1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef EM_BPF 59 #define EM_BPF 247 60 #endif 61 62 #ifndef BPF_FS_MAGIC 63 #define BPF_FS_MAGIC 0xcafe4a11 64 #endif 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static const struct btf_type * 77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 78 79 static int __base_pr(enum libbpf_print_level level, const char *format, 80 va_list args) 81 { 82 if (level == LIBBPF_DEBUG) 83 return 0; 84 85 return vfprintf(stderr, format, args); 86 } 87 88 static libbpf_print_fn_t __libbpf_pr = __base_pr; 89 90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 91 { 92 libbpf_print_fn_t old_print_fn = __libbpf_pr; 93 94 __libbpf_pr = fn; 95 return old_print_fn; 96 } 97 98 __printf(2, 3) 99 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 100 { 101 va_list args; 102 103 if (!__libbpf_pr) 104 return; 105 106 va_start(args, format); 107 __libbpf_pr(level, format, args); 108 va_end(args); 109 } 110 111 static void pr_perm_msg(int err) 112 { 113 struct rlimit limit; 114 char buf[100]; 115 116 if (err != -EPERM || geteuid() != 0) 117 return; 118 119 err = getrlimit(RLIMIT_MEMLOCK, &limit); 120 if (err) 121 return; 122 123 if (limit.rlim_cur == RLIM_INFINITY) 124 return; 125 126 if (limit.rlim_cur < 1024) 127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 128 else if (limit.rlim_cur < 1024*1024) 129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 130 else 131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 132 133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 134 buf); 135 } 136 137 #define STRERR_BUFSIZE 128 138 139 /* Copied from tools/perf/util/util.h */ 140 #ifndef zfree 141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 142 #endif 143 144 #ifndef zclose 145 # define zclose(fd) ({ \ 146 int ___err = 0; \ 147 if ((fd) >= 0) \ 148 ___err = close((fd)); \ 149 fd = -1; \ 150 ___err; }) 151 #endif 152 153 static inline __u64 ptr_to_u64(const void *ptr) 154 { 155 return (__u64) (unsigned long) ptr; 156 } 157 158 enum kern_feature_id { 159 /* v4.14: kernel support for program & map names. */ 160 FEAT_PROG_NAME, 161 /* v5.2: kernel support for global data sections. */ 162 FEAT_GLOBAL_DATA, 163 /* BTF support */ 164 FEAT_BTF, 165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 166 FEAT_BTF_FUNC, 167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 168 FEAT_BTF_DATASEC, 169 /* BTF_FUNC_GLOBAL is supported */ 170 FEAT_BTF_GLOBAL_FUNC, 171 /* BPF_F_MMAPABLE is supported for arrays */ 172 FEAT_ARRAY_MMAP, 173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 174 FEAT_EXP_ATTACH_TYPE, 175 /* bpf_probe_read_{kernel,user}[_str] helpers */ 176 FEAT_PROBE_READ_KERN, 177 /* BPF_PROG_BIND_MAP is supported */ 178 FEAT_PROG_BIND_MAP, 179 /* Kernel support for module BTFs */ 180 FEAT_MODULE_BTF, 181 __FEAT_CNT, 182 }; 183 184 static bool kernel_supports(enum kern_feature_id feat_id); 185 186 enum reloc_type { 187 RELO_LD64, 188 RELO_CALL, 189 RELO_DATA, 190 RELO_EXTERN, 191 }; 192 193 struct reloc_desc { 194 enum reloc_type type; 195 int insn_idx; 196 int map_idx; 197 int sym_off; 198 bool processed; 199 }; 200 201 struct bpf_sec_def; 202 203 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 204 struct bpf_program *prog); 205 206 struct bpf_sec_def { 207 const char *sec; 208 size_t len; 209 enum bpf_prog_type prog_type; 210 enum bpf_attach_type expected_attach_type; 211 bool is_exp_attach_type_optional; 212 bool is_attachable; 213 bool is_attach_btf; 214 bool is_sleepable; 215 attach_fn_t attach_fn; 216 }; 217 218 /* 219 * bpf_prog should be a better name but it has been used in 220 * linux/filter.h. 221 */ 222 struct bpf_program { 223 const struct bpf_sec_def *sec_def; 224 char *sec_name; 225 size_t sec_idx; 226 /* this program's instruction offset (in number of instructions) 227 * within its containing ELF section 228 */ 229 size_t sec_insn_off; 230 /* number of original instructions in ELF section belonging to this 231 * program, not taking into account subprogram instructions possible 232 * appended later during relocation 233 */ 234 size_t sec_insn_cnt; 235 /* Offset (in number of instructions) of the start of instruction 236 * belonging to this BPF program within its containing main BPF 237 * program. For the entry-point (main) BPF program, this is always 238 * zero. For a sub-program, this gets reset before each of main BPF 239 * programs are processed and relocated and is used to determined 240 * whether sub-program was already appended to the main program, and 241 * if yes, at which instruction offset. 242 */ 243 size_t sub_insn_off; 244 245 char *name; 246 /* sec_name with / replaced by _; makes recursive pinning 247 * in bpf_object__pin_programs easier 248 */ 249 char *pin_name; 250 251 /* instructions that belong to BPF program; insns[0] is located at 252 * sec_insn_off instruction within its ELF section in ELF file, so 253 * when mapping ELF file instruction index to the local instruction, 254 * one needs to subtract sec_insn_off; and vice versa. 255 */ 256 struct bpf_insn *insns; 257 /* actual number of instruction in this BPF program's image; for 258 * entry-point BPF programs this includes the size of main program 259 * itself plus all the used sub-programs, appended at the end 260 */ 261 size_t insns_cnt; 262 263 struct reloc_desc *reloc_desc; 264 int nr_reloc; 265 int log_level; 266 267 struct { 268 int nr; 269 int *fds; 270 } instances; 271 bpf_program_prep_t preprocessor; 272 273 struct bpf_object *obj; 274 void *priv; 275 bpf_program_clear_priv_t clear_priv; 276 277 bool load; 278 enum bpf_prog_type type; 279 enum bpf_attach_type expected_attach_type; 280 int prog_ifindex; 281 __u32 attach_btf_obj_fd; 282 __u32 attach_btf_id; 283 __u32 attach_prog_fd; 284 void *func_info; 285 __u32 func_info_rec_size; 286 __u32 func_info_cnt; 287 288 void *line_info; 289 __u32 line_info_rec_size; 290 __u32 line_info_cnt; 291 __u32 prog_flags; 292 }; 293 294 struct bpf_struct_ops { 295 const char *tname; 296 const struct btf_type *type; 297 struct bpf_program **progs; 298 __u32 *kern_func_off; 299 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 300 void *data; 301 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 302 * btf_vmlinux's format. 303 * struct bpf_struct_ops_tcp_congestion_ops { 304 * [... some other kernel fields ...] 305 * struct tcp_congestion_ops data; 306 * } 307 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 308 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 309 * from "data". 310 */ 311 void *kern_vdata; 312 __u32 type_id; 313 }; 314 315 #define DATA_SEC ".data" 316 #define BSS_SEC ".bss" 317 #define RODATA_SEC ".rodata" 318 #define KCONFIG_SEC ".kconfig" 319 #define KSYMS_SEC ".ksyms" 320 #define STRUCT_OPS_SEC ".struct_ops" 321 322 enum libbpf_map_type { 323 LIBBPF_MAP_UNSPEC, 324 LIBBPF_MAP_DATA, 325 LIBBPF_MAP_BSS, 326 LIBBPF_MAP_RODATA, 327 LIBBPF_MAP_KCONFIG, 328 }; 329 330 static const char * const libbpf_type_to_btf_name[] = { 331 [LIBBPF_MAP_DATA] = DATA_SEC, 332 [LIBBPF_MAP_BSS] = BSS_SEC, 333 [LIBBPF_MAP_RODATA] = RODATA_SEC, 334 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 335 }; 336 337 struct bpf_map { 338 char *name; 339 int fd; 340 int sec_idx; 341 size_t sec_offset; 342 int map_ifindex; 343 int inner_map_fd; 344 struct bpf_map_def def; 345 __u32 numa_node; 346 __u32 btf_var_idx; 347 __u32 btf_key_type_id; 348 __u32 btf_value_type_id; 349 __u32 btf_vmlinux_value_type_id; 350 void *priv; 351 bpf_map_clear_priv_t clear_priv; 352 enum libbpf_map_type libbpf_type; 353 void *mmaped; 354 struct bpf_struct_ops *st_ops; 355 struct bpf_map *inner_map; 356 void **init_slots; 357 int init_slots_sz; 358 char *pin_path; 359 bool pinned; 360 bool reused; 361 }; 362 363 enum extern_type { 364 EXT_UNKNOWN, 365 EXT_KCFG, 366 EXT_KSYM, 367 }; 368 369 enum kcfg_type { 370 KCFG_UNKNOWN, 371 KCFG_CHAR, 372 KCFG_BOOL, 373 KCFG_INT, 374 KCFG_TRISTATE, 375 KCFG_CHAR_ARR, 376 }; 377 378 struct extern_desc { 379 enum extern_type type; 380 int sym_idx; 381 int btf_id; 382 int sec_btf_id; 383 const char *name; 384 bool is_set; 385 bool is_weak; 386 union { 387 struct { 388 enum kcfg_type type; 389 int sz; 390 int align; 391 int data_off; 392 bool is_signed; 393 } kcfg; 394 struct { 395 unsigned long long addr; 396 397 /* target btf_id of the corresponding kernel var. */ 398 int vmlinux_btf_id; 399 400 /* local btf_id of the ksym extern's type. */ 401 __u32 type_id; 402 } ksym; 403 }; 404 }; 405 406 static LIST_HEAD(bpf_objects_list); 407 408 struct module_btf { 409 struct btf *btf; 410 char *name; 411 __u32 id; 412 int fd; 413 }; 414 415 struct bpf_object { 416 char name[BPF_OBJ_NAME_LEN]; 417 char license[64]; 418 __u32 kern_version; 419 420 struct bpf_program *programs; 421 size_t nr_programs; 422 struct bpf_map *maps; 423 size_t nr_maps; 424 size_t maps_cap; 425 426 char *kconfig; 427 struct extern_desc *externs; 428 int nr_extern; 429 int kconfig_map_idx; 430 int rodata_map_idx; 431 432 bool loaded; 433 bool has_subcalls; 434 435 /* 436 * Information when doing elf related work. Only valid if fd 437 * is valid. 438 */ 439 struct { 440 int fd; 441 const void *obj_buf; 442 size_t obj_buf_sz; 443 Elf *elf; 444 GElf_Ehdr ehdr; 445 Elf_Data *symbols; 446 Elf_Data *data; 447 Elf_Data *rodata; 448 Elf_Data *bss; 449 Elf_Data *st_ops_data; 450 size_t shstrndx; /* section index for section name strings */ 451 size_t strtabidx; 452 struct { 453 GElf_Shdr shdr; 454 Elf_Data *data; 455 } *reloc_sects; 456 int nr_reloc_sects; 457 int maps_shndx; 458 int btf_maps_shndx; 459 __u32 btf_maps_sec_btf_id; 460 int text_shndx; 461 int symbols_shndx; 462 int data_shndx; 463 int rodata_shndx; 464 int bss_shndx; 465 int st_ops_shndx; 466 } efile; 467 /* 468 * All loaded bpf_object is linked in a list, which is 469 * hidden to caller. bpf_objects__<func> handlers deal with 470 * all objects. 471 */ 472 struct list_head list; 473 474 struct btf *btf; 475 struct btf_ext *btf_ext; 476 477 /* Parse and load BTF vmlinux if any of the programs in the object need 478 * it at load time. 479 */ 480 struct btf *btf_vmlinux; 481 /* vmlinux BTF override for CO-RE relocations */ 482 struct btf *btf_vmlinux_override; 483 /* Lazily initialized kernel module BTFs */ 484 struct module_btf *btf_modules; 485 bool btf_modules_loaded; 486 size_t btf_module_cnt; 487 size_t btf_module_cap; 488 489 void *priv; 490 bpf_object_clear_priv_t clear_priv; 491 492 char path[]; 493 }; 494 #define obj_elf_valid(o) ((o)->efile.elf) 495 496 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 497 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 498 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 499 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 500 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 501 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 502 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 503 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 504 size_t off, __u32 sym_type, GElf_Sym *sym); 505 506 void bpf_program__unload(struct bpf_program *prog) 507 { 508 int i; 509 510 if (!prog) 511 return; 512 513 /* 514 * If the object is opened but the program was never loaded, 515 * it is possible that prog->instances.nr == -1. 516 */ 517 if (prog->instances.nr > 0) { 518 for (i = 0; i < prog->instances.nr; i++) 519 zclose(prog->instances.fds[i]); 520 } else if (prog->instances.nr != -1) { 521 pr_warn("Internal error: instances.nr is %d\n", 522 prog->instances.nr); 523 } 524 525 prog->instances.nr = -1; 526 zfree(&prog->instances.fds); 527 528 zfree(&prog->func_info); 529 zfree(&prog->line_info); 530 } 531 532 static void bpf_program__exit(struct bpf_program *prog) 533 { 534 if (!prog) 535 return; 536 537 if (prog->clear_priv) 538 prog->clear_priv(prog, prog->priv); 539 540 prog->priv = NULL; 541 prog->clear_priv = NULL; 542 543 bpf_program__unload(prog); 544 zfree(&prog->name); 545 zfree(&prog->sec_name); 546 zfree(&prog->pin_name); 547 zfree(&prog->insns); 548 zfree(&prog->reloc_desc); 549 550 prog->nr_reloc = 0; 551 prog->insns_cnt = 0; 552 prog->sec_idx = -1; 553 } 554 555 static char *__bpf_program__pin_name(struct bpf_program *prog) 556 { 557 char *name, *p; 558 559 name = p = strdup(prog->sec_name); 560 while ((p = strchr(p, '/'))) 561 *p = '_'; 562 563 return name; 564 } 565 566 static bool insn_is_subprog_call(const struct bpf_insn *insn) 567 { 568 return BPF_CLASS(insn->code) == BPF_JMP && 569 BPF_OP(insn->code) == BPF_CALL && 570 BPF_SRC(insn->code) == BPF_K && 571 insn->src_reg == BPF_PSEUDO_CALL && 572 insn->dst_reg == 0 && 573 insn->off == 0; 574 } 575 576 static int 577 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 578 const char *name, size_t sec_idx, const char *sec_name, 579 size_t sec_off, void *insn_data, size_t insn_data_sz) 580 { 581 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 582 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 583 sec_name, name, sec_off, insn_data_sz); 584 return -EINVAL; 585 } 586 587 memset(prog, 0, sizeof(*prog)); 588 prog->obj = obj; 589 590 prog->sec_idx = sec_idx; 591 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 592 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 593 /* insns_cnt can later be increased by appending used subprograms */ 594 prog->insns_cnt = prog->sec_insn_cnt; 595 596 prog->type = BPF_PROG_TYPE_UNSPEC; 597 prog->load = true; 598 599 prog->instances.fds = NULL; 600 prog->instances.nr = -1; 601 602 prog->sec_name = strdup(sec_name); 603 if (!prog->sec_name) 604 goto errout; 605 606 prog->name = strdup(name); 607 if (!prog->name) 608 goto errout; 609 610 prog->pin_name = __bpf_program__pin_name(prog); 611 if (!prog->pin_name) 612 goto errout; 613 614 prog->insns = malloc(insn_data_sz); 615 if (!prog->insns) 616 goto errout; 617 memcpy(prog->insns, insn_data, insn_data_sz); 618 619 return 0; 620 errout: 621 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 622 bpf_program__exit(prog); 623 return -ENOMEM; 624 } 625 626 static int 627 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 628 const char *sec_name, int sec_idx) 629 { 630 struct bpf_program *prog, *progs; 631 void *data = sec_data->d_buf; 632 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 633 int nr_progs, err; 634 const char *name; 635 GElf_Sym sym; 636 637 progs = obj->programs; 638 nr_progs = obj->nr_programs; 639 sec_off = 0; 640 641 while (sec_off < sec_sz) { 642 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 643 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 644 sec_name, sec_off); 645 return -LIBBPF_ERRNO__FORMAT; 646 } 647 648 prog_sz = sym.st_size; 649 650 name = elf_sym_str(obj, sym.st_name); 651 if (!name) { 652 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 653 sec_name, sec_off); 654 return -LIBBPF_ERRNO__FORMAT; 655 } 656 657 if (sec_off + prog_sz > sec_sz) { 658 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 659 sec_name, sec_off); 660 return -LIBBPF_ERRNO__FORMAT; 661 } 662 663 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 664 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 665 666 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 667 if (!progs) { 668 /* 669 * In this case the original obj->programs 670 * is still valid, so don't need special treat for 671 * bpf_close_object(). 672 */ 673 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 674 sec_name, name); 675 return -ENOMEM; 676 } 677 obj->programs = progs; 678 679 prog = &progs[nr_progs]; 680 681 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 682 sec_off, data + sec_off, prog_sz); 683 if (err) 684 return err; 685 686 nr_progs++; 687 obj->nr_programs = nr_progs; 688 689 sec_off += prog_sz; 690 } 691 692 return 0; 693 } 694 695 static __u32 get_kernel_version(void) 696 { 697 __u32 major, minor, patch; 698 struct utsname info; 699 700 uname(&info); 701 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 702 return 0; 703 return KERNEL_VERSION(major, minor, patch); 704 } 705 706 static const struct btf_member * 707 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 708 { 709 struct btf_member *m; 710 int i; 711 712 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 713 if (btf_member_bit_offset(t, i) == bit_offset) 714 return m; 715 } 716 717 return NULL; 718 } 719 720 static const struct btf_member * 721 find_member_by_name(const struct btf *btf, const struct btf_type *t, 722 const char *name) 723 { 724 struct btf_member *m; 725 int i; 726 727 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 728 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 729 return m; 730 } 731 732 return NULL; 733 } 734 735 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 736 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 737 const char *name, __u32 kind); 738 739 static int 740 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 741 const struct btf_type **type, __u32 *type_id, 742 const struct btf_type **vtype, __u32 *vtype_id, 743 const struct btf_member **data_member) 744 { 745 const struct btf_type *kern_type, *kern_vtype; 746 const struct btf_member *kern_data_member; 747 __s32 kern_vtype_id, kern_type_id; 748 __u32 i; 749 750 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 751 if (kern_type_id < 0) { 752 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 753 tname); 754 return kern_type_id; 755 } 756 kern_type = btf__type_by_id(btf, kern_type_id); 757 758 /* Find the corresponding "map_value" type that will be used 759 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 760 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 761 * btf_vmlinux. 762 */ 763 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 764 tname, BTF_KIND_STRUCT); 765 if (kern_vtype_id < 0) { 766 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 767 STRUCT_OPS_VALUE_PREFIX, tname); 768 return kern_vtype_id; 769 } 770 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 771 772 /* Find "struct tcp_congestion_ops" from 773 * struct bpf_struct_ops_tcp_congestion_ops { 774 * [ ... ] 775 * struct tcp_congestion_ops data; 776 * } 777 */ 778 kern_data_member = btf_members(kern_vtype); 779 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 780 if (kern_data_member->type == kern_type_id) 781 break; 782 } 783 if (i == btf_vlen(kern_vtype)) { 784 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 785 tname, STRUCT_OPS_VALUE_PREFIX, tname); 786 return -EINVAL; 787 } 788 789 *type = kern_type; 790 *type_id = kern_type_id; 791 *vtype = kern_vtype; 792 *vtype_id = kern_vtype_id; 793 *data_member = kern_data_member; 794 795 return 0; 796 } 797 798 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 799 { 800 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 801 } 802 803 /* Init the map's fields that depend on kern_btf */ 804 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 805 const struct btf *btf, 806 const struct btf *kern_btf) 807 { 808 const struct btf_member *member, *kern_member, *kern_data_member; 809 const struct btf_type *type, *kern_type, *kern_vtype; 810 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 811 struct bpf_struct_ops *st_ops; 812 void *data, *kern_data; 813 const char *tname; 814 int err; 815 816 st_ops = map->st_ops; 817 type = st_ops->type; 818 tname = st_ops->tname; 819 err = find_struct_ops_kern_types(kern_btf, tname, 820 &kern_type, &kern_type_id, 821 &kern_vtype, &kern_vtype_id, 822 &kern_data_member); 823 if (err) 824 return err; 825 826 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 827 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 828 829 map->def.value_size = kern_vtype->size; 830 map->btf_vmlinux_value_type_id = kern_vtype_id; 831 832 st_ops->kern_vdata = calloc(1, kern_vtype->size); 833 if (!st_ops->kern_vdata) 834 return -ENOMEM; 835 836 data = st_ops->data; 837 kern_data_off = kern_data_member->offset / 8; 838 kern_data = st_ops->kern_vdata + kern_data_off; 839 840 member = btf_members(type); 841 for (i = 0; i < btf_vlen(type); i++, member++) { 842 const struct btf_type *mtype, *kern_mtype; 843 __u32 mtype_id, kern_mtype_id; 844 void *mdata, *kern_mdata; 845 __s64 msize, kern_msize; 846 __u32 moff, kern_moff; 847 __u32 kern_member_idx; 848 const char *mname; 849 850 mname = btf__name_by_offset(btf, member->name_off); 851 kern_member = find_member_by_name(kern_btf, kern_type, mname); 852 if (!kern_member) { 853 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 854 map->name, mname); 855 return -ENOTSUP; 856 } 857 858 kern_member_idx = kern_member - btf_members(kern_type); 859 if (btf_member_bitfield_size(type, i) || 860 btf_member_bitfield_size(kern_type, kern_member_idx)) { 861 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 862 map->name, mname); 863 return -ENOTSUP; 864 } 865 866 moff = member->offset / 8; 867 kern_moff = kern_member->offset / 8; 868 869 mdata = data + moff; 870 kern_mdata = kern_data + kern_moff; 871 872 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 873 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 874 &kern_mtype_id); 875 if (BTF_INFO_KIND(mtype->info) != 876 BTF_INFO_KIND(kern_mtype->info)) { 877 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 878 map->name, mname, BTF_INFO_KIND(mtype->info), 879 BTF_INFO_KIND(kern_mtype->info)); 880 return -ENOTSUP; 881 } 882 883 if (btf_is_ptr(mtype)) { 884 struct bpf_program *prog; 885 886 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 887 kern_mtype = skip_mods_and_typedefs(kern_btf, 888 kern_mtype->type, 889 &kern_mtype_id); 890 if (!btf_is_func_proto(mtype) || 891 !btf_is_func_proto(kern_mtype)) { 892 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 893 map->name, mname); 894 return -ENOTSUP; 895 } 896 897 prog = st_ops->progs[i]; 898 if (!prog) { 899 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 900 map->name, mname); 901 continue; 902 } 903 904 prog->attach_btf_id = kern_type_id; 905 prog->expected_attach_type = kern_member_idx; 906 907 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 908 909 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 910 map->name, mname, prog->name, moff, 911 kern_moff); 912 913 continue; 914 } 915 916 msize = btf__resolve_size(btf, mtype_id); 917 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 918 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 919 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 920 map->name, mname, (ssize_t)msize, 921 (ssize_t)kern_msize); 922 return -ENOTSUP; 923 } 924 925 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 926 map->name, mname, (unsigned int)msize, 927 moff, kern_moff); 928 memcpy(kern_mdata, mdata, msize); 929 } 930 931 return 0; 932 } 933 934 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 935 { 936 struct bpf_map *map; 937 size_t i; 938 int err; 939 940 for (i = 0; i < obj->nr_maps; i++) { 941 map = &obj->maps[i]; 942 943 if (!bpf_map__is_struct_ops(map)) 944 continue; 945 946 err = bpf_map__init_kern_struct_ops(map, obj->btf, 947 obj->btf_vmlinux); 948 if (err) 949 return err; 950 } 951 952 return 0; 953 } 954 955 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 956 { 957 const struct btf_type *type, *datasec; 958 const struct btf_var_secinfo *vsi; 959 struct bpf_struct_ops *st_ops; 960 const char *tname, *var_name; 961 __s32 type_id, datasec_id; 962 const struct btf *btf; 963 struct bpf_map *map; 964 __u32 i; 965 966 if (obj->efile.st_ops_shndx == -1) 967 return 0; 968 969 btf = obj->btf; 970 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 971 BTF_KIND_DATASEC); 972 if (datasec_id < 0) { 973 pr_warn("struct_ops init: DATASEC %s not found\n", 974 STRUCT_OPS_SEC); 975 return -EINVAL; 976 } 977 978 datasec = btf__type_by_id(btf, datasec_id); 979 vsi = btf_var_secinfos(datasec); 980 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 981 type = btf__type_by_id(obj->btf, vsi->type); 982 var_name = btf__name_by_offset(obj->btf, type->name_off); 983 984 type_id = btf__resolve_type(obj->btf, vsi->type); 985 if (type_id < 0) { 986 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 987 vsi->type, STRUCT_OPS_SEC); 988 return -EINVAL; 989 } 990 991 type = btf__type_by_id(obj->btf, type_id); 992 tname = btf__name_by_offset(obj->btf, type->name_off); 993 if (!tname[0]) { 994 pr_warn("struct_ops init: anonymous type is not supported\n"); 995 return -ENOTSUP; 996 } 997 if (!btf_is_struct(type)) { 998 pr_warn("struct_ops init: %s is not a struct\n", tname); 999 return -EINVAL; 1000 } 1001 1002 map = bpf_object__add_map(obj); 1003 if (IS_ERR(map)) 1004 return PTR_ERR(map); 1005 1006 map->sec_idx = obj->efile.st_ops_shndx; 1007 map->sec_offset = vsi->offset; 1008 map->name = strdup(var_name); 1009 if (!map->name) 1010 return -ENOMEM; 1011 1012 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1013 map->def.key_size = sizeof(int); 1014 map->def.value_size = type->size; 1015 map->def.max_entries = 1; 1016 1017 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1018 if (!map->st_ops) 1019 return -ENOMEM; 1020 st_ops = map->st_ops; 1021 st_ops->data = malloc(type->size); 1022 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1023 st_ops->kern_func_off = malloc(btf_vlen(type) * 1024 sizeof(*st_ops->kern_func_off)); 1025 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1026 return -ENOMEM; 1027 1028 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1029 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1030 var_name, STRUCT_OPS_SEC); 1031 return -EINVAL; 1032 } 1033 1034 memcpy(st_ops->data, 1035 obj->efile.st_ops_data->d_buf + vsi->offset, 1036 type->size); 1037 st_ops->tname = tname; 1038 st_ops->type = type; 1039 st_ops->type_id = type_id; 1040 1041 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1042 tname, type_id, var_name, vsi->offset); 1043 } 1044 1045 return 0; 1046 } 1047 1048 static struct bpf_object *bpf_object__new(const char *path, 1049 const void *obj_buf, 1050 size_t obj_buf_sz, 1051 const char *obj_name) 1052 { 1053 struct bpf_object *obj; 1054 char *end; 1055 1056 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1057 if (!obj) { 1058 pr_warn("alloc memory failed for %s\n", path); 1059 return ERR_PTR(-ENOMEM); 1060 } 1061 1062 strcpy(obj->path, path); 1063 if (obj_name) { 1064 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1065 obj->name[sizeof(obj->name) - 1] = 0; 1066 } else { 1067 /* Using basename() GNU version which doesn't modify arg. */ 1068 strncpy(obj->name, basename((void *)path), 1069 sizeof(obj->name) - 1); 1070 end = strchr(obj->name, '.'); 1071 if (end) 1072 *end = 0; 1073 } 1074 1075 obj->efile.fd = -1; 1076 /* 1077 * Caller of this function should also call 1078 * bpf_object__elf_finish() after data collection to return 1079 * obj_buf to user. If not, we should duplicate the buffer to 1080 * avoid user freeing them before elf finish. 1081 */ 1082 obj->efile.obj_buf = obj_buf; 1083 obj->efile.obj_buf_sz = obj_buf_sz; 1084 obj->efile.maps_shndx = -1; 1085 obj->efile.btf_maps_shndx = -1; 1086 obj->efile.data_shndx = -1; 1087 obj->efile.rodata_shndx = -1; 1088 obj->efile.bss_shndx = -1; 1089 obj->efile.st_ops_shndx = -1; 1090 obj->kconfig_map_idx = -1; 1091 obj->rodata_map_idx = -1; 1092 1093 obj->kern_version = get_kernel_version(); 1094 obj->loaded = false; 1095 1096 INIT_LIST_HEAD(&obj->list); 1097 list_add(&obj->list, &bpf_objects_list); 1098 return obj; 1099 } 1100 1101 static void bpf_object__elf_finish(struct bpf_object *obj) 1102 { 1103 if (!obj_elf_valid(obj)) 1104 return; 1105 1106 if (obj->efile.elf) { 1107 elf_end(obj->efile.elf); 1108 obj->efile.elf = NULL; 1109 } 1110 obj->efile.symbols = NULL; 1111 obj->efile.data = NULL; 1112 obj->efile.rodata = NULL; 1113 obj->efile.bss = NULL; 1114 obj->efile.st_ops_data = NULL; 1115 1116 zfree(&obj->efile.reloc_sects); 1117 obj->efile.nr_reloc_sects = 0; 1118 zclose(obj->efile.fd); 1119 obj->efile.obj_buf = NULL; 1120 obj->efile.obj_buf_sz = 0; 1121 } 1122 1123 /* if libelf is old and doesn't support mmap(), fall back to read() */ 1124 #ifndef ELF_C_READ_MMAP 1125 #define ELF_C_READ_MMAP ELF_C_READ 1126 #endif 1127 1128 static int bpf_object__elf_init(struct bpf_object *obj) 1129 { 1130 int err = 0; 1131 GElf_Ehdr *ep; 1132 1133 if (obj_elf_valid(obj)) { 1134 pr_warn("elf: init internal error\n"); 1135 return -LIBBPF_ERRNO__LIBELF; 1136 } 1137 1138 if (obj->efile.obj_buf_sz > 0) { 1139 /* 1140 * obj_buf should have been validated by 1141 * bpf_object__open_buffer(). 1142 */ 1143 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1144 obj->efile.obj_buf_sz); 1145 } else { 1146 obj->efile.fd = open(obj->path, O_RDONLY); 1147 if (obj->efile.fd < 0) { 1148 char errmsg[STRERR_BUFSIZE], *cp; 1149 1150 err = -errno; 1151 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1152 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1153 return err; 1154 } 1155 1156 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1157 } 1158 1159 if (!obj->efile.elf) { 1160 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1161 err = -LIBBPF_ERRNO__LIBELF; 1162 goto errout; 1163 } 1164 1165 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1166 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1167 err = -LIBBPF_ERRNO__FORMAT; 1168 goto errout; 1169 } 1170 ep = &obj->efile.ehdr; 1171 1172 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1173 pr_warn("elf: failed to get section names section index for %s: %s\n", 1174 obj->path, elf_errmsg(-1)); 1175 err = -LIBBPF_ERRNO__FORMAT; 1176 goto errout; 1177 } 1178 1179 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1180 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1181 pr_warn("elf: failed to get section names strings from %s: %s\n", 1182 obj->path, elf_errmsg(-1)); 1183 return -LIBBPF_ERRNO__FORMAT; 1184 } 1185 1186 /* Old LLVM set e_machine to EM_NONE */ 1187 if (ep->e_type != ET_REL || 1188 (ep->e_machine && ep->e_machine != EM_BPF)) { 1189 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1190 err = -LIBBPF_ERRNO__FORMAT; 1191 goto errout; 1192 } 1193 1194 return 0; 1195 errout: 1196 bpf_object__elf_finish(obj); 1197 return err; 1198 } 1199 1200 static int bpf_object__check_endianness(struct bpf_object *obj) 1201 { 1202 #if __BYTE_ORDER == __LITTLE_ENDIAN 1203 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1204 return 0; 1205 #elif __BYTE_ORDER == __BIG_ENDIAN 1206 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1207 return 0; 1208 #else 1209 # error "Unrecognized __BYTE_ORDER__" 1210 #endif 1211 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1212 return -LIBBPF_ERRNO__ENDIAN; 1213 } 1214 1215 static int 1216 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1217 { 1218 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1219 pr_debug("license of %s is %s\n", obj->path, obj->license); 1220 return 0; 1221 } 1222 1223 static int 1224 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1225 { 1226 __u32 kver; 1227 1228 if (size != sizeof(kver)) { 1229 pr_warn("invalid kver section in %s\n", obj->path); 1230 return -LIBBPF_ERRNO__FORMAT; 1231 } 1232 memcpy(&kver, data, sizeof(kver)); 1233 obj->kern_version = kver; 1234 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1235 return 0; 1236 } 1237 1238 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1239 { 1240 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1241 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1242 return true; 1243 return false; 1244 } 1245 1246 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1247 __u32 *size) 1248 { 1249 int ret = -ENOENT; 1250 1251 *size = 0; 1252 if (!name) { 1253 return -EINVAL; 1254 } else if (!strcmp(name, DATA_SEC)) { 1255 if (obj->efile.data) 1256 *size = obj->efile.data->d_size; 1257 } else if (!strcmp(name, BSS_SEC)) { 1258 if (obj->efile.bss) 1259 *size = obj->efile.bss->d_size; 1260 } else if (!strcmp(name, RODATA_SEC)) { 1261 if (obj->efile.rodata) 1262 *size = obj->efile.rodata->d_size; 1263 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1264 if (obj->efile.st_ops_data) 1265 *size = obj->efile.st_ops_data->d_size; 1266 } else { 1267 Elf_Scn *scn = elf_sec_by_name(obj, name); 1268 Elf_Data *data = elf_sec_data(obj, scn); 1269 1270 if (data) { 1271 ret = 0; /* found it */ 1272 *size = data->d_size; 1273 } 1274 } 1275 1276 return *size ? 0 : ret; 1277 } 1278 1279 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1280 __u32 *off) 1281 { 1282 Elf_Data *symbols = obj->efile.symbols; 1283 const char *sname; 1284 size_t si; 1285 1286 if (!name || !off) 1287 return -EINVAL; 1288 1289 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1290 GElf_Sym sym; 1291 1292 if (!gelf_getsym(symbols, si, &sym)) 1293 continue; 1294 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1295 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1296 continue; 1297 1298 sname = elf_sym_str(obj, sym.st_name); 1299 if (!sname) { 1300 pr_warn("failed to get sym name string for var %s\n", 1301 name); 1302 return -EIO; 1303 } 1304 if (strcmp(name, sname) == 0) { 1305 *off = sym.st_value; 1306 return 0; 1307 } 1308 } 1309 1310 return -ENOENT; 1311 } 1312 1313 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1314 { 1315 struct bpf_map *new_maps; 1316 size_t new_cap; 1317 int i; 1318 1319 if (obj->nr_maps < obj->maps_cap) 1320 return &obj->maps[obj->nr_maps++]; 1321 1322 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1323 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1324 if (!new_maps) { 1325 pr_warn("alloc maps for object failed\n"); 1326 return ERR_PTR(-ENOMEM); 1327 } 1328 1329 obj->maps_cap = new_cap; 1330 obj->maps = new_maps; 1331 1332 /* zero out new maps */ 1333 memset(obj->maps + obj->nr_maps, 0, 1334 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1335 /* 1336 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1337 * when failure (zclose won't close negative fd)). 1338 */ 1339 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1340 obj->maps[i].fd = -1; 1341 obj->maps[i].inner_map_fd = -1; 1342 } 1343 1344 return &obj->maps[obj->nr_maps++]; 1345 } 1346 1347 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1348 { 1349 long page_sz = sysconf(_SC_PAGE_SIZE); 1350 size_t map_sz; 1351 1352 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1353 map_sz = roundup(map_sz, page_sz); 1354 return map_sz; 1355 } 1356 1357 static char *internal_map_name(struct bpf_object *obj, 1358 enum libbpf_map_type type) 1359 { 1360 char map_name[BPF_OBJ_NAME_LEN], *p; 1361 const char *sfx = libbpf_type_to_btf_name[type]; 1362 int sfx_len = max((size_t)7, strlen(sfx)); 1363 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1364 strlen(obj->name)); 1365 1366 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1367 sfx_len, libbpf_type_to_btf_name[type]); 1368 1369 /* sanitise map name to characters allowed by kernel */ 1370 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1371 if (!isalnum(*p) && *p != '_' && *p != '.') 