xref: /linux/tools/lib/bpf/libbpf.c (revision 79de4d9ade7411ffdddf0b69c87020311731d155)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48 
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
86 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
87 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
88 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
89 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
90 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
91 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
92 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
93 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
94 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
95 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
96 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
97 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
98 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
99 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
100 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
101 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
102 	[BPF_LIRC_MODE2]		= "lirc_mode2",
103 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
104 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
105 	[BPF_TRACE_FENTRY]		= "trace_fentry",
106 	[BPF_TRACE_FEXIT]		= "trace_fexit",
107 	[BPF_MODIFY_RETURN]		= "modify_return",
108 	[BPF_LSM_MAC]			= "lsm_mac",
109 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
110 	[BPF_SK_LOOKUP]			= "sk_lookup",
111 	[BPF_TRACE_ITER]		= "trace_iter",
112 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
113 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
114 	[BPF_XDP]			= "xdp",
115 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
116 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
117 	[BPF_PERF_EVENT]		= "perf_event",
118 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
119 	[BPF_STRUCT_OPS]		= "struct_ops",
120 	[BPF_NETFILTER]			= "netfilter",
121 	[BPF_TCX_INGRESS]		= "tcx_ingress",
122 	[BPF_TCX_EGRESS]		= "tcx_egress",
123 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
124 };
125 
126 static const char * const link_type_name[] = {
127 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
128 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
129 	[BPF_LINK_TYPE_TRACING]			= "tracing",
130 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
131 	[BPF_LINK_TYPE_ITER]			= "iter",
132 	[BPF_LINK_TYPE_NETNS]			= "netns",
133 	[BPF_LINK_TYPE_XDP]			= "xdp",
134 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
135 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
136 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
137 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
138 	[BPF_LINK_TYPE_TCX]			= "tcx",
139 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
140 };
141 
142 static const char * const map_type_name[] = {
143 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
144 	[BPF_MAP_TYPE_HASH]			= "hash",
145 	[BPF_MAP_TYPE_ARRAY]			= "array",
146 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
147 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
148 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
149 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
150 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
151 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
152 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
153 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
154 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
155 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
156 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
157 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
158 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
159 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
160 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
161 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
162 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
163 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
164 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
165 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
166 	[BPF_MAP_TYPE_QUEUE]			= "queue",
167 	[BPF_MAP_TYPE_STACK]			= "stack",
168 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
169 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
170 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
171 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
172 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
173 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
174 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
175 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
176 };
177 
178 static const char * const prog_type_name[] = {
179 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
180 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
181 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
182 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
183 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
184 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
185 	[BPF_PROG_TYPE_XDP]			= "xdp",
186 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
187 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
188 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
189 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
190 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
191 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
192 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
193 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
194 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
195 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
196 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
197 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
198 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
199 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
200 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
201 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
202 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
203 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
204 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
205 	[BPF_PROG_TYPE_TRACING]			= "tracing",
206 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
207 	[BPF_PROG_TYPE_EXT]			= "ext",
208 	[BPF_PROG_TYPE_LSM]			= "lsm",
209 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
210 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
211 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
212 };
213 
214 static int __base_pr(enum libbpf_print_level level, const char *format,
215 		     va_list args)
216 {
217 	if (level == LIBBPF_DEBUG)
218 		return 0;
219 
220 	return vfprintf(stderr, format, args);
221 }
222 
223 static libbpf_print_fn_t __libbpf_pr = __base_pr;
224 
225 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
226 {
227 	libbpf_print_fn_t old_print_fn;
228 
229 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
230 
231 	return old_print_fn;
232 }
233 
234 __printf(2, 3)
235 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
236 {
237 	va_list args;
238 	int old_errno;
239 	libbpf_print_fn_t print_fn;
240 
241 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
242 	if (!print_fn)
243 		return;
244 
245 	old_errno = errno;
246 
247 	va_start(args, format);
248 	__libbpf_pr(level, format, args);
249 	va_end(args);
250 
251 	errno = old_errno;
252 }
253 
254 static void pr_perm_msg(int err)
255 {
256 	struct rlimit limit;
257 	char buf[100];
258 
259 	if (err != -EPERM || geteuid() != 0)
260 		return;
261 
262 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
263 	if (err)
264 		return;
265 
266 	if (limit.rlim_cur == RLIM_INFINITY)
267 		return;
268 
269 	if (limit.rlim_cur < 1024)
270 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
271 	else if (limit.rlim_cur < 1024*1024)
272 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
273 	else
274 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
275 
276 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
277 		buf);
278 }
279 
280 #define STRERR_BUFSIZE  128
281 
282 /* Copied from tools/perf/util/util.h */
283 #ifndef zfree
284 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
285 #endif
286 
287 #ifndef zclose
288 # define zclose(fd) ({			\
289 	int ___err = 0;			\
290 	if ((fd) >= 0)			\
291 		___err = close((fd));	\
292 	fd = -1;			\
293 	___err; })
294 #endif
295 
296 static inline __u64 ptr_to_u64(const void *ptr)
297 {
298 	return (__u64) (unsigned long) ptr;
299 }
300 
301 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
302 {
303 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
304 	return 0;
305 }
306 
307 __u32 libbpf_major_version(void)
308 {
309 	return LIBBPF_MAJOR_VERSION;
310 }
311 
312 __u32 libbpf_minor_version(void)
313 {
314 	return LIBBPF_MINOR_VERSION;
315 }
316 
317 const char *libbpf_version_string(void)
318 {
319 #define __S(X) #X
320 #define _S(X) __S(X)
321 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
322 #undef _S
323 #undef __S
324 }
325 
326 enum reloc_type {
327 	RELO_LD64,
328 	RELO_CALL,
329 	RELO_DATA,
330 	RELO_EXTERN_LD64,
331 	RELO_EXTERN_CALL,
332 	RELO_SUBPROG_ADDR,
333 	RELO_CORE,
334 };
335 
336 struct reloc_desc {
337 	enum reloc_type type;
338 	int insn_idx;
339 	union {
340 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
341 		struct {
342 			int map_idx;
343 			int sym_off;
344 			int ext_idx;
345 		};
346 	};
347 };
348 
349 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
350 enum sec_def_flags {
351 	SEC_NONE = 0,
352 	/* expected_attach_type is optional, if kernel doesn't support that */
353 	SEC_EXP_ATTACH_OPT = 1,
354 	/* legacy, only used by libbpf_get_type_names() and
355 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
356 	 * This used to be associated with cgroup (and few other) BPF programs
357 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
358 	 * meaningless nowadays, though.
359 	 */
360 	SEC_ATTACHABLE = 2,
361 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
362 	/* attachment target is specified through BTF ID in either kernel or
363 	 * other BPF program's BTF object
364 	 */
365 	SEC_ATTACH_BTF = 4,
366 	/* BPF program type allows sleeping/blocking in kernel */
367 	SEC_SLEEPABLE = 8,
368 	/* BPF program support non-linear XDP buffer */
369 	SEC_XDP_FRAGS = 16,
370 	/* Setup proper attach type for usdt probes. */
371 	SEC_USDT = 32,
372 };
373 
374 struct bpf_sec_def {
375 	char *sec;
376 	enum bpf_prog_type prog_type;
377 	enum bpf_attach_type expected_attach_type;
378 	long cookie;
379 	int handler_id;
380 
381 	libbpf_prog_setup_fn_t prog_setup_fn;
382 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
383 	libbpf_prog_attach_fn_t prog_attach_fn;
384 };
385 
386 /*
387  * bpf_prog should be a better name but it has been used in
388  * linux/filter.h.
389  */
390 struct bpf_program {
391 	char *name;
392 	char *sec_name;
393 	size_t sec_idx;
394 	const struct bpf_sec_def *sec_def;
395 	/* this program's instruction offset (in number of instructions)
396 	 * within its containing ELF section
397 	 */
398 	size_t sec_insn_off;
399 	/* number of original instructions in ELF section belonging to this
400 	 * program, not taking into account subprogram instructions possible
401 	 * appended later during relocation
402 	 */
403 	size_t sec_insn_cnt;
404 	/* Offset (in number of instructions) of the start of instruction
405 	 * belonging to this BPF program  within its containing main BPF
406 	 * program. For the entry-point (main) BPF program, this is always
407 	 * zero. For a sub-program, this gets reset before each of main BPF
408 	 * programs are processed and relocated and is used to determined
409 	 * whether sub-program was already appended to the main program, and
410 	 * if yes, at which instruction offset.
411 	 */
412 	size_t sub_insn_off;
413 
414 	/* instructions that belong to BPF program; insns[0] is located at
415 	 * sec_insn_off instruction within its ELF section in ELF file, so
416 	 * when mapping ELF file instruction index to the local instruction,
417 	 * one needs to subtract sec_insn_off; and vice versa.
418 	 */
419 	struct bpf_insn *insns;
420 	/* actual number of instruction in this BPF program's image; for
421 	 * entry-point BPF programs this includes the size of main program
422 	 * itself plus all the used sub-programs, appended at the end
423 	 */
424 	size_t insns_cnt;
425 
426 	struct reloc_desc *reloc_desc;
427 	int nr_reloc;
428 
429 	/* BPF verifier log settings */
430 	char *log_buf;
431 	size_t log_size;
432 	__u32 log_level;
433 
434 	struct bpf_object *obj;
435 
436 	int fd;
437 	bool autoload;
438 	bool autoattach;
439 	bool mark_btf_static;
440 	enum bpf_prog_type type;
441 	enum bpf_attach_type expected_attach_type;
442 
443 	int prog_ifindex;
444 	__u32 attach_btf_obj_fd;
445 	__u32 attach_btf_id;
446 	__u32 attach_prog_fd;
447 
448 	void *func_info;
449 	__u32 func_info_rec_size;
450 	__u32 func_info_cnt;
451 
452 	void *line_info;
453 	__u32 line_info_rec_size;
454 	__u32 line_info_cnt;
455 	__u32 prog_flags;
456 };
457 
458 struct bpf_struct_ops {
459 	const char *tname;
460 	const struct btf_type *type;
461 	struct bpf_program **progs;
462 	__u32 *kern_func_off;
463 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
464 	void *data;
465 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
466 	 *      btf_vmlinux's format.
467 	 * struct bpf_struct_ops_tcp_congestion_ops {
468 	 *	[... some other kernel fields ...]
469 	 *	struct tcp_congestion_ops data;
470 	 * }
471 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
472 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
473 	 * from "data".
474 	 */
475 	void *kern_vdata;
476 	__u32 type_id;
477 };
478 
479 #define DATA_SEC ".data"
480 #define BSS_SEC ".bss"
481 #define RODATA_SEC ".rodata"
482 #define KCONFIG_SEC ".kconfig"
483 #define KSYMS_SEC ".ksyms"
484 #define STRUCT_OPS_SEC ".struct_ops"
485 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
486 
487 enum libbpf_map_type {
488 	LIBBPF_MAP_UNSPEC,
489 	LIBBPF_MAP_DATA,
490 	LIBBPF_MAP_BSS,
491 	LIBBPF_MAP_RODATA,
492 	LIBBPF_MAP_KCONFIG,
493 };
494 
495 struct bpf_map_def {
496 	unsigned int type;
497 	unsigned int key_size;
498 	unsigned int value_size;
499 	unsigned int max_entries;
500 	unsigned int map_flags;
501 };
502 
503 struct bpf_map {
504 	struct bpf_object *obj;
505 	char *name;
506 	/* real_name is defined for special internal maps (.rodata*,
507 	 * .data*, .bss, .kconfig) and preserves their original ELF section
508 	 * name. This is important to be able to find corresponding BTF
509 	 * DATASEC information.
510 	 */
511 	char *real_name;
512 	int fd;
513 	int sec_idx;
514 	size_t sec_offset;
515 	int map_ifindex;
516 	int inner_map_fd;
517 	struct bpf_map_def def;
518 	__u32 numa_node;
519 	__u32 btf_var_idx;
520 	__u32 btf_key_type_id;
521 	__u32 btf_value_type_id;
522 	__u32 btf_vmlinux_value_type_id;
523 	enum libbpf_map_type libbpf_type;
524 	void *mmaped;
525 	struct bpf_struct_ops *st_ops;
526 	struct bpf_map *inner_map;
527 	void **init_slots;
528 	int init_slots_sz;
529 	char *pin_path;
530 	bool pinned;
531 	bool reused;
532 	bool autocreate;
533 	__u64 map_extra;
534 };
535 
536 enum extern_type {
537 	EXT_UNKNOWN,
538 	EXT_KCFG,
539 	EXT_KSYM,
540 };
541 
542 enum kcfg_type {
543 	KCFG_UNKNOWN,
544 	KCFG_CHAR,
545 	KCFG_BOOL,
546 	KCFG_INT,
547 	KCFG_TRISTATE,
548 	KCFG_CHAR_ARR,
549 };
550 
551 struct extern_desc {
552 	enum extern_type type;
553 	int sym_idx;
554 	int btf_id;
555 	int sec_btf_id;
556 	const char *name;
557 	char *essent_name;
558 	bool is_set;
559 	bool is_weak;
560 	union {
561 		struct {
562 			enum kcfg_type type;
563 			int sz;
564 			int align;
565 			int data_off;
566 			bool is_signed;
567 		} kcfg;
568 		struct {
569 			unsigned long long addr;
570 
571 			/* target btf_id of the corresponding kernel var. */
572 			int kernel_btf_obj_fd;
573 			int kernel_btf_id;
574 
575 			/* local btf_id of the ksym extern's type. */
576 			__u32 type_id;
577 			/* BTF fd index to be patched in for insn->off, this is
578 			 * 0 for vmlinux BTF, index in obj->fd_array for module
579 			 * BTF
580 			 */
581 			__s16 btf_fd_idx;
582 		} ksym;
583 	};
584 };
585 
586 struct module_btf {
587 	struct btf *btf;
588 	char *name;
589 	__u32 id;
590 	int fd;
591 	int fd_array_idx;
592 };
593 
594 enum sec_type {
595 	SEC_UNUSED = 0,
596 	SEC_RELO,
597 	SEC_BSS,
598 	SEC_DATA,
599 	SEC_RODATA,
600 };
601 
602 struct elf_sec_desc {
603 	enum sec_type sec_type;
604 	Elf64_Shdr *shdr;
605 	Elf_Data *data;
606 };
607 
608 struct elf_state {
609 	int fd;
610 	const void *obj_buf;
611 	size_t obj_buf_sz;
612 	Elf *elf;
613 	Elf64_Ehdr *ehdr;
614 	Elf_Data *symbols;
615 	Elf_Data *st_ops_data;
616 	Elf_Data *st_ops_link_data;
617 	size_t shstrndx; /* section index for section name strings */
618 	size_t strtabidx;
619 	struct elf_sec_desc *secs;
620 	size_t sec_cnt;
621 	int btf_maps_shndx;
622 	__u32 btf_maps_sec_btf_id;
623 	int text_shndx;
624 	int symbols_shndx;
625 	int st_ops_shndx;
626 	int st_ops_link_shndx;
627 };
628 
629 struct usdt_manager;
630 
631 struct bpf_object {
632 	char name[BPF_OBJ_NAME_LEN];
633 	char license[64];
634 	__u32 kern_version;
635 
636 	struct bpf_program *programs;
637 	size_t nr_programs;
638 	struct bpf_map *maps;
639 	size_t nr_maps;
640 	size_t maps_cap;
641 
642 	char *kconfig;
643 	struct extern_desc *externs;
644 	int nr_extern;
645 	int kconfig_map_idx;
646 
647 	bool loaded;
648 	bool has_subcalls;
649 	bool has_rodata;
650 
651 	struct bpf_gen *gen_loader;
652 
653 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
654 	struct elf_state efile;
655 
656 	struct btf *btf;
657 	struct btf_ext *btf_ext;
658 
659 	/* Parse and load BTF vmlinux if any of the programs in the object need
660 	 * it at load time.
661 	 */
662 	struct btf *btf_vmlinux;
663 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
664 	 * override for vmlinux BTF.
665 	 */
666 	char *btf_custom_path;
667 	/* vmlinux BTF override for CO-RE relocations */
668 	struct btf *btf_vmlinux_override;
669 	/* Lazily initialized kernel module BTFs */
670 	struct module_btf *btf_modules;
671 	bool btf_modules_loaded;
672 	size_t btf_module_cnt;
673 	size_t btf_module_cap;
674 
675 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
676 	char *log_buf;
677 	size_t log_size;
678 	__u32 log_level;
679 
680 	int *fd_array;
681 	size_t fd_array_cap;
682 	size_t fd_array_cnt;
683 
684 	struct usdt_manager *usdt_man;
685 
686 	char path[];
687 };
688 
689 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
690 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
691 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
692 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
693 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
694 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
695 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
696 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
697 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
698 
699 void bpf_program__unload(struct bpf_program *prog)
700 {
701 	if (!prog)
702 		return;
703 
704 	zclose(prog->fd);
705 
706 	zfree(&prog->func_info);
707 	zfree(&prog->line_info);
708 }
709 
710 static void bpf_program__exit(struct bpf_program *prog)
711 {
712 	if (!prog)
713 		return;
714 
715 	bpf_program__unload(prog);
716 	zfree(&prog->name);
717 	zfree(&prog->sec_name);
718 	zfree(&prog->insns);
719 	zfree(&prog->reloc_desc);
720 
721 	prog->nr_reloc = 0;
722 	prog->insns_cnt = 0;
723 	prog->sec_idx = -1;
724 }
725 
726 static bool insn_is_subprog_call(const struct bpf_insn *insn)
727 {
728 	return BPF_CLASS(insn->code) == BPF_JMP &&
729 	       BPF_OP(insn->code) == BPF_CALL &&
730 	       BPF_SRC(insn->code) == BPF_K &&
731 	       insn->src_reg == BPF_PSEUDO_CALL &&
732 	       insn->dst_reg == 0 &&
733 	       insn->off == 0;
734 }
735 
736 static bool is_call_insn(const struct bpf_insn *insn)
737 {
738 	return insn->code == (BPF_JMP | BPF_CALL);
739 }
740 
741 static bool insn_is_pseudo_func(struct bpf_insn *insn)
742 {
743 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
744 }
745 
746 static int
747 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
748 		      const char *name, size_t sec_idx, const char *sec_name,
749 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
750 {
751 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
752 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
753 			sec_name, name, sec_off, insn_data_sz);
754 		return -EINVAL;
755 	}
756 
757 	memset(prog, 0, sizeof(*prog));
758 	prog->obj = obj;
759 
760 	prog->sec_idx = sec_idx;
761 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
762 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
763 	/* insns_cnt can later be increased by appending used subprograms */
764 	prog->insns_cnt = prog->sec_insn_cnt;
765 
766 	prog->type = BPF_PROG_TYPE_UNSPEC;
767 	prog->fd = -1;
768 
769 	/* libbpf's convention for SEC("?abc...") is that it's just like
770 	 * SEC("abc...") but the corresponding bpf_program starts out with
771 	 * autoload set to false.
772 	 */
773 	if (sec_name[0] == '?') {
774 		prog->autoload = false;
775 		/* from now on forget there was ? in section name */
776 		sec_name++;
777 	} else {
778 		prog->autoload = true;
779 	}
780 
781 	prog->autoattach = true;
782 
783 	/* inherit object's log_level */
784 	prog->log_level = obj->log_level;
785 
786 	prog->sec_name = strdup(sec_name);
787 	if (!prog->sec_name)
788 		goto errout;
789 
790 	prog->name = strdup(name);
791 	if (!prog->name)
792 		goto errout;
793 
794 	prog->insns = malloc(insn_data_sz);
795 	if (!prog->insns)
796 		goto errout;
797 	memcpy(prog->insns, insn_data, insn_data_sz);
798 
799 	return 0;
800 errout:
801 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
802 	bpf_program__exit(prog);
803 	return -ENOMEM;
804 }
805 
806 static int
807 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
808 			 const char *sec_name, int sec_idx)
809 {
810 	Elf_Data *symbols = obj->efile.symbols;
811 	struct bpf_program *prog, *progs;
812 	void *data = sec_data->d_buf;
813 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
814 	int nr_progs, err, i;
815 	const char *name;
816 	Elf64_Sym *sym;
817 
818 	progs = obj->programs;
819 	nr_progs = obj->nr_programs;
820 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
821 
822 	for (i = 0; i < nr_syms; i++) {
823 		sym = elf_sym_by_idx(obj, i);
824 
825 		if (sym->st_shndx != sec_idx)
826 			continue;
827 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
828 			continue;
829 
830 		prog_sz = sym->st_size;
831 		sec_off = sym->st_value;
832 
833 		name = elf_sym_str(obj, sym->st_name);
834 		if (!name) {
835 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
836 				sec_name, sec_off);
837 			return -LIBBPF_ERRNO__FORMAT;
838 		}
839 
840 		if (sec_off + prog_sz > sec_sz) {
841 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
842 				sec_name, sec_off);
843 			return -LIBBPF_ERRNO__FORMAT;
844 		}
845 
846 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
847 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
848 			return -ENOTSUP;
849 		}
850 
851 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
852 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
853 
854 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
855 		if (!progs) {
856 			/*
857 			 * In this case the original obj->programs
858 			 * is still valid, so don't need special treat for
859 			 * bpf_close_object().
860 			 */
861 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
862 				sec_name, name);
863 			return -ENOMEM;
864 		}
865 		obj->programs = progs;
866 
867 		prog = &progs[nr_progs];
868 
869 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
870 					    sec_off, data + sec_off, prog_sz);
871 		if (err)
872 			return err;
873 
874 		/* if function is a global/weak symbol, but has restricted
875 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
876 		 * as static to enable more permissive BPF verification mode
877 		 * with more outside context available to BPF verifier
878 		 */
879 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
880 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
881 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
882 			prog->mark_btf_static = true;
883 
884 		nr_progs++;
885 		obj->nr_programs = nr_progs;
886 	}
887 
888 	return 0;
889 }
890 
891 static const struct btf_member *
892 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
893 {
894 	struct btf_member *m;
895 	int i;
896 
897 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
898 		if (btf_member_bit_offset(t, i) == bit_offset)
899 			return m;
900 	}
901 
902 	return NULL;
903 }
904 
905 static const struct btf_member *
906 find_member_by_name(const struct btf *btf, const struct btf_type *t,
907 		    const char *name)
908 {
909 	struct btf_member *m;
910 	int i;
911 
912 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
913 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
914 			return m;
915 	}
916 
917 	return NULL;
918 }
919 
920 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
921 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
922 				   const char *name, __u32 kind);
923 
924 static int
925 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
926 			   const struct btf_type **type, __u32 *type_id,
927 			   const struct btf_type **vtype, __u32 *vtype_id,
928 			   const struct btf_member **data_member)
929 {
930 	const struct btf_type *kern_type, *kern_vtype;
931 	const struct btf_member *kern_data_member;
932 	__s32 kern_vtype_id, kern_type_id;
933 	__u32 i;
934 
935 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
936 	if (kern_type_id < 0) {
937 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
938 			tname);
939 		return kern_type_id;
940 	}
941 	kern_type = btf__type_by_id(btf, kern_type_id);
942 
943 	/* Find the corresponding "map_value" type that will be used
944 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
945 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
946 	 * btf_vmlinux.
947 	 */
948 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
949 						tname, BTF_KIND_STRUCT);
950 	if (kern_vtype_id < 0) {
951 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
952 			STRUCT_OPS_VALUE_PREFIX, tname);
953 		return kern_vtype_id;
954 	}
955 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
956 
957 	/* Find "struct tcp_congestion_ops" from
958 	 * struct bpf_struct_ops_tcp_congestion_ops {
959 	 *	[ ... ]
960 	 *	struct tcp_congestion_ops data;
961 	 * }
962 	 */
963 	kern_data_member = btf_members(kern_vtype);
964 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
965 		if (kern_data_member->type == kern_type_id)
966 			break;
967 	}
968 	if (i == btf_vlen(kern_vtype)) {
969 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
970 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
971 		return -EINVAL;
972 	}
973 
974 	*type = kern_type;
975 	*type_id = kern_type_id;
976 	*vtype = kern_vtype;
977 	*vtype_id = kern_vtype_id;
978 	*data_member = kern_data_member;
979 
980 	return 0;
981 }
982 
983 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
984 {
985 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
986 }
987 
988 /* Init the map's fields that depend on kern_btf */
989 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
990 					 const struct btf *btf,
991 					 const struct btf *kern_btf)
992 {
993 	const struct btf_member *member, *kern_member, *kern_data_member;
994 	const struct btf_type *type, *kern_type, *kern_vtype;
995 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
996 	struct bpf_struct_ops *st_ops;
997 	void *data, *kern_data;
998 	const char *tname;
999 	int err;
1000 
1001 	st_ops = map->st_ops;
1002 	type = st_ops->type;
1003 	tname = st_ops->tname;
1004 	err = find_struct_ops_kern_types(kern_btf, tname,
1005 					 &kern_type, &kern_type_id,
1006 					 &kern_vtype, &kern_vtype_id,
1007 					 &kern_data_member);
1008 	if (err)
1009 		return err;
1010 
1011 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1012 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1013 
1014 	map->def.value_size = kern_vtype->size;
1015 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1016 
1017 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1018 	if (!st_ops->kern_vdata)
1019 		return -ENOMEM;
1020 
1021 	data = st_ops->data;
1022 	kern_data_off = kern_data_member->offset / 8;
1023 	kern_data = st_ops->kern_vdata + kern_data_off;
1024 
1025 	member = btf_members(type);
1026 	for (i = 0; i < btf_vlen(type); i++, member++) {
1027 		const struct btf_type *mtype, *kern_mtype;
1028 		__u32 mtype_id, kern_mtype_id;
1029 		void *mdata, *kern_mdata;
1030 		__s64 msize, kern_msize;
1031 		__u32 moff, kern_moff;
1032 		__u32 kern_member_idx;
1033 		const char *mname;
1034 
1035 		mname = btf__name_by_offset(btf, member->name_off);
1036 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1037 		if (!kern_member) {
1038 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1039 				map->name, mname);
1040 			return -ENOTSUP;
1041 		}
1042 
1043 		kern_member_idx = kern_member - btf_members(kern_type);
1044 		if (btf_member_bitfield_size(type, i) ||
1045 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1046 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1047 				map->name, mname);
1048 			return -ENOTSUP;
1049 		}
1050 
1051 		moff = member->offset / 8;
1052 		kern_moff = kern_member->offset / 8;
1053 
1054 		mdata = data + moff;
1055 		kern_mdata = kern_data + kern_moff;
1056 
1057 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1058 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1059 						    &kern_mtype_id);
1060 		if (BTF_INFO_KIND(mtype->info) !=
1061 		    BTF_INFO_KIND(kern_mtype->info)) {
1062 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1063 				map->name, mname, BTF_INFO_KIND(mtype->info),
1064 				BTF_INFO_KIND(kern_mtype->info));
1065 			return -ENOTSUP;
1066 		}
1067 
1068 		if (btf_is_ptr(mtype)) {
1069 			struct bpf_program *prog;
1070 
1071 			prog = st_ops->progs[i];
1072 			if (!prog)
1073 				continue;
1074 
1075 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1076 							    kern_mtype->type,
1077 							    &kern_mtype_id);
1078 
1079 			/* mtype->type must be a func_proto which was
1080 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1081 			 * so only check kern_mtype for func_proto here.
1082 			 */
1083 			if (!btf_is_func_proto(kern_mtype)) {
1084 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1085 					map->name, mname);
1086 				return -ENOTSUP;
1087 			}
1088 
1089 			prog->attach_btf_id = kern_type_id;
1090 			prog->expected_attach_type = kern_member_idx;
1091 
1092 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1093 
1094 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1095 				 map->name, mname, prog->name, moff,
1096 				 kern_moff);
1097 
1098 			continue;
1099 		}
1100 
1101 		msize = btf__resolve_size(btf, mtype_id);
1102 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1103 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1104 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1105 				map->name, mname, (ssize_t)msize,
1106 				(ssize_t)kern_msize);
1107 			return -ENOTSUP;
1108 		}
1109 
1110 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1111 			 map->name, mname, (unsigned int)msize,
1112 			 moff, kern_moff);
1113 		memcpy(kern_mdata, mdata, msize);
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1120 {
1121 	struct bpf_map *map;
1122 	size_t i;
1123 	int err;
1124 
1125 	for (i = 0; i < obj->nr_maps; i++) {
1126 		map = &obj->maps[i];
1127 
1128 		if (!bpf_map__is_struct_ops(map))
1129 			continue;
1130 
1131 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1132 						    obj->btf_vmlinux);
1133 		if (err)
1134 			return err;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1141 				int shndx, Elf_Data *data, __u32 map_flags)
1142 {
1143 	const struct btf_type *type, *datasec;
1144 	const struct btf_var_secinfo *vsi;
1145 	struct bpf_struct_ops *st_ops;
1146 	const char *tname, *var_name;
1147 	__s32 type_id, datasec_id;
1148 	const struct btf *btf;
1149 	struct bpf_map *map;
1150 	__u32 i;
1151 
1152 	if (shndx == -1)
1153 		return 0;
1154 
1155 	btf = obj->btf;
1156 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1157 					    BTF_KIND_DATASEC);
1158 	if (datasec_id < 0) {
1159 		pr_warn("struct_ops init: DATASEC %s not found\n",
1160 			sec_name);
1161 		return -EINVAL;
1162 	}
1163 
1164 	datasec = btf__type_by_id(btf, datasec_id);
1165 	vsi = btf_var_secinfos(datasec);
1166 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1167 		type = btf__type_by_id(obj->btf, vsi->type);
1168 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1169 
1170 		type_id = btf__resolve_type(obj->btf, vsi->type);
1171 		if (type_id < 0) {
1172 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1173 				vsi->type, sec_name);
1174 			return -EINVAL;
1175 		}
1176 
1177 		type = btf__type_by_id(obj->btf, type_id);
1178 		tname = btf__name_by_offset(obj->btf, type->name_off);
1179 		if (!tname[0]) {
1180 			pr_warn("struct_ops init: anonymous type is not supported\n");
1181 			return -ENOTSUP;
1182 		}
1183 		if (!btf_is_struct(type)) {
1184 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1185 			return -EINVAL;
1186 		}
1187 
1188 		map = bpf_object__add_map(obj);
1189 		if (IS_ERR(map))
1190 			return PTR_ERR(map);
1191 
1192 		map->sec_idx = shndx;
1193 		map->sec_offset = vsi->offset;
1194 		map->name = strdup(var_name);
1195 		if (!map->name)
1196 			return -ENOMEM;
1197 
1198 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1199 		map->def.key_size = sizeof(int);
1200 		map->def.value_size = type->size;
1201 		map->def.max_entries = 1;
1202 		map->def.map_flags = map_flags;
1203 
1204 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1205 		if (!map->st_ops)
1206 			return -ENOMEM;
1207 		st_ops = map->st_ops;
1208 		st_ops->data = malloc(type->size);
1209 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1210 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1211 					       sizeof(*st_ops->kern_func_off));
1212 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1213 			return -ENOMEM;
1214 
1215 		if (vsi->offset + type->size > data->d_size) {
1216 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1217 				var_name, sec_name);
1218 			return -EINVAL;
1219 		}
1220 
1221 		memcpy(st_ops->data,
1222 		       data->d_buf + vsi->offset,
1223 		       type->size);
1224 		st_ops->tname = tname;
1225 		st_ops->type = type;
1226 		st_ops->type_id = type_id;
1227 
1228 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1229 			 tname, type_id, var_name, vsi->offset);
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1236 {
1237 	int err;
1238 
1239 	err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1240 				   obj->efile.st_ops_data, 0);
1241 	err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1242 					  obj->efile.st_ops_link_shndx,
1243 					  obj->efile.st_ops_link_data,
1244 					  BPF_F_LINK);
1245 	return err;
1246 }
1247 
1248 static struct bpf_object *bpf_object__new(const char *path,
1249 					  const void *obj_buf,
1250 					  size_t obj_buf_sz,
1251 					  const char *obj_name)
1252 {
1253 	struct bpf_object *obj;
1254 	char *end;
1255 
1256 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1257 	if (!obj) {
1258 		pr_warn("alloc memory failed for %s\n", path);
1259 		return ERR_PTR(-ENOMEM);
1260 	}
1261 
1262 	strcpy(obj->path, path);
1263 	if (obj_name) {
1264 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1265 	} else {
1266 		/* Using basename() GNU version which doesn't modify arg. */
1267 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1268 		end = strchr(obj->name, '.');
1269 		if (end)
1270 			*end = 0;
1271 	}
1272 
1273 	obj->efile.fd = -1;
1274 	/*
1275 	 * Caller of this function should also call
1276 	 * bpf_object__elf_finish() after data collection to return
1277 	 * obj_buf to user. If not, we should duplicate the buffer to
1278 	 * avoid user freeing them before elf finish.
1279 	 */
1280 	obj->efile.obj_buf = obj_buf;
1281 	obj->efile.obj_buf_sz = obj_buf_sz;
1282 	obj->efile.btf_maps_shndx = -1;
1283 	obj->efile.st_ops_shndx = -1;
1284 	obj->efile.st_ops_link_shndx = -1;
1285 	obj->kconfig_map_idx = -1;
1286 
1287 	obj->kern_version = get_kernel_version();
1288 	obj->loaded = false;
1289 
1290 	return obj;
1291 }
1292 
1293 static void bpf_object__elf_finish(struct bpf_object *obj)
1294 {
1295 	if (!obj->efile.elf)
1296 		return;
1297 
1298 	elf_end(obj->efile.elf);
1299 	obj->efile.elf = NULL;
1300 	obj->efile.symbols = NULL;
1301 	obj->efile.st_ops_data = NULL;
1302 	obj->efile.st_ops_link_data = NULL;
1303 
1304 	zfree(&obj->efile.secs);
1305 	obj->efile.sec_cnt = 0;
1306 	zclose(obj->efile.fd);
1307 	obj->efile.obj_buf = NULL;
1308 	obj->efile.obj_buf_sz = 0;
1309 }
1310 
1311 static int bpf_object__elf_init(struct bpf_object *obj)
1312 {
1313 	Elf64_Ehdr *ehdr;
1314 	int err = 0;
1315 	Elf *elf;
1316 
1317 	if (obj->efile.elf) {
1318 		pr_warn("elf: init internal error\n");
1319 		return -LIBBPF_ERRNO__LIBELF;
1320 	}
1321 
1322 	if (obj->efile.obj_buf_sz > 0) {
1323 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1324 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1325 	} else {
1326 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1327 		if (obj->efile.fd < 0) {
1328 			char errmsg[STRERR_BUFSIZE], *cp;
1329 
1330 			err = -errno;
1331 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1332 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1333 			return err;
1334 		}
1335 
1336 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1337 	}
1338 
1339 	if (!elf) {
1340 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1341 		err = -LIBBPF_ERRNO__LIBELF;
1342 		goto errout;
1343 	}
1344 
1345 	obj->efile.elf = elf;
1346 
1347 	if (elf_kind(elf) != ELF_K_ELF) {
1348 		err = -LIBBPF_ERRNO__FORMAT;
1349 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1350 		goto errout;
1351 	}
1352 
1353 	if (gelf_getclass(elf) != ELFCLASS64) {
1354 		err = -LIBBPF_ERRNO__FORMAT;
1355 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1356 		goto errout;
1357 	}
1358 
1359 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1360 	if (!obj->efile.ehdr) {
1361 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1362 		err = -LIBBPF_ERRNO__FORMAT;
1363 		goto errout;
1364 	}
1365 
1366 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1367 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1368 			obj->path, elf_errmsg(-1));
1369 		err = -LIBBPF_ERRNO__FORMAT;
1370 		goto errout;
1371 	}
1372 
1373 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1374 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1375 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1376 			obj->path, elf_errmsg(-1));
1377 		err = -LIBBPF_ERRNO__FORMAT;
1378 		goto errout;
1379 	}
1380 
1381 	/* Old LLVM set e_machine to EM_NONE */
1382 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1383 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1384 		err = -LIBBPF_ERRNO__FORMAT;
1385 		goto errout;
1386 	}
1387 
1388 	return 0;
1389 errout:
1390 	bpf_object__elf_finish(obj);
1391 	return err;
1392 }
1393 
1394 static int bpf_object__check_endianness(struct bpf_object *obj)
1395 {
1396 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1397 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1398 		return 0;
1399 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1400 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1401 		return 0;
1402 #else
1403 # error "Unrecognized __BYTE_ORDER__"
1404 #endif
1405 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1406 	return -LIBBPF_ERRNO__ENDIAN;
1407 }
1408 
1409 static int
1410 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1411 {
1412 	if (!data) {
1413 		pr_warn("invalid license section in %s\n", obj->path);
1414 		return -LIBBPF_ERRNO__FORMAT;
1415 	}
1416 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1417 	 * go over allowed ELF data section buffer
1418 	 */
1419 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1420 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1421 	return 0;
1422 }
1423 
1424 static int
1425 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1426 {
1427 	__u32 kver;
1428 
1429 	if (!data || size != sizeof(kver)) {
1430 		pr_warn("invalid kver section in %s\n", obj->path);
1431 		return -LIBBPF_ERRNO__FORMAT;
1432 	}
1433 	memcpy(&kver, data, sizeof(kver));
1434 	obj->kern_version = kver;
1435 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1436 	return 0;
1437 }
1438 
1439 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1440 {
1441 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1442 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1443 		return true;
1444 	return false;
1445 }
1446 
1447 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1448 {
1449 	Elf_Data *data;
1450 	Elf_Scn *scn;
1451 
1452 	if (!name)
1453 		return -EINVAL;
1454 
1455 	scn = elf_sec_by_name(obj, name);
1456 	data = elf_sec_data(obj, scn);
1457 	if (data) {
1458 		*size = data->d_size;
1459 		return 0; /* found it */
1460 	}
1461 
1462 	return -ENOENT;
1463 }
1464 
1465 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1466 {
1467 	Elf_Data *symbols = obj->efile.symbols;
1468 	const char *sname;
1469 	size_t si;
1470 
1471 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1472 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1473 
1474 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1475 			continue;
1476 
1477 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1478 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1479 			continue;
1480 
1481 		sname = elf_sym_str(obj, sym->st_name);
1482 		if (!sname) {
1483 			pr_warn("failed to get sym name string for var %s\n", name);
1484 			return ERR_PTR(-EIO);
1485 		}
1486 		if (strcmp(name, sname) == 0)
1487 			return sym;
1488 	}
1489 
1490 	return ERR_PTR(-ENOENT);
1491 }
1492 
1493 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1494 {
1495 	struct bpf_map *map;
1496 	int err;
1497 
1498 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1499 				sizeof(*obj->maps), obj->nr_maps + 1);
1500 	if (err)
1501 		return ERR_PTR(err);
1502 
1503 	map = &obj->maps[obj->nr_maps++];
1504 	map->obj = obj;
1505 	map->fd = -1;
1506 	map->inner_map_fd = -1;
1507 	map->autocreate = true;
1508 
1509 	return map;
1510 }
1511 
1512 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1513 {
1514 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1515 	size_t map_sz;
1516 
1517 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1518 	map_sz = roundup(map_sz, page_sz);
1519 	return map_sz;
1520 }
1521 
1522 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1523 {
1524 	void *mmaped;
1525 
1526 	if (!map->mmaped)
1527 		return -EINVAL;
1528 
1529 	if (old_sz == new_sz)
1530 		return 0;
1531 
1532 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1533 	if (mmaped == MAP_FAILED)
1534 		return -errno;
1535 
1536 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1537 	munmap(map->mmaped, old_sz);
1538 	map->mmaped = mmaped;
1539 	return 0;
1540 }
1541 
1542 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1543 {
1544 	char map_name[BPF_OBJ_NAME_LEN], *p;
1545 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1546 
1547 	/* This is one of the more confusing parts of libbpf for various
1548 	 * reasons, some of which are historical. The original idea for naming
1549 	 * internal names was to include as much of BPF object name prefix as
1550 	 * possible, so that it can be distinguished from similar internal
1551 	 * maps of a different BPF object.
1552 	 * As an example, let's say we have bpf_object named 'my_object_name'
1553 	 * and internal map corresponding to '.rodata' ELF section. The final
1554 	 * map name advertised to user and to the kernel will be
1555 	 * 'my_objec.rodata', taking first 8 characters of object name and
1556 	 * entire 7 characters of '.rodata'.
1557 	 * Somewhat confusingly, if internal map ELF section name is shorter
1558 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1559 	 * for the suffix, even though we only have 4 actual characters, and
1560 	 * resulting map will be called 'my_objec.bss', not even using all 15
1561 	 * characters allowed by the kernel. Oh well, at least the truncated
1562 	 * object name is somewhat consistent in this case. But if the map
1563 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1564 	 * (8 chars) and thus will be left with only first 7 characters of the
1565 	 * object name ('my_obje'). Happy guessing, user, that the final map
1566 	 * name will be "my_obje.kconfig".
1567 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1568 	 * and .data.* data sections, it's possible that ELF section name is
1569 	 * longer than allowed 15 chars, so we now need to be careful to take
1570 	 * only up to 15 first characters of ELF name, taking no BPF object
1571 	 * name characters at all. So '.rodata.abracadabra' will result in
1572 	 * '.rodata.abracad' kernel and user-visible name.
1573 	 * We need to keep this convoluted logic intact for .data, .bss and
1574 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1575 	 * maps we use their ELF names as is, not prepending bpf_object name
1576 	 * in front. We still need to truncate them to 15 characters for the
1577 	 * kernel. Full name can be recovered for such maps by using DATASEC
1578 	 * BTF type associated with such map's value type, though.
1579 	 */
1580 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1581 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1582 
1583 	/* if there are two or more dots in map name, it's a custom dot map */
1584 	if (strchr(real_name + 1, '.') != NULL)
1585 		pfx_len = 0;
1586 	else
1587 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1588 
1589 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1590 		 sfx_len, real_name);
1591 
1592 	/* sanitise map name to characters allowed by kernel */
1593 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1594 		if (!isalnum(*p) && *p != '_' && *p != '.')
1595 			*p = '_';
1596 
1597 	return strdup(map_name);
1598 }
1599 
1600 static int
1601 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1602 
1603 /* Internal BPF map is mmap()'able only if at least one of corresponding
1604  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1605  * variable and it's not marked as __hidden (which turns it into, effectively,
1606  * a STATIC variable).
1607  */
1608 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1609 {
1610 	const struct btf_type *t, *vt;
1611 	struct btf_var_secinfo *vsi;
1612 	int i, n;
1613 
1614 	if (!map->btf_value_type_id)
1615 		return false;
1616 
1617 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1618 	if (!btf_is_datasec(t))
1619 		return false;
1620 
1621 	vsi = btf_var_secinfos(t);
1622 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1623 		vt = btf__type_by_id(obj->btf, vsi->type);
1624 		if (!btf_is_var(vt))
1625 			continue;
1626 
1627 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1628 			return true;
1629 	}
1630 
1631 	return false;
1632 }
1633 
1634 static int
1635 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1636 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1637 {
1638 	struct bpf_map_def *def;
1639 	struct bpf_map *map;
1640 	size_t mmap_sz;
1641 	int err;
1642 
1643 	map = bpf_object__add_map(obj);
1644 	if (IS_ERR(map))
1645 		return PTR_ERR(map);
1646 
1647 	map->libbpf_type = type;
1648 	map->sec_idx = sec_idx;
1649 	map->sec_offset = 0;
1650 	map->real_name = strdup(real_name);
1651 	map->name = internal_map_name(obj, real_name);
1652 	if (!map->real_name || !map->name) {
1653 		zfree(&map->real_name);
1654 		zfree(&map->name);
1655 		return -ENOMEM;
1656 	}
1657 
1658 	def = &map->def;
1659 	def->type = BPF_MAP_TYPE_ARRAY;
1660 	def->key_size = sizeof(int);
1661 	def->value_size = data_sz;
1662 	def->max_entries = 1;
1663 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1664 			 ? BPF_F_RDONLY_PROG : 0;
1665 
1666 	/* failures are fine because of maps like .rodata.str1.1 */
1667 	(void) map_fill_btf_type_info(obj, map);
1668 
1669 	if (map_is_mmapable(obj, map))
1670 		def->map_flags |= BPF_F_MMAPABLE;
1671 
1672 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1673 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1674 
1675 	mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1676 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1677 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1678 	if (map->mmaped == MAP_FAILED) {
1679 		err = -errno;
1680 		map->mmaped = NULL;
1681 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1682 			map->name, err);
1683 		zfree(&map->real_name);
1684 		zfree(&map->name);
1685 		return err;
1686 	}
1687 
1688 	if (data)
1689 		memcpy(map->mmaped, data, data_sz);
1690 
1691 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1692 	return 0;
1693 }
1694 
1695 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1696 {
1697 	struct elf_sec_desc *sec_desc;
1698 	const char *sec_name;
1699 	int err = 0, sec_idx;
1700 
1701 	/*
1702 	 * Populate obj->maps with libbpf internal maps.
