1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 64 65 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 66 67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 68 * compilation if user enables corresponding warning. Disable it explicitly. 69 */ 70 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 71 72 #define __printf(a, b) __attribute__((format(printf, a, b))) 73 74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 76 static int map_set_def_max_entries(struct bpf_map *map); 77 78 static const char * const attach_type_name[] = { 79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 84 [BPF_CGROUP_DEVICE] = "cgroup_device", 85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 111 [BPF_LIRC_MODE2] = "lirc_mode2", 112 [BPF_FLOW_DISSECTOR] = "flow_dissector", 113 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 114 [BPF_TRACE_FENTRY] = "trace_fentry", 115 [BPF_TRACE_FEXIT] = "trace_fexit", 116 [BPF_MODIFY_RETURN] = "modify_return", 117 [BPF_LSM_MAC] = "lsm_mac", 118 [BPF_LSM_CGROUP] = "lsm_cgroup", 119 [BPF_SK_LOOKUP] = "sk_lookup", 120 [BPF_TRACE_ITER] = "trace_iter", 121 [BPF_XDP_DEVMAP] = "xdp_devmap", 122 [BPF_XDP_CPUMAP] = "xdp_cpumap", 123 [BPF_XDP] = "xdp", 124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 126 [BPF_PERF_EVENT] = "perf_event", 127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 128 [BPF_STRUCT_OPS] = "struct_ops", 129 [BPF_NETFILTER] = "netfilter", 130 [BPF_TCX_INGRESS] = "tcx_ingress", 131 [BPF_TCX_EGRESS] = "tcx_egress", 132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 133 [BPF_NETKIT_PRIMARY] = "netkit_primary", 134 [BPF_NETKIT_PEER] = "netkit_peer", 135 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 136 }; 137 138 static const char * const link_type_name[] = { 139 [BPF_LINK_TYPE_UNSPEC] = "unspec", 140 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 141 [BPF_LINK_TYPE_TRACING] = "tracing", 142 [BPF_LINK_TYPE_CGROUP] = "cgroup", 143 [BPF_LINK_TYPE_ITER] = "iter", 144 [BPF_LINK_TYPE_NETNS] = "netns", 145 [BPF_LINK_TYPE_XDP] = "xdp", 146 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 147 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 148 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 149 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 150 [BPF_LINK_TYPE_TCX] = "tcx", 151 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 152 [BPF_LINK_TYPE_NETKIT] = "netkit", 153 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 154 }; 155 156 static const char * const map_type_name[] = { 157 [BPF_MAP_TYPE_UNSPEC] = "unspec", 158 [BPF_MAP_TYPE_HASH] = "hash", 159 [BPF_MAP_TYPE_ARRAY] = "array", 160 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 161 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 162 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 163 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 164 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 165 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 166 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 167 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 168 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 169 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 170 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 171 [BPF_MAP_TYPE_DEVMAP] = "devmap", 172 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 173 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 174 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 175 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 176 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 177 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 178 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 179 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 180 [BPF_MAP_TYPE_QUEUE] = "queue", 181 [BPF_MAP_TYPE_STACK] = "stack", 182 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 183 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 184 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 185 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 186 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 187 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 188 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 189 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 190 [BPF_MAP_TYPE_ARENA] = "arena", 191 }; 192 193 static const char * const prog_type_name[] = { 194 [BPF_PROG_TYPE_UNSPEC] = "unspec", 195 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 196 [BPF_PROG_TYPE_KPROBE] = "kprobe", 197 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 198 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 199 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 200 [BPF_PROG_TYPE_XDP] = "xdp", 201 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 202 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 203 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 204 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 205 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 206 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 207 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 208 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 209 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 210 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 211 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 212 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 213 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 214 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 215 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 216 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 217 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 218 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 219 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 220 [BPF_PROG_TYPE_TRACING] = "tracing", 221 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 222 [BPF_PROG_TYPE_EXT] = "ext", 223 [BPF_PROG_TYPE_LSM] = "lsm", 224 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 225 [BPF_PROG_TYPE_SYSCALL] = "syscall", 226 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 227 }; 228 229 static int __base_pr(enum libbpf_print_level level, const char *format, 230 va_list args) 231 { 232 const char *env_var = "LIBBPF_LOG_LEVEL"; 233 static enum libbpf_print_level min_level = LIBBPF_INFO; 234 static bool initialized; 235 236 if (!initialized) { 237 char *verbosity; 238 239 initialized = true; 240 verbosity = getenv(env_var); 241 if (verbosity) { 242 if (strcasecmp(verbosity, "warn") == 0) 243 min_level = LIBBPF_WARN; 244 else if (strcasecmp(verbosity, "debug") == 0) 245 min_level = LIBBPF_DEBUG; 246 else if (strcasecmp(verbosity, "info") == 0) 247 min_level = LIBBPF_INFO; 248 else 249 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 250 env_var, verbosity); 251 } 252 } 253 254 /* if too verbose, skip logging */ 255 if (level > min_level) 256 return 0; 257 258 return vfprintf(stderr, format, args); 259 } 260 261 static libbpf_print_fn_t __libbpf_pr = __base_pr; 262 263 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 264 { 265 libbpf_print_fn_t old_print_fn; 266 267 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 268 269 return old_print_fn; 270 } 271 272 __printf(2, 3) 273 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 274 { 275 va_list args; 276 int old_errno; 277 libbpf_print_fn_t print_fn; 278 279 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 280 if (!print_fn) 281 return; 282 283 old_errno = errno; 284 285 va_start(args, format); 286 __libbpf_pr(level, format, args); 287 va_end(args); 288 289 errno = old_errno; 290 } 291 292 static void pr_perm_msg(int err) 293 { 294 struct rlimit limit; 295 char buf[100]; 296 297 if (err != -EPERM || geteuid() != 0) 298 return; 299 300 err = getrlimit(RLIMIT_MEMLOCK, &limit); 301 if (err) 302 return; 303 304 if (limit.rlim_cur == RLIM_INFINITY) 305 return; 306 307 if (limit.rlim_cur < 1024) 308 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 309 else if (limit.rlim_cur < 1024*1024) 310 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 311 else 312 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 313 314 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 315 buf); 316 } 317 318 #define STRERR_BUFSIZE 128 319 320 /* Copied from tools/perf/util/util.h */ 321 #ifndef zfree 322 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 323 #endif 324 325 #ifndef zclose 326 # define zclose(fd) ({ \ 327 int ___err = 0; \ 328 if ((fd) >= 0) \ 329 ___err = close((fd)); \ 330 fd = -1; \ 331 ___err; }) 332 #endif 333 334 static inline __u64 ptr_to_u64(const void *ptr) 335 { 336 return (__u64) (unsigned long) ptr; 337 } 338 339 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 340 { 341 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 342 return 0; 343 } 344 345 __u32 libbpf_major_version(void) 346 { 347 return LIBBPF_MAJOR_VERSION; 348 } 349 350 __u32 libbpf_minor_version(void) 351 { 352 return LIBBPF_MINOR_VERSION; 353 } 354 355 const char *libbpf_version_string(void) 356 { 357 #define __S(X) #X 358 #define _S(X) __S(X) 359 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 360 #undef _S 361 #undef __S 362 } 363 364 enum reloc_type { 365 RELO_LD64, 366 RELO_CALL, 367 RELO_DATA, 368 RELO_EXTERN_LD64, 369 RELO_EXTERN_CALL, 370 RELO_SUBPROG_ADDR, 371 RELO_CORE, 372 }; 373 374 struct reloc_desc { 375 enum reloc_type type; 376 int insn_idx; 377 union { 378 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 379 struct { 380 int map_idx; 381 int sym_off; 382 int ext_idx; 383 }; 384 }; 385 }; 386 387 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 388 enum sec_def_flags { 389 SEC_NONE = 0, 390 /* expected_attach_type is optional, if kernel doesn't support that */ 391 SEC_EXP_ATTACH_OPT = 1, 392 /* legacy, only used by libbpf_get_type_names() and 393 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 394 * This used to be associated with cgroup (and few other) BPF programs 395 * that were attachable through BPF_PROG_ATTACH command. Pretty 396 * meaningless nowadays, though. 397 */ 398 SEC_ATTACHABLE = 2, 399 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 400 /* attachment target is specified through BTF ID in either kernel or 401 * other BPF program's BTF object 402 */ 403 SEC_ATTACH_BTF = 4, 404 /* BPF program type allows sleeping/blocking in kernel */ 405 SEC_SLEEPABLE = 8, 406 /* BPF program support non-linear XDP buffer */ 407 SEC_XDP_FRAGS = 16, 408 /* Setup proper attach type for usdt probes. */ 409 SEC_USDT = 32, 410 }; 411 412 struct bpf_sec_def { 413 char *sec; 414 enum bpf_prog_type prog_type; 415 enum bpf_attach_type expected_attach_type; 416 long cookie; 417 int handler_id; 418 419 libbpf_prog_setup_fn_t prog_setup_fn; 420 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 421 libbpf_prog_attach_fn_t prog_attach_fn; 422 }; 423 424 /* 425 * bpf_prog should be a better name but it has been used in 426 * linux/filter.h. 427 */ 428 struct bpf_program { 429 char *name; 430 char *sec_name; 431 size_t sec_idx; 432 const struct bpf_sec_def *sec_def; 433 /* this program's instruction offset (in number of instructions) 434 * within its containing ELF section 435 */ 436 size_t sec_insn_off; 437 /* number of original instructions in ELF section belonging to this 438 * program, not taking into account subprogram instructions possible 439 * appended later during relocation 440 */ 441 size_t sec_insn_cnt; 442 /* Offset (in number of instructions) of the start of instruction 443 * belonging to this BPF program within its containing main BPF 444 * program. For the entry-point (main) BPF program, this is always 445 * zero. For a sub-program, this gets reset before each of main BPF 446 * programs are processed and relocated and is used to determined 447 * whether sub-program was already appended to the main program, and 448 * if yes, at which instruction offset. 449 */ 450 size_t sub_insn_off; 451 452 /* instructions that belong to BPF program; insns[0] is located at 453 * sec_insn_off instruction within its ELF section in ELF file, so 454 * when mapping ELF file instruction index to the local instruction, 455 * one needs to subtract sec_insn_off; and vice versa. 456 */ 457 struct bpf_insn *insns; 458 /* actual number of instruction in this BPF program's image; for 459 * entry-point BPF programs this includes the size of main program 460 * itself plus all the used sub-programs, appended at the end 461 */ 462 size_t insns_cnt; 463 464 struct reloc_desc *reloc_desc; 465 int nr_reloc; 466 467 /* BPF verifier log settings */ 468 char *log_buf; 469 size_t log_size; 470 __u32 log_level; 471 472 struct bpf_object *obj; 473 474 int fd; 475 bool autoload; 476 bool autoattach; 477 bool sym_global; 478 bool mark_btf_static; 479 enum bpf_prog_type type; 480 enum bpf_attach_type expected_attach_type; 481 int exception_cb_idx; 482 483 int prog_ifindex; 484 __u32 attach_btf_obj_fd; 485 __u32 attach_btf_id; 486 __u32 attach_prog_fd; 487 488 void *func_info; 489 __u32 func_info_rec_size; 490 __u32 func_info_cnt; 491 492 void *line_info; 493 __u32 line_info_rec_size; 494 __u32 line_info_cnt; 495 __u32 prog_flags; 496 }; 497 498 struct bpf_struct_ops { 499 struct bpf_program **progs; 500 __u32 *kern_func_off; 501 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 502 void *data; 503 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 504 * btf_vmlinux's format. 505 * struct bpf_struct_ops_tcp_congestion_ops { 506 * [... some other kernel fields ...] 507 * struct tcp_congestion_ops data; 508 * } 509 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 510 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 511 * from "data". 512 */ 513 void *kern_vdata; 514 __u32 type_id; 515 }; 516 517 #define DATA_SEC ".data" 518 #define BSS_SEC ".bss" 519 #define RODATA_SEC ".rodata" 520 #define KCONFIG_SEC ".kconfig" 521 #define KSYMS_SEC ".ksyms" 522 #define STRUCT_OPS_SEC ".struct_ops" 523 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 524 #define ARENA_SEC ".addr_space.1" 525 526 enum libbpf_map_type { 527 LIBBPF_MAP_UNSPEC, 528 LIBBPF_MAP_DATA, 529 LIBBPF_MAP_BSS, 530 LIBBPF_MAP_RODATA, 531 LIBBPF_MAP_KCONFIG, 532 }; 533 534 struct bpf_map_def { 535 unsigned int type; 536 unsigned int key_size; 537 unsigned int value_size; 538 unsigned int max_entries; 539 unsigned int map_flags; 540 }; 541 542 struct bpf_map { 543 struct bpf_object *obj; 544 char *name; 545 /* real_name is defined for special internal maps (.rodata*, 546 * .data*, .bss, .kconfig) and preserves their original ELF section 547 * name. This is important to be able to find corresponding BTF 548 * DATASEC information. 549 */ 550 char *real_name; 551 int fd; 552 int sec_idx; 553 size_t sec_offset; 554 int map_ifindex; 555 int inner_map_fd; 556 struct bpf_map_def def; 557 __u32 numa_node; 558 __u32 btf_var_idx; 559 int mod_btf_fd; 560 __u32 btf_key_type_id; 561 __u32 btf_value_type_id; 562 __u32 btf_vmlinux_value_type_id; 563 enum libbpf_map_type libbpf_type; 564 void *mmaped; 565 struct bpf_struct_ops *st_ops; 566 struct bpf_map *inner_map; 567 void **init_slots; 568 int init_slots_sz; 569 char *pin_path; 570 bool pinned; 571 bool reused; 572 bool autocreate; 573 bool autoattach; 574 __u64 map_extra; 575 }; 576 577 enum extern_type { 578 EXT_UNKNOWN, 579 EXT_KCFG, 580 EXT_KSYM, 581 }; 582 583 enum kcfg_type { 584 KCFG_UNKNOWN, 585 KCFG_CHAR, 586 KCFG_BOOL, 587 KCFG_INT, 588 KCFG_TRISTATE, 589 KCFG_CHAR_ARR, 590 }; 591 592 struct extern_desc { 593 enum extern_type type; 594 int sym_idx; 595 int btf_id; 596 int sec_btf_id; 597 const char *name; 598 char *essent_name; 599 bool is_set; 600 bool is_weak; 601 union { 602 struct { 603 enum kcfg_type type; 604 int sz; 605 int align; 606 int data_off; 607 bool is_signed; 608 } kcfg; 609 struct { 610 unsigned long long addr; 611 612 /* target btf_id of the corresponding kernel var. */ 613 int kernel_btf_obj_fd; 614 int kernel_btf_id; 615 616 /* local btf_id of the ksym extern's type. */ 617 __u32 type_id; 618 /* BTF fd index to be patched in for insn->off, this is 619 * 0 for vmlinux BTF, index in obj->fd_array for module 620 * BTF 621 */ 622 __s16 btf_fd_idx; 623 } ksym; 624 }; 625 }; 626 627 struct module_btf { 628 struct btf *btf; 629 char *name; 630 __u32 id; 631 int fd; 632 int fd_array_idx; 633 }; 634 635 enum sec_type { 636 SEC_UNUSED = 0, 637 SEC_RELO, 638 SEC_BSS, 639 SEC_DATA, 640 SEC_RODATA, 641 SEC_ST_OPS, 642 }; 643 644 struct elf_sec_desc { 645 enum sec_type sec_type; 646 Elf64_Shdr *shdr; 647 Elf_Data *data; 648 }; 649 650 struct elf_state { 651 int fd; 652 const void *obj_buf; 653 size_t obj_buf_sz; 654 Elf *elf; 655 Elf64_Ehdr *ehdr; 656 Elf_Data *symbols; 657 Elf_Data *arena_data; 658 size_t shstrndx; /* section index for section name strings */ 659 size_t strtabidx; 660 struct elf_sec_desc *secs; 661 size_t sec_cnt; 662 int btf_maps_shndx; 663 __u32 btf_maps_sec_btf_id; 664 int text_shndx; 665 int symbols_shndx; 666 bool has_st_ops; 667 int arena_data_shndx; 668 }; 669 670 struct usdt_manager; 671 672 struct bpf_object { 673 char name[BPF_OBJ_NAME_LEN]; 674 char license[64]; 675 __u32 kern_version; 676 677 struct bpf_program *programs; 678 size_t nr_programs; 679 struct bpf_map *maps; 680 size_t nr_maps; 681 size_t maps_cap; 682 683 char *kconfig; 684 struct extern_desc *externs; 685 int nr_extern; 686 int kconfig_map_idx; 687 688 bool loaded; 689 bool has_subcalls; 690 bool has_rodata; 691 692 struct bpf_gen *gen_loader; 693 694 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 695 struct elf_state efile; 696 697 unsigned char byteorder; 698 699 struct btf *btf; 700 struct btf_ext *btf_ext; 701 702 /* Parse and load BTF vmlinux if any of the programs in the object need 703 * it at load time. 704 */ 705 struct btf *btf_vmlinux; 706 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 707 * override for vmlinux BTF. 708 */ 709 char *btf_custom_path; 710 /* vmlinux BTF override for CO-RE relocations */ 711 struct btf *btf_vmlinux_override; 712 /* Lazily initialized kernel module BTFs */ 713 struct module_btf *btf_modules; 714 bool btf_modules_loaded; 715 size_t btf_module_cnt; 716 size_t btf_module_cap; 717 718 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 719 char *log_buf; 720 size_t log_size; 721 __u32 log_level; 722 723 int *fd_array; 724 size_t fd_array_cap; 725 size_t fd_array_cnt; 726 727 struct usdt_manager *usdt_man; 728 729 struct bpf_map *arena_map; 730 void *arena_data; 731 size_t arena_data_sz; 732 733 struct kern_feature_cache *feat_cache; 734 char *token_path; 735 int token_fd; 736 737 char path[]; 738 }; 739 740 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 741 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 742 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 743 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 744 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 745 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 746 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 747 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 748 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 749 750 void bpf_program__unload(struct bpf_program *prog) 751 { 752 if (!prog) 753 return; 754 755 zclose(prog->fd); 756 757 zfree(&prog->func_info); 758 zfree(&prog->line_info); 759 } 760 761 static void bpf_program__exit(struct bpf_program *prog) 762 { 763 if (!prog) 764 return; 765 766 bpf_program__unload(prog); 767 zfree(&prog->name); 768 zfree(&prog->sec_name); 769 zfree(&prog->insns); 770 zfree(&prog->reloc_desc); 771 772 prog->nr_reloc = 0; 773 prog->insns_cnt = 0; 774 prog->sec_idx = -1; 775 } 776 777 static bool insn_is_subprog_call(const struct bpf_insn *insn) 778 { 779 return BPF_CLASS(insn->code) == BPF_JMP && 780 BPF_OP(insn->code) == BPF_CALL && 781 BPF_SRC(insn->code) == BPF_K && 782 insn->src_reg == BPF_PSEUDO_CALL && 783 insn->dst_reg == 0 && 784 insn->off == 0; 785 } 786 787 static bool is_call_insn(const struct bpf_insn *insn) 788 { 789 return insn->code == (BPF_JMP | BPF_CALL); 790 } 791 792 static bool insn_is_pseudo_func(struct bpf_insn *insn) 793 { 794 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 795 } 796 797 static int 798 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 799 const char *name, size_t sec_idx, const char *sec_name, 800 size_t sec_off, void *insn_data, size_t insn_data_sz) 801 { 802 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 803 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 804 sec_name, name, sec_off, insn_data_sz); 805 return -EINVAL; 806 } 807 808 memset(prog, 0, sizeof(*prog)); 809 prog->obj = obj; 810 811 prog->sec_idx = sec_idx; 812 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 813 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 814 /* insns_cnt can later be increased by appending used subprograms */ 815 prog->insns_cnt = prog->sec_insn_cnt; 816 817 prog->type = BPF_PROG_TYPE_UNSPEC; 818 prog->fd = -1; 819 prog->exception_cb_idx = -1; 820 821 /* libbpf's convention for SEC("?abc...") is that it's just like 822 * SEC("abc...") but the corresponding bpf_program starts out with 823 * autoload set to false. 824 */ 825 if (sec_name[0] == '?') { 826 prog->autoload = false; 827 /* from now on forget there was ? in section name */ 828 sec_name++; 829 } else { 830 prog->autoload = true; 831 } 832 833 prog->autoattach = true; 834 835 /* inherit object's log_level */ 836 prog->log_level = obj->log_level; 837 838 prog->sec_name = strdup(sec_name); 839 if (!prog->sec_name) 840 goto errout; 841 842 prog->name = strdup(name); 843 if (!prog->name) 844 goto errout; 845 846 prog->insns = malloc(insn_data_sz); 847 if (!prog->insns) 848 goto errout; 849 memcpy(prog->insns, insn_data, insn_data_sz); 850 851 return 0; 852 errout: 853 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 854 bpf_program__exit(prog); 855 return -ENOMEM; 856 } 857 858 static int 859 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 860 const char *sec_name, int sec_idx) 861 { 862 Elf_Data *symbols = obj->efile.symbols; 863 struct bpf_program *prog, *progs; 864 void *data = sec_data->d_buf; 865 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 866 int nr_progs, err, i; 867 const char *name; 868 Elf64_Sym *sym; 869 870 progs = obj->programs; 871 nr_progs = obj->nr_programs; 872 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 873 874 for (i = 0; i < nr_syms; i++) { 875 sym = elf_sym_by_idx(obj, i); 876 877 if (sym->st_shndx != sec_idx) 878 continue; 879 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 880 continue; 881 882 prog_sz = sym->st_size; 883 sec_off = sym->st_value; 884 885 name = elf_sym_str(obj, sym->st_name); 886 if (!name) { 887 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 888 sec_name, sec_off); 889 return -LIBBPF_ERRNO__FORMAT; 890 } 891 892 if (sec_off + prog_sz > sec_sz) { 893 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 894 sec_name, sec_off); 895 return -LIBBPF_ERRNO__FORMAT; 896 } 897 898 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 899 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 900 return -ENOTSUP; 901 } 902 903 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 904 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 905 906 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 907 if (!progs) { 908 /* 909 * In this case the original obj->programs 910 * is still valid, so don't need special treat for 911 * bpf_close_object(). 912 */ 913 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 914 sec_name, name); 915 return -ENOMEM; 916 } 917 obj->programs = progs; 918 919 prog = &progs[nr_progs]; 920 921 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 922 sec_off, data + sec_off, prog_sz); 923 if (err) 924 return err; 925 926 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 927 prog->sym_global = true; 928 929 /* if function is a global/weak symbol, but has restricted 930 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 931 * as static to enable more permissive BPF verification mode 932 * with more outside context available to BPF verifier 933 */ 934 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 935 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 936 prog->mark_btf_static = true; 937 938 nr_progs++; 939 obj->nr_programs = nr_progs; 940 } 941 942 return 0; 943 } 944 945 static void bpf_object_bswap_progs(struct bpf_object *obj) 946 { 947 struct bpf_program *prog = obj->programs; 948 struct bpf_insn *insn; 949 int p, i; 950 951 for (p = 0; p < obj->nr_programs; p++, prog++) { 952 insn = prog->insns; 953 for (i = 0; i < prog->insns_cnt; i++, insn++) 954 bpf_insn_bswap(insn); 955 } 956 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 957 } 958 959 static const struct btf_member * 960 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 961 { 962 struct btf_member *m; 963 int i; 964 965 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 966 if (btf_member_bit_offset(t, i) == bit_offset) 967 return m; 968 } 969 970 return NULL; 971 } 972 973 static const struct btf_member * 974 find_member_by_name(const struct btf *btf, const struct btf_type *t, 975 const char *name) 976 { 977 struct btf_member *m; 978 int i; 979 980 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 981 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 982 return m; 983 } 984 985 return NULL; 986 } 987 988 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 989 __u16 kind, struct btf **res_btf, 990 struct module_btf **res_mod_btf); 991 992 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 993 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 994 const char *name, __u32 kind); 995 996 static int 997 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 998 struct module_btf **mod_btf, 999 const struct btf_type **type, __u32 *type_id, 1000 const struct btf_type **vtype, __u32 *vtype_id, 1001 const struct btf_member **data_member) 1002 { 1003 const struct btf_type *kern_type, *kern_vtype; 1004 const struct btf_member *kern_data_member; 1005 struct btf *btf = NULL; 1006 __s32 kern_vtype_id, kern_type_id; 1007 char tname[256]; 1008 __u32 i; 1009 1010 snprintf(tname, sizeof(tname), "%.*s", 1011 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1012 1013 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 1014 &btf, mod_btf); 1015 if (kern_type_id < 0) { 1016 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1017 tname); 1018 return kern_type_id; 1019 } 1020 kern_type = btf__type_by_id(btf, kern_type_id); 1021 1022 /* Find the corresponding "map_value" type that will be used 1023 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1024 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1025 * btf_vmlinux. 1026 */ 1027 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1028 tname, BTF_KIND_STRUCT); 1029 if (kern_vtype_id < 0) { 1030 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1031 STRUCT_OPS_VALUE_PREFIX, tname); 1032 return kern_vtype_id; 1033 } 1034 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1035 1036 /* Find "struct tcp_congestion_ops" from 1037 * struct bpf_struct_ops_tcp_congestion_ops { 1038 * [ ... ] 1039 * struct tcp_congestion_ops data; 1040 * } 1041 */ 1042 kern_data_member = btf_members(kern_vtype); 1043 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1044 if (kern_data_member->type == kern_type_id) 1045 break; 1046 } 1047 if (i == btf_vlen(kern_vtype)) { 1048 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1049 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1050 return -EINVAL; 1051 } 1052 1053 *type = kern_type; 1054 *type_id = kern_type_id; 1055 *vtype = kern_vtype; 1056 *vtype_id = kern_vtype_id; 1057 *data_member = kern_data_member; 1058 1059 return 0; 1060 } 1061 1062 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1063 { 1064 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1065 } 1066 1067 static bool is_valid_st_ops_program(struct bpf_object *obj, 1068 const struct bpf_program *prog) 1069 { 1070 int i; 1071 1072 for (i = 0; i < obj->nr_programs; i++) { 1073 if (&obj->programs[i] == prog) 1074 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1075 } 1076 1077 return false; 1078 } 1079 1080 /* For each struct_ops program P, referenced from some struct_ops map M, 1081 * enable P.autoload if there are Ms for which M.autocreate is true, 1082 * disable P.autoload if for all Ms M.autocreate is false. 1083 * Don't change P.autoload for programs that are not referenced from any maps. 1084 */ 1085 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1086 { 1087 struct bpf_program *prog, *slot_prog; 1088 struct bpf_map *map; 1089 int i, j, k, vlen; 1090 1091 for (i = 0; i < obj->nr_programs; ++i) { 1092 int should_load = false; 1093 int use_cnt = 0; 1094 1095 prog = &obj->programs[i]; 1096 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1097 continue; 1098 1099 for (j = 0; j < obj->nr_maps; ++j) { 1100 const struct btf_type *type; 1101 1102 map = &obj->maps[j]; 1103 if (!bpf_map__is_struct_ops(map)) 1104 continue; 1105 1106 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1107 vlen = btf_vlen(type); 1108 for (k = 0; k < vlen; ++k) { 1109 slot_prog = map->st_ops->progs[k]; 1110 if (prog != slot_prog) 1111 continue; 1112 1113 use_cnt++; 1114 if (map->autocreate) 1115 should_load = true; 1116 } 1117 } 1118 if (use_cnt) 1119 prog->autoload = should_load; 1120 } 1121 1122 return 0; 1123 } 1124 1125 /* Init the map's fields that depend on kern_btf */ 1126 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1127 { 1128 const struct btf_member *member, *kern_member, *kern_data_member; 1129 const struct btf_type *type, *kern_type, *kern_vtype; 1130 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1131 struct bpf_object *obj = map->obj; 1132 const struct btf *btf = obj->btf; 1133 struct bpf_struct_ops *st_ops; 1134 const struct btf *kern_btf; 1135 struct module_btf *mod_btf = NULL; 1136 void *data, *kern_data; 1137 const char *tname; 1138 int err; 1139 1140 st_ops = map->st_ops; 1141 type = btf__type_by_id(btf, st_ops->type_id); 1142 tname = btf__name_by_offset(btf, type->name_off); 1143 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1144 &kern_type, &kern_type_id, 1145 &kern_vtype, &kern_vtype_id, 1146 &kern_data_member); 1147 if (err) 1148 return err; 1149 1150 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1151 1152 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1153 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1154 1155 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1156 map->def.value_size = kern_vtype->size; 1157 map->btf_vmlinux_value_type_id = kern_vtype_id; 1158 1159 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1160 if (!st_ops->kern_vdata) 1161 return -ENOMEM; 1162 1163 data = st_ops->data; 1164 kern_data_off = kern_data_member->offset / 8; 1165 kern_data = st_ops->kern_vdata + kern_data_off; 1166 1167 member = btf_members(type); 1168 for (i = 0; i < btf_vlen(type); i++, member++) { 1169 const struct btf_type *mtype, *kern_mtype; 1170 __u32 mtype_id, kern_mtype_id; 1171 void *mdata, *kern_mdata; 1172 struct bpf_program *prog; 1173 __s64 msize, kern_msize; 1174 __u32 moff, kern_moff; 1175 __u32 kern_member_idx; 1176 const char *mname; 1177 1178 mname = btf__name_by_offset(btf, member->name_off); 1179 moff = member->offset / 8; 1180 mdata = data + moff; 1181 msize = btf__resolve_size(btf, member->type); 1182 if (msize < 0) { 1183 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1184 map->name, mname); 1185 return msize; 1186 } 1187 1188 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1189 if (!kern_member) { 1190 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1191 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1192 map->name, mname); 1193 return -ENOTSUP; 1194 } 1195 1196 if (st_ops->progs[i]) { 1197 /* If we had declaratively set struct_ops callback, we need to 1198 * force its autoload to false, because it doesn't have 1199 * a chance of succeeding from POV of the current struct_ops map. 1200 * If this program is still referenced somewhere else, though, 1201 * then bpf_object_adjust_struct_ops_autoload() will update its 1202 * autoload accordingly. 1203 */ 1204 st_ops->progs[i]->autoload = false; 1205 st_ops->progs[i] = NULL; 1206 } 1207 1208 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1209 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1210 map->name, mname); 1211 continue; 1212 } 1213 1214 kern_member_idx = kern_member - btf_members(kern_type); 1215 if (btf_member_bitfield_size(type, i) || 1216 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1217 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1218 map->name, mname); 1219 return -ENOTSUP; 1220 } 1221 1222 kern_moff = kern_member->offset / 8; 1223 kern_mdata = kern_data + kern_moff; 1224 1225 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1226 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1227 &kern_mtype_id); 1228 if (BTF_INFO_KIND(mtype->info) != 1229 BTF_INFO_KIND(kern_mtype->info)) { 1230 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1231 map->name, mname, BTF_INFO_KIND(mtype->info), 1232 BTF_INFO_KIND(kern_mtype->info)); 1233 return -ENOTSUP; 1234 } 1235 1236 if (btf_is_ptr(mtype)) { 1237 prog = *(void **)mdata; 1238 /* just like for !kern_member case above, reset declaratively 1239 * set (at compile time) program's autload to false, 1240 * if user replaced it with another program or NULL 1241 */ 1242 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1243 st_ops->progs[i]->autoload = false; 1244 1245 /* Update the value from the shadow type */ 1246 st_ops->progs[i] = prog; 1247 if (!prog) 1248 continue; 1249 1250 if (!is_valid_st_ops_program(obj, prog)) { 1251 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1252 map->name, mname); 1253 return -ENOTSUP; 1254 } 1255 1256 kern_mtype = skip_mods_and_typedefs(kern_btf, 1257 kern_mtype->type, 1258 &kern_mtype_id); 1259 1260 /* mtype->type must be a func_proto which was 1261 * guaranteed in bpf_object__collect_st_ops_relos(), 1262 * so only check kern_mtype for func_proto here. 1263 */ 1264 if (!btf_is_func_proto(kern_mtype)) { 1265 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1266 map->name, mname); 1267 return -ENOTSUP; 1268 } 1269 1270 if (mod_btf) 1271 prog->attach_btf_obj_fd = mod_btf->fd; 1272 1273 /* if we haven't yet processed this BPF program, record proper 1274 * attach_btf_id and member_idx 1275 */ 1276 if (!prog->attach_btf_id) { 1277 prog->attach_btf_id = kern_type_id; 1278 prog->expected_attach_type = kern_member_idx; 1279 } 1280 1281 /* struct_ops BPF prog can be re-used between multiple 1282 * .struct_ops & .struct_ops.link as long as it's the 1283 * same struct_ops struct definition and the same 1284 * function pointer field 1285 */ 1286 if (prog->attach_btf_id != kern_type_id) { 1287 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1288 map->name, mname, prog->name, prog->sec_name, prog->type, 1289 prog->attach_btf_id, kern_type_id); 1290 return -EINVAL; 1291 } 1292 if (prog->expected_attach_type != kern_member_idx) { 1293 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1294 map->name, mname, prog->name, prog->sec_name, prog->type, 1295 prog->expected_attach_type, kern_member_idx); 1296 return -EINVAL; 1297 } 1298 1299 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1300 1301 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1302 map->name, mname, prog->name, moff, 1303 kern_moff); 1304 1305 continue; 1306 } 1307 1308 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1309 if (kern_msize < 0 || msize != kern_msize) { 1310 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1311 map->name, mname, (ssize_t)msize, 1312 (ssize_t)kern_msize); 1313 return -ENOTSUP; 1314 } 1315 1316 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1317 map->name, mname, (unsigned int)msize, 1318 moff, kern_moff); 1319 memcpy(kern_mdata, mdata, msize); 1320 } 1321 1322 return 0; 1323 } 1324 1325 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1326 { 1327 struct bpf_map *map; 1328 size_t i; 1329 int err; 1330 1331 for (i = 0; i < obj->nr_maps; i++) { 1332 map = &obj->maps[i]; 1333 1334 if (!bpf_map__is_struct_ops(map)) 1335 continue; 1336 1337 if (!map->autocreate) 1338 continue; 1339 1340 err = bpf_map__init_kern_struct_ops(map); 1341 if (err) 1342 return err; 1343 } 1344 1345 return 0; 1346 } 1347 1348 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1349 int shndx, Elf_Data *data) 1350 { 1351 const struct btf_type *type, *datasec; 1352 const struct btf_var_secinfo *vsi; 1353 struct bpf_struct_ops *st_ops; 1354 const char *tname, *var_name; 1355 __s32 type_id, datasec_id; 1356 const struct btf *btf; 1357 struct bpf_map *map; 1358 __u32 i; 1359 1360 if (shndx == -1) 1361 return 0; 1362 1363 btf = obj->btf; 1364 datasec_id = btf__find_by_name_kind(btf, sec_name, 1365 BTF_KIND_DATASEC); 1366 if (datasec_id < 0) { 1367 pr_warn("struct_ops init: DATASEC %s not found\n", 1368 sec_name); 1369 return -EINVAL; 1370 } 1371 1372 datasec = btf__type_by_id(btf, datasec_id); 1373 vsi = btf_var_secinfos(datasec); 1374 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1375 type = btf__type_by_id(obj->btf, vsi->type); 1376 var_name = btf__name_by_offset(obj->btf, type->name_off); 1377 1378 type_id = btf__resolve_type(obj->btf, vsi->type); 1379 if (type_id < 0) { 1380 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1381 vsi->type, sec_name); 1382 return -EINVAL; 1383 } 1384 1385 type = btf__type_by_id(obj->btf, type_id); 1386 tname = btf__name_by_offset(obj->btf, type->name_off); 1387 if (!tname[0]) { 1388 pr_warn("struct_ops init: anonymous type is not supported\n"); 1389 return -ENOTSUP; 1390 } 1391 if (!btf_is_struct(type)) { 1392 pr_warn("struct_ops init: %s is not a struct\n", tname); 1393 return -EINVAL; 1394 } 1395 1396 map = bpf_object__add_map(obj); 1397 if (IS_ERR(map)) 1398 return PTR_ERR(map); 1399 1400 map->sec_idx = shndx; 1401 map->sec_offset = vsi->offset; 1402 map->name = strdup(var_name); 1403 if (!map->name) 1404 return -ENOMEM; 1405 map->btf_value_type_id = type_id; 1406 1407 /* Follow same convention as for programs autoload: 1408 * SEC("?.struct_ops") means map is not created by default. 1409 */ 1410 if (sec_name[0] == '?') { 1411 map->autocreate = false; 1412 /* from now on forget there was ? in section name */ 1413 sec_name++; 1414 } 1415 1416 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1417 map->def.key_size = sizeof(int); 1418 map->def.value_size = type->size; 1419 map->def.max_entries = 1; 1420 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1421 map->autoattach = true; 1422 1423 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1424 if (!map->st_ops) 1425 return -ENOMEM; 1426 st_ops = map->st_ops; 1427 st_ops->data = malloc(type->size); 1428 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1429 st_ops->kern_func_off = malloc(btf_vlen(type) * 1430 sizeof(*st_ops->kern_func_off)); 1431 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1432 return -ENOMEM; 1433 1434 if (vsi->offset + type->size > data->d_size) { 1435 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1436 var_name, sec_name); 1437 return -EINVAL; 1438 } 1439 1440 memcpy(st_ops->data, 1441 data->d_buf + vsi->offset, 1442 type->size); 1443 st_ops->type_id = type_id; 1444 1445 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1446 tname, type_id, var_name, vsi->offset); 1447 } 1448 1449 return 0; 1450 } 1451 1452 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1453 { 1454 const char *sec_name; 1455 int sec_idx, err; 1456 1457 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1458 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1459 1460 if (desc->sec_type != SEC_ST_OPS) 1461 continue; 1462 1463 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1464 if (!sec_name) 1465 return -LIBBPF_ERRNO__FORMAT; 1466 1467 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1468 if (err) 1469 return err; 1470 } 1471 1472 return 0; 1473 } 1474 1475 static struct bpf_object *bpf_object__new(const char *path, 1476 const void *obj_buf, 1477 size_t obj_buf_sz, 1478 const char *obj_name) 1479 { 1480 struct bpf_object *obj; 1481 char *end; 1482 1483 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1484 if (!obj) { 1485 pr_warn("alloc memory failed for %s\n", path); 1486 return ERR_PTR(-ENOMEM); 1487 } 1488 1489 strcpy(obj->path, path); 1490 if (obj_name) { 1491 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1492 } else { 1493 /* Using basename() GNU version which doesn't modify arg. */ 1494 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1495 end = strchr(obj->name, '.'); 1496 if (end) 1497 *end = 0; 1498 } 1499 1500 obj->efile.fd = -1; 1501 /* 1502 * Caller of this function should also call 1503 * bpf_object__elf_finish() after data collection to return 1504 * obj_buf to user. If not, we should duplicate the buffer to 1505 * avoid user freeing them before elf finish. 1506 */ 1507 obj->efile.obj_buf = obj_buf; 1508 obj->efile.obj_buf_sz = obj_buf_sz; 1509 obj->efile.btf_maps_shndx = -1; 1510 obj->kconfig_map_idx = -1; 1511 1512 obj->kern_version = get_kernel_version(); 1513 obj->loaded = false; 1514 1515 return obj; 1516 } 1517 1518 static void bpf_object__elf_finish(struct bpf_object *obj) 1519 { 1520 if (!obj->efile.elf) 1521 return; 1522 1523 elf_end(obj->efile.elf); 1524 obj->efile.elf = NULL; 1525 obj->efile.ehdr = NULL; 1526 obj->efile.symbols = NULL; 1527 obj->efile.arena_data = NULL; 1528 1529 zfree(&obj->efile.secs); 1530 obj->efile.sec_cnt = 0; 1531 zclose(obj->efile.fd); 1532 obj->efile.obj_buf = NULL; 1533 obj->efile.obj_buf_sz = 0; 1534 } 1535 1536 static int bpf_object__elf_init(struct bpf_object *obj) 1537 { 1538 Elf64_Ehdr *ehdr; 1539 int err = 0; 1540 Elf *elf; 1541 1542 if (obj->efile.elf) { 1543 pr_warn("elf: init internal error\n"); 1544 return -LIBBPF_ERRNO__LIBELF; 1545 } 1546 1547 if (obj->efile.obj_buf_sz > 0) { 1548 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1549 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1550 } else { 1551 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1552 if (obj->efile.fd < 0) { 1553 char errmsg[STRERR_BUFSIZE], *cp; 1554 1555 err = -errno; 1556 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1557 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1558 return err; 1559 } 1560 1561 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1562 } 1563 1564 if (!elf) { 1565 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1566 err = -LIBBPF_ERRNO__LIBELF; 1567 goto errout; 1568 } 1569 1570 obj->efile.elf = elf; 1571 1572 if (elf_kind(elf) != ELF_K_ELF) { 1573 err = -LIBBPF_ERRNO__FORMAT; 1574 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1575 goto errout; 1576 } 1577 1578 if (gelf_getclass(elf) != ELFCLASS64) { 1579 err = -LIBBPF_ERRNO__FORMAT; 1580 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1581 goto errout; 1582 } 1583 1584 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1585 if (!obj->efile.ehdr) { 1586 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1587 err = -LIBBPF_ERRNO__FORMAT; 1588 goto errout; 1589 } 1590 1591 /* Validate ELF object endianness... */ 1592 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1593 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1594 err = -LIBBPF_ERRNO__ENDIAN; 1595 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1596 goto errout; 1597 } 1598 /* and save after bpf_object_open() frees ELF data */ 1599 obj->byteorder = ehdr->e_ident[EI_DATA]; 1600 1601 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1602 pr_warn("elf: failed to get section names section index for %s: %s\n", 1603 obj->path, elf_errmsg(-1)); 1604 err = -LIBBPF_ERRNO__FORMAT; 1605 goto errout; 1606 } 1607 1608 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1609 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1610 pr_warn("elf: failed to get section names strings from %s: %s\n", 1611 obj->path, elf_errmsg(-1)); 1612 err = -LIBBPF_ERRNO__FORMAT; 1613 goto errout; 1614 } 1615 1616 /* Old LLVM set e_machine to EM_NONE */ 1617 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1618 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1619 err = -LIBBPF_ERRNO__FORMAT; 1620 goto errout; 1621 } 1622 1623 return 0; 1624 errout: 1625 bpf_object__elf_finish(obj); 1626 return err; 1627 } 1628 1629 static bool is_native_endianness(struct bpf_object *obj) 1630 { 1631 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1632 return obj->byteorder == ELFDATA2LSB; 1633 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1634 return obj->byteorder == ELFDATA2MSB; 1635 #else 1636 # error "Unrecognized __BYTE_ORDER__" 1637 #endif 1638 } 1639 1640 static int 1641 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1642 { 1643 if (!data) { 1644 pr_warn("invalid license section in %s\n", obj->path); 1645 return -LIBBPF_ERRNO__FORMAT; 1646 } 1647 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1648 * go over allowed ELF data section buffer 1649 */ 1650 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1651 pr_debug("license of %s is %s\n", obj->path, obj->license); 1652 return 0; 1653 } 1654 1655 static int 1656 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1657 { 1658 __u32 kver; 1659 1660 if (!data || size != sizeof(kver)) { 1661 pr_warn("invalid kver section in %s\n", obj->path); 1662 return -LIBBPF_ERRNO__FORMAT; 1663 } 1664 memcpy(&kver, data, sizeof(kver)); 1665 obj->kern_version = kver; 1666 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1667 return 0; 1668 } 1669 1670 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1671 { 1672 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1673 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1674 return true; 1675 return false; 1676 } 1677 1678 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1679 { 1680 Elf_Data *data; 1681 Elf_Scn *scn; 1682 1683 if (!name) 1684 return -EINVAL; 1685 1686 scn = elf_sec_by_name(obj, name); 1687 data = elf_sec_data(obj, scn); 1688 if (data) { 1689 *size = data->d_size; 1690 return 0; /* found it */ 1691 } 1692 1693 return -ENOENT; 1694 } 1695 1696 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1697 { 1698 Elf_Data *symbols = obj->efile.symbols; 1699 const char *sname; 1700 size_t si; 1701 1702 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1703 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1704 1705 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1706 continue; 1707 1708 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1709 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1710 continue; 1711 1712 sname = elf_sym_str(obj, sym->st_name); 1713 if (!sname) { 1714 pr_warn("failed to get sym name string for var %s\n", name); 1715 return ERR_PTR(-EIO); 1716 } 1717 if (strcmp(name, sname) == 0) 1718 return sym; 1719 } 1720 1721 return ERR_PTR(-ENOENT); 1722 } 1723 1724 /* Some versions of Android don't provide memfd_create() in their libc 1725 * implementation, so avoid complications and just go straight to Linux 1726 * syscall. 1727 */ 1728 static int sys_memfd_create(const char *name, unsigned flags) 1729 { 1730 return syscall(__NR_memfd_create, name, flags); 1731 } 1732 1733 #ifndef MFD_CLOEXEC 1734 #define MFD_CLOEXEC 0x0001U 1735 #endif 1736 1737 static int create_placeholder_fd(void) 1738 { 1739 int fd; 1740 1741 fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1742 if (fd < 0) 1743 return -errno; 1744 return fd; 1745 } 1746 1747 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1748 { 1749 struct bpf_map *map; 1750 int err; 1751 1752 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1753 sizeof(*obj->maps), obj->nr_maps + 1); 1754 if (err) 1755 return ERR_PTR(err); 1756 1757 map = &obj->maps[obj->nr_maps++]; 1758 map->obj = obj; 1759 /* Preallocate map FD without actually creating BPF map just yet. 1760 * These map FD "placeholders" will be reused later without changing 1761 * FD value when map is actually created in the kernel. 1762 * 1763 * This is useful to be able to perform BPF program relocations 1764 * without having to create BPF maps before that step. This allows us 1765 * to finalize and load BTF very late in BPF object's loading phase, 1766 * right before BPF maps have to be created and BPF programs have to 1767 * be loaded. By having these map FD placeholders we can perform all 1768 * the sanitizations, relocations, and any other adjustments before we 1769 * start creating actual BPF kernel objects (BTF, maps, progs). 1770 */ 1771 map->fd = create_placeholder_fd(); 1772 if (map->fd < 0) 1773 return ERR_PTR(map->fd); 1774 map->inner_map_fd = -1; 1775 map->autocreate = true; 1776 1777 return map; 1778 } 1779 1780 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1781 { 1782 const long page_sz = sysconf(_SC_PAGE_SIZE); 1783 size_t map_sz; 1784 1785 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1786 map_sz = roundup(map_sz, page_sz); 1787 return map_sz; 1788 } 1789 1790 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1791 { 1792 const long page_sz = sysconf(_SC_PAGE_SIZE); 1793 1794 switch (map->def.type) { 1795 case BPF_MAP_TYPE_ARRAY: 1796 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1797 case BPF_MAP_TYPE_ARENA: 1798 return page_sz * map->def.max_entries; 1799 default: 1800 return 0; /* not supported */ 1801 } 1802 } 1803 1804 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1805 { 1806 void *mmaped; 1807 1808 if (!map->mmaped) 1809 return -EINVAL; 1810 1811 if (old_sz == new_sz) 1812 return 0; 1813 1814 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1815 if (mmaped == MAP_FAILED) 1816 return -errno; 1817 1818 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1819 munmap(map->mmaped, old_sz); 1820 map->mmaped = mmaped; 1821 return 0; 1822 } 1823 1824 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1825 { 1826 char map_name[BPF_OBJ_NAME_LEN], *p; 1827 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1828 1829 /* This is one of the more confusing parts of libbpf for various 1830 * reasons, some of which are historical. The original idea for naming 1831 * internal names was to include as much of BPF object name prefix as 1832 * possible, so that it can be distinguished from similar internal 1833 * maps of a different BPF object. 1834 * As an example, let's say we have bpf_object named 'my_object_name' 1835 * and internal map corresponding to '.rodata' ELF section. The final 1836 * map name advertised to user and to the kernel will be 1837 * 'my_objec.rodata', taking first 8 characters of object name and 1838 * entire 7 characters of '.rodata'. 1839 * Somewhat confusingly, if internal map ELF section name is shorter 1840 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1841 * for the suffix, even though we only have 4 actual characters, and 1842 * resulting map will be called 'my_objec.bss', not even using all 15 1843 * characters allowed by the kernel. Oh well, at least the truncated 1844 * object name is somewhat consistent in this case. But if the map 1845 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1846 * (8 chars) and thus will be left with only first 7 characters of the 1847 * object name ('my_obje'). Happy guessing, user, that the final map 1848 * name will be "my_obje.kconfig". 