1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 libbpf_mode = mode; 160 return 0; 161 } 162 163 __u32 libbpf_major_version(void) 164 { 165 return LIBBPF_MAJOR_VERSION; 166 } 167 168 __u32 libbpf_minor_version(void) 169 { 170 return LIBBPF_MINOR_VERSION; 171 } 172 173 const char *libbpf_version_string(void) 174 { 175 #define __S(X) #X 176 #define _S(X) __S(X) 177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 178 #undef _S 179 #undef __S 180 } 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN_VAR, 187 RELO_EXTERN_FUNC, 188 RELO_SUBPROG_ADDR, 189 RELO_CORE, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 union { 196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 197 struct { 198 int map_idx; 199 int sym_off; 200 }; 201 }; 202 }; 203 204 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 205 enum sec_def_flags { 206 SEC_NONE = 0, 207 /* expected_attach_type is optional, if kernel doesn't support that */ 208 SEC_EXP_ATTACH_OPT = 1, 209 /* legacy, only used by libbpf_get_type_names() and 210 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 211 * This used to be associated with cgroup (and few other) BPF programs 212 * that were attachable through BPF_PROG_ATTACH command. Pretty 213 * meaningless nowadays, though. 214 */ 215 SEC_ATTACHABLE = 2, 216 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 217 /* attachment target is specified through BTF ID in either kernel or 218 * other BPF program's BTF object */ 219 SEC_ATTACH_BTF = 4, 220 /* BPF program type allows sleeping/blocking in kernel */ 221 SEC_SLEEPABLE = 8, 222 /* allow non-strict prefix matching */ 223 SEC_SLOPPY_PFX = 16, 224 /* BPF program support non-linear XDP buffer */ 225 SEC_XDP_FRAGS = 32, 226 /* deprecated sec definitions not supposed to be used */ 227 SEC_DEPRECATED = 64, 228 }; 229 230 struct bpf_sec_def { 231 char *sec; 232 enum bpf_prog_type prog_type; 233 enum bpf_attach_type expected_attach_type; 234 long cookie; 235 int handler_id; 236 237 libbpf_prog_setup_fn_t prog_setup_fn; 238 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 239 libbpf_prog_attach_fn_t prog_attach_fn; 240 }; 241 242 /* 243 * bpf_prog should be a better name but it has been used in 244 * linux/filter.h. 245 */ 246 struct bpf_program { 247 const struct bpf_sec_def *sec_def; 248 char *sec_name; 249 size_t sec_idx; 250 /* this program's instruction offset (in number of instructions) 251 * within its containing ELF section 252 */ 253 size_t sec_insn_off; 254 /* number of original instructions in ELF section belonging to this 255 * program, not taking into account subprogram instructions possible 256 * appended later during relocation 257 */ 258 size_t sec_insn_cnt; 259 /* Offset (in number of instructions) of the start of instruction 260 * belonging to this BPF program within its containing main BPF 261 * program. For the entry-point (main) BPF program, this is always 262 * zero. For a sub-program, this gets reset before each of main BPF 263 * programs are processed and relocated and is used to determined 264 * whether sub-program was already appended to the main program, and 265 * if yes, at which instruction offset. 266 */ 267 size_t sub_insn_off; 268 269 char *name; 270 /* name with / replaced by _; makes recursive pinning 271 * in bpf_object__pin_programs easier 272 */ 273 char *pin_name; 274 275 /* instructions that belong to BPF program; insns[0] is located at 276 * sec_insn_off instruction within its ELF section in ELF file, so 277 * when mapping ELF file instruction index to the local instruction, 278 * one needs to subtract sec_insn_off; and vice versa. 279 */ 280 struct bpf_insn *insns; 281 /* actual number of instruction in this BPF program's image; for 282 * entry-point BPF programs this includes the size of main program 283 * itself plus all the used sub-programs, appended at the end 284 */ 285 size_t insns_cnt; 286 287 struct reloc_desc *reloc_desc; 288 int nr_reloc; 289 290 /* BPF verifier log settings */ 291 char *log_buf; 292 size_t log_size; 293 __u32 log_level; 294 295 struct { 296 int nr; 297 int *fds; 298 } instances; 299 bpf_program_prep_t preprocessor; 300 301 struct bpf_object *obj; 302 void *priv; 303 bpf_program_clear_priv_t clear_priv; 304 305 bool load; 306 bool mark_btf_static; 307 enum bpf_prog_type type; 308 enum bpf_attach_type expected_attach_type; 309 int prog_ifindex; 310 __u32 attach_btf_obj_fd; 311 __u32 attach_btf_id; 312 __u32 attach_prog_fd; 313 void *func_info; 314 __u32 func_info_rec_size; 315 __u32 func_info_cnt; 316 317 void *line_info; 318 __u32 line_info_rec_size; 319 __u32 line_info_cnt; 320 __u32 prog_flags; 321 }; 322 323 struct bpf_struct_ops { 324 const char *tname; 325 const struct btf_type *type; 326 struct bpf_program **progs; 327 __u32 *kern_func_off; 328 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 329 void *data; 330 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 331 * btf_vmlinux's format. 332 * struct bpf_struct_ops_tcp_congestion_ops { 333 * [... some other kernel fields ...] 334 * struct tcp_congestion_ops data; 335 * } 336 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 337 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 338 * from "data". 339 */ 340 void *kern_vdata; 341 __u32 type_id; 342 }; 343 344 #define DATA_SEC ".data" 345 #define BSS_SEC ".bss" 346 #define RODATA_SEC ".rodata" 347 #define KCONFIG_SEC ".kconfig" 348 #define KSYMS_SEC ".ksyms" 349 #define STRUCT_OPS_SEC ".struct_ops" 350 351 enum libbpf_map_type { 352 LIBBPF_MAP_UNSPEC, 353 LIBBPF_MAP_DATA, 354 LIBBPF_MAP_BSS, 355 LIBBPF_MAP_RODATA, 356 LIBBPF_MAP_KCONFIG, 357 }; 358 359 struct bpf_map { 360 char *name; 361 /* real_name is defined for special internal maps (.rodata*, 362 * .data*, .bss, .kconfig) and preserves their original ELF section 363 * name. This is important to be be able to find corresponding BTF 364 * DATASEC information. 365 */ 366 char *real_name; 367 int fd; 368 int sec_idx; 369 size_t sec_offset; 370 int map_ifindex; 371 int inner_map_fd; 372 struct bpf_map_def def; 373 __u32 numa_node; 374 __u32 btf_var_idx; 375 __u32 btf_key_type_id; 376 __u32 btf_value_type_id; 377 __u32 btf_vmlinux_value_type_id; 378 void *priv; 379 bpf_map_clear_priv_t clear_priv; 380 enum libbpf_map_type libbpf_type; 381 void *mmaped; 382 struct bpf_struct_ops *st_ops; 383 struct bpf_map *inner_map; 384 void **init_slots; 385 int init_slots_sz; 386 char *pin_path; 387 bool pinned; 388 bool reused; 389 bool skipped; 390 __u64 map_extra; 391 }; 392 393 enum extern_type { 394 EXT_UNKNOWN, 395 EXT_KCFG, 396 EXT_KSYM, 397 }; 398 399 enum kcfg_type { 400 KCFG_UNKNOWN, 401 KCFG_CHAR, 402 KCFG_BOOL, 403 KCFG_INT, 404 KCFG_TRISTATE, 405 KCFG_CHAR_ARR, 406 }; 407 408 struct extern_desc { 409 enum extern_type type; 410 int sym_idx; 411 int btf_id; 412 int sec_btf_id; 413 const char *name; 414 bool is_set; 415 bool is_weak; 416 union { 417 struct { 418 enum kcfg_type type; 419 int sz; 420 int align; 421 int data_off; 422 bool is_signed; 423 } kcfg; 424 struct { 425 unsigned long long addr; 426 427 /* target btf_id of the corresponding kernel var. */ 428 int kernel_btf_obj_fd; 429 int kernel_btf_id; 430 431 /* local btf_id of the ksym extern's type. */ 432 __u32 type_id; 433 /* BTF fd index to be patched in for insn->off, this is 434 * 0 for vmlinux BTF, index in obj->fd_array for module 435 * BTF 436 */ 437 __s16 btf_fd_idx; 438 } ksym; 439 }; 440 }; 441 442 static LIST_HEAD(bpf_objects_list); 443 444 struct module_btf { 445 struct btf *btf; 446 char *name; 447 __u32 id; 448 int fd; 449 int fd_array_idx; 450 }; 451 452 enum sec_type { 453 SEC_UNUSED = 0, 454 SEC_RELO, 455 SEC_BSS, 456 SEC_DATA, 457 SEC_RODATA, 458 }; 459 460 struct elf_sec_desc { 461 enum sec_type sec_type; 462 Elf64_Shdr *shdr; 463 Elf_Data *data; 464 }; 465 466 struct elf_state { 467 int fd; 468 const void *obj_buf; 469 size_t obj_buf_sz; 470 Elf *elf; 471 Elf64_Ehdr *ehdr; 472 Elf_Data *symbols; 473 Elf_Data *st_ops_data; 474 size_t shstrndx; /* section index for section name strings */ 475 size_t strtabidx; 476 struct elf_sec_desc *secs; 477 int sec_cnt; 478 int maps_shndx; 479 int btf_maps_shndx; 480 __u32 btf_maps_sec_btf_id; 481 int text_shndx; 482 int symbols_shndx; 483 int st_ops_shndx; 484 }; 485 486 struct usdt_manager; 487 488 struct bpf_object { 489 char name[BPF_OBJ_NAME_LEN]; 490 char license[64]; 491 __u32 kern_version; 492 493 struct bpf_program *programs; 494 size_t nr_programs; 495 struct bpf_map *maps; 496 size_t nr_maps; 497 size_t maps_cap; 498 499 char *kconfig; 500 struct extern_desc *externs; 501 int nr_extern; 502 int kconfig_map_idx; 503 504 bool loaded; 505 bool has_subcalls; 506 bool has_rodata; 507 508 struct bpf_gen *gen_loader; 509 510 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 511 struct elf_state efile; 512 /* 513 * All loaded bpf_object are linked in a list, which is 514 * hidden to caller. bpf_objects__<func> handlers deal with 515 * all objects. 516 */ 517 struct list_head list; 518 519 struct btf *btf; 520 struct btf_ext *btf_ext; 521 522 /* Parse and load BTF vmlinux if any of the programs in the object need 523 * it at load time. 524 */ 525 struct btf *btf_vmlinux; 526 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 527 * override for vmlinux BTF. 528 */ 529 char *btf_custom_path; 530 /* vmlinux BTF override for CO-RE relocations */ 531 struct btf *btf_vmlinux_override; 532 /* Lazily initialized kernel module BTFs */ 533 struct module_btf *btf_modules; 534 bool btf_modules_loaded; 535 size_t btf_module_cnt; 536 size_t btf_module_cap; 537 538 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 539 char *log_buf; 540 size_t log_size; 541 __u32 log_level; 542 543 void *priv; 544 bpf_object_clear_priv_t clear_priv; 545 546 int *fd_array; 547 size_t fd_array_cap; 548 size_t fd_array_cnt; 549 550 struct usdt_manager *usdt_man; 551 552 char path[]; 553 }; 554 555 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 556 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 557 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 558 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 559 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 560 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 561 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 562 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 563 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 564 565 void bpf_program__unload(struct bpf_program *prog) 566 { 567 int i; 568 569 if (!prog) 570 return; 571 572 /* 573 * If the object is opened but the program was never loaded, 574 * it is possible that prog->instances.nr == -1. 575 */ 576 if (prog->instances.nr > 0) { 577 for (i = 0; i < prog->instances.nr; i++) 578 zclose(prog->instances.fds[i]); 579 } else if (prog->instances.nr != -1) { 580 pr_warn("Internal error: instances.nr is %d\n", 581 prog->instances.nr); 582 } 583 584 prog->instances.nr = -1; 585 zfree(&prog->instances.fds); 586 587 zfree(&prog->func_info); 588 zfree(&prog->line_info); 589 } 590 591 static void bpf_program__exit(struct bpf_program *prog) 592 { 593 if (!prog) 594 return; 595 596 if (prog->clear_priv) 597 prog->clear_priv(prog, prog->priv); 598 599 prog->priv = NULL; 600 prog->clear_priv = NULL; 601 602 bpf_program__unload(prog); 603 zfree(&prog->name); 604 zfree(&prog->sec_name); 605 zfree(&prog->pin_name); 606 zfree(&prog->insns); 607 zfree(&prog->reloc_desc); 608 609 prog->nr_reloc = 0; 610 prog->insns_cnt = 0; 611 prog->sec_idx = -1; 612 } 613 614 static char *__bpf_program__pin_name(struct bpf_program *prog) 615 { 616 char *name, *p; 617 618 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 619 name = strdup(prog->name); 620 else 621 name = strdup(prog->sec_name); 622 623 if (!name) 624 return NULL; 625 626 p = name; 627 628 while ((p = strchr(p, '/'))) 629 *p = '_'; 630 631 return name; 632 } 633 634 static bool insn_is_subprog_call(const struct bpf_insn *insn) 635 { 636 return BPF_CLASS(insn->code) == BPF_JMP && 637 BPF_OP(insn->code) == BPF_CALL && 638 BPF_SRC(insn->code) == BPF_K && 639 insn->src_reg == BPF_PSEUDO_CALL && 640 insn->dst_reg == 0 && 641 insn->off == 0; 642 } 643 644 static bool is_call_insn(const struct bpf_insn *insn) 645 { 646 return insn->code == (BPF_JMP | BPF_CALL); 647 } 648 649 static bool insn_is_pseudo_func(struct bpf_insn *insn) 650 { 651 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 652 } 653 654 static int 655 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 656 const char *name, size_t sec_idx, const char *sec_name, 657 size_t sec_off, void *insn_data, size_t insn_data_sz) 658 { 659 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 660 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 661 sec_name, name, sec_off, insn_data_sz); 662 return -EINVAL; 663 } 664 665 memset(prog, 0, sizeof(*prog)); 666 prog->obj = obj; 667 668 prog->sec_idx = sec_idx; 669 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 670 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 671 /* insns_cnt can later be increased by appending used subprograms */ 672 prog->insns_cnt = prog->sec_insn_cnt; 673 674 prog->type = BPF_PROG_TYPE_UNSPEC; 675 prog->load = true; 676 677 prog->instances.fds = NULL; 678 prog->instances.nr = -1; 679 680 /* inherit object's log_level */ 681 prog->log_level = obj->log_level; 682 683 prog->sec_name = strdup(sec_name); 684 if (!prog->sec_name) 685 goto errout; 686 687 prog->name = strdup(name); 688 if (!prog->name) 689 goto errout; 690 691 prog->pin_name = __bpf_program__pin_name(prog); 692 if (!prog->pin_name) 693 goto errout; 694 695 prog->insns = malloc(insn_data_sz); 696 if (!prog->insns) 697 goto errout; 698 memcpy(prog->insns, insn_data, insn_data_sz); 699 700 return 0; 701 errout: 702 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 703 bpf_program__exit(prog); 704 return -ENOMEM; 705 } 706 707 static int 708 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 709 const char *sec_name, int sec_idx) 710 { 711 Elf_Data *symbols = obj->efile.symbols; 712 struct bpf_program *prog, *progs; 713 void *data = sec_data->d_buf; 714 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 715 int nr_progs, err, i; 716 const char *name; 717 Elf64_Sym *sym; 718 719 progs = obj->programs; 720 nr_progs = obj->nr_programs; 721 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 722 sec_off = 0; 723 724 for (i = 0; i < nr_syms; i++) { 725 sym = elf_sym_by_idx(obj, i); 726 727 if (sym->st_shndx != sec_idx) 728 continue; 729 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 730 continue; 731 732 prog_sz = sym->st_size; 733 sec_off = sym->st_value; 734 735 name = elf_sym_str(obj, sym->st_name); 736 if (!name) { 737 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 738 sec_name, sec_off); 739 return -LIBBPF_ERRNO__FORMAT; 740 } 741 742 if (sec_off + prog_sz > sec_sz) { 743 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 744 sec_name, sec_off); 745 return -LIBBPF_ERRNO__FORMAT; 746 } 747 748 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 749 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 750 return -ENOTSUP; 751 } 752 753 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 754 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 755 756 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 757 if (!progs) { 758 /* 759 * In this case the original obj->programs 760 * is still valid, so don't need special treat for 761 * bpf_close_object(). 762 */ 763 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 764 sec_name, name); 765 return -ENOMEM; 766 } 767 obj->programs = progs; 768 769 prog = &progs[nr_progs]; 770 771 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 772 sec_off, data + sec_off, prog_sz); 773 if (err) 774 return err; 775 776 /* if function is a global/weak symbol, but has restricted 777 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 778 * as static to enable more permissive BPF verification mode 779 * with more outside context available to BPF verifier 780 */ 781 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 782 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 783 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 784 prog->mark_btf_static = true; 785 786 nr_progs++; 787 obj->nr_programs = nr_progs; 788 } 789 790 return 0; 791 } 792 793 __u32 get_kernel_version(void) 794 { 795 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 796 * but Ubuntu provides /proc/version_signature file, as described at 797 * https://ubuntu.com/kernel, with an example contents below, which we 798 * can use to get a proper LINUX_VERSION_CODE. 799 * 800 * Ubuntu 5.4.0-12.15-generic 5.4.8 801 * 802 * In the above, 5.4.8 is what kernel is actually expecting, while 803 * uname() call will return 5.4.0 in info.release. 804 */ 805 const char *ubuntu_kver_file = "/proc/version_signature"; 806 __u32 major, minor, patch; 807 struct utsname info; 808 809 if (access(ubuntu_kver_file, R_OK) == 0) { 810 FILE *f; 811 812 f = fopen(ubuntu_kver_file, "r"); 813 if (f) { 814 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 815 fclose(f); 816 return KERNEL_VERSION(major, minor, patch); 817 } 818 fclose(f); 819 } 820 /* something went wrong, fall back to uname() approach */ 821 } 822 823 uname(&info); 824 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 825 return 0; 826 return KERNEL_VERSION(major, minor, patch); 827 } 828 829 static const struct btf_member * 830 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 831 { 832 struct btf_member *m; 833 int i; 834 835 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 836 if (btf_member_bit_offset(t, i) == bit_offset) 837 return m; 838 } 839 840 return NULL; 841 } 842 843 static const struct btf_member * 844 find_member_by_name(const struct btf *btf, const struct btf_type *t, 845 const char *name) 846 { 847 struct btf_member *m; 848 int i; 849 850 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 851 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 852 return m; 853 } 854 855 return NULL; 856 } 857 858 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 859 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 860 const char *name, __u32 kind); 861 862 static int 863 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 864 const struct btf_type **type, __u32 *type_id, 865 const struct btf_type **vtype, __u32 *vtype_id, 866 const struct btf_member **data_member) 867 { 868 const struct btf_type *kern_type, *kern_vtype; 869 const struct btf_member *kern_data_member; 870 __s32 kern_vtype_id, kern_type_id; 871 __u32 i; 872 873 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 874 if (kern_type_id < 0) { 875 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 876 tname); 877 return kern_type_id; 878 } 879 kern_type = btf__type_by_id(btf, kern_type_id); 880 881 /* Find the corresponding "map_value" type that will be used 882 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 883 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 884 * btf_vmlinux. 885 */ 886 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 887 tname, BTF_KIND_STRUCT); 888 if (kern_vtype_id < 0) { 889 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 890 STRUCT_OPS_VALUE_PREFIX, tname); 891 return kern_vtype_id; 892 } 893 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 894 895 /* Find "struct tcp_congestion_ops" from 896 * struct bpf_struct_ops_tcp_congestion_ops { 897 * [ ... ] 898 * struct tcp_congestion_ops data; 899 * } 900 */ 901 kern_data_member = btf_members(kern_vtype); 902 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 903 if (kern_data_member->type == kern_type_id) 904 break; 905 } 906 if (i == btf_vlen(kern_vtype)) { 907 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 908 tname, STRUCT_OPS_VALUE_PREFIX, tname); 909 return -EINVAL; 910 } 911 912 *type = kern_type; 913 *type_id = kern_type_id; 914 *vtype = kern_vtype; 915 *vtype_id = kern_vtype_id; 916 *data_member = kern_data_member; 917 918 return 0; 919 } 920 921 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 922 { 923 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 924 } 925 926 /* Init the map's fields that depend on kern_btf */ 927 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 928 const struct btf *btf, 929 const struct btf *kern_btf) 930 { 931 const struct btf_member *member, *kern_member, *kern_data_member; 932 const struct btf_type *type, *kern_type, *kern_vtype; 933 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 934 struct bpf_struct_ops *st_ops; 935 void *data, *kern_data; 936 const char *tname; 937 int err; 938 939 st_ops = map->st_ops; 940 type = st_ops->type; 941 tname = st_ops->tname; 942 err = find_struct_ops_kern_types(kern_btf, tname, 943 &kern_type, &kern_type_id, 944 &kern_vtype, &kern_vtype_id, 945 &kern_data_member); 946 if (err) 947 return err; 948 949 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 950 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 951 952 map->def.value_size = kern_vtype->size; 953 map->btf_vmlinux_value_type_id = kern_vtype_id; 954 955 st_ops->kern_vdata = calloc(1, kern_vtype->size); 956 if (!st_ops->kern_vdata) 957 return -ENOMEM; 958 959 data = st_ops->data; 960 kern_data_off = kern_data_member->offset / 8; 961 kern_data = st_ops->kern_vdata + kern_data_off; 962 963 member = btf_members(type); 964 for (i = 0; i < btf_vlen(type); i++, member++) { 965 const struct btf_type *mtype, *kern_mtype; 966 __u32 mtype_id, kern_mtype_id; 967 void *mdata, *kern_mdata; 968 __s64 msize, kern_msize; 969 __u32 moff, kern_moff; 970 __u32 kern_member_idx; 971 const char *mname; 972 973 mname = btf__name_by_offset(btf, member->name_off); 974 kern_member = find_member_by_name(kern_btf, kern_type, mname); 975 if (!kern_member) { 976 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 977 map->name, mname); 978 return -ENOTSUP; 979 } 980 981 kern_member_idx = kern_member - btf_members(kern_type); 982 if (btf_member_bitfield_size(type, i) || 983 btf_member_bitfield_size(kern_type, kern_member_idx)) { 984 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 985 map->name, mname); 986 return -ENOTSUP; 987 } 988 989 moff = member->offset / 8; 990 kern_moff = kern_member->offset / 8; 991 992 mdata = data + moff; 993 kern_mdata = kern_data + kern_moff; 994 995 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 996 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 997 &kern_mtype_id); 998 if (BTF_INFO_KIND(mtype->info) != 999 BTF_INFO_KIND(kern_mtype->info)) { 1000 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1001 map->name, mname, BTF_INFO_KIND(mtype->info), 1002 BTF_INFO_KIND(kern_mtype->info)); 1003 return -ENOTSUP; 1004 } 1005 1006 if (btf_is_ptr(mtype)) { 1007 struct bpf_program *prog; 1008 1009 prog = st_ops->progs[i]; 1010 if (!prog) 1011 continue; 1012 1013 kern_mtype = skip_mods_and_typedefs(kern_btf, 1014 kern_mtype->type, 1015 &kern_mtype_id); 1016 1017 /* mtype->type must be a func_proto which was 1018 * guaranteed in bpf_object__collect_st_ops_relos(), 1019 * so only check kern_mtype for func_proto here. 1020 */ 1021 if (!btf_is_func_proto(kern_mtype)) { 1022 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1023 map->name, mname); 1024 return -ENOTSUP; 1025 } 1026 1027 prog->attach_btf_id = kern_type_id; 1028 prog->expected_attach_type = kern_member_idx; 1029 1030 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1031 1032 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1033 map->name, mname, prog->name, moff, 1034 kern_moff); 1035 1036 continue; 1037 } 1038 1039 msize = btf__resolve_size(btf, mtype_id); 1040 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1041 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1042 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1043 map->name, mname, (ssize_t)msize, 1044 (ssize_t)kern_msize); 1045 return -ENOTSUP; 1046 } 1047 1048 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1049 map->name, mname, (unsigned int)msize, 1050 moff, kern_moff); 1051 memcpy(kern_mdata, mdata, msize); 1052 } 1053 1054 return 0; 1055 } 1056 1057 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1058 { 1059 struct bpf_map *map; 1060 size_t i; 1061 int err; 1062 1063 for (i = 0; i < obj->nr_maps; i++) { 1064 map = &obj->maps[i]; 1065 1066 if (!bpf_map__is_struct_ops(map)) 1067 continue; 1068 1069 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1070 obj->btf_vmlinux); 1071 if (err) 1072 return err; 1073 } 1074 1075 return 0; 1076 } 1077 1078 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1079 { 1080 const struct btf_type *type, *datasec; 1081 const struct btf_var_secinfo *vsi; 1082 struct bpf_struct_ops *st_ops; 1083 const char *tname, *var_name; 1084 __s32 type_id, datasec_id; 1085 const struct btf *btf; 1086 struct bpf_map *map; 1087 __u32 i; 1088 1089 if (obj->efile.st_ops_shndx == -1) 1090 return 0; 1091 1092 btf = obj->btf; 1093 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1094 BTF_KIND_DATASEC); 1095 if (datasec_id < 0) { 1096 pr_warn("struct_ops init: DATASEC %s not found\n", 1097 STRUCT_OPS_SEC); 1098 return -EINVAL; 1099 } 1100 1101 datasec = btf__type_by_id(btf, datasec_id); 1102 vsi = btf_var_secinfos(datasec); 1103 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1104 type = btf__type_by_id(obj->btf, vsi->type); 1105 var_name = btf__name_by_offset(obj->btf, type->name_off); 1106 1107 type_id = btf__resolve_type(obj->btf, vsi->type); 1108 if (type_id < 0) { 1109 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1110 vsi->type, STRUCT_OPS_SEC); 1111 return -EINVAL; 1112 } 1113 1114 type = btf__type_by_id(obj->btf, type_id); 1115 tname = btf__name_by_offset(obj->btf, type->name_off); 1116 if (!tname[0]) { 1117 pr_warn("struct_ops init: anonymous type is not supported\n"); 1118 return -ENOTSUP; 1119 } 1120 if (!btf_is_struct(type)) { 1121 pr_warn("struct_ops init: %s is not a struct\n", tname); 1122 return -EINVAL; 1123 } 1124 1125 map = bpf_object__add_map(obj); 1126 if (IS_ERR(map)) 1127 return PTR_ERR(map); 1128 1129 map->sec_idx = obj->efile.st_ops_shndx; 1130 map->sec_offset = vsi->offset; 1131 map->name = strdup(var_name); 1132 if (!map->name) 1133 return -ENOMEM; 1134 1135 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1136 map->def.key_size = sizeof(int); 1137 map->def.value_size = type->size; 1138 map->def.max_entries = 1; 1139 1140 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1141 if (!map->st_ops) 1142 return -ENOMEM; 1143 st_ops = map->st_ops; 1144 st_ops->data = malloc(type->size); 1145 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1146 st_ops->kern_func_off = malloc(btf_vlen(type) * 1147 sizeof(*st_ops->kern_func_off)); 1148 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1149 return -ENOMEM; 1150 1151 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1152 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1153 var_name, STRUCT_OPS_SEC); 1154 return -EINVAL; 1155 } 1156 1157 memcpy(st_ops->data, 1158 obj->efile.st_ops_data->d_buf + vsi->offset, 1159 type->size); 1160 st_ops->tname = tname; 1161 st_ops->type = type; 1162 st_ops->type_id = type_id; 1163 1164 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1165 tname, type_id, var_name, vsi->offset); 1166 } 1167 1168 return 0; 1169 } 1170 1171 static struct bpf_object *bpf_object__new(const char *path, 1172 const void *obj_buf, 1173 size_t obj_buf_sz, 1174 const char *obj_name) 1175 { 1176 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1177 struct bpf_object *obj; 1178 char *end; 1179 1180 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1181 if (!obj) { 1182 pr_warn("alloc memory failed for %s\n", path); 1183 return ERR_PTR(-ENOMEM); 1184 } 1185 1186 strcpy(obj->path, path); 1187 if (obj_name) { 1188 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1189 } else { 1190 /* Using basename() GNU version which doesn't modify arg. */ 1191 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1192 end = strchr(obj->name, '.'); 1193 if (end) 1194 *end = 0; 1195 } 1196 1197 obj->efile.fd = -1; 1198 /* 1199 * Caller of this function should also call 1200 * bpf_object__elf_finish() after data collection to return 1201 * obj_buf to user. If not, we should duplicate the buffer to 1202 * avoid user freeing them before elf finish. 1203 */ 1204 obj->efile.obj_buf = obj_buf; 1205 obj->efile.obj_buf_sz = obj_buf_sz; 1206 obj->efile.maps_shndx = -1; 1207 obj->efile.btf_maps_shndx = -1; 1208 obj->efile.st_ops_shndx = -1; 1209 obj->kconfig_map_idx = -1; 1210 1211 obj->kern_version = get_kernel_version(); 1212 obj->loaded = false; 1213 1214 INIT_LIST_HEAD(&obj->list); 1215 if (!strict) 1216 list_add(&obj->list, &bpf_objects_list); 1217 return obj; 1218 } 1219 1220 static void bpf_object__elf_finish(struct bpf_object *obj) 1221 { 1222 if (!obj->efile.elf) 1223 return; 1224 1225 if (obj->efile.elf) { 1226 elf_end(obj->efile.elf); 1227 obj->efile.elf = NULL; 1228 } 1229 obj->efile.symbols = NULL; 1230 obj->efile.st_ops_data = NULL; 1231 1232 zfree(&obj->efile.secs); 1233 obj->efile.sec_cnt = 0; 1234 zclose(obj->efile.fd); 1235 obj->efile.obj_buf = NULL; 1236 obj->efile.obj_buf_sz = 0; 1237 } 1238 1239 static int bpf_object__elf_init(struct bpf_object *obj) 1240 { 1241 Elf64_Ehdr *ehdr; 1242 int err = 0; 1243 Elf *elf; 1244 1245 if (obj->efile.elf) { 1246 pr_warn("elf: init internal error\n"); 1247 return -LIBBPF_ERRNO__LIBELF; 1248 } 1249 1250 if (obj->efile.obj_buf_sz > 0) { 1251 /* 1252 * obj_buf should have been validated by 1253 * bpf_object__open_buffer(). 1254 */ 1255 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1256 } else { 1257 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1258 if (obj->efile.fd < 0) { 1259 char errmsg[STRERR_BUFSIZE], *cp; 1260 1261 err = -errno; 1262 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1263 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1264 return err; 1265 } 1266 1267 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1268 } 1269 1270 if (!elf) { 1271 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1272 err = -LIBBPF_ERRNO__LIBELF; 1273 goto errout; 1274 } 1275 1276 obj->efile.elf = elf; 1277 1278 if (elf_kind(elf) != ELF_K_ELF) { 1279 err = -LIBBPF_ERRNO__FORMAT; 1280 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1281 goto errout; 1282 } 1283 1284 if (gelf_getclass(elf) != ELFCLASS64) { 1285 err = -LIBBPF_ERRNO__FORMAT; 1286 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1287 goto errout; 1288 } 1289 1290 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1291 if (!obj->efile.ehdr) { 1292 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1293 err = -LIBBPF_ERRNO__FORMAT; 1294 goto errout; 1295 } 1296 1297 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1298 pr_warn("elf: failed to get section names section index for %s: %s\n", 1299 obj->path, elf_errmsg(-1)); 1300 err = -LIBBPF_ERRNO__FORMAT; 1301 goto errout; 1302 } 1303 1304 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1305 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1306 pr_warn("elf: failed to get section names strings from %s: %s\n", 1307 obj->path, elf_errmsg(-1)); 1308 err = -LIBBPF_ERRNO__FORMAT; 1309 goto errout; 1310 } 1311 1312 /* Old LLVM set e_machine to EM_NONE */ 1313 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1314 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1315 err = -LIBBPF_ERRNO__FORMAT; 1316 goto errout; 1317 } 1318 1319 return 0; 1320 errout: 1321 bpf_object__elf_finish(obj); 1322 return err; 1323 } 1324 1325 static int bpf_object__check_endianness(struct bpf_object *obj) 1326 { 1327 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1328 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1329 return 0; 1330 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1331 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1332 return 0; 1333 #else 1334 # error "Unrecognized __BYTE_ORDER__" 1335 #endif 1336 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1337 return -LIBBPF_ERRNO__ENDIAN; 1338 } 1339 1340 static int 1341 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1342 { 1343 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1344 * go over allowed ELF data section buffer 1345 */ 1346 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1347 pr_debug("license of %s is %s\n", obj->path, obj->license); 1348 return 0; 1349 } 1350 1351 static int 1352 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1353 { 1354 __u32 kver; 1355 1356 if (size != sizeof(kver)) { 1357 pr_warn("invalid kver section in %s\n", obj->path); 1358 return -LIBBPF_ERRNO__FORMAT; 1359 } 1360 memcpy(&kver, data, sizeof(kver)); 1361 obj->kern_version = kver; 1362 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1363 return 0; 1364 } 1365 1366 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1367 { 1368 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1369 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1370 return true; 1371 return false; 1372 } 1373 1374 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1375 { 1376 Elf_Data *data; 1377 Elf_Scn *scn; 1378 1379 if (!name) 1380 return -EINVAL; 1381 1382 scn = elf_sec_by_name(obj, name); 1383 data = elf_sec_data(obj, scn); 1384 if (data) { 1385 *size = data->d_size; 1386 return 0; /* found it */ 1387 } 1388 1389 return -ENOENT; 1390 } 1391 1392 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1393 { 1394 Elf_Data *symbols = obj->efile.symbols; 1395 const char *sname; 1396 size_t si; 1397 1398 if (!name || !off) 1399 return -EINVAL; 1400 1401 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1402 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1403 1404 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1405 continue; 1406 1407 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1408 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1409 continue; 1410 1411 sname = elf_sym_str(obj, sym->st_name); 1412 if (!sname) { 1413 pr_warn("failed to get sym name string for var %s\n", name); 1414 return -EIO; 1415 } 1416 if (strcmp(name, sname) == 0) { 1417 *off = sym->st_value; 1418 return 0; 1419 } 1420 } 1421 1422 return -ENOENT; 1423 } 1424 1425 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1426 { 1427 struct bpf_map *new_maps; 1428 size_t new_cap; 1429 int i; 1430 1431 if (obj->nr_maps < obj->maps_cap) 1432 return &obj->maps[obj->nr_maps++]; 1433 1434 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1435 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1436 if (!new_maps) { 1437 pr_warn("alloc maps for object failed\n"); 1438 return ERR_PTR(-ENOMEM); 1439 } 1440 1441 obj->maps_cap = new_cap; 1442 obj->maps = new_maps; 1443 1444 /* zero out new maps */ 1445 memset(obj->maps + obj->nr_maps, 0, 1446 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1447 /* 1448 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1449 * when failure (zclose won't close negative fd)). 1450 */ 1451 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1452 obj->maps[i].fd = -1; 1453 obj->maps[i].inner_map_fd = -1; 1454 } 1455 1456 return &obj->maps[obj->nr_maps++]; 1457 } 1458 1459 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1460 { 1461 long page_sz = sysconf(_SC_PAGE_SIZE); 1462 size_t map_sz; 1463 1464 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1465 map_sz = roundup(map_sz, page_sz); 1466 return map_sz; 1467 } 1468 1469 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1470 { 1471 char map_name[BPF_OBJ_NAME_LEN], *p; 1472 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1473 1474 /* This is one of the more confusing parts of libbpf for various 1475 * reasons, some of which are historical. The original idea for naming 1476 * internal names was to include as much of BPF object name prefix as 1477 * possible, so that it can be distinguished from similar internal 1478 * maps of a different BPF object. 1479 * As an example, let's say we have bpf_object named 'my_object_name' 1480 * and internal map corresponding to '.rodata' ELF section. The final 1481 * map name advertised to user and to the kernel will be 1482 * 'my_objec.rodata', taking first 8 characters of object name and 1483 * entire 7 characters of '.rodata'. 1484 * Somewhat confusingly, if internal map ELF section name is shorter 1485 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1486 * for the suffix, even though we only have 4 actual characters, and 1487 * resulting map will be called 'my_objec.bss', not even using all 15 1488 * characters allowed by the kernel. Oh well, at least the truncated 1489 * object name is somewhat consistent in this case. But if the map 1490 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1491 * (8 chars) and thus will be left with only first 7 characters of the 1492 * object name ('my_obje'). Happy guessing, user, that the final map 1493 * name will be "my_obje.kconfig". 1494 * Now, with libbpf starting to support arbitrarily named .rodata.* 1495 * and .data.* data sections, it's possible that ELF section name is 1496 * longer than allowed 15 chars, so we now need to be careful to take 1497 * only up to 15 first characters of ELF name, taking no BPF object 1498 * name characters at all. So '.rodata.abracadabra' will result in 1499 * '.rodata.abracad' kernel and user-visible name. 1500 * We need to keep this convoluted logic intact for .data, .bss and 1501 * .rodata maps, but for new custom .data.custom and .rodata.custom 1502 * maps we use their ELF names as is, not prepending bpf_object name 1503 * in front. We still need to truncate them to 15 characters for the 1504 * kernel. Full name can be recovered for such maps by using DATASEC 1505 * BTF type associated with such map's value type, though. 1506 */ 1507 if (sfx_len >= BPF_OBJ_NAME_LEN) 1508 sfx_len = BPF_OBJ_NAME_LEN - 1; 1509 1510 /* if there are two or more dots in map name, it's a custom dot map */ 1511 if (strchr(real_name + 1, '.') != NULL) 1512 pfx_len = 0; 1513 else 1514 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1515 1516 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1517 sfx_len, real_name); 1518 1519 /* sanitise map name to characters allowed by kernel */ 1520 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1521 if (!isalnum(*p) && *p != '_' && *p != '.') 1522 *p = '_'; 1523 1524 return strdup(map_name); 1525 } 1526 1527 static int 1528 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1529 1530 static int 1531 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1532 const char *real_name, int sec_idx, void *data, size_t data_sz) 1533 { 1534 struct bpf_map_def *def; 1535 struct bpf_map *map; 1536 int err; 1537 1538 map = bpf_object__add_map(obj); 1539 if (IS_ERR(map)) 1540 return PTR_ERR(map); 1541 1542 map->libbpf_type = type; 1543 map->sec_idx = sec_idx; 1544 map->sec_offset = 0; 1545 map->real_name = strdup(real_name); 1546 map->name = internal_map_name(obj, real_name); 1547 if (!map->real_name || !map->name) { 1548 zfree(&map->real_name); 1549 zfree(&map->name); 1550 return -ENOMEM; 1551 } 1552 1553 def = &map->def; 1554 def->type = BPF_MAP_TYPE_ARRAY; 1555 def->key_size = sizeof(int); 1556 def->value_size = data_sz; 1557 def->max_entries = 1; 1558 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1559 ? BPF_F_RDONLY_PROG : 0; 1560 def->map_flags |= BPF_F_MMAPABLE; 1561 1562 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1563 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1564 1565 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1566 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1567 if (map->mmaped == MAP_FAILED) { 1568 err = -errno; 1569 map->mmaped = NULL; 1570 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1571 map->name, err); 1572 zfree(&map->real_name); 1573 zfree(&map->name); 1574 return err; 1575 } 1576 1577 /* failures are fine because of maps like .rodata.str1.1 */ 1578 (void) bpf_map_find_btf_info(obj, map); 1579 1580 if (data) 1581 memcpy(map->mmaped, data, data_sz); 1582 1583 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1584 return 0; 1585 } 1586 1587 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1588 { 1589 struct elf_sec_desc *sec_desc; 1590 const char *sec_name; 1591 int err = 0, sec_idx; 1592 1593 /* 1594 * Populate obj->maps with libbpf internal maps. 1595 */ 1596 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1597 sec_desc = &obj->efile.secs[sec_idx]; 1598 1599 switch (sec_desc->sec_type) { 1600 case SEC_DATA: 1601 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1602 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1603 sec_name, sec_idx, 1604 sec_desc->data->d_buf, 1605 sec_desc->data->d_size); 1606 break; 1607 case SEC_RODATA: 1608 obj->has_rodata = true; 1609 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1610 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1611 sec_name, sec_idx, 1612 sec_desc->data->d_buf, 1613 sec_desc->data->d_size); 1614 break; 1615 case SEC_BSS: 1616 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1617 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1618 sec_name, sec_idx, 1619 NULL, 1620 sec_desc->data->d_size); 1621 break; 1622 default: 1623 /* skip */ 1624 break; 1625 } 1626 if (err) 1627 return err; 1628 } 1629 return 0; 1630 } 1631 1632 1633 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1634 const void *name) 1635 { 1636 int i; 1637 1638 for (i = 0; i < obj->nr_extern; i++) { 1639 if (strcmp(obj->externs[i].name, name) == 0) 1640 return &obj->externs[i]; 1641 } 1642 return NULL; 1643 } 1644 1645 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1646 char value) 1647 { 1648 switch (ext->kcfg.type) { 1649 case KCFG_BOOL: 1650 if (value == 'm') { 1651 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1652 ext->name, value); 1653 return -EINVAL; 1654 } 1655 *(bool *)ext_val = value == 'y' ? true : false; 1656 break; 1657 case KCFG_TRISTATE: 1658 if (value == 'y') 1659 *(enum libbpf_tristate *)ext_val = TRI_YES; 1660 else if (value == 'm') 1661 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1662 else /* value == 'n' */ 1663 *(enum libbpf_tristate *)ext_val = TRI_NO; 1664 break; 1665 case KCFG_CHAR: 1666 *(char *)ext_val = value; 1667 break; 1668 case KCFG_UNKNOWN: 1669 case KCFG_INT: 1670 case KCFG_CHAR_ARR: 1671 default: 1672 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1673 ext->name, value); 1674 return -EINVAL; 1675 } 1676 ext->is_set = true; 1677 return 0; 1678 } 1679 1680 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1681 const char *value) 1682 { 1683 size_t len; 1684 1685 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1686 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1687 return -EINVAL; 1688 } 1689 1690 len = strlen(value); 1691 if (value[len - 1] != '"') { 1692 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1693 ext->name, value); 1694 return -EINVAL; 1695 } 1696 1697 /* strip quotes */ 1698 len -= 2; 1699 if (len >= ext->kcfg.sz) { 1700 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1701 ext->name, value, len, ext->kcfg.sz - 1); 1702 len = ext->kcfg.sz - 1; 1703 } 1704 memcpy(ext_val, value + 1, len); 1705 ext_val[len] = '\0'; 1706 ext->is_set = true; 1707 return 0; 1708 } 1709 1710 static int parse_u64(const char *value, __u64 *res) 1711 { 1712 char *value_end; 1713 int err; 1714 1715 errno = 0; 1716 *res = strtoull(value, &value_end, 0); 1717 if (errno) { 1718 err = -errno; 1719 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1720 return err; 1721 } 1722 if (*value_end) { 1723 pr_warn("failed to parse '%s' as integer completely\n", value); 1724 return -EINVAL; 1725 } 1726 return 0; 1727 } 1728 1729 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1730 { 1731 int bit_sz = ext->kcfg.sz * 8; 1732 1733 if (ext->kcfg.sz == 8) 1734 return true; 1735 1736 /* Validate that value stored in u64 fits in integer of `ext->sz` 1737 * bytes size without any loss of information. If the target integer 1738 * is signed, we rely on the following limits of integer type of 1739 * Y bits and subsequent transformation: 1740 * 1741 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1742 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1743 * 0 <= X + 2^(Y-1) < 2^Y 1744 * 1745 * For unsigned target integer, check that all the (64 - Y) bits are 1746 * zero. 1747 */ 1748 if (ext->kcfg.is_signed) 1749 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1750 else 1751 return (v >> bit_sz) == 0; 1752 } 1753 1754 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1755 __u64 value) 1756 { 1757 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1758 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1759 ext->name, (unsigned long long)value); 1760 return -EINVAL; 1761 } 1762 if (!is_kcfg_value_in_range(ext, value)) { 1763 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1764 ext->name, (unsigned long long)value, ext->kcfg.sz); 1765 return -ERANGE; 1766 } 1767 switch (ext->kcfg.sz) { 1768 case 1: *(__u8 *)ext_val = value; break; 1769 case 2: *(__u16 *)ext_val = value; break; 1770 case 4: *(__u32 *)ext_val = value; break; 1771 case 8: *(__u64 *)ext_val = value; break; 1772 default: 1773 return -EINVAL; 1774 } 1775 ext->is_set = true; 1776 return 0; 1777 } 1778 1779 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1780 char *buf, void *data) 1781 { 1782 struct extern_desc *ext; 1783 char *sep, *value; 1784 int len, err = 0; 1785 void *ext_val; 1786 __u64 num; 1787 1788 if (!str_has_pfx(buf, "CONFIG_")) 1789 return 0; 1790 1791 sep = strchr(buf, '='); 1792 if (!sep) { 1793 pr_warn("failed to parse '%s': no separator\n", buf); 1794 return -EINVAL; 1795 } 1796 1797 /* Trim ending '\n' */ 1798 len = strlen(buf); 1799 if (buf[len - 1] == '\n') 1800 buf[len - 1] = '\0'; 1801 /* Split on '=' and ensure that a value is present. */ 1802 *sep = '\0'; 1803 if (!sep[1]) { 1804 *sep = '='; 1805 pr_warn("failed to parse '%s': no value\n", buf); 1806 return -EINVAL; 1807 } 1808 1809 ext = find_extern_by_name(obj, buf); 1810 if (!ext || ext->is_set) 1811 return 0; 1812 1813 ext_val = data + ext->kcfg.data_off; 1814 value = sep + 1; 1815 1816 switch (*value) { 1817 case 'y': case 'n': case 'm': 1818 err = set_kcfg_value_tri(ext, ext_val, *value); 1819 break; 1820 case '"': 1821 err = set_kcfg_value_str(ext, ext_val, value); 1822 break; 1823 default: 1824 /* assume integer */ 1825 err = parse_u64(value, &num); 1826 if (err) { 1827 pr_warn("extern (kcfg) %s=%s should be integer\n", 1828 ext->name, value); 1829 return err; 1830 } 1831 err = set_kcfg_value_num(ext, ext_val, num); 1832 break; 1833 } 1834 if (err) 1835 return err; 1836 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1837 return 0; 1838 } 1839 1840 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1841 { 1842 char buf[PATH_MAX]; 1843 struct utsname uts; 1844 int len, err = 0; 1845 gzFile file; 1846 1847 uname(&uts); 1848 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1849 if (len < 0) 1850 return -EINVAL; 1851 else if (len >= PATH_MAX) 1852 return -ENAMETOOLONG; 1853 1854 /* gzopen also accepts uncompressed files. */ 1855 file = gzopen(buf, "r"); 1856 if (!file) 1857 file = gzopen("/proc/config.gz", "r"); 1858 1859 if (!file) { 1860 pr_warn("failed to open system Kconfig\n"); 1861 return -ENOENT; 1862 } 1863 1864 while (gzgets(file, buf, sizeof(buf))) { 1865 err = bpf_object__process_kconfig_line(obj, buf, data); 1866 if (err) { 1867 pr_warn("error parsing system Kconfig line '%s': %d\n", 1868 buf, err); 1869 goto out; 1870 } 1871 } 1872 1873 out: 1874 gzclose(file); 1875 return err; 1876 } 1877 1878 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1879 const char *config, void *data) 1880 { 1881 char buf[PATH_MAX]; 1882 int err = 0; 1883 FILE *file; 1884 1885 file = fmemopen((void *)config, strlen(config), "r"); 1886 if (!file) { 1887 err = -errno; 1888 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1889 return err; 1890 } 1891 1892 while (fgets(buf, sizeof(buf), file)) { 1893 err = bpf_object__process_kconfig_line(obj, buf, data); 1894 if (err) { 1895 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1896 buf, err); 1897 break; 1898 } 1899 } 1900 1901 fclose(file); 1902 return err; 1903 } 1904 1905 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1906 { 1907 struct extern_desc *last_ext = NULL, *ext; 1908 size_t map_sz; 1909 int i, err; 1910 1911 for (i = 0; i < obj->nr_extern; i++) { 1912 ext = &obj->externs[i]; 1913 if (ext->type == EXT_KCFG) 1914 last_ext = ext; 1915 } 1916 1917 if (!last_ext) 1918 return 0; 1919 1920 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1921 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1922 ".kconfig", obj->efile.symbols_shndx, 1923 NULL, map_sz); 1924 if (err) 1925 return err; 1926 1927 obj->kconfig_map_idx = obj->nr_maps - 1; 1928 1929 return 0; 1930 } 1931 1932 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1933 { 1934 Elf_Data *symbols = obj->efile.symbols; 1935 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1936 Elf_Data *data = NULL; 1937 Elf_Scn *scn; 1938 1939 if (obj->efile.maps_shndx < 0) 1940 return 0; 1941 1942 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 1943 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 1944 return -EOPNOTSUPP; 1945 } 1946 1947 if (!symbols) 1948 return -EINVAL; 1949 1950 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1951 data = elf_sec_data(obj, scn); 1952 if (!scn || !data) { 1953 pr_warn("elf: failed to get legacy map definitions for %s\n", 1954 obj->path); 1955 return -EINVAL; 1956 } 1957 1958 /* 1959 * Count number of maps. Each map has a name. 1960 * Array of maps is not supported: only the first element is 1961 * considered. 