1703 	 */
1704 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1705 		sec_desc = &obj->efile.secs[sec_idx];
1706 
1707 		/* Skip recognized sections with size 0. */
1708 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1709 			continue;
1710 
1711 		switch (sec_desc->sec_type) {
1712 		case SEC_DATA:
1713 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1714 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1715 							    sec_name, sec_idx,
1716 							    sec_desc->data->d_buf,
1717 							    sec_desc->data->d_size);
1718 			break;
1719 		case SEC_RODATA:
1720 			obj->has_rodata = true;
1721 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1722 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1723 							    sec_name, sec_idx,
1724 							    sec_desc->data->d_buf,
1725 							    sec_desc->data->d_size);
1726 			break;
1727 		case SEC_BSS:
1728 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1729 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1730 							    sec_name, sec_idx,
1731 							    NULL,
1732 							    sec_desc->data->d_size);
1733 			break;
1734 		default:
1735 			/* skip */
1736 			break;
1737 		}
1738 		if (err)
1739 			return err;
1740 	}
1741 	return 0;
1742 }
1743 
1744 
1745 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1746 					       const void *name)
1747 {
1748 	int i;
1749 
1750 	for (i = 0; i < obj->nr_extern; i++) {
1751 		if (strcmp(obj->externs[i].name, name) == 0)
1752 			return &obj->externs[i];
1753 	}
1754 	return NULL;
1755 }
1756 
1757 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1758 			      char value)
1759 {
1760 	switch (ext->kcfg.type) {
1761 	case KCFG_BOOL:
1762 		if (value == 'm') {
1763 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1764 				ext->name, value);
1765 			return -EINVAL;
1766 		}
1767 		*(bool *)ext_val = value == 'y' ? true : false;
1768 		break;
1769 	case KCFG_TRISTATE:
1770 		if (value == 'y')
1771 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1772 		else if (value == 'm')
1773 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1774 		else /* value == 'n' */
1775 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1776 		break;
1777 	case KCFG_CHAR:
1778 		*(char *)ext_val = value;
1779 		break;
1780 	case KCFG_UNKNOWN:
1781 	case KCFG_INT:
1782 	case KCFG_CHAR_ARR:
1783 	default:
1784 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1785 			ext->name, value);
1786 		return -EINVAL;
1787 	}
1788 	ext->is_set = true;
1789 	return 0;
1790 }
1791 
1792 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1793 			      const char *value)
1794 {
1795 	size_t len;
1796 
1797 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1798 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1799 			ext->name, value);
1800 		return -EINVAL;
1801 	}
1802 
1803 	len = strlen(value);
1804 	if (value[len - 1] != '"') {
1805 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1806 			ext->name, value);
1807 		return -EINVAL;
1808 	}
1809 
1810 	/* strip quotes */
1811 	len -= 2;
1812 	if (len >= ext->kcfg.sz) {
1813 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1814 			ext->name, value, len, ext->kcfg.sz - 1);
1815 		len = ext->kcfg.sz - 1;
1816 	}
1817 	memcpy(ext_val, value + 1, len);
1818 	ext_val[len] = '\0';
1819 	ext->is_set = true;
1820 	return 0;
1821 }
1822 
1823 static int parse_u64(const char *value, __u64 *res)
1824 {
1825 	char *value_end;
1826 	int err;
1827 
1828 	errno = 0;
1829 	*res = strtoull(value, &value_end, 0);
1830 	if (errno) {
1831 		err = -errno;
1832 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1833 		return err;
1834 	}
1835 	if (*value_end) {
1836 		pr_warn("failed to parse '%s' as integer completely\n", value);
1837 		return -EINVAL;
1838 	}
1839 	return 0;
1840 }
1841 
1842 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1843 {
1844 	int bit_sz = ext->kcfg.sz * 8;
1845 
1846 	if (ext->kcfg.sz == 8)
1847 		return true;
1848 
1849 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1850 	 * bytes size without any loss of information. If the target integer
1851 	 * is signed, we rely on the following limits of integer type of
1852 	 * Y bits and subsequent transformation:
1853 	 *
1854 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1855 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1856 	 *            0 <= X + 2^(Y-1) <  2^Y
1857 	 *
1858 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1859 	 *  zero.
1860 	 */
1861 	if (ext->kcfg.is_signed)
1862 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1863 	else
1864 		return (v >> bit_sz) == 0;
1865 }
1866 
1867 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1868 			      __u64 value)
1869 {
1870 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1871 	    ext->kcfg.type != KCFG_BOOL) {
1872 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1873 			ext->name, (unsigned long long)value);
1874 		return -EINVAL;
1875 	}
1876 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1877 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1878 			ext->name, (unsigned long long)value);
1879 		return -EINVAL;
1880 
1881 	}
1882 	if (!is_kcfg_value_in_range(ext, value)) {
1883 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1884 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1885 		return -ERANGE;
1886 	}
1887 	switch (ext->kcfg.sz) {
1888 	case 1:
1889 		*(__u8 *)ext_val = value;
1890 		break;
1891 	case 2:
1892 		*(__u16 *)ext_val = value;
1893 		break;
1894 	case 4:
1895 		*(__u32 *)ext_val = value;
1896 		break;
1897 	case 8:
1898 		*(__u64 *)ext_val = value;
1899 		break;
1900 	default:
1901 		return -EINVAL;
1902 	}
1903 	ext->is_set = true;
1904 	return 0;
1905 }
1906 
1907 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1908 					    char *buf, void *data)
1909 {
1910 	struct extern_desc *ext;
1911 	char *sep, *value;
1912 	int len, err = 0;
1913 	void *ext_val;
1914 	__u64 num;
1915 
1916 	if (!str_has_pfx(buf, "CONFIG_"))
1917 		return 0;
1918 
1919 	sep = strchr(buf, '=');
1920 	if (!sep) {
1921 		pr_warn("failed to parse '%s': no separator\n", buf);
1922 		return -EINVAL;
1923 	}
1924 
1925 	/* Trim ending '\n' */
1926 	len = strlen(buf);
1927 	if (buf[len - 1] == '\n')
1928 		buf[len - 1] = '\0';
1929 	/* Split on '=' and ensure that a value is present. */
1930 	*sep = '\0';
1931 	if (!sep[1]) {
1932 		*sep = '=';
1933 		pr_warn("failed to parse '%s': no value\n", buf);
1934 		return -EINVAL;
1935 	}
1936 
1937 	ext = find_extern_by_name(obj, buf);
1938 	if (!ext || ext->is_set)
1939 		return 0;
1940 
1941 	ext_val = data + ext->kcfg.data_off;
1942 	value = sep + 1;
1943 
1944 	switch (*value) {
1945 	case 'y': case 'n': case 'm':
1946 		err = set_kcfg_value_tri(ext, ext_val, *value);
1947 		break;
1948 	case '"':
1949 		err = set_kcfg_value_str(ext, ext_val, value);
1950 		break;
1951 	default:
1952 		/* assume integer */
1953 		err = parse_u64(value, &num);
1954 		if (err) {
1955 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1956 			return err;
1957 		}
1958 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1959 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1960 			return -EINVAL;
1961 		}
1962 		err = set_kcfg_value_num(ext, ext_val, num);
1963 		break;
1964 	}
1965 	if (err)
1966 		return err;
1967 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1968 	return 0;
1969 }
1970 
1971 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1972 {
1973 	char buf[PATH_MAX];
1974 	struct utsname uts;
1975 	int len, err = 0;
1976 	gzFile file;
1977 
1978 	uname(&uts);
1979 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1980 	if (len < 0)
1981 		return -EINVAL;
1982 	else if (len >= PATH_MAX)
1983 		return -ENAMETOOLONG;
1984 
1985 	/* gzopen also accepts uncompressed files. */
1986 	file = gzopen(buf, "re");
1987 	if (!file)
1988 		file = gzopen("/proc/config.gz", "re");
1989 
1990 	if (!file) {
1991 		pr_warn("failed to open system Kconfig\n");
1992 		return -ENOENT;
1993 	}
1994 
1995 	while (gzgets(file, buf, sizeof(buf))) {
1996 		err = bpf_object__process_kconfig_line(obj, buf, data);
1997 		if (err) {
1998 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1999 				buf, err);
2000 			goto out;
2001 		}
2002 	}
2003 
2004 out:
2005 	gzclose(file);
2006 	return err;
2007 }
2008 
2009 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2010 					const char *config, void *data)
2011 {
2012 	char buf[PATH_MAX];
2013 	int err = 0;
2014 	FILE *file;
2015 
2016 	file = fmemopen((void *)config, strlen(config), "r");
2017 	if (!file) {
2018 		err = -errno;
2019 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2020 		return err;
2021 	}
2022 
2023 	while (fgets(buf, sizeof(buf), file)) {
2024 		err = bpf_object__process_kconfig_line(obj, buf, data);
2025 		if (err) {
2026 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2027 				buf, err);
2028 			break;
2029 		}
2030 	}
2031 
2032 	fclose(file);
2033 	return err;
2034 }
2035 
2036 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2037 {
2038 	struct extern_desc *last_ext = NULL, *ext;
2039 	size_t map_sz;
2040 	int i, err;
2041 
2042 	for (i = 0; i < obj->nr_extern; i++) {
2043 		ext = &obj->externs[i];
2044 		if (ext->type == EXT_KCFG)
2045 			last_ext = ext;
2046 	}
2047 
2048 	if (!last_ext)
2049 		return 0;
2050 
2051 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2052 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2053 					    ".kconfig", obj->efile.symbols_shndx,
2054 					    NULL, map_sz);
2055 	if (err)
2056 		return err;
2057 
2058 	obj->kconfig_map_idx = obj->nr_maps - 1;
2059 
2060 	return 0;
2061 }
2062 
2063 const struct btf_type *
2064 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2065 {
2066 	const struct btf_type *t = btf__type_by_id(btf, id);
2067 
2068 	if (res_id)
2069 		*res_id = id;
2070 
2071 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2072 		if (res_id)
2073 			*res_id = t->type;
2074 		t = btf__type_by_id(btf, t->type);
2075 	}
2076 
2077 	return t;
2078 }
2079 
2080 static const struct btf_type *
2081 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2082 {
2083 	const struct btf_type *t;
2084 
2085 	t = skip_mods_and_typedefs(btf, id, NULL);
2086 	if (!btf_is_ptr(t))
2087 		return NULL;
2088 
2089 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2090 
2091 	return btf_is_func_proto(t) ? t : NULL;
2092 }
2093 
2094 static const char *__btf_kind_str(__u16 kind)
2095 {
2096 	switch (kind) {
2097 	case BTF_KIND_UNKN: return "void";
2098 	case BTF_KIND_INT: return "int";
2099 	case BTF_KIND_PTR: return "ptr";
2100 	case BTF_KIND_ARRAY: return "array";
2101 	case BTF_KIND_STRUCT: return "struct";
2102 	case BTF_KIND_UNION: return "union";
2103 	case BTF_KIND_ENUM: return "enum";
2104 	case BTF_KIND_FWD: return "fwd";
2105 	case BTF_KIND_TYPEDEF: return "typedef";
2106 	case BTF_KIND_VOLATILE: return "volatile";
2107 	case BTF_KIND_CONST: return "const";
2108 	case BTF_KIND_RESTRICT: return "restrict";
2109 	case BTF_KIND_FUNC: return "func";
2110 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2111 	case BTF_KIND_VAR: return "var";
2112 	case BTF_KIND_DATASEC: return "datasec";
2113 	case BTF_KIND_FLOAT: return "float";
2114 	case BTF_KIND_DECL_TAG: return "decl_tag";
2115 	case BTF_KIND_TYPE_TAG: return "type_tag";
2116 	case BTF_KIND_ENUM64: return "enum64";
2117 	default: return "unknown";
2118 	}
2119 }
2120 
2121 const char *btf_kind_str(const struct btf_type *t)
2122 {
2123 	return __btf_kind_str(btf_kind(t));
2124 }
2125 
2126 /*
2127  * Fetch integer attribute of BTF map definition. Such attributes are
2128  * represented using a pointer to an array, in which dimensionality of array
2129  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2130  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2131  * type definition, while using only sizeof(void *) space in ELF data section.
2132  */
2133 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2134 			      const struct btf_member *m, __u32 *res)
2135 {
2136 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2137 	const char *name = btf__name_by_offset(btf, m->name_off);
2138 	const struct btf_array *arr_info;
2139 	const struct btf_type *arr_t;
2140 
2141 	if (!btf_is_ptr(t)) {
2142 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2143 			map_name, name, btf_kind_str(t));
2144 		return false;
2145 	}
2146 
2147 	arr_t = btf__type_by_id(btf, t->type);
2148 	if (!arr_t) {
2149 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2150 			map_name, name, t->type);
2151 		return false;
2152 	}
2153 	if (!btf_is_array(arr_t)) {
2154 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2155 			map_name, name, btf_kind_str(arr_t));
2156 		return false;
2157 	}
2158 	arr_info = btf_array(arr_t);
2159 	*res = arr_info->nelems;
2160 	return true;
2161 }
2162 
2163 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2164 {
2165 	int len;
2166 
2167 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2168 	if (len < 0)
2169 		return -EINVAL;
2170 	if (len >= buf_sz)
2171 		return -ENAMETOOLONG;
2172 
2173 	return 0;
2174 }
2175 
2176 static int build_map_pin_path(struct bpf_map *map, const char *path)
2177 {
2178 	char buf[PATH_MAX];
2179 	int err;
2180 
2181 	if (!path)
2182 		path = "/sys/fs/bpf";
2183 
2184 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2185 	if (err)
2186 		return err;
2187 
2188 	return bpf_map__set_pin_path(map, buf);
2189 }
2190 
2191 /* should match definition in bpf_helpers.h */
2192 enum libbpf_pin_type {
2193 	LIBBPF_PIN_NONE,
2194 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2195 	LIBBPF_PIN_BY_NAME,
2196 };
2197 
2198 int parse_btf_map_def(const char *map_name, struct btf *btf,
2199 		      const struct btf_type *def_t, bool strict,
2200 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2201 {
2202 	const struct btf_type *t;
2203 	const struct btf_member *m;
2204 	bool is_inner = inner_def == NULL;
2205 	int vlen, i;
2206 
2207 	vlen = btf_vlen(def_t);
2208 	m = btf_members(def_t);
2209 	for (i = 0; i < vlen; i++, m++) {
2210 		const char *name = btf__name_by_offset(btf, m->name_off);
2211 
2212 		if (!name) {
2213 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2214 			return -EINVAL;
2215 		}
2216 		if (strcmp(name, "type") == 0) {
2217 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2218 				return -EINVAL;
2219 			map_def->parts |= MAP_DEF_MAP_TYPE;
2220 		} else if (strcmp(name, "max_entries") == 0) {
2221 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2222 				return -EINVAL;
2223 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2224 		} else if (strcmp(name, "map_flags") == 0) {
2225 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2226 				return -EINVAL;
2227 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2228 		} else if (strcmp(name, "numa_node") == 0) {
2229 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2230 				return -EINVAL;
2231 			map_def->parts |= MAP_DEF_NUMA_NODE;
2232 		} else if (strcmp(name, "key_size") == 0) {
2233 			__u32 sz;
2234 
2235 			if (!get_map_field_int(map_name, btf, m, &sz))
2236 				return -EINVAL;
2237 			if (map_def->key_size && map_def->key_size != sz) {
2238 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2239 					map_name, map_def->key_size, sz);
2240 				return -EINVAL;
2241 			}
2242 			map_def->key_size = sz;
2243 			map_def->parts |= MAP_DEF_KEY_SIZE;
2244 		} else if (strcmp(name, "key") == 0) {
2245 			__s64 sz;
2246 
2247 			t = btf__type_by_id(btf, m->type);
2248 			if (!t) {
2249 				pr_warn("map '%s': key type [%d] not found.\n",
2250 					map_name, m->type);
2251 				return -EINVAL;
2252 			}
2253 			if (!btf_is_ptr(t)) {
2254 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2255 					map_name, btf_kind_str(t));
2256 				return -EINVAL;
2257 			}
2258 			sz = btf__resolve_size(btf, t->type);
2259 			if (sz < 0) {
2260 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2261 					map_name, t->type, (ssize_t)sz);
2262 				return sz;
2263 			}
2264 			if (map_def->key_size && map_def->key_size != sz) {
2265 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2266 					map_name, map_def->key_size, (ssize_t)sz);
2267 				return -EINVAL;
2268 			}
2269 			map_def->key_size = sz;
2270 			map_def->key_type_id = t->type;
2271 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2272 		} else if (strcmp(name, "value_size") == 0) {
2273 			__u32 sz;
2274 
2275 			if (!get_map_field_int(map_name, btf, m, &sz))
2276 				return -EINVAL;
2277 			if (map_def->value_size && map_def->value_size != sz) {
2278 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2279 					map_name, map_def->value_size, sz);
2280 				return -EINVAL;
2281 			}
2282 			map_def->value_size = sz;
2283 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2284 		} else if (strcmp(name, "value") == 0) {
2285 			__s64 sz;
2286 
2287 			t = btf__type_by_id(btf, m->type);
2288 			if (!t) {
2289 				pr_warn("map '%s': value type [%d] not found.\n",
2290 					map_name, m->type);
2291 				return -EINVAL;
2292 			}
2293 			if (!btf_is_ptr(t)) {
2294 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2295 					map_name, btf_kind_str(t));
2296 				return -EINVAL;
2297 			}
2298 			sz = btf__resolve_size(btf, t->type);
2299 			if (sz < 0) {
2300 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2301 					map_name, t->type, (ssize_t)sz);
2302 				return sz;
2303 			}
2304 			if (map_def->value_size && map_def->value_size != sz) {
2305 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2306 					map_name, map_def->value_size, (ssize_t)sz);
2307 				return -EINVAL;
2308 			}
2309 			map_def->value_size = sz;
2310 			map_def->value_type_id = t->type;
2311 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2312 		}
2313 		else if (strcmp(name, "values") == 0) {
2314 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2315 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2316 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2317 			char inner_map_name[128];
2318 			int err;
2319 
2320 			if (is_inner) {
2321 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2322 					map_name);
2323 				return -ENOTSUP;
2324 			}
2325 			if (i != vlen - 1) {
2326 				pr_warn("map '%s': '%s' member should be last.\n",
2327 					map_name, name);
2328 				return -EINVAL;
2329 			}
2330 			if (!is_map_in_map && !is_prog_array) {
2331 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2332 					map_name);
2333 				return -ENOTSUP;
2334 			}
2335 			if (map_def->value_size && map_def->value_size != 4) {
2336 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2337 					map_name, map_def->value_size);
2338 				return -EINVAL;
2339 			}
2340 			map_def->value_size = 4;
2341 			t = btf__type_by_id(btf, m->type);
2342 			if (!t) {
2343 				pr_warn("map '%s': %s type [%d] not found.\n",
2344 					map_name, desc, m->type);
2345 				return -EINVAL;
2346 			}
2347 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2348 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2349 					map_name, desc);
2350 				return -EINVAL;
2351 			}
2352 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2353 			if (!btf_is_ptr(t)) {
2354 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2355 					map_name, desc, btf_kind_str(t));
2356 				return -EINVAL;
2357 			}
2358 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2359 			if (is_prog_array) {
2360 				if (!btf_is_func_proto(t)) {
2361 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2362 						map_name, btf_kind_str(t));
2363 					return -EINVAL;
2364 				}
2365 				continue;
2366 			}
2367 			if (!btf_is_struct(t)) {
2368 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2369 					map_name, btf_kind_str(t));
2370 				return -EINVAL;
2371 			}
2372 
2373 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2374 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2375 			if (err)
2376 				return err;
2377 
2378 			map_def->parts |= MAP_DEF_INNER_MAP;
2379 		} else if (strcmp(name, "pinning") == 0) {
2380 			__u32 val;
2381 
2382 			if (is_inner) {
2383 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2384 				return -EINVAL;
2385 			}
2386 			if (!get_map_field_int(map_name, btf, m, &val))
2387 				return -EINVAL;
2388 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2389 				pr_warn("map '%s': invalid pinning value %u.\n",
2390 					map_name, val);
2391 				return -EINVAL;
2392 			}
2393 			map_def->pinning = val;
2394 			map_def->parts |= MAP_DEF_PINNING;
2395 		} else if (strcmp(name, "map_extra") == 0) {
2396 			__u32 map_extra;
2397 
2398 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2399 				return -EINVAL;
2400 			map_def->map_extra = map_extra;
2401 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2402 		} else {
2403 			if (strict) {
2404 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2405 				return -ENOTSUP;
2406 			}
2407 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2408 		}
2409 	}
2410 
2411 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2412 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2413 		return -EINVAL;
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 static size_t adjust_ringbuf_sz(size_t sz)
2420 {
2421 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2422 	__u32 mul;
2423 
2424 	/* if user forgot to set any size, make sure they see error */
2425 	if (sz == 0)
2426 		return 0;
2427 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2428 	 * a power-of-2 multiple of kernel's page size. If user diligently
2429 	 * satisified these conditions, pass the size through.
2430 	 */
2431 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2432 		return sz;
2433 
2434 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2435 	 * user-set size to satisfy both user size request and kernel
2436 	 * requirements and substitute correct max_entries for map creation.
2437 	 */
2438 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2439 		if (mul * page_sz > sz)
2440 			return mul * page_sz;
2441 	}
2442 
2443 	/* if it's impossible to satisfy the conditions (i.e., user size is
2444 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2445 	 * page_size) then just return original size and let kernel reject it
2446 	 */
2447 	return sz;
2448 }
2449 
2450 static bool map_is_ringbuf(const struct bpf_map *map)
2451 {
2452 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2453 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2454 }
2455 
2456 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2457 {
2458 	map->def.type = def->map_type;
2459 	map->def.key_size = def->key_size;
2460 	map->def.value_size = def->value_size;
2461 	map->def.max_entries = def->max_entries;
2462 	map->def.map_flags = def->map_flags;
2463 	map->map_extra = def->map_extra;
2464 
2465 	map->numa_node = def->numa_node;
2466 	map->btf_key_type_id = def->key_type_id;
2467 	map->btf_value_type_id = def->value_type_id;
2468 
2469 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2470 	if (map_is_ringbuf(map))
2471 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2472 
2473 	if (def->parts & MAP_DEF_MAP_TYPE)
2474 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2475 
2476 	if (def->parts & MAP_DEF_KEY_TYPE)
2477 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2478 			 map->name, def->key_type_id, def->key_size);
2479 	else if (def->parts & MAP_DEF_KEY_SIZE)
2480 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2481 
2482 	if (def->parts & MAP_DEF_VALUE_TYPE)
2483 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2484 			 map->name, def->value_type_id, def->value_size);
2485 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2486 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2487 
2488 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2489 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2490 	if (def->parts & MAP_DEF_MAP_FLAGS)
2491 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2492 	if (def->parts & MAP_DEF_MAP_EXTRA)
2493 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2494 			 (unsigned long long)def->map_extra);
2495 	if (def->parts & MAP_DEF_PINNING)
2496 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2497 	if (def->parts & MAP_DEF_NUMA_NODE)
2498 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2499 
2500 	if (def->parts & MAP_DEF_INNER_MAP)
2501 		pr_debug("map '%s': found inner map definition.\n", map->name);
2502 }
2503 
2504 static const char *btf_var_linkage_str(__u32 linkage)
2505 {
2506 	switch (linkage) {
2507 	case BTF_VAR_STATIC: return "static";
2508 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2509 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2510 	default: return "unknown";
2511 	}
2512 }
2513 
2514 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2515 					 const struct btf_type *sec,
2516 					 int var_idx, int sec_idx,
2517 					 const Elf_Data *data, bool strict,
2518 					 const char *pin_root_path)
2519 {
2520 	struct btf_map_def map_def = {}, inner_def = {};
2521 	const struct btf_type *var, *def;
2522 	const struct btf_var_secinfo *vi;
2523 	const struct btf_var *var_extra;
2524 	const char *map_name;
2525 	struct bpf_map *map;
2526 	int err;
2527 
2528 	vi = btf_var_secinfos(sec) + var_idx;
2529 	var = btf__type_by_id(obj->btf, vi->type);
2530 	var_extra = btf_var(var);
2531 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2532 
2533 	if (map_name == NULL || map_name[0] == '\0') {
2534 		pr_warn("map #%d: empty name.\n", var_idx);
2535 		return -EINVAL;
2536 	}
2537 	if ((__u64)vi->offset + vi->size > data->d_size) {
2538 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2539 		return -EINVAL;
2540 	}
2541 	if (!btf_is_var(var)) {
2542 		pr_warn("map '%s': unexpected var kind %s.\n",
2543 			map_name, btf_kind_str(var));
2544 		return -EINVAL;
2545 	}
2546 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2547 		pr_warn("map '%s': unsupported map linkage %s.\n",
2548 			map_name, btf_var_linkage_str(var_extra->linkage));
2549 		return -EOPNOTSUPP;
2550 	}
2551 
2552 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2553 	if (!btf_is_struct(def)) {
2554 		pr_warn("map '%s': unexpected def kind %s.\n",
2555 			map_name, btf_kind_str(var));
2556 		return -EINVAL;
2557 	}
2558 	if (def->size > vi->size) {
2559 		pr_warn("map '%s': invalid def size.\n", map_name);
2560 		return -EINVAL;
2561 	}
2562 
2563 	map = bpf_object__add_map(obj);
2564 	if (IS_ERR(map))
2565 		return PTR_ERR(map);
2566 	map->name = strdup(map_name);
2567 	if (!map->name) {
2568 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2569 		return -ENOMEM;
2570 	}
2571 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2572 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2573 	map->sec_idx = sec_idx;
2574 	map->sec_offset = vi->offset;
2575 	map->btf_var_idx = var_idx;
2576 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2577 		 map_name, map->sec_idx, map->sec_offset);
2578 
2579 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2580 	if (err)
2581 		return err;
2582 
2583 	fill_map_from_def(map, &map_def);
2584 
2585 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2586 		err = build_map_pin_path(map, pin_root_path);
2587 		if (err) {
2588 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2589 			return err;
2590 		}
2591 	}
2592 
2593 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2594 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2595 		if (!map->inner_map)
2596 			return -ENOMEM;
2597 		map->inner_map->fd = -1;
2598 		map->inner_map->sec_idx = sec_idx;
2599 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2600 		if (!map->inner_map->name)
2601 			return -ENOMEM;
2602 		sprintf(map->inner_map->name, "%s.inner", map_name);
2603 
2604 		fill_map_from_def(map->inner_map, &inner_def);
2605 	}
2606 
2607 	err = map_fill_btf_type_info(obj, map);
2608 	if (err)
2609 		return err;
2610 
2611 	return 0;
2612 }
2613 
2614 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2615 					  const char *pin_root_path)
2616 {
2617 	const struct btf_type *sec = NULL;
2618 	int nr_types, i, vlen, err;
2619 	const struct btf_type *t;
2620 	const char *name;
2621 	Elf_Data *data;
2622 	Elf_Scn *scn;
2623 
2624 	if (obj->efile.btf_maps_shndx < 0)
2625 		return 0;
2626 
2627 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2628 	data = elf_sec_data(obj, scn);
2629 	if (!scn || !data) {
2630 		pr_warn("elf: failed to get %s map definitions for %s\n",
2631 			MAPS_ELF_SEC, obj->path);
2632 		return -EINVAL;
2633 	}
2634 
2635 	nr_types = btf__type_cnt(obj->btf);
2636 	for (i = 1; i < nr_types; i++) {
2637 		t = btf__type_by_id(obj->btf, i);
2638 		if (!btf_is_datasec(t))
2639 			continue;
2640 		name = btf__name_by_offset(obj->btf, t->name_off);
2641 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2642 			sec = t;
2643 			obj->efile.btf_maps_sec_btf_id = i;
2644 			break;
2645 		}
2646 	}
2647 
2648 	if (!sec) {
2649 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2650 		return -ENOENT;
2651 	}
2652 
2653 	vlen = btf_vlen(sec);
2654 	for (i = 0; i < vlen; i++) {
2655 		err = bpf_object__init_user_btf_map(obj, sec, i,
2656 						    obj->efile.btf_maps_shndx,
2657 						    data, strict,
2658 						    pin_root_path);
2659 		if (err)
2660 			return err;
2661 	}
2662 
2663 	return 0;
2664 }
2665 
2666 static int bpf_object__init_maps(struct bpf_object *obj,
2667 				 const struct bpf_object_open_opts *opts)
2668 {
2669 	const char *pin_root_path;
2670 	bool strict;
2671 	int err = 0;
2672 
2673 	strict = !OPTS_GET(opts, relaxed_maps, false);
2674 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2675 
2676 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2677 	err = err ?: bpf_object__init_global_data_maps(obj);
2678 	err = err ?: bpf_object__init_kconfig_map(obj);
2679 	err = err ?: bpf_object_init_struct_ops(obj);
2680 
2681 	return err;
2682 }
2683 
2684 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2685 {
2686 	Elf64_Shdr *sh;
2687 
2688 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2689 	if (!sh)
2690 		return false;
2691 
2692 	return sh->sh_flags & SHF_EXECINSTR;
2693 }
2694 
2695 static bool btf_needs_sanitization(struct bpf_object *obj)
2696 {
2697 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2698 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2699 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2700 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2701 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2702 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2703 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2704 
2705 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2706 	       !has_decl_tag || !has_type_tag || !has_enum64;
2707 }
2708 
2709 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2710 {
2711 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2712 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2713 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2714 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2715 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2716 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2717 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2718 	int enum64_placeholder_id = 0;
2719 	struct btf_type *t;
2720 	int i, j, vlen;
2721 
2722 	for (i = 1; i < btf__type_cnt(btf); i++) {
2723 		t = (struct btf_type *)btf__type_by_id(btf, i);
2724 
2725 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2726 			/* replace VAR/DECL_TAG with INT */
2727 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2728 			/*
2729 			 * using size = 1 is the safest choice, 4 will be too
2730 			 * big and cause kernel BTF validation failure if
2731 			 * original variable took less than 4 bytes
2732 			 */
2733 			t->size = 1;
2734 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2735 		} else if (!has_datasec && btf_is_datasec(t)) {
2736 			/* replace DATASEC with STRUCT */
2737 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2738 			struct btf_member *m = btf_members(t);
2739 			struct btf_type *vt;
2740 			char *name;
2741 
2742 			name = (char *)btf__name_by_offset(btf, t->name_off);
2743 			while (*name) {
2744 				if (*name == '.')
2745 					*name = '_';
2746 				name++;
2747 			}
2748 
2749 			vlen = btf_vlen(t);
2750 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2751 			for (j = 0; j < vlen; j++, v++, m++) {
2752 				/* order of field assignments is important */
2753 				m->offset = v->offset * 8;
2754 				m->type = v->type;
2755 				/* preserve variable name as member name */
2756 				vt = (void *)btf__type_by_id(btf, v->type);
2757 				m->name_off = vt->name_off;
2758 			}
2759 		} else if (!has_func && btf_is_func_proto(t)) {
2760 			/* replace FUNC_PROTO with ENUM */
2761 			vlen = btf_vlen(t);
2762 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2763 			t->size = sizeof(__u32); /* kernel enforced */
2764 		} else if (!has_func && btf_is_func(t)) {
2765 			/* replace FUNC with TYPEDEF */
2766 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2767 		} else if (!has_func_global && btf_is_func(t)) {
2768 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2769 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2770 		} else if (!has_float && btf_is_float(t)) {
2771 			/* replace FLOAT with an equally-sized empty STRUCT;
2772 			 * since C compilers do not accept e.g. "float" as a
2773 			 * valid struct name, make it anonymous
2774 			 */
2775 			t->name_off = 0;
2776 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2777 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2778 			/* replace TYPE_TAG with a CONST */
2779 			t->name_off = 0;
2780 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2781 		} else if (!has_enum64 && btf_is_enum(t)) {
2782 			/* clear the kflag */
2783 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2784 		} else if (!has_enum64 && btf_is_enum64(t)) {
2785 			/* replace ENUM64 with a union */
2786 			struct btf_member *m;
2787 
2788 			if (enum64_placeholder_id == 0) {
2789 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2790 				if (enum64_placeholder_id < 0)
2791 					return enum64_placeholder_id;
2792 
2793 				t = (struct btf_type *)btf__type_by_id(btf, i);
2794 			}
2795 
2796 			m = btf_members(t);
2797 			vlen = btf_vlen(t);
2798 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2799 			for (j = 0; j < vlen; j++, m++) {
2800 				m->type = enum64_placeholder_id;
2801 				m->offset = 0;
2802 			}
2803 		}
2804 	}
2805 
2806 	return 0;
2807 }
2808 
2809 static bool libbpf_needs_btf(const struct bpf_object *obj)
2810 {
2811 	return obj->efile.btf_maps_shndx >= 0 ||
2812 	       obj->efile.st_ops_shndx >= 0 ||
2813 	       obj->efile.st_ops_link_shndx >= 0 ||
2814 	       obj->nr_extern > 0;
2815 }
2816 
2817 static bool kernel_needs_btf(const struct bpf_object *obj)
2818 {
2819 	return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2820 }
2821 
2822 static int bpf_object__init_btf(struct bpf_object *obj,
2823 				Elf_Data *btf_data,
2824 				Elf_Data *btf_ext_data)
2825 {
2826 	int err = -ENOENT;
2827 
2828 	if (btf_data) {
2829 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2830 		err = libbpf_get_error(obj->btf);
2831 		if (err) {
2832 			obj->btf = NULL;
2833 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2834 			goto out;
2835 		}
2836 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2837 		btf__set_pointer_size(obj->btf, 8);
2838 	}
2839 	if (btf_ext_data) {
2840 		struct btf_ext_info *ext_segs[3];
2841 		int seg_num, sec_num;
2842 
2843 		if (!obj->btf) {
2844 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2845 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2846 			goto out;
2847 		}
2848 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2849 		err = libbpf_get_error(obj->btf_ext);
2850 		if (err) {
2851 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2852 				BTF_EXT_ELF_SEC, err);
2853 			obj->btf_ext = NULL;
2854 			goto out;
2855 		}
2856 
2857 		/* setup .BTF.ext to ELF section mapping */
2858 		ext_segs[0] = &obj->btf_ext->func_info;
2859 		ext_segs[1] = &obj->btf_ext->line_info;
2860 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2861 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2862 			struct btf_ext_info *seg = ext_segs[seg_num];
2863 			const struct btf_ext_info_sec *sec;
2864 			const char *sec_name;
2865 			Elf_Scn *scn;
2866 
2867 			if (seg->sec_cnt == 0)
2868 				continue;
2869 
2870 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2871 			if (!seg->sec_idxs) {
2872 				err = -ENOMEM;
2873 				goto out;
2874 			}
2875 
2876 			sec_num = 0;
2877 			for_each_btf_ext_sec(seg, sec) {
2878 				/* preventively increment index to avoid doing
2879 				 * this before every continue below
2880 				 */
2881 				sec_num++;
2882 
2883 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2884 				if (str_is_empty(sec_name))
2885 					continue;
2886 				scn = elf_sec_by_name(obj, sec_name);
2887 				if (!scn)
2888 					continue;
2889 
2890 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2891 			}
2892 		}
2893 	}
2894 out:
2895 	if (err && libbpf_needs_btf(obj)) {
2896 		pr_warn("BTF is required, but is missing or corrupted.\n");
2897 		return err;
2898 	}
2899 	return 0;
2900 }
2901 
2902 static int compare_vsi_off(const void *_a, const void *_b)
2903 {
2904 	const struct btf_var_secinfo *a = _a;
2905 	const struct btf_var_secinfo *b = _b;
2906 
2907 	return a->offset - b->offset;
2908 }
2909 
2910 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2911 			     struct btf_type *t)
2912 {
2913 	__u32 size = 0, i, vars = btf_vlen(t);
2914 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2915 	struct btf_var_secinfo *vsi;
2916 	bool fixup_offsets = false;
2917 	int err;
2918 
2919 	if (!sec_name) {
2920 		pr_debug("No name found in string section for DATASEC kind.\n");
2921 		return -ENOENT;
2922 	}
2923 
2924 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2925 	 * variable offsets set at the previous step. Further, not every
2926 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2927 	 * all fixups altogether for such sections and go straight to sorting
2928 	 * VARs within their DATASEC.
2929 	 */
2930 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2931 		goto sort_vars;
2932 
2933 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2934 	 * fix this up. But BPF static linker already fixes this up and fills
2935 	 * all the sizes and offsets during static linking. So this step has
2936 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2937 	 * non-extern DATASEC, so the variable fixup loop below handles both
2938 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2939 	 * symbol matching just once.
2940 	 */
2941 	if (t->size == 0) {
2942 		err = find_elf_sec_sz(obj, sec_name, &size);
2943 		if (err || !size) {
2944 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2945 				 sec_name, size, err);
2946 			return -ENOENT;
2947 		}
2948 
2949 		t->size = size;
2950 		fixup_offsets = true;
2951 	}
2952 
2953 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2954 		const struct btf_type *t_var;
2955 		struct btf_var *var;
2956 		const char *var_name;
2957 		Elf64_Sym *sym;
2958 
2959 		t_var = btf__type_by_id(btf, vsi->type);
2960 		if (!t_var || !btf_is_var(t_var)) {
2961 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2962 			return -EINVAL;
2963 		}
2964 
2965 		var = btf_var(t_var);
2966 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2967 			continue;
2968 
2969 		var_name = btf__name_by_offset(btf, t_var->name_off);
2970 		if (!var_name) {
2971 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2972 				 sec_name, i);
2973 			return -ENOENT;
2974 		}
2975 
2976 		sym = find_elf_var_sym(obj, var_name);
2977 		if (IS_ERR(sym)) {
2978 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2979 				 sec_name, var_name);
2980 			return -ENOENT;
2981 		}
2982 
2983 		if (fixup_offsets)
2984 			vsi->offset = sym->st_value;
2985 
2986 		/* if variable is a global/weak symbol, but has restricted
2987 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2988 		 * as static. This follows similar logic for functions (BPF
2989 		 * subprogs) and influences libbpf's further decisions about
2990 		 * whether to make global data BPF array maps as
2991 		 * BPF_F_MMAPABLE.
2992 		 */
2993 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2994 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2995 			var->linkage = BTF_VAR_STATIC;
2996 	}
2997 
2998 sort_vars:
2999 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3000 	return 0;
3001 }
3002 
3003 static int bpf_object_fixup_btf(struct bpf_object *obj)
3004 {
3005 	int i, n, err = 0;
3006 
3007 	if (!obj->btf)
3008 		return 0;
3009 
3010 	n = btf__type_cnt(obj->btf);
3011 	for (i = 1; i < n; i++) {
3012 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3013 
3014 		/* Loader needs to fix up some of the things compiler
3015 		 * couldn't get its hands on while emitting BTF. This
3016 		 * is section size and global variable offset. We use
3017 		 * the info from the ELF itself for this purpose.
3018 		 */
3019 		if (btf_is_datasec(t)) {
3020 			err = btf_fixup_datasec(obj, obj->btf, t);
3021 			if (err)
3022 				return err;
3023 		}
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3030 {
3031 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3032 	    prog->type == BPF_PROG_TYPE_LSM)
3033 		return true;
3034 
3035 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3036 	 * also need vmlinux BTF
3037 	 */
3038 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3039 		return true;
3040 
3041 	return false;
3042 }
3043 
3044 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3045 {
3046 	struct bpf_program *prog;
3047 	int i;
3048 
3049 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3050 	 * is not specified
3051 	 */
3052 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3053 		return true;
3054 
3055 	/* Support for typed ksyms needs kernel BTF */
3056 	for (i = 0; i < obj->nr_extern; i++) {
3057 		const struct extern_desc *ext;
3058 
3059 		ext = &obj->externs[i];
3060 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3061 			return true;
3062 	}
3063 
3064 	bpf_object__for_each_program(prog, obj) {
3065 		if (!prog->autoload)
3066 			continue;
3067 		if (prog_needs_vmlinux_btf(prog))
3068 			return true;
3069 	}
3070 
3071 	return false;
3072 }
3073 
3074 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3075 {
3076 	int err;
3077 
3078 	/* btf_vmlinux could be loaded earlier */
3079 	if (obj->btf_vmlinux || obj->gen_loader)
3080 		return 0;
3081 
3082 	if (!force && !obj_needs_vmlinux_btf(obj))
3083 		return 0;
3084 
3085 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3086 	err = libbpf_get_error(obj->btf_vmlinux);
3087 	if (err) {
3088 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3089 		obj->btf_vmlinux = NULL;
3090 		return err;
3091 	}
3092 	return 0;
3093 }
3094 
3095 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3096 {
3097 	struct btf *kern_btf = obj->btf;
3098 	bool btf_mandatory, sanitize;
3099 	int i, err = 0;
3100 
3101 	if (!obj->btf)
3102 		return 0;
3103 
3104 	if (!kernel_supports(obj, FEAT_BTF)) {
3105 		if (kernel_needs_btf(obj)) {
3106 			err = -EOPNOTSUPP;
3107 			goto report;
3108 		}
3109 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3110 		return 0;
3111 	}
3112 
3113 	/* Even though some subprogs are global/weak, user might prefer more
3114 	 * permissive BPF verification process that BPF verifier performs for
3115 	 * static functions, taking into account more context from the caller
3116 	 * functions. In such case, they need to mark such subprogs with
3117 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3118 	 * corresponding FUNC BTF type to be marked as static and trigger more
3119 	 * involved BPF verification process.
3120 	 */
3121 	for (i = 0; i < obj->nr_programs; i++) {
3122 		struct bpf_program *prog = &obj->programs[i];
3123 		struct btf_type *t;
3124 		const char *name;
3125 		int j, n;
3126 
3127 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3128 			continue;
3129 
3130 		n = btf__type_cnt(obj->btf);
3131 		for (j = 1; j < n; j++) {
3132 			t = btf_type_by_id(obj->btf, j);
3133 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3134 				continue;
3135 
3136 			name = btf__str_by_offset(obj->btf, t->name_off);
3137 			if (strcmp(name, prog->name) != 0)
3138 				continue;
3139 
3140 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3141 			break;
3142 		}
3143 	}
3144 
3145 	sanitize = btf_needs_sanitization(obj);
3146 	if (sanitize) {
3147 		const void *raw_data;
3148 		__u32 sz;
3149 
3150 		/* clone BTF to sanitize a copy and leave the original intact */
3151 		raw_data = btf__raw_data(obj->btf, &sz);
3152 		kern_btf = btf__new(raw_data, sz);
3153 		err = libbpf_get_error(kern_btf);
3154 		if (err)
3155 			return err;
3156 
3157 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3158 		btf__set_pointer_size(obj->btf, 8);
3159 		err = bpf_object__sanitize_btf(obj, kern_btf);
3160 		if (err)
3161 			return err;
3162 	}
3163 
3164 	if (obj->gen_loader) {
3165 		__u32 raw_size = 0;
3166 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3167 
3168 		if (!raw_data)
3169 			return -ENOMEM;
3170 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3171 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3172 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3173 		 */
3174 		btf__set_fd(kern_btf, 0);
3175 	} else {
3176 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3177 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3178 					   obj->log_level ? 1 : 0);
3179 	}
3180 	if (sanitize) {
3181 		if (!err) {
3182 			/* move fd to libbpf's BTF */
3183 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3184 			btf__set_fd(kern_btf, -1);
3185 		}
3186 		btf__free(kern_btf);
3187 	}
3188 report:
3189 	if (err) {
3190 		btf_mandatory = kernel_needs_btf(obj);
3191 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3192 			btf_mandatory ? "BTF is mandatory, can't proceed."
3193 				      : "BTF is optional, ignoring.");
3194 		if (!btf_mandatory)
3195 			err = 0;
3196 	}
3197 	return err;
3198 }
3199 
3200 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3201 {
3202 	const char *name;
3203 
3204 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3205 	if (!name) {
3206 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3207 			off, obj->path, elf_errmsg(-1));
3208 		return NULL;
3209 	}
3210 
3211 	return name;
3212 }
3213 
3214 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3215 {
3216 	const char *name;
3217 
3218 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3219 	if (!name) {
3220 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3221 			off, obj->path, elf_errmsg(-1));
3222 		return NULL;
3223 	}
3224 
3225 	return name;
3226 }
3227 
3228 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3229 {
3230 	Elf_Scn *scn;
3231 
3232 	scn = elf_getscn(obj->efile.elf, idx);
3233 	if (!scn) {
3234 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3235 			idx, obj->path, elf_errmsg(-1));
3236 		return NULL;
3237 	}
3238 	return scn;
3239 }
3240 
3241 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3242 {
3243 	Elf_Scn *scn = NULL;
3244 	Elf *elf = obj->efile.elf;
3245 	const char *sec_name;
3246 
3247 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3248 		sec_name = elf_sec_name(obj, scn);
3249 		if (!sec_name)
3250 			return NULL;
3251 
3252 		if (strcmp(sec_name, name) != 0)
3253 			continue;
3254 
3255 		return scn;
3256 	}
3257 	return NULL;
3258 }
3259 
3260 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3261 {
3262 	Elf64_Shdr *shdr;
3263 
3264 	if (!scn)
3265 		return NULL;
3266 
3267 	shdr = elf64_getshdr(scn);
3268 	if (!shdr) {
3269 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3270 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3271 		return NULL;
3272 	}
3273 
3274 	return shdr;
3275 }
3276 
3277 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3278 {
3279 	const char *name;
3280 	Elf64_Shdr *sh;
3281 
3282 	if (!scn)
3283 		return NULL;
3284 
3285 	sh = elf_sec_hdr(obj, scn);
3286 	if (!sh)
3287 		return NULL;
3288 
3289 	name = elf_sec_str(obj, sh->sh_name);
3290 	if (!name) {
3291 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3292 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3293 		return NULL;
3294 	}
3295 
3296 	return name;
3297 }
3298 
3299 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3300 {
3301 	Elf_Data *data;
3302 
3303 	if (!scn)
3304 		return NULL;
3305 
3306 	data = elf_getdata(scn, 0);
3307 	if (!data) {
3308 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3309 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3310 			obj->path, elf_errmsg(-1));
3311 		return NULL;
3312 	}
3313 
3314 	return data;
3315 }
3316 
3317 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3318 {
3319 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3320 		return NULL;
3321 
3322 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3323 }
3324 
3325 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3326 {
3327 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3328 		return NULL;
3329 
3330 	return (Elf64_Rel *)data->d_buf + idx;
3331 }
3332 
3333 static bool is_sec_name_dwarf(const char *name)
3334 {
3335 	/* approximation, but the actual list is too long */
3336 	return str_has_pfx(name, ".debug_");
3337 }
3338 
3339 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3340 {
3341 	/* no special handling of .strtab */
3342 	if (hdr->sh_type == SHT_STRTAB)
3343 		return true;
3344 
3345 	/* ignore .llvm_addrsig section as well */
3346 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3347 		return true;
3348 
3349 	/* no subprograms will lead to an empty .text section, ignore it */
3350 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3351 	    strcmp(name, ".text") == 0)
3352 		return true;
3353 
3354 	/* DWARF sections */
3355 	if (is_sec_name_dwarf(name))
3356 		return true;
3357 
3358 	if (str_has_pfx(name, ".rel")) {
3359 		name += sizeof(".rel") - 1;
3360 		/* DWARF section relocations */
3361 		if (is_sec_name_dwarf(name))
3362 			return true;
3363 
3364 		/* .BTF and .BTF.ext don't need relocations */
3365 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3366 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3367 			return true;
3368 	}
3369 
3370 	return false;
3371 }
3372 
3373 static int cmp_progs(const void *_a, const void *_b)
3374 {
3375 	const struct bpf_program *a = _a;
3376 	const struct bpf_program *b = _b;
3377 
3378 	if (a->sec_idx != b->sec_idx)
3379 		return a->sec_idx < b->sec_idx ? -1 : 1;
3380 
3381 	/* sec_insn_off can't be the same within the section */
3382 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3383 }
3384 
3385 static int bpf_object__elf_collect(struct bpf_object *obj)
3386 {
3387 	struct elf_sec_desc *sec_desc;
3388 	Elf *elf = obj->efile.elf;
3389 	Elf_Data *btf_ext_data = NULL;
3390 	Elf_Data *btf_data = NULL;
3391 	int idx = 0, err = 0;
3392 	const char *name;
3393 	Elf_Data *data;
3394 	Elf_Scn *scn;
3395 	Elf64_Shdr *sh;
3396 
3397 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3398 	 * section. Since section count retrieved by elf_getshdrnum() does
3399 	 * include sec #0, it is already the necessary size of an array to keep
3400 	 * all the sections.