1849 * Now, with libbpf starting to support arbitrarily named .rodata.* 1850 * and .data.* data sections, it's possible that ELF section name is 1851 * longer than allowed 15 chars, so we now need to be careful to take 1852 * only up to 15 first characters of ELF name, taking no BPF object 1853 * name characters at all. So '.rodata.abracadabra' will result in 1854 * '.rodata.abracad' kernel and user-visible name. 1855 * We need to keep this convoluted logic intact for .data, .bss and 1856 * .rodata maps, but for new custom .data.custom and .rodata.custom 1857 * maps we use their ELF names as is, not prepending bpf_object name 1858 * in front. We still need to truncate them to 15 characters for the 1859 * kernel. Full name can be recovered for such maps by using DATASEC 1860 * BTF type associated with such map's value type, though. 1861 */ 1862 if (sfx_len >= BPF_OBJ_NAME_LEN) 1863 sfx_len = BPF_OBJ_NAME_LEN - 1; 1864 1865 /* if there are two or more dots in map name, it's a custom dot map */ 1866 if (strchr(real_name + 1, '.') != NULL) 1867 pfx_len = 0; 1868 else 1869 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1870 1871 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1872 sfx_len, real_name); 1873 1874 /* sanities map name to characters allowed by kernel */ 1875 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1876 if (!isalnum(*p) && *p != '_' && *p != '.') 1877 *p = '_'; 1878 1879 return strdup(map_name); 1880 } 1881 1882 static int 1883 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1884 1885 /* Internal BPF map is mmap()'able only if at least one of corresponding 1886 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1887 * variable and it's not marked as __hidden (which turns it into, effectively, 1888 * a STATIC variable). 1889 */ 1890 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1891 { 1892 const struct btf_type *t, *vt; 1893 struct btf_var_secinfo *vsi; 1894 int i, n; 1895 1896 if (!map->btf_value_type_id) 1897 return false; 1898 1899 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1900 if (!btf_is_datasec(t)) 1901 return false; 1902 1903 vsi = btf_var_secinfos(t); 1904 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1905 vt = btf__type_by_id(obj->btf, vsi->type); 1906 if (!btf_is_var(vt)) 1907 continue; 1908 1909 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1910 return true; 1911 } 1912 1913 return false; 1914 } 1915 1916 static int 1917 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1918 const char *real_name, int sec_idx, void *data, size_t data_sz) 1919 { 1920 struct bpf_map_def *def; 1921 struct bpf_map *map; 1922 size_t mmap_sz; 1923 int err; 1924 1925 map = bpf_object__add_map(obj); 1926 if (IS_ERR(map)) 1927 return PTR_ERR(map); 1928 1929 map->libbpf_type = type; 1930 map->sec_idx = sec_idx; 1931 map->sec_offset = 0; 1932 map->real_name = strdup(real_name); 1933 map->name = internal_map_name(obj, real_name); 1934 if (!map->real_name || !map->name) { 1935 zfree(&map->real_name); 1936 zfree(&map->name); 1937 return -ENOMEM; 1938 } 1939 1940 def = &map->def; 1941 def->type = BPF_MAP_TYPE_ARRAY; 1942 def->key_size = sizeof(int); 1943 def->value_size = data_sz; 1944 def->max_entries = 1; 1945 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1946 ? BPF_F_RDONLY_PROG : 0; 1947 1948 /* failures are fine because of maps like .rodata.str1.1 */ 1949 (void) map_fill_btf_type_info(obj, map); 1950 1951 if (map_is_mmapable(obj, map)) 1952 def->map_flags |= BPF_F_MMAPABLE; 1953 1954 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1955 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1956 1957 mmap_sz = bpf_map_mmap_sz(map); 1958 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1959 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1960 if (map->mmaped == MAP_FAILED) { 1961 err = -errno; 1962 map->mmaped = NULL; 1963 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1964 map->name, err); 1965 zfree(&map->real_name); 1966 zfree(&map->name); 1967 return err; 1968 } 1969 1970 if (data) 1971 memcpy(map->mmaped, data, data_sz); 1972 1973 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1974 return 0; 1975 } 1976 1977 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1978 { 1979 struct elf_sec_desc *sec_desc; 1980 const char *sec_name; 1981 int err = 0, sec_idx; 1982 1983 /* 1984 * Populate obj->maps with libbpf internal maps. 1985 */ 1986 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1987 sec_desc = &obj->efile.secs[sec_idx]; 1988 1989 /* Skip recognized sections with size 0. */ 1990 if (!sec_desc->data || sec_desc->data->d_size == 0) 1991 continue; 1992 1993 switch (sec_desc->sec_type) { 1994 case SEC_DATA: 1995 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1996 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1997 sec_name, sec_idx, 1998 sec_desc->data->d_buf, 1999 sec_desc->data->d_size); 2000 break; 2001 case SEC_RODATA: 2002 obj->has_rodata = true; 2003 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2004 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2005 sec_name, sec_idx, 2006 sec_desc->data->d_buf, 2007 sec_desc->data->d_size); 2008 break; 2009 case SEC_BSS: 2010 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2011 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2012 sec_name, sec_idx, 2013 NULL, 2014 sec_desc->data->d_size); 2015 break; 2016 default: 2017 /* skip */ 2018 break; 2019 } 2020 if (err) 2021 return err; 2022 } 2023 return 0; 2024 } 2025 2026 2027 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2028 const void *name) 2029 { 2030 int i; 2031 2032 for (i = 0; i < obj->nr_extern; i++) { 2033 if (strcmp(obj->externs[i].name, name) == 0) 2034 return &obj->externs[i]; 2035 } 2036 return NULL; 2037 } 2038 2039 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2040 const void *name, int len) 2041 { 2042 const char *ext_name; 2043 int i; 2044 2045 for (i = 0; i < obj->nr_extern; i++) { 2046 ext_name = obj->externs[i].name; 2047 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2048 return &obj->externs[i]; 2049 } 2050 return NULL; 2051 } 2052 2053 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2054 char value) 2055 { 2056 switch (ext->kcfg.type) { 2057 case KCFG_BOOL: 2058 if (value == 'm') { 2059 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2060 ext->name, value); 2061 return -EINVAL; 2062 } 2063 *(bool *)ext_val = value == 'y' ? true : false; 2064 break; 2065 case KCFG_TRISTATE: 2066 if (value == 'y') 2067 *(enum libbpf_tristate *)ext_val = TRI_YES; 2068 else if (value == 'm') 2069 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2070 else /* value == 'n' */ 2071 *(enum libbpf_tristate *)ext_val = TRI_NO; 2072 break; 2073 case KCFG_CHAR: 2074 *(char *)ext_val = value; 2075 break; 2076 case KCFG_UNKNOWN: 2077 case KCFG_INT: 2078 case KCFG_CHAR_ARR: 2079 default: 2080 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2081 ext->name, value); 2082 return -EINVAL; 2083 } 2084 ext->is_set = true; 2085 return 0; 2086 } 2087 2088 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2089 const char *value) 2090 { 2091 size_t len; 2092 2093 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2094 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2095 ext->name, value); 2096 return -EINVAL; 2097 } 2098 2099 len = strlen(value); 2100 if (value[len - 1] != '"') { 2101 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2102 ext->name, value); 2103 return -EINVAL; 2104 } 2105 2106 /* strip quotes */ 2107 len -= 2; 2108 if (len >= ext->kcfg.sz) { 2109 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2110 ext->name, value, len, ext->kcfg.sz - 1); 2111 len = ext->kcfg.sz - 1; 2112 } 2113 memcpy(ext_val, value + 1, len); 2114 ext_val[len] = '\0'; 2115 ext->is_set = true; 2116 return 0; 2117 } 2118 2119 static int parse_u64(const char *value, __u64 *res) 2120 { 2121 char *value_end; 2122 int err; 2123 2124 errno = 0; 2125 *res = strtoull(value, &value_end, 0); 2126 if (errno) { 2127 err = -errno; 2128 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 2129 return err; 2130 } 2131 if (*value_end) { 2132 pr_warn("failed to parse '%s' as integer completely\n", value); 2133 return -EINVAL; 2134 } 2135 return 0; 2136 } 2137 2138 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2139 { 2140 int bit_sz = ext->kcfg.sz * 8; 2141 2142 if (ext->kcfg.sz == 8) 2143 return true; 2144 2145 /* Validate that value stored in u64 fits in integer of `ext->sz` 2146 * bytes size without any loss of information. If the target integer 2147 * is signed, we rely on the following limits of integer type of 2148 * Y bits and subsequent transformation: 2149 * 2150 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2151 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2152 * 0 <= X + 2^(Y-1) < 2^Y 2153 * 2154 * For unsigned target integer, check that all the (64 - Y) bits are 2155 * zero. 2156 */ 2157 if (ext->kcfg.is_signed) 2158 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2159 else 2160 return (v >> bit_sz) == 0; 2161 } 2162 2163 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2164 __u64 value) 2165 { 2166 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2167 ext->kcfg.type != KCFG_BOOL) { 2168 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2169 ext->name, (unsigned long long)value); 2170 return -EINVAL; 2171 } 2172 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2173 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2174 ext->name, (unsigned long long)value); 2175 return -EINVAL; 2176 2177 } 2178 if (!is_kcfg_value_in_range(ext, value)) { 2179 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2180 ext->name, (unsigned long long)value, ext->kcfg.sz); 2181 return -ERANGE; 2182 } 2183 switch (ext->kcfg.sz) { 2184 case 1: 2185 *(__u8 *)ext_val = value; 2186 break; 2187 case 2: 2188 *(__u16 *)ext_val = value; 2189 break; 2190 case 4: 2191 *(__u32 *)ext_val = value; 2192 break; 2193 case 8: 2194 *(__u64 *)ext_val = value; 2195 break; 2196 default: 2197 return -EINVAL; 2198 } 2199 ext->is_set = true; 2200 return 0; 2201 } 2202 2203 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2204 char *buf, void *data) 2205 { 2206 struct extern_desc *ext; 2207 char *sep, *value; 2208 int len, err = 0; 2209 void *ext_val; 2210 __u64 num; 2211 2212 if (!str_has_pfx(buf, "CONFIG_")) 2213 return 0; 2214 2215 sep = strchr(buf, '='); 2216 if (!sep) { 2217 pr_warn("failed to parse '%s': no separator\n", buf); 2218 return -EINVAL; 2219 } 2220 2221 /* Trim ending '\n' */ 2222 len = strlen(buf); 2223 if (buf[len - 1] == '\n') 2224 buf[len - 1] = '\0'; 2225 /* Split on '=' and ensure that a value is present. */ 2226 *sep = '\0'; 2227 if (!sep[1]) { 2228 *sep = '='; 2229 pr_warn("failed to parse '%s': no value\n", buf); 2230 return -EINVAL; 2231 } 2232 2233 ext = find_extern_by_name(obj, buf); 2234 if (!ext || ext->is_set) 2235 return 0; 2236 2237 ext_val = data + ext->kcfg.data_off; 2238 value = sep + 1; 2239 2240 switch (*value) { 2241 case 'y': case 'n': case 'm': 2242 err = set_kcfg_value_tri(ext, ext_val, *value); 2243 break; 2244 case '"': 2245 err = set_kcfg_value_str(ext, ext_val, value); 2246 break; 2247 default: 2248 /* assume integer */ 2249 err = parse_u64(value, &num); 2250 if (err) { 2251 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2252 return err; 2253 } 2254 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2255 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2256 return -EINVAL; 2257 } 2258 err = set_kcfg_value_num(ext, ext_val, num); 2259 break; 2260 } 2261 if (err) 2262 return err; 2263 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2264 return 0; 2265 } 2266 2267 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2268 { 2269 char buf[PATH_MAX]; 2270 struct utsname uts; 2271 int len, err = 0; 2272 gzFile file; 2273 2274 uname(&uts); 2275 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2276 if (len < 0) 2277 return -EINVAL; 2278 else if (len >= PATH_MAX) 2279 return -ENAMETOOLONG; 2280 2281 /* gzopen also accepts uncompressed files. */ 2282 file = gzopen(buf, "re"); 2283 if (!file) 2284 file = gzopen("/proc/config.gz", "re"); 2285 2286 if (!file) { 2287 pr_warn("failed to open system Kconfig\n"); 2288 return -ENOENT; 2289 } 2290 2291 while (gzgets(file, buf, sizeof(buf))) { 2292 err = bpf_object__process_kconfig_line(obj, buf, data); 2293 if (err) { 2294 pr_warn("error parsing system Kconfig line '%s': %d\n", 2295 buf, err); 2296 goto out; 2297 } 2298 } 2299 2300 out: 2301 gzclose(file); 2302 return err; 2303 } 2304 2305 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2306 const char *config, void *data) 2307 { 2308 char buf[PATH_MAX]; 2309 int err = 0; 2310 FILE *file; 2311 2312 file = fmemopen((void *)config, strlen(config), "r"); 2313 if (!file) { 2314 err = -errno; 2315 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2316 return err; 2317 } 2318 2319 while (fgets(buf, sizeof(buf), file)) { 2320 err = bpf_object__process_kconfig_line(obj, buf, data); 2321 if (err) { 2322 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2323 buf, err); 2324 break; 2325 } 2326 } 2327 2328 fclose(file); 2329 return err; 2330 } 2331 2332 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2333 { 2334 struct extern_desc *last_ext = NULL, *ext; 2335 size_t map_sz; 2336 int i, err; 2337 2338 for (i = 0; i < obj->nr_extern; i++) { 2339 ext = &obj->externs[i]; 2340 if (ext->type == EXT_KCFG) 2341 last_ext = ext; 2342 } 2343 2344 if (!last_ext) 2345 return 0; 2346 2347 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2348 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2349 ".kconfig", obj->efile.symbols_shndx, 2350 NULL, map_sz); 2351 if (err) 2352 return err; 2353 2354 obj->kconfig_map_idx = obj->nr_maps - 1; 2355 2356 return 0; 2357 } 2358 2359 const struct btf_type * 2360 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2361 { 2362 const struct btf_type *t = btf__type_by_id(btf, id); 2363 2364 if (res_id) 2365 *res_id = id; 2366 2367 while (btf_is_mod(t) || btf_is_typedef(t)) { 2368 if (res_id) 2369 *res_id = t->type; 2370 t = btf__type_by_id(btf, t->type); 2371 } 2372 2373 return t; 2374 } 2375 2376 static const struct btf_type * 2377 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2378 { 2379 const struct btf_type *t; 2380 2381 t = skip_mods_and_typedefs(btf, id, NULL); 2382 if (!btf_is_ptr(t)) 2383 return NULL; 2384 2385 t = skip_mods_and_typedefs(btf, t->type, res_id); 2386 2387 return btf_is_func_proto(t) ? t : NULL; 2388 } 2389 2390 static const char *__btf_kind_str(__u16 kind) 2391 { 2392 switch (kind) { 2393 case BTF_KIND_UNKN: return "void"; 2394 case BTF_KIND_INT: return "int"; 2395 case BTF_KIND_PTR: return "ptr"; 2396 case BTF_KIND_ARRAY: return "array"; 2397 case BTF_KIND_STRUCT: return "struct"; 2398 case BTF_KIND_UNION: return "union"; 2399 case BTF_KIND_ENUM: return "enum"; 2400 case BTF_KIND_FWD: return "fwd"; 2401 case BTF_KIND_TYPEDEF: return "typedef"; 2402 case BTF_KIND_VOLATILE: return "volatile"; 2403 case BTF_KIND_CONST: return "const"; 2404 case BTF_KIND_RESTRICT: return "restrict"; 2405 case BTF_KIND_FUNC: return "func"; 2406 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2407 case BTF_KIND_VAR: return "var"; 2408 case BTF_KIND_DATASEC: return "datasec"; 2409 case BTF_KIND_FLOAT: return "float"; 2410 case BTF_KIND_DECL_TAG: return "decl_tag"; 2411 case BTF_KIND_TYPE_TAG: return "type_tag"; 2412 case BTF_KIND_ENUM64: return "enum64"; 2413 default: return "unknown"; 2414 } 2415 } 2416 2417 const char *btf_kind_str(const struct btf_type *t) 2418 { 2419 return __btf_kind_str(btf_kind(t)); 2420 } 2421 2422 /* 2423 * Fetch integer attribute of BTF map definition. Such attributes are 2424 * represented using a pointer to an array, in which dimensionality of array 2425 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2426 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2427 * type definition, while using only sizeof(void *) space in ELF data section. 2428 */ 2429 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2430 const struct btf_member *m, __u32 *res) 2431 { 2432 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2433 const char *name = btf__name_by_offset(btf, m->name_off); 2434 const struct btf_array *arr_info; 2435 const struct btf_type *arr_t; 2436 2437 if (!btf_is_ptr(t)) { 2438 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2439 map_name, name, btf_kind_str(t)); 2440 return false; 2441 } 2442 2443 arr_t = btf__type_by_id(btf, t->type); 2444 if (!arr_t) { 2445 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2446 map_name, name, t->type); 2447 return false; 2448 } 2449 if (!btf_is_array(arr_t)) { 2450 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2451 map_name, name, btf_kind_str(arr_t)); 2452 return false; 2453 } 2454 arr_info = btf_array(arr_t); 2455 *res = arr_info->nelems; 2456 return true; 2457 } 2458 2459 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2460 const struct btf_member *m, __u64 *res) 2461 { 2462 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2463 const char *name = btf__name_by_offset(btf, m->name_off); 2464 2465 if (btf_is_ptr(t)) { 2466 __u32 res32; 2467 bool ret; 2468 2469 ret = get_map_field_int(map_name, btf, m, &res32); 2470 if (ret) 2471 *res = (__u64)res32; 2472 return ret; 2473 } 2474 2475 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2476 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2477 map_name, name, btf_kind_str(t)); 2478 return false; 2479 } 2480 2481 if (btf_vlen(t) != 1) { 2482 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2483 map_name, name); 2484 return false; 2485 } 2486 2487 if (btf_is_enum(t)) { 2488 const struct btf_enum *e = btf_enum(t); 2489 2490 *res = e->val; 2491 } else { 2492 const struct btf_enum64 *e = btf_enum64(t); 2493 2494 *res = btf_enum64_value(e); 2495 } 2496 return true; 2497 } 2498 2499 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2500 { 2501 int len; 2502 2503 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2504 if (len < 0) 2505 return -EINVAL; 2506 if (len >= buf_sz) 2507 return -ENAMETOOLONG; 2508 2509 return 0; 2510 } 2511 2512 static int build_map_pin_path(struct bpf_map *map, const char *path) 2513 { 2514 char buf[PATH_MAX]; 2515 int err; 2516 2517 if (!path) 2518 path = BPF_FS_DEFAULT_PATH; 2519 2520 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2521 if (err) 2522 return err; 2523 2524 return bpf_map__set_pin_path(map, buf); 2525 } 2526 2527 /* should match definition in bpf_helpers.h */ 2528 enum libbpf_pin_type { 2529 LIBBPF_PIN_NONE, 2530 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2531 LIBBPF_PIN_BY_NAME, 2532 }; 2533 2534 int parse_btf_map_def(const char *map_name, struct btf *btf, 2535 const struct btf_type *def_t, bool strict, 2536 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2537 { 2538 const struct btf_type *t; 2539 const struct btf_member *m; 2540 bool is_inner = inner_def == NULL; 2541 int vlen, i; 2542 2543 vlen = btf_vlen(def_t); 2544 m = btf_members(def_t); 2545 for (i = 0; i < vlen; i++, m++) { 2546 const char *name = btf__name_by_offset(btf, m->name_off); 2547 2548 if (!name) { 2549 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2550 return -EINVAL; 2551 } 2552 if (strcmp(name, "type") == 0) { 2553 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2554 return -EINVAL; 2555 map_def->parts |= MAP_DEF_MAP_TYPE; 2556 } else if (strcmp(name, "max_entries") == 0) { 2557 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2558 return -EINVAL; 2559 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2560 } else if (strcmp(name, "map_flags") == 0) { 2561 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2562 return -EINVAL; 2563 map_def->parts |= MAP_DEF_MAP_FLAGS; 2564 } else if (strcmp(name, "numa_node") == 0) { 2565 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2566 return -EINVAL; 2567 map_def->parts |= MAP_DEF_NUMA_NODE; 2568 } else if (strcmp(name, "key_size") == 0) { 2569 __u32 sz; 2570 2571 if (!get_map_field_int(map_name, btf, m, &sz)) 2572 return -EINVAL; 2573 if (map_def->key_size && map_def->key_size != sz) { 2574 pr_warn("map '%s': conflicting key size %u != %u.\n", 2575 map_name, map_def->key_size, sz); 2576 return -EINVAL; 2577 } 2578 map_def->key_size = sz; 2579 map_def->parts |= MAP_DEF_KEY_SIZE; 2580 } else if (strcmp(name, "key") == 0) { 2581 __s64 sz; 2582 2583 t = btf__type_by_id(btf, m->type); 2584 if (!t) { 2585 pr_warn("map '%s': key type [%d] not found.\n", 2586 map_name, m->type); 2587 return -EINVAL; 2588 } 2589 if (!btf_is_ptr(t)) { 2590 pr_warn("map '%s': key spec is not PTR: %s.\n", 2591 map_name, btf_kind_str(t)); 2592 return -EINVAL; 2593 } 2594 sz = btf__resolve_size(btf, t->type); 2595 if (sz < 0) { 2596 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2597 map_name, t->type, (ssize_t)sz); 2598 return sz; 2599 } 2600 if (map_def->key_size && map_def->key_size != sz) { 2601 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2602 map_name, map_def->key_size, (ssize_t)sz); 2603 return -EINVAL; 2604 } 2605 map_def->key_size = sz; 2606 map_def->key_type_id = t->type; 2607 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2608 } else if (strcmp(name, "value_size") == 0) { 2609 __u32 sz; 2610 2611 if (!get_map_field_int(map_name, btf, m, &sz)) 2612 return -EINVAL; 2613 if (map_def->value_size && map_def->value_size != sz) { 2614 pr_warn("map '%s': conflicting value size %u != %u.\n", 2615 map_name, map_def->value_size, sz); 2616 return -EINVAL; 2617 } 2618 map_def->value_size = sz; 2619 map_def->parts |= MAP_DEF_VALUE_SIZE; 2620 } else if (strcmp(name, "value") == 0) { 2621 __s64 sz; 2622 2623 t = btf__type_by_id(btf, m->type); 2624 if (!t) { 2625 pr_warn("map '%s': value type [%d] not found.\n", 2626 map_name, m->type); 2627 return -EINVAL; 2628 } 2629 if (!btf_is_ptr(t)) { 2630 pr_warn("map '%s': value spec is not PTR: %s.\n", 2631 map_name, btf_kind_str(t)); 2632 return -EINVAL; 2633 } 2634 sz = btf__resolve_size(btf, t->type); 2635 if (sz < 0) { 2636 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2637 map_name, t->type, (ssize_t)sz); 2638 return sz; 2639 } 2640 if (map_def->value_size && map_def->value_size != sz) { 2641 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2642 map_name, map_def->value_size, (ssize_t)sz); 2643 return -EINVAL; 2644 } 2645 map_def->value_size = sz; 2646 map_def->value_type_id = t->type; 2647 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2648 } 2649 else if (strcmp(name, "values") == 0) { 2650 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2651 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2652 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2653 char inner_map_name[128]; 2654 int err; 2655 2656 if (is_inner) { 2657 pr_warn("map '%s': multi-level inner maps not supported.\n", 2658 map_name); 2659 return -ENOTSUP; 2660 } 2661 if (i != vlen - 1) { 2662 pr_warn("map '%s': '%s' member should be last.\n", 2663 map_name, name); 2664 return -EINVAL; 2665 } 2666 if (!is_map_in_map && !is_prog_array) { 2667 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2668 map_name); 2669 return -ENOTSUP; 2670 } 2671 if (map_def->value_size && map_def->value_size != 4) { 2672 pr_warn("map '%s': conflicting value size %u != 4.\n", 2673 map_name, map_def->value_size); 2674 return -EINVAL; 2675 } 2676 map_def->value_size = 4; 2677 t = btf__type_by_id(btf, m->type); 2678 if (!t) { 2679 pr_warn("map '%s': %s type [%d] not found.\n", 2680 map_name, desc, m->type); 2681 return -EINVAL; 2682 } 2683 if (!btf_is_array(t) || btf_array(t)->nelems) { 2684 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2685 map_name, desc); 2686 return -EINVAL; 2687 } 2688 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2689 if (!btf_is_ptr(t)) { 2690 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2691 map_name, desc, btf_kind_str(t)); 2692 return -EINVAL; 2693 } 2694 t = skip_mods_and_typedefs(btf, t->type, NULL); 2695 if (is_prog_array) { 2696 if (!btf_is_func_proto(t)) { 2697 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2698 map_name, btf_kind_str(t)); 2699 return -EINVAL; 2700 } 2701 continue; 2702 } 2703 if (!btf_is_struct(t)) { 2704 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2705 map_name, btf_kind_str(t)); 2706 return -EINVAL; 2707 } 2708 2709 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2710 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2711 if (err) 2712 return err; 2713 2714 map_def->parts |= MAP_DEF_INNER_MAP; 2715 } else if (strcmp(name, "pinning") == 0) { 2716 __u32 val; 2717 2718 if (is_inner) { 2719 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2720 return -EINVAL; 2721 } 2722 if (!get_map_field_int(map_name, btf, m, &val)) 2723 return -EINVAL; 2724 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2725 pr_warn("map '%s': invalid pinning value %u.\n", 2726 map_name, val); 2727 return -EINVAL; 2728 } 2729 map_def->pinning = val; 2730 map_def->parts |= MAP_DEF_PINNING; 2731 } else if (strcmp(name, "map_extra") == 0) { 2732 __u64 map_extra; 2733 2734 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2735 return -EINVAL; 2736 map_def->map_extra = map_extra; 2737 map_def->parts |= MAP_DEF_MAP_EXTRA; 2738 } else { 2739 if (strict) { 2740 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2741 return -ENOTSUP; 2742 } 2743 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2744 } 2745 } 2746 2747 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2748 pr_warn("map '%s': map type isn't specified.\n", map_name); 2749 return -EINVAL; 2750 } 2751 2752 return 0; 2753 } 2754 2755 static size_t adjust_ringbuf_sz(size_t sz) 2756 { 2757 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2758 __u32 mul; 2759 2760 /* if user forgot to set any size, make sure they see error */ 2761 if (sz == 0) 2762 return 0; 2763 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2764 * a power-of-2 multiple of kernel's page size. If user diligently 2765 * satisified these conditions, pass the size through. 2766 */ 2767 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2768 return sz; 2769 2770 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2771 * user-set size to satisfy both user size request and kernel 2772 * requirements and substitute correct max_entries for map creation. 2773 */ 2774 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2775 if (mul * page_sz > sz) 2776 return mul * page_sz; 2777 } 2778 2779 /* if it's impossible to satisfy the conditions (i.e., user size is 2780 * very close to UINT_MAX but is not a power-of-2 multiple of 2781 * page_size) then just return original size and let kernel reject it 2782 */ 2783 return sz; 2784 } 2785 2786 static bool map_is_ringbuf(const struct bpf_map *map) 2787 { 2788 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2789 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2790 } 2791 2792 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2793 { 2794 map->def.type = def->map_type; 2795 map->def.key_size = def->key_size; 2796 map->def.value_size = def->value_size; 2797 map->def.max_entries = def->max_entries; 2798 map->def.map_flags = def->map_flags; 2799 map->map_extra = def->map_extra; 2800 2801 map->numa_node = def->numa_node; 2802 map->btf_key_type_id = def->key_type_id; 2803 map->btf_value_type_id = def->value_type_id; 2804 2805 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2806 if (map_is_ringbuf(map)) 2807 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2808 2809 if (def->parts & MAP_DEF_MAP_TYPE) 2810 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2811 2812 if (def->parts & MAP_DEF_KEY_TYPE) 2813 pr_debug("map '%s': found key [%u], sz = %u.\n", 2814 map->name, def->key_type_id, def->key_size); 2815 else if (def->parts & MAP_DEF_KEY_SIZE) 2816 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2817 2818 if (def->parts & MAP_DEF_VALUE_TYPE) 2819 pr_debug("map '%s': found value [%u], sz = %u.\n", 2820 map->name, def->value_type_id, def->value_size); 2821 else if (def->parts & MAP_DEF_VALUE_SIZE) 2822 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2823 2824 if (def->parts & MAP_DEF_MAX_ENTRIES) 2825 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2826 if (def->parts & MAP_DEF_MAP_FLAGS) 2827 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2828 if (def->parts & MAP_DEF_MAP_EXTRA) 2829 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2830 (unsigned long long)def->map_extra); 2831 if (def->parts & MAP_DEF_PINNING) 2832 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2833 if (def->parts & MAP_DEF_NUMA_NODE) 2834 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2835 2836 if (def->parts & MAP_DEF_INNER_MAP) 2837 pr_debug("map '%s': found inner map definition.\n", map->name); 2838 } 2839 2840 static const char *btf_var_linkage_str(__u32 linkage) 2841 { 2842 switch (linkage) { 2843 case BTF_VAR_STATIC: return "static"; 2844 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2845 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2846 default: return "unknown"; 2847 } 2848 } 2849 2850 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2851 const struct btf_type *sec, 2852 int var_idx, int sec_idx, 2853 const Elf_Data *data, bool strict, 2854 const char *pin_root_path) 2855 { 2856 struct btf_map_def map_def = {}, inner_def = {}; 2857 const struct btf_type *var, *def; 2858 const struct btf_var_secinfo *vi; 2859 const struct btf_var *var_extra; 2860 const char *map_name; 2861 struct bpf_map *map; 2862 int err; 2863 2864 vi = btf_var_secinfos(sec) + var_idx; 2865 var = btf__type_by_id(obj->btf, vi->type); 2866 var_extra = btf_var(var); 2867 map_name = btf__name_by_offset(obj->btf, var->name_off); 2868 2869 if (map_name == NULL || map_name[0] == '\0') { 2870 pr_warn("map #%d: empty name.\n", var_idx); 2871 return -EINVAL; 2872 } 2873 if ((__u64)vi->offset + vi->size > data->d_size) { 2874 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2875 return -EINVAL; 2876 } 2877 if (!btf_is_var(var)) { 2878 pr_warn("map '%s': unexpected var kind %s.\n", 2879 map_name, btf_kind_str(var)); 2880 return -EINVAL; 2881 } 2882 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2883 pr_warn("map '%s': unsupported map linkage %s.\n", 2884 map_name, btf_var_linkage_str(var_extra->linkage)); 2885 return -EOPNOTSUPP; 2886 } 2887 2888 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2889 if (!btf_is_struct(def)) { 2890 pr_warn("map '%s': unexpected def kind %s.\n", 2891 map_name, btf_kind_str(var)); 2892 return -EINVAL; 2893 } 2894 if (def->size > vi->size) { 2895 pr_warn("map '%s': invalid def size.\n", map_name); 2896 return -EINVAL; 2897 } 2898 2899 map = bpf_object__add_map(obj); 2900 if (IS_ERR(map)) 2901 return PTR_ERR(map); 2902 map->name = strdup(map_name); 2903 if (!map->name) { 2904 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2905 return -ENOMEM; 2906 } 2907 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2908 map->def.type = BPF_MAP_TYPE_UNSPEC; 2909 map->sec_idx = sec_idx; 2910 map->sec_offset = vi->offset; 2911 map->btf_var_idx = var_idx; 2912 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2913 map_name, map->sec_idx, map->sec_offset); 2914 2915 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2916 if (err) 2917 return err; 2918 2919 fill_map_from_def(map, &map_def); 2920 2921 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2922 err = build_map_pin_path(map, pin_root_path); 2923 if (err) { 2924 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2925 return err; 2926 } 2927 } 2928 2929 if (map_def.parts & MAP_DEF_INNER_MAP) { 2930 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2931 if (!map->inner_map) 2932 return -ENOMEM; 2933 map->inner_map->fd = create_placeholder_fd(); 2934 if (map->inner_map->fd < 0) 2935 return map->inner_map->fd; 2936 map->inner_map->sec_idx = sec_idx; 2937 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2938 if (!map->inner_map->name) 2939 return -ENOMEM; 2940 sprintf(map->inner_map->name, "%s.inner", map_name); 2941 2942 fill_map_from_def(map->inner_map, &inner_def); 2943 } 2944 2945 err = map_fill_btf_type_info(obj, map); 2946 if (err) 2947 return err; 2948 2949 return 0; 2950 } 2951 2952 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2953 const char *sec_name, int sec_idx, 2954 void *data, size_t data_sz) 2955 { 2956 const long page_sz = sysconf(_SC_PAGE_SIZE); 2957 size_t mmap_sz; 2958 2959 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2960 if (roundup(data_sz, page_sz) > mmap_sz) { 2961 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2962 sec_name, mmap_sz, data_sz); 2963 return -E2BIG; 2964 } 2965 2966 obj->arena_data = malloc(data_sz); 2967 if (!obj->arena_data) 2968 return -ENOMEM; 2969 memcpy(obj->arena_data, data, data_sz); 2970 obj->arena_data_sz = data_sz; 2971 2972 /* make bpf_map__init_value() work for ARENA maps */ 2973 map->mmaped = obj->arena_data; 2974 2975 return 0; 2976 } 2977 2978 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2979 const char *pin_root_path) 2980 { 2981 const struct btf_type *sec = NULL; 2982 int nr_types, i, vlen, err; 2983 const struct btf_type *t; 2984 const char *name; 2985 Elf_Data *data; 2986 Elf_Scn *scn; 2987 2988 if (obj->efile.btf_maps_shndx < 0) 2989 return 0; 2990 2991 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2992 data = elf_sec_data(obj, scn); 2993 if (!scn || !data) { 2994 pr_warn("elf: failed to get %s map definitions for %s\n", 2995 MAPS_ELF_SEC, obj->path); 2996 return -EINVAL; 2997 } 2998 2999 nr_types = btf__type_cnt(obj->btf); 3000 for (i = 1; i < nr_types; i++) { 3001 t = btf__type_by_id(obj->btf, i); 3002 if (!btf_is_datasec(t)) 3003 continue; 3004 name = btf__name_by_offset(obj->btf, t->name_off); 3005 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3006 sec = t; 3007 obj->efile.btf_maps_sec_btf_id = i; 3008 break; 3009 } 3010 } 3011 3012 if (!sec) { 3013 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3014 return -ENOENT; 3015 } 3016 3017 vlen = btf_vlen(sec); 3018 for (i = 0; i < vlen; i++) { 3019 err = bpf_object__init_user_btf_map(obj, sec, i, 3020 obj->efile.btf_maps_shndx, 3021 data, strict, 3022 pin_root_path); 3023 if (err) 3024 return err; 3025 } 3026 3027 for (i = 0; i < obj->nr_maps; i++) { 3028 struct bpf_map *map = &obj->maps[i]; 3029 3030 if (map->def.type != BPF_MAP_TYPE_ARENA) 3031 continue; 3032 3033 if (obj->arena_map) { 3034 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3035 map->name, obj->arena_map->name); 3036 return -EINVAL; 3037 } 3038 obj->arena_map = map; 3039 3040 if (obj->efile.arena_data) { 3041 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3042 obj->efile.arena_data->d_buf, 3043 obj->efile.arena_data->d_size); 3044 if (err) 3045 return err; 3046 } 3047 } 3048 if (obj->efile.arena_data && !obj->arena_map) { 3049 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3050 ARENA_SEC); 3051 return -ENOENT; 3052 } 3053 3054 return 0; 3055 } 3056 3057 static int bpf_object__init_maps(struct bpf_object *obj, 3058 const struct bpf_object_open_opts *opts) 3059 { 3060 const char *pin_root_path; 3061 bool strict; 3062 int err = 0; 3063 3064 strict = !OPTS_GET(opts, relaxed_maps, false); 3065 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3066 3067 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3068 err = err ?: bpf_object__init_global_data_maps(obj); 3069 err = err ?: bpf_object__init_kconfig_map(obj); 3070 err = err ?: bpf_object_init_struct_ops(obj); 3071 3072 return err; 3073 } 3074 3075 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3076 { 3077 Elf64_Shdr *sh; 3078 3079 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3080 if (!sh) 3081 return false; 3082 3083 return sh->sh_flags & SHF_EXECINSTR; 3084 } 3085 3086 static bool starts_with_qmark(const char *s) 3087 { 3088 return s && s[0] == '?'; 3089 } 3090 3091 static bool btf_needs_sanitization(struct bpf_object *obj) 3092 { 3093 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3094 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3095 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3096 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3097 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3098 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3099 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3100 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3101 3102 return !has_func || !has_datasec || !has_func_global || !has_float || 3103 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3104 } 3105 3106 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3107 { 3108 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3109 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3110 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3111 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3112 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3113 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3114 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3115 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3116 int enum64_placeholder_id = 0; 3117 struct btf_type *t; 3118 int i, j, vlen; 3119 3120 for (i = 1; i < btf__type_cnt(btf); i++) { 3121 t = (struct btf_type *)btf__type_by_id(btf, i); 3122 3123 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3124 /* replace VAR/DECL_TAG with INT */ 3125 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3126 /* 3127 * using size = 1 is the safest choice, 4 will be too 3128 * big and cause kernel BTF validation failure if 3129 * original variable took less than 4 bytes 3130 */ 3131 t->size = 1; 3132 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3133 } else if (!has_datasec && btf_is_datasec(t)) { 3134 /* replace DATASEC with STRUCT */ 3135 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3136 struct btf_member *m = btf_members(t); 3137 struct btf_type *vt; 3138 char *name; 3139 3140 name = (char *)btf__name_by_offset(btf, t->name_off); 3141 while (*name) { 3142 if (*name == '.' || *name == '?') 3143 *name = '_'; 3144 name++; 3145 } 3146 3147 vlen = btf_vlen(t); 3148 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3149 for (j = 0; j < vlen; j++, v++, m++) { 3150 /* order of field assignments is important */ 3151 m->offset = v->offset * 8; 3152 m->type = v->type; 3153 /* preserve variable name as member name */ 3154 vt = (void *)btf__type_by_id(btf, v->type); 3155 m->name_off = vt->name_off; 3156 } 3157 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3158 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3159 /* replace '?' prefix with '_' for DATASEC names */ 3160 char *name; 3161 3162 name = (char *)btf__name_by_offset(btf, t->name_off); 3163 if (name[0] == '?') 3164 name[0] = '_'; 3165 } else if (!has_func && btf_is_func_proto(t)) { 3166 /* replace FUNC_PROTO with ENUM */ 3167 vlen = btf_vlen(t); 3168 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3169 t->size = sizeof(__u32); /* kernel enforced */ 3170 } else if (!has_func && btf_is_func(t)) { 3171 /* replace FUNC with TYPEDEF */ 3172 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3173 } else if (!has_func_global && btf_is_func(t)) { 3174 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3175 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3176 } else if (!has_float && btf_is_float(t)) { 3177 /* replace FLOAT with an equally-sized empty STRUCT; 3178 * since C compilers do not accept e.g. "float" as a 3179 * valid struct name, make it anonymous 3180 */ 3181 t->name_off = 0; 3182 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3183 } else if (!has_type_tag && btf_is_type_tag(t)) { 3184 /* replace TYPE_TAG with a CONST */ 3185 t->name_off = 0; 3186 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3187 } else if (!has_enum64 && btf_is_enum(t)) { 3188 /* clear the kflag */ 3189 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3190 } else if (!has_enum64 && btf_is_enum64(t)) { 3191 /* replace ENUM64 with a union */ 3192 struct btf_member *m; 3193 3194 if (enum64_placeholder_id == 0) { 3195 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3196 if (enum64_placeholder_id < 0) 3197 return enum64_placeholder_id; 3198 3199 t = (struct btf_type *)btf__type_by_id(btf, i); 3200 } 3201 3202 m = btf_members(t); 3203 vlen = btf_vlen(t); 3204 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3205 for (j = 0; j < vlen; j++, m++) { 3206 m->type = enum64_placeholder_id; 3207 m->offset = 0; 3208 } 3209 } 3210 } 3211 3212 return 0; 3213 } 3214 3215 static bool libbpf_needs_btf(const struct bpf_object *obj) 3216 { 3217 return obj->efile.btf_maps_shndx >= 0 || 3218 obj->efile.has_st_ops || 3219 obj->nr_extern > 0; 3220 } 3221 3222 static bool kernel_needs_btf(const struct bpf_object *obj) 3223 { 3224 return obj->efile.has_st_ops; 3225 } 3226 3227 static int bpf_object__init_btf(struct bpf_object *obj, 3228 Elf_Data *btf_data, 3229 Elf_Data *btf_ext_data) 3230 { 3231 int err = -ENOENT; 3232 3233 if (btf_data) { 3234 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3235 err = libbpf_get_error(obj->btf); 3236 if (err) { 3237 obj->btf = NULL; 3238 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 3239 goto out; 3240 } 3241 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3242 btf__set_pointer_size(obj->btf, 8); 3243 } 3244 if (btf_ext_data) { 3245 struct btf_ext_info *ext_segs[3]; 3246 int seg_num, sec_num; 3247 3248 if (!obj->btf) { 3249 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3250 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3251 goto out; 3252 } 3253 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3254 err = libbpf_get_error(obj->btf_ext); 3255 if (err) { 3256 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 3257 BTF_EXT_ELF_SEC, err); 3258 obj->btf_ext = NULL; 3259 goto out; 3260 } 3261 3262 /* setup .BTF.ext to ELF section mapping */ 3263 ext_segs[0] = &obj->btf_ext->func_info; 3264 ext_segs[1] = &obj->btf_ext->line_info; 3265 ext_segs[2] = &obj->btf_ext->core_relo_info; 3266 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3267 struct btf_ext_info *seg = ext_segs[seg_num]; 3268 const struct btf_ext_info_sec *sec; 3269 const char *sec_name; 3270 Elf_Scn *scn; 3271 3272 if (seg->sec_cnt == 0) 3273 continue; 3274 3275 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3276 if (!seg->sec_idxs) { 3277 err = -ENOMEM; 3278 goto out; 3279 } 3280 3281 sec_num = 0; 3282 for_each_btf_ext_sec(seg, sec) { 3283 /* preventively increment index to avoid doing 3284 * this before every continue below 3285 */ 3286 sec_num++; 3287 3288 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3289 if (str_is_empty(sec_name)) 3290 continue; 3291 scn = elf_sec_by_name(obj, sec_name); 3292 if (!scn) 3293 continue; 3294 3295 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3296 } 3297 } 3298 } 3299 out: 3300 if (err && libbpf_needs_btf(obj)) { 3301 pr_warn("BTF is required, but is missing or corrupted.\n"); 3302 return err; 3303 } 3304 return 0; 3305 } 3306 3307 static int compare_vsi_off(const void *_a, const void *_b) 3308 { 3309 const struct btf_var_secinfo *a = _a; 3310 const struct btf_var_secinfo *b = _b; 3311 3312 return a->offset - b->offset; 3313 } 3314 3315 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3316 struct btf_type *t) 3317 { 3318 __u32 size = 0, i, vars = btf_vlen(t); 3319 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3320 struct btf_var_secinfo *vsi; 3321 bool fixup_offsets = false; 3322 int err; 3323 3324 if (!sec_name) { 3325 pr_debug("No name found in string section for DATASEC kind.\n"); 3326 return -ENOENT; 3327 } 3328 3329 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3330 * variable offsets set at the previous step. Further, not every 3331 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3332 * all fixups altogether for such sections and go straight to sorting 3333 * VARs within their DATASEC. 3334 */ 3335 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3336 goto sort_vars; 3337 3338 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3339 * fix this up. But BPF static linker already fixes this up and fills 3340 * all the sizes and offsets during static linking. So this step has 3341 * to be optional. But the STV_HIDDEN handling is non-optional for any 3342 * non-extern DATASEC, so the variable fixup loop below handles both 3343 * functions at the same time, paying the cost of BTF VAR <-> ELF 3344 * symbol matching just once. 3345 */ 3346 if (t->size == 0) { 3347 err = find_elf_sec_sz(obj, sec_name, &size); 3348 if (err || !size) { 3349 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 3350 sec_name, size, err); 3351 return -ENOENT; 3352 } 3353 3354 t->size = size; 3355 fixup_offsets = true; 3356 } 3357 3358 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3359 const struct btf_type *t_var; 3360 struct btf_var *var; 3361 const char *var_name; 3362 Elf64_Sym *sym; 3363 3364 t_var = btf__type_by_id(btf, vsi->type); 3365 if (!t_var || !btf_is_var(t_var)) { 3366 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3367 return -EINVAL; 3368 } 3369 3370 var = btf_var(t_var); 3371 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3372 continue; 3373 3374 var_name = btf__name_by_offset(btf, t_var->name_off); 3375 if (!var_name) { 3376 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3377 sec_name, i); 3378 return -ENOENT; 3379 } 3380 3381 sym = find_elf_var_sym(obj, var_name); 3382 if (IS_ERR(sym)) { 3383 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3384 sec_name, var_name); 3385 return -ENOENT; 3386 } 3387 3388 if (fixup_offsets) 3389 vsi->offset = sym->st_value; 3390 3391 /* if variable is a global/weak symbol, but has restricted 3392 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3393 * as static. This follows similar logic for functions (BPF 3394 * subprogs) and influences libbpf's further decisions about 3395 * whether to make global data BPF array maps as 3396 * BPF_F_MMAPABLE. 3397 */ 3398 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3399 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3400 var->linkage = BTF_VAR_STATIC; 3401 } 3402 3403 sort_vars: 3404 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3405 return 0; 3406 } 3407 3408 static int bpf_object_fixup_btf(struct bpf_object *obj) 3409 { 3410 int i, n, err = 0; 3411 3412 if (!obj->btf) 3413 return 0; 3414 3415 n = btf__type_cnt(obj->btf); 3416 for (i = 1; i < n; i++) { 3417 struct btf_type *t = btf_type_by_id(obj->btf, i); 3418 3419 /* Loader needs to fix up some of the things compiler 3420 * couldn't get its hands on while emitting BTF. This 3421 * is section size and global variable offset. We use 3422 * the info from the ELF itself for this purpose. 3423 */ 3424 if (btf_is_datasec(t)) { 3425 err = btf_fixup_datasec(obj, obj->btf, t); 3426 if (err) 3427 return err; 3428 } 3429 } 3430 3431 return 0; 3432 } 3433 3434 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3435 { 3436 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3437 prog->type == BPF_PROG_TYPE_LSM) 3438 return true; 3439 3440 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3441 * also need vmlinux BTF 3442 */ 3443 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3444 return true; 3445 3446 return false; 3447 } 3448 3449 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3450 { 3451 return bpf_map__is_struct_ops(map); 3452 } 3453 3454 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3455 { 3456 struct bpf_program *prog; 3457 struct bpf_map *map; 3458 int i; 3459 3460 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3461 * is not specified 3462 */ 3463 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3464 return true; 3465 3466 /* Support for typed ksyms needs kernel BTF */ 3467 for (i = 0; i < obj->nr_extern; i++) { 3468 const struct extern_desc *ext; 3469 3470 ext = &obj->externs[i]; 3471 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3472 return true; 3473 } 3474 3475 bpf_object__for_each_program(prog, obj) { 3476 if (!prog->autoload) 3477 continue; 3478 if (prog_needs_vmlinux_btf(prog)) 3479 return true; 3480 } 3481 3482 bpf_object__for_each_map(map, obj) { 3483 if (map_needs_vmlinux_btf(map)) 3484 return true; 3485 } 3486 3487 return false; 3488 } 3489 3490 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3491 { 3492 int err; 3493 3494 /* btf_vmlinux could be loaded earlier */ 3495 if (obj->btf_vmlinux || obj->gen_loader) 3496 return 0; 3497 3498 if (!force && !obj_needs_vmlinux_btf(obj)) 3499 return 0; 3500 3501 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3502 err = libbpf_get_error(obj->btf_vmlinux); 3503 if (err) { 3504 pr_warn("Error loading vmlinux BTF: %d\n", err); 3505 obj->btf_vmlinux = NULL; 3506 return err; 3507 } 3508 return 0; 3509 } 3510 3511 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3512 { 3513 struct btf *kern_btf = obj->btf; 3514 bool btf_mandatory, sanitize; 3515 int i, err = 0; 3516 3517 if (!obj->btf) 3518 return 0; 3519 3520 if (!kernel_supports(obj, FEAT_BTF)) { 3521 if (kernel_needs_btf(obj)) { 3522 err = -EOPNOTSUPP; 3523 goto report; 3524 } 3525 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3526 return 0; 3527 } 3528 3529 /* Even though some subprogs are global/weak, user might prefer more 3530 * permissive BPF verification process that BPF verifier performs for 3531 * static functions, taking into account more context from the caller 3532 * functions. In such case, they need to mark such subprogs with 3533 * __attribute__((visibility("hidden"))) and libbpf will adjust 3534 * corresponding FUNC BTF type to be marked as static and trigger more 3535 * involved BPF verification process. 3536 */ 3537 for (i = 0; i < obj->nr_programs; i++) { 3538 struct bpf_program *prog = &obj->programs[i]; 3539 struct btf_type *t; 3540 const char *name; 3541 int j, n; 3542 3543 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3544 continue; 3545 3546 n = btf__type_cnt(obj->btf); 3547 for (j = 1; j < n; j++) { 3548 t = btf_type_by_id(obj->btf, j); 3549 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3550 continue; 3551 3552 name = btf__str_by_offset(obj->btf, t->name_off); 3553 if (strcmp(name, prog->name) != 0) 3554 continue; 3555 3556 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3557 break; 3558 } 3559 } 3560 3561 sanitize = btf_needs_sanitization(obj); 3562 if (sanitize) { 3563 const void *raw_data; 3564 __u32 sz; 3565 3566 /* clone BTF to sanitize a copy and leave the original intact */ 3567 raw_data = btf__raw_data(obj->btf, &sz); 3568 kern_btf = btf__new(raw_data, sz); 3569 err = libbpf_get_error(kern_btf); 3570 if (err) 3571 return err; 3572 3573 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3574 btf__set_pointer_size(obj->btf, 8); 3575 err = bpf_object__sanitize_btf(obj, kern_btf); 3576 if (err) 3577 return err; 3578 } 3579 3580 if (obj->gen_loader) { 3581 __u32 raw_size = 0; 3582 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3583 3584 if (!raw_data) 3585 return -ENOMEM; 3586 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3587 /* Pretend to have valid FD to pass various fd >= 0 checks. 