1372 *p = '_'; 1373 1374 return strdup(map_name); 1375 } 1376 1377 static int 1378 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1379 int sec_idx, void *data, size_t data_sz) 1380 { 1381 struct bpf_map_def *def; 1382 struct bpf_map *map; 1383 int err; 1384 1385 map = bpf_object__add_map(obj); 1386 if (IS_ERR(map)) 1387 return PTR_ERR(map); 1388 1389 map->libbpf_type = type; 1390 map->sec_idx = sec_idx; 1391 map->sec_offset = 0; 1392 map->name = internal_map_name(obj, type); 1393 if (!map->name) { 1394 pr_warn("failed to alloc map name\n"); 1395 return -ENOMEM; 1396 } 1397 1398 def = &map->def; 1399 def->type = BPF_MAP_TYPE_ARRAY; 1400 def->key_size = sizeof(int); 1401 def->value_size = data_sz; 1402 def->max_entries = 1; 1403 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1404 ? BPF_F_RDONLY_PROG : 0; 1405 def->map_flags |= BPF_F_MMAPABLE; 1406 1407 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1408 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1409 1410 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1411 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1412 if (map->mmaped == MAP_FAILED) { 1413 err = -errno; 1414 map->mmaped = NULL; 1415 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1416 map->name, err); 1417 zfree(&map->name); 1418 return err; 1419 } 1420 1421 if (data) 1422 memcpy(map->mmaped, data, data_sz); 1423 1424 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1425 return 0; 1426 } 1427 1428 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1429 { 1430 int err; 1431 1432 /* 1433 * Populate obj->maps with libbpf internal maps. 1434 */ 1435 if (obj->efile.data_shndx >= 0) { 1436 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1437 obj->efile.data_shndx, 1438 obj->efile.data->d_buf, 1439 obj->efile.data->d_size); 1440 if (err) 1441 return err; 1442 } 1443 if (obj->efile.rodata_shndx >= 0) { 1444 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1445 obj->efile.rodata_shndx, 1446 obj->efile.rodata->d_buf, 1447 obj->efile.rodata->d_size); 1448 if (err) 1449 return err; 1450 1451 obj->rodata_map_idx = obj->nr_maps - 1; 1452 } 1453 if (obj->efile.bss_shndx >= 0) { 1454 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1455 obj->efile.bss_shndx, 1456 NULL, 1457 obj->efile.bss->d_size); 1458 if (err) 1459 return err; 1460 } 1461 return 0; 1462 } 1463 1464 1465 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1466 const void *name) 1467 { 1468 int i; 1469 1470 for (i = 0; i < obj->nr_extern; i++) { 1471 if (strcmp(obj->externs[i].name, name) == 0) 1472 return &obj->externs[i]; 1473 } 1474 return NULL; 1475 } 1476 1477 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1478 char value) 1479 { 1480 switch (ext->kcfg.type) { 1481 case KCFG_BOOL: 1482 if (value == 'm') { 1483 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1484 ext->name, value); 1485 return -EINVAL; 1486 } 1487 *(bool *)ext_val = value == 'y' ? true : false; 1488 break; 1489 case KCFG_TRISTATE: 1490 if (value == 'y') 1491 *(enum libbpf_tristate *)ext_val = TRI_YES; 1492 else if (value == 'm') 1493 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1494 else /* value == 'n' */ 1495 *(enum libbpf_tristate *)ext_val = TRI_NO; 1496 break; 1497 case KCFG_CHAR: 1498 *(char *)ext_val = value; 1499 break; 1500 case KCFG_UNKNOWN: 1501 case KCFG_INT: 1502 case KCFG_CHAR_ARR: 1503 default: 1504 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1505 ext->name, value); 1506 return -EINVAL; 1507 } 1508 ext->is_set = true; 1509 return 0; 1510 } 1511 1512 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1513 const char *value) 1514 { 1515 size_t len; 1516 1517 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1518 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1519 return -EINVAL; 1520 } 1521 1522 len = strlen(value); 1523 if (value[len - 1] != '"') { 1524 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1525 ext->name, value); 1526 return -EINVAL; 1527 } 1528 1529 /* strip quotes */ 1530 len -= 2; 1531 if (len >= ext->kcfg.sz) { 1532 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1533 ext->name, value, len, ext->kcfg.sz - 1); 1534 len = ext->kcfg.sz - 1; 1535 } 1536 memcpy(ext_val, value + 1, len); 1537 ext_val[len] = '\0'; 1538 ext->is_set = true; 1539 return 0; 1540 } 1541 1542 static int parse_u64(const char *value, __u64 *res) 1543 { 1544 char *value_end; 1545 int err; 1546 1547 errno = 0; 1548 *res = strtoull(value, &value_end, 0); 1549 if (errno) { 1550 err = -errno; 1551 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1552 return err; 1553 } 1554 if (*value_end) { 1555 pr_warn("failed to parse '%s' as integer completely\n", value); 1556 return -EINVAL; 1557 } 1558 return 0; 1559 } 1560 1561 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1562 { 1563 int bit_sz = ext->kcfg.sz * 8; 1564 1565 if (ext->kcfg.sz == 8) 1566 return true; 1567 1568 /* Validate that value stored in u64 fits in integer of `ext->sz` 1569 * bytes size without any loss of information. If the target integer 1570 * is signed, we rely on the following limits of integer type of 1571 * Y bits and subsequent transformation: 1572 * 1573 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1574 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1575 * 0 <= X + 2^(Y-1) < 2^Y 1576 * 1577 * For unsigned target integer, check that all the (64 - Y) bits are 1578 * zero. 1579 */ 1580 if (ext->kcfg.is_signed) 1581 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1582 else 1583 return (v >> bit_sz) == 0; 1584 } 1585 1586 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1587 __u64 value) 1588 { 1589 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1590 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1591 ext->name, (unsigned long long)value); 1592 return -EINVAL; 1593 } 1594 if (!is_kcfg_value_in_range(ext, value)) { 1595 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1596 ext->name, (unsigned long long)value, ext->kcfg.sz); 1597 return -ERANGE; 1598 } 1599 switch (ext->kcfg.sz) { 1600 case 1: *(__u8 *)ext_val = value; break; 1601 case 2: *(__u16 *)ext_val = value; break; 1602 case 4: *(__u32 *)ext_val = value; break; 1603 case 8: *(__u64 *)ext_val = value; break; 1604 default: 1605 return -EINVAL; 1606 } 1607 ext->is_set = true; 1608 return 0; 1609 } 1610 1611 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1612 char *buf, void *data) 1613 { 1614 struct extern_desc *ext; 1615 char *sep, *value; 1616 int len, err = 0; 1617 void *ext_val; 1618 __u64 num; 1619 1620 if (strncmp(buf, "CONFIG_", 7)) 1621 return 0; 1622 1623 sep = strchr(buf, '='); 1624 if (!sep) { 1625 pr_warn("failed to parse '%s': no separator\n", buf); 1626 return -EINVAL; 1627 } 1628 1629 /* Trim ending '\n' */ 1630 len = strlen(buf); 1631 if (buf[len - 1] == '\n') 1632 buf[len - 1] = '\0'; 1633 /* Split on '=' and ensure that a value is present. */ 1634 *sep = '\0'; 1635 if (!sep[1]) { 1636 *sep = '='; 1637 pr_warn("failed to parse '%s': no value\n", buf); 1638 return -EINVAL; 1639 } 1640 1641 ext = find_extern_by_name(obj, buf); 1642 if (!ext || ext->is_set) 1643 return 0; 1644 1645 ext_val = data + ext->kcfg.data_off; 1646 value = sep + 1; 1647 1648 switch (*value) { 1649 case 'y': case 'n': case 'm': 1650 err = set_kcfg_value_tri(ext, ext_val, *value); 1651 break; 1652 case '"': 1653 err = set_kcfg_value_str(ext, ext_val, value); 1654 break; 1655 default: 1656 /* assume integer */ 1657 err = parse_u64(value, &num); 1658 if (err) { 1659 pr_warn("extern (kcfg) %s=%s should be integer\n", 1660 ext->name, value); 1661 return err; 1662 } 1663 err = set_kcfg_value_num(ext, ext_val, num); 1664 break; 1665 } 1666 if (err) 1667 return err; 1668 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1669 return 0; 1670 } 1671 1672 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1673 { 1674 char buf[PATH_MAX]; 1675 struct utsname uts; 1676 int len, err = 0; 1677 gzFile file; 1678 1679 uname(&uts); 1680 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1681 if (len < 0) 1682 return -EINVAL; 1683 else if (len >= PATH_MAX) 1684 return -ENAMETOOLONG; 1685 1686 /* gzopen also accepts uncompressed files. */ 1687 file = gzopen(buf, "r"); 1688 if (!file) 1689 file = gzopen("/proc/config.gz", "r"); 1690 1691 if (!file) { 1692 pr_warn("failed to open system Kconfig\n"); 1693 return -ENOENT; 1694 } 1695 1696 while (gzgets(file, buf, sizeof(buf))) { 1697 err = bpf_object__process_kconfig_line(obj, buf, data); 1698 if (err) { 1699 pr_warn("error parsing system Kconfig line '%s': %d\n", 1700 buf, err); 1701 goto out; 1702 } 1703 } 1704 1705 out: 1706 gzclose(file); 1707 return err; 1708 } 1709 1710 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1711 const char *config, void *data) 1712 { 1713 char buf[PATH_MAX]; 1714 int err = 0; 1715 FILE *file; 1716 1717 file = fmemopen((void *)config, strlen(config), "r"); 1718 if (!file) { 1719 err = -errno; 1720 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1721 return err; 1722 } 1723 1724 while (fgets(buf, sizeof(buf), file)) { 1725 err = bpf_object__process_kconfig_line(obj, buf, data); 1726 if (err) { 1727 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1728 buf, err); 1729 break; 1730 } 1731 } 1732 1733 fclose(file); 1734 return err; 1735 } 1736 1737 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1738 { 1739 struct extern_desc *last_ext = NULL, *ext; 1740 size_t map_sz; 1741 int i, err; 1742 1743 for (i = 0; i < obj->nr_extern; i++) { 1744 ext = &obj->externs[i]; 1745 if (ext->type == EXT_KCFG) 1746 last_ext = ext; 1747 } 1748 1749 if (!last_ext) 1750 return 0; 1751 1752 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1753 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1754 obj->efile.symbols_shndx, 1755 NULL, map_sz); 1756 if (err) 1757 return err; 1758 1759 obj->kconfig_map_idx = obj->nr_maps - 1; 1760 1761 return 0; 1762 } 1763 1764 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1765 { 1766 Elf_Data *symbols = obj->efile.symbols; 1767 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1768 Elf_Data *data = NULL; 1769 Elf_Scn *scn; 1770 1771 if (obj->efile.maps_shndx < 0) 1772 return 0; 1773 1774 if (!symbols) 1775 return -EINVAL; 1776 1777 1778 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1779 data = elf_sec_data(obj, scn); 1780 if (!scn || !data) { 1781 pr_warn("elf: failed to get legacy map definitions for %s\n", 1782 obj->path); 1783 return -EINVAL; 1784 } 1785 1786 /* 1787 * Count number of maps. Each map has a name. 1788 * Array of maps is not supported: only the first element is 1789 * considered. 1790 * 1791 * TODO: Detect array of map and report error. 1792 */ 1793 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1794 for (i = 0; i < nr_syms; i++) { 1795 GElf_Sym sym; 1796 1797 if (!gelf_getsym(symbols, i, &sym)) 1798 continue; 1799 if (sym.st_shndx != obj->efile.maps_shndx) 1800 continue; 1801 nr_maps++; 1802 } 1803 /* Assume equally sized map definitions */ 1804 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1805 nr_maps, data->d_size, obj->path); 1806 1807 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1808 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1809 obj->path); 1810 return -EINVAL; 1811 } 1812 map_def_sz = data->d_size / nr_maps; 1813 1814 /* Fill obj->maps using data in "maps" section. */ 1815 for (i = 0; i < nr_syms; i++) { 1816 GElf_Sym sym; 1817 const char *map_name; 1818 struct bpf_map_def *def; 1819 struct bpf_map *map; 1820 1821 if (!gelf_getsym(symbols, i, &sym)) 1822 continue; 1823 if (sym.st_shndx != obj->efile.maps_shndx) 1824 continue; 1825 1826 map = bpf_object__add_map(obj); 1827 if (IS_ERR(map)) 1828 return PTR_ERR(map); 1829 1830 map_name = elf_sym_str(obj, sym.st_name); 1831 if (!map_name) { 1832 pr_warn("failed to get map #%d name sym string for obj %s\n", 1833 i, obj->path); 1834 return -LIBBPF_ERRNO__FORMAT; 1835 } 1836 1837 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1838 map->sec_idx = sym.st_shndx; 1839 map->sec_offset = sym.st_value; 1840 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1841 map_name, map->sec_idx, map->sec_offset); 1842 if (sym.st_value + map_def_sz > data->d_size) { 1843 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1844 obj->path, map_name); 1845 return -EINVAL; 1846 } 1847 1848 map->name = strdup(map_name); 1849 if (!map->name) { 1850 pr_warn("failed to alloc map name\n"); 1851 return -ENOMEM; 1852 } 1853 pr_debug("map %d is \"%s\"\n", i, map->name); 1854 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1855 /* 1856 * If the definition of the map in the object file fits in 1857 * bpf_map_def, copy it. Any extra fields in our version 1858 * of bpf_map_def will default to zero as a result of the 1859 * calloc above. 1860 */ 1861 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1862 memcpy(&map->def, def, map_def_sz); 1863 } else { 1864 /* 1865 * Here the map structure being read is bigger than what 1866 * we expect, truncate if the excess bits are all zero. 1867 * If they are not zero, reject this map as 1868 * incompatible. 1869 */ 1870 char *b; 1871 1872 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1873 b < ((char *)def) + map_def_sz; b++) { 1874 if (*b != 0) { 1875 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1876 obj->path, map_name); 1877 if (strict) 1878 return -EINVAL; 1879 } 1880 } 1881 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1882 } 1883 } 1884 return 0; 1885 } 1886 1887 static const struct btf_type * 1888 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1889 { 1890 const struct btf_type *t = btf__type_by_id(btf, id); 1891 1892 if (res_id) 1893 *res_id = id; 1894 1895 while (btf_is_mod(t) || btf_is_typedef(t)) { 1896 if (res_id) 1897 *res_id = t->type; 1898 t = btf__type_by_id(btf, t->type); 1899 } 1900 1901 return t; 1902 } 1903 1904 static const struct btf_type * 1905 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1906 { 1907 const struct btf_type *t; 1908 1909 t = skip_mods_and_typedefs(btf, id, NULL); 1910 if (!btf_is_ptr(t)) 1911 return NULL; 1912 1913 t = skip_mods_and_typedefs(btf, t->type, res_id); 1914 1915 return btf_is_func_proto(t) ? t : NULL; 1916 } 1917 1918 static const char *btf_kind_str(const struct btf_type *t) 1919 { 1920 switch (btf_kind(t)) { 1921 case BTF_KIND_UNKN: return "void"; 1922 case BTF_KIND_INT: return "int"; 1923 case BTF_KIND_PTR: return "ptr"; 1924 case BTF_KIND_ARRAY: return "array"; 1925 case BTF_KIND_STRUCT: return "struct"; 1926 case BTF_KIND_UNION: return "union"; 1927 case BTF_KIND_ENUM: return "enum"; 1928 case BTF_KIND_FWD: return "fwd"; 1929 case BTF_KIND_TYPEDEF: return "typedef"; 1930 case BTF_KIND_VOLATILE: return "volatile"; 1931 case BTF_KIND_CONST: return "const"; 1932 case BTF_KIND_RESTRICT: return "restrict"; 1933 case BTF_KIND_FUNC: return "func"; 1934 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1935 case BTF_KIND_VAR: return "var"; 1936 case BTF_KIND_DATASEC: return "datasec"; 1937 default: return "unknown"; 1938 } 1939 } 1940 1941 /* 1942 * Fetch integer attribute of BTF map definition. Such attributes are 1943 * represented using a pointer to an array, in which dimensionality of array 1944 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1945 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1946 * type definition, while using only sizeof(void *) space in ELF data section. 1947 */ 1948 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1949 const struct btf_member *m, __u32 *res) 1950 { 1951 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1952 const char *name = btf__name_by_offset(btf, m->name_off); 1953 const struct btf_array *arr_info; 1954 const struct btf_type *arr_t; 1955 1956 if (!btf_is_ptr(t)) { 1957 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1958 map_name, name, btf_kind_str(t)); 1959 return false; 1960 } 1961 1962 arr_t = btf__type_by_id(btf, t->type); 1963 if (!arr_t) { 1964 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1965 map_name, name, t->type); 1966 return false; 1967 } 1968 if (!btf_is_array(arr_t)) { 1969 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1970 map_name, name, btf_kind_str(arr_t)); 1971 return false; 1972 } 1973 arr_info = btf_array(arr_t); 1974 *res = arr_info->nelems; 1975 return true; 1976 } 1977 1978 static int build_map_pin_path(struct bpf_map *map, const char *path) 1979 { 1980 char buf[PATH_MAX]; 1981 int len; 1982 1983 if (!path) 1984 path = "/sys/fs/bpf"; 1985 1986 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1987 if (len < 0) 1988 return -EINVAL; 1989 else if (len >= PATH_MAX) 1990 return -ENAMETOOLONG; 1991 1992 return bpf_map__set_pin_path(map, buf); 1993 } 1994 1995 1996 static int parse_btf_map_def(struct bpf_object *obj, 1997 struct bpf_map *map, 1998 const struct btf_type *def, 1999 bool strict, bool is_inner, 2000 const char *pin_root_path) 2001 { 2002 const struct btf_type *t; 2003 const struct btf_member *m; 2004 int vlen, i; 2005 2006 vlen = btf_vlen(def); 2007 m = btf_members(def); 2008 for (i = 0; i < vlen; i++, m++) { 2009 const char *name = btf__name_by_offset(obj->btf, m->name_off); 2010 2011 if (!name) { 2012 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 2013 return -EINVAL; 2014 } 2015 if (strcmp(name, "type") == 0) { 2016 if (!get_map_field_int(map->name, obj->btf, m, 2017 &map->def.type)) 2018 return -EINVAL; 2019 pr_debug("map '%s': found type = %u.\n", 2020 map->name, map->def.type); 2021 } else if (strcmp(name, "max_entries") == 0) { 2022 if (!get_map_field_int(map->name, obj->btf, m, 2023 &map->def.max_entries)) 2024 return -EINVAL; 2025 pr_debug("map '%s': found max_entries = %u.\n", 2026 map->name, map->def.max_entries); 2027 } else if (strcmp(name, "map_flags") == 0) { 2028 if (!get_map_field_int(map->name, obj->btf, m, 2029 &map->def.map_flags)) 2030 return -EINVAL; 2031 pr_debug("map '%s': found map_flags = %u.\n", 2032 map->name, map->def.map_flags); 2033 } else if (strcmp(name, "numa_node") == 0) { 2034 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2035 return -EINVAL; 2036 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2037 } else if (strcmp(name, "key_size") == 0) { 2038 __u32 sz; 2039 2040 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2041 return -EINVAL; 2042 pr_debug("map '%s': found key_size = %u.\n", 2043 map->name, sz); 2044 if (map->def.key_size && map->def.key_size != sz) { 2045 pr_warn("map '%s': conflicting key size %u != %u.\n", 2046 map->name, map->def.key_size, sz); 2047 return -EINVAL; 2048 } 2049 map->def.key_size = sz; 2050 } else if (strcmp(name, "key") == 0) { 2051 __s64 sz; 2052 2053 t = btf__type_by_id(obj->btf, m->type); 2054 if (!t) { 2055 pr_warn("map '%s': key type [%d] not found.\n", 2056 map->name, m->type); 2057 return -EINVAL; 2058 } 2059 if (!btf_is_ptr(t)) { 2060 pr_warn("map '%s': key spec is not PTR: %s.\n", 2061 map->name, btf_kind_str(t)); 2062 return -EINVAL; 2063 } 2064 sz = btf__resolve_size(obj->btf, t->type); 2065 if (sz < 0) { 2066 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2067 map->name, t->type, (ssize_t)sz); 2068 return sz; 2069 } 2070 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2071 map->name, t->type, (ssize_t)sz); 2072 if (map->def.key_size && map->def.key_size != sz) { 2073 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2074 map->name, map->def.key_size, (ssize_t)sz); 2075 return -EINVAL; 2076 } 2077 map->def.key_size = sz; 2078 map->btf_key_type_id = t->type; 2079 } else if (strcmp(name, "value_size") == 0) { 2080 __u32 sz; 2081 2082 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2083 return -EINVAL; 2084 pr_debug("map '%s': found value_size = %u.\n", 2085 map->name, sz); 2086 if (map->def.value_size && map->def.value_size != sz) { 2087 pr_warn("map '%s': conflicting value size %u != %u.\n", 2088 map->name, map->def.value_size, sz); 2089 return -EINVAL; 2090 } 2091 map->def.value_size = sz; 2092 } else if (strcmp(name, "value") == 0) { 2093 __s64 sz; 2094 2095 t = btf__type_by_id(obj->btf, m->type); 2096 if (!t) { 2097 pr_warn("map '%s': value type [%d] not found.\n", 2098 map->name, m->type); 2099 return -EINVAL; 2100 } 2101 if (!btf_is_ptr(t)) { 2102 pr_warn("map '%s': value spec is not PTR: %s.\n", 2103 map->name, btf_kind_str(t)); 2104 return -EINVAL; 2105 } 2106 sz = btf__resolve_size(obj->btf, t->type); 2107 if (sz < 0) { 2108 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2109 map->name, t->type, (ssize_t)sz); 2110 return sz; 2111 } 2112 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2113 map->name, t->type, (ssize_t)sz); 2114 if (map->def.value_size && map->def.value_size != sz) { 2115 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2116 map->name, map->def.value_size, (ssize_t)sz); 2117 return -EINVAL; 2118 } 2119 map->def.value_size = sz; 2120 map->btf_value_type_id = t->type; 2121 } 2122 else if (strcmp(name, "values") == 0) { 2123 int err; 2124 2125 if (is_inner) { 2126 pr_warn("map '%s': multi-level inner maps not supported.\n", 2127 map->name); 2128 return -ENOTSUP; 2129 } 2130 if (i != vlen - 1) { 2131 pr_warn("map '%s': '%s' member should be last.\n", 2132 map->name, name); 2133 return -EINVAL; 2134 } 2135 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2136 pr_warn("map '%s': should be map-in-map.\n", 2137 map->name); 2138 return -ENOTSUP; 2139 } 2140 if (map->def.value_size && map->def.value_size != 4) { 2141 pr_warn("map '%s': conflicting value size %u != 4.\n", 2142 map->name, map->def.value_size); 2143 return -EINVAL; 2144 } 2145 map->def.value_size = 4; 2146 t = btf__type_by_id(obj->btf, m->type); 2147 if (!t) { 2148 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2149 map->name, m->type); 2150 return -EINVAL; 2151 } 2152 if (!btf_is_array(t) || btf_array(t)->nelems) { 2153 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2154 map->name); 2155 return -EINVAL; 2156 } 2157 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2158 NULL); 2159 if (!btf_is_ptr(t)) { 2160 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2161 map->name, btf_kind_str(t)); 2162 return -EINVAL; 2163 } 2164 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2165 if (!btf_is_struct(t)) { 2166 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2167 map->name, btf_kind_str(t)); 2168 return -EINVAL; 2169 } 2170 2171 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2172 if (!map->inner_map) 2173 return -ENOMEM; 2174 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2175 map->inner_map->name = malloc(strlen(map->name) + 2176 sizeof(".inner") + 1); 2177 if (!map->inner_map->name) 2178 return -ENOMEM; 2179 sprintf(map->inner_map->name, "%s.inner", map->name); 2180 2181 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2182 true /* is_inner */, NULL); 2183 if (err) 2184 return err; 2185 } else if (strcmp(name, "pinning") == 0) { 2186 __u32 val; 2187 int err; 2188 2189 if (is_inner) { 2190 pr_debug("map '%s': inner def can't be pinned.\n", 2191 map->name); 2192 return -EINVAL; 2193 } 2194 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2195 return -EINVAL; 2196 pr_debug("map '%s': found pinning = %u.\n", 2197 map->name, val); 2198 2199 if (val != LIBBPF_PIN_NONE && 2200 val != LIBBPF_PIN_BY_NAME) { 2201 pr_warn("map '%s': invalid pinning value %u.\n", 2202 map->name, val); 2203 return -EINVAL; 2204 } 2205 if (val == LIBBPF_PIN_BY_NAME) { 2206 err = build_map_pin_path(map, pin_root_path); 2207 if (err) { 2208 pr_warn("map '%s': couldn't build pin path.\n", 2209 map->name); 2210 return err; 2211 } 2212 } 2213 } else { 2214 if (strict) { 2215 pr_warn("map '%s': unknown field '%s'.\n", 2216 map->name, name); 2217 return -ENOTSUP; 2218 } 2219 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2220 map->name, name); 2221 } 2222 } 2223 2224 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2225 pr_warn("map '%s': map type isn't specified.\n", map->name); 2226 return -EINVAL; 2227 } 2228 2229 return 0; 2230 } 2231 2232 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2233 const struct btf_type *sec, 2234 int var_idx, int sec_idx, 2235 const Elf_Data *data, bool strict, 2236 const char *pin_root_path) 2237 { 2238 const struct btf_type *var, *def; 2239 const struct btf_var_secinfo *vi; 2240 const struct btf_var *var_extra; 2241 const char *map_name; 2242 struct bpf_map *map; 2243 2244 vi = btf_var_secinfos(sec) + var_idx; 2245 var = btf__type_by_id(obj->btf, vi->type); 2246 var_extra = btf_var(var); 2247 map_name = btf__name_by_offset(obj->btf, var->name_off); 2248 2249 if (map_name == NULL || map_name[0] == '\0') { 2250 pr_warn("map #%d: empty name.\n", var_idx); 2251 return -EINVAL; 2252 } 2253 if ((__u64)vi->offset + vi->size > data->d_size) { 2254 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2255 return -EINVAL; 2256 } 2257 if (!btf_is_var(var)) { 2258 pr_warn("map '%s': unexpected var kind %s.\n", 2259 map_name, btf_kind_str(var)); 2260 return -EINVAL; 2261 } 2262 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2263 var_extra->linkage != BTF_VAR_STATIC) { 2264 pr_warn("map '%s': unsupported var linkage %u.\n", 2265 map_name, var_extra->linkage); 2266 return -EOPNOTSUPP; 2267 } 2268 2269 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2270 if (!btf_is_struct(def)) { 2271 pr_warn("map '%s': unexpected def kind %s.\n", 2272 map_name, btf_kind_str(var)); 2273 return -EINVAL; 2274 } 2275 if (def->size > vi->size) { 2276 pr_warn("map '%s': invalid def size.\n", map_name); 2277 return -EINVAL; 2278 } 2279 2280 map = bpf_object__add_map(obj); 2281 if (IS_ERR(map)) 2282 return PTR_ERR(map); 2283 map->name = strdup(map_name); 2284 if (!map->name) { 2285 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2286 return -ENOMEM; 2287 } 2288 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2289 map->def.type = BPF_MAP_TYPE_UNSPEC; 2290 map->sec_idx = sec_idx; 2291 map->sec_offset = vi->offset; 2292 map->btf_var_idx = var_idx; 2293 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2294 map_name, map->sec_idx, map->sec_offset); 2295 2296 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2297 } 2298 2299 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2300 const char *pin_root_path) 2301 { 2302 const struct btf_type *sec = NULL; 2303 int nr_types, i, vlen, err; 2304 const struct btf_type *t; 2305 const char *name; 2306 Elf_Data *data; 2307 Elf_Scn *scn; 2308 2309 if (obj->efile.btf_maps_shndx < 0) 2310 return 0; 2311 2312 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2313 data = elf_sec_data(obj, scn); 2314 if (!scn || !data) { 2315 pr_warn("elf: failed to get %s map definitions for %s\n", 2316 MAPS_ELF_SEC, obj->path); 2317 return -EINVAL; 2318 } 2319 2320 nr_types = btf__get_nr_types(obj->btf); 2321 for (i = 1; i <= nr_types; i++) { 2322 t = btf__type_by_id(obj->btf, i); 2323 if (!btf_is_datasec(t)) 2324 continue; 2325 name = btf__name_by_offset(obj->btf, t->name_off); 2326 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2327 sec = t; 2328 obj->efile.btf_maps_sec_btf_id = i; 2329 break; 2330 } 2331 } 2332 2333 if (!sec) { 2334 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2335 return -ENOENT; 2336 } 2337 2338 vlen = btf_vlen(sec); 2339 for (i = 0; i < vlen; i++) { 2340 err = bpf_object__init_user_btf_map(obj, sec, i, 2341 obj->efile.btf_maps_shndx, 2342 data, strict, 2343 pin_root_path); 2344 if (err) 2345 return err; 2346 } 2347 2348 return 0; 2349 } 2350 2351 static int bpf_object__init_maps(struct bpf_object *obj, 2352 const struct bpf_object_open_opts *opts) 2353 { 2354 const char *pin_root_path; 2355 bool strict; 2356 int err; 2357 2358 strict = !OPTS_GET(opts, relaxed_maps, false); 2359 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2360 2361 err = bpf_object__init_user_maps(obj, strict); 2362 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2363 err = err ?: bpf_object__init_global_data_maps(obj); 2364 err = err ?: bpf_object__init_kconfig_map(obj); 2365 err = err ?: bpf_object__init_struct_ops_maps(obj); 2366 if (err) 2367 return err; 2368 2369 return 0; 2370 } 2371 2372 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2373 { 2374 GElf_Shdr sh; 2375 2376 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2377 return false; 2378 2379 return sh.sh_flags & SHF_EXECINSTR; 2380 } 2381 2382 static bool btf_needs_sanitization(struct bpf_object *obj) 2383 { 2384 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2385 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2386 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2387 2388 return !has_func || !has_datasec || !has_func_global; 2389 } 2390 2391 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2392 { 2393 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2394 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2395 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2396 struct btf_type *t; 2397 int i, j, vlen; 2398 2399 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2400 t = (struct btf_type *)btf__type_by_id(btf, i); 2401 2402 if (!has_datasec && btf_is_var(t)) { 2403 /* replace VAR with INT */ 2404 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2405 /* 2406 * using size = 1 is the safest choice, 4 will be too 2407 * big and cause kernel BTF validation failure if 2408 * original variable took less than 4 bytes 2409 */ 2410 t->size = 1; 2411 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2412 } else if (!has_datasec && btf_is_datasec(t)) { 2413 /* replace DATASEC with STRUCT */ 2414 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2415 struct btf_member *m = btf_members(t); 2416 struct btf_type *vt; 2417 char *name; 2418 2419 name = (char *)btf__name_by_offset(btf, t->name_off); 2420 while (*name) { 2421 if (*name == '.') 2422 *name = '_'; 2423 name++; 2424 } 2425 2426 vlen = btf_vlen(t); 2427 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2428 for (j = 0; j < vlen; j++, v++, m++) { 2429 /* order of field assignments is important */ 2430 m->offset = v->offset * 8; 2431 m->type = v->type; 2432 /* preserve variable name as member name */ 2433 vt = (void *)btf__type_by_id(btf, v->type); 2434 m->name_off = vt->name_off; 2435 } 2436 } else if (!has_func && btf_is_func_proto(t)) { 2437 /* replace FUNC_PROTO with ENUM */ 2438 vlen = btf_vlen(t); 2439 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2440 t->size = sizeof(__u32); /* kernel enforced */ 2441 } else if (!has_func && btf_is_func(t)) { 2442 /* replace FUNC with TYPEDEF */ 2443 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2444 } else if (!has_func_global && btf_is_func(t)) { 2445 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2446 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2447 } 2448 } 2449 } 2450 2451 static bool libbpf_needs_btf(const struct bpf_object *obj) 2452 { 2453 return obj->efile.btf_maps_shndx >= 0 || 2454 obj->efile.st_ops_shndx >= 0 || 2455 obj->nr_extern > 0; 2456 } 2457 2458 static bool kernel_needs_btf(const struct bpf_object *obj) 2459 { 2460 return obj->efile.st_ops_shndx >= 0; 2461 } 2462 2463 static int bpf_object__init_btf(struct bpf_object *obj, 2464 Elf_Data *btf_data, 2465 Elf_Data *btf_ext_data) 2466 { 2467 int err = -ENOENT; 2468 2469 if (btf_data) { 2470 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2471 if (IS_ERR(obj->btf)) { 2472 err = PTR_ERR(obj->btf); 2473 obj->btf = NULL; 2474 pr_warn("Error loading ELF section %s: %d.\n", 2475 BTF_ELF_SEC, err); 2476 goto out; 2477 } 2478 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2479 btf__set_pointer_size(obj->btf, 8); 2480 err = 0; 2481 } 2482 if (btf_ext_data) { 2483 if (!obj->btf) { 2484 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2485 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2486 goto out; 2487 } 2488 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2489 btf_ext_data->d_size); 2490 if (IS_ERR(obj->btf_ext)) { 2491 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2492 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2493 obj->btf_ext = NULL; 2494 goto out; 2495 } 2496 } 2497 out: 2498 if (err && libbpf_needs_btf(obj)) { 2499 pr_warn("BTF is required, but is missing or corrupted.\n"); 2500 return err; 2501 } 2502 return 0; 2503 } 2504 2505 static int bpf_object__finalize_btf(struct bpf_object *obj) 2506 { 2507 int err; 2508 2509 if (!obj->btf) 2510 return 0; 2511 2512 err = btf__finalize_data(obj, obj->btf); 2513 if (err) { 2514 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2515 return err; 2516 } 2517 2518 return 0; 2519 } 2520 2521 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2522 { 2523 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2524 prog->type == BPF_PROG_TYPE_LSM) 2525 return true; 2526 2527 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2528 * also need vmlinux BTF 2529 */ 2530 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2531 return true; 2532 2533 return false; 2534 } 2535 2536 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2537 { 2538 bool need_vmlinux_btf = false; 2539 struct bpf_program *prog; 2540 int i, err; 2541 2542 /* CO-RE relocations need kernel BTF */ 2543 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2544 need_vmlinux_btf = true; 2545 2546 /* Support for typed ksyms needs kernel BTF */ 2547 for (i = 0; i < obj->nr_extern; i++) { 2548 const struct extern_desc *ext; 2549 2550 ext = &obj->externs[i]; 2551 if (ext->type == EXT_KSYM && ext->ksym.type_id) { 2552 need_vmlinux_btf = true; 2553 break; 2554 } 2555 } 2556 2557 bpf_object__for_each_program(prog, obj) { 2558 if (!prog->load) 2559 continue; 2560 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2561 need_vmlinux_btf = true; 2562 break; 2563 } 2564 } 2565 2566 if (!need_vmlinux_btf) 2567 return 0; 2568 2569 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2570 if (IS_ERR(obj->btf_vmlinux)) { 2571 err = PTR_ERR(obj->btf_vmlinux); 2572 pr_warn("Error loading vmlinux BTF: %d\n", err); 2573 obj->btf_vmlinux = NULL; 2574 return err; 2575 } 2576 return 0; 2577 } 2578 2579 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2580 { 2581 struct btf *kern_btf = obj->btf; 2582 bool btf_mandatory, sanitize; 2583 int err = 0; 2584 2585 if (!obj->btf) 2586 return 0; 2587 2588 if (!kernel_supports(FEAT_BTF)) { 2589 if (kernel_needs_btf(obj)) { 2590 err = -EOPNOTSUPP; 2591 goto report; 2592 } 2593 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2594 return 0; 2595 } 2596 2597 sanitize = btf_needs_sanitization(obj); 2598 if (sanitize) { 2599 const void *raw_data; 2600 __u32 sz; 2601 2602 /* clone BTF to sanitize a copy and leave the original intact */ 2603 raw_data = btf__get_raw_data(obj->btf, &sz); 2604 kern_btf = btf__new(raw_data, sz); 2605 if (IS_ERR(kern_btf)) 2606 return PTR_ERR(kern_btf); 2607 2608 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2609 btf__set_pointer_size(obj->btf, 8); 2610 bpf_object__sanitize_btf(obj, kern_btf); 2611 } 2612 2613 err = btf__load(kern_btf); 2614 if (sanitize) { 2615 if (!err) { 2616 /* move fd to libbpf's BTF */ 2617 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2618 btf__set_fd(kern_btf, -1); 2619 } 2620 btf__free(kern_btf); 2621 } 2622 report: 2623 if (err) { 2624 btf_mandatory = kernel_needs_btf(obj); 2625 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2626 btf_mandatory ? "BTF is mandatory, can't proceed." 2627 : "BTF is optional, ignoring."); 2628 if (!btf_mandatory) 2629 err = 0; 2630 } 2631 return err; 2632 } 2633 2634 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2635 { 2636 const char *name; 2637 2638 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2639 if (!name) { 2640 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2641 off, obj->path, elf_errmsg(-1)); 2642 return NULL; 2643 } 2644 2645 return name; 2646 } 2647 2648 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2649 { 2650 const char *name; 2651 2652 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2653 if (!name) { 2654 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2655 off, obj->path, elf_errmsg(-1)); 2656 return NULL; 2657 } 2658 2659 return name; 2660 } 2661 2662 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2663 { 2664 Elf_Scn *scn; 2665 2666 scn = elf_getscn(obj->efile.elf, idx); 2667 if (!scn) { 2668 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2669 idx, obj->path, elf_errmsg(-1)); 2670 return NULL; 2671 } 2672 return scn; 2673 } 2674 2675 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2676 { 2677 Elf_Scn *scn = NULL; 2678 Elf *elf = obj->efile.elf; 2679 const char *sec_name; 2680 2681 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2682 sec_name = elf_sec_name(obj, scn); 2683 if (!sec_name) 2684 return NULL; 2685 2686 if (strcmp(sec_name, name) != 0) 2687 continue; 2688 2689 return scn; 2690 } 2691 return NULL; 2692 } 2693 2694 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2695 { 2696 if (!scn) 2697 return -EINVAL; 2698 2699 if (gelf_getshdr(scn, hdr) != hdr) { 2700 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2701 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2702 return -EINVAL; 2703 } 2704 2705 return 0; 2706 } 2707 2708 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2709 { 2710 const char *name; 2711 GElf_Shdr sh; 2712 2713 if (!scn) 2714 return NULL; 2715 2716 if (elf_sec_hdr(obj, scn, &sh)) 2717 return NULL; 2718 2719 name = elf_sec_str(obj, sh.sh_name); 2720 if (!name) { 2721 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2722 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2723 return NULL; 2724 } 2725 2726 return name; 2727 } 2728 2729 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2730 { 2731 Elf_Data *data; 2732 2733 if (!scn) 2734 return NULL; 2735 2736 data = elf_getdata(scn, 0); 2737 if (!data) { 2738 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2739 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2740 obj->path, elf_errmsg(-1)); 2741 return NULL; 2742 } 2743 2744 return data; 2745 } 2746 2747 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2748 size_t off, __u32 sym_type, GElf_Sym *sym) 2749 { 2750 Elf_Data *symbols = obj->efile.symbols; 2751 size_t n = symbols->d_size / sizeof(GElf_Sym); 2752 int i; 2753 2754 for (i = 0; i < n; i++) { 2755 if (!gelf_getsym(symbols, i, sym)) 2756 continue; 2757 if (sym->st_shndx != sec_idx || sym->st_value != off) 2758 continue; 2759 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2760 continue; 2761 return 0; 2762 } 2763 2764 return -ENOENT; 2765 } 2766 2767 static bool is_sec_name_dwarf(const char *name) 2768 { 2769 /* approximation, but the actual list is too long */ 2770 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2771 } 2772 2773 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2774 { 2775 /* no special handling of .strtab */ 2776 if (hdr->sh_type == SHT_STRTAB) 2777 return true; 2778 2779 /* ignore .llvm_addrsig section as well */ 2780 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */) 2781 return true; 2782 2783 /* no subprograms will lead to an empty .text section, ignore it */ 2784 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2785 strcmp(name, ".text") == 0) 2786 return true; 2787 2788 /* DWARF sections */ 2789 if (is_sec_name_dwarf(name)) 2790 return true; 2791 2792 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2793 name += sizeof(".rel") - 1; 2794 /* DWARF section relocations */ 2795 if (is_sec_name_dwarf(name)) 2796 return true; 2797 2798 /* .BTF and .BTF.ext don't need relocations */ 2799 if (strcmp(name, BTF_ELF_SEC) == 0 || 2800 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2801 return true; 2802 } 2803 2804 return false; 2805 } 2806 2807 static int cmp_progs(const void *_a, const void *_b) 2808 { 2809 const struct bpf_program *a = _a; 2810 const struct bpf_program *b = _b; 2811 2812 if (a->sec_idx != b->sec_idx) 2813 return a->sec_idx < b->sec_idx ? -1 : 1; 2814 2815 /* sec_insn_off can't be the same within the section */ 2816 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2817 } 2818 2819 static int bpf_object__elf_collect(struct bpf_object *obj) 2820 { 2821 Elf *elf = obj->efile.elf; 2822 Elf_Data *btf_ext_data = NULL; 2823 Elf_Data *btf_data = NULL; 2824 int idx = 0, err = 0; 2825 const char *name; 2826 Elf_Data *data; 2827 Elf_Scn *scn; 2828 GElf_Shdr sh; 2829 2830 /* a bunch of ELF parsing functionality depends on processing symbols, 2831 * so do the first pass and find the symbol table 2832 */ 2833 scn = NULL; 2834 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2835 if (elf_sec_hdr(obj, scn, &sh)) 2836 return -LIBBPF_ERRNO__FORMAT; 2837 2838 if (sh.sh_type == SHT_SYMTAB) { 2839 if (obj->efile.symbols) { 2840 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2841 return -LIBBPF_ERRNO__FORMAT; 2842 } 2843 2844 data = elf_sec_data(obj, scn); 2845 if (!data) 2846 return -LIBBPF_ERRNO__FORMAT; 2847 2848 obj->efile.symbols = data; 2849 obj->efile.symbols_shndx = elf_ndxscn(scn); 2850 obj->efile.strtabidx = sh.sh_link; 2851 } 2852 } 2853 2854 scn = NULL; 2855 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2856 idx++; 2857 2858 if (elf_sec_hdr(obj, scn, &sh)) 2859 return -LIBBPF_ERRNO__FORMAT; 2860 2861 name = elf_sec_str(obj, sh.sh_name); 2862 if (!name) 2863 return -LIBBPF_ERRNO__FORMAT; 2864 2865 if (ignore_elf_section(&sh, name)) 2866 continue; 2867 2868 data = elf_sec_data(obj, scn); 2869 if (!data) 2870 return -LIBBPF_ERRNO__FORMAT; 2871 2872 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2873 idx, name, (unsigned long)data->d_size, 2874 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2875 (int)sh.sh_type); 2876 2877 if (strcmp(name, "license") == 0) { 2878 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2879 if (err) 2880 return err; 2881 } else if (strcmp(name, "version") == 0) { 2882 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2883 if (err) 2884 return err; 2885 } else if (strcmp(name, "maps") == 0) { 2886 obj->efile.maps_shndx = idx; 2887 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2888 obj->efile.btf_maps_shndx = idx; 2889 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2890 btf_data = data; 2891 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2892 btf_ext_data = data; 2893 } else if (sh.sh_type == SHT_SYMTAB) { 2894 /* already processed during the first pass above */ 2895 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2896 if (sh.sh_flags & SHF_EXECINSTR) { 2897 if (strcmp(name, ".text") == 0) 2898 obj->efile.text_shndx = idx; 2899 err = bpf_object__add_programs(obj, data, name, idx); 2900 if (err) 2901 return err; 2902 } else if (strcmp(name, DATA_SEC) == 0) { 2903 obj->efile.data = data; 2904 obj->efile.data_shndx = idx; 2905 } else if (strcmp(name, RODATA_SEC) == 0) { 2906 obj->efile.rodata = data; 2907 obj->efile.rodata_shndx = idx; 2908 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2909 obj->efile.st_ops_data = data; 2910 obj->efile.st_ops_shndx = idx; 2911 } else { 2912 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2913 idx, name); 2914 } 2915 } else if (sh.sh_type == SHT_REL) { 2916 int nr_sects = obj->efile.nr_reloc_sects; 2917 void *sects = obj->efile.reloc_sects; 2918 int sec = sh.sh_info; /* points to other section */ 2919 2920 /* Only do relo for section with exec instructions */ 2921 if (!section_have_execinstr(obj, sec) && 2922 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2923 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2924 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2925 idx, name, sec, 2926 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2927 continue; 2928 } 2929 2930 sects = libbpf_reallocarray(sects, nr_sects + 1, 2931 sizeof(*obj->efile.reloc_sects)); 2932 if (!sects) 2933 return -ENOMEM; 2934 2935 obj->efile.reloc_sects = sects; 2936 obj->efile.nr_reloc_sects++; 2937 2938 obj->efile.reloc_sects[nr_sects].shdr = sh; 2939 obj->efile.reloc_sects[nr_sects].data = data; 2940 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2941 obj->efile.bss = data; 2942 obj->efile.bss_shndx = idx; 2943 } else { 2944 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2945 (size_t)sh.sh_size); 2946 } 2947 } 2948 2949 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2950 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2951 return -LIBBPF_ERRNO__FORMAT; 2952 } 2953 2954 /* sort BPF programs by section name and in-section instruction offset 2955 * for faster search */ 2956 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2957 2958 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2959 } 2960 2961 static bool sym_is_extern(const GElf_Sym *sym) 2962 { 2963 int bind = GELF_ST_BIND(sym->st_info); 2964 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2965 return sym->st_shndx == SHN_UNDEF && 2966 (bind == STB_GLOBAL || bind == STB_WEAK) && 2967 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2968 } 2969 2970 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2971 { 2972 const struct btf_type *t; 2973 const char *var_name; 2974 int i, n; 2975 2976 if (!btf) 2977 return -ESRCH; 2978 2979 n = btf__get_nr_types(btf); 2980 for (i = 1; i <= n; i++) { 2981 t = btf__type_by_id(btf, i); 2982 2983 if (!btf_is_var(t)) 2984 continue; 2985 2986 var_name = btf__name_by_offset(btf, t->name_off); 2987 if (strcmp(var_name, ext_name)) 2988 continue; 2989 2990 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2991 return -EINVAL; 2992 2993 return i; 2994 } 2995 2996 return -ENOENT; 2997 } 2998 2999 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3000 const struct btf_var_secinfo *vs; 3001 const struct btf_type *t; 3002 int i, j, n; 3003 3004 if (!btf) 3005 return -ESRCH; 3006 3007 n = btf__get_nr_types(btf); 3008 for (i = 1; i <= n; i++) { 3009 t = btf__type_by_id(btf, i); 3010 3011 if (!btf_is_datasec(t)) 3012 continue; 3013 3014 vs = btf_var_secinfos(t); 3015 for (j = 0; j < btf_vlen(t); j++, vs++) { 3016 if (vs->type == ext_btf_id) 3017 return i; 3018 } 3019 } 3020 3021 return -ENOENT; 3022 } 3023 3024 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3025 bool *is_signed) 3026 { 3027 const struct btf_type *t; 3028 const char *name; 3029 3030 t = skip_mods_and_typedefs(btf, id, NULL); 3031 name = btf__name_by_offset(btf, t->name_off); 3032 3033 if (is_signed) 3034 *is_signed = false; 3035 switch (btf_kind(t)) { 3036 case BTF_KIND_INT: { 3037 int enc = btf_int_encoding(t); 3038 3039 if (enc & BTF_INT_BOOL) 3040 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3041 if (is_signed) 3042 *is_signed = enc & BTF_INT_SIGNED; 3043 if (t->size == 1) 3044 return KCFG_CHAR; 3045 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3046 return KCFG_UNKNOWN; 3047 return KCFG_INT; 3048 } 3049 case BTF_KIND_ENUM: 3050 if (t->size != 4) 3051 return KCFG_UNKNOWN; 3052 if (strcmp(name, "libbpf_tristate")) 3053 return KCFG_UNKNOWN; 3054 return KCFG_TRISTATE; 3055 case BTF_KIND_ARRAY: 3056 if (btf_array(t)->nelems == 0) 3057 return KCFG_UNKNOWN; 3058 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3059 return KCFG_UNKNOWN; 3060 return KCFG_CHAR_ARR; 3061 default: 3062 return KCFG_UNKNOWN; 3063 } 3064 } 3065 3066 static int cmp_externs(const void *_a, const void *_b) 3067 { 3068 const struct extern_desc *a = _a; 3069 const struct extern_desc *b = _b; 3070 3071 if (a->type != b->type) 3072 return a->type < b->type ? -1 : 1; 3073 3074 if (a->type == EXT_KCFG) { 3075 /* descending order by alignment requirements */ 3076 if (a->kcfg.align != b->kcfg.align) 3077 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3078 /* ascending order by size, within same alignment class */ 3079 if (a->kcfg.sz != b->kcfg.sz) 3080 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3081 } 3082 3083 /* resolve ties by name */ 3084 return strcmp(a->name, b->name); 3085 } 3086 3087 static int find_int_btf_id(const struct btf *btf) 3088 { 3089 const struct btf_type *t; 3090 int i, n; 3091 3092 n = btf__get_nr_types(btf); 3093 for (i = 1; i <= n; i++) { 3094 t = btf__type_by_id(btf, i); 3095 3096 if (btf_is_int(t) && btf_int_bits(t) == 32) 3097 return i; 3098 } 3099 3100 return 0; 3101 } 3102 3103 static int bpf_object__collect_externs(struct bpf_object *obj) 3104 { 3105 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3106 const struct btf_type *t; 3107 struct extern_desc *ext; 3108 int i, n, off; 3109 const char *ext_name, *sec_name; 3110 Elf_Scn *scn; 3111 GElf_Shdr sh; 3112 3113 if (!obj->efile.symbols) 3114 return 0; 3115 3116 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3117 if (elf_sec_hdr(obj, scn, &sh)) 3118 return -LIBBPF_ERRNO__FORMAT; 3119 3120 n = sh.sh_size / sh.sh_entsize; 3121 pr_debug("looking for externs among %d symbols...