3401 	 */
3402 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3403 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3404 			obj->path, elf_errmsg(-1));
3405 		return -LIBBPF_ERRNO__FORMAT;
3406 	}
3407 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3408 	if (!obj->efile.secs)
3409 		return -ENOMEM;
3410 
3411 	/* a bunch of ELF parsing functionality depends on processing symbols,
3412 	 * so do the first pass and find the symbol table
3413 	 */
3414 	scn = NULL;
3415 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3416 		sh = elf_sec_hdr(obj, scn);
3417 		if (!sh)
3418 			return -LIBBPF_ERRNO__FORMAT;
3419 
3420 		if (sh->sh_type == SHT_SYMTAB) {
3421 			if (obj->efile.symbols) {
3422 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3423 				return -LIBBPF_ERRNO__FORMAT;
3424 			}
3425 
3426 			data = elf_sec_data(obj, scn);
3427 			if (!data)
3428 				return -LIBBPF_ERRNO__FORMAT;
3429 
3430 			idx = elf_ndxscn(scn);
3431 
3432 			obj->efile.symbols = data;
3433 			obj->efile.symbols_shndx = idx;
3434 			obj->efile.strtabidx = sh->sh_link;
3435 		}
3436 	}
3437 
3438 	if (!obj->efile.symbols) {
3439 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3440 			obj->path);
3441 		return -ENOENT;
3442 	}
3443 
3444 	scn = NULL;
3445 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3446 		idx = elf_ndxscn(scn);
3447 		sec_desc = &obj->efile.secs[idx];
3448 
3449 		sh = elf_sec_hdr(obj, scn);
3450 		if (!sh)
3451 			return -LIBBPF_ERRNO__FORMAT;
3452 
3453 		name = elf_sec_str(obj, sh->sh_name);
3454 		if (!name)
3455 			return -LIBBPF_ERRNO__FORMAT;
3456 
3457 		if (ignore_elf_section(sh, name))
3458 			continue;
3459 
3460 		data = elf_sec_data(obj, scn);
3461 		if (!data)
3462 			return -LIBBPF_ERRNO__FORMAT;
3463 
3464 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3465 			 idx, name, (unsigned long)data->d_size,
3466 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3467 			 (int)sh->sh_type);
3468 
3469 		if (strcmp(name, "license") == 0) {
3470 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3471 			if (err)
3472 				return err;
3473 		} else if (strcmp(name, "version") == 0) {
3474 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3475 			if (err)
3476 				return err;
3477 		} else if (strcmp(name, "maps") == 0) {
3478 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3479 			return -ENOTSUP;
3480 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3481 			obj->efile.btf_maps_shndx = idx;
3482 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3483 			if (sh->sh_type != SHT_PROGBITS)
3484 				return -LIBBPF_ERRNO__FORMAT;
3485 			btf_data = data;
3486 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3487 			if (sh->sh_type != SHT_PROGBITS)
3488 				return -LIBBPF_ERRNO__FORMAT;
3489 			btf_ext_data = data;
3490 		} else if (sh->sh_type == SHT_SYMTAB) {
3491 			/* already processed during the first pass above */
3492 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3493 			if (sh->sh_flags & SHF_EXECINSTR) {
3494 				if (strcmp(name, ".text") == 0)
3495 					obj->efile.text_shndx = idx;
3496 				err = bpf_object__add_programs(obj, data, name, idx);
3497 				if (err)
3498 					return err;
3499 			} else if (strcmp(name, DATA_SEC) == 0 ||
3500 				   str_has_pfx(name, DATA_SEC ".")) {
3501 				sec_desc->sec_type = SEC_DATA;
3502 				sec_desc->shdr = sh;
3503 				sec_desc->data = data;
3504 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3505 				   str_has_pfx(name, RODATA_SEC ".")) {
3506 				sec_desc->sec_type = SEC_RODATA;
3507 				sec_desc->shdr = sh;
3508 				sec_desc->data = data;
3509 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3510 				obj->efile.st_ops_data = data;
3511 				obj->efile.st_ops_shndx = idx;
3512 			} else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3513 				obj->efile.st_ops_link_data = data;
3514 				obj->efile.st_ops_link_shndx = idx;
3515 			} else {
3516 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3517 					idx, name);
3518 			}
3519 		} else if (sh->sh_type == SHT_REL) {
3520 			int targ_sec_idx = sh->sh_info; /* points to other section */
3521 
3522 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3523 			    targ_sec_idx >= obj->efile.sec_cnt)
3524 				return -LIBBPF_ERRNO__FORMAT;
3525 
3526 			/* Only do relo for section with exec instructions */
3527 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3528 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3529 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3530 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3531 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3532 					idx, name, targ_sec_idx,
3533 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3534 				continue;
3535 			}
3536 
3537 			sec_desc->sec_type = SEC_RELO;
3538 			sec_desc->shdr = sh;
3539 			sec_desc->data = data;
3540 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3541 							 str_has_pfx(name, BSS_SEC "."))) {
3542 			sec_desc->sec_type = SEC_BSS;
3543 			sec_desc->shdr = sh;
3544 			sec_desc->data = data;
3545 		} else {
3546 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3547 				(size_t)sh->sh_size);
3548 		}
3549 	}
3550 
3551 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3552 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3553 		return -LIBBPF_ERRNO__FORMAT;
3554 	}
3555 
3556 	/* sort BPF programs by section name and in-section instruction offset
3557 	 * for faster search
3558 	 */
3559 	if (obj->nr_programs)
3560 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3561 
3562 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3563 }
3564 
3565 static bool sym_is_extern(const Elf64_Sym *sym)
3566 {
3567 	int bind = ELF64_ST_BIND(sym->st_info);
3568 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3569 	return sym->st_shndx == SHN_UNDEF &&
3570 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3571 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3572 }
3573 
3574 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3575 {
3576 	int bind = ELF64_ST_BIND(sym->st_info);
3577 	int type = ELF64_ST_TYPE(sym->st_info);
3578 
3579 	/* in .text section */
3580 	if (sym->st_shndx != text_shndx)
3581 		return false;
3582 
3583 	/* local function */
3584 	if (bind == STB_LOCAL && type == STT_SECTION)
3585 		return true;
3586 
3587 	/* global function */
3588 	return bind == STB_GLOBAL && type == STT_FUNC;
3589 }
3590 
3591 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3592 {
3593 	const struct btf_type *t;
3594 	const char *tname;
3595 	int i, n;
3596 
3597 	if (!btf)
3598 		return -ESRCH;
3599 
3600 	n = btf__type_cnt(btf);
3601 	for (i = 1; i < n; i++) {
3602 		t = btf__type_by_id(btf, i);
3603 
3604 		if (!btf_is_var(t) && !btf_is_func(t))
3605 			continue;
3606 
3607 		tname = btf__name_by_offset(btf, t->name_off);
3608 		if (strcmp(tname, ext_name))
3609 			continue;
3610 
3611 		if (btf_is_var(t) &&
3612 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3613 			return -EINVAL;
3614 
3615 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3616 			return -EINVAL;
3617 
3618 		return i;
3619 	}
3620 
3621 	return -ENOENT;
3622 }
3623 
3624 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3625 	const struct btf_var_secinfo *vs;
3626 	const struct btf_type *t;
3627 	int i, j, n;
3628 
3629 	if (!btf)
3630 		return -ESRCH;
3631 
3632 	n = btf__type_cnt(btf);
3633 	for (i = 1; i < n; i++) {
3634 		t = btf__type_by_id(btf, i);
3635 
3636 		if (!btf_is_datasec(t))
3637 			continue;
3638 
3639 		vs = btf_var_secinfos(t);
3640 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3641 			if (vs->type == ext_btf_id)
3642 				return i;
3643 		}
3644 	}
3645 
3646 	return -ENOENT;
3647 }
3648 
3649 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3650 				     bool *is_signed)
3651 {
3652 	const struct btf_type *t;
3653 	const char *name;
3654 
3655 	t = skip_mods_and_typedefs(btf, id, NULL);
3656 	name = btf__name_by_offset(btf, t->name_off);
3657 
3658 	if (is_signed)
3659 		*is_signed = false;
3660 	switch (btf_kind(t)) {
3661 	case BTF_KIND_INT: {
3662 		int enc = btf_int_encoding(t);
3663 
3664 		if (enc & BTF_INT_BOOL)
3665 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3666 		if (is_signed)
3667 			*is_signed = enc & BTF_INT_SIGNED;
3668 		if (t->size == 1)
3669 			return KCFG_CHAR;
3670 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3671 			return KCFG_UNKNOWN;
3672 		return KCFG_INT;
3673 	}
3674 	case BTF_KIND_ENUM:
3675 		if (t->size != 4)
3676 			return KCFG_UNKNOWN;
3677 		if (strcmp(name, "libbpf_tristate"))
3678 			return KCFG_UNKNOWN;
3679 		return KCFG_TRISTATE;
3680 	case BTF_KIND_ENUM64:
3681 		if (strcmp(name, "libbpf_tristate"))
3682 			return KCFG_UNKNOWN;
3683 		return KCFG_TRISTATE;
3684 	case BTF_KIND_ARRAY:
3685 		if (btf_array(t)->nelems == 0)
3686 			return KCFG_UNKNOWN;
3687 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3688 			return KCFG_UNKNOWN;
3689 		return KCFG_CHAR_ARR;
3690 	default:
3691 		return KCFG_UNKNOWN;
3692 	}
3693 }
3694 
3695 static int cmp_externs(const void *_a, const void *_b)
3696 {
3697 	const struct extern_desc *a = _a;
3698 	const struct extern_desc *b = _b;
3699 
3700 	if (a->type != b->type)
3701 		return a->type < b->type ? -1 : 1;
3702 
3703 	if (a->type == EXT_KCFG) {
3704 		/* descending order by alignment requirements */
3705 		if (a->kcfg.align != b->kcfg.align)
3706 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3707 		/* ascending order by size, within same alignment class */
3708 		if (a->kcfg.sz != b->kcfg.sz)
3709 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3710 	}
3711 
3712 	/* resolve ties by name */
3713 	return strcmp(a->name, b->name);
3714 }
3715 
3716 static int find_int_btf_id(const struct btf *btf)
3717 {
3718 	const struct btf_type *t;
3719 	int i, n;
3720 
3721 	n = btf__type_cnt(btf);
3722 	for (i = 1; i < n; i++) {
3723 		t = btf__type_by_id(btf, i);
3724 
3725 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3726 			return i;
3727 	}
3728 
3729 	return 0;
3730 }
3731 
3732 static int add_dummy_ksym_var(struct btf *btf)
3733 {
3734 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3735 	const struct btf_var_secinfo *vs;
3736 	const struct btf_type *sec;
3737 
3738 	if (!btf)
3739 		return 0;
3740 
3741 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3742 					    BTF_KIND_DATASEC);
3743 	if (sec_btf_id < 0)
3744 		return 0;
3745 
3746 	sec = btf__type_by_id(btf, sec_btf_id);
3747 	vs = btf_var_secinfos(sec);
3748 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3749 		const struct btf_type *vt;
3750 
3751 		vt = btf__type_by_id(btf, vs->type);
3752 		if (btf_is_func(vt))
3753 			break;
3754 	}
3755 
3756 	/* No func in ksyms sec.  No need to add dummy var. */
3757 	if (i == btf_vlen(sec))
3758 		return 0;
3759 
3760 	int_btf_id = find_int_btf_id(btf);
3761 	dummy_var_btf_id = btf__add_var(btf,
3762 					"dummy_ksym",
3763 					BTF_VAR_GLOBAL_ALLOCATED,
3764 					int_btf_id);
3765 	if (dummy_var_btf_id < 0)
3766 		pr_warn("cannot create a dummy_ksym var\n");
3767 
3768 	return dummy_var_btf_id;
3769 }
3770 
3771 static int bpf_object__collect_externs(struct bpf_object *obj)
3772 {
3773 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3774 	const struct btf_type *t;
3775 	struct extern_desc *ext;
3776 	int i, n, off, dummy_var_btf_id;
3777 	const char *ext_name, *sec_name;
3778 	size_t ext_essent_len;
3779 	Elf_Scn *scn;
3780 	Elf64_Shdr *sh;
3781 
3782 	if (!obj->efile.symbols)
3783 		return 0;
3784 
3785 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3786 	sh = elf_sec_hdr(obj, scn);
3787 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3788 		return -LIBBPF_ERRNO__FORMAT;
3789 
3790 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3791 	if (dummy_var_btf_id < 0)
3792 		return dummy_var_btf_id;
3793 
3794 	n = sh->sh_size / sh->sh_entsize;
3795 	pr_debug("looking for externs among %d symbols...\n", n);
3796 
3797 	for (i = 0; i < n; i++) {
3798 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3799 
3800 		if (!sym)
3801 			return -LIBBPF_ERRNO__FORMAT;
3802 		if (!sym_is_extern(sym))
3803 			continue;
3804 		ext_name = elf_sym_str(obj, sym->st_name);
3805 		if (!ext_name || !ext_name[0])
3806 			continue;
3807 
3808 		ext = obj->externs;
3809 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3810 		if (!ext)
3811 			return -ENOMEM;
3812 		obj->externs = ext;
3813 		ext = &ext[obj->nr_extern];
3814 		memset(ext, 0, sizeof(*ext));
3815 		obj->nr_extern++;
3816 
3817 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3818 		if (ext->btf_id <= 0) {
3819 			pr_warn("failed to find BTF for extern '%s': %d\n",
3820 				ext_name, ext->btf_id);
3821 			return ext->btf_id;
3822 		}
3823 		t = btf__type_by_id(obj->btf, ext->btf_id);
3824 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3825 		ext->sym_idx = i;
3826 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3827 
3828 		ext_essent_len = bpf_core_essential_name_len(ext->name);
3829 		ext->essent_name = NULL;
3830 		if (ext_essent_len != strlen(ext->name)) {
3831 			ext->essent_name = strndup(ext->name, ext_essent_len);
3832 			if (!ext->essent_name)
3833 				return -ENOMEM;
3834 		}
3835 
3836 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3837 		if (ext->sec_btf_id <= 0) {
3838 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3839 				ext_name, ext->btf_id, ext->sec_btf_id);
3840 			return ext->sec_btf_id;
3841 		}
3842 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3843 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3844 
3845 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3846 			if (btf_is_func(t)) {
3847 				pr_warn("extern function %s is unsupported under %s section\n",
3848 					ext->name, KCONFIG_SEC);
3849 				return -ENOTSUP;
3850 			}
3851 			kcfg_sec = sec;
3852 			ext->type = EXT_KCFG;
3853 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3854 			if (ext->kcfg.sz <= 0) {
3855 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3856 					ext_name, ext->kcfg.sz);
3857 				return ext->kcfg.sz;
3858 			}
3859 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3860 			if (ext->kcfg.align <= 0) {
3861 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3862 					ext_name, ext->kcfg.align);
3863 				return -EINVAL;
3864 			}
3865 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3866 							&ext->kcfg.is_signed);
3867 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3868 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3869 				return -ENOTSUP;
3870 			}
3871 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3872 			ksym_sec = sec;
3873 			ext->type = EXT_KSYM;
3874 			skip_mods_and_typedefs(obj->btf, t->type,
3875 					       &ext->ksym.type_id);
3876 		} else {
3877 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3878 			return -ENOTSUP;
3879 		}
3880 	}
3881 	pr_debug("collected %d externs total\n", obj->nr_extern);
3882 
3883 	if (!obj->nr_extern)
3884 		return 0;
3885 
3886 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3887 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3888 
3889 	/* for .ksyms section, we need to turn all externs into allocated
3890 	 * variables in BTF to pass kernel verification; we do this by
3891 	 * pretending that each extern is a 8-byte variable
3892 	 */
3893 	if (ksym_sec) {
3894 		/* find existing 4-byte integer type in BTF to use for fake
3895 		 * extern variables in DATASEC
3896 		 */
3897 		int int_btf_id = find_int_btf_id(obj->btf);
3898 		/* For extern function, a dummy_var added earlier
3899 		 * will be used to replace the vs->type and
3900 		 * its name string will be used to refill
3901 		 * the missing param's name.
3902 		 */
3903 		const struct btf_type *dummy_var;
3904 
3905 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3906 		for (i = 0; i < obj->nr_extern; i++) {
3907 			ext = &obj->externs[i];
3908 			if (ext->type != EXT_KSYM)
3909 				continue;
3910 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3911 				 i, ext->sym_idx, ext->name);
3912 		}
3913 
3914 		sec = ksym_sec;
3915 		n = btf_vlen(sec);
3916 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3917 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3918 			struct btf_type *vt;
3919 
3920 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3921 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3922 			ext = find_extern_by_name(obj, ext_name);
3923 			if (!ext) {
3924 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3925 					btf_kind_str(vt), ext_name);
3926 				return -ESRCH;
3927 			}
3928 			if (btf_is_func(vt)) {
3929 				const struct btf_type *func_proto;
3930 				struct btf_param *param;
3931 				int j;
3932 
3933 				func_proto = btf__type_by_id(obj->btf,
3934 							     vt->type);
3935 				param = btf_params(func_proto);
3936 				/* Reuse the dummy_var string if the
3937 				 * func proto does not have param name.
3938 				 */
3939 				for (j = 0; j < btf_vlen(func_proto); j++)
3940 					if (param[j].type && !param[j].name_off)
3941 						param[j].name_off =
3942 							dummy_var->name_off;
3943 				vs->type = dummy_var_btf_id;
3944 				vt->info &= ~0xffff;
3945 				vt->info |= BTF_FUNC_GLOBAL;
3946 			} else {
3947 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3948 				vt->type = int_btf_id;
3949 			}
3950 			vs->offset = off;
3951 			vs->size = sizeof(int);
3952 		}
3953 		sec->size = off;
3954 	}
3955 
3956 	if (kcfg_sec) {
3957 		sec = kcfg_sec;
3958 		/* for kcfg externs calculate their offsets within a .kconfig map */
3959 		off = 0;
3960 		for (i = 0; i < obj->nr_extern; i++) {
3961 			ext = &obj->externs[i];
3962 			if (ext->type != EXT_KCFG)
3963 				continue;
3964 
3965 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3966 			off = ext->kcfg.data_off + ext->kcfg.sz;
3967 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3968 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3969 		}
3970 		sec->size = off;
3971 		n = btf_vlen(sec);
3972 		for (i = 0; i < n; i++) {
3973 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3974 
3975 			t = btf__type_by_id(obj->btf, vs->type);
3976 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3977 			ext = find_extern_by_name(obj, ext_name);
3978 			if (!ext) {
3979 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3980 					ext_name);
3981 				return -ESRCH;
3982 			}
3983 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3984 			vs->offset = ext->kcfg.data_off;
3985 		}
3986 	}
3987 	return 0;
3988 }
3989 
3990 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3991 {
3992 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3993 }
3994 
3995 struct bpf_program *
3996 bpf_object__find_program_by_name(const struct bpf_object *obj,
3997 				 const char *name)
3998 {
3999 	struct bpf_program *prog;
4000 
4001 	bpf_object__for_each_program(prog, obj) {
4002 		if (prog_is_subprog(obj, prog))
4003 			continue;
4004 		if (!strcmp(prog->name, name))
4005 			return prog;
4006 	}
4007 	return errno = ENOENT, NULL;
4008 }
4009 
4010 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4011 				      int shndx)
4012 {
4013 	switch (obj->efile.secs[shndx].sec_type) {
4014 	case SEC_BSS:
4015 	case SEC_DATA:
4016 	case SEC_RODATA:
4017 		return true;
4018 	default:
4019 		return false;
4020 	}
4021 }
4022 
4023 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4024 				      int shndx)
4025 {
4026 	return shndx == obj->efile.btf_maps_shndx;
4027 }
4028 
4029 static enum libbpf_map_type
4030 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4031 {
4032 	if (shndx == obj->efile.symbols_shndx)
4033 		return LIBBPF_MAP_KCONFIG;
4034 
4035 	switch (obj->efile.secs[shndx].sec_type) {
4036 	case SEC_BSS:
4037 		return LIBBPF_MAP_BSS;
4038 	case SEC_DATA:
4039 		return LIBBPF_MAP_DATA;
4040 	case SEC_RODATA:
4041 		return LIBBPF_MAP_RODATA;
4042 	default:
4043 		return LIBBPF_MAP_UNSPEC;
4044 	}
4045 }
4046 
4047 static int bpf_program__record_reloc(struct bpf_program *prog,
4048 				     struct reloc_desc *reloc_desc,
4049 				     __u32 insn_idx, const char *sym_name,
4050 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4051 {
4052 	struct bpf_insn *insn = &prog->insns[insn_idx];
4053 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4054 	struct bpf_object *obj = prog->obj;
4055 	__u32 shdr_idx = sym->st_shndx;
4056 	enum libbpf_map_type type;
4057 	const char *sym_sec_name;
4058 	struct bpf_map *map;
4059 
4060 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4061 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4062 			prog->name, sym_name, insn_idx, insn->code);
4063 		return -LIBBPF_ERRNO__RELOC;
4064 	}
4065 
4066 	if (sym_is_extern(sym)) {
4067 		int sym_idx = ELF64_R_SYM(rel->r_info);
4068 		int i, n = obj->nr_extern;
4069 		struct extern_desc *ext;
4070 
4071 		for (i = 0; i < n; i++) {
4072 			ext = &obj->externs[i];
4073 			if (ext->sym_idx == sym_idx)
4074 				break;
4075 		}
4076 		if (i >= n) {
4077 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4078 				prog->name, sym_name, sym_idx);
4079 			return -LIBBPF_ERRNO__RELOC;
4080 		}
4081 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4082 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4083 		if (insn->code == (BPF_JMP | BPF_CALL))
4084 			reloc_desc->type = RELO_EXTERN_CALL;
4085 		else
4086 			reloc_desc->type = RELO_EXTERN_LD64;
4087 		reloc_desc->insn_idx = insn_idx;
4088 		reloc_desc->ext_idx = i;
4089 		return 0;
4090 	}
4091 
4092 	/* sub-program call relocation */
4093 	if (is_call_insn(insn)) {
4094 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4095 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4096 			return -LIBBPF_ERRNO__RELOC;
4097 		}
4098 		/* text_shndx can be 0, if no default "main" program exists */
4099 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4100 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4101 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4102 				prog->name, sym_name, sym_sec_name);
4103 			return -LIBBPF_ERRNO__RELOC;
4104 		}
4105 		if (sym->st_value % BPF_INSN_SZ) {
4106 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4107 				prog->name, sym_name, (size_t)sym->st_value);
4108 			return -LIBBPF_ERRNO__RELOC;
4109 		}
4110 		reloc_desc->type = RELO_CALL;
4111 		reloc_desc->insn_idx = insn_idx;
4112 		reloc_desc->sym_off = sym->st_value;
4113 		return 0;
4114 	}
4115 
4116 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4117 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4118 			prog->name, sym_name, shdr_idx);
4119 		return -LIBBPF_ERRNO__RELOC;
4120 	}
4121 
4122 	/* loading subprog addresses */
4123 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4124 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4125 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4126 		 */
4127 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4128 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4129 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4130 			return -LIBBPF_ERRNO__RELOC;
4131 		}
4132 
4133 		reloc_desc->type = RELO_SUBPROG_ADDR;
4134 		reloc_desc->insn_idx = insn_idx;
4135 		reloc_desc->sym_off = sym->st_value;
4136 		return 0;
4137 	}
4138 
4139 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4140 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4141 
4142 	/* generic map reference relocation */
4143 	if (type == LIBBPF_MAP_UNSPEC) {
4144 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4145 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4146 				prog->name, sym_name, sym_sec_name);
4147 			return -LIBBPF_ERRNO__RELOC;
4148 		}
4149 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4150 			map = &obj->maps[map_idx];
4151 			if (map->libbpf_type != type ||
4152 			    map->sec_idx != sym->st_shndx ||
4153 			    map->sec_offset != sym->st_value)
4154 				continue;
4155 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4156 				 prog->name, map_idx, map->name, map->sec_idx,
4157 				 map->sec_offset, insn_idx);
4158 			break;
4159 		}
4160 		if (map_idx >= nr_maps) {
4161 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4162 				prog->name, sym_sec_name, (size_t)sym->st_value);
4163 			return -LIBBPF_ERRNO__RELOC;
4164 		}
4165 		reloc_desc->type = RELO_LD64;
4166 		reloc_desc->insn_idx = insn_idx;
4167 		reloc_desc->map_idx = map_idx;
4168 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4169 		return 0;
4170 	}
4171 
4172 	/* global data map relocation */
4173 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4174 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4175 			prog->name, sym_sec_name);
4176 		return -LIBBPF_ERRNO__RELOC;
4177 	}
4178 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4179 		map = &obj->maps[map_idx];
4180 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4181 			continue;
4182 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4183 			 prog->name, map_idx, map->name, map->sec_idx,
4184 			 map->sec_offset, insn_idx);
4185 		break;
4186 	}
4187 	if (map_idx >= nr_maps) {
4188 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4189 			prog->name, sym_sec_name);
4190 		return -LIBBPF_ERRNO__RELOC;
4191 	}
4192 
4193 	reloc_desc->type = RELO_DATA;
4194 	reloc_desc->insn_idx = insn_idx;
4195 	reloc_desc->map_idx = map_idx;
4196 	reloc_desc->sym_off = sym->st_value;
4197 	return 0;
4198 }
4199 
4200 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4201 {
4202 	return insn_idx >= prog->sec_insn_off &&
4203 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4204 }
4205 
4206 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4207 						 size_t sec_idx, size_t insn_idx)
4208 {
4209 	int l = 0, r = obj->nr_programs - 1, m;
4210 	struct bpf_program *prog;
4211 
4212 	if (!obj->nr_programs)
4213 		return NULL;
4214 
4215 	while (l < r) {
4216 		m = l + (r - l + 1) / 2;
4217 		prog = &obj->programs[m];
4218 
4219 		if (prog->sec_idx < sec_idx ||
4220 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4221 			l = m;
4222 		else
4223 			r = m - 1;
4224 	}
4225 	/* matching program could be at index l, but it still might be the
4226 	 * wrong one, so we need to double check conditions for the last time
4227 	 */
4228 	prog = &obj->programs[l];
4229 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4230 		return prog;
4231 	return NULL;
4232 }
4233 
4234 static int
4235 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4236 {
4237 	const char *relo_sec_name, *sec_name;
4238 	size_t sec_idx = shdr->sh_info, sym_idx;
4239 	struct bpf_program *prog;
4240 	struct reloc_desc *relos;
4241 	int err, i, nrels;
4242 	const char *sym_name;
4243 	__u32 insn_idx;
4244 	Elf_Scn *scn;
4245 	Elf_Data *scn_data;
4246 	Elf64_Sym *sym;
4247 	Elf64_Rel *rel;
4248 
4249 	if (sec_idx >= obj->efile.sec_cnt)
4250 		return -EINVAL;
4251 
4252 	scn = elf_sec_by_idx(obj, sec_idx);
4253 	scn_data = elf_sec_data(obj, scn);
4254 
4255 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4256 	sec_name = elf_sec_name(obj, scn);
4257 	if (!relo_sec_name || !sec_name)
4258 		return -EINVAL;
4259 
4260 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4261 		 relo_sec_name, sec_idx, sec_name);
4262 	nrels = shdr->sh_size / shdr->sh_entsize;
4263 
4264 	for (i = 0; i < nrels; i++) {
4265 		rel = elf_rel_by_idx(data, i);
4266 		if (!rel) {
4267 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4268 			return -LIBBPF_ERRNO__FORMAT;
4269 		}
4270 
4271 		sym_idx = ELF64_R_SYM(rel->r_info);
4272 		sym = elf_sym_by_idx(obj, sym_idx);
4273 		if (!sym) {
4274 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4275 				relo_sec_name, sym_idx, i);
4276 			return -LIBBPF_ERRNO__FORMAT;
4277 		}
4278 
4279 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4280 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4281 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4282 			return -LIBBPF_ERRNO__FORMAT;
4283 		}
4284 
4285 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4286 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4287 				relo_sec_name, (size_t)rel->r_offset, i);
4288 			return -LIBBPF_ERRNO__FORMAT;
4289 		}
4290 
4291 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4292 		/* relocations against static functions are recorded as
4293 		 * relocations against the section that contains a function;
4294 		 * in such case, symbol will be STT_SECTION and sym.st_name
4295 		 * will point to empty string (0), so fetch section name
4296 		 * instead
4297 		 */
4298 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4299 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4300 		else
4301 			sym_name = elf_sym_str(obj, sym->st_name);
4302 		sym_name = sym_name ?: "<?";
4303 
4304 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4305 			 relo_sec_name, i, insn_idx, sym_name);
4306 
4307 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4308 		if (!prog) {
4309 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4310 				relo_sec_name, i, sec_name, insn_idx);
4311 			continue;
4312 		}
4313 
4314 		relos = libbpf_reallocarray(prog->reloc_desc,
4315 					    prog->nr_reloc + 1, sizeof(*relos));
4316 		if (!relos)
4317 			return -ENOMEM;
4318 		prog->reloc_desc = relos;
4319 
4320 		/* adjust insn_idx to local BPF program frame of reference */
4321 		insn_idx -= prog->sec_insn_off;
4322 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4323 						insn_idx, sym_name, sym, rel);
4324 		if (err)
4325 			return err;
4326 
4327 		prog->nr_reloc++;
4328 	}
4329 	return 0;
4330 }
4331 
4332 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4333 {
4334 	int id;
4335 
4336 	if (!obj->btf)
4337 		return -ENOENT;
4338 
4339 	/* if it's BTF-defined map, we don't need to search for type IDs.
4340 	 * For struct_ops map, it does not need btf_key_type_id and
4341 	 * btf_value_type_id.
4342 	 */
4343 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4344 		return 0;
4345 
4346 	/*
4347 	 * LLVM annotates global data differently in BTF, that is,
4348 	 * only as '.data', '.bss' or '.rodata'.
4349 	 */
4350 	if (!bpf_map__is_internal(map))
4351 		return -ENOENT;
4352 
4353 	id = btf__find_by_name(obj->btf, map->real_name);
4354 	if (id < 0)
4355 		return id;
4356 
4357 	map->btf_key_type_id = 0;
4358 	map->btf_value_type_id = id;
4359 	return 0;
4360 }
4361 
4362 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4363 {
4364 	char file[PATH_MAX], buff[4096];
4365 	FILE *fp;
4366 	__u32 val;
4367 	int err;
4368 
4369 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4370 	memset(info, 0, sizeof(*info));
4371 
4372 	fp = fopen(file, "re");
4373 	if (!fp) {
4374 		err = -errno;
4375 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4376 			err);
4377 		return err;
4378 	}
4379 
4380 	while (fgets(buff, sizeof(buff), fp)) {
4381 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4382 			info->type = val;
4383 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4384 			info->key_size = val;
4385 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4386 			info->value_size = val;
4387 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4388 			info->max_entries = val;
4389 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4390 			info->map_flags = val;
4391 	}
4392 
4393 	fclose(fp);
4394 
4395 	return 0;
4396 }
4397 
4398 bool bpf_map__autocreate(const struct bpf_map *map)
4399 {
4400 	return map->autocreate;
4401 }
4402 
4403 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4404 {
4405 	if (map->obj->loaded)
4406 		return libbpf_err(-EBUSY);
4407 
4408 	map->autocreate = autocreate;
4409 	return 0;
4410 }
4411 
4412 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4413 {
4414 	struct bpf_map_info info;
4415 	__u32 len = sizeof(info), name_len;
4416 	int new_fd, err;
4417 	char *new_name;
4418 
4419 	memset(&info, 0, len);
4420 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4421 	if (err && errno == EINVAL)
4422 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4423 	if (err)
4424 		return libbpf_err(err);
4425 
4426 	name_len = strlen(info.name);
4427 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4428 		new_name = strdup(map->name);
4429 	else
4430 		new_name = strdup(info.name);
4431 
4432 	if (!new_name)
4433 		return libbpf_err(-errno);
4434 
4435 	/*
4436 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4437 	 * This is similar to what we do in ensure_good_fd(), but without
4438 	 * closing original FD.
4439 	 */
4440 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4441 	if (new_fd < 0) {
4442 		err = -errno;
4443 		goto err_free_new_name;
4444 	}
4445 
4446 	err = zclose(map->fd);
4447 	if (err) {
4448 		err = -errno;
4449 		goto err_close_new_fd;
4450 	}
4451 	free(map->name);
4452 
4453 	map->fd = new_fd;
4454 	map->name = new_name;
4455 	map->def.type = info.type;
4456 	map->def.key_size = info.key_size;
4457 	map->def.value_size = info.value_size;
4458 	map->def.max_entries = info.max_entries;
4459 	map->def.map_flags = info.map_flags;
4460 	map->btf_key_type_id = info.btf_key_type_id;
4461 	map->btf_value_type_id = info.btf_value_type_id;
4462 	map->reused = true;
4463 	map->map_extra = info.map_extra;
4464 
4465 	return 0;
4466 
4467 err_close_new_fd:
4468 	close(new_fd);
4469 err_free_new_name:
4470 	free(new_name);
4471 	return libbpf_err(err);
4472 }
4473 
4474 __u32 bpf_map__max_entries(const struct bpf_map *map)
4475 {
4476 	return map->def.max_entries;
4477 }
4478 
4479 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4480 {
4481 	if (!bpf_map_type__is_map_in_map(map->def.type))
4482 		return errno = EINVAL, NULL;
4483 
4484 	return map->inner_map;
4485 }
4486 
4487 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4488 {
4489 	if (map->obj->loaded)
4490 		return libbpf_err(-EBUSY);
4491 
4492 	map->def.max_entries = max_entries;
4493 
4494 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4495 	if (map_is_ringbuf(map))
4496 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4497 
4498 	return 0;
4499 }
4500 
4501 static int
4502 bpf_object__probe_loading(struct bpf_object *obj)
4503 {
4504 	char *cp, errmsg[STRERR_BUFSIZE];
4505 	struct bpf_insn insns[] = {
4506 		BPF_MOV64_IMM(BPF_REG_0, 0),
4507 		BPF_EXIT_INSN(),
4508 	};
4509 	int ret, insn_cnt = ARRAY_SIZE(insns);
4510 
4511 	if (obj->gen_loader)
4512 		return 0;
4513 
4514 	ret = bump_rlimit_memlock();
4515 	if (ret)
4516 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4517 
4518 	/* make sure basic loading works */
4519 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4520 	if (ret < 0)
4521 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4522 	if (ret < 0) {
4523 		ret = errno;
4524 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4525 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4526 			"program. Make sure your kernel supports BPF "
4527 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4528 			"set to big enough value.\n", __func__, cp, ret);
4529 		return -ret;
4530 	}
4531 	close(ret);
4532 
4533 	return 0;
4534 }
4535 
4536 static int probe_fd(int fd)
4537 {
4538 	if (fd >= 0)
4539 		close(fd);
4540 	return fd >= 0;
4541 }
4542 
4543 static int probe_kern_prog_name(void)
4544 {
4545 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4546 	struct bpf_insn insns[] = {
4547 		BPF_MOV64_IMM(BPF_REG_0, 0),
4548 		BPF_EXIT_INSN(),
4549 	};
4550 	union bpf_attr attr;
4551 	int ret;
4552 
4553 	memset(&attr, 0, attr_sz);
4554 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4555 	attr.license = ptr_to_u64("GPL");
4556 	attr.insns = ptr_to_u64(insns);
4557 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4558 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4559 
4560 	/* make sure loading with name works */
4561 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4562 	return probe_fd(ret);
4563 }
4564 
4565 static int probe_kern_global_data(void)
4566 {
4567 	char *cp, errmsg[STRERR_BUFSIZE];
4568 	struct bpf_insn insns[] = {
4569 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4570 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4571 		BPF_MOV64_IMM(BPF_REG_0, 0),
4572 		BPF_EXIT_INSN(),
4573 	};
4574 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4575 
4576 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4577 	if (map < 0) {
4578 		ret = -errno;
4579 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4580 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4581 			__func__, cp, -ret);
4582 		return ret;
4583 	}
4584 
4585 	insns[0].imm = map;
4586 
4587 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4588 	close(map);
4589 	return probe_fd(ret);
4590 }
4591 
4592 static int probe_kern_btf(void)
4593 {
4594 	static const char strs[] = "\0int";
4595 	__u32 types[] = {
4596 		/* int */
4597 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4598 	};
4599 
4600 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4601 					     strs, sizeof(strs)));
4602 }
4603 
4604 static int probe_kern_btf_func(void)
4605 {
4606 	static const char strs[] = "\0int\0x\0a";
4607 	/* void x(int a) {} */
4608 	__u32 types[] = {
4609 		/* int */
4610 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4611 		/* FUNC_PROTO */                                /* [2] */
4612 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4613 		BTF_PARAM_ENC(7, 1),
4614 		/* FUNC x */                                    /* [3] */
4615 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4616 	};
4617 
4618 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4619 					     strs, sizeof(strs)));
4620 }
4621 
4622 static int probe_kern_btf_func_global(void)
4623 {
4624 	static const char strs[] = "\0int\0x\0a";
4625 	/* static void x(int a) {} */
4626 	__u32 types[] = {
4627 		/* int */
4628 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4629 		/* FUNC_PROTO */                                /* [2] */
4630 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4631 		BTF_PARAM_ENC(7, 1),
4632 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4633 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4634 	};
4635 
4636 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4637 					     strs, sizeof(strs)));
4638 }
4639 
4640 static int probe_kern_btf_datasec(void)
4641 {
4642 	static const char strs[] = "\0x\0.data";
4643 	/* static int a; */
4644 	__u32 types[] = {
4645 		/* int */
4646 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4647 		/* VAR x */                                     /* [2] */
4648 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4649 		BTF_VAR_STATIC,
4650 		/* DATASEC val */                               /* [3] */
4651 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4652 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4653 	};
4654 
4655 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4656 					     strs, sizeof(strs)));
4657 }
4658 
4659 static int probe_kern_btf_float(void)
4660 {
4661 	static const char strs[] = "\0float";
4662 	__u32 types[] = {
4663 		/* float */
4664 		BTF_TYPE_FLOAT_ENC(1, 4),
4665 	};
4666 
4667 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4668 					     strs, sizeof(strs)));
4669 }
4670 
4671 static int probe_kern_btf_decl_tag(void)
4672 {
4673 	static const char strs[] = "\0tag";
4674 	__u32 types[] = {
4675 		/* int */
4676 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4677 		/* VAR x */                                     /* [2] */
4678 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4679 		BTF_VAR_STATIC,
4680 		/* attr */
4681 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4682 	};
4683 
4684 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4685 					     strs, sizeof(strs)));
4686 }
4687 
4688 static int probe_kern_btf_type_tag(void)
4689 {
4690 	static const char strs[] = "\0tag";
4691 	__u32 types[] = {
4692 		/* int */
4693 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4694 		/* attr */
4695 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4696 		/* ptr */
4697 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4698 	};
4699 
4700 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4701 					     strs, sizeof(strs)));
4702 }
4703 
4704 static int probe_kern_array_mmap(void)
4705 {
4706 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4707 	int fd;
4708 
4709 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4710 	return probe_fd(fd);
4711 }
4712 
4713 static int probe_kern_exp_attach_type(void)
4714 {
4715 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4716 	struct bpf_insn insns[] = {
4717 		BPF_MOV64_IMM(BPF_REG_0, 0),
4718 		BPF_EXIT_INSN(),
4719 	};
4720 	int fd, insn_cnt = ARRAY_SIZE(insns);
4721 
4722 	/* use any valid combination of program type and (optional)
4723 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4724 	 * to see if kernel supports expected_attach_type field for
4725 	 * BPF_PROG_LOAD command
4726 	 */
4727 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4728 	return probe_fd(fd);
4729 }
4730 
4731 static int probe_kern_probe_read_kernel(void)
4732 {
4733 	struct bpf_insn insns[] = {
4734 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4735 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4736 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4737 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4738 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4739 		BPF_EXIT_INSN(),
4740 	};
4741 	int fd, insn_cnt = ARRAY_SIZE(insns);
4742 
4743 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4744 	return probe_fd(fd);
4745 }
4746 
4747 static int probe_prog_bind_map(void)
4748 {
4749 	char *cp, errmsg[STRERR_BUFSIZE];
4750 	struct bpf_insn insns[] = {
4751 		BPF_MOV64_IMM(BPF_REG_0, 0),
4752 		BPF_EXIT_INSN(),
4753 	};
4754 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4755 
4756 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4757 	if (map < 0) {
4758 		ret = -errno;
4759 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4760 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4761 			__func__, cp, -ret);
4762 		return ret;
4763 	}
4764 
4765 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4766 	if (prog < 0) {
4767 		close(map);
4768 		return 0;
4769 	}
4770 
4771 	ret = bpf_prog_bind_map(prog, map, NULL);
4772 
4773 	close(map);
4774 	close(prog);
4775 
4776 	return ret >= 0;
4777 }
4778 
4779 static int probe_module_btf(void)
4780 {
4781 	static const char strs[] = "\0int";
4782 	__u32 types[] = {
4783 		/* int */
4784 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4785 	};
4786 	struct bpf_btf_info info;
4787 	__u32 len = sizeof(info);
4788 	char name[16];
4789 	int fd, err;
4790 
4791 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4792 	if (fd < 0)
4793 		return 0; /* BTF not supported at all */
4794 
4795 	memset(&info, 0, sizeof(info));
4796 	info.name = ptr_to_u64(name);
4797 	info.name_len = sizeof(name);
4798 
4799 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4800 	 * kernel's module BTF support coincides with support for
4801 	 * name/name_len fields in struct bpf_btf_info.
4802 	 */
4803 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
4804 	close(fd);
4805 	return !err;
4806 }
4807 
4808 static int probe_perf_link(void)
4809 {
4810 	struct bpf_insn insns[] = {
4811 		BPF_MOV64_IMM(BPF_REG_0, 0),
4812 		BPF_EXIT_INSN(),
4813 	};
4814 	int prog_fd, link_fd, err;
4815 
4816 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4817 				insns, ARRAY_SIZE(insns), NULL);
4818 	if (prog_fd < 0)
4819 		return -errno;
4820 
4821 	/* use invalid perf_event FD to get EBADF, if link is supported;
4822 	 * otherwise EINVAL should be returned
4823 	 */
4824 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4825 	err = -errno; /* close() can clobber errno */
4826 
4827 	if (link_fd >= 0)
4828 		close(link_fd);
4829 	close(prog_fd);
4830 
4831 	return link_fd < 0 && err == -EBADF;
4832 }
4833 
4834 static int probe_uprobe_multi_link(void)
4835 {
4836 	LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4837 		.expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4838 	);
4839 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4840 	struct bpf_insn insns[] = {
4841 		BPF_MOV64_IMM(BPF_REG_0, 0),
4842 		BPF_EXIT_INSN(),
4843 	};
4844 	int prog_fd, link_fd, err;
4845 	unsigned long offset = 0;
4846 
4847 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4848 				insns, ARRAY_SIZE(insns), &load_opts);
4849 	if (prog_fd < 0)
4850 		return -errno;
4851 
4852 	/* Creating uprobe in '/' binary should fail with -EBADF. */
4853 	link_opts.uprobe_multi.path = "/";
4854 	link_opts.uprobe_multi.offsets = &offset;
4855 	link_opts.uprobe_multi.cnt = 1;
4856 
4857 	link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4858 	err = -errno; /* close() can clobber errno */
4859 
4860 	if (link_fd >= 0)
4861 		close(link_fd);
4862 	close(prog_fd);
4863 
4864 	return link_fd < 0 && err == -EBADF;
4865 }
4866 
4867 static int probe_kern_bpf_cookie(void)
4868 {
4869 	struct bpf_insn insns[] = {
4870 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4871 		BPF_EXIT_INSN(),
4872 	};
4873 	int ret, insn_cnt = ARRAY_SIZE(insns);
4874 
4875 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4876 	return probe_fd(ret);
4877 }
4878 
4879 static int probe_kern_btf_enum64(void)
4880 {
4881 	static const char strs[] = "\0enum64";
4882 	__u32 types[] = {
4883 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4884 	};
4885 
4886 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4887 					     strs, sizeof(strs)));
4888 }
4889 
4890 static int probe_kern_syscall_wrapper(void);
4891 
4892 enum kern_feature_result {
4893 	FEAT_UNKNOWN = 0,
4894 	FEAT_SUPPORTED = 1,
4895 	FEAT_MISSING = 2,
4896 };
4897 
4898 typedef int (*feature_probe_fn)(void);
4899 
4900 static struct kern_feature_desc {
4901 	const char *desc;
4902 	feature_probe_fn probe;
4903 	enum kern_feature_result res;
4904 } feature_probes[__FEAT_CNT] = {
4905 	[FEAT_PROG_NAME] = {
4906 		"BPF program name", probe_kern_prog_name,
4907 	},
4908 	[FEAT_GLOBAL_DATA] = {
4909 		"global variables", probe_kern_global_data,
4910 	},
4911 	[FEAT_BTF] = {
4912 		"minimal BTF", probe_kern_btf,
4913 	},
4914 	[FEAT_BTF_FUNC] = {
4915 		"BTF functions", probe_kern_btf_func,
4916 	},
4917 	[FEAT_BTF_GLOBAL_FUNC] = {
4918 		"BTF global function", probe_kern_btf_func_global,
4919 	},
4920 	[FEAT_BTF_DATASEC] = {
4921 		"BTF data section and variable", probe_kern_btf_datasec,
4922 	},
4923 	[FEAT_ARRAY_MMAP] = {
4924 		"ARRAY map mmap()", probe_kern_array_mmap,
4925 	},
4926 	[FEAT_EXP_ATTACH_TYPE] = {
4927 		"BPF_PROG_LOAD expected_attach_type attribute",
4928 		probe_kern_exp_attach_type,
4929 	},
4930 	[FEAT_PROBE_READ_KERN] = {
4931 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4932 	},
4933 	[FEAT_PROG_BIND_MAP] = {
4934 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4935 	},
4936 	[FEAT_MODULE_BTF] = {
4937 		"module BTF support", probe_module_btf,
4938 	},
4939 	[FEAT_BTF_FLOAT] = {
4940 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4941 	},
4942 	[FEAT_PERF_LINK] = {
4943 		"BPF perf link support", probe_perf_link,
4944 	},
4945 	[FEAT_BTF_DECL_TAG] = {
4946 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4947 	},
4948 	[FEAT_BTF_TYPE_TAG] = {
4949 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4950 	},
4951 	[FEAT_MEMCG_ACCOUNT] = {
4952 		"memcg-based memory accounting", probe_memcg_account,
4953 	},
4954 	[FEAT_BPF_COOKIE] = {
4955 		"BPF cookie support", probe_kern_bpf_cookie,
4956 	},
4957 	[FEAT_BTF_ENUM64] = {
4958 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4959 	},
4960 	[FEAT_SYSCALL_WRAPPER] = {
4961 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4962 	},
4963 	[FEAT_UPROBE_MULTI_LINK] = {
4964 		"BPF multi-uprobe link support", probe_uprobe_multi_link,
4965 	},
4966 };
4967 
4968 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4969 {
4970 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4971 	int ret;
4972 
4973 	if (obj && obj->gen_loader)
4974 		/* To generate loader program assume the latest kernel
4975 		 * to avoid doing extra prog_load, map_create syscalls.