3588 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3589 */ 3590 btf__set_fd(kern_btf, 0); 3591 } else { 3592 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3593 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3594 obj->log_level ? 1 : 0, obj->token_fd); 3595 } 3596 if (sanitize) { 3597 if (!err) { 3598 /* move fd to libbpf's BTF */ 3599 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3600 btf__set_fd(kern_btf, -1); 3601 } 3602 btf__free(kern_btf); 3603 } 3604 report: 3605 if (err) { 3606 btf_mandatory = kernel_needs_btf(obj); 3607 if (btf_mandatory) { 3608 pr_warn("Error loading .BTF into kernel: %d. BTF is mandatory, can't proceed.\n", err); 3609 } else { 3610 pr_info("Error loading .BTF into kernel: %d. BTF is optional, ignoring.\n", err); 3611 err = 0; 3612 } 3613 } 3614 return err; 3615 } 3616 3617 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3618 { 3619 const char *name; 3620 3621 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3622 if (!name) { 3623 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3624 off, obj->path, elf_errmsg(-1)); 3625 return NULL; 3626 } 3627 3628 return name; 3629 } 3630 3631 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3632 { 3633 const char *name; 3634 3635 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3636 if (!name) { 3637 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3638 off, obj->path, elf_errmsg(-1)); 3639 return NULL; 3640 } 3641 3642 return name; 3643 } 3644 3645 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3646 { 3647 Elf_Scn *scn; 3648 3649 scn = elf_getscn(obj->efile.elf, idx); 3650 if (!scn) { 3651 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3652 idx, obj->path, elf_errmsg(-1)); 3653 return NULL; 3654 } 3655 return scn; 3656 } 3657 3658 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3659 { 3660 Elf_Scn *scn = NULL; 3661 Elf *elf = obj->efile.elf; 3662 const char *sec_name; 3663 3664 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3665 sec_name = elf_sec_name(obj, scn); 3666 if (!sec_name) 3667 return NULL; 3668 3669 if (strcmp(sec_name, name) != 0) 3670 continue; 3671 3672 return scn; 3673 } 3674 return NULL; 3675 } 3676 3677 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3678 { 3679 Elf64_Shdr *shdr; 3680 3681 if (!scn) 3682 return NULL; 3683 3684 shdr = elf64_getshdr(scn); 3685 if (!shdr) { 3686 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3687 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3688 return NULL; 3689 } 3690 3691 return shdr; 3692 } 3693 3694 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3695 { 3696 const char *name; 3697 Elf64_Shdr *sh; 3698 3699 if (!scn) 3700 return NULL; 3701 3702 sh = elf_sec_hdr(obj, scn); 3703 if (!sh) 3704 return NULL; 3705 3706 name = elf_sec_str(obj, sh->sh_name); 3707 if (!name) { 3708 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3709 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3710 return NULL; 3711 } 3712 3713 return name; 3714 } 3715 3716 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3717 { 3718 Elf_Data *data; 3719 3720 if (!scn) 3721 return NULL; 3722 3723 data = elf_getdata(scn, 0); 3724 if (!data) { 3725 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3726 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3727 obj->path, elf_errmsg(-1)); 3728 return NULL; 3729 } 3730 3731 return data; 3732 } 3733 3734 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3735 { 3736 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3737 return NULL; 3738 3739 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3740 } 3741 3742 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3743 { 3744 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3745 return NULL; 3746 3747 return (Elf64_Rel *)data->d_buf + idx; 3748 } 3749 3750 static bool is_sec_name_dwarf(const char *name) 3751 { 3752 /* approximation, but the actual list is too long */ 3753 return str_has_pfx(name, ".debug_"); 3754 } 3755 3756 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3757 { 3758 /* no special handling of .strtab */ 3759 if (hdr->sh_type == SHT_STRTAB) 3760 return true; 3761 3762 /* ignore .llvm_addrsig section as well */ 3763 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3764 return true; 3765 3766 /* no subprograms will lead to an empty .text section, ignore it */ 3767 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3768 strcmp(name, ".text") == 0) 3769 return true; 3770 3771 /* DWARF sections */ 3772 if (is_sec_name_dwarf(name)) 3773 return true; 3774 3775 if (str_has_pfx(name, ".rel")) { 3776 name += sizeof(".rel") - 1; 3777 /* DWARF section relocations */ 3778 if (is_sec_name_dwarf(name)) 3779 return true; 3780 3781 /* .BTF and .BTF.ext don't need relocations */ 3782 if (strcmp(name, BTF_ELF_SEC) == 0 || 3783 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3784 return true; 3785 } 3786 3787 return false; 3788 } 3789 3790 static int cmp_progs(const void *_a, const void *_b) 3791 { 3792 const struct bpf_program *a = _a; 3793 const struct bpf_program *b = _b; 3794 3795 if (a->sec_idx != b->sec_idx) 3796 return a->sec_idx < b->sec_idx ? -1 : 1; 3797 3798 /* sec_insn_off can't be the same within the section */ 3799 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3800 } 3801 3802 static int bpf_object__elf_collect(struct bpf_object *obj) 3803 { 3804 struct elf_sec_desc *sec_desc; 3805 Elf *elf = obj->efile.elf; 3806 Elf_Data *btf_ext_data = NULL; 3807 Elf_Data *btf_data = NULL; 3808 int idx = 0, err = 0; 3809 const char *name; 3810 Elf_Data *data; 3811 Elf_Scn *scn; 3812 Elf64_Shdr *sh; 3813 3814 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3815 * section. Since section count retrieved by elf_getshdrnum() does 3816 * include sec #0, it is already the necessary size of an array to keep 3817 * all the sections. 3818 */ 3819 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3820 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3821 obj->path, elf_errmsg(-1)); 3822 return -LIBBPF_ERRNO__FORMAT; 3823 } 3824 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3825 if (!obj->efile.secs) 3826 return -ENOMEM; 3827 3828 /* a bunch of ELF parsing functionality depends on processing symbols, 3829 * so do the first pass and find the symbol table 3830 */ 3831 scn = NULL; 3832 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3833 sh = elf_sec_hdr(obj, scn); 3834 if (!sh) 3835 return -LIBBPF_ERRNO__FORMAT; 3836 3837 if (sh->sh_type == SHT_SYMTAB) { 3838 if (obj->efile.symbols) { 3839 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3840 return -LIBBPF_ERRNO__FORMAT; 3841 } 3842 3843 data = elf_sec_data(obj, scn); 3844 if (!data) 3845 return -LIBBPF_ERRNO__FORMAT; 3846 3847 idx = elf_ndxscn(scn); 3848 3849 obj->efile.symbols = data; 3850 obj->efile.symbols_shndx = idx; 3851 obj->efile.strtabidx = sh->sh_link; 3852 } 3853 } 3854 3855 if (!obj->efile.symbols) { 3856 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3857 obj->path); 3858 return -ENOENT; 3859 } 3860 3861 scn = NULL; 3862 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3863 idx = elf_ndxscn(scn); 3864 sec_desc = &obj->efile.secs[idx]; 3865 3866 sh = elf_sec_hdr(obj, scn); 3867 if (!sh) 3868 return -LIBBPF_ERRNO__FORMAT; 3869 3870 name = elf_sec_str(obj, sh->sh_name); 3871 if (!name) 3872 return -LIBBPF_ERRNO__FORMAT; 3873 3874 if (ignore_elf_section(sh, name)) 3875 continue; 3876 3877 data = elf_sec_data(obj, scn); 3878 if (!data) 3879 return -LIBBPF_ERRNO__FORMAT; 3880 3881 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3882 idx, name, (unsigned long)data->d_size, 3883 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3884 (int)sh->sh_type); 3885 3886 if (strcmp(name, "license") == 0) { 3887 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3888 if (err) 3889 return err; 3890 } else if (strcmp(name, "version") == 0) { 3891 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3892 if (err) 3893 return err; 3894 } else if (strcmp(name, "maps") == 0) { 3895 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3896 return -ENOTSUP; 3897 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3898 obj->efile.btf_maps_shndx = idx; 3899 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3900 if (sh->sh_type != SHT_PROGBITS) 3901 return -LIBBPF_ERRNO__FORMAT; 3902 btf_data = data; 3903 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3904 if (sh->sh_type != SHT_PROGBITS) 3905 return -LIBBPF_ERRNO__FORMAT; 3906 btf_ext_data = data; 3907 } else if (sh->sh_type == SHT_SYMTAB) { 3908 /* already processed during the first pass above */ 3909 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3910 if (sh->sh_flags & SHF_EXECINSTR) { 3911 if (strcmp(name, ".text") == 0) 3912 obj->efile.text_shndx = idx; 3913 err = bpf_object__add_programs(obj, data, name, idx); 3914 if (err) 3915 return err; 3916 } else if (strcmp(name, DATA_SEC) == 0 || 3917 str_has_pfx(name, DATA_SEC ".")) { 3918 sec_desc->sec_type = SEC_DATA; 3919 sec_desc->shdr = sh; 3920 sec_desc->data = data; 3921 } else if (strcmp(name, RODATA_SEC) == 0 || 3922 str_has_pfx(name, RODATA_SEC ".")) { 3923 sec_desc->sec_type = SEC_RODATA; 3924 sec_desc->shdr = sh; 3925 sec_desc->data = data; 3926 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3927 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3928 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3929 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3930 sec_desc->sec_type = SEC_ST_OPS; 3931 sec_desc->shdr = sh; 3932 sec_desc->data = data; 3933 obj->efile.has_st_ops = true; 3934 } else if (strcmp(name, ARENA_SEC) == 0) { 3935 obj->efile.arena_data = data; 3936 obj->efile.arena_data_shndx = idx; 3937 } else { 3938 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3939 idx, name); 3940 } 3941 } else if (sh->sh_type == SHT_REL) { 3942 int targ_sec_idx = sh->sh_info; /* points to other section */ 3943 3944 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3945 targ_sec_idx >= obj->efile.sec_cnt) 3946 return -LIBBPF_ERRNO__FORMAT; 3947 3948 /* Only do relo for section with exec instructions */ 3949 if (!section_have_execinstr(obj, targ_sec_idx) && 3950 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3951 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3952 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3953 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3954 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3955 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3956 idx, name, targ_sec_idx, 3957 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3958 continue; 3959 } 3960 3961 sec_desc->sec_type = SEC_RELO; 3962 sec_desc->shdr = sh; 3963 sec_desc->data = data; 3964 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3965 str_has_pfx(name, BSS_SEC "."))) { 3966 sec_desc->sec_type = SEC_BSS; 3967 sec_desc->shdr = sh; 3968 sec_desc->data = data; 3969 } else { 3970 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3971 (size_t)sh->sh_size); 3972 } 3973 } 3974 3975 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3976 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3977 return -LIBBPF_ERRNO__FORMAT; 3978 } 3979 3980 /* change BPF program insns to native endianness for introspection */ 3981 if (!is_native_endianness(obj)) 3982 bpf_object_bswap_progs(obj); 3983 3984 /* sort BPF programs by section name and in-section instruction offset 3985 * for faster search 3986 */ 3987 if (obj->nr_programs) 3988 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3989 3990 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3991 } 3992 3993 static bool sym_is_extern(const Elf64_Sym *sym) 3994 { 3995 int bind = ELF64_ST_BIND(sym->st_info); 3996 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3997 return sym->st_shndx == SHN_UNDEF && 3998 (bind == STB_GLOBAL || bind == STB_WEAK) && 3999 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4000 } 4001 4002 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4003 { 4004 int bind = ELF64_ST_BIND(sym->st_info); 4005 int type = ELF64_ST_TYPE(sym->st_info); 4006 4007 /* in .text section */ 4008 if (sym->st_shndx != text_shndx) 4009 return false; 4010 4011 /* local function */ 4012 if (bind == STB_LOCAL && type == STT_SECTION) 4013 return true; 4014 4015 /* global function */ 4016 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4017 } 4018 4019 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4020 { 4021 const struct btf_type *t; 4022 const char *tname; 4023 int i, n; 4024 4025 if (!btf) 4026 return -ESRCH; 4027 4028 n = btf__type_cnt(btf); 4029 for (i = 1; i < n; i++) { 4030 t = btf__type_by_id(btf, i); 4031 4032 if (!btf_is_var(t) && !btf_is_func(t)) 4033 continue; 4034 4035 tname = btf__name_by_offset(btf, t->name_off); 4036 if (strcmp(tname, ext_name)) 4037 continue; 4038 4039 if (btf_is_var(t) && 4040 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4041 return -EINVAL; 4042 4043 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4044 return -EINVAL; 4045 4046 return i; 4047 } 4048 4049 return -ENOENT; 4050 } 4051 4052 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4053 const struct btf_var_secinfo *vs; 4054 const struct btf_type *t; 4055 int i, j, n; 4056 4057 if (!btf) 4058 return -ESRCH; 4059 4060 n = btf__type_cnt(btf); 4061 for (i = 1; i < n; i++) { 4062 t = btf__type_by_id(btf, i); 4063 4064 if (!btf_is_datasec(t)) 4065 continue; 4066 4067 vs = btf_var_secinfos(t); 4068 for (j = 0; j < btf_vlen(t); j++, vs++) { 4069 if (vs->type == ext_btf_id) 4070 return i; 4071 } 4072 } 4073 4074 return -ENOENT; 4075 } 4076 4077 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4078 bool *is_signed) 4079 { 4080 const struct btf_type *t; 4081 const char *name; 4082 4083 t = skip_mods_and_typedefs(btf, id, NULL); 4084 name = btf__name_by_offset(btf, t->name_off); 4085 4086 if (is_signed) 4087 *is_signed = false; 4088 switch (btf_kind(t)) { 4089 case BTF_KIND_INT: { 4090 int enc = btf_int_encoding(t); 4091 4092 if (enc & BTF_INT_BOOL) 4093 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4094 if (is_signed) 4095 *is_signed = enc & BTF_INT_SIGNED; 4096 if (t->size == 1) 4097 return KCFG_CHAR; 4098 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4099 return KCFG_UNKNOWN; 4100 return KCFG_INT; 4101 } 4102 case BTF_KIND_ENUM: 4103 if (t->size != 4) 4104 return KCFG_UNKNOWN; 4105 if (strcmp(name, "libbpf_tristate")) 4106 return KCFG_UNKNOWN; 4107 return KCFG_TRISTATE; 4108 case BTF_KIND_ENUM64: 4109 if (strcmp(name, "libbpf_tristate")) 4110 return KCFG_UNKNOWN; 4111 return KCFG_TRISTATE; 4112 case BTF_KIND_ARRAY: 4113 if (btf_array(t)->nelems == 0) 4114 return KCFG_UNKNOWN; 4115 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4116 return KCFG_UNKNOWN; 4117 return KCFG_CHAR_ARR; 4118 default: 4119 return KCFG_UNKNOWN; 4120 } 4121 } 4122 4123 static int cmp_externs(const void *_a, const void *_b) 4124 { 4125 const struct extern_desc *a = _a; 4126 const struct extern_desc *b = _b; 4127 4128 if (a->type != b->type) 4129 return a->type < b->type ? -1 : 1; 4130 4131 if (a->type == EXT_KCFG) { 4132 /* descending order by alignment requirements */ 4133 if (a->kcfg.align != b->kcfg.align) 4134 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4135 /* ascending order by size, within same alignment class */ 4136 if (a->kcfg.sz != b->kcfg.sz) 4137 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4138 } 4139 4140 /* resolve ties by name */ 4141 return strcmp(a->name, b->name); 4142 } 4143 4144 static int find_int_btf_id(const struct btf *btf) 4145 { 4146 const struct btf_type *t; 4147 int i, n; 4148 4149 n = btf__type_cnt(btf); 4150 for (i = 1; i < n; i++) { 4151 t = btf__type_by_id(btf, i); 4152 4153 if (btf_is_int(t) && btf_int_bits(t) == 32) 4154 return i; 4155 } 4156 4157 return 0; 4158 } 4159 4160 static int add_dummy_ksym_var(struct btf *btf) 4161 { 4162 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4163 const struct btf_var_secinfo *vs; 4164 const struct btf_type *sec; 4165 4166 if (!btf) 4167 return 0; 4168 4169 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4170 BTF_KIND_DATASEC); 4171 if (sec_btf_id < 0) 4172 return 0; 4173 4174 sec = btf__type_by_id(btf, sec_btf_id); 4175 vs = btf_var_secinfos(sec); 4176 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4177 const struct btf_type *vt; 4178 4179 vt = btf__type_by_id(btf, vs->type); 4180 if (btf_is_func(vt)) 4181 break; 4182 } 4183 4184 /* No func in ksyms sec. No need to add dummy var. */ 4185 if (i == btf_vlen(sec)) 4186 return 0; 4187 4188 int_btf_id = find_int_btf_id(btf); 4189 dummy_var_btf_id = btf__add_var(btf, 4190 "dummy_ksym", 4191 BTF_VAR_GLOBAL_ALLOCATED, 4192 int_btf_id); 4193 if (dummy_var_btf_id < 0) 4194 pr_warn("cannot create a dummy_ksym var\n"); 4195 4196 return dummy_var_btf_id; 4197 } 4198 4199 static int bpf_object__collect_externs(struct bpf_object *obj) 4200 { 4201 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4202 const struct btf_type *t; 4203 struct extern_desc *ext; 4204 int i, n, off, dummy_var_btf_id; 4205 const char *ext_name, *sec_name; 4206 size_t ext_essent_len; 4207 Elf_Scn *scn; 4208 Elf64_Shdr *sh; 4209 4210 if (!obj->efile.symbols) 4211 return 0; 4212 4213 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4214 sh = elf_sec_hdr(obj, scn); 4215 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4216 return -LIBBPF_ERRNO__FORMAT; 4217 4218 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4219 if (dummy_var_btf_id < 0) 4220 return dummy_var_btf_id; 4221 4222 n = sh->sh_size / sh->sh_entsize; 4223 pr_debug("looking for externs among %d symbols...\n", n); 4224 4225 for (i = 0; i < n; i++) { 4226 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4227 4228 if (!sym) 4229 return -LIBBPF_ERRNO__FORMAT; 4230 if (!sym_is_extern(sym)) 4231 continue; 4232 ext_name = elf_sym_str(obj, sym->st_name); 4233 if (!ext_name || !ext_name[0]) 4234 continue; 4235 4236 ext = obj->externs; 4237 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4238 if (!ext) 4239 return -ENOMEM; 4240 obj->externs = ext; 4241 ext = &ext[obj->nr_extern]; 4242 memset(ext, 0, sizeof(*ext)); 4243 obj->nr_extern++; 4244 4245 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4246 if (ext->btf_id <= 0) { 4247 pr_warn("failed to find BTF for extern '%s': %d\n", 4248 ext_name, ext->btf_id); 4249 return ext->btf_id; 4250 } 4251 t = btf__type_by_id(obj->btf, ext->btf_id); 4252 ext->name = btf__name_by_offset(obj->btf, t->name_off); 4253 ext->sym_idx = i; 4254 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4255 4256 ext_essent_len = bpf_core_essential_name_len(ext->name); 4257 ext->essent_name = NULL; 4258 if (ext_essent_len != strlen(ext->name)) { 4259 ext->essent_name = strndup(ext->name, ext_essent_len); 4260 if (!ext->essent_name) 4261 return -ENOMEM; 4262 } 4263 4264 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4265 if (ext->sec_btf_id <= 0) { 4266 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4267 ext_name, ext->btf_id, ext->sec_btf_id); 4268 return ext->sec_btf_id; 4269 } 4270 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4271 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4272 4273 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4274 if (btf_is_func(t)) { 4275 pr_warn("extern function %s is unsupported under %s section\n", 4276 ext->name, KCONFIG_SEC); 4277 return -ENOTSUP; 4278 } 4279 kcfg_sec = sec; 4280 ext->type = EXT_KCFG; 4281 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4282 if (ext->kcfg.sz <= 0) { 4283 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4284 ext_name, ext->kcfg.sz); 4285 return ext->kcfg.sz; 4286 } 4287 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4288 if (ext->kcfg.align <= 0) { 4289 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4290 ext_name, ext->kcfg.align); 4291 return -EINVAL; 4292 } 4293 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4294 &ext->kcfg.is_signed); 4295 if (ext->kcfg.type == KCFG_UNKNOWN) { 4296 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4297 return -ENOTSUP; 4298 } 4299 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4300 ksym_sec = sec; 4301 ext->type = EXT_KSYM; 4302 skip_mods_and_typedefs(obj->btf, t->type, 4303 &ext->ksym.type_id); 4304 } else { 4305 pr_warn("unrecognized extern section '%s'\n", sec_name); 4306 return -ENOTSUP; 4307 } 4308 } 4309 pr_debug("collected %d externs total\n", obj->nr_extern); 4310 4311 if (!obj->nr_extern) 4312 return 0; 4313 4314 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4315 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4316 4317 /* for .ksyms section, we need to turn all externs into allocated 4318 * variables in BTF to pass kernel verification; we do this by 4319 * pretending that each extern is a 8-byte variable 4320 */ 4321 if (ksym_sec) { 4322 /* find existing 4-byte integer type in BTF to use for fake 4323 * extern variables in DATASEC 4324 */ 4325 int int_btf_id = find_int_btf_id(obj->btf); 4326 /* For extern function, a dummy_var added earlier 4327 * will be used to replace the vs->type and 4328 * its name string will be used to refill 4329 * the missing param's name. 4330 */ 4331 const struct btf_type *dummy_var; 4332 4333 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4334 for (i = 0; i < obj->nr_extern; i++) { 4335 ext = &obj->externs[i]; 4336 if (ext->type != EXT_KSYM) 4337 continue; 4338 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4339 i, ext->sym_idx, ext->name); 4340 } 4341 4342 sec = ksym_sec; 4343 n = btf_vlen(sec); 4344 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4345 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4346 struct btf_type *vt; 4347 4348 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4349 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4350 ext = find_extern_by_name(obj, ext_name); 4351 if (!ext) { 4352 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4353 btf_kind_str(vt), ext_name); 4354 return -ESRCH; 4355 } 4356 if (btf_is_func(vt)) { 4357 const struct btf_type *func_proto; 4358 struct btf_param *param; 4359 int j; 4360 4361 func_proto = btf__type_by_id(obj->btf, 4362 vt->type); 4363 param = btf_params(func_proto); 4364 /* Reuse the dummy_var string if the 4365 * func proto does not have param name. 4366 */ 4367 for (j = 0; j < btf_vlen(func_proto); j++) 4368 if (param[j].type && !param[j].name_off) 4369 param[j].name_off = 4370 dummy_var->name_off; 4371 vs->type = dummy_var_btf_id; 4372 vt->info &= ~0xffff; 4373 vt->info |= BTF_FUNC_GLOBAL; 4374 } else { 4375 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4376 vt->type = int_btf_id; 4377 } 4378 vs->offset = off; 4379 vs->size = sizeof(int); 4380 } 4381 sec->size = off; 4382 } 4383 4384 if (kcfg_sec) { 4385 sec = kcfg_sec; 4386 /* for kcfg externs calculate their offsets within a .kconfig map */ 4387 off = 0; 4388 for (i = 0; i < obj->nr_extern; i++) { 4389 ext = &obj->externs[i]; 4390 if (ext->type != EXT_KCFG) 4391 continue; 4392 4393 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4394 off = ext->kcfg.data_off + ext->kcfg.sz; 4395 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4396 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4397 } 4398 sec->size = off; 4399 n = btf_vlen(sec); 4400 for (i = 0; i < n; i++) { 4401 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4402 4403 t = btf__type_by_id(obj->btf, vs->type); 4404 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4405 ext = find_extern_by_name(obj, ext_name); 4406 if (!ext) { 4407 pr_warn("failed to find extern definition for BTF var '%s'\n", 4408 ext_name); 4409 return -ESRCH; 4410 } 4411 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4412 vs->offset = ext->kcfg.data_off; 4413 } 4414 } 4415 return 0; 4416 } 4417 4418 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4419 { 4420 return prog->sec_idx == obj->efile.text_shndx; 4421 } 4422 4423 struct bpf_program * 4424 bpf_object__find_program_by_name(const struct bpf_object *obj, 4425 const char *name) 4426 { 4427 struct bpf_program *prog; 4428 4429 bpf_object__for_each_program(prog, obj) { 4430 if (prog_is_subprog(obj, prog)) 4431 continue; 4432 if (!strcmp(prog->name, name)) 4433 return prog; 4434 } 4435 return errno = ENOENT, NULL; 4436 } 4437 4438 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4439 int shndx) 4440 { 4441 switch (obj->efile.secs[shndx].sec_type) { 4442 case SEC_BSS: 4443 case SEC_DATA: 4444 case SEC_RODATA: 4445 return true; 4446 default: 4447 return false; 4448 } 4449 } 4450 4451 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4452 int shndx) 4453 { 4454 return shndx == obj->efile.btf_maps_shndx; 4455 } 4456 4457 static enum libbpf_map_type 4458 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4459 { 4460 if (shndx == obj->efile.symbols_shndx) 4461 return LIBBPF_MAP_KCONFIG; 4462 4463 switch (obj->efile.secs[shndx].sec_type) { 4464 case SEC_BSS: 4465 return LIBBPF_MAP_BSS; 4466 case SEC_DATA: 4467 return LIBBPF_MAP_DATA; 4468 case SEC_RODATA: 4469 return LIBBPF_MAP_RODATA; 4470 default: 4471 return LIBBPF_MAP_UNSPEC; 4472 } 4473 } 4474 4475 static int bpf_program__record_reloc(struct bpf_program *prog, 4476 struct reloc_desc *reloc_desc, 4477 __u32 insn_idx, const char *sym_name, 4478 const Elf64_Sym *sym, const Elf64_Rel *rel) 4479 { 4480 struct bpf_insn *insn = &prog->insns[insn_idx]; 4481 size_t map_idx, nr_maps = prog->obj->nr_maps; 4482 struct bpf_object *obj = prog->obj; 4483 __u32 shdr_idx = sym->st_shndx; 4484 enum libbpf_map_type type; 4485 const char *sym_sec_name; 4486 struct bpf_map *map; 4487 4488 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4489 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4490 prog->name, sym_name, insn_idx, insn->code); 4491 return -LIBBPF_ERRNO__RELOC; 4492 } 4493 4494 if (sym_is_extern(sym)) { 4495 int sym_idx = ELF64_R_SYM(rel->r_info); 4496 int i, n = obj->nr_extern; 4497 struct extern_desc *ext; 4498 4499 for (i = 0; i < n; i++) { 4500 ext = &obj->externs[i]; 4501 if (ext->sym_idx == sym_idx) 4502 break; 4503 } 4504 if (i >= n) { 4505 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4506 prog->name, sym_name, sym_idx); 4507 return -LIBBPF_ERRNO__RELOC; 4508 } 4509 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4510 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4511 if (insn->code == (BPF_JMP | BPF_CALL)) 4512 reloc_desc->type = RELO_EXTERN_CALL; 4513 else 4514 reloc_desc->type = RELO_EXTERN_LD64; 4515 reloc_desc->insn_idx = insn_idx; 4516 reloc_desc->ext_idx = i; 4517 return 0; 4518 } 4519 4520 /* sub-program call relocation */ 4521 if (is_call_insn(insn)) { 4522 if (insn->src_reg != BPF_PSEUDO_CALL) { 4523 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4524 return -LIBBPF_ERRNO__RELOC; 4525 } 4526 /* text_shndx can be 0, if no default "main" program exists */ 4527 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4528 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4529 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4530 prog->name, sym_name, sym_sec_name); 4531 return -LIBBPF_ERRNO__RELOC; 4532 } 4533 if (sym->st_value % BPF_INSN_SZ) { 4534 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4535 prog->name, sym_name, (size_t)sym->st_value); 4536 return -LIBBPF_ERRNO__RELOC; 4537 } 4538 reloc_desc->type = RELO_CALL; 4539 reloc_desc->insn_idx = insn_idx; 4540 reloc_desc->sym_off = sym->st_value; 4541 return 0; 4542 } 4543 4544 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4545 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4546 prog->name, sym_name, shdr_idx); 4547 return -LIBBPF_ERRNO__RELOC; 4548 } 4549 4550 /* loading subprog addresses */ 4551 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4552 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4553 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4554 */ 4555 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4556 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4557 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4558 return -LIBBPF_ERRNO__RELOC; 4559 } 4560 4561 reloc_desc->type = RELO_SUBPROG_ADDR; 4562 reloc_desc->insn_idx = insn_idx; 4563 reloc_desc->sym_off = sym->st_value; 4564 return 0; 4565 } 4566 4567 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4568 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4569 4570 /* arena data relocation */ 4571 if (shdr_idx == obj->efile.arena_data_shndx) { 4572 reloc_desc->type = RELO_DATA; 4573 reloc_desc->insn_idx = insn_idx; 4574 reloc_desc->map_idx = obj->arena_map - obj->maps; 4575 reloc_desc->sym_off = sym->st_value; 4576 return 0; 4577 } 4578 4579 /* generic map reference relocation */ 4580 if (type == LIBBPF_MAP_UNSPEC) { 4581 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4582 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4583 prog->name, sym_name, sym_sec_name); 4584 return -LIBBPF_ERRNO__RELOC; 4585 } 4586 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4587 map = &obj->maps[map_idx]; 4588 if (map->libbpf_type != type || 4589 map->sec_idx != sym->st_shndx || 4590 map->sec_offset != sym->st_value) 4591 continue; 4592 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4593 prog->name, map_idx, map->name, map->sec_idx, 4594 map->sec_offset, insn_idx); 4595 break; 4596 } 4597 if (map_idx >= nr_maps) { 4598 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4599 prog->name, sym_sec_name, (size_t)sym->st_value); 4600 return -LIBBPF_ERRNO__RELOC; 4601 } 4602 reloc_desc->type = RELO_LD64; 4603 reloc_desc->insn_idx = insn_idx; 4604 reloc_desc->map_idx = map_idx; 4605 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4606 return 0; 4607 } 4608 4609 /* global data map relocation */ 4610 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4611 pr_warn("prog '%s': bad data relo against section '%s'\n", 4612 prog->name, sym_sec_name); 4613 return -LIBBPF_ERRNO__RELOC; 4614 } 4615 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4616 map = &obj->maps[map_idx]; 4617 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4618 continue; 4619 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4620 prog->name, map_idx, map->name, map->sec_idx, 4621 map->sec_offset, insn_idx); 4622 break; 4623 } 4624 if (map_idx >= nr_maps) { 4625 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4626 prog->name, sym_sec_name); 4627 return -LIBBPF_ERRNO__RELOC; 4628 } 4629 4630 reloc_desc->type = RELO_DATA; 4631 reloc_desc->insn_idx = insn_idx; 4632 reloc_desc->map_idx = map_idx; 4633 reloc_desc->sym_off = sym->st_value; 4634 return 0; 4635 } 4636 4637 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4638 { 4639 return insn_idx >= prog->sec_insn_off && 4640 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4641 } 4642 4643 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4644 size_t sec_idx, size_t insn_idx) 4645 { 4646 int l = 0, r = obj->nr_programs - 1, m; 4647 struct bpf_program *prog; 4648 4649 if (!obj->nr_programs) 4650 return NULL; 4651 4652 while (l < r) { 4653 m = l + (r - l + 1) / 2; 4654 prog = &obj->programs[m]; 4655 4656 if (prog->sec_idx < sec_idx || 4657 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4658 l = m; 4659 else 4660 r = m - 1; 4661 } 4662 /* matching program could be at index l, but it still might be the 4663 * wrong one, so we need to double check conditions for the last time 4664 */ 4665 prog = &obj->programs[l]; 4666 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4667 return prog; 4668 return NULL; 4669 } 4670 4671 static int 4672 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4673 { 4674 const char *relo_sec_name, *sec_name; 4675 size_t sec_idx = shdr->sh_info, sym_idx; 4676 struct bpf_program *prog; 4677 struct reloc_desc *relos; 4678 int err, i, nrels; 4679 const char *sym_name; 4680 __u32 insn_idx; 4681 Elf_Scn *scn; 4682 Elf_Data *scn_data; 4683 Elf64_Sym *sym; 4684 Elf64_Rel *rel; 4685 4686 if (sec_idx >= obj->efile.sec_cnt) 4687 return -EINVAL; 4688 4689 scn = elf_sec_by_idx(obj, sec_idx); 4690 scn_data = elf_sec_data(obj, scn); 4691 if (!scn_data) 4692 return -LIBBPF_ERRNO__FORMAT; 4693 4694 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4695 sec_name = elf_sec_name(obj, scn); 4696 if (!relo_sec_name || !sec_name) 4697 return -EINVAL; 4698 4699 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4700 relo_sec_name, sec_idx, sec_name); 4701 nrels = shdr->sh_size / shdr->sh_entsize; 4702 4703 for (i = 0; i < nrels; i++) { 4704 rel = elf_rel_by_idx(data, i); 4705 if (!rel) { 4706 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4707 return -LIBBPF_ERRNO__FORMAT; 4708 } 4709 4710 sym_idx = ELF64_R_SYM(rel->r_info); 4711 sym = elf_sym_by_idx(obj, sym_idx); 4712 if (!sym) { 4713 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4714 relo_sec_name, sym_idx, i); 4715 return -LIBBPF_ERRNO__FORMAT; 4716 } 4717 4718 if (sym->st_shndx >= obj->efile.sec_cnt) { 4719 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4720 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4721 return -LIBBPF_ERRNO__FORMAT; 4722 } 4723 4724 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4725 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4726 relo_sec_name, (size_t)rel->r_offset, i); 4727 return -LIBBPF_ERRNO__FORMAT; 4728 } 4729 4730 insn_idx = rel->r_offset / BPF_INSN_SZ; 4731 /* relocations against static functions are recorded as 4732 * relocations against the section that contains a function; 4733 * in such case, symbol will be STT_SECTION and sym.st_name 4734 * will point to empty string (0), so fetch section name 4735 * instead 4736 */ 4737 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4738 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4739 else 4740 sym_name = elf_sym_str(obj, sym->st_name); 4741 sym_name = sym_name ?: "<?"; 4742 4743 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4744 relo_sec_name, i, insn_idx, sym_name); 4745 4746 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4747 if (!prog) { 4748 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4749 relo_sec_name, i, sec_name, insn_idx); 4750 continue; 4751 } 4752 4753 relos = libbpf_reallocarray(prog->reloc_desc, 4754 prog->nr_reloc + 1, sizeof(*relos)); 4755 if (!relos) 4756 return -ENOMEM; 4757 prog->reloc_desc = relos; 4758 4759 /* adjust insn_idx to local BPF program frame of reference */ 4760 insn_idx -= prog->sec_insn_off; 4761 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4762 insn_idx, sym_name, sym, rel); 4763 if (err) 4764 return err; 4765 4766 prog->nr_reloc++; 4767 } 4768 return 0; 4769 } 4770 4771 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4772 { 4773 int id; 4774 4775 if (!obj->btf) 4776 return -ENOENT; 4777 4778 /* if it's BTF-defined map, we don't need to search for type IDs. 4779 * For struct_ops map, it does not need btf_key_type_id and 4780 * btf_value_type_id. 4781 */ 4782 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4783 return 0; 4784 4785 /* 4786 * LLVM annotates global data differently in BTF, that is, 4787 * only as '.data', '.bss' or '.rodata'. 4788 */ 4789 if (!bpf_map__is_internal(map)) 4790 return -ENOENT; 4791 4792 id = btf__find_by_name(obj->btf, map->real_name); 4793 if (id < 0) 4794 return id; 4795 4796 map->btf_key_type_id = 0; 4797 map->btf_value_type_id = id; 4798 return 0; 4799 } 4800 4801 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4802 { 4803 char file[PATH_MAX], buff[4096]; 4804 FILE *fp; 4805 __u32 val; 4806 int err; 4807 4808 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4809 memset(info, 0, sizeof(*info)); 4810 4811 fp = fopen(file, "re"); 4812 if (!fp) { 4813 err = -errno; 4814 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4815 err); 4816 return err; 4817 } 4818 4819 while (fgets(buff, sizeof(buff), fp)) { 4820 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4821 info->type = val; 4822 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4823 info->key_size = val; 4824 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4825 info->value_size = val; 4826 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4827 info->max_entries = val; 4828 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4829 info->map_flags = val; 4830 } 4831 4832 fclose(fp); 4833 4834 return 0; 4835 } 4836 4837 bool bpf_map__autocreate(const struct bpf_map *map) 4838 { 4839 return map->autocreate; 4840 } 4841 4842 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4843 { 4844 if (map->obj->loaded) 4845 return libbpf_err(-EBUSY); 4846 4847 map->autocreate = autocreate; 4848 return 0; 4849 } 4850 4851 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4852 { 4853 if (!bpf_map__is_struct_ops(map)) 4854 return libbpf_err(-EINVAL); 4855 4856 map->autoattach = autoattach; 4857 return 0; 4858 } 4859 4860 bool bpf_map__autoattach(const struct bpf_map *map) 4861 { 4862 return map->autoattach; 4863 } 4864 4865 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4866 { 4867 struct bpf_map_info info; 4868 __u32 len = sizeof(info), name_len; 4869 int new_fd, err; 4870 char *new_name; 4871 4872 memset(&info, 0, len); 4873 err = bpf_map_get_info_by_fd(fd, &info, &len); 4874 if (err && errno == EINVAL) 4875 err = bpf_get_map_info_from_fdinfo(fd, &info); 4876 if (err) 4877 return libbpf_err(err); 4878 4879 name_len = strlen(info.name); 4880 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4881 new_name = strdup(map->name); 4882 else 4883 new_name = strdup(info.name); 4884 4885 if (!new_name) 4886 return libbpf_err(-errno); 4887 4888 /* 4889 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4890 * This is similar to what we do in ensure_good_fd(), but without 4891 * closing original FD. 4892 */ 4893 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4894 if (new_fd < 0) { 4895 err = -errno; 4896 goto err_free_new_name; 4897 } 4898 4899 err = reuse_fd(map->fd, new_fd); 4900 if (err) 4901 goto err_free_new_name; 4902 4903 free(map->name); 4904 4905 map->name = new_name; 4906 map->def.type = info.type; 4907 map->def.key_size = info.key_size; 4908 map->def.value_size = info.value_size; 4909 map->def.max_entries = info.max_entries; 4910 map->def.map_flags = info.map_flags; 4911 map->btf_key_type_id = info.btf_key_type_id; 4912 map->btf_value_type_id = info.btf_value_type_id; 4913 map->reused = true; 4914 map->map_extra = info.map_extra; 4915 4916 return 0; 4917 4918 err_free_new_name: 4919 free(new_name); 4920 return libbpf_err(err); 4921 } 4922 4923 __u32 bpf_map__max_entries(const struct bpf_map *map) 4924 { 4925 return map->def.max_entries; 4926 } 4927 4928 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4929 { 4930 if (!bpf_map_type__is_map_in_map(map->def.type)) 4931 return errno = EINVAL, NULL; 4932 4933 return map->inner_map; 4934 } 4935 4936 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4937 { 4938 if (map->obj->loaded) 4939 return libbpf_err(-EBUSY); 4940 4941 map->def.max_entries = max_entries; 4942 4943 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4944 if (map_is_ringbuf(map)) 4945 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4946 4947 return 0; 4948 } 4949 4950 static int bpf_object_prepare_token(struct bpf_object *obj) 4951 { 4952 const char *bpffs_path; 4953 int bpffs_fd = -1, token_fd, err; 4954 bool mandatory; 4955 enum libbpf_print_level level; 4956 4957 /* token is explicitly prevented */ 4958 if (obj->token_path && obj->token_path[0] == '\0') { 4959 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4960 return 0; 4961 } 4962 4963 mandatory = obj->token_path != NULL; 4964 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4965 4966 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4967 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4968 if (bpffs_fd < 0) { 4969 err = -errno; 4970 __pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n", 4971 obj->name, err, bpffs_path, 4972 mandatory ? "" : ", skipping optional step..."); 4973 return mandatory ? err : 0; 4974 } 4975 4976 token_fd = bpf_token_create(bpffs_fd, 0); 4977 close(bpffs_fd); 4978 if (token_fd < 0) { 4979 if (!mandatory && token_fd == -ENOENT) { 4980 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4981 obj->name, bpffs_path); 4982 return 0; 4983 } 4984 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 4985 obj->name, token_fd, bpffs_path, 4986 mandatory ? "" : ", skipping optional step..."); 4987 return mandatory ? token_fd : 0; 4988 } 4989 4990 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 4991 if (!obj->feat_cache) { 4992 close(token_fd); 4993 return -ENOMEM; 4994 } 4995 4996 obj->token_fd = token_fd; 4997 obj->feat_cache->token_fd = token_fd; 4998 4999 return 0; 5000 } 5001 5002 static int 5003 bpf_object__probe_loading(struct bpf_object *obj) 5004 { 5005 char *cp, errmsg[STRERR_BUFSIZE]; 5006 struct bpf_insn insns[] = { 5007 BPF_MOV64_IMM(BPF_REG_0, 0), 5008 BPF_EXIT_INSN(), 5009 }; 5010 int ret, insn_cnt = ARRAY_SIZE(insns); 5011 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5012 .token_fd = obj->token_fd, 5013 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5014 ); 5015 5016 if (obj->gen_loader) 5017 return 0; 5018 5019 ret = bump_rlimit_memlock(); 5020 if (ret) 5021 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 5022 5023 /* make sure basic loading works */ 5024 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5025 if (ret < 0) 5026 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5027 if (ret < 0) { 5028 ret = errno; 5029 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 5030 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 5031 "program. Make sure your kernel supports BPF " 5032 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 5033 "set to big enough value.\n", __func__, cp, ret); 5034 return -ret; 5035 } 5036 close(ret); 5037 5038 return 0; 5039 } 5040 5041 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5042 { 5043 if (obj->gen_loader) 5044 /* To generate loader program assume the latest kernel 5045 * to avoid doing extra prog_load, map_create syscalls. 5046 */ 5047 return true; 5048 5049 if (obj->token_fd) 5050 return feat_supported(obj->feat_cache, feat_id); 5051 5052 return feat_supported(NULL, feat_id); 5053 } 5054 5055 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5056 { 5057 struct bpf_map_info map_info; 5058 char msg[STRERR_BUFSIZE]; 5059 __u32 map_info_len = sizeof(map_info); 5060 int err; 5061 5062 memset(&map_info, 0, map_info_len); 5063 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5064 if (err && errno == EINVAL) 5065 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5066 if (err) { 5067 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5068 libbpf_strerror_r(errno, msg, sizeof(msg))); 5069 return false; 5070 } 5071 5072 return (map_info.type == map->def.type && 5073 map_info.key_size == map->def.key_size && 5074 map_info.value_size == map->def.value_size && 5075 map_info.max_entries == map->def.max_entries && 5076 map_info.map_flags == map->def.map_flags && 5077 map_info.map_extra == map->map_extra); 5078 } 5079 5080 static int 5081 bpf_object__reuse_map(struct bpf_map *map) 5082 { 5083 char *cp, errmsg[STRERR_BUFSIZE]; 5084 int err, pin_fd; 5085 5086 pin_fd = bpf_obj_get(map->pin_path); 5087 if (pin_fd < 0) { 5088 err = -errno; 5089 if (err == -ENOENT) { 5090 pr_debug("found no pinned map to reuse at '%s'\n", 5091 map->pin_path); 5092 return 0; 5093 } 5094 5095 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5096 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5097 map->pin_path, cp); 5098 return err; 5099 } 5100 5101 if (!map_is_reuse_compat(map, pin_fd)) { 5102 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5103 map->pin_path); 5104 close(pin_fd); 5105 return -EINVAL; 5106 } 5107 5108 err = bpf_map__reuse_fd(map, pin_fd); 5109 close(pin_fd); 5110 if (err) 5111 return err; 5112 5113 map->pinned = true; 5114 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5115 5116 return 0; 5117 } 5118 5119 static int 5120 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5121 { 5122 enum libbpf_map_type map_type = map->libbpf_type; 5123 char *cp, errmsg[STRERR_BUFSIZE]; 5124 int err, zero = 0; 5125 5126 if (obj->gen_loader) { 5127 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5128 map->mmaped, map->def.value_size); 5129 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5130 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5131 return 0; 5132 } 5133 5134 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5135 if (err) { 5136 err = -errno; 5137 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5138 pr_warn("Error setting initial map(%s) contents: %s\n", 5139 map->name, cp); 5140 return err; 5141 } 5142 5143 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5144 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5145 err = bpf_map_freeze(map->fd); 5146 if (err) { 5147 err = -errno; 5148 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5149 pr_warn("Error freezing map(%s) as read-only: %s\n", 5150 map->name, cp); 5151 return err; 5152 } 5153 } 5154 return 0; 5155 } 5156 5157 static void bpf_map__destroy(struct bpf_map *map); 5158 5159 static bool map_is_created(const struct bpf_map *map) 5160 { 5161 return map->obj->loaded || map->reused; 5162 } 5163 5164 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5165 { 5166 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5167 struct bpf_map_def *def = &map->def; 5168 const char *map_name = NULL; 5169 int err = 0, map_fd; 5170 5171 if (kernel_supports(obj, FEAT_PROG_NAME)) 5172 map_name = map->name; 5173 create_attr.map_ifindex = map->map_ifindex; 5174 create_attr.map_flags = def->map_flags; 5175 create_attr.numa_node = map->numa_node; 5176 create_attr.map_extra = map->map_extra; 5177 create_attr.token_fd = obj->token_fd; 5178 if (obj->token_fd) 5179 create_attr.map_flags |= BPF_F_TOKEN_FD; 5180 5181 if (bpf_map__is_struct_ops(map)) { 5182 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5183 if (map->mod_btf_fd >= 0) { 5184 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5185 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5186 } 5187 } 5188 5189 if (obj->btf && btf__fd(obj->btf) >= 0) { 5190 create_attr.btf_fd = btf__fd(obj->btf); 5191 create_attr.btf_key_type_id = map->btf_key_type_id; 5192 create_attr.btf_value_type_id = map->btf_value_type_id; 5193 } 5194 5195 if (bpf_map_type__is_map_in_map(def->type)) { 5196 if (map->inner_map) { 5197 err = map_set_def_max_entries(map->inner_map); 5198 if (err) 5199 return err; 5200 err = bpf_object__create_map(obj, map->inner_map, true); 5201 if (err) { 5202 pr_warn("map '%s': failed to create inner map: %d\n", 5203 map->name, err); 5204 return err; 5205 } 5206 map->inner_map_fd = map->inner_map->fd; 5207 } 5208 if (map->inner_map_fd >= 0) 5209 create_attr.inner_map_fd = map->inner_map_fd; 5210 } 5211 5212 switch (def->type) { 5213 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5214 case BPF_MAP_TYPE_CGROUP_ARRAY: 5215 case BPF_MAP_TYPE_STACK_TRACE: 5216 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5217 case BPF_MAP_TYPE_HASH_OF_MAPS: 5218 case BPF_MAP_TYPE_DEVMAP: 5219 case BPF_MAP_TYPE_DEVMAP_HASH: 5220 case BPF_MAP_TYPE_CPUMAP: 5221 case BPF_MAP_TYPE_XSKMAP: 5222 case BPF_MAP_TYPE_SOCKMAP: 5223 case BPF_MAP_TYPE_SOCKHASH: 5224 case BPF_MAP_TYPE_QUEUE: 5225 case BPF_MAP_TYPE_STACK: 5226 case BPF_MAP_TYPE_ARENA: 5227 create_attr.btf_fd = 0; 5228 create_attr.btf_key_type_id = 0; 5229 create_attr.btf_value_type_id = 0; 5230 map->btf_key_type_id = 0; 5231 map->btf_value_type_id = 0; 5232 break; 5233 case BPF_MAP_TYPE_STRUCT_OPS: 5234 create_attr.btf_value_type_id = 0; 5235 break; 5236 default: 5237 break; 5238 } 5239 5240 if (obj->gen_loader) { 5241 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5242 def->key_size, def->value_size, def->max_entries, 5243 &create_attr, is_inner ? -1 : map - obj->maps); 5244 /* We keep pretenting we have valid FD to pass various fd >= 0 5245 * checks by just keeping original placeholder FDs in place. 5246 * See bpf_object__add_map() comment. 5247 * This placeholder fd will not be used with any syscall and 5248 * will be reset to -1 eventually. 5249 */ 5250 map_fd = map->fd; 5251 } else { 5252 map_fd = bpf_map_create(def->type, map_name, 5253 def->key_size, def->value_size, 5254 def->max_entries, &create_attr); 5255 } 5256 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5257 char *cp, errmsg[STRERR_BUFSIZE]; 5258 5259 err = -errno; 5260 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5261 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5262 map->name, cp, err); 5263 create_attr.btf_fd = 0; 5264 create_attr.btf_key_type_id = 0; 5265 create_attr.btf_value_type_id = 0; 5266 map->btf_key_type_id = 0; 5267 map->btf_value_type_id = 0; 5268 map_fd = bpf_map_create(def->type, map_name, 5269 def->key_size, def->value_size, 5270 def->max_entries, &create_attr); 5271 } 5272 5273 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5274 if (obj->gen_loader) 5275 map->inner_map->fd = -1; 5276 bpf_map__destroy(map->inner_map); 5277 zfree(&map->inner_map); 5278 } 5279 5280 if (map_fd < 0) 5281 return map_fd; 5282 5283 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5284 if (map->fd == map_fd) 5285 return 0; 5286 5287 /* Keep placeholder FD value but now point it to the BPF map object. 5288 * This way everything that relied on this map's FD (e.g., relocated 5289 * ldimm64 instructions) will stay valid and won't need adjustments. 