
8939 {
8940 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8941 }
8942 
8943 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8944 {
8945 	return obj ? obj->kern_version : 0;
8946 }
8947 
8948 struct btf *bpf_object__btf(const struct bpf_object *obj)
8949 {
8950 	return obj ? obj->btf : NULL;
8951 }
8952 
8953 int bpf_object__btf_fd(const struct bpf_object *obj)
8954 {
8955 	return obj->btf ? btf__fd(obj->btf) : -1;
8956 }
8957 
8958 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8959 {
8960 	if (obj->loaded)
8961 		return libbpf_err(-EINVAL);
8962 
8963 	obj->kern_version = kern_version;
8964 
8965 	return 0;
8966 }
8967 
8968 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8969 {
8970 	struct bpf_gen *gen;
8971 
8972 	if (!opts)
8973 		return -EFAULT;
8974 	if (!OPTS_VALID(opts, gen_loader_opts))
8975 		return -EINVAL;
8976 	gen = calloc(sizeof(*gen), 1);
8977 	if (!gen)
8978 		return -ENOMEM;
8979 	gen->opts = opts;
8980 	obj->gen_loader = gen;
8981 	return 0;
8982 }
8983 
8984 static struct bpf_program *
8985 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8986 		    bool forward)
8987 {
8988 	size_t nr_programs = obj->nr_programs;
8989 	ssize_t idx;
8990 
8991 	if (!nr_programs)
8992 		return NULL;
8993 
8994 	if (!p)
8995 		/* Iter from the beginning */
8996 		return forward ? &obj->programs[0] :
8997 			&obj->programs[nr_programs - 1];
8998 
8999 	if (p->obj != obj) {
9000 		pr_warn("error: program handler doesn't match object\n");
9001 		return errno = EINVAL, NULL;
9002 	}
9003 
9004 	idx = (p - obj->programs) + (forward ? 1 : -1);
9005 	if (idx >= obj->nr_programs || idx < 0)
9006 		return NULL;
9007 	return &obj->programs[idx];
9008 }
9009 
9010 struct bpf_program *
9011 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9012 {
9013 	struct bpf_program *prog = prev;
9014 
9015 	do {
9016 		prog = __bpf_program__iter(prog, obj, true);
9017 	} while (prog && prog_is_subprog(obj, prog));
9018 
9019 	return prog;
9020 }
9021 
9022 struct bpf_program *
9023 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9024 {
9025 	struct bpf_program *prog = next;
9026 
9027 	do {
9028 		prog = __bpf_program__iter(prog, obj, false);
9029 	} while (prog && prog_is_subprog(obj, prog));
9030 
9031 	return prog;
9032 }
9033 
9034 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9035 {
9036 	prog->prog_ifindex = ifindex;
9037 }
9038 
9039 const char *bpf_program__name(const struct bpf_program *prog)
9040 {
9041 	return prog->name;
9042 }
9043 
9044 const char *bpf_program__section_name(const struct bpf_program *prog)
9045 {
9046 	return prog->sec_name;
9047 }
9048 
9049 bool bpf_program__autoload(const struct bpf_program *prog)
9050 {
9051 	return prog->autoload;
9052 }
9053 
9054 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9055 {
9056 	if (prog->obj->loaded)
9057 		return libbpf_err(-EINVAL);
9058 
9059 	prog->autoload = autoload;
9060 	return 0;
9061 }
9062 
9063 bool bpf_program__autoattach(const struct bpf_program *prog)
9064 {
9065 	return prog->autoattach;
9066 }
9067 
9068 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9069 {
9070 	prog->autoattach = autoattach;
9071 }
9072 
9073 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9074 {
9075 	return prog->insns;
9076 }
9077 
9078 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9079 {
9080 	return prog->insns_cnt;
9081 }
9082 
9083 int bpf_program__set_insns(struct bpf_program *prog,
9084 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
9085 {
9086 	struct bpf_insn *insns;
9087 
9088 	if (prog->obj->loaded)
9089 		return -EBUSY;
9090 
9091 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9092 	/* NULL is a valid return from reallocarray if the new count is zero */
9093 	if (!insns && new_insn_cnt) {
9094 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9095 		return -ENOMEM;
9096 	}
9097 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9098 
9099 	prog->insns = insns;
9100 	prog->insns_cnt = new_insn_cnt;
9101 	return 0;
9102 }
9103 
9104 int bpf_program__fd(const struct bpf_program *prog)
9105 {
9106 	if (!prog)
9107 		return libbpf_err(-EINVAL);
9108 
9109 	if (prog->fd < 0)
9110 		return libbpf_err(-ENOENT);
9111 
9112 	return prog->fd;
9113 }
9114 
9115 __alias(bpf_program__type)
9116 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9117 
9118 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9119 {
9120 	return prog->type;
9121 }
9122 
9123 static size_t custom_sec_def_cnt;
9124 static struct bpf_sec_def *custom_sec_defs;
9125 static struct bpf_sec_def custom_fallback_def;
9126 static bool has_custom_fallback_def;
9127 static int last_custom_sec_def_handler_id;
9128 
9129 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9130 {
9131 	if (prog->obj->loaded)
9132 		return libbpf_err(-EBUSY);
9133 
9134 	/* if type is not changed, do nothing */
9135 	if (prog->type == type)
9136 		return 0;
9137 
9138 	prog->type = type;
9139 
9140 	/* If a program type was changed, we need to reset associated SEC()
9141 	 * handler, as it will be invalid now. The only exception is a generic
9142 	 * fallback handler, which by definition is program type-agnostic and
9143 	 * is a catch-all custom handler, optionally set by the application,
9144 	 * so should be able to handle any type of BPF program.
9145 	 */
9146 	if (prog->sec_def != &custom_fallback_def)
9147 		prog->sec_def = NULL;
9148 	return 0;
9149 }
9150 
9151 __alias(bpf_program__expected_attach_type)
9152 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9153 
9154 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9155 {
9156 	return prog->expected_attach_type;
9157 }
9158 
9159 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9160 					   enum bpf_attach_type type)
9161 {
9162 	if (prog->obj->loaded)
9163 		return libbpf_err(-EBUSY);
9164 
9165 	prog->expected_attach_type = type;
9166 	return 0;
9167 }
9168 
9169 __u32 bpf_program__flags(const struct bpf_program *prog)
9170 {
9171 	return prog->prog_flags;
9172 }
9173 
9174 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9175 {
9176 	if (prog->obj->loaded)
9177 		return libbpf_err(-EBUSY);
9178 
9179 	prog->prog_flags = flags;
9180 	return 0;
9181 }
9182 
9183 __u32 bpf_program__log_level(const struct bpf_program *prog)
9184 {
9185 	return prog->log_level;
9186 }
9187 
9188 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9189 {
9190 	if (prog->obj->loaded)
9191 		return libbpf_err(-EBUSY);
9192 
9193 	prog->log_level = log_level;
9194 	return 0;
9195 }
9196 
9197 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9198 {
9199 	*log_size = prog->log_size;
9200 	return prog->log_buf;
9201 }
9202 
9203 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9204 {
9205 	if (log_size && !log_buf)
9206 		return -EINVAL;
9207 	if (prog->log_size > UINT_MAX)
9208 		return -EINVAL;
9209 	if (prog->obj->loaded)
9210 		return -EBUSY;
9211 
9212 	prog->log_buf = log_buf;
9213 	prog->log_size = log_size;
9214 	return 0;
9215 }
9216 
9217 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
9218 	.sec = (char *)sec_pfx,						    \
9219 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9220 	.expected_attach_type = atype,					    \
9221 	.cookie = (long)(flags),					    \
9222 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
9223 	__VA_ARGS__							    \
9224 }
9225 
9226 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9227 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9228 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9229 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9230 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9231 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9232 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9233 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9234 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9235 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9236 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9237 
9238 static const struct bpf_sec_def section_defs[] = {
9239 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
9240 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9241 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9242 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9243 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9244 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
9245 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9246 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9247 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9248 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9249 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9250 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9251 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9252 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9253 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9254 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
9255 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
9256 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
9257 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9258 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9259 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9260 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9261 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9262 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9263 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9264 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9265 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9266 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9267 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9268 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9269 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9270 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9271 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9272 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9273 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9274 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9275 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9276 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9277 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9278 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9279 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9280 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9281 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9282 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9283 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9284 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9285 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9286 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9287 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9288 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9289 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9290 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9291 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9292 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9293 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
9294 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
9295 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
9296 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
9297 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
9298 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9299 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9300 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9301 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
9302 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9303 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9304 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9305 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9306 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9307 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
9308 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9309 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9310 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9311 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9312 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9313 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9314 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9315 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9316 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9317 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9318 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9319 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9320 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9321 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9322 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9323 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9324 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9325 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9326 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9327 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9328 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9329 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9330 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9331 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9332 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9333 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9334 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9335 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9336 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9337 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9338 };
9339 
9340 int libbpf_register_prog_handler(const char *sec,
9341 				 enum bpf_prog_type prog_type,
9342 				 enum bpf_attach_type exp_attach_type,
9343 				 const struct libbpf_prog_handler_opts *opts)
9344 {
9345 	struct bpf_sec_def *sec_def;
9346 
9347 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9348 		return libbpf_err(-EINVAL);
9349 
9350 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9351 		return libbpf_err(-E2BIG);
9352 
9353 	if (sec) {
9354 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9355 					      sizeof(*sec_def));
9356 		if (!sec_def)
9357 			return libbpf_err(-ENOMEM);
9358 
9359 		custom_sec_defs = sec_def;
9360 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9361 	} else {
9362 		if (has_custom_fallback_def)
9363 			return libbpf_err(-EBUSY);
9364 
9365 		sec_def = &custom_fallback_def;
9366 	}
9367 
9368 	sec_def->sec = sec ? strdup(sec) : NULL;
9369 	if (sec && !sec_def->sec)
9370 		return libbpf_err(-ENOMEM);
9371 
9372 	sec_def->prog_type = prog_type;
9373 	sec_def->expected_attach_type = exp_attach_type;
9374 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9375 
9376 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9377 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9378 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9379 
9380 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9381 
9382 	if (sec)
9383 		custom_sec_def_cnt++;
9384 	else
9385 		has_custom_fallback_def = true;
9386 
9387 	return sec_def->handler_id;
9388 }
9389 
9390 int libbpf_unregister_prog_handler(int handler_id)
9391 {
9392 	struct bpf_sec_def *sec_defs;
9393 	int i;
9394 
9395 	if (handler_id <= 0)
9396 		return libbpf_err(-EINVAL);
9397 
9398 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9399 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9400 		has_custom_fallback_def = false;
9401 		return 0;
9402 	}
9403 
9404 	for (i = 0; i < custom_sec_def_cnt; i++) {
9405 		if (custom_sec_defs[i].handler_id == handler_id)
9406 			break;
9407 	}
9408 
9409 	if (i == custom_sec_def_cnt)
9410 		return libbpf_err(-ENOENT);
9411 
9412 	free(custom_sec_defs[i].sec);
9413 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9414 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9415 	custom_sec_def_cnt--;
9416 
9417 	/* try to shrink the array, but it's ok if we couldn't */
9418 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9419 	/* if new count is zero, reallocarray can return a valid NULL result;
9420 	 * in this case the previous pointer will be freed, so we *have to*
9421 	 * reassign old pointer to the new value (even if it's NULL)
9422 	 */
9423 	if (sec_defs || custom_sec_def_cnt == 0)
9424 		custom_sec_defs = sec_defs;
9425 
9426 	return 0;
9427 }
9428 
9429 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9430 {
9431 	size_t len = strlen(sec_def->sec);
9432 
9433 	/* "type/" always has to have proper SEC("type/extras") form */
9434 	if (sec_def->sec[len - 1] == '/') {
9435 		if (str_has_pfx(sec_name, sec_def->sec))
9436 			return true;
9437 		return false;
9438 	}
9439 
9440 	/* "type+" means it can be either exact SEC("type") or
9441 	 * well-formed SEC("type/extras") with proper '/' separator
9442 	 */
9443 	if (sec_def->sec[len - 1] == '+') {
9444 		len--;
9445 		/* not even a prefix */
9446 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9447 			return false;
9448 		/* exact match or has '/' separator */
9449 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9450 			return true;
9451 		return false;
9452 	}
9453 
9454 	return strcmp(sec_name, sec_def->sec) == 0;
9455 }
9456 
9457 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9458 {
9459 	const struct bpf_sec_def *sec_def;
9460 	int i, n;
9461 
9462 	n = custom_sec_def_cnt;
9463 	for (i = 0; i < n; i++) {
9464 		sec_def = &custom_sec_defs[i];
9465 		if (sec_def_matches(sec_def, sec_name))
9466 			return sec_def;
9467 	}
9468 
9469 	n = ARRAY_SIZE(section_defs);
9470 	for (i = 0; i < n; i++) {
9471 		sec_def = &section_defs[i];
9472 		if (sec_def_matches(sec_def, sec_name))
9473 			return sec_def;
9474 	}
9475 
9476 	if (has_custom_fallback_def)
9477 		return &custom_fallback_def;
9478 
9479 	return NULL;
9480 }
9481 
9482 #define MAX_TYPE_NAME_SIZE 32
9483 
9484 static char *libbpf_get_type_names(bool attach_type)
9485 {
9486 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9487 	char *buf;
9488 
9489 	buf = malloc(len);
9490 	if (!buf)
9491 		return NULL;
9492 
9493 	buf[0] = '\0';
9494 	/* Forge string buf with all available names */
9495 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9496 		const struct bpf_sec_def *sec_def = &section_defs[i];
9497 
9498 		if (attach_type) {
9499 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9500 				continue;
9501 
9502 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9503 				continue;
9504 		}
9505 
9506 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9507 			free(buf);
9508 			return NULL;
9509 		}
9510 		strcat(buf, " ");
9511 		strcat(buf, section_defs[i].sec);
9512 	}
9513 
9514 	return buf;
9515 }
9516 
9517 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9518 			     enum bpf_attach_type *expected_attach_type)
9519 {
9520 	const struct bpf_sec_def *sec_def;
9521 	char *type_names;
9522 
9523 	if (!name)
9524 		return libbpf_err(-EINVAL);
9525 
9526 	sec_def = find_sec_def(name);
9527 	if (sec_def) {
9528 		*prog_type = sec_def->prog_type;
9529 		*expected_attach_type = sec_def->expected_attach_type;
9530 		return 0;
9531 	}
9532 
9533 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9534 	type_names = libbpf_get_type_names(false);
9535 	if (type_names != NULL) {
9536 		pr_debug("supported section(type) names are:%s\n", type_names);
9537 		free(type_names);
9538 	}
9539 
9540 	return libbpf_err(-ESRCH);
9541 }
9542 
9543 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9544 {
9545 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9546 		return NULL;
9547 
9548 	return attach_type_name[t];
9549 }
9550 
9551 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9552 {
9553 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9554 		return NULL;
9555 
9556 	return link_type_name[t];
9557 }
9558 
9559 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9560 {
9561 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9562 		return NULL;
9563 
9564 	return map_type_name[t];
9565 }
9566 
9567 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9568 {
9569 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9570 		return NULL;
9571 
9572 	return prog_type_name[t];
9573 }
9574 
9575 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9576 						     int sec_idx,
9577 						     size_t offset)
9578 {
9579 	struct bpf_map *map;
9580 	size_t i;
9581 
9582 	for (i = 0; i < obj->nr_maps; i++) {
9583 		map = &obj->maps[i];
9584 		if (!bpf_map__is_struct_ops(map))
9585 			continue;
9586 		if (map->sec_idx == sec_idx &&
9587 		    map->sec_offset <= offset &&
9588 		    offset - map->sec_offset < map->def.value_size)
9589 			return map;
9590 	}
9591 
9592 	return NULL;
9593 }
9594 
9595 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9596  * st_ops->data for shadow type.