4976 		 */
4977 		return true;
4978 
4979 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4980 		ret = feat->probe();
4981 		if (ret > 0) {
4982 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4983 		} else if (ret == 0) {
4984 			WRITE_ONCE(feat->res, FEAT_MISSING);
4985 		} else {
4986 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4987 			WRITE_ONCE(feat->res, FEAT_MISSING);
4988 		}
4989 	}
4990 
4991 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4992 }
4993 
4994 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4995 {
4996 	struct bpf_map_info map_info;
4997 	char msg[STRERR_BUFSIZE];
4998 	__u32 map_info_len = sizeof(map_info);
4999 	int err;
5000 
5001 	memset(&map_info, 0, map_info_len);
5002 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5003 	if (err && errno == EINVAL)
5004 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5005 	if (err) {
5006 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5007 			libbpf_strerror_r(errno, msg, sizeof(msg)));
5008 		return false;
5009 	}
5010 
5011 	return (map_info.type == map->def.type &&
5012 		map_info.key_size == map->def.key_size &&
5013 		map_info.value_size == map->def.value_size &&
5014 		map_info.max_entries == map->def.max_entries &&
5015 		map_info.map_flags == map->def.map_flags &&
5016 		map_info.map_extra == map->map_extra);
5017 }
5018 
5019 static int
5020 bpf_object__reuse_map(struct bpf_map *map)
5021 {
5022 	char *cp, errmsg[STRERR_BUFSIZE];
5023 	int err, pin_fd;
5024 
5025 	pin_fd = bpf_obj_get(map->pin_path);
5026 	if (pin_fd < 0) {
5027 		err = -errno;
5028 		if (err == -ENOENT) {
5029 			pr_debug("found no pinned map to reuse at '%s'\n",
5030 				 map->pin_path);
5031 			return 0;
5032 		}
5033 
5034 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5035 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5036 			map->pin_path, cp);
5037 		return err;
5038 	}
5039 
5040 	if (!map_is_reuse_compat(map, pin_fd)) {
5041 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5042 			map->pin_path);
5043 		close(pin_fd);
5044 		return -EINVAL;
5045 	}
5046 
5047 	err = bpf_map__reuse_fd(map, pin_fd);
5048 	close(pin_fd);
5049 	if (err)
5050 		return err;
5051 
5052 	map->pinned = true;
5053 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5054 
5055 	return 0;
5056 }
5057 
5058 static int
5059 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5060 {
5061 	enum libbpf_map_type map_type = map->libbpf_type;
5062 	char *cp, errmsg[STRERR_BUFSIZE];
5063 	int err, zero = 0;
5064 
5065 	if (obj->gen_loader) {
5066 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5067 					 map->mmaped, map->def.value_size);
5068 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5069 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5070 		return 0;
5071 	}
5072 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5073 	if (err) {
5074 		err = -errno;
5075 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5076 		pr_warn("Error setting initial map(%s) contents: %s\n",
5077 			map->name, cp);
5078 		return err;
5079 	}
5080 
5081 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5082 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5083 		err = bpf_map_freeze(map->fd);
5084 		if (err) {
5085 			err = -errno;
5086 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5087 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5088 				map->name, cp);
5089 			return err;
5090 		}
5091 	}
5092 	return 0;
5093 }
5094 
5095 static void bpf_map__destroy(struct bpf_map *map);
5096 
5097 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5098 {
5099 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5100 	struct bpf_map_def *def = &map->def;
5101 	const char *map_name = NULL;
5102 	int err = 0;
5103 
5104 	if (kernel_supports(obj, FEAT_PROG_NAME))
5105 		map_name = map->name;
5106 	create_attr.map_ifindex = map->map_ifindex;
5107 	create_attr.map_flags = def->map_flags;
5108 	create_attr.numa_node = map->numa_node;
5109 	create_attr.map_extra = map->map_extra;
5110 
5111 	if (bpf_map__is_struct_ops(map))
5112 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5113 
5114 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5115 		create_attr.btf_fd = btf__fd(obj->btf);
5116 		create_attr.btf_key_type_id = map->btf_key_type_id;
5117 		create_attr.btf_value_type_id = map->btf_value_type_id;
5118 	}
5119 
5120 	if (bpf_map_type__is_map_in_map(def->type)) {
5121 		if (map->inner_map) {
5122 			err = bpf_object__create_map(obj, map->inner_map, true);
5123 			if (err) {
5124 				pr_warn("map '%s': failed to create inner map: %d\n",
5125 					map->name, err);
5126 				return err;
5127 			}
5128 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5129 		}
5130 		if (map->inner_map_fd >= 0)
5131 			create_attr.inner_map_fd = map->inner_map_fd;
5132 	}
5133 
5134 	switch (def->type) {
5135 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5136 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5137 	case BPF_MAP_TYPE_STACK_TRACE:
5138 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5139 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5140 	case BPF_MAP_TYPE_DEVMAP:
5141 	case BPF_MAP_TYPE_DEVMAP_HASH:
5142 	case BPF_MAP_TYPE_CPUMAP:
5143 	case BPF_MAP_TYPE_XSKMAP:
5144 	case BPF_MAP_TYPE_SOCKMAP:
5145 	case BPF_MAP_TYPE_SOCKHASH:
5146 	case BPF_MAP_TYPE_QUEUE:
5147 	case BPF_MAP_TYPE_STACK:
5148 		create_attr.btf_fd = 0;
5149 		create_attr.btf_key_type_id = 0;
5150 		create_attr.btf_value_type_id = 0;
5151 		map->btf_key_type_id = 0;
5152 		map->btf_value_type_id = 0;
5153 	default:
5154 		break;
5155 	}
5156 
5157 	if (obj->gen_loader) {
5158 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5159 				    def->key_size, def->value_size, def->max_entries,
5160 				    &create_attr, is_inner ? -1 : map - obj->maps);
5161 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5162 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5163 		 */
5164 		map->fd = 0;
5165 	} else {
5166 		map->fd = bpf_map_create(def->type, map_name,
5167 					 def->key_size, def->value_size,
5168 					 def->max_entries, &create_attr);
5169 	}
5170 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5171 			    create_attr.btf_value_type_id)) {
5172 		char *cp, errmsg[STRERR_BUFSIZE];
5173 
5174 		err = -errno;
5175 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5176 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5177 			map->name, cp, err);
5178 		create_attr.btf_fd = 0;
5179 		create_attr.btf_key_type_id = 0;
5180 		create_attr.btf_value_type_id = 0;
5181 		map->btf_key_type_id = 0;
5182 		map->btf_value_type_id = 0;
5183 		map->fd = bpf_map_create(def->type, map_name,
5184 					 def->key_size, def->value_size,
5185 					 def->max_entries, &create_attr);
5186 	}
5187 
5188 	err = map->fd < 0 ? -errno : 0;
5189 
5190 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5191 		if (obj->gen_loader)
5192 			map->inner_map->fd = -1;
5193 		bpf_map__destroy(map->inner_map);
5194 		zfree(&map->inner_map);
5195 	}
5196 
5197 	return err;
5198 }
5199 
5200 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5201 {
5202 	const struct bpf_map *targ_map;
5203 	unsigned int i;
5204 	int fd, err = 0;
5205 
5206 	for (i = 0; i < map->init_slots_sz; i++) {
5207 		if (!map->init_slots[i])
5208 			continue;
5209 
5210 		targ_map = map->init_slots[i];
5211 		fd = bpf_map__fd(targ_map);
5212 
5213 		if (obj->gen_loader) {
5214 			bpf_gen__populate_outer_map(obj->gen_loader,
5215 						    map - obj->maps, i,
5216 						    targ_map - obj->maps);
5217 		} else {
5218 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5219 		}
5220 		if (err) {
5221 			err = -errno;
5222 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5223 				map->name, i, targ_map->name, fd, err);
5224 			return err;
5225 		}
5226 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5227 			 map->name, i, targ_map->name, fd);
5228 	}
5229 
5230 	zfree(&map->init_slots);
5231 	map->init_slots_sz = 0;
5232 
5233 	return 0;
5234 }
5235 
5236 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5237 {
5238 	const struct bpf_program *targ_prog;
5239 	unsigned int i;
5240 	int fd, err;
5241 
5242 	if (obj->gen_loader)
5243 		return -ENOTSUP;
5244 
5245 	for (i = 0; i < map->init_slots_sz; i++) {
5246 		if (!map->init_slots[i])
5247 			continue;
5248 
5249 		targ_prog = map->init_slots[i];
5250 		fd = bpf_program__fd(targ_prog);
5251 
5252 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5253 		if (err) {
5254 			err = -errno;
5255 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5256 				map->name, i, targ_prog->name, fd, err);
5257 			return err;
5258 		}
5259 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5260 			 map->name, i, targ_prog->name, fd);
5261 	}
5262 
5263 	zfree(&map->init_slots);
5264 	map->init_slots_sz = 0;
5265 
5266 	return 0;
5267 }
5268 
5269 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5270 {
5271 	struct bpf_map *map;
5272 	int i, err;
5273 
5274 	for (i = 0; i < obj->nr_maps; i++) {
5275 		map = &obj->maps[i];
5276 
5277 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5278 			continue;
5279 
5280 		err = init_prog_array_slots(obj, map);
5281 		if (err < 0) {
5282 			zclose(map->fd);
5283 			return err;
5284 		}
5285 	}
5286 	return 0;
5287 }
5288 
5289 static int map_set_def_max_entries(struct bpf_map *map)
5290 {
5291 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5292 		int nr_cpus;
5293 
5294 		nr_cpus = libbpf_num_possible_cpus();
5295 		if (nr_cpus < 0) {
5296 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5297 				map->name, nr_cpus);
5298 			return nr_cpus;
5299 		}
5300 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5301 		map->def.max_entries = nr_cpus;
5302 	}
5303 
5304 	return 0;
5305 }
5306 
5307 static int
5308 bpf_object__create_maps(struct bpf_object *obj)
5309 {
5310 	struct bpf_map *map;
5311 	char *cp, errmsg[STRERR_BUFSIZE];
5312 	unsigned int i, j;
5313 	int err;
5314 	bool retried;
5315 
5316 	for (i = 0; i < obj->nr_maps; i++) {
5317 		map = &obj->maps[i];
5318 
5319 		/* To support old kernels, we skip creating global data maps
5320 		 * (.rodata, .data, .kconfig, etc); later on, during program
5321 		 * loading, if we detect that at least one of the to-be-loaded
5322 		 * programs is referencing any global data map, we'll error
5323 		 * out with program name and relocation index logged.
5324 		 * This approach allows to accommodate Clang emitting
5325 		 * unnecessary .rodata.str1.1 sections for string literals,
5326 		 * but also it allows to have CO-RE applications that use
5327 		 * global variables in some of BPF programs, but not others.
5328 		 * If those global variable-using programs are not loaded at
5329 		 * runtime due to bpf_program__set_autoload(prog, false),
5330 		 * bpf_object loading will succeed just fine even on old
5331 		 * kernels.
5332 		 */
5333 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5334 			map->autocreate = false;
5335 
5336 		if (!map->autocreate) {
5337 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5338 			continue;
5339 		}
5340 
5341 		err = map_set_def_max_entries(map);
5342 		if (err)
5343 			goto err_out;
5344 
5345 		retried = false;
5346 retry:
5347 		if (map->pin_path) {
5348 			err = bpf_object__reuse_map(map);
5349 			if (err) {
5350 				pr_warn("map '%s': error reusing pinned map\n",
5351 					map->name);
5352 				goto err_out;
5353 			}
5354 			if (retried && map->fd < 0) {
5355 				pr_warn("map '%s': cannot find pinned map\n",
5356 					map->name);
5357 				err = -ENOENT;
5358 				goto err_out;
5359 			}
5360 		}
5361 
5362 		if (map->fd >= 0) {
5363 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5364 				 map->name, map->fd);
5365 		} else {
5366 			err = bpf_object__create_map(obj, map, false);
5367 			if (err)
5368 				goto err_out;
5369 
5370 			pr_debug("map '%s': created successfully, fd=%d\n",
5371 				 map->name, map->fd);
5372 
5373 			if (bpf_map__is_internal(map)) {
5374 				err = bpf_object__populate_internal_map(obj, map);
5375 				if (err < 0) {
5376 					zclose(map->fd);
5377 					goto err_out;
5378 				}
5379 			}
5380 
5381 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5382 				err = init_map_in_map_slots(obj, map);
5383 				if (err < 0) {
5384 					zclose(map->fd);
5385 					goto err_out;
5386 				}
5387 			}
5388 		}
5389 
5390 		if (map->pin_path && !map->pinned) {
5391 			err = bpf_map__pin(map, NULL);
5392 			if (err) {
5393 				zclose(map->fd);
5394 				if (!retried && err == -EEXIST) {
5395 					retried = true;
5396 					goto retry;
5397 				}
5398 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5399 					map->name, map->pin_path, err);
5400 				goto err_out;
5401 			}
5402 		}
5403 	}
5404 
5405 	return 0;
5406 
5407 err_out:
5408 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5409 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5410 	pr_perm_msg(err);
5411 	for (j = 0; j < i; j++)
5412 		zclose(obj->maps[j].fd);
5413 	return err;
5414 }
5415 
5416 static bool bpf_core_is_flavor_sep(const char *s)
5417 {
5418 	/* check X___Y name pattern, where X and Y are not underscores */
5419 	return s[0] != '_' &&				      /* X */
5420 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5421 	       s[4] != '_';				      /* Y */
5422 }
5423 
5424 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5425  * before last triple underscore. Struct name part after last triple
5426  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5427  */
5428 size_t bpf_core_essential_name_len(const char *name)
5429 {
5430 	size_t n = strlen(name);
5431 	int i;
5432 
5433 	for (i = n - 5; i >= 0; i--) {
5434 		if (bpf_core_is_flavor_sep(name + i))
5435 			return i + 1;
5436 	}
5437 	return n;
5438 }
5439 
5440 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5441 {
5442 	if (!cands)
5443 		return;
5444 
5445 	free(cands->cands);
5446 	free(cands);
5447 }
5448 
5449 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5450 		       size_t local_essent_len,
5451 		       const struct btf *targ_btf,
5452 		       const char *targ_btf_name,
5453 		       int targ_start_id,
5454 		       struct bpf_core_cand_list *cands)
5455 {
5456 	struct bpf_core_cand *new_cands, *cand;
5457 	const struct btf_type *t, *local_t;
5458 	const char *targ_name, *local_name;
5459 	size_t targ_essent_len;
5460 	int n, i;
5461 
5462 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5463 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5464 
5465 	n = btf__type_cnt(targ_btf);
5466 	for (i = targ_start_id; i < n; i++) {
5467 		t = btf__type_by_id(targ_btf, i);
5468 		if (!btf_kind_core_compat(t, local_t))
5469 			continue;
5470 
5471 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5472 		if (str_is_empty(targ_name))
5473 			continue;
5474 
5475 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5476 		if (targ_essent_len != local_essent_len)
5477 			continue;
5478 
5479 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5480 			continue;
5481 
5482 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5483 			 local_cand->id, btf_kind_str(local_t),
5484 			 local_name, i, btf_kind_str(t), targ_name,
5485 			 targ_btf_name);
5486 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5487 					      sizeof(*cands->cands));
5488 		if (!new_cands)
5489 			return -ENOMEM;
5490 
5491 		cand = &new_cands[cands->len];
5492 		cand->btf = targ_btf;
5493 		cand->id = i;
5494 
5495 		cands->cands = new_cands;
5496 		cands->len++;
5497 	}
5498 	return 0;
5499 }
5500 
5501 static int load_module_btfs(struct bpf_object *obj)
5502 {
5503 	struct bpf_btf_info info;
5504 	struct module_btf *mod_btf;
5505 	struct btf *btf;
5506 	char name[64];
5507 	__u32 id = 0, len;
5508 	int err, fd;
5509 
5510 	if (obj->btf_modules_loaded)
5511 		return 0;
5512 
5513 	if (obj->gen_loader)
5514 		return 0;
5515 
5516 	/* don't do this again, even if we find no module BTFs */
5517 	obj->btf_modules_loaded = true;
5518 
5519 	/* kernel too old to support module BTFs */
5520 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5521 		return 0;
5522 
5523 	while (true) {
5524 		err = bpf_btf_get_next_id(id, &id);
5525 		if (err && errno == ENOENT)
5526 			return 0;
5527 		if (err && errno == EPERM) {
5528 			pr_debug("skipping module BTFs loading, missing privileges\n");
5529 			return 0;
5530 		}
5531 		if (err) {
5532 			err = -errno;
5533 			pr_warn("failed to iterate BTF objects: %d\n", err);
5534 			return err;
5535 		}
5536 
5537 		fd = bpf_btf_get_fd_by_id(id);
5538 		if (fd < 0) {
5539 			if (errno == ENOENT)
5540 				continue; /* expected race: BTF was unloaded */
5541 			err = -errno;
5542 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5543 			return err;
5544 		}
5545 
5546 		len = sizeof(info);
5547 		memset(&info, 0, sizeof(info));
5548 		info.name = ptr_to_u64(name);
5549 		info.name_len = sizeof(name);
5550 
5551 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5552 		if (err) {
5553 			err = -errno;
5554 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5555 			goto err_out;
5556 		}
5557 
5558 		/* ignore non-module BTFs */
5559 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5560 			close(fd);
5561 			continue;
5562 		}
5563 
5564 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5565 		err = libbpf_get_error(btf);
5566 		if (err) {
5567 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5568 				name, id, err);
5569 			goto err_out;
5570 		}
5571 
5572 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5573 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5574 		if (err)
5575 			goto err_out;
5576 
5577 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5578 
5579 		mod_btf->btf = btf;
5580 		mod_btf->id = id;
5581 		mod_btf->fd = fd;
5582 		mod_btf->name = strdup(name);
5583 		if (!mod_btf->name) {
5584 			err = -ENOMEM;
5585 			goto err_out;
5586 		}
5587 		continue;
5588 
5589 err_out:
5590 		close(fd);
5591 		return err;
5592 	}
5593 
5594 	return 0;
5595 }
5596 
5597 static struct bpf_core_cand_list *
5598 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5599 {
5600 	struct bpf_core_cand local_cand = {};
5601 	struct bpf_core_cand_list *cands;
5602 	const struct btf *main_btf;
5603 	const struct btf_type *local_t;
5604 	const char *local_name;
5605 	size_t local_essent_len;
5606 	int err, i;
5607 
5608 	local_cand.btf = local_btf;
5609 	local_cand.id = local_type_id;
5610 	local_t = btf__type_by_id(local_btf, local_type_id);
5611 	if (!local_t)
5612 		return ERR_PTR(-EINVAL);
5613 
5614 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5615 	if (str_is_empty(local_name))
5616 		return ERR_PTR(-EINVAL);
5617 	local_essent_len = bpf_core_essential_name_len(local_name);
5618 
5619 	cands = calloc(1, sizeof(*cands));
5620 	if (!cands)
5621 		return ERR_PTR(-ENOMEM);
5622 
5623 	/* Attempt to find target candidates in vmlinux BTF first */
5624 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5625 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5626 	if (err)
5627 		goto err_out;
5628 
5629 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5630 	if (cands->len)
5631 		return cands;
5632 
5633 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5634 	if (obj->btf_vmlinux_override)
5635 		return cands;
5636 
5637 	/* now look through module BTFs, trying to still find candidates */
5638 	err = load_module_btfs(obj);
5639 	if (err)
5640 		goto err_out;
5641 
5642 	for (i = 0; i < obj->btf_module_cnt; i++) {
5643 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5644 					 obj->btf_modules[i].btf,
5645 					 obj->btf_modules[i].name,
5646 					 btf__type_cnt(obj->btf_vmlinux),
5647 					 cands);
5648 		if (err)
5649 			goto err_out;
5650 	}
5651 
5652 	return cands;
5653 err_out:
5654 	bpf_core_free_cands(cands);
5655 	return ERR_PTR(err);
5656 }
5657 
5658 /* Check local and target types for compatibility. This check is used for
5659  * type-based CO-RE relocations and follow slightly different rules than
5660  * field-based relocations. This function assumes that root types were already
5661  * checked for name match. Beyond that initial root-level name check, names
5662  * are completely ignored. Compatibility rules are as follows:
5663  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5664  *     kind should match for local and target types (i.e., STRUCT is not
5665  *     compatible with UNION);
5666  *   - for ENUMs, the size is ignored;
5667  *   - for INT, size and signedness are ignored;
5668  *   - for ARRAY, dimensionality is ignored, element types are checked for
5669  *     compatibility recursively;
5670  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5671  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5672  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5673  *     number of input args and compatible return and argument types.
5674  * These rules are not set in stone and probably will be adjusted as we get
5675  * more experience with using BPF CO-RE relocations.
5676  */
5677 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5678 			      const struct btf *targ_btf, __u32 targ_id)
5679 {
5680 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5681 }
5682 
5683 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5684 			 const struct btf *targ_btf, __u32 targ_id)
5685 {
5686 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5687 }
5688 
5689 static size_t bpf_core_hash_fn(const long key, void *ctx)
5690 {
5691 	return key;
5692 }
5693 
5694 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5695 {
5696 	return k1 == k2;
5697 }
5698 
5699 static int record_relo_core(struct bpf_program *prog,
5700 			    const struct bpf_core_relo *core_relo, int insn_idx)
5701 {
5702 	struct reloc_desc *relos, *relo;
5703 
5704 	relos = libbpf_reallocarray(prog->reloc_desc,
5705 				    prog->nr_reloc + 1, sizeof(*relos));
5706 	if (!relos)
5707 		return -ENOMEM;
5708 	relo = &relos[prog->nr_reloc];
5709 	relo->type = RELO_CORE;
5710 	relo->insn_idx = insn_idx;
5711 	relo->core_relo = core_relo;
5712 	prog->reloc_desc = relos;
5713 	prog->nr_reloc++;
5714 	return 0;
5715 }
5716 
5717 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5718 {
5719 	struct reloc_desc *relo;
5720 	int i;
5721 
5722 	for (i = 0; i < prog->nr_reloc; i++) {
5723 		relo = &prog->reloc_desc[i];
5724 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5725 			continue;
5726 
5727 		return relo->core_relo;
5728 	}
5729 
5730 	return NULL;
5731 }
5732 
5733 static int bpf_core_resolve_relo(struct bpf_program *prog,
5734 				 const struct bpf_core_relo *relo,
5735 				 int relo_idx,
5736 				 const struct btf *local_btf,
5737 				 struct hashmap *cand_cache,
5738 				 struct bpf_core_relo_res *targ_res)
5739 {
5740 	struct bpf_core_spec specs_scratch[3] = {};
5741 	struct bpf_core_cand_list *cands = NULL;
5742 	const char *prog_name = prog->name;
5743 	const struct btf_type *local_type;
5744 	const char *local_name;
5745 	__u32 local_id = relo->type_id;
5746 	int err;
5747 
5748 	local_type = btf__type_by_id(local_btf, local_id);
5749 	if (!local_type)
5750 		return -EINVAL;
5751 
5752 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5753 	if (!local_name)
5754 		return -EINVAL;
5755 
5756 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5757 	    !hashmap__find(cand_cache, local_id, &cands)) {
5758 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5759 		if (IS_ERR(cands)) {
5760 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5761 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5762 				local_name, PTR_ERR(cands));
5763 			return PTR_ERR(cands);
5764 		}
5765 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5766 		if (err) {
5767 			bpf_core_free_cands(cands);
5768 			return err;
5769 		}
5770 	}
5771 
5772 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5773 				       targ_res);
5774 }
5775 
5776 static int
5777 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5778 {
5779 	const struct btf_ext_info_sec *sec;
5780 	struct bpf_core_relo_res targ_res;
5781 	const struct bpf_core_relo *rec;
5782 	const struct btf_ext_info *seg;
5783 	struct hashmap_entry *entry;
5784 	struct hashmap *cand_cache = NULL;
5785 	struct bpf_program *prog;
5786 	struct bpf_insn *insn;
5787 	const char *sec_name;
5788 	int i, err = 0, insn_idx, sec_idx, sec_num;
5789 
5790 	if (obj->btf_ext->core_relo_info.len == 0)
5791 		return 0;
5792 
5793 	if (targ_btf_path) {
5794 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5795 		err = libbpf_get_error(obj->btf_vmlinux_override);
5796 		if (err) {
5797 			pr_warn("failed to parse target BTF: %d\n", err);
5798 			return err;
5799 		}
5800 	}
5801 
5802 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5803 	if (IS_ERR(cand_cache)) {
5804 		err = PTR_ERR(cand_cache);
5805 		goto out;
5806 	}
5807 
5808 	seg = &obj->btf_ext->core_relo_info;
5809 	sec_num = 0;
5810 	for_each_btf_ext_sec(seg, sec) {
5811 		sec_idx = seg->sec_idxs[sec_num];
5812 		sec_num++;
5813 
5814 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5815 		if (str_is_empty(sec_name)) {
5816 			err = -EINVAL;
5817 			goto out;
5818 		}
5819 
5820 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5821 
5822 		for_each_btf_ext_rec(seg, sec, i, rec) {
5823 			if (rec->insn_off % BPF_INSN_SZ)
5824 				return -EINVAL;
5825 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5826 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5827 			if (!prog) {
5828 				/* When __weak subprog is "overridden" by another instance
5829 				 * of the subprog from a different object file, linker still
5830 				 * appends all the .BTF.ext info that used to belong to that
5831 				 * eliminated subprogram.
5832 				 * This is similar to what x86-64 linker does for relocations.
5833 				 * So just ignore such relocations just like we ignore
5834 				 * subprog instructions when discovering subprograms.
5835 				 */
5836 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5837 					 sec_name, i, insn_idx);
5838 				continue;
5839 			}
5840 			/* no need to apply CO-RE relocation if the program is
5841 			 * not going to be loaded
5842 			 */
5843 			if (!prog->autoload)
5844 				continue;
5845 
5846 			/* adjust insn_idx from section frame of reference to the local
5847 			 * program's frame of reference; (sub-)program code is not yet
5848 			 * relocated, so it's enough to just subtract in-section offset
5849 			 */
5850 			insn_idx = insn_idx - prog->sec_insn_off;
5851 			if (insn_idx >= prog->insns_cnt)
5852 				return -EINVAL;
5853 			insn = &prog->insns[insn_idx];
5854 
5855 			err = record_relo_core(prog, rec, insn_idx);
5856 			if (err) {
5857 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5858 					prog->name, i, err);
5859 				goto out;
5860 			}
5861 
5862 			if (prog->obj->gen_loader)
5863 				continue;
5864 
5865 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5866 			if (err) {
5867 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5868 					prog->name, i, err);
5869 				goto out;
5870 			}
5871 
5872 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5873 			if (err) {
5874 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5875 					prog->name, i, insn_idx, err);
5876 				goto out;
5877 			}
5878 		}
5879 	}
5880 
5881 out:
5882 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5883 	btf__free(obj->btf_vmlinux_override);
5884 	obj->btf_vmlinux_override = NULL;
5885 
5886 	if (!IS_ERR_OR_NULL(cand_cache)) {
5887 		hashmap__for_each_entry(cand_cache, entry, i) {
5888 			bpf_core_free_cands(entry->pvalue);
5889 		}
5890 		hashmap__free(cand_cache);
5891 	}
5892 	return err;
5893 }
5894 
5895 /* base map load ldimm64 special constant, used also for log fixup logic */
5896 #define POISON_LDIMM64_MAP_BASE 2001000000
5897 #define POISON_LDIMM64_MAP_PFX "200100"
5898 
5899 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5900 			       int insn_idx, struct bpf_insn *insn,
5901 			       int map_idx, const struct bpf_map *map)
5902 {
5903 	int i;
5904 
5905 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5906 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5907 
5908 	/* we turn single ldimm64 into two identical invalid calls */
5909 	for (i = 0; i < 2; i++) {
5910 		insn->code = BPF_JMP | BPF_CALL;
5911 		insn->dst_reg = 0;
5912 		insn->src_reg = 0;
5913 		insn->off = 0;
5914 		/* if this instruction is reachable (not a dead code),
5915 		 * verifier will complain with something like:
5916 		 * invalid func unknown#2001000123
5917 		 * where lower 123 is map index into obj->maps[] array
5918 		 */
5919 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5920 
5921 		insn++;
5922 	}
5923 }
5924 
5925 /* unresolved kfunc call special constant, used also for log fixup logic */
5926 #define POISON_CALL_KFUNC_BASE 2002000000
5927 #define POISON_CALL_KFUNC_PFX "2002"
5928 
5929 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5930 			      int insn_idx, struct bpf_insn *insn,
5931 			      int ext_idx, const struct extern_desc *ext)
5932 {
5933 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5934 		 prog->name, relo_idx, insn_idx, ext->name);
5935 
5936 	/* we turn kfunc call into invalid helper call with identifiable constant */
5937 	insn->code = BPF_JMP | BPF_CALL;
5938 	insn->dst_reg = 0;
5939 	insn->src_reg = 0;
5940 	insn->off = 0;
5941 	/* if this instruction is reachable (not a dead code),
5942 	 * verifier will complain with something like:
5943 	 * invalid func unknown#2001000123
5944 	 * where lower 123 is extern index into obj->externs[] array
5945 	 */
5946 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5947 }
5948 
5949 /* Relocate data references within program code:
5950  *  - map references;
5951  *  - global variable references;
5952  *  - extern references.
5953  */
5954 static int
5955 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5956 {
5957 	int i;
5958 
5959 	for (i = 0; i < prog->nr_reloc; i++) {
5960 		struct reloc_desc *relo = &prog->reloc_desc[i];
5961 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5962 		const struct bpf_map *map;
5963 		struct extern_desc *ext;
5964 
5965 		switch (relo->type) {
5966 		case RELO_LD64:
5967 			map = &obj->maps[relo->map_idx];
5968 			if (obj->gen_loader) {
5969 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5970 				insn[0].imm = relo->map_idx;
5971 			} else if (map->autocreate) {
5972 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5973 				insn[0].imm = map->fd;
5974 			} else {
5975 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5976 						   relo->map_idx, map);
5977 			}
5978 			break;
5979 		case RELO_DATA:
5980 			map = &obj->maps[relo->map_idx];
5981 			insn[1].imm = insn[0].imm + relo->sym_off;
5982 			if (obj->gen_loader) {
5983 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5984 				insn[0].imm = relo->map_idx;
5985 			} else if (map->autocreate) {
5986 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5987 				insn[0].imm = map->fd;
5988 			} else {
5989 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5990 						   relo->map_idx, map);
5991 			}
5992 			break;
5993 		case RELO_EXTERN_LD64:
5994 			ext = &obj->externs[relo->ext_idx];
5995 			if (ext->type == EXT_KCFG) {
5996 				if (obj->gen_loader) {
5997 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5998 					insn[0].imm = obj->kconfig_map_idx;
5999 				} else {
6000 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6001 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6002 				}
6003 				insn[1].imm = ext->kcfg.data_off;
6004 			} else /* EXT_KSYM */ {
6005 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6006 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6007 					insn[0].imm = ext->ksym.kernel_btf_id;
6008 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6009 				} else { /* typeless ksyms or unresolved typed ksyms */
6010 					insn[0].imm = (__u32)ext->ksym.addr;
6011 					insn[1].imm = ext->ksym.addr >> 32;
6012 				}
6013 			}
6014 			break;
6015 		case RELO_EXTERN_CALL:
6016 			ext = &obj->externs[relo->ext_idx];
6017 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6018 			if (ext->is_set) {
6019 				insn[0].imm = ext->ksym.kernel_btf_id;
6020 				insn[0].off = ext->ksym.btf_fd_idx;
6021 			} else { /* unresolved weak kfunc call */
6022 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6023 						  relo->ext_idx, ext);
6024 			}
6025 			break;
6026 		case RELO_SUBPROG_ADDR:
6027 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6028 				pr_warn("prog '%s': relo #%d: bad insn\n",
6029 					prog->name, i);
6030 				return -EINVAL;
6031 			}
6032 			/* handled already */
6033 			break;
6034 		case RELO_CALL:
6035 			/* handled already */
6036 			break;
6037 		case RELO_CORE:
6038 			/* will be handled by bpf_program_record_relos() */
6039 			break;
6040 		default:
6041 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6042 				prog->name, i, relo->type);
6043 			return -EINVAL;
6044 		}
6045 	}
6046 
6047 	return 0;
6048 }
6049 
6050 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6051 				    const struct bpf_program *prog,
6052 				    const struct btf_ext_info *ext_info,
6053 				    void **prog_info, __u32 *prog_rec_cnt,
6054 				    __u32 *prog_rec_sz)
6055 {
6056 	void *copy_start = NULL, *copy_end = NULL;
6057 	void *rec, *rec_end, *new_prog_info;
6058 	const struct btf_ext_info_sec *sec;
6059 	size_t old_sz, new_sz;
6060 	int i, sec_num, sec_idx, off_adj;
6061 
6062 	sec_num = 0;
6063 	for_each_btf_ext_sec(ext_info, sec) {
6064 		sec_idx = ext_info->sec_idxs[sec_num];
6065 		sec_num++;
6066 		if (prog->sec_idx != sec_idx)
6067 			continue;
6068 
6069 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6070 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6071 
6072 			if (insn_off < prog->sec_insn_off)
6073 				continue;
6074 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6075 				break;
6076 
6077 			if (!copy_start)
6078 				copy_start = rec;
6079 			copy_end = rec + ext_info->rec_size;
6080 		}
6081 
6082 		if (!copy_start)
6083 			return -ENOENT;
6084 
6085 		/* append func/line info of a given (sub-)program to the main
6086 		 * program func/line info
6087 		 */
6088 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6089 		new_sz = old_sz + (copy_end - copy_start);
6090 		new_prog_info = realloc(*prog_info, new_sz);
6091 		if (!new_prog_info)
6092 			return -ENOMEM;
6093 		*prog_info = new_prog_info;
6094 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6095 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6096 
6097 		/* Kernel instruction offsets are in units of 8-byte
6098 		 * instructions, while .BTF.ext instruction offsets generated
6099 		 * by Clang are in units of bytes. So convert Clang offsets
6100 		 * into kernel offsets and adjust offset according to program
6101 		 * relocated position.
6102 		 */
6103 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6104 		rec = new_prog_info + old_sz;
6105 		rec_end = new_prog_info + new_sz;
6106 		for (; rec < rec_end; rec += ext_info->rec_size) {
6107 			__u32 *insn_off = rec;
6108 
6109 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6110 		}
6111 		*prog_rec_sz = ext_info->rec_size;
6112 		return 0;
6113 	}
6114 
6115 	return -ENOENT;
6116 }
6117 
6118 static int
6119 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6120 			      struct bpf_program *main_prog,
6121 			      const struct bpf_program *prog)
6122 {
6123 	int err;
6124 
6125 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6126 	 * supprot func/line info
6127 	 */
6128 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6129 		return 0;
6130 
6131 	/* only attempt func info relocation if main program's func_info
6132 	 * relocation was successful
6133 	 */
6134 	if (main_prog != prog && !main_prog->func_info)
6135 		goto line_info;
6136 
6137 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6138 				       &main_prog->func_info,
6139 				       &main_prog->func_info_cnt,
6140 				       &main_prog->func_info_rec_size);
6141 	if (err) {
6142 		if (err != -ENOENT) {
6143 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6144 				prog->name, err);
6145 			return err;
6146 		}
6147 		if (main_prog->func_info) {
6148 			/*
6149 			 * Some info has already been found but has problem
6150 			 * in the last btf_ext reloc. Must have to error out.
6151 			 */
6152 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6153 			return err;
6154 		}
6155 		/* Have problem loading the very first info. Ignore the rest. */
6156 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6157 			prog->name);
6158 	}
6159 
6160 line_info:
6161 	/* don't relocate line info if main program's relocation failed */
6162 	if (main_prog != prog && !main_prog->line_info)
6163 		return 0;
6164 
6165 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6166 				       &main_prog->line_info,
6167 				       &main_prog->line_info_cnt,
6168 				       &main_prog->line_info_rec_size);
6169 	if (err) {
6170 		if (err != -ENOENT) {
6171 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6172 				prog->name, err);
6173 			return err;
6174 		}
6175 		if (main_prog->line_info) {
6176 			/*
6177 			 * Some info has already been found but has problem
6178 			 * in the last btf_ext reloc. Must have to error out.
6179 			 */
6180 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6181 			return err;
6182 		}
6183 		/* Have problem loading the very first info. Ignore the rest. */
6184 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6185 			prog->name);
6186 	}
6187 	return 0;
6188 }
6189 
6190 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6191 {
6192 	size_t insn_idx = *(const size_t *)key;
6193 	const struct reloc_desc *relo = elem;
6194 
6195 	if (insn_idx == relo->insn_idx)
6196 		return 0;
6197 	return insn_idx < relo->insn_idx ? -1 : 1;
6198 }
6199 
6200 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6201 {
6202 	if (!prog->nr_reloc)
6203 		return NULL;
6204 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6205 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6206 }
6207 
6208 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6209 {
6210 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6211 	struct reloc_desc *relos;
6212 	int i;
6213 
6214 	if (main_prog == subprog)
6215 		return 0;
6216 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6217 	/* if new count is zero, reallocarray can return a valid NULL result;
6218 	 * in this case the previous pointer will be freed, so we *have to*
6219 	 * reassign old pointer to the new value (even if it's NULL)
6220 	 */
6221 	if (!relos && new_cnt)
6222 		return -ENOMEM;
6223 	if (subprog->nr_reloc)
6224 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6225 		       sizeof(*relos) * subprog->nr_reloc);
6226 
6227 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6228 		relos[i].insn_idx += subprog->sub_insn_off;
6229 	/* After insn_idx adjustment the 'relos' array is still sorted
6230 	 * by insn_idx and doesn't break bsearch.
6231 	 */
6232 	main_prog->reloc_desc = relos;
6233 	main_prog->nr_reloc = new_cnt;
6234 	return 0;
6235 }
6236 
6237 static int
6238 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6239 		       struct bpf_program *prog)
6240 {
6241 	size_t sub_insn_idx, insn_idx, new_cnt;
6242 	struct bpf_program *subprog;
6243 	struct bpf_insn *insns, *insn;
6244 	struct reloc_desc *relo;
6245 	int err;
6246 
6247 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6248 	if (err)
6249 		return err;
6250 
6251 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6252 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6253 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6254 			continue;
6255 
6256 		relo = find_prog_insn_relo(prog, insn_idx);
6257 		if (relo && relo->type == RELO_EXTERN_CALL)
6258 			/* kfunc relocations will be handled later
6259 			 * in bpf_object__relocate_data()
6260 			 */
6261 			continue;
6262 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6263 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6264 				prog->name, insn_idx, relo->type);
6265 			return -LIBBPF_ERRNO__RELOC;
6266 		}
6267 		if (relo) {
6268 			/* sub-program instruction index is a combination of
6269 			 * an offset of a symbol pointed to by relocation and
6270 			 * call instruction's imm field; for global functions,
6271 			 * call always has imm = -1, but for static functions
6272 			 * relocation is against STT_SECTION and insn->imm
6273 			 * points to a start of a static function
6274 			 *
6275 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6276 			 * the byte offset in the corresponding section.
6277 			 */
6278 			if (relo->type == RELO_CALL)
6279 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6280 			else
6281 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6282 		} else if (insn_is_pseudo_func(insn)) {
6283 			/*
6284 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6285 			 * functions are in the same section, so it shouldn't reach here.
6286 			 */
6287 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6288 				prog->name, insn_idx);
6289 			return -LIBBPF_ERRNO__RELOC;
6290 		} else {
6291 			/* if subprogram call is to a static function within
6292 			 * the same ELF section, there won't be any relocation
6293 			 * emitted, but it also means there is no additional
6294 			 * offset necessary, insns->imm is relative to
6295 			 * instruction's original position within the section
6296 			 */
6297 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6298 		}
6299 
6300 		/* we enforce that sub-programs should be in .text section */
6301 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6302 		if (!subprog) {
6303 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6304 				prog->name);
6305 			return -LIBBPF_ERRNO__RELOC;
6306 		}
6307 
6308 		/* if it's the first call instruction calling into this
6309 		 * subprogram (meaning this subprog hasn't been processed
6310 		 * yet) within the context of current main program:
6311 		 *   - append it at the end of main program's instructions blog;
6312 		 *   - process is recursively, while current program is put on hold;
6313 		 *   - if that subprogram calls some other not yet processes
6314 		 *   subprogram, same thing will happen recursively until
6315 		 *   there are no more unprocesses subprograms left to append
6316 		 *   and relocate.
6317 		 */
6318 		if (subprog->sub_insn_off == 0) {
6319 			subprog->sub_insn_off = main_prog->insns_cnt;
6320 
6321 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6322 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6323 			if (!insns) {
6324 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6325 				return -ENOMEM;
6326 			}
6327 			main_prog->insns = insns;
6328 			main_prog->insns_cnt = new_cnt;
6329 
6330 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6331 			       subprog->insns_cnt * sizeof(*insns));
6332 
6333 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6334 				 main_prog->name, subprog->insns_cnt, subprog->name);
6335 
6336 			/* The subprog insns are now appended. Append its relos too. */
6337 			err = append_subprog_relos(main_prog, subprog);
6338 			if (err)
6339 				return err;
6340 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6341 			if (err)
6342 				return err;
6343 		}
6344 
6345 		/* main_prog->insns memory could have been re-allocated, so
6346 		 * calculate pointer again
6347 		 */
6348 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6349 		/* calculate correct instruction position within current main
6350 		 * prog; each main prog can have a different set of
6351 		 * subprograms appended (potentially in different order as
6352 		 * well), so position of any subprog can be different for
6353 		 * different main programs
6354 		 */
6355 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6356 
6357 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6358 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6359 	}
6360 
6361 	return 0;
6362 }
6363 
6364 /*
6365  * Relocate sub-program calls.
6366  *
6367  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6368  * main prog) is processed separately. For each subprog (non-entry functions,
6369  * that can be called from either entry progs or other subprogs) gets their
6370  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6371  * hasn't been yet appended and relocated within current main prog. Once its
6372  * relocated, sub_insn_off will point at the position within current main prog
6373  * where given subprog was appended. This will further be used to relocate all
6374  * the call instructions jumping into this subprog.
6375  *
6376  * We start with main program and process all call instructions. If the call
6377  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6378  * is zero), subprog instructions are appended at the end of main program's
6379  * instruction array. Then main program is "put on hold" while we recursively
6380  * process newly appended subprogram. If that subprogram calls into another
6381  * subprogram that hasn't been appended, new subprogram is appended again to
6382  * the *main* prog's instructions (subprog's instructions are always left
6383  * untouched, as they need to be in unmodified state for subsequent main progs
6384  * and subprog instructions are always sent only as part of a main prog) and
6385  * the process continues recursively. Once all the subprogs called from a main
6386  * prog or any of its subprogs are appended (and relocated), all their
6387  * positions within finalized instructions array are known, so it's easy to
6388  * rewrite call instructions with correct relative offsets, corresponding to
6389  * desired target subprog.
6390  *
6391  * Its important to realize that some subprogs might not be called from some
6392  * main prog and any of its called/used subprogs. Those will keep their
6393  * subprog->sub_insn_off as zero at all times and won't be appended to current
6394  * main prog and won't be relocated within the context of current main prog.
6395  * They might still be used from other main progs later.
6396  *
6397  * Visually this process can be shown as below. Suppose we have two main
6398  * programs mainA and mainB and BPF object contains three subprogs: subA,
6399  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6400  * subC both call subB:
6401  *
6402  *        +--------+ +-------+
6403  *        |        v v       |
6404  *     +--+---+ +--+-+-+ +---+--+
6405  *     | subA | | subB | | subC |
6406  *     +--+---+ +------+ +---+--+
6407  *        ^                  ^
6408  *        |                  |
6409  *    +---+-------+   +------+----+
6410  *    |   mainA   |   |   mainB   |
6411  *    +-----------+   +-----------+
6412  *
6413  * We'll start relocating mainA, will find subA, append it and start
6414  * processing sub A recursively:
6415  *
6416  *    +-----------+------+
6417  *    |   mainA   | subA |
6418  *    +-----------+------+
6419  *
6420  * At this point we notice that subB is used from subA, so we append it and
6421  * relocate (there are no further subcalls from subB):
6422  *
6423  *    +-----------+------+------+
6424  *    |   mainA   | subA | subB |
6425  *    +-----------+------+------+
6426  *
6427  * At this point, we relocate subA calls, then go one level up and finish with
6428  * relocatin mainA calls. mainA is done.