\n", n); 3122 3123 for (i = 0; i < n; i++) { 3124 GElf_Sym sym; 3125 3126 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3127 return -LIBBPF_ERRNO__FORMAT; 3128 if (!sym_is_extern(&sym)) 3129 continue; 3130 ext_name = elf_sym_str(obj, sym.st_name); 3131 if (!ext_name || !ext_name[0]) 3132 continue; 3133 3134 ext = obj->externs; 3135 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3136 if (!ext) 3137 return -ENOMEM; 3138 obj->externs = ext; 3139 ext = &ext[obj->nr_extern]; 3140 memset(ext, 0, sizeof(*ext)); 3141 obj->nr_extern++; 3142 3143 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3144 if (ext->btf_id <= 0) { 3145 pr_warn("failed to find BTF for extern '%s': %d\n", 3146 ext_name, ext->btf_id); 3147 return ext->btf_id; 3148 } 3149 t = btf__type_by_id(obj->btf, ext->btf_id); 3150 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3151 ext->sym_idx = i; 3152 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3153 3154 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3155 if (ext->sec_btf_id <= 0) { 3156 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3157 ext_name, ext->btf_id, ext->sec_btf_id); 3158 return ext->sec_btf_id; 3159 } 3160 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3161 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3162 3163 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3164 kcfg_sec = sec; 3165 ext->type = EXT_KCFG; 3166 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3167 if (ext->kcfg.sz <= 0) { 3168 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3169 ext_name, ext->kcfg.sz); 3170 return ext->kcfg.sz; 3171 } 3172 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3173 if (ext->kcfg.align <= 0) { 3174 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3175 ext_name, ext->kcfg.align); 3176 return -EINVAL; 3177 } 3178 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3179 &ext->kcfg.is_signed); 3180 if (ext->kcfg.type == KCFG_UNKNOWN) { 3181 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3182 return -ENOTSUP; 3183 } 3184 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3185 ksym_sec = sec; 3186 ext->type = EXT_KSYM; 3187 skip_mods_and_typedefs(obj->btf, t->type, 3188 &ext->ksym.type_id); 3189 } else { 3190 pr_warn("unrecognized extern section '%s'\n", sec_name); 3191 return -ENOTSUP; 3192 } 3193 } 3194 pr_debug("collected %d externs total\n", obj->nr_extern); 3195 3196 if (!obj->nr_extern) 3197 return 0; 3198 3199 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3200 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3201 3202 /* for .ksyms section, we need to turn all externs into allocated 3203 * variables in BTF to pass kernel verification; we do this by 3204 * pretending that each extern is a 8-byte variable 3205 */ 3206 if (ksym_sec) { 3207 /* find existing 4-byte integer type in BTF to use for fake 3208 * extern variables in DATASEC 3209 */ 3210 int int_btf_id = find_int_btf_id(obj->btf); 3211 3212 for (i = 0; i < obj->nr_extern; i++) { 3213 ext = &obj->externs[i]; 3214 if (ext->type != EXT_KSYM) 3215 continue; 3216 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3217 i, ext->sym_idx, ext->name); 3218 } 3219 3220 sec = ksym_sec; 3221 n = btf_vlen(sec); 3222 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3223 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3224 struct btf_type *vt; 3225 3226 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3227 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3228 ext = find_extern_by_name(obj, ext_name); 3229 if (!ext) { 3230 pr_warn("failed to find extern definition for BTF var '%s'\n", 3231 ext_name); 3232 return -ESRCH; 3233 } 3234 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3235 vt->type = int_btf_id; 3236 vs->offset = off; 3237 vs->size = sizeof(int); 3238 } 3239 sec->size = off; 3240 } 3241 3242 if (kcfg_sec) { 3243 sec = kcfg_sec; 3244 /* for kcfg externs calculate their offsets within a .kconfig map */ 3245 off = 0; 3246 for (i = 0; i < obj->nr_extern; i++) { 3247 ext = &obj->externs[i]; 3248 if (ext->type != EXT_KCFG) 3249 continue; 3250 3251 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3252 off = ext->kcfg.data_off + ext->kcfg.sz; 3253 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3254 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3255 } 3256 sec->size = off; 3257 n = btf_vlen(sec); 3258 for (i = 0; i < n; i++) { 3259 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3260 3261 t = btf__type_by_id(obj->btf, vs->type); 3262 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3263 ext = find_extern_by_name(obj, ext_name); 3264 if (!ext) { 3265 pr_warn("failed to find extern definition for BTF var '%s'\n", 3266 ext_name); 3267 return -ESRCH; 3268 } 3269 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3270 vs->offset = ext->kcfg.data_off; 3271 } 3272 } 3273 return 0; 3274 } 3275 3276 struct bpf_program * 3277 bpf_object__find_program_by_title(const struct bpf_object *obj, 3278 const char *title) 3279 { 3280 struct bpf_program *pos; 3281 3282 bpf_object__for_each_program(pos, obj) { 3283 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3284 return pos; 3285 } 3286 return NULL; 3287 } 3288 3289 static bool prog_is_subprog(const struct bpf_object *obj, 3290 const struct bpf_program *prog) 3291 { 3292 /* For legacy reasons, libbpf supports an entry-point BPF programs 3293 * without SEC() attribute, i.e., those in the .text section. But if 3294 * there are 2 or more such programs in the .text section, they all 3295 * must be subprograms called from entry-point BPF programs in 3296 * designated SEC()'tions, otherwise there is no way to distinguish 3297 * which of those programs should be loaded vs which are a subprogram. 3298 * Similarly, if there is a function/program in .text and at least one 3299 * other BPF program with custom SEC() attribute, then we just assume 3300 * .text programs are subprograms (even if they are not called from 3301 * other programs), because libbpf never explicitly supported mixing 3302 * SEC()-designated BPF programs and .text entry-point BPF programs. 3303 */ 3304 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3305 } 3306 3307 struct bpf_program * 3308 bpf_object__find_program_by_name(const struct bpf_object *obj, 3309 const char *name) 3310 { 3311 struct bpf_program *prog; 3312 3313 bpf_object__for_each_program(prog, obj) { 3314 if (prog_is_subprog(obj, prog)) 3315 continue; 3316 if (!strcmp(prog->name, name)) 3317 return prog; 3318 } 3319 return NULL; 3320 } 3321 3322 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3323 int shndx) 3324 { 3325 return shndx == obj->efile.data_shndx || 3326 shndx == obj->efile.bss_shndx || 3327 shndx == obj->efile.rodata_shndx; 3328 } 3329 3330 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3331 int shndx) 3332 { 3333 return shndx == obj->efile.maps_shndx || 3334 shndx == obj->efile.btf_maps_shndx; 3335 } 3336 3337 static enum libbpf_map_type 3338 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3339 { 3340 if (shndx == obj->efile.data_shndx) 3341 return LIBBPF_MAP_DATA; 3342 else if (shndx == obj->efile.bss_shndx) 3343 return LIBBPF_MAP_BSS; 3344 else if (shndx == obj->efile.rodata_shndx) 3345 return LIBBPF_MAP_RODATA; 3346 else if (shndx == obj->efile.symbols_shndx) 3347 return LIBBPF_MAP_KCONFIG; 3348 else 3349 return LIBBPF_MAP_UNSPEC; 3350 } 3351 3352 static int bpf_program__record_reloc(struct bpf_program *prog, 3353 struct reloc_desc *reloc_desc, 3354 __u32 insn_idx, const char *sym_name, 3355 const GElf_Sym *sym, const GElf_Rel *rel) 3356 { 3357 struct bpf_insn *insn = &prog->insns[insn_idx]; 3358 size_t map_idx, nr_maps = prog->obj->nr_maps; 3359 struct bpf_object *obj = prog->obj; 3360 __u32 shdr_idx = sym->st_shndx; 3361 enum libbpf_map_type type; 3362 const char *sym_sec_name; 3363 struct bpf_map *map; 3364 3365 reloc_desc->processed = false; 3366 3367 /* sub-program call relocation */ 3368 if (insn->code == (BPF_JMP | BPF_CALL)) { 3369 if (insn->src_reg != BPF_PSEUDO_CALL) { 3370 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3371 return -LIBBPF_ERRNO__RELOC; 3372 } 3373 /* text_shndx can be 0, if no default "main" program exists */ 3374 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3375 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3376 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3377 prog->name, sym_name, sym_sec_name); 3378 return -LIBBPF_ERRNO__RELOC; 3379 } 3380 if (sym->st_value % BPF_INSN_SZ) { 3381 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3382 prog->name, sym_name, (size_t)sym->st_value); 3383 return -LIBBPF_ERRNO__RELOC; 3384 } 3385 reloc_desc->type = RELO_CALL; 3386 reloc_desc->insn_idx = insn_idx; 3387 reloc_desc->sym_off = sym->st_value; 3388 return 0; 3389 } 3390 3391 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 3392 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3393 prog->name, sym_name, insn_idx, insn->code); 3394 return -LIBBPF_ERRNO__RELOC; 3395 } 3396 3397 if (sym_is_extern(sym)) { 3398 int sym_idx = GELF_R_SYM(rel->r_info); 3399 int i, n = obj->nr_extern; 3400 struct extern_desc *ext; 3401 3402 for (i = 0; i < n; i++) { 3403 ext = &obj->externs[i]; 3404 if (ext->sym_idx == sym_idx) 3405 break; 3406 } 3407 if (i >= n) { 3408 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3409 prog->name, sym_name, sym_idx); 3410 return -LIBBPF_ERRNO__RELOC; 3411 } 3412 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3413 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3414 reloc_desc->type = RELO_EXTERN; 3415 reloc_desc->insn_idx = insn_idx; 3416 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3417 return 0; 3418 } 3419 3420 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3421 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3422 prog->name, sym_name, shdr_idx); 3423 return -LIBBPF_ERRNO__RELOC; 3424 } 3425 3426 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3427 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3428 3429 /* generic map reference relocation */ 3430 if (type == LIBBPF_MAP_UNSPEC) { 3431 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3432 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3433 prog->name, sym_name, sym_sec_name); 3434 return -LIBBPF_ERRNO__RELOC; 3435 } 3436 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3437 map = &obj->maps[map_idx]; 3438 if (map->libbpf_type != type || 3439 map->sec_idx != sym->st_shndx || 3440 map->sec_offset != sym->st_value) 3441 continue; 3442 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3443 prog->name, map_idx, map->name, map->sec_idx, 3444 map->sec_offset, insn_idx); 3445 break; 3446 } 3447 if (map_idx >= nr_maps) { 3448 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3449 prog->name, sym_sec_name, (size_t)sym->st_value); 3450 return -LIBBPF_ERRNO__RELOC; 3451 } 3452 reloc_desc->type = RELO_LD64; 3453 reloc_desc->insn_idx = insn_idx; 3454 reloc_desc->map_idx = map_idx; 3455 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3456 return 0; 3457 } 3458 3459 /* global data map relocation */ 3460 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3461 pr_warn("prog '%s': bad data relo against section '%s'\n", 3462 prog->name, sym_sec_name); 3463 return -LIBBPF_ERRNO__RELOC; 3464 } 3465 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3466 map = &obj->maps[map_idx]; 3467 if (map->libbpf_type != type) 3468 continue; 3469 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3470 prog->name, map_idx, map->name, map->sec_idx, 3471 map->sec_offset, insn_idx); 3472 break; 3473 } 3474 if (map_idx >= nr_maps) { 3475 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3476 prog->name, sym_sec_name); 3477 return -LIBBPF_ERRNO__RELOC; 3478 } 3479 3480 reloc_desc->type = RELO_DATA; 3481 reloc_desc->insn_idx = insn_idx; 3482 reloc_desc->map_idx = map_idx; 3483 reloc_desc->sym_off = sym->st_value; 3484 return 0; 3485 } 3486 3487 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3488 { 3489 return insn_idx >= prog->sec_insn_off && 3490 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3491 } 3492 3493 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3494 size_t sec_idx, size_t insn_idx) 3495 { 3496 int l = 0, r = obj->nr_programs - 1, m; 3497 struct bpf_program *prog; 3498 3499 while (l < r) { 3500 m = l + (r - l + 1) / 2; 3501 prog = &obj->programs[m]; 3502 3503 if (prog->sec_idx < sec_idx || 3504 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3505 l = m; 3506 else 3507 r = m - 1; 3508 } 3509 /* matching program could be at index l, but it still might be the 3510 * wrong one, so we need to double check conditions for the last time 3511 */ 3512 prog = &obj->programs[l]; 3513 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3514 return prog; 3515 return NULL; 3516 } 3517 3518 static int 3519 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3520 { 3521 Elf_Data *symbols = obj->efile.symbols; 3522 const char *relo_sec_name, *sec_name; 3523 size_t sec_idx = shdr->sh_info; 3524 struct bpf_program *prog; 3525 struct reloc_desc *relos; 3526 int err, i, nrels; 3527 const char *sym_name; 3528 __u32 insn_idx; 3529 GElf_Sym sym; 3530 GElf_Rel rel; 3531 3532 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3533 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3534 if (!relo_sec_name || !sec_name) 3535 return -EINVAL; 3536 3537 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3538 relo_sec_name, sec_idx, sec_name); 3539 nrels = shdr->sh_size / shdr->sh_entsize; 3540 3541 for (i = 0; i < nrels; i++) { 3542 if (!gelf_getrel(data, i, &rel)) { 3543 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3544 return -LIBBPF_ERRNO__FORMAT; 3545 } 3546 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3547 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3548 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3549 return -LIBBPF_ERRNO__FORMAT; 3550 } 3551 if (rel.r_offset % BPF_INSN_SZ) { 3552 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3553 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3554 return -LIBBPF_ERRNO__FORMAT; 3555 } 3556 3557 insn_idx = rel.r_offset / BPF_INSN_SZ; 3558 /* relocations against static functions are recorded as 3559 * relocations against the section that contains a function; 3560 * in such case, symbol will be STT_SECTION and sym.st_name 3561 * will point to empty string (0), so fetch section name 3562 * instead 3563 */ 3564 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3565 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3566 else 3567 sym_name = elf_sym_str(obj, sym.st_name); 3568 sym_name = sym_name ?: "<?"; 3569 3570 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3571 relo_sec_name, i, insn_idx, sym_name); 3572 3573 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3574 if (!prog) { 3575 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3576 relo_sec_name, i, sec_name, insn_idx); 3577 return -LIBBPF_ERRNO__RELOC; 3578 } 3579 3580 relos = libbpf_reallocarray(prog->reloc_desc, 3581 prog->nr_reloc + 1, sizeof(*relos)); 3582 if (!relos) 3583 return -ENOMEM; 3584 prog->reloc_desc = relos; 3585 3586 /* adjust insn_idx to local BPF program frame of reference */ 3587 insn_idx -= prog->sec_insn_off; 3588 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3589 insn_idx, sym_name, &sym, &rel); 3590 if (err) 3591 return err; 3592 3593 prog->nr_reloc++; 3594 } 3595 return 0; 3596 } 3597 3598 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3599 { 3600 struct bpf_map_def *def = &map->def; 3601 __u32 key_type_id = 0, value_type_id = 0; 3602 int ret; 3603 3604 /* if it's BTF-defined map, we don't need to search for type IDs. 3605 * For struct_ops map, it does not need btf_key_type_id and 3606 * btf_value_type_id. 3607 */ 3608 if (map->sec_idx == obj->efile.btf_maps_shndx || 3609 bpf_map__is_struct_ops(map)) 3610 return 0; 3611 3612 if (!bpf_map__is_internal(map)) { 3613 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3614 def->value_size, &key_type_id, 3615 &value_type_id); 3616 } else { 3617 /* 3618 * LLVM annotates global data differently in BTF, that is, 3619 * only as '.data', '.bss' or '.rodata'. 3620 */ 3621 ret = btf__find_by_name(obj->btf, 3622 libbpf_type_to_btf_name[map->libbpf_type]); 3623 } 3624 if (ret < 0) 3625 return ret; 3626 3627 map->btf_key_type_id = key_type_id; 3628 map->btf_value_type_id = bpf_map__is_internal(map) ? 3629 ret : value_type_id; 3630 return 0; 3631 } 3632 3633 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3634 { 3635 struct bpf_map_info info = {}; 3636 __u32 len = sizeof(info); 3637 int new_fd, err; 3638 char *new_name; 3639 3640 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3641 if (err) 3642 return err; 3643 3644 new_name = strdup(info.name); 3645 if (!new_name) 3646 return -errno; 3647 3648 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3649 if (new_fd < 0) { 3650 err = -errno; 3651 goto err_free_new_name; 3652 } 3653 3654 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3655 if (new_fd < 0) { 3656 err = -errno; 3657 goto err_close_new_fd; 3658 } 3659 3660 err = zclose(map->fd); 3661 if (err) { 3662 err = -errno; 3663 goto err_close_new_fd; 3664 } 3665 free(map->name); 3666 3667 map->fd = new_fd; 3668 map->name = new_name; 3669 map->def.type = info.type; 3670 map->def.key_size = info.key_size; 3671 map->def.value_size = info.value_size; 3672 map->def.max_entries = info.max_entries; 3673 map->def.map_flags = info.map_flags; 3674 map->btf_key_type_id = info.btf_key_type_id; 3675 map->btf_value_type_id = info.btf_value_type_id; 3676 map->reused = true; 3677 3678 return 0; 3679 3680 err_close_new_fd: 3681 close(new_fd); 3682 err_free_new_name: 3683 free(new_name); 3684 return err; 3685 } 3686 3687 __u32 bpf_map__max_entries(const struct bpf_map *map) 3688 { 3689 return map->def.max_entries; 3690 } 3691 3692 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3693 { 3694 if (map->fd >= 0) 3695 return -EBUSY; 3696 map->def.max_entries = max_entries; 3697 return 0; 3698 } 3699 3700 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3701 { 3702 if (!map || !max_entries) 3703 return -EINVAL; 3704 3705 return bpf_map__set_max_entries(map, max_entries); 3706 } 3707 3708 static int 3709 bpf_object__probe_loading(struct bpf_object *obj) 3710 { 3711 struct bpf_load_program_attr attr; 3712 char *cp, errmsg[STRERR_BUFSIZE]; 3713 struct bpf_insn insns[] = { 3714 BPF_MOV64_IMM(BPF_REG_0, 0), 3715 BPF_EXIT_INSN(), 3716 }; 3717 int ret; 3718 3719 /* make sure basic loading works */ 3720 3721 memset(&attr, 0, sizeof(attr)); 3722 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3723 attr.insns = insns; 3724 attr.insns_cnt = ARRAY_SIZE(insns); 3725 attr.license = "GPL"; 3726 3727 ret = bpf_load_program_xattr(&attr, NULL, 0); 3728 if (ret < 0) { 3729 ret = errno; 3730 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3731 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3732 "program. Make sure your kernel supports BPF " 3733 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3734 "set to big enough value.\n", __func__, cp, ret); 3735 return -ret; 3736 } 3737 close(ret); 3738 3739 return 0; 3740 } 3741 3742 static int probe_fd(int fd) 3743 { 3744 if (fd >= 0) 3745 close(fd); 3746 return fd >= 0; 3747 } 3748 3749 static int probe_kern_prog_name(void) 3750 { 3751 struct bpf_load_program_attr attr; 3752 struct bpf_insn insns[] = { 3753 BPF_MOV64_IMM(BPF_REG_0, 0), 3754 BPF_EXIT_INSN(), 3755 }; 3756 int ret; 3757 3758 /* make sure loading with name works */ 3759 3760 memset(&attr, 0, sizeof(attr)); 3761 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3762 attr.insns = insns; 3763 attr.insns_cnt = ARRAY_SIZE(insns); 3764 attr.license = "GPL"; 3765 attr.name = "test"; 3766 ret = bpf_load_program_xattr(&attr, NULL, 0); 3767 return probe_fd(ret); 3768 } 3769 3770 static int probe_kern_global_data(void) 3771 { 3772 struct bpf_load_program_attr prg_attr; 3773 struct bpf_create_map_attr map_attr; 3774 char *cp, errmsg[STRERR_BUFSIZE]; 3775 struct bpf_insn insns[] = { 3776 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3777 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3778 BPF_MOV64_IMM(BPF_REG_0, 0), 3779 BPF_EXIT_INSN(), 3780 }; 3781 int ret, map; 3782 3783 memset(&map_attr, 0, sizeof(map_attr)); 3784 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3785 map_attr.key_size = sizeof(int); 3786 map_attr.value_size = 32; 3787 map_attr.max_entries = 1; 3788 3789 map = bpf_create_map_xattr(&map_attr); 3790 if (map < 0) { 3791 ret = -errno; 3792 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3793 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3794 __func__, cp, -ret); 3795 return ret; 3796 } 3797 3798 insns[0].imm = map; 3799 3800 memset(&prg_attr, 0, sizeof(prg_attr)); 3801 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3802 prg_attr.insns = insns; 3803 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3804 prg_attr.license = "GPL"; 3805 3806 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3807 close(map); 3808 return probe_fd(ret); 3809 } 3810 3811 static int probe_kern_btf(void) 3812 { 3813 static const char strs[] = "\0int"; 3814 __u32 types[] = { 3815 /* int */ 3816 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3817 }; 3818 3819 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3820 strs, sizeof(strs))); 3821 } 3822 3823 static int probe_kern_btf_func(void) 3824 { 3825 static const char strs[] = "\0int\0x\0a"; 3826 /* void x(int a) {} */ 3827 __u32 types[] = { 3828 /* int */ 3829 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3830 /* FUNC_PROTO */ /* [2] */ 3831 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3832 BTF_PARAM_ENC(7, 1), 3833 /* FUNC x */ /* [3] */ 3834 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3835 }; 3836 3837 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3838 strs, sizeof(strs))); 3839 } 3840 3841 static int probe_kern_btf_func_global(void) 3842 { 3843 static const char strs[] = "\0int\0x\0a"; 3844 /* static void x(int a) {} */ 3845 __u32 types[] = { 3846 /* int */ 3847 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3848 /* FUNC_PROTO */ /* [2] */ 3849 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3850 BTF_PARAM_ENC(7, 1), 3851 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3852 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3853 }; 3854 3855 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3856 strs, sizeof(strs))); 3857 } 3858 3859 static int probe_kern_btf_datasec(void) 3860 { 3861 static const char strs[] = "\0x\0.data"; 3862 /* static int a; */ 3863 __u32 types[] = { 3864 /* int */ 3865 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3866 /* VAR x */ /* [2] */ 3867 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3868 BTF_VAR_STATIC, 3869 /* DATASEC val */ /* [3] */ 3870 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3871 BTF_VAR_SECINFO_ENC(2, 0, 4), 3872 }; 3873 3874 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3875 strs, sizeof(strs))); 3876 } 3877 3878 static int probe_kern_array_mmap(void) 3879 { 3880 struct bpf_create_map_attr attr = { 3881 .map_type = BPF_MAP_TYPE_ARRAY, 3882 .map_flags = BPF_F_MMAPABLE, 3883 .key_size = sizeof(int), 3884 .value_size = sizeof(int), 3885 .max_entries = 1, 3886 }; 3887 3888 return probe_fd(bpf_create_map_xattr(&attr)); 3889 } 3890 3891 static int probe_kern_exp_attach_type(void) 3892 { 3893 struct bpf_load_program_attr attr; 3894 struct bpf_insn insns[] = { 3895 BPF_MOV64_IMM(BPF_REG_0, 0), 3896 BPF_EXIT_INSN(), 3897 }; 3898 3899 memset(&attr, 0, sizeof(attr)); 3900 /* use any valid combination of program type and (optional) 3901 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3902 * to see if kernel supports expected_attach_type field for 3903 * BPF_PROG_LOAD command 3904 */ 3905 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3906 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3907 attr.insns = insns; 3908 attr.insns_cnt = ARRAY_SIZE(insns); 3909 attr.license = "GPL"; 3910 3911 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3912 } 3913 3914 static int probe_kern_probe_read_kernel(void) 3915 { 3916 struct bpf_load_program_attr attr; 3917 struct bpf_insn insns[] = { 3918 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 3919 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 3920 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 3921 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 3922 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 3923 BPF_EXIT_INSN(), 3924 }; 3925 3926 memset(&attr, 0, sizeof(attr)); 3927 attr.prog_type = BPF_PROG_TYPE_KPROBE; 3928 attr.insns = insns; 3929 attr.insns_cnt = ARRAY_SIZE(insns); 3930 attr.license = "GPL"; 3931 3932 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3933 } 3934 3935 static int probe_prog_bind_map(void) 3936 { 3937 struct bpf_load_program_attr prg_attr; 3938 struct bpf_create_map_attr map_attr; 3939 char *cp, errmsg[STRERR_BUFSIZE]; 3940 struct bpf_insn insns[] = { 3941 BPF_MOV64_IMM(BPF_REG_0, 0), 3942 BPF_EXIT_INSN(), 3943 }; 3944 int ret, map, prog; 3945 3946 memset(&map_attr, 0, sizeof(map_attr)); 3947 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3948 map_attr.key_size = sizeof(int); 3949 map_attr.value_size = 32; 3950 map_attr.max_entries = 1; 3951 3952 map = bpf_create_map_xattr(&map_attr); 3953 if (map < 0) { 3954 ret = -errno; 3955 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3956 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3957 __func__, cp, -ret); 3958 return ret; 3959 } 3960 3961 memset(&prg_attr, 0, sizeof(prg_attr)); 3962 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3963 prg_attr.insns = insns; 3964 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3965 prg_attr.license = "GPL"; 3966 3967 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 3968 if (prog < 0) { 3969 close(map); 3970 return 0; 3971 } 3972 3973 ret = bpf_prog_bind_map(prog, map, NULL); 3974 3975 close(map); 3976 close(prog); 3977 3978 return ret >= 0; 3979 } 3980 3981 static int probe_module_btf(void) 3982 { 3983 static const char strs[] = "\0int"; 3984 __u32 types[] = { 3985 /* int */ 3986 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3987 }; 3988 struct bpf_btf_info info; 3989 __u32 len = sizeof(info); 3990 char name[16]; 3991 int fd, err; 3992 3993 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 3994 if (fd < 0) 3995 return 0; /* BTF not supported at all */ 3996 3997 memset(&info, 0, sizeof(info)); 3998 info.name = ptr_to_u64(name); 3999 info.name_len = sizeof(name); 4000 4001 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4002 * kernel's module BTF support coincides with support for 4003 * name/name_len fields in struct bpf_btf_info. 4004 */ 4005 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4006 close(fd); 4007 return !err; 4008 } 4009 4010 enum kern_feature_result { 4011 FEAT_UNKNOWN = 0, 4012 FEAT_SUPPORTED = 1, 4013 FEAT_MISSING = 2, 4014 }; 4015 4016 typedef int (*feature_probe_fn)(void); 4017 4018 static struct kern_feature_desc { 4019 const char *desc; 4020 feature_probe_fn probe; 4021 enum kern_feature_result res; 4022 } feature_probes[__FEAT_CNT] = { 4023 [FEAT_PROG_NAME] = { 4024 "BPF program name", probe_kern_prog_name, 4025 }, 4026 [FEAT_GLOBAL_DATA] = { 4027 "global variables", probe_kern_global_data, 4028 }, 4029 [FEAT_BTF] = { 4030 "minimal BTF", probe_kern_btf, 4031 }, 4032 [FEAT_BTF_FUNC] = { 4033 "BTF functions", probe_kern_btf_func, 4034 }, 4035 [FEAT_BTF_GLOBAL_FUNC] = { 4036 "BTF global function", probe_kern_btf_func_global, 4037 }, 4038 [FEAT_BTF_DATASEC] = { 4039 "BTF data section and variable", probe_kern_btf_datasec, 4040 }, 4041 [FEAT_ARRAY_MMAP] = { 4042 "ARRAY map mmap()", probe_kern_array_mmap, 4043 }, 4044 [FEAT_EXP_ATTACH_TYPE] = { 4045 "BPF_PROG_LOAD expected_attach_type attribute", 4046 probe_kern_exp_attach_type, 4047 }, 4048 [FEAT_PROBE_READ_KERN] = { 4049 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4050 }, 4051 [FEAT_PROG_BIND_MAP] = { 4052 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4053 }, 4054 [FEAT_MODULE_BTF] = { 4055 "module BTF support", probe_module_btf, 4056 }, 4057 }; 4058 4059 static bool kernel_supports(enum kern_feature_id feat_id) 4060 { 4061 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4062 int ret; 4063 4064 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4065 ret = feat->probe(); 4066 if (ret > 0) { 4067 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4068 } else if (ret == 0) { 4069 WRITE_ONCE(feat->res, FEAT_MISSING); 4070 } else { 4071 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4072 WRITE_ONCE(feat->res, FEAT_MISSING); 4073 } 4074 } 4075 4076 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4077 } 4078 4079 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4080 { 4081 struct bpf_map_info map_info = {}; 4082 char msg[STRERR_BUFSIZE]; 4083 __u32 map_info_len; 4084 4085 map_info_len = sizeof(map_info); 4086 4087 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4088 pr_warn("failed to get map info for map FD %d: %s\n", 4089 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4090 return false; 4091 } 4092 4093 return (map_info.type == map->def.type && 4094 map_info.key_size == map->def.key_size && 4095 map_info.value_size == map->def.value_size && 4096 map_info.max_entries == map->def.max_entries && 4097 map_info.map_flags == map->def.map_flags); 4098 } 4099 4100 static int 4101 bpf_object__reuse_map(struct bpf_map *map) 4102 { 4103 char *cp, errmsg[STRERR_BUFSIZE]; 4104 int err, pin_fd; 4105 4106 pin_fd = bpf_obj_get(map->pin_path); 4107 if (pin_fd < 0) { 4108 err = -errno; 4109 if (err == -ENOENT) { 4110 pr_debug("found no pinned map to reuse at '%s'\n", 4111 map->pin_path); 4112 return 0; 4113 } 4114 4115 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4116 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4117 map->pin_path, cp); 4118 return err; 4119 } 4120 4121 if (!map_is_reuse_compat(map, pin_fd)) { 4122 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4123 map->pin_path); 4124 close(pin_fd); 4125 return -EINVAL; 4126 } 4127 4128 err = bpf_map__reuse_fd(map, pin_fd); 4129 if (err) { 4130 close(pin_fd); 4131 return err; 4132 } 4133 map->pinned = true; 4134 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4135 4136 return 0; 4137 } 4138 4139 static int 4140 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4141 { 4142 enum libbpf_map_type map_type = map->libbpf_type; 4143 char *cp, errmsg[STRERR_BUFSIZE]; 4144 int err, zero = 0; 4145 4146 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4147 if (err) { 4148 err = -errno; 4149 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4150 pr_warn("Error setting initial map(%s) contents: %s\n", 4151 map->name, cp); 4152 return err; 4153 } 4154 4155 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4156 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4157 err = bpf_map_freeze(map->fd); 4158 if (err) { 4159 err = -errno; 4160 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4161 pr_warn("Error freezing map(%s) as read-only: %s\n", 4162 map->name, cp); 4163 return err; 4164 } 4165 } 4166 return 0; 4167 } 4168 4169 static void bpf_map__destroy(struct bpf_map *map); 4170 4171 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4172 { 4173 struct bpf_create_map_attr create_attr; 4174 struct bpf_map_def *def = &map->def; 4175 4176 memset(&create_attr, 0, sizeof(create_attr)); 4177 4178 if (kernel_supports(FEAT_PROG_NAME)) 4179 create_attr.name = map->name; 4180 create_attr.map_ifindex = map->map_ifindex; 4181 create_attr.map_type = def->type; 4182 create_attr.map_flags = def->map_flags; 4183 create_attr.key_size = def->key_size; 4184 create_attr.value_size = def->value_size; 4185 create_attr.numa_node = map->numa_node; 4186 4187 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4188 int nr_cpus; 4189 4190 nr_cpus = libbpf_num_possible_cpus(); 4191 if (nr_cpus < 0) { 4192 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4193 map->name, nr_cpus); 4194 return nr_cpus; 4195 } 4196 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4197 create_attr.max_entries = nr_cpus; 4198 } else { 4199 create_attr.max_entries = def->max_entries; 4200 } 4201 4202 if (bpf_map__is_struct_ops(map)) 4203 create_attr.btf_vmlinux_value_type_id = 4204 map->btf_vmlinux_value_type_id; 4205 4206 create_attr.btf_fd = 0; 4207 create_attr.btf_key_type_id = 0; 4208 create_attr.btf_value_type_id = 0; 4209 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4210 create_attr.btf_fd = btf__fd(obj->btf); 4211 create_attr.btf_key_type_id = map->btf_key_type_id; 4212 create_attr.btf_value_type_id = map->btf_value_type_id; 4213 } 4214 4215 if (bpf_map_type__is_map_in_map(def->type)) { 4216 if (map->inner_map) { 4217 int err; 4218 4219 err = bpf_object__create_map(obj, map->inner_map); 4220 if (err) { 4221 pr_warn("map '%s': failed to create inner map: %d\n", 4222 map->name, err); 4223 return err; 4224 } 4225 map->inner_map_fd = bpf_map__fd(map->inner_map); 4226 } 4227 if (map->inner_map_fd >= 0) 4228 create_attr.inner_map_fd = map->inner_map_fd; 4229 } 4230 4231 map->fd = bpf_create_map_xattr(&create_attr); 4232 if (map->fd < 0 && (create_attr.btf_key_type_id || 4233 create_attr.btf_value_type_id)) { 4234 char *cp, errmsg[STRERR_BUFSIZE]; 4235 int err = -errno; 4236 4237 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4238 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4239 map->name, cp, err); 4240 create_attr.btf_fd = 0; 4241 create_attr.btf_key_type_id = 0; 4242 create_attr.btf_value_type_id = 0; 4243 map->btf_key_type_id = 0; 4244 map->btf_value_type_id = 0; 4245 map->fd = bpf_create_map_xattr(&create_attr); 4246 } 4247 4248 if (map->fd < 0) 4249 return -errno; 4250 4251 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4252 bpf_map__destroy(map->inner_map); 4253 zfree(&map->inner_map); 4254 } 4255 4256 return 0; 4257 } 4258 4259 static int init_map_slots(struct bpf_map *map) 4260 { 4261 const struct bpf_map *targ_map; 4262 unsigned int i; 4263 int fd, err; 4264 4265 for (i = 0; i < map->init_slots_sz; i++) { 4266 if (!map->init_slots[i]) 4267 continue; 4268 4269 targ_map = map->init_slots[i]; 4270 fd = bpf_map__fd(targ_map); 4271 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4272 if (err) { 4273 err = -errno; 4274 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4275 map->name, i, targ_map->name, 4276 fd, err); 4277 return err; 4278 } 4279 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4280 map->name, i, targ_map->name, fd); 4281 } 4282 4283 zfree(&map->init_slots); 4284 map->init_slots_sz = 0; 4285 4286 return 0; 4287 } 4288 4289 static int 4290 bpf_object__create_maps(struct bpf_object *obj) 4291 { 4292 struct bpf_map *map; 4293 char *cp, errmsg[STRERR_BUFSIZE]; 4294 unsigned int i, j; 4295 int err; 4296 4297 for (i = 0; i < obj->nr_maps; i++) { 4298 map = &obj->maps[i]; 4299 4300 if (map->pin_path) { 4301 err = bpf_object__reuse_map(map); 4302 if (err) { 4303 pr_warn("map '%s': error reusing pinned map\n", 4304 map->name); 4305 goto err_out; 4306 } 4307 } 4308 4309 if (map->fd >= 0) { 4310 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4311 map->name, map->fd); 4312 } else { 4313 err = bpf_object__create_map(obj, map); 4314 if (err) 4315 goto err_out; 4316 4317 pr_debug("map '%s': created successfully, fd=%d\n", 4318 map->name, map->fd); 4319 4320 if (bpf_map__is_internal(map)) { 4321 err = bpf_object__populate_internal_map(obj, map); 4322 if (err < 0) { 4323 zclose(map->fd); 4324 goto err_out; 4325 } 4326 } 4327 4328 if (map->init_slots_sz) { 4329 err = init_map_slots(map); 4330 if (err < 0) { 4331 zclose(map->fd); 4332 goto err_out; 4333 } 4334 } 4335 } 4336 4337 if (map->pin_path && !map->pinned) { 4338 err = bpf_map__pin(map, NULL); 4339 if (err) { 4340 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4341 map->name, map->pin_path, err); 4342 zclose(map->fd); 4343 goto err_out; 4344 } 4345 } 4346 } 4347 4348 return 0; 4349 4350 err_out: 4351 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4352 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4353 pr_perm_msg(err); 4354 for (j = 0; j < i; j++) 4355 zclose(obj->maps[j].fd); 4356 return err; 4357 } 4358 4359 #define BPF_CORE_SPEC_MAX_LEN 64 4360 4361 /* represents BPF CO-RE field or array element accessor */ 4362 struct bpf_core_accessor { 4363 __u32 type_id; /* struct/union type or array element type */ 4364 __u32 idx; /* field index or array index */ 4365 const char *name; /* field name or NULL for array accessor */ 4366 }; 4367 4368 struct bpf_core_spec { 4369 const struct btf *btf; 4370 /* high-level spec: named fields and array indices only */ 4371 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4372 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4373 __u32 root_type_id; 4374 /* CO-RE relocation kind */ 4375 enum bpf_core_relo_kind relo_kind; 4376 /* high-level spec length */ 4377 int len; 4378 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4379 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4380 /* raw spec length */ 4381 int raw_len; 4382 /* field bit offset represented by spec */ 4383 __u32 bit_offset; 4384 }; 4385 4386 static bool str_is_empty(const char *s) 4387 { 4388 return !s || !s[0]; 4389 } 4390 4391 static bool is_flex_arr(const struct btf *btf, 4392 const struct bpf_core_accessor *acc, 4393 const struct btf_array *arr) 4394 { 4395 const struct btf_type *t; 4396 4397 /* not a flexible array, if not inside a struct or has non-zero size */ 4398 if (!acc->name || arr->nelems > 0) 4399 return false; 4400 4401 /* has to be the last member of enclosing struct */ 4402 t = btf__type_by_id(btf, acc->type_id); 4403 return acc->idx == btf_vlen(t) - 1; 4404 } 4405 4406 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4407 { 4408 switch (kind) { 4409 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4410 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4411 case BPF_FIELD_EXISTS: return "field_exists"; 4412 case BPF_FIELD_SIGNED: return "signed"; 4413 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4414 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4415 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4416 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4417 case BPF_TYPE_EXISTS: return "type_exists"; 4418 case BPF_TYPE_SIZE: return "type_size"; 4419 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4420 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4421 default: return "unknown"; 4422 } 4423 } 4424 4425 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4426 { 4427 switch (kind) { 4428 case BPF_FIELD_BYTE_OFFSET: 4429 case BPF_FIELD_BYTE_SIZE: 4430 case BPF_FIELD_EXISTS: 4431 case BPF_FIELD_SIGNED: 4432 case BPF_FIELD_LSHIFT_U64: 4433 case BPF_FIELD_RSHIFT_U64: 4434 return true; 4435 default: 4436 return false; 4437 } 4438 } 4439 4440 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4441 { 4442 switch (kind) { 4443 case BPF_TYPE_ID_LOCAL: 4444 case BPF_TYPE_ID_TARGET: 4445 case BPF_TYPE_EXISTS: 4446 case BPF_TYPE_SIZE: 4447 return true; 4448 default: 4449 return false; 4450 } 4451 } 4452 4453 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4454 { 4455 switch (kind) { 4456 case BPF_ENUMVAL_EXISTS: 4457 case BPF_ENUMVAL_VALUE: 4458 return true; 4459 default: 4460 return false; 4461 } 4462 } 4463 4464 /* 4465 * Turn bpf_core_relo into a low- and high-level spec representation, 4466 * validating correctness along the way, as well as calculating resulting 4467 * field bit offset, specified by accessor string. Low-level spec captures 4468 * every single level of nestedness, including traversing anonymous 4469 * struct/union members. High-level one only captures semantically meaningful 4470 * "turning points": named fields and array indicies. 