5290 * map->fd stays valid but now point to what map_fd points to. 5291 */ 5292 return reuse_fd(map->fd, map_fd); 5293 } 5294 5295 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5296 { 5297 const struct bpf_map *targ_map; 5298 unsigned int i; 5299 int fd, err = 0; 5300 5301 for (i = 0; i < map->init_slots_sz; i++) { 5302 if (!map->init_slots[i]) 5303 continue; 5304 5305 targ_map = map->init_slots[i]; 5306 fd = targ_map->fd; 5307 5308 if (obj->gen_loader) { 5309 bpf_gen__populate_outer_map(obj->gen_loader, 5310 map - obj->maps, i, 5311 targ_map - obj->maps); 5312 } else { 5313 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5314 } 5315 if (err) { 5316 err = -errno; 5317 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5318 map->name, i, targ_map->name, fd, err); 5319 return err; 5320 } 5321 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5322 map->name, i, targ_map->name, fd); 5323 } 5324 5325 zfree(&map->init_slots); 5326 map->init_slots_sz = 0; 5327 5328 return 0; 5329 } 5330 5331 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5332 { 5333 const struct bpf_program *targ_prog; 5334 unsigned int i; 5335 int fd, err; 5336 5337 if (obj->gen_loader) 5338 return -ENOTSUP; 5339 5340 for (i = 0; i < map->init_slots_sz; i++) { 5341 if (!map->init_slots[i]) 5342 continue; 5343 5344 targ_prog = map->init_slots[i]; 5345 fd = bpf_program__fd(targ_prog); 5346 5347 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5348 if (err) { 5349 err = -errno; 5350 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5351 map->name, i, targ_prog->name, fd, err); 5352 return err; 5353 } 5354 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5355 map->name, i, targ_prog->name, fd); 5356 } 5357 5358 zfree(&map->init_slots); 5359 map->init_slots_sz = 0; 5360 5361 return 0; 5362 } 5363 5364 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5365 { 5366 struct bpf_map *map; 5367 int i, err; 5368 5369 for (i = 0; i < obj->nr_maps; i++) { 5370 map = &obj->maps[i]; 5371 5372 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5373 continue; 5374 5375 err = init_prog_array_slots(obj, map); 5376 if (err < 0) 5377 return err; 5378 } 5379 return 0; 5380 } 5381 5382 static int map_set_def_max_entries(struct bpf_map *map) 5383 { 5384 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5385 int nr_cpus; 5386 5387 nr_cpus = libbpf_num_possible_cpus(); 5388 if (nr_cpus < 0) { 5389 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5390 map->name, nr_cpus); 5391 return nr_cpus; 5392 } 5393 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5394 map->def.max_entries = nr_cpus; 5395 } 5396 5397 return 0; 5398 } 5399 5400 static int 5401 bpf_object__create_maps(struct bpf_object *obj) 5402 { 5403 struct bpf_map *map; 5404 char *cp, errmsg[STRERR_BUFSIZE]; 5405 unsigned int i, j; 5406 int err; 5407 bool retried; 5408 5409 for (i = 0; i < obj->nr_maps; i++) { 5410 map = &obj->maps[i]; 5411 5412 /* To support old kernels, we skip creating global data maps 5413 * (.rodata, .data, .kconfig, etc); later on, during program 5414 * loading, if we detect that at least one of the to-be-loaded 5415 * programs is referencing any global data map, we'll error 5416 * out with program name and relocation index logged. 5417 * This approach allows to accommodate Clang emitting 5418 * unnecessary .rodata.str1.1 sections for string literals, 5419 * but also it allows to have CO-RE applications that use 5420 * global variables in some of BPF programs, but not others. 5421 * If those global variable-using programs are not loaded at 5422 * runtime due to bpf_program__set_autoload(prog, false), 5423 * bpf_object loading will succeed just fine even on old 5424 * kernels. 5425 */ 5426 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5427 map->autocreate = false; 5428 5429 if (!map->autocreate) { 5430 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5431 continue; 5432 } 5433 5434 err = map_set_def_max_entries(map); 5435 if (err) 5436 goto err_out; 5437 5438 retried = false; 5439 retry: 5440 if (map->pin_path) { 5441 err = bpf_object__reuse_map(map); 5442 if (err) { 5443 pr_warn("map '%s': error reusing pinned map\n", 5444 map->name); 5445 goto err_out; 5446 } 5447 if (retried && map->fd < 0) { 5448 pr_warn("map '%s': cannot find pinned map\n", 5449 map->name); 5450 err = -ENOENT; 5451 goto err_out; 5452 } 5453 } 5454 5455 if (map->reused) { 5456 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5457 map->name, map->fd); 5458 } else { 5459 err = bpf_object__create_map(obj, map, false); 5460 if (err) 5461 goto err_out; 5462 5463 pr_debug("map '%s': created successfully, fd=%d\n", 5464 map->name, map->fd); 5465 5466 if (bpf_map__is_internal(map)) { 5467 err = bpf_object__populate_internal_map(obj, map); 5468 if (err < 0) 5469 goto err_out; 5470 } 5471 if (map->def.type == BPF_MAP_TYPE_ARENA) { 5472 map->mmaped = mmap((void *)(long)map->map_extra, 5473 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5474 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5475 map->fd, 0); 5476 if (map->mmaped == MAP_FAILED) { 5477 err = -errno; 5478 map->mmaped = NULL; 5479 pr_warn("map '%s': failed to mmap arena: %d\n", 5480 map->name, err); 5481 return err; 5482 } 5483 if (obj->arena_data) { 5484 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5485 zfree(&obj->arena_data); 5486 } 5487 } 5488 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5489 err = init_map_in_map_slots(obj, map); 5490 if (err < 0) 5491 goto err_out; 5492 } 5493 } 5494 5495 if (map->pin_path && !map->pinned) { 5496 err = bpf_map__pin(map, NULL); 5497 if (err) { 5498 if (!retried && err == -EEXIST) { 5499 retried = true; 5500 goto retry; 5501 } 5502 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5503 map->name, map->pin_path, err); 5504 goto err_out; 5505 } 5506 } 5507 } 5508 5509 return 0; 5510 5511 err_out: 5512 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5513 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5514 pr_perm_msg(err); 5515 for (j = 0; j < i; j++) 5516 zclose(obj->maps[j].fd); 5517 return err; 5518 } 5519 5520 static bool bpf_core_is_flavor_sep(const char *s) 5521 { 5522 /* check X___Y name pattern, where X and Y are not underscores */ 5523 return s[0] != '_' && /* X */ 5524 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5525 s[4] != '_'; /* Y */ 5526 } 5527 5528 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5529 * before last triple underscore. Struct name part after last triple 5530 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5531 */ 5532 size_t bpf_core_essential_name_len(const char *name) 5533 { 5534 size_t n = strlen(name); 5535 int i; 5536 5537 for (i = n - 5; i >= 0; i--) { 5538 if (bpf_core_is_flavor_sep(name + i)) 5539 return i + 1; 5540 } 5541 return n; 5542 } 5543 5544 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5545 { 5546 if (!cands) 5547 return; 5548 5549 free(cands->cands); 5550 free(cands); 5551 } 5552 5553 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5554 size_t local_essent_len, 5555 const struct btf *targ_btf, 5556 const char *targ_btf_name, 5557 int targ_start_id, 5558 struct bpf_core_cand_list *cands) 5559 { 5560 struct bpf_core_cand *new_cands, *cand; 5561 const struct btf_type *t, *local_t; 5562 const char *targ_name, *local_name; 5563 size_t targ_essent_len; 5564 int n, i; 5565 5566 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5567 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5568 5569 n = btf__type_cnt(targ_btf); 5570 for (i = targ_start_id; i < n; i++) { 5571 t = btf__type_by_id(targ_btf, i); 5572 if (!btf_kind_core_compat(t, local_t)) 5573 continue; 5574 5575 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5576 if (str_is_empty(targ_name)) 5577 continue; 5578 5579 targ_essent_len = bpf_core_essential_name_len(targ_name); 5580 if (targ_essent_len != local_essent_len) 5581 continue; 5582 5583 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5584 continue; 5585 5586 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5587 local_cand->id, btf_kind_str(local_t), 5588 local_name, i, btf_kind_str(t), targ_name, 5589 targ_btf_name); 5590 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5591 sizeof(*cands->cands)); 5592 if (!new_cands) 5593 return -ENOMEM; 5594 5595 cand = &new_cands[cands->len]; 5596 cand->btf = targ_btf; 5597 cand->id = i; 5598 5599 cands->cands = new_cands; 5600 cands->len++; 5601 } 5602 return 0; 5603 } 5604 5605 static int load_module_btfs(struct bpf_object *obj) 5606 { 5607 struct bpf_btf_info info; 5608 struct module_btf *mod_btf; 5609 struct btf *btf; 5610 char name[64]; 5611 __u32 id = 0, len; 5612 int err, fd; 5613 5614 if (obj->btf_modules_loaded) 5615 return 0; 5616 5617 if (obj->gen_loader) 5618 return 0; 5619 5620 /* don't do this again, even if we find no module BTFs */ 5621 obj->btf_modules_loaded = true; 5622 5623 /* kernel too old to support module BTFs */ 5624 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5625 return 0; 5626 5627 while (true) { 5628 err = bpf_btf_get_next_id(id, &id); 5629 if (err && errno == ENOENT) 5630 return 0; 5631 if (err && errno == EPERM) { 5632 pr_debug("skipping module BTFs loading, missing privileges\n"); 5633 return 0; 5634 } 5635 if (err) { 5636 err = -errno; 5637 pr_warn("failed to iterate BTF objects: %d\n", err); 5638 return err; 5639 } 5640 5641 fd = bpf_btf_get_fd_by_id(id); 5642 if (fd < 0) { 5643 if (errno == ENOENT) 5644 continue; /* expected race: BTF was unloaded */ 5645 err = -errno; 5646 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5647 return err; 5648 } 5649 5650 len = sizeof(info); 5651 memset(&info, 0, sizeof(info)); 5652 info.name = ptr_to_u64(name); 5653 info.name_len = sizeof(name); 5654 5655 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5656 if (err) { 5657 err = -errno; 5658 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5659 goto err_out; 5660 } 5661 5662 /* ignore non-module BTFs */ 5663 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5664 close(fd); 5665 continue; 5666 } 5667 5668 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5669 err = libbpf_get_error(btf); 5670 if (err) { 5671 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5672 name, id, err); 5673 goto err_out; 5674 } 5675 5676 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5677 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5678 if (err) 5679 goto err_out; 5680 5681 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5682 5683 mod_btf->btf = btf; 5684 mod_btf->id = id; 5685 mod_btf->fd = fd; 5686 mod_btf->name = strdup(name); 5687 if (!mod_btf->name) { 5688 err = -ENOMEM; 5689 goto err_out; 5690 } 5691 continue; 5692 5693 err_out: 5694 close(fd); 5695 return err; 5696 } 5697 5698 return 0; 5699 } 5700 5701 static struct bpf_core_cand_list * 5702 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5703 { 5704 struct bpf_core_cand local_cand = {}; 5705 struct bpf_core_cand_list *cands; 5706 const struct btf *main_btf; 5707 const struct btf_type *local_t; 5708 const char *local_name; 5709 size_t local_essent_len; 5710 int err, i; 5711 5712 local_cand.btf = local_btf; 5713 local_cand.id = local_type_id; 5714 local_t = btf__type_by_id(local_btf, local_type_id); 5715 if (!local_t) 5716 return ERR_PTR(-EINVAL); 5717 5718 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5719 if (str_is_empty(local_name)) 5720 return ERR_PTR(-EINVAL); 5721 local_essent_len = bpf_core_essential_name_len(local_name); 5722 5723 cands = calloc(1, sizeof(*cands)); 5724 if (!cands) 5725 return ERR_PTR(-ENOMEM); 5726 5727 /* Attempt to find target candidates in vmlinux BTF first */ 5728 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5729 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5730 if (err) 5731 goto err_out; 5732 5733 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5734 if (cands->len) 5735 return cands; 5736 5737 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5738 if (obj->btf_vmlinux_override) 5739 return cands; 5740 5741 /* now look through module BTFs, trying to still find candidates */ 5742 err = load_module_btfs(obj); 5743 if (err) 5744 goto err_out; 5745 5746 for (i = 0; i < obj->btf_module_cnt; i++) { 5747 err = bpf_core_add_cands(&local_cand, local_essent_len, 5748 obj->btf_modules[i].btf, 5749 obj->btf_modules[i].name, 5750 btf__type_cnt(obj->btf_vmlinux), 5751 cands); 5752 if (err) 5753 goto err_out; 5754 } 5755 5756 return cands; 5757 err_out: 5758 bpf_core_free_cands(cands); 5759 return ERR_PTR(err); 5760 } 5761 5762 /* Check local and target types for compatibility. This check is used for 5763 * type-based CO-RE relocations and follow slightly different rules than 5764 * field-based relocations. This function assumes that root types were already 5765 * checked for name match. Beyond that initial root-level name check, names 5766 * are completely ignored. Compatibility rules are as follows: 5767 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5768 * kind should match for local and target types (i.e., STRUCT is not 5769 * compatible with UNION); 5770 * - for ENUMs, the size is ignored; 5771 * - for INT, size and signedness are ignored; 5772 * - for ARRAY, dimensionality is ignored, element types are checked for 5773 * compatibility recursively; 5774 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5775 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5776 * - FUNC_PROTOs are compatible if they have compatible signature: same 5777 * number of input args and compatible return and argument types. 5778 * These rules are not set in stone and probably will be adjusted as we get 5779 * more experience with using BPF CO-RE relocations. 5780 */ 5781 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5782 const struct btf *targ_btf, __u32 targ_id) 5783 { 5784 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5785 } 5786 5787 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5788 const struct btf *targ_btf, __u32 targ_id) 5789 { 5790 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5791 } 5792 5793 static size_t bpf_core_hash_fn(const long key, void *ctx) 5794 { 5795 return key; 5796 } 5797 5798 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5799 { 5800 return k1 == k2; 5801 } 5802 5803 static int record_relo_core(struct bpf_program *prog, 5804 const struct bpf_core_relo *core_relo, int insn_idx) 5805 { 5806 struct reloc_desc *relos, *relo; 5807 5808 relos = libbpf_reallocarray(prog->reloc_desc, 5809 prog->nr_reloc + 1, sizeof(*relos)); 5810 if (!relos) 5811 return -ENOMEM; 5812 relo = &relos[prog->nr_reloc]; 5813 relo->type = RELO_CORE; 5814 relo->insn_idx = insn_idx; 5815 relo->core_relo = core_relo; 5816 prog->reloc_desc = relos; 5817 prog->nr_reloc++; 5818 return 0; 5819 } 5820 5821 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5822 { 5823 struct reloc_desc *relo; 5824 int i; 5825 5826 for (i = 0; i < prog->nr_reloc; i++) { 5827 relo = &prog->reloc_desc[i]; 5828 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5829 continue; 5830 5831 return relo->core_relo; 5832 } 5833 5834 return NULL; 5835 } 5836 5837 static int bpf_core_resolve_relo(struct bpf_program *prog, 5838 const struct bpf_core_relo *relo, 5839 int relo_idx, 5840 const struct btf *local_btf, 5841 struct hashmap *cand_cache, 5842 struct bpf_core_relo_res *targ_res) 5843 { 5844 struct bpf_core_spec specs_scratch[3] = {}; 5845 struct bpf_core_cand_list *cands = NULL; 5846 const char *prog_name = prog->name; 5847 const struct btf_type *local_type; 5848 const char *local_name; 5849 __u32 local_id = relo->type_id; 5850 int err; 5851 5852 local_type = btf__type_by_id(local_btf, local_id); 5853 if (!local_type) 5854 return -EINVAL; 5855 5856 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5857 if (!local_name) 5858 return -EINVAL; 5859 5860 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5861 !hashmap__find(cand_cache, local_id, &cands)) { 5862 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5863 if (IS_ERR(cands)) { 5864 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5865 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5866 local_name, PTR_ERR(cands)); 5867 return PTR_ERR(cands); 5868 } 5869 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5870 if (err) { 5871 bpf_core_free_cands(cands); 5872 return err; 5873 } 5874 } 5875 5876 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5877 targ_res); 5878 } 5879 5880 static int 5881 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5882 { 5883 const struct btf_ext_info_sec *sec; 5884 struct bpf_core_relo_res targ_res; 5885 const struct bpf_core_relo *rec; 5886 const struct btf_ext_info *seg; 5887 struct hashmap_entry *entry; 5888 struct hashmap *cand_cache = NULL; 5889 struct bpf_program *prog; 5890 struct bpf_insn *insn; 5891 const char *sec_name; 5892 int i, err = 0, insn_idx, sec_idx, sec_num; 5893 5894 if (obj->btf_ext->core_relo_info.len == 0) 5895 return 0; 5896 5897 if (targ_btf_path) { 5898 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5899 err = libbpf_get_error(obj->btf_vmlinux_override); 5900 if (err) { 5901 pr_warn("failed to parse target BTF: %d\n", err); 5902 return err; 5903 } 5904 } 5905 5906 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5907 if (IS_ERR(cand_cache)) { 5908 err = PTR_ERR(cand_cache); 5909 goto out; 5910 } 5911 5912 seg = &obj->btf_ext->core_relo_info; 5913 sec_num = 0; 5914 for_each_btf_ext_sec(seg, sec) { 5915 sec_idx = seg->sec_idxs[sec_num]; 5916 sec_num++; 5917 5918 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5919 if (str_is_empty(sec_name)) { 5920 err = -EINVAL; 5921 goto out; 5922 } 5923 5924 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5925 5926 for_each_btf_ext_rec(seg, sec, i, rec) { 5927 if (rec->insn_off % BPF_INSN_SZ) 5928 return -EINVAL; 5929 insn_idx = rec->insn_off / BPF_INSN_SZ; 5930 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5931 if (!prog) { 5932 /* When __weak subprog is "overridden" by another instance 5933 * of the subprog from a different object file, linker still 5934 * appends all the .BTF.ext info that used to belong to that 5935 * eliminated subprogram. 5936 * This is similar to what x86-64 linker does for relocations. 5937 * So just ignore such relocations just like we ignore 5938 * subprog instructions when discovering subprograms. 5939 */ 5940 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5941 sec_name, i, insn_idx); 5942 continue; 5943 } 5944 /* no need to apply CO-RE relocation if the program is 5945 * not going to be loaded 5946 */ 5947 if (!prog->autoload) 5948 continue; 5949 5950 /* adjust insn_idx from section frame of reference to the local 5951 * program's frame of reference; (sub-)program code is not yet 5952 * relocated, so it's enough to just subtract in-section offset 5953 */ 5954 insn_idx = insn_idx - prog->sec_insn_off; 5955 if (insn_idx >= prog->insns_cnt) 5956 return -EINVAL; 5957 insn = &prog->insns[insn_idx]; 5958 5959 err = record_relo_core(prog, rec, insn_idx); 5960 if (err) { 5961 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5962 prog->name, i, err); 5963 goto out; 5964 } 5965 5966 if (prog->obj->gen_loader) 5967 continue; 5968 5969 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5970 if (err) { 5971 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5972 prog->name, i, err); 5973 goto out; 5974 } 5975 5976 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5977 if (err) { 5978 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5979 prog->name, i, insn_idx, err); 5980 goto out; 5981 } 5982 } 5983 } 5984 5985 out: 5986 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5987 btf__free(obj->btf_vmlinux_override); 5988 obj->btf_vmlinux_override = NULL; 5989 5990 if (!IS_ERR_OR_NULL(cand_cache)) { 5991 hashmap__for_each_entry(cand_cache, entry, i) { 5992 bpf_core_free_cands(entry->pvalue); 5993 } 5994 hashmap__free(cand_cache); 5995 } 5996 return err; 5997 } 5998 5999 /* base map load ldimm64 special constant, used also for log fixup logic */ 6000 #define POISON_LDIMM64_MAP_BASE 2001000000 6001 #define POISON_LDIMM64_MAP_PFX "200100" 6002 6003 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6004 int insn_idx, struct bpf_insn *insn, 6005 int map_idx, const struct bpf_map *map) 6006 { 6007 int i; 6008 6009 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6010 prog->name, relo_idx, insn_idx, map_idx, map->name); 6011 6012 /* we turn single ldimm64 into two identical invalid calls */ 6013 for (i = 0; i < 2; i++) { 6014 insn->code = BPF_JMP | BPF_CALL; 6015 insn->dst_reg = 0; 6016 insn->src_reg = 0; 6017 insn->off = 0; 6018 /* if this instruction is reachable (not a dead code), 6019 * verifier will complain with something like: 6020 * invalid func unknown#2001000123 6021 * where lower 123 is map index into obj->maps[] array 6022 */ 6023 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6024 6025 insn++; 6026 } 6027 } 6028 6029 /* unresolved kfunc call special constant, used also for log fixup logic */ 6030 #define POISON_CALL_KFUNC_BASE 2002000000 6031 #define POISON_CALL_KFUNC_PFX "2002" 6032 6033 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6034 int insn_idx, struct bpf_insn *insn, 6035 int ext_idx, const struct extern_desc *ext) 6036 { 6037 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6038 prog->name, relo_idx, insn_idx, ext->name); 6039 6040 /* we turn kfunc call into invalid helper call with identifiable constant */ 6041 insn->code = BPF_JMP | BPF_CALL; 6042 insn->dst_reg = 0; 6043 insn->src_reg = 0; 6044 insn->off = 0; 6045 /* if this instruction is reachable (not a dead code), 6046 * verifier will complain with something like: 6047 * invalid func unknown#2001000123 6048 * where lower 123 is extern index into obj->externs[] array 6049 */ 6050 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6051 } 6052 6053 /* Relocate data references within program code: 6054 * - map references; 6055 * - global variable references; 6056 * - extern references. 6057 */ 6058 static int 6059 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6060 { 6061 int i; 6062 6063 for (i = 0; i < prog->nr_reloc; i++) { 6064 struct reloc_desc *relo = &prog->reloc_desc[i]; 6065 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6066 const struct bpf_map *map; 6067 struct extern_desc *ext; 6068 6069 switch (relo->type) { 6070 case RELO_LD64: 6071 map = &obj->maps[relo->map_idx]; 6072 if (obj->gen_loader) { 6073 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6074 insn[0].imm = relo->map_idx; 6075 } else if (map->autocreate) { 6076 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6077 insn[0].imm = map->fd; 6078 } else { 6079 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6080 relo->map_idx, map); 6081 } 6082 break; 6083 case RELO_DATA: 6084 map = &obj->maps[relo->map_idx]; 6085 insn[1].imm = insn[0].imm + relo->sym_off; 6086 if (obj->gen_loader) { 6087 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6088 insn[0].imm = relo->map_idx; 6089 } else if (map->autocreate) { 6090 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6091 insn[0].imm = map->fd; 6092 } else { 6093 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6094 relo->map_idx, map); 6095 } 6096 break; 6097 case RELO_EXTERN_LD64: 6098 ext = &obj->externs[relo->ext_idx]; 6099 if (ext->type == EXT_KCFG) { 6100 if (obj->gen_loader) { 6101 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6102 insn[0].imm = obj->kconfig_map_idx; 6103 } else { 6104 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6105 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6106 } 6107 insn[1].imm = ext->kcfg.data_off; 6108 } else /* EXT_KSYM */ { 6109 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6110 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6111 insn[0].imm = ext->ksym.kernel_btf_id; 6112 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6113 } else { /* typeless ksyms or unresolved typed ksyms */ 6114 insn[0].imm = (__u32)ext->ksym.addr; 6115 insn[1].imm = ext->ksym.addr >> 32; 6116 } 6117 } 6118 break; 6119 case RELO_EXTERN_CALL: 6120 ext = &obj->externs[relo->ext_idx]; 6121 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6122 if (ext->is_set) { 6123 insn[0].imm = ext->ksym.kernel_btf_id; 6124 insn[0].off = ext->ksym.btf_fd_idx; 6125 } else { /* unresolved weak kfunc call */ 6126 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6127 relo->ext_idx, ext); 6128 } 6129 break; 6130 case RELO_SUBPROG_ADDR: 6131 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6132 pr_warn("prog '%s': relo #%d: bad insn\n", 6133 prog->name, i); 6134 return -EINVAL; 6135 } 6136 /* handled already */ 6137 break; 6138 case RELO_CALL: 6139 /* handled already */ 6140 break; 6141 case RELO_CORE: 6142 /* will be handled by bpf_program_record_relos() */ 6143 break; 6144 default: 6145 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6146 prog->name, i, relo->type); 6147 return -EINVAL; 6148 } 6149 } 6150 6151 return 0; 6152 } 6153 6154 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6155 const struct bpf_program *prog, 6156 const struct btf_ext_info *ext_info, 6157 void **prog_info, __u32 *prog_rec_cnt, 6158 __u32 *prog_rec_sz) 6159 { 6160 void *copy_start = NULL, *copy_end = NULL; 6161 void *rec, *rec_end, *new_prog_info; 6162 const struct btf_ext_info_sec *sec; 6163 size_t old_sz, new_sz; 6164 int i, sec_num, sec_idx, off_adj; 6165 6166 sec_num = 0; 6167 for_each_btf_ext_sec(ext_info, sec) { 6168 sec_idx = ext_info->sec_idxs[sec_num]; 6169 sec_num++; 6170 if (prog->sec_idx != sec_idx) 6171 continue; 6172 6173 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6174 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6175 6176 if (insn_off < prog->sec_insn_off) 6177 continue; 6178 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6179 break; 6180 6181 if (!copy_start) 6182 copy_start = rec; 6183 copy_end = rec + ext_info->rec_size; 6184 } 6185 6186 if (!copy_start) 6187 return -ENOENT; 6188 6189 /* append func/line info of a given (sub-)program to the main 6190 * program func/line info 6191 */ 6192 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6193 new_sz = old_sz + (copy_end - copy_start); 6194 new_prog_info = realloc(*prog_info, new_sz); 6195 if (!new_prog_info) 6196 return -ENOMEM; 6197 *prog_info = new_prog_info; 6198 *prog_rec_cnt = new_sz / ext_info->rec_size; 6199 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6200 6201 /* Kernel instruction offsets are in units of 8-byte 6202 * instructions, while .BTF.ext instruction offsets generated 6203 * by Clang are in units of bytes. So convert Clang offsets 6204 * into kernel offsets and adjust offset according to program 6205 * relocated position. 6206 */ 6207 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6208 rec = new_prog_info + old_sz; 6209 rec_end = new_prog_info + new_sz; 6210 for (; rec < rec_end; rec += ext_info->rec_size) { 6211 __u32 *insn_off = rec; 6212 6213 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6214 } 6215 *prog_rec_sz = ext_info->rec_size; 6216 return 0; 6217 } 6218 6219 return -ENOENT; 6220 } 6221 6222 static int 6223 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6224 struct bpf_program *main_prog, 6225 const struct bpf_program *prog) 6226 { 6227 int err; 6228 6229 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6230 * support func/line info 6231 */ 6232 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6233 return 0; 6234 6235 /* only attempt func info relocation if main program's func_info 6236 * relocation was successful 6237 */ 6238 if (main_prog != prog && !main_prog->func_info) 6239 goto line_info; 6240 6241 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6242 &main_prog->func_info, 6243 &main_prog->func_info_cnt, 6244 &main_prog->func_info_rec_size); 6245 if (err) { 6246 if (err != -ENOENT) { 6247 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6248 prog->name, err); 6249 return err; 6250 } 6251 if (main_prog->func_info) { 6252 /* 6253 * Some info has already been found but has problem 6254 * in the last btf_ext reloc. Must have to error out. 6255 */ 6256 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6257 return err; 6258 } 6259 /* Have problem loading the very first info. Ignore the rest. */ 6260 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6261 prog->name); 6262 } 6263 6264 line_info: 6265 /* don't relocate line info if main program's relocation failed */ 6266 if (main_prog != prog && !main_prog->line_info) 6267 return 0; 6268 6269 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6270 &main_prog->line_info, 6271 &main_prog->line_info_cnt, 6272 &main_prog->line_info_rec_size); 6273 if (err) { 6274 if (err != -ENOENT) { 6275 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6276 prog->name, err); 6277 return err; 6278 } 6279 if (main_prog->line_info) { 6280 /* 6281 * Some info has already been found but has problem 6282 * in the last btf_ext reloc. Must have to error out. 6283 */ 6284 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6285 return err; 6286 } 6287 /* Have problem loading the very first info. Ignore the rest. */ 6288 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6289 prog->name); 6290 } 6291 return 0; 6292 } 6293 6294 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6295 { 6296 size_t insn_idx = *(const size_t *)key; 6297 const struct reloc_desc *relo = elem; 6298 6299 if (insn_idx == relo->insn_idx) 6300 return 0; 6301 return insn_idx < relo->insn_idx ? -1 : 1; 6302 } 6303 6304 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6305 { 6306 if (!prog->nr_reloc) 6307 return NULL; 6308 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6309 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6310 } 6311 6312 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6313 { 6314 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6315 struct reloc_desc *relos; 6316 int i; 6317 6318 if (main_prog == subprog) 6319 return 0; 6320 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6321 /* if new count is zero, reallocarray can return a valid NULL result; 6322 * in this case the previous pointer will be freed, so we *have to* 6323 * reassign old pointer to the new value (even if it's NULL) 6324 */ 6325 if (!relos && new_cnt) 6326 return -ENOMEM; 6327 if (subprog->nr_reloc) 6328 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6329 sizeof(*relos) * subprog->nr_reloc); 6330 6331 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6332 relos[i].insn_idx += subprog->sub_insn_off; 6333 /* After insn_idx adjustment the 'relos' array is still sorted 6334 * by insn_idx and doesn't break bsearch. 6335 */ 6336 main_prog->reloc_desc = relos; 6337 main_prog->nr_reloc = new_cnt; 6338 return 0; 6339 } 6340 6341 static int 6342 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6343 struct bpf_program *subprog) 6344 { 6345 struct bpf_insn *insns; 6346 size_t new_cnt; 6347 int err; 6348 6349 subprog->sub_insn_off = main_prog->insns_cnt; 6350 6351 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6352 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6353 if (!insns) { 6354 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6355 return -ENOMEM; 6356 } 6357 main_prog->insns = insns; 6358 main_prog->insns_cnt = new_cnt; 6359 6360 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6361 subprog->insns_cnt * sizeof(*insns)); 6362 6363 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6364 main_prog->name, subprog->insns_cnt, subprog->name); 6365 6366 /* The subprog insns are now appended. Append its relos too. */ 6367 err = append_subprog_relos(main_prog, subprog); 6368 if (err) 6369 return err; 6370 return 0; 6371 } 6372 6373 static int 6374 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6375 struct bpf_program *prog) 6376 { 6377 size_t sub_insn_idx, insn_idx; 6378 struct bpf_program *subprog; 6379 struct reloc_desc *relo; 6380 struct bpf_insn *insn; 6381 int err; 6382 6383 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6384 if (err) 6385 return err; 6386 6387 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6388 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6389 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6390 continue; 6391 6392 relo = find_prog_insn_relo(prog, insn_idx); 6393 if (relo && relo->type == RELO_EXTERN_CALL) 6394 /* kfunc relocations will be handled later 6395 * in bpf_object__relocate_data() 6396 */ 6397 continue; 6398 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6399 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6400 prog->name, insn_idx, relo->type); 6401 return -LIBBPF_ERRNO__RELOC; 6402 } 6403 if (relo) { 6404 /* sub-program instruction index is a combination of 6405 * an offset of a symbol pointed to by relocation and 6406 * call instruction's imm field; for global functions, 6407 * call always has imm = -1, but for static functions 6408 * relocation is against STT_SECTION and insn->imm 6409 * points to a start of a static function 6410 * 6411 * for subprog addr relocation, the relo->sym_off + insn->imm is 6412 * the byte offset in the corresponding section. 6413 */ 6414 if (relo->type == RELO_CALL) 6415 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6416 else 6417 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6418 } else if (insn_is_pseudo_func(insn)) { 6419 /* 6420 * RELO_SUBPROG_ADDR relo is always emitted even if both 6421 * functions are in the same section, so it shouldn't reach here. 6422 */ 6423 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6424 prog->name, insn_idx); 6425 return -LIBBPF_ERRNO__RELOC; 6426 } else { 6427 /* if subprogram call is to a static function within 6428 * the same ELF section, there won't be any relocation 6429 * emitted, but it also means there is no additional 6430 * offset necessary, insns->imm is relative to 6431 * instruction's original position within the section 6432 */ 6433 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6434 } 6435 6436 /* we enforce that sub-programs should be in .text section */ 6437 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6438 if (!subprog) { 6439 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6440 prog->name); 6441 return -LIBBPF_ERRNO__RELOC; 6442 } 6443 6444 /* if it's the first call instruction calling into this 6445 * subprogram (meaning this subprog hasn't been processed 6446 * yet) within the context of current main program: 6447 * - append it at the end of main program's instructions blog; 6448 * - process is recursively, while current program is put on hold; 6449 * - if that subprogram calls some other not yet processes 6450 * subprogram, same thing will happen recursively until 6451 * there are no more unprocesses subprograms left to append 6452 * and relocate. 6453 */ 6454 if (subprog->sub_insn_off == 0) { 6455 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6456 if (err) 6457 return err; 6458 err = bpf_object__reloc_code(obj, main_prog, subprog); 6459 if (err) 6460 return err; 6461 } 6462 6463 /* main_prog->insns memory could have been re-allocated, so 6464 * calculate pointer again 6465 */ 6466 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6467 /* calculate correct instruction position within current main 6468 * prog; each main prog can have a different set of 6469 * subprograms appended (potentially in different order as 6470 * well), so position of any subprog can be different for 6471 * different main programs 6472 */ 6473 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6474 6475 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6476 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6477 } 6478 6479 return 0; 6480 } 6481 6482 /* 6483 * Relocate sub-program calls. 6484 * 6485 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6486 * main prog) is processed separately. For each subprog (non-entry functions, 6487 * that can be called from either entry progs or other subprogs) gets their 6488 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6489 * hasn't been yet appended and relocated within current main prog. Once its 6490 * relocated, sub_insn_off will point at the position within current main prog 6491 * where given subprog was appended. This will further be used to relocate all 6492 * the call instructions jumping into this subprog. 6493 * 6494 * We start with main program and process all call instructions. If the call 6495 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6496 * is zero), subprog instructions are appended at the end of main program's 6497 * instruction array. Then main program is "put on hold" while we recursively 6498 * process newly appended subprogram. If that subprogram calls into another 6499 * subprogram that hasn't been appended, new subprogram is appended again to 6500 * the *main* prog's instructions (subprog's instructions are always left 6501 * untouched, as they need to be in unmodified state for subsequent main progs 6502 * and subprog instructions are always sent only as part of a main prog) and 6503 * the process continues recursively. Once all the subprogs called from a main 6504 * prog or any of its subprogs are appended (and relocated), all their 6505 * positions within finalized instructions array are known, so it's easy to 6506 * rewrite call instructions with correct relative offsets, corresponding to 6507 * desired target subprog. 6508 * 6509 * Its important to realize that some subprogs might not be called from some 6510 * main prog and any of its called/used subprogs. Those will keep their 6511 * subprog->sub_insn_off as zero at all times and won't be appended to current 6512 * main prog and won't be relocated within the context of current main prog. 6513 * They might still be used from other main progs later. 6514 * 6515 * Visually this process can be shown as below. Suppose we have two main 6516 * programs mainA and mainB and BPF object contains three subprogs: subA, 6517 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6518 * subC both call subB: 6519 * 6520 * +--------+ +-------+ 6521 * | v v | 6522 * +--+---+ +--+-+-+ +---+--+ 6523 * | subA | | subB | | subC | 6524 * +--+---+ +------+ +---+--+ 6525 * ^ ^ 6526 * | | 6527 * +---+-------+ +------+----+ 6528 * | mainA | | mainB | 6529 * +-----------+ +-----------+ 6530 * 6531 * We'll start relocating mainA, will find subA, append it and start 6532 * processing sub A recursively: 6533 * 6534 * +-----------+------+ 6535 * | mainA | subA | 6536 * +-----------+------+ 6537 * 6538 * At this point we notice that subB is used from subA, so we append it and 6539 * relocate (there are no further subcalls from subB): 6540 * 6541 * +-----------+------+------+ 6542 * | mainA | subA | subB | 6543 * +-----------+------+------+ 6544 * 6545 * At this point, we relocate subA calls, then go one level up and finish with 6546 * relocatin mainA calls. mainA is done. 6547 * 6548 * For mainB process is similar but results in different order. We start with 6549 * mainB and skip subA and subB, as mainB never calls them (at least 6550 * directly), but we see subC is needed, so we append and start processing it: 6551 * 6552 * +-----------+------+ 6553 * | mainB | subC | 6554 * +-----------+------+ 6555 * Now we see subC needs subB, so we go back to it, append and relocate it: 6556 * 6557 * +-----------+------+------+ 6558 * | mainB | subC | subB | 6559 * +-----------+------+------+ 6560 * 6561 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6562 */ 6563 static int 6564 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6565 { 6566 struct bpf_program *subprog; 6567 int i, err; 6568 6569 /* mark all subprogs as not relocated (yet) within the context of 6570 * current main program 6571 */ 6572 for (i = 0; i < obj->nr_programs; i++) { 6573 subprog = &obj->programs[i]; 6574 if (!prog_is_subprog(obj, subprog)) 6575 continue; 6576 6577 subprog->sub_insn_off = 0; 6578 } 6579 6580 err = bpf_object__reloc_code(obj, prog, prog); 6581 if (err) 6582 return err; 6583 6584 return 0; 6585 } 6586 6587 static void 6588 bpf_object__free_relocs(struct bpf_object *obj) 6589 { 6590 struct bpf_program *prog; 6591 int i; 6592 6593 /* free up relocation descriptors */ 6594 for (i = 0; i < obj->nr_programs; i++) { 6595 prog = &obj->programs[i]; 6596 zfree(&prog->reloc_desc); 6597 prog->nr_reloc = 0; 6598 } 6599 } 6600 6601 static int cmp_relocs(const void *_a, const void *_b) 6602 { 6603 const struct reloc_desc *a = _a; 6604 const struct reloc_desc *b = _b; 6605 6606 if (a->insn_idx != b->insn_idx) 6607 return a->insn_idx < b->insn_idx ? -1 : 1; 6608 6609 /* no two relocations should have the same insn_idx, but ... */ 6610 if (a->type != b->type) 6611 return a->type < b->type ? -1 : 1; 6612 6613 return 0; 6614 } 6615 6616 static void bpf_object__sort_relos(struct bpf_object *obj) 6617 { 6618 int i; 6619 6620 for (i = 0; i < obj->nr_programs; i++) { 6621 struct bpf_program *p = &obj->programs[i]; 6622 6623 if (!p->nr_reloc) 6624 continue; 6625 6626 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6627 } 6628 } 6629 6630 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6631 { 6632 const char *str = "exception_callback:"; 6633 size_t pfx_len = strlen(str); 6634 int i, j, n; 6635 6636 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6637 return 0; 6638 6639 n = btf__type_cnt(obj->btf); 6640 for (i = 1; i < n; i++) { 6641 const char *name; 6642 struct btf_type *t; 6643 6644 t = btf_type_by_id(obj->btf, i); 6645 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6646 continue; 6647 6648 name = btf__str_by_offset(obj->btf, t->name_off); 6649 if (strncmp(name, str, pfx_len) != 0) 6650 continue; 6651 6652 t = btf_type_by_id(obj->btf, t->type); 6653 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6654 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6655 prog->name); 6656 return -EINVAL; 6657 } 6658 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6659 continue; 6660 /* Multiple callbacks are specified for the same prog, 6661 * the verifier will eventually return an error for this 6662 * case, hence simply skip appending a subprog. 6663 */ 6664 if (prog->exception_cb_idx >= 0) { 6665 prog->exception_cb_idx = -1; 6666 break; 6667 } 6668 6669 name += pfx_len; 6670 if (str_is_empty(name)) { 6671 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6672 prog->name); 6673 return -EINVAL; 6674 } 6675 6676 for (j = 0; j < obj->nr_programs; j++) { 6677 struct bpf_program *subprog = &obj->programs[j]; 6678 6679 if (!prog_is_subprog(obj, subprog)) 6680 continue; 6681 if (strcmp(name, subprog->name) != 0) 6682 continue; 6683 /* Enforce non-hidden, as from verifier point of 6684 * view it expects global functions, whereas the 6685 * mark_btf_static fixes up linkage as static. 6686 */ 6687 if (!subprog->sym_global || subprog->mark_btf_static) { 6688 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6689 prog->name, subprog->name); 6690 return -EINVAL; 6691 } 6692 /* Let's see if we already saw a static exception callback with the same name */ 6693 if (prog->exception_cb_idx >= 0) { 6694 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6695 prog->name, subprog->name); 6696 return -EINVAL; 6697 } 6698 prog->exception_cb_idx = j; 6699 break; 6700 } 6701 6702 if (prog->exception_cb_idx >= 0) 6703 continue; 6704 6705 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6706 return -ENOENT; 6707 } 6708 6709 return 0; 6710 } 6711 6712 static struct { 6713 enum bpf_prog_type prog_type; 6714 const char *ctx_name; 6715 } global_ctx_map[] = { 6716 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6717 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6718 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6719 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6720 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6721 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6722 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6723 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6724 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6725 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6726 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6727 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6728 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6729 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6730 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6731 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6732 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6733 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6734 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6735 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6736 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6737 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6738 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6739 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6740 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6741 /* all other program types don't have "named" context structs */ 6742 }; 6743 6744 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6745 * for below __builtin_types_compatible_p() checks; 6746 * with this approach we don't need any extra arch-specific #ifdef guards 6747 */ 6748 struct pt_regs; 6749 struct user_pt_regs; 6750 struct user_regs_struct; 6751 6752 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6753 const char *subprog_name, int arg_idx, 6754 int arg_type_id, const char *ctx_name) 6755 { 6756 const struct btf_type *t; 6757 const char *tname; 6758 6759 /* check if existing parameter already matches verifier expectations */ 6760 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6761 if (!btf_is_ptr(t)) 6762 goto out_warn; 6763 6764 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6765 * and perf_event programs, so check this case early on and forget 6766 * about it for subsequent checks 6767 */ 6768 while (btf_is_mod(t)) 6769 t = btf__type_by_id(btf, t->type); 6770 if (btf_is_typedef(t) && 6771 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6772 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6773 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6774 return false; /* canonical type for kprobe/perf_event */ 6775 } 6776 6777 /* now we can ignore typedefs moving forward */ 6778 t = skip_mods_and_typedefs(btf, t->type, NULL); 6779 6780 /* if it's `void *`, definitely fix up BTF info */ 6781 if (btf_is_void(t)) 6782 return true; 6783 6784 /* if it's already proper canonical type, no need to fix up */ 6785 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6786 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6787 return false; 6788 6789 /* special cases */ 6790 switch (prog->type) { 6791 case BPF_PROG_TYPE_KPROBE: 6792 /* `struct pt_regs *` is expected, but we need to fix up */ 6793 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6794 return true; 6795 break; 6796 case BPF_PROG_TYPE_PERF_EVENT: 6797 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6798 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6799 return true; 6800 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6801 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6802 return true; 6803 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6804 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6805 return true; 6806 break; 6807 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6808 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6809 /* allow u64* as ctx */ 6810 if (btf_is_int(t) && t->size == 8) 6811 return true; 6812 break; 6813 default: 6814 break; 6815 } 6816 6817 out_warn: 6818 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6819 prog->name, subprog_name, arg_idx, ctx_name); 6820 return false; 6821 } 6822 6823 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6824 { 6825 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6826 int i, err, arg_cnt, fn_name_off, linkage; 6827 struct btf_type *fn_t, *fn_proto_t, *t; 6828 struct btf_param *p; 6829 6830 /* caller already validated FUNC -> FUNC_PROTO validity */ 6831 fn_t = btf_type_by_id(btf, orig_fn_id); 6832 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6833 6834 /* Note that each btf__add_xxx() operation invalidates 6835 * all btf_type and string pointers, so we need to be 6836 * very careful when cloning BTF types. BTF type 6837 * pointers have to be always refetched. And to avoid 6838 * problems with invalidated string pointers, we 6839 * add empty strings initially, then just fix up 6840 * name_off offsets in place. Offsets are stable for 6841 * existing strings, so that works out. 6842 */ 6843 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6844 linkage = btf_func_linkage(fn_t); 6845 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6846 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6847 arg_cnt = btf_vlen(fn_proto_t); 6848 6849 /* clone FUNC_PROTO and its params */ 6850 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6851 if (fn_proto_id < 0) 6852 return -EINVAL; 6853 6854 for (i = 0; i < arg_cnt; i++) { 6855 int name_off; 6856 6857 /* copy original parameter data */ 6858 t = btf_type_by_id(btf, orig_proto_id); 6859 p = &btf_params(t)[i]; 6860 name_off = p->name_off; 6861 6862 err = btf__add_func_param(btf, "", p->type); 6863 if (err) 6864 return err; 6865 6866 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6867 p = &btf_params(fn_proto_t)[i]; 6868 p->name_off = name_off; /* use remembered str offset */ 6869 } 6870 6871 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6872 * entry program's name as a placeholder, which we replace immediately 6873 * with original name_off 6874 */ 6875 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6876 if (fn_id < 0) 6877 return -EINVAL; 6878 6879 fn_t = btf_type_by_id(btf, fn_id); 6880 fn_t->name_off = fn_name_off; /* reuse original string */ 6881 6882 return fn_id; 6883 } 6884 6885 /* Check if main program or global subprog's function prototype has `arg:ctx` 6886 * argument tags, and, if necessary, substitute correct type to match what BPF 6887 * verifier would expect, taking into account specific program type. This 6888 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6889 * have a native support for it in the verifier, making user's life much 6890 * easier. 6891 */ 6892 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6893 { 6894 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6895 struct bpf_func_info_min *func_rec; 6896 struct btf_type *fn_t, *fn_proto_t; 6897 struct btf *btf = obj->btf; 6898 const struct btf_type *t; 6899 struct btf_param *p; 6900 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6901 int i, n, arg_idx, arg_cnt, err, rec_idx; 6902 int *orig_ids; 6903 6904 /* no .BTF.ext, no problem */ 6905 if (!obj->btf_ext || !prog->func_info) 6906 return 0; 6907 6908 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6909 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6910 return 0; 6911 6912 /* some BPF program types just don't have named context structs, so 6913 * this fallback mechanism doesn't work for them 6914 */ 6915 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6916 if (global_ctx_map[i].prog_type != prog->type) 6917 continue; 6918 ctx_name = global_ctx_map[i].ctx_name; 6919 break; 6920 } 6921 if (!ctx_name) 6922 return 0; 6923 6924 /* remember original func BTF IDs to detect if we already cloned them */ 6925 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6926 if (!orig_ids) 6927 return -ENOMEM; 6928 for (i = 0; i < prog->func_info_cnt; i++) { 6929 func_rec = prog->func_info + prog->func_info_rec_size * i; 6930 orig_ids[i] = func_rec->type_id; 6931 } 6932 6933 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6934 * of our subprogs; if yes and subprog is global and needs adjustment, 6935 * clone and adjust FUNC -> FUNC_PROTO combo 6936 */ 6937 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6938 /* only DECL_TAG with "arg:ctx" value are interesting */ 6939 t = btf__type_by_id(btf, i); 6940 if (!btf_is_decl_tag(t)) 6941 continue; 6942 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6943 continue; 6944 6945 /* only global funcs need adjustment, if at all */ 6946 orig_fn_id = t->type; 6947 fn_t = btf_type_by_id(btf, orig_fn_id); 6948 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6949 continue; 6950 6951 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6952 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6953 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6954 continue; 6955 6956 /* find corresponding func_info record */ 6957 func_rec = NULL; 6958 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6959 if (orig_ids[rec_idx] == t->type) { 6960 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6961 break; 6962 } 6963 } 6964 /* current main program doesn't call into this subprog */ 6965 if (!func_rec) 6966 continue; 6967 6968 /* some more sanity checking of DECL_TAG */ 6969 arg_cnt = btf_vlen(fn_proto_t); 6970 arg_idx = btf_decl_tag(t)->component_idx; 6971 if (arg_idx < 0 || arg_idx >= arg_cnt) 6972 continue; 6973 6974 /* check if we should fix up argument type */ 6975 p = &btf_params(fn_proto_t)[arg_idx]; 6976 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 6977 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 6978 continue; 6979 6980 /* clone fn/fn_proto, unless we already did it for another arg */ 6981 if (func_rec->type_id == orig_fn_id) { 6982 int fn_id; 6983 6984 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 6985 if (fn_id < 0) { 6986 err = fn_id; 6987 goto err_out; 6988 } 6989 6990 /* point func_info record to a cloned FUNC type */ 6991 func_rec->type_id = fn_id; 6992 } 6993 6994 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 6995 * we do it just once per main BPF program, as all global 6996 * funcs share the same program type, so need only PTR -> 6997 * STRUCT type chain 6998 */ 6999 if (ptr_id == 0) { 7000 struct_id = btf__add_struct(btf, ctx_name, 0); 7001 ptr_id = btf__add_ptr(btf, struct_id); 7002 if (ptr_id < 0 || struct_id < 0) { 7003 err = -EINVAL; 7004 goto err_out; 7005 } 7006 } 7007 7008 /* for completeness, clone DECL_TAG and point it to cloned param */ 7009 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7010 if (tag_id < 0) { 7011 err = -EINVAL; 7012 goto err_out; 7013 } 7014 7015 /* all the BTF manipulations invalidated pointers, refetch them */ 7016 fn_t = btf_type_by_id(btf, func_rec->type_id); 7017 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7018 7019 /* fix up type ID pointed to by param */ 7020 p = &btf_params(fn_proto_t)[arg_idx]; 7021 p->type = ptr_id; 7022 } 7023 7024 free(orig_ids); 7025 return 0; 7026 err_out: 7027 free(orig_ids); 7028 return err; 7029 } 7030 7031 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7032 { 7033 struct bpf_program *prog; 7034 size_t i, j; 7035 int err; 7036 7037 if (obj->btf_ext) { 7038 err = bpf_object__relocate_core(obj, targ_btf_path); 7039 if (err) { 7040 pr_warn("failed to perform CO-RE relocations: %d\n", 7041 err); 7042 return err; 7043 } 7044 bpf_object__sort_relos(obj); 7045 } 7046 7047 /* Before relocating calls pre-process relocations and mark 7048 * few ld_imm64 instructions that points to subprogs. 