6429  *
6430  * For mainB process is similar but results in different order. We start with
6431  * mainB and skip subA and subB, as mainB never calls them (at least
6432  * directly), but we see subC is needed, so we append and start processing it:
6433  *
6434  *    +-----------+------+
6435  *    |   mainB   | subC |
6436  *    +-----------+------+
6437  * Now we see subC needs subB, so we go back to it, append and relocate it:
6438  *
6439  *    +-----------+------+------+
6440  *    |   mainB   | subC | subB |
6441  *    +-----------+------+------+
6442  *
6443  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6444  */
6445 static int
6446 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6447 {
6448 	struct bpf_program *subprog;
6449 	int i, err;
6450 
6451 	/* mark all subprogs as not relocated (yet) within the context of
6452 	 * current main program
6453 	 */
6454 	for (i = 0; i < obj->nr_programs; i++) {
6455 		subprog = &obj->programs[i];
6456 		if (!prog_is_subprog(obj, subprog))
6457 			continue;
6458 
6459 		subprog->sub_insn_off = 0;
6460 	}
6461 
6462 	err = bpf_object__reloc_code(obj, prog, prog);
6463 	if (err)
6464 		return err;
6465 
6466 	return 0;
6467 }
6468 
6469 static void
6470 bpf_object__free_relocs(struct bpf_object *obj)
6471 {
6472 	struct bpf_program *prog;
6473 	int i;
6474 
6475 	/* free up relocation descriptors */
6476 	for (i = 0; i < obj->nr_programs; i++) {
6477 		prog = &obj->programs[i];
6478 		zfree(&prog->reloc_desc);
6479 		prog->nr_reloc = 0;
6480 	}
6481 }
6482 
6483 static int cmp_relocs(const void *_a, const void *_b)
6484 {
6485 	const struct reloc_desc *a = _a;
6486 	const struct reloc_desc *b = _b;
6487 
6488 	if (a->insn_idx != b->insn_idx)
6489 		return a->insn_idx < b->insn_idx ? -1 : 1;
6490 
6491 	/* no two relocations should have the same insn_idx, but ... */
6492 	if (a->type != b->type)
6493 		return a->type < b->type ? -1 : 1;
6494 
6495 	return 0;
6496 }
6497 
6498 static void bpf_object__sort_relos(struct bpf_object *obj)
6499 {
6500 	int i;
6501 
6502 	for (i = 0; i < obj->nr_programs; i++) {
6503 		struct bpf_program *p = &obj->programs[i];
6504 
6505 		if (!p->nr_reloc)
6506 			continue;
6507 
6508 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6509 	}
6510 }
6511 
6512 static int
6513 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6514 {
6515 	struct bpf_program *prog;
6516 	size_t i, j;
6517 	int err;
6518 
6519 	if (obj->btf_ext) {
6520 		err = bpf_object__relocate_core(obj, targ_btf_path);
6521 		if (err) {
6522 			pr_warn("failed to perform CO-RE relocations: %d\n",
6523 				err);
6524 			return err;
6525 		}
6526 		bpf_object__sort_relos(obj);
6527 	}
6528 
6529 	/* Before relocating calls pre-process relocations and mark
6530 	 * few ld_imm64 instructions that points to subprogs.
6531 	 * Otherwise bpf_object__reloc_code() later would have to consider
6532 	 * all ld_imm64 insns as relocation candidates. That would
6533 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6534 	 * would increase and most of them will fail to find a relo.
6535 	 */
6536 	for (i = 0; i < obj->nr_programs; i++) {
6537 		prog = &obj->programs[i];
6538 		for (j = 0; j < prog->nr_reloc; j++) {
6539 			struct reloc_desc *relo = &prog->reloc_desc[j];
6540 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6541 
6542 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6543 			if (relo->type == RELO_SUBPROG_ADDR)
6544 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6545 		}
6546 	}
6547 
6548 	/* relocate subprogram calls and append used subprograms to main
6549 	 * programs; each copy of subprogram code needs to be relocated
6550 	 * differently for each main program, because its code location might
6551 	 * have changed.
6552 	 * Append subprog relos to main programs to allow data relos to be
6553 	 * processed after text is completely relocated.
6554 	 */
6555 	for (i = 0; i < obj->nr_programs; i++) {
6556 		prog = &obj->programs[i];
6557 		/* sub-program's sub-calls are relocated within the context of
6558 		 * its main program only
6559 		 */
6560 		if (prog_is_subprog(obj, prog))
6561 			continue;
6562 		if (!prog->autoload)
6563 			continue;
6564 
6565 		err = bpf_object__relocate_calls(obj, prog);
6566 		if (err) {
6567 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6568 				prog->name, err);
6569 			return err;
6570 		}
6571 	}
6572 	/* Process data relos for main programs */
6573 	for (i = 0; i < obj->nr_programs; i++) {
6574 		prog = &obj->programs[i];
6575 		if (prog_is_subprog(obj, prog))
6576 			continue;
6577 		if (!prog->autoload)
6578 			continue;
6579 		err = bpf_object__relocate_data(obj, prog);
6580 		if (err) {
6581 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6582 				prog->name, err);
6583 			return err;
6584 		}
6585 	}
6586 
6587 	return 0;
6588 }
6589 
6590 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6591 					    Elf64_Shdr *shdr, Elf_Data *data);
6592 
6593 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6594 					 Elf64_Shdr *shdr, Elf_Data *data)
6595 {
6596 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6597 	int i, j, nrels, new_sz;
6598 	const struct btf_var_secinfo *vi = NULL;
6599 	const struct btf_type *sec, *var, *def;
6600 	struct bpf_map *map = NULL, *targ_map = NULL;
6601 	struct bpf_program *targ_prog = NULL;
6602 	bool is_prog_array, is_map_in_map;
6603 	const struct btf_member *member;
6604 	const char *name, *mname, *type;
6605 	unsigned int moff;
6606 	Elf64_Sym *sym;
6607 	Elf64_Rel *rel;
6608 	void *tmp;
6609 
6610 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6611 		return -EINVAL;
6612 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6613 	if (!sec)
6614 		return -EINVAL;
6615 
6616 	nrels = shdr->sh_size / shdr->sh_entsize;
6617 	for (i = 0; i < nrels; i++) {
6618 		rel = elf_rel_by_idx(data, i);
6619 		if (!rel) {
6620 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6621 			return -LIBBPF_ERRNO__FORMAT;
6622 		}
6623 
6624 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6625 		if (!sym) {
6626 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6627 				i, (size_t)ELF64_R_SYM(rel->r_info));
6628 			return -LIBBPF_ERRNO__FORMAT;
6629 		}
6630 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6631 
6632 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6633 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6634 			 (size_t)rel->r_offset, sym->st_name, name);
6635 
6636 		for (j = 0; j < obj->nr_maps; j++) {
6637 			map = &obj->maps[j];
6638 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6639 				continue;
6640 
6641 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6642 			if (vi->offset <= rel->r_offset &&
6643 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6644 				break;
6645 		}
6646 		if (j == obj->nr_maps) {
6647 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6648 				i, name, (size_t)rel->r_offset);
6649 			return -EINVAL;
6650 		}
6651 
6652 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6653 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6654 		type = is_map_in_map ? "map" : "prog";
6655 		if (is_map_in_map) {
6656 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6657 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6658 					i, name);
6659 				return -LIBBPF_ERRNO__RELOC;
6660 			}
6661 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6662 			    map->def.key_size != sizeof(int)) {
6663 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6664 					i, map->name, sizeof(int));
6665 				return -EINVAL;
6666 			}
6667 			targ_map = bpf_object__find_map_by_name(obj, name);
6668 			if (!targ_map) {
6669 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6670 					i, name);
6671 				return -ESRCH;
6672 			}
6673 		} else if (is_prog_array) {
6674 			targ_prog = bpf_object__find_program_by_name(obj, name);
6675 			if (!targ_prog) {
6676 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6677 					i, name);
6678 				return -ESRCH;
6679 			}
6680 			if (targ_prog->sec_idx != sym->st_shndx ||
6681 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6682 			    prog_is_subprog(obj, targ_prog)) {
6683 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6684 					i, name);
6685 				return -LIBBPF_ERRNO__RELOC;
6686 			}
6687 		} else {
6688 			return -EINVAL;
6689 		}
6690 
6691 		var = btf__type_by_id(obj->btf, vi->type);
6692 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6693 		if (btf_vlen(def) == 0)
6694 			return -EINVAL;
6695 		member = btf_members(def) + btf_vlen(def) - 1;
6696 		mname = btf__name_by_offset(obj->btf, member->name_off);
6697 		if (strcmp(mname, "values"))
6698 			return -EINVAL;
6699 
6700 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6701 		if (rel->r_offset - vi->offset < moff)
6702 			return -EINVAL;
6703 
6704 		moff = rel->r_offset - vi->offset - moff;
6705 		/* here we use BPF pointer size, which is always 64 bit, as we
6706 		 * are parsing ELF that was built for BPF target
6707 		 */
6708 		if (moff % bpf_ptr_sz)
6709 			return -EINVAL;
6710 		moff /= bpf_ptr_sz;
6711 		if (moff >= map->init_slots_sz) {
6712 			new_sz = moff + 1;
6713 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6714 			if (!tmp)
6715 				return -ENOMEM;
6716 			map->init_slots = tmp;
6717 			memset(map->init_slots + map->init_slots_sz, 0,
6718 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6719 			map->init_slots_sz = new_sz;
6720 		}
6721 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6722 
6723 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6724 			 i, map->name, moff, type, name);
6725 	}
6726 
6727 	return 0;
6728 }
6729 
6730 static int bpf_object__collect_relos(struct bpf_object *obj)
6731 {
6732 	int i, err;
6733 
6734 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6735 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6736 		Elf64_Shdr *shdr;
6737 		Elf_Data *data;
6738 		int idx;
6739 
6740 		if (sec_desc->sec_type != SEC_RELO)
6741 			continue;
6742 
6743 		shdr = sec_desc->shdr;
6744 		data = sec_desc->data;
6745 		idx = shdr->sh_info;
6746 
6747 		if (shdr->sh_type != SHT_REL) {
6748 			pr_warn("internal error at %d\n", __LINE__);
6749 			return -LIBBPF_ERRNO__INTERNAL;
6750 		}
6751 
6752 		if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6753 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6754 		else if (idx == obj->efile.btf_maps_shndx)
6755 			err = bpf_object__collect_map_relos(obj, shdr, data);
6756 		else
6757 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6758 		if (err)
6759 			return err;
6760 	}
6761 
6762 	bpf_object__sort_relos(obj);
6763 	return 0;
6764 }
6765 
6766 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6767 {
6768 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6769 	    BPF_OP(insn->code) == BPF_CALL &&
6770 	    BPF_SRC(insn->code) == BPF_K &&
6771 	    insn->src_reg == 0 &&
6772 	    insn->dst_reg == 0) {
6773 		    *func_id = insn->imm;
6774 		    return true;
6775 	}
6776 	return false;
6777 }
6778 
6779 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6780 {
6781 	struct bpf_insn *insn = prog->insns;
6782 	enum bpf_func_id func_id;
6783 	int i;
6784 
6785 	if (obj->gen_loader)
6786 		return 0;
6787 
6788 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6789 		if (!insn_is_helper_call(insn, &func_id))
6790 			continue;
6791 
6792 		/* on kernels that don't yet support
6793 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6794 		 * to bpf_probe_read() which works well for old kernels
6795 		 */
6796 		switch (func_id) {
6797 		case BPF_FUNC_probe_read_kernel:
6798 		case BPF_FUNC_probe_read_user:
6799 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6800 				insn->imm = BPF_FUNC_probe_read;
6801 			break;
6802 		case BPF_FUNC_probe_read_kernel_str:
6803 		case BPF_FUNC_probe_read_user_str:
6804 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6805 				insn->imm = BPF_FUNC_probe_read_str;
6806 			break;
6807 		default:
6808 			break;
6809 		}
6810 	}
6811 	return 0;
6812 }
6813 
6814 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6815 				     int *btf_obj_fd, int *btf_type_id);
6816 
6817 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6818 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6819 				    struct bpf_prog_load_opts *opts, long cookie)
6820 {
6821 	enum sec_def_flags def = cookie;
6822 
6823 	/* old kernels might not support specifying expected_attach_type */
6824 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6825 		opts->expected_attach_type = 0;
6826 
6827 	if (def & SEC_SLEEPABLE)
6828 		opts->prog_flags |= BPF_F_SLEEPABLE;
6829 
6830 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6831 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6832 
6833 	/* special check for usdt to use uprobe_multi link */
6834 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
6835 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6836 
6837 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6838 		int btf_obj_fd = 0, btf_type_id = 0, err;
6839 		const char *attach_name;
6840 
6841 		attach_name = strchr(prog->sec_name, '/');
6842 		if (!attach_name) {
6843 			/* if BPF program is annotated with just SEC("fentry")
6844 			 * (or similar) without declaratively specifying
6845 			 * target, then it is expected that target will be
6846 			 * specified with bpf_program__set_attach_target() at
6847 			 * runtime before BPF object load step. If not, then
6848 			 * there is nothing to load into the kernel as BPF
6849 			 * verifier won't be able to validate BPF program
6850 			 * correctness anyways.
6851 			 */
6852 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6853 				prog->name);
6854 			return -EINVAL;
6855 		}
6856 		attach_name++; /* skip over / */
6857 
6858 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6859 		if (err)
6860 			return err;
6861 
6862 		/* cache resolved BTF FD and BTF type ID in the prog */
6863 		prog->attach_btf_obj_fd = btf_obj_fd;
6864 		prog->attach_btf_id = btf_type_id;
6865 
6866 		/* but by now libbpf common logic is not utilizing
6867 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6868 		 * this callback is called after opts were populated by
6869 		 * libbpf, so this callback has to update opts explicitly here
6870 		 */
6871 		opts->attach_btf_obj_fd = btf_obj_fd;
6872 		opts->attach_btf_id = btf_type_id;
6873 	}
6874 	return 0;
6875 }
6876 
6877 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6878 
6879 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6880 				struct bpf_insn *insns, int insns_cnt,
6881 				const char *license, __u32 kern_version, int *prog_fd)
6882 {
6883 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6884 	const char *prog_name = NULL;
6885 	char *cp, errmsg[STRERR_BUFSIZE];
6886 	size_t log_buf_size = 0;
6887 	char *log_buf = NULL, *tmp;
6888 	int btf_fd, ret, err;
6889 	bool own_log_buf = true;
6890 	__u32 log_level = prog->log_level;
6891 
6892 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6893 		/*
6894 		 * The program type must be set.  Most likely we couldn't find a proper
6895 		 * section definition at load time, and thus we didn't infer the type.
6896 		 */
6897 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6898 			prog->name, prog->sec_name);
6899 		return -EINVAL;
6900 	}
6901 
6902 	if (!insns || !insns_cnt)
6903 		return -EINVAL;
6904 
6905 	if (kernel_supports(obj, FEAT_PROG_NAME))
6906 		prog_name = prog->name;
6907 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6908 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6909 	load_attr.attach_btf_id = prog->attach_btf_id;
6910 	load_attr.kern_version = kern_version;
6911 	load_attr.prog_ifindex = prog->prog_ifindex;
6912 
6913 	/* specify func_info/line_info only if kernel supports them */
6914 	btf_fd = bpf_object__btf_fd(obj);
6915 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6916 		load_attr.prog_btf_fd = btf_fd;
6917 		load_attr.func_info = prog->func_info;
6918 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6919 		load_attr.func_info_cnt = prog->func_info_cnt;
6920 		load_attr.line_info = prog->line_info;
6921 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6922 		load_attr.line_info_cnt = prog->line_info_cnt;
6923 	}
6924 	load_attr.log_level = log_level;
6925 	load_attr.prog_flags = prog->prog_flags;
6926 	load_attr.fd_array = obj->fd_array;
6927 
6928 	/* adjust load_attr if sec_def provides custom preload callback */
6929 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6930 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6931 		if (err < 0) {
6932 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6933 				prog->name, err);
6934 			return err;
6935 		}
6936 		insns = prog->insns;
6937 		insns_cnt = prog->insns_cnt;
6938 	}
6939 
6940 	/* allow prog_prepare_load_fn to change expected_attach_type */
6941 	load_attr.expected_attach_type = prog->expected_attach_type;
6942 
6943 	if (obj->gen_loader) {
6944 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6945 				   license, insns, insns_cnt, &load_attr,
6946 				   prog - obj->programs);
6947 		*prog_fd = -1;
6948 		return 0;
6949 	}
6950 
6951 retry_load:
6952 	/* if log_level is zero, we don't request logs initially even if
6953 	 * custom log_buf is specified; if the program load fails, then we'll
6954 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6955 	 * our own and retry the load to get details on what failed
6956 	 */
6957 	if (log_level) {
6958 		if (prog->log_buf) {
6959 			log_buf = prog->log_buf;
6960 			log_buf_size = prog->log_size;
6961 			own_log_buf = false;
6962 		} else if (obj->log_buf) {
6963 			log_buf = obj->log_buf;
6964 			log_buf_size = obj->log_size;
6965 			own_log_buf = false;
6966 		} else {
6967 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6968 			tmp = realloc(log_buf, log_buf_size);
6969 			if (!tmp) {
6970 				ret = -ENOMEM;
6971 				goto out;
6972 			}
6973 			log_buf = tmp;
6974 			log_buf[0] = '\0';
6975 			own_log_buf = true;
6976 		}
6977 	}
6978 
6979 	load_attr.log_buf = log_buf;
6980 	load_attr.log_size = log_buf_size;
6981 	load_attr.log_level = log_level;
6982 
6983 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6984 	if (ret >= 0) {
6985 		if (log_level && own_log_buf) {
6986 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6987 				 prog->name, log_buf);
6988 		}
6989 
6990 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6991 			struct bpf_map *map;
6992 			int i;
6993 
6994 			for (i = 0; i < obj->nr_maps; i++) {
6995 				map = &prog->obj->maps[i];
6996 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6997 					continue;
6998 
6999 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7000 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7001 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7002 						prog->name, map->real_name, cp);
7003 					/* Don't fail hard if can't bind rodata. */
7004 				}
7005 			}
7006 		}
7007 
7008 		*prog_fd = ret;
7009 		ret = 0;
7010 		goto out;
7011 	}
7012 
7013 	if (log_level == 0) {
7014 		log_level = 1;
7015 		goto retry_load;
7016 	}
7017 	/* On ENOSPC, increase log buffer size and retry, unless custom
7018 	 * log_buf is specified.
7019 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7020 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7021 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7022 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7023 	 */
7024 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7025 		goto retry_load;
7026 
7027 	ret = -errno;
7028 
7029 	/* post-process verifier log to improve error descriptions */
7030 	fixup_verifier_log(prog, log_buf, log_buf_size);
7031 
7032 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7033 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7034 	pr_perm_msg(ret);
7035 
7036 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7037 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7038 			prog->name, log_buf);
7039 	}
7040 
7041 out:
7042 	if (own_log_buf)
7043 		free(log_buf);
7044 	return ret;
7045 }
7046 
7047 static char *find_prev_line(char *buf, char *cur)
7048 {
7049 	char *p;
7050 
7051 	if (cur == buf) /* end of a log buf */
7052 		return NULL;
7053 
7054 	p = cur - 1;
7055 	while (p - 1 >= buf && *(p - 1) != '\n')
7056 		p--;
7057 
7058 	return p;
7059 }
7060 
7061 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7062 		      char *orig, size_t orig_sz, const char *patch)
7063 {
7064 	/* size of the remaining log content to the right from the to-be-replaced part */
7065 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7066 	size_t patch_sz = strlen(patch);
7067 
7068 	if (patch_sz != orig_sz) {
7069 		/* If patch line(s) are longer than original piece of verifier log,
7070 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7071 		 * starting from after to-be-replaced part of the log.
7072 		 *
7073 		 * If patch line(s) are shorter than original piece of verifier log,
7074 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7075 		 * starting from after to-be-replaced part of the log
7076 		 *
7077 		 * We need to be careful about not overflowing available
7078 		 * buf_sz capacity. If that's the case, we'll truncate the end
7079 		 * of the original log, as necessary.
7080 		 */
7081 		if (patch_sz > orig_sz) {
7082 			if (orig + patch_sz >= buf + buf_sz) {
7083 				/* patch is big enough to cover remaining space completely */
7084 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7085 				rem_sz = 0;
7086 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7087 				/* patch causes part of remaining log to be truncated */
7088 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7089 			}
7090 		}
7091 		/* shift remaining log to the right by calculated amount */
7092 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7093 	}
7094 
7095 	memcpy(orig, patch, patch_sz);
7096 }
7097 
7098 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7099 				       char *buf, size_t buf_sz, size_t log_sz,
7100 				       char *line1, char *line2, char *line3)
7101 {
7102 	/* Expected log for failed and not properly guarded CO-RE relocation:
7103 	 * line1 -> 123: (85) call unknown#195896080
7104 	 * line2 -> invalid func unknown#195896080
7105 	 * line3 -> <anything else or end of buffer>
7106 	 *
7107 	 * "123" is the index of the instruction that was poisoned. We extract
7108 	 * instruction index to find corresponding CO-RE relocation and
7109 	 * replace this part of the log with more relevant information about
7110 	 * failed CO-RE relocation.
7111 	 */
7112 	const struct bpf_core_relo *relo;
7113 	struct bpf_core_spec spec;
7114 	char patch[512], spec_buf[256];
7115 	int insn_idx, err, spec_len;
7116 
7117 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7118 		return;
7119 
7120 	relo = find_relo_core(prog, insn_idx);
7121 	if (!relo)
7122 		return;
7123 
7124 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7125 	if (err)
7126 		return;
7127 
7128 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7129 	snprintf(patch, sizeof(patch),
7130 		 "%d: <invalid CO-RE relocation>\n"
7131 		 "failed to resolve CO-RE relocation %s%s\n",
7132 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7133 
7134 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7135 }
7136 
7137 static void fixup_log_missing_map_load(struct bpf_program *prog,
7138 				       char *buf, size_t buf_sz, size_t log_sz,
7139 				       char *line1, char *line2, char *line3)
7140 {
7141 	/* Expected log for failed and not properly guarded map reference:
7142 	 * line1 -> 123: (85) call unknown#2001000345
7143 	 * line2 -> invalid func unknown#2001000345
7144 	 * line3 -> <anything else or end of buffer>
7145 	 *
7146 	 * "123" is the index of the instruction that was poisoned.
7147 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7148 	 */
7149 	struct bpf_object *obj = prog->obj;
7150 	const struct bpf_map *map;
7151 	int insn_idx, map_idx;
7152 	char patch[128];
7153 
7154 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7155 		return;
7156 
7157 	map_idx -= POISON_LDIMM64_MAP_BASE;
7158 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7159 		return;
7160 	map = &obj->maps[map_idx];
7161 
7162 	snprintf(patch, sizeof(patch),
7163 		 "%d: <invalid BPF map reference>\n"
7164 		 "BPF map '%s' is referenced but wasn't created\n",
7165 		 insn_idx, map->name);
7166 
7167 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7168 }
7169 
7170 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7171 					 char *buf, size_t buf_sz, size_t log_sz,
7172 					 char *line1, char *line2, char *line3)
7173 {
7174 	/* Expected log for failed and not properly guarded kfunc call:
7175 	 * line1 -> 123: (85) call unknown#2002000345
7176 	 * line2 -> invalid func unknown#2002000345
7177 	 * line3 -> <anything else or end of buffer>
7178 	 *
7179 	 * "123" is the index of the instruction that was poisoned.
7180 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7181 	 */
7182 	struct bpf_object *obj = prog->obj;
7183 	const struct extern_desc *ext;
7184 	int insn_idx, ext_idx;
7185 	char patch[128];
7186 
7187 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7188 		return;
7189 
7190 	ext_idx -= POISON_CALL_KFUNC_BASE;
7191 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7192 		return;
7193 	ext = &obj->externs[ext_idx];
7194 
7195 	snprintf(patch, sizeof(patch),
7196 		 "%d: <invalid kfunc call>\n"
7197 		 "kfunc '%s' is referenced but wasn't resolved\n",
7198 		 insn_idx, ext->name);
7199 
7200 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7201 }
7202 
7203 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7204 {
7205 	/* look for familiar error patterns in last N lines of the log */
7206 	const size_t max_last_line_cnt = 10;
7207 	char *prev_line, *cur_line, *next_line;
7208 	size_t log_sz;
7209 	int i;
7210 
7211 	if (!buf)
7212 		return;
7213 
7214 	log_sz = strlen(buf) + 1;
7215 	next_line = buf + log_sz - 1;
7216 
7217 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7218 		cur_line = find_prev_line(buf, next_line);
7219 		if (!cur_line)
7220 			return;
7221 
7222 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7223 			prev_line = find_prev_line(buf, cur_line);
7224 			if (!prev_line)
7225 				continue;
7226 
7227 			/* failed CO-RE relocation case */
7228 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7229 						   prev_line, cur_line, next_line);
7230 			return;
7231 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7232 			prev_line = find_prev_line(buf, cur_line);
7233 			if (!prev_line)
7234 				continue;
7235 
7236 			/* reference to uncreated BPF map */
7237 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7238 						   prev_line, cur_line, next_line);
7239 			return;
7240 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7241 			prev_line = find_prev_line(buf, cur_line);
7242 			if (!prev_line)
7243 				continue;
7244 
7245 			/* reference to unresolved kfunc */
7246 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7247 						     prev_line, cur_line, next_line);
7248 			return;
7249 		}
7250 	}
7251 }
7252 
7253 static int bpf_program_record_relos(struct bpf_program *prog)
7254 {
7255 	struct bpf_object *obj = prog->obj;
7256 	int i;
7257 
7258 	for (i = 0; i < prog->nr_reloc; i++) {
7259 		struct reloc_desc *relo = &prog->reloc_desc[i];
7260 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7261 		int kind;
7262 
7263 		switch (relo->type) {
7264 		case RELO_EXTERN_LD64:
7265 			if (ext->type != EXT_KSYM)
7266 				continue;
7267 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7268 				BTF_KIND_VAR : BTF_KIND_FUNC;
7269 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7270 					       ext->is_weak, !ext->ksym.type_id,
7271 					       true, kind, relo->insn_idx);
7272 			break;
7273 		case RELO_EXTERN_CALL:
7274 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7275 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7276 					       relo->insn_idx);
7277 			break;
7278 		case RELO_CORE: {
7279 			struct bpf_core_relo cr = {
7280 				.insn_off = relo->insn_idx * 8,
7281 				.type_id = relo->core_relo->type_id,
7282 				.access_str_off = relo->core_relo->access_str_off,
7283 				.kind = relo->core_relo->kind,
7284 			};
7285 
7286 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7287 			break;
7288 		}
7289 		default:
7290 			continue;
7291 		}
7292 	}
7293 	return 0;
7294 }
7295 
7296 static int
7297 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7298 {
7299 	struct bpf_program *prog;
7300 	size_t i;
7301 	int err;
7302 
7303 	for (i = 0; i < obj->nr_programs; i++) {
7304 		prog = &obj->programs[i];
7305 		err = bpf_object__sanitize_prog(obj, prog);
7306 		if (err)
7307 			return err;
7308 	}
7309 
7310 	for (i = 0; i < obj->nr_programs; i++) {
7311 		prog = &obj->programs[i];
7312 		if (prog_is_subprog(obj, prog))
7313 			continue;
7314 		if (!prog->autoload) {
7315 			pr_debug("prog '%s': skipped loading\n", prog->name);
7316 			continue;
7317 		}
7318 		prog->log_level |= log_level;
7319 
7320 		if (obj->gen_loader)
7321 			bpf_program_record_relos(prog);
7322 
7323 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7324 					   obj->license, obj->kern_version, &prog->fd);
7325 		if (err) {
7326 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7327 			return err;
7328 		}
7329 	}
7330 
7331 	bpf_object__free_relocs(obj);
7332 	return 0;
7333 }
7334 
7335 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7336 
7337 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7338 {
7339 	struct bpf_program *prog;
7340 	int err;
7341 
7342 	bpf_object__for_each_program(prog, obj) {
7343 		prog->sec_def = find_sec_def(prog->sec_name);
7344 		if (!prog->sec_def) {
7345 			/* couldn't guess, but user might manually specify */
7346 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7347 				prog->name, prog->sec_name);
7348 			continue;
7349 		}
7350 
7351 		prog->type = prog->sec_def->prog_type;
7352 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7353 
7354 		/* sec_def can have custom callback which should be called
7355 		 * after bpf_program is initialized to adjust its properties
7356 		 */
7357 		if (prog->sec_def->prog_setup_fn) {
7358 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7359 			if (err < 0) {
7360 				pr_warn("prog '%s': failed to initialize: %d\n",
7361 					prog->name, err);
7362 				return err;
7363 			}
7364 		}
7365 	}
7366 
7367 	return 0;
7368 }
7369 
7370 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7371 					  const struct bpf_object_open_opts *opts)
7372 {
7373 	const char *obj_name, *kconfig, *btf_tmp_path;
7374 	struct bpf_object *obj;
7375 	char tmp_name[64];
7376 	int err;
7377 	char *log_buf;
7378 	size_t log_size;
7379 	__u32 log_level;
7380 
7381 	if (elf_version(EV_CURRENT) == EV_NONE) {
7382 		pr_warn("failed to init libelf for %s\n",
7383 			path ? : "(mem buf)");
7384 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7385 	}
7386 
7387 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7388 		return ERR_PTR(-EINVAL);
7389 
7390 	obj_name = OPTS_GET(opts, object_name, NULL);
7391 	if (obj_buf) {
7392 		if (!obj_name) {
7393 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7394 				 (unsigned long)obj_buf,
7395 				 (unsigned long)obj_buf_sz);
7396 			obj_name = tmp_name;
7397 		}
7398 		path = obj_name;
7399 		pr_debug("loading object '%s' from buffer\n", obj_name);
7400 	}
7401 
7402 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7403 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7404 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7405 	if (log_size > UINT_MAX)
7406 		return ERR_PTR(-EINVAL);
7407 	if (log_size && !log_buf)
7408 		return ERR_PTR(-EINVAL);
7409 
7410 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7411 	if (IS_ERR(obj))
7412 		return obj;
7413 
7414 	obj->log_buf = log_buf;
7415 	obj->log_size = log_size;
7416 	obj->log_level = log_level;
7417 
7418 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7419 	if (btf_tmp_path) {
7420 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7421 			err = -ENAMETOOLONG;
7422 			goto out;
7423 		}
7424 		obj->btf_custom_path = strdup(btf_tmp_path);
7425 		if (!obj->btf_custom_path) {
7426 			err = -ENOMEM;
7427 			goto out;
7428 		}
7429 	}
7430 
7431 	kconfig = OPTS_GET(opts, kconfig, NULL);
7432 	if (kconfig) {
7433 		obj->kconfig = strdup(kconfig);
7434 		if (!obj->kconfig) {
7435 			err = -ENOMEM;
7436 			goto out;
7437 		}
7438 	}
7439 
7440 	err = bpf_object__elf_init(obj);
7441 	err = err ? : bpf_object__check_endianness(obj);
7442 	err = err ? : bpf_object__elf_collect(obj);
7443 	err = err ? : bpf_object__collect_externs(obj);
7444 	err = err ? : bpf_object_fixup_btf(obj);
7445 	err = err ? : bpf_object__init_maps(obj, opts);
7446 	err = err ? : bpf_object_init_progs(obj, opts);
7447 	err = err ? : bpf_object__collect_relos(obj);
7448 	if (err)
7449 		goto out;
7450 
7451 	bpf_object__elf_finish(obj);
7452 
7453 	return obj;
7454 out:
7455 	bpf_object__close(obj);
7456 	return ERR_PTR(err);
7457 }
7458 
7459 struct bpf_object *
7460 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7461 {
7462 	if (!path)
7463 		return libbpf_err_ptr(-EINVAL);
7464 
7465 	pr_debug("loading %s\n", path);
7466 
7467 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7468 }
7469 
7470 struct bpf_object *bpf_object__open(const char *path)
7471 {
7472 	return bpf_object__open_file(path, NULL);
7473 }
7474 
7475 struct bpf_object *
7476 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7477 		     const struct bpf_object_open_opts *opts)
7478 {
7479 	if (!obj_buf || obj_buf_sz == 0)
7480 		return libbpf_err_ptr(-EINVAL);
7481 
7482 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7483 }
7484 
7485 static int bpf_object_unload(struct bpf_object *obj)
7486 {
7487 	size_t i;
7488 
7489 	if (!obj)
7490 		return libbpf_err(-EINVAL);
7491 
7492 	for (i = 0; i < obj->nr_maps; i++) {
7493 		zclose(obj->maps[i].fd);
7494 		if (obj->maps[i].st_ops)
7495 			zfree(&obj->maps[i].st_ops->kern_vdata);
7496 	}
7497 
7498 	for (i = 0; i < obj->nr_programs; i++)
7499 		bpf_program__unload(&obj->programs[i]);
7500 
7501 	return 0;
7502 }
7503 
7504 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7505 {
7506 	struct bpf_map *m;
7507 
7508 	bpf_object__for_each_map(m, obj) {
7509 		if (!bpf_map__is_internal(m))
7510 			continue;
7511 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7512 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7513 	}
7514 
7515 	return 0;
7516 }
7517 
7518 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7519 {
7520 	char sym_type, sym_name[500];
7521 	unsigned long long sym_addr;
7522 	int ret, err = 0;
7523 	FILE *f;
7524 
7525 	f = fopen("/proc/kallsyms", "re");
7526 	if (!f) {
7527 		err = -errno;
7528 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7529 		return err;
7530 	}
7531 
7532 	while (true) {
7533 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7534 			     &sym_addr, &sym_type, sym_name);
7535 		if (ret == EOF && feof(f))
7536 			break;
7537 		if (ret != 3) {
7538 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7539 			err = -EINVAL;
7540 			break;
7541 		}
7542 
7543 		err = cb(sym_addr, sym_type, sym_name, ctx);
7544 		if (err)
7545 			break;
7546 	}
7547 
7548 	fclose(f);
7549 	return err;
7550 }
7551 
7552 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7553 		       const char *sym_name, void *ctx)
7554 {
7555 	struct bpf_object *obj = ctx;
7556 	const struct btf_type *t;
7557 	struct extern_desc *ext;
7558 
7559 	ext = find_extern_by_name(obj, sym_name);
7560 	if (!ext || ext->type != EXT_KSYM)
7561 		return 0;
7562 
7563 	t = btf__type_by_id(obj->btf, ext->btf_id);
7564 	if (!btf_is_var(t))
7565 		return 0;
7566 
7567 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7568 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7569 			sym_name, ext->ksym.addr, sym_addr);
7570 		return -EINVAL;
7571 	}
7572 	if (!ext->is_set) {
7573 		ext->is_set = true;
7574 		ext->ksym.addr = sym_addr;
7575 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7576 	}
7577 	return 0;
7578 }
7579 
7580 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7581 {
7582 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7583 }
7584 
7585 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7586 			    __u16 kind, struct btf **res_btf,
7587 			    struct module_btf **res_mod_btf)
7588 {
7589 	struct module_btf *mod_btf;
7590 	struct btf *btf;
7591 	int i, id, err;
7592 
7593 	btf = obj->btf_vmlinux;
7594 	mod_btf = NULL;
7595 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7596 
7597 	if (id == -ENOENT) {
7598 		err = load_module_btfs(obj);
7599 		if (err)
7600 			return err;
7601 
7602 		for (i = 0; i < obj->btf_module_cnt; i++) {
7603 			/* we assume module_btf's BTF FD is always >0 */
7604 			mod_btf = &obj->btf_modules[i];
7605 			btf = mod_btf->btf;
7606 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7607 			if (id != -ENOENT)
7608 				break;
7609 		}
7610 	}
7611 	if (id <= 0)
7612 		return -ESRCH;
7613 
7614 	*res_btf = btf;
7615 	*res_mod_btf = mod_btf;
7616 	return id;
7617 }
7618 
7619 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7620 					       struct extern_desc *ext)
7621 {
7622 	const struct btf_type *targ_var, *targ_type;
7623 	__u32 targ_type_id, local_type_id;
7624 	struct module_btf *mod_btf = NULL;
7625 	const char *targ_var_name;
7626 	struct btf *btf = NULL;
7627 	int id, err;
7628 
7629 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7630 	if (id < 0) {
7631 		if (id == -ESRCH && ext->is_weak)
7632 			return 0;
7633 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7634 			ext->name);
7635 		return id;
7636 	}
7637 
7638 	/* find local type_id */
7639 	local_type_id = ext->ksym.type_id;
7640 
7641 	/* find target type_id */
7642 	targ_var = btf__type_by_id(btf, id);
7643 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7644 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7645 
7646 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7647 					btf, targ_type_id);
7648 	if (err <= 0) {
7649 		const struct btf_type *local_type;
7650 		const char *targ_name, *local_name;
7651 
7652 		local_type = btf__type_by_id(obj->btf, local_type_id);
7653 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7654 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7655 
7656 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7657 			ext->name, local_type_id,
7658 			btf_kind_str(local_type), local_name, targ_type_id,
7659 			btf_kind_str(targ_type), targ_name);
7660 		return -EINVAL;
7661 	}
7662 
7663 	ext->is_set = true;
7664 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7665 	ext->ksym.kernel_btf_id = id;
7666 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7667 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7668 
7669 	return 0;
7670 }
7671 
7672 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7673 						struct extern_desc *ext)
7674 {
7675 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7676 	struct module_btf *mod_btf = NULL;
7677 	const struct btf_type *kern_func;
7678 	struct btf *kern_btf = NULL;
7679 	int ret;
7680 
7681 	local_func_proto_id = ext->ksym.type_id;
7682 
7683 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
7684 				    &mod_btf);
7685 	if (kfunc_id < 0) {
7686 		if (kfunc_id == -ESRCH && ext->is_weak)
7687 			return 0;
7688 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7689 			ext->name);
7690 		return kfunc_id;
7691 	}
7692 
7693 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7694 	kfunc_proto_id = kern_func->type;
7695 
7696 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7697 					kern_btf, kfunc_proto_id);
7698 	if (ret <= 0) {
7699 		if (ext->is_weak)
7700 			return 0;
7701 
7702 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7703 			ext->name, local_func_proto_id,
7704 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7705 		return -EINVAL;
7706 	}
7707 
7708 	/* set index for module BTF fd in fd_array, if unset */
7709 	if (mod_btf && !mod_btf->fd_array_idx) {
7710 		/* insn->off is s16 */
7711 		if (obj->fd_array_cnt == INT16_MAX) {
7712 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7713 				ext->name, mod_btf->fd_array_idx);
7714 			return -E2BIG;
7715 		}
7716 		/* Cannot use index 0 for module BTF fd */
7717 		if (!obj->fd_array_cnt)
7718 			obj->fd_array_cnt = 1;
7719 
7720 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7721 					obj->fd_array_cnt + 1);
7722 		if (ret)
7723 			return ret;
7724 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7725 		/* we assume module BTF FD is always >0 */
7726 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7727 	}
7728 
7729 	ext->is_set = true;
7730 	ext->ksym.kernel_btf_id = kfunc_id;
7731 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7732 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7733 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7734 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7735 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7736 	 */
7737 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7738 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7739 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7740 
7741 	return 0;
7742 }
7743 
7744 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7745 {
7746 	const struct btf_type *t;
7747 	struct extern_desc *ext;
7748 	int i, err;
7749 
7750 	for (i = 0; i < obj->nr_extern; i++) {
7751 		ext = &obj->externs[i];
7752 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7753 			continue;
7754 
7755 		if (obj->gen_loader) {
7756 			ext->is_set = true;
7757 			ext->ksym.kernel_btf_obj_fd = 0;
7758 			ext->ksym.kernel_btf_id = 0;
7759 			continue;
7760 		}
7761 		t = btf__type_by_id(obj->btf, ext->btf_id);
7762 		if (btf_is_var(t))
7763 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7764 		else
7765 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7766 		if (err)
7767 			return err;
7768 	}
7769 	return 0;
7770 }
7771 
7772 static int bpf_object__resolve_externs(struct bpf_object *obj,
7773 				       const char *extra_kconfig)
7774 {
7775 	bool need_config = false, need_kallsyms = false;
7776 	bool need_vmlinux_btf = false;
7777 	struct extern_desc *ext;
7778 	void *kcfg_data = NULL;
7779 	int err, i;
7780 
7781 	if (obj->nr_extern == 0)
7782 		return 0;
7783 
7784 	if (obj->kconfig_map_idx >= 0)
7785 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7786 
7787 	for (i = 0; i < obj->nr_extern; i++) {
7788 		ext = &obj->externs[i];
7789 
7790 		if (ext->type == EXT_KSYM) {
7791 			if (ext->ksym.type_id)
7792 				need_vmlinux_btf = true;
7793 			else
7794 				need_kallsyms = true;
7795 			continue;
7796 		} else if (ext->type == EXT_KCFG) {
7797 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7798 			__u64 value = 0;
7799 
7800 			/* Kconfig externs need actual /proc/config.gz */
7801 			if (str_has_pfx(ext->name, "CONFIG_")) {
7802 				need_config = true;
7803 				continue;
7804 			}
7805 
7806 			/* Virtual kcfg externs are customly handled by libbpf */
7807 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7808 				value = get_kernel_version();
7809 				if (!value) {
7810 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7811 					return -EINVAL;
7812 				}
7813 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7814 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7815 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7816 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7817 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7818 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7819 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7820 				 * customly by libbpf (their values don't come from Kconfig).
7821 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7822 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7823 				 * externs.
7824 				 */
7825 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7826 				return -EINVAL;
7827 			}
7828 
7829 			err = set_kcfg_value_num(ext, ext_ptr, value);
7830 			if (err)
7831 				return err;
7832 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7833 				 ext->name, (long long)value);
7834 		} else {
7835 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7836 			return -EINVAL;
7837 		}
7838 	}
7839 	if (need_config && extra_kconfig) {
7840 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7841 		if (err)
7842 			return -EINVAL;
7843 		need_config = false;
7844 		for (i = 0; i < obj->nr_extern; i++) {
7845 			ext = &obj->externs[i];
7846 			if (ext->type == EXT_KCFG && !ext->is_set) {
7847 				need_config = true;
7848 				break;
7849 			}
7850 		}
7851 	}
7852 	if (need_config) {
7853 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7854 		if (err)
7855 			return -EINVAL;
7856 	}
7857 	if (need_kallsyms) {
7858 		err = bpf_object__read_kallsyms_file(obj);
7859 		if (err)
7860 			return -EINVAL;
7861 	}
7862 	if (need_vmlinux_btf) {
7863 		err = bpf_object__resolve_ksyms_btf_id(obj);
7864 		if (err)
7865 			return -EINVAL;
7866 	}
7867 	for (i = 0; i < obj->nr_extern; i++) {
7868 		ext = &obj->externs[i];
7869 
7870 		if (!ext->is_set && !ext->is_weak) {
7871 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7872 			return -ESRCH;
7873 		} else if (!ext->is_set) {
7874 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7875 				 ext->name);
7876 		}
7877 	}
7878 
7879 	return 0;
7880 }
7881 
7882 static void bpf_map_prepare_vdata(const struct bpf_map *map)
7883 {
7884 	struct bpf_struct_ops *st_ops;
7885 	__u32 i;
7886 
7887 	st_ops = map->st_ops;
7888 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
7889 		struct bpf_program *prog = st_ops->progs[i];
7890 		void *kern_data;
7891 		int prog_fd;
7892 
7893 		if (!prog)
7894 			continue;
7895 
7896 		prog_fd = bpf_program__fd(prog);
7897 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7898 		*(unsigned long *)kern_data = prog_fd;
7899 	}
7900 }
7901 
7902 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7903 {
7904 	int i;
7905 
7906 	for (i = 0; i < obj->nr_maps; i++)
7907 		if (bpf_map__is_struct_ops(&obj->maps[i]))
7908 			bpf_map_prepare_vdata(&obj->maps[i]);
7909 
7910 	return 0;
7911 }
7912 
7913 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7914 {
7915 	int err, i;
7916 
7917 	if (!obj)
7918 		return libbpf_err(-EINVAL);
7919 
7920 	if (obj->loaded) {
7921 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7922 		return libbpf_err(-EINVAL);
7923 	}
7924 
7925 	if (obj->gen_loader)
7926 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7927 
7928 	err = bpf_object__probe_loading(obj);
7929 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7930 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7931 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7932 	err = err ? : bpf_object__sanitize_maps(obj);
7933 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7934 	err = err ? : bpf_object__create_maps(obj);
7935 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7936 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7937 	err = err ? : bpf_object_init_prog_arrays(obj);
7938 	err = err ? : bpf_object_prepare_struct_ops(obj);
7939 
7940 	if (obj->gen_loader) {
7941 		/* reset FDs */
7942 		if (obj->btf)
7943 			btf__set_fd(obj->btf, -1);
7944 		for (i = 0; i < obj->nr_maps; i++)
7945 			obj->maps[i].fd = -1;
7946 		if (!err)
7947 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7948 	}
7949 
7950 	/* clean up fd_array */
7951 	zfree(&obj->fd_array);
7952 
7953 	/* clean up module BTFs */
7954 	for (i = 0; i < obj->btf_module_cnt; i++) {
7955 		close(obj->btf_modules[i].fd);
7956 		btf__free(obj->btf_modules[i].btf);
7957 		free(obj->btf_modules[i].name);
7958 	}
7959 	free(obj->btf_modules);
7960 
7961 	/* clean up vmlinux BTF */
7962 	btf__free(obj->btf_vmlinux);
7963 	obj->btf_vmlinux = NULL;
7964 
7965 	obj->loaded = true; /* doesn't matter if successfully or not */
7966 
7967 	if (err)
7968 		goto out;
7969 
7970 	return 0;
7971 out:
7972 	/* unpin any maps that were auto-pinned during load */
7973 	for (i = 0; i < obj->nr_maps; i++)
7974 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7975 			bpf_map__unpin(&obj->maps[i], NULL);
7976 
7977 	bpf_object_unload(obj);
7978 	pr_warn("failed to load object '%s'\n", obj->path);
7979 	return libbpf_err(err);
7980 }
7981 
7982 int bpf_object__load(struct bpf_object *obj)
7983 {
7984 	return bpf_object_load(obj, 0, NULL);
7985 }
7986 
7987 static int make_parent_dir(const char *path)
7988 {
7989 	char *cp, errmsg[STRERR_BUFSIZE];
7990 	char *dname, *dir;
7991 	int err = 0;
7992 
7993 	dname = strdup(path);
7994 	if (dname == NULL)
7995 		return -ENOMEM;
7996 
7997 	dir = dirname(dname);
7998 	if (mkdir(dir, 0700) && errno != EEXIST)
7999 		err = -errno;
8000 
8001 	free(dname);
8002 	if (err) {
8003 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8004 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8005 	}
8006 	return err;
8007 }
8008 
8009 static int check_path(const char *path)
8010 {
8011 	char *cp, errmsg[STRERR_BUFSIZE];
8012 	struct statfs st_fs;
8013 	char *dname, *dir;
8014 	int err = 0;
8015 
8016 	if (path == NULL)
8017 		return -EINVAL;
8018 
8019 	dname = strdup(path);
8020 	if (dname == NULL)
8021 		return -ENOMEM;
8022 
8023 	dir = dirname(dname);
8024 	if (statfs(dir, &st_fs)) {
8025 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8026 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8027 		err = -errno;
8028 	}
8029 	free(dname);
8030 
8031 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8032 		pr_warn("specified path %s is not on BPF FS\n", path);
8033 		err = -EINVAL;
8034 	}
8035 
8036 	return err;
8037 }
8038 
8039 int bpf_program__pin(struct bpf_program *prog, const char *path)
8040 {
8041 	char *cp, errmsg[STRERR_BUFSIZE];
8042 	int err;
8043 
8044 	if (prog->fd < 0) {
8045 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8046 		return libbpf_err(-EINVAL);
8047 	}
8048 
8049 	err = make_parent_dir(path);
8050 	if (err)
8051 		return libbpf_err(err);
8052 
8053 	err = check_path(path);
8054 	if (err)
8055 		return libbpf_err(err);
8056 
8057 	if (bpf_obj_pin(prog->fd, path)) {
8058 		err = -errno;
8059 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8060 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8061 		return libbpf_err(err);
8062 	}
8063 
8064 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8065 	return 0;
8066 }
8067 
8068 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8069 {
8070 	int err;
8071 
8072 	if (prog->fd < 0) {
8073 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8074 		return libbpf_err(-EINVAL);
8075 	}
8076 
8077 	err = check_path(path);
8078 	if (err)
8079 		return libbpf_err(err);
8080 
8081 	err = unlink(path);
8082 	if (err)
8083 		return libbpf_err(-errno);
8084 
8085 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8086 	return 0;
8087 }
8088 
8089 int bpf_map__pin(struct bpf_map *map, const char *path)
8090 {
8091 	char *cp, errmsg[STRERR_BUFSIZE];
8092 	int err;
8093 
8094 	if (map == NULL) {
8095 		pr_warn("invalid map pointer\n");
8096 		return libbpf_err(-EINVAL);
8097 	}
8098 
8099 	if (map->pin_path) {
8100 		if (path && strcmp(path, map->pin_path)) {
8101 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8102 				bpf_map__name(map), map->pin_path, path);
8103 			return libbpf_err(-EINVAL);
8104 		} else if (map->pinned) {
8105 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8106 				 bpf_map__name(map), map->pin_path);
8107 			return 0;
8108 		}
8109 	} else {
8110 		if (!path) {
8111 			pr_warn("missing a path to pin map '%s' at\n",
8112 				bpf_map__name(map));
8113 			return libbpf_err(-EINVAL);
8114 		} else if (map->pinned) {
8115 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8116 			return libbpf_err(-EEXIST);
8117 		}
8118 
8119 		map->pin_path = strdup(path);
8120 		if (!map->pin_path) {
8121 			err = -errno;
8122 			goto out_err;
8123 		}
8124 	}
8125 
8126 	err = make_parent_dir(map->pin_path);
8127 	if (err)
8128 		return libbpf_err(err);
8129 
8130 	err = check_path(map->pin_path);
8131 	if (err)
8132 		return libbpf_err(err);
8133 
8134 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8135 		err = -errno;
8136 		goto out_err;
8137 	}
8138 
8139 	map->pinned = true;
8140 	pr_debug("pinned map '%s'\n", map->pin_path);
8141 
8142 	return 0;
8143 
8144 out_err:
8145 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8146 	pr_warn("failed to pin map: %s\n", cp);
8147 	return libbpf_err(err);
8148 }
8149 
8150 int bpf_map__unpin(struct bpf_map *map, const char *path)
8151 {
8152 	int err;
8153 
8154 	if (map == NULL) {
8155 		pr_warn("invalid map pointer\n");
8156 		return libbpf_err(-EINVAL);
8157 	}
8158 
8159 	if (map->pin_path) {
8160 		if (path && strcmp(path, map->pin_path)) {
8161 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8162 				bpf_map__name(map), map->pin_path, path);
8163 			return libbpf_err(-EINVAL);
8164 		}
8165 		path = map->pin_path;
8166 	} else if (!path) {
8167 		pr_warn("no path to unpin map '%s' from\n",
8168 			bpf_map__name(map));
8169 		return libbpf_err(-EINVAL);
8170 	}
8171 
8172 	err = check_path(path);
8173 	if (err)
8174 		return libbpf_err(err);
8175 
8176 	err = unlink(path);
8177 	if (err != 0)
8178 		return libbpf_err(-errno);
8179 
8180 	map->pinned = false;
8181 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8182 
8183 	return 0;
8184 }
8185 
8186 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8187 {
8188 	char *new = NULL;
8189 
8190 	if (path) {
8191 		new = strdup(path);
8192 		if (!new)
8193 			return libbpf_err(-errno);
8194 	}
8195 
8196 	free(map->pin_path);
8197 	map->pin_path = new;
8198 	return 0;
8199 }
8200 
8201 __alias(bpf_map__pin_path)
8202 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8203 
8204 const char *bpf_map__pin_path(const struct bpf_map *map)
8205 {
8206 	return map->pin_path;
8207 }
8208 
8209 bool bpf_map__is_pinned(const struct bpf_map *map)
8210 {
8211 	return map->pinned;
8212 }
8213 
8214 static void sanitize_pin_path(char *s)
8215 {
8216 	/* bpffs disallows periods in path names */
8217 	while (*s) {
8218 		if (*s == '.')