9597  */
9598 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9599 					    Elf64_Shdr *shdr, Elf_Data *data)
9600 {
9601 	const struct btf_member *member;
9602 	struct bpf_struct_ops *st_ops;
9603 	struct bpf_program *prog;
9604 	unsigned int shdr_idx;
9605 	const struct btf *btf;
9606 	struct bpf_map *map;
9607 	unsigned int moff, insn_idx;
9608 	const char *name;
9609 	__u32 member_idx;
9610 	Elf64_Sym *sym;
9611 	Elf64_Rel *rel;
9612 	int i, nrels;
9613 
9614 	btf = obj->btf;
9615 	nrels = shdr->sh_size / shdr->sh_entsize;
9616 	for (i = 0; i < nrels; i++) {
9617 		rel = elf_rel_by_idx(data, i);
9618 		if (!rel) {
9619 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9620 			return -LIBBPF_ERRNO__FORMAT;
9621 		}
9622 
9623 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9624 		if (!sym) {
9625 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9626 				(size_t)ELF64_R_SYM(rel->r_info));
9627 			return -LIBBPF_ERRNO__FORMAT;
9628 		}
9629 
9630 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9631 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9632 		if (!map) {
9633 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9634 				(size_t)rel->r_offset);
9635 			return -EINVAL;
9636 		}
9637 
9638 		moff = rel->r_offset - map->sec_offset;
9639 		shdr_idx = sym->st_shndx;
9640 		st_ops = map->st_ops;
9641 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9642 			 map->name,
9643 			 (long long)(rel->r_info >> 32),
9644 			 (long long)sym->st_value,
9645 			 shdr_idx, (size_t)rel->r_offset,
9646 			 map->sec_offset, sym->st_name, name);
9647 
9648 		if (shdr_idx >= SHN_LORESERVE) {
9649 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9650 				map->name, (size_t)rel->r_offset, shdr_idx);
9651 			return -LIBBPF_ERRNO__RELOC;
9652 		}
9653 		if (sym->st_value % BPF_INSN_SZ) {
9654 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9655 				map->name, (unsigned long long)sym->st_value);
9656 			return -LIBBPF_ERRNO__FORMAT;
9657 		}
9658 		insn_idx = sym->st_value / BPF_INSN_SZ;
9659 
9660 		member = find_member_by_offset(st_ops->type, moff * 8);
9661 		if (!member) {
9662 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9663 				map->name, moff);
9664 			return -EINVAL;
9665 		}
9666 		member_idx = member - btf_members(st_ops->type);
9667 		name = btf__name_by_offset(btf, member->name_off);
9668 
9669 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9670 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9671 				map->name, name);
9672 			return -EINVAL;
9673 		}
9674 
9675 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9676 		if (!prog) {
9677 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9678 				map->name, shdr_idx, name);
9679 			return -EINVAL;
9680 		}
9681 
9682 		/* prevent the use of BPF prog with invalid type */
9683 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9684 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9685 				map->name, prog->name);
9686 			return -EINVAL;
9687 		}
9688 
9689 		st_ops->progs[member_idx] = prog;
9690 
9691 		/* st_ops->data will be exposed to users, being returned by
9692 		 * bpf_map__initial_value() as a pointer to the shadow
9693 		 * type. All function pointers in the original struct type
9694 		 * should be converted to a pointer to struct bpf_program
9695 		 * in the shadow type.
9696 		 */
9697 		*((struct bpf_program **)(st_ops->data + moff)) = prog;
9698 	}
9699 
9700 	return 0;
9701 }
9702 
9703 #define BTF_TRACE_PREFIX "btf_trace_"
9704 #define BTF_LSM_PREFIX "bpf_lsm_"
9705 #define BTF_ITER_PREFIX "bpf_iter_"
9706 #define BTF_MAX_NAME_SIZE 128
9707 
9708 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9709 				const char **prefix, int *kind)
9710 {
9711 	switch (attach_type) {
9712 	case BPF_TRACE_RAW_TP:
9713 		*prefix = BTF_TRACE_PREFIX;
9714 		*kind = BTF_KIND_TYPEDEF;
9715 		break;
9716 	case BPF_LSM_MAC:
9717 	case BPF_LSM_CGROUP:
9718 		*prefix = BTF_LSM_PREFIX;
9719 		*kind = BTF_KIND_FUNC;
9720 		break;
9721 	case BPF_TRACE_ITER:
9722 		*prefix = BTF_ITER_PREFIX;
9723 		*kind = BTF_KIND_FUNC;
9724 		break;
9725 	default:
9726 		*prefix = "";
9727 		*kind = BTF_KIND_FUNC;
9728 	}
9729 }
9730 
9731 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9732 				   const char *name, __u32 kind)
9733 {
9734 	char btf_type_name[BTF_MAX_NAME_SIZE];
9735 	int ret;
9736 
9737 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9738 		       "%s%s", prefix, name);
9739 	/* snprintf returns the number of characters written excluding the
9740 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9741 	 * indicates truncation.
9742 	 */
9743 	if (ret < 0 || ret >= sizeof(btf_type_name))
9744 		return -ENAMETOOLONG;
9745 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9746 }
9747 
9748 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9749 				     enum bpf_attach_type attach_type)
9750 {
9751 	const char *prefix;
9752 	int kind;
9753 
9754 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9755 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9756 }
9757 
9758 int libbpf_find_vmlinux_btf_id(const char *name,
9759 			       enum bpf_attach_type attach_type)
9760 {
9761 	struct btf *btf;
9762 	int err;
9763 
9764 	btf = btf__load_vmlinux_btf();
9765 	err = libbpf_get_error(btf);
9766 	if (err) {
9767 		pr_warn("vmlinux BTF is not found\n");
9768 		return libbpf_err(err);
9769 	}
9770 
9771 	err = find_attach_btf_id(btf, name, attach_type);
9772 	if (err <= 0)
9773 		pr_warn("%s is not found in vmlinux BTF\n", name);
9774 
9775 	btf__free(btf);
9776 	return libbpf_err(err);
9777 }
9778 
9779 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9780 {
9781 	struct bpf_prog_info info;
9782 	__u32 info_len = sizeof(info);
9783 	struct btf *btf;
9784 	int err;
9785 
9786 	memset(&info, 0, info_len);
9787 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9788 	if (err) {
9789 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9790 			attach_prog_fd, err);
9791 		return err;
9792 	}
9793 
9794 	err = -EINVAL;
9795 	if (!info.btf_id) {
9796 		pr_warn("The target program doesn't have BTF\n");
9797 		goto out;
9798 	}
9799 	btf = btf__load_from_kernel_by_id(info.btf_id);
9800 	err = libbpf_get_error(btf);
9801 	if (err) {
9802 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9803 		goto out;
9804 	}
9805 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9806 	btf__free(btf);
9807 	if (err <= 0) {
9808 		pr_warn("%s is not found in prog's BTF\n", name);
9809 		goto out;
9810 	}
9811 out:
9812 	return err;
9813 }
9814 
9815 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9816 			      enum bpf_attach_type attach_type,
9817 			      int *btf_obj_fd, int *btf_type_id)
9818 {
9819 	int ret, i;
9820 
9821 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9822 	if (ret > 0) {
9823 		*btf_obj_fd = 0; /* vmlinux BTF */
9824 		*btf_type_id = ret;
9825 		return 0;
9826 	}
9827 	if (ret != -ENOENT)
9828 		return ret;
9829 
9830 	ret = load_module_btfs(obj);
9831 	if (ret)
9832 		return ret;
9833 
9834 	for (i = 0; i < obj->btf_module_cnt; i++) {
9835 		const struct module_btf *mod = &obj->btf_modules[i];
9836 
9837 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9838 		if (ret > 0) {
9839 			*btf_obj_fd = mod->fd;
9840 			*btf_type_id = ret;
9841 			return 0;
9842 		}
9843 		if (ret == -ENOENT)
9844 			continue;
9845 
9846 		return ret;
9847 	}
9848 
9849 	return -ESRCH;
9850 }
9851 
9852 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9853 				     int *btf_obj_fd, int *btf_type_id)
9854 {
9855 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9856 	__u32 attach_prog_fd = prog->attach_prog_fd;
9857 	int err = 0;
9858 
9859 	/* BPF program's BTF ID */
9860 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9861 		if (!attach_prog_fd) {
9862 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9863 			return -EINVAL;
9864 		}
9865 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9866 		if (err < 0) {
9867 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9868 				 prog->name, attach_prog_fd, attach_name, err);
9869 			return err;
9870 		}
9871 		*btf_obj_fd = 0;
9872 		*btf_type_id = err;
9873 		return 0;
9874 	}
9875 
9876 	/* kernel/module BTF ID */
9877 	if (prog->obj->gen_loader) {
9878 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9879 		*btf_obj_fd = 0;
9880 		*btf_type_id = 1;
9881 	} else {
9882 		err = find_kernel_btf_id(prog->obj, attach_name,
9883 					 attach_type, btf_obj_fd,
9884 					 btf_type_id);
9885 	}
9886 	if (err) {
9887 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9888 			prog->name, attach_name, err);
9889 		return err;
9890 	}
9891 	return 0;
9892 }
9893 
9894 int libbpf_attach_type_by_name(const char *name,
9895 			       enum bpf_attach_type *attach_type)
9896 {
9897 	char *type_names;
9898 	const struct bpf_sec_def *sec_def;
9899 
9900 	if (!name)
9901 		return libbpf_err(-EINVAL);
9902 
9903 	sec_def = find_sec_def(name);
9904 	if (!sec_def) {
9905 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9906 		type_names = libbpf_get_type_names(true);
9907 		if (type_names != NULL) {
9908 			pr_debug("attachable section(type) names are:%s\n", type_names);
9909 			free(type_names);
9910 		}
9911 
9912 		return libbpf_err(-EINVAL);
9913 	}
9914 
9915 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9916 		return libbpf_err(-EINVAL);
9917 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9918 		return libbpf_err(-EINVAL);
9919 
9920 	*attach_type = sec_def->expected_attach_type;
9921 	return 0;
9922 }
9923 
9924 int bpf_map__fd(const struct bpf_map *map)
9925 {
9926 	if (!map)
9927 		return libbpf_err(-EINVAL);
9928 	if (!map_is_created(map))
9929 		return -1;
9930 	return map->fd;
9931 }
9932 
9933 static bool map_uses_real_name(const struct bpf_map *map)
9934 {
9935 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9936 	 * their user-visible name differs from kernel-visible name. Users see
9937 	 * such map's corresponding ELF section name as a map name.
9938 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9939 	 * maps to know which name has to be returned to the user.
9940 	 */
9941 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9942 		return true;
9943 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9944 		return true;
9945 	return false;
9946 }
9947 
9948 const char *bpf_map__name(const struct bpf_map *map)
9949 {
9950 	if (!map)
9951 		return NULL;
9952 
9953 	if (map_uses_real_name(map))
9954 		return map->real_name;
9955 
9956 	return map->name;
9957 }
9958 
9959 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9960 {
9961 	return map->def.type;
9962 }
9963 
9964 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9965 {
9966 	if (map_is_created(map))
9967 		return libbpf_err(-EBUSY);
9968 	map->def.type = type;
9969 	return 0;
9970 }
9971 
9972 __u32 bpf_map__map_flags(const struct bpf_map *map)
9973 {
9974 	return map->def.map_flags;
9975 }
9976 
9977 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9978 {
9979 	if (map_is_created(map))
9980 		return libbpf_err(-EBUSY);
9981 	map->def.map_flags = flags;
9982 	return 0;
9983 }
9984 
9985 __u64 bpf_map__map_extra(const struct bpf_map *map)
9986 {
9987 	return map->map_extra;
9988 }
9989 
9990 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9991 {
9992 	if (map_is_created(map))
9993 		return libbpf_err(-EBUSY);
9994 	map->map_extra = map_extra;
9995 	return 0;
9996 }
9997 
9998 __u32 bpf_map__numa_node(const struct bpf_map *map)
9999 {
10000 	return map->numa_node;
10001 }
10002 
10003 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10004 {
10005 	if (map_is_created(map))
10006 		return libbpf_err(-EBUSY);
10007 	map->numa_node = numa_node;
10008 	return 0;
10009 }
10010 
10011 __u32 bpf_map__key_size(const struct bpf_map *map)
10012 {
10013 	return map->def.key_size;
10014 }
10015 
10016 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10017 {
10018 	if (map_is_created(map))
10019 		return libbpf_err(-EBUSY);
10020 	map->def.key_size = size;
10021 	return 0;
10022 }
10023 
10024 __u32 bpf_map__value_size(const struct bpf_map *map)
10025 {
10026 	return map->def.value_size;
10027 }
10028 
10029 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10030 {
10031 	struct btf *btf;
10032 	struct btf_type *datasec_type, *var_type;
10033 	struct btf_var_secinfo *var;
10034 	const struct btf_type *array_type;
10035 	const struct btf_array *array;
10036 	int vlen, element_sz, new_array_id;
10037 	__u32 nr_elements;
10038 
10039 	/* check btf existence */
10040 	btf = bpf_object__btf(map->obj);
10041 	if (!btf)
10042 		return -ENOENT;
10043 
10044 	/* verify map is datasec */
10045 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10046 	if (!btf_is_datasec(datasec_type)) {
10047 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10048 			bpf_map__name(map));
10049 		return -EINVAL;
10050 	}
10051 
10052 	/* verify datasec has at least one var */
10053 	vlen = btf_vlen(datasec_type);
10054 	if (vlen == 0) {
10055 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10056 			bpf_map__name(map));
10057 		return -EINVAL;
10058 	}
10059 
10060 	/* verify last var in the datasec is an array */
10061 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10062 	var_type = btf_type_by_id(btf, var->type);
10063 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10064 	if (!btf_is_array(array_type)) {
10065 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
10066 			bpf_map__name(map));
10067 		return -EINVAL;
10068 	}
10069 
10070 	/* verify request size aligns with array */
10071 	array = btf_array(array_type);
10072 	element_sz = btf__resolve_size(btf, array->type);
10073 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10074 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10075 			bpf_map__name(map), element_sz, size);
10076 		return -EINVAL;
10077 	}
10078 
10079 	/* create a new array based on the existing array, but with new length */
10080 	nr_elements = (size - var->offset) / element_sz;
10081 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10082 	if (new_array_id < 0)
10083 		return new_array_id;
10084 
10085 	/* adding a new btf type invalidates existing pointers to btf objects,
10086 	 * so refresh pointers before proceeding
10087 	 */
10088 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10089 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10090 	var_type = btf_type_by_id(btf, var->type);
10091 
10092 	/* finally update btf info */
10093 	datasec_type->size = size;
10094 	var->size = size - var->offset;
10095 	var_type->type = new_array_id;
10096 
10097 	return 0;
10098 }
10099 
10100 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10101 {
10102 	if (map->obj->loaded || map->reused)
10103 		return libbpf_err(-EBUSY);
10104 
10105 	if (map->mmaped) {
10106 		size_t mmap_old_sz, mmap_new_sz;
10107 		int err;
10108 
10109 		if (map->def.type != BPF_MAP_TYPE_ARRAY)
10110 			return -EOPNOTSUPP;
10111 
10112 		mmap_old_sz = bpf_map_mmap_sz(map);
10113 		mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10114 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10115 		if (err) {
10116 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10117 				bpf_map__name(map), err);
10118 			return err;
10119 		}
10120 		err = map_btf_datasec_resize(map, size);
10121 		if (err && err != -ENOENT) {
10122 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10123 				bpf_map__name(map), err);
10124 			map->btf_value_type_id = 0;
10125 			map->btf_key_type_id = 0;
10126 		}
10127 	}
10128 
10129 	map->def.value_size = size;
10130 	return 0;
10131 }
10132 
10133 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10134 {
10135 	return map ? map->btf_key_type_id : 0;
10136 }
10137 
10138 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10139 {
10140 	return map ? map->btf_value_type_id : 0;
10141 }
10142 
10143 int bpf_map__set_initial_value(struct bpf_map *map,
10144 			       const void *data, size_t size)
10145 {
10146 	size_t actual_sz;
10147 
10148 	if (map->obj->loaded || map->reused)
10149 		return libbpf_err(-EBUSY);
10150 
10151 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10152 		return libbpf_err(-EINVAL);
10153 
10154 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10155 		actual_sz = map->obj->arena_data_sz;
10156 	else
10157 		actual_sz = map->def.value_size;
10158 	if (size != actual_sz)
10159 		return libbpf_err(-EINVAL);
10160 
10161 	memcpy(map->mmaped, data, size);
10162 	return 0;
10163 }
10164 
10165 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10166 {
10167 	if (bpf_map__is_struct_ops(map)) {
10168 		if (psize)
10169 			*psize = map->def.value_size;
10170 		return map->st_ops->data;
10171 	}
10172 
10173 	if (!map->mmaped)
10174 		return NULL;
10175 
10176 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10177 		*psize = map->obj->arena_data_sz;
10178 	else
10179 		*psize = map->def.value_size;
10180 
10181 	return map->mmaped;
10182 }
10183 
10184 bool bpf_map__is_internal(const struct bpf_map *map)
10185 {
10186 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10187 }
10188 
10189 __u32 bpf_map__ifindex(const struct bpf_map *map)
10190 {
10191 	return map->map_ifindex;
10192 }
10193 
10194 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10195 {
10196 	if (map_is_created(map))
10197 		return libbpf_err(-EBUSY);
10198 	map->map_ifindex = ifindex;
10199 	return 0;
10200 }
10201 