1962 * 1963 * TODO: Detect array of map and report error. 1964 */ 1965 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1966 for (i = 0; i < nr_syms; i++) { 1967 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1968 1969 if (sym->st_shndx != obj->efile.maps_shndx) 1970 continue; 1971 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1972 continue; 1973 nr_maps++; 1974 } 1975 /* Assume equally sized map definitions */ 1976 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1977 nr_maps, data->d_size, obj->path); 1978 1979 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1980 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1981 obj->path); 1982 return -EINVAL; 1983 } 1984 map_def_sz = data->d_size / nr_maps; 1985 1986 /* Fill obj->maps using data in "maps" section. */ 1987 for (i = 0; i < nr_syms; i++) { 1988 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1989 const char *map_name; 1990 struct bpf_map_def *def; 1991 struct bpf_map *map; 1992 1993 if (sym->st_shndx != obj->efile.maps_shndx) 1994 continue; 1995 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1996 continue; 1997 1998 map = bpf_object__add_map(obj); 1999 if (IS_ERR(map)) 2000 return PTR_ERR(map); 2001 2002 map_name = elf_sym_str(obj, sym->st_name); 2003 if (!map_name) { 2004 pr_warn("failed to get map #%d name sym string for obj %s\n", 2005 i, obj->path); 2006 return -LIBBPF_ERRNO__FORMAT; 2007 } 2008 2009 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2010 2011 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2012 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2013 return -ENOTSUP; 2014 } 2015 2016 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2017 map->sec_idx = sym->st_shndx; 2018 map->sec_offset = sym->st_value; 2019 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2020 map_name, map->sec_idx, map->sec_offset); 2021 if (sym->st_value + map_def_sz > data->d_size) { 2022 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2023 obj->path, map_name); 2024 return -EINVAL; 2025 } 2026 2027 map->name = strdup(map_name); 2028 if (!map->name) { 2029 pr_warn("map '%s': failed to alloc map name\n", map_name); 2030 return -ENOMEM; 2031 } 2032 pr_debug("map %d is \"%s\"\n", i, map->name); 2033 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2034 /* 2035 * If the definition of the map in the object file fits in 2036 * bpf_map_def, copy it. Any extra fields in our version 2037 * of bpf_map_def will default to zero as a result of the 2038 * calloc above. 2039 */ 2040 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2041 memcpy(&map->def, def, map_def_sz); 2042 } else { 2043 /* 2044 * Here the map structure being read is bigger than what 2045 * we expect, truncate if the excess bits are all zero. 2046 * If they are not zero, reject this map as 2047 * incompatible. 2048 */ 2049 char *b; 2050 2051 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2052 b < ((char *)def) + map_def_sz; b++) { 2053 if (*b != 0) { 2054 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2055 obj->path, map_name); 2056 if (strict) 2057 return -EINVAL; 2058 } 2059 } 2060 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2061 } 2062 2063 /* btf info may not exist but fill it in if it does exist */ 2064 (void) bpf_map_find_btf_info(obj, map); 2065 } 2066 return 0; 2067 } 2068 2069 const struct btf_type * 2070 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2071 { 2072 const struct btf_type *t = btf__type_by_id(btf, id); 2073 2074 if (res_id) 2075 *res_id = id; 2076 2077 while (btf_is_mod(t) || btf_is_typedef(t)) { 2078 if (res_id) 2079 *res_id = t->type; 2080 t = btf__type_by_id(btf, t->type); 2081 } 2082 2083 return t; 2084 } 2085 2086 static const struct btf_type * 2087 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2088 { 2089 const struct btf_type *t; 2090 2091 t = skip_mods_and_typedefs(btf, id, NULL); 2092 if (!btf_is_ptr(t)) 2093 return NULL; 2094 2095 t = skip_mods_and_typedefs(btf, t->type, res_id); 2096 2097 return btf_is_func_proto(t) ? t : NULL; 2098 } 2099 2100 static const char *__btf_kind_str(__u16 kind) 2101 { 2102 switch (kind) { 2103 case BTF_KIND_UNKN: return "void"; 2104 case BTF_KIND_INT: return "int"; 2105 case BTF_KIND_PTR: return "ptr"; 2106 case BTF_KIND_ARRAY: return "array"; 2107 case BTF_KIND_STRUCT: return "struct"; 2108 case BTF_KIND_UNION: return "union"; 2109 case BTF_KIND_ENUM: return "enum"; 2110 case BTF_KIND_FWD: return "fwd"; 2111 case BTF_KIND_TYPEDEF: return "typedef"; 2112 case BTF_KIND_VOLATILE: return "volatile"; 2113 case BTF_KIND_CONST: return "const"; 2114 case BTF_KIND_RESTRICT: return "restrict"; 2115 case BTF_KIND_FUNC: return "func"; 2116 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2117 case BTF_KIND_VAR: return "var"; 2118 case BTF_KIND_DATASEC: return "datasec"; 2119 case BTF_KIND_FLOAT: return "float"; 2120 case BTF_KIND_DECL_TAG: return "decl_tag"; 2121 case BTF_KIND_TYPE_TAG: return "type_tag"; 2122 default: return "unknown"; 2123 } 2124 } 2125 2126 const char *btf_kind_str(const struct btf_type *t) 2127 { 2128 return __btf_kind_str(btf_kind(t)); 2129 } 2130 2131 /* 2132 * Fetch integer attribute of BTF map definition. Such attributes are 2133 * represented using a pointer to an array, in which dimensionality of array 2134 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2135 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2136 * type definition, while using only sizeof(void *) space in ELF data section. 2137 */ 2138 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2139 const struct btf_member *m, __u32 *res) 2140 { 2141 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2142 const char *name = btf__name_by_offset(btf, m->name_off); 2143 const struct btf_array *arr_info; 2144 const struct btf_type *arr_t; 2145 2146 if (!btf_is_ptr(t)) { 2147 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2148 map_name, name, btf_kind_str(t)); 2149 return false; 2150 } 2151 2152 arr_t = btf__type_by_id(btf, t->type); 2153 if (!arr_t) { 2154 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2155 map_name, name, t->type); 2156 return false; 2157 } 2158 if (!btf_is_array(arr_t)) { 2159 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2160 map_name, name, btf_kind_str(arr_t)); 2161 return false; 2162 } 2163 arr_info = btf_array(arr_t); 2164 *res = arr_info->nelems; 2165 return true; 2166 } 2167 2168 static int build_map_pin_path(struct bpf_map *map, const char *path) 2169 { 2170 char buf[PATH_MAX]; 2171 int len; 2172 2173 if (!path) 2174 path = "/sys/fs/bpf"; 2175 2176 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2177 if (len < 0) 2178 return -EINVAL; 2179 else if (len >= PATH_MAX) 2180 return -ENAMETOOLONG; 2181 2182 return bpf_map__set_pin_path(map, buf); 2183 } 2184 2185 int parse_btf_map_def(const char *map_name, struct btf *btf, 2186 const struct btf_type *def_t, bool strict, 2187 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2188 { 2189 const struct btf_type *t; 2190 const struct btf_member *m; 2191 bool is_inner = inner_def == NULL; 2192 int vlen, i; 2193 2194 vlen = btf_vlen(def_t); 2195 m = btf_members(def_t); 2196 for (i = 0; i < vlen; i++, m++) { 2197 const char *name = btf__name_by_offset(btf, m->name_off); 2198 2199 if (!name) { 2200 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2201 return -EINVAL; 2202 } 2203 if (strcmp(name, "type") == 0) { 2204 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2205 return -EINVAL; 2206 map_def->parts |= MAP_DEF_MAP_TYPE; 2207 } else if (strcmp(name, "max_entries") == 0) { 2208 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2209 return -EINVAL; 2210 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2211 } else if (strcmp(name, "map_flags") == 0) { 2212 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2213 return -EINVAL; 2214 map_def->parts |= MAP_DEF_MAP_FLAGS; 2215 } else if (strcmp(name, "numa_node") == 0) { 2216 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2217 return -EINVAL; 2218 map_def->parts |= MAP_DEF_NUMA_NODE; 2219 } else if (strcmp(name, "key_size") == 0) { 2220 __u32 sz; 2221 2222 if (!get_map_field_int(map_name, btf, m, &sz)) 2223 return -EINVAL; 2224 if (map_def->key_size && map_def->key_size != sz) { 2225 pr_warn("map '%s': conflicting key size %u != %u.\n", 2226 map_name, map_def->key_size, sz); 2227 return -EINVAL; 2228 } 2229 map_def->key_size = sz; 2230 map_def->parts |= MAP_DEF_KEY_SIZE; 2231 } else if (strcmp(name, "key") == 0) { 2232 __s64 sz; 2233 2234 t = btf__type_by_id(btf, m->type); 2235 if (!t) { 2236 pr_warn("map '%s': key type [%d] not found.\n", 2237 map_name, m->type); 2238 return -EINVAL; 2239 } 2240 if (!btf_is_ptr(t)) { 2241 pr_warn("map '%s': key spec is not PTR: %s.\n", 2242 map_name, btf_kind_str(t)); 2243 return -EINVAL; 2244 } 2245 sz = btf__resolve_size(btf, t->type); 2246 if (sz < 0) { 2247 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2248 map_name, t->type, (ssize_t)sz); 2249 return sz; 2250 } 2251 if (map_def->key_size && map_def->key_size != sz) { 2252 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2253 map_name, map_def->key_size, (ssize_t)sz); 2254 return -EINVAL; 2255 } 2256 map_def->key_size = sz; 2257 map_def->key_type_id = t->type; 2258 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2259 } else if (strcmp(name, "value_size") == 0) { 2260 __u32 sz; 2261 2262 if (!get_map_field_int(map_name, btf, m, &sz)) 2263 return -EINVAL; 2264 if (map_def->value_size && map_def->value_size != sz) { 2265 pr_warn("map '%s': conflicting value size %u != %u.\n", 2266 map_name, map_def->value_size, sz); 2267 return -EINVAL; 2268 } 2269 map_def->value_size = sz; 2270 map_def->parts |= MAP_DEF_VALUE_SIZE; 2271 } else if (strcmp(name, "value") == 0) { 2272 __s64 sz; 2273 2274 t = btf__type_by_id(btf, m->type); 2275 if (!t) { 2276 pr_warn("map '%s': value type [%d] not found.\n", 2277 map_name, m->type); 2278 return -EINVAL; 2279 } 2280 if (!btf_is_ptr(t)) { 2281 pr_warn("map '%s': value spec is not PTR: %s.\n", 2282 map_name, btf_kind_str(t)); 2283 return -EINVAL; 2284 } 2285 sz = btf__resolve_size(btf, t->type); 2286 if (sz < 0) { 2287 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2288 map_name, t->type, (ssize_t)sz); 2289 return sz; 2290 } 2291 if (map_def->value_size && map_def->value_size != sz) { 2292 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2293 map_name, map_def->value_size, (ssize_t)sz); 2294 return -EINVAL; 2295 } 2296 map_def->value_size = sz; 2297 map_def->value_type_id = t->type; 2298 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2299 } 2300 else if (strcmp(name, "values") == 0) { 2301 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2302 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2303 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2304 char inner_map_name[128]; 2305 int err; 2306 2307 if (is_inner) { 2308 pr_warn("map '%s': multi-level inner maps not supported.\n", 2309 map_name); 2310 return -ENOTSUP; 2311 } 2312 if (i != vlen - 1) { 2313 pr_warn("map '%s': '%s' member should be last.\n", 2314 map_name, name); 2315 return -EINVAL; 2316 } 2317 if (!is_map_in_map && !is_prog_array) { 2318 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2319 map_name); 2320 return -ENOTSUP; 2321 } 2322 if (map_def->value_size && map_def->value_size != 4) { 2323 pr_warn("map '%s': conflicting value size %u != 4.\n", 2324 map_name, map_def->value_size); 2325 return -EINVAL; 2326 } 2327 map_def->value_size = 4; 2328 t = btf__type_by_id(btf, m->type); 2329 if (!t) { 2330 pr_warn("map '%s': %s type [%d] not found.\n", 2331 map_name, desc, m->type); 2332 return -EINVAL; 2333 } 2334 if (!btf_is_array(t) || btf_array(t)->nelems) { 2335 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2336 map_name, desc); 2337 return -EINVAL; 2338 } 2339 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2340 if (!btf_is_ptr(t)) { 2341 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2342 map_name, desc, btf_kind_str(t)); 2343 return -EINVAL; 2344 } 2345 t = skip_mods_and_typedefs(btf, t->type, NULL); 2346 if (is_prog_array) { 2347 if (!btf_is_func_proto(t)) { 2348 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2349 map_name, btf_kind_str(t)); 2350 return -EINVAL; 2351 } 2352 continue; 2353 } 2354 if (!btf_is_struct(t)) { 2355 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2356 map_name, btf_kind_str(t)); 2357 return -EINVAL; 2358 } 2359 2360 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2361 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2362 if (err) 2363 return err; 2364 2365 map_def->parts |= MAP_DEF_INNER_MAP; 2366 } else if (strcmp(name, "pinning") == 0) { 2367 __u32 val; 2368 2369 if (is_inner) { 2370 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2371 return -EINVAL; 2372 } 2373 if (!get_map_field_int(map_name, btf, m, &val)) 2374 return -EINVAL; 2375 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2376 pr_warn("map '%s': invalid pinning value %u.\n", 2377 map_name, val); 2378 return -EINVAL; 2379 } 2380 map_def->pinning = val; 2381 map_def->parts |= MAP_DEF_PINNING; 2382 } else if (strcmp(name, "map_extra") == 0) { 2383 __u32 map_extra; 2384 2385 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2386 return -EINVAL; 2387 map_def->map_extra = map_extra; 2388 map_def->parts |= MAP_DEF_MAP_EXTRA; 2389 } else { 2390 if (strict) { 2391 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2392 return -ENOTSUP; 2393 } 2394 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2395 } 2396 } 2397 2398 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2399 pr_warn("map '%s': map type isn't specified.\n", map_name); 2400 return -EINVAL; 2401 } 2402 2403 return 0; 2404 } 2405 2406 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2407 { 2408 map->def.type = def->map_type; 2409 map->def.key_size = def->key_size; 2410 map->def.value_size = def->value_size; 2411 map->def.max_entries = def->max_entries; 2412 map->def.map_flags = def->map_flags; 2413 map->map_extra = def->map_extra; 2414 2415 map->numa_node = def->numa_node; 2416 map->btf_key_type_id = def->key_type_id; 2417 map->btf_value_type_id = def->value_type_id; 2418 2419 if (def->parts & MAP_DEF_MAP_TYPE) 2420 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2421 2422 if (def->parts & MAP_DEF_KEY_TYPE) 2423 pr_debug("map '%s': found key [%u], sz = %u.\n", 2424 map->name, def->key_type_id, def->key_size); 2425 else if (def->parts & MAP_DEF_KEY_SIZE) 2426 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2427 2428 if (def->parts & MAP_DEF_VALUE_TYPE) 2429 pr_debug("map '%s': found value [%u], sz = %u.\n", 2430 map->name, def->value_type_id, def->value_size); 2431 else if (def->parts & MAP_DEF_VALUE_SIZE) 2432 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2433 2434 if (def->parts & MAP_DEF_MAX_ENTRIES) 2435 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2436 if (def->parts & MAP_DEF_MAP_FLAGS) 2437 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2438 if (def->parts & MAP_DEF_MAP_EXTRA) 2439 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2440 (unsigned long long)def->map_extra); 2441 if (def->parts & MAP_DEF_PINNING) 2442 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2443 if (def->parts & MAP_DEF_NUMA_NODE) 2444 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2445 2446 if (def->parts & MAP_DEF_INNER_MAP) 2447 pr_debug("map '%s': found inner map definition.\n", map->name); 2448 } 2449 2450 static const char *btf_var_linkage_str(__u32 linkage) 2451 { 2452 switch (linkage) { 2453 case BTF_VAR_STATIC: return "static"; 2454 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2455 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2456 default: return "unknown"; 2457 } 2458 } 2459 2460 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2461 const struct btf_type *sec, 2462 int var_idx, int sec_idx, 2463 const Elf_Data *data, bool strict, 2464 const char *pin_root_path) 2465 { 2466 struct btf_map_def map_def = {}, inner_def = {}; 2467 const struct btf_type *var, *def; 2468 const struct btf_var_secinfo *vi; 2469 const struct btf_var *var_extra; 2470 const char *map_name; 2471 struct bpf_map *map; 2472 int err; 2473 2474 vi = btf_var_secinfos(sec) + var_idx; 2475 var = btf__type_by_id(obj->btf, vi->type); 2476 var_extra = btf_var(var); 2477 map_name = btf__name_by_offset(obj->btf, var->name_off); 2478 2479 if (map_name == NULL || map_name[0] == '\0') { 2480 pr_warn("map #%d: empty name.\n", var_idx); 2481 return -EINVAL; 2482 } 2483 if ((__u64)vi->offset + vi->size > data->d_size) { 2484 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2485 return -EINVAL; 2486 } 2487 if (!btf_is_var(var)) { 2488 pr_warn("map '%s': unexpected var kind %s.\n", 2489 map_name, btf_kind_str(var)); 2490 return -EINVAL; 2491 } 2492 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2493 pr_warn("map '%s': unsupported map linkage %s.\n", 2494 map_name, btf_var_linkage_str(var_extra->linkage)); 2495 return -EOPNOTSUPP; 2496 } 2497 2498 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2499 if (!btf_is_struct(def)) { 2500 pr_warn("map '%s': unexpected def kind %s.\n", 2501 map_name, btf_kind_str(var)); 2502 return -EINVAL; 2503 } 2504 if (def->size > vi->size) { 2505 pr_warn("map '%s': invalid def size.\n", map_name); 2506 return -EINVAL; 2507 } 2508 2509 map = bpf_object__add_map(obj); 2510 if (IS_ERR(map)) 2511 return PTR_ERR(map); 2512 map->name = strdup(map_name); 2513 if (!map->name) { 2514 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2515 return -ENOMEM; 2516 } 2517 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2518 map->def.type = BPF_MAP_TYPE_UNSPEC; 2519 map->sec_idx = sec_idx; 2520 map->sec_offset = vi->offset; 2521 map->btf_var_idx = var_idx; 2522 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2523 map_name, map->sec_idx, map->sec_offset); 2524 2525 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2526 if (err) 2527 return err; 2528 2529 fill_map_from_def(map, &map_def); 2530 2531 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2532 err = build_map_pin_path(map, pin_root_path); 2533 if (err) { 2534 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2535 return err; 2536 } 2537 } 2538 2539 if (map_def.parts & MAP_DEF_INNER_MAP) { 2540 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2541 if (!map->inner_map) 2542 return -ENOMEM; 2543 map->inner_map->fd = -1; 2544 map->inner_map->sec_idx = sec_idx; 2545 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2546 if (!map->inner_map->name) 2547 return -ENOMEM; 2548 sprintf(map->inner_map->name, "%s.inner", map_name); 2549 2550 fill_map_from_def(map->inner_map, &inner_def); 2551 } 2552 2553 err = bpf_map_find_btf_info(obj, map); 2554 if (err) 2555 return err; 2556 2557 return 0; 2558 } 2559 2560 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2561 const char *pin_root_path) 2562 { 2563 const struct btf_type *sec = NULL; 2564 int nr_types, i, vlen, err; 2565 const struct btf_type *t; 2566 const char *name; 2567 Elf_Data *data; 2568 Elf_Scn *scn; 2569 2570 if (obj->efile.btf_maps_shndx < 0) 2571 return 0; 2572 2573 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2574 data = elf_sec_data(obj, scn); 2575 if (!scn || !data) { 2576 pr_warn("elf: failed to get %s map definitions for %s\n", 2577 MAPS_ELF_SEC, obj->path); 2578 return -EINVAL; 2579 } 2580 2581 nr_types = btf__type_cnt(obj->btf); 2582 for (i = 1; i < nr_types; i++) { 2583 t = btf__type_by_id(obj->btf, i); 2584 if (!btf_is_datasec(t)) 2585 continue; 2586 name = btf__name_by_offset(obj->btf, t->name_off); 2587 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2588 sec = t; 2589 obj->efile.btf_maps_sec_btf_id = i; 2590 break; 2591 } 2592 } 2593 2594 if (!sec) { 2595 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2596 return -ENOENT; 2597 } 2598 2599 vlen = btf_vlen(sec); 2600 for (i = 0; i < vlen; i++) { 2601 err = bpf_object__init_user_btf_map(obj, sec, i, 2602 obj->efile.btf_maps_shndx, 2603 data, strict, 2604 pin_root_path); 2605 if (err) 2606 return err; 2607 } 2608 2609 return 0; 2610 } 2611 2612 static int bpf_object__init_maps(struct bpf_object *obj, 2613 const struct bpf_object_open_opts *opts) 2614 { 2615 const char *pin_root_path; 2616 bool strict; 2617 int err; 2618 2619 strict = !OPTS_GET(opts, relaxed_maps, false); 2620 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2621 2622 err = bpf_object__init_user_maps(obj, strict); 2623 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2624 err = err ?: bpf_object__init_global_data_maps(obj); 2625 err = err ?: bpf_object__init_kconfig_map(obj); 2626 err = err ?: bpf_object__init_struct_ops_maps(obj); 2627 2628 return err; 2629 } 2630 2631 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2632 { 2633 Elf64_Shdr *sh; 2634 2635 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2636 if (!sh) 2637 return false; 2638 2639 return sh->sh_flags & SHF_EXECINSTR; 2640 } 2641 2642 static bool btf_needs_sanitization(struct bpf_object *obj) 2643 { 2644 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2645 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2646 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2647 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2648 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2649 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2650 2651 return !has_func || !has_datasec || !has_func_global || !has_float || 2652 !has_decl_tag || !has_type_tag; 2653 } 2654 2655 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2656 { 2657 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2658 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2659 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2660 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2661 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2662 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2663 struct btf_type *t; 2664 int i, j, vlen; 2665 2666 for (i = 1; i < btf__type_cnt(btf); i++) { 2667 t = (struct btf_type *)btf__type_by_id(btf, i); 2668 2669 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2670 /* replace VAR/DECL_TAG with INT */ 2671 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2672 /* 2673 * using size = 1 is the safest choice, 4 will be too 2674 * big and cause kernel BTF validation failure if 2675 * original variable took less than 4 bytes 2676 */ 2677 t->size = 1; 2678 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2679 } else if (!has_datasec && btf_is_datasec(t)) { 2680 /* replace DATASEC with STRUCT */ 2681 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2682 struct btf_member *m = btf_members(t); 2683 struct btf_type *vt; 2684 char *name; 2685 2686 name = (char *)btf__name_by_offset(btf, t->name_off); 2687 while (*name) { 2688 if (*name == '.') 2689 *name = '_'; 2690 name++; 2691 } 2692 2693 vlen = btf_vlen(t); 2694 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2695 for (j = 0; j < vlen; j++, v++, m++) { 2696 /* order of field assignments is important */ 2697 m->offset = v->offset * 8; 2698 m->type = v->type; 2699 /* preserve variable name as member name */ 2700 vt = (void *)btf__type_by_id(btf, v->type); 2701 m->name_off = vt->name_off; 2702 } 2703 } else if (!has_func && btf_is_func_proto(t)) { 2704 /* replace FUNC_PROTO with ENUM */ 2705 vlen = btf_vlen(t); 2706 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2707 t->size = sizeof(__u32); /* kernel enforced */ 2708 } else if (!has_func && btf_is_func(t)) { 2709 /* replace FUNC with TYPEDEF */ 2710 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2711 } else if (!has_func_global && btf_is_func(t)) { 2712 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2713 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2714 } else if (!has_float && btf_is_float(t)) { 2715 /* replace FLOAT with an equally-sized empty STRUCT; 2716 * since C compilers do not accept e.g. "float" as a 2717 * valid struct name, make it anonymous 2718 */ 2719 t->name_off = 0; 2720 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2721 } else if (!has_type_tag && btf_is_type_tag(t)) { 2722 /* replace TYPE_TAG with a CONST */ 2723 t->name_off = 0; 2724 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2725 } 2726 } 2727 } 2728 2729 static bool libbpf_needs_btf(const struct bpf_object *obj) 2730 { 2731 return obj->efile.btf_maps_shndx >= 0 || 2732 obj->efile.st_ops_shndx >= 0 || 2733 obj->nr_extern > 0; 2734 } 2735 2736 static bool kernel_needs_btf(const struct bpf_object *obj) 2737 { 2738 return obj->efile.st_ops_shndx >= 0; 2739 } 2740 2741 static int bpf_object__init_btf(struct bpf_object *obj, 2742 Elf_Data *btf_data, 2743 Elf_Data *btf_ext_data) 2744 { 2745 int err = -ENOENT; 2746 2747 if (btf_data) { 2748 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2749 err = libbpf_get_error(obj->btf); 2750 if (err) { 2751 obj->btf = NULL; 2752 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2753 goto out; 2754 } 2755 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2756 btf__set_pointer_size(obj->btf, 8); 2757 } 2758 if (btf_ext_data) { 2759 if (!obj->btf) { 2760 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2761 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2762 goto out; 2763 } 2764 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2765 err = libbpf_get_error(obj->btf_ext); 2766 if (err) { 2767 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2768 BTF_EXT_ELF_SEC, err); 2769 obj->btf_ext = NULL; 2770 goto out; 2771 } 2772 } 2773 out: 2774 if (err && libbpf_needs_btf(obj)) { 2775 pr_warn("BTF is required, but is missing or corrupted.\n"); 2776 return err; 2777 } 2778 return 0; 2779 } 2780 2781 static int compare_vsi_off(const void *_a, const void *_b) 2782 { 2783 const struct btf_var_secinfo *a = _a; 2784 const struct btf_var_secinfo *b = _b; 2785 2786 return a->offset - b->offset; 2787 } 2788 2789 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2790 struct btf_type *t) 2791 { 2792 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2793 const char *name = btf__name_by_offset(btf, t->name_off); 2794 const struct btf_type *t_var; 2795 struct btf_var_secinfo *vsi; 2796 const struct btf_var *var; 2797 int ret; 2798 2799 if (!name) { 2800 pr_debug("No name found in string section for DATASEC kind.\n"); 2801 return -ENOENT; 2802 } 2803 2804 /* .extern datasec size and var offsets were set correctly during 2805 * extern collection step, so just skip straight to sorting variables 2806 */ 2807 if (t->size) 2808 goto sort_vars; 2809 2810 ret = find_elf_sec_sz(obj, name, &size); 2811 if (ret || !size) { 2812 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2813 return -ENOENT; 2814 } 2815 2816 t->size = size; 2817 2818 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2819 t_var = btf__type_by_id(btf, vsi->type); 2820 if (!t_var || !btf_is_var(t_var)) { 2821 pr_debug("Non-VAR type seen in section %s\n", name); 2822 return -EINVAL; 2823 } 2824 2825 var = btf_var(t_var); 2826 if (var->linkage == BTF_VAR_STATIC) 2827 continue; 2828 2829 name = btf__name_by_offset(btf, t_var->name_off); 2830 if (!name) { 2831 pr_debug("No name found in string section for VAR kind\n"); 2832 return -ENOENT; 2833 } 2834 2835 ret = find_elf_var_offset(obj, name, &off); 2836 if (ret) { 2837 pr_debug("No offset found in symbol table for VAR %s\n", 2838 name); 2839 return -ENOENT; 2840 } 2841 2842 vsi->offset = off; 2843 } 2844 2845 sort_vars: 2846 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2847 return 0; 2848 } 2849 2850 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2851 { 2852 int err = 0; 2853 __u32 i, n = btf__type_cnt(btf); 2854 2855 for (i = 1; i < n; i++) { 2856 struct btf_type *t = btf_type_by_id(btf, i); 2857 2858 /* Loader needs to fix up some of the things compiler 2859 * couldn't get its hands on while emitting BTF. This 2860 * is section size and global variable offset. We use 2861 * the info from the ELF itself for this purpose. 2862 */ 2863 if (btf_is_datasec(t)) { 2864 err = btf_fixup_datasec(obj, btf, t); 2865 if (err) 2866 break; 2867 } 2868 } 2869 2870 return libbpf_err(err); 2871 } 2872 2873 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2874 { 2875 return btf_finalize_data(obj, btf); 2876 } 2877 2878 static int bpf_object__finalize_btf(struct bpf_object *obj) 2879 { 2880 int err; 2881 2882 if (!obj->btf) 2883 return 0; 2884 2885 err = btf_finalize_data(obj, obj->btf); 2886 if (err) { 2887 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2888 return err; 2889 } 2890 2891 return 0; 2892 } 2893 2894 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2895 { 2896 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2897 prog->type == BPF_PROG_TYPE_LSM) 2898 return true; 2899 2900 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2901 * also need vmlinux BTF 2902 */ 2903 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2904 return true; 2905 2906 return false; 2907 } 2908 2909 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2910 { 2911 struct bpf_program *prog; 2912 int i; 2913 2914 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2915 * is not specified 2916 */ 2917 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2918 return true; 2919 2920 /* Support for typed ksyms needs kernel BTF */ 2921 for (i = 0; i < obj->nr_extern; i++) { 2922 const struct extern_desc *ext; 2923 2924 ext = &obj->externs[i]; 2925 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2926 return true; 2927 } 2928 2929 bpf_object__for_each_program(prog, obj) { 2930 if (!prog->load) 2931 continue; 2932 if (prog_needs_vmlinux_btf(prog)) 2933 return true; 2934 } 2935 2936 return false; 2937 } 2938 2939 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2940 { 2941 int err; 2942 2943 /* btf_vmlinux could be loaded earlier */ 2944 if (obj->btf_vmlinux || obj->gen_loader) 2945 return 0; 2946 2947 if (!force && !obj_needs_vmlinux_btf(obj)) 2948 return 0; 2949 2950 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2951 err = libbpf_get_error(obj->btf_vmlinux); 2952 if (err) { 2953 pr_warn("Error loading vmlinux BTF: %d\n", err); 2954 obj->btf_vmlinux = NULL; 2955 return err; 2956 } 2957 return 0; 2958 } 2959 2960 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2961 { 2962 struct btf *kern_btf = obj->btf; 2963 bool btf_mandatory, sanitize; 2964 int i, err = 0; 2965 2966 if (!obj->btf) 2967 return 0; 2968 2969 if (!kernel_supports(obj, FEAT_BTF)) { 2970 if (kernel_needs_btf(obj)) { 2971 err = -EOPNOTSUPP; 2972 goto report; 2973 } 2974 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2975 return 0; 2976 } 2977 2978 /* Even though some subprogs are global/weak, user might prefer more 2979 * permissive BPF verification process that BPF verifier performs for 2980 * static functions, taking into account more context from the caller 2981 * functions. In such case, they need to mark such subprogs with 2982 * __attribute__((visibility("hidden"))) and libbpf will adjust 2983 * corresponding FUNC BTF type to be marked as static and trigger more 2984 * involved BPF verification process. 2985 */ 2986 for (i = 0; i < obj->nr_programs; i++) { 2987 struct bpf_program *prog = &obj->programs[i]; 2988 struct btf_type *t; 2989 const char *name; 2990 int j, n; 2991 2992 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2993 continue; 2994 2995 n = btf__type_cnt(obj->btf); 2996 for (j = 1; j < n; j++) { 2997 t = btf_type_by_id(obj->btf, j); 2998 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2999 continue; 3000 3001 name = btf__str_by_offset(obj->btf, t->name_off); 3002 if (strcmp(name, prog->name) != 0) 3003 continue; 3004 3005 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3006 break; 3007 } 3008 } 3009 3010 sanitize = btf_needs_sanitization(obj); 3011 if (sanitize) { 3012 const void *raw_data; 3013 __u32 sz; 3014 3015 /* clone BTF to sanitize a copy and leave the original intact */ 3016 raw_data = btf__raw_data(obj->btf, &sz); 3017 kern_btf = btf__new(raw_data, sz); 3018 err = libbpf_get_error(kern_btf); 3019 if (err) 3020 return err; 3021 3022 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3023 btf__set_pointer_size(obj->btf, 8); 3024 bpf_object__sanitize_btf(obj, kern_btf); 3025 } 3026 3027 if (obj->gen_loader) { 3028 __u32 raw_size = 0; 3029 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3030 3031 if (!raw_data) 3032 return -ENOMEM; 3033 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3034 /* Pretend to have valid FD to pass various fd >= 0 checks. 3035 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3036 */ 3037 btf__set_fd(kern_btf, 0); 3038 } else { 3039 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3040 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3041 obj->log_level ? 1 : 0); 3042 } 3043 if (sanitize) { 3044 if (!err) { 3045 /* move fd to libbpf's BTF */ 3046 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3047 btf__set_fd(kern_btf, -1); 3048 } 3049 btf__free(kern_btf); 3050 } 3051 report: 3052 if (err) { 3053 btf_mandatory = kernel_needs_btf(obj); 3054 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3055 btf_mandatory ? "BTF is mandatory, can't proceed." 3056 : "BTF is optional, ignoring."); 3057 if (!btf_mandatory) 3058 err = 0; 3059 } 3060 return err; 3061 } 3062 3063 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3064 { 3065 const char *name; 3066 3067 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3068 if (!name) { 3069 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3070 off, obj->path, elf_errmsg(-1)); 3071 return NULL; 3072 } 3073 3074 return name; 3075 } 3076 3077 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3078 { 3079 const char *name; 3080 3081 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3082 if (!name) { 3083 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3084 off, obj->path, elf_errmsg(-1)); 3085 return NULL; 3086 } 3087 3088 return name; 3089 } 3090 3091 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3092 { 3093 Elf_Scn *scn; 3094 3095 scn = elf_getscn(obj->efile.elf, idx); 3096 if (!scn) { 3097 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3098 idx, obj->path, elf_errmsg(-1)); 3099 return NULL; 3100 } 3101 return scn; 3102 } 3103 3104 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3105 { 3106 Elf_Scn *scn = NULL; 3107 Elf *elf = obj->efile.elf; 3108 const char *sec_name; 3109 3110 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3111 sec_name = elf_sec_name(obj, scn); 3112 if (!sec_name) 3113 return NULL; 3114 3115 if (strcmp(sec_name, name) != 0) 3116 continue; 3117 3118 return scn; 3119 } 3120 return NULL; 3121 } 3122 3123 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3124 { 3125 Elf64_Shdr *shdr; 3126 3127 if (!scn) 3128 return NULL; 3129 3130 shdr = elf64_getshdr(scn); 3131 if (!shdr) { 3132 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3133 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3134 return NULL; 3135 } 3136 3137 return shdr; 3138 } 3139 3140 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3141 { 3142 const char *name; 3143 Elf64_Shdr *sh; 3144 3145 if (!scn) 3146 return NULL; 3147 3148 sh = elf_sec_hdr(obj, scn); 3149 if (!sh) 3150 return NULL; 3151 3152 name = elf_sec_str(obj, sh->sh_name); 3153 if (!name) { 3154 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3155 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3156 return NULL; 3157 } 3158 3159 return name; 3160 } 3161 3162 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3163 { 3164 Elf_Data *data; 3165 3166 if (!scn) 3167 return NULL; 3168 3169 data = elf_getdata(scn, 0); 3170 if (!data) { 3171 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3172 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3173 obj->path, elf_errmsg(-1)); 3174 return NULL; 3175 } 3176 3177 return data; 3178 } 3179 3180 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3181 { 3182 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3183 return NULL; 3184 3185 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3186 } 3187 3188 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3189 { 3190 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3191 return NULL; 3192 3193 return (Elf64_Rel *)data->d_buf + idx; 3194 } 3195 3196 static bool is_sec_name_dwarf(const char *name) 3197 { 3198 /* approximation, but the actual list is too long */ 3199 return str_has_pfx(name, ".debug_"); 3200 } 3201 3202 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3203 { 3204 /* no special handling of .strtab */ 3205 if (hdr->sh_type == SHT_STRTAB) 3206 return true; 3207 3208 /* ignore .llvm_addrsig section as well */ 3209 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3210 return true; 3211 3212 /* no subprograms will lead to an empty .text section, ignore it */ 3213 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3214 strcmp(name, ".text") == 0) 3215 return true; 3216 3217 /* DWARF sections */ 3218 if (is_sec_name_dwarf(name)) 3219 return true; 3220 3221 if (str_has_pfx(name, ".rel")) { 3222 name += sizeof(".rel") - 1; 3223 /* DWARF section relocations */ 3224 if (is_sec_name_dwarf(name)) 3225 return true; 3226 3227 /* .BTF and .BTF.ext don't need relocations */ 3228 if (strcmp(name, BTF_ELF_SEC) == 0 || 3229 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3230 return true; 3231 } 3232 3233 return false; 3234 } 3235 3236 static int cmp_progs(const void *_a, const void *_b) 3237 { 3238 const struct bpf_program *a = _a; 3239 const struct bpf_program *b = _b; 3240 3241 if (a->sec_idx != b->sec_idx) 3242 return a->sec_idx < b->sec_idx ? -1 : 1; 3243 3244 /* sec_insn_off can't be the same within the section */ 3245 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3246 } 3247 3248 static int bpf_object__elf_collect(struct bpf_object *obj) 3249 { 3250 struct elf_sec_desc *sec_desc; 3251 Elf *elf = obj->efile.elf; 3252 Elf_Data *btf_ext_data = NULL; 3253 Elf_Data *btf_data = NULL; 3254 int idx = 0, err = 0; 3255 const char *name; 3256 Elf_Data *data; 3257 Elf_Scn *scn; 3258 Elf64_Shdr *sh; 3259 3260 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3261 * section. e_shnum does include sec #0, so e_shnum is the necessary 3262 * size of an array to keep all the sections. 