8219 			*s = '_';
8220 		s++;
8221 	}
8222 }
8223 
8224 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8225 {
8226 	struct bpf_map *map;
8227 	int err;
8228 
8229 	if (!obj)
8230 		return libbpf_err(-ENOENT);
8231 
8232 	if (!obj->loaded) {
8233 		pr_warn("object not yet loaded; load it first\n");
8234 		return libbpf_err(-ENOENT);
8235 	}
8236 
8237 	bpf_object__for_each_map(map, obj) {
8238 		char *pin_path = NULL;
8239 		char buf[PATH_MAX];
8240 
8241 		if (!map->autocreate)
8242 			continue;
8243 
8244 		if (path) {
8245 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8246 			if (err)
8247 				goto err_unpin_maps;
8248 			sanitize_pin_path(buf);
8249 			pin_path = buf;
8250 		} else if (!map->pin_path) {
8251 			continue;
8252 		}
8253 
8254 		err = bpf_map__pin(map, pin_path);
8255 		if (err)
8256 			goto err_unpin_maps;
8257 	}
8258 
8259 	return 0;
8260 
8261 err_unpin_maps:
8262 	while ((map = bpf_object__prev_map(obj, map))) {
8263 		if (!map->pin_path)
8264 			continue;
8265 
8266 		bpf_map__unpin(map, NULL);
8267 	}
8268 
8269 	return libbpf_err(err);
8270 }
8271 
8272 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8273 {
8274 	struct bpf_map *map;
8275 	int err;
8276 
8277 	if (!obj)
8278 		return libbpf_err(-ENOENT);
8279 
8280 	bpf_object__for_each_map(map, obj) {
8281 		char *pin_path = NULL;
8282 		char buf[PATH_MAX];
8283 
8284 		if (path) {
8285 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8286 			if (err)
8287 				return libbpf_err(err);
8288 			sanitize_pin_path(buf);
8289 			pin_path = buf;
8290 		} else if (!map->pin_path) {
8291 			continue;
8292 		}
8293 
8294 		err = bpf_map__unpin(map, pin_path);
8295 		if (err)
8296 			return libbpf_err(err);
8297 	}
8298 
8299 	return 0;
8300 }
8301 
8302 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8303 {
8304 	struct bpf_program *prog;
8305 	char buf[PATH_MAX];
8306 	int err;
8307 
8308 	if (!obj)
8309 		return libbpf_err(-ENOENT);
8310 
8311 	if (!obj->loaded) {
8312 		pr_warn("object not yet loaded; load it first\n");
8313 		return libbpf_err(-ENOENT);
8314 	}
8315 
8316 	bpf_object__for_each_program(prog, obj) {
8317 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8318 		if (err)
8319 			goto err_unpin_programs;
8320 
8321 		err = bpf_program__pin(prog, buf);
8322 		if (err)
8323 			goto err_unpin_programs;
8324 	}
8325 
8326 	return 0;
8327 
8328 err_unpin_programs:
8329 	while ((prog = bpf_object__prev_program(obj, prog))) {
8330 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8331 			continue;
8332 
8333 		bpf_program__unpin(prog, buf);
8334 	}
8335 
8336 	return libbpf_err(err);
8337 }
8338 
8339 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8340 {
8341 	struct bpf_program *prog;
8342 	int err;
8343 
8344 	if (!obj)
8345 		return libbpf_err(-ENOENT);
8346 
8347 	bpf_object__for_each_program(prog, obj) {
8348 		char buf[PATH_MAX];
8349 
8350 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8351 		if (err)
8352 			return libbpf_err(err);
8353 
8354 		err = bpf_program__unpin(prog, buf);
8355 		if (err)
8356 			return libbpf_err(err);
8357 	}
8358 
8359 	return 0;
8360 }
8361 
8362 int bpf_object__pin(struct bpf_object *obj, const char *path)
8363 {
8364 	int err;
8365 
8366 	err = bpf_object__pin_maps(obj, path);
8367 	if (err)
8368 		return libbpf_err(err);
8369 
8370 	err = bpf_object__pin_programs(obj, path);
8371 	if (err) {
8372 		bpf_object__unpin_maps(obj, path);
8373 		return libbpf_err(err);
8374 	}
8375 
8376 	return 0;
8377 }
8378 
8379 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8380 {
8381 	int err;
8382 
8383 	err = bpf_object__unpin_programs(obj, path);
8384 	if (err)
8385 		return libbpf_err(err);
8386 
8387 	err = bpf_object__unpin_maps(obj, path);
8388 	if (err)
8389 		return libbpf_err(err);
8390 
8391 	return 0;
8392 }
8393 
8394 static void bpf_map__destroy(struct bpf_map *map)
8395 {
8396 	if (map->inner_map) {
8397 		bpf_map__destroy(map->inner_map);
8398 		zfree(&map->inner_map);
8399 	}
8400 
8401 	zfree(&map->init_slots);
8402 	map->init_slots_sz = 0;
8403 
8404 	if (map->mmaped) {
8405 		size_t mmap_sz;
8406 
8407 		mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8408 		munmap(map->mmaped, mmap_sz);
8409 		map->mmaped = NULL;
8410 	}
8411 
8412 	if (map->st_ops) {
8413 		zfree(&map->st_ops->data);
8414 		zfree(&map->st_ops->progs);
8415 		zfree(&map->st_ops->kern_func_off);
8416 		zfree(&map->st_ops);
8417 	}
8418 
8419 	zfree(&map->name);
8420 	zfree(&map->real_name);
8421 	zfree(&map->pin_path);
8422 
8423 	if (map->fd >= 0)
8424 		zclose(map->fd);
8425 }
8426 
8427 void bpf_object__close(struct bpf_object *obj)
8428 {
8429 	size_t i;
8430 
8431 	if (IS_ERR_OR_NULL(obj))
8432 		return;
8433 
8434 	usdt_manager_free(obj->usdt_man);
8435 	obj->usdt_man = NULL;
8436 
8437 	bpf_gen__free(obj->gen_loader);
8438 	bpf_object__elf_finish(obj);
8439 	bpf_object_unload(obj);
8440 	btf__free(obj->btf);
8441 	btf__free(obj->btf_vmlinux);
8442 	btf_ext__free(obj->btf_ext);
8443 
8444 	for (i = 0; i < obj->nr_maps; i++)
8445 		bpf_map__destroy(&obj->maps[i]);
8446 
8447 	zfree(&obj->btf_custom_path);
8448 	zfree(&obj->kconfig);
8449 
8450 	for (i = 0; i < obj->nr_extern; i++)
8451 		zfree(&obj->externs[i].essent_name);
8452 
8453 	zfree(&obj->externs);
8454 	obj->nr_extern = 0;
8455 
8456 	zfree(&obj->maps);
8457 	obj->nr_maps = 0;
8458 
8459 	if (obj->programs && obj->nr_programs) {
8460 		for (i = 0; i < obj->nr_programs; i++)
8461 			bpf_program__exit(&obj->programs[i]);
8462 	}
8463 	zfree(&obj->programs);
8464 
8465 	free(obj);
8466 }
8467 
8468 const char *bpf_object__name(const struct bpf_object *obj)
8469 {
8470 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8471 }
8472 
8473 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8474 {
8475 	return obj ? obj->kern_version : 0;
8476 }
8477 
8478 struct btf *bpf_object__btf(const struct bpf_object *obj)
8479 {
8480 	return obj ? obj->btf : NULL;
8481 }
8482 
8483 int bpf_object__btf_fd(const struct bpf_object *obj)
8484 {
8485 	return obj->btf ? btf__fd(obj->btf) : -1;
8486 }
8487 
8488 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8489 {
8490 	if (obj->loaded)
8491 		return libbpf_err(-EINVAL);
8492 
8493 	obj->kern_version = kern_version;
8494 
8495 	return 0;
8496 }
8497 
8498 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8499 {
8500 	struct bpf_gen *gen;
8501 
8502 	if (!opts)
8503 		return -EFAULT;
8504 	if (!OPTS_VALID(opts, gen_loader_opts))
8505 		return -EINVAL;
8506 	gen = calloc(sizeof(*gen), 1);
8507 	if (!gen)
8508 		return -ENOMEM;
8509 	gen->opts = opts;
8510 	obj->gen_loader = gen;
8511 	return 0;
8512 }
8513 
8514 static struct bpf_program *
8515 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8516 		    bool forward)
8517 {
8518 	size_t nr_programs = obj->nr_programs;
8519 	ssize_t idx;
8520 
8521 	if (!nr_programs)
8522 		return NULL;
8523 
8524 	if (!p)
8525 		/* Iter from the beginning */
8526 		return forward ? &obj->programs[0] :
8527 			&obj->programs[nr_programs - 1];
8528 
8529 	if (p->obj != obj) {
8530 		pr_warn("error: program handler doesn't match object\n");
8531 		return errno = EINVAL, NULL;
8532 	}
8533 
8534 	idx = (p - obj->programs) + (forward ? 1 : -1);
8535 	if (idx >= obj->nr_programs || idx < 0)
8536 		return NULL;
8537 	return &obj->programs[idx];
8538 }
8539 
8540 struct bpf_program *
8541 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8542 {
8543 	struct bpf_program *prog = prev;
8544 
8545 	do {
8546 		prog = __bpf_program__iter(prog, obj, true);
8547 	} while (prog && prog_is_subprog(obj, prog));
8548 
8549 	return prog;
8550 }
8551 
8552 struct bpf_program *
8553 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8554 {
8555 	struct bpf_program *prog = next;
8556 
8557 	do {
8558 		prog = __bpf_program__iter(prog, obj, false);
8559 	} while (prog && prog_is_subprog(obj, prog));
8560 
8561 	return prog;
8562 }
8563 
8564 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8565 {
8566 	prog->prog_ifindex = ifindex;
8567 }
8568 
8569 const char *bpf_program__name(const struct bpf_program *prog)
8570 {
8571 	return prog->name;
8572 }
8573 
8574 const char *bpf_program__section_name(const struct bpf_program *prog)
8575 {
8576 	return prog->sec_name;
8577 }
8578 
8579 bool bpf_program__autoload(const struct bpf_program *prog)
8580 {
8581 	return prog->autoload;
8582 }
8583 
8584 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8585 {
8586 	if (prog->obj->loaded)
8587 		return libbpf_err(-EINVAL);
8588 
8589 	prog->autoload = autoload;
8590 	return 0;
8591 }
8592 
8593 bool bpf_program__autoattach(const struct bpf_program *prog)
8594 {
8595 	return prog->autoattach;
8596 }
8597 
8598 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8599 {
8600 	prog->autoattach = autoattach;
8601 }
8602 
8603 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8604 {
8605 	return prog->insns;
8606 }
8607 
8608 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8609 {
8610 	return prog->insns_cnt;
8611 }
8612 
8613 int bpf_program__set_insns(struct bpf_program *prog,
8614 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8615 {
8616 	struct bpf_insn *insns;
8617 
8618 	if (prog->obj->loaded)
8619 		return -EBUSY;
8620 
8621 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8622 	/* NULL is a valid return from reallocarray if the new count is zero */
8623 	if (!insns && new_insn_cnt) {
8624 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8625 		return -ENOMEM;
8626 	}
8627 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8628 
8629 	prog->insns = insns;
8630 	prog->insns_cnt = new_insn_cnt;
8631 	return 0;
8632 }
8633 
8634 int bpf_program__fd(const struct bpf_program *prog)
8635 {
8636 	if (!prog)
8637 		return libbpf_err(-EINVAL);
8638 
8639 	if (prog->fd < 0)
8640 		return libbpf_err(-ENOENT);
8641 
8642 	return prog->fd;
8643 }
8644 
8645 __alias(bpf_program__type)
8646 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8647 
8648 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8649 {
8650 	return prog->type;
8651 }
8652 
8653 static size_t custom_sec_def_cnt;
8654 static struct bpf_sec_def *custom_sec_defs;
8655 static struct bpf_sec_def custom_fallback_def;
8656 static bool has_custom_fallback_def;
8657 static int last_custom_sec_def_handler_id;
8658 
8659 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8660 {
8661 	if (prog->obj->loaded)
8662 		return libbpf_err(-EBUSY);
8663 
8664 	/* if type is not changed, do nothing */
8665 	if (prog->type == type)
8666 		return 0;
8667 
8668 	prog->type = type;
8669 
8670 	/* If a program type was changed, we need to reset associated SEC()
8671 	 * handler, as it will be invalid now. The only exception is a generic
8672 	 * fallback handler, which by definition is program type-agnostic and
8673 	 * is a catch-all custom handler, optionally set by the application,
8674 	 * so should be able to handle any type of BPF program.
8675 	 */
8676 	if (prog->sec_def != &custom_fallback_def)
8677 		prog->sec_def = NULL;
8678 	return 0;
8679 }
8680 
8681 __alias(bpf_program__expected_attach_type)
8682 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8683 
8684 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8685 {
8686 	return prog->expected_attach_type;
8687 }
8688 
8689 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8690 					   enum bpf_attach_type type)
8691 {
8692 	if (prog->obj->loaded)
8693 		return libbpf_err(-EBUSY);
8694 
8695 	prog->expected_attach_type = type;
8696 	return 0;
8697 }
8698 
8699 __u32 bpf_program__flags(const struct bpf_program *prog)
8700 {
8701 	return prog->prog_flags;
8702 }
8703 
8704 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8705 {
8706 	if (prog->obj->loaded)
8707 		return libbpf_err(-EBUSY);
8708 
8709 	prog->prog_flags = flags;
8710 	return 0;
8711 }
8712 
8713 __u32 bpf_program__log_level(const struct bpf_program *prog)
8714 {
8715 	return prog->log_level;
8716 }
8717 
8718 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8719 {
8720 	if (prog->obj->loaded)
8721 		return libbpf_err(-EBUSY);
8722 
8723 	prog->log_level = log_level;
8724 	return 0;
8725 }
8726 
8727 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8728 {
8729 	*log_size = prog->log_size;
8730 	return prog->log_buf;
8731 }
8732 
8733 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8734 {
8735 	if (log_size && !log_buf)
8736 		return -EINVAL;
8737 	if (prog->log_size > UINT_MAX)
8738 		return -EINVAL;
8739 	if (prog->obj->loaded)
8740 		return -EBUSY;
8741 
8742 	prog->log_buf = log_buf;
8743 	prog->log_size = log_size;
8744 	return 0;
8745 }
8746 
8747 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8748 	.sec = (char *)sec_pfx,						    \
8749 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8750 	.expected_attach_type = atype,					    \
8751 	.cookie = (long)(flags),					    \
8752 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8753 	__VA_ARGS__							    \
8754 }
8755 
8756 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8757 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8758 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8759 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8760 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8761 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8762 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8763 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8764 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8765 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8766 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8767 
8768 static const struct bpf_sec_def section_defs[] = {
8769 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8770 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8771 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8772 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8773 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8774 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8775 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8776 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8777 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8778 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8779 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8780 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8781 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8782 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8783 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8784 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8785 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8786 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
8787 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
8788 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
8789 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
8790 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
8791 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
8792 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8793 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8794 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8795 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8796 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8797 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8798 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8799 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8800 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8801 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8802 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8803 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8804 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8805 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8806 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8807 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8808 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8809 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8810 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8811 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8812 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8813 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8814 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8815 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8816 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8817 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8818 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8819 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8820 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8821 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8822 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8823 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8824 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8825 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8826 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8827 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8828 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8829 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8830 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8831 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8832 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8833 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8834 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8835 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8836 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8837 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8838 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8839 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8840 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8841 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8842 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8843 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8844 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8845 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8846 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8847 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8848 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8849 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8850 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8851 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8852 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8853 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8854 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8855 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8856 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8857 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8858 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
8859 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8860 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
8861 };
8862 
8863 int libbpf_register_prog_handler(const char *sec,
8864 				 enum bpf_prog_type prog_type,
8865 				 enum bpf_attach_type exp_attach_type,
8866 				 const struct libbpf_prog_handler_opts *opts)
8867 {
8868 	struct bpf_sec_def *sec_def;
8869 
8870 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8871 		return libbpf_err(-EINVAL);
8872 
8873 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8874 		return libbpf_err(-E2BIG);
8875 
8876 	if (sec) {
8877 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8878 					      sizeof(*sec_def));
8879 		if (!sec_def)
8880 			return libbpf_err(-ENOMEM);
8881 
8882 		custom_sec_defs = sec_def;
8883 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8884 	} else {
8885 		if (has_custom_fallback_def)
8886 			return libbpf_err(-EBUSY);
8887 
8888 		sec_def = &custom_fallback_def;
8889 	}
8890 
8891 	sec_def->sec = sec ? strdup(sec) : NULL;
8892 	if (sec && !sec_def->sec)
8893 		return libbpf_err(-ENOMEM);
8894 
8895 	sec_def->prog_type = prog_type;
8896 	sec_def->expected_attach_type = exp_attach_type;
8897 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8898 
8899 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8900 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8901 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8902 
8903 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8904 
8905 	if (sec)
8906 		custom_sec_def_cnt++;
8907 	else
8908 		has_custom_fallback_def = true;
8909 
8910 	return sec_def->handler_id;
8911 }
8912 
8913 int libbpf_unregister_prog_handler(int handler_id)
8914 {
8915 	struct bpf_sec_def *sec_defs;
8916 	int i;
8917 
8918 	if (handler_id <= 0)
8919 		return libbpf_err(-EINVAL);
8920 
8921 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8922 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8923 		has_custom_fallback_def = false;
8924 		return 0;
8925 	}
8926 
8927 	for (i = 0; i < custom_sec_def_cnt; i++) {
8928 		if (custom_sec_defs[i].handler_id == handler_id)
8929 			break;
8930 	}
8931 
8932 	if (i == custom_sec_def_cnt)
8933 		return libbpf_err(-ENOENT);
8934 
8935 	free(custom_sec_defs[i].sec);
8936 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8937 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8938 	custom_sec_def_cnt--;
8939 
8940 	/* try to shrink the array, but it's ok if we couldn't */
8941 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8942 	/* if new count is zero, reallocarray can return a valid NULL result;
8943 	 * in this case the previous pointer will be freed, so we *have to*
8944 	 * reassign old pointer to the new value (even if it's NULL)
8945 	 */
8946 	if (sec_defs || custom_sec_def_cnt == 0)
8947 		custom_sec_defs = sec_defs;
8948 
8949 	return 0;
8950 }
8951 
8952 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8953 {
8954 	size_t len = strlen(sec_def->sec);
8955 
8956 	/* "type/" always has to have proper SEC("type/extras") form */
8957 	if (sec_def->sec[len - 1] == '/') {
8958 		if (str_has_pfx(sec_name, sec_def->sec))
8959 			return true;
8960 		return false;
8961 	}
8962 
8963 	/* "type+" means it can be either exact SEC("type") or
8964 	 * well-formed SEC("type/extras") with proper '/' separator
8965 	 */
8966 	if (sec_def->sec[len - 1] == '+') {
8967 		len--;
8968 		/* not even a prefix */
8969 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8970 			return false;
8971 		/* exact match or has '/' separator */
8972 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8973 			return true;
8974 		return false;
8975 	}
8976 
8977 	return strcmp(sec_name, sec_def->sec) == 0;
8978 }
8979 
8980 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8981 {
8982 	const struct bpf_sec_def *sec_def;
8983 	int i, n;
8984 
8985 	n = custom_sec_def_cnt;
8986 	for (i = 0; i < n; i++) {
8987 		sec_def = &custom_sec_defs[i];
8988 		if (sec_def_matches(sec_def, sec_name))
8989 			return sec_def;
8990 	}
8991 
8992 	n = ARRAY_SIZE(section_defs);
8993 	for (i = 0; i < n; i++) {
8994 		sec_def = &section_defs[i];
8995 		if (sec_def_matches(sec_def, sec_name))
8996 			return sec_def;
8997 	}
8998 
8999 	if (has_custom_fallback_def)
9000 		return &custom_fallback_def;
9001 
9002 	return NULL;
9003 }
9004 
9005 #define MAX_TYPE_NAME_SIZE 32
9006 
9007 static char *libbpf_get_type_names(bool attach_type)
9008 {
9009 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9010 	char *buf;
9011 
9012 	buf = malloc(len);
9013 	if (!buf)
9014 		return NULL;
9015 
9016 	buf[0] = '\0';
9017 	/* Forge string buf with all available names */
9018 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9019 		const struct bpf_sec_def *sec_def = &section_defs[i];
9020 
9021 		if (attach_type) {
9022 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9023 				continue;
9024 
9025 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9026 				continue;
9027 		}
9028 
9029 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9030 			free(buf);
9031 			return NULL;
9032 		}
9033 		strcat(buf, " ");
9034 		strcat(buf, section_defs[i].sec);
9035 	}
9036 
9037 	return buf;
9038 }
9039 
9040 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9041 			     enum bpf_attach_type *expected_attach_type)
9042 {
9043 	const struct bpf_sec_def *sec_def;
9044 	char *type_names;
9045 
9046 	if (!name)
9047 		return libbpf_err(-EINVAL);
9048 
9049 	sec_def = find_sec_def(name);
9050 	if (sec_def) {
9051 		*prog_type = sec_def->prog_type;
9052 		*expected_attach_type = sec_def->expected_attach_type;
9053 		return 0;
9054 	}
9055 
9056 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9057 	type_names = libbpf_get_type_names(false);
9058 	if (type_names != NULL) {
9059 		pr_debug("supported section(type) names are:%s\n", type_names);
9060 		free(type_names);
9061 	}
9062 
9063 	return libbpf_err(-ESRCH);
9064 }
9065 
9066 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9067 {
9068 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9069 		return NULL;
9070 
9071 	return attach_type_name[t];
9072 }
9073 
9074 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9075 {
9076 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9077 		return NULL;
9078 
9079 	return link_type_name[t];
9080 }
9081 
9082 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9083 {
9084 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9085 		return NULL;
9086 
9087 	return map_type_name[t];
9088 }
9089 
9090 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9091 {
9092 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9093 		return NULL;
9094 
9095 	return prog_type_name[t];
9096 }
9097 
9098 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9099 						     int sec_idx,
9100 						     size_t offset)
9101 {
9102 	struct bpf_map *map;
9103 	size_t i;
9104 
9105 	for (i = 0; i < obj->nr_maps; i++) {
9106 		map = &obj->maps[i];
9107 		if (!bpf_map__is_struct_ops(map))
9108 			continue;
9109 		if (map->sec_idx == sec_idx &&
9110 		    map->sec_offset <= offset &&
9111 		    offset - map->sec_offset < map->def.value_size)
9112 			return map;
9113 	}
9114 
9115 	return NULL;
9116 }
9117 
9118 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9119 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9120 					    Elf64_Shdr *shdr, Elf_Data *data)
9121 {
9122 	const struct btf_member *member;
9123 	struct bpf_struct_ops *st_ops;
9124 	struct bpf_program *prog;
9125 	unsigned int shdr_idx;
9126 	const struct btf *btf;
9127 	struct bpf_map *map;
9128 	unsigned int moff, insn_idx;
9129 	const char *name;
9130 	__u32 member_idx;
9131 	Elf64_Sym *sym;
9132 	Elf64_Rel *rel;
9133 	int i, nrels;
9134 
9135 	btf = obj->btf;
9136 	nrels = shdr->sh_size / shdr->sh_entsize;
9137 	for (i = 0; i < nrels; i++) {
9138 		rel = elf_rel_by_idx(data, i);
9139 		if (!rel) {
9140 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9141 			return -LIBBPF_ERRNO__FORMAT;
9142 		}
9143 
9144 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9145 		if (!sym) {
9146 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9147 				(size_t)ELF64_R_SYM(rel->r_info));
9148 			return -LIBBPF_ERRNO__FORMAT;
9149 		}
9150 
9151 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9152 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9153 		if (!map) {
9154 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9155 				(size_t)rel->r_offset);
9156 			return -EINVAL;
9157 		}
9158 
9159 		moff = rel->r_offset - map->sec_offset;
9160 		shdr_idx = sym->st_shndx;
9161 		st_ops = map->st_ops;
9162 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9163 			 map->name,
9164 			 (long long)(rel->r_info >> 32),
9165 			 (long long)sym->st_value,
9166 			 shdr_idx, (size_t)rel->r_offset,
9167 			 map->sec_offset, sym->st_name, name);
9168 
9169 		if (shdr_idx >= SHN_LORESERVE) {
9170 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9171 				map->name, (size_t)rel->r_offset, shdr_idx);
9172 			return -LIBBPF_ERRNO__RELOC;
9173 		}
9174 		if (sym->st_value % BPF_INSN_SZ) {
9175 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9176 				map->name, (unsigned long long)sym->st_value);
9177 			return -LIBBPF_ERRNO__FORMAT;
9178 		}
9179 		insn_idx = sym->st_value / BPF_INSN_SZ;
9180 
9181 		member = find_member_by_offset(st_ops->type, moff * 8);
9182 		if (!member) {
9183 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9184 				map->name, moff);
9185 			return -EINVAL;
9186 		}
9187 		member_idx = member - btf_members(st_ops->type);
9188 		name = btf__name_by_offset(btf, member->name_off);
9189 
9190 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9191 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9192 				map->name, name);
9193 			return -EINVAL;
9194 		}
9195 
9196 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9197 		if (!prog) {
9198 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9199 				map->name, shdr_idx, name);
9200 			return -EINVAL;
9201 		}
9202 
9203 		/* prevent the use of BPF prog with invalid type */
9204 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9205 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9206 				map->name, prog->name);
9207 			return -EINVAL;
9208 		}
9209 
9210 		/* if we haven't yet processed this BPF program, record proper
9211 		 * attach_btf_id and member_idx
9212 		 */
9213 		if (!prog->attach_btf_id) {
9214 			prog->attach_btf_id = st_ops->type_id;
9215 			prog->expected_attach_type = member_idx;
9216 		}
9217 
9218 		/* struct_ops BPF prog can be re-used between multiple
9219 		 * .struct_ops & .struct_ops.link as long as it's the
9220 		 * same struct_ops struct definition and the same
9221 		 * function pointer field
9222 		 */
9223 		if (prog->attach_btf_id != st_ops->type_id ||
9224 		    prog->expected_attach_type != member_idx) {
9225 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9226 				map->name, prog->name, prog->sec_name, prog->type,
9227 				prog->attach_btf_id, prog->expected_attach_type, name);
9228 			return -EINVAL;
9229 		}
9230 
9231 		st_ops->progs[member_idx] = prog;
9232 	}
9233 
9234 	return 0;
9235 }
9236 
9237 #define BTF_TRACE_PREFIX "btf_trace_"
9238 #define BTF_LSM_PREFIX "bpf_lsm_"
9239 #define BTF_ITER_PREFIX "bpf_iter_"
9240 #define BTF_MAX_NAME_SIZE 128
9241 
9242 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9243 				const char **prefix, int *kind)
9244 {
9245 	switch (attach_type) {
9246 	case BPF_TRACE_RAW_TP:
9247 		*prefix = BTF_TRACE_PREFIX;
9248 		*kind = BTF_KIND_TYPEDEF;
9249 		break;
9250 	case BPF_LSM_MAC:
9251 	case BPF_LSM_CGROUP:
9252 		*prefix = BTF_LSM_PREFIX;
9253 		*kind = BTF_KIND_FUNC;
9254 		break;
9255 	case BPF_TRACE_ITER:
9256 		*prefix = BTF_ITER_PREFIX;
9257 		*kind = BTF_KIND_FUNC;
9258 		break;
9259 	default:
9260 		*prefix = "";
9261 		*kind = BTF_KIND_FUNC;
9262 	}
9263 }
9264 
9265 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9266 				   const char *name, __u32 kind)
9267 {
9268 	char btf_type_name[BTF_MAX_NAME_SIZE];
9269 	int ret;
9270 
9271 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9272 		       "%s%s", prefix, name);
9273 	/* snprintf returns the number of characters written excluding the
9274 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9275 	 * indicates truncation.
9276 	 */
9277 	if (ret < 0 || ret >= sizeof(btf_type_name))
9278 		return -ENAMETOOLONG;
9279 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9280 }
9281 
9282 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9283 				     enum bpf_attach_type attach_type)
9284 {
9285 	const char *prefix;
9286 	int kind;
9287 
9288 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9289 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9290 }
9291 
9292 int libbpf_find_vmlinux_btf_id(const char *name,
9293 			       enum bpf_attach_type attach_type)
9294 {
9295 	struct btf *btf;
9296 	int err;
9297 
9298 	btf = btf__load_vmlinux_btf();
9299 	err = libbpf_get_error(btf);
9300 	if (err) {
9301 		pr_warn("vmlinux BTF is not found\n");
9302 		return libbpf_err(err);
9303 	}
9304 
9305 	err = find_attach_btf_id(btf, name, attach_type);
9306 	if (err <= 0)
9307 		pr_warn("%s is not found in vmlinux BTF\n", name);
9308 
9309 	btf__free(btf);
9310 	return libbpf_err(err);
9311 }
9312 
9313 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9314 {
9315 	struct bpf_prog_info info;
9316 	__u32 info_len = sizeof(info);
9317 	struct btf *btf;
9318 	int err;
9319 
9320 	memset(&info, 0, info_len);
9321 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9322 	if (err) {
9323 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9324 			attach_prog_fd, err);
9325 		return err;
9326 	}
9327 
9328 	err = -EINVAL;
9329 	if (!info.btf_id) {
9330 		pr_warn("The target program doesn't have BTF\n");
9331 		goto out;
9332 	}
9333 	btf = btf__load_from_kernel_by_id(info.btf_id);
9334 	err = libbpf_get_error(btf);
9335 	if (err) {
9336 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9337 		goto out;
9338 	}
9339 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9340 	btf__free(btf);
9341 	if (err <= 0) {
9342 		pr_warn("%s is not found in prog's BTF\n", name);
9343 		goto out;
9344 	}
9345 out:
9346 	return err;
9347 }
9348 
9349 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9350 			      enum bpf_attach_type attach_type,
9351 			      int *btf_obj_fd, int *btf_type_id)
9352 {
9353 	int ret, i;
9354 
9355 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9356 	if (ret > 0) {
9357 		*btf_obj_fd = 0; /* vmlinux BTF */
9358 		*btf_type_id = ret;
9359 		return 0;
9360 	}
9361 	if (ret != -ENOENT)
9362 		return ret;
9363 
9364 	ret = load_module_btfs(obj);
9365 	if (ret)
9366 		return ret;
9367 
9368 	for (i = 0; i < obj->btf_module_cnt; i++) {
9369 		const struct module_btf *mod = &obj->btf_modules[i];
9370 
9371 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9372 		if (ret > 0) {
9373 			*btf_obj_fd = mod->fd;
9374 			*btf_type_id = ret;
9375 			return 0;
9376 		}
9377 		if (ret == -ENOENT)
9378 			continue;
9379 
9380 		return ret;
9381 	}
9382 
9383 	return -ESRCH;
9384 }
9385 
9386 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9387 				     int *btf_obj_fd, int *btf_type_id)
9388 {
9389 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9390 	__u32 attach_prog_fd = prog->attach_prog_fd;
9391 	int err = 0;
9392 
9393 	/* BPF program's BTF ID */
9394 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9395 		if (!attach_prog_fd) {
9396 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9397 			return -EINVAL;
9398 		}
9399 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9400 		if (err < 0) {
9401 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9402 				 prog->name, attach_prog_fd, attach_name, err);
9403 			return err;
9404 		}
9405 		*btf_obj_fd = 0;
9406 		*btf_type_id = err;
9407 		return 0;
9408 	}
9409 
9410 	/* kernel/module BTF ID */
9411 	if (prog->obj->gen_loader) {
9412 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9413 		*btf_obj_fd = 0;
9414 		*btf_type_id = 1;
9415 	} else {
9416 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9417 	}
9418 	if (err) {
9419 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9420 			prog->name, attach_name, err);
9421 		return err;
9422 	}
9423 	return 0;
9424 }
9425 
9426 int libbpf_attach_type_by_name(const char *name,
9427 			       enum bpf_attach_type *attach_type)
9428 {
9429 	char *type_names;
9430 	const struct bpf_sec_def *sec_def;
9431 
9432 	if (!name)
9433 		return libbpf_err(-EINVAL);
9434 
9435 	sec_def = find_sec_def(name);
9436 	if (!sec_def) {
9437 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9438 		type_names = libbpf_get_type_names(true);
9439 		if (type_names != NULL) {
9440 			pr_debug("attachable section(type) names are:%s\n", type_names);
9441 			free(type_names);
9442 		}
9443 
9444 		return libbpf_err(-EINVAL);
9445 	}
9446 
9447 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9448 		return libbpf_err(-EINVAL);
9449 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9450 		return libbpf_err(-EINVAL);
9451 
9452 	*attach_type = sec_def->expected_attach_type;
9453 	return 0;
9454 }
9455 
9456 int bpf_map__fd(const struct bpf_map *map)
9457 {
9458 	return map ? map->fd : libbpf_err(-EINVAL);
9459 }
9460 
9461 static bool map_uses_real_name(const struct bpf_map *map)
9462 {
9463 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9464 	 * their user-visible name differs from kernel-visible name. Users see
9465 	 * such map's corresponding ELF section name as a map name.
9466 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9467 	 * maps to know which name has to be returned to the user.
9468 	 */
9469 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9470 		return true;
9471 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9472 		return true;
9473 	return false;
9474 }
9475 
9476 const char *bpf_map__name(const struct bpf_map *map)
9477 {
9478 	if (!map)
9479 		return NULL;
9480 
9481 	if (map_uses_real_name(map))
9482 		return map->real_name;
9483 
9484 	return map->name;
9485 }
9486 
9487 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9488 {
9489 	return map->def.type;
9490 }
9491 
9492 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9493 {
9494 	if (map->fd >= 0)
9495 		return libbpf_err(-EBUSY);
9496 	map->def.type = type;
9497 	return 0;
9498 }
9499 
9500 __u32 bpf_map__map_flags(const struct bpf_map *map)
9501 {
9502 	return map->def.map_flags;
9503 }
9504 
9505 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9506 {
9507 	if (map->fd >= 0)
9508 		return libbpf_err(-EBUSY);
9509 	map->def.map_flags = flags;
9510 	return 0;
9511 }
9512 
9513 __u64 bpf_map__map_extra(const struct bpf_map *map)
9514 {
9515 	return map->map_extra;
9516 }
9517 
9518 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9519 {
9520 	if (map->fd >= 0)
9521 		return libbpf_err(-EBUSY);
9522 	map->map_extra = map_extra;
9523 	return 0;
9524 }
9525 
9526 __u32 bpf_map__numa_node(const struct bpf_map *map)
9527 {
9528 	return map->numa_node;
9529 }
9530 
9531 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9532 {
9533 	if (map->fd >= 0)
9534 		return libbpf_err(-EBUSY);
9535 	map->numa_node = numa_node;
9536 	return 0;
9537 }
9538 
9539 __u32 bpf_map__key_size(const struct bpf_map *map)
9540 {
9541 	return map->def.key_size;
9542 }
9543 
9544 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9545 {
9546 	if (map->fd >= 0)
9547 		return libbpf_err(-EBUSY);
9548 	map->def.key_size = size;
9549 	return 0;
9550 }
9551 
9552 __u32 bpf_map__value_size(const struct bpf_map *map)
9553 {
9554 	return map->def.value_size;
9555 }
9556 
9557 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9558 {
9559 	struct btf *btf;
9560 	struct btf_type *datasec_type, *var_type;
9561 	struct btf_var_secinfo *var;
9562 	const struct btf_type *array_type;
9563 	const struct btf_array *array;
9564 	int vlen, element_sz, new_array_id;
9565 	__u32 nr_elements;
9566 
9567 	/* check btf existence */
9568 	btf = bpf_object__btf(map->obj);
9569 	if (!btf)
9570 		return -ENOENT;
9571 
9572 	/* verify map is datasec */
9573 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9574 	if (!btf_is_datasec(datasec_type)) {
9575 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9576 			bpf_map__name(map));
9577 		return -EINVAL;
9578 	}
9579 
9580 	/* verify datasec has at least one var */
9581 	vlen = btf_vlen(datasec_type);
9582 	if (vlen == 0) {
9583 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9584 			bpf_map__name(map));
9585 		return -EINVAL;
9586 	}
9587 
9588 	/* verify last var in the datasec is an array */
9589 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9590 	var_type = btf_type_by_id(btf, var->type);
9591 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9592 	if (!btf_is_array(array_type)) {
9593 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
9594 			bpf_map__name(map));
9595 		return -EINVAL;
9596 	}
9597 
9598 	/* verify request size aligns with array */
9599 	array = btf_array(array_type);
9600 	element_sz = btf__resolve_size(btf, array->type);
9601 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9602 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9603 			bpf_map__name(map), element_sz, size);
9604 		return -EINVAL;
9605 	}
9606 
9607 	/* create a new array based on the existing array, but with new length */
9608 	nr_elements = (size - var->offset) / element_sz;
9609 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9610 	if (new_array_id < 0)
9611 		return new_array_id;
9612 
9613 	/* adding a new btf type invalidates existing pointers to btf objects,
9614 	 * so refresh pointers before proceeding
9615 	 */
9616 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9617 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9618 	var_type = btf_type_by_id(btf, var->type);
9619 
9620 	/* finally update btf info */
9621 	datasec_type->size = size;
9622 	var->size = size - var->offset;
9623 	var_type->type = new_array_id;
9624 
9625 	return 0;
9626 }
9627 
9628 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9629 {
9630 	if (map->fd >= 0)
9631 		return libbpf_err(-EBUSY);
9632 
9633 	if (map->mmaped) {
9634 		int err;
9635 		size_t mmap_old_sz, mmap_new_sz;
9636 
9637 		mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9638 		mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9639 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9640 		if (err) {
9641 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9642 				bpf_map__name(map), err);
9643 			return err;
9644 		}
9645 		err = map_btf_datasec_resize(map, size);
9646 		if (err && err != -ENOENT) {
9647 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9648 				bpf_map__name(map), err);
9649 			map->btf_value_type_id = 0;
9650 			map->btf_key_type_id = 0;
9651 		}
9652 	}
9653 
9654 	map->def.value_size = size;
9655 	return 0;
9656 }
9657 
9658 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9659 {
9660 	return map ? map->btf_key_type_id : 0;
9661 }
9662 
9663 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9664 {
9665 	return map ? map->btf_value_type_id : 0;
9666 }
9667 
9668 int bpf_map__set_initial_value(struct bpf_map *map,
9669 			       const void *data, size_t size)
9670 {
9671 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9672 	    size != map->def.value_size || map->fd >= 0)
9673 		return libbpf_err(-EINVAL);
9674 
9675 	memcpy(map->mmaped, data, size);
9676 	return 0;
9677 }
9678 
9679 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9680 {
9681 	if (!map->mmaped)
9682 		return NULL;
9683 	*psize = map->def.value_size;
9684 	return map->mmaped;
9685 }
9686 
9687 bool bpf_map__is_internal(const struct bpf_map *map)
9688 {
9689 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9690 }
9691 
9692 __u32 bpf_map__ifindex(const struct bpf_map *map)
9693 {
9694 	return map->map_ifindex;
9695 }
9696 
9697 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9698 {
9699 	if (map->fd >= 0)
9700 		return libbpf_err(-EBUSY);
9701 	map->map_ifindex = ifindex;
9702 	return 0;
9703 }
9704 
9705 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9706 {
9707 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9708 		pr_warn("error: unsupported map type\n");
9709 		return libbpf_err(-EINVAL);
9710 	}
9711 	if (map->inner_map_fd != -1) {
9712 		pr_warn("error: inner_map_fd already specified\n");
9713 		return libbpf_err(-EINVAL);
9714 	}
9715 	if (map->inner_map) {
9716 		bpf_map__destroy(map->inner_map);
9717 		zfree(&map->inner_map);
9718 	}
9719 	map->inner_map_fd = fd;
9720 	return 0;
9721 }
9722 
9723 static struct bpf_map *
9724 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9725 {
9726 	ssize_t idx;
9727 	struct bpf_map *s, *e;
9728 
9729 	if (!obj || !obj->maps)
9730 		return errno = EINVAL, NULL;
9731 
9732 	s = obj->maps;
9733 	e = obj->maps + obj->nr_maps;
9734 
9735 	if ((m < s) || (m >= e)) {
9736 		pr_warn("error in %s: map handler doesn't belong to object\n",
9737 			 __func__);
9738 		return errno = EINVAL, NULL;
9739 	}
9740 
9741 	idx = (m - obj->maps) + i;
9742 	if (idx >= obj->nr_maps || idx < 0)
9743 		return NULL;
9744 	return &obj->maps[idx];
9745 }
9746 
9747 struct bpf_map *
9748 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9749 {
9750 	if (prev == NULL)
9751 		return obj->maps;
9752 
9753 	return __bpf_map__iter(prev, obj, 1);
9754 }
9755 
9756 struct bpf_map *
9757 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9758 {
9759 	if (next == NULL) {
9760 		if (!obj->nr_maps)
9761 			return NULL;
9762 		return obj->maps + obj->nr_maps - 1;
9763 	}
9764 
9765 	return __bpf_map__iter(next, obj, -1);
9766 }
9767 
9768 struct bpf_map *
9769 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9770 {
9771 	struct bpf_map *pos;
9772 
9773 	bpf_object__for_each_map(pos, obj) {
9774 		/* if it's a special internal map name (which always starts
9775 		 * with dot) then check if that special name matches the
9776 		 * real map name (ELF section name)
9777 		 */
9778 		if (name[0] == '.') {
9779 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9780 				return pos;
9781 			continue;
9782 		}
9783 		/* otherwise map name has to be an exact match */
9784 		if (map_uses_real_name(pos)) {
9785 			if (strcmp(pos->real_name, name) == 0)
9786 				return pos;
9787 			continue;
9788 		}
9789 		if (strcmp(pos->name, name) == 0)
9790 			return pos;
9791 	}
9792 	return errno = ENOENT, NULL;
9793 }
9794 
9795 int
9796 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9797 {
9798 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9799 }
9800 
9801 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9802 			   size_t value_sz, bool check_value_sz)
9803 {
9804 	if (map->fd <= 0)
9805 		return -ENOENT;
9806 
9807 	if (map->def.key_size != key_sz) {
9808 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9809 			map->name, key_sz, map->def.key_size);
9810 		return -EINVAL;
9811 	}
9812 
9813 	if (!check_value_sz)
9814 		return 0;
9815 
9816 	switch (map->def.type) {
9817 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9818 	case BPF_MAP_TYPE_PERCPU_HASH:
9819 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9820 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9821 		int num_cpu = libbpf_num_possible_cpus();
9822 		size_t elem_sz = roundup(map->def.value_size, 8);
9823 
9824 		if (value_sz != num_cpu * elem_sz) {
9825 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9826 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9827 			return -EINVAL;
9828 		}
9829 		break;
9830 	}
9831 	default:
9832 		if (map->def.value_size != value_sz) {
9833 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9834 				map->name, value_sz, map->def.value_size);
9835 			return -EINVAL;
9836 		}
9837 		break;
9838 	}
9839 	return 0;
9840 }
9841 
9842 int bpf_map__lookup_elem(const struct bpf_map *map,
9843 			 const void *key, size_t key_sz,
9844 			 void *value, size_t value_sz, __u64 flags)
9845 {
9846 	int err;
9847 
9848 	err = validate_map_op(map, key_sz, value_sz, true);
9849 	if (err)
9850 		return libbpf_err(err);
9851 
9852 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9853 }
9854 
9855 int bpf_map__update_elem(const struct bpf_map *map,
9856 			 const void *key, size_t key_sz,
9857 			 const void *value, size_t value_sz, __u64 flags)
9858 {
9859 	int err;
9860 
9861 	err = validate_map_op(map, key_sz, value_sz, true);
9862 	if (err)
9863 		return libbpf_err(err);
9864 
9865 	return bpf_map_update_elem(map->fd, key, value, flags);
9866 }
9867 
9868 int bpf_map__delete_elem(const struct bpf_map *map,
9869 			 const void *key, size_t key_sz, __u64 flags)
9870 {
9871 	int err;
9872 
9873 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9874 	if (err)
9875 		return libbpf_err(err);
9876 
9877 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9878 }
9879 
9880 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9881 				    const void *key, size_t key_sz,
9882 				    void *value, size_t value_sz, __u64 flags)
9883 {
9884 	int err;
9885 
9886 	err = validate_map_op(map, key_sz, value_sz, true);
9887 	if (err)
9888 		return libbpf_err(err);
9889 
9890 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9891 }
9892 
9893 int bpf_map__get_next_key(const struct bpf_map *map,
9894 			  const void *cur_key, void *next_key, size_t key_sz)
9895 {
9896 	int err;
9897 
9898 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9899 	if (err)
9900 		return libbpf_err(err);
9901 
9902 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9903 }
9904 
9905 long libbpf_get_error(const void *ptr)
9906 {
9907 	if (!IS_ERR_OR_NULL(ptr))
9908 		return 0;
9909 
9910 	if (IS_ERR(ptr))
9911 		errno = -PTR_ERR(ptr);
9912 
9913 	/* If ptr == NULL, then errno should be already set by the failing
9914 	 * API, because libbpf never returns NULL on success and it now always
9915 	 * sets errno on error. So no extra errno handling for ptr == NULL
9916 	 * case.