10202 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10203 {
10204 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
10205 		pr_warn("error: unsupported map type\n");
10206 		return libbpf_err(-EINVAL);
10207 	}
10208 	if (map->inner_map_fd != -1) {
10209 		pr_warn("error: inner_map_fd already specified\n");
10210 		return libbpf_err(-EINVAL);
10211 	}
10212 	if (map->inner_map) {
10213 		bpf_map__destroy(map->inner_map);
10214 		zfree(&map->inner_map);
10215 	}
10216 	map->inner_map_fd = fd;
10217 	return 0;
10218 }
10219 
10220 static struct bpf_map *
10221 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10222 {
10223 	ssize_t idx;
10224 	struct bpf_map *s, *e;
10225 
10226 	if (!obj || !obj->maps)
10227 		return errno = EINVAL, NULL;
10228 
10229 	s = obj->maps;
10230 	e = obj->maps + obj->nr_maps;
10231 
10232 	if ((m < s) || (m >= e)) {
10233 		pr_warn("error in %s: map handler doesn't belong to object\n",
10234 			 __func__);
10235 		return errno = EINVAL, NULL;
10236 	}
10237 
10238 	idx = (m - obj->maps) + i;
10239 	if (idx >= obj->nr_maps || idx < 0)
10240 		return NULL;
10241 	return &obj->maps[idx];
10242 }
10243 
10244 struct bpf_map *
10245 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10246 {
10247 	if (prev == NULL)
10248 		return obj->maps;
10249 
10250 	return __bpf_map__iter(prev, obj, 1);
10251 }
10252 
10253 struct bpf_map *
10254 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10255 {
10256 	if (next == NULL) {
10257 		if (!obj->nr_maps)
10258 			return NULL;
10259 		return obj->maps + obj->nr_maps - 1;
10260 	}
10261 
10262 	return __bpf_map__iter(next, obj, -1);
10263 }
10264 
10265 struct bpf_map *
10266 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10267 {
10268 	struct bpf_map *pos;
10269 
10270 	bpf_object__for_each_map(pos, obj) {
10271 		/* if it's a special internal map name (which always starts
10272 		 * with dot) then check if that special name matches the
10273 		 * real map name (ELF section name)
10274 		 */
10275 		if (name[0] == '.') {
10276 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
10277 				return pos;
10278 			continue;
10279 		}
10280 		/* otherwise map name has to be an exact match */
10281 		if (map_uses_real_name(pos)) {
10282 			if (strcmp(pos->real_name, name) == 0)
10283 				return pos;
10284 			continue;
10285 		}
10286 		if (strcmp(pos->name, name) == 0)
10287 			return pos;
10288 	}
10289 	return errno = ENOENT, NULL;
10290 }
10291 
10292 int
10293 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10294 {
10295 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10296 }
10297 
10298 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10299 			   size_t value_sz, bool check_value_sz)
10300 {
10301 	if (!map_is_created(map)) /* map is not yet created */
10302 		return -ENOENT;
10303 
10304 	if (map->def.key_size != key_sz) {
10305 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10306 			map->name, key_sz, map->def.key_size);
10307 		return -EINVAL;
10308 	}
10309 
10310 	if (!check_value_sz)
10311 		return 0;
10312 
10313 	switch (map->def.type) {
10314 	case BPF_MAP_TYPE_PERCPU_ARRAY:
10315 	case BPF_MAP_TYPE_PERCPU_HASH:
10316 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10317 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10318 		int num_cpu = libbpf_num_possible_cpus();
10319 		size_t elem_sz = roundup(map->def.value_size, 8);
10320 
10321 		if (value_sz != num_cpu * elem_sz) {
10322 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10323 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10324 			return -EINVAL;
10325 		}
10326 		break;
10327 	}
10328 	default:
10329 		if (map->def.value_size != value_sz) {
10330 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10331 				map->name, value_sz, map->def.value_size);
10332 			return -EINVAL;
10333 		}
10334 		break;
10335 	}
10336 	return 0;
10337 }
10338 
10339 int bpf_map__lookup_elem(const struct bpf_map *map,
10340 			 const void *key, size_t key_sz,
10341 			 void *value, size_t value_sz, __u64 flags)
10342 {
10343 	int err;
10344 
10345 	err = validate_map_op(map, key_sz, value_sz, true);
10346 	if (err)
10347 		return libbpf_err(err);
10348 
10349 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10350 }
10351 
10352 int bpf_map__update_elem(const struct bpf_map *map,
10353 			 const void *key, size_t key_sz,
10354 			 const void *value, size_t value_sz, __u64 flags)
10355 {
10356 	int err;
10357 
10358 	err = validate_map_op(map, key_sz, value_sz, true);
10359 	if (err)
10360 		return libbpf_err(err);
10361 
10362 	return bpf_map_update_elem(map->fd, key, value, flags);
10363 }
10364 
10365 int bpf_map__delete_elem(const struct bpf_map *map,
10366 			 const void *key, size_t key_sz, __u64 flags)
10367 {
10368 	int err;
10369 
10370 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10371 	if (err)
10372 		return libbpf_err(err);
10373 
10374 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10375 }
10376 
10377 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10378 				    const void *key, size_t key_sz,
10379 				    void *value, size_t value_sz, __u64 flags)
10380 {
10381 	int err;
10382 
10383 	err = validate_map_op(map, key_sz, value_sz, true);
10384 	if (err)
10385 		return libbpf_err(err);
10386 
10387 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10388 }
10389 
10390 int bpf_map__get_next_key(const struct bpf_map *map,
10391 			  const void *cur_key, void *next_key, size_t key_sz)
10392 {
10393 	int err;
10394 
10395 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10396 	if (err)
10397 		return libbpf_err(err);
10398 
10399 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10400 }
10401 
10402 long libbpf_get_error(const void *ptr)
10403 {
10404 	if (!IS_ERR_OR_NULL(ptr))
10405 		return 0;
10406 
10407 	if (IS_ERR(ptr))
10408 		errno = -PTR_ERR(ptr);
10409 
10410 	/* If ptr == NULL, then errno should be already set by the failing
10411 	 * API, because libbpf never returns NULL on success and it now always
10412 	 * sets errno on error. So no extra errno handling for ptr == NULL
10413 	 * case.
10414 	 */
10415 	return -errno;
10416 }
10417 
10418 /* Replace link's underlying BPF program with the new one */
10419 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10420 {
10421 	int ret;
10422 
10423 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10424 	return libbpf_err_errno(ret);
10425 }
10426 
10427 /* Release "ownership" of underlying BPF resource (typically, BPF program
10428  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10429  * link, when destructed through bpf_link__destroy() call won't attempt to
10430  * detach/unregisted that BPF resource. This is useful in situations where,
10431  * say, attached BPF program has to outlive userspace program that attached it
10432  * in the system. Depending on type of BPF program, though, there might be
10433  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10434  * exit of userspace program doesn't trigger automatic detachment and clean up
10435  * inside the kernel.
10436  */
10437 void bpf_link__disconnect(struct bpf_link *link)
10438 {
10439 	link->disconnected = true;
10440 }
10441 
10442 int bpf_link__destroy(struct bpf_link *link)
10443 {
10444 	int err = 0;
10445 
10446 	if (IS_ERR_OR_NULL(link))
10447 		return 0;
10448 
10449 	if (!link->disconnected && link->detach)
10450 		err = link->detach(link);
10451 	if (link->pin_path)
10452 		free(link->pin_path);
10453 	if (link->dealloc)
10454 		link->dealloc(link);
10455 	else
10456 		free(link);
10457 
10458 	return libbpf_err(err);
10459 }
10460 
10461 int bpf_link__fd(const struct bpf_link *link)
10462 {
10463 	return link->fd;
10464 }
10465 
10466 const char *bpf_link__pin_path(const struct bpf_link *link)
10467 {
10468 	return link->pin_path;
10469 }
10470 
10471 static int bpf_link__detach_fd(struct bpf_link *link)
10472 {
10473 	return libbpf_err_errno(close(link->fd));
10474 }
10475 
10476 struct bpf_link *bpf_link__open(const char *path)
10477 {
10478 	struct bpf_link *link;
10479 	int fd;
10480 
10481 	fd = bpf_obj_get(path);
10482 	if (fd < 0) {
10483 		fd = -errno;
10484 		pr_warn("failed to open link at %s: %d\n", path, fd);
10485 		return libbpf_err_ptr(fd);
10486 	}
10487 
10488 	link = calloc(1, sizeof(*link));
10489 	if (!link) {
10490 		close(fd);
10491 		return libbpf_err_ptr(-ENOMEM);
10492 	}
10493 	link->detach = &bpf_link__detach_fd;
10494 	link->fd = fd;
10495 
10496 	link->pin_path = strdup(path);
10497 	if (!link->pin_path) {
10498 		bpf_link__destroy(link);
10499 		return libbpf_err_ptr(-ENOMEM);
10500 	}
10501 
10502 	return link;
10503 }
10504 
10505 int bpf_link__detach(struct bpf_link *link)
10506 {
10507 	return bpf_link_detach(link->fd) ? -errno : 0;
10508 }
10509 
10510 int bpf_link__pin(struct bpf_link *link, const char *path)
10511 {
10512 	int err;
10513 
10514 	if (link->pin_path)
10515 		return libbpf_err(-EBUSY);
10516 	err = make_parent_dir(path);
10517 	if (err)
10518 		return libbpf_err(err);
10519 	err = check_path(path);
10520 	if (err)
10521 		return libbpf_err(err);
10522 
10523 	link->pin_path = strdup(path);
10524 	if (!link->pin_path)
10525 		return libbpf_err(-ENOMEM);
10526 
10527 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10528 		err = -errno;
10529 		zfree(&link->pin_path);
10530 		return libbpf_err(err);
10531 	}
10532 
10533 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10534 	return 0;
10535 }
10536 
10537 int bpf_link__unpin(struct bpf_link *link)
10538 {
10539 	int err;
10540 
10541 	if (!link->pin_path)
10542 		return libbpf_err(-EINVAL);
10543 
10544 	err = unlink(link->pin_path);
10545 	if (err != 0)
10546 		return -errno;
10547 
10548 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10549 	zfree(&link->pin_path);
10550 	return 0;
10551 }
10552 
10553 struct bpf_link_perf {
10554 	struct bpf_link link;
10555 	int perf_event_fd;
10556 	/* legacy kprobe support: keep track of probe identifier and type */
10557 	char *legacy_probe_name;
10558 	bool legacy_is_kprobe;
10559 	bool legacy_is_retprobe;
10560 };
10561 
10562 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10563 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10564 
10565 static int bpf_link_perf_detach(struct bpf_link *link)
10566 {
10567 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10568 	int err = 0;
10569 
10570 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10571 		err = -errno;
10572 
10573 	if (perf_link->perf_event_fd != link->fd)
10574 		close(perf_link->perf_event_fd);
10575 	close(link->fd);
10576 
10577 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10578 	if (perf_link->legacy_probe_name) {
10579 		if (perf_link->legacy_is_kprobe) {
10580 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10581 							 perf_link->legacy_is_retprobe);
10582 		} else {
10583 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10584 							 perf_link->legacy_is_retprobe);
10585 		}
10586 	}
10587 
10588 	return err;
10589 }
10590 
10591 static void bpf_link_perf_dealloc(struct bpf_link *link)
10592 {
10593 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10594 
10595 	free(perf_link->legacy_probe_name);
10596 	free(perf_link);
10597 }
10598 
10599 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10600 						     const struct bpf_perf_event_opts *opts)
10601 {
10602 	char errmsg[STRERR_BUFSIZE];
10603 	struct bpf_link_perf *link;
10604 	int prog_fd, link_fd = -1, err;
10605 	bool force_ioctl_attach;
10606 
10607 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10608 		return libbpf_err_ptr(-EINVAL);
10609 
10610 	if (pfd < 0) {
10611 		pr_warn("prog '%s': invalid perf event FD %d\n",
10612 			prog->name, pfd);
10613 		return libbpf_err_ptr(-EINVAL);
10614 	}
10615 	prog_fd = bpf_program__fd(prog);
10616 	if (prog_fd < 0) {
10617 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10618 			prog->name);
10619 		return libbpf_err_ptr(-EINVAL);
10620 	}
10621 
10622 	link = calloc(1, sizeof(*link));
10623 	if (!link)
10624 		return libbpf_err_ptr(-ENOMEM);
10625 	link->link.detach = &bpf_link_perf_detach;
10626 	link->link.dealloc = &bpf_link_perf_dealloc;
10627 	link->perf_event_fd = pfd;
10628 
10629 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10630 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10631 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10632 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10633 
10634 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10635 		if (link_fd < 0) {
10636 			err = -errno;
10637 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10638 				prog->name, pfd,
10639 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10640 			goto err_out;
10641 		}
10642 		link->link.fd = link_fd;
10643 	} else {
10644 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10645 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10646 			err = -EOPNOTSUPP;
10647 			goto err_out;
10648 		}
10649 
10650 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10651 			err = -errno;
10652 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10653 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10654 			if (err == -EPROTO)
10655 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10656 					prog->name, pfd);
10657 			goto err_out;
10658 		}
10659 		link->link.fd = pfd;
10660 	}
10661 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10662 		err = -errno;
10663 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10664 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10665 		goto err_out;
10666 	}
10667 
10668 	return &link->link;
10669 err_out:
10670 	if (link_fd >= 0)
10671 		close(link_fd);
10672 	free(link);
10673 	return libbpf_err_ptr(err);
10674 }
10675 
10676 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10677 {
10678 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10679 }
10680 
10681 /*
10682  * this function is expected to parse integer in the range of [0, 2^31-1] from
10683  * given file using scanf format string fmt. If actual parsed value is
10684  * negative, the result might be indistinguishable from error
10685  */
10686 static int parse_uint_from_file(const char *file, const char *fmt)
10687 {
10688 	char buf[STRERR_BUFSIZE];
10689 	int err, ret;
10690 	FILE *f;
10691 
10692 	f = fopen(file, "re");
10693 	if (!f) {
10694 		err = -errno;
10695 		pr_debug("failed to open '%s': %s\n", file,
10696 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10697 		return err;
10698 	}
10699 	err = fscanf(f, fmt, &ret);
10700 	if (err != 1) {
10701 		err = err == EOF ? -EIO : -errno;
10702 		pr_debug("failed to parse '%s': %s\n", file,
10703 			libbpf_strerror_r(err, buf, sizeof(buf)));
10704 		fclose(f);
10705 		return err;
10706 	}
10707 	fclose(f);
10708 	return ret;
10709 }
10710 
10711 static int determine_kprobe_perf_type(void)
10712 {
10713 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10714 
10715 	return parse_uint_from_file(file, "%d\n");
10716 }
10717 
10718 static int determine_uprobe_perf_type(void)
10719 {
10720 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10721 
10722 	return parse_uint_from_file(file, "%d\n");
10723 }
10724 
10725 static int determine_kprobe_retprobe_bit(void)
10726 {
10727 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10728 
10729 	return parse_uint_from_file(file, "config:%d\n");
10730 }
10731 
10732 static int determine_uprobe_retprobe_bit(void)
10733 {
10734 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10735 
10736 	return parse_uint_from_file(file, "config:%d\n");
10737 }
10738 
10739 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10740 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10741 
10742 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10743 				 uint64_t offset, int pid, size_t ref_ctr_off)
10744 {
10745 	const size_t attr_sz = sizeof(struct perf_event_attr);
10746 	struct perf_event_attr attr;
10747 	char errmsg[STRERR_BUFSIZE];
10748 	int type, pfd;
10749 
10750 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10751 		return -EINVAL;
10752 
10753 	memset(&attr, 0, attr_sz);
10754 
10755 	type = uprobe ? determine_uprobe_perf_type()
10756 		      : determine_kprobe_perf_type();
10757 	if (type < 0) {
10758 		pr_warn("failed to determine %s perf type: %s\n",
10759 			uprobe ? "uprobe" : "kprobe",
10760 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10761 		return type;
10762 	}
10763 	if (retprobe) {
10764 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10765 				 : determine_kprobe_retprobe_bit();
10766 
10767 		if (bit < 0) {
10768 			pr_warn("failed to determine %s retprobe bit: %s\n",
10769 				uprobe ? "uprobe" : "kprobe",
10770 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10771 			return bit;
10772 		}
10773 		attr.config |= 1 << bit;
10774 	}
10775 	attr.size = attr_sz;
10776 	attr.type = type;
10777 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10778 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10779 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10780 
10781 	/* pid filter is meaningful only for uprobes */
10782 	pfd = syscall(__NR_perf_event_open, &attr,
10783 		      pid < 0 ? -1 : pid /* pid */,
10784 		      pid == -1 ? 0 : -1 /* cpu */,
10785 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10786 	return pfd >= 0 ? pfd : -errno;
10787 }
10788 
10789 static int append_to_file(const char *file, const char *fmt, ...)