3263 */ 3264 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3265 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3266 if (!obj->efile.secs) 3267 return -ENOMEM; 3268 3269 /* a bunch of ELF parsing functionality depends on processing symbols, 3270 * so do the first pass and find the symbol table 3271 */ 3272 scn = NULL; 3273 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3274 sh = elf_sec_hdr(obj, scn); 3275 if (!sh) 3276 return -LIBBPF_ERRNO__FORMAT; 3277 3278 if (sh->sh_type == SHT_SYMTAB) { 3279 if (obj->efile.symbols) { 3280 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3281 return -LIBBPF_ERRNO__FORMAT; 3282 } 3283 3284 data = elf_sec_data(obj, scn); 3285 if (!data) 3286 return -LIBBPF_ERRNO__FORMAT; 3287 3288 idx = elf_ndxscn(scn); 3289 3290 obj->efile.symbols = data; 3291 obj->efile.symbols_shndx = idx; 3292 obj->efile.strtabidx = sh->sh_link; 3293 } 3294 } 3295 3296 if (!obj->efile.symbols) { 3297 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3298 obj->path); 3299 return -ENOENT; 3300 } 3301 3302 scn = NULL; 3303 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3304 idx = elf_ndxscn(scn); 3305 sec_desc = &obj->efile.secs[idx]; 3306 3307 sh = elf_sec_hdr(obj, scn); 3308 if (!sh) 3309 return -LIBBPF_ERRNO__FORMAT; 3310 3311 name = elf_sec_str(obj, sh->sh_name); 3312 if (!name) 3313 return -LIBBPF_ERRNO__FORMAT; 3314 3315 if (ignore_elf_section(sh, name)) 3316 continue; 3317 3318 data = elf_sec_data(obj, scn); 3319 if (!data) 3320 return -LIBBPF_ERRNO__FORMAT; 3321 3322 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3323 idx, name, (unsigned long)data->d_size, 3324 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3325 (int)sh->sh_type); 3326 3327 if (strcmp(name, "license") == 0) { 3328 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3329 if (err) 3330 return err; 3331 } else if (strcmp(name, "version") == 0) { 3332 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3333 if (err) 3334 return err; 3335 } else if (strcmp(name, "maps") == 0) { 3336 obj->efile.maps_shndx = idx; 3337 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3338 obj->efile.btf_maps_shndx = idx; 3339 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3340 if (sh->sh_type != SHT_PROGBITS) 3341 return -LIBBPF_ERRNO__FORMAT; 3342 btf_data = data; 3343 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3344 if (sh->sh_type != SHT_PROGBITS) 3345 return -LIBBPF_ERRNO__FORMAT; 3346 btf_ext_data = data; 3347 } else if (sh->sh_type == SHT_SYMTAB) { 3348 /* already processed during the first pass above */ 3349 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3350 if (sh->sh_flags & SHF_EXECINSTR) { 3351 if (strcmp(name, ".text") == 0) 3352 obj->efile.text_shndx = idx; 3353 err = bpf_object__add_programs(obj, data, name, idx); 3354 if (err) 3355 return err; 3356 } else if (strcmp(name, DATA_SEC) == 0 || 3357 str_has_pfx(name, DATA_SEC ".")) { 3358 sec_desc->sec_type = SEC_DATA; 3359 sec_desc->shdr = sh; 3360 sec_desc->data = data; 3361 } else if (strcmp(name, RODATA_SEC) == 0 || 3362 str_has_pfx(name, RODATA_SEC ".")) { 3363 sec_desc->sec_type = SEC_RODATA; 3364 sec_desc->shdr = sh; 3365 sec_desc->data = data; 3366 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3367 obj->efile.st_ops_data = data; 3368 obj->efile.st_ops_shndx = idx; 3369 } else { 3370 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3371 idx, name); 3372 } 3373 } else if (sh->sh_type == SHT_REL) { 3374 int targ_sec_idx = sh->sh_info; /* points to other section */ 3375 3376 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3377 targ_sec_idx >= obj->efile.sec_cnt) 3378 return -LIBBPF_ERRNO__FORMAT; 3379 3380 /* Only do relo for section with exec instructions */ 3381 if (!section_have_execinstr(obj, targ_sec_idx) && 3382 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3383 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3384 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3385 idx, name, targ_sec_idx, 3386 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3387 continue; 3388 } 3389 3390 sec_desc->sec_type = SEC_RELO; 3391 sec_desc->shdr = sh; 3392 sec_desc->data = data; 3393 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3394 sec_desc->sec_type = SEC_BSS; 3395 sec_desc->shdr = sh; 3396 sec_desc->data = data; 3397 } else { 3398 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3399 (size_t)sh->sh_size); 3400 } 3401 } 3402 3403 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3404 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3405 return -LIBBPF_ERRNO__FORMAT; 3406 } 3407 3408 /* sort BPF programs by section name and in-section instruction offset 3409 * for faster search */ 3410 if (obj->nr_programs) 3411 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3412 3413 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3414 } 3415 3416 static bool sym_is_extern(const Elf64_Sym *sym) 3417 { 3418 int bind = ELF64_ST_BIND(sym->st_info); 3419 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3420 return sym->st_shndx == SHN_UNDEF && 3421 (bind == STB_GLOBAL || bind == STB_WEAK) && 3422 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3423 } 3424 3425 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3426 { 3427 int bind = ELF64_ST_BIND(sym->st_info); 3428 int type = ELF64_ST_TYPE(sym->st_info); 3429 3430 /* in .text section */ 3431 if (sym->st_shndx != text_shndx) 3432 return false; 3433 3434 /* local function */ 3435 if (bind == STB_LOCAL && type == STT_SECTION) 3436 return true; 3437 3438 /* global function */ 3439 return bind == STB_GLOBAL && type == STT_FUNC; 3440 } 3441 3442 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3443 { 3444 const struct btf_type *t; 3445 const char *tname; 3446 int i, n; 3447 3448 if (!btf) 3449 return -ESRCH; 3450 3451 n = btf__type_cnt(btf); 3452 for (i = 1; i < n; i++) { 3453 t = btf__type_by_id(btf, i); 3454 3455 if (!btf_is_var(t) && !btf_is_func(t)) 3456 continue; 3457 3458 tname = btf__name_by_offset(btf, t->name_off); 3459 if (strcmp(tname, ext_name)) 3460 continue; 3461 3462 if (btf_is_var(t) && 3463 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3464 return -EINVAL; 3465 3466 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3467 return -EINVAL; 3468 3469 return i; 3470 } 3471 3472 return -ENOENT; 3473 } 3474 3475 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3476 const struct btf_var_secinfo *vs; 3477 const struct btf_type *t; 3478 int i, j, n; 3479 3480 if (!btf) 3481 return -ESRCH; 3482 3483 n = btf__type_cnt(btf); 3484 for (i = 1; i < n; i++) { 3485 t = btf__type_by_id(btf, i); 3486 3487 if (!btf_is_datasec(t)) 3488 continue; 3489 3490 vs = btf_var_secinfos(t); 3491 for (j = 0; j < btf_vlen(t); j++, vs++) { 3492 if (vs->type == ext_btf_id) 3493 return i; 3494 } 3495 } 3496 3497 return -ENOENT; 3498 } 3499 3500 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3501 bool *is_signed) 3502 { 3503 const struct btf_type *t; 3504 const char *name; 3505 3506 t = skip_mods_and_typedefs(btf, id, NULL); 3507 name = btf__name_by_offset(btf, t->name_off); 3508 3509 if (is_signed) 3510 *is_signed = false; 3511 switch (btf_kind(t)) { 3512 case BTF_KIND_INT: { 3513 int enc = btf_int_encoding(t); 3514 3515 if (enc & BTF_INT_BOOL) 3516 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3517 if (is_signed) 3518 *is_signed = enc & BTF_INT_SIGNED; 3519 if (t->size == 1) 3520 return KCFG_CHAR; 3521 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3522 return KCFG_UNKNOWN; 3523 return KCFG_INT; 3524 } 3525 case BTF_KIND_ENUM: 3526 if (t->size != 4) 3527 return KCFG_UNKNOWN; 3528 if (strcmp(name, "libbpf_tristate")) 3529 return KCFG_UNKNOWN; 3530 return KCFG_TRISTATE; 3531 case BTF_KIND_ARRAY: 3532 if (btf_array(t)->nelems == 0) 3533 return KCFG_UNKNOWN; 3534 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3535 return KCFG_UNKNOWN; 3536 return KCFG_CHAR_ARR; 3537 default: 3538 return KCFG_UNKNOWN; 3539 } 3540 } 3541 3542 static int cmp_externs(const void *_a, const void *_b) 3543 { 3544 const struct extern_desc *a = _a; 3545 const struct extern_desc *b = _b; 3546 3547 if (a->type != b->type) 3548 return a->type < b->type ? -1 : 1; 3549 3550 if (a->type == EXT_KCFG) { 3551 /* descending order by alignment requirements */ 3552 if (a->kcfg.align != b->kcfg.align) 3553 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3554 /* ascending order by size, within same alignment class */ 3555 if (a->kcfg.sz != b->kcfg.sz) 3556 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3557 } 3558 3559 /* resolve ties by name */ 3560 return strcmp(a->name, b->name); 3561 } 3562 3563 static int find_int_btf_id(const struct btf *btf) 3564 { 3565 const struct btf_type *t; 3566 int i, n; 3567 3568 n = btf__type_cnt(btf); 3569 for (i = 1; i < n; i++) { 3570 t = btf__type_by_id(btf, i); 3571 3572 if (btf_is_int(t) && btf_int_bits(t) == 32) 3573 return i; 3574 } 3575 3576 return 0; 3577 } 3578 3579 static int add_dummy_ksym_var(struct btf *btf) 3580 { 3581 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3582 const struct btf_var_secinfo *vs; 3583 const struct btf_type *sec; 3584 3585 if (!btf) 3586 return 0; 3587 3588 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3589 BTF_KIND_DATASEC); 3590 if (sec_btf_id < 0) 3591 return 0; 3592 3593 sec = btf__type_by_id(btf, sec_btf_id); 3594 vs = btf_var_secinfos(sec); 3595 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3596 const struct btf_type *vt; 3597 3598 vt = btf__type_by_id(btf, vs->type); 3599 if (btf_is_func(vt)) 3600 break; 3601 } 3602 3603 /* No func in ksyms sec. No need to add dummy var. */ 3604 if (i == btf_vlen(sec)) 3605 return 0; 3606 3607 int_btf_id = find_int_btf_id(btf); 3608 dummy_var_btf_id = btf__add_var(btf, 3609 "dummy_ksym", 3610 BTF_VAR_GLOBAL_ALLOCATED, 3611 int_btf_id); 3612 if (dummy_var_btf_id < 0) 3613 pr_warn("cannot create a dummy_ksym var\n"); 3614 3615 return dummy_var_btf_id; 3616 } 3617 3618 static int bpf_object__collect_externs(struct bpf_object *obj) 3619 { 3620 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3621 const struct btf_type *t; 3622 struct extern_desc *ext; 3623 int i, n, off, dummy_var_btf_id; 3624 const char *ext_name, *sec_name; 3625 Elf_Scn *scn; 3626 Elf64_Shdr *sh; 3627 3628 if (!obj->efile.symbols) 3629 return 0; 3630 3631 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3632 sh = elf_sec_hdr(obj, scn); 3633 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3634 return -LIBBPF_ERRNO__FORMAT; 3635 3636 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3637 if (dummy_var_btf_id < 0) 3638 return dummy_var_btf_id; 3639 3640 n = sh->sh_size / sh->sh_entsize; 3641 pr_debug("looking for externs among %d symbols...\n", n); 3642 3643 for (i = 0; i < n; i++) { 3644 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3645 3646 if (!sym) 3647 return -LIBBPF_ERRNO__FORMAT; 3648 if (!sym_is_extern(sym)) 3649 continue; 3650 ext_name = elf_sym_str(obj, sym->st_name); 3651 if (!ext_name || !ext_name[0]) 3652 continue; 3653 3654 ext = obj->externs; 3655 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3656 if (!ext) 3657 return -ENOMEM; 3658 obj->externs = ext; 3659 ext = &ext[obj->nr_extern]; 3660 memset(ext, 0, sizeof(*ext)); 3661 obj->nr_extern++; 3662 3663 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3664 if (ext->btf_id <= 0) { 3665 pr_warn("failed to find BTF for extern '%s': %d\n", 3666 ext_name, ext->btf_id); 3667 return ext->btf_id; 3668 } 3669 t = btf__type_by_id(obj->btf, ext->btf_id); 3670 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3671 ext->sym_idx = i; 3672 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3673 3674 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3675 if (ext->sec_btf_id <= 0) { 3676 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3677 ext_name, ext->btf_id, ext->sec_btf_id); 3678 return ext->sec_btf_id; 3679 } 3680 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3681 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3682 3683 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3684 if (btf_is_func(t)) { 3685 pr_warn("extern function %s is unsupported under %s section\n", 3686 ext->name, KCONFIG_SEC); 3687 return -ENOTSUP; 3688 } 3689 kcfg_sec = sec; 3690 ext->type = EXT_KCFG; 3691 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3692 if (ext->kcfg.sz <= 0) { 3693 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3694 ext_name, ext->kcfg.sz); 3695 return ext->kcfg.sz; 3696 } 3697 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3698 if (ext->kcfg.align <= 0) { 3699 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3700 ext_name, ext->kcfg.align); 3701 return -EINVAL; 3702 } 3703 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3704 &ext->kcfg.is_signed); 3705 if (ext->kcfg.type == KCFG_UNKNOWN) { 3706 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3707 return -ENOTSUP; 3708 } 3709 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3710 ksym_sec = sec; 3711 ext->type = EXT_KSYM; 3712 skip_mods_and_typedefs(obj->btf, t->type, 3713 &ext->ksym.type_id); 3714 } else { 3715 pr_warn("unrecognized extern section '%s'\n", sec_name); 3716 return -ENOTSUP; 3717 } 3718 } 3719 pr_debug("collected %d externs total\n", obj->nr_extern); 3720 3721 if (!obj->nr_extern) 3722 return 0; 3723 3724 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3725 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3726 3727 /* for .ksyms section, we need to turn all externs into allocated 3728 * variables in BTF to pass kernel verification; we do this by 3729 * pretending that each extern is a 8-byte variable 3730 */ 3731 if (ksym_sec) { 3732 /* find existing 4-byte integer type in BTF to use for fake 3733 * extern variables in DATASEC 3734 */ 3735 int int_btf_id = find_int_btf_id(obj->btf); 3736 /* For extern function, a dummy_var added earlier 3737 * will be used to replace the vs->type and 3738 * its name string will be used to refill 3739 * the missing param's name. 3740 */ 3741 const struct btf_type *dummy_var; 3742 3743 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3744 for (i = 0; i < obj->nr_extern; i++) { 3745 ext = &obj->externs[i]; 3746 if (ext->type != EXT_KSYM) 3747 continue; 3748 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3749 i, ext->sym_idx, ext->name); 3750 } 3751 3752 sec = ksym_sec; 3753 n = btf_vlen(sec); 3754 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3755 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3756 struct btf_type *vt; 3757 3758 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3759 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3760 ext = find_extern_by_name(obj, ext_name); 3761 if (!ext) { 3762 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3763 btf_kind_str(vt), ext_name); 3764 return -ESRCH; 3765 } 3766 if (btf_is_func(vt)) { 3767 const struct btf_type *func_proto; 3768 struct btf_param *param; 3769 int j; 3770 3771 func_proto = btf__type_by_id(obj->btf, 3772 vt->type); 3773 param = btf_params(func_proto); 3774 /* Reuse the dummy_var string if the 3775 * func proto does not have param name. 3776 */ 3777 for (j = 0; j < btf_vlen(func_proto); j++) 3778 if (param[j].type && !param[j].name_off) 3779 param[j].name_off = 3780 dummy_var->name_off; 3781 vs->type = dummy_var_btf_id; 3782 vt->info &= ~0xffff; 3783 vt->info |= BTF_FUNC_GLOBAL; 3784 } else { 3785 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3786 vt->type = int_btf_id; 3787 } 3788 vs->offset = off; 3789 vs->size = sizeof(int); 3790 } 3791 sec->size = off; 3792 } 3793 3794 if (kcfg_sec) { 3795 sec = kcfg_sec; 3796 /* for kcfg externs calculate their offsets within a .kconfig map */ 3797 off = 0; 3798 for (i = 0; i < obj->nr_extern; i++) { 3799 ext = &obj->externs[i]; 3800 if (ext->type != EXT_KCFG) 3801 continue; 3802 3803 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3804 off = ext->kcfg.data_off + ext->kcfg.sz; 3805 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3806 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3807 } 3808 sec->size = off; 3809 n = btf_vlen(sec); 3810 for (i = 0; i < n; i++) { 3811 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3812 3813 t = btf__type_by_id(obj->btf, vs->type); 3814 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3815 ext = find_extern_by_name(obj, ext_name); 3816 if (!ext) { 3817 pr_warn("failed to find extern definition for BTF var '%s'\n", 3818 ext_name); 3819 return -ESRCH; 3820 } 3821 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3822 vs->offset = ext->kcfg.data_off; 3823 } 3824 } 3825 return 0; 3826 } 3827 3828 struct bpf_program * 3829 bpf_object__find_program_by_title(const struct bpf_object *obj, 3830 const char *title) 3831 { 3832 struct bpf_program *pos; 3833 3834 bpf_object__for_each_program(pos, obj) { 3835 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3836 return pos; 3837 } 3838 return errno = ENOENT, NULL; 3839 } 3840 3841 static bool prog_is_subprog(const struct bpf_object *obj, 3842 const struct bpf_program *prog) 3843 { 3844 /* For legacy reasons, libbpf supports an entry-point BPF programs 3845 * without SEC() attribute, i.e., those in the .text section. But if 3846 * there are 2 or more such programs in the .text section, they all 3847 * must be subprograms called from entry-point BPF programs in 3848 * designated SEC()'tions, otherwise there is no way to distinguish 3849 * which of those programs should be loaded vs which are a subprogram. 3850 * Similarly, if there is a function/program in .text and at least one 3851 * other BPF program with custom SEC() attribute, then we just assume 3852 * .text programs are subprograms (even if they are not called from 3853 * other programs), because libbpf never explicitly supported mixing 3854 * SEC()-designated BPF programs and .text entry-point BPF programs. 3855 * 3856 * In libbpf 1.0 strict mode, we always consider .text 3857 * programs to be subprograms. 3858 */ 3859 3860 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 3861 return prog->sec_idx == obj->efile.text_shndx; 3862 3863 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3864 } 3865 3866 struct bpf_program * 3867 bpf_object__find_program_by_name(const struct bpf_object *obj, 3868 const char *name) 3869 { 3870 struct bpf_program *prog; 3871 3872 bpf_object__for_each_program(prog, obj) { 3873 if (prog_is_subprog(obj, prog)) 3874 continue; 3875 if (!strcmp(prog->name, name)) 3876 return prog; 3877 } 3878 return errno = ENOENT, NULL; 3879 } 3880 3881 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3882 int shndx) 3883 { 3884 switch (obj->efile.secs[shndx].sec_type) { 3885 case SEC_BSS: 3886 case SEC_DATA: 3887 case SEC_RODATA: 3888 return true; 3889 default: 3890 return false; 3891 } 3892 } 3893 3894 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3895 int shndx) 3896 { 3897 return shndx == obj->efile.maps_shndx || 3898 shndx == obj->efile.btf_maps_shndx; 3899 } 3900 3901 static enum libbpf_map_type 3902 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3903 { 3904 if (shndx == obj->efile.symbols_shndx) 3905 return LIBBPF_MAP_KCONFIG; 3906 3907 switch (obj->efile.secs[shndx].sec_type) { 3908 case SEC_BSS: 3909 return LIBBPF_MAP_BSS; 3910 case SEC_DATA: 3911 return LIBBPF_MAP_DATA; 3912 case SEC_RODATA: 3913 return LIBBPF_MAP_RODATA; 3914 default: 3915 return LIBBPF_MAP_UNSPEC; 3916 } 3917 } 3918 3919 static int bpf_program__record_reloc(struct bpf_program *prog, 3920 struct reloc_desc *reloc_desc, 3921 __u32 insn_idx, const char *sym_name, 3922 const Elf64_Sym *sym, const Elf64_Rel *rel) 3923 { 3924 struct bpf_insn *insn = &prog->insns[insn_idx]; 3925 size_t map_idx, nr_maps = prog->obj->nr_maps; 3926 struct bpf_object *obj = prog->obj; 3927 __u32 shdr_idx = sym->st_shndx; 3928 enum libbpf_map_type type; 3929 const char *sym_sec_name; 3930 struct bpf_map *map; 3931 3932 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3933 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3934 prog->name, sym_name, insn_idx, insn->code); 3935 return -LIBBPF_ERRNO__RELOC; 3936 } 3937 3938 if (sym_is_extern(sym)) { 3939 int sym_idx = ELF64_R_SYM(rel->r_info); 3940 int i, n = obj->nr_extern; 3941 struct extern_desc *ext; 3942 3943 for (i = 0; i < n; i++) { 3944 ext = &obj->externs[i]; 3945 if (ext->sym_idx == sym_idx) 3946 break; 3947 } 3948 if (i >= n) { 3949 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3950 prog->name, sym_name, sym_idx); 3951 return -LIBBPF_ERRNO__RELOC; 3952 } 3953 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3954 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3955 if (insn->code == (BPF_JMP | BPF_CALL)) 3956 reloc_desc->type = RELO_EXTERN_FUNC; 3957 else 3958 reloc_desc->type = RELO_EXTERN_VAR; 3959 reloc_desc->insn_idx = insn_idx; 3960 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3961 return 0; 3962 } 3963 3964 /* sub-program call relocation */ 3965 if (is_call_insn(insn)) { 3966 if (insn->src_reg != BPF_PSEUDO_CALL) { 3967 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3968 return -LIBBPF_ERRNO__RELOC; 3969 } 3970 /* text_shndx can be 0, if no default "main" program exists */ 3971 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3972 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3973 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3974 prog->name, sym_name, sym_sec_name); 3975 return -LIBBPF_ERRNO__RELOC; 3976 } 3977 if (sym->st_value % BPF_INSN_SZ) { 3978 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3979 prog->name, sym_name, (size_t)sym->st_value); 3980 return -LIBBPF_ERRNO__RELOC; 3981 } 3982 reloc_desc->type = RELO_CALL; 3983 reloc_desc->insn_idx = insn_idx; 3984 reloc_desc->sym_off = sym->st_value; 3985 return 0; 3986 } 3987 3988 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3989 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3990 prog->name, sym_name, shdr_idx); 3991 return -LIBBPF_ERRNO__RELOC; 3992 } 3993 3994 /* loading subprog addresses */ 3995 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3996 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3997 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3998 */ 3999 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4000 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4001 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4002 return -LIBBPF_ERRNO__RELOC; 4003 } 4004 4005 reloc_desc->type = RELO_SUBPROG_ADDR; 4006 reloc_desc->insn_idx = insn_idx; 4007 reloc_desc->sym_off = sym->st_value; 4008 return 0; 4009 } 4010 4011 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4012 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4013 4014 /* generic map reference relocation */ 4015 if (type == LIBBPF_MAP_UNSPEC) { 4016 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4017 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4018 prog->name, sym_name, sym_sec_name); 4019 return -LIBBPF_ERRNO__RELOC; 4020 } 4021 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4022 map = &obj->maps[map_idx]; 4023 if (map->libbpf_type != type || 4024 map->sec_idx != sym->st_shndx || 4025 map->sec_offset != sym->st_value) 4026 continue; 4027 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4028 prog->name, map_idx, map->name, map->sec_idx, 4029 map->sec_offset, insn_idx); 4030 break; 4031 } 4032 if (map_idx >= nr_maps) { 4033 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4034 prog->name, sym_sec_name, (size_t)sym->st_value); 4035 return -LIBBPF_ERRNO__RELOC; 4036 } 4037 reloc_desc->type = RELO_LD64; 4038 reloc_desc->insn_idx = insn_idx; 4039 reloc_desc->map_idx = map_idx; 4040 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4041 return 0; 4042 } 4043 4044 /* global data map relocation */ 4045 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4046 pr_warn("prog '%s': bad data relo against section '%s'\n", 4047 prog->name, sym_sec_name); 4048 return -LIBBPF_ERRNO__RELOC; 4049 } 4050 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4051 map = &obj->maps[map_idx]; 4052 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4053 continue; 4054 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4055 prog->name, map_idx, map->name, map->sec_idx, 4056 map->sec_offset, insn_idx); 4057 break; 4058 } 4059 if (map_idx >= nr_maps) { 4060 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4061 prog->name, sym_sec_name); 4062 return -LIBBPF_ERRNO__RELOC; 4063 } 4064 4065 reloc_desc->type = RELO_DATA; 4066 reloc_desc->insn_idx = insn_idx; 4067 reloc_desc->map_idx = map_idx; 4068 reloc_desc->sym_off = sym->st_value; 4069 return 0; 4070 } 4071 4072 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4073 { 4074 return insn_idx >= prog->sec_insn_off && 4075 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4076 } 4077 4078 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4079 size_t sec_idx, size_t insn_idx) 4080 { 4081 int l = 0, r = obj->nr_programs - 1, m; 4082 struct bpf_program *prog; 4083 4084 while (l < r) { 4085 m = l + (r - l + 1) / 2; 4086 prog = &obj->programs[m]; 4087 4088 if (prog->sec_idx < sec_idx || 4089 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4090 l = m; 4091 else 4092 r = m - 1; 4093 } 4094 /* matching program could be at index l, but it still might be the 4095 * wrong one, so we need to double check conditions for the last time 4096 */ 4097 prog = &obj->programs[l]; 4098 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4099 return prog; 4100 return NULL; 4101 } 4102 4103 static int 4104 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4105 { 4106 const char *relo_sec_name, *sec_name; 4107 size_t sec_idx = shdr->sh_info, sym_idx; 4108 struct bpf_program *prog; 4109 struct reloc_desc *relos; 4110 int err, i, nrels; 4111 const char *sym_name; 4112 __u32 insn_idx; 4113 Elf_Scn *scn; 4114 Elf_Data *scn_data; 4115 Elf64_Sym *sym; 4116 Elf64_Rel *rel; 4117 4118 if (sec_idx >= obj->efile.sec_cnt) 4119 return -EINVAL; 4120 4121 scn = elf_sec_by_idx(obj, sec_idx); 4122 scn_data = elf_sec_data(obj, scn); 4123 4124 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4125 sec_name = elf_sec_name(obj, scn); 4126 if (!relo_sec_name || !sec_name) 4127 return -EINVAL; 4128 4129 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4130 relo_sec_name, sec_idx, sec_name); 4131 nrels = shdr->sh_size / shdr->sh_entsize; 4132 4133 for (i = 0; i < nrels; i++) { 4134 rel = elf_rel_by_idx(data, i); 4135 if (!rel) { 4136 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4137 return -LIBBPF_ERRNO__FORMAT; 4138 } 4139 4140 sym_idx = ELF64_R_SYM(rel->r_info); 4141 sym = elf_sym_by_idx(obj, sym_idx); 4142 if (!sym) { 4143 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4144 relo_sec_name, sym_idx, i); 4145 return -LIBBPF_ERRNO__FORMAT; 4146 } 4147 4148 if (sym->st_shndx >= obj->efile.sec_cnt) { 4149 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4150 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4151 return -LIBBPF_ERRNO__FORMAT; 4152 } 4153 4154 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4155 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4156 relo_sec_name, (size_t)rel->r_offset, i); 4157 return -LIBBPF_ERRNO__FORMAT; 4158 } 4159 4160 insn_idx = rel->r_offset / BPF_INSN_SZ; 4161 /* relocations against static functions are recorded as 4162 * relocations against the section that contains a function; 4163 * in such case, symbol will be STT_SECTION and sym.st_name 4164 * will point to empty string (0), so fetch section name 4165 * instead 4166 */ 4167 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4168 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4169 else 4170 sym_name = elf_sym_str(obj, sym->st_name); 4171 sym_name = sym_name ?: "<?"; 4172 4173 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4174 relo_sec_name, i, insn_idx, sym_name); 4175 4176 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4177 if (!prog) { 4178 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4179 relo_sec_name, i, sec_name, insn_idx); 4180 continue; 4181 } 4182 4183 relos = libbpf_reallocarray(prog->reloc_desc, 4184 prog->nr_reloc + 1, sizeof(*relos)); 4185 if (!relos) 4186 return -ENOMEM; 4187 prog->reloc_desc = relos; 4188 4189 /* adjust insn_idx to local BPF program frame of reference */ 4190 insn_idx -= prog->sec_insn_off; 4191 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4192 insn_idx, sym_name, sym, rel); 4193 if (err) 4194 return err; 4195 4196 prog->nr_reloc++; 4197 } 4198 return 0; 4199 } 4200 4201 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4202 { 4203 struct bpf_map_def *def = &map->def; 4204 __u32 key_type_id = 0, value_type_id = 0; 4205 int ret; 4206 4207 if (!obj->btf) 4208 return -ENOENT; 4209 4210 /* if it's BTF-defined map, we don't need to search for type IDs. 4211 * For struct_ops map, it does not need btf_key_type_id and 4212 * btf_value_type_id. 4213 */ 4214 if (map->sec_idx == obj->efile.btf_maps_shndx || 4215 bpf_map__is_struct_ops(map)) 4216 return 0; 4217 4218 if (!bpf_map__is_internal(map)) { 4219 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4220 #pragma GCC diagnostic push 4221 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4222 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4223 def->value_size, &key_type_id, 4224 &value_type_id); 4225 #pragma GCC diagnostic pop 4226 } else { 4227 /* 4228 * LLVM annotates global data differently in BTF, that is, 4229 * only as '.data', '.bss' or '.rodata'. 4230 */ 4231 ret = btf__find_by_name(obj->btf, map->real_name); 4232 } 4233 if (ret < 0) 4234 return ret; 4235 4236 map->btf_key_type_id = key_type_id; 4237 map->btf_value_type_id = bpf_map__is_internal(map) ? 4238 ret : value_type_id; 4239 return 0; 4240 } 4241 4242 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4243 { 4244 char file[PATH_MAX], buff[4096]; 4245 FILE *fp; 4246 __u32 val; 4247 int err; 4248 4249 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4250 memset(info, 0, sizeof(*info)); 4251 4252 fp = fopen(file, "r"); 4253 if (!fp) { 4254 err = -errno; 4255 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4256 err); 4257 return err; 4258 } 4259 4260 while (fgets(buff, sizeof(buff), fp)) { 4261 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4262 info->type = val; 4263 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4264 info->key_size = val; 4265 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4266 info->value_size = val; 4267 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4268 info->max_entries = val; 4269 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4270 info->map_flags = val; 4271 } 4272 4273 fclose(fp); 4274 4275 return 0; 4276 } 4277 4278 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4279 { 4280 struct bpf_map_info info = {}; 4281 __u32 len = sizeof(info); 4282 int new_fd, err; 4283 char *new_name; 4284 4285 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4286 if (err && errno == EINVAL) 4287 err = bpf_get_map_info_from_fdinfo(fd, &info); 4288 if (err) 4289 return libbpf_err(err); 4290 4291 new_name = strdup(info.name); 4292 if (!new_name) 4293 return libbpf_err(-errno); 4294 4295 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4296 if (new_fd < 0) { 4297 err = -errno; 4298 goto err_free_new_name; 4299 } 4300 4301 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4302 if (new_fd < 0) { 4303 err = -errno; 4304 goto err_close_new_fd; 4305 } 4306 4307 err = zclose(map->fd); 4308 if (err) { 4309 err = -errno; 4310 goto err_close_new_fd; 4311 } 4312 free(map->name); 4313 4314 map->fd = new_fd; 4315 map->name = new_name; 4316 map->def.type = info.type; 4317 map->def.key_size = info.key_size; 4318 map->def.value_size = info.value_size; 4319 map->def.max_entries = info.max_entries; 4320 map->def.map_flags = info.map_flags; 4321 map->btf_key_type_id = info.btf_key_type_id; 4322 map->btf_value_type_id = info.btf_value_type_id; 4323 map->reused = true; 4324 map->map_extra = info.map_extra; 4325 4326 return 0; 4327 4328 err_close_new_fd: 4329 close(new_fd); 4330 err_free_new_name: 4331 free(new_name); 4332 return libbpf_err(err); 4333 } 4334 4335 __u32 bpf_map__max_entries(const struct bpf_map *map) 4336 { 4337 return map->def.max_entries; 4338 } 4339 4340 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4341 { 4342 if (!bpf_map_type__is_map_in_map(map->def.type)) 4343 return errno = EINVAL, NULL; 4344 4345 return map->inner_map; 4346 } 4347 4348 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4349 { 4350 if (map->fd >= 0) 4351 return libbpf_err(-EBUSY); 4352 map->def.max_entries = max_entries; 4353 return 0; 4354 } 4355 4356 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4357 { 4358 if (!map || !max_entries) 4359 return libbpf_err(-EINVAL); 4360 4361 return bpf_map__set_max_entries(map, max_entries); 4362 } 4363 4364 static int 4365 bpf_object__probe_loading(struct bpf_object *obj) 4366 { 4367 char *cp, errmsg[STRERR_BUFSIZE]; 4368 struct bpf_insn insns[] = { 4369 BPF_MOV64_IMM(BPF_REG_0, 0), 4370 BPF_EXIT_INSN(), 4371 }; 4372 int ret, insn_cnt = ARRAY_SIZE(insns); 4373 4374 if (obj->gen_loader) 4375 return 0; 4376 4377 ret = bump_rlimit_memlock(); 4378 if (ret) 4379 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4380 4381 /* make sure basic loading works */ 4382 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4383 if (ret < 0) 4384 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4385 if (ret < 0) { 4386 ret = errno; 4387 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4388 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4389 "program. Make sure your kernel supports BPF " 4390 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4391 "set to big enough value.\n", __func__, cp, ret); 4392 return -ret; 4393 } 4394 close(ret); 4395 4396 return 0; 4397 } 4398 4399 static int probe_fd(int fd) 4400 { 4401 if (fd >= 0) 4402 close(fd); 4403 return fd >= 0; 4404 } 4405 4406 static int probe_kern_prog_name(void) 4407 { 4408 struct bpf_insn insns[] = { 4409 BPF_MOV64_IMM(BPF_REG_0, 0), 4410 BPF_EXIT_INSN(), 4411 }; 4412 int ret, insn_cnt = ARRAY_SIZE(insns); 4413 4414 /* make sure loading with name works */ 4415 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4416 return probe_fd(ret); 4417 } 4418 4419 static int probe_kern_global_data(void) 4420 { 4421 char *cp, errmsg[STRERR_BUFSIZE]; 4422 struct bpf_insn insns[] = { 4423 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4424 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4425 BPF_MOV64_IMM(BPF_REG_0, 0), 4426 BPF_EXIT_INSN(), 4427 }; 4428 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4429 4430 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4431 if (map < 0) { 4432 ret = -errno; 4433 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4434 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4435 __func__, cp, -ret); 4436 return ret; 4437 } 4438 4439 insns[0].imm = map; 4440 4441 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4442 close(map); 4443 return probe_fd(ret); 4444 } 4445 4446 static int probe_kern_btf(void) 4447 { 4448 static const char strs[] = "\0int"; 4449 __u32 types[] = { 4450 /* int */ 4451 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4452 }; 4453 4454 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4455 strs, sizeof(strs))); 4456 } 4457 4458 static int probe_kern_btf_func(void) 4459 { 4460 static const char strs[] = "\0int\0x\0a"; 4461 /* void x(int a) {} */ 4462 __u32 types[] = { 4463 /* int */ 4464 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4465 /* FUNC_PROTO */ /* [2] */ 4466 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4467 BTF_PARAM_ENC(7, 1), 4468 /* FUNC x */ /* [3] */ 4469 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4470 }; 4471 4472 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4473 strs, sizeof(strs))); 4474 } 4475 4476 static int probe_kern_btf_func_global(void) 4477 { 4478 static const char strs[] = "\0int\0x\0a"; 4479 /* static void x(int a) {} */ 4480 __u32 types[] = { 4481 /* int */ 4482 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4483 /* FUNC_PROTO */ /* [2] */ 4484 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4485 BTF_PARAM_ENC(7, 1), 4486 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4487 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4488 }; 4489 4490 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4491 strs, sizeof(strs))); 4492 } 4493 4494 static int probe_kern_btf_datasec(void) 4495 { 4496 static const char strs[] = "\0x\0.data"; 4497 /* static int a; */ 4498 __u32 types[] = { 4499 /* int */ 4500 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4501 /* VAR x */ /* [2] */ 4502 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4503 BTF_VAR_STATIC, 4504 /* DATASEC val */ /* [3] */ 4505 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4506 BTF_VAR_SECINFO_ENC(2, 0, 4), 4507 }; 4508 4509 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4510 strs, sizeof(strs))); 4511 } 4512 4513 static int probe_kern_btf_float(void) 4514 { 4515 static const char strs[] = "\0float"; 4516 __u32 types[] = { 4517 /* float */ 4518 BTF_TYPE_FLOAT_ENC(1, 4), 4519 }; 4520 4521 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4522 strs, sizeof(strs))); 4523 } 4524 4525 static int probe_kern_btf_decl_tag(void) 4526 { 4527 static const char strs[] = "\0tag"; 4528 __u32 types[] = { 4529 /* int */ 4530 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4531 /* VAR x */ /* [2] */ 4532 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4533 BTF_VAR_STATIC, 4534 /* attr */ 4535 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4536 }; 4537 4538 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4539 strs, sizeof(strs))); 4540 } 4541 4542 static int probe_kern_btf_type_tag(void) 4543 { 4544 static const char strs[] = "\0tag"; 4545 __u32 types[] = { 4546 /* int */ 4547 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4548 /* attr */ 4549 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4550 /* ptr */ 4551 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4552 }; 4553 4554 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4555 strs, sizeof(strs))); 4556 } 4557 4558 static int probe_kern_array_mmap(void) 4559 { 4560 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4561 int fd; 4562 4563 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4564 return probe_fd(fd); 4565 } 4566 4567 static int probe_kern_exp_attach_type(void) 4568 { 4569 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4570 struct bpf_insn insns[] = { 4571 BPF_MOV64_IMM(BPF_REG_0, 0), 4572 BPF_EXIT_INSN(), 4573 }; 4574 int fd, insn_cnt = ARRAY_SIZE(insns); 4575 4576 /* use any valid combination of program type and (optional) 4577 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4578 * to see if kernel supports expected_attach_type field for 4579 * BPF_PROG_LOAD command 4580 */ 4581 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4582 return probe_fd(fd); 4583 } 4584 4585 static int probe_kern_probe_read_kernel(void) 4586 { 4587 struct bpf_insn insns[] = { 4588 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4589 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4590 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4591 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4592 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4593 BPF_EXIT_INSN(), 4594 }; 4595 int fd, insn_cnt = ARRAY_SIZE(insns); 4596 4597 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4598 return probe_fd(fd); 4599 } 4600 4601 static int probe_prog_bind_map(void) 4602 { 4603 char *cp, errmsg[STRERR_BUFSIZE]; 4604 struct bpf_insn insns[] = { 4605 BPF_MOV64_IMM(BPF_REG_0, 0), 4606 BPF_EXIT_INSN(), 4607 }; 4608 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4609 4610 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4611 if (map < 0) { 4612 ret = -errno; 4613 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4614 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4615 __func__, cp, -ret); 4616 return ret; 4617 } 4618 4619 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4620 if (prog < 0) { 4621 close(map); 4622 return 0; 4623 } 4624 4625 ret = bpf_prog_bind_map(prog, map, NULL); 4626 4627 close(map); 4628 close(prog); 4629 4630 return ret >= 0; 4631 } 4632 4633 static int probe_module_btf(void) 4634 { 4635 static const char strs[] = "\0int"; 4636 __u32 types[] = { 4637 /* int */ 4638 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4639 }; 4640 struct bpf_btf_info info; 4641 __u32 len = sizeof(info); 4642 char name[16]; 4643 int fd, err; 4644 4645 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4646 if (fd < 0) 4647 return 0; /* BTF not supported at all */ 4648 4649 memset(&info, 0, sizeof(info)); 4650 info.name = ptr_to_u64(name); 4651 info.name_len = sizeof(name); 4652 4653 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4654 * kernel's module BTF support coincides with support for 4655 * name/name_len fields in struct bpf_btf_info. 4656 */ 4657 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4658 close(fd); 4659 return !err; 4660 } 4661 4662 static int probe_perf_link(void) 4663 { 4664 struct bpf_insn insns[] = { 4665 BPF_MOV64_IMM(BPF_REG_0, 0), 4666 BPF_EXIT_INSN(), 4667 }; 4668 int prog_fd, link_fd, err; 4669 4670 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4671 insns, ARRAY_SIZE(insns), NULL); 4672 if (prog_fd < 0) 4673 return -errno; 4674 4675 /* use invalid perf_event FD to get EBADF, if link is supported; 4676 * otherwise EINVAL should be returned 4677 */ 4678 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4679 err = -errno; /* close() can clobber errno */ 4680 4681 if (link_fd >= 0) 4682 close(link_fd); 4683 close(prog_fd); 4684 4685 return link_fd < 0 && err == -EBADF; 4686 } 4687 4688 static int probe_kern_bpf_cookie(void) 4689 { 4690 struct bpf_insn insns[] = { 4691 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4692 BPF_EXIT_INSN(), 4693 }; 4694 int ret, insn_cnt = ARRAY_SIZE(insns); 4695 4696 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4697 return probe_fd(ret); 4698 } 4699 4700 enum kern_feature_result { 4701 FEAT_UNKNOWN = 0, 4702 FEAT_SUPPORTED = 1, 4703 FEAT_MISSING = 2, 4704 }; 4705 4706 typedef int (*feature_probe_fn)(void); 4707 4708 static struct kern_feature_desc { 4709 const char *desc; 4710 feature_probe_fn probe; 4711 enum kern_feature_result res; 4712 } feature_probes[__FEAT_CNT] = { 4713 [FEAT_PROG_NAME] = { 4714 "BPF program name", probe_kern_prog_name, 4715 }, 4716 [FEAT_GLOBAL_DATA] = { 4717 "global variables", probe_kern_global_data, 4718 }, 4719 [FEAT_BTF] = { 4720 "minimal BTF", probe_kern_btf, 4721 }, 4722 [FEAT_BTF_FUNC] = { 4723 "BTF functions", probe_kern_btf_func, 4724 }, 4725 [FEAT_BTF_GLOBAL_FUNC] = { 4726 "BTF global function", probe_kern_btf_func_global, 4727 }, 4728 [FEAT_BTF_DATASEC] = { 4729 "BTF data section and variable", probe_kern_btf_datasec, 4730 }, 4731 [FEAT_ARRAY_MMAP] = { 4732 "ARRAY map mmap()", probe_kern_array_mmap, 4733 }, 4734 [FEAT_EXP_ATTACH_TYPE] = { 4735 "BPF_PROG_LOAD expected_attach_type attribute", 4736 probe_kern_exp_attach_type, 4737 }, 4738 [FEAT_PROBE_READ_KERN] = { 4739 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4740 }, 4741 [FEAT_PROG_BIND_MAP] = { 4742 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4743 }, 4744 [FEAT_MODULE_BTF] = { 4745 "module BTF support", probe_module_btf, 4746 }, 4747 [FEAT_BTF_FLOAT] = { 4748 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4749 }, 4750 [FEAT_PERF_LINK] = { 4751 "BPF perf link support", probe_perf_link, 4752 }, 4753 [FEAT_BTF_DECL_TAG] = { 4754 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4755 }, 4756 [FEAT_BTF_TYPE_TAG] = { 4757 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4758 }, 4759 [FEAT_MEMCG_ACCOUNT] = { 4760 "memcg-based memory accounting", probe_memcg_account, 4761 }, 4762 [FEAT_BPF_COOKIE] = { 4763 "BPF cookie support", probe_kern_bpf_cookie, 4764 }, 4765 }; 4766 4767 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4768 { 4769 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4770 int ret; 4771 4772 if (obj && obj->gen_loader) 4773 /* To generate loader program assume the latest kernel 4774 * to avoid doing extra prog_load, map_create syscalls. 4775 */ 4776 return true; 4777 4778 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4779 ret = feat->probe(); 4780 if (ret > 0) { 4781 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4782 } else if (ret == 0) { 4783 WRITE_ONCE(feat->res, FEAT_MISSING); 4784 } else { 4785 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4786 WRITE_ONCE(feat->res, FEAT_MISSING); 4787 } 4788 } 4789 4790 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4791 } 4792 4793 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4794 { 4795 struct bpf_map_info map_info = {}; 4796 char msg[STRERR_BUFSIZE]; 4797 __u32 map_info_len; 4798 int err; 4799 4800 map_info_len = sizeof(map_info); 4801 4802 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4803 if (err && errno == EINVAL) 4804 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4805 if (err) { 4806 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4807 libbpf_strerror_r(errno, msg, sizeof(msg))); 4808 return false; 4809 } 4810 4811 return (map_info.type == map->def.type && 4812 map_info.key_size == map->def.key_size && 4813 map_info.value_size == map->def.value_size && 4814 map_info.max_entries == map->def.max_entries && 4815 map_info.map_flags == map->def.map_flags && 4816 map_info.map_extra == map->map_extra); 4817 } 4818 4819 static int 4820 bpf_object__reuse_map(struct bpf_map *map) 4821 { 4822 char *cp, errmsg[STRERR_BUFSIZE]; 4823 int err, pin_fd; 4824 4825 pin_fd = bpf_obj_get(map->pin_path); 4826 if (pin_fd < 0) { 4827 err = -errno; 4828 if (err == -ENOENT) { 4829 pr_debug("found no pinned map to reuse at '%s'\n", 4830 map->pin_path); 4831 return 0; 4832 } 4833 4834 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4835 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4836 map->pin_path, cp); 4837 return err; 4838 } 4839 4840 if (!map_is_reuse_compat(map, pin_fd)) { 4841 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4842 map->pin_path); 4843 close(pin_fd); 4844 return -EINVAL; 4845 } 4846 4847 err = bpf_map__reuse_fd(map, pin_fd); 4848 close(pin_fd); 4849 if (err) { 4850 return err; 4851 } 4852 map->pinned = true; 4853 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4854 4855 return 0; 4856 } 4857 4858 static int 4859 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4860 { 4861 enum libbpf_map_type map_type = map->libbpf_type; 4862 char *cp, errmsg[STRERR_BUFSIZE]; 4863 int err, zero = 0; 4864 4865 if (obj->gen_loader) { 4866 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4867 map->mmaped, map->def.value_size); 4868 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4869 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4870 return 0; 4871 } 4872 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4873 if (err) { 4874 err = -errno; 4875 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4876 pr_warn("Error setting initial map(%s) contents: %s\n", 4877 map->name, cp); 4878 return err; 4879 } 4880 4881 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4882 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4883 err = bpf_map_freeze(map->fd); 4884 if (err) { 4885 err = -errno; 4886 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4887 pr_warn("Error freezing map(%s) as read-only: %s\n", 4888 map->name, cp); 4889 return err; 4890 } 4891 } 4892 return 0; 4893 } 4894 4895 static void bpf_map__destroy(struct bpf_map *map); 4896 4897 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4898 { 4899 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4900 struct bpf_map_def *def = &map->def; 4901 const char *map_name = NULL; 4902 int err = 0; 4903 4904 if (kernel_supports(obj, FEAT_PROG_NAME)) 4905 map_name = map->name; 4906 create_attr.map_ifindex = map->map_ifindex; 4907 create_attr.map_flags = def->map_flags; 4908 create_attr.numa_node = map->numa_node; 4909 create_attr.map_extra = map->map_extra; 4910 4911 if (bpf_map__is_struct_ops(map)) 4912 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4913 4914 if (obj->btf && btf__fd(obj->btf) >= 0) { 4915 create_attr.btf_fd = btf__fd(obj->btf); 4916 create_attr.btf_key_type_id = map->btf_key_type_id; 4917 create_attr.btf_value_type_id = map->btf_value_type_id; 4918 } 4919 4920 if (bpf_map_type__is_map_in_map(def->type)) { 4921 if (map->inner_map) { 4922 err = bpf_object__create_map(obj, map->inner_map, true); 4923 if (err) { 4924 pr_warn("map '%s': failed to create inner map: %d\n", 4925 map->name, err); 4926 return err; 4927 } 4928 map->inner_map_fd = bpf_map__fd(map->inner_map); 4929 } 4930 if (map->inner_map_fd >= 0) 4931 create_attr.inner_map_fd = map->inner_map_fd; 4932 } 4933 4934 switch (def->type) { 4935 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4936 case BPF_MAP_TYPE_CGROUP_ARRAY: 4937 case BPF_MAP_TYPE_STACK_TRACE: 4938 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4939 case BPF_MAP_TYPE_HASH_OF_MAPS: 4940 case BPF_MAP_TYPE_DEVMAP: 4941 case BPF_MAP_TYPE_DEVMAP_HASH: 4942 case BPF_MAP_TYPE_CPUMAP: 4943 case BPF_MAP_TYPE_XSKMAP: 4944 case BPF_MAP_TYPE_SOCKMAP: 4945 case BPF_MAP_TYPE_SOCKHASH: 4946 case BPF_MAP_TYPE_QUEUE: 4947 case BPF_MAP_TYPE_STACK: 4948 case BPF_MAP_TYPE_RINGBUF: 4949 create_attr.btf_fd = 0; 4950 create_attr.btf_key_type_id = 0; 4951 create_attr.btf_value_type_id = 0; 4952 map->btf_key_type_id = 0; 4953 map->btf_value_type_id = 0; 4954 default: 4955 break; 4956 } 4957 4958 if (obj->gen_loader) { 4959 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4960 def->key_size, def->value_size, def->max_entries, 4961 &create_attr, is_inner ? -1 : map - obj->maps); 4962 /* Pretend to have valid FD to pass various fd >= 0 checks. 