9917 	 */
9918 	return -errno;
9919 }
9920 
9921 /* Replace link's underlying BPF program with the new one */
9922 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9923 {
9924 	int ret;
9925 
9926 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9927 	return libbpf_err_errno(ret);
9928 }
9929 
9930 /* Release "ownership" of underlying BPF resource (typically, BPF program
9931  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9932  * link, when destructed through bpf_link__destroy() call won't attempt to
9933  * detach/unregisted that BPF resource. This is useful in situations where,
9934  * say, attached BPF program has to outlive userspace program that attached it
9935  * in the system. Depending on type of BPF program, though, there might be
9936  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9937  * exit of userspace program doesn't trigger automatic detachment and clean up
9938  * inside the kernel.
9939  */
9940 void bpf_link__disconnect(struct bpf_link *link)
9941 {
9942 	link->disconnected = true;
9943 }
9944 
9945 int bpf_link__destroy(struct bpf_link *link)
9946 {
9947 	int err = 0;
9948 
9949 	if (IS_ERR_OR_NULL(link))
9950 		return 0;
9951 
9952 	if (!link->disconnected && link->detach)
9953 		err = link->detach(link);
9954 	if (link->pin_path)
9955 		free(link->pin_path);
9956 	if (link->dealloc)
9957 		link->dealloc(link);
9958 	else
9959 		free(link);
9960 
9961 	return libbpf_err(err);
9962 }
9963 
9964 int bpf_link__fd(const struct bpf_link *link)
9965 {
9966 	return link->fd;
9967 }
9968 
9969 const char *bpf_link__pin_path(const struct bpf_link *link)
9970 {
9971 	return link->pin_path;
9972 }
9973 
9974 static int bpf_link__detach_fd(struct bpf_link *link)
9975 {
9976 	return libbpf_err_errno(close(link->fd));
9977 }
9978 
9979 struct bpf_link *bpf_link__open(const char *path)
9980 {
9981 	struct bpf_link *link;
9982 	int fd;
9983 
9984 	fd = bpf_obj_get(path);
9985 	if (fd < 0) {
9986 		fd = -errno;
9987 		pr_warn("failed to open link at %s: %d\n", path, fd);
9988 		return libbpf_err_ptr(fd);
9989 	}
9990 
9991 	link = calloc(1, sizeof(*link));
9992 	if (!link) {
9993 		close(fd);
9994 		return libbpf_err_ptr(-ENOMEM);
9995 	}
9996 	link->detach = &bpf_link__detach_fd;
9997 	link->fd = fd;
9998 
9999 	link->pin_path = strdup(path);
10000 	if (!link->pin_path) {
10001 		bpf_link__destroy(link);
10002 		return libbpf_err_ptr(-ENOMEM);
10003 	}
10004 
10005 	return link;
10006 }
10007 
10008 int bpf_link__detach(struct bpf_link *link)
10009 {
10010 	return bpf_link_detach(link->fd) ? -errno : 0;
10011 }
10012 
10013 int bpf_link__pin(struct bpf_link *link, const char *path)
10014 {
10015 	int err;
10016 
10017 	if (link->pin_path)
10018 		return libbpf_err(-EBUSY);
10019 	err = make_parent_dir(path);
10020 	if (err)
10021 		return libbpf_err(err);
10022 	err = check_path(path);
10023 	if (err)
10024 		return libbpf_err(err);
10025 
10026 	link->pin_path = strdup(path);
10027 	if (!link->pin_path)
10028 		return libbpf_err(-ENOMEM);
10029 
10030 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10031 		err = -errno;
10032 		zfree(&link->pin_path);
10033 		return libbpf_err(err);
10034 	}
10035 
10036 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10037 	return 0;
10038 }
10039 
10040 int bpf_link__unpin(struct bpf_link *link)
10041 {
10042 	int err;
10043 
10044 	if (!link->pin_path)
10045 		return libbpf_err(-EINVAL);
10046 
10047 	err = unlink(link->pin_path);
10048 	if (err != 0)
10049 		return -errno;
10050 
10051 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10052 	zfree(&link->pin_path);
10053 	return 0;
10054 }
10055 
10056 struct bpf_link_perf {
10057 	struct bpf_link link;
10058 	int perf_event_fd;
10059 	/* legacy kprobe support: keep track of probe identifier and type */
10060 	char *legacy_probe_name;
10061 	bool legacy_is_kprobe;
10062 	bool legacy_is_retprobe;
10063 };
10064 
10065 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10066 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10067 
10068 static int bpf_link_perf_detach(struct bpf_link *link)
10069 {
10070 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10071 	int err = 0;
10072 
10073 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10074 		err = -errno;
10075 
10076 	if (perf_link->perf_event_fd != link->fd)
10077 		close(perf_link->perf_event_fd);
10078 	close(link->fd);
10079 
10080 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10081 	if (perf_link->legacy_probe_name) {
10082 		if (perf_link->legacy_is_kprobe) {
10083 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10084 							 perf_link->legacy_is_retprobe);
10085 		} else {
10086 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10087 							 perf_link->legacy_is_retprobe);
10088 		}
10089 	}
10090 
10091 	return err;
10092 }
10093 
10094 static void bpf_link_perf_dealloc(struct bpf_link *link)
10095 {
10096 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10097 
10098 	free(perf_link->legacy_probe_name);
10099 	free(perf_link);
10100 }
10101 
10102 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10103 						     const struct bpf_perf_event_opts *opts)
10104 {
10105 	char errmsg[STRERR_BUFSIZE];
10106 	struct bpf_link_perf *link;
10107 	int prog_fd, link_fd = -1, err;
10108 	bool force_ioctl_attach;
10109 
10110 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10111 		return libbpf_err_ptr(-EINVAL);
10112 
10113 	if (pfd < 0) {
10114 		pr_warn("prog '%s': invalid perf event FD %d\n",
10115 			prog->name, pfd);
10116 		return libbpf_err_ptr(-EINVAL);
10117 	}
10118 	prog_fd = bpf_program__fd(prog);
10119 	if (prog_fd < 0) {
10120 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10121 			prog->name);
10122 		return libbpf_err_ptr(-EINVAL);
10123 	}
10124 
10125 	link = calloc(1, sizeof(*link));
10126 	if (!link)
10127 		return libbpf_err_ptr(-ENOMEM);
10128 	link->link.detach = &bpf_link_perf_detach;
10129 	link->link.dealloc = &bpf_link_perf_dealloc;
10130 	link->perf_event_fd = pfd;
10131 
10132 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10133 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10134 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10135 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10136 
10137 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10138 		if (link_fd < 0) {
10139 			err = -errno;
10140 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10141 				prog->name, pfd,
10142 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10143 			goto err_out;
10144 		}
10145 		link->link.fd = link_fd;
10146 	} else {
10147 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10148 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10149 			err = -EOPNOTSUPP;
10150 			goto err_out;
10151 		}
10152 
10153 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10154 			err = -errno;
10155 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10156 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10157 			if (err == -EPROTO)
10158 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10159 					prog->name, pfd);
10160 			goto err_out;
10161 		}
10162 		link->link.fd = pfd;
10163 	}
10164 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10165 		err = -errno;
10166 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10167 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10168 		goto err_out;
10169 	}
10170 
10171 	return &link->link;
10172 err_out:
10173 	if (link_fd >= 0)
10174 		close(link_fd);
10175 	free(link);
10176 	return libbpf_err_ptr(err);
10177 }
10178 
10179 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10180 {
10181 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10182 }
10183 
10184 /*
10185  * this function is expected to parse integer in the range of [0, 2^31-1] from
10186  * given file using scanf format string fmt. If actual parsed value is
10187  * negative, the result might be indistinguishable from error
10188  */
10189 static int parse_uint_from_file(const char *file, const char *fmt)
10190 {
10191 	char buf[STRERR_BUFSIZE];
10192 	int err, ret;
10193 	FILE *f;
10194 
10195 	f = fopen(file, "re");
10196 	if (!f) {
10197 		err = -errno;
10198 		pr_debug("failed to open '%s': %s\n", file,
10199 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10200 		return err;
10201 	}
10202 	err = fscanf(f, fmt, &ret);
10203 	if (err != 1) {
10204 		err = err == EOF ? -EIO : -errno;
10205 		pr_debug("failed to parse '%s': %s\n", file,
10206 			libbpf_strerror_r(err, buf, sizeof(buf)));
10207 		fclose(f);
10208 		return err;
10209 	}
10210 	fclose(f);
10211 	return ret;
10212 }
10213 
10214 static int determine_kprobe_perf_type(void)
10215 {
10216 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10217 
10218 	return parse_uint_from_file(file, "%d\n");
10219 }
10220 
10221 static int determine_uprobe_perf_type(void)
10222 {
10223 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10224 
10225 	return parse_uint_from_file(file, "%d\n");
10226 }
10227 
10228 static int determine_kprobe_retprobe_bit(void)
10229 {
10230 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10231 
10232 	return parse_uint_from_file(file, "config:%d\n");
10233 }
10234 
10235 static int determine_uprobe_retprobe_bit(void)
10236 {
10237 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10238 
10239 	return parse_uint_from_file(file, "config:%d\n");
10240 }
10241 
10242 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10243 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10244 
10245 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10246 				 uint64_t offset, int pid, size_t ref_ctr_off)
10247 {
10248 	const size_t attr_sz = sizeof(struct perf_event_attr);
10249 	struct perf_event_attr attr;
10250 	char errmsg[STRERR_BUFSIZE];
10251 	int type, pfd;
10252 
10253 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10254 		return -EINVAL;
10255 
10256 	memset(&attr, 0, attr_sz);
10257 
10258 	type = uprobe ? determine_uprobe_perf_type()
10259 		      : determine_kprobe_perf_type();
10260 	if (type < 0) {
10261 		pr_warn("failed to determine %s perf type: %s\n",
10262 			uprobe ? "uprobe" : "kprobe",
10263 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10264 		return type;
10265 	}
10266 	if (retprobe) {
10267 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10268 				 : determine_kprobe_retprobe_bit();
10269 
10270 		if (bit < 0) {
10271 			pr_warn("failed to determine %s retprobe bit: %s\n",
10272 				uprobe ? "uprobe" : "kprobe",
10273 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10274 			return bit;
10275 		}
10276 		attr.config |= 1 << bit;
10277 	}
10278 	attr.size = attr_sz;
10279 	attr.type = type;
10280 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10281 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10282 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10283 
10284 	/* pid filter is meaningful only for uprobes */
10285 	pfd = syscall(__NR_perf_event_open, &attr,
10286 		      pid < 0 ? -1 : pid /* pid */,
10287 		      pid == -1 ? 0 : -1 /* cpu */,
10288 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10289 	return pfd >= 0 ? pfd : -errno;
10290 }
10291 
10292 static int append_to_file(const char *file, const char *fmt, ...)
10293 {
10294 	int fd, n, err = 0;
10295 	va_list ap;
10296 	char buf[1024];
10297 
10298 	va_start(ap, fmt);
10299 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10300 	va_end(ap);
10301 
10302 	if (n < 0 || n >= sizeof(buf))
10303 		return -EINVAL;
10304 
10305 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10306 	if (fd < 0)
10307 		return -errno;
10308 
10309 	if (write(fd, buf, n) < 0)
10310 		err = -errno;
10311 
10312 	close(fd);
10313 	return err;
10314 }
10315 
10316 #define DEBUGFS "/sys/kernel/debug/tracing"
10317 #define TRACEFS "/sys/kernel/tracing"
10318 
10319 static bool use_debugfs(void)
10320 {
10321 	static int has_debugfs = -1;
10322 
10323 	if (has_debugfs < 0)
10324 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10325 
10326 	return has_debugfs == 1;
10327 }
10328 
10329 static const char *tracefs_path(void)
10330 {
10331 	return use_debugfs() ? DEBUGFS : TRACEFS;
10332 }
10333 
10334 static const char *tracefs_kprobe_events(void)
10335 {
10336 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10337 }
10338 
10339 static const char *tracefs_uprobe_events(void)
10340 {
10341 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10342 }
10343 
10344 static const char *tracefs_available_filter_functions(void)
10345 {
10346 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10347 			     : TRACEFS"/available_filter_functions";
10348 }
10349 
10350 static const char *tracefs_available_filter_functions_addrs(void)
10351 {
10352 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10353 			     : TRACEFS"/available_filter_functions_addrs";
10354 }
10355 
10356 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10357 					 const char *kfunc_name, size_t offset)
10358 {
10359 	static int index = 0;
10360 	int i;
10361 
10362 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10363 		 __sync_fetch_and_add(&index, 1));
10364 
10365 	/* sanitize binary_path in the probe name */
10366 	for (i = 0; buf[i]; i++) {
10367 		if (!isalnum(buf[i]))
10368 			buf[i] = '_';
10369 	}
10370 }
10371 
10372 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10373 				   const char *kfunc_name, size_t offset)
10374 {
10375 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10376 			      retprobe ? 'r' : 'p',
10377 			      retprobe ? "kretprobes" : "kprobes",
10378 			      probe_name, kfunc_name, offset);
10379 }
10380 
10381 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10382 {
10383 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10384 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10385 }
10386 
10387 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10388 {
10389 	char file[256];
10390 
10391 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10392 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10393 
10394 	return parse_uint_from_file(file, "%d\n");
10395 }
10396 
10397 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10398 					 const char *kfunc_name, size_t offset, int pid)
10399 {
10400 	const size_t attr_sz = sizeof(struct perf_event_attr);
10401 	struct perf_event_attr attr;
10402 	char errmsg[STRERR_BUFSIZE];
10403 	int type, pfd, err;
10404 
10405 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10406 	if (err < 0) {
10407 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10408 			kfunc_name, offset,
10409 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10410 		return err;
10411 	}
10412 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10413 	if (type < 0) {
10414 		err = type;
10415 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10416 			kfunc_name, offset,
10417 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10418 		goto err_clean_legacy;
10419 	}
10420 
10421 	memset(&attr, 0, attr_sz);
10422 	attr.size = attr_sz;
10423 	attr.config = type;
10424 	attr.type = PERF_TYPE_TRACEPOINT;
10425 
10426 	pfd = syscall(__NR_perf_event_open, &attr,
10427 		      pid < 0 ? -1 : pid, /* pid */
10428 		      pid == -1 ? 0 : -1, /* cpu */
10429 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10430 	if (pfd < 0) {
10431 		err = -errno;
10432 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10433 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10434 		goto err_clean_legacy;
10435 	}
10436 	return pfd;
10437 
10438 err_clean_legacy:
10439 	/* Clear the newly added legacy kprobe_event */
10440 	remove_kprobe_event_legacy(probe_name, retprobe);
10441 	return err;
10442 }
10443 
10444 static const char *arch_specific_syscall_pfx(void)
10445 {
10446 #if defined(__x86_64__)
10447 	return "x64";
10448 #elif defined(__i386__)
10449 	return "ia32";
10450 #elif defined(__s390x__)
10451 	return "s390x";
10452 #elif defined(__s390__)
10453 	return "s390";
10454 #elif defined(__arm__)
10455 	return "arm";
10456 #elif defined(__aarch64__)
10457 	return "arm64";
10458 #elif defined(__mips__)
10459 	return "mips";
10460 #elif defined(__riscv)
10461 	return "riscv";
10462 #elif defined(__powerpc__)
10463 	return "powerpc";
10464 #elif defined(__powerpc64__)
10465 	return "powerpc64";
10466 #else
10467 	return NULL;
10468 #endif
10469 }
10470 
10471 static int probe_kern_syscall_wrapper(void)
10472 {
10473 	char syscall_name[64];
10474 	const char *ksys_pfx;
10475 
10476 	ksys_pfx = arch_specific_syscall_pfx();
10477 	if (!ksys_pfx)
10478 		return 0;
10479 
10480 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10481 
10482 	if (determine_kprobe_perf_type() >= 0) {
10483 		int pfd;
10484 
10485 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10486 		if (pfd >= 0)
10487 			close(pfd);
10488 
10489 		return pfd >= 0 ? 1 : 0;
10490 	} else { /* legacy mode */
10491 		char probe_name[128];
10492 
10493 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10494 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10495 			return 0;
10496 
10497 		(void)remove_kprobe_event_legacy(probe_name, false);
10498 		return 1;
10499 	}
10500 }
10501 
10502 struct bpf_link *
10503 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10504 				const char *func_name,
10505 				const struct bpf_kprobe_opts *opts)
10506 {
10507 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10508 	enum probe_attach_mode attach_mode;
10509 	char errmsg[STRERR_BUFSIZE];
10510 	char *legacy_probe = NULL;
10511 	struct bpf_link *link;
10512 	size_t offset;
10513 	bool retprobe, legacy;
10514 	int pfd, err;
10515 
10516 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10517 		return libbpf_err_ptr(-EINVAL);
10518 
10519 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10520 	retprobe = OPTS_GET(opts, retprobe, false);
10521 	offset = OPTS_GET(opts, offset, 0);
10522 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10523 
10524 	legacy = determine_kprobe_perf_type() < 0;
10525 	switch (attach_mode) {
10526 	case PROBE_ATTACH_MODE_LEGACY:
10527 		legacy = true;
10528 		pe_opts.force_ioctl_attach = true;
10529 		break;
10530 	case PROBE_ATTACH_MODE_PERF:
10531 		if (legacy)
10532 			return libbpf_err_ptr(-ENOTSUP);
10533 		pe_opts.force_ioctl_attach = true;
10534 		break;
10535 	case PROBE_ATTACH_MODE_LINK:
10536 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10537 			return libbpf_err_ptr(-ENOTSUP);
10538 		break;
10539 	case PROBE_ATTACH_MODE_DEFAULT:
10540 		break;
10541 	default:
10542 		return libbpf_err_ptr(-EINVAL);
10543 	}
10544 
10545 	if (!legacy) {
10546 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10547 					    func_name, offset,
10548 					    -1 /* pid */, 0 /* ref_ctr_off */);
10549 	} else {
10550 		char probe_name[256];
10551 
10552 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10553 					     func_name, offset);
10554 
10555 		legacy_probe = strdup(probe_name);
10556 		if (!legacy_probe)
10557 			return libbpf_err_ptr(-ENOMEM);
10558 
10559 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10560 						    offset, -1 /* pid */);
10561 	}
10562 	if (pfd < 0) {
10563 		err = -errno;
10564 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10565 			prog->name, retprobe ? "kretprobe" : "kprobe",
10566 			func_name, offset,
10567 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10568 		goto err_out;
10569 	}
10570 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10571 	err = libbpf_get_error(link);
10572 	if (err) {
10573 		close(pfd);
10574 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10575 			prog->name, retprobe ? "kretprobe" : "kprobe",
10576 			func_name, offset,
10577 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10578 		goto err_clean_legacy;
10579 	}
10580 	if (legacy) {
10581 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10582 
10583 		perf_link->legacy_probe_name = legacy_probe;
10584 		perf_link->legacy_is_kprobe = true;
10585 		perf_link->legacy_is_retprobe = retprobe;
10586 	}
10587 
10588 	return link;
10589 
10590 err_clean_legacy:
10591 	if (legacy)
10592 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10593 err_out:
10594 	free(legacy_probe);
10595 	return libbpf_err_ptr(err);
10596 }
10597 
10598 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10599 					    bool retprobe,
10600 					    const char *func_name)
10601 {
10602 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10603 		.retprobe = retprobe,
10604 	);
10605 
10606 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10607 }
10608 
10609 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10610 					      const char *syscall_name,
10611 					      const struct bpf_ksyscall_opts *opts)
10612 {
10613 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10614 	char func_name[128];
10615 
10616 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10617 		return libbpf_err_ptr(-EINVAL);
10618 
10619 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10620 		/* arch_specific_syscall_pfx() should never return NULL here
10621 		 * because it is guarded by kernel_supports(). However, since
10622 		 * compiler does not know that we have an explicit conditional
10623 		 * as well.
10624 		 */
10625 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10626 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10627 	} else {
10628 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10629 	}
10630 
10631 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10632 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10633 
10634 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10635 }
10636 
10637 /* Adapted from perf/util/string.c */
10638 bool glob_match(const char *str, const char *pat)
10639 {
10640 	while (*str && *pat && *pat != '*') {
10641 		if (*pat == '?') {      /* Matches any single character */
10642 			str++;
10643 			pat++;
10644 			continue;
10645 		}
10646 		if (*str != *pat)
10647 			return false;
10648 		str++;
10649 		pat++;
10650 	}
10651 	/* Check wild card */
10652 	if (*pat == '*') {
10653 		while (*pat == '*')
10654 			pat++;
10655 		if (!*pat) /* Tail wild card matches all */
10656 			return true;
10657 		while (*str)
10658 			if (glob_match(str++, pat))
10659 				return true;
10660 	}
10661 	return !*str && !*pat;
10662 }
10663 
10664 struct kprobe_multi_resolve {
10665 	const char *pattern;
10666 	unsigned long *addrs;
10667 	size_t cap;
10668 	size_t cnt;
10669 };
10670 
10671 struct avail_kallsyms_data {
10672 	char **syms;
10673 	size_t cnt;
10674 	struct kprobe_multi_resolve *res;
10675 };
10676 
10677 static int avail_func_cmp(const void *a, const void *b)
10678 {
10679 	return strcmp(*(const char **)a, *(const char **)b);
10680 }
10681 
10682 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
10683 			     const char *sym_name, void *ctx)
10684 {
10685 	struct avail_kallsyms_data *data = ctx;
10686 	struct kprobe_multi_resolve *res = data->res;
10687 	int err;
10688 
10689 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
10690 		return 0;
10691 
10692 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
10693 	if (err)
10694 		return err;
10695 
10696 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
10697 	return 0;
10698 }
10699 
10700 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
10701 {
10702 	const char *available_functions_file = tracefs_available_filter_functions();
10703 	struct avail_kallsyms_data data;
10704 	char sym_name[500];
10705 	FILE *f;
10706 	int err = 0, ret, i;
10707 	char **syms = NULL;
10708 	size_t cap = 0, cnt = 0;
10709 
10710 	f = fopen(available_functions_file, "re");
10711 	if (!f) {
10712 		err = -errno;
10713 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
10714 		return err;
10715 	}
10716 
10717 	while (true) {
10718 		char *name;
10719 
10720 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
10721 		if (ret == EOF && feof(f))
10722 			break;
10723 
10724 		if (ret != 1) {
10725 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
10726 			err = -EINVAL;
10727 			goto cleanup;
10728 		}
10729 
10730 		if (!glob_match(sym_name, res->pattern))
10731 			continue;
10732 
10733 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
10734 		if (err)
10735 			goto cleanup;
10736 
10737 		name = strdup(sym_name);
10738 		if (!name) {
10739 			err = -errno;
10740 			goto cleanup;
10741 		}
10742 
10743 		syms[cnt++] = name;
10744 	}
10745 
10746 	/* no entries found, bail out */
10747 	if (cnt == 0) {
10748 		err = -ENOENT;
10749 		goto cleanup;
10750 	}
10751 
10752 	/* sort available functions */
10753 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
10754 
10755 	data.syms = syms;
10756 	data.res = res;
10757 	data.cnt = cnt;
10758 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
10759 
10760 	if (res->cnt == 0)
10761 		err = -ENOENT;
10762 
10763 cleanup:
10764 	for (i = 0; i < cnt; i++)
10765 		free((char *)syms[i]);
10766 	free(syms);
10767 
10768 	fclose(f);
10769 	return err;
10770 }
10771 
10772 static bool has_available_filter_functions_addrs(void)
10773 {
10774 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
10775 }
10776 
10777 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
10778 {
10779 	const char *available_path = tracefs_available_filter_functions_addrs();
10780 	char sym_name[500];
10781 	FILE *f;
10782 	int ret, err = 0;
10783 	unsigned long long sym_addr;
10784 
10785 	f = fopen(available_path, "re");
10786 	if (!f) {
10787 		err = -errno;
10788 		pr_warn("failed to open %s: %d\n", available_path, err);
10789 		return err;
10790 	}
10791 
10792 	while (true) {
10793 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
10794 		if (ret == EOF && feof(f))
10795 			break;
10796 
10797 		if (ret != 2) {
10798 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
10799 				ret);
10800 			err = -EINVAL;
10801 			goto cleanup;
10802 		}
10803 
10804 		if (!glob_match(sym_name, res->pattern))
10805 			continue;
10806 
10807 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
10808 					sizeof(*res->addrs), res->cnt + 1);
10809 		if (err)
10810 			goto cleanup;
10811 
10812 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
10813 	}
10814 
10815 	if (res->cnt == 0)
10816 		err = -ENOENT;
10817 
10818 cleanup:
10819 	fclose(f);
10820 	return err;
10821 }
10822 
10823 struct bpf_link *
10824 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10825 				      const char *pattern,
10826 				      const struct bpf_kprobe_multi_opts *opts)
10827 {
10828 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10829 	struct kprobe_multi_resolve res = {
10830 		.pattern = pattern,
10831 	};
10832 	struct bpf_link *link = NULL;
10833 	char errmsg[STRERR_BUFSIZE];
10834 	const unsigned long *addrs;
10835 	int err, link_fd, prog_fd;
10836 	const __u64 *cookies;
10837 	const char **syms;
10838 	bool retprobe;
10839 	size_t cnt;
10840 
10841 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10842 		return libbpf_err_ptr(-EINVAL);
10843 
10844 	syms    = OPTS_GET(opts, syms, false);
10845 	addrs   = OPTS_GET(opts, addrs, false);
10846 	cnt     = OPTS_GET(opts, cnt, false);
10847 	cookies = OPTS_GET(opts, cookies, false);
10848 
10849 	if (!pattern && !addrs && !syms)
10850 		return libbpf_err_ptr(-EINVAL);
10851 	if (pattern && (addrs || syms || cookies || cnt))
10852 		return libbpf_err_ptr(-EINVAL);
10853 	if (!pattern && !cnt)
10854 		return libbpf_err_ptr(-EINVAL);
10855 	if (addrs && syms)
10856 		return libbpf_err_ptr(-EINVAL);
10857 
10858 	if (pattern) {
10859 		if (has_available_filter_functions_addrs())
10860 			err = libbpf_available_kprobes_parse(&res);
10861 		else
10862 			err = libbpf_available_kallsyms_parse(&res);
10863 		if (err)
10864 			goto error;
10865 		addrs = res.addrs;
10866 		cnt = res.cnt;
10867 	}
10868 
10869 	retprobe = OPTS_GET(opts, retprobe, false);
10870 
10871 	lopts.kprobe_multi.syms = syms;
10872 	lopts.kprobe_multi.addrs = addrs;
10873 	lopts.kprobe_multi.cookies = cookies;
10874 	lopts.kprobe_multi.cnt = cnt;
10875 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10876 
10877 	link = calloc(1, sizeof(*link));
10878 	if (!link) {
10879 		err = -ENOMEM;
10880 		goto error;
10881 	}
10882 	link->detach = &bpf_link__detach_fd;
10883 
10884 	prog_fd = bpf_program__fd(prog);
10885 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10886 	if (link_fd < 0) {
10887 		err = -errno;
10888 		pr_warn("prog '%s': failed to attach: %s\n",
10889 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10890 		goto error;
10891 	}
10892 	link->fd = link_fd;
10893 	free(res.addrs);
10894 	return link;
10895 
10896 error:
10897 	free(link);
10898 	free(res.addrs);
10899 	return libbpf_err_ptr(err);
10900 }
10901 
10902 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10903 {
10904 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10905 	unsigned long offset = 0;
10906 	const char *func_name;
10907 	char *func;
10908 	int n;
10909 
10910 	*link = NULL;
10911 
10912 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10913 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10914 		return 0;
10915 
10916 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10917 	if (opts.retprobe)
10918 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10919 	else
10920 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10921 
10922 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10923 	if (n < 1) {
10924 		pr_warn("kprobe name is invalid: %s\n", func_name);
10925 		return -EINVAL;
10926 	}
10927 	if (opts.retprobe && offset != 0) {
10928 		free(func);
10929 		pr_warn("kretprobes do not support offset specification\n");
10930 		return -EINVAL;
10931 	}
10932 
10933 	opts.offset = offset;
10934 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10935 	free(func);
10936 	return libbpf_get_error(*link);
10937 }
10938 
10939 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10940 {
10941 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10942 	const char *syscall_name;
10943 
10944 	*link = NULL;
10945 
10946 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10947 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10948 		return 0;
10949 
10950 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10951 	if (opts.retprobe)
10952 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10953 	else
10954 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10955 
10956 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10957 	return *link ? 0 : -errno;
10958 }
10959 
10960 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10961 {
10962 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10963 	const char *spec;
10964 	char *pattern;
10965 	int n;
10966 
10967 	*link = NULL;
10968 
10969 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10970 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10971 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10972 		return 0;
10973 
10974 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10975 	if (opts.retprobe)
10976 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10977 	else
10978 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10979 
10980 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10981 	if (n < 1) {
10982 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10983 		return -EINVAL;
10984 	}
10985 
10986 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10987 	free(pattern);
10988 	return libbpf_get_error(*link);
10989 }
10990 
10991 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10992 {
10993 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10994 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
10995 	int n, ret = -EINVAL;
10996 
10997 	*link = NULL;
10998 
10999 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%ms",
11000 		   &probe_type, &binary_path, &func_name);
11001 	switch (n) {
11002 	case 1:
11003 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11004 		ret = 0;
11005 		break;
11006 	case 3:
11007 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11008 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11009 		ret = libbpf_get_error(*link);
11010 		break;
11011 	default:
11012 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11013 			prog->sec_name);
11014 		break;
11015 	}
11016 	free(probe_type);
11017 	free(binary_path);
11018 	free(func_name);
11019 	return ret;
11020 }
11021 
11022 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11023 					 const char *binary_path, uint64_t offset)
11024 {
11025 	int i;
11026 
11027 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11028 
11029 	/* sanitize binary_path in the probe name */
11030 	for (i = 0; buf[i]; i++) {
11031 		if (!isalnum(buf[i]))
11032 			buf[i] = '_';
11033 	}
11034 }
11035 
11036 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11037 					  const char *binary_path, size_t offset)
11038 {
11039 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11040 			      retprobe ? 'r' : 'p',
11041 			      retprobe ? "uretprobes" : "uprobes",
11042 			      probe_name, binary_path, offset);
11043 }
11044 
11045 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11046 {
11047 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11048 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11049 }
11050 
11051 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11052 {
11053 	char file[512];
11054 
11055 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11056 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11057 
11058 	return parse_uint_from_file(file, "%d\n");
11059 }
11060 
11061 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11062 					 const char *binary_path, size_t offset, int pid)
11063 {
11064 	const size_t attr_sz = sizeof(struct perf_event_attr);
11065 	struct perf_event_attr attr;
11066 	int type, pfd, err;
11067 
11068 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11069 	if (err < 0) {
11070 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11071 			binary_path, (size_t)offset, err);
11072 		return err;
11073 	}
11074 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11075 	if (type < 0) {
11076 		err = type;
11077 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11078 			binary_path, offset, err);
11079 		goto err_clean_legacy;
11080 	}
11081 
11082 	memset(&attr, 0, attr_sz);
11083 	attr.size = attr_sz;
11084 	attr.config = type;
11085 	attr.type = PERF_TYPE_TRACEPOINT;
11086 
11087 	pfd = syscall(__NR_perf_event_open, &attr,
11088 		      pid < 0 ? -1 : pid, /* pid */
11089 		      pid == -1 ? 0 : -1, /* cpu */
11090 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11091 	if (pfd < 0) {
11092 		err = -errno;
11093 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11094 		goto err_clean_legacy;
11095 	}
11096 	return pfd;
11097 
11098 err_clean_legacy:
11099 	/* Clear the newly added legacy uprobe_event */
11100 	remove_uprobe_event_legacy(probe_name, retprobe);
11101 	return err;
11102 }
11103 
11104 /* Find offset of function name in archive specified by path. Currently
11105  * supported are .zip files that do not compress their contents, as used on
11106  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11107  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11108  * library functions.
11109  *
11110  * An overview of the APK format specifically provided here:
11111  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11112  */
11113 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11114 					      const char *func_name)
11115 {
11116 	struct zip_archive *archive;
11117 	struct zip_entry entry;
11118 	long ret;
11119 	Elf *elf;
11120 
11121 	archive = zip_archive_open(archive_path);
11122 	if (IS_ERR(archive)) {
11123 		ret = PTR_ERR(archive);
11124 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11125 		return ret;
11126 	}
11127 
11128 	ret = zip_archive_find_entry(archive, file_name, &entry);
11129 	if (ret) {
11130 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11131 			archive_path, ret);
11132 		goto out;
11133 	}
11134 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11135 		 (unsigned long)entry.data_offset);
11136 
11137 	if (entry.compression) {
11138 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11139 			archive_path);
11140 		ret = -LIBBPF_ERRNO__FORMAT;
11141 		goto out;
11142 	}
11143 
11144 	elf = elf_memory((void *)entry.data, entry.data_length);
11145 	if (!elf) {
11146 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11147 			elf_errmsg(-1));
11148 		ret = -LIBBPF_ERRNO__LIBELF;
11149 		goto out;
11150 	}
11151 
11152 	ret = elf_find_func_offset(elf, file_name, func_name);
11153 	if (ret > 0) {
11154 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11155 			 func_name, file_name, archive_path, entry.data_offset, ret,
11156 			 ret + entry.data_offset);
11157 		ret += entry.data_offset;
11158 	}
11159 	elf_end(elf);
11160 
11161 out:
11162 	zip_archive_close(archive);
11163 	return ret;
11164 }
11165 
11166 static const char *arch_specific_lib_paths(void)
11167 {
11168 	/*
11169 	 * Based on https://packages.debian.org/sid/libc6.
11170 	 *
11171 	 * Assume that the traced program is built for the same architecture
11172 	 * as libbpf, which should cover the vast majority of cases.
11173 	 */
11174 #if defined(__x86_64__)
11175 	return "/lib/x86_64-linux-gnu";
11176 #elif defined(__i386__)
11177 	return "/lib/i386-linux-gnu";
11178 #elif defined(__s390x__)
11179 	return "/lib/s390x-linux-gnu";
11180 #elif defined(__s390__)
11181 	return "/lib/s390-linux-gnu";
11182 #elif defined(__arm__) && defined(__SOFTFP__)
11183 	return "/lib/arm-linux-gnueabi";
11184 #elif defined(__arm__) && !defined(__SOFTFP__)
11185 	return "/lib/arm-linux-gnueabihf";
11186 #elif defined(__aarch64__)
11187 	return "/lib/aarch64-linux-gnu";
11188 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11189 	return "/lib/mips64el-linux-gnuabi64";
11190 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11191 	return "/lib/mipsel-linux-gnu";
11192 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11193 	return "/lib/powerpc64le-linux-gnu";
11194 #elif defined(__sparc__) && defined(__arch64__)
11195 	return "/lib/sparc64-linux-gnu";
11196 #elif defined(__riscv) && __riscv_xlen == 64
11197 	return "/lib/riscv64-linux-gnu";
11198 #else
11199 	return NULL;
11200 #endif
11201 }
11202 
11203 /* Get full path to program/shared library. */
11204 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11205 {
11206 	const char *search_paths[3] = {};
11207 	int i, perm;
11208 
11209 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11210 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11211 		search_paths[1] = "/usr/lib64:/usr/lib";
11212 		search_paths[2] = arch_specific_lib_paths();
11213 		perm = R_OK;
11214 	} else {
11215 		search_paths[0] = getenv("PATH");
11216 		search_paths[1] = "/usr/bin:/usr/sbin";
11217 		perm = R_OK | X_OK;
11218 	}
11219 
11220 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11221 		const char *s;
11222 
11223 		if (!search_paths[i])
11224 			continue;
11225 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11226 			char *next_path;
11227 			int seg_len;
11228 
11229 			if (s[0] == ':')
11230 				s++;
11231 			next_path = strchr(s, ':');
11232 			seg_len = next_path ? next_path - s : strlen(s);
11233 			if (!seg_len)
11234 				continue;
11235 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11236 			/* ensure it has required permissions */
11237 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11238 				continue;
11239 			pr_debug("resolved '%s' to '%s'\n", file, result);
11240 			return 0;
11241 		}
11242 	}
11243 	return -ENOENT;
11244 }
11245 
11246 struct bpf_link *
11247 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11248 				 pid_t pid,
11249 				 const char *path,
11250 				 const char *func_pattern,
11251 				 const struct bpf_uprobe_multi_opts *opts)
11252 {
11253 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11254 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11255 	unsigned long *resolved_offsets = NULL;
11256 	int err = 0, link_fd, prog_fd;
11257 	struct bpf_link *link = NULL;
11258 	char errmsg[STRERR_BUFSIZE];
11259 	char full_path[PATH_MAX];
11260 	const __u64 *cookies;
11261 	const char **syms;
11262 	size_t cnt;
11263 
11264 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11265 		return libbpf_err_ptr(-EINVAL);
11266 
11267 	syms = OPTS_GET(opts, syms, NULL);
11268 	offsets = OPTS_GET(opts, offsets, NULL);
11269 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11270 	cookies = OPTS_GET(opts, cookies, NULL);
11271 	cnt = OPTS_GET(opts, cnt, 0);
11272 
11273 	/*
11274 	 * User can specify 2 mutually exclusive set of inputs:
11275 	 *
11276 	 * 1) use only path/func_pattern/pid arguments
11277 	 *
11278 	 * 2) use path/pid with allowed combinations of:
11279 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11280 	 *
11281 	 *    - syms and offsets are mutually exclusive
11282 	 *    - ref_ctr_offsets and cookies are optional
11283 	 *
11284 	 * Any other usage results in error.
11285 	 */
11286 
11287 	if (!path)
11288 		return libbpf_err_ptr(-EINVAL);
11289 	if (!func_pattern && cnt == 0)
11290 		return libbpf_err_ptr(-EINVAL);
11291 
11292 	if (func_pattern) {
11293 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11294 			return libbpf_err_ptr(-EINVAL);
11295 	} else {
11296 		if (!!syms == !!offsets)
11297 			return libbpf_err_ptr(-EINVAL);
11298 	}
11299 
11300 	if (func_pattern) {
11301 		if (!strchr(path, '/')) {
11302 			err = resolve_full_path(path, full_path, sizeof(full_path));
11303 			if (err) {
11304 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11305 					prog->name, path, err);
11306 				return libbpf_err_ptr(err);
11307 			}
11308 			path = full_path;
11309 		}
11310 
11311 		err = elf_resolve_pattern_offsets(path, func_pattern,
11312 						  &resolved_offsets, &cnt);
11313 		if (err < 0)
11314 			return libbpf_err_ptr(err);
11315 		offsets = resolved_offsets;
11316 	} else if (syms) {
11317 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11318 		if (err < 0)
11319 			return libbpf_err_ptr(err);
11320 		offsets = resolved_offsets;
11321 	}
11322 
11323 	lopts.uprobe_multi.path = path;
11324 	lopts.uprobe_multi.offsets = offsets;
11325 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11326 	lopts.uprobe_multi.cookies = cookies;
11327 	lopts.uprobe_multi.cnt = cnt;
11328 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11329 
11330 	if (pid == 0)
11331 		pid = getpid();
11332 	if (pid > 0)
11333 		lopts.uprobe_multi.pid = pid;
11334 
11335 	link = calloc(1, sizeof(*link));
11336 	if (!link) {
11337 		err = -ENOMEM;
11338 		goto error;
11339 	}
11340 	link->detach = &bpf_link__detach_fd;
11341 
11342 	prog_fd = bpf_program__fd(prog);
11343 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11344 	if (link_fd < 0) {
11345 		err = -errno;
11346 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11347 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11348 		goto error;
11349 	}
11350 	link->fd = link_fd;
11351 	free(resolved_offsets);
11352 	return link;
11353 
11354 error:
11355 	free(resolved_offsets);
11356 	free(link);
11357 	return libbpf_err_ptr(err);
11358 }
11359 
11360 LIBBPF_API struct bpf_link *
11361 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11362 				const char *binary_path, size_t func_offset,
11363 				const struct bpf_uprobe_opts *opts)
11364 {
11365 	const char *archive_path = NULL, *archive_sep = NULL;
11366 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11367 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11368 	enum probe_attach_mode attach_mode;
11369 	char full_path[PATH_MAX];
11370 	struct bpf_link *link;
11371 	size_t ref_ctr_off;
11372 	int pfd, err;
11373 	bool retprobe, legacy;
11374 	const char *func_name;
11375 
11376 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11377 		return libbpf_err_ptr(-EINVAL);
11378 
11379 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11380 	retprobe = OPTS_GET(opts, retprobe, false);
11381 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11382 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11383 
11384 	if (!binary_path)
11385 		return libbpf_err_ptr(-EINVAL);
11386 
11387 	/* Check if "binary_path" refers to an archive. */
11388 	archive_sep = strstr(binary_path, "!/");
11389 	if (archive_sep) {
11390 		full_path[0] = '\0';
11391 		libbpf_strlcpy(full_path, binary_path,
11392 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11393 		archive_path = full_path;
11394 		binary_path = archive_sep + 2;
11395 	} else if (!strchr(binary_path, '/')) {
11396 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11397 		if (err) {
11398 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11399 				prog->name, binary_path, err);
11400 			return libbpf_err_ptr(err);
11401 		}
11402 		binary_path = full_path;
11403 	}
11404 	func_name = OPTS_GET(opts, func_name, NULL);
11405 	if (func_name) {
11406 		long sym_off;
11407 
11408 		if (archive_path) {
11409 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11410 								    func_name);
11411 			binary_path = archive_path;
11412 		} else {
11413 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11414 		}
11415 		if (sym_off < 0)
11416 			return libbpf_err_ptr(sym_off);
11417 		func_offset += sym_off;
11418 	}
11419 
11420 	legacy = determine_uprobe_perf_type() < 0;
11421 	switch (attach_mode) {
11422 	case PROBE_ATTACH_MODE_LEGACY:
11423 		legacy = true;
11424 		pe_opts.force_ioctl_attach = true;
11425 		break;
11426 	case PROBE_ATTACH_MODE_PERF:
11427 		if (legacy)
11428 			return libbpf_err_ptr(-ENOTSUP);
11429 		pe_opts.force_ioctl_attach = true;
11430 		break;
11431 	case PROBE_ATTACH_MODE_LINK:
11432 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11433 			return libbpf_err_ptr(-ENOTSUP);
11434 		break;
11435 	case PROBE_ATTACH_MODE_DEFAULT:
11436 		break;
11437 	default:
11438 		return libbpf_err_ptr(-EINVAL);
11439 	}
11440 
11441 	if (!legacy) {
11442 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11443 					    func_offset, pid, ref_ctr_off);
11444 	} else {
11445 		char probe_name[PATH_MAX + 64];
11446 
11447 		if (ref_ctr_off)
11448 			return libbpf_err_ptr(-EINVAL);
11449 
11450 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11451 					     binary_path, func_offset);
11452 
11453 		legacy_probe = strdup(probe_name);
11454 		if (!legacy_probe)
11455 			return libbpf_err_ptr(-ENOMEM);
11456 
11457 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11458 						    binary_path, func_offset, pid);
11459 	}
11460 	if (pfd < 0) {
11461 		err = -errno;
11462 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11463 			prog->name, retprobe ? "uretprobe" : "uprobe",
11464 			binary_path, func_offset,
11465 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11466 		goto err_out;
11467 	}
11468 
11469 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11470 	err = libbpf_get_error(link);
11471 	if (err) {
11472 		close(pfd);
11473 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11474 			prog->name, retprobe ? "uretprobe" : "uprobe",
11475 			binary_path, func_offset,
11476 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11477 		goto err_clean_legacy;
11478 	}
11479 	if (legacy) {
11480 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11481 
11482 		perf_link->legacy_probe_name = legacy_probe;
11483 		perf_link->legacy_is_kprobe = false;
11484 		perf_link->legacy_is_retprobe = retprobe;
11485 	}
11486 	return link;
11487 
11488 err_clean_legacy:
11489 	if (legacy)
11490 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11491 err_out:
11492 	free(legacy_probe);
11493 	return libbpf_err_ptr(err);
11494 }
11495 
11496 /* Format of u[ret]probe section definition supporting auto-attach:
11497  * u[ret]probe/binary:function[+offset]
11498  *
11499  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11500  * full binary path via bpf_program__attach_uprobe_opts.