10790 {
10791 	int fd, n, err = 0;
10792 	va_list ap;
10793 	char buf[1024];
10794 
10795 	va_start(ap, fmt);
10796 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10797 	va_end(ap);
10798 
10799 	if (n < 0 || n >= sizeof(buf))
10800 		return -EINVAL;
10801 
10802 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10803 	if (fd < 0)
10804 		return -errno;
10805 
10806 	if (write(fd, buf, n) < 0)
10807 		err = -errno;
10808 
10809 	close(fd);
10810 	return err;
10811 }
10812 
10813 #define DEBUGFS "/sys/kernel/debug/tracing"
10814 #define TRACEFS "/sys/kernel/tracing"
10815 
10816 static bool use_debugfs(void)
10817 {
10818 	static int has_debugfs = -1;
10819 
10820 	if (has_debugfs < 0)
10821 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10822 
10823 	return has_debugfs == 1;
10824 }
10825 
10826 static const char *tracefs_path(void)
10827 {
10828 	return use_debugfs() ? DEBUGFS : TRACEFS;
10829 }
10830 
10831 static const char *tracefs_kprobe_events(void)
10832 {
10833 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10834 }
10835 
10836 static const char *tracefs_uprobe_events(void)
10837 {
10838 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10839 }
10840 
10841 static const char *tracefs_available_filter_functions(void)
10842 {
10843 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10844 			     : TRACEFS"/available_filter_functions";
10845 }
10846 
10847 static const char *tracefs_available_filter_functions_addrs(void)
10848 {
10849 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10850 			     : TRACEFS"/available_filter_functions_addrs";
10851 }
10852 
10853 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10854 					 const char *kfunc_name, size_t offset)
10855 {
10856 	static int index = 0;
10857 	int i;
10858 
10859 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10860 		 __sync_fetch_and_add(&index, 1));
10861 
10862 	/* sanitize binary_path in the probe name */
10863 	for (i = 0; buf[i]; i++) {
10864 		if (!isalnum(buf[i]))
10865 			buf[i] = '_';
10866 	}
10867 }
10868 
10869 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10870 				   const char *kfunc_name, size_t offset)
10871 {
10872 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10873 			      retprobe ? 'r' : 'p',
10874 			      retprobe ? "kretprobes" : "kprobes",
10875 			      probe_name, kfunc_name, offset);
10876 }
10877 
10878 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10879 {
10880 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10881 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10882 }
10883 
10884 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10885 {
10886 	char file[256];
10887 
10888 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10889 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10890 
10891 	return parse_uint_from_file(file, "%d\n");
10892 }
10893 
10894 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10895 					 const char *kfunc_name, size_t offset, int pid)
10896 {
10897 	const size_t attr_sz = sizeof(struct perf_event_attr);
10898 	struct perf_event_attr attr;
10899 	char errmsg[STRERR_BUFSIZE];
10900 	int type, pfd, err;
10901 
10902 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10903 	if (err < 0) {
10904 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10905 			kfunc_name, offset,
10906 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10907 		return err;
10908 	}
10909 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10910 	if (type < 0) {
10911 		err = type;
10912 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10913 			kfunc_name, offset,
10914 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10915 		goto err_clean_legacy;
10916 	}
10917 
10918 	memset(&attr, 0, attr_sz);
10919 	attr.size = attr_sz;
10920 	attr.config = type;
10921 	attr.type = PERF_TYPE_TRACEPOINT;
10922 
10923 	pfd = syscall(__NR_perf_event_open, &attr,
10924 		      pid < 0 ? -1 : pid, /* pid */
10925 		      pid == -1 ? 0 : -1, /* cpu */
10926 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10927 	if (pfd < 0) {
10928 		err = -errno;
10929 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10930 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10931 		goto err_clean_legacy;
10932 	}
10933 	return pfd;
10934 
10935 err_clean_legacy:
10936 	/* Clear the newly added legacy kprobe_event */
10937 	remove_kprobe_event_legacy(probe_name, retprobe);
10938 	return err;
10939 }
10940 
10941 static const char *arch_specific_syscall_pfx(void)
10942 {
10943 #if defined(__x86_64__)
10944 	return "x64";
10945 #elif defined(__i386__)
10946 	return "ia32";
10947 #elif defined(__s390x__)
10948 	return "s390x";
10949 #elif defined(__s390__)
10950 	return "s390";
10951 #elif defined(__arm__)
10952 	return "arm";
10953 #elif defined(__aarch64__)
10954 	return "arm64";
10955 #elif defined(__mips__)
10956 	return "mips";
10957 #elif defined(__riscv)
10958 	return "riscv";
10959 #elif defined(__powerpc__)
10960 	return "powerpc";
10961 #elif defined(__powerpc64__)
10962 	return "powerpc64";
10963 #else
10964 	return NULL;
10965 #endif
10966 }
10967 
10968 int probe_kern_syscall_wrapper(int token_fd)
10969 {
10970 	char syscall_name[64];
10971 	const char *ksys_pfx;
10972 
10973 	ksys_pfx = arch_specific_syscall_pfx();
10974 	if (!ksys_pfx)
10975 		return 0;
10976 
10977 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10978 
10979 	if (determine_kprobe_perf_type() >= 0) {
10980 		int pfd;
10981 
10982 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10983 		if (pfd >= 0)
10984 			close(pfd);
10985 
10986 		return pfd >= 0 ? 1 : 0;
10987 	} else { /* legacy mode */
10988 		char probe_name[128];
10989 
10990 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10991 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10992 			return 0;
10993 
10994 		(void)remove_kprobe_event_legacy(probe_name, false);
10995 		return 1;
10996 	}
10997 }
10998 
10999 struct bpf_link *
11000 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11001 				const char *func_name,
11002 				const struct bpf_kprobe_opts *opts)
11003 {
11004 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11005 	enum probe_attach_mode attach_mode;
11006 	char errmsg[STRERR_BUFSIZE];
11007 	char *legacy_probe = NULL;
11008 	struct bpf_link *link;
11009 	size_t offset;
11010 	bool retprobe, legacy;
11011 	int pfd, err;
11012 
11013 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
11014 		return libbpf_err_ptr(-EINVAL);
11015 
11016 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11017 	retprobe = OPTS_GET(opts, retprobe, false);
11018 	offset = OPTS_GET(opts, offset, 0);
11019 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11020 
11021 	legacy = determine_kprobe_perf_type() < 0;
11022 	switch (attach_mode) {
11023 	case PROBE_ATTACH_MODE_LEGACY:
11024 		legacy = true;
11025 		pe_opts.force_ioctl_attach = true;
11026 		break;
11027 	case PROBE_ATTACH_MODE_PERF:
11028 		if (legacy)
11029 			return libbpf_err_ptr(-ENOTSUP);
11030 		pe_opts.force_ioctl_attach = true;
11031 		break;
11032 	case PROBE_ATTACH_MODE_LINK:
11033 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11034 			return libbpf_err_ptr(-ENOTSUP);
11035 		break;
11036 	case PROBE_ATTACH_MODE_DEFAULT:
11037 		break;
11038 	default:
11039 		return libbpf_err_ptr(-EINVAL);
11040 	}
11041 
11042 	if (!legacy) {
11043 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11044 					    func_name, offset,
11045 					    -1 /* pid */, 0 /* ref_ctr_off */);
11046 	} else {
11047 		char probe_name[256];
11048 
11049 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11050 					     func_name, offset);
11051 
11052 		legacy_probe = strdup(probe_name);
11053 		if (!legacy_probe)
11054 			return libbpf_err_ptr(-ENOMEM);
11055 
11056 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11057 						    offset, -1 /* pid */);
11058 	}
11059 	if (pfd < 0) {
11060 		err = -errno;
11061 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11062 			prog->name, retprobe ? "kretprobe" : "kprobe",
11063 			func_name, offset,
11064 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11065 		goto err_out;
11066 	}
11067 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11068 	err = libbpf_get_error(link);
11069 	if (err) {
11070 		close(pfd);
11071 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11072 			prog->name, retprobe ? "kretprobe" : "kprobe",
11073 			func_name, offset,
11074 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11075 		goto err_clean_legacy;
11076 	}
11077 	if (legacy) {
11078 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11079 
11080 		perf_link->legacy_probe_name = legacy_probe;
11081 		perf_link->legacy_is_kprobe = true;
11082 		perf_link->legacy_is_retprobe = retprobe;
11083 	}
11084 
11085 	return link;
11086 
11087 err_clean_legacy:
11088 	if (legacy)
11089 		remove_kprobe_event_legacy(legacy_probe, retprobe);
11090 err_out:
11091 	free(legacy_probe);
11092 	return libbpf_err_ptr(err);
11093 }
11094 
11095 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11096 					    bool retprobe,
11097 					    const char *func_name)
11098 {
11099 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11100 		.retprobe = retprobe,
11101 	);
11102 
11103 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11104 }
11105 
11106 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11107 					      const char *syscall_name,
11108 					      const struct bpf_ksyscall_opts *opts)
11109 {
11110 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11111 	char func_name[128];
11112 
11113 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11114 		return libbpf_err_ptr(-EINVAL);
11115 
11116 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11117 		/* arch_specific_syscall_pfx() should never return NULL here
11118 		 * because it is guarded by kernel_supports(). However, since
11119 		 * compiler does not know that we have an explicit conditional
11120 		 * as well.
11121 		 */
11122 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11123 			 arch_specific_syscall_pfx() ? : "", syscall_name);
11124 	} else {
11125 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11126 	}
11127 
11128 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11129 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11130 
11131 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11132 }
11133 
11134 /* Adapted from perf/util/string.c */
11135 bool glob_match(const char *str, const char *pat)
11136 {
11137 	while (*str && *pat && *pat != '*') {
11138 		if (*pat == '?') {      /* Matches any single character */
11139 			str++;
11140 			pat++;
11141 			continue;
11142 		}
11143 		if (*str != *pat)
11144 			return false;
11145 		str++;
11146 		pat++;
11147 	}
11148 	/* Check wild card */
11149 	if (*pat == '*') {
11150 		while (*pat == '*')
11151 			pat++;
11152 		if (!*pat) /* Tail wild card matches all */
11153 			return true;
11154 		while (*str)
11155 			if (glob_match(str++, pat))
11156 				return true;
11157 	}
11158 	return !*str && !*pat;
11159 }
11160 
11161 struct kprobe_multi_resolve {
11162 	const char *pattern;
11163 	unsigned long *addrs;
11164 	size_t cap;
11165 	size_t cnt;
11166 };
11167 
11168 struct avail_kallsyms_data {
11169 	char **syms;
11170 	size_t cnt;
11171 	struct kprobe_multi_resolve *res;
11172 };
11173 
11174 static int avail_func_cmp(const void *a, const void *b)
11175 {
11176 	return strcmp(*(const char **)a, *(const char **)b);
11177 }
11178 
11179 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11180 			     const char *sym_name, void *ctx)
11181 {
11182 	struct avail_kallsyms_data *data = ctx;
11183 	struct kprobe_multi_resolve *res = data->res;
11184 	int err;
11185 
11186 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11187 		return 0;
11188 
11189 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11190 	if (err)
11191 		return err;
11192 
11193 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
11194 	return 0;
11195 }
11196 
11197 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11198 {
11199 	const char *available_functions_file = tracefs_available_filter_functions();
11200 	struct avail_kallsyms_data data;
11201 	char sym_name[500];
11202 	FILE *f;
11203 	int err = 0, ret, i;
11204 	char **syms = NULL;
11205 	size_t cap = 0, cnt = 0;
11206 
11207 	f = fopen(available_functions_file, "re");
11208 	if (!f) {
11209 		err = -errno;
11210 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
11211 		return err;
11212 	}
11213 
11214 	while (true) {
11215 		char *name;
11216 
11217 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11218 		if (ret == EOF && feof(f))
11219 			break;
11220 
11221 		if (ret != 1) {
11222 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11223 			err = -EINVAL;
11224 			goto cleanup;
11225 		}
11226 
11227 		if (!glob_match(sym_name, res->pattern))
11228 			continue;
11229 
11230 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11231 		if (err)
11232 			goto cleanup;
11233 
11234 		name = strdup(sym_name);
11235 		if (!name) {
11236 			err = -errno;
11237 			goto cleanup;
11238 		}
11239 
11240 		syms[cnt++] = name;
11241 	}
11242 
11243 	/* no entries found, bail out */
11244 	if (cnt == 0) {
11245 		err = -ENOENT;
11246 		goto cleanup;
11247 	}
11248 
11249 	/* sort available functions */
11250 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11251 
11252 	data.syms = syms;
11253 	data.res = res;
11254 	data.cnt = cnt;
11255 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11256 
11257 	if (res->cnt == 0)
11258 		err = -ENOENT;
11259 
11260 cleanup:
11261 	for (i = 0; i < cnt; i++)
11262 		free((char *)syms[i]);
11263 	free(syms);
11264 
11265 	fclose(f);
11266 	return err;
11267 }
11268 
11269 static bool has_available_filter_functions_addrs(void)
11270 {
11271 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11272 }
11273 
11274 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11275 {
11276 	const char *available_path = tracefs_available_filter_functions_addrs();
11277 	char sym_name[500];
11278 	FILE *f;
11279 	int ret, err = 0;
11280 	unsigned long long sym_addr;
11281 
11282 	f = fopen(available_path, "re");
11283 	if (!f) {
11284 		err = -errno;
11285 		pr_warn("failed to open %s: %d\n", available_path, err);
11286 		return err;
11287 	}
11288 
11289 	while (true) {
11290 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11291 		if (ret == EOF && feof(f))
11292 			break;
11293 
11294 		if (ret != 2) {
11295 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11296 				ret);
11297 			err = -EINVAL;
11298 			goto cleanup;
11299 		}
11300 
11301 		if (!glob_match(sym_name, res->pattern))
11302 			continue;
11303 
11304 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11305 					sizeof(*res->addrs), res->cnt + 1);
11306 		if (err)
11307 			goto cleanup;
11308 
11309 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
11310 	}
11311 
11312 	if (res->cnt == 0)
11313 		err = -ENOENT;
11314 
11315 cleanup:
11316 	fclose(f);
11317 	return err;
11318 }
11319 
11320 struct bpf_link *
11321 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11322 				      const char *pattern,
11323 				      const struct bpf_kprobe_multi_opts *opts)
11324 {
11325 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11326 	struct kprobe_multi_resolve res = {
11327 		.pattern = pattern,
11328 	};
11329 	struct bpf_link *link = NULL;
11330 	char errmsg[STRERR_BUFSIZE];
11331 	const unsigned long *addrs;
11332 	int err, link_fd, prog_fd;
11333 	const __u64 *cookies;
11334 	const char **syms;
11335 	bool retprobe;
11336 	size_t cnt;
11337 
11338 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11339 		return libbpf_err_ptr(-EINVAL);
11340 
11341 	syms    = OPTS_GET(opts, syms, false);
11342 	addrs   = OPTS_GET(opts, addrs, false);
11343 	cnt     = OPTS_GET(opts, cnt, false);
11344 	cookies = OPTS_GET(opts, cookies, false);
11345 
11346 	if (!pattern && !addrs && !syms)
11347 		return libbpf_err_ptr(-EINVAL);
11348 	if (pattern && (addrs || syms || cookies || cnt))
11349 		return libbpf_err_ptr(-EINVAL);
11350 	if (!pattern && !cnt)
11351 		return libbpf_err_ptr(-EINVAL);
11352 	if (addrs && syms)
11353 		return libbpf_err_ptr(-EINVAL);
11354 
11355 	if (pattern) {
11356 		if (has_available_filter_functions_addrs())
11357 			err = libbpf_available_kprobes_parse(&res);
11358 		else
11359 			err = libbpf_available_kallsyms_parse(&res);
11360 		if (err)
11361 			goto error;
11362 		addrs = res.addrs;
11363 		cnt = res.cnt;
11364 	}
11365 
11366 	retprobe = OPTS_GET(opts, retprobe, false);
11367 
11368 	lopts.kprobe_multi.syms = syms;
11369 	lopts.kprobe_multi.addrs = addrs;
11370 	lopts.kprobe_multi.cookies = cookies;
11371 	lopts.kprobe_multi.cnt = cnt;
11372 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11373 
11374 	link = calloc(1, sizeof(*link));
11375 	if (!link) {
11376 		err = -ENOMEM;
11377 		goto error;
11378 	}
11379 	link->detach = &bpf_link__detach_fd;
11380 
11381 	prog_fd = bpf_program__fd(prog);
11382 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11383 	if (link_fd < 0) {
11384 		err = -errno;
11385 		pr_warn("prog '%s': failed to attach: %s\n",
11386 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11387 		goto error;
11388 	}
11389 	link->fd = link_fd;
11390 	free(res.addrs);
11391 	return link;
11392 
11393 error:
11394 	free(link);
11395 	free(res.addrs);
11396 	return libbpf_err_ptr(err);
11397 }
11398 
11399 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11400 {
11401 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11402 	unsigned long offset = 0;
11403 	const char *func_name;
11404 	char *func;
11405 	int n;
11406 
11407 	*link = NULL;
11408 
11409 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11410 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11411 		return 0;
11412 
11413 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11414 	if (opts.retprobe)
11415 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11416 	else
11417 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11418 
11419 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11420 	if (n < 1) {
11421 		pr_warn("kprobe name is invalid: %s\n", func_name);
11422 		return -EINVAL;
11423 	}
11424 	if (opts.retprobe && offset != 0) {
11425 		free(func);
11426 		pr_warn("kretprobes do not support offset specification\n");
11427 		return -EINVAL;
11428 	}
11429 
11430 	opts.offset = offset;
11431 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11432 	free(func);
11433 	return libbpf_get_error(*link);
11434 }
11435 
11436 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11437 {
11438 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11439 	const char *syscall_name;
11440 
11441 	*link = NULL;
11442 
11443 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11444 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11445 		return 0;
11446 
11447 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11448 	if (opts.retprobe)
11449 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11450 	else
11451 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11452 
11453 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11454 	return *link ? 0 : -errno;
11455 }
11456 
11457 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11458 {
11459 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11460 	const char *spec;
11461 	char *pattern;
11462 	int n;
11463 
11464 	*link = NULL;
11465 
11466 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11467 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11468 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11469 		return 0;
11470 
11471 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11472 	if (opts.retprobe)
11473 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11474 	else
11475 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11476 
11477 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11478 	if (n < 1) {
11479 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11480 		return -EINVAL;
11481 	}
11482 
11483 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11484 	free(pattern);
11485 	return libbpf_get_error(*link);
11486 }
11487 
11488 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11489 {
11490 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11491 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11492 	int n, ret = -EINVAL;
11493 
11494 	*link = NULL;
11495 
11496 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11497 		   &probe_type, &binary_path, &func_name);
11498 	switch (n) {
11499 	case 1:
11500 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11501 		ret = 0;
11502 		break;
11503 	case 3:
11504 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11505 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11506 		ret = libbpf_get_error(*link);
11507 		break;
11508 	default:
11509 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11510 			prog->sec_name);
11511 		break;
11512 	}
11513 	free(probe_type);
11514 	free(binary_path);
11515 	free(func_name);
11516 	return ret;
11517 }
11518 
11519 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11520 					 const char *binary_path, uint64_t offset)
11521 {
11522 	int i;
11523 
11524 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11525 
11526 	/* sanitize binary_path in the probe name */
11527 	for (i = 0; buf[i]; i++) {
11528 		if (!isalnum(buf[i]))
11529 			buf[i] = '_';
11530 	}
11531 }
11532 
11533 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11534 					  const char *binary_path, size_t offset)
11535 {
11536 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11537 			      retprobe ? 'r' : 'p',
11538 			      retprobe ? "uretprobes" : "uprobes",
11539 			      probe_name, binary_path, offset);
11540 }
11541 
11542 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11543 {
11544 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11545 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11546 }
11547 
11548 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11549 {
11550 	char file[512];
11551 
11552 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11553 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11554 
11555 	return parse_uint_from_file(file, "%d\n");
11556 }
11557 
11558 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11559 					 const char *binary_path, size_t offset, int pid)
11560 {
11561 	const size_t attr_sz = sizeof(struct perf_event_attr);
11562 	struct perf_event_attr attr;
11563 	int type, pfd, err;
11564 
11565 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11566 	if (err < 0) {
11567 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11568 			binary_path, (size_t)offset, err);
11569 		return err;
11570 	}
11571 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11572 	if (type < 0) {
11573 		err = type;
11574 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11575 			binary_path, offset, err);
11576 		goto err_clean_legacy;
11577 	}
11578 
11579 	memset(&attr, 0, attr_sz);
11580 	attr.size = attr_sz;
11581 	attr.config = type;
11582 	attr.type = PERF_TYPE_TRACEPOINT;
11583 
11584 	pfd = syscall(__NR_perf_event_open, &attr,
11585 		      pid < 0 ? -1 : pid, /* pid */
11586 		      pid == -1 ? 0 : -1, /* cpu */
11587 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11588 	if (pfd < 0) {
11589 		err = -errno;
11590 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11591 		goto err_clean_legacy;
11592 	}
11593 	return pfd;
11594 
11595 err_clean_legacy:
11596 	/* Clear the newly added legacy uprobe_event */
11597 	remove_uprobe_event_legacy(probe_name, retprobe);
11598 	return err;
11599 }
11600 
11601 /* Find offset of function name in archive specified by path. Currently
11602  * supported are .zip files that do not compress their contents, as used on
11603  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11604  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11605  * library functions.