4963 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4964 */ 4965 map->fd = 0; 4966 } else { 4967 map->fd = bpf_map_create(def->type, map_name, 4968 def->key_size, def->value_size, 4969 def->max_entries, &create_attr); 4970 } 4971 if (map->fd < 0 && (create_attr.btf_key_type_id || 4972 create_attr.btf_value_type_id)) { 4973 char *cp, errmsg[STRERR_BUFSIZE]; 4974 4975 err = -errno; 4976 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4977 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4978 map->name, cp, err); 4979 create_attr.btf_fd = 0; 4980 create_attr.btf_key_type_id = 0; 4981 create_attr.btf_value_type_id = 0; 4982 map->btf_key_type_id = 0; 4983 map->btf_value_type_id = 0; 4984 map->fd = bpf_map_create(def->type, map_name, 4985 def->key_size, def->value_size, 4986 def->max_entries, &create_attr); 4987 } 4988 4989 err = map->fd < 0 ? -errno : 0; 4990 4991 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4992 if (obj->gen_loader) 4993 map->inner_map->fd = -1; 4994 bpf_map__destroy(map->inner_map); 4995 zfree(&map->inner_map); 4996 } 4997 4998 return err; 4999 } 5000 5001 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5002 { 5003 const struct bpf_map *targ_map; 5004 unsigned int i; 5005 int fd, err = 0; 5006 5007 for (i = 0; i < map->init_slots_sz; i++) { 5008 if (!map->init_slots[i]) 5009 continue; 5010 5011 targ_map = map->init_slots[i]; 5012 fd = bpf_map__fd(targ_map); 5013 5014 if (obj->gen_loader) { 5015 bpf_gen__populate_outer_map(obj->gen_loader, 5016 map - obj->maps, i, 5017 targ_map - obj->maps); 5018 } else { 5019 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5020 } 5021 if (err) { 5022 err = -errno; 5023 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5024 map->name, i, targ_map->name, fd, err); 5025 return err; 5026 } 5027 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5028 map->name, i, targ_map->name, fd); 5029 } 5030 5031 zfree(&map->init_slots); 5032 map->init_slots_sz = 0; 5033 5034 return 0; 5035 } 5036 5037 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5038 { 5039 const struct bpf_program *targ_prog; 5040 unsigned int i; 5041 int fd, err; 5042 5043 if (obj->gen_loader) 5044 return -ENOTSUP; 5045 5046 for (i = 0; i < map->init_slots_sz; i++) { 5047 if (!map->init_slots[i]) 5048 continue; 5049 5050 targ_prog = map->init_slots[i]; 5051 fd = bpf_program__fd(targ_prog); 5052 5053 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5054 if (err) { 5055 err = -errno; 5056 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5057 map->name, i, targ_prog->name, fd, err); 5058 return err; 5059 } 5060 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5061 map->name, i, targ_prog->name, fd); 5062 } 5063 5064 zfree(&map->init_slots); 5065 map->init_slots_sz = 0; 5066 5067 return 0; 5068 } 5069 5070 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5071 { 5072 struct bpf_map *map; 5073 int i, err; 5074 5075 for (i = 0; i < obj->nr_maps; i++) { 5076 map = &obj->maps[i]; 5077 5078 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5079 continue; 5080 5081 err = init_prog_array_slots(obj, map); 5082 if (err < 0) { 5083 zclose(map->fd); 5084 return err; 5085 } 5086 } 5087 return 0; 5088 } 5089 5090 static int map_set_def_max_entries(struct bpf_map *map) 5091 { 5092 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5093 int nr_cpus; 5094 5095 nr_cpus = libbpf_num_possible_cpus(); 5096 if (nr_cpus < 0) { 5097 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5098 map->name, nr_cpus); 5099 return nr_cpus; 5100 } 5101 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5102 map->def.max_entries = nr_cpus; 5103 } 5104 5105 return 0; 5106 } 5107 5108 static int 5109 bpf_object__create_maps(struct bpf_object *obj) 5110 { 5111 struct bpf_map *map; 5112 char *cp, errmsg[STRERR_BUFSIZE]; 5113 unsigned int i, j; 5114 int err; 5115 bool retried; 5116 5117 for (i = 0; i < obj->nr_maps; i++) { 5118 map = &obj->maps[i]; 5119 5120 /* To support old kernels, we skip creating global data maps 5121 * (.rodata, .data, .kconfig, etc); later on, during program 5122 * loading, if we detect that at least one of the to-be-loaded 5123 * programs is referencing any global data map, we'll error 5124 * out with program name and relocation index logged. 5125 * This approach allows to accommodate Clang emitting 5126 * unnecessary .rodata.str1.1 sections for string literals, 5127 * but also it allows to have CO-RE applications that use 5128 * global variables in some of BPF programs, but not others. 5129 * If those global variable-using programs are not loaded at 5130 * runtime due to bpf_program__set_autoload(prog, false), 5131 * bpf_object loading will succeed just fine even on old 5132 * kernels. 5133 */ 5134 if (bpf_map__is_internal(map) && 5135 !kernel_supports(obj, FEAT_GLOBAL_DATA)) { 5136 map->skipped = true; 5137 continue; 5138 } 5139 5140 err = map_set_def_max_entries(map); 5141 if (err) 5142 goto err_out; 5143 5144 retried = false; 5145 retry: 5146 if (map->pin_path) { 5147 err = bpf_object__reuse_map(map); 5148 if (err) { 5149 pr_warn("map '%s': error reusing pinned map\n", 5150 map->name); 5151 goto err_out; 5152 } 5153 if (retried && map->fd < 0) { 5154 pr_warn("map '%s': cannot find pinned map\n", 5155 map->name); 5156 err = -ENOENT; 5157 goto err_out; 5158 } 5159 } 5160 5161 if (map->fd >= 0) { 5162 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5163 map->name, map->fd); 5164 } else { 5165 err = bpf_object__create_map(obj, map, false); 5166 if (err) 5167 goto err_out; 5168 5169 pr_debug("map '%s': created successfully, fd=%d\n", 5170 map->name, map->fd); 5171 5172 if (bpf_map__is_internal(map)) { 5173 err = bpf_object__populate_internal_map(obj, map); 5174 if (err < 0) { 5175 zclose(map->fd); 5176 goto err_out; 5177 } 5178 } 5179 5180 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5181 err = init_map_in_map_slots(obj, map); 5182 if (err < 0) { 5183 zclose(map->fd); 5184 goto err_out; 5185 } 5186 } 5187 } 5188 5189 if (map->pin_path && !map->pinned) { 5190 err = bpf_map__pin(map, NULL); 5191 if (err) { 5192 zclose(map->fd); 5193 if (!retried && err == -EEXIST) { 5194 retried = true; 5195 goto retry; 5196 } 5197 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5198 map->name, map->pin_path, err); 5199 goto err_out; 5200 } 5201 } 5202 } 5203 5204 return 0; 5205 5206 err_out: 5207 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5208 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5209 pr_perm_msg(err); 5210 for (j = 0; j < i; j++) 5211 zclose(obj->maps[j].fd); 5212 return err; 5213 } 5214 5215 static bool bpf_core_is_flavor_sep(const char *s) 5216 { 5217 /* check X___Y name pattern, where X and Y are not underscores */ 5218 return s[0] != '_' && /* X */ 5219 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5220 s[4] != '_'; /* Y */ 5221 } 5222 5223 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5224 * before last triple underscore. Struct name part after last triple 5225 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5226 */ 5227 size_t bpf_core_essential_name_len(const char *name) 5228 { 5229 size_t n = strlen(name); 5230 int i; 5231 5232 for (i = n - 5; i >= 0; i--) { 5233 if (bpf_core_is_flavor_sep(name + i)) 5234 return i + 1; 5235 } 5236 return n; 5237 } 5238 5239 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5240 { 5241 if (!cands) 5242 return; 5243 5244 free(cands->cands); 5245 free(cands); 5246 } 5247 5248 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5249 size_t local_essent_len, 5250 const struct btf *targ_btf, 5251 const char *targ_btf_name, 5252 int targ_start_id, 5253 struct bpf_core_cand_list *cands) 5254 { 5255 struct bpf_core_cand *new_cands, *cand; 5256 const struct btf_type *t, *local_t; 5257 const char *targ_name, *local_name; 5258 size_t targ_essent_len; 5259 int n, i; 5260 5261 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5262 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5263 5264 n = btf__type_cnt(targ_btf); 5265 for (i = targ_start_id; i < n; i++) { 5266 t = btf__type_by_id(targ_btf, i); 5267 if (btf_kind(t) != btf_kind(local_t)) 5268 continue; 5269 5270 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5271 if (str_is_empty(targ_name)) 5272 continue; 5273 5274 targ_essent_len = bpf_core_essential_name_len(targ_name); 5275 if (targ_essent_len != local_essent_len) 5276 continue; 5277 5278 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5279 continue; 5280 5281 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5282 local_cand->id, btf_kind_str(local_t), 5283 local_name, i, btf_kind_str(t), targ_name, 5284 targ_btf_name); 5285 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5286 sizeof(*cands->cands)); 5287 if (!new_cands) 5288 return -ENOMEM; 5289 5290 cand = &new_cands[cands->len]; 5291 cand->btf = targ_btf; 5292 cand->id = i; 5293 5294 cands->cands = new_cands; 5295 cands->len++; 5296 } 5297 return 0; 5298 } 5299 5300 static int load_module_btfs(struct bpf_object *obj) 5301 { 5302 struct bpf_btf_info info; 5303 struct module_btf *mod_btf; 5304 struct btf *btf; 5305 char name[64]; 5306 __u32 id = 0, len; 5307 int err, fd; 5308 5309 if (obj->btf_modules_loaded) 5310 return 0; 5311 5312 if (obj->gen_loader) 5313 return 0; 5314 5315 /* don't do this again, even if we find no module BTFs */ 5316 obj->btf_modules_loaded = true; 5317 5318 /* kernel too old to support module BTFs */ 5319 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5320 return 0; 5321 5322 while (true) { 5323 err = bpf_btf_get_next_id(id, &id); 5324 if (err && errno == ENOENT) 5325 return 0; 5326 if (err) { 5327 err = -errno; 5328 pr_warn("failed to iterate BTF objects: %d\n", err); 5329 return err; 5330 } 5331 5332 fd = bpf_btf_get_fd_by_id(id); 5333 if (fd < 0) { 5334 if (errno == ENOENT) 5335 continue; /* expected race: BTF was unloaded */ 5336 err = -errno; 5337 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5338 return err; 5339 } 5340 5341 len = sizeof(info); 5342 memset(&info, 0, sizeof(info)); 5343 info.name = ptr_to_u64(name); 5344 info.name_len = sizeof(name); 5345 5346 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5347 if (err) { 5348 err = -errno; 5349 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5350 goto err_out; 5351 } 5352 5353 /* ignore non-module BTFs */ 5354 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5355 close(fd); 5356 continue; 5357 } 5358 5359 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5360 err = libbpf_get_error(btf); 5361 if (err) { 5362 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5363 name, id, err); 5364 goto err_out; 5365 } 5366 5367 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5368 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5369 if (err) 5370 goto err_out; 5371 5372 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5373 5374 mod_btf->btf = btf; 5375 mod_btf->id = id; 5376 mod_btf->fd = fd; 5377 mod_btf->name = strdup(name); 5378 if (!mod_btf->name) { 5379 err = -ENOMEM; 5380 goto err_out; 5381 } 5382 continue; 5383 5384 err_out: 5385 close(fd); 5386 return err; 5387 } 5388 5389 return 0; 5390 } 5391 5392 static struct bpf_core_cand_list * 5393 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5394 { 5395 struct bpf_core_cand local_cand = {}; 5396 struct bpf_core_cand_list *cands; 5397 const struct btf *main_btf; 5398 const struct btf_type *local_t; 5399 const char *local_name; 5400 size_t local_essent_len; 5401 int err, i; 5402 5403 local_cand.btf = local_btf; 5404 local_cand.id = local_type_id; 5405 local_t = btf__type_by_id(local_btf, local_type_id); 5406 if (!local_t) 5407 return ERR_PTR(-EINVAL); 5408 5409 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5410 if (str_is_empty(local_name)) 5411 return ERR_PTR(-EINVAL); 5412 local_essent_len = bpf_core_essential_name_len(local_name); 5413 5414 cands = calloc(1, sizeof(*cands)); 5415 if (!cands) 5416 return ERR_PTR(-ENOMEM); 5417 5418 /* Attempt to find target candidates in vmlinux BTF first */ 5419 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5420 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5421 if (err) 5422 goto err_out; 5423 5424 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5425 if (cands->len) 5426 return cands; 5427 5428 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5429 if (obj->btf_vmlinux_override) 5430 return cands; 5431 5432 /* now look through module BTFs, trying to still find candidates */ 5433 err = load_module_btfs(obj); 5434 if (err) 5435 goto err_out; 5436 5437 for (i = 0; i < obj->btf_module_cnt; i++) { 5438 err = bpf_core_add_cands(&local_cand, local_essent_len, 5439 obj->btf_modules[i].btf, 5440 obj->btf_modules[i].name, 5441 btf__type_cnt(obj->btf_vmlinux), 5442 cands); 5443 if (err) 5444 goto err_out; 5445 } 5446 5447 return cands; 5448 err_out: 5449 bpf_core_free_cands(cands); 5450 return ERR_PTR(err); 5451 } 5452 5453 /* Check local and target types for compatibility. This check is used for 5454 * type-based CO-RE relocations and follow slightly different rules than 5455 * field-based relocations. This function assumes that root types were already 5456 * checked for name match. Beyond that initial root-level name check, names 5457 * are completely ignored. Compatibility rules are as follows: 5458 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5459 * kind should match for local and target types (i.e., STRUCT is not 5460 * compatible with UNION); 5461 * - for ENUMs, the size is ignored; 5462 * - for INT, size and signedness are ignored; 5463 * - for ARRAY, dimensionality is ignored, element types are checked for 5464 * compatibility recursively; 5465 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5466 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5467 * - FUNC_PROTOs are compatible if they have compatible signature: same 5468 * number of input args and compatible return and argument types. 5469 * These rules are not set in stone and probably will be adjusted as we get 5470 * more experience with using BPF CO-RE relocations. 5471 */ 5472 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5473 const struct btf *targ_btf, __u32 targ_id) 5474 { 5475 const struct btf_type *local_type, *targ_type; 5476 int depth = 32; /* max recursion depth */ 5477 5478 /* caller made sure that names match (ignoring flavor suffix) */ 5479 local_type = btf__type_by_id(local_btf, local_id); 5480 targ_type = btf__type_by_id(targ_btf, targ_id); 5481 if (btf_kind(local_type) != btf_kind(targ_type)) 5482 return 0; 5483 5484 recur: 5485 depth--; 5486 if (depth < 0) 5487 return -EINVAL; 5488 5489 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5490 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5491 if (!local_type || !targ_type) 5492 return -EINVAL; 5493 5494 if (btf_kind(local_type) != btf_kind(targ_type)) 5495 return 0; 5496 5497 switch (btf_kind(local_type)) { 5498 case BTF_KIND_UNKN: 5499 case BTF_KIND_STRUCT: 5500 case BTF_KIND_UNION: 5501 case BTF_KIND_ENUM: 5502 case BTF_KIND_FWD: 5503 return 1; 5504 case BTF_KIND_INT: 5505 /* just reject deprecated bitfield-like integers; all other 5506 * integers are by default compatible between each other 5507 */ 5508 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5509 case BTF_KIND_PTR: 5510 local_id = local_type->type; 5511 targ_id = targ_type->type; 5512 goto recur; 5513 case BTF_KIND_ARRAY: 5514 local_id = btf_array(local_type)->type; 5515 targ_id = btf_array(targ_type)->type; 5516 goto recur; 5517 case BTF_KIND_FUNC_PROTO: { 5518 struct btf_param *local_p = btf_params(local_type); 5519 struct btf_param *targ_p = btf_params(targ_type); 5520 __u16 local_vlen = btf_vlen(local_type); 5521 __u16 targ_vlen = btf_vlen(targ_type); 5522 int i, err; 5523 5524 if (local_vlen != targ_vlen) 5525 return 0; 5526 5527 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5528 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5529 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5530 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5531 if (err <= 0) 5532 return err; 5533 } 5534 5535 /* tail recurse for return type check */ 5536 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5537 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5538 goto recur; 5539 } 5540 default: 5541 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5542 btf_kind_str(local_type), local_id, targ_id); 5543 return 0; 5544 } 5545 } 5546 5547 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5548 { 5549 return (size_t)key; 5550 } 5551 5552 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5553 { 5554 return k1 == k2; 5555 } 5556 5557 static void *u32_as_hash_key(__u32 x) 5558 { 5559 return (void *)(uintptr_t)x; 5560 } 5561 5562 static int record_relo_core(struct bpf_program *prog, 5563 const struct bpf_core_relo *core_relo, int insn_idx) 5564 { 5565 struct reloc_desc *relos, *relo; 5566 5567 relos = libbpf_reallocarray(prog->reloc_desc, 5568 prog->nr_reloc + 1, sizeof(*relos)); 5569 if (!relos) 5570 return -ENOMEM; 5571 relo = &relos[prog->nr_reloc]; 5572 relo->type = RELO_CORE; 5573 relo->insn_idx = insn_idx; 5574 relo->core_relo = core_relo; 5575 prog->reloc_desc = relos; 5576 prog->nr_reloc++; 5577 return 0; 5578 } 5579 5580 static int bpf_core_resolve_relo(struct bpf_program *prog, 5581 const struct bpf_core_relo *relo, 5582 int relo_idx, 5583 const struct btf *local_btf, 5584 struct hashmap *cand_cache, 5585 struct bpf_core_relo_res *targ_res) 5586 { 5587 struct bpf_core_spec specs_scratch[3] = {}; 5588 const void *type_key = u32_as_hash_key(relo->type_id); 5589 struct bpf_core_cand_list *cands = NULL; 5590 const char *prog_name = prog->name; 5591 const struct btf_type *local_type; 5592 const char *local_name; 5593 __u32 local_id = relo->type_id; 5594 int err; 5595 5596 local_type = btf__type_by_id(local_btf, local_id); 5597 if (!local_type) 5598 return -EINVAL; 5599 5600 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5601 if (!local_name) 5602 return -EINVAL; 5603 5604 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5605 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5606 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5607 if (IS_ERR(cands)) { 5608 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5609 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5610 local_name, PTR_ERR(cands)); 5611 return PTR_ERR(cands); 5612 } 5613 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5614 if (err) { 5615 bpf_core_free_cands(cands); 5616 return err; 5617 } 5618 } 5619 5620 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5621 targ_res); 5622 } 5623 5624 static int 5625 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5626 { 5627 const struct btf_ext_info_sec *sec; 5628 struct bpf_core_relo_res targ_res; 5629 const struct bpf_core_relo *rec; 5630 const struct btf_ext_info *seg; 5631 struct hashmap_entry *entry; 5632 struct hashmap *cand_cache = NULL; 5633 struct bpf_program *prog; 5634 struct bpf_insn *insn; 5635 const char *sec_name; 5636 int i, err = 0, insn_idx, sec_idx; 5637 5638 if (obj->btf_ext->core_relo_info.len == 0) 5639 return 0; 5640 5641 if (targ_btf_path) { 5642 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5643 err = libbpf_get_error(obj->btf_vmlinux_override); 5644 if (err) { 5645 pr_warn("failed to parse target BTF: %d\n", err); 5646 return err; 5647 } 5648 } 5649 5650 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5651 if (IS_ERR(cand_cache)) { 5652 err = PTR_ERR(cand_cache); 5653 goto out; 5654 } 5655 5656 seg = &obj->btf_ext->core_relo_info; 5657 for_each_btf_ext_sec(seg, sec) { 5658 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5659 if (str_is_empty(sec_name)) { 5660 err = -EINVAL; 5661 goto out; 5662 } 5663 /* bpf_object's ELF is gone by now so it's not easy to find 5664 * section index by section name, but we can find *any* 5665 * bpf_program within desired section name and use it's 5666 * prog->sec_idx to do a proper search by section index and 5667 * instruction offset 5668 */ 5669 prog = NULL; 5670 for (i = 0; i < obj->nr_programs; i++) { 5671 prog = &obj->programs[i]; 5672 if (strcmp(prog->sec_name, sec_name) == 0) 5673 break; 5674 } 5675 if (!prog) { 5676 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5677 return -ENOENT; 5678 } 5679 sec_idx = prog->sec_idx; 5680 5681 pr_debug("sec '%s': found %d CO-RE relocations\n", 5682 sec_name, sec->num_info); 5683 5684 for_each_btf_ext_rec(seg, sec, i, rec) { 5685 if (rec->insn_off % BPF_INSN_SZ) 5686 return -EINVAL; 5687 insn_idx = rec->insn_off / BPF_INSN_SZ; 5688 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5689 if (!prog) { 5690 /* When __weak subprog is "overridden" by another instance 5691 * of the subprog from a different object file, linker still 5692 * appends all the .BTF.ext info that used to belong to that 5693 * eliminated subprogram. 5694 * This is similar to what x86-64 linker does for relocations. 5695 * So just ignore such relocations just like we ignore 5696 * subprog instructions when discovering subprograms. 5697 */ 5698 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5699 sec_name, i, insn_idx); 5700 continue; 5701 } 5702 /* no need to apply CO-RE relocation if the program is 5703 * not going to be loaded 5704 */ 5705 if (!prog->load) 5706 continue; 5707 5708 /* adjust insn_idx from section frame of reference to the local 5709 * program's frame of reference; (sub-)program code is not yet 5710 * relocated, so it's enough to just subtract in-section offset 5711 */ 5712 insn_idx = insn_idx - prog->sec_insn_off; 5713 if (insn_idx >= prog->insns_cnt) 5714 return -EINVAL; 5715 insn = &prog->insns[insn_idx]; 5716 5717 if (prog->obj->gen_loader) { 5718 err = record_relo_core(prog, rec, insn_idx); 5719 if (err) { 5720 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5721 prog->name, i, err); 5722 goto out; 5723 } 5724 continue; 5725 } 5726 5727 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5728 if (err) { 5729 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5730 prog->name, i, err); 5731 goto out; 5732 } 5733 5734 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5735 if (err) { 5736 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5737 prog->name, i, insn_idx, err); 5738 goto out; 5739 } 5740 } 5741 } 5742 5743 out: 5744 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5745 btf__free(obj->btf_vmlinux_override); 5746 obj->btf_vmlinux_override = NULL; 5747 5748 if (!IS_ERR_OR_NULL(cand_cache)) { 5749 hashmap__for_each_entry(cand_cache, entry, i) { 5750 bpf_core_free_cands(entry->value); 5751 } 5752 hashmap__free(cand_cache); 5753 } 5754 return err; 5755 } 5756 5757 /* Relocate data references within program code: 5758 * - map references; 5759 * - global variable references; 5760 * - extern references. 5761 */ 5762 static int 5763 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5764 { 5765 int i; 5766 5767 for (i = 0; i < prog->nr_reloc; i++) { 5768 struct reloc_desc *relo = &prog->reloc_desc[i]; 5769 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5770 struct extern_desc *ext; 5771 5772 switch (relo->type) { 5773 case RELO_LD64: 5774 if (obj->gen_loader) { 5775 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5776 insn[0].imm = relo->map_idx; 5777 } else { 5778 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5779 insn[0].imm = obj->maps[relo->map_idx].fd; 5780 } 5781 break; 5782 case RELO_DATA: 5783 insn[1].imm = insn[0].imm + relo->sym_off; 5784 if (obj->gen_loader) { 5785 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5786 insn[0].imm = relo->map_idx; 5787 } else { 5788 const struct bpf_map *map = &obj->maps[relo->map_idx]; 5789 5790 if (map->skipped) { 5791 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n", 5792 prog->name, i); 5793 return -ENOTSUP; 5794 } 5795 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5796 insn[0].imm = obj->maps[relo->map_idx].fd; 5797 } 5798 break; 5799 case RELO_EXTERN_VAR: 5800 ext = &obj->externs[relo->sym_off]; 5801 if (ext->type == EXT_KCFG) { 5802 if (obj->gen_loader) { 5803 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5804 insn[0].imm = obj->kconfig_map_idx; 5805 } else { 5806 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5807 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5808 } 5809 insn[1].imm = ext->kcfg.data_off; 5810 } else /* EXT_KSYM */ { 5811 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5812 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5813 insn[0].imm = ext->ksym.kernel_btf_id; 5814 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5815 } else { /* typeless ksyms or unresolved typed ksyms */ 5816 insn[0].imm = (__u32)ext->ksym.addr; 5817 insn[1].imm = ext->ksym.addr >> 32; 5818 } 5819 } 5820 break; 5821 case RELO_EXTERN_FUNC: 5822 ext = &obj->externs[relo->sym_off]; 5823 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5824 if (ext->is_set) { 5825 insn[0].imm = ext->ksym.kernel_btf_id; 5826 insn[0].off = ext->ksym.btf_fd_idx; 5827 } else { /* unresolved weak kfunc */ 5828 insn[0].imm = 0; 5829 insn[0].off = 0; 5830 } 5831 break; 5832 case RELO_SUBPROG_ADDR: 5833 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5834 pr_warn("prog '%s': relo #%d: bad insn\n", 5835 prog->name, i); 5836 return -EINVAL; 5837 } 5838 /* handled already */ 5839 break; 5840 case RELO_CALL: 5841 /* handled already */ 5842 break; 5843 case RELO_CORE: 5844 /* will be handled by bpf_program_record_relos() */ 5845 break; 5846 default: 5847 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5848 prog->name, i, relo->type); 5849 return -EINVAL; 5850 } 5851 } 5852 5853 return 0; 5854 } 5855 5856 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5857 const struct bpf_program *prog, 5858 const struct btf_ext_info *ext_info, 5859 void **prog_info, __u32 *prog_rec_cnt, 5860 __u32 *prog_rec_sz) 5861 { 5862 void *copy_start = NULL, *copy_end = NULL; 5863 void *rec, *rec_end, *new_prog_info; 5864 const struct btf_ext_info_sec *sec; 5865 size_t old_sz, new_sz; 5866 const char *sec_name; 5867 int i, off_adj; 5868 5869 for_each_btf_ext_sec(ext_info, sec) { 5870 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5871 if (!sec_name) 5872 return -EINVAL; 5873 if (strcmp(sec_name, prog->sec_name) != 0) 5874 continue; 5875 5876 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5877 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5878 5879 if (insn_off < prog->sec_insn_off) 5880 continue; 5881 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5882 break; 5883 5884 if (!copy_start) 5885 copy_start = rec; 5886 copy_end = rec + ext_info->rec_size; 5887 } 5888 5889 if (!copy_start) 5890 return -ENOENT; 5891 5892 /* append func/line info of a given (sub-)program to the main 5893 * program func/line info 5894 */ 5895 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5896 new_sz = old_sz + (copy_end - copy_start); 5897 new_prog_info = realloc(*prog_info, new_sz); 5898 if (!new_prog_info) 5899 return -ENOMEM; 5900 *prog_info = new_prog_info; 5901 *prog_rec_cnt = new_sz / ext_info->rec_size; 5902 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5903 5904 /* Kernel instruction offsets are in units of 8-byte 5905 * instructions, while .BTF.ext instruction offsets generated 5906 * by Clang are in units of bytes. So convert Clang offsets 5907 * into kernel offsets and adjust offset according to program 5908 * relocated position. 5909 */ 5910 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5911 rec = new_prog_info + old_sz; 5912 rec_end = new_prog_info + new_sz; 5913 for (; rec < rec_end; rec += ext_info->rec_size) { 5914 __u32 *insn_off = rec; 5915 5916 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5917 } 5918 *prog_rec_sz = ext_info->rec_size; 5919 return 0; 5920 } 5921 5922 return -ENOENT; 5923 } 5924 5925 static int 5926 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5927 struct bpf_program *main_prog, 5928 const struct bpf_program *prog) 5929 { 5930 int err; 5931 5932 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5933 * supprot func/line info 5934 */ 5935 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5936 return 0; 5937 5938 /* only attempt func info relocation if main program's func_info 5939 * relocation was successful 5940 */ 5941 if (main_prog != prog && !main_prog->func_info) 5942 goto line_info; 5943 5944 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5945 &main_prog->func_info, 5946 &main_prog->func_info_cnt, 5947 &main_prog->func_info_rec_size); 5948 if (err) { 5949 if (err != -ENOENT) { 5950 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5951 prog->name, err); 5952 return err; 5953 } 5954 if (main_prog->func_info) { 5955 /* 5956 * Some info has already been found but has problem 5957 * in the last btf_ext reloc. Must have to error out. 5958 */ 5959 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5960 return err; 5961 } 5962 /* Have problem loading the very first info. Ignore the rest. */ 5963 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5964 prog->name); 5965 } 5966 5967 line_info: 5968 /* don't relocate line info if main program's relocation failed */ 5969 if (main_prog != prog && !main_prog->line_info) 5970 return 0; 5971 5972 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5973 &main_prog->line_info, 5974 &main_prog->line_info_cnt, 5975 &main_prog->line_info_rec_size); 5976 if (err) { 5977 if (err != -ENOENT) { 5978 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5979 prog->name, err); 5980 return err; 5981 } 5982 if (main_prog->line_info) { 5983 /* 5984 * Some info has already been found but has problem 5985 * in the last btf_ext reloc. Must have to error out. 5986 */ 5987 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5988 return err; 5989 } 5990 /* Have problem loading the very first info. Ignore the rest. */ 5991 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5992 prog->name); 5993 } 5994 return 0; 5995 } 5996 5997 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5998 { 5999 size_t insn_idx = *(const size_t *)key; 6000 const struct reloc_desc *relo = elem; 6001 6002 if (insn_idx == relo->insn_idx) 6003 return 0; 6004 return insn_idx < relo->insn_idx ? -1 : 1; 6005 } 6006 6007 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6008 { 6009 if (!prog->nr_reloc) 6010 return NULL; 6011 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6012 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6013 } 6014 6015 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6016 { 6017 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6018 struct reloc_desc *relos; 6019 int i; 6020 6021 if (main_prog == subprog) 6022 return 0; 6023 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6024 if (!relos) 6025 return -ENOMEM; 6026 if (subprog->nr_reloc) 6027 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6028 sizeof(*relos) * subprog->nr_reloc); 6029 6030 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6031 relos[i].insn_idx += subprog->sub_insn_off; 6032 /* After insn_idx adjustment the 'relos' array is still sorted 6033 * by insn_idx and doesn't break bsearch. 6034 */ 6035 main_prog->reloc_desc = relos; 6036 main_prog->nr_reloc = new_cnt; 6037 return 0; 6038 } 6039 6040 static int 6041 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6042 struct bpf_program *prog) 6043 { 6044 size_t sub_insn_idx, insn_idx, new_cnt; 6045 struct bpf_program *subprog; 6046 struct bpf_insn *insns, *insn; 6047 struct reloc_desc *relo; 6048 int err; 6049 6050 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6051 if (err) 6052 return err; 6053 6054 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6055 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6056 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6057 continue; 6058 6059 relo = find_prog_insn_relo(prog, insn_idx); 6060 if (relo && relo->type == RELO_EXTERN_FUNC) 6061 /* kfunc relocations will be handled later 6062 * in bpf_object__relocate_data() 6063 */ 6064 continue; 6065 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6066 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6067 prog->name, insn_idx, relo->type); 6068 return -LIBBPF_ERRNO__RELOC; 6069 } 6070 if (relo) { 6071 /* sub-program instruction index is a combination of 6072 * an offset of a symbol pointed to by relocation and 6073 * call instruction's imm field; for global functions, 6074 * call always has imm = -1, but for static functions 6075 * relocation is against STT_SECTION and insn->imm 6076 * points to a start of a static function 6077 * 6078 * for subprog addr relocation, the relo->sym_off + insn->imm is 6079 * the byte offset in the corresponding section. 6080 */ 6081 if (relo->type == RELO_CALL) 6082 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6083 else 6084 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6085 } else if (insn_is_pseudo_func(insn)) { 6086 /* 6087 * RELO_SUBPROG_ADDR relo is always emitted even if both 6088 * functions are in the same section, so it shouldn't reach here. 6089 */ 6090 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6091 prog->name, insn_idx); 6092 return -LIBBPF_ERRNO__RELOC; 6093 } else { 6094 /* if subprogram call is to a static function within 6095 * the same ELF section, there won't be any relocation 6096 * emitted, but it also means there is no additional 6097 * offset necessary, insns->imm is relative to 6098 * instruction's original position within the section 6099 */ 6100 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6101 } 6102 6103 /* we enforce that sub-programs should be in .text section */ 6104 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6105 if (!subprog) { 6106 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6107 prog->name); 6108 return -LIBBPF_ERRNO__RELOC; 6109 } 6110 6111 /* if it's the first call instruction calling into this 6112 * subprogram (meaning this subprog hasn't been processed 6113 * yet) within the context of current main program: 6114 * - append it at the end of main program's instructions blog; 6115 * - process is recursively, while current program is put on hold; 6116 * - if that subprogram calls some other not yet processes 6117 * subprogram, same thing will happen recursively until 6118 * there are no more unprocesses subprograms left to append 6119 * and relocate. 6120 */ 6121 if (subprog->sub_insn_off == 0) { 6122 subprog->sub_insn_off = main_prog->insns_cnt; 6123 6124 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6125 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6126 if (!insns) { 6127 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6128 return -ENOMEM; 6129 } 6130 main_prog->insns = insns; 6131 main_prog->insns_cnt = new_cnt; 6132 6133 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6134 subprog->insns_cnt * sizeof(*insns)); 6135 6136 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6137 main_prog->name, subprog->insns_cnt, subprog->name); 6138 6139 /* The subprog insns are now appended. Append its relos too. */ 6140 err = append_subprog_relos(main_prog, subprog); 6141 if (err) 6142 return err; 6143 err = bpf_object__reloc_code(obj, main_prog, subprog); 6144 if (err) 6145 return err; 6146 } 6147 6148 /* main_prog->insns memory could have been re-allocated, so 6149 * calculate pointer again 6150 */ 6151 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6152 /* calculate correct instruction position within current main 6153 * prog; each main prog can have a different set of 6154 * subprograms appended (potentially in different order as 6155 * well), so position of any subprog can be different for 6156 * different main programs */ 6157 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6158 6159 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6160 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6161 } 6162 6163 return 0; 6164 } 6165 6166 /* 6167 * Relocate sub-program calls. 6168 * 6169 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6170 * main prog) is processed separately. For each subprog (non-entry functions, 6171 * that can be called from either entry progs or other subprogs) gets their 6172 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6173 * hasn't been yet appended and relocated within current main prog. Once its 6174 * relocated, sub_insn_off will point at the position within current main prog 6175 * where given subprog was appended. This will further be used to relocate all 6176 * the call instructions jumping into this subprog. 6177 * 6178 * We start with main program and process all call instructions. If the call 6179 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6180 * is zero), subprog instructions are appended at the end of main program's 6181 * instruction array. Then main program is "put on hold" while we recursively 6182 * process newly appended subprogram. If that subprogram calls into another 6183 * subprogram that hasn't been appended, new subprogram is appended again to 6184 * the *main* prog's instructions (subprog's instructions are always left 6185 * untouched, as they need to be in unmodified state for subsequent main progs 6186 * and subprog instructions are always sent only as part of a main prog) and 6187 * the process continues recursively. Once all the subprogs called from a main 6188 * prog or any of its subprogs are appended (and relocated), all their 6189 * positions within finalized instructions array are known, so it's easy to 6190 * rewrite call instructions with correct relative offsets, corresponding to 6191 * desired target subprog. 6192 * 6193 * Its important to realize that some subprogs might not be called from some 6194 * main prog and any of its called/used subprogs. Those will keep their 6195 * subprog->sub_insn_off as zero at all times and won't be appended to current 6196 * main prog and won't be relocated within the context of current main prog. 6197 * They might still be used from other main progs later. 6198 * 6199 * Visually this process can be shown as below. Suppose we have two main 6200 * programs mainA and mainB and BPF object contains three subprogs: subA, 6201 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6202 * subC both call subB: 6203 * 6204 * +--------+ +-------+ 6205 * | v v | 6206 * +--+---+ +--+-+-+ +---+--+ 6207 * | subA | | subB | | subC | 6208 * +--+---+ +------+ +---+--+ 6209 * ^ ^ 6210 * | | 6211 * +---+-------+ +------+----+ 6212 * | mainA | | mainB | 6213 * +-----------+ +-----------+ 6214 * 6215 * We'll start relocating mainA, will find subA, append it and start 6216 * processing sub A recursively: 6217 * 6218 * +-----------+------+ 6219 * | mainA | subA | 6220 * +-----------+------+ 6221 * 6222 * At this point we notice that subB is used from subA, so we append it and 6223 * relocate (there are no further subcalls from subB): 6224 * 6225 * +-----------+------+------+ 6226 * | mainA | subA | subB | 6227 * +-----------+------+------+ 6228 * 6229 * At this point, we relocate subA calls, then go one level up and finish with 6230 * relocatin mainA calls. mainA is done. 6231 * 6232 * For mainB process is similar but results in different order. We start with 6233 * mainB and skip subA and subB, as mainB never calls them (at least 6234 * directly), but we see subC is needed, so we append and start processing it: 6235 * 6236 * +-----------+------+ 6237 * | mainB | subC | 6238 * +-----------+------+ 6239 * Now we see subC needs subB, so we go back to it, append and relocate it: 6240 * 6241 * +-----------+------+------+ 6242 * | mainB | subC | subB | 6243 * +-----------+------+------+ 6244 * 6245 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6246 */ 6247 static int 6248 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6249 { 6250 struct bpf_program *subprog; 6251 int i, err; 6252 6253 /* mark all subprogs as not relocated (yet) within the context of 6254 * current main program 6255 */ 6256 for (i = 0; i < obj->nr_programs; i++) { 6257 subprog = &obj->programs[i]; 6258 if (!prog_is_subprog(obj, subprog)) 6259 continue; 6260 6261 subprog->sub_insn_off = 0; 6262 } 6263 6264 err = bpf_object__reloc_code(obj, prog, prog); 6265 if (err) 6266 return err; 6267 6268 6269 return 0; 6270 } 6271 6272 static void 6273 bpf_object__free_relocs(struct bpf_object *obj) 6274 { 6275 struct bpf_program *prog; 6276 int i; 6277 6278 /* free up relocation descriptors */ 6279 for (i = 0; i < obj->nr_programs; i++) { 6280 prog = &obj->programs[i]; 6281 zfree(&prog->reloc_desc); 6282 prog->nr_reloc = 0; 6283 } 6284 } 6285 6286 static int cmp_relocs(const void *_a, const void *_b) 6287 { 6288 const struct reloc_desc *a = _a; 6289 const struct reloc_desc *b = _b; 6290 6291 if (a->insn_idx != b->insn_idx) 6292 return a->insn_idx < b->insn_idx ? -1 : 1; 6293 6294 /* no two relocations should have the same insn_idx, but ... */ 6295 if (a->type != b->type) 6296 return a->type < b->type ? -1 : 1; 6297 6298 return 0; 6299 } 6300 6301 static void bpf_object__sort_relos(struct bpf_object *obj) 6302 { 6303 int i; 6304 6305 for (i = 0; i < obj->nr_programs; i++) { 6306 struct bpf_program *p = &obj->programs[i]; 6307 6308 if (!p->nr_reloc) 6309 continue; 6310 6311 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6312 } 6313 } 6314 6315 static int 6316 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6317 { 6318 struct bpf_program *prog; 6319 size_t i, j; 6320 int err; 6321 6322 if (obj->btf_ext) { 6323 err = bpf_object__relocate_core(obj, targ_btf_path); 6324 if (err) { 6325 pr_warn("failed to perform CO-RE relocations: %d\n", 6326 err); 6327 return err; 6328 } 6329 if (obj->gen_loader) 6330 bpf_object__sort_relos(obj); 6331 } 6332 6333 /* Before relocating calls pre-process relocations and mark 6334 * few ld_imm64 instructions that points to subprogs. 6335 * Otherwise bpf_object__reloc_code() later would have to consider 6336 * all ld_imm64 insns as relocation candidates. That would 6337 * reduce relocation speed, since amount of find_prog_insn_relo() 6338 * would increase and most of them will fail to find a relo. 6339 */ 6340 for (i = 0; i < obj->nr_programs; i++) { 6341 prog = &obj->programs[i]; 6342 for (j = 0; j < prog->nr_reloc; j++) { 6343 struct reloc_desc *relo = &prog->reloc_desc[j]; 6344 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6345 6346 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6347 if (relo->type == RELO_SUBPROG_ADDR) 6348 insn[0].src_reg = BPF_PSEUDO_FUNC; 6349 } 6350 } 6351 6352 /* relocate subprogram calls and append used subprograms to main 6353 * programs; each copy of subprogram code needs to be relocated 6354 * differently for each main program, because its code location might 6355 * have changed. 