4471 * E.g., for this case: 4472 * 4473 * struct sample { 4474 * int __unimportant; 4475 * struct { 4476 * int __1; 4477 * int __2; 4478 * int a[7]; 4479 * }; 4480 * }; 4481 * 4482 * struct sample *s = ...; 4483 * 4484 * int x = &s->a[3]; // access string = '0:1:2:3' 4485 * 4486 * Low-level spec has 1:1 mapping with each element of access string (it's 4487 * just a parsed access string representation): [0, 1, 2, 3]. 4488 * 4489 * High-level spec will capture only 3 points: 4490 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4491 * - field 'a' access (corresponds to '2' in low-level spec); 4492 * - array element #3 access (corresponds to '3' in low-level spec). 4493 * 4494 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4495 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4496 * spec and raw_spec are kept empty. 4497 * 4498 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4499 * string to specify enumerator's value index that need to be relocated. 4500 */ 4501 static int bpf_core_parse_spec(const struct btf *btf, 4502 __u32 type_id, 4503 const char *spec_str, 4504 enum bpf_core_relo_kind relo_kind, 4505 struct bpf_core_spec *spec) 4506 { 4507 int access_idx, parsed_len, i; 4508 struct bpf_core_accessor *acc; 4509 const struct btf_type *t; 4510 const char *name; 4511 __u32 id; 4512 __s64 sz; 4513 4514 if (str_is_empty(spec_str) || *spec_str == ':') 4515 return -EINVAL; 4516 4517 memset(spec, 0, sizeof(*spec)); 4518 spec->btf = btf; 4519 spec->root_type_id = type_id; 4520 spec->relo_kind = relo_kind; 4521 4522 /* type-based relocations don't have a field access string */ 4523 if (core_relo_is_type_based(relo_kind)) { 4524 if (strcmp(spec_str, "0")) 4525 return -EINVAL; 4526 return 0; 4527 } 4528 4529 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4530 while (*spec_str) { 4531 if (*spec_str == ':') 4532 ++spec_str; 4533 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4534 return -EINVAL; 4535 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4536 return -E2BIG; 4537 spec_str += parsed_len; 4538 spec->raw_spec[spec->raw_len++] = access_idx; 4539 } 4540 4541 if (spec->raw_len == 0) 4542 return -EINVAL; 4543 4544 t = skip_mods_and_typedefs(btf, type_id, &id); 4545 if (!t) 4546 return -EINVAL; 4547 4548 access_idx = spec->raw_spec[0]; 4549 acc = &spec->spec[0]; 4550 acc->type_id = id; 4551 acc->idx = access_idx; 4552 spec->len++; 4553 4554 if (core_relo_is_enumval_based(relo_kind)) { 4555 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4556 return -EINVAL; 4557 4558 /* record enumerator name in a first accessor */ 4559 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4560 return 0; 4561 } 4562 4563 if (!core_relo_is_field_based(relo_kind)) 4564 return -EINVAL; 4565 4566 sz = btf__resolve_size(btf, id); 4567 if (sz < 0) 4568 return sz; 4569 spec->bit_offset = access_idx * sz * 8; 4570 4571 for (i = 1; i < spec->raw_len; i++) { 4572 t = skip_mods_and_typedefs(btf, id, &id); 4573 if (!t) 4574 return -EINVAL; 4575 4576 access_idx = spec->raw_spec[i]; 4577 acc = &spec->spec[spec->len]; 4578 4579 if (btf_is_composite(t)) { 4580 const struct btf_member *m; 4581 __u32 bit_offset; 4582 4583 if (access_idx >= btf_vlen(t)) 4584 return -EINVAL; 4585 4586 bit_offset = btf_member_bit_offset(t, access_idx); 4587 spec->bit_offset += bit_offset; 4588 4589 m = btf_members(t) + access_idx; 4590 if (m->name_off) { 4591 name = btf__name_by_offset(btf, m->name_off); 4592 if (str_is_empty(name)) 4593 return -EINVAL; 4594 4595 acc->type_id = id; 4596 acc->idx = access_idx; 4597 acc->name = name; 4598 spec->len++; 4599 } 4600 4601 id = m->type; 4602 } else if (btf_is_array(t)) { 4603 const struct btf_array *a = btf_array(t); 4604 bool flex; 4605 4606 t = skip_mods_and_typedefs(btf, a->type, &id); 4607 if (!t) 4608 return -EINVAL; 4609 4610 flex = is_flex_arr(btf, acc - 1, a); 4611 if (!flex && access_idx >= a->nelems) 4612 return -EINVAL; 4613 4614 spec->spec[spec->len].type_id = id; 4615 spec->spec[spec->len].idx = access_idx; 4616 spec->len++; 4617 4618 sz = btf__resolve_size(btf, id); 4619 if (sz < 0) 4620 return sz; 4621 spec->bit_offset += access_idx * sz * 8; 4622 } else { 4623 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4624 type_id, spec_str, i, id, btf_kind_str(t)); 4625 return -EINVAL; 4626 } 4627 } 4628 4629 return 0; 4630 } 4631 4632 static bool bpf_core_is_flavor_sep(const char *s) 4633 { 4634 /* check X___Y name pattern, where X and Y are not underscores */ 4635 return s[0] != '_' && /* X */ 4636 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4637 s[4] != '_'; /* Y */ 4638 } 4639 4640 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4641 * before last triple underscore. Struct name part after last triple 4642 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4643 */ 4644 static size_t bpf_core_essential_name_len(const char *name) 4645 { 4646 size_t n = strlen(name); 4647 int i; 4648 4649 for (i = n - 5; i >= 0; i--) { 4650 if (bpf_core_is_flavor_sep(name + i)) 4651 return i + 1; 4652 } 4653 return n; 4654 } 4655 4656 struct core_cand 4657 { 4658 const struct btf *btf; 4659 const struct btf_type *t; 4660 const char *name; 4661 __u32 id; 4662 }; 4663 4664 /* dynamically sized list of type IDs and its associated struct btf */ 4665 struct core_cand_list { 4666 struct core_cand *cands; 4667 int len; 4668 }; 4669 4670 static void bpf_core_free_cands(struct core_cand_list *cands) 4671 { 4672 free(cands->cands); 4673 free(cands); 4674 } 4675 4676 static int bpf_core_add_cands(struct core_cand *local_cand, 4677 size_t local_essent_len, 4678 const struct btf *targ_btf, 4679 const char *targ_btf_name, 4680 int targ_start_id, 4681 struct core_cand_list *cands) 4682 { 4683 struct core_cand *new_cands, *cand; 4684 const struct btf_type *t; 4685 const char *targ_name; 4686 size_t targ_essent_len; 4687 int n, i; 4688 4689 n = btf__get_nr_types(targ_btf); 4690 for (i = targ_start_id; i <= n; i++) { 4691 t = btf__type_by_id(targ_btf, i); 4692 if (btf_kind(t) != btf_kind(local_cand->t)) 4693 continue; 4694 4695 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4696 if (str_is_empty(targ_name)) 4697 continue; 4698 4699 targ_essent_len = bpf_core_essential_name_len(targ_name); 4700 if (targ_essent_len != local_essent_len) 4701 continue; 4702 4703 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 4704 continue; 4705 4706 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 4707 local_cand->id, btf_kind_str(local_cand->t), 4708 local_cand->name, i, btf_kind_str(t), targ_name, 4709 targ_btf_name); 4710 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 4711 sizeof(*cands->cands)); 4712 if (!new_cands) 4713 return -ENOMEM; 4714 4715 cand = &new_cands[cands->len]; 4716 cand->btf = targ_btf; 4717 cand->t = t; 4718 cand->name = targ_name; 4719 cand->id = i; 4720 4721 cands->cands = new_cands; 4722 cands->len++; 4723 } 4724 return 0; 4725 } 4726 4727 static int load_module_btfs(struct bpf_object *obj) 4728 { 4729 struct bpf_btf_info info; 4730 struct module_btf *mod_btf; 4731 struct btf *btf; 4732 char name[64]; 4733 __u32 id = 0, len; 4734 int err, fd; 4735 4736 if (obj->btf_modules_loaded) 4737 return 0; 4738 4739 /* don't do this again, even if we find no module BTFs */ 4740 obj->btf_modules_loaded = true; 4741 4742 /* kernel too old to support module BTFs */ 4743 if (!kernel_supports(FEAT_MODULE_BTF)) 4744 return 0; 4745 4746 while (true) { 4747 err = bpf_btf_get_next_id(id, &id); 4748 if (err && errno == ENOENT) 4749 return 0; 4750 if (err) { 4751 err = -errno; 4752 pr_warn("failed to iterate BTF objects: %d\n", err); 4753 return err; 4754 } 4755 4756 fd = bpf_btf_get_fd_by_id(id); 4757 if (fd < 0) { 4758 if (errno == ENOENT) 4759 continue; /* expected race: BTF was unloaded */ 4760 err = -errno; 4761 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 4762 return err; 4763 } 4764 4765 len = sizeof(info); 4766 memset(&info, 0, sizeof(info)); 4767 info.name = ptr_to_u64(name); 4768 info.name_len = sizeof(name); 4769 4770 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4771 if (err) { 4772 err = -errno; 4773 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 4774 goto err_out; 4775 } 4776 4777 /* ignore non-module BTFs */ 4778 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 4779 close(fd); 4780 continue; 4781 } 4782 4783 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 4784 if (IS_ERR(btf)) { 4785 pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n", 4786 name, id, PTR_ERR(btf)); 4787 err = PTR_ERR(btf); 4788 goto err_out; 4789 } 4790 4791 err = btf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 4792 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 4793 if (err) 4794 goto err_out; 4795 4796 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 4797 4798 mod_btf->btf = btf; 4799 mod_btf->id = id; 4800 mod_btf->fd = fd; 4801 mod_btf->name = strdup(name); 4802 if (!mod_btf->name) { 4803 err = -ENOMEM; 4804 goto err_out; 4805 } 4806 continue; 4807 4808 err_out: 4809 close(fd); 4810 return err; 4811 } 4812 4813 return 0; 4814 } 4815 4816 static struct core_cand_list * 4817 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 4818 { 4819 struct core_cand local_cand = {}; 4820 struct core_cand_list *cands; 4821 const struct btf *main_btf; 4822 size_t local_essent_len; 4823 int err, i; 4824 4825 local_cand.btf = local_btf; 4826 local_cand.t = btf__type_by_id(local_btf, local_type_id); 4827 if (!local_cand.t) 4828 return ERR_PTR(-EINVAL); 4829 4830 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 4831 if (str_is_empty(local_cand.name)) 4832 return ERR_PTR(-EINVAL); 4833 local_essent_len = bpf_core_essential_name_len(local_cand.name); 4834 4835 cands = calloc(1, sizeof(*cands)); 4836 if (!cands) 4837 return ERR_PTR(-ENOMEM); 4838 4839 /* Attempt to find target candidates in vmlinux BTF first */ 4840 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 4841 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 4842 if (err) 4843 goto err_out; 4844 4845 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 4846 if (cands->len) 4847 return cands; 4848 4849 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 4850 if (obj->btf_vmlinux_override) 4851 return cands; 4852 4853 /* now look through module BTFs, trying to still find candidates */ 4854 err = load_module_btfs(obj); 4855 if (err) 4856 goto err_out; 4857 4858 for (i = 0; i < obj->btf_module_cnt; i++) { 4859 err = bpf_core_add_cands(&local_cand, local_essent_len, 4860 obj->btf_modules[i].btf, 4861 obj->btf_modules[i].name, 4862 btf__get_nr_types(obj->btf_vmlinux) + 1, 4863 cands); 4864 if (err) 4865 goto err_out; 4866 } 4867 4868 return cands; 4869 err_out: 4870 bpf_core_free_cands(cands); 4871 return ERR_PTR(err); 4872 } 4873 4874 /* Check two types for compatibility for the purpose of field access 4875 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 4876 * are relocating semantically compatible entities: 4877 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4878 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4879 * - any two PTRs are always compatible; 4880 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4881 * least one of enums should be anonymous; 4882 * - for ENUMs, check sizes, names are ignored; 4883 * - for INT, size and signedness are ignored; 4884 * - for ARRAY, dimensionality is ignored, element types are checked for 4885 * compatibility recursively; 4886 * - everything else shouldn't be ever a target of relocation. 4887 * These rules are not set in stone and probably will be adjusted as we get 4888 * more experience with using BPF CO-RE relocations. 4889 */ 4890 static int bpf_core_fields_are_compat(const struct btf *local_btf, 4891 __u32 local_id, 4892 const struct btf *targ_btf, 4893 __u32 targ_id) 4894 { 4895 const struct btf_type *local_type, *targ_type; 4896 4897 recur: 4898 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4899 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4900 if (!local_type || !targ_type) 4901 return -EINVAL; 4902 4903 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4904 return 1; 4905 if (btf_kind(local_type) != btf_kind(targ_type)) 4906 return 0; 4907 4908 switch (btf_kind(local_type)) { 4909 case BTF_KIND_PTR: 4910 return 1; 4911 case BTF_KIND_FWD: 4912 case BTF_KIND_ENUM: { 4913 const char *local_name, *targ_name; 4914 size_t local_len, targ_len; 4915 4916 local_name = btf__name_by_offset(local_btf, 4917 local_type->name_off); 4918 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4919 local_len = bpf_core_essential_name_len(local_name); 4920 targ_len = bpf_core_essential_name_len(targ_name); 4921 /* one of them is anonymous or both w/ same flavor-less names */ 4922 return local_len == 0 || targ_len == 0 || 4923 (local_len == targ_len && 4924 strncmp(local_name, targ_name, local_len) == 0); 4925 } 4926 case BTF_KIND_INT: 4927 /* just reject deprecated bitfield-like integers; all other 4928 * integers are by default compatible between each other 4929 */ 4930 return btf_int_offset(local_type) == 0 && 4931 btf_int_offset(targ_type) == 0; 4932 case BTF_KIND_ARRAY: 4933 local_id = btf_array(local_type)->type; 4934 targ_id = btf_array(targ_type)->type; 4935 goto recur; 4936 default: 4937 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 4938 btf_kind(local_type), local_id, targ_id); 4939 return 0; 4940 } 4941 } 4942 4943 /* 4944 * Given single high-level named field accessor in local type, find 4945 * corresponding high-level accessor for a target type. Along the way, 4946 * maintain low-level spec for target as well. Also keep updating target 4947 * bit offset. 4948 * 4949 * Searching is performed through recursive exhaustive enumeration of all 4950 * fields of a struct/union. If there are any anonymous (embedded) 4951 * structs/unions, they are recursively searched as well. If field with 4952 * desired name is found, check compatibility between local and target types, 4953 * before returning result. 4954 * 4955 * 1 is returned, if field is found. 4956 * 0 is returned if no compatible field is found. 4957 * <0 is returned on error. 4958 */ 4959 static int bpf_core_match_member(const struct btf *local_btf, 4960 const struct bpf_core_accessor *local_acc, 4961 const struct btf *targ_btf, 4962 __u32 targ_id, 4963 struct bpf_core_spec *spec, 4964 __u32 *next_targ_id) 4965 { 4966 const struct btf_type *local_type, *targ_type; 4967 const struct btf_member *local_member, *m; 4968 const char *local_name, *targ_name; 4969 __u32 local_id; 4970 int i, n, found; 4971 4972 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4973 if (!targ_type) 4974 return -EINVAL; 4975 if (!btf_is_composite(targ_type)) 4976 return 0; 4977 4978 local_id = local_acc->type_id; 4979 local_type = btf__type_by_id(local_btf, local_id); 4980 local_member = btf_members(local_type) + local_acc->idx; 4981 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4982 4983 n = btf_vlen(targ_type); 4984 m = btf_members(targ_type); 4985 for (i = 0; i < n; i++, m++) { 4986 __u32 bit_offset; 4987 4988 bit_offset = btf_member_bit_offset(targ_type, i); 4989 4990 /* too deep struct/union/array nesting */ 4991 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4992 return -E2BIG; 4993 4994 /* speculate this member will be the good one */ 4995 spec->bit_offset += bit_offset; 4996 spec->raw_spec[spec->raw_len++] = i; 4997 4998 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4999 if (str_is_empty(targ_name)) { 5000 /* embedded struct/union, we need to go deeper */ 5001 found = bpf_core_match_member(local_btf, local_acc, 5002 targ_btf, m->type, 5003 spec, next_targ_id); 5004 if (found) /* either found or error */ 5005 return found; 5006 } else if (strcmp(local_name, targ_name) == 0) { 5007 /* matching named field */ 5008 struct bpf_core_accessor *targ_acc; 5009 5010 targ_acc = &spec->spec[spec->len++]; 5011 targ_acc->type_id = targ_id; 5012 targ_acc->idx = i; 5013 targ_acc->name = targ_name; 5014 5015 *next_targ_id = m->type; 5016 found = bpf_core_fields_are_compat(local_btf, 5017 local_member->type, 5018 targ_btf, m->type); 5019 if (!found) 5020 spec->len--; /* pop accessor */ 5021 return found; 5022 } 5023 /* member turned out not to be what we looked for */ 5024 spec->bit_offset -= bit_offset; 5025 spec->raw_len--; 5026 } 5027 5028 return 0; 5029 } 5030 5031 /* Check local and target types for compatibility. This check is used for 5032 * type-based CO-RE relocations and follow slightly different rules than 5033 * field-based relocations. This function assumes that root types were already 5034 * checked for name match. Beyond that initial root-level name check, names 5035 * are completely ignored. Compatibility rules are as follows: 5036 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5037 * kind should match for local and target types (i.e., STRUCT is not 5038 * compatible with UNION); 5039 * - for ENUMs, the size is ignored; 5040 * - for INT, size and signedness are ignored; 5041 * - for ARRAY, dimensionality is ignored, element types are checked for 5042 * compatibility recursively; 5043 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5044 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5045 * - FUNC_PROTOs are compatible if they have compatible signature: same 5046 * number of input args and compatible return and argument types. 5047 * These rules are not set in stone and probably will be adjusted as we get 5048 * more experience with using BPF CO-RE relocations. 5049 */ 5050 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5051 const struct btf *targ_btf, __u32 targ_id) 5052 { 5053 const struct btf_type *local_type, *targ_type; 5054 int depth = 32; /* max recursion depth */ 5055 5056 /* caller made sure that names match (ignoring flavor suffix) */ 5057 local_type = btf__type_by_id(local_btf, local_id); 5058 targ_type = btf__type_by_id(targ_btf, targ_id); 5059 if (btf_kind(local_type) != btf_kind(targ_type)) 5060 return 0; 5061 5062 recur: 5063 depth--; 5064 if (depth < 0) 5065 return -EINVAL; 5066 5067 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5068 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5069 if (!local_type || !targ_type) 5070 return -EINVAL; 5071 5072 if (btf_kind(local_type) != btf_kind(targ_type)) 5073 return 0; 5074 5075 switch (btf_kind(local_type)) { 5076 case BTF_KIND_UNKN: 5077 case BTF_KIND_STRUCT: 5078 case BTF_KIND_UNION: 5079 case BTF_KIND_ENUM: 5080 case BTF_KIND_FWD: 5081 return 1; 5082 case BTF_KIND_INT: 5083 /* just reject deprecated bitfield-like integers; all other 5084 * integers are by default compatible between each other 5085 */ 5086 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5087 case BTF_KIND_PTR: 5088 local_id = local_type->type; 5089 targ_id = targ_type->type; 5090 goto recur; 5091 case BTF_KIND_ARRAY: 5092 local_id = btf_array(local_type)->type; 5093 targ_id = btf_array(targ_type)->type; 5094 goto recur; 5095 case BTF_KIND_FUNC_PROTO: { 5096 struct btf_param *local_p = btf_params(local_type); 5097 struct btf_param *targ_p = btf_params(targ_type); 5098 __u16 local_vlen = btf_vlen(local_type); 5099 __u16 targ_vlen = btf_vlen(targ_type); 5100 int i, err; 5101 5102 if (local_vlen != targ_vlen) 5103 return 0; 5104 5105 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5106 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5107 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5108 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5109 if (err <= 0) 5110 return err; 5111 } 5112 5113 /* tail recurse for return type check */ 5114 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5115 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5116 goto recur; 5117 } 5118 default: 5119 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5120 btf_kind_str(local_type), local_id, targ_id); 5121 return 0; 5122 } 5123 } 5124 5125 /* 5126 * Try to match local spec to a target type and, if successful, produce full 5127 * target spec (high-level, low-level + bit offset). 5128 */ 5129 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 5130 const struct btf *targ_btf, __u32 targ_id, 5131 struct bpf_core_spec *targ_spec) 5132 { 5133 const struct btf_type *targ_type; 5134 const struct bpf_core_accessor *local_acc; 5135 struct bpf_core_accessor *targ_acc; 5136 int i, sz, matched; 5137 5138 memset(targ_spec, 0, sizeof(*targ_spec)); 5139 targ_spec->btf = targ_btf; 5140 targ_spec->root_type_id = targ_id; 5141 targ_spec->relo_kind = local_spec->relo_kind; 5142 5143 if (core_relo_is_type_based(local_spec->relo_kind)) { 5144 return bpf_core_types_are_compat(local_spec->btf, 5145 local_spec->root_type_id, 5146 targ_btf, targ_id); 5147 } 5148 5149 local_acc = &local_spec->spec[0]; 5150 targ_acc = &targ_spec->spec[0]; 5151 5152 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5153 size_t local_essent_len, targ_essent_len; 5154 const struct btf_enum *e; 5155 const char *targ_name; 5156 5157 /* has to resolve to an enum */ 5158 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5159 if (!btf_is_enum(targ_type)) 5160 return 0; 5161 5162 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5163 5164 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5165 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5166 targ_essent_len = bpf_core_essential_name_len(targ_name); 5167 if (targ_essent_len != local_essent_len) 5168 continue; 5169 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5170 targ_acc->type_id = targ_id; 5171 targ_acc->idx = i; 5172 targ_acc->name = targ_name; 5173 targ_spec->len++; 5174 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5175 targ_spec->raw_len++; 5176 return 1; 5177 } 5178 } 5179 return 0; 5180 } 5181 5182 if (!core_relo_is_field_based(local_spec->relo_kind)) 5183 return -EINVAL; 5184 5185 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5186 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5187 &targ_id); 5188 if (!targ_type) 5189 return -EINVAL; 5190 5191 if (local_acc->name) { 5192 matched = bpf_core_match_member(local_spec->btf, 5193 local_acc, 5194 targ_btf, targ_id, 5195 targ_spec, &targ_id); 5196 if (matched <= 0) 5197 return matched; 5198 } else { 5199 /* for i=0, targ_id is already treated as array element 5200 * type (because it's the original struct), for others 5201 * we should find array element type first 5202 */ 5203 if (i > 0) { 5204 const struct btf_array *a; 5205 bool flex; 5206 5207 if (!btf_is_array(targ_type)) 5208 return 0; 5209 5210 a = btf_array(targ_type); 5211 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5212 if (!flex && local_acc->idx >= a->nelems) 5213 return 0; 5214 if (!skip_mods_and_typedefs(targ_btf, a->type, 5215 &targ_id)) 5216 return -EINVAL; 5217 } 5218 5219 /* too deep struct/union/array nesting */ 5220 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5221 return -E2BIG; 5222 5223 targ_acc->type_id = targ_id; 5224 targ_acc->idx = local_acc->idx; 5225 targ_acc->name = NULL; 5226 targ_spec->len++; 5227 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5228 targ_spec->raw_len++; 5229 5230 sz = btf__resolve_size(targ_btf, targ_id); 5231 if (sz < 0) 5232 return sz; 5233 targ_spec->bit_offset += local_acc->idx * sz * 8; 5234 } 5235 } 5236 5237 return 1; 5238 } 5239 5240 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5241 const struct bpf_core_relo *relo, 5242 const struct bpf_core_spec *spec, 5243 __u32 *val, __u32 *field_sz, __u32 *type_id, 5244 bool *validate) 5245 { 5246 const struct bpf_core_accessor *acc; 5247 const struct btf_type *t; 5248 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5249 const struct btf_member *m; 5250 const struct btf_type *mt; 5251 bool bitfield; 5252 __s64 sz; 5253 5254 *field_sz = 0; 5255 5256 if (relo->kind == BPF_FIELD_EXISTS) { 5257 *val = spec ? 1 : 0; 5258 return 0; 5259 } 5260 5261 if (!spec) 5262 return -EUCLEAN; /* request instruction poisoning */ 5263 5264 acc = &spec->spec[spec->len - 1]; 5265 t = btf__type_by_id(spec->btf, acc->type_id); 5266 5267 /* a[n] accessor needs special handling */ 5268 if (!acc->name) { 5269 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5270 *val = spec->bit_offset / 8; 5271 /* remember field size for load/store mem size */ 5272 sz = btf__resolve_size(spec->btf, acc->type_id); 5273 if (sz < 0) 5274 return -EINVAL; 5275 *field_sz = sz; 5276 *type_id = acc->type_id; 5277 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5278 sz = btf__resolve_size(spec->btf, acc->type_id); 5279 if (sz < 0) 5280 return -EINVAL; 5281 *val = sz; 5282 } else { 5283 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5284 prog->name, relo->kind, relo->insn_off / 8); 5285 return -EINVAL; 5286 } 5287 if (validate) 5288 *validate = true; 5289 return 0; 5290 } 5291 5292 m = btf_members(t) + acc->idx; 5293 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5294 bit_off = spec->bit_offset; 5295 bit_sz = btf_member_bitfield_size(t, acc->idx); 5296 5297 bitfield = bit_sz > 0; 5298 if (bitfield) { 5299 byte_sz = mt->size; 5300 byte_off = bit_off / 8 / byte_sz * byte_sz; 5301 /* figure out smallest int size necessary for bitfield load */ 5302 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5303 if (byte_sz >= 8) { 5304 /* bitfield can't be read with 64-bit read */ 5305 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5306 prog->name, relo->kind, relo->insn_off / 8); 5307 return -E2BIG; 5308 } 5309 byte_sz *= 2; 5310 byte_off = bit_off / 8 / byte_sz * byte_sz; 5311 } 5312 } else { 5313 sz = btf__resolve_size(spec->btf, field_type_id); 5314 if (sz < 0) 5315 return -EINVAL; 5316 byte_sz = sz; 5317 byte_off = spec->bit_offset / 8; 5318 bit_sz = byte_sz * 8; 5319 } 5320 5321 /* for bitfields, all the relocatable aspects are ambiguous and we 5322 * might disagree with compiler, so turn off validation of expected 5323 * value, except for signedness 5324 */ 5325 if (validate) 5326 *validate = !bitfield; 5327 5328 switch (relo->kind) { 5329 case BPF_FIELD_BYTE_OFFSET: 5330 *val = byte_off; 5331 if (!bitfield) { 5332 *field_sz = byte_sz; 5333 *type_id = field_type_id; 5334 } 5335 break; 5336 case BPF_FIELD_BYTE_SIZE: 5337 *val = byte_sz; 5338 break; 5339 case BPF_FIELD_SIGNED: 5340 /* enums will be assumed unsigned */ 5341 *val = btf_is_enum(mt) || 5342 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5343 if (validate) 5344 *validate = true; /* signedness is never ambiguous */ 5345 break; 5346 case BPF_FIELD_LSHIFT_U64: 5347 #if __BYTE_ORDER == __LITTLE_ENDIAN 5348 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5349 #else 5350 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5351 #endif 5352 break; 5353 case BPF_FIELD_RSHIFT_U64: 5354 *val = 64 - bit_sz; 5355 if (validate) 5356 *validate = true; /* right shift is never ambiguous */ 5357 break; 5358 case BPF_FIELD_EXISTS: 5359 default: 5360 return -EOPNOTSUPP; 5361 } 5362 5363 return 0; 5364 } 5365 5366 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5367 const struct bpf_core_spec *spec, 5368 __u32 *val) 5369 { 5370 __s64 sz; 5371 5372 /* type-based relos return zero when target type is not found */ 5373 if (!spec) { 5374 *val = 0; 5375 return 0; 5376 } 5377 5378 switch (relo->kind) { 5379 case BPF_TYPE_ID_TARGET: 5380 *val = spec->root_type_id; 5381 break; 5382 case BPF_TYPE_EXISTS: 5383 *val = 1; 5384 break; 5385 case BPF_TYPE_SIZE: 5386 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5387 if (sz < 0) 5388 return -EINVAL; 5389 *val = sz; 5390 break; 5391 case BPF_TYPE_ID_LOCAL: 5392 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5393 default: 5394 return -EOPNOTSUPP; 5395 } 5396 5397 return 0; 5398 } 5399 5400 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5401 const struct bpf_core_spec *spec, 5402 __u32 *val) 5403 { 5404 const struct btf_type *t; 5405 const struct btf_enum *e; 5406 5407 switch (relo->kind) { 5408 case BPF_ENUMVAL_EXISTS: 5409 *val = spec ? 1 : 0; 5410 break; 5411 case BPF_ENUMVAL_VALUE: 5412 if (!spec) 5413 return -EUCLEAN; /* request instruction poisoning */ 5414 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5415 e = btf_enum(t) + spec->spec[0].idx; 5416 *val = e->val; 5417 break; 5418 default: 5419 return -EOPNOTSUPP; 5420 } 5421 5422 return 0; 5423 } 5424 5425 struct bpf_core_relo_res 5426 { 5427 /* expected value in the instruction, unless validate == false */ 5428 __u32 orig_val; 5429 /* new value that needs to be patched up to */ 5430 __u32 new_val; 5431 /* relocation unsuccessful, poison instruction, but don't fail load */ 5432 bool poison; 5433 /* some relocations can't be validated against orig_val */ 5434 bool validate; 5435 /* for field byte offset relocations or the forms: 5436 * *(T *)(rX + <off>) = rY 5437 * rX = *(T *)(rY + <off>), 5438 * we remember original and resolved field size to adjust direct 5439 * memory loads of pointers and integers; this is necessary for 32-bit 5440 * host kernel architectures, but also allows to automatically 5441 * relocate fields that were resized from, e.g., u32 to u64, etc. 5442 */ 5443 bool fail_memsz_adjust; 5444 __u32 orig_sz; 5445 __u32 orig_type_id; 5446 __u32 new_sz; 5447 __u32 new_type_id; 5448 }; 5449 5450 /* Calculate original and target relocation values, given local and target 5451 * specs and relocation kind. These values are calculated for each candidate. 5452 * If there are multiple candidates, resulting values should all be consistent 5453 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5454 * If instruction has to be poisoned, *poison will be set to true. 5455 */ 5456 static int bpf_core_calc_relo(const struct bpf_program *prog, 5457 const struct bpf_core_relo *relo, 5458 int relo_idx, 5459 const struct bpf_core_spec *local_spec, 5460 const struct bpf_core_spec *targ_spec, 5461 struct bpf_core_relo_res *res) 5462 { 5463 int err = -EOPNOTSUPP; 5464 5465 res->orig_val = 0; 5466 res->new_val = 0; 5467 res->poison = false; 5468 res->validate = true; 5469 res->fail_memsz_adjust = false; 5470 res->orig_sz = res->new_sz = 0; 5471 res->orig_type_id = res->new_type_id = 0; 5472 5473 if (core_relo_is_field_based(relo->kind)) { 5474 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5475 &res->orig_val, &res->orig_sz, 5476 &res->orig_type_id, &res->validate); 5477 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5478 &res->new_val, &res->new_sz, 5479 &res->new_type_id, NULL); 5480 if (err) 5481 goto done; 5482 /* Validate if it's safe to adjust load/store memory size. 5483 * Adjustments are performed only if original and new memory 5484 * sizes differ. 5485 */ 5486 res->fail_memsz_adjust = false; 5487 if (res->orig_sz != res->new_sz) { 5488 const struct btf_type *orig_t, *new_t; 5489 5490 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5491 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5492 5493 /* There are two use cases in which it's safe to 5494 * adjust load/store's mem size: 5495 * - reading a 32-bit kernel pointer, while on BPF 5496 * size pointers are always 64-bit; in this case 5497 * it's safe to "downsize" instruction size due to 5498 * pointer being treated as unsigned integer with 5499 * zero-extended upper 32-bits; 5500 * - reading unsigned integers, again due to 5501 * zero-extension is preserving the value correctly. 5502 * 5503 * In all other cases it's incorrect to attempt to 5504 * load/store field because read value will be 5505 * incorrect, so we poison relocated instruction. 5506 */ 5507 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5508 goto done; 5509 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5510 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5511 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5512 goto done; 5513 5514 /* mark as invalid mem size adjustment, but this will 5515 * only be checked for LDX/STX/ST insns 5516 */ 5517 res->fail_memsz_adjust = true; 5518 } 5519 } else if (core_relo_is_type_based(relo->kind)) { 5520 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5521 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5522 } else if (core_relo_is_enumval_based(relo->kind)) { 5523 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5524 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5525 } 5526 5527 done: 5528 if (err == -EUCLEAN) { 5529 /* EUCLEAN is used to signal instruction poisoning request */ 5530 res->poison = true; 5531 err = 0; 5532 } else if (err == -EOPNOTSUPP) { 5533 /* EOPNOTSUPP means unknown/unsupported relocation */ 5534 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5535 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5536 relo->kind, relo->insn_off / 8); 5537 } 5538 5539 return err; 5540 } 5541 5542 /* 5543 * Turn instruction for which CO_RE relocation failed into invalid one with 5544 * distinct signature. 5545 */ 5546 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5547 int insn_idx, struct bpf_insn *insn) 5548 { 5549 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5550 prog->name, relo_idx, insn_idx); 5551 insn->code = BPF_JMP | BPF_CALL; 5552 insn->dst_reg = 0; 5553 insn->src_reg = 0; 5554 insn->off = 0; 5555 /* if this instruction is reachable (not a dead code), 5556 * verifier will complain with the following message: 5557 * invalid func unknown#195896080 5558 */ 5559 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5560 } 5561 5562 static bool is_ldimm64(struct bpf_insn *insn) 5563 { 5564 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 5565 } 5566 5567 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5568 { 5569 switch (BPF_SIZE(insn->code)) { 5570 case BPF_DW: return 8; 5571 case BPF_W: return 4; 5572 case BPF_H: return 2; 5573 case BPF_B: return 1; 5574 default: return -1; 5575 } 5576 } 5577 5578 static int insn_bytes_to_bpf_size(__u32 sz) 5579 { 5580 switch (sz) { 5581 case 8: return BPF_DW; 5582 case 4: return BPF_W; 5583 case 2: return BPF_H; 5584 case 1: return BPF_B; 5585 default: return -1; 5586 } 5587 } 5588 5589 /* 5590 * Patch relocatable BPF instruction. 5591 * 5592 * Patched value is determined by relocation kind and target specification. 5593 * For existence relocations target spec will be NULL if field/type is not found. 5594 * Expected insn->imm value is determined using relocation kind and local 5595 * spec, and is checked before patching instruction. If actual insn->imm value 5596 * is wrong, bail out with error. 