11606  *
11607  * An overview of the APK format specifically provided here:
11608  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11609  */
11610 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11611 					      const char *func_name)
11612 {
11613 	struct zip_archive *archive;
11614 	struct zip_entry entry;
11615 	long ret;
11616 	Elf *elf;
11617 
11618 	archive = zip_archive_open(archive_path);
11619 	if (IS_ERR(archive)) {
11620 		ret = PTR_ERR(archive);
11621 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11622 		return ret;
11623 	}
11624 
11625 	ret = zip_archive_find_entry(archive, file_name, &entry);
11626 	if (ret) {
11627 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11628 			archive_path, ret);
11629 		goto out;
11630 	}
11631 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11632 		 (unsigned long)entry.data_offset);
11633 
11634 	if (entry.compression) {
11635 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11636 			archive_path);
11637 		ret = -LIBBPF_ERRNO__FORMAT;
11638 		goto out;
11639 	}
11640 
11641 	elf = elf_memory((void *)entry.data, entry.data_length);
11642 	if (!elf) {
11643 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11644 			elf_errmsg(-1));
11645 		ret = -LIBBPF_ERRNO__LIBELF;
11646 		goto out;
11647 	}
11648 
11649 	ret = elf_find_func_offset(elf, file_name, func_name);
11650 	if (ret > 0) {
11651 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11652 			 func_name, file_name, archive_path, entry.data_offset, ret,
11653 			 ret + entry.data_offset);
11654 		ret += entry.data_offset;
11655 	}
11656 	elf_end(elf);
11657 
11658 out:
11659 	zip_archive_close(archive);
11660 	return ret;
11661 }
11662 
11663 static const char *arch_specific_lib_paths(void)
11664 {
11665 	/*
11666 	 * Based on https://packages.debian.org/sid/libc6.
11667 	 *
11668 	 * Assume that the traced program is built for the same architecture
11669 	 * as libbpf, which should cover the vast majority of cases.
11670 	 */
11671 #if defined(__x86_64__)
11672 	return "/lib/x86_64-linux-gnu";
11673 #elif defined(__i386__)
11674 	return "/lib/i386-linux-gnu";
11675 #elif defined(__s390x__)
11676 	return "/lib/s390x-linux-gnu";
11677 #elif defined(__s390__)
11678 	return "/lib/s390-linux-gnu";
11679 #elif defined(__arm__) && defined(__SOFTFP__)
11680 	return "/lib/arm-linux-gnueabi";
11681 #elif defined(__arm__) && !defined(__SOFTFP__)
11682 	return "/lib/arm-linux-gnueabihf";
11683 #elif defined(__aarch64__)
11684 	return "/lib/aarch64-linux-gnu";
11685 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11686 	return "/lib/mips64el-linux-gnuabi64";
11687 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11688 	return "/lib/mipsel-linux-gnu";
11689 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11690 	return "/lib/powerpc64le-linux-gnu";
11691 #elif defined(__sparc__) && defined(__arch64__)
11692 	return "/lib/sparc64-linux-gnu";
11693 #elif defined(__riscv) && __riscv_xlen == 64
11694 	return "/lib/riscv64-linux-gnu";
11695 #else
11696 	return NULL;
11697 #endif
11698 }
11699 
11700 /* Get full path to program/shared library. */
11701 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11702 {
11703 	const char *search_paths[3] = {};
11704 	int i, perm;
11705 
11706 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11707 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11708 		search_paths[1] = "/usr/lib64:/usr/lib";
11709 		search_paths[2] = arch_specific_lib_paths();
11710 		perm = R_OK;
11711 	} else {
11712 		search_paths[0] = getenv("PATH");
11713 		search_paths[1] = "/usr/bin:/usr/sbin";
11714 		perm = R_OK | X_OK;
11715 	}
11716 
11717 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11718 		const char *s;
11719 
11720 		if (!search_paths[i])
11721 			continue;
11722 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11723 			char *next_path;
11724 			int seg_len;
11725 
11726 			if (s[0] == ':')
11727 				s++;
11728 			next_path = strchr(s, ':');
11729 			seg_len = next_path ? next_path - s : strlen(s);
11730 			if (!seg_len)
11731 				continue;
11732 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11733 			/* ensure it has required permissions */
11734 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11735 				continue;
11736 			pr_debug("resolved '%s' to '%s'\n", file, result);
11737 			return 0;
11738 		}
11739 	}
11740 	return -ENOENT;
11741 }
11742 
11743 struct bpf_link *
11744 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11745 				 pid_t pid,
11746 				 const char *path,
11747 				 const char *func_pattern,
11748 				 const struct bpf_uprobe_multi_opts *opts)
11749 {
11750 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11751 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11752 	unsigned long *resolved_offsets = NULL;
11753 	int err = 0, link_fd, prog_fd;
11754 	struct bpf_link *link = NULL;
11755 	char errmsg[STRERR_BUFSIZE];
11756 	char full_path[PATH_MAX];
11757 	const __u64 *cookies;
11758 	const char **syms;
11759 	size_t cnt;
11760 
11761 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11762 		return libbpf_err_ptr(-EINVAL);
11763 
11764 	syms = OPTS_GET(opts, syms, NULL);
11765 	offsets = OPTS_GET(opts, offsets, NULL);
11766 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11767 	cookies = OPTS_GET(opts, cookies, NULL);
11768 	cnt = OPTS_GET(opts, cnt, 0);
11769 
11770 	/*
11771 	 * User can specify 2 mutually exclusive set of inputs:
11772 	 *
11773 	 * 1) use only path/func_pattern/pid arguments
11774 	 *
11775 	 * 2) use path/pid with allowed combinations of:
11776 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11777 	 *
11778 	 *    - syms and offsets are mutually exclusive
11779 	 *    - ref_ctr_offsets and cookies are optional
11780 	 *
11781 	 * Any other usage results in error.
11782 	 */
11783 
11784 	if (!path)
11785 		return libbpf_err_ptr(-EINVAL);
11786 	if (!func_pattern && cnt == 0)
11787 		return libbpf_err_ptr(-EINVAL);
11788 
11789 	if (func_pattern) {
11790 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11791 			return libbpf_err_ptr(-EINVAL);
11792 	} else {
11793 		if (!!syms == !!offsets)
11794 			return libbpf_err_ptr(-EINVAL);
11795 	}
11796 
11797 	if (func_pattern) {
11798 		if (!strchr(path, '/')) {
11799 			err = resolve_full_path(path, full_path, sizeof(full_path));
11800 			if (err) {
11801 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11802 					prog->name, path, err);
11803 				return libbpf_err_ptr(err);
11804 			}
11805 			path = full_path;
11806 		}
11807 
11808 		err = elf_resolve_pattern_offsets(path, func_pattern,
11809 						  &resolved_offsets, &cnt);
11810 		if (err < 0)
11811 			return libbpf_err_ptr(err);
11812 		offsets = resolved_offsets;
11813 	} else if (syms) {
11814 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
11815 		if (err < 0)
11816 			return libbpf_err_ptr(err);
11817 		offsets = resolved_offsets;
11818 	}
11819 
11820 	lopts.uprobe_multi.path = path;
11821 	lopts.uprobe_multi.offsets = offsets;
11822 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11823 	lopts.uprobe_multi.cookies = cookies;
11824 	lopts.uprobe_multi.cnt = cnt;
11825 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11826 
11827 	if (pid == 0)
11828 		pid = getpid();
11829 	if (pid > 0)
11830 		lopts.uprobe_multi.pid = pid;
11831 
11832 	link = calloc(1, sizeof(*link));
11833 	if (!link) {
11834 		err = -ENOMEM;
11835 		goto error;
11836 	}
11837 	link->detach = &bpf_link__detach_fd;
11838 
11839 	prog_fd = bpf_program__fd(prog);
11840 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11841 	if (link_fd < 0) {
11842 		err = -errno;
11843 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11844 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11845 		goto error;
11846 	}
11847 	link->fd = link_fd;
11848 	free(resolved_offsets);
11849 	return link;
11850 
11851 error:
11852 	free(resolved_offsets);
11853 	free(link);
11854 	return libbpf_err_ptr(err);
11855 }
11856 
11857 LIBBPF_API struct bpf_link *
11858 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11859 				const char *binary_path, size_t func_offset,
11860 				const struct bpf_uprobe_opts *opts)
11861 {
11862 	const char *archive_path = NULL, *archive_sep = NULL;
11863 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11864 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11865 	enum probe_attach_mode attach_mode;
11866 	char full_path[PATH_MAX];
11867 	struct bpf_link *link;
11868 	size_t ref_ctr_off;
11869 	int pfd, err;
11870 	bool retprobe, legacy;
11871 	const char *func_name;
11872 
11873 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11874 		return libbpf_err_ptr(-EINVAL);
11875 
11876 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11877 	retprobe = OPTS_GET(opts, retprobe, false);
11878 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11879 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11880 
11881 	if (!binary_path)
11882 		return libbpf_err_ptr(-EINVAL);
11883 
11884 	/* Check if "binary_path" refers to an archive. */
11885 	archive_sep = strstr(binary_path, "!/");
11886 	if (archive_sep) {
11887 		full_path[0] = '\0';
11888 		libbpf_strlcpy(full_path, binary_path,
11889 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11890 		archive_path = full_path;
11891 		binary_path = archive_sep + 2;
11892 	} else if (!strchr(binary_path, '/')) {
11893 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11894 		if (err) {
11895 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11896 				prog->name, binary_path, err);
11897 			return libbpf_err_ptr(err);
11898 		}
11899 		binary_path = full_path;
11900 	}
11901 	func_name = OPTS_GET(opts, func_name, NULL);
11902 	if (func_name) {
11903 		long sym_off;
11904 
11905 		if (archive_path) {
11906 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11907 								    func_name);
11908 			binary_path = archive_path;
11909 		} else {
11910 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11911 		}
11912 		if (sym_off < 0)
11913 			return libbpf_err_ptr(sym_off);
11914 		func_offset += sym_off;
11915 	}
11916 
11917 	legacy = determine_uprobe_perf_type() < 0;
11918 	switch (attach_mode) {
11919 	case PROBE_ATTACH_MODE_LEGACY:
11920 		legacy = true;
11921 		pe_opts.force_ioctl_attach = true;
11922 		break;
11923 	case PROBE_ATTACH_MODE_PERF:
11924 		if (legacy)
11925 			return libbpf_err_ptr(-ENOTSUP);
11926 		pe_opts.force_ioctl_attach = true;
11927 		break;
11928 	case PROBE_ATTACH_MODE_LINK:
11929 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11930 			return libbpf_err_ptr(-ENOTSUP);
11931 		break;
11932 	case PROBE_ATTACH_MODE_DEFAULT:
11933 		break;
11934 	default:
11935 		return libbpf_err_ptr(-EINVAL);
11936 	}
11937 
11938 	if (!legacy) {
11939 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11940 					    func_offset, pid, ref_ctr_off);
11941 	} else {
11942 		char probe_name[PATH_MAX + 64];
11943 
11944 		if (ref_ctr_off)
11945 			return libbpf_err_ptr(-EINVAL);
11946 
11947 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11948 					     binary_path, func_offset);
11949 
11950 		legacy_probe = strdup(probe_name);
11951 		if (!legacy_probe)
11952 			return libbpf_err_ptr(-ENOMEM);
11953 
11954 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11955 						    binary_path, func_offset, pid);
11956 	}
11957 	if (pfd < 0) {
11958 		err = -errno;
11959 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11960 			prog->name, retprobe ? "uretprobe" : "uprobe",
11961 			binary_path, func_offset,
11962 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11963 		goto err_out;
11964 	}
11965 
11966 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11967 	err = libbpf_get_error(link);
11968 	if (err) {
11969 		close(pfd);
11970 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11971 			prog->name, retprobe ? "uretprobe" : "uprobe",
11972 			binary_path, func_offset,
11973 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11974 		goto err_clean_legacy;
11975 	}
11976 	if (legacy) {
11977 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11978 
11979 		perf_link->legacy_probe_name = legacy_probe;
11980 		perf_link->legacy_is_kprobe = false;
11981 		perf_link->legacy_is_retprobe = retprobe;
11982 	}
11983 	return link;
11984 
11985 err_clean_legacy:
11986 	if (legacy)
11987 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11988 err_out:
11989 	free(legacy_probe);
11990 	return libbpf_err_ptr(err);
11991 }
11992 
11993 /* Format of u[ret]probe section definition supporting auto-attach:
11994  * u[ret]probe/binary:function[+offset]
11995  *
11996  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11997  * full binary path via bpf_program__attach_uprobe_opts.
11998  *
11999  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12000  * specified (and auto-attach is not possible) or the above format is specified for
12001  * auto-attach.