6356 * Append subprog relos to main programs to allow data relos to be 6357 * processed after text is completely relocated. 6358 */ 6359 for (i = 0; i < obj->nr_programs; i++) { 6360 prog = &obj->programs[i]; 6361 /* sub-program's sub-calls are relocated within the context of 6362 * its main program only 6363 */ 6364 if (prog_is_subprog(obj, prog)) 6365 continue; 6366 if (!prog->load) 6367 continue; 6368 6369 err = bpf_object__relocate_calls(obj, prog); 6370 if (err) { 6371 pr_warn("prog '%s': failed to relocate calls: %d\n", 6372 prog->name, err); 6373 return err; 6374 } 6375 } 6376 /* Process data relos for main programs */ 6377 for (i = 0; i < obj->nr_programs; i++) { 6378 prog = &obj->programs[i]; 6379 if (prog_is_subprog(obj, prog)) 6380 continue; 6381 if (!prog->load) 6382 continue; 6383 err = bpf_object__relocate_data(obj, prog); 6384 if (err) { 6385 pr_warn("prog '%s': failed to relocate data references: %d\n", 6386 prog->name, err); 6387 return err; 6388 } 6389 } 6390 if (!obj->gen_loader) 6391 bpf_object__free_relocs(obj); 6392 return 0; 6393 } 6394 6395 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6396 Elf64_Shdr *shdr, Elf_Data *data); 6397 6398 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6399 Elf64_Shdr *shdr, Elf_Data *data) 6400 { 6401 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6402 int i, j, nrels, new_sz; 6403 const struct btf_var_secinfo *vi = NULL; 6404 const struct btf_type *sec, *var, *def; 6405 struct bpf_map *map = NULL, *targ_map = NULL; 6406 struct bpf_program *targ_prog = NULL; 6407 bool is_prog_array, is_map_in_map; 6408 const struct btf_member *member; 6409 const char *name, *mname, *type; 6410 unsigned int moff; 6411 Elf64_Sym *sym; 6412 Elf64_Rel *rel; 6413 void *tmp; 6414 6415 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6416 return -EINVAL; 6417 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6418 if (!sec) 6419 return -EINVAL; 6420 6421 nrels = shdr->sh_size / shdr->sh_entsize; 6422 for (i = 0; i < nrels; i++) { 6423 rel = elf_rel_by_idx(data, i); 6424 if (!rel) { 6425 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6426 return -LIBBPF_ERRNO__FORMAT; 6427 } 6428 6429 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6430 if (!sym) { 6431 pr_warn(".maps relo #%d: symbol %zx not found\n", 6432 i, (size_t)ELF64_R_SYM(rel->r_info)); 6433 return -LIBBPF_ERRNO__FORMAT; 6434 } 6435 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6436 6437 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6438 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6439 (size_t)rel->r_offset, sym->st_name, name); 6440 6441 for (j = 0; j < obj->nr_maps; j++) { 6442 map = &obj->maps[j]; 6443 if (map->sec_idx != obj->efile.btf_maps_shndx) 6444 continue; 6445 6446 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6447 if (vi->offset <= rel->r_offset && 6448 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6449 break; 6450 } 6451 if (j == obj->nr_maps) { 6452 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6453 i, name, (size_t)rel->r_offset); 6454 return -EINVAL; 6455 } 6456 6457 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6458 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6459 type = is_map_in_map ? "map" : "prog"; 6460 if (is_map_in_map) { 6461 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6462 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6463 i, name); 6464 return -LIBBPF_ERRNO__RELOC; 6465 } 6466 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6467 map->def.key_size != sizeof(int)) { 6468 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6469 i, map->name, sizeof(int)); 6470 return -EINVAL; 6471 } 6472 targ_map = bpf_object__find_map_by_name(obj, name); 6473 if (!targ_map) { 6474 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6475 i, name); 6476 return -ESRCH; 6477 } 6478 } else if (is_prog_array) { 6479 targ_prog = bpf_object__find_program_by_name(obj, name); 6480 if (!targ_prog) { 6481 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6482 i, name); 6483 return -ESRCH; 6484 } 6485 if (targ_prog->sec_idx != sym->st_shndx || 6486 targ_prog->sec_insn_off * 8 != sym->st_value || 6487 prog_is_subprog(obj, targ_prog)) { 6488 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6489 i, name); 6490 return -LIBBPF_ERRNO__RELOC; 6491 } 6492 } else { 6493 return -EINVAL; 6494 } 6495 6496 var = btf__type_by_id(obj->btf, vi->type); 6497 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6498 if (btf_vlen(def) == 0) 6499 return -EINVAL; 6500 member = btf_members(def) + btf_vlen(def) - 1; 6501 mname = btf__name_by_offset(obj->btf, member->name_off); 6502 if (strcmp(mname, "values")) 6503 return -EINVAL; 6504 6505 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6506 if (rel->r_offset - vi->offset < moff) 6507 return -EINVAL; 6508 6509 moff = rel->r_offset - vi->offset - moff; 6510 /* here we use BPF pointer size, which is always 64 bit, as we 6511 * are parsing ELF that was built for BPF target 6512 */ 6513 if (moff % bpf_ptr_sz) 6514 return -EINVAL; 6515 moff /= bpf_ptr_sz; 6516 if (moff >= map->init_slots_sz) { 6517 new_sz = moff + 1; 6518 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6519 if (!tmp) 6520 return -ENOMEM; 6521 map->init_slots = tmp; 6522 memset(map->init_slots + map->init_slots_sz, 0, 6523 (new_sz - map->init_slots_sz) * host_ptr_sz); 6524 map->init_slots_sz = new_sz; 6525 } 6526 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6527 6528 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6529 i, map->name, moff, type, name); 6530 } 6531 6532 return 0; 6533 } 6534 6535 static int bpf_object__collect_relos(struct bpf_object *obj) 6536 { 6537 int i, err; 6538 6539 for (i = 0; i < obj->efile.sec_cnt; i++) { 6540 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6541 Elf64_Shdr *shdr; 6542 Elf_Data *data; 6543 int idx; 6544 6545 if (sec_desc->sec_type != SEC_RELO) 6546 continue; 6547 6548 shdr = sec_desc->shdr; 6549 data = sec_desc->data; 6550 idx = shdr->sh_info; 6551 6552 if (shdr->sh_type != SHT_REL) { 6553 pr_warn("internal error at %d\n", __LINE__); 6554 return -LIBBPF_ERRNO__INTERNAL; 6555 } 6556 6557 if (idx == obj->efile.st_ops_shndx) 6558 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6559 else if (idx == obj->efile.btf_maps_shndx) 6560 err = bpf_object__collect_map_relos(obj, shdr, data); 6561 else 6562 err = bpf_object__collect_prog_relos(obj, shdr, data); 6563 if (err) 6564 return err; 6565 } 6566 6567 bpf_object__sort_relos(obj); 6568 return 0; 6569 } 6570 6571 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6572 { 6573 if (BPF_CLASS(insn->code) == BPF_JMP && 6574 BPF_OP(insn->code) == BPF_CALL && 6575 BPF_SRC(insn->code) == BPF_K && 6576 insn->src_reg == 0 && 6577 insn->dst_reg == 0) { 6578 *func_id = insn->imm; 6579 return true; 6580 } 6581 return false; 6582 } 6583 6584 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6585 { 6586 struct bpf_insn *insn = prog->insns; 6587 enum bpf_func_id func_id; 6588 int i; 6589 6590 if (obj->gen_loader) 6591 return 0; 6592 6593 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6594 if (!insn_is_helper_call(insn, &func_id)) 6595 continue; 6596 6597 /* on kernels that don't yet support 6598 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6599 * to bpf_probe_read() which works well for old kernels 6600 */ 6601 switch (func_id) { 6602 case BPF_FUNC_probe_read_kernel: 6603 case BPF_FUNC_probe_read_user: 6604 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6605 insn->imm = BPF_FUNC_probe_read; 6606 break; 6607 case BPF_FUNC_probe_read_kernel_str: 6608 case BPF_FUNC_probe_read_user_str: 6609 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6610 insn->imm = BPF_FUNC_probe_read_str; 6611 break; 6612 default: 6613 break; 6614 } 6615 } 6616 return 0; 6617 } 6618 6619 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6620 int *btf_obj_fd, int *btf_type_id); 6621 6622 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6623 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6624 struct bpf_prog_load_opts *opts, long cookie) 6625 { 6626 enum sec_def_flags def = cookie; 6627 6628 /* old kernels might not support specifying expected_attach_type */ 6629 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6630 opts->expected_attach_type = 0; 6631 6632 if (def & SEC_SLEEPABLE) 6633 opts->prog_flags |= BPF_F_SLEEPABLE; 6634 6635 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6636 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6637 6638 if (def & SEC_DEPRECATED) 6639 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6640 prog->sec_name); 6641 6642 if ((prog->type == BPF_PROG_TYPE_TRACING || 6643 prog->type == BPF_PROG_TYPE_LSM || 6644 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6645 int btf_obj_fd = 0, btf_type_id = 0, err; 6646 const char *attach_name; 6647 6648 attach_name = strchr(prog->sec_name, '/') + 1; 6649 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6650 if (err) 6651 return err; 6652 6653 /* cache resolved BTF FD and BTF type ID in the prog */ 6654 prog->attach_btf_obj_fd = btf_obj_fd; 6655 prog->attach_btf_id = btf_type_id; 6656 6657 /* but by now libbpf common logic is not utilizing 6658 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6659 * this callback is called after opts were populated by 6660 * libbpf, so this callback has to update opts explicitly here 6661 */ 6662 opts->attach_btf_obj_fd = btf_obj_fd; 6663 opts->attach_btf_id = btf_type_id; 6664 } 6665 return 0; 6666 } 6667 6668 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6669 struct bpf_insn *insns, int insns_cnt, 6670 const char *license, __u32 kern_version, 6671 int *prog_fd) 6672 { 6673 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6674 const char *prog_name = NULL; 6675 char *cp, errmsg[STRERR_BUFSIZE]; 6676 size_t log_buf_size = 0; 6677 char *log_buf = NULL, *tmp; 6678 int btf_fd, ret, err; 6679 bool own_log_buf = true; 6680 __u32 log_level = prog->log_level; 6681 6682 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6683 /* 6684 * The program type must be set. Most likely we couldn't find a proper 6685 * section definition at load time, and thus we didn't infer the type. 6686 */ 6687 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6688 prog->name, prog->sec_name); 6689 return -EINVAL; 6690 } 6691 6692 if (!insns || !insns_cnt) 6693 return -EINVAL; 6694 6695 load_attr.expected_attach_type = prog->expected_attach_type; 6696 if (kernel_supports(obj, FEAT_PROG_NAME)) 6697 prog_name = prog->name; 6698 load_attr.attach_prog_fd = prog->attach_prog_fd; 6699 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6700 load_attr.attach_btf_id = prog->attach_btf_id; 6701 load_attr.kern_version = kern_version; 6702 load_attr.prog_ifindex = prog->prog_ifindex; 6703 6704 /* specify func_info/line_info only if kernel supports them */ 6705 btf_fd = bpf_object__btf_fd(obj); 6706 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6707 load_attr.prog_btf_fd = btf_fd; 6708 load_attr.func_info = prog->func_info; 6709 load_attr.func_info_rec_size = prog->func_info_rec_size; 6710 load_attr.func_info_cnt = prog->func_info_cnt; 6711 load_attr.line_info = prog->line_info; 6712 load_attr.line_info_rec_size = prog->line_info_rec_size; 6713 load_attr.line_info_cnt = prog->line_info_cnt; 6714 } 6715 load_attr.log_level = log_level; 6716 load_attr.prog_flags = prog->prog_flags; 6717 load_attr.fd_array = obj->fd_array; 6718 6719 /* adjust load_attr if sec_def provides custom preload callback */ 6720 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6721 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6722 if (err < 0) { 6723 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6724 prog->name, err); 6725 return err; 6726 } 6727 } 6728 6729 if (obj->gen_loader) { 6730 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6731 license, insns, insns_cnt, &load_attr, 6732 prog - obj->programs); 6733 *prog_fd = -1; 6734 return 0; 6735 } 6736 6737 retry_load: 6738 /* if log_level is zero, we don't request logs initiallly even if 6739 * custom log_buf is specified; if the program load fails, then we'll 6740 * bump log_level to 1 and use either custom log_buf or we'll allocate 6741 * our own and retry the load to get details on what failed 6742 */ 6743 if (log_level) { 6744 if (prog->log_buf) { 6745 log_buf = prog->log_buf; 6746 log_buf_size = prog->log_size; 6747 own_log_buf = false; 6748 } else if (obj->log_buf) { 6749 log_buf = obj->log_buf; 6750 log_buf_size = obj->log_size; 6751 own_log_buf = false; 6752 } else { 6753 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6754 tmp = realloc(log_buf, log_buf_size); 6755 if (!tmp) { 6756 ret = -ENOMEM; 6757 goto out; 6758 } 6759 log_buf = tmp; 6760 log_buf[0] = '\0'; 6761 own_log_buf = true; 6762 } 6763 } 6764 6765 load_attr.log_buf = log_buf; 6766 load_attr.log_size = log_buf_size; 6767 load_attr.log_level = log_level; 6768 6769 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6770 if (ret >= 0) { 6771 if (log_level && own_log_buf) { 6772 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6773 prog->name, log_buf); 6774 } 6775 6776 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6777 struct bpf_map *map; 6778 int i; 6779 6780 for (i = 0; i < obj->nr_maps; i++) { 6781 map = &prog->obj->maps[i]; 6782 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6783 continue; 6784 6785 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6786 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6787 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6788 prog->name, map->real_name, cp); 6789 /* Don't fail hard if can't bind rodata. */ 6790 } 6791 } 6792 } 6793 6794 *prog_fd = ret; 6795 ret = 0; 6796 goto out; 6797 } 6798 6799 if (log_level == 0) { 6800 log_level = 1; 6801 goto retry_load; 6802 } 6803 /* On ENOSPC, increase log buffer size and retry, unless custom 6804 * log_buf is specified. 6805 * Be careful to not overflow u32, though. Kernel's log buf size limit 6806 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6807 * multiply by 2 unless we are sure we'll fit within 32 bits. 6808 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6809 */ 6810 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6811 goto retry_load; 6812 6813 ret = -errno; 6814 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6815 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6816 pr_perm_msg(ret); 6817 6818 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6819 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6820 prog->name, log_buf); 6821 } 6822 if (insns_cnt >= BPF_MAXINSNS) { 6823 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n", 6824 prog->name, insns_cnt, BPF_MAXINSNS); 6825 } 6826 6827 out: 6828 if (own_log_buf) 6829 free(log_buf); 6830 return ret; 6831 } 6832 6833 static int bpf_program_record_relos(struct bpf_program *prog) 6834 { 6835 struct bpf_object *obj = prog->obj; 6836 int i; 6837 6838 for (i = 0; i < prog->nr_reloc; i++) { 6839 struct reloc_desc *relo = &prog->reloc_desc[i]; 6840 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6841 6842 switch (relo->type) { 6843 case RELO_EXTERN_VAR: 6844 if (ext->type != EXT_KSYM) 6845 continue; 6846 bpf_gen__record_extern(obj->gen_loader, ext->name, 6847 ext->is_weak, !ext->ksym.type_id, 6848 BTF_KIND_VAR, relo->insn_idx); 6849 break; 6850 case RELO_EXTERN_FUNC: 6851 bpf_gen__record_extern(obj->gen_loader, ext->name, 6852 ext->is_weak, false, BTF_KIND_FUNC, 6853 relo->insn_idx); 6854 break; 6855 case RELO_CORE: { 6856 struct bpf_core_relo cr = { 6857 .insn_off = relo->insn_idx * 8, 6858 .type_id = relo->core_relo->type_id, 6859 .access_str_off = relo->core_relo->access_str_off, 6860 .kind = relo->core_relo->kind, 6861 }; 6862 6863 bpf_gen__record_relo_core(obj->gen_loader, &cr); 6864 break; 6865 } 6866 default: 6867 continue; 6868 } 6869 } 6870 return 0; 6871 } 6872 6873 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6874 const char *license, __u32 kern_ver) 6875 { 6876 int err = 0, fd, i; 6877 6878 if (obj->loaded) { 6879 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6880 return libbpf_err(-EINVAL); 6881 } 6882 6883 if (prog->instances.nr < 0 || !prog->instances.fds) { 6884 if (prog->preprocessor) { 6885 pr_warn("Internal error: can't load program '%s'\n", 6886 prog->name); 6887 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6888 } 6889 6890 prog->instances.fds = malloc(sizeof(int)); 6891 if (!prog->instances.fds) { 6892 pr_warn("Not enough memory for BPF fds\n"); 6893 return libbpf_err(-ENOMEM); 6894 } 6895 prog->instances.nr = 1; 6896 prog->instances.fds[0] = -1; 6897 } 6898 6899 if (!prog->preprocessor) { 6900 if (prog->instances.nr != 1) { 6901 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6902 prog->name, prog->instances.nr); 6903 } 6904 if (obj->gen_loader) 6905 bpf_program_record_relos(prog); 6906 err = bpf_object_load_prog_instance(obj, prog, 6907 prog->insns, prog->insns_cnt, 6908 license, kern_ver, &fd); 6909 if (!err) 6910 prog->instances.fds[0] = fd; 6911 goto out; 6912 } 6913 6914 for (i = 0; i < prog->instances.nr; i++) { 6915 struct bpf_prog_prep_result result; 6916 bpf_program_prep_t preprocessor = prog->preprocessor; 6917 6918 memset(&result, 0, sizeof(result)); 6919 err = preprocessor(prog, i, prog->insns, 6920 prog->insns_cnt, &result); 6921 if (err) { 6922 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6923 i, prog->name); 6924 goto out; 6925 } 6926 6927 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6928 pr_debug("Skip loading the %dth instance of program '%s'\n", 6929 i, prog->name); 6930 prog->instances.fds[i] = -1; 6931 if (result.pfd) 6932 *result.pfd = -1; 6933 continue; 6934 } 6935 6936 err = bpf_object_load_prog_instance(obj, prog, 6937 result.new_insn_ptr, result.new_insn_cnt, 6938 license, kern_ver, &fd); 6939 if (err) { 6940 pr_warn("Loading the %dth instance of program '%s' failed\n", 6941 i, prog->name); 6942 goto out; 6943 } 6944 6945 if (result.pfd) 6946 *result.pfd = fd; 6947 prog->instances.fds[i] = fd; 6948 } 6949 out: 6950 if (err) 6951 pr_warn("failed to load program '%s'\n", prog->name); 6952 return libbpf_err(err); 6953 } 6954 6955 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 6956 { 6957 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 6958 } 6959 6960 static int 6961 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6962 { 6963 struct bpf_program *prog; 6964 size_t i; 6965 int err; 6966 6967 for (i = 0; i < obj->nr_programs; i++) { 6968 prog = &obj->programs[i]; 6969 err = bpf_object__sanitize_prog(obj, prog); 6970 if (err) 6971 return err; 6972 } 6973 6974 for (i = 0; i < obj->nr_programs; i++) { 6975 prog = &obj->programs[i]; 6976 if (prog_is_subprog(obj, prog)) 6977 continue; 6978 if (!prog->load) { 6979 pr_debug("prog '%s': skipped loading\n", prog->name); 6980 continue; 6981 } 6982 prog->log_level |= log_level; 6983 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 6984 if (err) 6985 return err; 6986 } 6987 if (obj->gen_loader) 6988 bpf_object__free_relocs(obj); 6989 return 0; 6990 } 6991 6992 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6993 6994 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6995 { 6996 struct bpf_program *prog; 6997 int err; 6998 6999 bpf_object__for_each_program(prog, obj) { 7000 prog->sec_def = find_sec_def(prog->sec_name); 7001 if (!prog->sec_def) { 7002 /* couldn't guess, but user might manually specify */ 7003 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7004 prog->name, prog->sec_name); 7005 continue; 7006 } 7007 7008 bpf_program__set_type(prog, prog->sec_def->prog_type); 7009 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 7010 7011 #pragma GCC diagnostic push 7012 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 7013 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7014 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7015 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7016 #pragma GCC diagnostic pop 7017 7018 /* sec_def can have custom callback which should be called 7019 * after bpf_program is initialized to adjust its properties 7020 */ 7021 if (prog->sec_def->prog_setup_fn) { 7022 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7023 if (err < 0) { 7024 pr_warn("prog '%s': failed to initialize: %d\n", 7025 prog->name, err); 7026 return err; 7027 } 7028 } 7029 } 7030 7031 return 0; 7032 } 7033 7034 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7035 const struct bpf_object_open_opts *opts) 7036 { 7037 const char *obj_name, *kconfig, *btf_tmp_path; 7038 struct bpf_object *obj; 7039 char tmp_name[64]; 7040 int err; 7041 char *log_buf; 7042 size_t log_size; 7043 __u32 log_level; 7044 7045 if (elf_version(EV_CURRENT) == EV_NONE) { 7046 pr_warn("failed to init libelf for %s\n", 7047 path ? : "(mem buf)"); 7048 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7049 } 7050 7051 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7052 return ERR_PTR(-EINVAL); 7053 7054 obj_name = OPTS_GET(opts, object_name, NULL); 7055 if (obj_buf) { 7056 if (!obj_name) { 7057 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7058 (unsigned long)obj_buf, 7059 (unsigned long)obj_buf_sz); 7060 obj_name = tmp_name; 7061 } 7062 path = obj_name; 7063 pr_debug("loading object '%s' from buffer\n", obj_name); 7064 } 7065 7066 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7067 log_size = OPTS_GET(opts, kernel_log_size, 0); 7068 log_level = OPTS_GET(opts, kernel_log_level, 0); 7069 if (log_size > UINT_MAX) 7070 return ERR_PTR(-EINVAL); 7071 if (log_size && !log_buf) 7072 return ERR_PTR(-EINVAL); 7073 7074 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7075 if (IS_ERR(obj)) 7076 return obj; 7077 7078 obj->log_buf = log_buf; 7079 obj->log_size = log_size; 7080 obj->log_level = log_level; 7081 7082 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7083 if (btf_tmp_path) { 7084 if (strlen(btf_tmp_path) >= PATH_MAX) { 7085 err = -ENAMETOOLONG; 7086 goto out; 7087 } 7088 obj->btf_custom_path = strdup(btf_tmp_path); 7089 if (!obj->btf_custom_path) { 7090 err = -ENOMEM; 7091 goto out; 7092 } 7093 } 7094 7095 kconfig = OPTS_GET(opts, kconfig, NULL); 7096 if (kconfig) { 7097 obj->kconfig = strdup(kconfig); 7098 if (!obj->kconfig) { 7099 err = -ENOMEM; 7100 goto out; 7101 } 7102 } 7103 7104 err = bpf_object__elf_init(obj); 7105 err = err ? : bpf_object__check_endianness(obj); 7106 err = err ? : bpf_object__elf_collect(obj); 7107 err = err ? : bpf_object__collect_externs(obj); 7108 err = err ? : bpf_object__finalize_btf(obj); 7109 err = err ? : bpf_object__init_maps(obj, opts); 7110 err = err ? : bpf_object_init_progs(obj, opts); 7111 err = err ? : bpf_object__collect_relos(obj); 7112 if (err) 7113 goto out; 7114 7115 bpf_object__elf_finish(obj); 7116 7117 return obj; 7118 out: 7119 bpf_object__close(obj); 7120 return ERR_PTR(err); 7121 } 7122 7123 static struct bpf_object * 7124 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7125 { 7126 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7127 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7128 ); 7129 7130 /* param validation */ 7131 if (!attr->file) 7132 return NULL; 7133 7134 pr_debug("loading %s\n", attr->file); 7135 return bpf_object_open(attr->file, NULL, 0, &opts); 7136 } 7137 7138 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7139 { 7140 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7141 } 7142 7143 struct bpf_object *bpf_object__open(const char *path) 7144 { 7145 struct bpf_object_open_attr attr = { 7146 .file = path, 7147 .prog_type = BPF_PROG_TYPE_UNSPEC, 7148 }; 7149 7150 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7151 } 7152 7153 struct bpf_object * 7154 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7155 { 7156 if (!path) 7157 return libbpf_err_ptr(-EINVAL); 7158 7159 pr_debug("loading %s\n", path); 7160 7161 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7162 } 7163 7164 struct bpf_object * 7165 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7166 const struct bpf_object_open_opts *opts) 7167 { 7168 if (!obj_buf || obj_buf_sz == 0) 7169 return libbpf_err_ptr(-EINVAL); 7170 7171 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7172 } 7173 7174 struct bpf_object * 7175 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7176 const char *name) 7177 { 7178 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7179 .object_name = name, 7180 /* wrong default, but backwards-compatible */ 7181 .relaxed_maps = true, 7182 ); 7183 7184 /* returning NULL is wrong, but backwards-compatible */ 7185 if (!obj_buf || obj_buf_sz == 0) 7186 return errno = EINVAL, NULL; 7187 7188 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7189 } 7190 7191 static int bpf_object_unload(struct bpf_object *obj) 7192 { 7193 size_t i; 7194 7195 if (!obj) 7196 return libbpf_err(-EINVAL); 7197 7198 for (i = 0; i < obj->nr_maps; i++) { 7199 zclose(obj->maps[i].fd); 7200 if (obj->maps[i].st_ops) 7201 zfree(&obj->maps[i].st_ops->kern_vdata); 7202 } 7203 7204 for (i = 0; i < obj->nr_programs; i++) 7205 bpf_program__unload(&obj->programs[i]); 7206 7207 return 0; 7208 } 7209 7210 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7211 7212 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7213 { 7214 struct bpf_map *m; 7215 7216 bpf_object__for_each_map(m, obj) { 7217 if (!bpf_map__is_internal(m)) 7218 continue; 7219 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7220 m->def.map_flags ^= BPF_F_MMAPABLE; 7221 } 7222 7223 return 0; 7224 } 7225 7226 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7227 { 7228 char sym_type, sym_name[500]; 7229 unsigned long long sym_addr; 7230 int ret, err = 0; 7231 FILE *f; 7232 7233 f = fopen("/proc/kallsyms", "r"); 7234 if (!f) { 7235 err = -errno; 7236 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7237 return err; 7238 } 7239 7240 while (true) { 7241 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7242 &sym_addr, &sym_type, sym_name); 7243 if (ret == EOF && feof(f)) 7244 break; 7245 if (ret != 3) { 7246 pr_warn("failed to read kallsyms entry: %d\n", ret); 7247 err = -EINVAL; 7248 break; 7249 } 7250 7251 err = cb(sym_addr, sym_type, sym_name, ctx); 7252 if (err) 7253 break; 7254 } 7255 7256 fclose(f); 7257 return err; 7258 } 7259 7260 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7261 const char *sym_name, void *ctx) 7262 { 7263 struct bpf_object *obj = ctx; 7264 const struct btf_type *t; 7265 struct extern_desc *ext; 7266 7267 ext = find_extern_by_name(obj, sym_name); 7268 if (!ext || ext->type != EXT_KSYM) 7269 return 0; 7270 7271 t = btf__type_by_id(obj->btf, ext->btf_id); 7272 if (!btf_is_var(t)) 7273 return 0; 7274 7275 if (ext->is_set && ext->ksym.addr != sym_addr) { 7276 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7277 sym_name, ext->ksym.addr, sym_addr); 7278 return -EINVAL; 7279 } 7280 if (!ext->is_set) { 7281 ext->is_set = true; 7282 ext->ksym.addr = sym_addr; 7283 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7284 } 7285 return 0; 7286 } 7287 7288 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7289 { 7290 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7291 } 7292 7293 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7294 __u16 kind, struct btf **res_btf, 7295 struct module_btf **res_mod_btf) 7296 { 7297 struct module_btf *mod_btf; 7298 struct btf *btf; 7299 int i, id, err; 7300 7301 btf = obj->btf_vmlinux; 7302 mod_btf = NULL; 7303 id = btf__find_by_name_kind(btf, ksym_name, kind); 7304 7305 if (id == -ENOENT) { 7306 err = load_module_btfs(obj); 7307 if (err) 7308 return err; 7309 7310 for (i = 0; i < obj->btf_module_cnt; i++) { 7311 /* we assume module_btf's BTF FD is always >0 */ 7312 mod_btf = &obj->btf_modules[i]; 7313 btf = mod_btf->btf; 7314 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7315 if (id != -ENOENT) 7316 break; 7317 } 7318 } 7319 if (id <= 0) 7320 return -ESRCH; 7321 7322 *res_btf = btf; 7323 *res_mod_btf = mod_btf; 7324 return id; 7325 } 7326 7327 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7328 struct extern_desc *ext) 7329 { 7330 const struct btf_type *targ_var, *targ_type; 7331 __u32 targ_type_id, local_type_id; 7332 struct module_btf *mod_btf = NULL; 7333 const char *targ_var_name; 7334 struct btf *btf = NULL; 7335 int id, err; 7336 7337 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7338 if (id < 0) { 7339 if (id == -ESRCH && ext->is_weak) 7340 return 0; 7341 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7342 ext->name); 7343 return id; 7344 } 7345 7346 /* find local type_id */ 7347 local_type_id = ext->ksym.type_id; 7348 7349 /* find target type_id */ 7350 targ_var = btf__type_by_id(btf, id); 7351 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7352 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7353 7354 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7355 btf, targ_type_id); 7356 if (err <= 0) { 7357 const struct btf_type *local_type; 7358 const char *targ_name, *local_name; 7359 7360 local_type = btf__type_by_id(obj->btf, local_type_id); 7361 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7362 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7363 7364 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7365 ext->name, local_type_id, 7366 btf_kind_str(local_type), local_name, targ_type_id, 7367 btf_kind_str(targ_type), targ_name); 7368 return -EINVAL; 7369 } 7370 7371 ext->is_set = true; 7372 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7373 ext->ksym.kernel_btf_id = id; 7374 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7375 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7376 7377 return 0; 7378 } 7379 7380 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7381 struct extern_desc *ext) 7382 { 7383 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7384 struct module_btf *mod_btf = NULL; 7385 const struct btf_type *kern_func; 7386 struct btf *kern_btf = NULL; 7387 int ret; 7388 7389 local_func_proto_id = ext->ksym.type_id; 7390 7391 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7392 if (kfunc_id < 0) { 7393 if (kfunc_id == -ESRCH && ext->is_weak) 7394 return 0; 7395 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7396 ext->name); 7397 return kfunc_id; 7398 } 7399 7400 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7401 kfunc_proto_id = kern_func->type; 7402 7403 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7404 kern_btf, kfunc_proto_id); 7405 if (ret <= 0) { 7406 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7407 ext->name, local_func_proto_id, kfunc_proto_id); 7408 return -EINVAL; 7409 } 7410 7411 /* set index for module BTF fd in fd_array, if unset */ 7412 if (mod_btf && !mod_btf->fd_array_idx) { 7413 /* insn->off is s16 */ 7414 if (obj->fd_array_cnt == INT16_MAX) { 7415 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7416 ext->name, mod_btf->fd_array_idx); 7417 return -E2BIG; 7418 } 7419 /* Cannot use index 0 for module BTF fd */ 7420 if (!obj->fd_array_cnt) 7421 obj->fd_array_cnt = 1; 7422 7423 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7424 obj->fd_array_cnt + 1); 7425 if (ret) 7426 return ret; 7427 mod_btf->fd_array_idx = obj->fd_array_cnt; 7428 /* we assume module BTF FD is always >0 */ 7429 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7430 } 7431 7432 ext->is_set = true; 7433 ext->ksym.kernel_btf_id = kfunc_id; 7434 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7435 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7436 ext->name, kfunc_id); 7437 7438 return 0; 7439 } 7440 7441 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7442 { 7443 const struct btf_type *t; 7444 struct extern_desc *ext; 7445 int i, err; 7446 7447 for (i = 0; i < obj->nr_extern; i++) { 7448 ext = &obj->externs[i]; 7449 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7450 continue; 7451 7452 if (obj->gen_loader) { 7453 ext->is_set = true; 7454 ext->ksym.kernel_btf_obj_fd = 0; 7455 ext->ksym.kernel_btf_id = 0; 7456 continue; 7457 } 7458 t = btf__type_by_id(obj->btf, ext->btf_id); 7459 if (btf_is_var(t)) 7460 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7461 else 7462 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7463 if (err) 7464 return err; 7465 } 7466 return 0; 7467 } 7468 7469 static int bpf_object__resolve_externs(struct bpf_object *obj, 7470 const char *extra_kconfig) 7471 { 7472 bool need_config = false, need_kallsyms = false; 7473 bool need_vmlinux_btf = false; 7474 struct extern_desc *ext; 7475 void *kcfg_data = NULL; 7476 int err, i; 7477 7478 if (obj->nr_extern == 0) 7479 return 0; 7480 7481 if (obj->kconfig_map_idx >= 0) 7482 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7483 7484 for (i = 0; i < obj->nr_extern; i++) { 7485 ext = &obj->externs[i]; 7486 7487 if (ext->type == EXT_KCFG && 7488 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7489 void *ext_val = kcfg_data + ext->kcfg.data_off; 7490 __u32 kver = get_kernel_version(); 7491 7492 if (!kver) { 7493 pr_warn("failed to get kernel version\n"); 7494 return -EINVAL; 7495 } 7496 err = set_kcfg_value_num(ext, ext_val, kver); 7497 if (err) 7498 return err; 7499 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7500 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7501 need_config = true; 7502 } else if (ext->type == EXT_KSYM) { 7503 if (ext->ksym.type_id) 7504 need_vmlinux_btf = true; 7505 else 7506 need_kallsyms = true; 7507 } else { 7508 pr_warn("unrecognized extern '%s'\n", ext->name); 7509 return -EINVAL; 7510 } 7511 } 7512 if (need_config && extra_kconfig) { 7513 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7514 if (err) 7515 return -EINVAL; 7516 need_config = false; 7517 for (i = 0; i < obj->nr_extern; i++) { 7518 ext = &obj->externs[i]; 7519 if (ext->type == EXT_KCFG && !ext->is_set) { 7520 need_config = true; 7521 break; 7522 } 7523 } 7524 } 7525 if (need_config) { 7526 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7527 if (err) 7528 return -EINVAL; 7529 } 7530 if (need_kallsyms) { 7531 err = bpf_object__read_kallsyms_file(obj); 7532 if (err) 7533 return -EINVAL; 7534 } 7535 if (need_vmlinux_btf) { 7536 err = bpf_object__resolve_ksyms_btf_id(obj); 7537 if (err) 7538 return -EINVAL; 7539 } 7540 for (i = 0; i < obj->nr_extern; i++) { 7541 ext = &obj->externs[i]; 7542 7543 if (!ext->is_set && !ext->is_weak) { 7544 pr_warn("extern %s (strong) not resolved\n", ext->name); 7545 return -ESRCH; 7546 } else if (!ext->is_set) { 7547 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7548 ext->name); 7549 } 7550 } 7551 7552 return 0; 7553 } 7554 7555 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7556 { 7557 int err, i; 7558 7559 if (!obj) 7560 return libbpf_err(-EINVAL); 7561 7562 if (obj->loaded) { 7563 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7564 return libbpf_err(-EINVAL); 7565 } 7566 7567 if (obj->gen_loader) 7568 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7569 7570 err = bpf_object__probe_loading(obj); 7571 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7572 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7573 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7574 err = err ? : bpf_object__sanitize_maps(obj); 7575 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7576 err = err ? : bpf_object__create_maps(obj); 7577 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7578 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7579 err = err ? : bpf_object_init_prog_arrays(obj); 7580 7581 if (obj->gen_loader) { 7582 /* reset FDs */ 7583 if (obj->btf) 7584 btf__set_fd(obj->btf, -1); 7585 for (i = 0; i < obj->nr_maps; i++) 7586 obj->maps[i].fd = -1; 7587 if (!err) 7588 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7589 } 7590 7591 /* clean up fd_array */ 7592 zfree(&obj->fd_array); 7593 7594 /* clean up module BTFs */ 7595 for (i = 0; i < obj->btf_module_cnt; i++) { 7596 close(obj->btf_modules[i].fd); 7597 btf__free(obj->btf_modules[i].btf); 7598 free(obj->btf_modules[i].name); 7599 } 7600 free(obj->btf_modules); 7601 7602 /* clean up vmlinux BTF */ 7603 btf__free(obj->btf_vmlinux); 7604 obj->btf_vmlinux = NULL; 7605 7606 obj->loaded = true; /* doesn't matter if successfully or not */ 7607 7608 if (err) 7609 goto out; 7610 7611 return 0; 7612 out: 7613 /* unpin any maps that were auto-pinned during load */ 7614 for (i = 0; i < obj->nr_maps; i++) 7615 if (obj->maps[i].pinned && !obj->maps[i].reused) 7616 bpf_map__unpin(&obj->maps[i], NULL); 7617 7618 bpf_object_unload(obj); 7619 pr_warn("failed to load object '%s'\n", obj->path); 7620 return libbpf_err(err); 7621 } 7622 7623 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7624 { 7625 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7626 } 7627 7628 int bpf_object__load(struct bpf_object *obj) 7629 { 7630 return bpf_object_load(obj, 0, NULL); 7631 } 7632 7633 static int make_parent_dir(const char *path) 7634 { 7635 char *cp, errmsg[STRERR_BUFSIZE]; 7636 char *dname, *dir; 7637 int err = 0; 7638 7639 dname = strdup(path); 7640 if (dname == NULL) 7641 return -ENOMEM; 7642 7643 dir = dirname(dname); 7644 if (mkdir(dir, 0700) && errno != EEXIST) 7645 err = -errno; 7646 7647 free(dname); 7648 if (err) { 7649 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7650 pr_warn("failed to mkdir %s: %s\n", path, cp); 7651 } 7652 return err; 7653 } 7654 7655 static int check_path(const char *path) 7656 { 7657 char *cp, errmsg[STRERR_BUFSIZE]; 7658 struct statfs st_fs; 7659 char *dname, *dir; 7660 int err = 0; 7661 7662 if (path == NULL) 7663 return -EINVAL; 7664 7665 dname = strdup(path); 7666 if (dname == NULL) 7667 return -ENOMEM; 7668 7669 dir = dirname(dname); 7670 if (statfs(dir, &st_fs)) { 7671 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7672 pr_warn("failed to statfs %s: %s\n", dir, cp); 7673 err = -errno; 7674 } 7675 free(dname); 7676 7677 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7678 pr_warn("specified path %s is not on BPF FS\n", path); 7679 err = -EINVAL; 7680 } 7681 7682 return err; 7683 } 7684 7685 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7686 { 7687 char *cp, errmsg[STRERR_BUFSIZE]; 7688 int err; 7689 7690 err = make_parent_dir(path); 7691 if (err) 7692 return libbpf_err(err); 7693 7694 err = check_path(path); 7695 if (err) 7696 return libbpf_err(err); 7697 7698 if (prog == NULL) { 7699 pr_warn("invalid program pointer\n"); 7700 return libbpf_err(-EINVAL); 7701 } 7702 7703 if (instance < 0 || instance >= prog->instances.nr) { 7704 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7705 instance, prog->name, prog->instances.nr); 7706 return libbpf_err(-EINVAL); 7707 } 7708 7709 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7710 err = -errno; 7711 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7712 pr_warn("failed to pin program: %s\n", cp); 7713 return libbpf_err(err); 7714 } 7715 pr_debug("pinned program '%s'\n", path); 7716 7717 return 0; 7718 } 7719 7720 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7721 { 7722 int err; 7723 7724 err = check_path(path); 7725 if (err) 7726 return libbpf_err(err); 7727 7728 if (prog == NULL) { 7729 pr_warn("invalid program pointer\n"); 7730 return libbpf_err(-EINVAL); 7731 } 7732 7733 if (instance < 0 || instance >= prog->instances.nr) { 7734 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7735 instance, prog->name, prog->instances.nr); 7736 return libbpf_err(-EINVAL); 7737 } 7738 7739 err = unlink(path); 7740 if (err != 0) 7741 return libbpf_err(-errno); 7742 7743 pr_debug("unpinned program '%s'\n", path); 7744 7745 return 0; 7746 } 7747 7748 __attribute__((alias("bpf_program_pin_instance"))) 7749 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7750 7751 __attribute__((alias("bpf_program_unpin_instance"))) 7752 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7753 7754 int bpf_program__pin(struct bpf_program *prog, const char *path) 7755 { 7756 int i, err; 7757 7758 err = make_parent_dir(path); 7759 if (err) 7760 return libbpf_err(err); 7761 7762 err = check_path(path); 7763 if (err) 7764 return libbpf_err(err); 7765 7766 if (prog == NULL) { 7767 pr_warn("invalid program pointer\n"); 7768 return libbpf_err(-EINVAL); 7769 } 7770 7771 if (prog->instances.nr <= 0) { 7772 pr_warn("no instances of prog %s to pin\n", prog->name); 7773 return libbpf_err(-EINVAL); 7774 } 7775 7776 if (prog->instances.nr == 1) { 7777 /* don't create subdirs when pinning single instance */ 7778 return bpf_program_pin_instance(prog, path, 0); 7779 } 7780 7781 for (i = 0; i < prog->instances.nr; i++) { 7782 char buf[PATH_MAX]; 7783 int len; 7784 7785 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7786 if (len < 0) { 7787 err = -EINVAL; 7788 goto err_unpin; 7789 } else if (len >= PATH_MAX) { 7790 err = -ENAMETOOLONG; 7791 goto err_unpin; 7792 } 7793 7794 err = bpf_program_pin_instance(prog, buf, i); 7795 if (err) 7796 goto err_unpin; 7797 } 7798 7799 return 0; 7800 7801 err_unpin: 7802 for (i = i - 1; i >= 0; i--) { 7803 char buf[PATH_MAX]; 7804 int len; 7805 7806 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7807 if (len < 0) 7808 continue; 7809 else if (len >= PATH_MAX) 7810 continue; 7811 7812 bpf_program_unpin_instance(prog, buf, i); 7813 } 7814 7815 rmdir(path); 7816 7817 return libbpf_err(err); 7818 } 7819 7820 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7821 { 7822 int i, err; 7823 7824 err = check_path(path); 7825 if (err) 7826 return libbpf_err(err); 7827 7828 if (prog == NULL) { 7829 pr_warn("invalid program pointer\n"); 7830 return libbpf_err(-EINVAL); 7831 } 7832 7833 if (prog->instances.nr <= 0) { 7834 pr_warn("no instances of prog %s to pin\n", prog->name); 7835 return libbpf_err(-EINVAL); 7836 } 7837 7838 if (prog->instances.nr == 1) { 7839 /* don't create subdirs when pinning single instance */ 7840 return bpf_program_unpin_instance(prog, path, 0); 7841 } 7842 7843 for (i = 0; i < prog->instances.nr; i++) { 7844 char buf[PATH_MAX]; 7845 int len; 7846 7847 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7848 if (len < 0) 7849 return libbpf_err(-EINVAL); 7850 else if (len >= PATH_MAX) 7851 return libbpf_err(-ENAMETOOLONG); 7852 7853 err = bpf_program_unpin_instance(prog, buf, i); 7854 if (err) 7855 return err; 7856 } 7857 7858 err = rmdir(path); 7859 if (err) 7860 return libbpf_err(-errno); 7861 7862 return 0; 7863 } 7864 7865 int bpf_map__pin(struct bpf_map *map, const char *path) 7866 { 7867 char *cp, errmsg[STRERR_BUFSIZE]; 7868 int err; 7869 7870 if (map == NULL) { 7871 pr_warn("invalid map pointer\n"); 7872 return libbpf_err(-EINVAL); 7873 } 7874 7875 if (map->pin_path) { 7876 if (path && strcmp(path, map->pin_path)) { 7877 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7878 bpf_map__name(map), map->pin_path, path); 7879 return libbpf_err(-EINVAL); 7880 } else if (map->pinned) { 7881 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7882 bpf_map__name(map), map->pin_path); 7883 return 0; 7884 } 7885 } else { 7886 if (!path) { 7887 pr_warn("missing a path to pin map '%s' at\n", 7888 bpf_map__name(map)); 7889 return libbpf_err(-EINVAL); 7890 } else if (map->pinned) { 7891 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7892 return libbpf_err(-EEXIST); 7893 } 7894 7895 map->pin_path = strdup(path); 7896 if (!map->pin_path) { 7897 err = -errno; 7898 goto out_err; 7899 } 7900 } 7901 7902 err = make_parent_dir(map->pin_path); 7903 if (err) 7904 return libbpf_err(err); 7905 7906 err = check_path(map->pin_path); 7907 if (err) 7908 return libbpf_err(err); 7909 7910 if (bpf_obj_pin(map->fd, map->pin_path)) { 7911 err = -errno; 7912 goto out_err; 7913 } 7914 7915 map->pinned = true; 7916 pr_debug("pinned map '%s'\n", map->pin_path); 7917 7918 return 0; 7919 7920 out_err: 7921 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7922 pr_warn("failed to pin map: %s\n", cp); 7923 return libbpf_err(err); 7924 } 7925 7926 int bpf_map__unpin(struct bpf_map *map, const char *path) 7927 { 7928 int err; 7929 7930 if (map == NULL) { 7931 pr_warn("invalid map pointer\n"); 7932 return libbpf_err(-EINVAL); 7933 } 7934 7935 if (map->pin_path) { 7936 if (path && strcmp(path, map->pin_path)) { 7937 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7938 bpf_map__name(map), map->pin_path, path); 7939 return libbpf_err(-EINVAL); 7940 } 7941 path = map->pin_path; 7942 } else if (!path) { 7943 pr_warn("no path to unpin map '%s' from\n", 7944 bpf_map__name(map)); 7945 return libbpf_err(-EINVAL); 7946 } 7947 7948 err = check_path(path); 7949 if (err) 7950 return libbpf_err(err); 7951 7952 err = unlink(path); 7953 if (err != 0) 7954 return libbpf_err(-errno); 7955 7956 map->pinned = false; 7957 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7958 7959 return 0; 7960 } 7961 7962 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7963 { 7964 char *new = NULL; 7965 7966 if (path) { 7967 new = strdup(path); 7968 if (!new) 7969 return libbpf_err(-errno); 7970 } 7971 7972 free(map->pin_path); 7973 map->pin_path = new; 7974 return 0; 7975 } 7976 7977 __alias(bpf_map__pin_path) 7978 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7979 7980 const char *bpf_map__pin_path(const struct bpf_map *map) 7981 { 7982 return map->pin_path; 7983 } 7984 7985 bool bpf_map__is_pinned(const struct bpf_map *map) 7986 { 7987 return map->pinned; 7988 } 7989 7990 static void sanitize_pin_path(char *s) 7991 { 7992 /* bpffs disallows periods in path names */ 7993 while (*s) { 7994 if (*s == '.') 