5597 * 5598 * Currently supported classes of BPF instruction are: 5599 * 1. rX = <imm> (assignment with immediate operand); 5600 * 2. rX += <imm> (arithmetic operations with immediate operand); 5601 * 3. rX = <imm64> (load with 64-bit immediate value); 5602 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5603 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5604 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5605 */ 5606 static int bpf_core_patch_insn(struct bpf_program *prog, 5607 const struct bpf_core_relo *relo, 5608 int relo_idx, 5609 const struct bpf_core_relo_res *res) 5610 { 5611 __u32 orig_val, new_val; 5612 struct bpf_insn *insn; 5613 int insn_idx; 5614 __u8 class; 5615 5616 if (relo->insn_off % BPF_INSN_SZ) 5617 return -EINVAL; 5618 insn_idx = relo->insn_off / BPF_INSN_SZ; 5619 /* adjust insn_idx from section frame of reference to the local 5620 * program's frame of reference; (sub-)program code is not yet 5621 * relocated, so it's enough to just subtract in-section offset 5622 */ 5623 insn_idx = insn_idx - prog->sec_insn_off; 5624 insn = &prog->insns[insn_idx]; 5625 class = BPF_CLASS(insn->code); 5626 5627 if (res->poison) { 5628 poison: 5629 /* poison second part of ldimm64 to avoid confusing error from 5630 * verifier about "unknown opcode 00" 5631 */ 5632 if (is_ldimm64(insn)) 5633 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5634 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5635 return 0; 5636 } 5637 5638 orig_val = res->orig_val; 5639 new_val = res->new_val; 5640 5641 switch (class) { 5642 case BPF_ALU: 5643 case BPF_ALU64: 5644 if (BPF_SRC(insn->code) != BPF_K) 5645 return -EINVAL; 5646 if (res->validate && insn->imm != orig_val) { 5647 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5648 prog->name, relo_idx, 5649 insn_idx, insn->imm, orig_val, new_val); 5650 return -EINVAL; 5651 } 5652 orig_val = insn->imm; 5653 insn->imm = new_val; 5654 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5655 prog->name, relo_idx, insn_idx, 5656 orig_val, new_val); 5657 break; 5658 case BPF_LDX: 5659 case BPF_ST: 5660 case BPF_STX: 5661 if (res->validate && insn->off != orig_val) { 5662 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5663 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5664 return -EINVAL; 5665 } 5666 if (new_val > SHRT_MAX) { 5667 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5668 prog->name, relo_idx, insn_idx, new_val); 5669 return -ERANGE; 5670 } 5671 if (res->fail_memsz_adjust) { 5672 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5673 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5674 prog->name, relo_idx, insn_idx); 5675 goto poison; 5676 } 5677 5678 orig_val = insn->off; 5679 insn->off = new_val; 5680 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5681 prog->name, relo_idx, insn_idx, orig_val, new_val); 5682 5683 if (res->new_sz != res->orig_sz) { 5684 int insn_bytes_sz, insn_bpf_sz; 5685 5686 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5687 if (insn_bytes_sz != res->orig_sz) { 5688 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5689 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5690 return -EINVAL; 5691 } 5692 5693 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5694 if (insn_bpf_sz < 0) { 5695 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5696 prog->name, relo_idx, insn_idx, res->new_sz); 5697 return -EINVAL; 5698 } 5699 5700 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5701 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5702 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5703 } 5704 break; 5705 case BPF_LD: { 5706 __u64 imm; 5707 5708 if (!is_ldimm64(insn) || 5709 insn[0].src_reg != 0 || insn[0].off != 0 || 5710 insn_idx + 1 >= prog->insns_cnt || 5711 insn[1].code != 0 || insn[1].dst_reg != 0 || 5712 insn[1].src_reg != 0 || insn[1].off != 0) { 5713 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5714 prog->name, relo_idx, insn_idx); 5715 return -EINVAL; 5716 } 5717 5718 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5719 if (res->validate && imm != orig_val) { 5720 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5721 prog->name, relo_idx, 5722 insn_idx, (unsigned long long)imm, 5723 orig_val, new_val); 5724 return -EINVAL; 5725 } 5726 5727 insn[0].imm = new_val; 5728 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5729 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5730 prog->name, relo_idx, insn_idx, 5731 (unsigned long long)imm, new_val); 5732 break; 5733 } 5734 default: 5735 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5736 prog->name, relo_idx, insn_idx, insn->code, 5737 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5738 return -EINVAL; 5739 } 5740 5741 return 0; 5742 } 5743 5744 /* Output spec definition in the format: 5745 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5746 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5747 */ 5748 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5749 { 5750 const struct btf_type *t; 5751 const struct btf_enum *e; 5752 const char *s; 5753 __u32 type_id; 5754 int i; 5755 5756 type_id = spec->root_type_id; 5757 t = btf__type_by_id(spec->btf, type_id); 5758 s = btf__name_by_offset(spec->btf, t->name_off); 5759 5760 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5761 5762 if (core_relo_is_type_based(spec->relo_kind)) 5763 return; 5764 5765 if (core_relo_is_enumval_based(spec->relo_kind)) { 5766 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5767 e = btf_enum(t) + spec->raw_spec[0]; 5768 s = btf__name_by_offset(spec->btf, e->name_off); 5769 5770 libbpf_print(level, "::%s = %u", s, e->val); 5771 return; 5772 } 5773 5774 if (core_relo_is_field_based(spec->relo_kind)) { 5775 for (i = 0; i < spec->len; i++) { 5776 if (spec->spec[i].name) 5777 libbpf_print(level, ".%s", spec->spec[i].name); 5778 else if (i > 0 || spec->spec[i].idx > 0) 5779 libbpf_print(level, "[%u]", spec->spec[i].idx); 5780 } 5781 5782 libbpf_print(level, " ("); 5783 for (i = 0; i < spec->raw_len; i++) 5784 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5785 5786 if (spec->bit_offset % 8) 5787 libbpf_print(level, " @ offset %u.%u)", 5788 spec->bit_offset / 8, spec->bit_offset % 8); 5789 else 5790 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5791 return; 5792 } 5793 } 5794 5795 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5796 { 5797 return (size_t)key; 5798 } 5799 5800 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5801 { 5802 return k1 == k2; 5803 } 5804 5805 static void *u32_as_hash_key(__u32 x) 5806 { 5807 return (void *)(uintptr_t)x; 5808 } 5809 5810 /* 5811 * CO-RE relocate single instruction. 5812 * 5813 * The outline and important points of the algorithm: 5814 * 1. For given local type, find corresponding candidate target types. 5815 * Candidate type is a type with the same "essential" name, ignoring 5816 * everything after last triple underscore (___). E.g., `sample`, 5817 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5818 * for each other. Names with triple underscore are referred to as 5819 * "flavors" and are useful, among other things, to allow to 5820 * specify/support incompatible variations of the same kernel struct, which 5821 * might differ between different kernel versions and/or build 5822 * configurations. 5823 * 5824 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5825 * converter, when deduplicated BTF of a kernel still contains more than 5826 * one different types with the same name. In that case, ___2, ___3, etc 5827 * are appended starting from second name conflict. But start flavors are 5828 * also useful to be defined "locally", in BPF program, to extract same 5829 * data from incompatible changes between different kernel 5830 * versions/configurations. For instance, to handle field renames between 5831 * kernel versions, one can use two flavors of the struct name with the 5832 * same common name and use conditional relocations to extract that field, 5833 * depending on target kernel version. 5834 * 2. For each candidate type, try to match local specification to this 5835 * candidate target type. Matching involves finding corresponding 5836 * high-level spec accessors, meaning that all named fields should match, 5837 * as well as all array accesses should be within the actual bounds. Also, 5838 * types should be compatible (see bpf_core_fields_are_compat for details). 5839 * 3. It is supported and expected that there might be multiple flavors 5840 * matching the spec. As long as all the specs resolve to the same set of 5841 * offsets across all candidates, there is no error. If there is any 5842 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 5843 * imprefection of BTF deduplication, which can cause slight duplication of 5844 * the same BTF type, if some directly or indirectly referenced (by 5845 * pointer) type gets resolved to different actual types in different 5846 * object files. If such situation occurs, deduplicated BTF will end up 5847 * with two (or more) structurally identical types, which differ only in 5848 * types they refer to through pointer. This should be OK in most cases and 5849 * is not an error. 5850 * 4. Candidate types search is performed by linearly scanning through all 5851 * types in target BTF. It is anticipated that this is overall more 5852 * efficient memory-wise and not significantly worse (if not better) 5853 * CPU-wise compared to prebuilding a map from all local type names to 5854 * a list of candidate type names. It's also sped up by caching resolved 5855 * list of matching candidates per each local "root" type ID, that has at 5856 * least one bpf_core_relo associated with it. This list is shared 5857 * between multiple relocations for the same type ID and is updated as some 5858 * of the candidates are pruned due to structural incompatibility. 5859 */ 5860 static int bpf_core_apply_relo(struct bpf_program *prog, 5861 const struct bpf_core_relo *relo, 5862 int relo_idx, 5863 const struct btf *local_btf, 5864 struct hashmap *cand_cache) 5865 { 5866 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 5867 const void *type_key = u32_as_hash_key(relo->type_id); 5868 struct bpf_core_relo_res cand_res, targ_res; 5869 const struct btf_type *local_type; 5870 const char *local_name; 5871 struct core_cand_list *cands = NULL; 5872 __u32 local_id; 5873 const char *spec_str; 5874 int i, j, err; 5875 5876 local_id = relo->type_id; 5877 local_type = btf__type_by_id(local_btf, local_id); 5878 if (!local_type) 5879 return -EINVAL; 5880 5881 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5882 if (!local_name) 5883 return -EINVAL; 5884 5885 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5886 if (str_is_empty(spec_str)) 5887 return -EINVAL; 5888 5889 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 5890 if (err) { 5891 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 5892 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5893 str_is_empty(local_name) ? "<anon>" : local_name, 5894 spec_str, err); 5895 return -EINVAL; 5896 } 5897 5898 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 5899 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5900 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 5901 libbpf_print(LIBBPF_DEBUG, "\n"); 5902 5903 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 5904 if (relo->kind == BPF_TYPE_ID_LOCAL) { 5905 targ_res.validate = true; 5906 targ_res.poison = false; 5907 targ_res.orig_val = local_spec.root_type_id; 5908 targ_res.new_val = local_spec.root_type_id; 5909 goto patch_insn; 5910 } 5911 5912 /* libbpf doesn't support candidate search for anonymous types */ 5913 if (str_is_empty(spec_str)) { 5914 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 5915 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5916 return -EOPNOTSUPP; 5917 } 5918 5919 if (!hashmap__find(cand_cache, type_key, (void **)&cands)) { 5920 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5921 if (IS_ERR(cands)) { 5922 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5923 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5924 local_name, PTR_ERR(cands)); 5925 return PTR_ERR(cands); 5926 } 5927 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5928 if (err) { 5929 bpf_core_free_cands(cands); 5930 return err; 5931 } 5932 } 5933 5934 for (i = 0, j = 0; i < cands->len; i++) { 5935 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 5936 cands->cands[i].id, &cand_spec); 5937 if (err < 0) { 5938 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 5939 prog->name, relo_idx, i); 5940 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 5941 libbpf_print(LIBBPF_WARN, ": %d\n", err); 5942 return err; 5943 } 5944 5945 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 5946 relo_idx, err == 0 ? "non-matching" : "matching", i); 5947 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 5948 libbpf_print(LIBBPF_DEBUG, "\n"); 5949 5950 if (err == 0) 5951 continue; 5952 5953 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 5954 if (err) 5955 return err; 5956 5957 if (j == 0) { 5958 targ_res = cand_res; 5959 targ_spec = cand_spec; 5960 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 5961 /* if there are many field relo candidates, they 5962 * should all resolve to the same bit offset 5963 */ 5964 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 5965 prog->name, relo_idx, cand_spec.bit_offset, 5966 targ_spec.bit_offset); 5967 return -EINVAL; 5968 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 5969 /* all candidates should result in the same relocation 5970 * decision and value, otherwise it's dangerous to 5971 * proceed due to ambiguity 5972 */ 5973 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 5974 prog->name, relo_idx, 5975 cand_res.poison ? "failure" : "success", cand_res.new_val, 5976 targ_res.poison ? "failure" : "success", targ_res.new_val); 5977 return -EINVAL; 5978 } 5979 5980 cands->cands[j++] = cands->cands[i]; 5981 } 5982 5983 /* 5984 * For BPF_FIELD_EXISTS relo or when used BPF program has field 5985 * existence checks or kernel version/config checks, it's expected 5986 * that we might not find any candidates. In this case, if field 5987 * wasn't found in any candidate, the list of candidates shouldn't 5988 * change at all, we'll just handle relocating appropriately, 5989 * depending on relo's kind. 5990 */ 5991 if (j > 0) 5992 cands->len = j; 5993 5994 /* 5995 * If no candidates were found, it might be both a programmer error, 5996 * as well as expected case, depending whether instruction w/ 5997 * relocation is guarded in some way that makes it unreachable (dead 5998 * code) if relocation can't be resolved. This is handled in 5999 * bpf_core_patch_insn() uniformly by replacing that instruction with 6000 * BPF helper call insn (using invalid helper ID). If that instruction 6001 * is indeed unreachable, then it will be ignored and eliminated by 6002 * verifier. If it was an error, then verifier will complain and point 6003 * to a specific instruction number in its log. 6004 */ 6005 if (j == 0) { 6006 pr_debug("prog '%s': relo #%d: no matching targets found\n", 6007 prog->name, relo_idx); 6008 6009 /* calculate single target relo result explicitly */ 6010 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 6011 if (err) 6012 return err; 6013 } 6014 6015 patch_insn: 6016 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 6017 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 6018 if (err) { 6019 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 6020 prog->name, relo_idx, relo->insn_off, err); 6021 return -EINVAL; 6022 } 6023 6024 return 0; 6025 } 6026 6027 static int 6028 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6029 { 6030 const struct btf_ext_info_sec *sec; 6031 const struct bpf_core_relo *rec; 6032 const struct btf_ext_info *seg; 6033 struct hashmap_entry *entry; 6034 struct hashmap *cand_cache = NULL; 6035 struct bpf_program *prog; 6036 const char *sec_name; 6037 int i, err = 0, insn_idx, sec_idx; 6038 6039 if (obj->btf_ext->core_relo_info.len == 0) 6040 return 0; 6041 6042 if (targ_btf_path) { 6043 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6044 if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) { 6045 err = PTR_ERR(obj->btf_vmlinux_override); 6046 pr_warn("failed to parse target BTF: %d\n", err); 6047 return err; 6048 } 6049 } 6050 6051 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6052 if (IS_ERR(cand_cache)) { 6053 err = PTR_ERR(cand_cache); 6054 goto out; 6055 } 6056 6057 seg = &obj->btf_ext->core_relo_info; 6058 for_each_btf_ext_sec(seg, sec) { 6059 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6060 if (str_is_empty(sec_name)) { 6061 err = -EINVAL; 6062 goto out; 6063 } 6064 /* bpf_object's ELF is gone by now so it's not easy to find 6065 * section index by section name, but we can find *any* 6066 * bpf_program within desired section name and use it's 6067 * prog->sec_idx to do a proper search by section index and 6068 * instruction offset 6069 */ 6070 prog = NULL; 6071 for (i = 0; i < obj->nr_programs; i++) { 6072 prog = &obj->programs[i]; 6073 if (strcmp(prog->sec_name, sec_name) == 0) 6074 break; 6075 } 6076 if (!prog) { 6077 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 6078 return -ENOENT; 6079 } 6080 sec_idx = prog->sec_idx; 6081 6082 pr_debug("sec '%s': found %d CO-RE relocations\n", 6083 sec_name, sec->num_info); 6084 6085 for_each_btf_ext_rec(seg, sec, i, rec) { 6086 insn_idx = rec->insn_off / BPF_INSN_SZ; 6087 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6088 if (!prog) { 6089 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 6090 sec_name, insn_idx, i); 6091 err = -EINVAL; 6092 goto out; 6093 } 6094 /* no need to apply CO-RE relocation if the program is 6095 * not going to be loaded 6096 */ 6097 if (!prog->load) 6098 continue; 6099 6100 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 6101 if (err) { 6102 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 6103 prog->name, i, err); 6104 goto out; 6105 } 6106 } 6107 } 6108 6109 out: 6110 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6111 btf__free(obj->btf_vmlinux_override); 6112 obj->btf_vmlinux_override = NULL; 6113 6114 if (!IS_ERR_OR_NULL(cand_cache)) { 6115 hashmap__for_each_entry(cand_cache, entry, i) { 6116 bpf_core_free_cands(entry->value); 6117 } 6118 hashmap__free(cand_cache); 6119 } 6120 return err; 6121 } 6122 6123 /* Relocate data references within program code: 6124 * - map references; 6125 * - global variable references; 6126 * - extern references. 6127 */ 6128 static int 6129 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6130 { 6131 int i; 6132 6133 for (i = 0; i < prog->nr_reloc; i++) { 6134 struct reloc_desc *relo = &prog->reloc_desc[i]; 6135 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6136 struct extern_desc *ext; 6137 6138 switch (relo->type) { 6139 case RELO_LD64: 6140 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6141 insn[0].imm = obj->maps[relo->map_idx].fd; 6142 relo->processed = true; 6143 break; 6144 case RELO_DATA: 6145 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6146 insn[1].imm = insn[0].imm + relo->sym_off; 6147 insn[0].imm = obj->maps[relo->map_idx].fd; 6148 relo->processed = true; 6149 break; 6150 case RELO_EXTERN: 6151 ext = &obj->externs[relo->sym_off]; 6152 if (ext->type == EXT_KCFG) { 6153 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6154 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6155 insn[1].imm = ext->kcfg.data_off; 6156 } else /* EXT_KSYM */ { 6157 if (ext->ksym.type_id) { /* typed ksyms */ 6158 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6159 insn[0].imm = ext->ksym.vmlinux_btf_id; 6160 } else { /* typeless ksyms */ 6161 insn[0].imm = (__u32)ext->ksym.addr; 6162 insn[1].imm = ext->ksym.addr >> 32; 6163 } 6164 } 6165 relo->processed = true; 6166 break; 6167 case RELO_CALL: 6168 /* will be handled as a follow up pass */ 6169 break; 6170 default: 6171 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6172 prog->name, i, relo->type); 6173 return -EINVAL; 6174 } 6175 } 6176 6177 return 0; 6178 } 6179 6180 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6181 const struct bpf_program *prog, 6182 const struct btf_ext_info *ext_info, 6183 void **prog_info, __u32 *prog_rec_cnt, 6184 __u32 *prog_rec_sz) 6185 { 6186 void *copy_start = NULL, *copy_end = NULL; 6187 void *rec, *rec_end, *new_prog_info; 6188 const struct btf_ext_info_sec *sec; 6189 size_t old_sz, new_sz; 6190 const char *sec_name; 6191 int i, off_adj; 6192 6193 for_each_btf_ext_sec(ext_info, sec) { 6194 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6195 if (!sec_name) 6196 return -EINVAL; 6197 if (strcmp(sec_name, prog->sec_name) != 0) 6198 continue; 6199 6200 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6201 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6202 6203 if (insn_off < prog->sec_insn_off) 6204 continue; 6205 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6206 break; 6207 6208 if (!copy_start) 6209 copy_start = rec; 6210 copy_end = rec + ext_info->rec_size; 6211 } 6212 6213 if (!copy_start) 6214 return -ENOENT; 6215 6216 /* append func/line info of a given (sub-)program to the main 6217 * program func/line info 6218 */ 6219 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6220 new_sz = old_sz + (copy_end - copy_start); 6221 new_prog_info = realloc(*prog_info, new_sz); 6222 if (!new_prog_info) 6223 return -ENOMEM; 6224 *prog_info = new_prog_info; 6225 *prog_rec_cnt = new_sz / ext_info->rec_size; 6226 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6227 6228 /* Kernel instruction offsets are in units of 8-byte 6229 * instructions, while .BTF.ext instruction offsets generated 6230 * by Clang are in units of bytes. So convert Clang offsets 6231 * into kernel offsets and adjust offset according to program 6232 * relocated position. 6233 */ 6234 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6235 rec = new_prog_info + old_sz; 6236 rec_end = new_prog_info + new_sz; 6237 for (; rec < rec_end; rec += ext_info->rec_size) { 6238 __u32 *insn_off = rec; 6239 6240 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6241 } 6242 *prog_rec_sz = ext_info->rec_size; 6243 return 0; 6244 } 6245 6246 return -ENOENT; 6247 } 6248 6249 static int 6250 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6251 struct bpf_program *main_prog, 6252 const struct bpf_program *prog) 6253 { 6254 int err; 6255 6256 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6257 * supprot func/line info 6258 */ 6259 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6260 return 0; 6261 6262 /* only attempt func info relocation if main program's func_info 6263 * relocation was successful 6264 */ 6265 if (main_prog != prog && !main_prog->func_info) 6266 goto line_info; 6267 6268 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6269 &main_prog->func_info, 6270 &main_prog->func_info_cnt, 6271 &main_prog->func_info_rec_size); 6272 if (err) { 6273 if (err != -ENOENT) { 6274 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6275 prog->name, err); 6276 return err; 6277 } 6278 if (main_prog->func_info) { 6279 /* 6280 * Some info has already been found but has problem 6281 * in the last btf_ext reloc. Must have to error out. 6282 */ 6283 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6284 return err; 6285 } 6286 /* Have problem loading the very first info. Ignore the rest. */ 6287 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6288 prog->name); 6289 } 6290 6291 line_info: 6292 /* don't relocate line info if main program's relocation failed */ 6293 if (main_prog != prog && !main_prog->line_info) 6294 return 0; 6295 6296 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6297 &main_prog->line_info, 6298 &main_prog->line_info_cnt, 6299 &main_prog->line_info_rec_size); 6300 if (err) { 6301 if (err != -ENOENT) { 6302 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6303 prog->name, err); 6304 return err; 6305 } 6306 if (main_prog->line_info) { 6307 /* 6308 * Some info has already been found but has problem 6309 * in the last btf_ext reloc. Must have to error out. 6310 */ 6311 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6312 return err; 6313 } 6314 /* Have problem loading the very first info. Ignore the rest. */ 6315 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6316 prog->name); 6317 } 6318 return 0; 6319 } 6320 6321 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6322 { 6323 size_t insn_idx = *(const size_t *)key; 6324 const struct reloc_desc *relo = elem; 6325 6326 if (insn_idx == relo->insn_idx) 6327 return 0; 6328 return insn_idx < relo->insn_idx ? -1 : 1; 6329 } 6330 6331 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6332 { 6333 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6334 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6335 } 6336 6337 static int 6338 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6339 struct bpf_program *prog) 6340 { 6341 size_t sub_insn_idx, insn_idx, new_cnt; 6342 struct bpf_program *subprog; 6343 struct bpf_insn *insns, *insn; 6344 struct reloc_desc *relo; 6345 int err; 6346 6347 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6348 if (err) 6349 return err; 6350 6351 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6352 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6353 if (!insn_is_subprog_call(insn)) 6354 continue; 6355 6356 relo = find_prog_insn_relo(prog, insn_idx); 6357 if (relo && relo->type != RELO_CALL) { 6358 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6359 prog->name, insn_idx, relo->type); 6360 return -LIBBPF_ERRNO__RELOC; 6361 } 6362 if (relo) { 6363 /* sub-program instruction index is a combination of 6364 * an offset of a symbol pointed to by relocation and 6365 * call instruction's imm field; for global functions, 6366 * call always has imm = -1, but for static functions 6367 * relocation is against STT_SECTION and insn->imm 6368 * points to a start of a static function 6369 */ 6370 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6371 } else { 6372 /* if subprogram call is to a static function within 6373 * the same ELF section, there won't be any relocation 6374 * emitted, but it also means there is no additional 6375 * offset necessary, insns->imm is relative to 6376 * instruction's original position within the section 6377 */ 6378 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6379 } 6380 6381 /* we enforce that sub-programs should be in .text section */ 6382 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6383 if (!subprog) { 6384 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6385 prog->name); 6386 return -LIBBPF_ERRNO__RELOC; 6387 } 6388 6389 /* if it's the first call instruction calling into this 6390 * subprogram (meaning this subprog hasn't been processed 6391 * yet) within the context of current main program: 6392 * - append it at the end of main program's instructions blog; 6393 * - process is recursively, while current program is put on hold; 6394 * - if that subprogram calls some other not yet processes 6395 * subprogram, same thing will happen recursively until 6396 * there are no more unprocesses subprograms left to append 6397 * and relocate. 6398 */ 6399 if (subprog->sub_insn_off == 0) { 6400 subprog->sub_insn_off = main_prog->insns_cnt; 6401 6402 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6403 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6404 if (!insns) { 6405 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6406 return -ENOMEM; 6407 } 6408 main_prog->insns = insns; 6409 main_prog->insns_cnt = new_cnt; 6410 6411 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6412 subprog->insns_cnt * sizeof(*insns)); 6413 6414 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6415 main_prog->name, subprog->insns_cnt, subprog->name); 6416 6417 err = bpf_object__reloc_code(obj, main_prog, subprog); 6418 if (err) 6419 return err; 6420 } 6421 6422 /* main_prog->insns memory could have been re-allocated, so 6423 * calculate pointer again 6424 */ 6425 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6426 /* calculate correct instruction position within current main 6427 * prog; each main prog can have a different set of 6428 * subprograms appended (potentially in different order as 6429 * well), so position of any subprog can be different for 6430 * different main programs */ 6431 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6432 6433 if (relo) 6434 relo->processed = true; 6435 6436 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6437 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6438 } 6439 6440 return 0; 6441 } 6442 6443 /* 6444 * Relocate sub-program calls. 6445 * 6446 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6447 * main prog) is processed separately. For each subprog (non-entry functions, 6448 * that can be called from either entry progs or other subprogs) gets their 6449 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6450 * hasn't been yet appended and relocated within current main prog. Once its 6451 * relocated, sub_insn_off will point at the position within current main prog 6452 * where given subprog was appended. This will further be used to relocate all 6453 * the call instructions jumping into this subprog. 6454 * 6455 * We start with main program and process all call instructions. If the call 6456 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6457 * is zero), subprog instructions are appended at the end of main program's 6458 * instruction array. Then main program is "put on hold" while we recursively 6459 * process newly appended subprogram. If that subprogram calls into another 6460 * subprogram that hasn't been appended, new subprogram is appended again to 6461 * the *main* prog's instructions (subprog's instructions are always left 6462 * untouched, as they need to be in unmodified state for subsequent main progs 6463 * and subprog instructions are always sent only as part of a main prog) and 6464 * the process continues recursively. Once all the subprogs called from a main 6465 * prog or any of its subprogs are appended (and relocated), all their 6466 * positions within finalized instructions array are known, so it's easy to 6467 * rewrite call instructions with correct relative offsets, corresponding to 6468 * desired target subprog. 6469 * 6470 * Its important to realize that some subprogs might not be called from some 6471 * main prog and any of its called/used subprogs. Those will keep their 6472 * subprog->sub_insn_off as zero at all times and won't be appended to current 6473 * main prog and won't be relocated within the context of current main prog. 6474 * They might still be used from other main progs later. 6475 * 6476 * Visually this process can be shown as below. Suppose we have two main 6477 * programs mainA and mainB and BPF object contains three subprogs: subA, 6478 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6479 * subC both call subB: 6480 * 6481 * +--------+ +-------+ 6482 * | v v | 6483 * +--+---+ +--+-+-+ +---+--+ 6484 * | subA | | subB | | subC | 6485 * +--+---+ +------+ +---+--+ 6486 * ^ ^ 6487 * | | 6488 * +---+-------+ +------+----+ 6489 * | mainA | | mainB | 6490 * +-----------+ +-----------+ 6491 * 6492 * We'll start relocating mainA, will find subA, append it and start 6493 * processing sub A recursively: 6494 * 6495 * +-----------+------+ 6496 * | mainA | subA | 6497 * +-----------+------+ 6498 * 6499 * At this point we notice that subB is used from subA, so we append it and 6500 * relocate (there are no further subcalls from subB): 6501 * 6502 * +-----------+------+------+ 6503 * | mainA | subA | subB | 6504 * +-----------+------+------+ 6505 * 6506 * At this point, we relocate subA calls, then go one level up and finish with 6507 * relocatin mainA calls. mainA is done. 6508 * 6509 * For mainB process is similar but results in different order. We start with 6510 * mainB and skip subA and subB, as mainB never calls them (at least 6511 * directly), but we see subC is needed, so we append and start processing it: 6512 * 6513 * +-----------+------+ 6514 * | mainB | subC | 6515 * +-----------+------+ 6516 * Now we see subC needs subB, so we go back to it, append and relocate it: 6517 * 6518 * +-----------+------+------+ 6519 * | mainB | subC | subB | 6520 * +-----------+------+------+ 6521 * 6522 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6523 */ 6524 static int 6525 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6526 { 6527 struct bpf_program *subprog; 6528 int i, j, err; 6529 6530 /* mark all subprogs as not relocated (yet) within the context of 6531 * current main program 6532 */ 6533 for (i = 0; i < obj->nr_programs; i++) { 6534 subprog = &obj->programs[i]; 6535 if (!prog_is_subprog(obj, subprog)) 6536 continue; 6537 6538 subprog->sub_insn_off = 0; 6539 for (j = 0; j < subprog->nr_reloc; j++) 6540 if (subprog->reloc_desc[j].type == RELO_CALL) 6541 subprog->reloc_desc[j].processed = false; 6542 } 6543 6544 err = bpf_object__reloc_code(obj, prog, prog); 6545 if (err) 6546 return err; 6547 6548 6549 return 0; 6550 } 6551 6552 static int 6553 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6554 { 6555 struct bpf_program *prog; 6556 size_t i; 6557 int err; 6558 6559 if (obj->btf_ext) { 6560 err = bpf_object__relocate_core(obj, targ_btf_path); 6561 if (err) { 6562 pr_warn("failed to perform CO-RE relocations: %d\n", 6563 err); 6564 return err; 6565 } 6566 } 6567 /* relocate data references first for all programs and sub-programs, 6568 * as they don't change relative to code locations, so subsequent 6569 * subprogram processing won't need to re-calculate any of them 6570 */ 6571 for (i = 0; i < obj->nr_programs; i++) { 6572 prog = &obj->programs[i]; 6573 err = bpf_object__relocate_data(obj, prog); 6574 if (err) { 6575 pr_warn("prog '%s': failed to relocate data references: %d\n", 6576 prog->name, err); 6577 return err; 6578 } 6579 } 6580 /* now relocate subprogram calls and append used subprograms to main 6581 * programs; each copy of subprogram code needs to be relocated 6582 * differently for each main program, because its code location might 6583 * have changed 6584 */ 6585 for (i = 0; i < obj->nr_programs; i++) { 6586 prog = &obj->programs[i]; 6587 /* sub-program's sub-calls are relocated within the context of 6588 * its main program only 6589 */ 6590 if (prog_is_subprog(obj, prog)) 6591 continue; 6592 6593 err = bpf_object__relocate_calls(obj, prog); 6594 if (err) { 6595 pr_warn("prog '%s': failed to relocate calls: %d\n", 6596 prog->name, err); 6597 return err; 6598 } 6599 } 6600 /* free up relocation descriptors */ 6601 for (i = 0; i < obj->nr_programs; i++) { 6602 prog = &obj->programs[i]; 6603 zfree(&prog->reloc_desc); 6604 prog->nr_reloc = 0; 6605 } 6606 return 0; 6607 } 6608 6609 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6610 GElf_Shdr *shdr, Elf_Data *data); 6611 6612 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6613 GElf_Shdr *shdr, Elf_Data *data) 6614 { 6615 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6616 int i, j, nrels, new_sz; 6617 const struct btf_var_secinfo *vi = NULL; 6618 const struct btf_type *sec, *var, *def; 6619 struct bpf_map *map = NULL, *targ_map; 6620 const struct btf_member *member; 6621 const char *name, *mname; 6622 Elf_Data *symbols; 6623 unsigned int moff; 6624 GElf_Sym sym; 6625 GElf_Rel rel; 6626 void *tmp; 6627 6628 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6629 return -EINVAL; 6630 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6631 if (!sec) 6632 return -EINVAL; 6633 6634 symbols = obj->efile.symbols; 6635 nrels = shdr->sh_size / shdr->sh_entsize; 6636 for (i = 0; i < nrels; i++) { 6637 if (!gelf_getrel(data, i, &rel)) { 6638 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6639 return -LIBBPF_ERRNO__FORMAT; 6640 } 6641 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6642 pr_warn(".maps relo #%d: symbol %zx not found\n", 6643 i, (size_t)GELF_R_SYM(rel.r_info)); 6644 return -LIBBPF_ERRNO__FORMAT; 6645 } 6646 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6647 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6648 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6649 i, name); 6650 return -LIBBPF_ERRNO__RELOC; 6651 } 6652 6653 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6654 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6655 (size_t)rel.r_offset, sym.st_name, name); 6656 6657 for (j = 0; j < obj->nr_maps; j++) { 6658 map = &obj->maps[j]; 6659 if (map->sec_idx != obj->efile.btf_maps_shndx) 6660 continue; 6661 6662 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6663 if (vi->offset <= rel.r_offset && 6664 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6665 break; 6666 } 6667 if (j == obj->nr_maps) { 6668 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6669 i, name, (size_t)rel.r_offset); 6670 return -EINVAL; 6671 } 6672 6673 if (!bpf_map_type__is_map_in_map(map->def.type)) 6674 return -EINVAL; 6675 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6676 map->def.key_size != sizeof(int)) { 6677 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6678 i, map->name, sizeof(int)); 6679 return -EINVAL; 6680 } 6681 6682 targ_map = bpf_object__find_map_by_name(obj, name); 6683 if (!targ_map) 6684 return -ESRCH; 6685 6686 var = btf__type_by_id(obj->btf, vi->type); 6687 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6688 if (btf_vlen(def) == 0) 6689 return -EINVAL; 6690 member = btf_members(def) + btf_vlen(def) - 1; 6691 mname = btf__name_by_offset(obj->btf, member->name_off); 6692 if (strcmp(mname, "values")) 6693 return -EINVAL; 6694 6695 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6696 if (rel.r_offset - vi->offset < moff) 6697 return -EINVAL; 6698 6699 moff = rel.r_offset - vi->offset - moff; 6700 /* here we use BPF pointer size, which is always 64 bit, as we 6701 * are parsing ELF that was built for BPF target 6702 */ 6703 if (moff % bpf_ptr_sz) 6704 return -EINVAL; 6705 moff /= bpf_ptr_sz; 6706 if (moff >= map->init_slots_sz) { 6707 new_sz = moff + 1; 6708 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6709 if (!tmp) 6710 return -ENOMEM; 6711 map->init_slots = tmp; 6712 memset(map->init_slots + map->init_slots_sz, 0, 6713 (new_sz - map->init_slots_sz) * host_ptr_sz); 6714 map->init_slots_sz = new_sz; 6715 } 6716 map->init_slots[moff] = targ_map; 6717 6718 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6719 i, map->name, moff, name); 6720 } 6721 6722 return 0; 6723 } 6724 6725 static int cmp_relocs(const void *_a, const void *_b) 6726 { 6727 const struct reloc_desc *a = _a; 6728 const struct reloc_desc *b = _b; 6729 6730 if (a->insn_idx != b->insn_idx) 6731 return a->insn_idx < b->insn_idx ? -1 : 1; 6732 6733 /* no two relocations should have the same insn_idx, but ... */ 6734 if (a->type != b->type) 6735 return a->type < b->type ? -1 : 1; 6736 6737 return 0; 6738 } 6739 6740 static int bpf_object__collect_relos(struct bpf_object *obj) 6741 { 6742 int i, err; 6743 6744 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6745 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6746 Elf_Data *data = obj->efile.reloc_sects[i].data; 6747 int idx = shdr->sh_info; 6748 6749 if (shdr->sh_type != SHT_REL) { 6750 pr_warn("internal error at %d\n", __LINE__); 6751 return -LIBBPF_ERRNO__INTERNAL; 6752 } 6753 6754 if (idx == obj->efile.st_ops_shndx) 6755 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6756 else if (idx == obj->efile.btf_maps_shndx) 6757 err = bpf_object__collect_map_relos(obj, shdr, data); 6758 else 6759 err = bpf_object__collect_prog_relos(obj, shdr, data); 6760 if (err) 6761 return err; 6762 } 6763 6764 for (i = 0; i < obj->nr_programs; i++) { 6765 struct bpf_program *p = &obj->programs[i]; 6766 6767 if (!p->nr_reloc) 6768 continue; 6769 6770 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6771 } 6772 return 0; 6773 } 6774 6775 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6776 { 6777 if (BPF_CLASS(insn->code) == BPF_JMP && 6778 BPF_OP(insn->code) == BPF_CALL && 6779 BPF_SRC(insn->code) == BPF_K && 6780 insn->src_reg == 0 && 6781 insn->dst_reg == 0) { 