7049 * Otherwise bpf_object__reloc_code() later would have to consider 7050 * all ld_imm64 insns as relocation candidates. That would 7051 * reduce relocation speed, since amount of find_prog_insn_relo() 7052 * would increase and most of them will fail to find a relo. 7053 */ 7054 for (i = 0; i < obj->nr_programs; i++) { 7055 prog = &obj->programs[i]; 7056 for (j = 0; j < prog->nr_reloc; j++) { 7057 struct reloc_desc *relo = &prog->reloc_desc[j]; 7058 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7059 7060 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7061 if (relo->type == RELO_SUBPROG_ADDR) 7062 insn[0].src_reg = BPF_PSEUDO_FUNC; 7063 } 7064 } 7065 7066 /* relocate subprogram calls and append used subprograms to main 7067 * programs; each copy of subprogram code needs to be relocated 7068 * differently for each main program, because its code location might 7069 * have changed. 7070 * Append subprog relos to main programs to allow data relos to be 7071 * processed after text is completely relocated. 7072 */ 7073 for (i = 0; i < obj->nr_programs; i++) { 7074 prog = &obj->programs[i]; 7075 /* sub-program's sub-calls are relocated within the context of 7076 * its main program only 7077 */ 7078 if (prog_is_subprog(obj, prog)) 7079 continue; 7080 if (!prog->autoload) 7081 continue; 7082 7083 err = bpf_object__relocate_calls(obj, prog); 7084 if (err) { 7085 pr_warn("prog '%s': failed to relocate calls: %d\n", 7086 prog->name, err); 7087 return err; 7088 } 7089 7090 err = bpf_prog_assign_exc_cb(obj, prog); 7091 if (err) 7092 return err; 7093 /* Now, also append exception callback if it has not been done already. */ 7094 if (prog->exception_cb_idx >= 0) { 7095 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7096 7097 /* Calling exception callback directly is disallowed, which the 7098 * verifier will reject later. In case it was processed already, 7099 * we can skip this step, otherwise for all other valid cases we 7100 * have to append exception callback now. 7101 */ 7102 if (subprog->sub_insn_off == 0) { 7103 err = bpf_object__append_subprog_code(obj, prog, subprog); 7104 if (err) 7105 return err; 7106 err = bpf_object__reloc_code(obj, prog, subprog); 7107 if (err) 7108 return err; 7109 } 7110 } 7111 } 7112 for (i = 0; i < obj->nr_programs; i++) { 7113 prog = &obj->programs[i]; 7114 if (prog_is_subprog(obj, prog)) 7115 continue; 7116 if (!prog->autoload) 7117 continue; 7118 7119 /* Process data relos for main programs */ 7120 err = bpf_object__relocate_data(obj, prog); 7121 if (err) { 7122 pr_warn("prog '%s': failed to relocate data references: %d\n", 7123 prog->name, err); 7124 return err; 7125 } 7126 7127 /* Fix up .BTF.ext information, if necessary */ 7128 err = bpf_program_fixup_func_info(obj, prog); 7129 if (err) { 7130 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n", 7131 prog->name, err); 7132 return err; 7133 } 7134 } 7135 7136 return 0; 7137 } 7138 7139 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7140 Elf64_Shdr *shdr, Elf_Data *data); 7141 7142 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7143 Elf64_Shdr *shdr, Elf_Data *data) 7144 { 7145 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7146 int i, j, nrels, new_sz; 7147 const struct btf_var_secinfo *vi = NULL; 7148 const struct btf_type *sec, *var, *def; 7149 struct bpf_map *map = NULL, *targ_map = NULL; 7150 struct bpf_program *targ_prog = NULL; 7151 bool is_prog_array, is_map_in_map; 7152 const struct btf_member *member; 7153 const char *name, *mname, *type; 7154 unsigned int moff; 7155 Elf64_Sym *sym; 7156 Elf64_Rel *rel; 7157 void *tmp; 7158 7159 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7160 return -EINVAL; 7161 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7162 if (!sec) 7163 return -EINVAL; 7164 7165 nrels = shdr->sh_size / shdr->sh_entsize; 7166 for (i = 0; i < nrels; i++) { 7167 rel = elf_rel_by_idx(data, i); 7168 if (!rel) { 7169 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7170 return -LIBBPF_ERRNO__FORMAT; 7171 } 7172 7173 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7174 if (!sym) { 7175 pr_warn(".maps relo #%d: symbol %zx not found\n", 7176 i, (size_t)ELF64_R_SYM(rel->r_info)); 7177 return -LIBBPF_ERRNO__FORMAT; 7178 } 7179 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7180 7181 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7182 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7183 (size_t)rel->r_offset, sym->st_name, name); 7184 7185 for (j = 0; j < obj->nr_maps; j++) { 7186 map = &obj->maps[j]; 7187 if (map->sec_idx != obj->efile.btf_maps_shndx) 7188 continue; 7189 7190 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7191 if (vi->offset <= rel->r_offset && 7192 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7193 break; 7194 } 7195 if (j == obj->nr_maps) { 7196 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7197 i, name, (size_t)rel->r_offset); 7198 return -EINVAL; 7199 } 7200 7201 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7202 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7203 type = is_map_in_map ? "map" : "prog"; 7204 if (is_map_in_map) { 7205 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7206 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7207 i, name); 7208 return -LIBBPF_ERRNO__RELOC; 7209 } 7210 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7211 map->def.key_size != sizeof(int)) { 7212 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7213 i, map->name, sizeof(int)); 7214 return -EINVAL; 7215 } 7216 targ_map = bpf_object__find_map_by_name(obj, name); 7217 if (!targ_map) { 7218 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7219 i, name); 7220 return -ESRCH; 7221 } 7222 } else if (is_prog_array) { 7223 targ_prog = bpf_object__find_program_by_name(obj, name); 7224 if (!targ_prog) { 7225 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7226 i, name); 7227 return -ESRCH; 7228 } 7229 if (targ_prog->sec_idx != sym->st_shndx || 7230 targ_prog->sec_insn_off * 8 != sym->st_value || 7231 prog_is_subprog(obj, targ_prog)) { 7232 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7233 i, name); 7234 return -LIBBPF_ERRNO__RELOC; 7235 } 7236 } else { 7237 return -EINVAL; 7238 } 7239 7240 var = btf__type_by_id(obj->btf, vi->type); 7241 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7242 if (btf_vlen(def) == 0) 7243 return -EINVAL; 7244 member = btf_members(def) + btf_vlen(def) - 1; 7245 mname = btf__name_by_offset(obj->btf, member->name_off); 7246 if (strcmp(mname, "values")) 7247 return -EINVAL; 7248 7249 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7250 if (rel->r_offset - vi->offset < moff) 7251 return -EINVAL; 7252 7253 moff = rel->r_offset - vi->offset - moff; 7254 /* here we use BPF pointer size, which is always 64 bit, as we 7255 * are parsing ELF that was built for BPF target 7256 */ 7257 if (moff % bpf_ptr_sz) 7258 return -EINVAL; 7259 moff /= bpf_ptr_sz; 7260 if (moff >= map->init_slots_sz) { 7261 new_sz = moff + 1; 7262 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7263 if (!tmp) 7264 return -ENOMEM; 7265 map->init_slots = tmp; 7266 memset(map->init_slots + map->init_slots_sz, 0, 7267 (new_sz - map->init_slots_sz) * host_ptr_sz); 7268 map->init_slots_sz = new_sz; 7269 } 7270 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7271 7272 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7273 i, map->name, moff, type, name); 7274 } 7275 7276 return 0; 7277 } 7278 7279 static int bpf_object__collect_relos(struct bpf_object *obj) 7280 { 7281 int i, err; 7282 7283 for (i = 0; i < obj->efile.sec_cnt; i++) { 7284 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7285 Elf64_Shdr *shdr; 7286 Elf_Data *data; 7287 int idx; 7288 7289 if (sec_desc->sec_type != SEC_RELO) 7290 continue; 7291 7292 shdr = sec_desc->shdr; 7293 data = sec_desc->data; 7294 idx = shdr->sh_info; 7295 7296 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7297 pr_warn("internal error at %d\n", __LINE__); 7298 return -LIBBPF_ERRNO__INTERNAL; 7299 } 7300 7301 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7302 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7303 else if (idx == obj->efile.btf_maps_shndx) 7304 err = bpf_object__collect_map_relos(obj, shdr, data); 7305 else 7306 err = bpf_object__collect_prog_relos(obj, shdr, data); 7307 if (err) 7308 return err; 7309 } 7310 7311 bpf_object__sort_relos(obj); 7312 return 0; 7313 } 7314 7315 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7316 { 7317 if (BPF_CLASS(insn->code) == BPF_JMP && 7318 BPF_OP(insn->code) == BPF_CALL && 7319 BPF_SRC(insn->code) == BPF_K && 7320 insn->src_reg == 0 && 7321 insn->dst_reg == 0) { 7322 *func_id = insn->imm; 7323 return true; 7324 } 7325 return false; 7326 } 7327 7328 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7329 { 7330 struct bpf_insn *insn = prog->insns; 7331 enum bpf_func_id func_id; 7332 int i; 7333 7334 if (obj->gen_loader) 7335 return 0; 7336 7337 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7338 if (!insn_is_helper_call(insn, &func_id)) 7339 continue; 7340 7341 /* on kernels that don't yet support 7342 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7343 * to bpf_probe_read() which works well for old kernels 7344 */ 7345 switch (func_id) { 7346 case BPF_FUNC_probe_read_kernel: 7347 case BPF_FUNC_probe_read_user: 7348 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7349 insn->imm = BPF_FUNC_probe_read; 7350 break; 7351 case BPF_FUNC_probe_read_kernel_str: 7352 case BPF_FUNC_probe_read_user_str: 7353 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7354 insn->imm = BPF_FUNC_probe_read_str; 7355 break; 7356 default: 7357 break; 7358 } 7359 } 7360 return 0; 7361 } 7362 7363 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7364 int *btf_obj_fd, int *btf_type_id); 7365 7366 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7367 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7368 struct bpf_prog_load_opts *opts, long cookie) 7369 { 7370 enum sec_def_flags def = cookie; 7371 7372 /* old kernels might not support specifying expected_attach_type */ 7373 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7374 opts->expected_attach_type = 0; 7375 7376 if (def & SEC_SLEEPABLE) 7377 opts->prog_flags |= BPF_F_SLEEPABLE; 7378 7379 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7380 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7381 7382 /* special check for usdt to use uprobe_multi link */ 7383 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7384 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7385 * in prog, and expected_attach_type we set in kernel is from opts, so we 7386 * update both. 7387 */ 7388 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7389 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7390 } 7391 7392 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7393 int btf_obj_fd = 0, btf_type_id = 0, err; 7394 const char *attach_name; 7395 7396 attach_name = strchr(prog->sec_name, '/'); 7397 if (!attach_name) { 7398 /* if BPF program is annotated with just SEC("fentry") 7399 * (or similar) without declaratively specifying 7400 * target, then it is expected that target will be 7401 * specified with bpf_program__set_attach_target() at 7402 * runtime before BPF object load step. If not, then 7403 * there is nothing to load into the kernel as BPF 7404 * verifier won't be able to validate BPF program 7405 * correctness anyways. 7406 */ 7407 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7408 prog->name); 7409 return -EINVAL; 7410 } 7411 attach_name++; /* skip over / */ 7412 7413 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7414 if (err) 7415 return err; 7416 7417 /* cache resolved BTF FD and BTF type ID in the prog */ 7418 prog->attach_btf_obj_fd = btf_obj_fd; 7419 prog->attach_btf_id = btf_type_id; 7420 7421 /* but by now libbpf common logic is not utilizing 7422 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7423 * this callback is called after opts were populated by 7424 * libbpf, so this callback has to update opts explicitly here 7425 */ 7426 opts->attach_btf_obj_fd = btf_obj_fd; 7427 opts->attach_btf_id = btf_type_id; 7428 } 7429 return 0; 7430 } 7431 7432 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7433 7434 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7435 struct bpf_insn *insns, int insns_cnt, 7436 const char *license, __u32 kern_version, int *prog_fd) 7437 { 7438 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7439 const char *prog_name = NULL; 7440 char *cp, errmsg[STRERR_BUFSIZE]; 7441 size_t log_buf_size = 0; 7442 char *log_buf = NULL, *tmp; 7443 bool own_log_buf = true; 7444 __u32 log_level = prog->log_level; 7445 int ret, err; 7446 7447 /* Be more helpful by rejecting programs that can't be validated early 7448 * with more meaningful and actionable error message. 7449 */ 7450 switch (prog->type) { 7451 case BPF_PROG_TYPE_UNSPEC: 7452 /* 7453 * The program type must be set. Most likely we couldn't find a proper 7454 * section definition at load time, and thus we didn't infer the type. 7455 */ 7456 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7457 prog->name, prog->sec_name); 7458 return -EINVAL; 7459 case BPF_PROG_TYPE_STRUCT_OPS: 7460 if (prog->attach_btf_id == 0) { 7461 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7462 prog->name); 7463 return -EINVAL; 7464 } 7465 break; 7466 default: 7467 break; 7468 } 7469 7470 if (!insns || !insns_cnt) 7471 return -EINVAL; 7472 7473 if (kernel_supports(obj, FEAT_PROG_NAME)) 7474 prog_name = prog->name; 7475 load_attr.attach_prog_fd = prog->attach_prog_fd; 7476 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7477 load_attr.attach_btf_id = prog->attach_btf_id; 7478 load_attr.kern_version = kern_version; 7479 load_attr.prog_ifindex = prog->prog_ifindex; 7480 load_attr.expected_attach_type = prog->expected_attach_type; 7481 7482 /* specify func_info/line_info only if kernel supports them */ 7483 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7484 load_attr.prog_btf_fd = btf__fd(obj->btf); 7485 load_attr.func_info = prog->func_info; 7486 load_attr.func_info_rec_size = prog->func_info_rec_size; 7487 load_attr.func_info_cnt = prog->func_info_cnt; 7488 load_attr.line_info = prog->line_info; 7489 load_attr.line_info_rec_size = prog->line_info_rec_size; 7490 load_attr.line_info_cnt = prog->line_info_cnt; 7491 } 7492 load_attr.log_level = log_level; 7493 load_attr.prog_flags = prog->prog_flags; 7494 load_attr.fd_array = obj->fd_array; 7495 7496 load_attr.token_fd = obj->token_fd; 7497 if (obj->token_fd) 7498 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7499 7500 /* adjust load_attr if sec_def provides custom preload callback */ 7501 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7502 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7503 if (err < 0) { 7504 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7505 prog->name, err); 7506 return err; 7507 } 7508 insns = prog->insns; 7509 insns_cnt = prog->insns_cnt; 7510 } 7511 7512 if (obj->gen_loader) { 7513 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7514 license, insns, insns_cnt, &load_attr, 7515 prog - obj->programs); 7516 *prog_fd = -1; 7517 return 0; 7518 } 7519 7520 retry_load: 7521 /* if log_level is zero, we don't request logs initially even if 7522 * custom log_buf is specified; if the program load fails, then we'll 7523 * bump log_level to 1 and use either custom log_buf or we'll allocate 7524 * our own and retry the load to get details on what failed 7525 */ 7526 if (log_level) { 7527 if (prog->log_buf) { 7528 log_buf = prog->log_buf; 7529 log_buf_size = prog->log_size; 7530 own_log_buf = false; 7531 } else if (obj->log_buf) { 7532 log_buf = obj->log_buf; 7533 log_buf_size = obj->log_size; 7534 own_log_buf = false; 7535 } else { 7536 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7537 tmp = realloc(log_buf, log_buf_size); 7538 if (!tmp) { 7539 ret = -ENOMEM; 7540 goto out; 7541 } 7542 log_buf = tmp; 7543 log_buf[0] = '\0'; 7544 own_log_buf = true; 7545 } 7546 } 7547 7548 load_attr.log_buf = log_buf; 7549 load_attr.log_size = log_buf_size; 7550 load_attr.log_level = log_level; 7551 7552 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7553 if (ret >= 0) { 7554 if (log_level && own_log_buf) { 7555 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7556 prog->name, log_buf); 7557 } 7558 7559 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7560 struct bpf_map *map; 7561 int i; 7562 7563 for (i = 0; i < obj->nr_maps; i++) { 7564 map = &prog->obj->maps[i]; 7565 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7566 continue; 7567 7568 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7569 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7570 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7571 prog->name, map->real_name, cp); 7572 /* Don't fail hard if can't bind rodata. */ 7573 } 7574 } 7575 } 7576 7577 *prog_fd = ret; 7578 ret = 0; 7579 goto out; 7580 } 7581 7582 if (log_level == 0) { 7583 log_level = 1; 7584 goto retry_load; 7585 } 7586 /* On ENOSPC, increase log buffer size and retry, unless custom 7587 * log_buf is specified. 7588 * Be careful to not overflow u32, though. Kernel's log buf size limit 7589 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7590 * multiply by 2 unless we are sure we'll fit within 32 bits. 7591 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7592 */ 7593 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7594 goto retry_load; 7595 7596 ret = -errno; 7597 7598 /* post-process verifier log to improve error descriptions */ 7599 fixup_verifier_log(prog, log_buf, log_buf_size); 7600 7601 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7602 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7603 pr_perm_msg(ret); 7604 7605 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7606 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7607 prog->name, log_buf); 7608 } 7609 7610 out: 7611 if (own_log_buf) 7612 free(log_buf); 7613 return ret; 7614 } 7615 7616 static char *find_prev_line(char *buf, char *cur) 7617 { 7618 char *p; 7619 7620 if (cur == buf) /* end of a log buf */ 7621 return NULL; 7622 7623 p = cur - 1; 7624 while (p - 1 >= buf && *(p - 1) != '\n') 7625 p--; 7626 7627 return p; 7628 } 7629 7630 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7631 char *orig, size_t orig_sz, const char *patch) 7632 { 7633 /* size of the remaining log content to the right from the to-be-replaced part */ 7634 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7635 size_t patch_sz = strlen(patch); 7636 7637 if (patch_sz != orig_sz) { 7638 /* If patch line(s) are longer than original piece of verifier log, 7639 * shift log contents by (patch_sz - orig_sz) bytes to the right 7640 * starting from after to-be-replaced part of the log. 7641 * 7642 * If patch line(s) are shorter than original piece of verifier log, 7643 * shift log contents by (orig_sz - patch_sz) bytes to the left 7644 * starting from after to-be-replaced part of the log 7645 * 7646 * We need to be careful about not overflowing available 7647 * buf_sz capacity. If that's the case, we'll truncate the end 7648 * of the original log, as necessary. 7649 */ 7650 if (patch_sz > orig_sz) { 7651 if (orig + patch_sz >= buf + buf_sz) { 7652 /* patch is big enough to cover remaining space completely */ 7653 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7654 rem_sz = 0; 7655 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7656 /* patch causes part of remaining log to be truncated */ 7657 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7658 } 7659 } 7660 /* shift remaining log to the right by calculated amount */ 7661 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7662 } 7663 7664 memcpy(orig, patch, patch_sz); 7665 } 7666 7667 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7668 char *buf, size_t buf_sz, size_t log_sz, 7669 char *line1, char *line2, char *line3) 7670 { 7671 /* Expected log for failed and not properly guarded CO-RE relocation: 7672 * line1 -> 123: (85) call unknown#195896080 7673 * line2 -> invalid func unknown#195896080 7674 * line3 -> <anything else or end of buffer> 7675 * 7676 * "123" is the index of the instruction that was poisoned. We extract 7677 * instruction index to find corresponding CO-RE relocation and 7678 * replace this part of the log with more relevant information about 7679 * failed CO-RE relocation. 7680 */ 7681 const struct bpf_core_relo *relo; 7682 struct bpf_core_spec spec; 7683 char patch[512], spec_buf[256]; 7684 int insn_idx, err, spec_len; 7685 7686 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7687 return; 7688 7689 relo = find_relo_core(prog, insn_idx); 7690 if (!relo) 7691 return; 7692 7693 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7694 if (err) 7695 return; 7696 7697 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7698 snprintf(patch, sizeof(patch), 7699 "%d: <invalid CO-RE relocation>\n" 7700 "failed to resolve CO-RE relocation %s%s\n", 7701 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7702 7703 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7704 } 7705 7706 static void fixup_log_missing_map_load(struct bpf_program *prog, 7707 char *buf, size_t buf_sz, size_t log_sz, 7708 char *line1, char *line2, char *line3) 7709 { 7710 /* Expected log for failed and not properly guarded map reference: 7711 * line1 -> 123: (85) call unknown#2001000345 7712 * line2 -> invalid func unknown#2001000345 7713 * line3 -> <anything else or end of buffer> 7714 * 7715 * "123" is the index of the instruction that was poisoned. 7716 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7717 */ 7718 struct bpf_object *obj = prog->obj; 7719 const struct bpf_map *map; 7720 int insn_idx, map_idx; 7721 char patch[128]; 7722 7723 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7724 return; 7725 7726 map_idx -= POISON_LDIMM64_MAP_BASE; 7727 if (map_idx < 0 || map_idx >= obj->nr_maps) 7728 return; 7729 map = &obj->maps[map_idx]; 7730 7731 snprintf(patch, sizeof(patch), 7732 "%d: <invalid BPF map reference>\n" 7733 "BPF map '%s' is referenced but wasn't created\n", 7734 insn_idx, map->name); 7735 7736 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7737 } 7738 7739 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7740 char *buf, size_t buf_sz, size_t log_sz, 7741 char *line1, char *line2, char *line3) 7742 { 7743 /* Expected log for failed and not properly guarded kfunc call: 7744 * line1 -> 123: (85) call unknown#2002000345 7745 * line2 -> invalid func unknown#2002000345 7746 * line3 -> <anything else or end of buffer> 7747 * 7748 * "123" is the index of the instruction that was poisoned. 7749 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7750 */ 7751 struct bpf_object *obj = prog->obj; 7752 const struct extern_desc *ext; 7753 int insn_idx, ext_idx; 7754 char patch[128]; 7755 7756 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7757 return; 7758 7759 ext_idx -= POISON_CALL_KFUNC_BASE; 7760 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7761 return; 7762 ext = &obj->externs[ext_idx]; 7763 7764 snprintf(patch, sizeof(patch), 7765 "%d: <invalid kfunc call>\n" 7766 "kfunc '%s' is referenced but wasn't resolved\n", 7767 insn_idx, ext->name); 7768 7769 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7770 } 7771 7772 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7773 { 7774 /* look for familiar error patterns in last N lines of the log */ 7775 const size_t max_last_line_cnt = 10; 7776 char *prev_line, *cur_line, *next_line; 7777 size_t log_sz; 7778 int i; 7779 7780 if (!buf) 7781 return; 7782 7783 log_sz = strlen(buf) + 1; 7784 next_line = buf + log_sz - 1; 7785 7786 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7787 cur_line = find_prev_line(buf, next_line); 7788 if (!cur_line) 7789 return; 7790 7791 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7792 prev_line = find_prev_line(buf, cur_line); 7793 if (!prev_line) 7794 continue; 7795 7796 /* failed CO-RE relocation case */ 7797 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7798 prev_line, cur_line, next_line); 7799 return; 7800 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7801 prev_line = find_prev_line(buf, cur_line); 7802 if (!prev_line) 7803 continue; 7804 7805 /* reference to uncreated BPF map */ 7806 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7807 prev_line, cur_line, next_line); 7808 return; 7809 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7810 prev_line = find_prev_line(buf, cur_line); 7811 if (!prev_line) 7812 continue; 7813 7814 /* reference to unresolved kfunc */ 7815 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7816 prev_line, cur_line, next_line); 7817 return; 7818 } 7819 } 7820 } 7821 7822 static int bpf_program_record_relos(struct bpf_program *prog) 7823 { 7824 struct bpf_object *obj = prog->obj; 7825 int i; 7826 7827 for (i = 0; i < prog->nr_reloc; i++) { 7828 struct reloc_desc *relo = &prog->reloc_desc[i]; 7829 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7830 int kind; 7831 7832 switch (relo->type) { 7833 case RELO_EXTERN_LD64: 7834 if (ext->type != EXT_KSYM) 7835 continue; 7836 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7837 BTF_KIND_VAR : BTF_KIND_FUNC; 7838 bpf_gen__record_extern(obj->gen_loader, ext->name, 7839 ext->is_weak, !ext->ksym.type_id, 7840 true, kind, relo->insn_idx); 7841 break; 7842 case RELO_EXTERN_CALL: 7843 bpf_gen__record_extern(obj->gen_loader, ext->name, 7844 ext->is_weak, false, false, BTF_KIND_FUNC, 7845 relo->insn_idx); 7846 break; 7847 case RELO_CORE: { 7848 struct bpf_core_relo cr = { 7849 .insn_off = relo->insn_idx * 8, 7850 .type_id = relo->core_relo->type_id, 7851 .access_str_off = relo->core_relo->access_str_off, 7852 .kind = relo->core_relo->kind, 7853 }; 7854 7855 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7856 break; 7857 } 7858 default: 7859 continue; 7860 } 7861 } 7862 return 0; 7863 } 7864 7865 static int 7866 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7867 { 7868 struct bpf_program *prog; 7869 size_t i; 7870 int err; 7871 7872 for (i = 0; i < obj->nr_programs; i++) { 7873 prog = &obj->programs[i]; 7874 err = bpf_object__sanitize_prog(obj, prog); 7875 if (err) 7876 return err; 7877 } 7878 7879 for (i = 0; i < obj->nr_programs; i++) { 7880 prog = &obj->programs[i]; 7881 if (prog_is_subprog(obj, prog)) 7882 continue; 7883 if (!prog->autoload) { 7884 pr_debug("prog '%s': skipped loading\n", prog->name); 7885 continue; 7886 } 7887 prog->log_level |= log_level; 7888 7889 if (obj->gen_loader) 7890 bpf_program_record_relos(prog); 7891 7892 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7893 obj->license, obj->kern_version, &prog->fd); 7894 if (err) { 7895 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7896 return err; 7897 } 7898 } 7899 7900 bpf_object__free_relocs(obj); 7901 return 0; 7902 } 7903 7904 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7905 7906 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7907 { 7908 struct bpf_program *prog; 7909 int err; 7910 7911 bpf_object__for_each_program(prog, obj) { 7912 prog->sec_def = find_sec_def(prog->sec_name); 7913 if (!prog->sec_def) { 7914 /* couldn't guess, but user might manually specify */ 7915 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7916 prog->name, prog->sec_name); 7917 continue; 7918 } 7919 7920 prog->type = prog->sec_def->prog_type; 7921 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7922 7923 /* sec_def can have custom callback which should be called 7924 * after bpf_program is initialized to adjust its properties 7925 */ 7926 if (prog->sec_def->prog_setup_fn) { 7927 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7928 if (err < 0) { 7929 pr_warn("prog '%s': failed to initialize: %d\n", 7930 prog->name, err); 7931 return err; 7932 } 7933 } 7934 } 7935 7936 return 0; 7937 } 7938 7939 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7940 const char *obj_name, 7941 const struct bpf_object_open_opts *opts) 7942 { 7943 const char *kconfig, *btf_tmp_path, *token_path; 7944 struct bpf_object *obj; 7945 int err; 7946 char *log_buf; 7947 size_t log_size; 7948 __u32 log_level; 7949 7950 if (obj_buf && !obj_name) 7951 return ERR_PTR(-EINVAL); 7952 7953 if (elf_version(EV_CURRENT) == EV_NONE) { 7954 pr_warn("failed to init libelf for %s\n", 7955 path ? : "(mem buf)"); 7956 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7957 } 7958 7959 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7960 return ERR_PTR(-EINVAL); 7961 7962 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 7963 if (obj_buf) { 7964 path = obj_name; 7965 pr_debug("loading object '%s' from buffer\n", obj_name); 7966 } else { 7967 pr_debug("loading object from %s\n", path); 7968 } 7969 7970 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7971 log_size = OPTS_GET(opts, kernel_log_size, 0); 7972 log_level = OPTS_GET(opts, kernel_log_level, 0); 7973 if (log_size > UINT_MAX) 7974 return ERR_PTR(-EINVAL); 7975 if (log_size && !log_buf) 7976 return ERR_PTR(-EINVAL); 7977 7978 token_path = OPTS_GET(opts, bpf_token_path, NULL); 7979 /* if user didn't specify bpf_token_path explicitly, check if 7980 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 7981 * option 7982 */ 7983 if (!token_path) 7984 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 7985 if (token_path && strlen(token_path) >= PATH_MAX) 7986 return ERR_PTR(-ENAMETOOLONG); 7987 7988 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7989 if (IS_ERR(obj)) 7990 return obj; 7991 7992 obj->log_buf = log_buf; 7993 obj->log_size = log_size; 7994 obj->log_level = log_level; 7995 7996 if (token_path) { 7997 obj->token_path = strdup(token_path); 7998 if (!obj->token_path) { 7999 err = -ENOMEM; 8000 goto out; 8001 } 8002 } 8003 8004 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8005 if (btf_tmp_path) { 8006 if (strlen(btf_tmp_path) >= PATH_MAX) { 8007 err = -ENAMETOOLONG; 8008 goto out; 8009 } 8010 obj->btf_custom_path = strdup(btf_tmp_path); 8011 if (!obj->btf_custom_path) { 8012 err = -ENOMEM; 8013 goto out; 8014 } 8015 } 8016 8017 kconfig = OPTS_GET(opts, kconfig, NULL); 8018 if (kconfig) { 8019 obj->kconfig = strdup(kconfig); 8020 if (!obj->kconfig) { 8021 err = -ENOMEM; 8022 goto out; 8023 } 8024 } 8025 8026 err = bpf_object__elf_init(obj); 8027 err = err ? : bpf_object__elf_collect(obj); 8028 err = err ? : bpf_object__collect_externs(obj); 8029 err = err ? : bpf_object_fixup_btf(obj); 8030 err = err ? : bpf_object__init_maps(obj, opts); 8031 err = err ? : bpf_object_init_progs(obj, opts); 8032 err = err ? : bpf_object__collect_relos(obj); 8033 if (err) 8034 goto out; 8035 8036 bpf_object__elf_finish(obj); 8037 8038 return obj; 8039 out: 8040 bpf_object__close(obj); 8041 return ERR_PTR(err); 8042 } 8043 8044 struct bpf_object * 8045 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8046 { 8047 if (!path) 8048 return libbpf_err_ptr(-EINVAL); 8049 8050 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8051 } 8052 8053 struct bpf_object *bpf_object__open(const char *path) 8054 { 8055 return bpf_object__open_file(path, NULL); 8056 } 8057 8058 struct bpf_object * 8059 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8060 const struct bpf_object_open_opts *opts) 8061 { 8062 char tmp_name[64]; 8063 8064 if (!obj_buf || obj_buf_sz == 0) 8065 return libbpf_err_ptr(-EINVAL); 8066 8067 /* create a (quite useless) default "name" for this memory buffer object */ 8068 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8069 8070 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8071 } 8072 8073 static int bpf_object_unload(struct bpf_object *obj) 8074 { 8075 size_t i; 8076 8077 if (!obj) 8078 return libbpf_err(-EINVAL); 8079 8080 for (i = 0; i < obj->nr_maps; i++) { 8081 zclose(obj->maps[i].fd); 8082 if (obj->maps[i].st_ops) 8083 zfree(&obj->maps[i].st_ops->kern_vdata); 8084 } 8085 8086 for (i = 0; i < obj->nr_programs; i++) 8087 bpf_program__unload(&obj->programs[i]); 8088 8089 return 0; 8090 } 8091 8092 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8093 { 8094 struct bpf_map *m; 8095 8096 bpf_object__for_each_map(m, obj) { 8097 if (!bpf_map__is_internal(m)) 8098 continue; 8099 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8100 m->def.map_flags &= ~BPF_F_MMAPABLE; 8101 } 8102 8103 return 0; 8104 } 8105 8106 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8107 const char *sym_name, void *ctx); 8108 8109 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8110 { 8111 char sym_type, sym_name[500]; 8112 unsigned long long sym_addr; 8113 int ret, err = 0; 8114 FILE *f; 8115 8116 f = fopen("/proc/kallsyms", "re"); 8117 if (!f) { 8118 err = -errno; 8119 pr_warn("failed to open /proc/kallsyms: %d\n", err); 8120 return err; 8121 } 8122 8123 while (true) { 8124 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8125 &sym_addr, &sym_type, sym_name); 8126 if (ret == EOF && feof(f)) 8127 break; 8128 if (ret != 3) { 8129 pr_warn("failed to read kallsyms entry: %d\n", ret); 8130 err = -EINVAL; 8131 break; 8132 } 8133 8134 err = cb(sym_addr, sym_type, sym_name, ctx); 8135 if (err) 8136 break; 8137 } 8138 8139 fclose(f); 8140 return err; 8141 } 8142 8143 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8144 const char *sym_name, void *ctx) 8145 { 8146 struct bpf_object *obj = ctx; 8147 const struct btf_type *t; 8148 struct extern_desc *ext; 8149 char *res; 8150 8151 res = strstr(sym_name, ".llvm."); 8152 if (sym_type == 'd' && res) 8153 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8154 else 8155 ext = find_extern_by_name(obj, sym_name); 8156 if (!ext || ext->type != EXT_KSYM) 8157 return 0; 8158 8159 t = btf__type_by_id(obj->btf, ext->btf_id); 8160 if (!btf_is_var(t)) 8161 return 0; 8162 8163 if (ext->is_set && ext->ksym.addr != sym_addr) { 8164 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8165 sym_name, ext->ksym.addr, sym_addr); 8166 return -EINVAL; 8167 } 8168 if (!ext->is_set) { 8169 ext->is_set = true; 8170 ext->ksym.addr = sym_addr; 8171 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8172 } 8173 return 0; 8174 } 8175 8176 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8177 { 8178 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8179 } 8180 8181 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8182 __u16 kind, struct btf **res_btf, 8183 struct module_btf **res_mod_btf) 8184 { 8185 struct module_btf *mod_btf; 8186 struct btf *btf; 8187 int i, id, err; 8188 8189 btf = obj->btf_vmlinux; 8190 mod_btf = NULL; 8191 id = btf__find_by_name_kind(btf, ksym_name, kind); 8192 8193 if (id == -ENOENT) { 8194 err = load_module_btfs(obj); 8195 if (err) 8196 return err; 8197 8198 for (i = 0; i < obj->btf_module_cnt; i++) { 8199 /* we assume module_btf's BTF FD is always >0 */ 8200 mod_btf = &obj->btf_modules[i]; 8201 btf = mod_btf->btf; 8202 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8203 if (id != -ENOENT) 8204 break; 8205 } 8206 } 8207 if (id <= 0) 8208 return -ESRCH; 8209 8210 *res_btf = btf; 8211 *res_mod_btf = mod_btf; 8212 return id; 8213 } 8214 8215 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8216 struct extern_desc *ext) 8217 { 8218 const struct btf_type *targ_var, *targ_type; 8219 __u32 targ_type_id, local_type_id; 8220 struct module_btf *mod_btf = NULL; 8221 const char *targ_var_name; 8222 struct btf *btf = NULL; 8223 int id, err; 8224 8225 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8226 if (id < 0) { 8227 if (id == -ESRCH && ext->is_weak) 8228 return 0; 8229 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8230 ext->name); 8231 return id; 8232 } 8233 8234 /* find local type_id */ 8235 local_type_id = ext->ksym.type_id; 8236 8237 /* find target type_id */ 8238 targ_var = btf__type_by_id(btf, id); 8239 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8240 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8241 8242 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8243 btf, targ_type_id); 8244 if (err <= 0) { 8245 const struct btf_type *local_type; 8246 const char *targ_name, *local_name; 8247 8248 local_type = btf__type_by_id(obj->btf, local_type_id); 8249 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8250 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8251 8252 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8253 ext->name, local_type_id, 8254 btf_kind_str(local_type), local_name, targ_type_id, 8255 btf_kind_str(targ_type), targ_name); 8256 return -EINVAL; 8257 } 8258 8259 ext->is_set = true; 8260 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8261 ext->ksym.kernel_btf_id = id; 8262 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8263 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8264 8265 return 0; 8266 } 8267 8268 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8269 struct extern_desc *ext) 8270 { 8271 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8272 struct module_btf *mod_btf = NULL; 8273 const struct btf_type *kern_func; 8274 struct btf *kern_btf = NULL; 8275 int ret; 8276 8277 local_func_proto_id = ext->ksym.type_id; 8278 8279 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8280 &mod_btf); 8281 if (kfunc_id < 0) { 8282 if (kfunc_id == -ESRCH && ext->is_weak) 8283 return 0; 8284 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8285 ext->name); 8286 return kfunc_id; 8287 } 8288 8289 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8290 kfunc_proto_id = kern_func->type; 8291 8292 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8293 kern_btf, kfunc_proto_id); 8294 if (ret <= 0) { 8295 if (ext->is_weak) 8296 return 0; 8297 8298 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8299 ext->name, local_func_proto_id, 8300 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8301 return -EINVAL; 8302 } 8303 8304 /* set index for module BTF fd in fd_array, if unset */ 8305 if (mod_btf && !mod_btf->fd_array_idx) { 8306 /* insn->off is s16 */ 8307 if (obj->fd_array_cnt == INT16_MAX) { 8308 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8309 ext->name, mod_btf->fd_array_idx); 8310 return -E2BIG; 8311 } 8312 /* Cannot use index 0 for module BTF fd */ 8313 if (!obj->fd_array_cnt) 8314 obj->fd_array_cnt = 1; 8315 8316 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8317 obj->fd_array_cnt + 1); 8318 if (ret) 8319 return ret; 8320 mod_btf->fd_array_idx = obj->fd_array_cnt; 8321 /* we assume module BTF FD is always >0 */ 8322 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8323 } 8324 8325 ext->is_set = true; 8326 ext->ksym.kernel_btf_id = kfunc_id; 8327 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8328 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8329 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8330 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8331 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8332 */ 8333 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8334 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8335 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8336 8337 return 0; 8338 } 8339 8340 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8341 { 8342 const struct btf_type *t; 8343 struct extern_desc *ext; 8344 int i, err; 8345 8346 for (i = 0; i < obj->nr_extern; i++) { 8347 ext = &obj->externs[i]; 8348 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8349 continue; 8350 8351 if (obj->gen_loader) { 8352 ext->is_set = true; 8353 ext->ksym.kernel_btf_obj_fd = 0; 8354 ext->ksym.kernel_btf_id = 0; 8355 continue; 8356 } 8357 t = btf__type_by_id(obj->btf, ext->btf_id); 8358 if (btf_is_var(t)) 8359 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8360 else 8361 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8362 if (err) 8363 return err; 8364 } 8365 return 0; 8366 } 8367 8368 static int bpf_object__resolve_externs(struct bpf_object *obj, 8369 const char *extra_kconfig) 8370 { 8371 bool need_config = false, need_kallsyms = false; 8372 bool need_vmlinux_btf = false; 8373 struct extern_desc *ext; 8374 void *kcfg_data = NULL; 8375 int err, i; 8376 8377 if (obj->nr_extern == 0) 8378 return 0; 8379 8380 if (obj->kconfig_map_idx >= 0) 8381 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8382 8383 for (i = 0; i < obj->nr_extern; i++) { 8384 ext = &obj->externs[i]; 8385 8386 if (ext->type == EXT_KSYM) { 8387 if (ext->ksym.type_id) 8388 need_vmlinux_btf = true; 8389 else 8390 need_kallsyms = true; 8391 continue; 8392 } else if (ext->type == EXT_KCFG) { 8393 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8394 __u64 value = 0; 8395 8396 /* Kconfig externs need actual /proc/config.gz */ 8397 if (str_has_pfx(ext->name, "CONFIG_")) { 8398 need_config = true; 8399 continue; 8400 } 8401 8402 /* Virtual kcfg externs are customly handled by libbpf */ 8403 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8404 value = get_kernel_version(); 8405 if (!value) { 8406 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8407 return -EINVAL; 8408 } 8409 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8410 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8411 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8412 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8413 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8414 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8415 * __kconfig externs, where LINUX_ ones are virtual and filled out 8416 * customly by libbpf (their values don't come from Kconfig). 8417 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8418 * __weak, it defaults to zero value, just like for CONFIG_xxx 8419 * externs. 8420 */ 8421 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8422 return -EINVAL; 8423 } 8424 8425 err = set_kcfg_value_num(ext, ext_ptr, value); 8426 if (err) 8427 return err; 8428 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8429 ext->name, (long long)value); 8430 } else { 8431 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8432 return -EINVAL; 8433 } 8434 } 8435 if (need_config && extra_kconfig) { 8436 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8437 if (err) 8438 return -EINVAL; 8439 need_config = false; 8440 for (i = 0; i < obj->nr_extern; i++) { 8441 ext = &obj->externs[i]; 8442 if (ext->type == EXT_KCFG && !ext->is_set) { 8443 need_config = true; 8444 break; 8445 } 8446 } 8447 } 8448 if (need_config) { 8449 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8450 if (err) 8451 return -EINVAL; 8452 } 8453 if (need_kallsyms) { 8454 err = bpf_object__read_kallsyms_file(obj); 8455 if (err) 8456 return -EINVAL; 8457 } 8458 if (need_vmlinux_btf) { 8459 err = bpf_object__resolve_ksyms_btf_id(obj); 8460 if (err) 8461 return -EINVAL; 8462 } 8463 for (i = 0; i < obj->nr_extern; i++) { 8464 ext = &obj->externs[i]; 8465 8466 if (!ext->is_set && !ext->is_weak) { 8467 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8468 return -ESRCH; 8469 } else if (!ext->is_set) { 8470 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8471 ext->name); 8472 } 8473 } 8474 8475 return 0; 8476 } 8477 8478 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8479 { 8480 const struct btf_type *type; 8481 struct bpf_struct_ops *st_ops; 8482 __u32 i; 8483 8484 st_ops = map->st_ops; 8485 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8486 for (i = 0; i < btf_vlen(type); i++) { 8487 struct bpf_program *prog = st_ops->progs[i]; 8488 void *kern_data; 8489 int prog_fd; 8490 8491 if (!prog) 8492 continue; 8493 8494 prog_fd = bpf_program__fd(prog); 8495 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8496 *(unsigned long *)kern_data = prog_fd; 8497 } 8498 } 8499 8500 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8501 { 8502 struct bpf_map *map; 8503 int i; 8504 8505 for (i = 0; i < obj->nr_maps; i++) { 8506 map = &obj->maps[i]; 8507 8508 if (!bpf_map__is_struct_ops(map)) 8509 continue; 8510 8511 if (!map->autocreate) 8512 continue; 8513 8514 bpf_map_prepare_vdata(map); 8515 } 8516 8517 return 0; 8518 } 8519 8520 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8521 { 8522 int err, i; 8523 8524 if (!obj) 8525 return libbpf_err(-EINVAL); 8526 8527 if (obj->loaded) { 8528 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8529 return libbpf_err(-EINVAL); 8530 } 8531 8532 /* Disallow kernel loading programs of non-native endianness but 8533 * permit cross-endian creation of "light skeleton". 8534 */ 8535 if (obj->gen_loader) { 8536 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8537 } else if (!is_native_endianness(obj)) { 8538 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8539 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8540 } 8541 8542 err = bpf_object_prepare_token(obj); 8543 err = err ? : bpf_object__probe_loading(obj); 8544 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8545 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8546 err = err ? : bpf_object__sanitize_maps(obj); 8547 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8548 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8549 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8550 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8551 err = err ? : bpf_object__create_maps(obj); 8552 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8553 err = err ? : bpf_object_init_prog_arrays(obj); 8554 err = err ? : bpf_object_prepare_struct_ops(obj); 8555 8556 if (obj->gen_loader) { 8557 /* reset FDs */ 8558 if (obj->btf) 8559 btf__set_fd(obj->btf, -1); 8560 if (!err) 8561 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8562 } 8563 8564 /* clean up fd_array */ 8565 zfree(&obj->fd_array); 8566 8567 /* clean up module BTFs */ 8568 for (i = 0; i < obj->btf_module_cnt; i++) { 8569 close(obj->btf_modules[i].fd); 8570 btf__free(obj->btf_modules[i].btf); 8571 free(obj->btf_modules[i].name); 8572 } 8573 free(obj->btf_modules); 8574 8575 /* clean up vmlinux BTF */ 8576 btf__free(obj->btf_vmlinux); 8577 obj->btf_vmlinux = NULL; 8578 8579 obj->loaded = true; /* doesn't matter if successfully or not */ 8580 8581 if (err) 8582 goto out; 8583 8584 return 0; 8585 out: 8586 /* unpin any maps that were auto-pinned during load */ 8587 for (i = 0; i < obj->nr_maps; i++) 8588 if (obj->maps[i].pinned && !obj->maps[i].reused) 8589 bpf_map__unpin(&obj->maps[i], NULL); 8590 8591 bpf_object_unload(obj); 8592 pr_warn("failed to load object '%s'\n", obj->path); 8593 return libbpf_err(err); 8594 } 8595 8596 int bpf_object__load(struct bpf_object *obj) 8597 { 8598 return bpf_object_load(obj, 0, NULL); 8599 } 8600 8601 static int make_parent_dir(const char *path) 8602 { 8603 char *cp, errmsg[STRERR_BUFSIZE]; 8604 char *dname, *dir; 8605 int err = 0; 8606 8607 dname = strdup(path); 8608 if (dname == NULL) 8609 return -ENOMEM; 8610 8611 dir = dirname(dname); 8612 if (mkdir(dir, 0700) && errno != EEXIST) 8613 err = -errno; 8614 8615 free(dname); 8616 if (err) { 8617 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8618 pr_warn("failed to mkdir %s: %s\n", path, cp); 8619 } 8620 return err; 8621 } 8622 8623 static int check_path(const char *path) 8624 { 8625 char *cp, errmsg[STRERR_BUFSIZE]; 8626 struct statfs st_fs; 8627 char *dname, *dir; 8628 int err = 0; 8629 8630 if (path == NULL) 8631 return -EINVAL; 8632 8633 dname = strdup(path); 8634 if (dname == NULL) 8635 return -ENOMEM; 8636 8637 dir = dirname(dname); 8638 if (statfs(dir, &st_fs)) { 8639 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8640 pr_warn("failed to statfs %s: %s\n", dir, cp); 8641 err = -errno; 8642 } 8643 free(dname); 8644 8645 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8646 pr_warn("specified path %s is not on BPF FS\n", path); 8647 err = -EINVAL; 8648 } 8649 8650 return err; 8651 } 8652 8653 int bpf_program__pin(struct bpf_program *prog, const char *path) 8654 { 8655 char *cp, errmsg[STRERR_BUFSIZE]; 8656 int err; 8657 8658 if (prog->fd < 0) { 8659 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8660 return libbpf_err(-EINVAL); 8661 } 8662 8663 err = make_parent_dir(path); 8664 if (err) 8665 return libbpf_err(err); 8666 8667 err = check_path(path); 8668 if (err) 8669 return libbpf_err(err); 8670 8671 if (bpf_obj_pin(prog->fd, path)) { 8672 err = -errno; 8673 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8674 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8675 return libbpf_err(err); 8676 } 8677 8678 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8679 return 0; 8680 } 8681 8682 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8683 { 8684 int err; 8685 8686 if (prog->fd < 0) { 8687 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8688 return libbpf_err(-EINVAL); 8689 } 8690 8691 err = check_path(path); 8692 if (err) 8693 return libbpf_err(err); 8694 8695 err = unlink(path); 8696 if (err) 8697 return libbpf_err(-errno); 8698 8699 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8700 return 0; 8701 } 8702 8703 int bpf_map__pin(struct bpf_map *map, const char *path) 8704 { 8705 char *cp, errmsg[STRERR_BUFSIZE]; 8706 int err; 8707 8708 if (map == NULL) { 8709 pr_warn("invalid map pointer\n"); 8710 return libbpf_err(-EINVAL); 8711 } 8712 8713 if (map->fd < 0) { 8714 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8715 return libbpf_err(-EINVAL); 8716 } 8717 8718 if (map->pin_path) { 8719 if (path && strcmp(path, map->pin_path)) { 8720 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8721 bpf_map__name(map), map->pin_path, path); 8722 return libbpf_err(-EINVAL); 8723 } else if (map->pinned) { 8724 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8725 bpf_map__name(map), map->pin_path); 8726 return 0; 8727 } 8728 } else { 8729 if (!path) { 8730 pr_warn("missing a path to pin map '%s' at\n", 8731 bpf_map__name(map)); 8732 return libbpf_err(-EINVAL); 8733 } else if (map->pinned) { 8734 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8735 return libbpf_err(-EEXIST); 8736 } 8737 8738 map->pin_path = strdup(path); 8739 if (!map->pin_path) { 8740 err = -errno; 8741 goto out_err; 8742 } 8743 } 8744 8745 err = make_parent_dir(map->pin_path); 8746 if (err) 8747 return libbpf_err(err); 8748 8749 err = check_path(map->pin_path); 8750 if (err) 8751 return libbpf_err(err); 8752 8753 if (bpf_obj_pin(map->fd, map->pin_path)) { 8754 err = -errno; 8755 goto out_err; 8756 } 8757 8758 map->pinned = true; 8759 pr_debug("pinned map '%s'\n", map->pin_path); 8760 8761 return 0; 8762 8763 out_err: 8764 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8765 pr_warn("failed to pin map: %s\n", cp); 8766 return libbpf_err(err); 8767 } 8768 8769 int bpf_map__unpin(struct bpf_map *map, const char *path) 8770 { 8771 int err; 8772 8773 if (map == NULL) { 8774 pr_warn("invalid map pointer\n"); 8775 return libbpf_err(-EINVAL); 8776 } 8777 8778 if (map->pin_path) { 8779 if (path && strcmp(path, map->pin_path)) { 8780 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8781 bpf_map__name(map), map->pin_path, path); 8782 return libbpf_err(-EINVAL); 8783 } 8784 path = map->pin_path; 8785 } else if (!path) { 8786 pr_warn("no path to unpin map '%s' from\n", 8787 bpf_map__name(map)); 8788 return libbpf_err(-EINVAL); 8789 } 8790 8791 err = check_path(path); 8792 if (err) 8793 return libbpf_err(err); 8794 8795 err = unlink(path); 8796 if (err != 0) 8797 return libbpf_err(-errno); 8798 8799 map->pinned = false; 8800 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8801 8802 return 0; 8803 } 8804 8805 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8806 { 8807 char *new = NULL; 8808 8809 if (path) { 8810 new = strdup(path); 8811 if (!new) 8812 return libbpf_err(-errno); 8813 } 8814 8815 free(map->pin_path); 8816 map->pin_path = new; 8817 return 0; 8818 } 8819 8820 __alias(bpf_map__pin_path) 8821 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8822 8823 const char *bpf_map__pin_path(const struct bpf_map *map) 8824 { 8825 return map->pin_path; 8826 } 8827 8828 bool bpf_map__is_pinned(const struct bpf_map *map) 8829 { 8830 return map->pinned; 8831 } 8832 8833 static void sanitize_pin_path(char *s) 8834 { 8835 /* bpffs disallows periods in path names */ 8836 while (*s) { 8837 if (*s == '.') 