7995 *s = '_'; 7996 s++; 7997 } 7998 } 7999 8000 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8001 { 8002 struct bpf_map *map; 8003 int err; 8004 8005 if (!obj) 8006 return libbpf_err(-ENOENT); 8007 8008 if (!obj->loaded) { 8009 pr_warn("object not yet loaded; load it first\n"); 8010 return libbpf_err(-ENOENT); 8011 } 8012 8013 bpf_object__for_each_map(map, obj) { 8014 char *pin_path = NULL; 8015 char buf[PATH_MAX]; 8016 8017 if (map->skipped) 8018 continue; 8019 8020 if (path) { 8021 int len; 8022 8023 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8024 bpf_map__name(map)); 8025 if (len < 0) { 8026 err = -EINVAL; 8027 goto err_unpin_maps; 8028 } else if (len >= PATH_MAX) { 8029 err = -ENAMETOOLONG; 8030 goto err_unpin_maps; 8031 } 8032 sanitize_pin_path(buf); 8033 pin_path = buf; 8034 } else if (!map->pin_path) { 8035 continue; 8036 } 8037 8038 err = bpf_map__pin(map, pin_path); 8039 if (err) 8040 goto err_unpin_maps; 8041 } 8042 8043 return 0; 8044 8045 err_unpin_maps: 8046 while ((map = bpf_object__prev_map(obj, map))) { 8047 if (!map->pin_path) 8048 continue; 8049 8050 bpf_map__unpin(map, NULL); 8051 } 8052 8053 return libbpf_err(err); 8054 } 8055 8056 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8057 { 8058 struct bpf_map *map; 8059 int err; 8060 8061 if (!obj) 8062 return libbpf_err(-ENOENT); 8063 8064 bpf_object__for_each_map(map, obj) { 8065 char *pin_path = NULL; 8066 char buf[PATH_MAX]; 8067 8068 if (path) { 8069 int len; 8070 8071 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8072 bpf_map__name(map)); 8073 if (len < 0) 8074 return libbpf_err(-EINVAL); 8075 else if (len >= PATH_MAX) 8076 return libbpf_err(-ENAMETOOLONG); 8077 sanitize_pin_path(buf); 8078 pin_path = buf; 8079 } else if (!map->pin_path) { 8080 continue; 8081 } 8082 8083 err = bpf_map__unpin(map, pin_path); 8084 if (err) 8085 return libbpf_err(err); 8086 } 8087 8088 return 0; 8089 } 8090 8091 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8092 { 8093 struct bpf_program *prog; 8094 int err; 8095 8096 if (!obj) 8097 return libbpf_err(-ENOENT); 8098 8099 if (!obj->loaded) { 8100 pr_warn("object not yet loaded; load it first\n"); 8101 return libbpf_err(-ENOENT); 8102 } 8103 8104 bpf_object__for_each_program(prog, obj) { 8105 char buf[PATH_MAX]; 8106 int len; 8107 8108 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8109 prog->pin_name); 8110 if (len < 0) { 8111 err = -EINVAL; 8112 goto err_unpin_programs; 8113 } else if (len >= PATH_MAX) { 8114 err = -ENAMETOOLONG; 8115 goto err_unpin_programs; 8116 } 8117 8118 err = bpf_program__pin(prog, buf); 8119 if (err) 8120 goto err_unpin_programs; 8121 } 8122 8123 return 0; 8124 8125 err_unpin_programs: 8126 while ((prog = bpf_object__prev_program(obj, prog))) { 8127 char buf[PATH_MAX]; 8128 int len; 8129 8130 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8131 prog->pin_name); 8132 if (len < 0) 8133 continue; 8134 else if (len >= PATH_MAX) 8135 continue; 8136 8137 bpf_program__unpin(prog, buf); 8138 } 8139 8140 return libbpf_err(err); 8141 } 8142 8143 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8144 { 8145 struct bpf_program *prog; 8146 int err; 8147 8148 if (!obj) 8149 return libbpf_err(-ENOENT); 8150 8151 bpf_object__for_each_program(prog, obj) { 8152 char buf[PATH_MAX]; 8153 int len; 8154 8155 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8156 prog->pin_name); 8157 if (len < 0) 8158 return libbpf_err(-EINVAL); 8159 else if (len >= PATH_MAX) 8160 return libbpf_err(-ENAMETOOLONG); 8161 8162 err = bpf_program__unpin(prog, buf); 8163 if (err) 8164 return libbpf_err(err); 8165 } 8166 8167 return 0; 8168 } 8169 8170 int bpf_object__pin(struct bpf_object *obj, const char *path) 8171 { 8172 int err; 8173 8174 err = bpf_object__pin_maps(obj, path); 8175 if (err) 8176 return libbpf_err(err); 8177 8178 err = bpf_object__pin_programs(obj, path); 8179 if (err) { 8180 bpf_object__unpin_maps(obj, path); 8181 return libbpf_err(err); 8182 } 8183 8184 return 0; 8185 } 8186 8187 static void bpf_map__destroy(struct bpf_map *map) 8188 { 8189 if (map->clear_priv) 8190 map->clear_priv(map, map->priv); 8191 map->priv = NULL; 8192 map->clear_priv = NULL; 8193 8194 if (map->inner_map) { 8195 bpf_map__destroy(map->inner_map); 8196 zfree(&map->inner_map); 8197 } 8198 8199 zfree(&map->init_slots); 8200 map->init_slots_sz = 0; 8201 8202 if (map->mmaped) { 8203 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8204 map->mmaped = NULL; 8205 } 8206 8207 if (map->st_ops) { 8208 zfree(&map->st_ops->data); 8209 zfree(&map->st_ops->progs); 8210 zfree(&map->st_ops->kern_func_off); 8211 zfree(&map->st_ops); 8212 } 8213 8214 zfree(&map->name); 8215 zfree(&map->real_name); 8216 zfree(&map->pin_path); 8217 8218 if (map->fd >= 0) 8219 zclose(map->fd); 8220 } 8221 8222 void bpf_object__close(struct bpf_object *obj) 8223 { 8224 size_t i; 8225 8226 if (IS_ERR_OR_NULL(obj)) 8227 return; 8228 8229 if (obj->clear_priv) 8230 obj->clear_priv(obj, obj->priv); 8231 8232 usdt_manager_free(obj->usdt_man); 8233 obj->usdt_man = NULL; 8234 8235 bpf_gen__free(obj->gen_loader); 8236 bpf_object__elf_finish(obj); 8237 bpf_object_unload(obj); 8238 btf__free(obj->btf); 8239 btf_ext__free(obj->btf_ext); 8240 8241 for (i = 0; i < obj->nr_maps; i++) 8242 bpf_map__destroy(&obj->maps[i]); 8243 8244 zfree(&obj->btf_custom_path); 8245 zfree(&obj->kconfig); 8246 zfree(&obj->externs); 8247 obj->nr_extern = 0; 8248 8249 zfree(&obj->maps); 8250 obj->nr_maps = 0; 8251 8252 if (obj->programs && obj->nr_programs) { 8253 for (i = 0; i < obj->nr_programs; i++) 8254 bpf_program__exit(&obj->programs[i]); 8255 } 8256 zfree(&obj->programs); 8257 8258 list_del(&obj->list); 8259 free(obj); 8260 } 8261 8262 struct bpf_object * 8263 bpf_object__next(struct bpf_object *prev) 8264 { 8265 struct bpf_object *next; 8266 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8267 8268 if (strict) 8269 return NULL; 8270 8271 if (!prev) 8272 next = list_first_entry(&bpf_objects_list, 8273 struct bpf_object, 8274 list); 8275 else 8276 next = list_next_entry(prev, list); 8277 8278 /* Empty list is noticed here so don't need checking on entry. */ 8279 if (&next->list == &bpf_objects_list) 8280 return NULL; 8281 8282 return next; 8283 } 8284 8285 const char *bpf_object__name(const struct bpf_object *obj) 8286 { 8287 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8288 } 8289 8290 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8291 { 8292 return obj ? obj->kern_version : 0; 8293 } 8294 8295 struct btf *bpf_object__btf(const struct bpf_object *obj) 8296 { 8297 return obj ? obj->btf : NULL; 8298 } 8299 8300 int bpf_object__btf_fd(const struct bpf_object *obj) 8301 { 8302 return obj->btf ? btf__fd(obj->btf) : -1; 8303 } 8304 8305 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8306 { 8307 if (obj->loaded) 8308 return libbpf_err(-EINVAL); 8309 8310 obj->kern_version = kern_version; 8311 8312 return 0; 8313 } 8314 8315 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8316 bpf_object_clear_priv_t clear_priv) 8317 { 8318 if (obj->priv && obj->clear_priv) 8319 obj->clear_priv(obj, obj->priv); 8320 8321 obj->priv = priv; 8322 obj->clear_priv = clear_priv; 8323 return 0; 8324 } 8325 8326 void *bpf_object__priv(const struct bpf_object *obj) 8327 { 8328 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8329 } 8330 8331 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8332 { 8333 struct bpf_gen *gen; 8334 8335 if (!opts) 8336 return -EFAULT; 8337 if (!OPTS_VALID(opts, gen_loader_opts)) 8338 return -EINVAL; 8339 gen = calloc(sizeof(*gen), 1); 8340 if (!gen) 8341 return -ENOMEM; 8342 gen->opts = opts; 8343 obj->gen_loader = gen; 8344 return 0; 8345 } 8346 8347 static struct bpf_program * 8348 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8349 bool forward) 8350 { 8351 size_t nr_programs = obj->nr_programs; 8352 ssize_t idx; 8353 8354 if (!nr_programs) 8355 return NULL; 8356 8357 if (!p) 8358 /* Iter from the beginning */ 8359 return forward ? &obj->programs[0] : 8360 &obj->programs[nr_programs - 1]; 8361 8362 if (p->obj != obj) { 8363 pr_warn("error: program handler doesn't match object\n"); 8364 return errno = EINVAL, NULL; 8365 } 8366 8367 idx = (p - obj->programs) + (forward ? 1 : -1); 8368 if (idx >= obj->nr_programs || idx < 0) 8369 return NULL; 8370 return &obj->programs[idx]; 8371 } 8372 8373 struct bpf_program * 8374 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8375 { 8376 return bpf_object__next_program(obj, prev); 8377 } 8378 8379 struct bpf_program * 8380 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8381 { 8382 struct bpf_program *prog = prev; 8383 8384 do { 8385 prog = __bpf_program__iter(prog, obj, true); 8386 } while (prog && prog_is_subprog(obj, prog)); 8387 8388 return prog; 8389 } 8390 8391 struct bpf_program * 8392 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8393 { 8394 return bpf_object__prev_program(obj, next); 8395 } 8396 8397 struct bpf_program * 8398 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8399 { 8400 struct bpf_program *prog = next; 8401 8402 do { 8403 prog = __bpf_program__iter(prog, obj, false); 8404 } while (prog && prog_is_subprog(obj, prog)); 8405 8406 return prog; 8407 } 8408 8409 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8410 bpf_program_clear_priv_t clear_priv) 8411 { 8412 if (prog->priv && prog->clear_priv) 8413 prog->clear_priv(prog, prog->priv); 8414 8415 prog->priv = priv; 8416 prog->clear_priv = clear_priv; 8417 return 0; 8418 } 8419 8420 void *bpf_program__priv(const struct bpf_program *prog) 8421 { 8422 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8423 } 8424 8425 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8426 { 8427 prog->prog_ifindex = ifindex; 8428 } 8429 8430 const char *bpf_program__name(const struct bpf_program *prog) 8431 { 8432 return prog->name; 8433 } 8434 8435 const char *bpf_program__section_name(const struct bpf_program *prog) 8436 { 8437 return prog->sec_name; 8438 } 8439 8440 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8441 { 8442 const char *title; 8443 8444 title = prog->sec_name; 8445 if (needs_copy) { 8446 title = strdup(title); 8447 if (!title) { 8448 pr_warn("failed to strdup program title\n"); 8449 return libbpf_err_ptr(-ENOMEM); 8450 } 8451 } 8452 8453 return title; 8454 } 8455 8456 bool bpf_program__autoload(const struct bpf_program *prog) 8457 { 8458 return prog->load; 8459 } 8460 8461 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8462 { 8463 if (prog->obj->loaded) 8464 return libbpf_err(-EINVAL); 8465 8466 prog->load = autoload; 8467 return 0; 8468 } 8469 8470 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8471 8472 int bpf_program__fd(const struct bpf_program *prog) 8473 { 8474 return bpf_program_nth_fd(prog, 0); 8475 } 8476 8477 size_t bpf_program__size(const struct bpf_program *prog) 8478 { 8479 return prog->insns_cnt * BPF_INSN_SZ; 8480 } 8481 8482 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8483 { 8484 return prog->insns; 8485 } 8486 8487 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8488 { 8489 return prog->insns_cnt; 8490 } 8491 8492 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8493 bpf_program_prep_t prep) 8494 { 8495 int *instances_fds; 8496 8497 if (nr_instances <= 0 || !prep) 8498 return libbpf_err(-EINVAL); 8499 8500 if (prog->instances.nr > 0 || prog->instances.fds) { 8501 pr_warn("Can't set pre-processor after loading\n"); 8502 return libbpf_err(-EINVAL); 8503 } 8504 8505 instances_fds = malloc(sizeof(int) * nr_instances); 8506 if (!instances_fds) { 8507 pr_warn("alloc memory failed for fds\n"); 8508 return libbpf_err(-ENOMEM); 8509 } 8510 8511 /* fill all fd with -1 */ 8512 memset(instances_fds, -1, sizeof(int) * nr_instances); 8513 8514 prog->instances.nr = nr_instances; 8515 prog->instances.fds = instances_fds; 8516 prog->preprocessor = prep; 8517 return 0; 8518 } 8519 8520 __attribute__((alias("bpf_program_nth_fd"))) 8521 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8522 8523 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8524 { 8525 int fd; 8526 8527 if (!prog) 8528 return libbpf_err(-EINVAL); 8529 8530 if (n >= prog->instances.nr || n < 0) { 8531 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8532 n, prog->name, prog->instances.nr); 8533 return libbpf_err(-EINVAL); 8534 } 8535 8536 fd = prog->instances.fds[n]; 8537 if (fd < 0) { 8538 pr_warn("%dth instance of program '%s' is invalid\n", 8539 n, prog->name); 8540 return libbpf_err(-ENOENT); 8541 } 8542 8543 return fd; 8544 } 8545 8546 __alias(bpf_program__type) 8547 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8548 8549 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8550 { 8551 return prog->type; 8552 } 8553 8554 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8555 { 8556 prog->type = type; 8557 } 8558 8559 static bool bpf_program__is_type(const struct bpf_program *prog, 8560 enum bpf_prog_type type) 8561 { 8562 return prog ? (prog->type == type) : false; 8563 } 8564 8565 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8566 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8567 { \ 8568 if (!prog) \ 8569 return libbpf_err(-EINVAL); \ 8570 bpf_program__set_type(prog, TYPE); \ 8571 return 0; \ 8572 } \ 8573 \ 8574 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8575 { \ 8576 return bpf_program__is_type(prog, TYPE); \ 8577 } \ 8578 8579 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8580 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8581 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8582 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8583 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8584 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8585 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8586 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8587 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8588 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8589 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8590 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8591 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8592 8593 __alias(bpf_program__expected_attach_type) 8594 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8595 8596 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8597 { 8598 return prog->expected_attach_type; 8599 } 8600 8601 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8602 enum bpf_attach_type type) 8603 { 8604 prog->expected_attach_type = type; 8605 } 8606 8607 __u32 bpf_program__flags(const struct bpf_program *prog) 8608 { 8609 return prog->prog_flags; 8610 } 8611 8612 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8613 { 8614 if (prog->obj->loaded) 8615 return libbpf_err(-EBUSY); 8616 8617 prog->prog_flags = flags; 8618 return 0; 8619 } 8620 8621 __u32 bpf_program__log_level(const struct bpf_program *prog) 8622 { 8623 return prog->log_level; 8624 } 8625 8626 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8627 { 8628 if (prog->obj->loaded) 8629 return libbpf_err(-EBUSY); 8630 8631 prog->log_level = log_level; 8632 return 0; 8633 } 8634 8635 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8636 { 8637 *log_size = prog->log_size; 8638 return prog->log_buf; 8639 } 8640 8641 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8642 { 8643 if (log_size && !log_buf) 8644 return -EINVAL; 8645 if (prog->log_size > UINT_MAX) 8646 return -EINVAL; 8647 if (prog->obj->loaded) 8648 return -EBUSY; 8649 8650 prog->log_buf = log_buf; 8651 prog->log_size = log_size; 8652 return 0; 8653 } 8654 8655 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8656 .sec = (char *)sec_pfx, \ 8657 .prog_type = BPF_PROG_TYPE_##ptype, \ 8658 .expected_attach_type = atype, \ 8659 .cookie = (long)(flags), \ 8660 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8661 __VA_ARGS__ \ 8662 } 8663 8664 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8665 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8666 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8667 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8668 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8669 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8670 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8671 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8672 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8673 8674 static const struct bpf_sec_def section_defs[] = { 8675 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8676 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8677 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8678 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8679 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8680 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8681 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8682 SEC_DEF("kprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8683 SEC_DEF("kretprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8684 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8685 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8686 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 8687 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8688 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8689 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8690 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8691 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8692 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8693 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8694 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8695 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8696 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8697 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8698 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8699 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8700 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8701 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8702 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8703 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8704 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8705 SEC_DEF("iter.s/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8706 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8707 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8708 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8709 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8710 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8711 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8712 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8713 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8714 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8715 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8716 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8717 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8718 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8719 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8720 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8721 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8722 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8723 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8724 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8725 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8726 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8727 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8728 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8729 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8730 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8731 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8732 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8733 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8734 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8735 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8736 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8737 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8738 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8739 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8740 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8741 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8742 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8743 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8744 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8745 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8746 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8747 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8748 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8749 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8750 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8751 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8752 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8753 }; 8754 8755 static size_t custom_sec_def_cnt; 8756 static struct bpf_sec_def *custom_sec_defs; 8757 static struct bpf_sec_def custom_fallback_def; 8758 static bool has_custom_fallback_def; 8759 8760 static int last_custom_sec_def_handler_id; 8761 8762 int libbpf_register_prog_handler(const char *sec, 8763 enum bpf_prog_type prog_type, 8764 enum bpf_attach_type exp_attach_type, 8765 const struct libbpf_prog_handler_opts *opts) 8766 { 8767 struct bpf_sec_def *sec_def; 8768 8769 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8770 return libbpf_err(-EINVAL); 8771 8772 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8773 return libbpf_err(-E2BIG); 8774 8775 if (sec) { 8776 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8777 sizeof(*sec_def)); 8778 if (!sec_def) 8779 return libbpf_err(-ENOMEM); 8780 8781 custom_sec_defs = sec_def; 8782 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8783 } else { 8784 if (has_custom_fallback_def) 8785 return libbpf_err(-EBUSY); 8786 8787 sec_def = &custom_fallback_def; 8788 } 8789 8790 sec_def->sec = sec ? strdup(sec) : NULL; 8791 if (sec && !sec_def->sec) 8792 return libbpf_err(-ENOMEM); 8793 8794 sec_def->prog_type = prog_type; 8795 sec_def->expected_attach_type = exp_attach_type; 8796 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8797 8798 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8799 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8800 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8801 8802 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8803 8804 if (sec) 8805 custom_sec_def_cnt++; 8806 else 8807 has_custom_fallback_def = true; 8808 8809 return sec_def->handler_id; 8810 } 8811 8812 int libbpf_unregister_prog_handler(int handler_id) 8813 { 8814 struct bpf_sec_def *sec_defs; 8815 int i; 8816 8817 if (handler_id <= 0) 8818 return libbpf_err(-EINVAL); 8819 8820 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8821 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8822 has_custom_fallback_def = false; 8823 return 0; 8824 } 8825 8826 for (i = 0; i < custom_sec_def_cnt; i++) { 8827 if (custom_sec_defs[i].handler_id == handler_id) 8828 break; 8829 } 8830 8831 if (i == custom_sec_def_cnt) 8832 return libbpf_err(-ENOENT); 8833 8834 free(custom_sec_defs[i].sec); 8835 for (i = i + 1; i < custom_sec_def_cnt; i++) 8836 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8837 custom_sec_def_cnt--; 8838 8839 /* try to shrink the array, but it's ok if we couldn't */ 8840 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8841 if (sec_defs) 8842 custom_sec_defs = sec_defs; 8843 8844 return 0; 8845 } 8846 8847 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name, 8848 bool allow_sloppy) 8849 { 8850 size_t len = strlen(sec_def->sec); 8851 8852 /* "type/" always has to have proper SEC("type/extras") form */ 8853 if (sec_def->sec[len - 1] == '/') { 8854 if (str_has_pfx(sec_name, sec_def->sec)) 8855 return true; 8856 return false; 8857 } 8858 8859 /* "type+" means it can be either exact SEC("type") or 8860 * well-formed SEC("type/extras") with proper '/' separator 8861 */ 8862 if (sec_def->sec[len - 1] == '+') { 8863 len--; 8864 /* not even a prefix */ 8865 if (strncmp(sec_name, sec_def->sec, len) != 0) 8866 return false; 8867 /* exact match or has '/' separator */ 8868 if (sec_name[len] == '\0' || sec_name[len] == '/') 8869 return true; 8870 return false; 8871 } 8872 8873 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8874 * matches, unless strict section name mode 8875 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8876 * match has to be exact. 8877 */ 8878 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec)) 8879 return true; 8880 8881 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8882 * SEC("syscall")) are exact matches in both modes. 8883 */ 8884 return strcmp(sec_name, sec_def->sec) == 0; 8885 } 8886 8887 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8888 { 8889 const struct bpf_sec_def *sec_def; 8890 int i, n; 8891 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy; 8892 8893 n = custom_sec_def_cnt; 8894 for (i = 0; i < n; i++) { 8895 sec_def = &custom_sec_defs[i]; 8896 if (sec_def_matches(sec_def, sec_name, false)) 8897 return sec_def; 8898 } 8899 8900 n = ARRAY_SIZE(section_defs); 8901 for (i = 0; i < n; i++) { 8902 sec_def = §ion_defs[i]; 8903 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict; 8904 if (sec_def_matches(sec_def, sec_name, allow_sloppy)) 8905 return sec_def; 8906 } 8907 8908 if (has_custom_fallback_def) 8909 return &custom_fallback_def; 8910 8911 return NULL; 8912 } 8913 8914 #define MAX_TYPE_NAME_SIZE 32 8915 8916 static char *libbpf_get_type_names(bool attach_type) 8917 { 8918 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8919 char *buf; 8920 8921 buf = malloc(len); 8922 if (!buf) 8923 return NULL; 8924 8925 buf[0] = '\0'; 8926 /* Forge string buf with all available names */ 8927 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8928 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8929 8930 if (attach_type) { 8931 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8932 continue; 8933 8934 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8935 continue; 8936 } 8937 8938 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8939 free(buf); 8940 return NULL; 8941 } 8942 strcat(buf, " "); 8943 strcat(buf, section_defs[i].sec); 8944 } 8945 8946 return buf; 8947 } 8948 8949 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8950 enum bpf_attach_type *expected_attach_type) 8951 { 8952 const struct bpf_sec_def *sec_def; 8953 char *type_names; 8954 8955 if (!name) 8956 return libbpf_err(-EINVAL); 8957 8958 sec_def = find_sec_def(name); 8959 if (sec_def) { 8960 *prog_type = sec_def->prog_type; 8961 *expected_attach_type = sec_def->expected_attach_type; 8962 return 0; 8963 } 8964 8965 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8966 type_names = libbpf_get_type_names(false); 8967 if (type_names != NULL) { 8968 pr_debug("supported section(type) names are:%s\n", type_names); 8969 free(type_names); 8970 } 8971 8972 return libbpf_err(-ESRCH); 8973 } 8974 8975 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8976 size_t offset) 8977 { 8978 struct bpf_map *map; 8979 size_t i; 8980 8981 for (i = 0; i < obj->nr_maps; i++) { 8982 map = &obj->maps[i]; 8983 if (!bpf_map__is_struct_ops(map)) 8984 continue; 8985 if (map->sec_offset <= offset && 8986 offset - map->sec_offset < map->def.value_size) 8987 return map; 8988 } 8989 8990 return NULL; 8991 } 8992 8993 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8994 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8995 Elf64_Shdr *shdr, Elf_Data *data) 8996 { 8997 const struct btf_member *member; 8998 struct bpf_struct_ops *st_ops; 8999 struct bpf_program *prog; 9000 unsigned int shdr_idx; 9001 const struct btf *btf; 9002 struct bpf_map *map; 9003 unsigned int moff, insn_idx; 9004 const char *name; 9005 __u32 member_idx; 9006 Elf64_Sym *sym; 9007 Elf64_Rel *rel; 9008 int i, nrels; 9009 9010 btf = obj->btf; 9011 nrels = shdr->sh_size / shdr->sh_entsize; 9012 for (i = 0; i < nrels; i++) { 9013 rel = elf_rel_by_idx(data, i); 9014 if (!rel) { 9015 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9016 return -LIBBPF_ERRNO__FORMAT; 9017 } 9018 9019 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9020 if (!sym) { 9021 pr_warn("struct_ops reloc: symbol %zx not found\n", 9022 (size_t)ELF64_R_SYM(rel->r_info)); 9023 return -LIBBPF_ERRNO__FORMAT; 9024 } 9025 9026 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9027 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 9028 if (!map) { 9029 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9030 (size_t)rel->r_offset); 9031 return -EINVAL; 9032 } 9033 9034 moff = rel->r_offset - map->sec_offset; 9035 shdr_idx = sym->st_shndx; 9036 st_ops = map->st_ops; 9037 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9038 map->name, 9039 (long long)(rel->r_info >> 32), 9040 (long long)sym->st_value, 9041 shdr_idx, (size_t)rel->r_offset, 9042 map->sec_offset, sym->st_name, name); 9043 9044 if (shdr_idx >= SHN_LORESERVE) { 9045 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9046 map->name, (size_t)rel->r_offset, shdr_idx); 9047 return -LIBBPF_ERRNO__RELOC; 9048 } 9049 if (sym->st_value % BPF_INSN_SZ) { 9050 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9051 map->name, (unsigned long long)sym->st_value); 9052 return -LIBBPF_ERRNO__FORMAT; 9053 } 9054 insn_idx = sym->st_value / BPF_INSN_SZ; 9055 9056 member = find_member_by_offset(st_ops->type, moff * 8); 9057 if (!member) { 9058 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9059 map->name, moff); 9060 return -EINVAL; 9061 } 9062 member_idx = member - btf_members(st_ops->type); 9063 name = btf__name_by_offset(btf, member->name_off); 9064 9065 if (!resolve_func_ptr(btf, member->type, NULL)) { 9066 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9067 map->name, name); 9068 return -EINVAL; 9069 } 9070 9071 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9072 if (!prog) { 9073 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9074 map->name, shdr_idx, name); 9075 return -EINVAL; 9076 } 9077 9078 /* prevent the use of BPF prog with invalid type */ 9079 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9080 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9081 map->name, prog->name); 9082 return -EINVAL; 9083 } 9084 9085 /* if we haven't yet processed this BPF program, record proper 9086 * attach_btf_id and member_idx 9087 */ 9088 if (!prog->attach_btf_id) { 9089 prog->attach_btf_id = st_ops->type_id; 9090 prog->expected_attach_type = member_idx; 9091 } 9092 9093 /* struct_ops BPF prog can be re-used between multiple 9094 * .struct_ops as long as it's the same struct_ops struct 9095 * definition and the same function pointer field 9096 */ 9097 if (prog->attach_btf_id != st_ops->type_id || 9098 prog->expected_attach_type != member_idx) { 9099 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9100 map->name, prog->name, prog->sec_name, prog->type, 9101 prog->attach_btf_id, prog->expected_attach_type, name); 9102 return -EINVAL; 9103 } 9104 9105 st_ops->progs[member_idx] = prog; 9106 } 9107 9108 return 0; 9109 } 9110 9111 #define BTF_TRACE_PREFIX "btf_trace_" 9112 #define BTF_LSM_PREFIX "bpf_lsm_" 9113 #define BTF_ITER_PREFIX "bpf_iter_" 9114 #define BTF_MAX_NAME_SIZE 128 9115 9116 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9117 const char **prefix, int *kind) 9118 { 9119 switch (attach_type) { 9120 case BPF_TRACE_RAW_TP: 9121 *prefix = BTF_TRACE_PREFIX; 9122 *kind = BTF_KIND_TYPEDEF; 9123 break; 9124 case BPF_LSM_MAC: 9125 *prefix = BTF_LSM_PREFIX; 9126 *kind = BTF_KIND_FUNC; 9127 break; 9128 case BPF_TRACE_ITER: 9129 *prefix = BTF_ITER_PREFIX; 9130 *kind = BTF_KIND_FUNC; 9131 break; 9132 default: 9133 *prefix = ""; 9134 *kind = BTF_KIND_FUNC; 9135 } 9136 } 9137 9138 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9139 const char *name, __u32 kind) 9140 { 9141 char btf_type_name[BTF_MAX_NAME_SIZE]; 9142 int ret; 9143 9144 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9145 "%s%s", prefix, name); 9146 /* snprintf returns the number of characters written excluding the 9147 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9148 * indicates truncation. 9149 */ 9150 if (ret < 0 || ret >= sizeof(btf_type_name)) 9151 return -ENAMETOOLONG; 9152 return btf__find_by_name_kind(btf, btf_type_name, kind); 9153 } 9154 9155 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9156 enum bpf_attach_type attach_type) 9157 { 9158 const char *prefix; 9159 int kind; 9160 9161 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9162 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9163 } 9164 9165 int libbpf_find_vmlinux_btf_id(const char *name, 9166 enum bpf_attach_type attach_type) 9167 { 9168 struct btf *btf; 9169 int err; 9170 9171 btf = btf__load_vmlinux_btf(); 9172 err = libbpf_get_error(btf); 9173 if (err) { 9174 pr_warn("vmlinux BTF is not found\n"); 9175 return libbpf_err(err); 9176 } 9177 9178 err = find_attach_btf_id(btf, name, attach_type); 9179 if (err <= 0) 9180 pr_warn("%s is not found in vmlinux BTF\n", name); 9181 9182 btf__free(btf); 9183 return libbpf_err(err); 9184 } 9185 9186 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9187 { 9188 struct bpf_prog_info info = {}; 9189 __u32 info_len = sizeof(info); 9190 struct btf *btf; 9191 int err; 9192 9193 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9194 if (err) { 9195 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9196 attach_prog_fd, err); 9197 return err; 9198 } 9199 9200 err = -EINVAL; 9201 if (!info.btf_id) { 9202 pr_warn("The target program doesn't have BTF\n"); 9203 goto out; 9204 } 9205 btf = btf__load_from_kernel_by_id(info.btf_id); 9206 err = libbpf_get_error(btf); 9207 if (err) { 9208 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9209 goto out; 9210 } 9211 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9212 btf__free(btf); 9213 if (err <= 0) { 9214 pr_warn("%s is not found in prog's BTF\n", name); 9215 goto out; 9216 } 9217 out: 9218 return err; 9219 } 9220 9221 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9222 enum bpf_attach_type attach_type, 9223 int *btf_obj_fd, int *btf_type_id) 9224 { 9225 int ret, i; 9226 9227 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9228 if (ret > 0) { 9229 *btf_obj_fd = 0; /* vmlinux BTF */ 9230 *btf_type_id = ret; 9231 return 0; 9232 } 9233 if (ret != -ENOENT) 9234 return ret; 9235 9236 ret = load_module_btfs(obj); 9237 if (ret) 9238 return ret; 9239 9240 for (i = 0; i < obj->btf_module_cnt; i++) { 9241 const struct module_btf *mod = &obj->btf_modules[i]; 9242 9243 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9244 if (ret > 0) { 9245 *btf_obj_fd = mod->fd; 9246 *btf_type_id = ret; 9247 return 0; 9248 } 9249 if (ret == -ENOENT) 9250 continue; 9251 9252 return ret; 9253 } 9254 9255 return -ESRCH; 9256 } 9257 9258 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9259 int *btf_obj_fd, int *btf_type_id) 9260 { 9261 enum bpf_attach_type attach_type = prog->expected_attach_type; 9262 __u32 attach_prog_fd = prog->attach_prog_fd; 9263 int err = 0; 9264 9265 /* BPF program's BTF ID */ 9266 if (attach_prog_fd) { 9267 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9268 if (err < 0) { 9269 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9270 attach_prog_fd, attach_name, err); 9271 return err; 9272 } 9273 *btf_obj_fd = 0; 9274 *btf_type_id = err; 9275 return 0; 9276 } 9277 9278 /* kernel/module BTF ID */ 9279 if (prog->obj->gen_loader) { 9280 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9281 *btf_obj_fd = 0; 9282 *btf_type_id = 1; 9283 } else { 9284 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9285 } 9286 if (err) { 9287 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9288 return err; 9289 } 9290 return 0; 9291 } 9292 9293 int libbpf_attach_type_by_name(const char *name, 9294 enum bpf_attach_type *attach_type) 9295 { 9296 char *type_names; 9297 const struct bpf_sec_def *sec_def; 9298 9299 if (!name) 9300 return libbpf_err(-EINVAL); 9301 9302 sec_def = find_sec_def(name); 9303 if (!sec_def) { 9304 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9305 type_names = libbpf_get_type_names(true); 9306 if (type_names != NULL) { 9307 pr_debug("attachable section(type) names are:%s\n", type_names); 9308 free(type_names); 9309 } 9310 9311 return libbpf_err(-EINVAL); 9312 } 9313 9314 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9315 return libbpf_err(-EINVAL); 9316 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9317 return libbpf_err(-EINVAL); 9318 9319 *attach_type = sec_def->expected_attach_type; 9320 return 0; 9321 } 9322 9323 int bpf_map__fd(const struct bpf_map *map) 9324 { 9325 return map ? map->fd : libbpf_err(-EINVAL); 9326 } 9327 9328 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9329 { 9330 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9331 } 9332 9333 static bool map_uses_real_name(const struct bpf_map *map) 9334 { 9335 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9336 * their user-visible name differs from kernel-visible name. Users see 9337 * such map's corresponding ELF section name as a map name. 9338 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9339 * maps to know which name has to be returned to the user. 9340 */ 9341 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9342 return true; 9343 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9344 return true; 9345 return false; 9346 } 9347 9348 const char *bpf_map__name(const struct bpf_map *map) 9349 { 9350 if (!map) 9351 return NULL; 9352 9353 if (map_uses_real_name(map)) 9354 return map->real_name; 9355 9356 return map->name; 9357 } 9358 9359 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9360 { 9361 return map->def.type; 9362 } 9363 9364 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9365 { 9366 if (map->fd >= 0) 9367 return libbpf_err(-EBUSY); 9368 map->def.type = type; 9369 return 0; 9370 } 9371 9372 __u32 bpf_map__map_flags(const struct bpf_map *map) 9373 { 9374 return map->def.map_flags; 9375 } 9376 9377 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9378 { 9379 if (map->fd >= 0) 9380 return libbpf_err(-EBUSY); 9381 map->def.map_flags = flags; 9382 return 0; 9383 } 9384 9385 __u64 bpf_map__map_extra(const struct bpf_map *map) 9386 { 9387 return map->map_extra; 9388 } 9389 9390 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9391 { 9392 if (map->fd >= 0) 9393 return libbpf_err(-EBUSY); 9394 map->map_extra = map_extra; 9395 return 0; 9396 } 9397 9398 __u32 bpf_map__numa_node(const struct bpf_map *map) 9399 { 9400 return map->numa_node; 9401 } 9402 9403 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9404 { 9405 if (map->fd >= 0) 9406 return libbpf_err(-EBUSY); 9407 map->numa_node = numa_node; 9408 return 0; 9409 } 9410 9411 __u32 bpf_map__key_size(const struct bpf_map *map) 9412 { 9413 return map->def.key_size; 9414 } 9415 9416 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9417 { 9418 if (map->fd >= 0) 9419 return libbpf_err(-EBUSY); 9420 map->def.key_size = size; 9421 return 0; 9422 } 9423 9424 __u32 bpf_map__value_size(const struct bpf_map *map) 9425 { 9426 return map->def.value_size; 9427 } 9428 9429 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9430 { 9431 if (map->fd >= 0) 9432 return libbpf_err(-EBUSY); 9433 map->def.value_size = size; 9434 return 0; 9435 } 9436 9437 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9438 { 9439 return map ? map->btf_key_type_id : 0; 9440 } 9441 9442 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9443 { 9444 return map ? map->btf_value_type_id : 0; 9445 } 9446 9447 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9448 bpf_map_clear_priv_t clear_priv) 9449 { 9450 if (!map) 9451 return libbpf_err(-EINVAL); 9452 9453 if (map->priv) { 9454 if (map->clear_priv) 9455 map->clear_priv(map, map->priv); 9456 } 9457 9458 map->priv = priv; 9459 map->clear_priv = clear_priv; 9460 return 0; 9461 } 9462 9463 void *bpf_map__priv(const struct bpf_map *map) 9464 { 9465 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9466 } 9467 9468 int bpf_map__set_initial_value(struct bpf_map *map, 9469 const void *data, size_t size) 9470 { 9471 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9472 size != map->def.value_size || map->fd >= 0) 9473 return libbpf_err(-EINVAL); 9474 9475 memcpy(map->mmaped, data, size); 9476 return 0; 9477 } 9478 9479 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9480 { 9481 if (!map->mmaped) 9482 return NULL; 9483 *psize = map->def.value_size; 9484 return map->mmaped; 9485 } 9486 9487 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9488 { 9489 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9490 } 9491 9492 bool bpf_map__is_internal(const struct bpf_map *map) 9493 { 9494 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9495 } 9496 9497 __u32 bpf_map__ifindex(const struct bpf_map *map) 9498 { 9499 return map->map_ifindex; 9500 } 9501 9502 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9503 { 9504 if (map->fd >= 0) 9505 return libbpf_err(-EBUSY); 9506 map->map_ifindex = ifindex; 9507 return 0; 9508 } 9509 9510 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9511 { 9512 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9513 pr_warn("error: unsupported map type\n"); 9514 return libbpf_err(-EINVAL); 9515 } 9516 if (map->inner_map_fd != -1) { 9517 pr_warn("error: inner_map_fd already specified\n"); 9518 return libbpf_err(-EINVAL); 9519 } 9520 if (map->inner_map) { 9521 bpf_map__destroy(map->inner_map); 9522 zfree(&map->inner_map); 9523 } 9524 map->inner_map_fd = fd; 9525 return 0; 9526 } 9527 9528 static struct bpf_map * 9529 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9530 { 9531 ssize_t idx; 9532 struct bpf_map *s, *e; 9533 9534 if (!obj || !obj->maps) 9535 return errno = EINVAL, NULL; 9536 9537 s = obj->maps; 9538 e = obj->maps + obj->nr_maps; 9539 9540 if ((m < s) || (m >= e)) { 9541 pr_warn("error in %s: map handler doesn't belong to object\n", 9542 __func__); 9543 return errno = EINVAL, NULL; 9544 } 9545 9546 idx = (m - obj->maps) + i; 9547 if (idx >= obj->nr_maps || idx < 0) 9548 return NULL; 9549 return &obj->maps[idx]; 9550 } 9551 9552 struct bpf_map * 9553 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9554 { 9555 return bpf_object__next_map(obj, prev); 9556 } 9557 9558 struct bpf_map * 9559 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9560 { 9561 if (prev == NULL) 9562 return obj->maps; 9563 9564 return __bpf_map__iter(prev, obj, 1); 9565 } 9566 9567 struct bpf_map * 9568 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9569 { 9570 return bpf_object__prev_map(obj, next); 9571 } 9572 9573 struct bpf_map * 9574 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9575 { 9576 if (next == NULL) { 9577 if (!obj->nr_maps) 9578 return NULL; 9579 return obj->maps + obj->nr_maps - 1; 9580 } 9581 9582 return __bpf_map__iter(next, obj, -1); 9583 } 9584 9585 struct bpf_map * 9586 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9587 { 9588 struct bpf_map *pos; 9589 9590 bpf_object__for_each_map(pos, obj) { 9591 /* if it's a special internal map name (which always starts 9592 * with dot) then check if that special name matches the 9593 * real map name (ELF section name) 9594 */ 9595 if (name[0] == '.') { 9596 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9597 return pos; 9598 continue; 9599 } 9600 /* otherwise map name has to be an exact match */ 9601 if (map_uses_real_name(pos)) { 9602 if (strcmp(pos->real_name, name) == 0) 9603 return pos; 9604 continue; 9605 } 9606 if (strcmp(pos->name, name) == 0) 9607 return pos; 9608 } 9609 return errno = ENOENT, NULL; 9610 } 9611 9612 int 9613 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9614 { 9615 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9616 } 9617 9618 struct bpf_map * 9619 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9620 { 9621 return libbpf_err_ptr(-ENOTSUP); 9622 } 9623 9624 long libbpf_get_error(const void *ptr) 9625 { 9626 if (!IS_ERR_OR_NULL(ptr)) 9627 return 0; 9628 9629 if (IS_ERR(ptr)) 9630 errno = -PTR_ERR(ptr); 9631 9632 /* If ptr == NULL, then errno should be already set by the failing 9633 * API, because libbpf never returns NULL on success and it now always 9634 * sets errno on error. So no extra errno handling for ptr == NULL 9635 * case. 9636 */ 9637 return -errno; 9638 } 9639 9640 __attribute__((alias("bpf_prog_load_xattr2"))) 9641 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9642 struct bpf_object **pobj, int *prog_fd); 9643 9644 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9645 struct bpf_object **pobj, int *prog_fd) 9646 { 9647 struct bpf_object_open_attr open_attr = {}; 9648 struct bpf_program *prog, *first_prog = NULL; 9649 struct bpf_object *obj; 9650 struct bpf_map *map; 9651 int err; 9652 9653 if (!attr) 9654 return libbpf_err(-EINVAL); 9655 if (!attr->file) 9656 return libbpf_err(-EINVAL); 9657 9658 open_attr.file = attr->file; 9659 open_attr.prog_type = attr->prog_type; 9660 9661 obj = __bpf_object__open_xattr(&open_attr, 0); 9662 err = libbpf_get_error(obj); 9663 if (err) 9664 return libbpf_err(-ENOENT); 9665 9666 bpf_object__for_each_program(prog, obj) { 9667 enum bpf_attach_type attach_type = attr->expected_attach_type; 9668 /* 9669 * to preserve backwards compatibility, bpf_prog_load treats 9670 * attr->prog_type, if specified, as an override to whatever 9671 * bpf_object__open guessed 9672 */ 9673 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9674 bpf_program__set_type(prog, attr->prog_type); 9675 bpf_program__set_expected_attach_type(prog, 9676 attach_type); 9677 } 9678 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 9679 /* 9680 * we haven't guessed from section name and user 9681 * didn't provide a fallback type, too bad... 9682 */ 9683 bpf_object__close(obj); 9684 return libbpf_err(-EINVAL); 9685 } 9686 9687 prog->prog_ifindex = attr->ifindex; 9688 prog->log_level = attr->log_level; 9689 prog->prog_flags |= attr->prog_flags; 9690 if (!first_prog) 9691 first_prog = prog; 9692 } 9693 9694 bpf_object__for_each_map(map, obj) { 9695 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9696 map->map_ifindex = attr->ifindex; 9697 } 9698 9699 if (!first_prog) { 9700 pr_warn("object file doesn't contain bpf program\n"); 9701 bpf_object__close(obj); 9702 return libbpf_err(-ENOENT); 9703 } 9704 9705 err = bpf_object__load(obj); 9706 if (err) { 9707 bpf_object__close(obj); 9708 return libbpf_err(err); 9709 } 9710 9711 *pobj = obj; 9712 *prog_fd = bpf_program__fd(first_prog); 9713 return 0; 9714 } 9715 9716 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9717 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9718 struct bpf_object **pobj, int *prog_fd) 9719 { 9720 struct bpf_prog_load_attr attr; 9721 9722 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9723 attr.file = file; 9724 attr.prog_type = type; 9725 attr.expected_attach_type = 0; 9726 9727 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9728 } 9729 9730 /* Replace link's underlying BPF program with the new one */ 9731 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9732 { 9733 int ret; 9734 9735 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9736 return libbpf_err_errno(ret); 9737 } 9738 9739 /* Release "ownership" of underlying BPF resource (typically, BPF program 9740 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9741 * link, when destructed through bpf_link__destroy() call won't attempt to 9742 * detach/unregisted that BPF resource. This is useful in situations where, 9743 * say, attached BPF program has to outlive userspace program that attached it 9744 * in the system. Depending on type of BPF program, though, there might be 9745 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9746 * exit of userspace program doesn't trigger automatic detachment and clean up 9747 * inside the kernel. 