6782 *func_id = insn->imm; 6783 return true; 6784 } 6785 return false; 6786 } 6787 6788 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6789 { 6790 struct bpf_insn *insn = prog->insns; 6791 enum bpf_func_id func_id; 6792 int i; 6793 6794 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6795 if (!insn_is_helper_call(insn, &func_id)) 6796 continue; 6797 6798 /* on kernels that don't yet support 6799 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6800 * to bpf_probe_read() which works well for old kernels 6801 */ 6802 switch (func_id) { 6803 case BPF_FUNC_probe_read_kernel: 6804 case BPF_FUNC_probe_read_user: 6805 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6806 insn->imm = BPF_FUNC_probe_read; 6807 break; 6808 case BPF_FUNC_probe_read_kernel_str: 6809 case BPF_FUNC_probe_read_user_str: 6810 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6811 insn->imm = BPF_FUNC_probe_read_str; 6812 break; 6813 default: 6814 break; 6815 } 6816 } 6817 return 0; 6818 } 6819 6820 static int 6821 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6822 char *license, __u32 kern_version, int *pfd) 6823 { 6824 struct bpf_prog_load_params load_attr = {}; 6825 char *cp, errmsg[STRERR_BUFSIZE]; 6826 size_t log_buf_size = 0; 6827 char *log_buf = NULL; 6828 int btf_fd, ret; 6829 6830 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6831 /* 6832 * The program type must be set. Most likely we couldn't find a proper 6833 * section definition at load time, and thus we didn't infer the type. 6834 */ 6835 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6836 prog->name, prog->sec_name); 6837 return -EINVAL; 6838 } 6839 6840 if (!insns || !insns_cnt) 6841 return -EINVAL; 6842 6843 load_attr.prog_type = prog->type; 6844 /* old kernels might not support specifying expected_attach_type */ 6845 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 6846 prog->sec_def->is_exp_attach_type_optional) 6847 load_attr.expected_attach_type = 0; 6848 else 6849 load_attr.expected_attach_type = prog->expected_attach_type; 6850 if (kernel_supports(FEAT_PROG_NAME)) 6851 load_attr.name = prog->name; 6852 load_attr.insns = insns; 6853 load_attr.insn_cnt = insns_cnt; 6854 load_attr.license = license; 6855 load_attr.attach_btf_id = prog->attach_btf_id; 6856 if (prog->attach_prog_fd) 6857 load_attr.attach_prog_fd = prog->attach_prog_fd; 6858 else 6859 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6860 load_attr.attach_btf_id = prog->attach_btf_id; 6861 load_attr.kern_version = kern_version; 6862 load_attr.prog_ifindex = prog->prog_ifindex; 6863 6864 /* specify func_info/line_info only if kernel supports them */ 6865 btf_fd = bpf_object__btf_fd(prog->obj); 6866 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 6867 load_attr.prog_btf_fd = btf_fd; 6868 load_attr.func_info = prog->func_info; 6869 load_attr.func_info_rec_size = prog->func_info_rec_size; 6870 load_attr.func_info_cnt = prog->func_info_cnt; 6871 load_attr.line_info = prog->line_info; 6872 load_attr.line_info_rec_size = prog->line_info_rec_size; 6873 load_attr.line_info_cnt = prog->line_info_cnt; 6874 } 6875 load_attr.log_level = prog->log_level; 6876 load_attr.prog_flags = prog->prog_flags; 6877 6878 retry_load: 6879 if (log_buf_size) { 6880 log_buf = malloc(log_buf_size); 6881 if (!log_buf) 6882 return -ENOMEM; 6883 6884 *log_buf = 0; 6885 } 6886 6887 load_attr.log_buf = log_buf; 6888 load_attr.log_buf_sz = log_buf_size; 6889 ret = libbpf__bpf_prog_load(&load_attr); 6890 6891 if (ret >= 0) { 6892 if (log_buf && load_attr.log_level) 6893 pr_debug("verifier log:\n%s", log_buf); 6894 6895 if (prog->obj->rodata_map_idx >= 0 && 6896 kernel_supports(FEAT_PROG_BIND_MAP)) { 6897 struct bpf_map *rodata_map = 6898 &prog->obj->maps[prog->obj->rodata_map_idx]; 6899 6900 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 6901 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6902 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6903 prog->name, cp); 6904 /* Don't fail hard if can't bind rodata. */ 6905 } 6906 } 6907 6908 *pfd = ret; 6909 ret = 0; 6910 goto out; 6911 } 6912 6913 if (!log_buf || errno == ENOSPC) { 6914 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6915 log_buf_size << 1); 6916 6917 free(log_buf); 6918 goto retry_load; 6919 } 6920 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6921 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6922 pr_warn("load bpf program failed: %s\n", cp); 6923 pr_perm_msg(ret); 6924 6925 if (log_buf && log_buf[0] != '\0') { 6926 ret = -LIBBPF_ERRNO__VERIFY; 6927 pr_warn("-- BEGIN DUMP LOG ---\n"); 6928 pr_warn("\n%s\n", log_buf); 6929 pr_warn("-- END LOG --\n"); 6930 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 6931 pr_warn("Program too large (%zu insns), at most %d insns\n", 6932 load_attr.insn_cnt, BPF_MAXINSNS); 6933 ret = -LIBBPF_ERRNO__PROG2BIG; 6934 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6935 /* Wrong program type? */ 6936 int fd; 6937 6938 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6939 load_attr.expected_attach_type = 0; 6940 load_attr.log_buf = NULL; 6941 load_attr.log_buf_sz = 0; 6942 fd = libbpf__bpf_prog_load(&load_attr); 6943 if (fd >= 0) { 6944 close(fd); 6945 ret = -LIBBPF_ERRNO__PROGTYPE; 6946 goto out; 6947 } 6948 } 6949 6950 out: 6951 free(log_buf); 6952 return ret; 6953 } 6954 6955 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id); 6956 6957 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6958 { 6959 int err = 0, fd, i; 6960 6961 if (prog->obj->loaded) { 6962 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6963 return -EINVAL; 6964 } 6965 6966 if ((prog->type == BPF_PROG_TYPE_TRACING || 6967 prog->type == BPF_PROG_TYPE_LSM || 6968 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6969 int btf_obj_fd = 0, btf_type_id = 0; 6970 6971 err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id); 6972 if (err) 6973 return err; 6974 6975 prog->attach_btf_obj_fd = btf_obj_fd; 6976 prog->attach_btf_id = btf_type_id; 6977 } 6978 6979 if (prog->instances.nr < 0 || !prog->instances.fds) { 6980 if (prog->preprocessor) { 6981 pr_warn("Internal error: can't load program '%s'\n", 6982 prog->name); 6983 return -LIBBPF_ERRNO__INTERNAL; 6984 } 6985 6986 prog->instances.fds = malloc(sizeof(int)); 6987 if (!prog->instances.fds) { 6988 pr_warn("Not enough memory for BPF fds\n"); 6989 return -ENOMEM; 6990 } 6991 prog->instances.nr = 1; 6992 prog->instances.fds[0] = -1; 6993 } 6994 6995 if (!prog->preprocessor) { 6996 if (prog->instances.nr != 1) { 6997 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6998 prog->name, prog->instances.nr); 6999 } 7000 err = load_program(prog, prog->insns, prog->insns_cnt, 7001 license, kern_ver, &fd); 7002 if (!err) 7003 prog->instances.fds[0] = fd; 7004 goto out; 7005 } 7006 7007 for (i = 0; i < prog->instances.nr; i++) { 7008 struct bpf_prog_prep_result result; 7009 bpf_program_prep_t preprocessor = prog->preprocessor; 7010 7011 memset(&result, 0, sizeof(result)); 7012 err = preprocessor(prog, i, prog->insns, 7013 prog->insns_cnt, &result); 7014 if (err) { 7015 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7016 i, prog->name); 7017 goto out; 7018 } 7019 7020 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7021 pr_debug("Skip loading the %dth instance of program '%s'\n", 7022 i, prog->name); 7023 prog->instances.fds[i] = -1; 7024 if (result.pfd) 7025 *result.pfd = -1; 7026 continue; 7027 } 7028 7029 err = load_program(prog, result.new_insn_ptr, 7030 result.new_insn_cnt, license, kern_ver, &fd); 7031 if (err) { 7032 pr_warn("Loading the %dth instance of program '%s' failed\n", 7033 i, prog->name); 7034 goto out; 7035 } 7036 7037 if (result.pfd) 7038 *result.pfd = fd; 7039 prog->instances.fds[i] = fd; 7040 } 7041 out: 7042 if (err) 7043 pr_warn("failed to load program '%s'\n", prog->name); 7044 zfree(&prog->insns); 7045 prog->insns_cnt = 0; 7046 return err; 7047 } 7048 7049 static int 7050 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7051 { 7052 struct bpf_program *prog; 7053 size_t i; 7054 int err; 7055 7056 for (i = 0; i < obj->nr_programs; i++) { 7057 prog = &obj->programs[i]; 7058 err = bpf_object__sanitize_prog(obj, prog); 7059 if (err) 7060 return err; 7061 } 7062 7063 for (i = 0; i < obj->nr_programs; i++) { 7064 prog = &obj->programs[i]; 7065 if (prog_is_subprog(obj, prog)) 7066 continue; 7067 if (!prog->load) { 7068 pr_debug("prog '%s': skipped loading\n", prog->name); 7069 continue; 7070 } 7071 prog->log_level |= log_level; 7072 err = bpf_program__load(prog, obj->license, obj->kern_version); 7073 if (err) 7074 return err; 7075 } 7076 return 0; 7077 } 7078 7079 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7080 7081 static struct bpf_object * 7082 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7083 const struct bpf_object_open_opts *opts) 7084 { 7085 const char *obj_name, *kconfig; 7086 struct bpf_program *prog; 7087 struct bpf_object *obj; 7088 char tmp_name[64]; 7089 int err; 7090 7091 if (elf_version(EV_CURRENT) == EV_NONE) { 7092 pr_warn("failed to init libelf for %s\n", 7093 path ? : "(mem buf)"); 7094 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7095 } 7096 7097 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7098 return ERR_PTR(-EINVAL); 7099 7100 obj_name = OPTS_GET(opts, object_name, NULL); 7101 if (obj_buf) { 7102 if (!obj_name) { 7103 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7104 (unsigned long)obj_buf, 7105 (unsigned long)obj_buf_sz); 7106 obj_name = tmp_name; 7107 } 7108 path = obj_name; 7109 pr_debug("loading object '%s' from buffer\n", obj_name); 7110 } 7111 7112 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7113 if (IS_ERR(obj)) 7114 return obj; 7115 7116 kconfig = OPTS_GET(opts, kconfig, NULL); 7117 if (kconfig) { 7118 obj->kconfig = strdup(kconfig); 7119 if (!obj->kconfig) 7120 return ERR_PTR(-ENOMEM); 7121 } 7122 7123 err = bpf_object__elf_init(obj); 7124 err = err ? : bpf_object__check_endianness(obj); 7125 err = err ? : bpf_object__elf_collect(obj); 7126 err = err ? : bpf_object__collect_externs(obj); 7127 err = err ? : bpf_object__finalize_btf(obj); 7128 err = err ? : bpf_object__init_maps(obj, opts); 7129 err = err ? : bpf_object__collect_relos(obj); 7130 if (err) 7131 goto out; 7132 bpf_object__elf_finish(obj); 7133 7134 bpf_object__for_each_program(prog, obj) { 7135 prog->sec_def = find_sec_def(prog->sec_name); 7136 if (!prog->sec_def) { 7137 /* couldn't guess, but user might manually specify */ 7138 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7139 prog->name, prog->sec_name); 7140 continue; 7141 } 7142 7143 if (prog->sec_def->is_sleepable) 7144 prog->prog_flags |= BPF_F_SLEEPABLE; 7145 bpf_program__set_type(prog, prog->sec_def->prog_type); 7146 bpf_program__set_expected_attach_type(prog, 7147 prog->sec_def->expected_attach_type); 7148 7149 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7150 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7151 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7152 } 7153 7154 return obj; 7155 out: 7156 bpf_object__close(obj); 7157 return ERR_PTR(err); 7158 } 7159 7160 static struct bpf_object * 7161 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7162 { 7163 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7164 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7165 ); 7166 7167 /* param validation */ 7168 if (!attr->file) 7169 return NULL; 7170 7171 pr_debug("loading %s\n", attr->file); 7172 return __bpf_object__open(attr->file, NULL, 0, &opts); 7173 } 7174 7175 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7176 { 7177 return __bpf_object__open_xattr(attr, 0); 7178 } 7179 7180 struct bpf_object *bpf_object__open(const char *path) 7181 { 7182 struct bpf_object_open_attr attr = { 7183 .file = path, 7184 .prog_type = BPF_PROG_TYPE_UNSPEC, 7185 }; 7186 7187 return bpf_object__open_xattr(&attr); 7188 } 7189 7190 struct bpf_object * 7191 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7192 { 7193 if (!path) 7194 return ERR_PTR(-EINVAL); 7195 7196 pr_debug("loading %s\n", path); 7197 7198 return __bpf_object__open(path, NULL, 0, opts); 7199 } 7200 7201 struct bpf_object * 7202 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7203 const struct bpf_object_open_opts *opts) 7204 { 7205 if (!obj_buf || obj_buf_sz == 0) 7206 return ERR_PTR(-EINVAL); 7207 7208 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 7209 } 7210 7211 struct bpf_object * 7212 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7213 const char *name) 7214 { 7215 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7216 .object_name = name, 7217 /* wrong default, but backwards-compatible */ 7218 .relaxed_maps = true, 7219 ); 7220 7221 /* returning NULL is wrong, but backwards-compatible */ 7222 if (!obj_buf || obj_buf_sz == 0) 7223 return NULL; 7224 7225 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7226 } 7227 7228 int bpf_object__unload(struct bpf_object *obj) 7229 { 7230 size_t i; 7231 7232 if (!obj) 7233 return -EINVAL; 7234 7235 for (i = 0; i < obj->nr_maps; i++) { 7236 zclose(obj->maps[i].fd); 7237 if (obj->maps[i].st_ops) 7238 zfree(&obj->maps[i].st_ops->kern_vdata); 7239 } 7240 7241 for (i = 0; i < obj->nr_programs; i++) 7242 bpf_program__unload(&obj->programs[i]); 7243 7244 return 0; 7245 } 7246 7247 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7248 { 7249 struct bpf_map *m; 7250 7251 bpf_object__for_each_map(m, obj) { 7252 if (!bpf_map__is_internal(m)) 7253 continue; 7254 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7255 pr_warn("kernel doesn't support global data\n"); 7256 return -ENOTSUP; 7257 } 7258 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7259 m->def.map_flags ^= BPF_F_MMAPABLE; 7260 } 7261 7262 return 0; 7263 } 7264 7265 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7266 { 7267 char sym_type, sym_name[500]; 7268 unsigned long long sym_addr; 7269 struct extern_desc *ext; 7270 int ret, err = 0; 7271 FILE *f; 7272 7273 f = fopen("/proc/kallsyms", "r"); 7274 if (!f) { 7275 err = -errno; 7276 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7277 return err; 7278 } 7279 7280 while (true) { 7281 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7282 &sym_addr, &sym_type, sym_name); 7283 if (ret == EOF && feof(f)) 7284 break; 7285 if (ret != 3) { 7286 pr_warn("failed to read kallsyms entry: %d\n", ret); 7287 err = -EINVAL; 7288 goto out; 7289 } 7290 7291 ext = find_extern_by_name(obj, sym_name); 7292 if (!ext || ext->type != EXT_KSYM) 7293 continue; 7294 7295 if (ext->is_set && ext->ksym.addr != sym_addr) { 7296 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7297 sym_name, ext->ksym.addr, sym_addr); 7298 err = -EINVAL; 7299 goto out; 7300 } 7301 if (!ext->is_set) { 7302 ext->is_set = true; 7303 ext->ksym.addr = sym_addr; 7304 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7305 } 7306 } 7307 7308 out: 7309 fclose(f); 7310 return err; 7311 } 7312 7313 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7314 { 7315 struct extern_desc *ext; 7316 int i, id; 7317 7318 for (i = 0; i < obj->nr_extern; i++) { 7319 const struct btf_type *targ_var, *targ_type; 7320 __u32 targ_type_id, local_type_id; 7321 const char *targ_var_name; 7322 int ret; 7323 7324 ext = &obj->externs[i]; 7325 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7326 continue; 7327 7328 id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name, 7329 BTF_KIND_VAR); 7330 if (id <= 0) { 7331 pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n", 7332 ext->name); 7333 return -ESRCH; 7334 } 7335 7336 /* find local type_id */ 7337 local_type_id = ext->ksym.type_id; 7338 7339 /* find target type_id */ 7340 targ_var = btf__type_by_id(obj->btf_vmlinux, id); 7341 targ_var_name = btf__name_by_offset(obj->btf_vmlinux, 7342 targ_var->name_off); 7343 targ_type = skip_mods_and_typedefs(obj->btf_vmlinux, 7344 targ_var->type, 7345 &targ_type_id); 7346 7347 ret = bpf_core_types_are_compat(obj->btf, local_type_id, 7348 obj->btf_vmlinux, targ_type_id); 7349 if (ret <= 0) { 7350 const struct btf_type *local_type; 7351 const char *targ_name, *local_name; 7352 7353 local_type = btf__type_by_id(obj->btf, local_type_id); 7354 local_name = btf__name_by_offset(obj->btf, 7355 local_type->name_off); 7356 targ_name = btf__name_by_offset(obj->btf_vmlinux, 7357 targ_type->name_off); 7358 7359 pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7360 ext->name, local_type_id, 7361 btf_kind_str(local_type), local_name, targ_type_id, 7362 btf_kind_str(targ_type), targ_name); 7363 return -EINVAL; 7364 } 7365 7366 ext->is_set = true; 7367 ext->ksym.vmlinux_btf_id = id; 7368 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n", 7369 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7370 } 7371 return 0; 7372 } 7373 7374 static int bpf_object__resolve_externs(struct bpf_object *obj, 7375 const char *extra_kconfig) 7376 { 7377 bool need_config = false, need_kallsyms = false; 7378 bool need_vmlinux_btf = false; 7379 struct extern_desc *ext; 7380 void *kcfg_data = NULL; 7381 int err, i; 7382 7383 if (obj->nr_extern == 0) 7384 return 0; 7385 7386 if (obj->kconfig_map_idx >= 0) 7387 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7388 7389 for (i = 0; i < obj->nr_extern; i++) { 7390 ext = &obj->externs[i]; 7391 7392 if (ext->type == EXT_KCFG && 7393 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7394 void *ext_val = kcfg_data + ext->kcfg.data_off; 7395 __u32 kver = get_kernel_version(); 7396 7397 if (!kver) { 7398 pr_warn("failed to get kernel version\n"); 7399 return -EINVAL; 7400 } 7401 err = set_kcfg_value_num(ext, ext_val, kver); 7402 if (err) 7403 return err; 7404 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7405 } else if (ext->type == EXT_KCFG && 7406 strncmp(ext->name, "CONFIG_", 7) == 0) { 7407 need_config = true; 7408 } else if (ext->type == EXT_KSYM) { 7409 if (ext->ksym.type_id) 7410 need_vmlinux_btf = true; 7411 else 7412 need_kallsyms = true; 7413 } else { 7414 pr_warn("unrecognized extern '%s'\n", ext->name); 7415 return -EINVAL; 7416 } 7417 } 7418 if (need_config && extra_kconfig) { 7419 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7420 if (err) 7421 return -EINVAL; 7422 need_config = false; 7423 for (i = 0; i < obj->nr_extern; i++) { 7424 ext = &obj->externs[i]; 7425 if (ext->type == EXT_KCFG && !ext->is_set) { 7426 need_config = true; 7427 break; 7428 } 7429 } 7430 } 7431 if (need_config) { 7432 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7433 if (err) 7434 return -EINVAL; 7435 } 7436 if (need_kallsyms) { 7437 err = bpf_object__read_kallsyms_file(obj); 7438 if (err) 7439 return -EINVAL; 7440 } 7441 if (need_vmlinux_btf) { 7442 err = bpf_object__resolve_ksyms_btf_id(obj); 7443 if (err) 7444 return -EINVAL; 7445 } 7446 for (i = 0; i < obj->nr_extern; i++) { 7447 ext = &obj->externs[i]; 7448 7449 if (!ext->is_set && !ext->is_weak) { 7450 pr_warn("extern %s (strong) not resolved\n", ext->name); 7451 return -ESRCH; 7452 } else if (!ext->is_set) { 7453 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7454 ext->name); 7455 } 7456 } 7457 7458 return 0; 7459 } 7460 7461 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7462 { 7463 struct bpf_object *obj; 7464 int err, i; 7465 7466 if (!attr) 7467 return -EINVAL; 7468 obj = attr->obj; 7469 if (!obj) 7470 return -EINVAL; 7471 7472 if (obj->loaded) { 7473 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7474 return -EINVAL; 7475 } 7476 7477 err = bpf_object__probe_loading(obj); 7478 err = err ? : bpf_object__load_vmlinux_btf(obj); 7479 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7480 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7481 err = err ? : bpf_object__sanitize_maps(obj); 7482 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7483 err = err ? : bpf_object__create_maps(obj); 7484 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7485 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7486 7487 /* clean up module BTFs */ 7488 for (i = 0; i < obj->btf_module_cnt; i++) { 7489 close(obj->btf_modules[i].fd); 7490 btf__free(obj->btf_modules[i].btf); 7491 free(obj->btf_modules[i].name); 7492 } 7493 free(obj->btf_modules); 7494 7495 /* clean up vmlinux BTF */ 7496 btf__free(obj->btf_vmlinux); 7497 obj->btf_vmlinux = NULL; 7498 7499 obj->loaded = true; /* doesn't matter if successfully or not */ 7500 7501 if (err) 7502 goto out; 7503 7504 return 0; 7505 out: 7506 /* unpin any maps that were auto-pinned during load */ 7507 for (i = 0; i < obj->nr_maps; i++) 7508 if (obj->maps[i].pinned && !obj->maps[i].reused) 7509 bpf_map__unpin(&obj->maps[i], NULL); 7510 7511 bpf_object__unload(obj); 7512 pr_warn("failed to load object '%s'\n", obj->path); 7513 return err; 7514 } 7515 7516 int bpf_object__load(struct bpf_object *obj) 7517 { 7518 struct bpf_object_load_attr attr = { 7519 .obj = obj, 7520 }; 7521 7522 return bpf_object__load_xattr(&attr); 7523 } 7524 7525 static int make_parent_dir(const char *path) 7526 { 7527 char *cp, errmsg[STRERR_BUFSIZE]; 7528 char *dname, *dir; 7529 int err = 0; 7530 7531 dname = strdup(path); 7532 if (dname == NULL) 7533 return -ENOMEM; 7534 7535 dir = dirname(dname); 7536 if (mkdir(dir, 0700) && errno != EEXIST) 7537 err = -errno; 7538 7539 free(dname); 7540 if (err) { 7541 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7542 pr_warn("failed to mkdir %s: %s\n", path, cp); 7543 } 7544 return err; 7545 } 7546 7547 static int check_path(const char *path) 7548 { 7549 char *cp, errmsg[STRERR_BUFSIZE]; 7550 struct statfs st_fs; 7551 char *dname, *dir; 7552 int err = 0; 7553 7554 if (path == NULL) 7555 return -EINVAL; 7556 7557 dname = strdup(path); 7558 if (dname == NULL) 7559 return -ENOMEM; 7560 7561 dir = dirname(dname); 7562 if (statfs(dir, &st_fs)) { 7563 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7564 pr_warn("failed to statfs %s: %s\n", dir, cp); 7565 err = -errno; 7566 } 7567 free(dname); 7568 7569 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7570 pr_warn("specified path %s is not on BPF FS\n", path); 7571 err = -EINVAL; 7572 } 7573 7574 return err; 7575 } 7576 7577 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7578 int instance) 7579 { 7580 char *cp, errmsg[STRERR_BUFSIZE]; 7581 int err; 7582 7583 err = make_parent_dir(path); 7584 if (err) 7585 return err; 7586 7587 err = check_path(path); 7588 if (err) 7589 return err; 7590 7591 if (prog == NULL) { 7592 pr_warn("invalid program pointer\n"); 7593 return -EINVAL; 7594 } 7595 7596 if (instance < 0 || instance >= prog->instances.nr) { 7597 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7598 instance, prog->name, prog->instances.nr); 7599 return -EINVAL; 7600 } 7601 7602 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7603 err = -errno; 7604 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7605 pr_warn("failed to pin program: %s\n", cp); 7606 return err; 7607 } 7608 pr_debug("pinned program '%s'\n", path); 7609 7610 return 0; 7611 } 7612 7613 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7614 int instance) 7615 { 7616 int err; 7617 7618 err = check_path(path); 7619 if (err) 7620 return err; 7621 7622 if (prog == NULL) { 7623 pr_warn("invalid program pointer\n"); 7624 return -EINVAL; 7625 } 7626 7627 if (instance < 0 || instance >= prog->instances.nr) { 7628 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7629 instance, prog->name, prog->instances.nr); 7630 return -EINVAL; 7631 } 7632 7633 err = unlink(path); 7634 if (err != 0) 7635 return -errno; 7636 pr_debug("unpinned program '%s'\n", path); 7637 7638 return 0; 7639 } 7640 7641 int bpf_program__pin(struct bpf_program *prog, const char *path) 7642 { 7643 int i, err; 7644 7645 err = make_parent_dir(path); 7646 if (err) 7647 return err; 7648 7649 err = check_path(path); 7650 if (err) 7651 return err; 7652 7653 if (prog == NULL) { 7654 pr_warn("invalid program pointer\n"); 7655 return -EINVAL; 7656 } 7657 7658 if (prog->instances.nr <= 0) { 7659 pr_warn("no instances of prog %s to pin\n", prog->name); 7660 return -EINVAL; 7661 } 7662 7663 if (prog->instances.nr == 1) { 7664 /* don't create subdirs when pinning single instance */ 7665 return bpf_program__pin_instance(prog, path, 0); 7666 } 7667 7668 for (i = 0; i < prog->instances.nr; i++) { 7669 char buf[PATH_MAX]; 7670 int len; 7671 7672 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7673 if (len < 0) { 7674 err = -EINVAL; 7675 goto err_unpin; 7676 } else if (len >= PATH_MAX) { 7677 err = -ENAMETOOLONG; 7678 goto err_unpin; 7679 } 7680 7681 err = bpf_program__pin_instance(prog, buf, i); 7682 if (err) 7683 goto err_unpin; 7684 } 7685 7686 return 0; 7687 7688 err_unpin: 7689 for (i = i - 1; i >= 0; i--) { 7690 char buf[PATH_MAX]; 7691 int len; 7692 7693 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7694 if (len < 0) 7695 continue; 7696 else if (len >= PATH_MAX) 7697 continue; 7698 7699 bpf_program__unpin_instance(prog, buf, i); 7700 } 7701 7702 rmdir(path); 7703 7704 return err; 7705 } 7706 7707 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7708 { 7709 int i, err; 7710 7711 err = check_path(path); 7712 if (err) 7713 return err; 7714 7715 if (prog == NULL) { 7716 pr_warn("invalid program pointer\n"); 7717 return -EINVAL; 7718 } 7719 7720 if (prog->instances.nr <= 0) { 7721 pr_warn("no instances of prog %s to pin\n", prog->name); 7722 return -EINVAL; 7723 } 7724 7725 if (prog->instances.nr == 1) { 7726 /* don't create subdirs when pinning single instance */ 7727 return bpf_program__unpin_instance(prog, path, 0); 7728 } 7729 7730 for (i = 0; i < prog->instances.nr; i++) { 7731 char buf[PATH_MAX]; 7732 int len; 7733 7734 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7735 if (len < 0) 7736 return -EINVAL; 7737 else if (len >= PATH_MAX) 7738 return -ENAMETOOLONG; 7739 7740 err = bpf_program__unpin_instance(prog, buf, i); 7741 if (err) 7742 return err; 7743 } 7744 7745 err = rmdir(path); 7746 if (err) 7747 return -errno; 7748 7749 return 0; 7750 } 7751 7752 int bpf_map__pin(struct bpf_map *map, const char *path) 7753 { 7754 char *cp, errmsg[STRERR_BUFSIZE]; 7755 int err; 7756 7757 if (map == NULL) { 7758 pr_warn("invalid map pointer\n"); 7759 return -EINVAL; 7760 } 7761 7762 if (map->pin_path) { 7763 if (path && strcmp(path, map->pin_path)) { 7764 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7765 bpf_map__name(map), map->pin_path, path); 7766 return -EINVAL; 7767 } else if (map->pinned) { 7768 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7769 bpf_map__name(map), map->pin_path); 7770 return 0; 7771 } 7772 } else { 7773 if (!path) { 7774 pr_warn("missing a path to pin map '%s' at\n", 7775 bpf_map__name(map)); 7776 return -EINVAL; 7777 } else if (map->pinned) { 7778 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7779 return -EEXIST; 7780 } 7781 7782 map->pin_path = strdup(path); 7783 if (!map->pin_path) { 7784 err = -errno; 7785 goto out_err; 7786 } 7787 } 7788 7789 err = make_parent_dir(map->pin_path); 7790 if (err) 7791 return err; 7792 7793 err = check_path(map->pin_path); 7794 if (err) 7795 return err; 7796 7797 if (bpf_obj_pin(map->fd, map->pin_path)) { 7798 err = -errno; 7799 goto out_err; 7800 } 7801 7802 map->pinned = true; 7803 pr_debug("pinned map '%s'\n", map->pin_path); 7804 7805 return 0; 7806 7807 out_err: 7808 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7809 pr_warn("failed to pin map: %s\n", cp); 7810 return err; 7811 } 7812 7813 int bpf_map__unpin(struct bpf_map *map, const char *path) 7814 { 7815 int err; 7816 7817 if (map == NULL) { 7818 pr_warn("invalid map pointer\n"); 7819 return -EINVAL; 7820 } 7821 7822 if (map->pin_path) { 7823 if (path && strcmp(path, map->pin_path)) { 7824 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7825 bpf_map__name(map), map->pin_path, path); 7826 return -EINVAL; 7827 } 7828 path = map->pin_path; 7829 } else if (!path) { 7830 pr_warn("no path to unpin map '%s' from\n", 7831 bpf_map__name(map)); 7832 return -EINVAL; 7833 } 7834 7835 err = check_path(path); 7836 if (err) 7837 return err; 7838 7839 err = unlink(path); 7840 if (err != 0) 7841 return -errno; 7842 7843 map->pinned = false; 7844 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7845 7846 return 0; 7847 } 7848 7849 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7850 { 7851 char *new = NULL; 7852 7853 if (path) { 7854 new = strdup(path); 7855 if (!new) 7856 return -errno; 7857 } 7858 7859 free(map->pin_path); 7860 map->pin_path = new; 7861 return 0; 7862 } 7863 7864 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7865 { 7866 return map->pin_path; 7867 } 7868 7869 bool bpf_map__is_pinned(const struct bpf_map *map) 7870 { 7871 return map->pinned; 7872 } 7873 7874 static void sanitize_pin_path(char *s) 7875 { 7876 /* bpffs disallows periods in path names */ 7877 while (*s) { 7878 if (*s == '.') 7879 *s = '_'; 7880 s++; 7881 } 7882 } 7883 7884 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7885 { 7886 struct bpf_map *map; 7887 int err; 7888 7889 if (!obj) 7890 return -ENOENT; 7891 7892 if (!obj->loaded) { 7893 pr_warn("object not yet loaded; load it first\n"); 7894 return -ENOENT; 7895 } 7896 7897 bpf_object__for_each_map(map, obj) { 7898 char *pin_path = NULL; 7899 char buf[PATH_MAX]; 7900 7901 if (path) { 7902 int len; 7903 7904 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7905 bpf_map__name(map)); 7906 if (len < 0) { 7907 err = -EINVAL; 7908 goto err_unpin_maps; 7909 } else if (len >= PATH_MAX) { 7910 err = -ENAMETOOLONG; 7911 goto err_unpin_maps; 7912 } 7913 sanitize_pin_path(buf); 7914 pin_path = buf; 7915 } else if (!map->pin_path) { 7916 continue; 7917 } 7918 7919 err = bpf_map__pin(map, pin_path); 7920 if (err) 7921 goto err_unpin_maps; 7922 } 7923 7924 return 0; 7925 7926 err_unpin_maps: 7927 while ((map = bpf_map__prev(map, obj))) { 7928 if (!map->pin_path) 7929 continue; 7930 7931 bpf_map__unpin(map, NULL); 7932 } 7933 7934 return err; 7935 } 7936 7937 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7938 { 7939 struct bpf_map *map; 7940 int err; 7941 7942 if (!obj) 7943 return -ENOENT; 7944 7945 bpf_object__for_each_map(map, obj) { 7946 char *pin_path = NULL; 7947 char buf[PATH_MAX]; 7948 7949 if (path) { 7950 int len; 7951 7952 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7953 bpf_map__name(map)); 7954 if (len < 0) 7955 return -EINVAL; 7956 else if (len >= PATH_MAX) 7957 return -ENAMETOOLONG; 7958 sanitize_pin_path(buf); 7959 pin_path = buf; 7960 } else if (!map->pin_path) { 7961 continue; 7962 } 7963 7964 err = bpf_map__unpin(map, pin_path); 7965 if (err) 7966 return err; 7967 } 7968 7969 return 0; 7970 } 7971 7972 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7973 { 7974 struct bpf_program *prog; 7975 int err; 7976 7977 if (!obj) 7978 return -ENOENT; 7979 7980 if (!obj->loaded) { 7981 pr_warn("object not yet loaded; load it first\n"); 7982 return -ENOENT; 7983 } 7984 7985 bpf_object__for_each_program(prog, obj) { 7986 char buf[PATH_MAX]; 7987 int len; 7988 7989 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7990 prog->pin_name); 7991 if (len < 0) { 7992 err = -EINVAL; 7993 goto err_unpin_programs; 7994 } else if (len >= PATH_MAX) { 7995 err = -ENAMETOOLONG; 7996 goto err_unpin_programs; 7997 } 7998 7999 err = bpf_program__pin(prog, buf); 8000 if (err) 8001 goto err_unpin_programs; 8002 } 8003 8004 return 0; 8005 8006 err_unpin_programs: 8007 while ((prog = bpf_program__prev(prog, obj))) { 8008 char buf[PATH_MAX]; 8009 int len; 8010 8011 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8012 prog->pin_name); 8013 if (len < 0) 8014 continue; 8015 else if (len >= PATH_MAX) 8016 continue; 8017 8018 bpf_program__unpin(prog, buf); 8019 } 8020 8021 return err; 8022 } 8023 8024 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8025 { 8026 struct bpf_program *prog; 8027 int err; 8028 8029 if (!obj) 8030 return -ENOENT; 8031 8032 bpf_object__for_each_program(prog, obj) { 8033 char buf[PATH_MAX]; 8034 int len; 8035 8036 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8037 prog->pin_name); 8038 if (len < 0) 8039 return -EINVAL; 8040 else if (len >= PATH_MAX) 8041 return -ENAMETOOLONG; 8042 8043 err = bpf_program__unpin(prog, buf); 8044 if (err) 8045 return err; 8046 } 8047 8048 return 0; 8049 } 8050 8051 int bpf_object__pin(struct bpf_object *obj, const char *path) 8052 { 8053 int err; 8054 8055 err = bpf_object__pin_maps(obj, path); 8056 if (err) 8057 return err; 8058 8059 err = bpf_object__pin_programs(obj, path); 8060 if (err) { 8061 bpf_object__unpin_maps(obj, path); 8062 return err; 8063 } 8064 8065 return 0; 8066 } 8067 8068 static void bpf_map__destroy(struct bpf_map *map) 8069 { 8070 if (map->clear_priv) 8071 map->clear_priv(map, map->priv); 8072 map->priv = NULL; 8073 map->clear_priv = NULL; 8074 8075 if (map->inner_map) { 8076 bpf_map__destroy(map->inner_map); 8077 zfree(&map->inner_map); 8078 } 8079 8080 zfree(&map->init_slots); 8081 map->init_slots_sz = 0; 8082 8083 if (map->mmaped) { 8084 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8085 map->mmaped = NULL; 8086 } 8087 8088 if (map->st_ops) { 8089 zfree(&map->st_ops->data); 8090 zfree(&map->st_ops->progs); 8091 zfree(&map->st_ops->kern_func_off); 8092 zfree(&map->st_ops); 8093 } 8094 8095 zfree(&map->name); 8096 zfree(&map->pin_path); 8097 8098 if (map->fd >= 0) 8099 zclose(map->fd); 8100 } 8101 8102 void bpf_object__close(struct bpf_object *obj) 8103 { 8104 size_t i; 8105 8106 if (IS_ERR_OR_NULL(obj)) 8107 return; 8108 8109 if (obj->clear_priv) 8110 obj->clear_priv(obj, obj->priv); 8111 8112 bpf_object__elf_finish(obj); 8113 bpf_object__unload(obj); 8114 btf__free(obj->btf); 8115 btf_ext__free(obj->btf_ext); 8116 8117 for (i = 0; i < obj->nr_maps; i++) 8118 bpf_map__destroy(&obj->maps[i]); 8119 8120 zfree(&obj->kconfig); 8121 zfree(&obj->externs); 8122 obj->nr_extern = 0; 8123 8124 zfree(&obj->maps); 8125 obj->nr_maps = 0; 8126 8127 if (obj->programs && obj->nr_programs) { 8128 for (i = 0; i < obj->nr_programs; i++) 8129 bpf_program__exit(&obj->programs[i]); 8130 } 8131 zfree(&obj->programs); 8132 8133 list_del(&obj->list); 8134 free(obj); 8135 } 8136 8137 struct bpf_object * 8138 bpf_object__next(struct bpf_object *prev) 8139 { 8140 struct bpf_object *next; 8141 8142 if (!prev) 8143 next = list_first_entry(&bpf_objects_list, 8144 struct bpf_object, 8145 list); 8146 else 8147 next = list_next_entry(prev, list); 8148 8149 /* Empty list is noticed here so don't need checking on entry. */ 8150 if (&next->list == &bpf_objects_list) 8151 return NULL; 8152 8153 return next; 8154 } 8155 8156 const char *bpf_object__name(const struct bpf_object *obj) 8157 { 8158 return obj ? obj->name : ERR_PTR(-EINVAL); 8159 } 8160 8161 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8162 { 8163 return obj ? obj->kern_version : 0; 8164 } 8165 8166 struct btf *bpf_object__btf(const struct bpf_object *obj) 8167 { 8168 return obj ? obj->btf : NULL; 8169 } 8170 8171 int bpf_object__btf_fd(const struct bpf_object *obj) 8172 { 8173 return obj->btf ? btf__fd(obj->btf) : -1; 8174 } 8175 8176 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8177 bpf_object_clear_priv_t clear_priv) 8178 { 8179 if (obj->priv && obj->clear_priv) 8180 obj->clear_priv(obj, obj->priv); 8181 8182 obj->priv = priv; 8183 obj->clear_priv = clear_priv; 8184 return 0; 8185 } 8186 8187 void *bpf_object__priv(const struct bpf_object *obj) 8188 { 8189 return obj ? obj->priv : ERR_PTR(-EINVAL); 8190 } 8191 8192 static struct bpf_program * 8193 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8194 bool forward) 8195 { 8196 size_t nr_programs = obj->nr_programs; 8197 ssize_t idx; 8198 8199 if (!nr_programs) 8200 return NULL; 8201 8202 if (!p) 8203 /* Iter from the beginning */ 8204 return forward ? &obj->programs[0] : 8205 &obj->programs[nr_programs - 1]; 8206 8207 if (p->obj != obj) { 8208 pr_warn("error: program handler doesn't match object\n"); 8209 return NULL; 8210 } 8211 8212 idx = (p - obj->programs) + (forward ? 1 : -1); 8213 if (idx >= obj->nr_programs || idx < 0) 8214 return NULL; 8215 return &obj->programs[idx]; 8216 } 8217 8218 struct bpf_program * 8219 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8220 { 8221 struct bpf_program *prog = prev; 8222 8223 do { 8224 prog = __bpf_program__iter(prog, obj, true); 8225 } while (prog && prog_is_subprog(obj, prog)); 8226 8227 return prog; 8228 } 8229 8230 struct bpf_program * 8231 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8232 { 8233 struct bpf_program *prog = next; 8234 8235 do { 8236 prog = __bpf_program__iter(prog, obj, false); 8237 } while (prog && prog_is_subprog(obj, prog)); 8238 8239 return prog; 8240 } 8241 8242 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8243 bpf_program_clear_priv_t clear_priv) 8244 { 8245 if (prog->priv && prog->clear_priv) 8246 prog->clear_priv(prog, prog->priv); 8247 8248 prog->priv = priv; 8249 prog->clear_priv = clear_priv; 8250 return 0; 8251 } 8252 8253 void *bpf_program__priv(const struct bpf_program *prog) 8254 { 8255 return prog ? prog->priv : ERR_PTR(-EINVAL); 8256 } 8257 8258 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8259 { 8260 prog->prog_ifindex = ifindex; 8261 } 8262 8263 const char *bpf_program__name(const struct bpf_program *prog) 8264 { 8265 return prog->name; 8266 } 8267 8268 const char *bpf_program__section_name(const struct bpf_program *prog) 8269 { 8270 return prog->sec_name; 8271 } 8272 8273 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8274 { 8275 const char *title; 8276 8277 title = prog->sec_name; 8278 if (needs_copy) { 8279 title = strdup(title); 8280 if (!title) { 8281 pr_warn("failed to strdup program title\n"); 8282 return ERR_PTR(-ENOMEM); 8283 } 8284 } 8285 8286 return title; 8287 } 8288 8289 bool bpf_program__autoload(const struct bpf_program *prog) 8290 { 8291 return prog->load; 8292 } 8293 8294 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8295 { 8296 if (prog->obj->loaded) 8297 return -EINVAL; 8298 8299 prog->load = autoload; 8300 return 0; 8301 } 8302 8303 int bpf_program__fd(const struct bpf_program *prog) 8304 { 8305 return bpf_program__nth_fd(prog, 0); 8306 } 8307 8308 size_t bpf_program__size(const struct bpf_program *prog) 8309 { 8310 return prog->insns_cnt * BPF_INSN_SZ; 8311 } 8312 8313 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8314 bpf_program_prep_t prep) 8315 { 8316 int *instances_fds; 8317 8318 if (nr_instances <= 0 || !prep) 8319 return -EINVAL; 8320 8321 if (prog->instances.nr > 0 || prog->instances.fds) { 8322 pr_warn("Can't set pre-processor after loading\n"); 8323 return -EINVAL; 8324 } 8325 8326 instances_fds = malloc(sizeof(int) * nr_instances); 8327 if (!instances_fds) { 8328 pr_warn("alloc memory failed for fds\n"); 8329 return -ENOMEM; 8330 } 8331 8332 /* fill all fd with -1 */ 8333 memset(instances_fds, -1, sizeof(int) * nr_instances); 8334 8335 prog->instances.nr = nr_instances; 8336 prog->instances.fds = instances_fds; 8337 prog->preprocessor = prep; 8338 return 0; 8339 } 8340 8341 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8342 { 8343 int fd; 8344 8345 if (!prog) 8346 return -EINVAL; 8347 8348 if (n >= prog->instances.nr || n < 0) { 8349 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8350 n, prog->name, prog->instances.nr); 8351 return -EINVAL; 8352 } 8353 8354 fd = prog->instances.fds[n]; 8355 if (fd < 0) { 8356 pr_warn("%dth instance of program '%s' is invalid\n", 8357 n, prog->name); 8358 return -ENOENT; 8359 } 8360 8361 return fd; 8362 } 8363 8364 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 8365 { 8366 return prog->type; 8367 } 8368 8369 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8370 { 8371 prog->type = type; 8372 } 8373 8374 static bool bpf_program__is_type(const struct bpf_program *prog, 8375 enum bpf_prog_type type) 8376 { 8377 return prog ? (prog->type == type) : false; 8378 } 8379 8380 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8381 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8382 { \ 8383 if (!prog) \ 8384 return -EINVAL; \ 8385 bpf_program__set_type(prog, TYPE); \ 8386 return 0; \ 8387 } \ 8388 \ 8389 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8390 { \ 8391 return bpf_program__is_type(prog, TYPE); \ 8392 } \ 8393 8394 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8395 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8396 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8397 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8398 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8399 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8400 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8401 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8402 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8403 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8404 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8405 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8406 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8407 8408 enum bpf_attach_type 8409 bpf_program__get_expected_attach_type(struct bpf_program *prog) 8410 { 8411 return prog->expected_attach_type; 8412 } 8413 8414 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8415 enum bpf_attach_type type) 8416 { 8417 prog->expected_attach_type = type; 8418 } 8419 8420 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8421 attachable, attach_btf) \ 8422 { \ 8423 .sec = string, \ 8424 .len = sizeof(string) - 1, \ 8425 .prog_type = ptype, \ 8426 .expected_attach_type = eatype, \ 8427 .is_exp_attach_type_optional = eatype_optional, \ 8428 .is_attachable = attachable, \ 8429 .is_attach_btf = attach_btf, \ 8430 } 8431 8432 /* Programs that can NOT be attached. */ 8433 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8434 8435 /* Programs that can be attached. */ 8436 #define BPF_APROG_SEC(string, ptype, atype) \ 8437 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8438 8439 /* Programs that must specify expected attach type at load time. */ 8440 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 8441 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8442 8443 /* Programs that use BTF to identify attach point */ 8444 #define BPF_PROG_BTF(string, ptype, eatype) \ 8445 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8446 8447 /* Programs that can be attached but attach type can't be identified by section 8448 * name. Kept for backward compatibility. 