12002  */
12003 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12004 {
12005 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12006 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12007 	int n, c, ret = -EINVAL;
12008 	long offset = 0;
12009 
12010 	*link = NULL;
12011 
12012 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12013 		   &probe_type, &binary_path, &func_name);
12014 	switch (n) {
12015 	case 1:
12016 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12017 		ret = 0;
12018 		break;
12019 	case 2:
12020 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12021 			prog->name, prog->sec_name);
12022 		break;
12023 	case 3:
12024 		/* check if user specifies `+offset`, if yes, this should be
12025 		 * the last part of the string, make sure sscanf read to EOL
12026 		 */
12027 		func_off = strrchr(func_name, '+');
12028 		if (func_off) {
12029 			n = sscanf(func_off, "+%li%n", &offset, &c);
12030 			if (n == 1 && *(func_off + c) == '\0')
12031 				func_off[0] = '\0';
12032 			else
12033 				offset = 0;
12034 		}
12035 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12036 				strcmp(probe_type, "uretprobe.s") == 0;
12037 		if (opts.retprobe && offset != 0) {
12038 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
12039 				prog->name);
12040 			break;
12041 		}
12042 		opts.func_name = func_name;
12043 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12044 		ret = libbpf_get_error(*link);
12045 		break;
12046 	default:
12047 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12048 			prog->sec_name);
12049 		break;
12050 	}
12051 	free(probe_type);
12052 	free(binary_path);
12053 	free(func_name);
12054 
12055 	return ret;
12056 }
12057 
12058 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12059 					    bool retprobe, pid_t pid,
12060 					    const char *binary_path,
12061 					    size_t func_offset)
12062 {
12063 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12064 
12065 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12066 }
12067 
12068 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12069 					  pid_t pid, const char *binary_path,
12070 					  const char *usdt_provider, const char *usdt_name,
12071 					  const struct bpf_usdt_opts *opts)
12072 {
12073 	char resolved_path[512];
12074 	struct bpf_object *obj = prog->obj;
12075 	struct bpf_link *link;
12076 	__u64 usdt_cookie;
12077 	int err;
12078 
12079 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12080 		return libbpf_err_ptr(-EINVAL);
12081 
12082 	if (bpf_program__fd(prog) < 0) {
12083 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
12084 			prog->name);
12085 		return libbpf_err_ptr(-EINVAL);
12086 	}
12087 
12088 	if (!binary_path)
12089 		return libbpf_err_ptr(-EINVAL);
12090 
12091 	if (!strchr(binary_path, '/')) {
12092 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12093 		if (err) {
12094 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12095 				prog->name, binary_path, err);
12096 			return libbpf_err_ptr(err);
12097 		}
12098 		binary_path = resolved_path;
12099 	}
12100 
12101 	/* USDT manager is instantiated lazily on first USDT attach. It will
12102 	 * be destroyed together with BPF object in bpf_object__close().
12103 	 */
12104 	if (IS_ERR(obj->usdt_man))
12105 		return libbpf_ptr(obj->usdt_man);
12106 	if (!obj->usdt_man) {
12107 		obj->usdt_man = usdt_manager_new(obj);
12108 		if (IS_ERR(obj->usdt_man))
12109 			return libbpf_ptr(obj->usdt_man);
12110 	}
12111 
12112 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12113 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12114 					usdt_provider, usdt_name, usdt_cookie);
12115 	err = libbpf_get_error(link);
12116 	if (err)
12117 		return libbpf_err_ptr(err);
12118 	return link;
12119 }
12120 
12121 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12122 {
12123 	char *path = NULL, *provider = NULL, *name = NULL;
12124 	const char *sec_name;
12125 	int n, err;
12126 
12127 	sec_name = bpf_program__section_name(prog);
12128 	if (strcmp(sec_name, "usdt") == 0) {
12129 		/* no auto-attach for just SEC("usdt") */
12130 		*link = NULL;
12131 		return 0;
12132 	}
12133 
12134 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12135 	if (n != 3) {
12136 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12137 			sec_name);
12138 		err = -EINVAL;
12139 	} else {
12140 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12141 						 provider, name, NULL);
12142 		err = libbpf_get_error(*link);
12143 	}
12144 	free(path);
12145 	free(provider);
12146 	free(name);
12147 	return err;
12148 }
12149 
12150 static int determine_tracepoint_id(const char *tp_category,
12151 				   const char *tp_name)
12152 {
12153 	char file[PATH_MAX];
12154 	int ret;
12155 
12156 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12157 		       tracefs_path(), tp_category, tp_name);
12158 	if (ret < 0)
12159 		return -errno;
12160 	if (ret >= sizeof(file)) {
12161 		pr_debug("tracepoint %s/%s path is too long\n",
12162 			 tp_category, tp_name);
12163 		return -E2BIG;
12164 	}
12165 	return parse_uint_from_file(file, "%d\n");
12166 }
12167 
12168 static int perf_event_open_tracepoint(const char *tp_category,
12169 				      const char *tp_name)
12170 {
12171 	const size_t attr_sz = sizeof(struct perf_event_attr);
12172 	struct perf_event_attr attr;
12173 	char errmsg[STRERR_BUFSIZE];
12174 	int tp_id, pfd, err;
12175 
12176 	tp_id = determine_tracepoint_id(tp_category, tp_name);
12177 	if (tp_id < 0) {
12178 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12179 			tp_category, tp_name,
12180 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12181 		return tp_id;
12182 	}
12183 
12184 	memset(&attr, 0, attr_sz);
12185 	attr.type = PERF_TYPE_TRACEPOINT;
12186 	attr.size = attr_sz;
12187 	attr.config = tp_id;
12188 
12189 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12190 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12191 	if (pfd < 0) {
12192 		err = -errno;
12193 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12194 			tp_category, tp_name,
12195 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12196 		return err;
12197 	}
12198 	return pfd;
12199 }
12200 
12201 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12202 						     const char *tp_category,
12203 						     const char *tp_name,
12204 						     const struct bpf_tracepoint_opts *opts)
12205 {
12206 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12207 	char errmsg[STRERR_BUFSIZE];
12208 	struct bpf_link *link;
12209 	int pfd, err;
12210 
12211 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12212 		return libbpf_err_ptr(-EINVAL);
12213 
12214 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12215 
12216 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
12217 	if (pfd < 0) {
12218 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12219 			prog->name, tp_category, tp_name,
12220 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12221 		return libbpf_err_ptr(pfd);
12222 	}
12223 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12224 	err = libbpf_get_error(link);
12225 	if (err) {
12226 		close(pfd);
12227 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12228 			prog->name, tp_category, tp_name,
12229 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12230 		return libbpf_err_ptr(err);
12231 	}
12232 	return link;
12233 }
12234 
12235 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12236 						const char *tp_category,
12237 						const char *tp_name)
12238 {
12239 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12240 }
12241 
12242 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12243 {
12244 	char *sec_name, *tp_cat, *tp_name;
12245 
12246 	*link = NULL;
12247 
12248 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12249 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12250 		return 0;
12251 
12252 	sec_name = strdup(prog->sec_name);
12253 	if (!sec_name)
12254 		return -ENOMEM;
12255 
12256 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12257 	if (str_has_pfx(prog->sec_name, "tp/"))
12258 		tp_cat = sec_name + sizeof("tp/") - 1;
12259 	else
12260 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
12261 	tp_name = strchr(tp_cat, '/');
12262 	if (!tp_name) {
12263 		free(sec_name);
12264 		return -EINVAL;
12265 	}
12266 	*tp_name = '\0';
12267 	tp_name++;
12268 
12269 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12270 	free(sec_name);
12271 	return libbpf_get_error(*link);
12272 }
12273 
12274 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12275 						    const char *tp_name)
12276 {
12277 	char errmsg[STRERR_BUFSIZE];
12278 	struct bpf_link *link;
12279 	int prog_fd, pfd;
12280 
12281 	prog_fd = bpf_program__fd(prog);
12282 	if (prog_fd < 0) {
12283 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12284 		return libbpf_err_ptr(-EINVAL);
12285 	}
12286 
12287 	link = calloc(1, sizeof(*link));
12288 	if (!link)
12289 		return libbpf_err_ptr(-ENOMEM);
12290 	link->detach = &bpf_link__detach_fd;
12291 
12292 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
12293 	if (pfd < 0) {
12294 		pfd = -errno;
12295 		free(link);
12296 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12297 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12298 		return libbpf_err_ptr(pfd);
12299 	}
12300 	link->fd = pfd;
12301 	return link;
12302 }
12303 
12304 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12305 {
12306 	static const char *const prefixes[] = {
12307 		"raw_tp",
12308 		"raw_tracepoint",
12309 		"raw_tp.w",
12310 		"raw_tracepoint.w",
12311 	};
12312 	size_t i;
12313 	const char *tp_name = NULL;
12314 
12315 	*link = NULL;
12316 
12317 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12318 		size_t pfx_len;
12319 
12320 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
12321 			continue;
12322 
12323 		pfx_len = strlen(prefixes[i]);
12324 		/* no auto-attach case of, e.g., SEC("raw_tp") */
12325 		if (prog->sec_name[pfx_len] == '\0')
12326 			return 0;
12327 
12328 		if (prog->sec_name[pfx_len] != '/')
12329 			continue;
12330 
12331 		tp_name = prog->sec_name + pfx_len + 1;
12332 		break;
12333 	}
12334 
12335 	if (!tp_name) {
12336 		pr_warn("prog '%s': invalid section name '%s'\n",
12337 			prog->name, prog->sec_name);
12338 		return -EINVAL;
12339 	}
12340 
12341 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12342 	return libbpf_get_error(*link);
12343 }
12344 
12345 /* Common logic for all BPF program types that attach to a btf_id */
12346 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12347 						   const struct bpf_trace_opts *opts)
12348 {
12349 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12350 	char errmsg[STRERR_BUFSIZE];
12351 	struct bpf_link *link;
12352 	int prog_fd, pfd;
12353 
12354 	if (!OPTS_VALID(opts, bpf_trace_opts))
12355 		return libbpf_err_ptr(-EINVAL);
12356 
12357 	prog_fd = bpf_program__fd(prog);
12358 	if (prog_fd < 0) {
12359 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12360 		return libbpf_err_ptr(-EINVAL);
12361 	}
12362 
12363 	link = calloc(1, sizeof(*link));
12364 	if (!link)
12365 		return libbpf_err_ptr(-ENOMEM);
12366 	link->detach = &bpf_link__detach_fd;
12367 
12368 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12369 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12370 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12371 	if (pfd < 0) {
12372 		pfd = -errno;
12373 		free(link);
12374 		pr_warn("prog '%s': failed to attach: %s\n",
12375 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12376 		return libbpf_err_ptr(pfd);
12377 	}
12378 	link->fd = pfd;
12379 	return link;
12380 }
12381 
12382 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12383 {
12384 	return bpf_program__attach_btf_id(prog, NULL);
12385 }
12386 
12387 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12388 						const struct bpf_trace_opts *opts)
12389 {
12390 	return bpf_program__attach_btf_id(prog, opts);
12391 }
12392 
12393 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12394 {
12395 	return bpf_program__attach_btf_id(prog, NULL);
12396 }
12397 
12398 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12399 {
12400 	*link = bpf_program__attach_trace(prog);
12401 	return libbpf_get_error(*link);
12402 }
12403 
12404 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12405 {
12406 	*link = bpf_program__attach_lsm(prog);
12407 	return libbpf_get_error(*link);
12408 }
12409 
12410 static struct bpf_link *
12411 bpf_program_attach_fd(const struct bpf_program *prog,
12412 		      int target_fd, const char *target_name,
12413 		      const struct bpf_link_create_opts *opts)
12414 {
12415 	enum bpf_attach_type attach_type;
12416 	char errmsg[STRERR_BUFSIZE];
12417 	struct bpf_link *link;
12418 	int prog_fd, link_fd;
12419 
12420 	prog_fd = bpf_program__fd(prog);
12421 	if (prog_fd < 0) {
12422 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12423 		return libbpf_err_ptr(-EINVAL);
12424 	}
12425 
12426 	link = calloc(1, sizeof(*link));
12427 	if (!link)
12428 		return libbpf_err_ptr(-ENOMEM);
12429 	link->detach = &bpf_link__detach_fd;
12430 
12431 	attach_type = bpf_program__expected_attach_type(prog);
12432 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12433 	if (link_fd < 0) {
12434 		link_fd = -errno;
12435 		free(link);
12436 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12437 			prog->name, target_name,
12438 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12439 		return libbpf_err_ptr(link_fd);
12440 	}
12441 	link->fd = link_fd;
12442 	return link;
12443 }
12444 
12445 struct bpf_link *
12446 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12447 {
12448 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12449 }
12450 
12451 struct bpf_link *
12452 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12453 {
12454 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12455 }
12456 
12457 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12458 {
12459 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12460 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12461 }
12462 
12463 struct bpf_link *
12464 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12465 			const struct bpf_tcx_opts *opts)
12466 {
12467 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12468 	__u32 relative_id;
12469 	int relative_fd;
12470 
12471 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12472 		return libbpf_err_ptr(-EINVAL);
12473 
12474 	relative_id = OPTS_GET(opts, relative_id, 0);
12475 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12476 
12477 	/* validate we don't have unexpected combinations of non-zero fields */
12478 	if (!ifindex) {
12479 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12480 			prog->name);
12481 		return libbpf_err_ptr(-EINVAL);
12482 	}
12483 	if (relative_fd && relative_id) {
12484 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12485 			prog->name);
12486 		return libbpf_err_ptr(-EINVAL);
12487 	}
12488 
12489 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12490 	link_create_opts.tcx.relative_fd = relative_fd;
12491 	link_create_opts.tcx.relative_id = relative_id;
12492 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12493 
12494 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12495 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12496 }
12497 
12498 struct bpf_link *
12499 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12500 			   const struct bpf_netkit_opts *opts)
12501 {
12502 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12503 	__u32 relative_id;
12504 	int relative_fd;
12505 
12506 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12507 		return libbpf_err_ptr(-EINVAL);
12508 
12509 	relative_id = OPTS_GET(opts, relative_id, 0);
12510 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12511 
12512 	/* validate we don't have unexpected combinations of non-zero fields */
12513 	if (!ifindex) {
12514 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12515 			prog->name);
12516 		return libbpf_err_ptr(-EINVAL);
12517 	}
12518 	if (relative_fd && relative_id) {
12519 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12520 			prog->name);
12521 		return libbpf_err_ptr(-EINVAL);
12522 	}
12523 
12524 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12525 	link_create_opts.netkit.relative_fd = relative_fd;
12526 	link_create_opts.netkit.relative_id = relative_id;
12527 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12528 
12529 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12530 }
12531 
12532 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12533 					      int target_fd,
12534 					      const char *attach_func_name)
12535 {
12536 	int btf_id;
12537 
12538 	if (!!target_fd != !!attach_func_name) {
12539 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12540 			prog->name);
12541 		return libbpf_err_ptr(-EINVAL);
12542 	}
12543 
12544 	if (prog->type != BPF_PROG_TYPE_EXT) {
12545 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12546 			prog->name);
12547 		return libbpf_err_ptr(-EINVAL);
12548 	}
12549 
12550 	if (target_fd) {
12551 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12552 
12553 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12554 		if (btf_id < 0)
12555 			return libbpf_err_ptr(btf_id);
12556 
12557 		target_opts.target_btf_id = btf_id;
12558 
12559 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12560 					     &target_opts);
12561 	} else {
12562 		/* no target, so use raw_tracepoint_open for compatibility
12563 		 * with old kernels
12564 		 */
12565 		return bpf_program__attach_trace(prog);
12566 	}
12567 }
12568 
12569 struct bpf_link *
12570 bpf_program__attach_iter(const struct bpf_program *prog,
12571 			 const struct bpf_iter_attach_opts *opts)
12572 {
12573 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12574 	char errmsg[STRERR_BUFSIZE];
12575 	struct bpf_link *link;
12576 	int prog_fd, link_fd;
12577 	__u32 target_fd = 0;
12578 
12579 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12580 		return libbpf_err_ptr(-EINVAL);
12581 
12582 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12583 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12584 
12585 	prog_fd = bpf_program__fd(prog);
12586 	if (prog_fd < 0) {
12587 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12588 		return libbpf_err_ptr(-EINVAL);
12589 	}
12590 
12591 	link = calloc(1, sizeof(*link));
12592 	if (!link)
12593 		return libbpf_err_ptr(-ENOMEM);
12594 	link->detach = &bpf_link__detach_fd;
12595 
12596 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12597 				  &link_create_opts);
12598 	if (link_fd < 0) {
12599 		link_fd = -errno;
12600 		free(link);
12601 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12602 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12603 		return libbpf_err_ptr(link_fd);
12604 	}
12605 	link->fd = link_fd;
12606 	return link;
12607 }
12608 
12609 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12610 {
12611 	*link = bpf_program__attach_iter(prog, NULL);
12612 	return libbpf_get_error(*link);
12613 }
12614 
12615 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12616 					       const struct bpf_netfilter_opts *opts)
12617 {
12618 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12619 	struct bpf_link *link;
12620 	int prog_fd, link_fd;
12621 
12622 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12623 		return libbpf_err_ptr(-EINVAL);
12624 
12625 	prog_fd = bpf_program__fd(prog);
12626 	if (prog_fd < 0) {
12627 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12628 		return libbpf_err_ptr(-EINVAL);
12629 	}
12630 
12631 	link = calloc(1, sizeof(*link));
12632 	if (!link)
12633 		return libbpf_err_ptr(-ENOMEM);
12634 
12635 	link->detach = &bpf_link__detach_fd;
12636 
12637 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12638 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12639 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12640 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12641 
12642 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12643 	if (link_fd < 0) {
12644 		char errmsg[STRERR_BUFSIZE];
12645 
12646 		link_fd = -errno;
12647 		free(link);
12648 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12649 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12650 		return libbpf_err_ptr(link_fd);
12651 	}
12652 	link->fd = link_fd;
12653 
12654 	return link;
12655 }
12656 
12657 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12658 {
12659 	struct bpf_link *link = NULL;
12660 	int err;
12661 
12662 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12663 		return libbpf_err_ptr(-EOPNOTSUPP);
12664 
12665 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12666 	if (err)
12667 		return libbpf_err_ptr(err);
12668 
12669 	/* When calling bpf_program__attach() explicitly, auto-attach support
12670 	 * is expected to work, so NULL returned link is considered an error.