8838 *s = '_'; 8839 s++; 8840 } 8841 } 8842 8843 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8844 { 8845 struct bpf_map *map; 8846 int err; 8847 8848 if (!obj) 8849 return libbpf_err(-ENOENT); 8850 8851 if (!obj->loaded) { 8852 pr_warn("object not yet loaded; load it first\n"); 8853 return libbpf_err(-ENOENT); 8854 } 8855 8856 bpf_object__for_each_map(map, obj) { 8857 char *pin_path = NULL; 8858 char buf[PATH_MAX]; 8859 8860 if (!map->autocreate) 8861 continue; 8862 8863 if (path) { 8864 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8865 if (err) 8866 goto err_unpin_maps; 8867 sanitize_pin_path(buf); 8868 pin_path = buf; 8869 } else if (!map->pin_path) { 8870 continue; 8871 } 8872 8873 err = bpf_map__pin(map, pin_path); 8874 if (err) 8875 goto err_unpin_maps; 8876 } 8877 8878 return 0; 8879 8880 err_unpin_maps: 8881 while ((map = bpf_object__prev_map(obj, map))) { 8882 if (!map->pin_path) 8883 continue; 8884 8885 bpf_map__unpin(map, NULL); 8886 } 8887 8888 return libbpf_err(err); 8889 } 8890 8891 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8892 { 8893 struct bpf_map *map; 8894 int err; 8895 8896 if (!obj) 8897 return libbpf_err(-ENOENT); 8898 8899 bpf_object__for_each_map(map, obj) { 8900 char *pin_path = NULL; 8901 char buf[PATH_MAX]; 8902 8903 if (path) { 8904 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8905 if (err) 8906 return libbpf_err(err); 8907 sanitize_pin_path(buf); 8908 pin_path = buf; 8909 } else if (!map->pin_path) { 8910 continue; 8911 } 8912 8913 err = bpf_map__unpin(map, pin_path); 8914 if (err) 8915 return libbpf_err(err); 8916 } 8917 8918 return 0; 8919 } 8920 8921 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8922 { 8923 struct bpf_program *prog; 8924 char buf[PATH_MAX]; 8925 int err; 8926 8927 if (!obj) 8928 return libbpf_err(-ENOENT); 8929 8930 if (!obj->loaded) { 8931 pr_warn("object not yet loaded; load it first\n"); 8932 return libbpf_err(-ENOENT); 8933 } 8934 8935 bpf_object__for_each_program(prog, obj) { 8936 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8937 if (err) 8938 goto err_unpin_programs; 8939 8940 err = bpf_program__pin(prog, buf); 8941 if (err) 8942 goto err_unpin_programs; 8943 } 8944 8945 return 0; 8946 8947 err_unpin_programs: 8948 while ((prog = bpf_object__prev_program(obj, prog))) { 8949 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8950 continue; 8951 8952 bpf_program__unpin(prog, buf); 8953 } 8954 8955 return libbpf_err(err); 8956 } 8957 8958 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8959 { 8960 struct bpf_program *prog; 8961 int err; 8962 8963 if (!obj) 8964 return libbpf_err(-ENOENT); 8965 8966 bpf_object__for_each_program(prog, obj) { 8967 char buf[PATH_MAX]; 8968 8969 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8970 if (err) 8971 return libbpf_err(err); 8972 8973 err = bpf_program__unpin(prog, buf); 8974 if (err) 8975 return libbpf_err(err); 8976 } 8977 8978 return 0; 8979 } 8980 8981 int bpf_object__pin(struct bpf_object *obj, const char *path) 8982 { 8983 int err; 8984 8985 err = bpf_object__pin_maps(obj, path); 8986 if (err) 8987 return libbpf_err(err); 8988 8989 err = bpf_object__pin_programs(obj, path); 8990 if (err) { 8991 bpf_object__unpin_maps(obj, path); 8992 return libbpf_err(err); 8993 } 8994 8995 return 0; 8996 } 8997 8998 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8999 { 9000 int err; 9001 9002 err = bpf_object__unpin_programs(obj, path); 9003 if (err) 9004 return libbpf_err(err); 9005 9006 err = bpf_object__unpin_maps(obj, path); 9007 if (err) 9008 return libbpf_err(err); 9009 9010 return 0; 9011 } 9012 9013 static void bpf_map__destroy(struct bpf_map *map) 9014 { 9015 if (map->inner_map) { 9016 bpf_map__destroy(map->inner_map); 9017 zfree(&map->inner_map); 9018 } 9019 9020 zfree(&map->init_slots); 9021 map->init_slots_sz = 0; 9022 9023 if (map->mmaped && map->mmaped != map->obj->arena_data) 9024 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9025 map->mmaped = NULL; 9026 9027 if (map->st_ops) { 9028 zfree(&map->st_ops->data); 9029 zfree(&map->st_ops->progs); 9030 zfree(&map->st_ops->kern_func_off); 9031 zfree(&map->st_ops); 9032 } 9033 9034 zfree(&map->name); 9035 zfree(&map->real_name); 9036 zfree(&map->pin_path); 9037 9038 if (map->fd >= 0) 9039 zclose(map->fd); 9040 } 9041 9042 void bpf_object__close(struct bpf_object *obj) 9043 { 9044 size_t i; 9045 9046 if (IS_ERR_OR_NULL(obj)) 9047 return; 9048 9049 usdt_manager_free(obj->usdt_man); 9050 obj->usdt_man = NULL; 9051 9052 bpf_gen__free(obj->gen_loader); 9053 bpf_object__elf_finish(obj); 9054 bpf_object_unload(obj); 9055 btf__free(obj->btf); 9056 btf__free(obj->btf_vmlinux); 9057 btf_ext__free(obj->btf_ext); 9058 9059 for (i = 0; i < obj->nr_maps; i++) 9060 bpf_map__destroy(&obj->maps[i]); 9061 9062 zfree(&obj->btf_custom_path); 9063 zfree(&obj->kconfig); 9064 9065 for (i = 0; i < obj->nr_extern; i++) 9066 zfree(&obj->externs[i].essent_name); 9067 9068 zfree(&obj->externs); 9069 obj->nr_extern = 0; 9070 9071 zfree(&obj->maps); 9072 obj->nr_maps = 0; 9073 9074 if (obj->programs && obj->nr_programs) { 9075 for (i = 0; i < obj->nr_programs; i++) 9076 bpf_program__exit(&obj->programs[i]); 9077 } 9078 zfree(&obj->programs); 9079 9080 zfree(&obj->feat_cache); 9081 zfree(&obj->token_path); 9082 if (obj->token_fd > 0) 9083 close(obj->token_fd); 9084 9085 zfree(&obj->arena_data); 9086 9087 free(obj); 9088 } 9089 9090 const char *bpf_object__name(const struct bpf_object *obj) 9091 { 9092 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9093 } 9094 9095 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9096 { 9097 return obj ? obj->kern_version : 0; 9098 } 9099 9100 int bpf_object__token_fd(const struct bpf_object *obj) 9101 { 9102 return obj->token_fd ?: -1; 9103 } 9104 9105 struct btf *bpf_object__btf(const struct bpf_object *obj) 9106 { 9107 return obj ? obj->btf : NULL; 9108 } 9109 9110 int bpf_object__btf_fd(const struct bpf_object *obj) 9111 { 9112 return obj->btf ? btf__fd(obj->btf) : -1; 9113 } 9114 9115 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9116 { 9117 if (obj->loaded) 9118 return libbpf_err(-EINVAL); 9119 9120 obj->kern_version = kern_version; 9121 9122 return 0; 9123 } 9124 9125 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9126 { 9127 struct bpf_gen *gen; 9128 9129 if (!opts) 9130 return -EFAULT; 9131 if (!OPTS_VALID(opts, gen_loader_opts)) 9132 return -EINVAL; 9133 gen = calloc(sizeof(*gen), 1); 9134 if (!gen) 9135 return -ENOMEM; 9136 gen->opts = opts; 9137 gen->swapped_endian = !is_native_endianness(obj); 9138 obj->gen_loader = gen; 9139 return 0; 9140 } 9141 9142 static struct bpf_program * 9143 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9144 bool forward) 9145 { 9146 size_t nr_programs = obj->nr_programs; 9147 ssize_t idx; 9148 9149 if (!nr_programs) 9150 return NULL; 9151 9152 if (!p) 9153 /* Iter from the beginning */ 9154 return forward ? &obj->programs[0] : 9155 &obj->programs[nr_programs - 1]; 9156 9157 if (p->obj != obj) { 9158 pr_warn("error: program handler doesn't match object\n"); 9159 return errno = EINVAL, NULL; 9160 } 9161 9162 idx = (p - obj->programs) + (forward ? 1 : -1); 9163 if (idx >= obj->nr_programs || idx < 0) 9164 return NULL; 9165 return &obj->programs[idx]; 9166 } 9167 9168 struct bpf_program * 9169 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9170 { 9171 struct bpf_program *prog = prev; 9172 9173 do { 9174 prog = __bpf_program__iter(prog, obj, true); 9175 } while (prog && prog_is_subprog(obj, prog)); 9176 9177 return prog; 9178 } 9179 9180 struct bpf_program * 9181 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9182 { 9183 struct bpf_program *prog = next; 9184 9185 do { 9186 prog = __bpf_program__iter(prog, obj, false); 9187 } while (prog && prog_is_subprog(obj, prog)); 9188 9189 return prog; 9190 } 9191 9192 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9193 { 9194 prog->prog_ifindex = ifindex; 9195 } 9196 9197 const char *bpf_program__name(const struct bpf_program *prog) 9198 { 9199 return prog->name; 9200 } 9201 9202 const char *bpf_program__section_name(const struct bpf_program *prog) 9203 { 9204 return prog->sec_name; 9205 } 9206 9207 bool bpf_program__autoload(const struct bpf_program *prog) 9208 { 9209 return prog->autoload; 9210 } 9211 9212 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9213 { 9214 if (prog->obj->loaded) 9215 return libbpf_err(-EINVAL); 9216 9217 prog->autoload = autoload; 9218 return 0; 9219 } 9220 9221 bool bpf_program__autoattach(const struct bpf_program *prog) 9222 { 9223 return prog->autoattach; 9224 } 9225 9226 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9227 { 9228 prog->autoattach = autoattach; 9229 } 9230 9231 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9232 { 9233 return prog->insns; 9234 } 9235 9236 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9237 { 9238 return prog->insns_cnt; 9239 } 9240 9241 int bpf_program__set_insns(struct bpf_program *prog, 9242 struct bpf_insn *new_insns, size_t new_insn_cnt) 9243 { 9244 struct bpf_insn *insns; 9245 9246 if (prog->obj->loaded) 9247 return -EBUSY; 9248 9249 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9250 /* NULL is a valid return from reallocarray if the new count is zero */ 9251 if (!insns && new_insn_cnt) { 9252 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9253 return -ENOMEM; 9254 } 9255 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9256 9257 prog->insns = insns; 9258 prog->insns_cnt = new_insn_cnt; 9259 return 0; 9260 } 9261 9262 int bpf_program__fd(const struct bpf_program *prog) 9263 { 9264 if (!prog) 9265 return libbpf_err(-EINVAL); 9266 9267 if (prog->fd < 0) 9268 return libbpf_err(-ENOENT); 9269 9270 return prog->fd; 9271 } 9272 9273 __alias(bpf_program__type) 9274 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9275 9276 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9277 { 9278 return prog->type; 9279 } 9280 9281 static size_t custom_sec_def_cnt; 9282 static struct bpf_sec_def *custom_sec_defs; 9283 static struct bpf_sec_def custom_fallback_def; 9284 static bool has_custom_fallback_def; 9285 static int last_custom_sec_def_handler_id; 9286 9287 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9288 { 9289 if (prog->obj->loaded) 9290 return libbpf_err(-EBUSY); 9291 9292 /* if type is not changed, do nothing */ 9293 if (prog->type == type) 9294 return 0; 9295 9296 prog->type = type; 9297 9298 /* If a program type was changed, we need to reset associated SEC() 9299 * handler, as it will be invalid now. The only exception is a generic 9300 * fallback handler, which by definition is program type-agnostic and 9301 * is a catch-all custom handler, optionally set by the application, 9302 * so should be able to handle any type of BPF program. 9303 */ 9304 if (prog->sec_def != &custom_fallback_def) 9305 prog->sec_def = NULL; 9306 return 0; 9307 } 9308 9309 __alias(bpf_program__expected_attach_type) 9310 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9311 9312 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9313 { 9314 return prog->expected_attach_type; 9315 } 9316 9317 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9318 enum bpf_attach_type type) 9319 { 9320 if (prog->obj->loaded) 9321 return libbpf_err(-EBUSY); 9322 9323 prog->expected_attach_type = type; 9324 return 0; 9325 } 9326 9327 __u32 bpf_program__flags(const struct bpf_program *prog) 9328 { 9329 return prog->prog_flags; 9330 } 9331 9332 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9333 { 9334 if (prog->obj->loaded) 9335 return libbpf_err(-EBUSY); 9336 9337 prog->prog_flags = flags; 9338 return 0; 9339 } 9340 9341 __u32 bpf_program__log_level(const struct bpf_program *prog) 9342 { 9343 return prog->log_level; 9344 } 9345 9346 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9347 { 9348 if (prog->obj->loaded) 9349 return libbpf_err(-EBUSY); 9350 9351 prog->log_level = log_level; 9352 return 0; 9353 } 9354 9355 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9356 { 9357 *log_size = prog->log_size; 9358 return prog->log_buf; 9359 } 9360 9361 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9362 { 9363 if (log_size && !log_buf) 9364 return -EINVAL; 9365 if (prog->log_size > UINT_MAX) 9366 return -EINVAL; 9367 if (prog->obj->loaded) 9368 return -EBUSY; 9369 9370 prog->log_buf = log_buf; 9371 prog->log_size = log_size; 9372 return 0; 9373 } 9374 9375 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9376 .sec = (char *)sec_pfx, \ 9377 .prog_type = BPF_PROG_TYPE_##ptype, \ 9378 .expected_attach_type = atype, \ 9379 .cookie = (long)(flags), \ 9380 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9381 __VA_ARGS__ \ 9382 } 9383 9384 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9385 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9386 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9387 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9388 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9389 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9390 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9391 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9392 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9393 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9394 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9395 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9396 9397 static const struct bpf_sec_def section_defs[] = { 9398 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9399 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9400 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9401 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9402 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9403 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9404 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9405 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9406 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9407 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9408 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9409 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9410 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9411 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9412 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9413 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9414 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9415 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9416 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9417 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9418 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9419 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9420 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9421 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9422 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9423 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9424 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9425 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9426 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9427 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9428 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9429 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9430 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9431 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9432 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9433 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9434 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9435 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9436 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9437 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9438 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9439 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9440 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9441 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9442 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9443 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9444 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9445 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9446 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9447 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9448 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9449 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9450 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9451 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9452 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9453 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9454 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9455 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9456 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9457 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9458 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9459 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9460 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9461 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9462 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9463 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9464 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9465 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9466 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9467 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9468 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9469 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9470 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9471 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9472 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9473 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9474 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9475 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9476 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9477 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9478 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9479 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9480 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9481 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9482 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9483 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9484 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9485 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9486 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9487 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9488 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9489 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9490 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9491 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9492 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9493 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9494 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9495 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9496 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9497 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9498 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9499 }; 9500 9501 int libbpf_register_prog_handler(const char *sec, 9502 enum bpf_prog_type prog_type, 9503 enum bpf_attach_type exp_attach_type, 9504 const struct libbpf_prog_handler_opts *opts) 9505 { 9506 struct bpf_sec_def *sec_def; 9507 9508 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9509 return libbpf_err(-EINVAL); 9510 9511 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9512 return libbpf_err(-E2BIG); 9513 9514 if (sec) { 9515 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9516 sizeof(*sec_def)); 9517 if (!sec_def) 9518 return libbpf_err(-ENOMEM); 9519 9520 custom_sec_defs = sec_def; 9521 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9522 } else { 9523 if (has_custom_fallback_def) 9524 return libbpf_err(-EBUSY); 9525 9526 sec_def = &custom_fallback_def; 9527 } 9528 9529 sec_def->sec = sec ? strdup(sec) : NULL; 9530 if (sec && !sec_def->sec) 9531 return libbpf_err(-ENOMEM); 9532 9533 sec_def->prog_type = prog_type; 9534 sec_def->expected_attach_type = exp_attach_type; 9535 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9536 9537 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9538 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9539 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9540 9541 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9542 9543 if (sec) 9544 custom_sec_def_cnt++; 9545 else 9546 has_custom_fallback_def = true; 9547 9548 return sec_def->handler_id; 9549 } 9550 9551 int libbpf_unregister_prog_handler(int handler_id) 9552 { 9553 struct bpf_sec_def *sec_defs; 9554 int i; 9555 9556 if (handler_id <= 0) 9557 return libbpf_err(-EINVAL); 9558 9559 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9560 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9561 has_custom_fallback_def = false; 9562 return 0; 9563 } 9564 9565 for (i = 0; i < custom_sec_def_cnt; i++) { 9566 if (custom_sec_defs[i].handler_id == handler_id) 9567 break; 9568 } 9569 9570 if (i == custom_sec_def_cnt) 9571 return libbpf_err(-ENOENT); 9572 9573 free(custom_sec_defs[i].sec); 9574 for (i = i + 1; i < custom_sec_def_cnt; i++) 9575 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9576 custom_sec_def_cnt--; 9577 9578 /* try to shrink the array, but it's ok if we couldn't */ 9579 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9580 /* if new count is zero, reallocarray can return a valid NULL result; 9581 * in this case the previous pointer will be freed, so we *have to* 9582 * reassign old pointer to the new value (even if it's NULL) 9583 */ 9584 if (sec_defs || custom_sec_def_cnt == 0) 9585 custom_sec_defs = sec_defs; 9586 9587 return 0; 9588 } 9589 9590 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9591 { 9592 size_t len = strlen(sec_def->sec); 9593 9594 /* "type/" always has to have proper SEC("type/extras") form */ 9595 if (sec_def->sec[len - 1] == '/') { 9596 if (str_has_pfx(sec_name, sec_def->sec)) 9597 return true; 9598 return false; 9599 } 9600 9601 /* "type+" means it can be either exact SEC("type") or 9602 * well-formed SEC("type/extras") with proper '/' separator 9603 */ 9604 if (sec_def->sec[len - 1] == '+') { 9605 len--; 9606 /* not even a prefix */ 9607 if (strncmp(sec_name, sec_def->sec, len) != 0) 9608 return false; 9609 /* exact match or has '/' separator */ 9610 if (sec_name[len] == '\0' || sec_name[len] == '/') 9611 return true; 9612 return false; 9613 } 9614 9615 return strcmp(sec_name, sec_def->sec) == 0; 9616 } 9617 9618 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9619 { 9620 const struct bpf_sec_def *sec_def; 9621 int i, n; 9622 9623 n = custom_sec_def_cnt; 9624 for (i = 0; i < n; i++) { 9625 sec_def = &custom_sec_defs[i]; 9626 if (sec_def_matches(sec_def, sec_name)) 9627 return sec_def; 9628 } 9629 9630 n = ARRAY_SIZE(section_defs); 9631 for (i = 0; i < n; i++) { 9632 sec_def = §ion_defs[i]; 9633 if (sec_def_matches(sec_def, sec_name)) 9634 return sec_def; 9635 } 9636 9637 if (has_custom_fallback_def) 9638 return &custom_fallback_def; 9639 9640 return NULL; 9641 } 9642 9643 #define MAX_TYPE_NAME_SIZE 32 9644 9645 static char *libbpf_get_type_names(bool attach_type) 9646 { 9647 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9648 char *buf; 9649 9650 buf = malloc(len); 9651 if (!buf) 9652 return NULL; 9653 9654 buf[0] = '\0'; 9655 /* Forge string buf with all available names */ 9656 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9657 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9658 9659 if (attach_type) { 9660 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9661 continue; 9662 9663 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9664 continue; 9665 } 9666 9667 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9668 free(buf); 9669 return NULL; 9670 } 9671 strcat(buf, " "); 9672 strcat(buf, section_defs[i].sec); 9673 } 9674 9675 return buf; 9676 } 9677 9678 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9679 enum bpf_attach_type *expected_attach_type) 9680 { 9681 const struct bpf_sec_def *sec_def; 9682 char *type_names; 9683 9684 if (!name) 9685 return libbpf_err(-EINVAL); 9686 9687 sec_def = find_sec_def(name); 9688 if (sec_def) { 9689 *prog_type = sec_def->prog_type; 9690 *expected_attach_type = sec_def->expected_attach_type; 9691 return 0; 9692 } 9693 9694 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9695 type_names = libbpf_get_type_names(false); 9696 if (type_names != NULL) { 9697 pr_debug("supported section(type) names are:%s\n", type_names); 9698 free(type_names); 9699 } 9700 9701 return libbpf_err(-ESRCH); 9702 } 9703 9704 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9705 { 9706 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9707 return NULL; 9708 9709 return attach_type_name[t]; 9710 } 9711 9712 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9713 { 9714 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9715 return NULL; 9716 9717 return link_type_name[t]; 9718 } 9719 9720 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9721 { 9722 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9723 return NULL; 9724 9725 return map_type_name[t]; 9726 } 9727 9728 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9729 { 9730 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9731 return NULL; 9732 9733 return prog_type_name[t]; 9734 } 9735 9736 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9737 int sec_idx, 9738 size_t offset) 9739 { 9740 struct bpf_map *map; 9741 size_t i; 9742 9743 for (i = 0; i < obj->nr_maps; i++) { 9744 map = &obj->maps[i]; 9745 if (!bpf_map__is_struct_ops(map)) 9746 continue; 9747 if (map->sec_idx == sec_idx && 9748 map->sec_offset <= offset && 9749 offset - map->sec_offset < map->def.value_size) 9750 return map; 9751 } 9752 9753 return NULL; 9754 } 9755 9756 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9757 * st_ops->data for shadow type. 9758 */ 9759 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9760 Elf64_Shdr *shdr, Elf_Data *data) 9761 { 9762 const struct btf_type *type; 9763 const struct btf_member *member; 9764 struct bpf_struct_ops *st_ops; 9765 struct bpf_program *prog; 9766 unsigned int shdr_idx; 9767 const struct btf *btf; 9768 struct bpf_map *map; 9769 unsigned int moff, insn_idx; 9770 const char *name; 9771 __u32 member_idx; 9772 Elf64_Sym *sym; 9773 Elf64_Rel *rel; 9774 int i, nrels; 9775 9776 btf = obj->btf; 9777 nrels = shdr->sh_size / shdr->sh_entsize; 9778 for (i = 0; i < nrels; i++) { 9779 rel = elf_rel_by_idx(data, i); 9780 if (!rel) { 9781 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9782 return -LIBBPF_ERRNO__FORMAT; 9783 } 9784 9785 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9786 if (!sym) { 9787 pr_warn("struct_ops reloc: symbol %zx not found\n", 9788 (size_t)ELF64_R_SYM(rel->r_info)); 9789 return -LIBBPF_ERRNO__FORMAT; 9790 } 9791 9792 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9793 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9794 if (!map) { 9795 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9796 (size_t)rel->r_offset); 9797 return -EINVAL; 9798 } 9799 9800 moff = rel->r_offset - map->sec_offset; 9801 shdr_idx = sym->st_shndx; 9802 st_ops = map->st_ops; 9803 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9804 map->name, 9805 (long long)(rel->r_info >> 32), 9806 (long long)sym->st_value, 9807 shdr_idx, (size_t)rel->r_offset, 9808 map->sec_offset, sym->st_name, name); 9809 9810 if (shdr_idx >= SHN_LORESERVE) { 9811 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9812 map->name, (size_t)rel->r_offset, shdr_idx); 9813 return -LIBBPF_ERRNO__RELOC; 9814 } 9815 if (sym->st_value % BPF_INSN_SZ) { 9816 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9817 map->name, (unsigned long long)sym->st_value); 9818 return -LIBBPF_ERRNO__FORMAT; 9819 } 9820 insn_idx = sym->st_value / BPF_INSN_SZ; 9821 9822 type = btf__type_by_id(btf, st_ops->type_id); 9823 member = find_member_by_offset(type, moff * 8); 9824 if (!member) { 9825 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9826 map->name, moff); 9827 return -EINVAL; 9828 } 9829 member_idx = member - btf_members(type); 9830 name = btf__name_by_offset(btf, member->name_off); 9831 9832 if (!resolve_func_ptr(btf, member->type, NULL)) { 9833 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9834 map->name, name); 9835 return -EINVAL; 9836 } 9837 9838 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9839 if (!prog) { 9840 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9841 map->name, shdr_idx, name); 9842 return -EINVAL; 9843 } 9844 9845 /* prevent the use of BPF prog with invalid type */ 9846 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9847 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9848 map->name, prog->name); 9849 return -EINVAL; 9850 } 9851 9852 st_ops->progs[member_idx] = prog; 9853 9854 /* st_ops->data will be exposed to users, being returned by 9855 * bpf_map__initial_value() as a pointer to the shadow 9856 * type. All function pointers in the original struct type 9857 * should be converted to a pointer to struct bpf_program 9858 * in the shadow type. 9859 */ 9860 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9861 } 9862 9863 return 0; 9864 } 9865 9866 #define BTF_TRACE_PREFIX "btf_trace_" 9867 #define BTF_LSM_PREFIX "bpf_lsm_" 9868 #define BTF_ITER_PREFIX "bpf_iter_" 9869 #define BTF_MAX_NAME_SIZE 128 9870 9871 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9872 const char **prefix, int *kind) 9873 { 9874 switch (attach_type) { 9875 case BPF_TRACE_RAW_TP: 9876 *prefix = BTF_TRACE_PREFIX; 9877 *kind = BTF_KIND_TYPEDEF; 9878 break; 9879 case BPF_LSM_MAC: 9880 case BPF_LSM_CGROUP: 9881 *prefix = BTF_LSM_PREFIX; 9882 *kind = BTF_KIND_FUNC; 9883 break; 9884 case BPF_TRACE_ITER: 9885 *prefix = BTF_ITER_PREFIX; 9886 *kind = BTF_KIND_FUNC; 9887 break; 9888 default: 9889 *prefix = ""; 9890 *kind = BTF_KIND_FUNC; 9891 } 9892 } 9893 9894 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9895 const char *name, __u32 kind) 9896 { 9897 char btf_type_name[BTF_MAX_NAME_SIZE]; 9898 int ret; 9899 9900 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9901 "%s%s", prefix, name); 9902 /* snprintf returns the number of characters written excluding the 9903 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9904 * indicates truncation. 9905 */ 9906 if (ret < 0 || ret >= sizeof(btf_type_name)) 9907 return -ENAMETOOLONG; 9908 return btf__find_by_name_kind(btf, btf_type_name, kind); 9909 } 9910 9911 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9912 enum bpf_attach_type attach_type) 9913 { 9914 const char *prefix; 9915 int kind; 9916 9917 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9918 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9919 } 9920 9921 int libbpf_find_vmlinux_btf_id(const char *name, 9922 enum bpf_attach_type attach_type) 9923 { 9924 struct btf *btf; 9925 int err; 9926 9927 btf = btf__load_vmlinux_btf(); 9928 err = libbpf_get_error(btf); 9929 if (err) { 9930 pr_warn("vmlinux BTF is not found\n"); 9931 return libbpf_err(err); 9932 } 9933 9934 err = find_attach_btf_id(btf, name, attach_type); 9935 if (err <= 0) 9936 pr_warn("%s is not found in vmlinux BTF\n", name); 9937 9938 btf__free(btf); 9939 return libbpf_err(err); 9940 } 9941 9942 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9943 { 9944 struct bpf_prog_info info; 9945 __u32 info_len = sizeof(info); 9946 struct btf *btf; 9947 int err; 9948 9949 memset(&info, 0, info_len); 9950 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9951 if (err) { 9952 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9953 attach_prog_fd, err); 9954 return err; 9955 } 9956 9957 err = -EINVAL; 9958 if (!info.btf_id) { 9959 pr_warn("The target program doesn't have BTF\n"); 9960 goto out; 9961 } 9962 btf = btf__load_from_kernel_by_id(info.btf_id); 9963 err = libbpf_get_error(btf); 9964 if (err) { 9965 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9966 goto out; 9967 } 9968 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9969 btf__free(btf); 9970 if (err <= 0) { 9971 pr_warn("%s is not found in prog's BTF\n", name); 9972 goto out; 9973 } 9974 out: 9975 return err; 9976 } 9977 9978 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9979 enum bpf_attach_type attach_type, 9980 int *btf_obj_fd, int *btf_type_id) 9981 { 9982 int ret, i, mod_len; 9983 const char *fn_name, *mod_name = NULL; 9984 9985 fn_name = strchr(attach_name, ':'); 9986 if (fn_name) { 9987 mod_name = attach_name; 9988 mod_len = fn_name - mod_name; 9989 fn_name++; 9990 } 9991 9992 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 9993 ret = find_attach_btf_id(obj->btf_vmlinux, 9994 mod_name ? fn_name : attach_name, 9995 attach_type); 9996 if (ret > 0) { 9997 *btf_obj_fd = 0; /* vmlinux BTF */ 9998 *btf_type_id = ret; 9999 return 0; 10000 } 10001 if (ret != -ENOENT) 10002 return ret; 10003 } 10004 10005 ret = load_module_btfs(obj); 10006 if (ret) 10007 return ret; 10008 10009 for (i = 0; i < obj->btf_module_cnt; i++) { 10010 const struct module_btf *mod = &obj->btf_modules[i]; 10011 10012 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10013 continue; 10014 10015 ret = find_attach_btf_id(mod->btf, 10016 mod_name ? fn_name : attach_name, 10017 attach_type); 10018 if (ret > 0) { 10019 *btf_obj_fd = mod->fd; 10020 *btf_type_id = ret; 10021 return 0; 10022 } 10023 if (ret == -ENOENT) 10024 continue; 10025 10026 return ret; 10027 } 10028 10029 return -ESRCH; 10030 } 10031 10032 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10033 int *btf_obj_fd, int *btf_type_id) 10034 { 10035 enum bpf_attach_type attach_type = prog->expected_attach_type; 10036 __u32 attach_prog_fd = prog->attach_prog_fd; 10037 int err = 0; 10038 10039 /* BPF program's BTF ID */ 10040 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10041 if (!attach_prog_fd) { 10042 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10043 return -EINVAL; 10044 } 10045 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 10046 if (err < 0) { 10047 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 10048 prog->name, attach_prog_fd, attach_name, err); 10049 return err; 10050 } 10051 *btf_obj_fd = 0; 10052 *btf_type_id = err; 10053 return 0; 10054 } 10055 10056 /* kernel/module BTF ID */ 10057 if (prog->obj->gen_loader) { 10058 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10059 *btf_obj_fd = 0; 10060 *btf_type_id = 1; 10061 } else { 10062 err = find_kernel_btf_id(prog->obj, attach_name, 10063 attach_type, btf_obj_fd, 10064 btf_type_id); 10065 } 10066 if (err) { 10067 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 10068 prog->name, attach_name, err); 10069 return err; 10070 } 10071 return 0; 10072 } 10073 10074 int libbpf_attach_type_by_name(const char *name, 10075 enum bpf_attach_type *attach_type) 10076 { 10077 char *type_names; 10078 const struct bpf_sec_def *sec_def; 10079 10080 if (!name) 10081 return libbpf_err(-EINVAL); 10082 10083 sec_def = find_sec_def(name); 10084 if (!sec_def) { 10085 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10086 type_names = libbpf_get_type_names(true); 10087 if (type_names != NULL) { 10088 pr_debug("attachable section(type) names are:%s\n", type_names); 10089 free(type_names); 10090 } 10091 10092 return libbpf_err(-EINVAL); 10093 } 10094 10095 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10096 return libbpf_err(-EINVAL); 10097 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10098 return libbpf_err(-EINVAL); 10099 10100 *attach_type = sec_def->expected_attach_type; 10101 return 0; 10102 } 10103 10104 int bpf_map__fd(const struct bpf_map *map) 10105 { 10106 if (!map) 10107 return libbpf_err(-EINVAL); 10108 if (!map_is_created(map)) 10109 return -1; 10110 return map->fd; 10111 } 10112 10113 static bool map_uses_real_name(const struct bpf_map *map) 10114 { 10115 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10116 * their user-visible name differs from kernel-visible name. Users see 10117 * such map's corresponding ELF section name as a map name. 10118 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10119 * maps to know which name has to be returned to the user. 10120 */ 10121 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10122 return true; 10123 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10124 return true; 10125 return false; 10126 } 10127 10128 const char *bpf_map__name(const struct bpf_map *map) 10129 { 10130 if (!map) 10131 return NULL; 10132 10133 if (map_uses_real_name(map)) 10134 return map->real_name; 10135 10136 return map->name; 10137 } 10138 10139 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10140 { 10141 return map->def.type; 10142 } 10143 10144 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10145 { 10146 if (map_is_created(map)) 10147 return libbpf_err(-EBUSY); 10148 map->def.type = type; 10149 return 0; 10150 } 10151 10152 __u32 bpf_map__map_flags(const struct bpf_map *map) 10153 { 10154 return map->def.map_flags; 10155 } 10156 10157 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10158 { 10159 if (map_is_created(map)) 10160 return libbpf_err(-EBUSY); 10161 map->def.map_flags = flags; 10162 return 0; 10163 } 10164 10165 __u64 bpf_map__map_extra(const struct bpf_map *map) 10166 { 10167 return map->map_extra; 10168 } 10169 10170 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10171 { 10172 if (map_is_created(map)) 10173 return libbpf_err(-EBUSY); 10174 map->map_extra = map_extra; 10175 return 0; 10176 } 10177 10178 __u32 bpf_map__numa_node(const struct bpf_map *map) 10179 { 10180 return map->numa_node; 10181 } 10182 10183 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10184 { 10185 if (map_is_created(map)) 10186 return libbpf_err(-EBUSY); 10187 map->numa_node = numa_node; 10188 return 0; 10189 } 10190 10191 __u32 bpf_map__key_size(const struct bpf_map *map) 10192 { 10193 return map->def.key_size; 10194 } 10195 10196 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10197 { 10198 if (map_is_created(map)) 10199 return libbpf_err(-EBUSY); 10200 map->def.key_size = size; 10201 return 0; 10202 } 10203 10204 __u32 bpf_map__value_size(const struct bpf_map *map) 10205 { 10206 return map->def.value_size; 10207 } 10208 10209 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10210 { 10211 struct btf *btf; 10212 struct btf_type *datasec_type, *var_type; 10213 struct btf_var_secinfo *var; 10214 const struct btf_type *array_type; 10215 const struct btf_array *array; 10216 int vlen, element_sz, new_array_id; 10217 __u32 nr_elements; 10218 10219 /* check btf existence */ 10220 btf = bpf_object__btf(map->obj); 10221 if (!btf) 10222 return -ENOENT; 10223 10224 /* verify map is datasec */ 10225 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10226 if (!btf_is_datasec(datasec_type)) { 10227 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10228 bpf_map__name(map)); 10229 return -EINVAL; 10230 } 10231 10232 /* verify datasec has at least one var */ 10233 vlen = btf_vlen(datasec_type); 10234 if (vlen == 0) { 10235 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10236 bpf_map__name(map)); 10237 return -EINVAL; 10238 } 10239 10240 /* verify last var in the datasec is an array */ 10241 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10242 var_type = btf_type_by_id(btf, var->type); 10243 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10244 if (!btf_is_array(array_type)) { 10245 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10246 bpf_map__name(map)); 10247 return -EINVAL; 10248 } 10249 10250 /* verify request size aligns with array */ 10251 array = btf_array(array_type); 10252 element_sz = btf__resolve_size(btf, array->type); 10253 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10254 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10255 bpf_map__name(map), element_sz, size); 10256 return -EINVAL; 10257 } 10258 10259 /* create a new array based on the existing array, but with new length */ 10260 nr_elements = (size - var->offset) / element_sz; 10261 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10262 if (new_array_id < 0) 10263 return new_array_id; 10264 10265 /* adding a new btf type invalidates existing pointers to btf objects, 10266 * so refresh pointers before proceeding 10267 */ 10268 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10269 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10270 var_type = btf_type_by_id(btf, var->type); 10271 10272 /* finally update btf info */ 10273 datasec_type->size = size; 10274 var->size = size - var->offset; 10275 var_type->type = new_array_id; 10276 10277 return 0; 10278 } 10279 10280 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10281 { 10282 if (map->obj->loaded || map->reused) 10283 return libbpf_err(-EBUSY); 10284 10285 if (map->mmaped) { 10286 size_t mmap_old_sz, mmap_new_sz; 10287 int err; 10288 10289 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10290 return -EOPNOTSUPP; 10291 10292 mmap_old_sz = bpf_map_mmap_sz(map); 10293 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10294 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10295 if (err) { 10296 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 10297 bpf_map__name(map), err); 10298 return err; 10299 } 10300 err = map_btf_datasec_resize(map, size); 10301 if (err && err != -ENOENT) { 10302 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 10303 bpf_map__name(map), err); 10304 map->btf_value_type_id = 0; 10305 map->btf_key_type_id = 0; 10306 } 10307 } 10308 10309 map->def.value_size = size; 10310 return 0; 10311 } 10312 10313 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10314 { 10315 return map ? map->btf_key_type_id : 0; 10316 } 10317 10318 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10319 { 10320 return map ? map->btf_value_type_id : 0; 10321 } 10322 10323 int bpf_map__set_initial_value(struct bpf_map *map, 10324 const void *data, size_t size) 10325 { 10326 size_t actual_sz; 10327 10328 if (map->obj->loaded || map->reused) 10329 return libbpf_err(-EBUSY); 10330 10331 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10332 return libbpf_err(-EINVAL); 10333 10334 if (map->def.type == BPF_MAP_TYPE_ARENA) 10335 actual_sz = map->obj->arena_data_sz; 10336 else 10337 actual_sz = map->def.value_size; 10338 if (size != actual_sz) 10339 return libbpf_err(-EINVAL); 10340 10341 memcpy(map->mmaped, data, size); 10342 return 0; 10343 } 10344 10345 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10346 { 10347 if (bpf_map__is_struct_ops(map)) { 10348 if (psize) 10349 *psize = map->def.value_size; 10350 return map->st_ops->data; 10351 } 10352 10353 if (!map->mmaped) 10354 return NULL; 10355 10356 if (map->def.type == BPF_MAP_TYPE_ARENA) 10357 *psize = map->obj->arena_data_sz; 10358 else 10359 *psize = map->def.value_size; 10360 10361 return map->mmaped; 10362 } 10363 10364 bool bpf_map__is_internal(const struct bpf_map *map) 10365 { 10366 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10367 } 10368 10369 __u32 bpf_map__ifindex(const struct bpf_map *map) 10370 { 10371 return map->map_ifindex; 10372 } 10373 10374 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10375 { 10376 if (map_is_created(map)) 10377 return libbpf_err(-EBUSY); 10378 map->map_ifindex = ifindex; 10379 return 0; 10380 } 10381 10382 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10383 { 10384 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10385 pr_warn("error: unsupported map type\n"); 10386 return libbpf_err(-EINVAL); 10387 } 10388 if (map->inner_map_fd != -1) { 10389 pr_warn("error: inner_map_fd already specified\n"); 10390 return libbpf_err(-EINVAL); 10391 } 10392 if (map->inner_map) { 10393 bpf_map__destroy(map->inner_map); 10394 zfree(&map->inner_map); 10395 } 10396 map->inner_map_fd = fd; 10397 return 0; 10398 } 10399 10400 static struct bpf_map * 10401 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10402 { 10403 ssize_t idx; 10404 struct bpf_map *s, *e; 10405 10406 if (!obj || !obj->maps) 10407 return errno = EINVAL, NULL; 10408 10409 s = obj->maps; 10410 e = obj->maps + obj->nr_maps; 10411 10412 if ((m < s) || (m >= e)) { 10413 pr_warn("error in %s: map handler doesn't belong to object\n", 10414 __func__); 10415 return errno = EINVAL, NULL; 10416 } 10417 10418 idx = (m - obj->maps) + i; 10419 if (idx >= obj->nr_maps || idx < 0) 10420 return NULL; 10421 return &obj->maps[idx]; 10422 } 10423 10424 struct bpf_map * 10425 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10426 { 10427 if (prev == NULL && obj != NULL) 10428 return obj->maps; 10429 10430 return __bpf_map__iter(prev, obj, 1); 10431 } 10432 10433 struct bpf_map * 10434 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10435 { 10436 if (next == NULL && obj != NULL) { 10437 if (!obj->nr_maps) 10438 return NULL; 10439 return obj->maps + obj->nr_maps - 1; 10440 } 10441 10442 return __bpf_map__iter(next, obj, -1); 10443 } 10444 10445 struct bpf_map * 10446 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10447 { 10448 struct bpf_map *pos; 10449 10450 bpf_object__for_each_map(pos, obj) { 10451 /* if it's a special internal map name (which always starts 10452 * with dot) then check if that special name matches the 10453 * real map name (ELF section name) 10454 */ 10455 if (name[0] == '.') { 10456 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10457 return pos; 10458 continue; 10459 } 10460 /* otherwise map name has to be an exact match */ 10461 if (map_uses_real_name(pos)) { 10462 if (strcmp(pos->real_name, name) == 0) 10463 return pos; 10464 continue; 10465 } 10466 if (strcmp(pos->name, name) == 0) 10467 return pos; 10468 } 10469 return errno = ENOENT, NULL; 10470 } 10471 10472 int 10473 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10474 { 10475 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10476 } 10477 10478 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10479 size_t value_sz, bool check_value_sz) 10480 { 10481 if (!map_is_created(map)) /* map is not yet created */ 10482 return -ENOENT; 10483 10484 if (map->def.key_size != key_sz) { 10485 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10486 map->name, key_sz, map->def.key_size); 10487 return -EINVAL; 10488 } 10489 10490 if (map->fd < 0) { 10491 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10492 return -EINVAL; 10493 } 10494 10495 if (!check_value_sz) 10496 return 0; 10497 10498 switch (map->def.type) { 10499 case BPF_MAP_TYPE_PERCPU_ARRAY: 10500 case BPF_MAP_TYPE_PERCPU_HASH: 10501 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10502 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10503 int num_cpu = libbpf_num_possible_cpus(); 10504 size_t elem_sz = roundup(map->def.value_size, 8); 10505 10506 if (value_sz != num_cpu * elem_sz) { 10507 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10508 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10509 return -EINVAL; 10510 } 10511 break; 10512 } 10513 default: 10514 if (map->def.value_size != value_sz) { 10515 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10516 map->name, value_sz, map->def.value_size); 10517 return -EINVAL; 10518 } 10519 break; 10520 } 10521 return 0; 10522 } 10523 10524 int bpf_map__lookup_elem(const struct bpf_map *map, 10525 const void *key, size_t key_sz, 10526 void *value, size_t value_sz, __u64 flags) 10527 { 10528 int err; 10529 10530 err = validate_map_op(map, key_sz, value_sz, true); 10531 if (err) 10532 return libbpf_err(err); 10533 10534 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10535 } 10536 10537 int bpf_map__update_elem(const struct bpf_map *map, 10538 const void *key, size_t key_sz, 10539 const void *value, size_t value_sz, __u64 flags) 10540 { 10541 int err; 10542 10543 err = validate_map_op(map, key_sz, value_sz, true); 10544 if (err) 10545 return libbpf_err(err); 10546 10547 return bpf_map_update_elem(map->fd, key, value, flags); 10548 } 10549 10550 int bpf_map__delete_elem(const struct bpf_map *map, 10551 const void *key, size_t key_sz, __u64 flags) 10552 { 10553 int err; 10554 10555 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10556 if (err) 10557 return libbpf_err(err); 10558 10559 return bpf_map_delete_elem_flags(map->fd, key, flags); 10560 } 10561 10562 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10563 const void *key, size_t key_sz, 10564 void *value, size_t value_sz, __u64 flags) 10565 { 10566 int err; 10567 10568 err = validate_map_op(map, key_sz, value_sz, true); 10569 if (err) 10570 return libbpf_err(err); 10571 10572 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10573 } 10574 10575 int bpf_map__get_next_key(const struct bpf_map *map, 10576 const void *cur_key, void *next_key, size_t key_sz) 10577 { 10578 int err; 10579 10580 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10581 if (err) 10582 return libbpf_err(err); 10583 10584 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10585 } 10586 10587 long libbpf_get_error(const void *ptr) 10588 { 10589 if (!IS_ERR_OR_NULL(ptr)) 10590 return 0; 10591 10592 if (IS_ERR(ptr)) 10593 errno = -PTR_ERR(ptr); 10594 10595 /* If ptr == NULL, then errno should be already set by the failing 10596 * API, because libbpf never returns NULL on success and it now always 10597 * sets errno on error. So no extra errno handling for ptr == NULL 10598 * case. 10599 */ 10600 return -errno; 10601 } 10602 10603 /* Replace link's underlying BPF program with the new one */ 10604 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10605 { 10606 int ret; 10607 int prog_fd = bpf_program__fd(prog); 10608 10609 if (prog_fd < 0) { 10610 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10611 prog->name); 10612 return libbpf_err(-EINVAL); 10613 } 10614 10615 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10616 return libbpf_err_errno(ret); 10617 } 10618 10619 /* Release "ownership" of underlying BPF resource (typically, BPF program 10620 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10621 * link, when destructed through bpf_link__destroy() call won't attempt to 10622 * detach/unregisted that BPF resource. This is useful in situations where, 10623 * say, attached BPF program has to outlive userspace program that attached it 10624 * in the system. Depending on type of BPF program, though, there might be 10625 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10626 * exit of userspace program doesn't trigger automatic detachment and clean up 10627 * inside the kernel. 