8449 */ 8450 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8451 8452 #define SEC_DEF(sec_pfx, ptype, ...) { \ 8453 .sec = sec_pfx, \ 8454 .len = sizeof(sec_pfx) - 1, \ 8455 .prog_type = BPF_PROG_TYPE_##ptype, \ 8456 __VA_ARGS__ \ 8457 } 8458 8459 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8460 struct bpf_program *prog); 8461 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8462 struct bpf_program *prog); 8463 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8464 struct bpf_program *prog); 8465 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8466 struct bpf_program *prog); 8467 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8468 struct bpf_program *prog); 8469 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8470 struct bpf_program *prog); 8471 8472 static const struct bpf_sec_def section_defs[] = { 8473 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8474 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8475 SEC_DEF("kprobe/", KPROBE, 8476 .attach_fn = attach_kprobe), 8477 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8478 SEC_DEF("kretprobe/", KPROBE, 8479 .attach_fn = attach_kprobe), 8480 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8481 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8482 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8483 SEC_DEF("tracepoint/", TRACEPOINT, 8484 .attach_fn = attach_tp), 8485 SEC_DEF("tp/", TRACEPOINT, 8486 .attach_fn = attach_tp), 8487 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8488 .attach_fn = attach_raw_tp), 8489 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8490 .attach_fn = attach_raw_tp), 8491 SEC_DEF("tp_btf/", TRACING, 8492 .expected_attach_type = BPF_TRACE_RAW_TP, 8493 .is_attach_btf = true, 8494 .attach_fn = attach_trace), 8495 SEC_DEF("fentry/", TRACING, 8496 .expected_attach_type = BPF_TRACE_FENTRY, 8497 .is_attach_btf = true, 8498 .attach_fn = attach_trace), 8499 SEC_DEF("fmod_ret/", TRACING, 8500 .expected_attach_type = BPF_MODIFY_RETURN, 8501 .is_attach_btf = true, 8502 .attach_fn = attach_trace), 8503 SEC_DEF("fexit/", TRACING, 8504 .expected_attach_type = BPF_TRACE_FEXIT, 8505 .is_attach_btf = true, 8506 .attach_fn = attach_trace), 8507 SEC_DEF("fentry.s/", TRACING, 8508 .expected_attach_type = BPF_TRACE_FENTRY, 8509 .is_attach_btf = true, 8510 .is_sleepable = true, 8511 .attach_fn = attach_trace), 8512 SEC_DEF("fmod_ret.s/", TRACING, 8513 .expected_attach_type = BPF_MODIFY_RETURN, 8514 .is_attach_btf = true, 8515 .is_sleepable = true, 8516 .attach_fn = attach_trace), 8517 SEC_DEF("fexit.s/", TRACING, 8518 .expected_attach_type = BPF_TRACE_FEXIT, 8519 .is_attach_btf = true, 8520 .is_sleepable = true, 8521 .attach_fn = attach_trace), 8522 SEC_DEF("freplace/", EXT, 8523 .is_attach_btf = true, 8524 .attach_fn = attach_trace), 8525 SEC_DEF("lsm/", LSM, 8526 .is_attach_btf = true, 8527 .expected_attach_type = BPF_LSM_MAC, 8528 .attach_fn = attach_lsm), 8529 SEC_DEF("lsm.s/", LSM, 8530 .is_attach_btf = true, 8531 .is_sleepable = true, 8532 .expected_attach_type = BPF_LSM_MAC, 8533 .attach_fn = attach_lsm), 8534 SEC_DEF("iter/", TRACING, 8535 .expected_attach_type = BPF_TRACE_ITER, 8536 .is_attach_btf = true, 8537 .attach_fn = attach_iter), 8538 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8539 BPF_XDP_DEVMAP), 8540 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8541 BPF_XDP_CPUMAP), 8542 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8543 BPF_XDP), 8544 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8545 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8546 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8547 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8548 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8549 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8550 BPF_CGROUP_INET_INGRESS), 8551 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8552 BPF_CGROUP_INET_EGRESS), 8553 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8554 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8555 BPF_CGROUP_INET_SOCK_CREATE), 8556 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8557 BPF_CGROUP_INET_SOCK_RELEASE), 8558 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8559 BPF_CGROUP_INET_SOCK_CREATE), 8560 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8561 BPF_CGROUP_INET4_POST_BIND), 8562 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8563 BPF_CGROUP_INET6_POST_BIND), 8564 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8565 BPF_CGROUP_DEVICE), 8566 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8567 BPF_CGROUP_SOCK_OPS), 8568 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8569 BPF_SK_SKB_STREAM_PARSER), 8570 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8571 BPF_SK_SKB_STREAM_VERDICT), 8572 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8573 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8574 BPF_SK_MSG_VERDICT), 8575 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8576 BPF_LIRC_MODE2), 8577 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8578 BPF_FLOW_DISSECTOR), 8579 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8580 BPF_CGROUP_INET4_BIND), 8581 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8582 BPF_CGROUP_INET6_BIND), 8583 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8584 BPF_CGROUP_INET4_CONNECT), 8585 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8586 BPF_CGROUP_INET6_CONNECT), 8587 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8588 BPF_CGROUP_UDP4_SENDMSG), 8589 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8590 BPF_CGROUP_UDP6_SENDMSG), 8591 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8592 BPF_CGROUP_UDP4_RECVMSG), 8593 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8594 BPF_CGROUP_UDP6_RECVMSG), 8595 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8596 BPF_CGROUP_INET4_GETPEERNAME), 8597 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8598 BPF_CGROUP_INET6_GETPEERNAME), 8599 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8600 BPF_CGROUP_INET4_GETSOCKNAME), 8601 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8602 BPF_CGROUP_INET6_GETSOCKNAME), 8603 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8604 BPF_CGROUP_SYSCTL), 8605 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8606 BPF_CGROUP_GETSOCKOPT), 8607 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8608 BPF_CGROUP_SETSOCKOPT), 8609 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8610 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8611 BPF_SK_LOOKUP), 8612 }; 8613 8614 #undef BPF_PROG_SEC_IMPL 8615 #undef BPF_PROG_SEC 8616 #undef BPF_APROG_SEC 8617 #undef BPF_EAPROG_SEC 8618 #undef BPF_APROG_COMPAT 8619 #undef SEC_DEF 8620 8621 #define MAX_TYPE_NAME_SIZE 32 8622 8623 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8624 { 8625 int i, n = ARRAY_SIZE(section_defs); 8626 8627 for (i = 0; i < n; i++) { 8628 if (strncmp(sec_name, 8629 section_defs[i].sec, section_defs[i].len)) 8630 continue; 8631 return §ion_defs[i]; 8632 } 8633 return NULL; 8634 } 8635 8636 static char *libbpf_get_type_names(bool attach_type) 8637 { 8638 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8639 char *buf; 8640 8641 buf = malloc(len); 8642 if (!buf) 8643 return NULL; 8644 8645 buf[0] = '\0'; 8646 /* Forge string buf with all available names */ 8647 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8648 if (attach_type && !section_defs[i].is_attachable) 8649 continue; 8650 8651 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8652 free(buf); 8653 return NULL; 8654 } 8655 strcat(buf, " "); 8656 strcat(buf, section_defs[i].sec); 8657 } 8658 8659 return buf; 8660 } 8661 8662 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8663 enum bpf_attach_type *expected_attach_type) 8664 { 8665 const struct bpf_sec_def *sec_def; 8666 char *type_names; 8667 8668 if (!name) 8669 return -EINVAL; 8670 8671 sec_def = find_sec_def(name); 8672 if (sec_def) { 8673 *prog_type = sec_def->prog_type; 8674 *expected_attach_type = sec_def->expected_attach_type; 8675 return 0; 8676 } 8677 8678 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8679 type_names = libbpf_get_type_names(false); 8680 if (type_names != NULL) { 8681 pr_debug("supported section(type) names are:%s\n", type_names); 8682 free(type_names); 8683 } 8684 8685 return -ESRCH; 8686 } 8687 8688 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8689 size_t offset) 8690 { 8691 struct bpf_map *map; 8692 size_t i; 8693 8694 for (i = 0; i < obj->nr_maps; i++) { 8695 map = &obj->maps[i]; 8696 if (!bpf_map__is_struct_ops(map)) 8697 continue; 8698 if (map->sec_offset <= offset && 8699 offset - map->sec_offset < map->def.value_size) 8700 return map; 8701 } 8702 8703 return NULL; 8704 } 8705 8706 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8707 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8708 GElf_Shdr *shdr, Elf_Data *data) 8709 { 8710 const struct btf_member *member; 8711 struct bpf_struct_ops *st_ops; 8712 struct bpf_program *prog; 8713 unsigned int shdr_idx; 8714 const struct btf *btf; 8715 struct bpf_map *map; 8716 Elf_Data *symbols; 8717 unsigned int moff, insn_idx; 8718 const char *name; 8719 __u32 member_idx; 8720 GElf_Sym sym; 8721 GElf_Rel rel; 8722 int i, nrels; 8723 8724 symbols = obj->efile.symbols; 8725 btf = obj->btf; 8726 nrels = shdr->sh_size / shdr->sh_entsize; 8727 for (i = 0; i < nrels; i++) { 8728 if (!gelf_getrel(data, i, &rel)) { 8729 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8730 return -LIBBPF_ERRNO__FORMAT; 8731 } 8732 8733 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8734 pr_warn("struct_ops reloc: symbol %zx not found\n", 8735 (size_t)GELF_R_SYM(rel.r_info)); 8736 return -LIBBPF_ERRNO__FORMAT; 8737 } 8738 8739 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8740 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8741 if (!map) { 8742 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8743 (size_t)rel.r_offset); 8744 return -EINVAL; 8745 } 8746 8747 moff = rel.r_offset - map->sec_offset; 8748 shdr_idx = sym.st_shndx; 8749 st_ops = map->st_ops; 8750 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8751 map->name, 8752 (long long)(rel.r_info >> 32), 8753 (long long)sym.st_value, 8754 shdr_idx, (size_t)rel.r_offset, 8755 map->sec_offset, sym.st_name, name); 8756 8757 if (shdr_idx >= SHN_LORESERVE) { 8758 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8759 map->name, (size_t)rel.r_offset, shdr_idx); 8760 return -LIBBPF_ERRNO__RELOC; 8761 } 8762 if (sym.st_value % BPF_INSN_SZ) { 8763 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8764 map->name, (unsigned long long)sym.st_value); 8765 return -LIBBPF_ERRNO__FORMAT; 8766 } 8767 insn_idx = sym.st_value / BPF_INSN_SZ; 8768 8769 member = find_member_by_offset(st_ops->type, moff * 8); 8770 if (!member) { 8771 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8772 map->name, moff); 8773 return -EINVAL; 8774 } 8775 member_idx = member - btf_members(st_ops->type); 8776 name = btf__name_by_offset(btf, member->name_off); 8777 8778 if (!resolve_func_ptr(btf, member->type, NULL)) { 8779 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8780 map->name, name); 8781 return -EINVAL; 8782 } 8783 8784 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8785 if (!prog) { 8786 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8787 map->name, shdr_idx, name); 8788 return -EINVAL; 8789 } 8790 8791 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 8792 const struct bpf_sec_def *sec_def; 8793 8794 sec_def = find_sec_def(prog->sec_name); 8795 if (sec_def && 8796 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 8797 /* for pr_warn */ 8798 prog->type = sec_def->prog_type; 8799 goto invalid_prog; 8800 } 8801 8802 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 8803 prog->attach_btf_id = st_ops->type_id; 8804 prog->expected_attach_type = member_idx; 8805 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 8806 prog->attach_btf_id != st_ops->type_id || 8807 prog->expected_attach_type != member_idx) { 8808 goto invalid_prog; 8809 } 8810 st_ops->progs[member_idx] = prog; 8811 } 8812 8813 return 0; 8814 8815 invalid_prog: 8816 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8817 map->name, prog->name, prog->sec_name, prog->type, 8818 prog->attach_btf_id, prog->expected_attach_type, name); 8819 return -EINVAL; 8820 } 8821 8822 #define BTF_TRACE_PREFIX "btf_trace_" 8823 #define BTF_LSM_PREFIX "bpf_lsm_" 8824 #define BTF_ITER_PREFIX "bpf_iter_" 8825 #define BTF_MAX_NAME_SIZE 128 8826 8827 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8828 const char *name, __u32 kind) 8829 { 8830 char btf_type_name[BTF_MAX_NAME_SIZE]; 8831 int ret; 8832 8833 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8834 "%s%s", prefix, name); 8835 /* snprintf returns the number of characters written excluding the 8836 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8837 * indicates truncation. 8838 */ 8839 if (ret < 0 || ret >= sizeof(btf_type_name)) 8840 return -ENAMETOOLONG; 8841 return btf__find_by_name_kind(btf, btf_type_name, kind); 8842 } 8843 8844 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8845 enum bpf_attach_type attach_type) 8846 { 8847 int err; 8848 8849 if (attach_type == BPF_TRACE_RAW_TP) 8850 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 8851 BTF_KIND_TYPEDEF); 8852 else if (attach_type == BPF_LSM_MAC) 8853 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 8854 BTF_KIND_FUNC); 8855 else if (attach_type == BPF_TRACE_ITER) 8856 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 8857 BTF_KIND_FUNC); 8858 else 8859 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8860 8861 return err; 8862 } 8863 8864 int libbpf_find_vmlinux_btf_id(const char *name, 8865 enum bpf_attach_type attach_type) 8866 { 8867 struct btf *btf; 8868 int err; 8869 8870 btf = libbpf_find_kernel_btf(); 8871 if (IS_ERR(btf)) { 8872 pr_warn("vmlinux BTF is not found\n"); 8873 return -EINVAL; 8874 } 8875 8876 err = find_attach_btf_id(btf, name, attach_type); 8877 if (err <= 0) 8878 pr_warn("%s is not found in vmlinux BTF\n", name); 8879 8880 btf__free(btf); 8881 return err; 8882 } 8883 8884 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8885 { 8886 struct bpf_prog_info_linear *info_linear; 8887 struct bpf_prog_info *info; 8888 struct btf *btf = NULL; 8889 int err = -EINVAL; 8890 8891 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8892 if (IS_ERR_OR_NULL(info_linear)) { 8893 pr_warn("failed get_prog_info_linear for FD %d\n", 8894 attach_prog_fd); 8895 return -EINVAL; 8896 } 8897 info = &info_linear->info; 8898 if (!info->btf_id) { 8899 pr_warn("The target program doesn't have BTF\n"); 8900 goto out; 8901 } 8902 if (btf__get_from_id(info->btf_id, &btf)) { 8903 pr_warn("Failed to get BTF of the program\n"); 8904 goto out; 8905 } 8906 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8907 btf__free(btf); 8908 if (err <= 0) { 8909 pr_warn("%s is not found in prog's BTF\n", name); 8910 goto out; 8911 } 8912 out: 8913 free(info_linear); 8914 return err; 8915 } 8916 8917 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 8918 enum bpf_attach_type attach_type, 8919 int *btf_obj_fd, int *btf_type_id) 8920 { 8921 int ret, i; 8922 8923 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 8924 if (ret > 0) { 8925 *btf_obj_fd = 0; /* vmlinux BTF */ 8926 *btf_type_id = ret; 8927 return 0; 8928 } 8929 if (ret != -ENOENT) 8930 return ret; 8931 8932 ret = load_module_btfs(obj); 8933 if (ret) 8934 return ret; 8935 8936 for (i = 0; i < obj->btf_module_cnt; i++) { 8937 const struct module_btf *mod = &obj->btf_modules[i]; 8938 8939 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 8940 if (ret > 0) { 8941 *btf_obj_fd = mod->fd; 8942 *btf_type_id = ret; 8943 return 0; 8944 } 8945 if (ret == -ENOENT) 8946 continue; 8947 8948 return ret; 8949 } 8950 8951 return -ESRCH; 8952 } 8953 8954 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id) 8955 { 8956 enum bpf_attach_type attach_type = prog->expected_attach_type; 8957 __u32 attach_prog_fd = prog->attach_prog_fd; 8958 const char *name = prog->sec_name, *attach_name; 8959 const struct bpf_sec_def *sec = NULL; 8960 int i, err; 8961 8962 if (!name) 8963 return -EINVAL; 8964 8965 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8966 if (!section_defs[i].is_attach_btf) 8967 continue; 8968 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8969 continue; 8970 8971 sec = §ion_defs[i]; 8972 break; 8973 } 8974 8975 if (!sec) { 8976 pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name); 8977 return -ESRCH; 8978 } 8979 attach_name = name + sec->len; 8980 8981 /* BPF program's BTF ID */ 8982 if (attach_prog_fd) { 8983 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 8984 if (err < 0) { 8985 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 8986 attach_prog_fd, attach_name, err); 8987 return err; 8988 } 8989 *btf_obj_fd = 0; 8990 *btf_type_id = err; 8991 return 0; 8992 } 8993 8994 /* kernel/module BTF ID */ 8995 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 8996 if (err) { 8997 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 8998 return err; 8999 } 9000 return 0; 9001 } 9002 9003 int libbpf_attach_type_by_name(const char *name, 9004 enum bpf_attach_type *attach_type) 9005 { 9006 char *type_names; 9007 int i; 9008 9009 if (!name) 9010 return -EINVAL; 9011 9012 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9013 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9014 continue; 9015 if (!section_defs[i].is_attachable) 9016 return -EINVAL; 9017 *attach_type = section_defs[i].expected_attach_type; 9018 return 0; 9019 } 9020 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9021 type_names = libbpf_get_type_names(true); 9022 if (type_names != NULL) { 9023 pr_debug("attachable section(type) names are:%s\n", type_names); 9024 free(type_names); 9025 } 9026 9027 return -EINVAL; 9028 } 9029 9030 int bpf_map__fd(const struct bpf_map *map) 9031 { 9032 return map ? map->fd : -EINVAL; 9033 } 9034 9035 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9036 { 9037 return map ? &map->def : ERR_PTR(-EINVAL); 9038 } 9039 9040 const char *bpf_map__name(const struct bpf_map *map) 9041 { 9042 return map ? map->name : NULL; 9043 } 9044 9045 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9046 { 9047 return map->def.type; 9048 } 9049 9050 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9051 { 9052 if (map->fd >= 0) 9053 return -EBUSY; 9054 map->def.type = type; 9055 return 0; 9056 } 9057 9058 __u32 bpf_map__map_flags(const struct bpf_map *map) 9059 { 9060 return map->def.map_flags; 9061 } 9062 9063 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9064 { 9065 if (map->fd >= 0) 9066 return -EBUSY; 9067 map->def.map_flags = flags; 9068 return 0; 9069 } 9070 9071 __u32 bpf_map__numa_node(const struct bpf_map *map) 9072 { 9073 return map->numa_node; 9074 } 9075 9076 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9077 { 9078 if (map->fd >= 0) 9079 return -EBUSY; 9080 map->numa_node = numa_node; 9081 return 0; 9082 } 9083 9084 __u32 bpf_map__key_size(const struct bpf_map *map) 9085 { 9086 return map->def.key_size; 9087 } 9088 9089 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9090 { 9091 if (map->fd >= 0) 9092 return -EBUSY; 9093 map->def.key_size = size; 9094 return 0; 9095 } 9096 9097 __u32 bpf_map__value_size(const struct bpf_map *map) 9098 { 9099 return map->def.value_size; 9100 } 9101 9102 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9103 { 9104 if (map->fd >= 0) 9105 return -EBUSY; 9106 map->def.value_size = size; 9107 return 0; 9108 } 9109 9110 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9111 { 9112 return map ? map->btf_key_type_id : 0; 9113 } 9114 9115 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9116 { 9117 return map ? map->btf_value_type_id : 0; 9118 } 9119 9120 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9121 bpf_map_clear_priv_t clear_priv) 9122 { 9123 if (!map) 9124 return -EINVAL; 9125 9126 if (map->priv) { 9127 if (map->clear_priv) 9128 map->clear_priv(map, map->priv); 9129 } 9130 9131 map->priv = priv; 9132 map->clear_priv = clear_priv; 9133 return 0; 9134 } 9135 9136 void *bpf_map__priv(const struct bpf_map *map) 9137 { 9138 return map ? map->priv : ERR_PTR(-EINVAL); 9139 } 9140 9141 int bpf_map__set_initial_value(struct bpf_map *map, 9142 const void *data, size_t size) 9143 { 9144 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9145 size != map->def.value_size || map->fd >= 0) 9146 return -EINVAL; 9147 9148 memcpy(map->mmaped, data, size); 9149 return 0; 9150 } 9151 9152 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9153 { 9154 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9155 } 9156 9157 bool bpf_map__is_internal(const struct bpf_map *map) 9158 { 9159 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9160 } 9161 9162 __u32 bpf_map__ifindex(const struct bpf_map *map) 9163 { 9164 return map->map_ifindex; 9165 } 9166 9167 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9168 { 9169 if (map->fd >= 0) 9170 return -EBUSY; 9171 map->map_ifindex = ifindex; 9172 return 0; 9173 } 9174 9175 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9176 { 9177 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9178 pr_warn("error: unsupported map type\n"); 9179 return -EINVAL; 9180 } 9181 if (map->inner_map_fd != -1) { 9182 pr_warn("error: inner_map_fd already specified\n"); 9183 return -EINVAL; 9184 } 9185 map->inner_map_fd = fd; 9186 return 0; 9187 } 9188 9189 static struct bpf_map * 9190 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9191 { 9192 ssize_t idx; 9193 struct bpf_map *s, *e; 9194 9195 if (!obj || !obj->maps) 9196 return NULL; 9197 9198 s = obj->maps; 9199 e = obj->maps + obj->nr_maps; 9200 9201 if ((m < s) || (m >= e)) { 9202 pr_warn("error in %s: map handler doesn't belong to object\n", 9203 __func__); 9204 return NULL; 9205 } 9206 9207 idx = (m - obj->maps) + i; 9208 if (idx >= obj->nr_maps || idx < 0) 9209 return NULL; 9210 return &obj->maps[idx]; 9211 } 9212 9213 struct bpf_map * 9214 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9215 { 9216 if (prev == NULL) 9217 return obj->maps; 9218 9219 return __bpf_map__iter(prev, obj, 1); 9220 } 9221 9222 struct bpf_map * 9223 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9224 { 9225 if (next == NULL) { 9226 if (!obj->nr_maps) 9227 return NULL; 9228 return obj->maps + obj->nr_maps - 1; 9229 } 9230 9231 return __bpf_map__iter(next, obj, -1); 9232 } 9233 9234 struct bpf_map * 9235 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9236 { 9237 struct bpf_map *pos; 9238 9239 bpf_object__for_each_map(pos, obj) { 9240 if (pos->name && !strcmp(pos->name, name)) 9241 return pos; 9242 } 9243 return NULL; 9244 } 9245 9246 int 9247 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9248 { 9249 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9250 } 9251 9252 struct bpf_map * 9253 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9254 { 9255 return ERR_PTR(-ENOTSUP); 9256 } 9257 9258 long libbpf_get_error(const void *ptr) 9259 { 9260 return PTR_ERR_OR_ZERO(ptr); 9261 } 9262 9263 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9264 struct bpf_object **pobj, int *prog_fd) 9265 { 9266 struct bpf_prog_load_attr attr; 9267 9268 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9269 attr.file = file; 9270 attr.prog_type = type; 9271 attr.expected_attach_type = 0; 9272 9273 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9274 } 9275 9276 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9277 struct bpf_object **pobj, int *prog_fd) 9278 { 9279 struct bpf_object_open_attr open_attr = {}; 9280 struct bpf_program *prog, *first_prog = NULL; 9281 struct bpf_object *obj; 9282 struct bpf_map *map; 9283 int err; 9284 9285 if (!attr) 9286 return -EINVAL; 9287 if (!attr->file) 9288 return -EINVAL; 9289 9290 open_attr.file = attr->file; 9291 open_attr.prog_type = attr->prog_type; 9292 9293 obj = bpf_object__open_xattr(&open_attr); 9294 if (IS_ERR_OR_NULL(obj)) 9295 return -ENOENT; 9296 9297 bpf_object__for_each_program(prog, obj) { 9298 enum bpf_attach_type attach_type = attr->expected_attach_type; 9299 /* 9300 * to preserve backwards compatibility, bpf_prog_load treats 9301 * attr->prog_type, if specified, as an override to whatever 9302 * bpf_object__open guessed 9303 */ 9304 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9305 bpf_program__set_type(prog, attr->prog_type); 9306 bpf_program__set_expected_attach_type(prog, 9307 attach_type); 9308 } 9309 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9310 /* 9311 * we haven't guessed from section name and user 9312 * didn't provide a fallback type, too bad... 9313 */ 9314 bpf_object__close(obj); 9315 return -EINVAL; 9316 } 9317 9318 prog->prog_ifindex = attr->ifindex; 9319 prog->log_level = attr->log_level; 9320 prog->prog_flags |= attr->prog_flags; 9321 if (!first_prog) 9322 first_prog = prog; 9323 } 9324 9325 bpf_object__for_each_map(map, obj) { 9326 if (!bpf_map__is_offload_neutral(map)) 9327 map->map_ifindex = attr->ifindex; 9328 } 9329 9330 if (!first_prog) { 9331 pr_warn("object file doesn't contain bpf program\n"); 9332 bpf_object__close(obj); 9333 return -ENOENT; 9334 } 9335 9336 err = bpf_object__load(obj); 9337 if (err) { 9338 bpf_object__close(obj); 9339 return err; 9340 } 9341 9342 *pobj = obj; 9343 *prog_fd = bpf_program__fd(first_prog); 9344 return 0; 9345 } 9346 9347 struct bpf_link { 9348 int (*detach)(struct bpf_link *link); 9349 int (*destroy)(struct bpf_link *link); 9350 char *pin_path; /* NULL, if not pinned */ 9351 int fd; /* hook FD, -1 if not applicable */ 9352 bool disconnected; 9353 }; 9354 9355 /* Replace link's underlying BPF program with the new one */ 9356 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9357 { 9358 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9359 } 9360 9361 /* Release "ownership" of underlying BPF resource (typically, BPF program 9362 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9363 * link, when destructed through bpf_link__destroy() call won't attempt to 9364 * detach/unregisted that BPF resource. This is useful in situations where, 9365 * say, attached BPF program has to outlive userspace program that attached it 9366 * in the system. Depending on type of BPF program, though, there might be 9367 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9368 * exit of userspace program doesn't trigger automatic detachment and clean up 9369 * inside the kernel. 9370 */ 9371 void bpf_link__disconnect(struct bpf_link *link) 9372 { 9373 link->disconnected = true; 9374 } 9375 9376 int bpf_link__destroy(struct bpf_link *link) 9377 { 9378 int err = 0; 9379 9380 if (IS_ERR_OR_NULL(link)) 9381 return 0; 9382 9383 if (!link->disconnected && link->detach) 9384 err = link->detach(link); 9385 if (link->destroy) 9386 link->destroy(link); 9387 if (link->pin_path) 9388 free(link->pin_path); 9389 free(link); 9390 9391 return err; 9392 } 9393 9394 int bpf_link__fd(const struct bpf_link *link) 9395 { 9396 return link->fd; 9397 } 9398 9399 const char *bpf_link__pin_path(const struct bpf_link *link) 9400 { 9401 return link->pin_path; 9402 } 9403 9404 static int bpf_link__detach_fd(struct bpf_link *link) 9405 { 9406 return close(link->fd); 9407 } 9408 9409 struct bpf_link *bpf_link__open(const char *path) 9410 { 9411 struct bpf_link *link; 9412 int fd; 9413 9414 fd = bpf_obj_get(path); 9415 if (fd < 0) { 9416 fd = -errno; 9417 pr_warn("failed to open link at %s: %d\n", path, fd); 9418 return ERR_PTR(fd); 9419 } 9420 9421 link = calloc(1, sizeof(*link)); 9422 if (!link) { 9423 close(fd); 9424 return ERR_PTR(-ENOMEM); 9425 } 9426 link->detach = &bpf_link__detach_fd; 9427 link->fd = fd; 9428 9429 link->pin_path = strdup(path); 9430 if (!link->pin_path) { 9431 bpf_link__destroy(link); 9432 return ERR_PTR(-ENOMEM); 9433 } 9434 9435 return link; 9436 } 9437 9438 int bpf_link__detach(struct bpf_link *link) 9439 { 9440 return bpf_link_detach(link->fd) ? -errno : 0; 9441 } 9442 9443 int bpf_link__pin(struct bpf_link *link, const char *path) 9444 { 9445 int err; 9446 9447 if (link->pin_path) 9448 return -EBUSY; 9449 err = make_parent_dir(path); 9450 if (err) 9451 return err; 9452 err = check_path(path); 9453 if (err) 9454 return err; 9455 9456 link->pin_path = strdup(path); 9457 if (!link->pin_path) 9458 return -ENOMEM; 9459 9460 if (bpf_obj_pin(link->fd, link->pin_path)) { 9461 err = -errno; 9462 zfree(&link->pin_path); 9463 return err; 9464 } 9465 9466 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9467 return 0; 9468 } 9469 9470 int bpf_link__unpin(struct bpf_link *link) 9471 { 9472 int err; 9473 9474 if (!link->pin_path) 9475 return -EINVAL; 9476 9477 err = unlink(link->pin_path); 9478 if (err != 0) 9479 return -errno; 9480 9481 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9482 zfree(&link->pin_path); 9483 return 0; 9484 } 9485 9486 static int bpf_link__detach_perf_event(struct bpf_link *link) 9487 { 9488 int err; 9489 9490 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9491 if (err) 9492 err = -errno; 9493 9494 close(link->fd); 9495 return err; 9496 } 9497 9498 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9499 int pfd) 9500 { 9501 char errmsg[STRERR_BUFSIZE]; 9502 struct bpf_link *link; 9503 int prog_fd, err; 9504 9505 if (pfd < 0) { 9506 pr_warn("prog '%s': invalid perf event FD %d\n", 9507 prog->name, pfd); 9508 return ERR_PTR(-EINVAL); 9509 } 9510 prog_fd = bpf_program__fd(prog); 9511 if (prog_fd < 0) { 9512 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9513 prog->name); 9514 return ERR_PTR(-EINVAL); 9515 } 9516 9517 link = calloc(1, sizeof(*link)); 9518 if (!link) 9519 return ERR_PTR(-ENOMEM); 9520 link->detach = &bpf_link__detach_perf_event; 9521 link->fd = pfd; 9522 9523 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9524 err = -errno; 9525 free(link); 9526 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9527 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9528 if (err == -EPROTO) 9529 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9530 prog->name, pfd); 9531 return ERR_PTR(err); 9532 } 9533 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9534 err = -errno; 9535 free(link); 9536 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9537 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9538 return ERR_PTR(err); 9539 } 9540 return link; 9541 } 9542 9543 /* 9544 * this function is expected to parse integer in the range of [0, 2^31-1] from 9545 * given file using scanf format string fmt. If actual parsed value is 9546 * negative, the result might be indistinguishable from error 9547 */ 9548 static int parse_uint_from_file(const char *file, const char *fmt) 9549 { 9550 char buf[STRERR_BUFSIZE]; 9551 int err, ret; 9552 FILE *f; 9553 9554 f = fopen(file, "r"); 9555 if (!f) { 9556 err = -errno; 9557 pr_debug("failed to open '%s': %s\n", file, 9558 libbpf_strerror_r(err, buf, sizeof(buf))); 9559 return err; 9560 } 9561 err = fscanf(f, fmt, &ret); 9562 if (err != 1) { 9563 err = err == EOF ? -EIO : -errno; 9564 pr_debug("failed to parse '%s': %s\n", file, 9565 libbpf_strerror_r(err, buf, sizeof(buf))); 9566 fclose(f); 9567 return err; 9568 } 9569 fclose(f); 9570 return ret; 9571 } 9572 9573 static int determine_kprobe_perf_type(void) 9574 { 9575 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9576 9577 return parse_uint_from_file(file, "%d\n"); 9578 } 9579 9580 static int determine_uprobe_perf_type(void) 9581 { 9582 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9583 9584 return parse_uint_from_file(file, "%d\n"); 9585 } 9586 9587 static int determine_kprobe_retprobe_bit(void) 9588 { 9589 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9590 9591 return parse_uint_from_file(file, "config:%d\n"); 9592 } 9593 9594 static int determine_uprobe_retprobe_bit(void) 9595 { 9596 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9597 9598 return parse_uint_from_file(file, "config:%d\n"); 9599 } 9600 9601 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9602 uint64_t offset, int pid) 9603 { 9604 struct perf_event_attr attr = {}; 9605 char errmsg[STRERR_BUFSIZE]; 9606 int type, pfd, err; 9607 9608 type = uprobe ? determine_uprobe_perf_type() 9609 : determine_kprobe_perf_type(); 9610 if (type < 0) { 9611 pr_warn("failed to determine %s perf type: %s\n", 9612 uprobe ? "uprobe" : "kprobe", 9613 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9614 return type; 9615 } 9616 if (retprobe) { 9617 int bit = uprobe ? determine_uprobe_retprobe_bit() 9618 : determine_kprobe_retprobe_bit(); 9619 9620 if (bit < 0) { 9621 pr_warn("failed to determine %s retprobe bit: %s\n", 9622 uprobe ? "uprobe" : "kprobe", 9623 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9624 return bit; 9625 } 9626 attr.config |= 1 << bit; 9627 } 9628 attr.size = sizeof(attr); 9629 attr.type = type; 9630 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9631 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9632 9633 /* pid filter is meaningful only for uprobes */ 9634 pfd = syscall(__NR_perf_event_open, &attr, 9635 pid < 0 ? -1 : pid /* pid */, 9636 pid == -1 ? 