12671 	 * This is different for skeleton's attach, see comment in
12672 	 * bpf_object__attach_skeleton().
12673 	 */
12674 	if (!link)
12675 		return libbpf_err_ptr(-EOPNOTSUPP);
12676 
12677 	return link;
12678 }
12679 
12680 struct bpf_link_struct_ops {
12681 	struct bpf_link link;
12682 	int map_fd;
12683 };
12684 
12685 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12686 {
12687 	struct bpf_link_struct_ops *st_link;
12688 	__u32 zero = 0;
12689 
12690 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12691 
12692 	if (st_link->map_fd < 0)
12693 		/* w/o a real link */
12694 		return bpf_map_delete_elem(link->fd, &zero);
12695 
12696 	return close(link->fd);
12697 }
12698 
12699 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12700 {
12701 	struct bpf_link_struct_ops *link;
12702 	__u32 zero = 0;
12703 	int err, fd;
12704 
12705 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12706 		return libbpf_err_ptr(-EINVAL);
12707 
12708 	link = calloc(1, sizeof(*link));
12709 	if (!link)
12710 		return libbpf_err_ptr(-EINVAL);
12711 
12712 	/* kern_vdata should be prepared during the loading phase. */
12713 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12714 	/* It can be EBUSY if the map has been used to create or
12715 	 * update a link before.  We don't allow updating the value of
12716 	 * a struct_ops once it is set.  That ensures that the value
12717 	 * never changed.  So, it is safe to skip EBUSY.
12718 	 */
12719 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12720 		free(link);
12721 		return libbpf_err_ptr(err);
12722 	}
12723 
12724 	link->link.detach = bpf_link__detach_struct_ops;
12725 
12726 	if (!(map->def.map_flags & BPF_F_LINK)) {
12727 		/* w/o a real link */
12728 		link->link.fd = map->fd;
12729 		link->map_fd = -1;
12730 		return &link->link;
12731 	}
12732 
12733 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12734 	if (fd < 0) {
12735 		free(link);
12736 		return libbpf_err_ptr(fd);
12737 	}
12738 
12739 	link->link.fd = fd;
12740 	link->map_fd = map->fd;
12741 
12742 	return &link->link;
12743 }
12744 
12745 /*
12746  * Swap the back struct_ops of a link with a new struct_ops map.
12747  */
12748 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12749 {
12750 	struct bpf_link_struct_ops *st_ops_link;
12751 	__u32 zero = 0;
12752 	int err;
12753 
12754 	if (!bpf_map__is_struct_ops(map) || !map_is_created(map))
12755 		return -EINVAL;
12756 
12757 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12758 	/* Ensure the type of a link is correct */
12759 	if (st_ops_link->map_fd < 0)
12760 		return -EINVAL;
12761 
12762 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12763 	/* It can be EBUSY if the map has been used to create or
12764 	 * update a link before.  We don't allow updating the value of
12765 	 * a struct_ops once it is set.  That ensures that the value
12766 	 * never changed.  So, it is safe to skip EBUSY.
12767 	 */
12768 	if (err && err != -EBUSY)
12769 		return err;
12770 
12771 	err = bpf_link_update(link->fd, map->fd, NULL);
12772 	if (err < 0)
12773 		return err;
12774 
12775 	st_ops_link->map_fd = map->fd;
12776 
12777 	return 0;
12778 }
12779 
12780 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12781 							  void *private_data);
12782 
12783 static enum bpf_perf_event_ret
12784 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12785 		       void **copy_mem, size_t *copy_size,
12786 		       bpf_perf_event_print_t fn, void *private_data)
12787 {
12788 	struct perf_event_mmap_page *header = mmap_mem;
12789 	__u64 data_head = ring_buffer_read_head(header);
12790 	__u64 data_tail = header->data_tail;
12791 	void *base = ((__u8 *)header) + page_size;
12792 	int ret = LIBBPF_PERF_EVENT_CONT;
12793 	struct perf_event_header *ehdr;
12794 	size_t ehdr_size;
12795 
12796 	while (data_head != data_tail) {
12797 		ehdr = base + (data_tail & (mmap_size - 1));
12798 		ehdr_size = ehdr->size;
12799 
12800 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12801 			void *copy_start = ehdr;
12802 			size_t len_first = base + mmap_size - copy_start;
12803 			size_t len_secnd = ehdr_size - len_first;
12804 
12805 			if (*copy_size < ehdr_size) {
12806 				free(*copy_mem);
12807 				*copy_mem = malloc(ehdr_size);
12808 				if (!*copy_mem) {
12809 					*copy_size = 0;
12810 					ret = LIBBPF_PERF_EVENT_ERROR;
12811 					break;
12812 				}
12813 				*copy_size = ehdr_size;
12814 			}
12815 
12816 			memcpy(*copy_mem, copy_start, len_first);
12817 			memcpy(*copy_mem + len_first, base, len_secnd);
12818 			ehdr = *copy_mem;
12819 		}
12820 
12821 		ret = fn(ehdr, private_data);
12822 		data_tail += ehdr_size;
12823 		if (ret != LIBBPF_PERF_EVENT_CONT)
12824 			break;
12825 	}
12826 
12827 	ring_buffer_write_tail(header, data_tail);
12828 	return libbpf_err(ret);
12829 }
12830 
12831 struct perf_buffer;
12832 
12833 struct perf_buffer_params {
12834 	struct perf_event_attr *attr;
12835 	/* if event_cb is specified, it takes precendence */
12836 	perf_buffer_event_fn event_cb;
12837 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12838 	perf_buffer_sample_fn sample_cb;
12839 	perf_buffer_lost_fn lost_cb;
12840 	void *ctx;
12841 	int cpu_cnt;
12842 	int *cpus;
12843 	int *map_keys;
12844 };
12845 
12846 struct perf_cpu_buf {
12847 	struct perf_buffer *pb;
12848 	void *base; /* mmap()'ed memory */
12849 	void *buf; /* for reconstructing segmented data */
12850 	size_t buf_size;
12851 	int fd;
12852 	int cpu;
12853 	int map_key;
12854 };
12855 
12856 struct perf_buffer {
12857 	perf_buffer_event_fn event_cb;
12858 	perf_buffer_sample_fn sample_cb;
12859 	perf_buffer_lost_fn lost_cb;
12860 	void *ctx; /* passed into callbacks */
12861 
12862 	size_t page_size;
12863 	size_t mmap_size;
12864 	struct perf_cpu_buf **cpu_bufs;
12865 	struct epoll_event *events;
12866 	int cpu_cnt; /* number of allocated CPU buffers */
12867 	int epoll_fd; /* perf event FD */
12868 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12869 };
12870 
12871 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12872 				      struct perf_cpu_buf *cpu_buf)
12873 {
12874 	if (!cpu_buf)
12875 		return;
12876 	if (cpu_buf->base &&
12877 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12878 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12879 	if (cpu_buf->fd >= 0) {
12880 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12881 		close(cpu_buf->fd);
12882 	}
12883 	free(cpu_buf->buf);
12884 	free(cpu_buf);
12885 }
12886 
12887 void perf_buffer__free(struct perf_buffer *pb)
12888 {
12889 	int i;
12890 
12891 	if (IS_ERR_OR_NULL(pb))
12892 		return;
12893 	if (pb->cpu_bufs) {
12894 		for (i = 0; i < pb->cpu_cnt; i++) {
12895 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12896 
12897 			if (!cpu_buf)
12898 				continue;
12899 
12900 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12901 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12902 		}
12903 		free(pb->cpu_bufs);
12904 	}
12905 	if (pb->epoll_fd >= 0)
12906 		close(pb->epoll_fd);
12907 	free(pb->events);
12908 	free(pb);
12909 }
12910 
12911 static struct perf_cpu_buf *
12912 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12913 			  int cpu, int map_key)
12914 {
12915 	struct perf_cpu_buf *cpu_buf;
12916 	char msg[STRERR_BUFSIZE];
12917 	int err;
12918 
12919 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12920 	if (!cpu_buf)
12921 		return ERR_PTR(-ENOMEM);
12922 
12923 	cpu_buf->pb = pb;
12924 	cpu_buf->cpu = cpu;
12925 	cpu_buf->map_key = map_key;
12926 
12927 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12928 			      -1, PERF_FLAG_FD_CLOEXEC);
12929 	if (cpu_buf->fd < 0) {
12930 		err = -errno;
12931 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12932 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12933 		goto error;
12934 	}
12935 
12936 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12937 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12938 			     cpu_buf->fd, 0);
12939 	if (cpu_buf->base == MAP_FAILED) {
12940 		cpu_buf->base = NULL;
12941 		err = -errno;
12942 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12943 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12944 		goto error;
12945 	}
12946 
12947 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12948 		err = -errno;
12949 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12950 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12951 		goto error;
12952 	}
12953 
12954 	return cpu_buf;
12955 
12956 error:
12957 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12958 	return (struct perf_cpu_buf *)ERR_PTR(err);
12959 }
12960 
12961 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12962 					      struct perf_buffer_params *p);
12963 
12964 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12965 				     perf_buffer_sample_fn sample_cb,
12966 				     perf_buffer_lost_fn lost_cb,
12967 				     void *ctx,
12968 				     const struct perf_buffer_opts *opts)
12969 {
12970 	const size_t attr_sz = sizeof(struct perf_event_attr);
12971 	struct perf_buffer_params p = {};
12972 	struct perf_event_attr attr;
12973 	__u32 sample_period;
12974 
12975 	if (!OPTS_VALID(opts, perf_buffer_opts))
12976 		return libbpf_err_ptr(-EINVAL);
12977 
12978 	sample_period = OPTS_GET(opts, sample_period, 1);
12979 	if (!sample_period)
12980 		sample_period = 1;
12981 
12982 	memset(&attr, 0, attr_sz);
12983 	attr.size = attr_sz;
12984 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12985 	attr.type = PERF_TYPE_SOFTWARE;
12986 	attr.sample_type = PERF_SAMPLE_RAW;
12987 	attr.sample_period = sample_period;
12988 	attr.wakeup_events = sample_period;
12989 
12990 	p.attr = &attr;
12991 	p.sample_cb = sample_cb;
12992 	p.lost_cb = lost_cb;
12993 	p.ctx = ctx;
12994 
12995 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12996 }
12997 
12998 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12999 					 struct perf_event_attr *attr,
13000 					 perf_buffer_event_fn event_cb, void *ctx,
13001 					 const struct perf_buffer_raw_opts *opts)
13002 {
13003 	struct perf_buffer_params p = {};
13004 
13005 	if (!attr)
13006 		return libbpf_err_ptr(-EINVAL);
13007 
13008 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13009 		return libbpf_err_ptr(-EINVAL);
13010 
13011 	p.attr = attr;
13012 	p.event_cb = event_cb;
13013 	p.ctx = ctx;
13014 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13015 	p.cpus = OPTS_GET(opts, cpus, NULL);
13016 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
13017 
13018 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13019 }
13020 
13021 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13022 					      struct perf_buffer_params *p)
13023 {
13024 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
13025 	struct bpf_map_info map;
13026 	char msg[STRERR_BUFSIZE];
13027 	struct perf_buffer *pb;
13028 	bool *online = NULL;
13029 	__u32 map_info_len;
13030 	int err, i, j, n;
13031 
13032 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13033 		pr_warn("page count should be power of two, but is %zu\n",
13034 			page_cnt);
13035 		return ERR_PTR(-EINVAL);
13036 	}
13037 
13038 	/* best-effort sanity checks */
13039 	memset(&map, 0, sizeof(map));
13040 	map_info_len = sizeof(map);
13041 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13042 	if (err) {
13043 		err = -errno;
13044 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13045 		 * -EBADFD, -EFAULT, or -E2BIG on real error
13046 		 */
13047 		if (err != -EINVAL) {
13048 			pr_warn("failed to get map info for map FD %d: %s\n",
13049 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13050 			return ERR_PTR(err);
13051 		}
13052 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13053 			 map_fd);
13054 	} else {
13055 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13056 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13057 				map.name);
13058 			return ERR_PTR(-EINVAL);
13059 		}
13060 	}
13061 
13062 	pb = calloc(1, sizeof(*pb));
13063 	if (!pb)
13064 		return ERR_PTR(-ENOMEM);
13065 
13066 	pb->event_cb = p->event_cb;
13067 	pb->sample_cb = p->sample_cb;
13068 	pb->lost_cb = p->lost_cb;
13069 	pb->ctx = p->ctx;
13070 
13071 	pb->page_size = getpagesize();
13072 	pb->mmap_size = pb->page_size * page_cnt;
13073 	pb->map_fd = map_fd;
13074 
13075 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13076 	if (pb->epoll_fd < 0) {
13077 		err = -errno;
13078 		pr_warn("failed to create epoll instance: %s\n",
13079 			libbpf_strerror_r(err, msg, sizeof(msg)));
13080 		goto error;
13081 	}
13082 
13083 	if (p->cpu_cnt > 0) {
13084 		pb->cpu_cnt = p->cpu_cnt;
13085 	} else {
13086 		pb->cpu_cnt = libbpf_num_possible_cpus();
13087 		if (pb->cpu_cnt < 0) {
13088 			err = pb->cpu_cnt;
13089 			goto error;
13090 		}
13091 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
13092 			pb->cpu_cnt = map.max_entries;
13093 	}
13094 
13095 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13096 	if (!pb->events) {
13097 		err = -ENOMEM;
13098 		pr_warn("failed to allocate events: out of memory\n");
13099 		goto error;
13100 	}
13101 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13102 	if (!pb->cpu_bufs) {
13103 		err = -ENOMEM;
13104 		pr_warn("failed to allocate buffers: out of memory\n");
13105 		goto error;
13106 	}
13107 
13108 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13109 	if (err) {
13110 		pr_warn("failed to get online CPU mask: %d\n", err);
13111 		goto error;
13112 	}
13113 
13114 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13115 		struct perf_cpu_buf *cpu_buf;
13116 		int cpu, map_key;
13117 
13118 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13119 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13120 
13121 		/* in case user didn't explicitly requested particular CPUs to
13122 		 * be attached to, skip offline/not present CPUs
13123 		 */
13124 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13125 			continue;
13126 
13127 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13128 		if (IS_ERR(cpu_buf)) {
13129 			err = PTR_ERR(cpu_buf);
13130 			goto error;
13131 		}
13132 
13133 		pb->cpu_bufs[j] = cpu_buf;
13134 
13135 		err = bpf_map_update_elem(pb->map_fd, &map_key,
13136 					  &cpu_buf->fd, 0);
13137 		if (err) {
13138 			err = -errno;
13139 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13140 				cpu, map_key, cpu_buf->fd,
13141 				libbpf_strerror_r(err, msg, sizeof(msg)));
13142 			goto error;
13143 		}
13144 
13145 		pb->events[j].events = EPOLLIN;
13146 		pb->events[j].data.ptr = cpu_buf;
13147 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13148 			      &pb->events[j]) < 0) {
13149 			err = -errno;
13150 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13151 				cpu, cpu_buf->fd,
13152 				libbpf_strerror_r(err, msg, sizeof(msg)));
13153 			goto error;
13154 		}
13155 		j++;
13156 	}
13157 	pb->cpu_cnt = j;
13158 	free(online);
13159 
13160 	return pb;
13161 
13162 error:
13163 	free(online);
13164 	if (pb)
13165 		perf_buffer__free(pb);
13166 	return ERR_PTR(err);
13167 }
13168 
13169 struct perf_sample_raw {
13170 	struct perf_event_header header;
13171 	uint32_t size;
13172 	char data[];
13173 };
13174 
13175 struct perf_sample_lost {
13176 	struct perf_event_header header;
13177 	uint64_t id;
13178 	uint64_t lost;
13179 	uint64_t sample_id;
13180 };
13181 
13182 static enum bpf_perf_event_ret
13183 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13184 {
13185 	struct perf_cpu_buf *cpu_buf = ctx;
13186 	struct perf_buffer *pb = cpu_buf->pb;
13187 	void *data = e;
13188 
13189 	/* user wants full control over parsing perf event */
13190 	if (pb->event_cb)
13191 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13192 
13193 	switch (e->type) {
13194 	case PERF_RECORD_SAMPLE: {
13195 		struct perf_sample_raw *s = data;
13196 
13197 		if (pb->sample_cb)
13198 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13199 		break;
13200 	}
13201 	case PERF_RECORD_LOST: {
13202 		struct perf_sample_lost *s = data;
13203 
13204 		if (pb->lost_cb)
13205 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13206 		break;
13207 	}
13208 	default:
13209 		pr_warn("unknown perf sample type %d\n", e->type);
13210 		return LIBBPF_PERF_EVENT_ERROR;
13211 	}
13212 	return LIBBPF_PERF_EVENT_CONT;
13213 }
13214 
13215 static int perf_buffer__process_records(struct perf_buffer *pb,
13216 					struct perf_cpu_buf *cpu_buf)
13217 {
13218 	enum bpf_perf_event_ret ret;
13219 
13220 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13221 				     pb->page_size, &cpu_buf->buf,
13222 				     &cpu_buf->buf_size,
13223 				     perf_buffer__process_record, cpu_buf);
13224 	if (ret != LIBBPF_PERF_EVENT_CONT)
13225 		return ret;
13226 	return 0;
13227 }
13228 
13229 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13230 {
13231 	return pb->epoll_fd;
13232 }
13233 
13234 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13235 {
13236 	int i, cnt, err;
13237 
13238 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13239 	if (cnt < 0)
13240 		return -errno;
13241 
13242 	for (i = 0; i < cnt; i++) {
13243 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13244 
13245 		err = perf_buffer__process_records(pb, cpu_buf);
13246 		if (err) {
13247 			pr_warn("error while processing records: %d\n", err);
13248 			return libbpf_err(err);
13249 		}
13250 	}
13251 	return cnt;
13252 }
13253 
13254 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13255  * manager.