10628 */ 10629 void bpf_link__disconnect(struct bpf_link *link) 10630 { 10631 link->disconnected = true; 10632 } 10633 10634 int bpf_link__destroy(struct bpf_link *link) 10635 { 10636 int err = 0; 10637 10638 if (IS_ERR_OR_NULL(link)) 10639 return 0; 10640 10641 if (!link->disconnected && link->detach) 10642 err = link->detach(link); 10643 if (link->pin_path) 10644 free(link->pin_path); 10645 if (link->dealloc) 10646 link->dealloc(link); 10647 else 10648 free(link); 10649 10650 return libbpf_err(err); 10651 } 10652 10653 int bpf_link__fd(const struct bpf_link *link) 10654 { 10655 return link->fd; 10656 } 10657 10658 const char *bpf_link__pin_path(const struct bpf_link *link) 10659 { 10660 return link->pin_path; 10661 } 10662 10663 static int bpf_link__detach_fd(struct bpf_link *link) 10664 { 10665 return libbpf_err_errno(close(link->fd)); 10666 } 10667 10668 struct bpf_link *bpf_link__open(const char *path) 10669 { 10670 struct bpf_link *link; 10671 int fd; 10672 10673 fd = bpf_obj_get(path); 10674 if (fd < 0) { 10675 fd = -errno; 10676 pr_warn("failed to open link at %s: %d\n", path, fd); 10677 return libbpf_err_ptr(fd); 10678 } 10679 10680 link = calloc(1, sizeof(*link)); 10681 if (!link) { 10682 close(fd); 10683 return libbpf_err_ptr(-ENOMEM); 10684 } 10685 link->detach = &bpf_link__detach_fd; 10686 link->fd = fd; 10687 10688 link->pin_path = strdup(path); 10689 if (!link->pin_path) { 10690 bpf_link__destroy(link); 10691 return libbpf_err_ptr(-ENOMEM); 10692 } 10693 10694 return link; 10695 } 10696 10697 int bpf_link__detach(struct bpf_link *link) 10698 { 10699 return bpf_link_detach(link->fd) ? -errno : 0; 10700 } 10701 10702 int bpf_link__pin(struct bpf_link *link, const char *path) 10703 { 10704 int err; 10705 10706 if (link->pin_path) 10707 return libbpf_err(-EBUSY); 10708 err = make_parent_dir(path); 10709 if (err) 10710 return libbpf_err(err); 10711 err = check_path(path); 10712 if (err) 10713 return libbpf_err(err); 10714 10715 link->pin_path = strdup(path); 10716 if (!link->pin_path) 10717 return libbpf_err(-ENOMEM); 10718 10719 if (bpf_obj_pin(link->fd, link->pin_path)) { 10720 err = -errno; 10721 zfree(&link->pin_path); 10722 return libbpf_err(err); 10723 } 10724 10725 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10726 return 0; 10727 } 10728 10729 int bpf_link__unpin(struct bpf_link *link) 10730 { 10731 int err; 10732 10733 if (!link->pin_path) 10734 return libbpf_err(-EINVAL); 10735 10736 err = unlink(link->pin_path); 10737 if (err != 0) 10738 return -errno; 10739 10740 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10741 zfree(&link->pin_path); 10742 return 0; 10743 } 10744 10745 struct bpf_link_perf { 10746 struct bpf_link link; 10747 int perf_event_fd; 10748 /* legacy kprobe support: keep track of probe identifier and type */ 10749 char *legacy_probe_name; 10750 bool legacy_is_kprobe; 10751 bool legacy_is_retprobe; 10752 }; 10753 10754 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10755 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10756 10757 static int bpf_link_perf_detach(struct bpf_link *link) 10758 { 10759 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10760 int err = 0; 10761 10762 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10763 err = -errno; 10764 10765 if (perf_link->perf_event_fd != link->fd) 10766 close(perf_link->perf_event_fd); 10767 close(link->fd); 10768 10769 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10770 if (perf_link->legacy_probe_name) { 10771 if (perf_link->legacy_is_kprobe) { 10772 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10773 perf_link->legacy_is_retprobe); 10774 } else { 10775 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10776 perf_link->legacy_is_retprobe); 10777 } 10778 } 10779 10780 return err; 10781 } 10782 10783 static void bpf_link_perf_dealloc(struct bpf_link *link) 10784 { 10785 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10786 10787 free(perf_link->legacy_probe_name); 10788 free(perf_link); 10789 } 10790 10791 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10792 const struct bpf_perf_event_opts *opts) 10793 { 10794 char errmsg[STRERR_BUFSIZE]; 10795 struct bpf_link_perf *link; 10796 int prog_fd, link_fd = -1, err; 10797 bool force_ioctl_attach; 10798 10799 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10800 return libbpf_err_ptr(-EINVAL); 10801 10802 if (pfd < 0) { 10803 pr_warn("prog '%s': invalid perf event FD %d\n", 10804 prog->name, pfd); 10805 return libbpf_err_ptr(-EINVAL); 10806 } 10807 prog_fd = bpf_program__fd(prog); 10808 if (prog_fd < 0) { 10809 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10810 prog->name); 10811 return libbpf_err_ptr(-EINVAL); 10812 } 10813 10814 link = calloc(1, sizeof(*link)); 10815 if (!link) 10816 return libbpf_err_ptr(-ENOMEM); 10817 link->link.detach = &bpf_link_perf_detach; 10818 link->link.dealloc = &bpf_link_perf_dealloc; 10819 link->perf_event_fd = pfd; 10820 10821 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10822 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10823 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10824 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10825 10826 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10827 if (link_fd < 0) { 10828 err = -errno; 10829 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10830 prog->name, pfd, 10831 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10832 goto err_out; 10833 } 10834 link->link.fd = link_fd; 10835 } else { 10836 if (OPTS_GET(opts, bpf_cookie, 0)) { 10837 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10838 err = -EOPNOTSUPP; 10839 goto err_out; 10840 } 10841 10842 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10843 err = -errno; 10844 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10845 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10846 if (err == -EPROTO) 10847 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10848 prog->name, pfd); 10849 goto err_out; 10850 } 10851 link->link.fd = pfd; 10852 } 10853 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10854 err = -errno; 10855 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10856 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10857 goto err_out; 10858 } 10859 10860 return &link->link; 10861 err_out: 10862 if (link_fd >= 0) 10863 close(link_fd); 10864 free(link); 10865 return libbpf_err_ptr(err); 10866 } 10867 10868 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10869 { 10870 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10871 } 10872 10873 /* 10874 * this function is expected to parse integer in the range of [0, 2^31-1] from 10875 * given file using scanf format string fmt. If actual parsed value is 10876 * negative, the result might be indistinguishable from error 10877 */ 10878 static int parse_uint_from_file(const char *file, const char *fmt) 10879 { 10880 char buf[STRERR_BUFSIZE]; 10881 int err, ret; 10882 FILE *f; 10883 10884 f = fopen(file, "re"); 10885 if (!f) { 10886 err = -errno; 10887 pr_debug("failed to open '%s': %s\n", file, 10888 libbpf_strerror_r(err, buf, sizeof(buf))); 10889 return err; 10890 } 10891 err = fscanf(f, fmt, &ret); 10892 if (err != 1) { 10893 err = err == EOF ? -EIO : -errno; 10894 pr_debug("failed to parse '%s': %s\n", file, 10895 libbpf_strerror_r(err, buf, sizeof(buf))); 10896 fclose(f); 10897 return err; 10898 } 10899 fclose(f); 10900 return ret; 10901 } 10902 10903 static int determine_kprobe_perf_type(void) 10904 { 10905 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10906 10907 return parse_uint_from_file(file, "%d\n"); 10908 } 10909 10910 static int determine_uprobe_perf_type(void) 10911 { 10912 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10913 10914 return parse_uint_from_file(file, "%d\n"); 10915 } 10916 10917 static int determine_kprobe_retprobe_bit(void) 10918 { 10919 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10920 10921 return parse_uint_from_file(file, "config:%d\n"); 10922 } 10923 10924 static int determine_uprobe_retprobe_bit(void) 10925 { 10926 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10927 10928 return parse_uint_from_file(file, "config:%d\n"); 10929 } 10930 10931 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10932 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10933 10934 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10935 uint64_t offset, int pid, size_t ref_ctr_off) 10936 { 10937 const size_t attr_sz = sizeof(struct perf_event_attr); 10938 struct perf_event_attr attr; 10939 char errmsg[STRERR_BUFSIZE]; 10940 int type, pfd; 10941 10942 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10943 return -EINVAL; 10944 10945 memset(&attr, 0, attr_sz); 10946 10947 type = uprobe ? determine_uprobe_perf_type() 10948 : determine_kprobe_perf_type(); 10949 if (type < 0) { 10950 pr_warn("failed to determine %s perf type: %s\n", 10951 uprobe ? "uprobe" : "kprobe", 10952 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10953 return type; 10954 } 10955 if (retprobe) { 10956 int bit = uprobe ? determine_uprobe_retprobe_bit() 10957 : determine_kprobe_retprobe_bit(); 10958 10959 if (bit < 0) { 10960 pr_warn("failed to determine %s retprobe bit: %s\n", 10961 uprobe ? "uprobe" : "kprobe", 10962 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10963 return bit; 10964 } 10965 attr.config |= 1 << bit; 10966 } 10967 attr.size = attr_sz; 10968 attr.type = type; 10969 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10970 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10971 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10972 10973 /* pid filter is meaningful only for uprobes */ 10974 pfd = syscall(__NR_perf_event_open, &attr, 10975 pid < 0 ? -1 : pid /* pid */, 10976 pid == -1 ? 0 : -1 /* cpu */, 10977 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10978 return pfd >= 0 ? pfd : -errno; 10979 } 10980 10981 static int append_to_file(const char *file, const char *fmt, ...) 10982 { 10983 int fd, n, err = 0; 10984 va_list ap; 10985 char buf[1024]; 10986 10987 va_start(ap, fmt); 10988 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10989 va_end(ap); 10990 10991 if (n < 0 || n >= sizeof(buf)) 10992 return -EINVAL; 10993 10994 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10995 if (fd < 0) 10996 return -errno; 10997 10998 if (write(fd, buf, n) < 0) 10999 err = -errno; 11000 11001 close(fd); 11002 return err; 11003 } 11004 11005 #define DEBUGFS "/sys/kernel/debug/tracing" 11006 #define TRACEFS "/sys/kernel/tracing" 11007 11008 static bool use_debugfs(void) 11009 { 11010 static int has_debugfs = -1; 11011 11012 if (has_debugfs < 0) 11013 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11014 11015 return has_debugfs == 1; 11016 } 11017 11018 static const char *tracefs_path(void) 11019 { 11020 return use_debugfs() ? DEBUGFS : TRACEFS; 11021 } 11022 11023 static const char *tracefs_kprobe_events(void) 11024 { 11025 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11026 } 11027 11028 static const char *tracefs_uprobe_events(void) 11029 { 11030 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11031 } 11032 11033 static const char *tracefs_available_filter_functions(void) 11034 { 11035 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11036 : TRACEFS"/available_filter_functions"; 11037 } 11038 11039 static const char *tracefs_available_filter_functions_addrs(void) 11040 { 11041 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11042 : TRACEFS"/available_filter_functions_addrs"; 11043 } 11044 11045 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 11046 const char *kfunc_name, size_t offset) 11047 { 11048 static int index = 0; 11049 int i; 11050 11051 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 11052 __sync_fetch_and_add(&index, 1)); 11053 11054 /* sanitize binary_path in the probe name */ 11055 for (i = 0; buf[i]; i++) { 11056 if (!isalnum(buf[i])) 11057 buf[i] = '_'; 11058 } 11059 } 11060 11061 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11062 const char *kfunc_name, size_t offset) 11063 { 11064 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11065 retprobe ? 'r' : 'p', 11066 retprobe ? "kretprobes" : "kprobes", 11067 probe_name, kfunc_name, offset); 11068 } 11069 11070 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11071 { 11072 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11073 retprobe ? "kretprobes" : "kprobes", probe_name); 11074 } 11075 11076 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11077 { 11078 char file[256]; 11079 11080 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11081 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11082 11083 return parse_uint_from_file(file, "%d\n"); 11084 } 11085 11086 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11087 const char *kfunc_name, size_t offset, int pid) 11088 { 11089 const size_t attr_sz = sizeof(struct perf_event_attr); 11090 struct perf_event_attr attr; 11091 char errmsg[STRERR_BUFSIZE]; 11092 int type, pfd, err; 11093 11094 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11095 if (err < 0) { 11096 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11097 kfunc_name, offset, 11098 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11099 return err; 11100 } 11101 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11102 if (type < 0) { 11103 err = type; 11104 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11105 kfunc_name, offset, 11106 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11107 goto err_clean_legacy; 11108 } 11109 11110 memset(&attr, 0, attr_sz); 11111 attr.size = attr_sz; 11112 attr.config = type; 11113 attr.type = PERF_TYPE_TRACEPOINT; 11114 11115 pfd = syscall(__NR_perf_event_open, &attr, 11116 pid < 0 ? -1 : pid, /* pid */ 11117 pid == -1 ? 0 : -1, /* cpu */ 11118 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11119 if (pfd < 0) { 11120 err = -errno; 11121 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11122 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11123 goto err_clean_legacy; 11124 } 11125 return pfd; 11126 11127 err_clean_legacy: 11128 /* Clear the newly added legacy kprobe_event */ 11129 remove_kprobe_event_legacy(probe_name, retprobe); 11130 return err; 11131 } 11132 11133 static const char *arch_specific_syscall_pfx(void) 11134 { 11135 #if defined(__x86_64__) 11136 return "x64"; 11137 #elif defined(__i386__) 11138 return "ia32"; 11139 #elif defined(__s390x__) 11140 return "s390x"; 11141 #elif defined(__s390__) 11142 return "s390"; 11143 #elif defined(__arm__) 11144 return "arm"; 11145 #elif defined(__aarch64__) 11146 return "arm64"; 11147 #elif defined(__mips__) 11148 return "mips"; 11149 #elif defined(__riscv) 11150 return "riscv"; 11151 #elif defined(__powerpc__) 11152 return "powerpc"; 11153 #elif defined(__powerpc64__) 11154 return "powerpc64"; 11155 #else 11156 return NULL; 11157 #endif 11158 } 11159 11160 int probe_kern_syscall_wrapper(int token_fd) 11161 { 11162 char syscall_name[64]; 11163 const char *ksys_pfx; 11164 11165 ksys_pfx = arch_specific_syscall_pfx(); 11166 if (!ksys_pfx) 11167 return 0; 11168 11169 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11170 11171 if (determine_kprobe_perf_type() >= 0) { 11172 int pfd; 11173 11174 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11175 if (pfd >= 0) 11176 close(pfd); 11177 11178 return pfd >= 0 ? 1 : 0; 11179 } else { /* legacy mode */ 11180 char probe_name[128]; 11181 11182 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11183 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11184 return 0; 11185 11186 (void)remove_kprobe_event_legacy(probe_name, false); 11187 return 1; 11188 } 11189 } 11190 11191 struct bpf_link * 11192 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11193 const char *func_name, 11194 const struct bpf_kprobe_opts *opts) 11195 { 11196 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11197 enum probe_attach_mode attach_mode; 11198 char errmsg[STRERR_BUFSIZE]; 11199 char *legacy_probe = NULL; 11200 struct bpf_link *link; 11201 size_t offset; 11202 bool retprobe, legacy; 11203 int pfd, err; 11204 11205 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11206 return libbpf_err_ptr(-EINVAL); 11207 11208 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11209 retprobe = OPTS_GET(opts, retprobe, false); 11210 offset = OPTS_GET(opts, offset, 0); 11211 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11212 11213 legacy = determine_kprobe_perf_type() < 0; 11214 switch (attach_mode) { 11215 case PROBE_ATTACH_MODE_LEGACY: 11216 legacy = true; 11217 pe_opts.force_ioctl_attach = true; 11218 break; 11219 case PROBE_ATTACH_MODE_PERF: 11220 if (legacy) 11221 return libbpf_err_ptr(-ENOTSUP); 11222 pe_opts.force_ioctl_attach = true; 11223 break; 11224 case PROBE_ATTACH_MODE_LINK: 11225 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11226 return libbpf_err_ptr(-ENOTSUP); 11227 break; 11228 case PROBE_ATTACH_MODE_DEFAULT: 11229 break; 11230 default: 11231 return libbpf_err_ptr(-EINVAL); 11232 } 11233 11234 if (!legacy) { 11235 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11236 func_name, offset, 11237 -1 /* pid */, 0 /* ref_ctr_off */); 11238 } else { 11239 char probe_name[256]; 11240 11241 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11242 func_name, offset); 11243 11244 legacy_probe = strdup(probe_name); 11245 if (!legacy_probe) 11246 return libbpf_err_ptr(-ENOMEM); 11247 11248 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11249 offset, -1 /* pid */); 11250 } 11251 if (pfd < 0) { 11252 err = -errno; 11253 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11254 prog->name, retprobe ? "kretprobe" : "kprobe", 11255 func_name, offset, 11256 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11257 goto err_out; 11258 } 11259 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11260 err = libbpf_get_error(link); 11261 if (err) { 11262 close(pfd); 11263 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11264 prog->name, retprobe ? "kretprobe" : "kprobe", 11265 func_name, offset, 11266 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11267 goto err_clean_legacy; 11268 } 11269 if (legacy) { 11270 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11271 11272 perf_link->legacy_probe_name = legacy_probe; 11273 perf_link->legacy_is_kprobe = true; 11274 perf_link->legacy_is_retprobe = retprobe; 11275 } 11276 11277 return link; 11278 11279 err_clean_legacy: 11280 if (legacy) 11281 remove_kprobe_event_legacy(legacy_probe, retprobe); 11282 err_out: 11283 free(legacy_probe); 11284 return libbpf_err_ptr(err); 11285 } 11286 11287 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11288 bool retprobe, 11289 const char *func_name) 11290 { 11291 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11292 .retprobe = retprobe, 11293 ); 11294 11295 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11296 } 11297 11298 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11299 const char *syscall_name, 11300 const struct bpf_ksyscall_opts *opts) 11301 { 11302 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11303 char func_name[128]; 11304 11305 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11306 return libbpf_err_ptr(-EINVAL); 11307 11308 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11309 /* arch_specific_syscall_pfx() should never return NULL here 11310 * because it is guarded by kernel_supports(). However, since 11311 * compiler does not know that we have an explicit conditional 11312 * as well. 11313 */ 11314 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11315 arch_specific_syscall_pfx() ? : "", syscall_name); 11316 } else { 11317 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11318 } 11319 11320 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11321 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11322 11323 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11324 } 11325 11326 /* Adapted from perf/util/string.c */ 11327 bool glob_match(const char *str, const char *pat) 11328 { 11329 while (*str && *pat && *pat != '*') { 11330 if (*pat == '?') { /* Matches any single character */ 11331 str++; 11332 pat++; 11333 continue; 11334 } 11335 if (*str != *pat) 11336 return false; 11337 str++; 11338 pat++; 11339 } 11340 /* Check wild card */ 11341 if (*pat == '*') { 11342 while (*pat == '*') 11343 pat++; 11344 if (!*pat) /* Tail wild card matches all */ 11345 return true; 11346 while (*str) 11347 if (glob_match(str++, pat)) 11348 return true; 11349 } 11350 return !*str && !*pat; 11351 } 11352 11353 struct kprobe_multi_resolve { 11354 const char *pattern; 11355 unsigned long *addrs; 11356 size_t cap; 11357 size_t cnt; 11358 }; 11359 11360 struct avail_kallsyms_data { 11361 char **syms; 11362 size_t cnt; 11363 struct kprobe_multi_resolve *res; 11364 }; 11365 11366 static int avail_func_cmp(const void *a, const void *b) 11367 { 11368 return strcmp(*(const char **)a, *(const char **)b); 11369 } 11370 11371 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11372 const char *sym_name, void *ctx) 11373 { 11374 struct avail_kallsyms_data *data = ctx; 11375 struct kprobe_multi_resolve *res = data->res; 11376 int err; 11377 11378 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11379 return 0; 11380 11381 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11382 if (err) 11383 return err; 11384 11385 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11386 return 0; 11387 } 11388 11389 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11390 { 11391 const char *available_functions_file = tracefs_available_filter_functions(); 11392 struct avail_kallsyms_data data; 11393 char sym_name[500]; 11394 FILE *f; 11395 int err = 0, ret, i; 11396 char **syms = NULL; 11397 size_t cap = 0, cnt = 0; 11398 11399 f = fopen(available_functions_file, "re"); 11400 if (!f) { 11401 err = -errno; 11402 pr_warn("failed to open %s: %d\n", available_functions_file, err); 11403 return err; 11404 } 11405 11406 while (true) { 11407 char *name; 11408 11409 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11410 if (ret == EOF && feof(f)) 11411 break; 11412 11413 if (ret != 1) { 11414 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11415 err = -EINVAL; 11416 goto cleanup; 11417 } 11418 11419 if (!glob_match(sym_name, res->pattern)) 11420 continue; 11421 11422 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11423 if (err) 11424 goto cleanup; 11425 11426 name = strdup(sym_name); 11427 if (!name) { 11428 err = -errno; 11429 goto cleanup; 11430 } 11431 11432 syms[cnt++] = name; 11433 } 11434 11435 /* no entries found, bail out */ 11436 if (cnt == 0) { 11437 err = -ENOENT; 11438 goto cleanup; 11439 } 11440 11441 /* sort available functions */ 11442 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11443 11444 data.syms = syms; 11445 data.res = res; 11446 data.cnt = cnt; 11447 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11448 11449 if (res->cnt == 0) 11450 err = -ENOENT; 11451 11452 cleanup: 11453 for (i = 0; i < cnt; i++) 11454 free((char *)syms[i]); 11455 free(syms); 11456 11457 fclose(f); 11458 return err; 11459 } 11460 11461 static bool has_available_filter_functions_addrs(void) 11462 { 11463 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11464 } 11465 11466 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11467 { 11468 const char *available_path = tracefs_available_filter_functions_addrs(); 11469 char sym_name[500]; 11470 FILE *f; 11471 int ret, err = 0; 11472 unsigned long long sym_addr; 11473 11474 f = fopen(available_path, "re"); 11475 if (!f) { 11476 err = -errno; 11477 pr_warn("failed to open %s: %d\n", available_path, err); 11478 return err; 11479 } 11480 11481 while (true) { 11482 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11483 if (ret == EOF && feof(f)) 11484 break; 11485 11486 if (ret != 2) { 11487 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11488 ret); 11489 err = -EINVAL; 11490 goto cleanup; 11491 } 11492 11493 if (!glob_match(sym_name, res->pattern)) 11494 continue; 11495 11496 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11497 sizeof(*res->addrs), res->cnt + 1); 11498 if (err) 11499 goto cleanup; 11500 11501 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11502 } 11503 11504 if (res->cnt == 0) 11505 err = -ENOENT; 11506 11507 cleanup: 11508 fclose(f); 11509 return err; 11510 } 11511 11512 struct bpf_link * 11513 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11514 const char *pattern, 11515 const struct bpf_kprobe_multi_opts *opts) 11516 { 11517 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11518 struct kprobe_multi_resolve res = { 11519 .pattern = pattern, 11520 }; 11521 enum bpf_attach_type attach_type; 11522 struct bpf_link *link = NULL; 11523 char errmsg[STRERR_BUFSIZE]; 11524 const unsigned long *addrs; 11525 int err, link_fd, prog_fd; 11526 bool retprobe, session; 11527 const __u64 *cookies; 11528 const char **syms; 11529 size_t cnt; 11530 11531 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11532 return libbpf_err_ptr(-EINVAL); 11533 11534 prog_fd = bpf_program__fd(prog); 11535 if (prog_fd < 0) { 11536 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11537 prog->name); 11538 return libbpf_err_ptr(-EINVAL); 11539 } 11540 11541 syms = OPTS_GET(opts, syms, false); 11542 addrs = OPTS_GET(opts, addrs, false); 11543 cnt = OPTS_GET(opts, cnt, false); 11544 cookies = OPTS_GET(opts, cookies, false); 11545 11546 if (!pattern && !addrs && !syms) 11547 return libbpf_err_ptr(-EINVAL); 11548 if (pattern && (addrs || syms || cookies || cnt)) 11549 return libbpf_err_ptr(-EINVAL); 11550 if (!pattern && !cnt) 11551 return libbpf_err_ptr(-EINVAL); 11552 if (addrs && syms) 11553 return libbpf_err_ptr(-EINVAL); 11554 11555 if (pattern) { 11556 if (has_available_filter_functions_addrs()) 11557 err = libbpf_available_kprobes_parse(&res); 11558 else 11559 err = libbpf_available_kallsyms_parse(&res); 11560 if (err) 11561 goto error; 11562 addrs = res.addrs; 11563 cnt = res.cnt; 11564 } 11565 11566 retprobe = OPTS_GET(opts, retprobe, false); 11567 session = OPTS_GET(opts, session, false); 11568 11569 if (retprobe && session) 11570 return libbpf_err_ptr(-EINVAL); 11571 11572 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11573 11574 lopts.kprobe_multi.syms = syms; 11575 lopts.kprobe_multi.addrs = addrs; 11576 lopts.kprobe_multi.cookies = cookies; 11577 lopts.kprobe_multi.cnt = cnt; 11578 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11579 11580 link = calloc(1, sizeof(*link)); 11581 if (!link) { 11582 err = -ENOMEM; 11583 goto error; 11584 } 11585 link->detach = &bpf_link__detach_fd; 11586 11587 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11588 if (link_fd < 0) { 11589 err = -errno; 11590 pr_warn("prog '%s': failed to attach: %s\n", 11591 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11592 goto error; 11593 } 11594 link->fd = link_fd; 11595 free(res.addrs); 11596 return link; 11597 11598 error: 11599 free(link); 11600 free(res.addrs); 11601 return libbpf_err_ptr(err); 11602 } 11603 11604 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11605 { 11606 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11607 unsigned long offset = 0; 11608 const char *func_name; 11609 char *func; 11610 int n; 11611 11612 *link = NULL; 11613 11614 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11615 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11616 return 0; 11617 11618 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11619 if (opts.retprobe) 11620 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11621 else 11622 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11623 11624 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11625 if (n < 1) { 11626 pr_warn("kprobe name is invalid: %s\n", func_name); 11627 return -EINVAL; 11628 } 11629 if (opts.retprobe && offset != 0) { 11630 free(func); 11631 pr_warn("kretprobes do not support offset specification\n"); 11632 return -EINVAL; 11633 } 11634 11635 opts.offset = offset; 11636 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11637 free(func); 11638 return libbpf_get_error(*link); 11639 } 11640 11641 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11642 { 11643 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11644 const char *syscall_name; 11645 11646 *link = NULL; 11647 11648 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11649 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11650 return 0; 11651 11652 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11653 if (opts.retprobe) 11654 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11655 else 11656 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11657 11658 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11659 return *link ? 0 : -errno; 11660 } 11661 11662 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11663 { 11664 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11665 const char *spec; 11666 char *pattern; 11667 int n; 11668 11669 *link = NULL; 11670 11671 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11672 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11673 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11674 return 0; 11675 11676 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11677 if (opts.retprobe) 11678 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11679 else 11680 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11681 11682 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11683 if (n < 1) { 11684 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11685 return -EINVAL; 11686 } 11687 11688 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11689 free(pattern); 11690 return libbpf_get_error(*link); 11691 } 11692 11693 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11694 struct bpf_link **link) 11695 { 11696 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11697 const char *spec; 11698 char *pattern; 11699 int n; 11700 11701 *link = NULL; 11702 11703 /* no auto-attach for SEC("kprobe.session") */ 11704 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11705 return 0; 11706 11707 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11708 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11709 if (n < 1) { 11710 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11711 return -EINVAL; 11712 } 11713 11714 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11715 free(pattern); 11716 return *link ? 0 : -errno; 11717 } 11718 11719 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11720 { 11721 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11722 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11723 int n, ret = -EINVAL; 11724 11725 *link = NULL; 11726 11727 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11728 &probe_type, &binary_path, &func_name); 11729 switch (n) { 11730 case 1: 11731 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11732 ret = 0; 11733 break; 11734 case 3: 11735 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11736 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11737 ret = libbpf_get_error(*link); 11738 break; 11739 default: 11740 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11741 prog->sec_name); 11742 break; 11743 } 11744 free(probe_type); 11745 free(binary_path); 11746 free(func_name); 11747 return ret; 11748 } 11749 11750 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11751 const char *binary_path, uint64_t offset) 11752 { 11753 int i; 11754 11755 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11756 11757 /* sanitize binary_path in the probe name */ 11758 for (i = 0; buf[i]; i++) { 11759 if (!isalnum(buf[i])) 11760 buf[i] = '_'; 11761 } 11762 } 11763 11764 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11765 const char *binary_path, size_t offset) 11766 { 11767 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11768 retprobe ? 'r' : 'p', 11769 retprobe ? "uretprobes" : "uprobes", 11770 probe_name, binary_path, offset); 11771 } 11772 11773 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11774 { 11775 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11776 retprobe ? "uretprobes" : "uprobes", probe_name); 11777 } 11778 11779 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11780 { 11781 char file[512]; 11782 11783 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11784 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11785 11786 return parse_uint_from_file(file, "%d\n"); 11787 } 11788 11789 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11790 const char *binary_path, size_t offset, int pid) 11791 { 11792 const size_t attr_sz = sizeof(struct perf_event_attr); 11793 struct perf_event_attr attr; 11794 int type, pfd, err; 11795 11796 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11797 if (err < 0) { 11798 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11799 binary_path, (size_t)offset, err); 11800 return err; 11801 } 11802 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11803 if (type < 0) { 11804 err = type; 11805 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11806 binary_path, offset, err); 11807 goto err_clean_legacy; 11808 } 11809 11810 memset(&attr, 0, attr_sz); 11811 attr.size = attr_sz; 11812 attr.config = type; 11813 attr.type = PERF_TYPE_TRACEPOINT; 11814 11815 pfd = syscall(__NR_perf_event_open, &attr, 11816 pid < 0 ? -1 : pid, /* pid */ 11817 pid == -1 ? 0 : -1, /* cpu */ 11818 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11819 if (pfd < 0) { 11820 err = -errno; 11821 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11822 goto err_clean_legacy; 11823 } 11824 return pfd; 11825 11826 err_clean_legacy: 11827 /* Clear the newly added legacy uprobe_event */ 11828 remove_uprobe_event_legacy(probe_name, retprobe); 11829 return err; 11830 } 11831 11832 /* Find offset of function name in archive specified by path. Currently 11833 * supported are .zip files that do not compress their contents, as used on 11834 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11835 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11836 * library functions. 11837 * 11838 * An overview of the APK format specifically provided here: 11839 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11840 */ 11841 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11842 const char *func_name) 11843 { 11844 struct zip_archive *archive; 11845 struct zip_entry entry; 11846 long ret; 11847 Elf *elf; 11848 11849 archive = zip_archive_open(archive_path); 11850 if (IS_ERR(archive)) { 11851 ret = PTR_ERR(archive); 11852 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11853 return ret; 11854 } 11855 11856 ret = zip_archive_find_entry(archive, file_name, &entry); 11857 if (ret) { 11858 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11859 archive_path, ret); 11860 goto out; 11861 } 11862 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11863 (unsigned long)entry.data_offset); 11864 11865 if (entry.compression) { 11866 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11867 archive_path); 11868 ret = -LIBBPF_ERRNO__FORMAT; 11869 goto out; 11870 } 11871 11872 elf = elf_memory((void *)entry.data, entry.data_length); 11873 if (!elf) { 11874 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11875 elf_errmsg(-1)); 11876 ret = -LIBBPF_ERRNO__LIBELF; 11877 goto out; 11878 } 11879 11880 ret = elf_find_func_offset(elf, file_name, func_name); 11881 if (ret > 0) { 11882 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11883 func_name, file_name, archive_path, entry.data_offset, ret, 11884 ret + entry.data_offset); 11885 ret += entry.data_offset; 11886 } 11887 elf_end(elf); 11888 11889 out: 11890 zip_archive_close(archive); 11891 return ret; 11892 } 11893 11894 static const char *arch_specific_lib_paths(void) 11895 { 11896 /* 11897 * Based on https://packages.debian.org/sid/libc6. 11898 * 11899 * Assume that the traced program is built for the same architecture 11900 * as libbpf, which should cover the vast majority of cases. 11901 */ 11902 #if defined(__x86_64__) 11903 return "/lib/x86_64-linux-gnu"; 11904 #elif defined(__i386__) 11905 return "/lib/i386-linux-gnu"; 11906 #elif defined(__s390x__) 11907 return "/lib/s390x-linux-gnu"; 11908 #elif defined(__s390__) 11909 return "/lib/s390-linux-gnu"; 11910 #elif defined(__arm__) && defined(__SOFTFP__) 11911 return "/lib/arm-linux-gnueabi"; 11912 #elif defined(__arm__) && !defined(__SOFTFP__) 11913 return "/lib/arm-linux-gnueabihf"; 11914 #elif defined(__aarch64__) 11915 return "/lib/aarch64-linux-gnu"; 11916 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11917 return "/lib/mips64el-linux-gnuabi64"; 11918 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11919 return "/lib/mipsel-linux-gnu"; 11920 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11921 return "/lib/powerpc64le-linux-gnu"; 11922 #elif defined(__sparc__) && defined(__arch64__) 11923 return "/lib/sparc64-linux-gnu"; 11924 #elif defined(__riscv) && __riscv_xlen == 64 11925 return "/lib/riscv64-linux-gnu"; 11926 #else 11927 return NULL; 11928 #endif 11929 } 11930 11931 /* Get full path to program/shared library. */ 11932 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11933 { 11934 const char *search_paths[3] = {}; 11935 int i, perm; 11936 11937 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11938 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11939 search_paths[1] = "/usr/lib64:/usr/lib"; 11940 search_paths[2] = arch_specific_lib_paths(); 11941 perm = R_OK; 11942 } else { 11943 search_paths[0] = getenv("PATH"); 11944 search_paths[1] = "/usr/bin:/usr/sbin"; 11945 perm = R_OK | X_OK; 11946 } 11947 11948 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11949 const char *s; 11950 11951 if (!search_paths[i]) 11952 continue; 11953 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11954 char *next_path; 11955 int seg_len; 11956 11957 if (s[0] == ':') 11958 s++; 11959 next_path = strchr(s, ':'); 11960 seg_len = next_path ? next_path - s : strlen(s); 11961 if (!seg_len) 11962 continue; 11963 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11964 /* ensure it has required permissions */ 11965 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11966 continue; 11967 pr_debug("resolved '%s' to '%s'\n", file, result); 11968 return 0; 11969 } 11970 } 11971 return -ENOENT; 11972 } 11973 11974 struct bpf_link * 11975 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11976 pid_t pid, 11977 const char *path, 11978 const char *func_pattern, 11979 const struct bpf_uprobe_multi_opts *opts) 11980 { 11981 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11982 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11983 unsigned long *resolved_offsets = NULL; 11984 int err = 0, link_fd, prog_fd; 11985 struct bpf_link *link = NULL; 11986 char errmsg[STRERR_BUFSIZE]; 11987 char full_path[PATH_MAX]; 11988 const __u64 *cookies; 11989 const char **syms; 11990 size_t cnt; 11991 11992 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11993 return libbpf_err_ptr(-EINVAL); 11994 11995 prog_fd = bpf_program__fd(prog); 11996 if (prog_fd < 0) { 11997 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11998 prog->name); 11999 return libbpf_err_ptr(-EINVAL); 12000 } 12001 12002 syms = OPTS_GET(opts, syms, NULL); 12003 offsets = OPTS_GET(opts, offsets, NULL); 12004 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12005 cookies = OPTS_GET(opts, cookies, NULL); 12006 cnt = OPTS_GET(opts, cnt, 0); 12007 12008 /* 12009 * User can specify 2 mutually exclusive set of inputs: 12010 * 12011 * 1) use only path/func_pattern/pid arguments 12012 * 12013 * 2) use path/pid with allowed combinations of: 12014 * syms/offsets/ref_ctr_offsets/cookies/cnt 12015 * 12016 * - syms and offsets are mutually exclusive 12017 * - ref_ctr_offsets and cookies are optional 12018 * 12019 * Any other usage results in error. 12020 */ 12021 12022 if (!path) 12023 return libbpf_err_ptr(-EINVAL); 12024 if (!func_pattern && cnt == 0) 12025 return libbpf_err_ptr(-EINVAL); 12026 12027 if (func_pattern) { 12028 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12029 return libbpf_err_ptr(-EINVAL); 12030 } else { 12031 if (!!syms == !!offsets) 12032 return libbpf_err_ptr(-EINVAL); 12033 } 12034 12035 if (func_pattern) { 12036 if (!strchr(path, '/')) { 12037 err = resolve_full_path(path, full_path, sizeof(full_path)); 12038 if (err) { 12039 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12040 prog->name, path, err); 12041 return libbpf_err_ptr(err); 12042 } 12043 path = full_path; 12044 } 12045 12046 err = elf_resolve_pattern_offsets(path, func_pattern, 12047 &resolved_offsets, &cnt); 12048 if (err < 0) 12049 return libbpf_err_ptr(err); 12050 offsets = resolved_offsets; 12051 } else if (syms) { 12052 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12053 if (err < 0) 12054 return libbpf_err_ptr(err); 12055 offsets = resolved_offsets; 12056 } 12057 12058 lopts.uprobe_multi.path = path; 12059 lopts.uprobe_multi.offsets = offsets; 12060 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12061 lopts.uprobe_multi.cookies = cookies; 12062 lopts.uprobe_multi.cnt = cnt; 12063 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 12064 12065 if (pid == 0) 12066 pid = getpid(); 12067 if (pid > 0) 12068 lopts.uprobe_multi.pid = pid; 12069 12070 link = calloc(1, sizeof(*link)); 12071 if (!link) { 12072 err = -ENOMEM; 12073 goto error; 12074 } 12075 link->detach = &bpf_link__detach_fd; 12076 12077 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 12078 if (link_fd < 0) { 12079 err = -errno; 12080 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12081 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12082 goto error; 12083 } 12084 link->fd = link_fd; 12085 free(resolved_offsets); 12086 return link; 12087 12088 error: 12089 free(resolved_offsets); 12090 free(link); 12091 return libbpf_err_ptr(err); 12092 } 12093 12094 LIBBPF_API struct bpf_link * 12095 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12096 const char *binary_path, size_t func_offset, 12097 const struct bpf_uprobe_opts *opts) 12098 { 12099 const char *archive_path = NULL, *archive_sep = NULL; 12100 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 12101 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12102 enum probe_attach_mode attach_mode; 12103 char full_path[PATH_MAX]; 12104 struct bpf_link *link; 12105 size_t ref_ctr_off; 12106 int pfd, err; 12107 bool retprobe, legacy; 12108 const char *func_name; 12109 12110 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12111 return libbpf_err_ptr(-EINVAL); 12112 12113 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12114 retprobe = OPTS_GET(opts, retprobe, false); 12115 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12116 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12117 12118 if (!binary_path) 12119 return libbpf_err_ptr(-EINVAL); 12120 12121 /* Check if "binary_path" refers to an archive. */ 12122 archive_sep = strstr(binary_path, "!/"); 12123 if (archive_sep) { 12124 full_path[0] = '\0'; 12125 libbpf_strlcpy(full_path, binary_path, 12126 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12127 archive_path = full_path; 12128 binary_path = archive_sep + 2; 12129 } else if (!strchr(binary_path, '/')) { 12130 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12131 if (err) { 12132 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12133 prog->name, binary_path, err); 12134 return libbpf_err_ptr(err); 12135 } 12136 binary_path = full_path; 12137 } 12138 func_name = OPTS_GET(opts, func_name, NULL); 12139 if (func_name) { 12140 long sym_off; 12141 12142 if (archive_path) { 12143 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12144 func_name); 12145 binary_path = archive_path; 12146 } else { 12147 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12148 } 12149 if (sym_off < 0) 12150 return libbpf_err_ptr(sym_off); 12151 func_offset += sym_off; 12152 } 12153 12154 legacy = determine_uprobe_perf_type() < 0; 12155 switch (attach_mode) { 12156 case PROBE_ATTACH_MODE_LEGACY: 12157 legacy = true; 12158 pe_opts.force_ioctl_attach = true; 12159 break; 12160 case PROBE_ATTACH_MODE_PERF: 12161 if (legacy) 12162 return libbpf_err_ptr(-ENOTSUP); 12163 pe_opts.force_ioctl_attach = true; 12164 break; 12165 case PROBE_ATTACH_MODE_LINK: 12166 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12167 return libbpf_err_ptr(-ENOTSUP); 12168 break; 12169 case PROBE_ATTACH_MODE_DEFAULT: 12170 break; 12171 default: 12172 return libbpf_err_ptr(-EINVAL); 12173 } 12174 12175 if (!legacy) { 12176 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12177 func_offset, pid, ref_ctr_off); 12178 } else { 12179 char probe_name[PATH_MAX + 64]; 12180 12181 if (ref_ctr_off) 12182 return libbpf_err_ptr(-EINVAL); 12183 12184 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 12185 binary_path, func_offset); 12186 12187 legacy_probe = strdup(probe_name); 12188 if (!legacy_probe) 12189 return libbpf_err_ptr(-ENOMEM); 12190 12191 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12192 binary_path, func_offset, pid); 12193 } 12194 if (pfd < 0) { 12195 err = -errno; 12196 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12197 prog->name, retprobe ? "uretprobe" : "uprobe", 12198 binary_path, func_offset, 12199 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12200 goto err_out; 12201 } 12202 12203 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12204 err = libbpf_get_error(link); 12205 if (err) { 12206 close(pfd); 12207 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12208 prog->name, retprobe ? "uretprobe" : "uprobe", 12209 binary_path, func_offset, 12210 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12211 goto err_clean_legacy; 12212 } 12213 if (legacy) { 12214 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12215 12216 perf_link->legacy_probe_name = legacy_probe; 12217 perf_link->legacy_is_kprobe = false; 12218 perf_link->legacy_is_retprobe = retprobe; 12219 } 12220 return link; 12221 12222 err_clean_legacy: 12223 if (legacy) 12224 remove_uprobe_event_legacy(legacy_probe, retprobe); 12225 err_out: 12226 free(legacy_probe); 12227 return libbpf_err_ptr(err); 12228 } 12229 12230 /* Format of u[ret]probe section definition supporting auto-attach: 12231 * u[ret]probe/binary:function[+offset] 12232 * 12233 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12234 * full binary path via bpf_program__attach_uprobe_opts. 12235 * 12236 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12237 * specified (and auto-attach is not possible) or the above format is specified for 12238 * auto-attach. 12239 */ 12240 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12241 { 12242 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12243 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12244 int n, c, ret = -EINVAL; 12245 long offset = 0; 12246 12247 *link = NULL; 12248 12249 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12250 &probe_type, &binary_path, &func_name); 12251 switch (n) { 12252 case 1: 12253 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12254 ret = 0; 12255 break; 12256 case 2: 12257 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12258 prog->name, prog->sec_name); 12259 break; 12260 case 3: 12261 /* check if user specifies `+offset`, if yes, this should be 12262 * the last part of the string, make sure sscanf read to EOL 12263 */ 12264 func_off = strrchr(func_name, '+'); 12265 if (func_off) { 12266 n = sscanf(func_off, "+%li%n", &offset, &c); 12267 if (n == 1 && *(func_off + c) == '\0') 12268 func_off[0] = '\0'; 12269 else 12270 offset = 0; 12271 } 12272 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12273 strcmp(probe_type, "uretprobe.s") == 0; 12274 if (opts.retprobe && offset != 0) { 12275 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12276 prog->name); 12277 break; 12278 } 12279 opts.func_name = func_name; 12280 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12281 ret = libbpf_get_error(*link); 12282 break; 12283 default: 12284 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12285 prog->sec_name); 12286 break; 12287 } 12288 free(probe_type); 12289 free(binary_path); 12290 free(func_name); 12291 12292 return ret; 12293 } 12294 12295 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12296 bool retprobe, pid_t pid, 12297 const char *binary_path, 12298 size_t func_offset) 12299 { 12300 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12301 12302 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12303 } 12304 12305 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12306 pid_t pid, const char *binary_path, 12307 const char *usdt_provider, const char *usdt_name, 12308 const struct bpf_usdt_opts *opts) 12309 { 12310 char resolved_path[512]; 12311 struct bpf_object *obj = prog->obj; 12312 struct bpf_link *link; 12313 __u64 usdt_cookie; 12314 int err; 12315 12316 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12317 return libbpf_err_ptr(-EINVAL); 12318 12319 if (bpf_program__fd(prog) < 0) { 12320 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12321 prog->name); 12322 return libbpf_err_ptr(-EINVAL); 12323 } 12324 12325 if (!binary_path) 12326 return libbpf_err_ptr(-EINVAL); 12327 12328 if (!strchr(binary_path, '/')) { 12329 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12330 if (err) { 12331 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12332 prog->name, binary_path, err); 12333 return libbpf_err_ptr(err); 12334 } 12335 binary_path = resolved_path; 12336 } 12337 12338 /* USDT manager is instantiated lazily on first USDT attach. It will 12339 * be destroyed together with BPF object in bpf_object__close(). 