0 : -1 /* cpu */, 9637 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9638 if (pfd < 0) { 9639 err = -errno; 9640 pr_warn("%s perf_event_open() failed: %s\n", 9641 uprobe ? "uprobe" : "kprobe", 9642 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9643 return err; 9644 } 9645 return pfd; 9646 } 9647 9648 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9649 bool retprobe, 9650 const char *func_name) 9651 { 9652 char errmsg[STRERR_BUFSIZE]; 9653 struct bpf_link *link; 9654 int pfd, err; 9655 9656 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9657 0 /* offset */, -1 /* pid */); 9658 if (pfd < 0) { 9659 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9660 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9661 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9662 return ERR_PTR(pfd); 9663 } 9664 link = bpf_program__attach_perf_event(prog, pfd); 9665 if (IS_ERR(link)) { 9666 close(pfd); 9667 err = PTR_ERR(link); 9668 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9669 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9670 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9671 return link; 9672 } 9673 return link; 9674 } 9675 9676 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9677 struct bpf_program *prog) 9678 { 9679 const char *func_name; 9680 bool retprobe; 9681 9682 func_name = prog->sec_name + sec->len; 9683 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9684 9685 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9686 } 9687 9688 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9689 bool retprobe, pid_t pid, 9690 const char *binary_path, 9691 size_t func_offset) 9692 { 9693 char errmsg[STRERR_BUFSIZE]; 9694 struct bpf_link *link; 9695 int pfd, err; 9696 9697 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9698 binary_path, func_offset, pid); 9699 if (pfd < 0) { 9700 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9701 prog->name, retprobe ? "uretprobe" : "uprobe", 9702 binary_path, func_offset, 9703 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9704 return ERR_PTR(pfd); 9705 } 9706 link = bpf_program__attach_perf_event(prog, pfd); 9707 if (IS_ERR(link)) { 9708 close(pfd); 9709 err = PTR_ERR(link); 9710 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9711 prog->name, retprobe ? "uretprobe" : "uprobe", 9712 binary_path, func_offset, 9713 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9714 return link; 9715 } 9716 return link; 9717 } 9718 9719 static int determine_tracepoint_id(const char *tp_category, 9720 const char *tp_name) 9721 { 9722 char file[PATH_MAX]; 9723 int ret; 9724 9725 ret = snprintf(file, sizeof(file), 9726 "/sys/kernel/debug/tracing/events/%s/%s/id", 9727 tp_category, tp_name); 9728 if (ret < 0) 9729 return -errno; 9730 if (ret >= sizeof(file)) { 9731 pr_debug("tracepoint %s/%s path is too long\n", 9732 tp_category, tp_name); 9733 return -E2BIG; 9734 } 9735 return parse_uint_from_file(file, "%d\n"); 9736 } 9737 9738 static int perf_event_open_tracepoint(const char *tp_category, 9739 const char *tp_name) 9740 { 9741 struct perf_event_attr attr = {}; 9742 char errmsg[STRERR_BUFSIZE]; 9743 int tp_id, pfd, err; 9744 9745 tp_id = determine_tracepoint_id(tp_category, tp_name); 9746 if (tp_id < 0) { 9747 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9748 tp_category, tp_name, 9749 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9750 return tp_id; 9751 } 9752 9753 attr.type = PERF_TYPE_TRACEPOINT; 9754 attr.size = sizeof(attr); 9755 attr.config = tp_id; 9756 9757 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9758 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9759 if (pfd < 0) { 9760 err = -errno; 9761 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9762 tp_category, tp_name, 9763 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9764 return err; 9765 } 9766 return pfd; 9767 } 9768 9769 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 9770 const char *tp_category, 9771 const char *tp_name) 9772 { 9773 char errmsg[STRERR_BUFSIZE]; 9774 struct bpf_link *link; 9775 int pfd, err; 9776 9777 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9778 if (pfd < 0) { 9779 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9780 prog->name, tp_category, tp_name, 9781 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9782 return ERR_PTR(pfd); 9783 } 9784 link = bpf_program__attach_perf_event(prog, pfd); 9785 if (IS_ERR(link)) { 9786 close(pfd); 9787 err = PTR_ERR(link); 9788 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9789 prog->name, tp_category, tp_name, 9790 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9791 return link; 9792 } 9793 return link; 9794 } 9795 9796 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9797 struct bpf_program *prog) 9798 { 9799 char *sec_name, *tp_cat, *tp_name; 9800 struct bpf_link *link; 9801 9802 sec_name = strdup(prog->sec_name); 9803 if (!sec_name) 9804 return ERR_PTR(-ENOMEM); 9805 9806 /* extract "tp/<category>/<name>" */ 9807 tp_cat = sec_name + sec->len; 9808 tp_name = strchr(tp_cat, '/'); 9809 if (!tp_name) { 9810 link = ERR_PTR(-EINVAL); 9811 goto out; 9812 } 9813 *tp_name = '\0'; 9814 tp_name++; 9815 9816 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9817 out: 9818 free(sec_name); 9819 return link; 9820 } 9821 9822 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 9823 const char *tp_name) 9824 { 9825 char errmsg[STRERR_BUFSIZE]; 9826 struct bpf_link *link; 9827 int prog_fd, pfd; 9828 9829 prog_fd = bpf_program__fd(prog); 9830 if (prog_fd < 0) { 9831 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9832 return ERR_PTR(-EINVAL); 9833 } 9834 9835 link = calloc(1, sizeof(*link)); 9836 if (!link) 9837 return ERR_PTR(-ENOMEM); 9838 link->detach = &bpf_link__detach_fd; 9839 9840 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9841 if (pfd < 0) { 9842 pfd = -errno; 9843 free(link); 9844 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9845 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9846 return ERR_PTR(pfd); 9847 } 9848 link->fd = pfd; 9849 return link; 9850 } 9851 9852 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9853 struct bpf_program *prog) 9854 { 9855 const char *tp_name = prog->sec_name + sec->len; 9856 9857 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9858 } 9859 9860 /* Common logic for all BPF program types that attach to a btf_id */ 9861 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 9862 { 9863 char errmsg[STRERR_BUFSIZE]; 9864 struct bpf_link *link; 9865 int prog_fd, pfd; 9866 9867 prog_fd = bpf_program__fd(prog); 9868 if (prog_fd < 0) { 9869 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9870 return ERR_PTR(-EINVAL); 9871 } 9872 9873 link = calloc(1, sizeof(*link)); 9874 if (!link) 9875 return ERR_PTR(-ENOMEM); 9876 link->detach = &bpf_link__detach_fd; 9877 9878 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9879 if (pfd < 0) { 9880 pfd = -errno; 9881 free(link); 9882 pr_warn("prog '%s': failed to attach: %s\n", 9883 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9884 return ERR_PTR(pfd); 9885 } 9886 link->fd = pfd; 9887 return (struct bpf_link *)link; 9888 } 9889 9890 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 9891 { 9892 return bpf_program__attach_btf_id(prog); 9893 } 9894 9895 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 9896 { 9897 return bpf_program__attach_btf_id(prog); 9898 } 9899 9900 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9901 struct bpf_program *prog) 9902 { 9903 return bpf_program__attach_trace(prog); 9904 } 9905 9906 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9907 struct bpf_program *prog) 9908 { 9909 return bpf_program__attach_lsm(prog); 9910 } 9911 9912 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9913 struct bpf_program *prog) 9914 { 9915 return bpf_program__attach_iter(prog, NULL); 9916 } 9917 9918 static struct bpf_link * 9919 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 9920 const char *target_name) 9921 { 9922 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 9923 .target_btf_id = btf_id); 9924 enum bpf_attach_type attach_type; 9925 char errmsg[STRERR_BUFSIZE]; 9926 struct bpf_link *link; 9927 int prog_fd, link_fd; 9928 9929 prog_fd = bpf_program__fd(prog); 9930 if (prog_fd < 0) { 9931 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9932 return ERR_PTR(-EINVAL); 9933 } 9934 9935 link = calloc(1, sizeof(*link)); 9936 if (!link) 9937 return ERR_PTR(-ENOMEM); 9938 link->detach = &bpf_link__detach_fd; 9939 9940 attach_type = bpf_program__get_expected_attach_type(prog); 9941 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 9942 if (link_fd < 0) { 9943 link_fd = -errno; 9944 free(link); 9945 pr_warn("prog '%s': failed to attach to %s: %s\n", 9946 prog->name, target_name, 9947 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9948 return ERR_PTR(link_fd); 9949 } 9950 link->fd = link_fd; 9951 return link; 9952 } 9953 9954 struct bpf_link * 9955 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 9956 { 9957 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 9958 } 9959 9960 struct bpf_link * 9961 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 9962 { 9963 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 9964 } 9965 9966 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 9967 { 9968 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 9969 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 9970 } 9971 9972 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 9973 int target_fd, 9974 const char *attach_func_name) 9975 { 9976 int btf_id; 9977 9978 if (!!target_fd != !!attach_func_name) { 9979 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 9980 prog->name); 9981 return ERR_PTR(-EINVAL); 9982 } 9983 9984 if (prog->type != BPF_PROG_TYPE_EXT) { 9985 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 9986 prog->name); 9987 return ERR_PTR(-EINVAL); 9988 } 9989 9990 if (target_fd) { 9991 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 9992 if (btf_id < 0) 9993 return ERR_PTR(btf_id); 9994 9995 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 9996 } else { 9997 /* no target, so use raw_tracepoint_open for compatibility 9998 * with old kernels 9999 */ 10000 return bpf_program__attach_trace(prog); 10001 } 10002 } 10003 10004 struct bpf_link * 10005 bpf_program__attach_iter(struct bpf_program *prog, 10006 const struct bpf_iter_attach_opts *opts) 10007 { 10008 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10009 char errmsg[STRERR_BUFSIZE]; 10010 struct bpf_link *link; 10011 int prog_fd, link_fd; 10012 __u32 target_fd = 0; 10013 10014 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10015 return ERR_PTR(-EINVAL); 10016 10017 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10018 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10019 10020 prog_fd = bpf_program__fd(prog); 10021 if (prog_fd < 0) { 10022 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10023 return ERR_PTR(-EINVAL); 10024 } 10025 10026 link = calloc(1, sizeof(*link)); 10027 if (!link) 10028 return ERR_PTR(-ENOMEM); 10029 link->detach = &bpf_link__detach_fd; 10030 10031 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10032 &link_create_opts); 10033 if (link_fd < 0) { 10034 link_fd = -errno; 10035 free(link); 10036 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10037 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10038 return ERR_PTR(link_fd); 10039 } 10040 link->fd = link_fd; 10041 return link; 10042 } 10043 10044 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 10045 { 10046 const struct bpf_sec_def *sec_def; 10047 10048 sec_def = find_sec_def(prog->sec_name); 10049 if (!sec_def || !sec_def->attach_fn) 10050 return ERR_PTR(-ESRCH); 10051 10052 return sec_def->attach_fn(sec_def, prog); 10053 } 10054 10055 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10056 { 10057 __u32 zero = 0; 10058 10059 if (bpf_map_delete_elem(link->fd, &zero)) 10060 return -errno; 10061 10062 return 0; 10063 } 10064 10065 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 10066 { 10067 struct bpf_struct_ops *st_ops; 10068 struct bpf_link *link; 10069 __u32 i, zero = 0; 10070 int err; 10071 10072 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10073 return ERR_PTR(-EINVAL); 10074 10075 link = calloc(1, sizeof(*link)); 10076 if (!link) 10077 return ERR_PTR(-EINVAL); 10078 10079 st_ops = map->st_ops; 10080 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10081 struct bpf_program *prog = st_ops->progs[i]; 10082 void *kern_data; 10083 int prog_fd; 10084 10085 if (!prog) 10086 continue; 10087 10088 prog_fd = bpf_program__fd(prog); 10089 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10090 *(unsigned long *)kern_data = prog_fd; 10091 } 10092 10093 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10094 if (err) { 10095 err = -errno; 10096 free(link); 10097 return ERR_PTR(err); 10098 } 10099 10100 link->detach = bpf_link__detach_struct_ops; 10101 link->fd = map->fd; 10102 10103 return link; 10104 } 10105 10106 enum bpf_perf_event_ret 10107 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10108 void **copy_mem, size_t *copy_size, 10109 bpf_perf_event_print_t fn, void *private_data) 10110 { 10111 struct perf_event_mmap_page *header = mmap_mem; 10112 __u64 data_head = ring_buffer_read_head(header); 10113 __u64 data_tail = header->data_tail; 10114 void *base = ((__u8 *)header) + page_size; 10115 int ret = LIBBPF_PERF_EVENT_CONT; 10116 struct perf_event_header *ehdr; 10117 size_t ehdr_size; 10118 10119 while (data_head != data_tail) { 10120 ehdr = base + (data_tail & (mmap_size - 1)); 10121 ehdr_size = ehdr->size; 10122 10123 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10124 void *copy_start = ehdr; 10125 size_t len_first = base + mmap_size - copy_start; 10126 size_t len_secnd = ehdr_size - len_first; 10127 10128 if (*copy_size < ehdr_size) { 10129 free(*copy_mem); 10130 *copy_mem = malloc(ehdr_size); 10131 if (!*copy_mem) { 10132 *copy_size = 0; 10133 ret = LIBBPF_PERF_EVENT_ERROR; 10134 break; 10135 } 10136 *copy_size = ehdr_size; 10137 } 10138 10139 memcpy(*copy_mem, copy_start, len_first); 10140 memcpy(*copy_mem + len_first, base, len_secnd); 10141 ehdr = *copy_mem; 10142 } 10143 10144 ret = fn(ehdr, private_data); 10145 data_tail += ehdr_size; 10146 if (ret != LIBBPF_PERF_EVENT_CONT) 10147 break; 10148 } 10149 10150 ring_buffer_write_tail(header, data_tail); 10151 return ret; 10152 } 10153 10154 struct perf_buffer; 10155 10156 struct perf_buffer_params { 10157 struct perf_event_attr *attr; 10158 /* if event_cb is specified, it takes precendence */ 10159 perf_buffer_event_fn event_cb; 10160 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10161 perf_buffer_sample_fn sample_cb; 10162 perf_buffer_lost_fn lost_cb; 10163 void *ctx; 10164 int cpu_cnt; 10165 int *cpus; 10166 int *map_keys; 10167 }; 10168 10169 struct perf_cpu_buf { 10170 struct perf_buffer *pb; 10171 void *base; /* mmap()'ed memory */ 10172 void *buf; /* for reconstructing segmented data */ 10173 size_t buf_size; 10174 int fd; 10175 int cpu; 10176 int map_key; 10177 }; 10178 10179 struct perf_buffer { 10180 perf_buffer_event_fn event_cb; 10181 perf_buffer_sample_fn sample_cb; 10182 perf_buffer_lost_fn lost_cb; 10183 void *ctx; /* passed into callbacks */ 10184 10185 size_t page_size; 10186 size_t mmap_size; 10187 struct perf_cpu_buf **cpu_bufs; 10188 struct epoll_event *events; 10189 int cpu_cnt; /* number of allocated CPU buffers */ 10190 int epoll_fd; /* perf event FD */ 10191 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10192 }; 10193 10194 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10195 struct perf_cpu_buf *cpu_buf) 10196 { 10197 if (!cpu_buf) 10198 return; 10199 if (cpu_buf->base && 10200 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10201 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10202 if (cpu_buf->fd >= 0) { 10203 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10204 close(cpu_buf->fd); 10205 } 10206 free(cpu_buf->buf); 10207 free(cpu_buf); 10208 } 10209 10210 void perf_buffer__free(struct perf_buffer *pb) 10211 { 10212 int i; 10213 10214 if (IS_ERR_OR_NULL(pb)) 10215 return; 10216 if (pb->cpu_bufs) { 10217 for (i = 0; i < pb->cpu_cnt; i++) { 10218 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10219 10220 if (!cpu_buf) 10221 continue; 10222 10223 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10224 perf_buffer__free_cpu_buf(pb, cpu_buf); 10225 } 10226 free(pb->cpu_bufs); 10227 } 10228 if (pb->epoll_fd >= 0) 10229 close(pb->epoll_fd); 10230 free(pb->events); 10231 free(pb); 10232 } 10233 10234 static struct perf_cpu_buf * 10235 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10236 int cpu, int map_key) 10237 { 10238 struct perf_cpu_buf *cpu_buf; 10239 char msg[STRERR_BUFSIZE]; 10240 int err; 10241 10242 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10243 if (!cpu_buf) 10244 return ERR_PTR(-ENOMEM); 10245 10246 cpu_buf->pb = pb; 10247 cpu_buf->cpu = cpu; 10248 cpu_buf->map_key = map_key; 10249 10250 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10251 -1, PERF_FLAG_FD_CLOEXEC); 10252 if (cpu_buf->fd < 0) { 10253 err = -errno; 10254 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10255 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10256 goto error; 10257 } 10258 10259 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10260 PROT_READ | PROT_WRITE, MAP_SHARED, 10261 cpu_buf->fd, 0); 10262 if (cpu_buf->base == MAP_FAILED) { 10263 cpu_buf->base = NULL; 10264 err = -errno; 10265 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10266 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10267 goto error; 10268 } 10269 10270 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10271 err = -errno; 10272 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10273 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10274 goto error; 10275 } 10276 10277 return cpu_buf; 10278 10279 error: 10280 perf_buffer__free_cpu_buf(pb, cpu_buf); 10281 return (struct perf_cpu_buf *)ERR_PTR(err); 10282 } 10283 10284 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10285 struct perf_buffer_params *p); 10286 10287 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10288 const struct perf_buffer_opts *opts) 10289 { 10290 struct perf_buffer_params p = {}; 10291 struct perf_event_attr attr = { 0, }; 10292 10293 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10294 attr.type = PERF_TYPE_SOFTWARE; 10295 attr.sample_type = PERF_SAMPLE_RAW; 10296 attr.sample_period = 1; 10297 attr.wakeup_events = 1; 10298 10299 p.attr = &attr; 10300 p.sample_cb = opts ? opts->sample_cb : NULL; 10301 p.lost_cb = opts ? opts->lost_cb : NULL; 10302 p.ctx = opts ? opts->ctx : NULL; 10303 10304 return __perf_buffer__new(map_fd, page_cnt, &p); 10305 } 10306 10307 struct perf_buffer * 10308 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10309 const struct perf_buffer_raw_opts *opts) 10310 { 10311 struct perf_buffer_params p = {}; 10312 10313 p.attr = opts->attr; 10314 p.event_cb = opts->event_cb; 10315 p.ctx = opts->ctx; 10316 p.cpu_cnt = opts->cpu_cnt; 10317 p.cpus = opts->cpus; 10318 p.map_keys = opts->map_keys; 10319 10320 return __perf_buffer__new(map_fd, page_cnt, &p); 10321 } 10322 10323 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10324 struct perf_buffer_params *p) 10325 { 10326 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10327 struct bpf_map_info map; 10328 char msg[STRERR_BUFSIZE]; 10329 struct perf_buffer *pb; 10330 bool *online = NULL; 10331 __u32 map_info_len; 10332 int err, i, j, n; 10333 10334 if (page_cnt & (page_cnt - 1)) { 10335 pr_warn("page count should be power of two, but is %zu\n", 10336 page_cnt); 10337 return ERR_PTR(-EINVAL); 10338 } 10339 10340 /* best-effort sanity checks */ 10341 memset(&map, 0, sizeof(map)); 10342 map_info_len = sizeof(map); 10343 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10344 if (err) { 10345 err = -errno; 10346 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10347 * -EBADFD, -EFAULT, or -E2BIG on real error 10348 */ 10349 if (err != -EINVAL) { 10350 pr_warn("failed to get map info for map FD %d: %s\n", 10351 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10352 return ERR_PTR(err); 10353 } 10354 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10355 map_fd); 10356 } else { 10357 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10358 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10359 map.name); 10360 return ERR_PTR(-EINVAL); 10361 } 10362 } 10363 10364 pb = calloc(1, sizeof(*pb)); 10365 if (!pb) 10366 return ERR_PTR(-ENOMEM); 10367 10368 pb->event_cb = p->event_cb; 10369 pb->sample_cb = p->sample_cb; 10370 pb->lost_cb = p->lost_cb; 10371 pb->ctx = p->ctx; 10372 10373 pb->page_size = getpagesize(); 10374 pb->mmap_size = pb->page_size * page_cnt; 10375 pb->map_fd = map_fd; 10376 10377 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10378 if (pb->epoll_fd < 0) { 10379 err = -errno; 10380 pr_warn("failed to create epoll instance: %s\n", 10381 libbpf_strerror_r(err, msg, sizeof(msg))); 10382 goto error; 10383 } 10384 10385 if (p->cpu_cnt > 0) { 10386 pb->cpu_cnt = p->cpu_cnt; 10387 } else { 10388 pb->cpu_cnt = libbpf_num_possible_cpus(); 10389 if (pb->cpu_cnt < 0) { 10390 err = pb->cpu_cnt; 10391 goto error; 10392 } 10393 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10394 pb->cpu_cnt = map.max_entries; 10395 } 10396 10397 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10398 if (!pb->events) { 10399 err = -ENOMEM; 10400 pr_warn("failed to allocate events: out of memory\n"); 10401 goto error; 10402 } 10403 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10404 if (!pb->cpu_bufs) { 10405 err = -ENOMEM; 10406 pr_warn("failed to allocate buffers: out of memory\n"); 10407 goto error; 10408 } 10409 10410 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10411 if (err) { 10412 pr_warn("failed to get online CPU mask: %d\n", err); 10413 goto error; 10414 } 10415 10416 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10417 struct perf_cpu_buf *cpu_buf; 10418 int cpu, map_key; 10419 10420 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10421 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10422 10423 /* in case user didn't explicitly requested particular CPUs to 10424 * be attached to, skip offline/not present CPUs 10425 */ 10426 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10427 continue; 10428 10429 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10430 if (IS_ERR(cpu_buf)) { 10431 err = PTR_ERR(cpu_buf); 10432 goto error; 10433 } 10434 10435 pb->cpu_bufs[j] = cpu_buf; 10436 10437 err = bpf_map_update_elem(pb->map_fd, &map_key, 10438 &cpu_buf->fd, 0); 10439 if (err) { 10440 err = -errno; 10441 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10442 cpu, map_key, cpu_buf->fd, 10443 libbpf_strerror_r(err, msg, sizeof(msg))); 10444 goto error; 10445 } 10446 10447 pb->events[j].events = EPOLLIN; 10448 pb->events[j].data.ptr = cpu_buf; 10449 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10450 &pb->events[j]) < 0) { 10451 err = -errno; 10452 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10453 cpu, cpu_buf->fd, 10454 libbpf_strerror_r(err, msg, sizeof(msg))); 10455 goto error; 10456 } 10457 j++; 10458 } 10459 pb->cpu_cnt = j; 10460 free(online); 10461 10462 return pb; 10463 10464 error: 10465 free(online); 10466 if (pb) 10467 perf_buffer__free(pb); 10468 return ERR_PTR(err); 10469 } 10470 10471 struct perf_sample_raw { 10472 struct perf_event_header header; 10473 uint32_t size; 10474 char data[]; 10475 }; 10476 10477 struct perf_sample_lost { 10478 struct perf_event_header header; 10479 uint64_t id; 10480 uint64_t lost; 10481 uint64_t sample_id; 10482 }; 10483 10484 static enum bpf_perf_event_ret 10485 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10486 { 10487 struct perf_cpu_buf *cpu_buf = ctx; 10488 struct perf_buffer *pb = cpu_buf->pb; 10489 void *data = e; 10490 10491 /* user wants full control over parsing perf event */ 10492 if (pb->event_cb) 10493 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10494 10495 switch (e->type) { 10496 case PERF_RECORD_SAMPLE: { 10497 struct perf_sample_raw *s = data; 10498 10499 if (pb->sample_cb) 10500 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10501 break; 10502 } 10503 case PERF_RECORD_LOST: { 10504 struct perf_sample_lost *s = data; 10505 10506 if (pb->lost_cb) 10507 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10508 break; 10509 } 10510 default: 10511 pr_warn("unknown perf sample type %d\n", e->type); 10512 return LIBBPF_PERF_EVENT_ERROR; 10513 } 10514 return LIBBPF_PERF_EVENT_CONT; 10515 } 10516 10517 static int perf_buffer__process_records(struct perf_buffer *pb, 10518 struct perf_cpu_buf *cpu_buf) 10519 { 10520 enum bpf_perf_event_ret ret; 10521 10522 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10523 pb->page_size, &cpu_buf->buf, 10524 &cpu_buf->buf_size, 10525 perf_buffer__process_record, cpu_buf); 10526 if (ret != LIBBPF_PERF_EVENT_CONT) 10527 return ret; 10528 return 0; 10529 } 10530 10531 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10532 { 10533 return pb->epoll_fd; 10534 } 10535 10536 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10537 { 10538 int i, cnt, err; 10539 10540 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10541 for (i = 0; i < cnt; i++) { 10542 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10543 10544 err = perf_buffer__process_records(pb, cpu_buf); 10545 if (err) { 10546 pr_warn("error while processing records: %d\n", err); 10547 return err; 10548 } 10549 } 10550 return cnt < 0 ? -errno : cnt; 10551 } 10552 10553 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10554 * manager. 10555 */ 10556 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10557 { 10558 return pb->cpu_cnt; 10559 } 10560 10561 /* 10562 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10563 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10564 * select()/poll()/epoll() Linux syscalls. 10565 */ 10566 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10567 { 10568 struct perf_cpu_buf *cpu_buf; 10569 10570 if (buf_idx >= pb->cpu_cnt) 10571 return -EINVAL; 10572 10573 cpu_buf = pb->cpu_bufs[buf_idx]; 10574 if (!cpu_buf) 10575 return -ENOENT; 10576 10577 return cpu_buf->fd; 10578 } 10579 10580 /* 10581 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10582 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10583 * consume, do nothing and return success. 10584 * Returns: 10585 * - 0 on success; 10586 * - <0 on failure. 10587 */ 10588 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10589 { 10590 struct perf_cpu_buf *cpu_buf; 10591 10592 if (buf_idx >= pb->cpu_cnt) 10593 return -EINVAL; 10594 10595 cpu_buf = pb->cpu_bufs[buf_idx]; 10596 if (!cpu_buf) 10597 return -ENOENT; 10598 10599 return perf_buffer__process_records(pb, cpu_buf); 10600 } 10601 10602 int perf_buffer__consume(struct perf_buffer *pb) 10603 { 10604 int i, err; 10605 10606 for (i = 0; i < pb->cpu_cnt; i++) { 10607 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10608 10609 if (!cpu_buf) 10610 continue; 10611 10612 err = perf_buffer__process_records(pb, cpu_buf); 10613 if (err) { 10614 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10615 return err; 10616 } 10617 } 10618 return 0; 10619 } 10620 10621 struct bpf_prog_info_array_desc { 10622 int array_offset; /* e.g. offset of jited_prog_insns */ 10623 int count_offset; /* e.g. offset of jited_prog_len */ 10624 int size_offset; /* > 0: offset of rec size, 10625 * < 0: fix size of -size_offset 10626 */ 10627 }; 10628 10629 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10630 [BPF_PROG_INFO_JITED_INSNS] = { 10631 offsetof(struct bpf_prog_info, jited_prog_insns), 10632 offsetof(struct bpf_prog_info, jited_prog_len), 10633 -1, 10634 }, 10635 [BPF_PROG_INFO_XLATED_INSNS] = { 10636 offsetof(struct bpf_prog_info, xlated_prog_insns), 10637 offsetof(struct bpf_prog_info, xlated_prog_len), 10638 -1, 10639 }, 10640 [BPF_PROG_INFO_MAP_IDS] = { 10641 offsetof(struct bpf_prog_info, map_ids), 10642 offsetof(struct bpf_prog_info, nr_map_ids), 10643 -(int)sizeof(__u32), 10644 }, 10645 [BPF_PROG_INFO_JITED_KSYMS] = { 10646 offsetof(struct bpf_prog_info, jited_ksyms), 10647 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10648 -(int)sizeof(__u64), 10649 }, 10650 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10651 offsetof(struct bpf_prog_info, jited_func_lens), 10652 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10653 -(int)sizeof(__u32), 10654 }, 10655 [BPF_PROG_INFO_FUNC_INFO] = { 10656 offsetof(struct bpf_prog_info, func_info), 10657 offsetof(struct bpf_prog_info, nr_func_info), 10658 offsetof(struct bpf_prog_info, func_info_rec_size), 10659 }, 10660 [BPF_PROG_INFO_LINE_INFO] = { 10661 offsetof(struct bpf_prog_info, line_info), 10662 offsetof(struct bpf_prog_info, nr_line_info), 10663 offsetof(struct bpf_prog_info, line_info_rec_size), 10664 }, 10665 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10666 offsetof(struct bpf_prog_info, jited_line_info), 10667 offsetof(struct bpf_prog_info, nr_jited_line_info), 10668 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10669 }, 10670 [BPF_PROG_INFO_PROG_TAGS] = { 10671 offsetof(struct bpf_prog_info, prog_tags), 10672 offsetof(struct bpf_prog_info, nr_prog_tags), 10673 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10674 }, 10675 10676 }; 10677 10678 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10679 int offset) 10680 { 10681 __u32 *array = (__u32 *)info; 10682 10683 if (offset >= 0) 10684 return array[offset / sizeof(__u32)]; 10685 return -(int)offset; 10686 } 10687 10688 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10689 int offset) 10690 { 10691 __u64 *array = (__u64 *)info; 10692 10693 if (offset >= 0) 10694 return array[offset / sizeof(__u64)]; 10695 return -(int)offset; 10696 } 10697 10698 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10699 __u32 val) 10700 { 10701 __u32 *array = (__u32 *)info; 10702 10703 if (offset >= 0) 10704 array[offset / sizeof(__u32)] = val; 10705 } 10706 10707 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10708 __u64 val) 10709 { 10710 __u64 *array = (__u64 *)info; 10711 10712 if (offset >= 0) 10713 array[offset / sizeof(__u64)] = val; 10714 } 10715 10716 struct bpf_prog_info_linear * 10717 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10718 { 10719 struct bpf_prog_info_linear *info_linear; 10720 struct bpf_prog_info info = {}; 10721 __u32 info_len = sizeof(info); 10722 __u32 data_len = 0; 10723 int i, err; 10724 void *ptr; 10725 10726 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10727 return ERR_PTR(-EINVAL); 10728 10729 /* step 1: get array dimensions */ 10730 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10731 if (err) { 10732 pr_debug("can't get prog info: %s", strerror(errno)); 10733 return ERR_PTR(-EFAULT); 10734 } 10735 10736 /* step 2: calculate total size of all arrays */ 10737 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10738 bool include_array = (arrays & (1UL << i)) > 0; 10739 struct bpf_prog_info_array_desc *desc; 10740 __u32 count, size; 10741 10742 desc = bpf_prog_info_array_desc + i; 10743 10744 /* kernel is too old to support this field */ 10745 if (info_len < desc->array_offset + sizeof(__u32) || 10746 info_len < desc->count_offset + sizeof(__u32) || 10747 (desc->size_offset > 0 && info_len < desc->size_offset)) 10748 include_array = false; 10749 10750 if (!include_array) { 10751 arrays &= ~(1UL << i); /* clear the bit */ 10752 continue; 10753 } 10754 10755 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10756 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10757 10758 data_len += count * size; 10759 } 10760 10761 /* step 3: allocate continuous memory */ 10762 data_len = roundup(data_len, sizeof(__u64)); 10763 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10764 if (!info_linear) 10765 return ERR_PTR(-ENOMEM); 10766 10767 /* step 4: fill data to info_linear->info */ 10768 info_linear->arrays = arrays; 10769 memset(&info_linear->info, 0, sizeof(info)); 10770 ptr = info_linear->data; 10771 10772 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10773 struct bpf_prog_info_array_desc *desc; 10774 __u32 count, size; 10775 10776 if ((arrays & (1UL << i)) == 0) 10777 continue; 10778 10779 desc = bpf_prog_info_array_desc + i; 10780 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10781 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10782 bpf_prog_info_set_offset_u32(&info_linear->info, 10783 desc->count_offset, count); 10784 bpf_prog_info_set_offset_u32(&info_linear->info, 10785 desc->size_offset, size); 10786 bpf_prog_info_set_offset_u64(&info_linear->info, 10787 desc->array_offset, 10788 ptr_to_u64(ptr)); 10789 ptr += count * size; 10790 } 10791 10792 /* step 5: call syscall again to get required arrays */ 10793 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10794 if (err) { 10795 pr_debug("can't get prog info: %s", strerror(errno)); 10796 free(info_linear); 10797 return ERR_PTR(-EFAULT); 10798 } 10799 10800 /* step 6: verify the data */ 10801 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10802 struct bpf_prog_info_array_desc *desc; 10803 __u32 v1, v2; 10804 10805 if ((arrays & (1UL << i)) == 0) 10806 continue; 10807 10808 desc = bpf_prog_info_array_desc + i; 10809 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10810 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10811 desc->count_offset); 10812 if (v1 != v2) 10813 pr_warn("%s: mismatch in element count\n", __func__); 10814 10815 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10816 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10817 desc->size_offset); 10818 if (v1 != v2) 10819 pr_warn("%s: mismatch in rec size\n", __func__); 10820 } 10821 10822 /* step 7: update info_len and data_len */ 10823 info_linear->info_len = sizeof(struct bpf_prog_info); 10824 info_linear->data_len = data_len; 10825 10826 return info_linear; 10827 } 10828 10829 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10830 { 10831 int i; 10832 10833 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10834 struct bpf_prog_info_array_desc *desc; 10835 __u64 addr, offs; 10836 10837 if ((info_linear->arrays & (1UL << i)) == 0) 10838 continue; 10839 10840 desc = bpf_prog_info_array_desc + i; 10841 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10842 desc->array_offset); 10843 offs = addr - ptr_to_u64(info_linear->data); 10844 bpf_prog_info_set_offset_u64(&info_linear->info, 10845 desc->array_offset, offs); 10846 } 10847 } 10848 10849 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10850 { 10851 int i; 10852 10853 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10854 struct bpf_prog_info_array_desc *desc; 10855 __u64 addr, offs; 10856 10857 if ((info_linear->arrays & (1UL << i)) == 0) 10858 continue; 10859 10860 desc = bpf_prog_info_array_desc + i; 10861 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10862 desc->array_offset); 10863 addr = offs + ptr_to_u64(info_linear->data); 10864 bpf_prog_info_set_offset_u64(&info_linear->info, 10865 desc->array_offset, addr); 10866 } 10867 } 10868 10869 int bpf_program__set_attach_target(struct bpf_program *prog, 10870 int attach_prog_fd, 10871 const char *attach_func_name) 10872 { 10873 int btf_id; 10874 10875 if (!prog || attach_prog_fd < 0 || !attach_func_name) 10876 return -EINVAL; 10877 10878 if (attach_prog_fd) 10879 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10880 attach_prog_fd); 10881 else 10882 btf_id = libbpf_find_vmlinux_btf_id(attach_func_name, 10883 prog->expected_attach_type); 10884 10885 if (btf_id < 0) 10886 return btf_id; 10887 10888 prog->attach_btf_id = btf_id; 10889 prog->attach_btf_obj_fd = 0; 10890 prog->attach_prog_fd = attach_prog_fd; 10891 return 0; 10892 } 10893 10894 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 10895 { 10896 int err = 0, n, len, start, end = -1; 10897 bool *tmp; 10898 10899 *mask = NULL; 10900 *mask_sz = 0; 10901 10902 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 10903 while (*s) { 10904 if (*s == ',' || *s == '\n') { 10905 s++; 10906 continue; 10907 } 10908 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 10909 if (n <= 0 || n > 2) { 10910 pr_warn("Failed to get CPU range %s: %d\n", s, n); 10911 err = -EINVAL; 10912 goto cleanup; 10913 } else if (n == 1) { 10914 end = start; 10915 } 10916 if (start < 0 || start > end) { 10917 pr_warn("Invalid CPU range [%d,%d] in %s\n", 10918 start, end, s); 10919 err = -EINVAL; 10920 goto cleanup; 10921 } 10922 tmp = realloc(*mask, end + 1); 10923 if (!tmp) { 10924 err = -ENOMEM; 10925 goto cleanup; 10926 } 10927 *mask = tmp; 10928 memset(tmp + *mask_sz, 0, start - *mask_sz); 10929 memset(tmp + start, 1, end - start + 1); 10930 *mask_sz = end + 1; 10931 s += len; 10932 } 10933 if (!*mask_sz) { 10934 pr_warn("Empty CPU range\n"); 10935 return -EINVAL; 10936 } 10937 return 0; 10938 cleanup: 10939 free(*mask); 10940 *mask = NULL; 10941 return err; 10942 } 10943 10944 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 10945 { 10946 int fd, err = 0, len; 10947 char buf[128]; 10948 10949 fd = open(fcpu, O_RDONLY); 10950 if (fd < 0) { 10951 err = -errno; 10952 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 10953 return err; 10954 } 10955 len = read(fd, buf, sizeof(buf)); 10956 close(fd); 10957 if (len <= 0) { 10958 err = len ? -errno : -EINVAL; 10959 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 10960 return err; 10961 } 10962 if (len >= sizeof(buf)) { 10963 pr_warn("CPU mask is too big in file %s\n", fcpu); 10964 return -E2BIG; 10965 } 10966 buf[len] = '\0'; 10967 10968 return parse_cpu_mask_str(buf, mask, mask_sz); 10969 } 10970 10971 int libbpf_num_possible_cpus(void) 10972 { 10973 static const char *fcpu = "/sys/devices/system/cpu/possible"; 10974 static int cpus; 10975 int err, n, i, tmp_cpus; 10976 bool *mask; 10977 10978 tmp_cpus = READ_ONCE(cpus); 10979 if (tmp_cpus > 0) 10980 return tmp_cpus; 10981 10982 err = parse_cpu_mask_file(fcpu, &mask, &n); 10983 if (err) 10984 return err; 10985 10986 tmp_cpus = 0; 10987 for (i = 0; i < n; i++) { 10988 if (mask[i]) 10989 tmp_cpus++; 10990 } 10991 free(mask); 10992 10993 WRITE_ONCE(cpus, tmp_cpus); 10994 return tmp_cpus; 10995 } 10996 10997 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 10998 const struct bpf_object_open_opts *opts) 10999 { 11000 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11001 .object_name = s->name, 11002 ); 11003 struct bpf_object *obj; 11004 int i; 11005 11006 /* Attempt to preserve opts->object_name, unless overriden by user 11007 * explicitly. Overwriting object name for skeletons is discouraged, 11008 * as it breaks global data maps, because they contain object name 11009 * prefix as their own map name prefix. When skeleton is generated, 11010 * bpftool is making an assumption that this name will stay the same. 11011 */ 11012 if (opts) { 11013 memcpy(&skel_opts, opts, sizeof(*opts)); 11014 if (!opts->object_name) 11015 skel_opts.object_name = s->name; 11016 } 11017 11018 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11019 if (IS_ERR(obj)) { 11020 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 11021 s->name, PTR_ERR(obj)); 11022 return PTR_ERR(obj); 11023 } 11024 11025 *s->obj = obj; 11026 11027 for (i = 0; i < s->map_cnt; i++) { 11028 struct bpf_map **map = s->maps[i].map; 11029 const char *name = s->maps[i].name; 11030 void **mmaped = s->maps[i].mmaped; 11031 11032 *map = bpf_object__find_map_by_name(obj, name); 11033 if (!*map) { 11034 pr_warn("failed to find skeleton map '%s'\n", name); 11035 return -ESRCH; 11036 } 11037 11038 /* externs shouldn't be pre-setup from user code */ 11039 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11040 *mmaped = (*map)->mmaped; 11041 } 11042 11043 for (i = 0; i < s->prog_cnt; i++) { 11044 struct bpf_program **prog = s->progs[i].prog; 11045 const char *name = s->progs[i].name; 11046 11047 *prog = bpf_object__find_program_by_name(obj, name); 11048 if (!*prog) { 11049 pr_warn("failed to find skeleton program '%s'\n", name); 11050 return -ESRCH; 11051 } 11052 } 11053 11054 return 0; 11055 } 11056 11057 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11058 { 11059 int i, err; 11060 11061 err = bpf_object__load(*s->obj); 11062 if (err) { 11063 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11064 return err; 11065 } 11066 11067 for (i = 0; i < s->map_cnt; i++) { 11068 struct bpf_map *map = *s->maps[i].map; 11069 size_t mmap_sz = bpf_map_mmap_sz(map); 11070 int prot, map_fd = bpf_map__fd(map); 11071 void **mmaped = s->maps[i].mmaped; 11072 11073 if (!mmaped) 11074 continue; 11075 11076 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11077 *mmaped = NULL; 11078 continue; 11079 } 11080 11081 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11082 prot = PROT_READ; 11083 else 11084 prot = PROT_READ | PROT_WRITE; 11085 11086 /* Remap anonymous mmap()-ed "map initialization image" as 11087 * a BPF map-backed mmap()-ed memory, but preserving the same 11088 * memory address. This will cause kernel to change process' 11089 * page table to point to a different piece of kernel memory, 11090 * but from userspace point of view memory address (and its 11091 * contents, being identical at this point) will stay the 11092 * same. This mapping will be released by bpf_object__close() 11093 * as per normal clean up procedure, so we don't need to worry 11094 * about it from skeleton's clean up perspective. 11095 */ 11096 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11097 MAP_SHARED | MAP_FIXED, map_fd, 0); 11098 if (*mmaped == MAP_FAILED) { 11099 err = -errno; 11100 *mmaped = NULL; 11101 pr_warn("failed to re-mmap() map '%s': %d\n", 11102 bpf_map__name(map), err); 11103 return err; 11104 } 11105 } 11106 11107 return 0; 11108 } 11109 11110 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11111 { 11112 int i; 11113 11114 for (i = 0; i < s->prog_cnt; i++) { 11115 struct bpf_program *prog = *s->progs[i].prog; 11116 struct bpf_link **link = s->progs[i].link; 11117 const struct bpf_sec_def *sec_def; 11118 11119 if (!prog->load) 11120 continue; 11121 11122 sec_def = find_sec_def(prog->sec_name); 11123 if (!sec_def || !sec_def->attach_fn) 11124 continue; 11125 11126 *link = sec_def->attach_fn(sec_def, prog); 11127 if (IS_ERR(*link)) { 11128 pr_warn("failed to auto-attach program '%s': %ld\n", 11129 bpf_program__name(prog), PTR_ERR(*link)); 11130 return PTR_ERR(*link); 11131 } 11132 } 11133 11134 return 0; 11135 } 11136 11137 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11138 { 11139 int i; 11140 11141 for (i = 0; i < s->prog_cnt; i++) { 11142 struct bpf_link **link = s->progs[i].link; 11143 11144 bpf_link__destroy(*link); 11145 *link = NULL; 11146 } 11147 } 11148 11149 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11150 { 11151 if (s->progs) 11152 bpf_object__detach_skeleton(s); 11153 if (s->obj) 11154 bpf_object__close(*s->obj); 11155 free(s->maps); 11156 free(s->progs); 11157 free(s); 11158 } 11159