13256  */
13257 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13258 {
13259 	return pb->cpu_cnt;
13260 }
13261 
13262 /*
13263  * Return perf_event FD of a ring buffer in *buf_idx* slot of
13264  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13265  * select()/poll()/epoll() Linux syscalls.
13266  */
13267 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13268 {
13269 	struct perf_cpu_buf *cpu_buf;
13270 
13271 	if (buf_idx >= pb->cpu_cnt)
13272 		return libbpf_err(-EINVAL);
13273 
13274 	cpu_buf = pb->cpu_bufs[buf_idx];
13275 	if (!cpu_buf)
13276 		return libbpf_err(-ENOENT);
13277 
13278 	return cpu_buf->fd;
13279 }
13280 
13281 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13282 {
13283 	struct perf_cpu_buf *cpu_buf;
13284 
13285 	if (buf_idx >= pb->cpu_cnt)
13286 		return libbpf_err(-EINVAL);
13287 
13288 	cpu_buf = pb->cpu_bufs[buf_idx];
13289 	if (!cpu_buf)
13290 		return libbpf_err(-ENOENT);
13291 
13292 	*buf = cpu_buf->base;
13293 	*buf_size = pb->mmap_size;
13294 	return 0;
13295 }
13296 
13297 /*
13298  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13299  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13300  * consume, do nothing and return success.
13301  * Returns:
13302  *   - 0 on success;
13303  *   - <0 on failure.
13304  */
13305 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13306 {
13307 	struct perf_cpu_buf *cpu_buf;
13308 
13309 	if (buf_idx >= pb->cpu_cnt)
13310 		return libbpf_err(-EINVAL);
13311 
13312 	cpu_buf = pb->cpu_bufs[buf_idx];
13313 	if (!cpu_buf)
13314 		return libbpf_err(-ENOENT);
13315 
13316 	return perf_buffer__process_records(pb, cpu_buf);
13317 }
13318 
13319 int perf_buffer__consume(struct perf_buffer *pb)
13320 {
13321 	int i, err;
13322 
13323 	for (i = 0; i < pb->cpu_cnt; i++) {
13324 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13325 
13326 		if (!cpu_buf)
13327 			continue;
13328 
13329 		err = perf_buffer__process_records(pb, cpu_buf);
13330 		if (err) {
13331 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13332 			return libbpf_err(err);
13333 		}
13334 	}
13335 	return 0;
13336 }
13337 
13338 int bpf_program__set_attach_target(struct bpf_program *prog,
13339 				   int attach_prog_fd,
13340 				   const char *attach_func_name)
13341 {
13342 	int btf_obj_fd = 0, btf_id = 0, err;
13343 
13344 	if (!prog || attach_prog_fd < 0)
13345 		return libbpf_err(-EINVAL);
13346 
13347 	if (prog->obj->loaded)
13348 		return libbpf_err(-EINVAL);
13349 
13350 	if (attach_prog_fd && !attach_func_name) {
13351 		/* remember attach_prog_fd and let bpf_program__load() find
13352 		 * BTF ID during the program load
13353 		 */
13354 		prog->attach_prog_fd = attach_prog_fd;
13355 		return 0;
13356 	}
13357 
13358 	if (attach_prog_fd) {
13359 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
13360 						 attach_prog_fd);
13361 		if (btf_id < 0)
13362 			return libbpf_err(btf_id);
13363 	} else {
13364 		if (!attach_func_name)
13365 			return libbpf_err(-EINVAL);
13366 
13367 		/* load btf_vmlinux, if not yet */
13368 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13369 		if (err)
13370 			return libbpf_err(err);
13371 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13372 					 prog->expected_attach_type,
13373 					 &btf_obj_fd, &btf_id);
13374 		if (err)
13375 			return libbpf_err(err);
13376 	}
13377 
13378 	prog->attach_btf_id = btf_id;
13379 	prog->attach_btf_obj_fd = btf_obj_fd;
13380 	prog->attach_prog_fd = attach_prog_fd;
13381 	return 0;
13382 }
13383 
13384 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13385 {
13386 	int err = 0, n, len, start, end = -1;
13387 	bool *tmp;
13388 
13389 	*mask = NULL;
13390 	*mask_sz = 0;
13391 
13392 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13393 	while (*s) {
13394 		if (*s == ',' || *s == '\n') {
13395 			s++;
13396 			continue;
13397 		}
13398 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13399 		if (n <= 0 || n > 2) {
13400 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13401 			err = -EINVAL;
13402 			goto cleanup;
13403 		} else if (n == 1) {
13404 			end = start;
13405 		}
13406 		if (start < 0 || start > end) {
13407 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13408 				start, end, s);
13409 			err = -EINVAL;
13410 			goto cleanup;
13411 		}
13412 		tmp = realloc(*mask, end + 1);
13413 		if (!tmp) {
13414 			err = -ENOMEM;
13415 			goto cleanup;
13416 		}
13417 		*mask = tmp;
13418 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13419 		memset(tmp + start, 1, end - start + 1);
13420 		*mask_sz = end + 1;
13421 		s += len;
13422 	}
13423 	if (!*mask_sz) {
13424 		pr_warn("Empty CPU range\n");
13425 		return -EINVAL;
13426 	}
13427 	return 0;
13428 cleanup:
13429 	free(*mask);
13430 	*mask = NULL;
13431 	return err;
13432 }
13433 
13434 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13435 {
13436 	int fd, err = 0, len;
13437 	char buf[128];
13438 
13439 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13440 	if (fd < 0) {
13441 		err = -errno;
13442 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13443 		return err;
13444 	}
13445 	len = read(fd, buf, sizeof(buf));
13446 	close(fd);
13447 	if (len <= 0) {
13448 		err = len ? -errno : -EINVAL;
13449 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13450 		return err;
13451 	}
13452 	if (len >= sizeof(buf)) {
13453 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13454 		return -E2BIG;
13455 	}
13456 	buf[len] = '\0';
13457 
13458 	return parse_cpu_mask_str(buf, mask, mask_sz);
13459 }
13460 
13461 int libbpf_num_possible_cpus(void)
13462 {
13463 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13464 	static int cpus;
13465 	int err, n, i, tmp_cpus;
13466 	bool *mask;
13467 
13468 	tmp_cpus = READ_ONCE(cpus);
13469 	if (tmp_cpus > 0)
13470 		return tmp_cpus;
13471 
13472 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13473 	if (err)
13474 		return libbpf_err(err);
13475 
13476 	tmp_cpus = 0;
13477 	for (i = 0; i < n; i++) {
13478 		if (mask[i])
13479 			tmp_cpus++;
13480 	}
13481 	free(mask);
13482 
13483 	WRITE_ONCE(cpus, tmp_cpus);
13484 	return tmp_cpus;
13485 }
13486 
13487 static int populate_skeleton_maps(const struct bpf_object *obj,
13488 				  struct bpf_map_skeleton *maps,
13489 				  size_t map_cnt)
13490 {
13491 	int i;
13492 
13493 	for (i = 0; i < map_cnt; i++) {
13494 		struct bpf_map **map = maps[i].map;
13495 		const char *name = maps[i].name;
13496 		void **mmaped = maps[i].mmaped;
13497 
13498 		*map = bpf_object__find_map_by_name(obj, name);
13499 		if (!*map) {
13500 			pr_warn("failed to find skeleton map '%s'\n", name);
13501 			return -ESRCH;
13502 		}
13503 
13504 		/* externs shouldn't be pre-setup from user code */
13505 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13506 			*mmaped = (*map)->mmaped;
13507 	}
13508 	return 0;
13509 }
13510 
13511 static int populate_skeleton_progs(const struct bpf_object *obj,
13512 				   struct bpf_prog_skeleton *progs,
13513 				   size_t prog_cnt)
13514 {
13515 	int i;
13516 
13517 	for (i = 0; i < prog_cnt; i++) {
13518 		struct bpf_program **prog = progs[i].prog;
13519 		const char *name = progs[i].name;
13520 
13521 		*prog = bpf_object__find_program_by_name(obj, name);
13522 		if (!*prog) {
13523 			pr_warn("failed to find skeleton program '%s'\n", name);
13524 			return -ESRCH;
13525 		}
13526 	}
13527 	return 0;
13528 }
13529 
13530 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13531 			      const struct bpf_object_open_opts *opts)
13532 {
13533 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13534 		.object_name = s->name,
13535 	);
13536 	struct bpf_object *obj;
13537 	int err;
13538 
13539 	/* Attempt to preserve opts->object_name, unless overriden by user
13540 	 * explicitly. Overwriting object name for skeletons is discouraged,
13541 	 * as it breaks global data maps, because they contain object name
13542 	 * prefix as their own map name prefix. When skeleton is generated,
13543 	 * bpftool is making an assumption that this name will stay the same.
13544 	 */
13545 	if (opts) {
13546 		memcpy(&skel_opts, opts, sizeof(*opts));
13547 		if (!opts->object_name)
13548 			skel_opts.object_name = s->name;
13549 	}
13550 
13551 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13552 	err = libbpf_get_error(obj);
13553 	if (err) {
13554 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13555 			s->name, err);
13556 		return libbpf_err(err);
13557 	}
13558 
13559 	*s->obj = obj;
13560 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13561 	if (err) {
13562 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13563 		return libbpf_err(err);
13564 	}
13565 
13566 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13567 	if (err) {
13568 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13569 		return libbpf_err(err);
13570 	}
13571 
13572 	return 0;
13573 }
13574 
13575 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13576 {
13577 	int err, len, var_idx, i;
13578 	const char *var_name;
13579 	const struct bpf_map *map;
13580 	struct btf *btf;
13581 	__u32 map_type_id;
13582 	const struct btf_type *map_type, *var_type;
13583 	const struct bpf_var_skeleton *var_skel;
13584 	struct btf_var_secinfo *var;
13585 
13586 	if (!s->obj)
13587 		return libbpf_err(-EINVAL);
13588 
13589 	btf = bpf_object__btf(s->obj);
13590 	if (!btf) {
13591 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13592 			bpf_object__name(s->obj));
13593 		return libbpf_err(-errno);
13594 	}
13595 
13596 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13597 	if (err) {
13598 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13599 		return libbpf_err(err);
13600 	}
13601 
13602 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13603 	if (err) {
13604 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13605 		return libbpf_err(err);
13606 	}
13607 
13608 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13609 		var_skel = &s->vars[var_idx];
13610 		map = *var_skel->map;
13611 		map_type_id = bpf_map__btf_value_type_id(map);
13612 		map_type = btf__type_by_id(btf, map_type_id);
13613 
13614 		if (!btf_is_datasec(map_type)) {
13615 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13616 				bpf_map__name(map),
13617 				__btf_kind_str(btf_kind(map_type)));
13618 			return libbpf_err(-EINVAL);
13619 		}
13620 
13621 		len = btf_vlen(map_type);
13622 		var = btf_var_secinfos(map_type);
13623 		for (i = 0; i < len; i++, var++) {
13624 			var_type = btf__type_by_id(btf, var->type);
13625 			var_name = btf__name_by_offset(btf, var_type->name_off);
13626 			if (strcmp(var_name, var_skel->name) == 0) {
13627 				*var_skel->addr = map->mmaped + var->offset;
13628 				break;
13629 			}
13630 		}
13631 	}
13632 	return 0;
13633 }
13634 
13635 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13636 {
13637 	if (!s)
13638 		return;
13639 	free(s->maps);
13640 	free(s->progs);
13641 	free(s->vars);
13642 	free(s);
13643 }
13644 
13645 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13646 {
13647 	int i, err;
13648 
13649 	err = bpf_object__load(*s->obj);
13650 	if (err) {
13651 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13652 		return libbpf_err(err);
13653 	}
13654 
13655 	for (i = 0; i < s->map_cnt; i++) {
13656 		struct bpf_map *map = *s->maps[i].map;
13657 		size_t mmap_sz = bpf_map_mmap_sz(map);
13658 		int prot, map_fd = map->fd;
13659 		void **mmaped = s->maps[i].mmaped;
13660 
13661 		if (!mmaped)
13662 			continue;
13663 
13664 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13665 			*mmaped = NULL;
13666 			continue;
13667 		}
13668 
13669 		if (map->def.type == BPF_MAP_TYPE_ARENA) {
13670 			*mmaped = map->mmaped;
13671 			continue;
13672 		}
13673 
13674 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13675 			prot = PROT_READ;
13676 		else
13677 			prot = PROT_READ | PROT_WRITE;
13678 
13679 		/* Remap anonymous mmap()-ed "map initialization image" as
13680 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13681 		 * memory address. This will cause kernel to change process'
13682 		 * page table to point to a different piece of kernel memory,
13683 		 * but from userspace point of view memory address (and its
13684 		 * contents, being identical at this point) will stay the
13685 		 * same. This mapping will be released by bpf_object__close()
13686 		 * as per normal clean up procedure, so we don't need to worry
13687 		 * about it from skeleton's clean up perspective.
13688 		 */
13689 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13690 		if (*mmaped == MAP_FAILED) {
13691 			err = -errno;
13692 			*mmaped = NULL;
13693 			pr_warn("failed to re-mmap() map '%s': %d\n",
13694 				 bpf_map__name(map), err);
13695 			return libbpf_err(err);
13696 		}
13697 	}
13698 
13699 	return 0;
13700 }
13701 
13702 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13703 {
13704 	int i, err;
13705 
13706 	for (i = 0; i < s->prog_cnt; i++) {
13707 		struct bpf_program *prog = *s->progs[i].prog;
13708 		struct bpf_link **link = s->progs[i].link;
13709 
13710 		if (!prog->autoload || !prog->autoattach)
13711 			continue;
13712 
13713 		/* auto-attaching not supported for this program */
13714 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13715 			continue;
13716 
13717 		/* if user already set the link manually, don't attempt auto-attach */
13718 		if (*link)
13719 			continue;
13720 
13721 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13722 		if (err) {
13723 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13724 				bpf_program__name(prog), err);
13725 			return libbpf_err(err);
13726 		}
13727 
13728 		/* It's possible that for some SEC() definitions auto-attach
13729 		 * is supported in some cases (e.g., if definition completely
13730 		 * specifies target information), but is not in other cases.
13731 		 * SEC("uprobe") is one such case. If user specified target
13732 		 * binary and function name, such BPF program can be
13733 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13734 		 * attach to fail. It should just be skipped.
13735 		 * attach_fn signals such case with returning 0 (no error) and
13736 		 * setting link to NULL.
13737 		 */
13738 	}
13739 
13740 	return 0;
13741 }
13742 
13743 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13744 {
13745 	int i;
13746 
13747 	for (i = 0; i < s->prog_cnt; i++) {
13748 		struct bpf_link **link = s->progs[i].link;
13749 
13750 		bpf_link__destroy(*link);
13751 		*link = NULL;
13752 	}
13753 }
13754 
13755 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13756 {
13757 	if (!s)
13758 		return;
13759 
13760 	if (s->progs)
13761 		bpf_object__detach_skeleton(s);
13762 	if (s->obj)
13763 		bpf_object__close(*s->obj);
13764 	free(s->maps);
13765 	free(s->progs);
13766 	free(s);
13767 }
13768