12340 */ 12341 if (IS_ERR(obj->usdt_man)) 12342 return libbpf_ptr(obj->usdt_man); 12343 if (!obj->usdt_man) { 12344 obj->usdt_man = usdt_manager_new(obj); 12345 if (IS_ERR(obj->usdt_man)) 12346 return libbpf_ptr(obj->usdt_man); 12347 } 12348 12349 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12350 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12351 usdt_provider, usdt_name, usdt_cookie); 12352 err = libbpf_get_error(link); 12353 if (err) 12354 return libbpf_err_ptr(err); 12355 return link; 12356 } 12357 12358 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12359 { 12360 char *path = NULL, *provider = NULL, *name = NULL; 12361 const char *sec_name; 12362 int n, err; 12363 12364 sec_name = bpf_program__section_name(prog); 12365 if (strcmp(sec_name, "usdt") == 0) { 12366 /* no auto-attach for just SEC("usdt") */ 12367 *link = NULL; 12368 return 0; 12369 } 12370 12371 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12372 if (n != 3) { 12373 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12374 sec_name); 12375 err = -EINVAL; 12376 } else { 12377 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12378 provider, name, NULL); 12379 err = libbpf_get_error(*link); 12380 } 12381 free(path); 12382 free(provider); 12383 free(name); 12384 return err; 12385 } 12386 12387 static int determine_tracepoint_id(const char *tp_category, 12388 const char *tp_name) 12389 { 12390 char file[PATH_MAX]; 12391 int ret; 12392 12393 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12394 tracefs_path(), tp_category, tp_name); 12395 if (ret < 0) 12396 return -errno; 12397 if (ret >= sizeof(file)) { 12398 pr_debug("tracepoint %s/%s path is too long\n", 12399 tp_category, tp_name); 12400 return -E2BIG; 12401 } 12402 return parse_uint_from_file(file, "%d\n"); 12403 } 12404 12405 static int perf_event_open_tracepoint(const char *tp_category, 12406 const char *tp_name) 12407 { 12408 const size_t attr_sz = sizeof(struct perf_event_attr); 12409 struct perf_event_attr attr; 12410 char errmsg[STRERR_BUFSIZE]; 12411 int tp_id, pfd, err; 12412 12413 tp_id = determine_tracepoint_id(tp_category, tp_name); 12414 if (tp_id < 0) { 12415 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12416 tp_category, tp_name, 12417 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 12418 return tp_id; 12419 } 12420 12421 memset(&attr, 0, attr_sz); 12422 attr.type = PERF_TYPE_TRACEPOINT; 12423 attr.size = attr_sz; 12424 attr.config = tp_id; 12425 12426 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12427 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12428 if (pfd < 0) { 12429 err = -errno; 12430 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12431 tp_category, tp_name, 12432 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12433 return err; 12434 } 12435 return pfd; 12436 } 12437 12438 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12439 const char *tp_category, 12440 const char *tp_name, 12441 const struct bpf_tracepoint_opts *opts) 12442 { 12443 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12444 char errmsg[STRERR_BUFSIZE]; 12445 struct bpf_link *link; 12446 int pfd, err; 12447 12448 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12449 return libbpf_err_ptr(-EINVAL); 12450 12451 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12452 12453 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12454 if (pfd < 0) { 12455 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12456 prog->name, tp_category, tp_name, 12457 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12458 return libbpf_err_ptr(pfd); 12459 } 12460 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12461 err = libbpf_get_error(link); 12462 if (err) { 12463 close(pfd); 12464 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12465 prog->name, tp_category, tp_name, 12466 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12467 return libbpf_err_ptr(err); 12468 } 12469 return link; 12470 } 12471 12472 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12473 const char *tp_category, 12474 const char *tp_name) 12475 { 12476 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12477 } 12478 12479 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12480 { 12481 char *sec_name, *tp_cat, *tp_name; 12482 12483 *link = NULL; 12484 12485 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12486 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12487 return 0; 12488 12489 sec_name = strdup(prog->sec_name); 12490 if (!sec_name) 12491 return -ENOMEM; 12492 12493 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12494 if (str_has_pfx(prog->sec_name, "tp/")) 12495 tp_cat = sec_name + sizeof("tp/") - 1; 12496 else 12497 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12498 tp_name = strchr(tp_cat, '/'); 12499 if (!tp_name) { 12500 free(sec_name); 12501 return -EINVAL; 12502 } 12503 *tp_name = '\0'; 12504 tp_name++; 12505 12506 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12507 free(sec_name); 12508 return libbpf_get_error(*link); 12509 } 12510 12511 struct bpf_link * 12512 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12513 const char *tp_name, 12514 struct bpf_raw_tracepoint_opts *opts) 12515 { 12516 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12517 char errmsg[STRERR_BUFSIZE]; 12518 struct bpf_link *link; 12519 int prog_fd, pfd; 12520 12521 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12522 return libbpf_err_ptr(-EINVAL); 12523 12524 prog_fd = bpf_program__fd(prog); 12525 if (prog_fd < 0) { 12526 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12527 return libbpf_err_ptr(-EINVAL); 12528 } 12529 12530 link = calloc(1, sizeof(*link)); 12531 if (!link) 12532 return libbpf_err_ptr(-ENOMEM); 12533 link->detach = &bpf_link__detach_fd; 12534 12535 raw_opts.tp_name = tp_name; 12536 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12537 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12538 if (pfd < 0) { 12539 pfd = -errno; 12540 free(link); 12541 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12542 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12543 return libbpf_err_ptr(pfd); 12544 } 12545 link->fd = pfd; 12546 return link; 12547 } 12548 12549 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12550 const char *tp_name) 12551 { 12552 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12553 } 12554 12555 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12556 { 12557 static const char *const prefixes[] = { 12558 "raw_tp", 12559 "raw_tracepoint", 12560 "raw_tp.w", 12561 "raw_tracepoint.w", 12562 }; 12563 size_t i; 12564 const char *tp_name = NULL; 12565 12566 *link = NULL; 12567 12568 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12569 size_t pfx_len; 12570 12571 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12572 continue; 12573 12574 pfx_len = strlen(prefixes[i]); 12575 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12576 if (prog->sec_name[pfx_len] == '\0') 12577 return 0; 12578 12579 if (prog->sec_name[pfx_len] != '/') 12580 continue; 12581 12582 tp_name = prog->sec_name + pfx_len + 1; 12583 break; 12584 } 12585 12586 if (!tp_name) { 12587 pr_warn("prog '%s': invalid section name '%s'\n", 12588 prog->name, prog->sec_name); 12589 return -EINVAL; 12590 } 12591 12592 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12593 return libbpf_get_error(*link); 12594 } 12595 12596 /* Common logic for all BPF program types that attach to a btf_id */ 12597 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12598 const struct bpf_trace_opts *opts) 12599 { 12600 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12601 char errmsg[STRERR_BUFSIZE]; 12602 struct bpf_link *link; 12603 int prog_fd, pfd; 12604 12605 if (!OPTS_VALID(opts, bpf_trace_opts)) 12606 return libbpf_err_ptr(-EINVAL); 12607 12608 prog_fd = bpf_program__fd(prog); 12609 if (prog_fd < 0) { 12610 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12611 return libbpf_err_ptr(-EINVAL); 12612 } 12613 12614 link = calloc(1, sizeof(*link)); 12615 if (!link) 12616 return libbpf_err_ptr(-ENOMEM); 12617 link->detach = &bpf_link__detach_fd; 12618 12619 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12620 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12621 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12622 if (pfd < 0) { 12623 pfd = -errno; 12624 free(link); 12625 pr_warn("prog '%s': failed to attach: %s\n", 12626 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12627 return libbpf_err_ptr(pfd); 12628 } 12629 link->fd = pfd; 12630 return link; 12631 } 12632 12633 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12634 { 12635 return bpf_program__attach_btf_id(prog, NULL); 12636 } 12637 12638 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12639 const struct bpf_trace_opts *opts) 12640 { 12641 return bpf_program__attach_btf_id(prog, opts); 12642 } 12643 12644 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12645 { 12646 return bpf_program__attach_btf_id(prog, NULL); 12647 } 12648 12649 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12650 { 12651 *link = bpf_program__attach_trace(prog); 12652 return libbpf_get_error(*link); 12653 } 12654 12655 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12656 { 12657 *link = bpf_program__attach_lsm(prog); 12658 return libbpf_get_error(*link); 12659 } 12660 12661 static struct bpf_link * 12662 bpf_program_attach_fd(const struct bpf_program *prog, 12663 int target_fd, const char *target_name, 12664 const struct bpf_link_create_opts *opts) 12665 { 12666 enum bpf_attach_type attach_type; 12667 char errmsg[STRERR_BUFSIZE]; 12668 struct bpf_link *link; 12669 int prog_fd, link_fd; 12670 12671 prog_fd = bpf_program__fd(prog); 12672 if (prog_fd < 0) { 12673 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12674 return libbpf_err_ptr(-EINVAL); 12675 } 12676 12677 link = calloc(1, sizeof(*link)); 12678 if (!link) 12679 return libbpf_err_ptr(-ENOMEM); 12680 link->detach = &bpf_link__detach_fd; 12681 12682 attach_type = bpf_program__expected_attach_type(prog); 12683 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12684 if (link_fd < 0) { 12685 link_fd = -errno; 12686 free(link); 12687 pr_warn("prog '%s': failed to attach to %s: %s\n", 12688 prog->name, target_name, 12689 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12690 return libbpf_err_ptr(link_fd); 12691 } 12692 link->fd = link_fd; 12693 return link; 12694 } 12695 12696 struct bpf_link * 12697 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12698 { 12699 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12700 } 12701 12702 struct bpf_link * 12703 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12704 { 12705 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12706 } 12707 12708 struct bpf_link * 12709 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12710 { 12711 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12712 } 12713 12714 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12715 { 12716 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12717 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12718 } 12719 12720 struct bpf_link * 12721 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12722 const struct bpf_tcx_opts *opts) 12723 { 12724 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12725 __u32 relative_id; 12726 int relative_fd; 12727 12728 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12729 return libbpf_err_ptr(-EINVAL); 12730 12731 relative_id = OPTS_GET(opts, relative_id, 0); 12732 relative_fd = OPTS_GET(opts, relative_fd, 0); 12733 12734 /* validate we don't have unexpected combinations of non-zero fields */ 12735 if (!ifindex) { 12736 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12737 prog->name); 12738 return libbpf_err_ptr(-EINVAL); 12739 } 12740 if (relative_fd && relative_id) { 12741 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12742 prog->name); 12743 return libbpf_err_ptr(-EINVAL); 12744 } 12745 12746 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12747 link_create_opts.tcx.relative_fd = relative_fd; 12748 link_create_opts.tcx.relative_id = relative_id; 12749 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12750 12751 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12752 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12753 } 12754 12755 struct bpf_link * 12756 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12757 const struct bpf_netkit_opts *opts) 12758 { 12759 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12760 __u32 relative_id; 12761 int relative_fd; 12762 12763 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12764 return libbpf_err_ptr(-EINVAL); 12765 12766 relative_id = OPTS_GET(opts, relative_id, 0); 12767 relative_fd = OPTS_GET(opts, relative_fd, 0); 12768 12769 /* validate we don't have unexpected combinations of non-zero fields */ 12770 if (!ifindex) { 12771 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12772 prog->name); 12773 return libbpf_err_ptr(-EINVAL); 12774 } 12775 if (relative_fd && relative_id) { 12776 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12777 prog->name); 12778 return libbpf_err_ptr(-EINVAL); 12779 } 12780 12781 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12782 link_create_opts.netkit.relative_fd = relative_fd; 12783 link_create_opts.netkit.relative_id = relative_id; 12784 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12785 12786 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12787 } 12788 12789 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12790 int target_fd, 12791 const char *attach_func_name) 12792 { 12793 int btf_id; 12794 12795 if (!!target_fd != !!attach_func_name) { 12796 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12797 prog->name); 12798 return libbpf_err_ptr(-EINVAL); 12799 } 12800 12801 if (prog->type != BPF_PROG_TYPE_EXT) { 12802 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 12803 prog->name); 12804 return libbpf_err_ptr(-EINVAL); 12805 } 12806 12807 if (target_fd) { 12808 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12809 12810 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12811 if (btf_id < 0) 12812 return libbpf_err_ptr(btf_id); 12813 12814 target_opts.target_btf_id = btf_id; 12815 12816 return bpf_program_attach_fd(prog, target_fd, "freplace", 12817 &target_opts); 12818 } else { 12819 /* no target, so use raw_tracepoint_open for compatibility 12820 * with old kernels 12821 */ 12822 return bpf_program__attach_trace(prog); 12823 } 12824 } 12825 12826 struct bpf_link * 12827 bpf_program__attach_iter(const struct bpf_program *prog, 12828 const struct bpf_iter_attach_opts *opts) 12829 { 12830 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12831 char errmsg[STRERR_BUFSIZE]; 12832 struct bpf_link *link; 12833 int prog_fd, link_fd; 12834 __u32 target_fd = 0; 12835 12836 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12837 return libbpf_err_ptr(-EINVAL); 12838 12839 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12840 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12841 12842 prog_fd = bpf_program__fd(prog); 12843 if (prog_fd < 0) { 12844 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12845 return libbpf_err_ptr(-EINVAL); 12846 } 12847 12848 link = calloc(1, sizeof(*link)); 12849 if (!link) 12850 return libbpf_err_ptr(-ENOMEM); 12851 link->detach = &bpf_link__detach_fd; 12852 12853 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12854 &link_create_opts); 12855 if (link_fd < 0) { 12856 link_fd = -errno; 12857 free(link); 12858 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12859 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12860 return libbpf_err_ptr(link_fd); 12861 } 12862 link->fd = link_fd; 12863 return link; 12864 } 12865 12866 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12867 { 12868 *link = bpf_program__attach_iter(prog, NULL); 12869 return libbpf_get_error(*link); 12870 } 12871 12872 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12873 const struct bpf_netfilter_opts *opts) 12874 { 12875 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12876 struct bpf_link *link; 12877 int prog_fd, link_fd; 12878 12879 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12880 return libbpf_err_ptr(-EINVAL); 12881 12882 prog_fd = bpf_program__fd(prog); 12883 if (prog_fd < 0) { 12884 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12885 return libbpf_err_ptr(-EINVAL); 12886 } 12887 12888 link = calloc(1, sizeof(*link)); 12889 if (!link) 12890 return libbpf_err_ptr(-ENOMEM); 12891 12892 link->detach = &bpf_link__detach_fd; 12893 12894 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12895 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12896 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12897 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12898 12899 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12900 if (link_fd < 0) { 12901 char errmsg[STRERR_BUFSIZE]; 12902 12903 link_fd = -errno; 12904 free(link); 12905 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12906 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12907 return libbpf_err_ptr(link_fd); 12908 } 12909 link->fd = link_fd; 12910 12911 return link; 12912 } 12913 12914 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12915 { 12916 struct bpf_link *link = NULL; 12917 int err; 12918 12919 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12920 return libbpf_err_ptr(-EOPNOTSUPP); 12921 12922 if (bpf_program__fd(prog) < 0) { 12923 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12924 prog->name); 12925 return libbpf_err_ptr(-EINVAL); 12926 } 12927 12928 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12929 if (err) 12930 return libbpf_err_ptr(err); 12931 12932 /* When calling bpf_program__attach() explicitly, auto-attach support 12933 * is expected to work, so NULL returned link is considered an error. 12934 * This is different for skeleton's attach, see comment in 12935 * bpf_object__attach_skeleton(). 12936 */ 12937 if (!link) 12938 return libbpf_err_ptr(-EOPNOTSUPP); 12939 12940 return link; 12941 } 12942 12943 struct bpf_link_struct_ops { 12944 struct bpf_link link; 12945 int map_fd; 12946 }; 12947 12948 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12949 { 12950 struct bpf_link_struct_ops *st_link; 12951 __u32 zero = 0; 12952 12953 st_link = container_of(link, struct bpf_link_struct_ops, link); 12954 12955 if (st_link->map_fd < 0) 12956 /* w/o a real link */ 12957 return bpf_map_delete_elem(link->fd, &zero); 12958 12959 return close(link->fd); 12960 } 12961 12962 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12963 { 12964 struct bpf_link_struct_ops *link; 12965 __u32 zero = 0; 12966 int err, fd; 12967 12968 if (!bpf_map__is_struct_ops(map)) { 12969 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 12970 return libbpf_err_ptr(-EINVAL); 12971 } 12972 12973 if (map->fd < 0) { 12974 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 12975 return libbpf_err_ptr(-EINVAL); 12976 } 12977 12978 link = calloc(1, sizeof(*link)); 12979 if (!link) 12980 return libbpf_err_ptr(-EINVAL); 12981 12982 /* kern_vdata should be prepared during the loading phase. */ 12983 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12984 /* It can be EBUSY if the map has been used to create or 12985 * update a link before. We don't allow updating the value of 12986 * a struct_ops once it is set. That ensures that the value 12987 * never changed. So, it is safe to skip EBUSY. 12988 */ 12989 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12990 free(link); 12991 return libbpf_err_ptr(err); 12992 } 12993 12994 link->link.detach = bpf_link__detach_struct_ops; 12995 12996 if (!(map->def.map_flags & BPF_F_LINK)) { 12997 /* w/o a real link */ 12998 link->link.fd = map->fd; 12999 link->map_fd = -1; 13000 return &link->link; 13001 } 13002 13003 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13004 if (fd < 0) { 13005 free(link); 13006 return libbpf_err_ptr(fd); 13007 } 13008 13009 link->link.fd = fd; 13010 link->map_fd = map->fd; 13011 13012 return &link->link; 13013 } 13014 13015 /* 13016 * Swap the back struct_ops of a link with a new struct_ops map. 13017 */ 13018 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13019 { 13020 struct bpf_link_struct_ops *st_ops_link; 13021 __u32 zero = 0; 13022 int err; 13023 13024 if (!bpf_map__is_struct_ops(map)) 13025 return -EINVAL; 13026 13027 if (map->fd < 0) { 13028 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13029 return -EINVAL; 13030 } 13031 13032 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13033 /* Ensure the type of a link is correct */ 13034 if (st_ops_link->map_fd < 0) 13035 return -EINVAL; 13036 13037 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13038 /* It can be EBUSY if the map has been used to create or 13039 * update a link before. We don't allow updating the value of 13040 * a struct_ops once it is set. That ensures that the value 13041 * never changed. So, it is safe to skip EBUSY. 13042 */ 13043 if (err && err != -EBUSY) 13044 return err; 13045 13046 err = bpf_link_update(link->fd, map->fd, NULL); 13047 if (err < 0) 13048 return err; 13049 13050 st_ops_link->map_fd = map->fd; 13051 13052 return 0; 13053 } 13054 13055 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13056 void *private_data); 13057 13058 static enum bpf_perf_event_ret 13059 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13060 void **copy_mem, size_t *copy_size, 13061 bpf_perf_event_print_t fn, void *private_data) 13062 { 13063 struct perf_event_mmap_page *header = mmap_mem; 13064 __u64 data_head = ring_buffer_read_head(header); 13065 __u64 data_tail = header->data_tail; 13066 void *base = ((__u8 *)header) + page_size; 13067 int ret = LIBBPF_PERF_EVENT_CONT; 13068 struct perf_event_header *ehdr; 13069 size_t ehdr_size; 13070 13071 while (data_head != data_tail) { 13072 ehdr = base + (data_tail & (mmap_size - 1)); 13073 ehdr_size = ehdr->size; 13074 13075 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13076 void *copy_start = ehdr; 13077 size_t len_first = base + mmap_size - copy_start; 13078 size_t len_secnd = ehdr_size - len_first; 13079 13080 if (*copy_size < ehdr_size) { 13081 free(*copy_mem); 13082 *copy_mem = malloc(ehdr_size); 13083 if (!*copy_mem) { 13084 *copy_size = 0; 13085 ret = LIBBPF_PERF_EVENT_ERROR; 13086 break; 13087 } 13088 *copy_size = ehdr_size; 13089 } 13090 13091 memcpy(*copy_mem, copy_start, len_first); 13092 memcpy(*copy_mem + len_first, base, len_secnd); 13093 ehdr = *copy_mem; 13094 } 13095 13096 ret = fn(ehdr, private_data); 13097 data_tail += ehdr_size; 13098 if (ret != LIBBPF_PERF_EVENT_CONT) 13099 break; 13100 } 13101 13102 ring_buffer_write_tail(header, data_tail); 13103 return libbpf_err(ret); 13104 } 13105 13106 struct perf_buffer; 13107 13108 struct perf_buffer_params { 13109 struct perf_event_attr *attr; 13110 /* if event_cb is specified, it takes precendence */ 13111 perf_buffer_event_fn event_cb; 13112 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13113 perf_buffer_sample_fn sample_cb; 13114 perf_buffer_lost_fn lost_cb; 13115 void *ctx; 13116 int cpu_cnt; 13117 int *cpus; 13118 int *map_keys; 13119 }; 13120 13121 struct perf_cpu_buf { 13122 struct perf_buffer *pb; 13123 void *base; /* mmap()'ed memory */ 13124 void *buf; /* for reconstructing segmented data */ 13125 size_t buf_size; 13126 int fd; 13127 int cpu; 13128 int map_key; 13129 }; 13130 13131 struct perf_buffer { 13132 perf_buffer_event_fn event_cb; 13133 perf_buffer_sample_fn sample_cb; 13134 perf_buffer_lost_fn lost_cb; 13135 void *ctx; /* passed into callbacks */ 13136 13137 size_t page_size; 13138 size_t mmap_size; 13139 struct perf_cpu_buf **cpu_bufs; 13140 struct epoll_event *events; 13141 int cpu_cnt; /* number of allocated CPU buffers */ 13142 int epoll_fd; /* perf event FD */ 13143 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13144 }; 13145 13146 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13147 struct perf_cpu_buf *cpu_buf) 13148 { 13149 if (!cpu_buf) 13150 return; 13151 if (cpu_buf->base && 13152 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13153 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13154 if (cpu_buf->fd >= 0) { 13155 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13156 close(cpu_buf->fd); 13157 } 13158 free(cpu_buf->buf); 13159 free(cpu_buf); 13160 } 13161 13162 void perf_buffer__free(struct perf_buffer *pb) 13163 { 13164 int i; 13165 13166 if (IS_ERR_OR_NULL(pb)) 13167 return; 13168 if (pb->cpu_bufs) { 13169 for (i = 0; i < pb->cpu_cnt; i++) { 13170 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13171 13172 if (!cpu_buf) 13173 continue; 13174 13175 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13176 perf_buffer__free_cpu_buf(pb, cpu_buf); 13177 } 13178 free(pb->cpu_bufs); 13179 } 13180 if (pb->epoll_fd >= 0) 13181 close(pb->epoll_fd); 13182 free(pb->events); 13183 free(pb); 13184 } 13185 13186 static struct perf_cpu_buf * 13187 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13188 int cpu, int map_key) 13189 { 13190 struct perf_cpu_buf *cpu_buf; 13191 char msg[STRERR_BUFSIZE]; 13192 int err; 13193 13194 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13195 if (!cpu_buf) 13196 return ERR_PTR(-ENOMEM); 13197 13198 cpu_buf->pb = pb; 13199 cpu_buf->cpu = cpu; 13200 cpu_buf->map_key = map_key; 13201 13202 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13203 -1, PERF_FLAG_FD_CLOEXEC); 13204 if (cpu_buf->fd < 0) { 13205 err = -errno; 13206 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13207 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13208 goto error; 13209 } 13210 13211 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13212 PROT_READ | PROT_WRITE, MAP_SHARED, 13213 cpu_buf->fd, 0); 13214 if (cpu_buf->base == MAP_FAILED) { 13215 cpu_buf->base = NULL; 13216 err = -errno; 13217 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13218 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13219 goto error; 13220 } 13221 13222 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13223 err = -errno; 13224 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13225 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13226 goto error; 13227 } 13228 13229 return cpu_buf; 13230 13231 error: 13232 perf_buffer__free_cpu_buf(pb, cpu_buf); 13233 return (struct perf_cpu_buf *)ERR_PTR(err); 13234 } 13235 13236 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13237 struct perf_buffer_params *p); 13238 13239 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13240 perf_buffer_sample_fn sample_cb, 13241 perf_buffer_lost_fn lost_cb, 13242 void *ctx, 13243 const struct perf_buffer_opts *opts) 13244 { 13245 const size_t attr_sz = sizeof(struct perf_event_attr); 13246 struct perf_buffer_params p = {}; 13247 struct perf_event_attr attr; 13248 __u32 sample_period; 13249 13250 if (!OPTS_VALID(opts, perf_buffer_opts)) 13251 return libbpf_err_ptr(-EINVAL); 13252 13253 sample_period = OPTS_GET(opts, sample_period, 1); 13254 if (!sample_period) 13255 sample_period = 1; 13256 13257 memset(&attr, 0, attr_sz); 13258 attr.size = attr_sz; 13259 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13260 attr.type = PERF_TYPE_SOFTWARE; 13261 attr.sample_type = PERF_SAMPLE_RAW; 13262 attr.sample_period = sample_period; 13263 attr.wakeup_events = sample_period; 13264 13265 p.attr = &attr; 13266 p.sample_cb = sample_cb; 13267 p.lost_cb = lost_cb; 13268 p.ctx = ctx; 13269 13270 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13271 } 13272 13273 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13274 struct perf_event_attr *attr, 13275 perf_buffer_event_fn event_cb, void *ctx, 13276 const struct perf_buffer_raw_opts *opts) 13277 { 13278 struct perf_buffer_params p = {}; 13279 13280 if (!attr) 13281 return libbpf_err_ptr(-EINVAL); 13282 13283 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13284 return libbpf_err_ptr(-EINVAL); 13285 13286 p.attr = attr; 13287 p.event_cb = event_cb; 13288 p.ctx = ctx; 13289 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13290 p.cpus = OPTS_GET(opts, cpus, NULL); 13291 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13292 13293 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13294 } 13295 13296 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13297 struct perf_buffer_params *p) 13298 { 13299 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13300 struct bpf_map_info map; 13301 char msg[STRERR_BUFSIZE]; 13302 struct perf_buffer *pb; 13303 bool *online = NULL; 13304 __u32 map_info_len; 13305 int err, i, j, n; 13306 13307 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13308 pr_warn("page count should be power of two, but is %zu\n", 13309 page_cnt); 13310 return ERR_PTR(-EINVAL); 13311 } 13312 13313 /* best-effort sanity checks */ 13314 memset(&map, 0, sizeof(map)); 13315 map_info_len = sizeof(map); 13316 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13317 if (err) { 13318 err = -errno; 13319 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13320 * -EBADFD, -EFAULT, or -E2BIG on real error 13321 */ 13322 if (err != -EINVAL) { 13323 pr_warn("failed to get map info for map FD %d: %s\n", 13324 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 13325 return ERR_PTR(err); 13326 } 13327 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13328 map_fd); 13329 } else { 13330 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13331 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13332 map.name); 13333 return ERR_PTR(-EINVAL); 13334 } 13335 } 13336 13337 pb = calloc(1, sizeof(*pb)); 13338 if (!pb) 13339 return ERR_PTR(-ENOMEM); 13340 13341 pb->event_cb = p->event_cb; 13342 pb->sample_cb = p->sample_cb; 13343 pb->lost_cb = p->lost_cb; 13344 pb->ctx = p->ctx; 13345 13346 pb->page_size = getpagesize(); 13347 pb->mmap_size = pb->page_size * page_cnt; 13348 pb->map_fd = map_fd; 13349 13350 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13351 if (pb->epoll_fd < 0) { 13352 err = -errno; 13353 pr_warn("failed to create epoll instance: %s\n", 13354 libbpf_strerror_r(err, msg, sizeof(msg))); 13355 goto error; 13356 } 13357 13358 if (p->cpu_cnt > 0) { 13359 pb->cpu_cnt = p->cpu_cnt; 13360 } else { 13361 pb->cpu_cnt = libbpf_num_possible_cpus(); 13362 if (pb->cpu_cnt < 0) { 13363 err = pb->cpu_cnt; 13364 goto error; 13365 } 13366 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13367 pb->cpu_cnt = map.max_entries; 13368 } 13369 13370 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13371 if (!pb->events) { 13372 err = -ENOMEM; 13373 pr_warn("failed to allocate events: out of memory\n"); 13374 goto error; 13375 } 13376 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13377 if (!pb->cpu_bufs) { 13378 err = -ENOMEM; 13379 pr_warn("failed to allocate buffers: out of memory\n"); 13380 goto error; 13381 } 13382 13383 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13384 if (err) { 13385 pr_warn("failed to get online CPU mask: %d\n", err); 13386 goto error; 13387 } 13388 13389 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13390 struct perf_cpu_buf *cpu_buf; 13391 int cpu, map_key; 13392 13393 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13394 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13395 13396 /* in case user didn't explicitly requested particular CPUs to 13397 * be attached to, skip offline/not present CPUs 13398 */ 13399 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13400 continue; 13401 13402 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13403 if (IS_ERR(cpu_buf)) { 13404 err = PTR_ERR(cpu_buf); 13405 goto error; 13406 } 13407 13408 pb->cpu_bufs[j] = cpu_buf; 13409 13410 err = bpf_map_update_elem(pb->map_fd, &map_key, 13411 &cpu_buf->fd, 0); 13412 if (err) { 13413 err = -errno; 13414 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13415 cpu, map_key, cpu_buf->fd, 13416 libbpf_strerror_r(err, msg, sizeof(msg))); 13417 goto error; 13418 } 13419 13420 pb->events[j].events = EPOLLIN; 13421 pb->events[j].data.ptr = cpu_buf; 13422 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13423 &pb->events[j]) < 0) { 13424 err = -errno; 13425 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13426 cpu, cpu_buf->fd, 13427 libbpf_strerror_r(err, msg, sizeof(msg))); 13428 goto error; 13429 } 13430 j++; 13431 } 13432 pb->cpu_cnt = j; 13433 free(online); 13434 13435 return pb; 13436 13437 error: 13438 free(online); 13439 if (pb) 13440 perf_buffer__free(pb); 13441 return ERR_PTR(err); 13442 } 13443 13444 struct perf_sample_raw { 13445 struct perf_event_header header; 13446 uint32_t size; 13447 char data[]; 13448 }; 13449 13450 struct perf_sample_lost { 13451 struct perf_event_header header; 13452 uint64_t id; 13453 uint64_t lost; 13454 uint64_t sample_id; 13455 }; 13456 13457 static enum bpf_perf_event_ret 13458 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13459 { 13460 struct perf_cpu_buf *cpu_buf = ctx; 13461 struct perf_buffer *pb = cpu_buf->pb; 13462 void *data = e; 13463 13464 /* user wants full control over parsing perf event */ 13465 if (pb->event_cb) 13466 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13467 13468 switch (e->type) { 13469 case PERF_RECORD_SAMPLE: { 13470 struct perf_sample_raw *s = data; 13471 13472 if (pb->sample_cb) 13473 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13474 break; 13475 } 13476 case PERF_RECORD_LOST: { 13477 struct perf_sample_lost *s = data; 13478 13479 if (pb->lost_cb) 13480 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13481 break; 13482 } 13483 default: 13484 pr_warn("unknown perf sample type %d\n", e->type); 13485 return LIBBPF_PERF_EVENT_ERROR; 13486 } 13487 return LIBBPF_PERF_EVENT_CONT; 13488 } 13489 13490 static int perf_buffer__process_records(struct perf_buffer *pb, 13491 struct perf_cpu_buf *cpu_buf) 13492 { 13493 enum bpf_perf_event_ret ret; 13494 13495 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13496 pb->page_size, &cpu_buf->buf, 13497 &cpu_buf->buf_size, 13498 perf_buffer__process_record, cpu_buf); 13499 if (ret != LIBBPF_PERF_EVENT_CONT) 13500 return ret; 13501 return 0; 13502 } 13503 13504 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13505 { 13506 return pb->epoll_fd; 13507 } 13508 13509 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13510 { 13511 int i, cnt, err; 13512 13513 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13514 if (cnt < 0) 13515 return -errno; 13516 13517 for (i = 0; i < cnt; i++) { 13518 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13519 13520 err = perf_buffer__process_records(pb, cpu_buf); 13521 if (err) { 13522 pr_warn("error while processing records: %d\n", err); 13523 return libbpf_err(err); 13524 } 13525 } 13526 return cnt; 13527 } 13528 13529 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13530 * manager. 13531 */ 13532 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13533 { 13534 return pb->cpu_cnt; 13535 } 13536 13537 /* 13538 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13539 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13540 * select()/poll()/epoll() Linux syscalls. 13541 */ 13542 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13543 { 13544 struct perf_cpu_buf *cpu_buf; 13545 13546 if (buf_idx >= pb->cpu_cnt) 13547 return libbpf_err(-EINVAL); 13548 13549 cpu_buf = pb->cpu_bufs[buf_idx]; 13550 if (!cpu_buf) 13551 return libbpf_err(-ENOENT); 13552 13553 return cpu_buf->fd; 13554 } 13555 13556 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13557 { 13558 struct perf_cpu_buf *cpu_buf; 13559 13560 if (buf_idx >= pb->cpu_cnt) 13561 return libbpf_err(-EINVAL); 13562 13563 cpu_buf = pb->cpu_bufs[buf_idx]; 13564 if (!cpu_buf) 13565 return libbpf_err(-ENOENT); 13566 13567 *buf = cpu_buf->base; 13568 *buf_size = pb->mmap_size; 13569 return 0; 13570 } 13571 13572 /* 13573 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13574 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13575 * consume, do nothing and return success. 13576 * Returns: 13577 * - 0 on success; 13578 * - <0 on failure. 13579 */ 13580 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13581 { 13582 struct perf_cpu_buf *cpu_buf; 13583 13584 if (buf_idx >= pb->cpu_cnt) 13585 return libbpf_err(-EINVAL); 13586 13587 cpu_buf = pb->cpu_bufs[buf_idx]; 13588 if (!cpu_buf) 13589 return libbpf_err(-ENOENT); 13590 13591 return perf_buffer__process_records(pb, cpu_buf); 13592 } 13593 13594 int perf_buffer__consume(struct perf_buffer *pb) 13595 { 13596 int i, err; 13597 13598 for (i = 0; i < pb->cpu_cnt; i++) { 13599 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13600 13601 if (!cpu_buf) 13602 continue; 13603 13604 err = perf_buffer__process_records(pb, cpu_buf); 13605 if (err) { 13606 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 13607 return libbpf_err(err); 13608 } 13609 } 13610 return 0; 13611 } 13612 13613 int bpf_program__set_attach_target(struct bpf_program *prog, 13614 int attach_prog_fd, 13615 const char *attach_func_name) 13616 { 13617 int btf_obj_fd = 0, btf_id = 0, err; 13618 13619 if (!prog || attach_prog_fd < 0) 13620 return libbpf_err(-EINVAL); 13621 13622 if (prog->obj->loaded) 13623 return libbpf_err(-EINVAL); 13624 13625 if (attach_prog_fd && !attach_func_name) { 13626 /* remember attach_prog_fd and let bpf_program__load() find 13627 * BTF ID during the program load 13628 */ 13629 prog->attach_prog_fd = attach_prog_fd; 13630 return 0; 13631 } 13632 13633 if (attach_prog_fd) { 13634 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13635 attach_prog_fd); 13636 if (btf_id < 0) 13637 return libbpf_err(btf_id); 13638 } else { 13639 if (!attach_func_name) 13640 return libbpf_err(-EINVAL); 13641 13642 /* load btf_vmlinux, if not yet */ 13643 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13644 if (err) 13645 return libbpf_err(err); 13646 err = find_kernel_btf_id(prog->obj, attach_func_name, 13647 prog->expected_attach_type, 13648 &btf_obj_fd, &btf_id); 13649 if (err) 13650 return libbpf_err(err); 13651 } 13652 13653 prog->attach_btf_id = btf_id; 13654 prog->attach_btf_obj_fd = btf_obj_fd; 13655 prog->attach_prog_fd = attach_prog_fd; 13656 return 0; 13657 } 13658 13659 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13660 { 13661 int err = 0, n, len, start, end = -1; 13662 bool *tmp; 13663 13664 *mask = NULL; 13665 *mask_sz = 0; 13666 13667 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13668 while (*s) { 13669 if (*s == ',' || *s == '\n') { 13670 s++; 13671 continue; 13672 } 13673 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13674 if (n <= 0 || n > 2) { 13675 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13676 err = -EINVAL; 13677 goto cleanup; 13678 } else if (n == 1) { 13679 end = start; 13680 } 13681 if (start < 0 || start > end) { 13682 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13683 start, end, s); 13684 err = -EINVAL; 13685 goto cleanup; 13686 } 13687 tmp = realloc(*mask, end + 1); 13688 if (!tmp) { 13689 err = -ENOMEM; 13690 goto cleanup; 13691 } 13692 *mask = tmp; 13693 memset(tmp + *mask_sz, 0, start - *mask_sz); 13694 memset(tmp + start, 1, end - start + 1); 13695 *mask_sz = end + 1; 13696 s += len; 13697 } 13698 if (!*mask_sz) { 13699 pr_warn("Empty CPU range\n"); 13700 return -EINVAL; 13701 } 13702 return 0; 13703 cleanup: 13704 free(*mask); 13705 *mask = NULL; 13706 return err; 13707 } 13708 13709 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13710 { 13711 int fd, err = 0, len; 13712 char buf[128]; 13713 13714 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13715 if (fd < 0) { 13716 err = -errno; 13717 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13718 return err; 13719 } 13720 len = read(fd, buf, sizeof(buf)); 13721 close(fd); 13722 if (len <= 0) { 13723 err = len ? -errno : -EINVAL; 13724 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13725 return err; 13726 } 13727 if (len >= sizeof(buf)) { 13728 pr_warn("CPU mask is too big in file %s\n", fcpu); 13729 return -E2BIG; 13730 } 13731 buf[len] = '\0'; 13732 13733 return parse_cpu_mask_str(buf, mask, mask_sz); 13734 } 13735 13736 int libbpf_num_possible_cpus(void) 13737 { 13738 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13739 static int cpus; 13740 int err, n, i, tmp_cpus; 13741 bool *mask; 13742 13743 tmp_cpus = READ_ONCE(cpus); 13744 if (tmp_cpus > 0) 13745 return tmp_cpus; 13746 13747 err = parse_cpu_mask_file(fcpu, &mask, &n); 13748 if (err) 13749 return libbpf_err(err); 13750 13751 tmp_cpus = 0; 13752 for (i = 0; i < n; i++) { 13753 if (mask[i]) 13754 tmp_cpus++; 13755 } 13756 free(mask); 13757 13758 WRITE_ONCE(cpus, tmp_cpus); 13759 return tmp_cpus; 13760 } 13761 13762 static int populate_skeleton_maps(const struct bpf_object *obj, 13763 struct bpf_map_skeleton *maps, 13764 size_t map_cnt, size_t map_skel_sz) 13765 { 13766 int i; 13767 13768 for (i = 0; i < map_cnt; i++) { 13769 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 13770 struct bpf_map **map = map_skel->map; 13771 const char *name = map_skel->name; 13772 void **mmaped = map_skel->mmaped; 13773 13774 *map = bpf_object__find_map_by_name(obj, name); 13775 if (!*map) { 13776 pr_warn("failed to find skeleton map '%s'\n", name); 13777 return -ESRCH; 13778 } 13779 13780 /* externs shouldn't be pre-setup from user code */ 13781 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13782 *mmaped = (*map)->mmaped; 13783 } 13784 return 0; 13785 } 13786 13787 static int populate_skeleton_progs(const struct bpf_object *obj, 13788 struct bpf_prog_skeleton *progs, 13789 size_t prog_cnt, size_t prog_skel_sz) 13790 { 13791 int i; 13792 13793 for (i = 0; i < prog_cnt; i++) { 13794 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 13795 struct bpf_program **prog = prog_skel->prog; 13796 const char *name = prog_skel->name; 13797 13798 *prog = bpf_object__find_program_by_name(obj, name); 13799 if (!*prog) { 13800 pr_warn("failed to find skeleton program '%s'\n", name); 13801 return -ESRCH; 13802 } 13803 } 13804 return 0; 13805 } 13806 13807 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13808 const struct bpf_object_open_opts *opts) 13809 { 13810 struct bpf_object *obj; 13811 int err; 13812 13813 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 13814 if (IS_ERR(obj)) { 13815 err = PTR_ERR(obj); 13816 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", s->name, err); 13817 return libbpf_err(err); 13818 } 13819 13820 *s->obj = obj; 13821 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 13822 if (err) { 13823 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13824 return libbpf_err(err); 13825 } 13826 13827 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13828 if (err) { 13829 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13830 return libbpf_err(err); 13831 } 13832 13833 return 0; 13834 } 13835 13836 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13837 { 13838 int err, len, var_idx, i; 13839 const char *var_name; 13840 const struct bpf_map *map; 13841 struct btf *btf; 13842 __u32 map_type_id; 13843 const struct btf_type *map_type, *var_type; 13844 const struct bpf_var_skeleton *var_skel; 13845 struct btf_var_secinfo *var; 13846 13847 if (!s->obj) 13848 return libbpf_err(-EINVAL); 13849 13850 btf = bpf_object__btf(s->obj); 13851 if (!btf) { 13852 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13853 bpf_object__name(s->obj)); 13854 return libbpf_err(-errno); 13855 } 13856 13857 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 13858 if (err) { 13859 pr_warn("failed to populate subskeleton maps: %d\n", err); 13860 return libbpf_err(err); 13861 } 13862 13863 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13864 if (err) { 13865 pr_warn("failed to populate subskeleton maps: %d\n", err); 13866 return libbpf_err(err); 13867 } 13868 13869 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13870 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 13871 map = *var_skel->map; 13872 map_type_id = bpf_map__btf_value_type_id(map); 13873 map_type = btf__type_by_id(btf, map_type_id); 13874 13875 if (!btf_is_datasec(map_type)) { 13876 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 13877 bpf_map__name(map), 13878 __btf_kind_str(btf_kind(map_type))); 13879 return libbpf_err(-EINVAL); 13880 } 13881 13882 len = btf_vlen(map_type); 13883 var = btf_var_secinfos(map_type); 13884 for (i = 0; i < len; i++, var++) { 13885 var_type = btf__type_by_id(btf, var->type); 13886 var_name = btf__name_by_offset(btf, var_type->name_off); 13887 if (strcmp(var_name, var_skel->name) == 0) { 13888 *var_skel->addr = map->mmaped + var->offset; 13889 break; 13890 } 13891 } 13892 } 13893 return 0; 13894 } 13895 13896 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13897 { 13898 if (!s) 13899 return; 13900 free(s->maps); 13901 free(s->progs); 13902 free(s->vars); 13903 free(s); 13904 } 13905 13906 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13907 { 13908 int i, err; 13909 13910 err = bpf_object__load(*s->obj); 13911 if (err) { 13912 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13913 return libbpf_err(err); 13914 } 13915 13916 for (i = 0; i < s->map_cnt; i++) { 13917 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 13918 struct bpf_map *map = *map_skel->map; 13919 size_t mmap_sz = bpf_map_mmap_sz(map); 13920 int prot, map_fd = map->fd; 13921 void **mmaped = map_skel->mmaped; 13922 13923 if (!mmaped) 13924 continue; 13925 13926 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13927 *mmaped = NULL; 13928 continue; 13929 } 13930 13931 if (map->def.type == BPF_MAP_TYPE_ARENA) { 13932 *mmaped = map->mmaped; 13933 continue; 13934 } 13935 13936 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13937 prot = PROT_READ; 13938 else 13939 prot = PROT_READ | PROT_WRITE; 13940 13941 /* Remap anonymous mmap()-ed "map initialization image" as 13942 * a BPF map-backed mmap()-ed memory, but preserving the same 13943 * memory address. This will cause kernel to change process' 13944 * page table to point to a different piece of kernel memory, 13945 * but from userspace point of view memory address (and its 13946 * contents, being identical at this point) will stay the 13947 * same. This mapping will be released by bpf_object__close() 13948 * as per normal clean up procedure, so we don't need to worry 13949 * about it from skeleton's clean up perspective. 13950 */ 13951 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13952 if (*mmaped == MAP_FAILED) { 13953 err = -errno; 13954 *mmaped = NULL; 13955 pr_warn("failed to re-mmap() map '%s': %d\n", 13956 bpf_map__name(map), err); 13957 return libbpf_err(err); 13958 } 13959 } 13960 13961 return 0; 13962 } 13963 13964 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13965 { 13966 int i, err; 13967 13968 for (i = 0; i < s->prog_cnt; i++) { 13969 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 13970 struct bpf_program *prog = *prog_skel->prog; 13971 struct bpf_link **link = prog_skel->link; 13972 13973 if (!prog->autoload || !prog->autoattach) 13974 continue; 13975 13976 /* auto-attaching not supported for this program */ 13977 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13978 continue; 13979 13980 /* if user already set the link manually, don't attempt auto-attach */ 13981 if (*link) 13982 continue; 13983 13984 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13985 if (err) { 13986 pr_warn("prog '%s': failed to auto-attach: %d\n", 13987 bpf_program__name(prog), err); 13988 return libbpf_err(err); 13989 } 13990 13991 /* It's possible that for some SEC() definitions auto-attach 13992 * is supported in some cases (e.g., if definition completely 13993 * specifies target information), but is not in other cases. 13994 * SEC("uprobe") is one such case. If user specified target 13995 * binary and function name, such BPF program can be 13996 * auto-attached. But if not, it shouldn't trigger skeleton's 13997 * attach to fail. It should just be skipped. 13998 * attach_fn signals such case with returning 0 (no error) and 13999 * setting link to NULL. 14000 */ 14001 } 14002 14003 14004 for (i = 0; i < s->map_cnt; i++) { 14005 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14006 struct bpf_map *map = *map_skel->map; 14007 struct bpf_link **link; 14008 14009 if (!map->autocreate || !map->autoattach) 14010 continue; 14011 14012 /* only struct_ops maps can be attached */ 14013 if (!bpf_map__is_struct_ops(map)) 14014 continue; 14015 14016 /* skeleton is created with earlier version of bpftool, notify user */ 14017 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14018 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14019 bpf_map__name(map)); 14020 continue; 14021 } 14022 14023 link = map_skel->link; 14024 if (*link) 14025 continue; 14026 14027 *link = bpf_map__attach_struct_ops(map); 14028 if (!*link) { 14029 err = -errno; 14030 pr_warn("map '%s': failed to auto-attach: %d\n", bpf_map__name(map), err); 14031 return libbpf_err(err); 14032 } 14033 } 14034 14035 return 0; 14036 } 14037 14038 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14039 { 14040 int i; 14041 14042 for (i = 0; i < s->prog_cnt; i++) { 14043 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14044 struct bpf_link **link = prog_skel->link; 14045 14046 bpf_link__destroy(*link); 14047 *link = NULL; 14048 } 14049 14050 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14051 return; 14052 14053 for (i = 0; i < s->map_cnt; i++) { 14054 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14055 struct bpf_link **link = map_skel->link; 14056 14057 if (link) { 14058 bpf_link__destroy(*link); 14059 *link = NULL; 14060 } 14061 } 14062 } 14063 14064 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14065 { 14066 if (!s) 14067 return; 14068 14069 bpf_object__detach_skeleton(s); 14070 if (s->obj) 14071 bpf_object__close(*s->obj); 14072 free(s->maps); 14073 free(s->progs); 14074 free(s); 14075 } 14076