9748 */ 9749 void bpf_link__disconnect(struct bpf_link *link) 9750 { 9751 link->disconnected = true; 9752 } 9753 9754 int bpf_link__destroy(struct bpf_link *link) 9755 { 9756 int err = 0; 9757 9758 if (IS_ERR_OR_NULL(link)) 9759 return 0; 9760 9761 if (!link->disconnected && link->detach) 9762 err = link->detach(link); 9763 if (link->pin_path) 9764 free(link->pin_path); 9765 if (link->dealloc) 9766 link->dealloc(link); 9767 else 9768 free(link); 9769 9770 return libbpf_err(err); 9771 } 9772 9773 int bpf_link__fd(const struct bpf_link *link) 9774 { 9775 return link->fd; 9776 } 9777 9778 const char *bpf_link__pin_path(const struct bpf_link *link) 9779 { 9780 return link->pin_path; 9781 } 9782 9783 static int bpf_link__detach_fd(struct bpf_link *link) 9784 { 9785 return libbpf_err_errno(close(link->fd)); 9786 } 9787 9788 struct bpf_link *bpf_link__open(const char *path) 9789 { 9790 struct bpf_link *link; 9791 int fd; 9792 9793 fd = bpf_obj_get(path); 9794 if (fd < 0) { 9795 fd = -errno; 9796 pr_warn("failed to open link at %s: %d\n", path, fd); 9797 return libbpf_err_ptr(fd); 9798 } 9799 9800 link = calloc(1, sizeof(*link)); 9801 if (!link) { 9802 close(fd); 9803 return libbpf_err_ptr(-ENOMEM); 9804 } 9805 link->detach = &bpf_link__detach_fd; 9806 link->fd = fd; 9807 9808 link->pin_path = strdup(path); 9809 if (!link->pin_path) { 9810 bpf_link__destroy(link); 9811 return libbpf_err_ptr(-ENOMEM); 9812 } 9813 9814 return link; 9815 } 9816 9817 int bpf_link__detach(struct bpf_link *link) 9818 { 9819 return bpf_link_detach(link->fd) ? -errno : 0; 9820 } 9821 9822 int bpf_link__pin(struct bpf_link *link, const char *path) 9823 { 9824 int err; 9825 9826 if (link->pin_path) 9827 return libbpf_err(-EBUSY); 9828 err = make_parent_dir(path); 9829 if (err) 9830 return libbpf_err(err); 9831 err = check_path(path); 9832 if (err) 9833 return libbpf_err(err); 9834 9835 link->pin_path = strdup(path); 9836 if (!link->pin_path) 9837 return libbpf_err(-ENOMEM); 9838 9839 if (bpf_obj_pin(link->fd, link->pin_path)) { 9840 err = -errno; 9841 zfree(&link->pin_path); 9842 return libbpf_err(err); 9843 } 9844 9845 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9846 return 0; 9847 } 9848 9849 int bpf_link__unpin(struct bpf_link *link) 9850 { 9851 int err; 9852 9853 if (!link->pin_path) 9854 return libbpf_err(-EINVAL); 9855 9856 err = unlink(link->pin_path); 9857 if (err != 0) 9858 return -errno; 9859 9860 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9861 zfree(&link->pin_path); 9862 return 0; 9863 } 9864 9865 struct bpf_link_perf { 9866 struct bpf_link link; 9867 int perf_event_fd; 9868 /* legacy kprobe support: keep track of probe identifier and type */ 9869 char *legacy_probe_name; 9870 bool legacy_is_kprobe; 9871 bool legacy_is_retprobe; 9872 }; 9873 9874 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9875 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9876 9877 static int bpf_link_perf_detach(struct bpf_link *link) 9878 { 9879 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9880 int err = 0; 9881 9882 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9883 err = -errno; 9884 9885 if (perf_link->perf_event_fd != link->fd) 9886 close(perf_link->perf_event_fd); 9887 close(link->fd); 9888 9889 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9890 if (perf_link->legacy_probe_name) { 9891 if (perf_link->legacy_is_kprobe) { 9892 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9893 perf_link->legacy_is_retprobe); 9894 } else { 9895 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9896 perf_link->legacy_is_retprobe); 9897 } 9898 } 9899 9900 return err; 9901 } 9902 9903 static void bpf_link_perf_dealloc(struct bpf_link *link) 9904 { 9905 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9906 9907 free(perf_link->legacy_probe_name); 9908 free(perf_link); 9909 } 9910 9911 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9912 const struct bpf_perf_event_opts *opts) 9913 { 9914 char errmsg[STRERR_BUFSIZE]; 9915 struct bpf_link_perf *link; 9916 int prog_fd, link_fd = -1, err; 9917 9918 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9919 return libbpf_err_ptr(-EINVAL); 9920 9921 if (pfd < 0) { 9922 pr_warn("prog '%s': invalid perf event FD %d\n", 9923 prog->name, pfd); 9924 return libbpf_err_ptr(-EINVAL); 9925 } 9926 prog_fd = bpf_program__fd(prog); 9927 if (prog_fd < 0) { 9928 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9929 prog->name); 9930 return libbpf_err_ptr(-EINVAL); 9931 } 9932 9933 link = calloc(1, sizeof(*link)); 9934 if (!link) 9935 return libbpf_err_ptr(-ENOMEM); 9936 link->link.detach = &bpf_link_perf_detach; 9937 link->link.dealloc = &bpf_link_perf_dealloc; 9938 link->perf_event_fd = pfd; 9939 9940 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9941 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9942 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9943 9944 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9945 if (link_fd < 0) { 9946 err = -errno; 9947 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9948 prog->name, pfd, 9949 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9950 goto err_out; 9951 } 9952 link->link.fd = link_fd; 9953 } else { 9954 if (OPTS_GET(opts, bpf_cookie, 0)) { 9955 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9956 err = -EOPNOTSUPP; 9957 goto err_out; 9958 } 9959 9960 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9961 err = -errno; 9962 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9963 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9964 if (err == -EPROTO) 9965 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9966 prog->name, pfd); 9967 goto err_out; 9968 } 9969 link->link.fd = pfd; 9970 } 9971 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9972 err = -errno; 9973 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9974 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9975 goto err_out; 9976 } 9977 9978 return &link->link; 9979 err_out: 9980 if (link_fd >= 0) 9981 close(link_fd); 9982 free(link); 9983 return libbpf_err_ptr(err); 9984 } 9985 9986 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9987 { 9988 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9989 } 9990 9991 /* 9992 * this function is expected to parse integer in the range of [0, 2^31-1] from 9993 * given file using scanf format string fmt. If actual parsed value is 9994 * negative, the result might be indistinguishable from error 9995 */ 9996 static int parse_uint_from_file(const char *file, const char *fmt) 9997 { 9998 char buf[STRERR_BUFSIZE]; 9999 int err, ret; 10000 FILE *f; 10001 10002 f = fopen(file, "r"); 10003 if (!f) { 10004 err = -errno; 10005 pr_debug("failed to open '%s': %s\n", file, 10006 libbpf_strerror_r(err, buf, sizeof(buf))); 10007 return err; 10008 } 10009 err = fscanf(f, fmt, &ret); 10010 if (err != 1) { 10011 err = err == EOF ? -EIO : -errno; 10012 pr_debug("failed to parse '%s': %s\n", file, 10013 libbpf_strerror_r(err, buf, sizeof(buf))); 10014 fclose(f); 10015 return err; 10016 } 10017 fclose(f); 10018 return ret; 10019 } 10020 10021 static int determine_kprobe_perf_type(void) 10022 { 10023 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10024 10025 return parse_uint_from_file(file, "%d\n"); 10026 } 10027 10028 static int determine_uprobe_perf_type(void) 10029 { 10030 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10031 10032 return parse_uint_from_file(file, "%d\n"); 10033 } 10034 10035 static int determine_kprobe_retprobe_bit(void) 10036 { 10037 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10038 10039 return parse_uint_from_file(file, "config:%d\n"); 10040 } 10041 10042 static int determine_uprobe_retprobe_bit(void) 10043 { 10044 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10045 10046 return parse_uint_from_file(file, "config:%d\n"); 10047 } 10048 10049 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10050 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10051 10052 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10053 uint64_t offset, int pid, size_t ref_ctr_off) 10054 { 10055 struct perf_event_attr attr = {}; 10056 char errmsg[STRERR_BUFSIZE]; 10057 int type, pfd, err; 10058 10059 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10060 return -EINVAL; 10061 10062 type = uprobe ? determine_uprobe_perf_type() 10063 : determine_kprobe_perf_type(); 10064 if (type < 0) { 10065 pr_warn("failed to determine %s perf type: %s\n", 10066 uprobe ? "uprobe" : "kprobe", 10067 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10068 return type; 10069 } 10070 if (retprobe) { 10071 int bit = uprobe ? determine_uprobe_retprobe_bit() 10072 : determine_kprobe_retprobe_bit(); 10073 10074 if (bit < 0) { 10075 pr_warn("failed to determine %s retprobe bit: %s\n", 10076 uprobe ? "uprobe" : "kprobe", 10077 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10078 return bit; 10079 } 10080 attr.config |= 1 << bit; 10081 } 10082 attr.size = sizeof(attr); 10083 attr.type = type; 10084 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10085 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10086 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10087 10088 /* pid filter is meaningful only for uprobes */ 10089 pfd = syscall(__NR_perf_event_open, &attr, 10090 pid < 0 ? -1 : pid /* pid */, 10091 pid == -1 ? 0 : -1 /* cpu */, 10092 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10093 if (pfd < 0) { 10094 err = -errno; 10095 pr_warn("%s perf_event_open() failed: %s\n", 10096 uprobe ? "uprobe" : "kprobe", 10097 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10098 return err; 10099 } 10100 return pfd; 10101 } 10102 10103 static int append_to_file(const char *file, const char *fmt, ...) 10104 { 10105 int fd, n, err = 0; 10106 va_list ap; 10107 10108 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10109 if (fd < 0) 10110 return -errno; 10111 10112 va_start(ap, fmt); 10113 n = vdprintf(fd, fmt, ap); 10114 va_end(ap); 10115 10116 if (n < 0) 10117 err = -errno; 10118 10119 close(fd); 10120 return err; 10121 } 10122 10123 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10124 const char *kfunc_name, size_t offset) 10125 { 10126 static int index = 0; 10127 10128 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10129 __sync_fetch_and_add(&index, 1)); 10130 } 10131 10132 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10133 const char *kfunc_name, size_t offset) 10134 { 10135 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10136 10137 return append_to_file(file, "%c:%s/%s %s+0x%zx", 10138 retprobe ? 'r' : 'p', 10139 retprobe ? "kretprobes" : "kprobes", 10140 probe_name, kfunc_name, offset); 10141 } 10142 10143 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10144 { 10145 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10146 10147 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 10148 } 10149 10150 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10151 { 10152 char file[256]; 10153 10154 snprintf(file, sizeof(file), 10155 "/sys/kernel/debug/tracing/events/%s/%s/id", 10156 retprobe ? "kretprobes" : "kprobes", probe_name); 10157 10158 return parse_uint_from_file(file, "%d\n"); 10159 } 10160 10161 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10162 const char *kfunc_name, size_t offset, int pid) 10163 { 10164 struct perf_event_attr attr = {}; 10165 char errmsg[STRERR_BUFSIZE]; 10166 int type, pfd, err; 10167 10168 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10169 if (err < 0) { 10170 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10171 kfunc_name, offset, 10172 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10173 return err; 10174 } 10175 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10176 if (type < 0) { 10177 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10178 kfunc_name, offset, 10179 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10180 return type; 10181 } 10182 attr.size = sizeof(attr); 10183 attr.config = type; 10184 attr.type = PERF_TYPE_TRACEPOINT; 10185 10186 pfd = syscall(__NR_perf_event_open, &attr, 10187 pid < 0 ? -1 : pid, /* pid */ 10188 pid == -1 ? 0 : -1, /* cpu */ 10189 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10190 if (pfd < 0) { 10191 err = -errno; 10192 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10193 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10194 return err; 10195 } 10196 return pfd; 10197 } 10198 10199 struct bpf_link * 10200 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10201 const char *func_name, 10202 const struct bpf_kprobe_opts *opts) 10203 { 10204 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10205 char errmsg[STRERR_BUFSIZE]; 10206 char *legacy_probe = NULL; 10207 struct bpf_link *link; 10208 size_t offset; 10209 bool retprobe, legacy; 10210 int pfd, err; 10211 10212 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10213 return libbpf_err_ptr(-EINVAL); 10214 10215 retprobe = OPTS_GET(opts, retprobe, false); 10216 offset = OPTS_GET(opts, offset, 0); 10217 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10218 10219 legacy = determine_kprobe_perf_type() < 0; 10220 if (!legacy) { 10221 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10222 func_name, offset, 10223 -1 /* pid */, 0 /* ref_ctr_off */); 10224 } else { 10225 char probe_name[256]; 10226 10227 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10228 func_name, offset); 10229 10230 legacy_probe = strdup(probe_name); 10231 if (!legacy_probe) 10232 return libbpf_err_ptr(-ENOMEM); 10233 10234 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10235 offset, -1 /* pid */); 10236 } 10237 if (pfd < 0) { 10238 err = -errno; 10239 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10240 prog->name, retprobe ? "kretprobe" : "kprobe", 10241 func_name, offset, 10242 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10243 goto err_out; 10244 } 10245 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10246 err = libbpf_get_error(link); 10247 if (err) { 10248 close(pfd); 10249 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10250 prog->name, retprobe ? "kretprobe" : "kprobe", 10251 func_name, offset, 10252 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10253 goto err_out; 10254 } 10255 if (legacy) { 10256 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10257 10258 perf_link->legacy_probe_name = legacy_probe; 10259 perf_link->legacy_is_kprobe = true; 10260 perf_link->legacy_is_retprobe = retprobe; 10261 } 10262 10263 return link; 10264 err_out: 10265 free(legacy_probe); 10266 return libbpf_err_ptr(err); 10267 } 10268 10269 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10270 bool retprobe, 10271 const char *func_name) 10272 { 10273 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10274 .retprobe = retprobe, 10275 ); 10276 10277 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10278 } 10279 10280 /* Adapted from perf/util/string.c */ 10281 static bool glob_match(const char *str, const char *pat) 10282 { 10283 while (*str && *pat && *pat != '*') { 10284 if (*pat == '?') { /* Matches any single character */ 10285 str++; 10286 pat++; 10287 continue; 10288 } 10289 if (*str != *pat) 10290 return false; 10291 str++; 10292 pat++; 10293 } 10294 /* Check wild card */ 10295 if (*pat == '*') { 10296 while (*pat == '*') 10297 pat++; 10298 if (!*pat) /* Tail wild card matches all */ 10299 return true; 10300 while (*str) 10301 if (glob_match(str++, pat)) 10302 return true; 10303 } 10304 return !*str && !*pat; 10305 } 10306 10307 struct kprobe_multi_resolve { 10308 const char *pattern; 10309 unsigned long *addrs; 10310 size_t cap; 10311 size_t cnt; 10312 }; 10313 10314 static int 10315 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10316 const char *sym_name, void *ctx) 10317 { 10318 struct kprobe_multi_resolve *res = ctx; 10319 int err; 10320 10321 if (!glob_match(sym_name, res->pattern)) 10322 return 0; 10323 10324 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10325 res->cnt + 1); 10326 if (err) 10327 return err; 10328 10329 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10330 return 0; 10331 } 10332 10333 struct bpf_link * 10334 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10335 const char *pattern, 10336 const struct bpf_kprobe_multi_opts *opts) 10337 { 10338 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10339 struct kprobe_multi_resolve res = { 10340 .pattern = pattern, 10341 }; 10342 struct bpf_link *link = NULL; 10343 char errmsg[STRERR_BUFSIZE]; 10344 const unsigned long *addrs; 10345 int err, link_fd, prog_fd; 10346 const __u64 *cookies; 10347 const char **syms; 10348 bool retprobe; 10349 size_t cnt; 10350 10351 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10352 return libbpf_err_ptr(-EINVAL); 10353 10354 syms = OPTS_GET(opts, syms, false); 10355 addrs = OPTS_GET(opts, addrs, false); 10356 cnt = OPTS_GET(opts, cnt, false); 10357 cookies = OPTS_GET(opts, cookies, false); 10358 10359 if (!pattern && !addrs && !syms) 10360 return libbpf_err_ptr(-EINVAL); 10361 if (pattern && (addrs || syms || cookies || cnt)) 10362 return libbpf_err_ptr(-EINVAL); 10363 if (!pattern && !cnt) 10364 return libbpf_err_ptr(-EINVAL); 10365 if (addrs && syms) 10366 return libbpf_err_ptr(-EINVAL); 10367 10368 if (pattern) { 10369 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10370 if (err) 10371 goto error; 10372 if (!res.cnt) { 10373 err = -ENOENT; 10374 goto error; 10375 } 10376 addrs = res.addrs; 10377 cnt = res.cnt; 10378 } 10379 10380 retprobe = OPTS_GET(opts, retprobe, false); 10381 10382 lopts.kprobe_multi.syms = syms; 10383 lopts.kprobe_multi.addrs = addrs; 10384 lopts.kprobe_multi.cookies = cookies; 10385 lopts.kprobe_multi.cnt = cnt; 10386 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10387 10388 link = calloc(1, sizeof(*link)); 10389 if (!link) { 10390 err = -ENOMEM; 10391 goto error; 10392 } 10393 link->detach = &bpf_link__detach_fd; 10394 10395 prog_fd = bpf_program__fd(prog); 10396 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10397 if (link_fd < 0) { 10398 err = -errno; 10399 pr_warn("prog '%s': failed to attach: %s\n", 10400 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10401 goto error; 10402 } 10403 link->fd = link_fd; 10404 free(res.addrs); 10405 return link; 10406 10407 error: 10408 free(link); 10409 free(res.addrs); 10410 return libbpf_err_ptr(err); 10411 } 10412 10413 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10414 { 10415 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10416 unsigned long offset = 0; 10417 const char *func_name; 10418 char *func; 10419 int n; 10420 10421 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10422 if (opts.retprobe) 10423 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10424 else 10425 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10426 10427 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10428 if (n < 1) { 10429 pr_warn("kprobe name is invalid: %s\n", func_name); 10430 return -EINVAL; 10431 } 10432 if (opts.retprobe && offset != 0) { 10433 free(func); 10434 pr_warn("kretprobes do not support offset specification\n"); 10435 return -EINVAL; 10436 } 10437 10438 opts.offset = offset; 10439 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10440 free(func); 10441 return libbpf_get_error(*link); 10442 } 10443 10444 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10445 { 10446 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10447 const char *spec; 10448 char *pattern; 10449 int n; 10450 10451 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10452 if (opts.retprobe) 10453 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10454 else 10455 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10456 10457 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10458 if (n < 1) { 10459 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10460 return -EINVAL; 10461 } 10462 10463 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10464 free(pattern); 10465 return libbpf_get_error(*link); 10466 } 10467 10468 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10469 const char *binary_path, uint64_t offset) 10470 { 10471 int i; 10472 10473 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10474 10475 /* sanitize binary_path in the probe name */ 10476 for (i = 0; buf[i]; i++) { 10477 if (!isalnum(buf[i])) 10478 buf[i] = '_'; 10479 } 10480 } 10481 10482 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10483 const char *binary_path, size_t offset) 10484 { 10485 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10486 10487 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10488 retprobe ? 'r' : 'p', 10489 retprobe ? "uretprobes" : "uprobes", 10490 probe_name, binary_path, offset); 10491 } 10492 10493 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10494 { 10495 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10496 10497 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10498 } 10499 10500 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10501 { 10502 char file[512]; 10503 10504 snprintf(file, sizeof(file), 10505 "/sys/kernel/debug/tracing/events/%s/%s/id", 10506 retprobe ? "uretprobes" : "uprobes", probe_name); 10507 10508 return parse_uint_from_file(file, "%d\n"); 10509 } 10510 10511 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10512 const char *binary_path, size_t offset, int pid) 10513 { 10514 struct perf_event_attr attr; 10515 int type, pfd, err; 10516 10517 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10518 if (err < 0) { 10519 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10520 binary_path, (size_t)offset, err); 10521 return err; 10522 } 10523 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10524 if (type < 0) { 10525 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10526 binary_path, offset, err); 10527 return type; 10528 } 10529 10530 memset(&attr, 0, sizeof(attr)); 10531 attr.size = sizeof(attr); 10532 attr.config = type; 10533 attr.type = PERF_TYPE_TRACEPOINT; 10534 10535 pfd = syscall(__NR_perf_event_open, &attr, 10536 pid < 0 ? -1 : pid, /* pid */ 10537 pid == -1 ? 0 : -1, /* cpu */ 10538 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10539 if (pfd < 0) { 10540 err = -errno; 10541 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10542 return err; 10543 } 10544 return pfd; 10545 } 10546 10547 /* uprobes deal in relative offsets; subtract the base address associated with 10548 * the mapped binary. See Documentation/trace/uprobetracer.rst for more 10549 * details. 10550 */ 10551 static long elf_find_relative_offset(const char *filename, Elf *elf, long addr) 10552 { 10553 size_t n; 10554 int i; 10555 10556 if (elf_getphdrnum(elf, &n)) { 10557 pr_warn("elf: failed to find program headers for '%s': %s\n", filename, 10558 elf_errmsg(-1)); 10559 return -ENOENT; 10560 } 10561 10562 for (i = 0; i < n; i++) { 10563 int seg_start, seg_end, seg_offset; 10564 GElf_Phdr phdr; 10565 10566 if (!gelf_getphdr(elf, i, &phdr)) { 10567 pr_warn("elf: failed to get program header %d from '%s': %s\n", i, filename, 10568 elf_errmsg(-1)); 10569 return -ENOENT; 10570 } 10571 if (phdr.p_type != PT_LOAD || !(phdr.p_flags & PF_X)) 10572 continue; 10573 10574 seg_start = phdr.p_vaddr; 10575 seg_end = seg_start + phdr.p_memsz; 10576 seg_offset = phdr.p_offset; 10577 if (addr >= seg_start && addr < seg_end) 10578 return addr - seg_start + seg_offset; 10579 } 10580 pr_warn("elf: failed to find prog header containing 0x%lx in '%s'\n", addr, filename); 10581 return -ENOENT; 10582 } 10583 10584 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10585 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10586 { 10587 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10588 GElf_Shdr sh; 10589 10590 if (!gelf_getshdr(scn, &sh)) 10591 continue; 10592 if (sh.sh_type == sh_type) 10593 return scn; 10594 } 10595 return NULL; 10596 } 10597 10598 /* Find offset of function name in object specified by path. "name" matches 10599 * symbol name or name@@LIB for library functions. 10600 */ 10601 static long elf_find_func_offset(const char *binary_path, const char *name) 10602 { 10603 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10604 bool is_shared_lib, is_name_qualified; 10605 char errmsg[STRERR_BUFSIZE]; 10606 long ret = -ENOENT; 10607 size_t name_len; 10608 GElf_Ehdr ehdr; 10609 Elf *elf; 10610 10611 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10612 if (fd < 0) { 10613 ret = -errno; 10614 pr_warn("failed to open %s: %s\n", binary_path, 10615 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10616 return ret; 10617 } 10618 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10619 if (!elf) { 10620 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10621 close(fd); 10622 return -LIBBPF_ERRNO__FORMAT; 10623 } 10624 if (!gelf_getehdr(elf, &ehdr)) { 10625 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10626 ret = -LIBBPF_ERRNO__FORMAT; 10627 goto out; 10628 } 10629 /* for shared lib case, we do not need to calculate relative offset */ 10630 is_shared_lib = ehdr.e_type == ET_DYN; 10631 10632 name_len = strlen(name); 10633 /* Does name specify "@@LIB"? */ 10634 is_name_qualified = strstr(name, "@@") != NULL; 10635 10636 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10637 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10638 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10639 * reported as a warning/error. 10640 */ 10641 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10642 size_t nr_syms, strtabidx, idx; 10643 Elf_Data *symbols = NULL; 10644 Elf_Scn *scn = NULL; 10645 int last_bind = -1; 10646 const char *sname; 10647 GElf_Shdr sh; 10648 10649 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10650 if (!scn) { 10651 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10652 binary_path); 10653 continue; 10654 } 10655 if (!gelf_getshdr(scn, &sh)) 10656 continue; 10657 strtabidx = sh.sh_link; 10658 symbols = elf_getdata(scn, 0); 10659 if (!symbols) { 10660 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10661 binary_path, elf_errmsg(-1)); 10662 ret = -LIBBPF_ERRNO__FORMAT; 10663 goto out; 10664 } 10665 nr_syms = symbols->d_size / sh.sh_entsize; 10666 10667 for (idx = 0; idx < nr_syms; idx++) { 10668 int curr_bind; 10669 GElf_Sym sym; 10670 10671 if (!gelf_getsym(symbols, idx, &sym)) 10672 continue; 10673 10674 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10675 continue; 10676 10677 sname = elf_strptr(elf, strtabidx, sym.st_name); 10678 if (!sname) 10679 continue; 10680 10681 curr_bind = GELF_ST_BIND(sym.st_info); 10682 10683 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10684 if (strncmp(sname, name, name_len) != 0) 10685 continue; 10686 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10687 * additional characters in sname should be of the form "@@LIB". 10688 */ 10689 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10690 continue; 10691 10692 if (ret >= 0) { 10693 /* handle multiple matches */ 10694 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10695 /* Only accept one non-weak bind. */ 10696 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10697 sname, name, binary_path); 10698 ret = -LIBBPF_ERRNO__FORMAT; 10699 goto out; 10700 } else if (curr_bind == STB_WEAK) { 10701 /* already have a non-weak bind, and 10702 * this is a weak bind, so ignore. 10703 */ 10704 continue; 10705 } 10706 } 10707 ret = sym.st_value; 10708 last_bind = curr_bind; 10709 } 10710 /* For binaries that are not shared libraries, we need relative offset */ 10711 if (ret > 0 && !is_shared_lib) 10712 ret = elf_find_relative_offset(binary_path, elf, ret); 10713 if (ret > 0) 10714 break; 10715 } 10716 10717 if (ret > 0) { 10718 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10719 ret); 10720 } else { 10721 if (ret == 0) { 10722 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10723 is_shared_lib ? "should not be 0 in a shared library" : 10724 "try using shared library path instead"); 10725 ret = -ENOENT; 10726 } else { 10727 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10728 } 10729 } 10730 out: 10731 elf_end(elf); 10732 close(fd); 10733 return ret; 10734 } 10735 10736 static const char *arch_specific_lib_paths(void) 10737 { 10738 /* 10739 * Based on https://packages.debian.org/sid/libc6. 10740 * 10741 * Assume that the traced program is built for the same architecture 10742 * as libbpf, which should cover the vast majority of cases. 10743 */ 10744 #if defined(__x86_64__) 10745 return "/lib/x86_64-linux-gnu"; 10746 #elif defined(__i386__) 10747 return "/lib/i386-linux-gnu"; 10748 #elif defined(__s390x__) 10749 return "/lib/s390x-linux-gnu"; 10750 #elif defined(__s390__) 10751 return "/lib/s390-linux-gnu"; 10752 #elif defined(__arm__) && defined(__SOFTFP__) 10753 return "/lib/arm-linux-gnueabi"; 10754 #elif defined(__arm__) && !defined(__SOFTFP__) 10755 return "/lib/arm-linux-gnueabihf"; 10756 #elif defined(__aarch64__) 10757 return "/lib/aarch64-linux-gnu"; 10758 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10759 return "/lib/mips64el-linux-gnuabi64"; 10760 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10761 return "/lib/mipsel-linux-gnu"; 10762 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10763 return "/lib/powerpc64le-linux-gnu"; 10764 #elif defined(__sparc__) && defined(__arch64__) 10765 return "/lib/sparc64-linux-gnu"; 10766 #elif defined(__riscv) && __riscv_xlen == 64 10767 return "/lib/riscv64-linux-gnu"; 10768 #else 10769 return NULL; 10770 #endif 10771 } 10772 10773 /* Get full path to program/shared library. */ 10774 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10775 { 10776 const char *search_paths[3] = {}; 10777 int i; 10778 10779 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10780 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10781 search_paths[1] = "/usr/lib64:/usr/lib"; 10782 search_paths[2] = arch_specific_lib_paths(); 10783 } else { 10784 search_paths[0] = getenv("PATH"); 10785 search_paths[1] = "/usr/bin:/usr/sbin"; 10786 } 10787 10788 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10789 const char *s; 10790 10791 if (!search_paths[i]) 10792 continue; 10793 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10794 char *next_path; 10795 int seg_len; 10796 10797 if (s[0] == ':') 10798 s++; 10799 next_path = strchr(s, ':'); 10800 seg_len = next_path ? next_path - s : strlen(s); 10801 if (!seg_len) 10802 continue; 10803 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10804 /* ensure it is an executable file/link */ 10805 if (access(result, R_OK | X_OK) < 0) 10806 continue; 10807 pr_debug("resolved '%s' to '%s'\n", file, result); 10808 return 0; 10809 } 10810 } 10811 return -ENOENT; 10812 } 10813 10814 LIBBPF_API struct bpf_link * 10815 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10816 const char *binary_path, size_t func_offset, 10817 const struct bpf_uprobe_opts *opts) 10818 { 10819 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10820 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10821 char full_binary_path[PATH_MAX]; 10822 struct bpf_link *link; 10823 size_t ref_ctr_off; 10824 int pfd, err; 10825 bool retprobe, legacy; 10826 const char *func_name; 10827 10828 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10829 return libbpf_err_ptr(-EINVAL); 10830 10831 retprobe = OPTS_GET(opts, retprobe, false); 10832 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10833 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10834 10835 if (binary_path && !strchr(binary_path, '/')) { 10836 err = resolve_full_path(binary_path, full_binary_path, 10837 sizeof(full_binary_path)); 10838 if (err) { 10839 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10840 prog->name, binary_path, err); 10841 return libbpf_err_ptr(err); 10842 } 10843 binary_path = full_binary_path; 10844 } 10845 func_name = OPTS_GET(opts, func_name, NULL); 10846 if (func_name) { 10847 long sym_off; 10848 10849 if (!binary_path) { 10850 pr_warn("prog '%s': name-based attach requires binary_path\n", 10851 prog->name); 10852 return libbpf_err_ptr(-EINVAL); 10853 } 10854 sym_off = elf_find_func_offset(binary_path, func_name); 10855 if (sym_off < 0) 10856 return libbpf_err_ptr(sym_off); 10857 func_offset += sym_off; 10858 } 10859 10860 legacy = determine_uprobe_perf_type() < 0; 10861 if (!legacy) { 10862 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10863 func_offset, pid, ref_ctr_off); 10864 } else { 10865 char probe_name[PATH_MAX + 64]; 10866 10867 if (ref_ctr_off) 10868 return libbpf_err_ptr(-EINVAL); 10869 10870 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10871 binary_path, func_offset); 10872 10873 legacy_probe = strdup(probe_name); 10874 if (!legacy_probe) 10875 return libbpf_err_ptr(-ENOMEM); 10876 10877 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10878 binary_path, func_offset, pid); 10879 } 10880 if (pfd < 0) { 10881 err = -errno; 10882 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10883 prog->name, retprobe ? "uretprobe" : "uprobe", 10884 binary_path, func_offset, 10885 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10886 goto err_out; 10887 } 10888 10889 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10890 err = libbpf_get_error(link); 10891 if (err) { 10892 close(pfd); 10893 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10894 prog->name, retprobe ? "uretprobe" : "uprobe", 10895 binary_path, func_offset, 10896 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10897 goto err_out; 10898 } 10899 if (legacy) { 10900 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10901 10902 perf_link->legacy_probe_name = legacy_probe; 10903 perf_link->legacy_is_kprobe = false; 10904 perf_link->legacy_is_retprobe = retprobe; 10905 } 10906 return link; 10907 err_out: 10908 free(legacy_probe); 10909 return libbpf_err_ptr(err); 10910 10911 } 10912 10913 /* Format of u[ret]probe section definition supporting auto-attach: 10914 * u[ret]probe/binary:function[+offset] 10915 * 10916 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10917 * full binary path via bpf_program__attach_uprobe_opts. 10918 * 10919 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10920 * specified (and auto-attach is not possible) or the above format is specified for 10921 * auto-attach. 10922 */ 10923 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10924 { 10925 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10926 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10927 int n, ret = -EINVAL; 10928 long offset = 0; 10929 10930 *link = NULL; 10931 10932 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10933 &probe_type, &binary_path, &func_name, &offset); 10934 switch (n) { 10935 case 1: 10936 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10937 ret = 0; 10938 break; 10939 case 2: 10940 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10941 prog->name, prog->sec_name); 10942 break; 10943 case 3: 10944 case 4: 10945 opts.retprobe = strcmp(probe_type, "uretprobe") == 0; 10946 if (opts.retprobe && offset != 0) { 10947 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10948 prog->name); 10949 break; 10950 } 10951 opts.func_name = func_name; 10952 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10953 ret = libbpf_get_error(*link); 10954 break; 10955 default: 10956 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10957 prog->sec_name); 10958 break; 10959 } 10960 free(probe_type); 10961 free(binary_path); 10962 free(func_name); 10963 10964 return ret; 10965 } 10966 10967 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10968 bool retprobe, pid_t pid, 10969 const char *binary_path, 10970 size_t func_offset) 10971 { 10972 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10973 10974 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10975 } 10976 10977 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10978 pid_t pid, const char *binary_path, 10979 const char *usdt_provider, const char *usdt_name, 10980 const struct bpf_usdt_opts *opts) 10981 { 10982 char resolved_path[512]; 10983 struct bpf_object *obj = prog->obj; 10984 struct bpf_link *link; 10985 long usdt_cookie; 10986 int err; 10987 10988 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10989 return libbpf_err_ptr(-EINVAL); 10990 10991 if (bpf_program__fd(prog) < 0) { 10992 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10993 prog->name); 10994 return libbpf_err_ptr(-EINVAL); 10995 } 10996 10997 if (!strchr(binary_path, '/')) { 10998 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10999 if (err) { 11000 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11001 prog->name, binary_path, err); 11002 return libbpf_err_ptr(err); 11003 } 11004 binary_path = resolved_path; 11005 } 11006 11007 /* USDT manager is instantiated lazily on first USDT attach. It will 11008 * be destroyed together with BPF object in bpf_object__close(). 11009 */ 11010 if (IS_ERR(obj->usdt_man)) 11011 return libbpf_ptr(obj->usdt_man); 11012 if (!obj->usdt_man) { 11013 obj->usdt_man = usdt_manager_new(obj); 11014 if (IS_ERR(obj->usdt_man)) 11015 return libbpf_ptr(obj->usdt_man); 11016 } 11017 11018 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11019 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11020 usdt_provider, usdt_name, usdt_cookie); 11021 err = libbpf_get_error(link); 11022 if (err) 11023 return libbpf_err_ptr(err); 11024 return link; 11025 } 11026 11027 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11028 { 11029 char *path = NULL, *provider = NULL, *name = NULL; 11030 const char *sec_name; 11031 int n, err; 11032 11033 sec_name = bpf_program__section_name(prog); 11034 if (strcmp(sec_name, "usdt") == 0) { 11035 /* no auto-attach for just SEC("usdt") */ 11036 *link = NULL; 11037 return 0; 11038 } 11039 11040 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11041 if (n != 3) { 11042 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11043 sec_name); 11044 err = -EINVAL; 11045 } else { 11046 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11047 provider, name, NULL); 11048 err = libbpf_get_error(*link); 11049 } 11050 free(path); 11051 free(provider); 11052 free(name); 11053 return err; 11054 } 11055 11056 static int determine_tracepoint_id(const char *tp_category, 11057 const char *tp_name) 11058 { 11059 char file[PATH_MAX]; 11060 int ret; 11061 11062 ret = snprintf(file, sizeof(file), 11063 "/sys/kernel/debug/tracing/events/%s/%s/id", 11064 tp_category, tp_name); 11065 if (ret < 0) 11066 return -errno; 11067 if (ret >= sizeof(file)) { 11068 pr_debug("tracepoint %s/%s path is too long\n", 11069 tp_category, tp_name); 11070 return -E2BIG; 11071 } 11072 return parse_uint_from_file(file, "%d\n"); 11073 } 11074 11075 static int perf_event_open_tracepoint(const char *tp_category, 11076 const char *tp_name) 11077 { 11078 struct perf_event_attr attr = {}; 11079 char errmsg[STRERR_BUFSIZE]; 11080 int tp_id, pfd, err; 11081 11082 tp_id = determine_tracepoint_id(tp_category, tp_name); 11083 if (tp_id < 0) { 11084 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11085 tp_category, tp_name, 11086 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11087 return tp_id; 11088 } 11089 11090 attr.type = PERF_TYPE_TRACEPOINT; 11091 attr.size = sizeof(attr); 11092 attr.config = tp_id; 11093 11094 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11095 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11096 if (pfd < 0) { 11097 err = -errno; 11098 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11099 tp_category, tp_name, 11100 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11101 return err; 11102 } 11103 return pfd; 11104 } 11105 11106 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11107 const char *tp_category, 11108 const char *tp_name, 11109 const struct bpf_tracepoint_opts *opts) 11110 { 11111 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11112 char errmsg[STRERR_BUFSIZE]; 11113 struct bpf_link *link; 11114 int pfd, err; 11115 11116 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11117 return libbpf_err_ptr(-EINVAL); 11118 11119 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11120 11121 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11122 if (pfd < 0) { 11123 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11124 prog->name, tp_category, tp_name, 11125 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11126 return libbpf_err_ptr(pfd); 11127 } 11128 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11129 err = libbpf_get_error(link); 11130 if (err) { 11131 close(pfd); 11132 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11133 prog->name, tp_category, tp_name, 11134 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11135 return libbpf_err_ptr(err); 11136 } 11137 return link; 11138 } 11139 11140 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11141 const char *tp_category, 11142 const char *tp_name) 11143 { 11144 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11145 } 11146 11147 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11148 { 11149 char *sec_name, *tp_cat, *tp_name; 11150 11151 sec_name = strdup(prog->sec_name); 11152 if (!sec_name) 11153 return -ENOMEM; 11154 11155 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11156 if (str_has_pfx(prog->sec_name, "tp/")) 11157 tp_cat = sec_name + sizeof("tp/") - 1; 11158 else 11159 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11160 tp_name = strchr(tp_cat, '/'); 11161 if (!tp_name) { 11162 free(sec_name); 11163 return -EINVAL; 11164 } 11165 *tp_name = '\0'; 11166 tp_name++; 11167 11168 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11169 free(sec_name); 11170 return libbpf_get_error(*link); 11171 } 11172 11173 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11174 const char *tp_name) 11175 { 11176 char errmsg[STRERR_BUFSIZE]; 11177 struct bpf_link *link; 11178 int prog_fd, pfd; 11179 11180 prog_fd = bpf_program__fd(prog); 11181 if (prog_fd < 0) { 11182 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11183 return libbpf_err_ptr(-EINVAL); 11184 } 11185 11186 link = calloc(1, sizeof(*link)); 11187 if (!link) 11188 return libbpf_err_ptr(-ENOMEM); 11189 link->detach = &bpf_link__detach_fd; 11190 11191 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11192 if (pfd < 0) { 11193 pfd = -errno; 11194 free(link); 11195 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11196 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11197 return libbpf_err_ptr(pfd); 11198 } 11199 link->fd = pfd; 11200 return link; 11201 } 11202 11203 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11204 { 11205 static const char *const prefixes[] = { 11206 "raw_tp/", 11207 "raw_tracepoint/", 11208 "raw_tp.w/", 11209 "raw_tracepoint.w/", 11210 }; 11211 size_t i; 11212 const char *tp_name = NULL; 11213 11214 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11215 if (str_has_pfx(prog->sec_name, prefixes[i])) { 11216 tp_name = prog->sec_name + strlen(prefixes[i]); 11217 break; 11218 } 11219 } 11220 if (!tp_name) { 11221 pr_warn("prog '%s': invalid section name '%s'\n", 11222 prog->name, prog->sec_name); 11223 return -EINVAL; 11224 } 11225 11226 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11227 return libbpf_get_error(link); 11228 } 11229 11230 /* Common logic for all BPF program types that attach to a btf_id */ 11231 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 11232 { 11233 char errmsg[STRERR_BUFSIZE]; 11234 struct bpf_link *link; 11235 int prog_fd, pfd; 11236 11237 prog_fd = bpf_program__fd(prog); 11238 if (prog_fd < 0) { 11239 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11240 return libbpf_err_ptr(-EINVAL); 11241 } 11242 11243 link = calloc(1, sizeof(*link)); 11244 if (!link) 11245 return libbpf_err_ptr(-ENOMEM); 11246 link->detach = &bpf_link__detach_fd; 11247 11248 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 11249 if (pfd < 0) { 11250 pfd = -errno; 11251 free(link); 11252 pr_warn("prog '%s': failed to attach: %s\n", 11253 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11254 return libbpf_err_ptr(pfd); 11255 } 11256 link->fd = pfd; 11257 return (struct bpf_link *)link; 11258 } 11259 11260 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11261 { 11262 return bpf_program__attach_btf_id(prog); 11263 } 11264 11265 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11266 { 11267 return bpf_program__attach_btf_id(prog); 11268 } 11269 11270 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11271 { 11272 *link = bpf_program__attach_trace(prog); 11273 return libbpf_get_error(*link); 11274 } 11275 11276 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11277 { 11278 *link = bpf_program__attach_lsm(prog); 11279 return libbpf_get_error(*link); 11280 } 11281 11282 static struct bpf_link * 11283 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11284 const char *target_name) 11285 { 11286 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11287 .target_btf_id = btf_id); 11288 enum bpf_attach_type attach_type; 11289 char errmsg[STRERR_BUFSIZE]; 11290 struct bpf_link *link; 11291 int prog_fd, link_fd; 11292 11293 prog_fd = bpf_program__fd(prog); 11294 if (prog_fd < 0) { 11295 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11296 return libbpf_err_ptr(-EINVAL); 11297 } 11298 11299 link = calloc(1, sizeof(*link)); 11300 if (!link) 11301 return libbpf_err_ptr(-ENOMEM); 11302 link->detach = &bpf_link__detach_fd; 11303 11304 attach_type = bpf_program__expected_attach_type(prog); 11305 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11306 if (link_fd < 0) { 11307 link_fd = -errno; 11308 free(link); 11309 pr_warn("prog '%s': failed to attach to %s: %s\n", 11310 prog->name, target_name, 11311 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11312 return libbpf_err_ptr(link_fd); 11313 } 11314 link->fd = link_fd; 11315 return link; 11316 } 11317 11318 struct bpf_link * 11319 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11320 { 11321 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11322 } 11323 11324 struct bpf_link * 11325 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11326 { 11327 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11328 } 11329 11330 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11331 { 11332 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11333 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11334 } 11335 11336 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11337 int target_fd, 11338 const char *attach_func_name) 11339 { 11340 int btf_id; 11341 11342 if (!!target_fd != !!attach_func_name) { 11343 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11344 prog->name); 11345 return libbpf_err_ptr(-EINVAL); 11346 } 11347 11348 if (prog->type != BPF_PROG_TYPE_EXT) { 11349 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11350 prog->name); 11351 return libbpf_err_ptr(-EINVAL); 11352 } 11353 11354 if (target_fd) { 11355 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11356 if (btf_id < 0) 11357 return libbpf_err_ptr(btf_id); 11358 11359 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11360 } else { 11361 /* no target, so use raw_tracepoint_open for compatibility 11362 * with old kernels 11363 */ 11364 return bpf_program__attach_trace(prog); 11365 } 11366 } 11367 11368 struct bpf_link * 11369 bpf_program__attach_iter(const struct bpf_program *prog, 11370 const struct bpf_iter_attach_opts *opts) 11371 { 11372 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11373 char errmsg[STRERR_BUFSIZE]; 11374 struct bpf_link *link; 11375 int prog_fd, link_fd; 11376 __u32 target_fd = 0; 11377 11378 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11379 return libbpf_err_ptr(-EINVAL); 11380 11381 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11382 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11383 11384 prog_fd = bpf_program__fd(prog); 11385 if (prog_fd < 0) { 11386 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11387 return libbpf_err_ptr(-EINVAL); 11388 } 11389 11390 link = calloc(1, sizeof(*link)); 11391 if (!link) 11392 return libbpf_err_ptr(-ENOMEM); 11393 link->detach = &bpf_link__detach_fd; 11394 11395 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11396 &link_create_opts); 11397 if (link_fd < 0) { 11398 link_fd = -errno; 11399 free(link); 11400 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11401 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11402 return libbpf_err_ptr(link_fd); 11403 } 11404 link->fd = link_fd; 11405 return link; 11406 } 11407 11408 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11409 { 11410 *link = bpf_program__attach_iter(prog, NULL); 11411 return libbpf_get_error(*link); 11412 } 11413 11414 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11415 { 11416 struct bpf_link *link = NULL; 11417 int err; 11418 11419 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11420 return libbpf_err_ptr(-EOPNOTSUPP); 11421 11422 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11423 if (err) 11424 return libbpf_err_ptr(err); 11425 11426 /* When calling bpf_program__attach() explicitly, auto-attach support 11427 * is expected to work, so NULL returned link is considered an error. 11428 * This is different for skeleton's attach, see comment in 11429 * bpf_object__attach_skeleton(). 11430 */ 11431 if (!link) 11432 return libbpf_err_ptr(-EOPNOTSUPP); 11433 11434 return link; 11435 } 11436 11437 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11438 { 11439 __u32 zero = 0; 11440 11441 if (bpf_map_delete_elem(link->fd, &zero)) 11442 return -errno; 11443 11444 return 0; 11445 } 11446 11447 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11448 { 11449 struct bpf_struct_ops *st_ops; 11450 struct bpf_link *link; 11451 __u32 i, zero = 0; 11452 int err; 11453 11454 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11455 return libbpf_err_ptr(-EINVAL); 11456 11457 link = calloc(1, sizeof(*link)); 11458 if (!link) 11459 return libbpf_err_ptr(-EINVAL); 11460 11461 st_ops = map->st_ops; 11462 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11463 struct bpf_program *prog = st_ops->progs[i]; 11464 void *kern_data; 11465 int prog_fd; 11466 11467 if (!prog) 11468 continue; 11469 11470 prog_fd = bpf_program__fd(prog); 11471 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11472 *(unsigned long *)kern_data = prog_fd; 11473 } 11474 11475 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11476 if (err) { 11477 err = -errno; 11478 free(link); 11479 return libbpf_err_ptr(err); 11480 } 11481 11482 link->detach = bpf_link__detach_struct_ops; 11483 link->fd = map->fd; 11484 11485 return link; 11486 } 11487 11488 static enum bpf_perf_event_ret 11489 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11490 void **copy_mem, size_t *copy_size, 11491 bpf_perf_event_print_t fn, void *private_data) 11492 { 11493 struct perf_event_mmap_page *header = mmap_mem; 11494 __u64 data_head = ring_buffer_read_head(header); 11495 __u64 data_tail = header->data_tail; 11496 void *base = ((__u8 *)header) + page_size; 11497 int ret = LIBBPF_PERF_EVENT_CONT; 11498 struct perf_event_header *ehdr; 11499 size_t ehdr_size; 11500 11501 while (data_head != data_tail) { 11502 ehdr = base + (data_tail & (mmap_size - 1)); 11503 ehdr_size = ehdr->size; 11504 11505 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11506 void *copy_start = ehdr; 11507 size_t len_first = base + mmap_size - copy_start; 11508 size_t len_secnd = ehdr_size - len_first; 11509 11510 if (*copy_size < ehdr_size) { 11511 free(*copy_mem); 11512 *copy_mem = malloc(ehdr_size); 11513 if (!*copy_mem) { 11514 *copy_size = 0; 11515 ret = LIBBPF_PERF_EVENT_ERROR; 11516 break; 11517 } 11518 *copy_size = ehdr_size; 11519 } 11520 11521 memcpy(*copy_mem, copy_start, len_first); 11522 memcpy(*copy_mem + len_first, base, len_secnd); 11523 ehdr = *copy_mem; 11524 } 11525 11526 ret = fn(ehdr, private_data); 11527 data_tail += ehdr_size; 11528 if (ret != LIBBPF_PERF_EVENT_CONT) 11529 break; 11530 } 11531 11532 ring_buffer_write_tail(header, data_tail); 11533 return libbpf_err(ret); 11534 } 11535 11536 __attribute__((alias("perf_event_read_simple"))) 11537 enum bpf_perf_event_ret 11538 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11539 void **copy_mem, size_t *copy_size, 11540 bpf_perf_event_print_t fn, void *private_data); 11541 11542 struct perf_buffer; 11543 11544 struct perf_buffer_params { 11545 struct perf_event_attr *attr; 11546 /* if event_cb is specified, it takes precendence */ 11547 perf_buffer_event_fn event_cb; 11548 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11549 perf_buffer_sample_fn sample_cb; 11550 perf_buffer_lost_fn lost_cb; 11551 void *ctx; 11552 int cpu_cnt; 11553 int *cpus; 11554 int *map_keys; 11555 }; 11556 11557 struct perf_cpu_buf { 11558 struct perf_buffer *pb; 11559 void *base; /* mmap()'ed memory */ 11560 void *buf; /* for reconstructing segmented data */ 11561 size_t buf_size; 11562 int fd; 11563 int cpu; 11564 int map_key; 11565 }; 11566 11567 struct perf_buffer { 11568 perf_buffer_event_fn event_cb; 11569 perf_buffer_sample_fn sample_cb; 11570 perf_buffer_lost_fn lost_cb; 11571 void *ctx; /* passed into callbacks */ 11572 11573 size_t page_size; 11574 size_t mmap_size; 11575 struct perf_cpu_buf **cpu_bufs; 11576 struct epoll_event *events; 11577 int cpu_cnt; /* number of allocated CPU buffers */ 11578 int epoll_fd; /* perf event FD */ 11579 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11580 }; 11581 11582 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11583 struct perf_cpu_buf *cpu_buf) 11584 { 11585 if (!cpu_buf) 11586 return; 11587 if (cpu_buf->base && 11588 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11589 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11590 if (cpu_buf->fd >= 0) { 11591 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11592 close(cpu_buf->fd); 11593 } 11594 free(cpu_buf->buf); 11595 free(cpu_buf); 11596 } 11597 11598 void perf_buffer__free(struct perf_buffer *pb) 11599 { 11600 int i; 11601 11602 if (IS_ERR_OR_NULL(pb)) 11603 return; 11604 if (pb->cpu_bufs) { 11605 for (i = 0; i < pb->cpu_cnt; i++) { 11606 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11607 11608 if (!cpu_buf) 11609 continue; 11610 11611 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11612 perf_buffer__free_cpu_buf(pb, cpu_buf); 11613 } 11614 free(pb->cpu_bufs); 11615 } 11616 if (pb->epoll_fd >= 0) 11617 close(pb->epoll_fd); 11618 free(pb->events); 11619 free(pb); 11620 } 11621 11622 static struct perf_cpu_buf * 11623 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11624 int cpu, int map_key) 11625 { 11626 struct perf_cpu_buf *cpu_buf; 11627 char msg[STRERR_BUFSIZE]; 11628 int err; 11629 11630 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11631 if (!cpu_buf) 11632 return ERR_PTR(-ENOMEM); 11633 11634 cpu_buf->pb = pb; 11635 cpu_buf->cpu = cpu; 11636 cpu_buf->map_key = map_key; 11637 11638 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11639 -1, PERF_FLAG_FD_CLOEXEC); 11640 if (cpu_buf->fd < 0) { 11641 err = -errno; 11642 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11643 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11644 goto error; 11645 } 11646 11647 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11648 PROT_READ | PROT_WRITE, MAP_SHARED, 11649 cpu_buf->fd, 0); 11650 if (cpu_buf->base == MAP_FAILED) { 11651 cpu_buf->base = NULL; 11652 err = -errno; 11653 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11654 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11655 goto error; 11656 } 11657 11658 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11659 err = -errno; 11660 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11661 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11662 goto error; 11663 } 11664 11665 return cpu_buf; 11666 11667 error: 11668 perf_buffer__free_cpu_buf(pb, cpu_buf); 11669 return (struct perf_cpu_buf *)ERR_PTR(err); 11670 } 11671 11672 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11673 struct perf_buffer_params *p); 11674 11675 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 11676 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 11677 perf_buffer_sample_fn sample_cb, 11678 perf_buffer_lost_fn lost_cb, 11679 void *ctx, 11680 const struct perf_buffer_opts *opts) 11681 { 11682 struct perf_buffer_params p = {}; 11683 struct perf_event_attr attr = {}; 11684 11685 if (!OPTS_VALID(opts, perf_buffer_opts)) 11686 return libbpf_err_ptr(-EINVAL); 11687 11688 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11689 attr.type = PERF_TYPE_SOFTWARE; 11690 attr.sample_type = PERF_SAMPLE_RAW; 11691 attr.sample_period = 1; 11692 attr.wakeup_events = 1; 11693 11694 p.attr = &attr; 11695 p.sample_cb = sample_cb; 11696 p.lost_cb = lost_cb; 11697 p.ctx = ctx; 11698 11699 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11700 } 11701 11702 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 11703 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 11704 const struct perf_buffer_opts *opts) 11705 { 11706 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 11707 opts ? opts->sample_cb : NULL, 11708 opts ? opts->lost_cb : NULL, 11709 opts ? opts->ctx : NULL, 11710 NULL); 11711 } 11712 11713 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 11714 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 11715 struct perf_event_attr *attr, 11716 perf_buffer_event_fn event_cb, void *ctx, 11717 const struct perf_buffer_raw_opts *opts) 11718 { 11719 struct perf_buffer_params p = {}; 11720 11721 if (!attr) 11722 return libbpf_err_ptr(-EINVAL); 11723 11724 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11725 return libbpf_err_ptr(-EINVAL); 11726 11727 p.attr = attr; 11728 p.event_cb = event_cb; 11729 p.ctx = ctx; 11730 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11731 p.cpus = OPTS_GET(opts, cpus, NULL); 11732 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11733 11734 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11735 } 11736 11737 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 11738 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 11739 const struct perf_buffer_raw_opts *opts) 11740 { 11741 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 11742 .cpu_cnt = opts->cpu_cnt, 11743 .cpus = opts->cpus, 11744 .map_keys = opts->map_keys, 11745 ); 11746 11747 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 11748 opts->event_cb, opts->ctx, &inner_opts); 11749 } 11750 11751 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11752 struct perf_buffer_params *p) 11753 { 11754 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11755 struct bpf_map_info map; 11756 char msg[STRERR_BUFSIZE]; 11757 struct perf_buffer *pb; 11758 bool *online = NULL; 11759 __u32 map_info_len; 11760 int err, i, j, n; 11761 11762 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11763 pr_warn("page count should be power of two, but is %zu\n", 11764 page_cnt); 11765 return ERR_PTR(-EINVAL); 11766 } 11767 11768 /* best-effort sanity checks */ 11769 memset(&map, 0, sizeof(map)); 11770 map_info_len = sizeof(map); 11771 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11772 if (err) { 11773 err = -errno; 11774 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11775 * -EBADFD, -EFAULT, or -E2BIG on real error 11776 */ 11777 if (err != -EINVAL) { 11778 pr_warn("failed to get map info for map FD %d: %s\n", 11779 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11780 return ERR_PTR(err); 11781 } 11782 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11783 map_fd); 11784 } else { 11785 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11786 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11787 map.name); 11788 return ERR_PTR(-EINVAL); 11789 } 11790 } 11791 11792 pb = calloc(1, sizeof(*pb)); 11793 if (!pb) 11794 return ERR_PTR(-ENOMEM); 11795 11796 pb->event_cb = p->event_cb; 11797 pb->sample_cb = p->sample_cb; 11798 pb->lost_cb = p->lost_cb; 11799 pb->ctx = p->ctx; 11800 11801 pb->page_size = getpagesize(); 11802 pb->mmap_size = pb->page_size * page_cnt; 11803 pb->map_fd = map_fd; 11804 11805 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11806 if (pb->epoll_fd < 0) { 11807 err = -errno; 11808 pr_warn("failed to create epoll instance: %s\n", 11809 libbpf_strerror_r(err, msg, sizeof(msg))); 11810 goto error; 11811 } 11812 11813 if (p->cpu_cnt > 0) { 11814 pb->cpu_cnt = p->cpu_cnt; 11815 } else { 11816 pb->cpu_cnt = libbpf_num_possible_cpus(); 11817 if (pb->cpu_cnt < 0) { 11818 err = pb->cpu_cnt; 11819 goto error; 11820 } 11821 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11822 pb->cpu_cnt = map.max_entries; 11823 } 11824 11825 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11826 if (!pb->events) { 11827 err = -ENOMEM; 11828 pr_warn("failed to allocate events: out of memory\n"); 11829 goto error; 11830 } 11831 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11832 if (!pb->cpu_bufs) { 11833 err = -ENOMEM; 11834 pr_warn("failed to allocate buffers: out of memory\n"); 11835 goto error; 11836 } 11837 11838 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11839 if (err) { 11840 pr_warn("failed to get online CPU mask: %d\n", err); 11841 goto error; 11842 } 11843 11844 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11845 struct perf_cpu_buf *cpu_buf; 11846 int cpu, map_key; 11847 11848 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11849 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11850 11851 /* in case user didn't explicitly requested particular CPUs to 11852 * be attached to, skip offline/not present CPUs 11853 */ 11854 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11855 continue; 11856 11857 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11858 if (IS_ERR(cpu_buf)) { 11859 err = PTR_ERR(cpu_buf); 11860 goto error; 11861 } 11862 11863 pb->cpu_bufs[j] = cpu_buf; 11864 11865 err = bpf_map_update_elem(pb->map_fd, &map_key, 11866 &cpu_buf->fd, 0); 11867 if (err) { 11868 err = -errno; 11869 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11870 cpu, map_key, cpu_buf->fd, 11871 libbpf_strerror_r(err, msg, sizeof(msg))); 11872 goto error; 11873 } 11874 11875 pb->events[j].events = EPOLLIN; 11876 pb->events[j].data.ptr = cpu_buf; 11877 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11878 &pb->events[j]) < 0) { 11879 err = -errno; 11880 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11881 cpu, cpu_buf->fd, 11882 libbpf_strerror_r(err, msg, sizeof(msg))); 11883 goto error; 11884 } 11885 j++; 11886 } 11887 pb->cpu_cnt = j; 11888 free(online); 11889 11890 return pb; 11891 11892 error: 11893 free(online); 11894 if (pb) 11895 perf_buffer__free(pb); 11896 return ERR_PTR(err); 11897 } 11898 11899 struct perf_sample_raw { 11900 struct perf_event_header header; 11901 uint32_t size; 11902 char data[]; 11903 }; 11904 11905 struct perf_sample_lost { 11906 struct perf_event_header header; 11907 uint64_t id; 11908 uint64_t lost; 11909 uint64_t sample_id; 11910 }; 11911 11912 static enum bpf_perf_event_ret 11913 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11914 { 11915 struct perf_cpu_buf *cpu_buf = ctx; 11916 struct perf_buffer *pb = cpu_buf->pb; 11917 void *data = e; 11918 11919 /* user wants full control over parsing perf event */ 11920 if (pb->event_cb) 11921 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11922 11923 switch (e->type) { 11924 case PERF_RECORD_SAMPLE: { 11925 struct perf_sample_raw *s = data; 11926 11927 if (pb->sample_cb) 11928 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11929 break; 11930 } 11931 case PERF_RECORD_LOST: { 11932 struct perf_sample_lost *s = data; 11933 11934 if (pb->lost_cb) 11935 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11936 break; 11937 } 11938 default: 11939 pr_warn("unknown perf sample type %d\n", e->type); 11940 return LIBBPF_PERF_EVENT_ERROR; 11941 } 11942 return LIBBPF_PERF_EVENT_CONT; 11943 } 11944 11945 static int perf_buffer__process_records(struct perf_buffer *pb, 11946 struct perf_cpu_buf *cpu_buf) 11947 { 11948 enum bpf_perf_event_ret ret; 11949 11950 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11951 pb->page_size, &cpu_buf->buf, 11952 &cpu_buf->buf_size, 11953 perf_buffer__process_record, cpu_buf); 11954 if (ret != LIBBPF_PERF_EVENT_CONT) 11955 return ret; 11956 return 0; 11957 } 11958 11959 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11960 { 11961 return pb->epoll_fd; 11962 } 11963 11964 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11965 { 11966 int i, cnt, err; 11967 11968 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11969 if (cnt < 0) 11970 return -errno; 11971 11972 for (i = 0; i < cnt; i++) { 11973 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11974 11975 err = perf_buffer__process_records(pb, cpu_buf); 11976 if (err) { 11977 pr_warn("error while processing records: %d\n", err); 11978 return libbpf_err(err); 11979 } 11980 } 11981 return cnt; 11982 } 11983 11984 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11985 * manager. 11986 */ 11987 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11988 { 11989 return pb->cpu_cnt; 11990 } 11991 11992 /* 11993 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11994 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11995 * select()/poll()/epoll() Linux syscalls. 11996 */ 11997 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11998 { 11999 struct perf_cpu_buf *cpu_buf; 12000 12001 if (buf_idx >= pb->cpu_cnt) 12002 return libbpf_err(-EINVAL); 12003 12004 cpu_buf = pb->cpu_bufs[buf_idx]; 12005 if (!cpu_buf) 12006 return libbpf_err(-ENOENT); 12007 12008 return cpu_buf->fd; 12009 } 12010 12011 /* 12012 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12013 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12014 * consume, do nothing and return success. 12015 * Returns: 12016 * - 0 on success; 12017 * - <0 on failure. 12018 */ 12019 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12020 { 12021 struct perf_cpu_buf *cpu_buf; 12022 12023 if (buf_idx >= pb->cpu_cnt) 12024 return libbpf_err(-EINVAL); 12025 12026 cpu_buf = pb->cpu_bufs[buf_idx]; 12027 if (!cpu_buf) 12028 return libbpf_err(-ENOENT); 12029 12030 return perf_buffer__process_records(pb, cpu_buf); 12031 } 12032 12033 int perf_buffer__consume(struct perf_buffer *pb) 12034 { 12035 int i, err; 12036 12037 for (i = 0; i < pb->cpu_cnt; i++) { 12038 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12039 12040 if (!cpu_buf) 12041 continue; 12042 12043 err = perf_buffer__process_records(pb, cpu_buf); 12044 if (err) { 12045 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12046 return libbpf_err(err); 12047 } 12048 } 12049 return 0; 12050 } 12051 12052 struct bpf_prog_info_array_desc { 12053 int array_offset; /* e.g. offset of jited_prog_insns */ 12054 int count_offset; /* e.g. offset of jited_prog_len */ 12055 int size_offset; /* > 0: offset of rec size, 12056 * < 0: fix size of -size_offset 12057 */ 12058 }; 12059 12060 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 12061 [BPF_PROG_INFO_JITED_INSNS] = { 12062 offsetof(struct bpf_prog_info, jited_prog_insns), 12063 offsetof(struct bpf_prog_info, jited_prog_len), 12064 -1, 12065 }, 12066 [BPF_PROG_INFO_XLATED_INSNS] = { 12067 offsetof(struct bpf_prog_info, xlated_prog_insns), 12068 offsetof(struct bpf_prog_info, xlated_prog_len), 12069 -1, 12070 }, 12071 [BPF_PROG_INFO_MAP_IDS] = { 12072 offsetof(struct bpf_prog_info, map_ids), 12073 offsetof(struct bpf_prog_info, nr_map_ids), 12074 -(int)sizeof(__u32), 12075 }, 12076 [BPF_PROG_INFO_JITED_KSYMS] = { 12077 offsetof(struct bpf_prog_info, jited_ksyms), 12078 offsetof(struct bpf_prog_info, nr_jited_ksyms), 12079 -(int)sizeof(__u64), 12080 }, 12081 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 12082 offsetof(struct bpf_prog_info, jited_func_lens), 12083 offsetof(struct bpf_prog_info, nr_jited_func_lens), 12084 -(int)sizeof(__u32), 12085 }, 12086 [BPF_PROG_INFO_FUNC_INFO] = { 12087 offsetof(struct bpf_prog_info, func_info), 12088 offsetof(struct bpf_prog_info, nr_func_info), 12089 offsetof(struct bpf_prog_info, func_info_rec_size), 12090 }, 12091 [BPF_PROG_INFO_LINE_INFO] = { 12092 offsetof(struct bpf_prog_info, line_info), 12093 offsetof(struct bpf_prog_info, nr_line_info), 12094 offsetof(struct bpf_prog_info, line_info_rec_size), 12095 }, 12096 [BPF_PROG_INFO_JITED_LINE_INFO] = { 12097 offsetof(struct bpf_prog_info, jited_line_info), 12098 offsetof(struct bpf_prog_info, nr_jited_line_info), 12099 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 12100 }, 12101 [BPF_PROG_INFO_PROG_TAGS] = { 12102 offsetof(struct bpf_prog_info, prog_tags), 12103 offsetof(struct bpf_prog_info, nr_prog_tags), 12104 -(int)sizeof(__u8) * BPF_TAG_SIZE, 12105 }, 12106 12107 }; 12108 12109 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 12110 int offset) 12111 { 12112 __u32 *array = (__u32 *)info; 12113 12114 if (offset >= 0) 12115 return array[offset / sizeof(__u32)]; 12116 return -(int)offset; 12117 } 12118 12119 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 12120 int offset) 12121 { 12122 __u64 *array = (__u64 *)info; 12123 12124 if (offset >= 0) 12125 return array[offset / sizeof(__u64)]; 12126 return -(int)offset; 12127 } 12128 12129 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 12130 __u32 val) 12131 { 12132 __u32 *array = (__u32 *)info; 12133 12134 if (offset >= 0) 12135 array[offset / sizeof(__u32)] = val; 12136 } 12137 12138 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 12139 __u64 val) 12140 { 12141 __u64 *array = (__u64 *)info; 12142 12143 if (offset >= 0) 12144 array[offset / sizeof(__u64)] = val; 12145 } 12146 12147 struct bpf_prog_info_linear * 12148 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 12149 { 12150 struct bpf_prog_info_linear *info_linear; 12151 struct bpf_prog_info info = {}; 12152 __u32 info_len = sizeof(info); 12153 __u32 data_len = 0; 12154 int i, err; 12155 void *ptr; 12156 12157 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 12158 return libbpf_err_ptr(-EINVAL); 12159 12160 /* step 1: get array dimensions */ 12161 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 12162 if (err) { 12163 pr_debug("can't get prog info: %s", strerror(errno)); 12164 return libbpf_err_ptr(-EFAULT); 12165 } 12166 12167 /* step 2: calculate total size of all arrays */ 12168 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12169 bool include_array = (arrays & (1UL << i)) > 0; 12170 struct bpf_prog_info_array_desc *desc; 12171 __u32 count, size; 12172 12173 desc = bpf_prog_info_array_desc + i; 12174 12175 /* kernel is too old to support this field */ 12176 if (info_len < desc->array_offset + sizeof(__u32) || 12177 info_len < desc->count_offset + sizeof(__u32) || 12178 (desc->size_offset > 0 && info_len < desc->size_offset)) 12179 include_array = false; 12180 12181 if (!include_array) { 12182 arrays &= ~(1UL << i); /* clear the bit */ 12183 continue; 12184 } 12185 12186 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12187 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12188 12189 data_len += count * size; 12190 } 12191 12192 /* step 3: allocate continuous memory */ 12193 data_len = roundup(data_len, sizeof(__u64)); 12194 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 12195 if (!info_linear) 12196 return libbpf_err_ptr(-ENOMEM); 12197 12198 /* step 4: fill data to info_linear->info */ 12199 info_linear->arrays = arrays; 12200 memset(&info_linear->info, 0, sizeof(info)); 12201 ptr = info_linear->data; 12202 12203 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12204 struct bpf_prog_info_array_desc *desc; 12205 __u32 count, size; 12206 12207 if ((arrays & (1UL << i)) == 0) 12208 continue; 12209 12210 desc = bpf_prog_info_array_desc + i; 12211 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12212 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12213 bpf_prog_info_set_offset_u32(&info_linear->info, 12214 desc->count_offset, count); 12215 bpf_prog_info_set_offset_u32(&info_linear->info, 12216 desc->size_offset, size); 12217 bpf_prog_info_set_offset_u64(&info_linear->info, 12218 desc->array_offset, 12219 ptr_to_u64(ptr)); 12220 ptr += count * size; 12221 } 12222 12223 /* step 5: call syscall again to get required arrays */ 12224 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 12225 if (err) { 12226 pr_debug("can't get prog info: %s", strerror(errno)); 12227 free(info_linear); 12228 return libbpf_err_ptr(-EFAULT); 12229 } 12230 12231 /* step 6: verify the data */ 12232 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12233 struct bpf_prog_info_array_desc *desc; 12234 __u32 v1, v2; 12235 12236 if ((arrays & (1UL << i)) == 0) 12237 continue; 12238 12239 desc = bpf_prog_info_array_desc + i; 12240 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12241 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12242 desc->count_offset); 12243 if (v1 != v2) 12244 pr_warn("%s: mismatch in element count\n", __func__); 12245 12246 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12247 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12248 desc->size_offset); 12249 if (v1 != v2) 12250 pr_warn("%s: mismatch in rec size\n", __func__); 12251 } 12252 12253 /* step 7: update info_len and data_len */ 12254 info_linear->info_len = sizeof(struct bpf_prog_info); 12255 info_linear->data_len = data_len; 12256 12257 return info_linear; 12258 } 12259 12260 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 12261 { 12262 int i; 12263 12264 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12265 struct bpf_prog_info_array_desc *desc; 12266 __u64 addr, offs; 12267 12268 if ((info_linear->arrays & (1UL << i)) == 0) 12269 continue; 12270 12271 desc = bpf_prog_info_array_desc + i; 12272 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 12273 desc->array_offset); 12274 offs = addr - ptr_to_u64(info_linear->data); 12275 bpf_prog_info_set_offset_u64(&info_linear->info, 12276 desc->array_offset, offs); 12277 } 12278 } 12279 12280 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 12281 { 12282 int i; 12283 12284 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12285 struct bpf_prog_info_array_desc *desc; 12286 __u64 addr, offs; 12287 12288 if ((info_linear->arrays & (1UL << i)) == 0) 12289 continue; 12290 12291 desc = bpf_prog_info_array_desc + i; 12292 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 12293 desc->array_offset); 12294 addr = offs + ptr_to_u64(info_linear->data); 12295 bpf_prog_info_set_offset_u64(&info_linear->info, 12296 desc->array_offset, addr); 12297 } 12298 } 12299 12300 int bpf_program__set_attach_target(struct bpf_program *prog, 12301 int attach_prog_fd, 12302 const char *attach_func_name) 12303 { 12304 int btf_obj_fd = 0, btf_id = 0, err; 12305 12306 if (!prog || attach_prog_fd < 0) 12307 return libbpf_err(-EINVAL); 12308 12309 if (prog->obj->loaded) 12310 return libbpf_err(-EINVAL); 12311 12312 if (attach_prog_fd && !attach_func_name) { 12313 /* remember attach_prog_fd and let bpf_program__load() find 12314 * BTF ID during the program load 12315 */ 12316 prog->attach_prog_fd = attach_prog_fd; 12317 return 0; 12318 } 12319 12320 if (attach_prog_fd) { 12321 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12322 attach_prog_fd); 12323 if (btf_id < 0) 12324 return libbpf_err(btf_id); 12325 } else { 12326 if (!attach_func_name) 12327 return libbpf_err(-EINVAL); 12328 12329 /* load btf_vmlinux, if not yet */ 12330 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12331 if (err) 12332 return libbpf_err(err); 12333 err = find_kernel_btf_id(prog->obj, attach_func_name, 12334 prog->expected_attach_type, 12335 &btf_obj_fd, &btf_id); 12336 if (err) 12337 return libbpf_err(err); 12338 } 12339 12340 prog->attach_btf_id = btf_id; 12341 prog->attach_btf_obj_fd = btf_obj_fd; 12342 prog->attach_prog_fd = attach_prog_fd; 12343 return 0; 12344 } 12345 12346 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12347 { 12348 int err = 0, n, len, start, end = -1; 12349 bool *tmp; 12350 12351 *mask = NULL; 12352 *mask_sz = 0; 12353 12354 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12355 while (*s) { 12356 if (*s == ',' || *s == '\n') { 12357 s++; 12358 continue; 12359 } 12360 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12361 if (n <= 0 || n > 2) { 12362 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12363 err = -EINVAL; 12364 goto cleanup; 12365 } else if (n == 1) { 12366 end = start; 12367 } 12368 if (start < 0 || start > end) { 12369 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12370 start, end, s); 12371 err = -EINVAL; 12372 goto cleanup; 12373 } 12374 tmp = realloc(*mask, end + 1); 12375 if (!tmp) { 12376 err = -ENOMEM; 12377 goto cleanup; 12378 } 12379 *mask = tmp; 12380 memset(tmp + *mask_sz, 0, start - *mask_sz); 12381 memset(tmp + start, 1, end - start + 1); 12382 *mask_sz = end + 1; 12383 s += len; 12384 } 12385 if (!*mask_sz) { 12386 pr_warn("Empty CPU range\n"); 12387 return -EINVAL; 12388 } 12389 return 0; 12390 cleanup: 12391 free(*mask); 12392 *mask = NULL; 12393 return err; 12394 } 12395 12396 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12397 { 12398 int fd, err = 0, len; 12399 char buf[128]; 12400 12401 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12402 if (fd < 0) { 12403 err = -errno; 12404 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12405 return err; 12406 } 12407 len = read(fd, buf, sizeof(buf)); 12408 close(fd); 12409 if (len <= 0) { 12410 err = len ? -errno : -EINVAL; 12411 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12412 return err; 12413 } 12414 if (len >= sizeof(buf)) { 12415 pr_warn("CPU mask is too big in file %s\n", fcpu); 12416 return -E2BIG; 12417 } 12418 buf[len] = '\0'; 12419 12420 return parse_cpu_mask_str(buf, mask, mask_sz); 12421 } 12422 12423 int libbpf_num_possible_cpus(void) 12424 { 12425 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12426 static int cpus; 12427 int err, n, i, tmp_cpus; 12428 bool *mask; 12429 12430 tmp_cpus = READ_ONCE(cpus); 12431 if (tmp_cpus > 0) 12432 return tmp_cpus; 12433 12434 err = parse_cpu_mask_file(fcpu, &mask, &n); 12435 if (err) 12436 return libbpf_err(err); 12437 12438 tmp_cpus = 0; 12439 for (i = 0; i < n; i++) { 12440 if (mask[i]) 12441 tmp_cpus++; 12442 } 12443 free(mask); 12444 12445 WRITE_ONCE(cpus, tmp_cpus); 12446 return tmp_cpus; 12447 } 12448 12449 static int populate_skeleton_maps(const struct bpf_object *obj, 12450 struct bpf_map_skeleton *maps, 12451 size_t map_cnt) 12452 { 12453 int i; 12454 12455 for (i = 0; i < map_cnt; i++) { 12456 struct bpf_map **map = maps[i].map; 12457 const char *name = maps[i].name; 12458 void **mmaped = maps[i].mmaped; 12459 12460 *map = bpf_object__find_map_by_name(obj, name); 12461 if (!*map) { 12462 pr_warn("failed to find skeleton map '%s'\n", name); 12463 return -ESRCH; 12464 } 12465 12466 /* externs shouldn't be pre-setup from user code */ 12467 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12468 *mmaped = (*map)->mmaped; 12469 } 12470 return 0; 12471 } 12472 12473 static int populate_skeleton_progs(const struct bpf_object *obj, 12474 struct bpf_prog_skeleton *progs, 12475 size_t prog_cnt) 12476 { 12477 int i; 12478 12479 for (i = 0; i < prog_cnt; i++) { 12480 struct bpf_program **prog = progs[i].prog; 12481 const char *name = progs[i].name; 12482 12483 *prog = bpf_object__find_program_by_name(obj, name); 12484 if (!*prog) { 12485 pr_warn("failed to find skeleton program '%s'\n", name); 12486 return -ESRCH; 12487 } 12488 } 12489 return 0; 12490 } 12491 12492 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12493 const struct bpf_object_open_opts *opts) 12494 { 12495 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12496 .object_name = s->name, 12497 ); 12498 struct bpf_object *obj; 12499 int err; 12500 12501 /* Attempt to preserve opts->object_name, unless overriden by user 12502 * explicitly. Overwriting object name for skeletons is discouraged, 12503 * as it breaks global data maps, because they contain object name 12504 * prefix as their own map name prefix. When skeleton is generated, 12505 * bpftool is making an assumption that this name will stay the same. 12506 */ 12507 if (opts) { 12508 memcpy(&skel_opts, opts, sizeof(*opts)); 12509 if (!opts->object_name) 12510 skel_opts.object_name = s->name; 12511 } 12512 12513 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12514 err = libbpf_get_error(obj); 12515 if (err) { 12516 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12517 s->name, err); 12518 return libbpf_err(err); 12519 } 12520 12521 *s->obj = obj; 12522 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12523 if (err) { 12524 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12525 return libbpf_err(err); 12526 } 12527 12528 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12529 if (err) { 12530 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12531 return libbpf_err(err); 12532 } 12533 12534 return 0; 12535 } 12536 12537 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12538 { 12539 int err, len, var_idx, i; 12540 const char *var_name; 12541 const struct bpf_map *map; 12542 struct btf *btf; 12543 __u32 map_type_id; 12544 const struct btf_type *map_type, *var_type; 12545 const struct bpf_var_skeleton *var_skel; 12546 struct btf_var_secinfo *var; 12547 12548 if (!s->obj) 12549 return libbpf_err(-EINVAL); 12550 12551 btf = bpf_object__btf(s->obj); 12552 if (!btf) { 12553 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12554 bpf_object__name(s->obj)); 12555 return libbpf_err(-errno); 12556 } 12557 12558 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12559 if (err) { 12560 pr_warn("failed to populate subskeleton maps: %d\n", err); 12561 return libbpf_err(err); 12562 } 12563 12564 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12565 if (err) { 12566 pr_warn("failed to populate subskeleton maps: %d\n", err); 12567 return libbpf_err(err); 12568 } 12569 12570 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12571 var_skel = &s->vars[var_idx]; 12572 map = *var_skel->map; 12573 map_type_id = bpf_map__btf_value_type_id(map); 12574 map_type = btf__type_by_id(btf, map_type_id); 12575 12576 if (!btf_is_datasec(map_type)) { 12577 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12578 bpf_map__name(map), 12579 __btf_kind_str(btf_kind(map_type))); 12580 return libbpf_err(-EINVAL); 12581 } 12582 12583 len = btf_vlen(map_type); 12584 var = btf_var_secinfos(map_type); 12585 for (i = 0; i < len; i++, var++) { 12586 var_type = btf__type_by_id(btf, var->type); 12587 var_name = btf__name_by_offset(btf, var_type->name_off); 12588 if (strcmp(var_name, var_skel->name) == 0) { 12589 *var_skel->addr = map->mmaped + var->offset; 12590 break; 12591 } 12592 } 12593 } 12594 return 0; 12595 } 12596 12597 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12598 { 12599 if (!s) 12600 return; 12601 free(s->maps); 12602 free(s->progs); 12603 free(s->vars); 12604 free(s); 12605 } 12606 12607 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12608 { 12609 int i, err; 12610 12611 err = bpf_object__load(*s->obj); 12612 if (err) { 12613 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12614 return libbpf_err(err); 12615 } 12616 12617 for (i = 0; i < s->map_cnt; i++) { 12618 struct bpf_map *map = *s->maps[i].map; 12619 size_t mmap_sz = bpf_map_mmap_sz(map); 12620 int prot, map_fd = bpf_map__fd(map); 12621 void **mmaped = s->maps[i].mmaped; 12622 12623 if (!mmaped) 12624 continue; 12625 12626 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12627 *mmaped = NULL; 12628 continue; 12629 } 12630 12631 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12632 prot = PROT_READ; 12633 else 12634 prot = PROT_READ | PROT_WRITE; 12635 12636 /* Remap anonymous mmap()-ed "map initialization image" as 12637 * a BPF map-backed mmap()-ed memory, but preserving the same 12638 * memory address. This will cause kernel to change process' 12639 * page table to point to a different piece of kernel memory, 12640 * but from userspace point of view memory address (and its 12641 * contents, being identical at this point) will stay the 12642 * same. This mapping will be released by bpf_object__close() 12643 * as per normal clean up procedure, so we don't need to worry 12644 * about it from skeleton's clean up perspective. 12645 */ 12646 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12647 MAP_SHARED | MAP_FIXED, map_fd, 0); 12648 if (*mmaped == MAP_FAILED) { 12649 err = -errno; 12650 *mmaped = NULL; 12651 pr_warn("failed to re-mmap() map '%s': %d\n", 12652 bpf_map__name(map), err); 12653 return libbpf_err(err); 12654 } 12655 } 12656 12657 return 0; 12658 } 12659 12660 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12661 { 12662 int i, err; 12663 12664 for (i = 0; i < s->prog_cnt; i++) { 12665 struct bpf_program *prog = *s->progs[i].prog; 12666 struct bpf_link **link = s->progs[i].link; 12667 12668 if (!prog->load) 12669 continue; 12670 12671 /* auto-attaching not supported for this program */ 12672 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12673 continue; 12674 12675 /* if user already set the link manually, don't attempt auto-attach */ 12676 if (*link) 12677 continue; 12678 12679 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12680 if (err) { 12681 pr_warn("prog '%s': failed to auto-attach: %d\n", 12682 bpf_program__name(prog), err); 12683 return libbpf_err(err); 12684 } 12685 12686 /* It's possible that for some SEC() definitions auto-attach 12687 * is supported in some cases (e.g., if definition completely 12688 * specifies target information), but is not in other cases. 12689 * SEC("uprobe") is one such case. If user specified target 12690 * binary and function name, such BPF program can be 12691 * auto-attached. But if not, it shouldn't trigger skeleton's 12692 * attach to fail. It should just be skipped. 12693 * attach_fn signals such case with returning 0 (no error) and 12694 * setting link to NULL. 12695 */ 12696 } 12697 12698 return 0; 12699 } 12700 12701 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12702 { 12703 int i; 12704 12705 for (i = 0; i < s->prog_cnt; i++) { 12706 struct bpf_link **link = s->progs[i].link; 12707 12708 bpf_link__destroy(*link); 12709 *link = NULL; 12710 } 12711 } 12712 12713 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12714 { 12715 if (!s) 12716 return; 12717 12718 if (s->progs) 12719 bpf_object__detach_skeleton(s); 12720 if (s->obj) 12721 bpf_object__close(*s->obj); 12722 free(s->maps); 12723 free(s->progs); 12724 free(s); 12725 } 12726