11501  *
11502  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11503  * specified (and auto-attach is not possible) or the above format is specified for
11504  * auto-attach.
11505  */
11506 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11507 {
11508 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11509 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11510 	int n, ret = -EINVAL;
11511 	long offset = 0;
11512 
11513 	*link = NULL;
11514 
11515 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11516 		   &probe_type, &binary_path, &func_name, &offset);
11517 	switch (n) {
11518 	case 1:
11519 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11520 		ret = 0;
11521 		break;
11522 	case 2:
11523 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11524 			prog->name, prog->sec_name);
11525 		break;
11526 	case 3:
11527 	case 4:
11528 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11529 				strcmp(probe_type, "uretprobe.s") == 0;
11530 		if (opts.retprobe && offset != 0) {
11531 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
11532 				prog->name);
11533 			break;
11534 		}
11535 		opts.func_name = func_name;
11536 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11537 		ret = libbpf_get_error(*link);
11538 		break;
11539 	default:
11540 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11541 			prog->sec_name);
11542 		break;
11543 	}
11544 	free(probe_type);
11545 	free(binary_path);
11546 	free(func_name);
11547 
11548 	return ret;
11549 }
11550 
11551 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11552 					    bool retprobe, pid_t pid,
11553 					    const char *binary_path,
11554 					    size_t func_offset)
11555 {
11556 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11557 
11558 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11559 }
11560 
11561 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11562 					  pid_t pid, const char *binary_path,
11563 					  const char *usdt_provider, const char *usdt_name,
11564 					  const struct bpf_usdt_opts *opts)
11565 {
11566 	char resolved_path[512];
11567 	struct bpf_object *obj = prog->obj;
11568 	struct bpf_link *link;
11569 	__u64 usdt_cookie;
11570 	int err;
11571 
11572 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11573 		return libbpf_err_ptr(-EINVAL);
11574 
11575 	if (bpf_program__fd(prog) < 0) {
11576 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11577 			prog->name);
11578 		return libbpf_err_ptr(-EINVAL);
11579 	}
11580 
11581 	if (!binary_path)
11582 		return libbpf_err_ptr(-EINVAL);
11583 
11584 	if (!strchr(binary_path, '/')) {
11585 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11586 		if (err) {
11587 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11588 				prog->name, binary_path, err);
11589 			return libbpf_err_ptr(err);
11590 		}
11591 		binary_path = resolved_path;
11592 	}
11593 
11594 	/* USDT manager is instantiated lazily on first USDT attach. It will
11595 	 * be destroyed together with BPF object in bpf_object__close().
11596 	 */
11597 	if (IS_ERR(obj->usdt_man))
11598 		return libbpf_ptr(obj->usdt_man);
11599 	if (!obj->usdt_man) {
11600 		obj->usdt_man = usdt_manager_new(obj);
11601 		if (IS_ERR(obj->usdt_man))
11602 			return libbpf_ptr(obj->usdt_man);
11603 	}
11604 
11605 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11606 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11607 					usdt_provider, usdt_name, usdt_cookie);
11608 	err = libbpf_get_error(link);
11609 	if (err)
11610 		return libbpf_err_ptr(err);
11611 	return link;
11612 }
11613 
11614 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11615 {
11616 	char *path = NULL, *provider = NULL, *name = NULL;
11617 	const char *sec_name;
11618 	int n, err;
11619 
11620 	sec_name = bpf_program__section_name(prog);
11621 	if (strcmp(sec_name, "usdt") == 0) {
11622 		/* no auto-attach for just SEC("usdt") */
11623 		*link = NULL;
11624 		return 0;
11625 	}
11626 
11627 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11628 	if (n != 3) {
11629 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11630 			sec_name);
11631 		err = -EINVAL;
11632 	} else {
11633 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11634 						 provider, name, NULL);
11635 		err = libbpf_get_error(*link);
11636 	}
11637 	free(path);
11638 	free(provider);
11639 	free(name);
11640 	return err;
11641 }
11642 
11643 static int determine_tracepoint_id(const char *tp_category,
11644 				   const char *tp_name)
11645 {
11646 	char file[PATH_MAX];
11647 	int ret;
11648 
11649 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11650 		       tracefs_path(), tp_category, tp_name);
11651 	if (ret < 0)
11652 		return -errno;
11653 	if (ret >= sizeof(file)) {
11654 		pr_debug("tracepoint %s/%s path is too long\n",
11655 			 tp_category, tp_name);
11656 		return -E2BIG;
11657 	}
11658 	return parse_uint_from_file(file, "%d\n");
11659 }
11660 
11661 static int perf_event_open_tracepoint(const char *tp_category,
11662 				      const char *tp_name)
11663 {
11664 	const size_t attr_sz = sizeof(struct perf_event_attr);
11665 	struct perf_event_attr attr;
11666 	char errmsg[STRERR_BUFSIZE];
11667 	int tp_id, pfd, err;
11668 
11669 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11670 	if (tp_id < 0) {
11671 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11672 			tp_category, tp_name,
11673 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11674 		return tp_id;
11675 	}
11676 
11677 	memset(&attr, 0, attr_sz);
11678 	attr.type = PERF_TYPE_TRACEPOINT;
11679 	attr.size = attr_sz;
11680 	attr.config = tp_id;
11681 
11682 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11683 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11684 	if (pfd < 0) {
11685 		err = -errno;
11686 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11687 			tp_category, tp_name,
11688 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11689 		return err;
11690 	}
11691 	return pfd;
11692 }
11693 
11694 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11695 						     const char *tp_category,
11696 						     const char *tp_name,
11697 						     const struct bpf_tracepoint_opts *opts)
11698 {
11699 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11700 	char errmsg[STRERR_BUFSIZE];
11701 	struct bpf_link *link;
11702 	int pfd, err;
11703 
11704 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11705 		return libbpf_err_ptr(-EINVAL);
11706 
11707 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11708 
11709 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11710 	if (pfd < 0) {
11711 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11712 			prog->name, tp_category, tp_name,
11713 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11714 		return libbpf_err_ptr(pfd);
11715 	}
11716 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11717 	err = libbpf_get_error(link);
11718 	if (err) {
11719 		close(pfd);
11720 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11721 			prog->name, tp_category, tp_name,
11722 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11723 		return libbpf_err_ptr(err);
11724 	}
11725 	return link;
11726 }
11727 
11728 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11729 						const char *tp_category,
11730 						const char *tp_name)
11731 {
11732 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11733 }
11734 
11735 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11736 {
11737 	char *sec_name, *tp_cat, *tp_name;
11738 
11739 	*link = NULL;
11740 
11741 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11742 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11743 		return 0;
11744 
11745 	sec_name = strdup(prog->sec_name);
11746 	if (!sec_name)
11747 		return -ENOMEM;
11748 
11749 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11750 	if (str_has_pfx(prog->sec_name, "tp/"))
11751 		tp_cat = sec_name + sizeof("tp/") - 1;
11752 	else
11753 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11754 	tp_name = strchr(tp_cat, '/');
11755 	if (!tp_name) {
11756 		free(sec_name);
11757 		return -EINVAL;
11758 	}
11759 	*tp_name = '\0';
11760 	tp_name++;
11761 
11762 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11763 	free(sec_name);
11764 	return libbpf_get_error(*link);
11765 }
11766 
11767 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11768 						    const char *tp_name)
11769 {
11770 	char errmsg[STRERR_BUFSIZE];
11771 	struct bpf_link *link;
11772 	int prog_fd, pfd;
11773 
11774 	prog_fd = bpf_program__fd(prog);
11775 	if (prog_fd < 0) {
11776 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11777 		return libbpf_err_ptr(-EINVAL);
11778 	}
11779 
11780 	link = calloc(1, sizeof(*link));
11781 	if (!link)
11782 		return libbpf_err_ptr(-ENOMEM);
11783 	link->detach = &bpf_link__detach_fd;
11784 
11785 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11786 	if (pfd < 0) {
11787 		pfd = -errno;
11788 		free(link);
11789 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11790 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11791 		return libbpf_err_ptr(pfd);
11792 	}
11793 	link->fd = pfd;
11794 	return link;
11795 }
11796 
11797 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11798 {
11799 	static const char *const prefixes[] = {
11800 		"raw_tp",
11801 		"raw_tracepoint",
11802 		"raw_tp.w",
11803 		"raw_tracepoint.w",
11804 	};
11805 	size_t i;
11806 	const char *tp_name = NULL;
11807 
11808 	*link = NULL;
11809 
11810 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11811 		size_t pfx_len;
11812 
11813 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11814 			continue;
11815 
11816 		pfx_len = strlen(prefixes[i]);
11817 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11818 		if (prog->sec_name[pfx_len] == '\0')
11819 			return 0;
11820 
11821 		if (prog->sec_name[pfx_len] != '/')
11822 			continue;
11823 
11824 		tp_name = prog->sec_name + pfx_len + 1;
11825 		break;
11826 	}
11827 
11828 	if (!tp_name) {
11829 		pr_warn("prog '%s': invalid section name '%s'\n",
11830 			prog->name, prog->sec_name);
11831 		return -EINVAL;
11832 	}
11833 
11834 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11835 	return libbpf_get_error(*link);
11836 }
11837 
11838 /* Common logic for all BPF program types that attach to a btf_id */
11839 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11840 						   const struct bpf_trace_opts *opts)
11841 {
11842 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11843 	char errmsg[STRERR_BUFSIZE];
11844 	struct bpf_link *link;
11845 	int prog_fd, pfd;
11846 
11847 	if (!OPTS_VALID(opts, bpf_trace_opts))
11848 		return libbpf_err_ptr(-EINVAL);
11849 
11850 	prog_fd = bpf_program__fd(prog);
11851 	if (prog_fd < 0) {
11852 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11853 		return libbpf_err_ptr(-EINVAL);
11854 	}
11855 
11856 	link = calloc(1, sizeof(*link));
11857 	if (!link)
11858 		return libbpf_err_ptr(-ENOMEM);
11859 	link->detach = &bpf_link__detach_fd;
11860 
11861 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11862 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11863 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11864 	if (pfd < 0) {
11865 		pfd = -errno;
11866 		free(link);
11867 		pr_warn("prog '%s': failed to attach: %s\n",
11868 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11869 		return libbpf_err_ptr(pfd);
11870 	}
11871 	link->fd = pfd;
11872 	return link;
11873 }
11874 
11875 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11876 {
11877 	return bpf_program__attach_btf_id(prog, NULL);
11878 }
11879 
11880 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11881 						const struct bpf_trace_opts *opts)
11882 {
11883 	return bpf_program__attach_btf_id(prog, opts);
11884 }
11885 
11886 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11887 {
11888 	return bpf_program__attach_btf_id(prog, NULL);
11889 }
11890 
11891 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11892 {
11893 	*link = bpf_program__attach_trace(prog);
11894 	return libbpf_get_error(*link);
11895 }
11896 
11897 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11898 {
11899 	*link = bpf_program__attach_lsm(prog);
11900 	return libbpf_get_error(*link);
11901 }
11902 
11903 static struct bpf_link *
11904 bpf_program_attach_fd(const struct bpf_program *prog,
11905 		      int target_fd, const char *target_name,
11906 		      const struct bpf_link_create_opts *opts)
11907 {
11908 	enum bpf_attach_type attach_type;
11909 	char errmsg[STRERR_BUFSIZE];
11910 	struct bpf_link *link;
11911 	int prog_fd, link_fd;
11912 
11913 	prog_fd = bpf_program__fd(prog);
11914 	if (prog_fd < 0) {
11915 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11916 		return libbpf_err_ptr(-EINVAL);
11917 	}
11918 
11919 	link = calloc(1, sizeof(*link));
11920 	if (!link)
11921 		return libbpf_err_ptr(-ENOMEM);
11922 	link->detach = &bpf_link__detach_fd;
11923 
11924 	attach_type = bpf_program__expected_attach_type(prog);
11925 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
11926 	if (link_fd < 0) {
11927 		link_fd = -errno;
11928 		free(link);
11929 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11930 			prog->name, target_name,
11931 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11932 		return libbpf_err_ptr(link_fd);
11933 	}
11934 	link->fd = link_fd;
11935 	return link;
11936 }
11937 
11938 struct bpf_link *
11939 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11940 {
11941 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
11942 }
11943 
11944 struct bpf_link *
11945 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11946 {
11947 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
11948 }
11949 
11950 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11951 {
11952 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11953 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
11954 }
11955 
11956 struct bpf_link *
11957 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
11958 			const struct bpf_tcx_opts *opts)
11959 {
11960 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11961 	__u32 relative_id;
11962 	int relative_fd;
11963 
11964 	if (!OPTS_VALID(opts, bpf_tcx_opts))
11965 		return libbpf_err_ptr(-EINVAL);
11966 
11967 	relative_id = OPTS_GET(opts, relative_id, 0);
11968 	relative_fd = OPTS_GET(opts, relative_fd, 0);
11969 
11970 	/* validate we don't have unexpected combinations of non-zero fields */
11971 	if (!ifindex) {
11972 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
11973 			prog->name);
11974 		return libbpf_err_ptr(-EINVAL);
11975 	}
11976 	if (relative_fd && relative_id) {
11977 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
11978 			prog->name);
11979 		return libbpf_err_ptr(-EINVAL);
11980 	}
11981 
11982 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
11983 	link_create_opts.tcx.relative_fd = relative_fd;
11984 	link_create_opts.tcx.relative_id = relative_id;
11985 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
11986 
11987 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11988 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
11989 }
11990 
11991 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11992 					      int target_fd,
11993 					      const char *attach_func_name)
11994 {
11995 	int btf_id;
11996 
11997 	if (!!target_fd != !!attach_func_name) {
11998 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11999 			prog->name);
12000 		return libbpf_err_ptr(-EINVAL);
12001 	}
12002 
12003 	if (prog->type != BPF_PROG_TYPE_EXT) {
12004 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12005 			prog->name);
12006 		return libbpf_err_ptr(-EINVAL);
12007 	}
12008 
12009 	if (target_fd) {
12010 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12011 
12012 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12013 		if (btf_id < 0)
12014 			return libbpf_err_ptr(btf_id);
12015 
12016 		target_opts.target_btf_id = btf_id;
12017 
12018 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12019 					     &target_opts);
12020 	} else {
12021 		/* no target, so use raw_tracepoint_open for compatibility
12022 		 * with old kernels
12023 		 */
12024 		return bpf_program__attach_trace(prog);
12025 	}
12026 }
12027 
12028 struct bpf_link *
12029 bpf_program__attach_iter(const struct bpf_program *prog,
12030 			 const struct bpf_iter_attach_opts *opts)
12031 {
12032 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12033 	char errmsg[STRERR_BUFSIZE];
12034 	struct bpf_link *link;
12035 	int prog_fd, link_fd;
12036 	__u32 target_fd = 0;
12037 
12038 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12039 		return libbpf_err_ptr(-EINVAL);
12040 
12041 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12042 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12043 
12044 	prog_fd = bpf_program__fd(prog);
12045 	if (prog_fd < 0) {
12046 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12047 		return libbpf_err_ptr(-EINVAL);
12048 	}
12049 
12050 	link = calloc(1, sizeof(*link));
12051 	if (!link)
12052 		return libbpf_err_ptr(-ENOMEM);
12053 	link->detach = &bpf_link__detach_fd;
12054 
12055 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12056 				  &link_create_opts);
12057 	if (link_fd < 0) {
12058 		link_fd = -errno;
12059 		free(link);
12060 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12061 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12062 		return libbpf_err_ptr(link_fd);
12063 	}
12064 	link->fd = link_fd;
12065 	return link;
12066 }
12067 
12068 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12069 {
12070 	*link = bpf_program__attach_iter(prog, NULL);
12071 	return libbpf_get_error(*link);
12072 }
12073 
12074 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12075 					       const struct bpf_netfilter_opts *opts)
12076 {
12077 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12078 	struct bpf_link *link;
12079 	int prog_fd, link_fd;
12080 
12081 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12082 		return libbpf_err_ptr(-EINVAL);
12083 
12084 	prog_fd = bpf_program__fd(prog);
12085 	if (prog_fd < 0) {
12086 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12087 		return libbpf_err_ptr(-EINVAL);
12088 	}
12089 
12090 	link = calloc(1, sizeof(*link));
12091 	if (!link)
12092 		return libbpf_err_ptr(-ENOMEM);
12093 
12094 	link->detach = &bpf_link__detach_fd;
12095 
12096 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12097 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12098 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12099 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12100 
12101 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12102 	if (link_fd < 0) {
12103 		char errmsg[STRERR_BUFSIZE];
12104 
12105 		link_fd = -errno;
12106 		free(link);
12107 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12108 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12109 		return libbpf_err_ptr(link_fd);
12110 	}
12111 	link->fd = link_fd;
12112 
12113 	return link;
12114 }
12115 
12116 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12117 {
12118 	struct bpf_link *link = NULL;
12119 	int err;
12120 
12121 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12122 		return libbpf_err_ptr(-EOPNOTSUPP);
12123 
12124 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12125 	if (err)
12126 		return libbpf_err_ptr(err);
12127 
12128 	/* When calling bpf_program__attach() explicitly, auto-attach support
12129 	 * is expected to work, so NULL returned link is considered an error.
12130 	 * This is different for skeleton's attach, see comment in
12131 	 * bpf_object__attach_skeleton().
12132 	 */
12133 	if (!link)
12134 		return libbpf_err_ptr(-EOPNOTSUPP);
12135 
12136 	return link;
12137 }
12138 
12139 struct bpf_link_struct_ops {
12140 	struct bpf_link link;
12141 	int map_fd;
12142 };
12143 
12144 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12145 {
12146 	struct bpf_link_struct_ops *st_link;
12147 	__u32 zero = 0;
12148 
12149 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12150 
12151 	if (st_link->map_fd < 0)
12152 		/* w/o a real link */
12153 		return bpf_map_delete_elem(link->fd, &zero);
12154 
12155 	return close(link->fd);
12156 }
12157 
12158 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12159 {
12160 	struct bpf_link_struct_ops *link;
12161 	__u32 zero = 0;
12162 	int err, fd;
12163 
12164 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12165 		return libbpf_err_ptr(-EINVAL);
12166 
12167 	link = calloc(1, sizeof(*link));
12168 	if (!link)
12169 		return libbpf_err_ptr(-EINVAL);
12170 
12171 	/* kern_vdata should be prepared during the loading phase. */
12172 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12173 	/* It can be EBUSY if the map has been used to create or
12174 	 * update a link before.  We don't allow updating the value of
12175 	 * a struct_ops once it is set.  That ensures that the value
12176 	 * never changed.  So, it is safe to skip EBUSY.
12177 	 */
12178 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12179 		free(link);
12180 		return libbpf_err_ptr(err);
12181 	}
12182 
12183 	link->link.detach = bpf_link__detach_struct_ops;
12184 
12185 	if (!(map->def.map_flags & BPF_F_LINK)) {
12186 		/* w/o a real link */
12187 		link->link.fd = map->fd;
12188 		link->map_fd = -1;
12189 		return &link->link;
12190 	}
12191 
12192 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12193 	if (fd < 0) {
12194 		free(link);
12195 		return libbpf_err_ptr(fd);
12196 	}
12197 
12198 	link->link.fd = fd;
12199 	link->map_fd = map->fd;
12200 
12201 	return &link->link;
12202 }
12203 
12204 /*
12205  * Swap the back struct_ops of a link with a new struct_ops map.
12206  */
12207 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12208 {
12209 	struct bpf_link_struct_ops *st_ops_link;
12210 	__u32 zero = 0;
12211 	int err;
12212 
12213 	if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12214 		return -EINVAL;
12215 
12216 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12217 	/* Ensure the type of a link is correct */
12218 	if (st_ops_link->map_fd < 0)
12219 		return -EINVAL;
12220 
12221 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12222 	/* It can be EBUSY if the map has been used to create or
12223 	 * update a link before.  We don't allow updating the value of
12224 	 * a struct_ops once it is set.  That ensures that the value
12225 	 * never changed.  So, it is safe to skip EBUSY.
12226 	 */
12227 	if (err && err != -EBUSY)
12228 		return err;
12229 
12230 	err = bpf_link_update(link->fd, map->fd, NULL);
12231 	if (err < 0)
12232 		return err;
12233 
12234 	st_ops_link->map_fd = map->fd;
12235 
12236 	return 0;
12237 }
12238 
12239 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12240 							  void *private_data);
12241 
12242 static enum bpf_perf_event_ret
12243 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12244 		       void **copy_mem, size_t *copy_size,
12245 		       bpf_perf_event_print_t fn, void *private_data)
12246 {
12247 	struct perf_event_mmap_page *header = mmap_mem;
12248 	__u64 data_head = ring_buffer_read_head(header);
12249 	__u64 data_tail = header->data_tail;
12250 	void *base = ((__u8 *)header) + page_size;
12251 	int ret = LIBBPF_PERF_EVENT_CONT;
12252 	struct perf_event_header *ehdr;
12253 	size_t ehdr_size;
12254 
12255 	while (data_head != data_tail) {
12256 		ehdr = base + (data_tail & (mmap_size - 1));
12257 		ehdr_size = ehdr->size;
12258 
12259 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12260 			void *copy_start = ehdr;
12261 			size_t len_first = base + mmap_size - copy_start;
12262 			size_t len_secnd = ehdr_size - len_first;
12263 
12264 			if (*copy_size < ehdr_size) {
12265 				free(*copy_mem);
12266 				*copy_mem = malloc(ehdr_size);
12267 				if (!*copy_mem) {
12268 					*copy_size = 0;
12269 					ret = LIBBPF_PERF_EVENT_ERROR;
12270 					break;
12271 				}
12272 				*copy_size = ehdr_size;
12273 			}
12274 
12275 			memcpy(*copy_mem, copy_start, len_first);
12276 			memcpy(*copy_mem + len_first, base, len_secnd);
12277 			ehdr = *copy_mem;
12278 		}
12279 
12280 		ret = fn(ehdr, private_data);
12281 		data_tail += ehdr_size;
12282 		if (ret != LIBBPF_PERF_EVENT_CONT)
12283 			break;
12284 	}
12285 
12286 	ring_buffer_write_tail(header, data_tail);
12287 	return libbpf_err(ret);
12288 }
12289 
12290 struct perf_buffer;
12291 
12292 struct perf_buffer_params {
12293 	struct perf_event_attr *attr;
12294 	/* if event_cb is specified, it takes precendence */
12295 	perf_buffer_event_fn event_cb;
12296 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12297 	perf_buffer_sample_fn sample_cb;
12298 	perf_buffer_lost_fn lost_cb;
12299 	void *ctx;
12300 	int cpu_cnt;
12301 	int *cpus;
12302 	int *map_keys;
12303 };
12304 
12305 struct perf_cpu_buf {
12306 	struct perf_buffer *pb;
12307 	void *base; /* mmap()'ed memory */
12308 	void *buf; /* for reconstructing segmented data */
12309 	size_t buf_size;
12310 	int fd;
12311 	int cpu;
12312 	int map_key;
12313 };
12314 
12315 struct perf_buffer {
12316 	perf_buffer_event_fn event_cb;
12317 	perf_buffer_sample_fn sample_cb;
12318 	perf_buffer_lost_fn lost_cb;
12319 	void *ctx; /* passed into callbacks */
12320 
12321 	size_t page_size;
12322 	size_t mmap_size;
12323 	struct perf_cpu_buf **cpu_bufs;
12324 	struct epoll_event *events;
12325 	int cpu_cnt; /* number of allocated CPU buffers */
12326 	int epoll_fd; /* perf event FD */
12327 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12328 };
12329 
12330 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12331 				      struct perf_cpu_buf *cpu_buf)
12332 {
12333 	if (!cpu_buf)
12334 		return;
12335 	if (cpu_buf->base &&
12336 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12337 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12338 	if (cpu_buf->fd >= 0) {
12339 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12340 		close(cpu_buf->fd);
12341 	}
12342 	free(cpu_buf->buf);
12343 	free(cpu_buf);
12344 }
12345 
12346 void perf_buffer__free(struct perf_buffer *pb)
12347 {
12348 	int i;
12349 
12350 	if (IS_ERR_OR_NULL(pb))
12351 		return;
12352 	if (pb->cpu_bufs) {
12353 		for (i = 0; i < pb->cpu_cnt; i++) {
12354 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12355 
12356 			if (!cpu_buf)
12357 				continue;
12358 
12359 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12360 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12361 		}
12362 		free(pb->cpu_bufs);
12363 	}
12364 	if (pb->epoll_fd >= 0)
12365 		close(pb->epoll_fd);
12366 	free(pb->events);
12367 	free(pb);
12368 }
12369 
12370 static struct perf_cpu_buf *
12371 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12372 			  int cpu, int map_key)
12373 {
12374 	struct perf_cpu_buf *cpu_buf;
12375 	char msg[STRERR_BUFSIZE];
12376 	int err;
12377 
12378 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12379 	if (!cpu_buf)
12380 		return ERR_PTR(-ENOMEM);
12381 
12382 	cpu_buf->pb = pb;
12383 	cpu_buf->cpu = cpu;
12384 	cpu_buf->map_key = map_key;
12385 
12386 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12387 			      -1, PERF_FLAG_FD_CLOEXEC);
12388 	if (cpu_buf->fd < 0) {
12389 		err = -errno;
12390 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12391 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12392 		goto error;
12393 	}
12394 
12395 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12396 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12397 			     cpu_buf->fd, 0);
12398 	if (cpu_buf->base == MAP_FAILED) {
12399 		cpu_buf->base = NULL;
12400 		err = -errno;
12401 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12402 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12403 		goto error;
12404 	}
12405 
12406 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12407 		err = -errno;
12408 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12409 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12410 		goto error;
12411 	}
12412 
12413 	return cpu_buf;
12414 
12415 error:
12416 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12417 	return (struct perf_cpu_buf *)ERR_PTR(err);
12418 }
12419 
12420 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12421 					      struct perf_buffer_params *p);
12422 
12423 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12424 				     perf_buffer_sample_fn sample_cb,
12425 				     perf_buffer_lost_fn lost_cb,
12426 				     void *ctx,
12427 				     const struct perf_buffer_opts *opts)
12428 {
12429 	const size_t attr_sz = sizeof(struct perf_event_attr);
12430 	struct perf_buffer_params p = {};
12431 	struct perf_event_attr attr;
12432 	__u32 sample_period;
12433 
12434 	if (!OPTS_VALID(opts, perf_buffer_opts))
12435 		return libbpf_err_ptr(-EINVAL);
12436 
12437 	sample_period = OPTS_GET(opts, sample_period, 1);
12438 	if (!sample_period)
12439 		sample_period = 1;
12440 
12441 	memset(&attr, 0, attr_sz);
12442 	attr.size = attr_sz;
12443 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12444 	attr.type = PERF_TYPE_SOFTWARE;
12445 	attr.sample_type = PERF_SAMPLE_RAW;
12446 	attr.sample_period = sample_period;
12447 	attr.wakeup_events = sample_period;
12448 
12449 	p.attr = &attr;
12450 	p.sample_cb = sample_cb;
12451 	p.lost_cb = lost_cb;
12452 	p.ctx = ctx;
12453 
12454 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12455 }
12456 
12457 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12458 					 struct perf_event_attr *attr,
12459 					 perf_buffer_event_fn event_cb, void *ctx,
12460 					 const struct perf_buffer_raw_opts *opts)
12461 {
12462 	struct perf_buffer_params p = {};
12463 
12464 	if (!attr)
12465 		return libbpf_err_ptr(-EINVAL);
12466 
12467 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12468 		return libbpf_err_ptr(-EINVAL);
12469 
12470 	p.attr = attr;
12471 	p.event_cb = event_cb;
12472 	p.ctx = ctx;
12473 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12474 	p.cpus = OPTS_GET(opts, cpus, NULL);
12475 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
12476 
12477 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12478 }
12479 
12480 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12481 					      struct perf_buffer_params *p)
12482 {
12483 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
12484 	struct bpf_map_info map;
12485 	char msg[STRERR_BUFSIZE];
12486 	struct perf_buffer *pb;
12487 	bool *online = NULL;
12488 	__u32 map_info_len;
12489 	int err, i, j, n;
12490 
12491 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12492 		pr_warn("page count should be power of two, but is %zu\n",
12493 			page_cnt);
12494 		return ERR_PTR(-EINVAL);
12495 	}
12496 
12497 	/* best-effort sanity checks */
12498 	memset(&map, 0, sizeof(map));
12499 	map_info_len = sizeof(map);
12500 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12501 	if (err) {
12502 		err = -errno;
12503 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12504 		 * -EBADFD, -EFAULT, or -E2BIG on real error
12505 		 */
12506 		if (err != -EINVAL) {
12507 			pr_warn("failed to get map info for map FD %d: %s\n",
12508 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12509 			return ERR_PTR(err);
12510 		}
12511 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12512 			 map_fd);
12513 	} else {
12514 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12515 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12516 				map.name);
12517 			return ERR_PTR(-EINVAL);
12518 		}
12519 	}
12520 
12521 	pb = calloc(1, sizeof(*pb));
12522 	if (!pb)
12523 		return ERR_PTR(-ENOMEM);
12524 
12525 	pb->event_cb = p->event_cb;
12526 	pb->sample_cb = p->sample_cb;
12527 	pb->lost_cb = p->lost_cb;
12528 	pb->ctx = p->ctx;
12529 
12530 	pb->page_size = getpagesize();
12531 	pb->mmap_size = pb->page_size * page_cnt;
12532 	pb->map_fd = map_fd;
12533 
12534 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12535 	if (pb->epoll_fd < 0) {
12536 		err = -errno;
12537 		pr_warn("failed to create epoll instance: %s\n",
12538 			libbpf_strerror_r(err, msg, sizeof(msg)));
12539 		goto error;
12540 	}
12541 
12542 	if (p->cpu_cnt > 0) {
12543 		pb->cpu_cnt = p->cpu_cnt;
12544 	} else {
12545 		pb->cpu_cnt = libbpf_num_possible_cpus();
12546 		if (pb->cpu_cnt < 0) {
12547 			err = pb->cpu_cnt;
12548 			goto error;
12549 		}
12550 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
12551 			pb->cpu_cnt = map.max_entries;
12552 	}
12553 
12554 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12555 	if (!pb->events) {
12556 		err = -ENOMEM;
12557 		pr_warn("failed to allocate events: out of memory\n");
12558 		goto error;
12559 	}
12560 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12561 	if (!pb->cpu_bufs) {
12562 		err = -ENOMEM;
12563 		pr_warn("failed to allocate buffers: out of memory\n");
12564 		goto error;
12565 	}
12566 
12567 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12568 	if (err) {
12569 		pr_warn("failed to get online CPU mask: %d\n", err);
12570 		goto error;
12571 	}
12572 
12573 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12574 		struct perf_cpu_buf *cpu_buf;
12575 		int cpu, map_key;
12576 
12577 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12578 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12579 
12580 		/* in case user didn't explicitly requested particular CPUs to
12581 		 * be attached to, skip offline/not present CPUs
12582 		 */
12583 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12584 			continue;
12585 
12586 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12587 		if (IS_ERR(cpu_buf)) {
12588 			err = PTR_ERR(cpu_buf);
12589 			goto error;
12590 		}
12591 
12592 		pb->cpu_bufs[j] = cpu_buf;
12593 
12594 		err = bpf_map_update_elem(pb->map_fd, &map_key,
12595 					  &cpu_buf->fd, 0);
12596 		if (err) {
12597 			err = -errno;
12598 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12599 				cpu, map_key, cpu_buf->fd,
12600 				libbpf_strerror_r(err, msg, sizeof(msg)));
12601 			goto error;
12602 		}
12603 
12604 		pb->events[j].events = EPOLLIN;
12605 		pb->events[j].data.ptr = cpu_buf;
12606 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12607 			      &pb->events[j]) < 0) {
12608 			err = -errno;
12609 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12610 				cpu, cpu_buf->fd,
12611 				libbpf_strerror_r(err, msg, sizeof(msg)));
12612 			goto error;
12613 		}
12614 		j++;
12615 	}
12616 	pb->cpu_cnt = j;
12617 	free(online);
12618 
12619 	return pb;
12620 
12621 error:
12622 	free(online);
12623 	if (pb)
12624 		perf_buffer__free(pb);
12625 	return ERR_PTR(err);
12626 }
12627 
12628 struct perf_sample_raw {
12629 	struct perf_event_header header;
12630 	uint32_t size;
12631 	char data[];
12632 };
12633 
12634 struct perf_sample_lost {
12635 	struct perf_event_header header;
12636 	uint64_t id;
12637 	uint64_t lost;
12638 	uint64_t sample_id;
12639 };
12640 
12641 static enum bpf_perf_event_ret
12642 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12643 {
12644 	struct perf_cpu_buf *cpu_buf = ctx;
12645 	struct perf_buffer *pb = cpu_buf->pb;
12646 	void *data = e;
12647 
12648 	/* user wants full control over parsing perf event */
12649 	if (pb->event_cb)
12650 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12651 
12652 	switch (e->type) {
12653 	case PERF_RECORD_SAMPLE: {
12654 		struct perf_sample_raw *s = data;
12655 
12656 		if (pb->sample_cb)
12657 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12658 		break;
12659 	}
12660 	case PERF_RECORD_LOST: {
12661 		struct perf_sample_lost *s = data;
12662 
12663 		if (pb->lost_cb)
12664 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12665 		break;
12666 	}
12667 	default:
12668 		pr_warn("unknown perf sample type %d\n", e->type);
12669 		return LIBBPF_PERF_EVENT_ERROR;
12670 	}
12671 	return LIBBPF_PERF_EVENT_CONT;
12672 }
12673 
12674 static int perf_buffer__process_records(struct perf_buffer *pb,
12675 					struct perf_cpu_buf *cpu_buf)
12676 {
12677 	enum bpf_perf_event_ret ret;
12678 
12679 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12680 				     pb->page_size, &cpu_buf->buf,
12681 				     &cpu_buf->buf_size,
12682 				     perf_buffer__process_record, cpu_buf);
12683 	if (ret != LIBBPF_PERF_EVENT_CONT)
12684 		return ret;
12685 	return 0;
12686 }
12687 
12688 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12689 {
12690 	return pb->epoll_fd;
12691 }
12692 
12693 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12694 {
12695 	int i, cnt, err;
12696 
12697 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12698 	if (cnt < 0)
12699 		return -errno;
12700 
12701 	for (i = 0; i < cnt; i++) {
12702 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12703 
12704 		err = perf_buffer__process_records(pb, cpu_buf);
12705 		if (err) {
12706 			pr_warn("error while processing records: %d\n", err);
12707 			return libbpf_err(err);
12708 		}
12709 	}
12710 	return cnt;
12711 }
12712 
12713 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12714  * manager.
12715  */
12716 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12717 {
12718 	return pb->cpu_cnt;
12719 }
12720 
12721 /*
12722  * Return perf_event FD of a ring buffer in *buf_idx* slot of
12723  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12724  * select()/poll()/epoll() Linux syscalls.
12725  */
12726 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12727 {
12728 	struct perf_cpu_buf *cpu_buf;
12729 
12730 	if (buf_idx >= pb->cpu_cnt)
12731 		return libbpf_err(-EINVAL);
12732 
12733 	cpu_buf = pb->cpu_bufs[buf_idx];
12734 	if (!cpu_buf)
12735 		return libbpf_err(-ENOENT);
12736 
12737 	return cpu_buf->fd;
12738 }
12739 
12740 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12741 {
12742 	struct perf_cpu_buf *cpu_buf;
12743 
12744 	if (buf_idx >= pb->cpu_cnt)
12745 		return libbpf_err(-EINVAL);
12746 
12747 	cpu_buf = pb->cpu_bufs[buf_idx];
12748 	if (!cpu_buf)
12749 		return libbpf_err(-ENOENT);
12750 
12751 	*buf = cpu_buf->base;
12752 	*buf_size = pb->mmap_size;
12753 	return 0;
12754 }
12755 
12756 /*
12757  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12758  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12759  * consume, do nothing and return success.
12760  * Returns:
12761  *   - 0 on success;
12762  *   - <0 on failure.
12763  */
12764 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12765 {
12766 	struct perf_cpu_buf *cpu_buf;
12767 
12768 	if (buf_idx >= pb->cpu_cnt)
12769 		return libbpf_err(-EINVAL);
12770 
12771 	cpu_buf = pb->cpu_bufs[buf_idx];
12772 	if (!cpu_buf)
12773 		return libbpf_err(-ENOENT);
12774 
12775 	return perf_buffer__process_records(pb, cpu_buf);
12776 }
12777 
12778 int perf_buffer__consume(struct perf_buffer *pb)
12779 {
12780 	int i, err;
12781 
12782 	for (i = 0; i < pb->cpu_cnt; i++) {
12783 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12784 
12785 		if (!cpu_buf)
12786 			continue;
12787 
12788 		err = perf_buffer__process_records(pb, cpu_buf);
12789 		if (err) {
12790 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12791 			return libbpf_err(err);
12792 		}
12793 	}
12794 	return 0;
12795 }
12796 
12797 int bpf_program__set_attach_target(struct bpf_program *prog,
12798 				   int attach_prog_fd,
12799 				   const char *attach_func_name)
12800 {
12801 	int btf_obj_fd = 0, btf_id = 0, err;
12802 
12803 	if (!prog || attach_prog_fd < 0)
12804 		return libbpf_err(-EINVAL);
12805 
12806 	if (prog->obj->loaded)
12807 		return libbpf_err(-EINVAL);
12808 
12809 	if (attach_prog_fd && !attach_func_name) {
12810 		/* remember attach_prog_fd and let bpf_program__load() find
12811 		 * BTF ID during the program load
12812 		 */
12813 		prog->attach_prog_fd = attach_prog_fd;
12814 		return 0;
12815 	}
12816 
12817 	if (attach_prog_fd) {
12818 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12819 						 attach_prog_fd);
12820 		if (btf_id < 0)
12821 			return libbpf_err(btf_id);
12822 	} else {
12823 		if (!attach_func_name)
12824 			return libbpf_err(-EINVAL);
12825 
12826 		/* load btf_vmlinux, if not yet */
12827 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
12828 		if (err)
12829 			return libbpf_err(err);
12830 		err = find_kernel_btf_id(prog->obj, attach_func_name,
12831 					 prog->expected_attach_type,
12832 					 &btf_obj_fd, &btf_id);
12833 		if (err)
12834 			return libbpf_err(err);
12835 	}
12836 
12837 	prog->attach_btf_id = btf_id;
12838 	prog->attach_btf_obj_fd = btf_obj_fd;
12839 	prog->attach_prog_fd = attach_prog_fd;
12840 	return 0;
12841 }
12842 
12843 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12844 {
12845 	int err = 0, n, len, start, end = -1;
12846 	bool *tmp;
12847 
12848 	*mask = NULL;
12849 	*mask_sz = 0;
12850 
12851 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12852 	while (*s) {
12853 		if (*s == ',' || *s == '\n') {
12854 			s++;
12855 			continue;
12856 		}
12857 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12858 		if (n <= 0 || n > 2) {
12859 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12860 			err = -EINVAL;
12861 			goto cleanup;
12862 		} else if (n == 1) {
12863 			end = start;
12864 		}
12865 		if (start < 0 || start > end) {
12866 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12867 				start, end, s);
12868 			err = -EINVAL;
12869 			goto cleanup;
12870 		}
12871 		tmp = realloc(*mask, end + 1);
12872 		if (!tmp) {
12873 			err = -ENOMEM;
12874 			goto cleanup;
12875 		}
12876 		*mask = tmp;
12877 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12878 		memset(tmp + start, 1, end - start + 1);
12879 		*mask_sz = end + 1;
12880 		s += len;
12881 	}
12882 	if (!*mask_sz) {
12883 		pr_warn("Empty CPU range\n");
12884 		return -EINVAL;
12885 	}
12886 	return 0;
12887 cleanup:
12888 	free(*mask);
12889 	*mask = NULL;
12890 	return err;
12891 }
12892 
12893 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12894 {
12895 	int fd, err = 0, len;
12896 	char buf[128];
12897 
12898 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12899 	if (fd < 0) {
12900 		err = -errno;
12901 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12902 		return err;
12903 	}
12904 	len = read(fd, buf, sizeof(buf));
12905 	close(fd);
12906 	if (len <= 0) {
12907 		err = len ? -errno : -EINVAL;
12908 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12909 		return err;
12910 	}
12911 	if (len >= sizeof(buf)) {
12912 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12913 		return -E2BIG;
12914 	}
12915 	buf[len] = '\0';
12916 
12917 	return parse_cpu_mask_str(buf, mask, mask_sz);
12918 }
12919 
12920 int libbpf_num_possible_cpus(void)
12921 {
12922 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12923 	static int cpus;
12924 	int err, n, i, tmp_cpus;
12925 	bool *mask;
12926 
12927 	tmp_cpus = READ_ONCE(cpus);
12928 	if (tmp_cpus > 0)
12929 		return tmp_cpus;
12930 
12931 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12932 	if (err)
12933 		return libbpf_err(err);
12934 
12935 	tmp_cpus = 0;
12936 	for (i = 0; i < n; i++) {
12937 		if (mask[i])
12938 			tmp_cpus++;
12939 	}
12940 	free(mask);
12941 
12942 	WRITE_ONCE(cpus, tmp_cpus);
12943 	return tmp_cpus;
12944 }
12945 
12946 static int populate_skeleton_maps(const struct bpf_object *obj,
12947 				  struct bpf_map_skeleton *maps,
12948 				  size_t map_cnt)
12949 {
12950 	int i;
12951 
12952 	for (i = 0; i < map_cnt; i++) {
12953 		struct bpf_map **map = maps[i].map;
12954 		const char *name = maps[i].name;
12955 		void **mmaped = maps[i].mmaped;
12956 
12957 		*map = bpf_object__find_map_by_name(obj, name);
12958 		if (!*map) {
12959 			pr_warn("failed to find skeleton map '%s'\n", name);
12960 			return -ESRCH;
12961 		}
12962 
12963 		/* externs shouldn't be pre-setup from user code */
12964 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12965 			*mmaped = (*map)->mmaped;
12966 	}
12967 	return 0;
12968 }
12969 
12970 static int populate_skeleton_progs(const struct bpf_object *obj,
12971 				   struct bpf_prog_skeleton *progs,
12972 				   size_t prog_cnt)
12973 {
12974 	int i;
12975 
12976 	for (i = 0; i < prog_cnt; i++) {
12977 		struct bpf_program **prog = progs[i].prog;
12978 		const char *name = progs[i].name;
12979 
12980 		*prog = bpf_object__find_program_by_name(obj, name);
12981 		if (!*prog) {
12982 			pr_warn("failed to find skeleton program '%s'\n", name);
12983 			return -ESRCH;
12984 		}
12985 	}
12986 	return 0;
12987 }
12988 
12989 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12990 			      const struct bpf_object_open_opts *opts)
12991 {
12992 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12993 		.object_name = s->name,
12994 	);
12995 	struct bpf_object *obj;
12996 	int err;
12997 
12998 	/* Attempt to preserve opts->object_name, unless overriden by user
12999 	 * explicitly. Overwriting object name for skeletons is discouraged,
13000 	 * as it breaks global data maps, because they contain object name
13001 	 * prefix as their own map name prefix. When skeleton is generated,
13002 	 * bpftool is making an assumption that this name will stay the same.
13003 	 */
13004 	if (opts) {
13005 		memcpy(&skel_opts, opts, sizeof(*opts));
13006 		if (!opts->object_name)
13007 			skel_opts.object_name = s->name;
13008 	}
13009 
13010 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13011 	err = libbpf_get_error(obj);
13012 	if (err) {
13013 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13014 			s->name, err);
13015 		return libbpf_err(err);
13016 	}
13017 
13018 	*s->obj = obj;
13019 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13020 	if (err) {
13021 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13022 		return libbpf_err(err);
13023 	}
13024 
13025 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13026 	if (err) {
13027 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13028 		return libbpf_err(err);
13029 	}
13030 
13031 	return 0;
13032 }
13033 
13034 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13035 {
13036 	int err, len, var_idx, i;
13037 	const char *var_name;
13038 	const struct bpf_map *map;
13039 	struct btf *btf;
13040 	__u32 map_type_id;
13041 	const struct btf_type *map_type, *var_type;
13042 	const struct bpf_var_skeleton *var_skel;
13043 	struct btf_var_secinfo *var;
13044 
13045 	if (!s->obj)
13046 		return libbpf_err(-EINVAL);
13047 
13048 	btf = bpf_object__btf(s->obj);
13049 	if (!btf) {
13050 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13051 			bpf_object__name(s->obj));
13052 		return libbpf_err(-errno);
13053 	}
13054 
13055 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13056 	if (err) {
13057 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13058 		return libbpf_err(err);
13059 	}
13060 
13061 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13062 	if (err) {
13063 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13064 		return libbpf_err(err);
13065 	}
13066 
13067 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13068 		var_skel = &s->vars[var_idx];
13069 		map = *var_skel->map;
13070 		map_type_id = bpf_map__btf_value_type_id(map);
13071 		map_type = btf__type_by_id(btf, map_type_id);
13072 
13073 		if (!btf_is_datasec(map_type)) {
13074 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13075 				bpf_map__name(map),
13076 				__btf_kind_str(btf_kind(map_type)));
13077 			return libbpf_err(-EINVAL);
13078 		}
13079 
13080 		len = btf_vlen(map_type);
13081 		var = btf_var_secinfos(map_type);
13082 		for (i = 0; i < len; i++, var++) {
13083 			var_type = btf__type_by_id(btf, var->type);
13084 			var_name = btf__name_by_offset(btf, var_type->name_off);
13085 			if (strcmp(var_name, var_skel->name) == 0) {
13086 				*var_skel->addr = map->mmaped + var->offset;
13087 				break;
13088 			}
13089 		}
13090 	}
13091 	return 0;
13092 }
13093 
13094 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13095 {
13096 	if (!s)
13097 		return;
13098 	free(s->maps);
13099 	free(s->progs);
13100 	free(s->vars);
13101 	free(s);
13102 }
13103 
13104 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13105 {
13106 	int i, err;
13107 
13108 	err = bpf_object__load(*s->obj);
13109 	if (err) {
13110 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13111 		return libbpf_err(err);
13112 	}
13113 
13114 	for (i = 0; i < s->map_cnt; i++) {
13115 		struct bpf_map *map = *s->maps[i].map;
13116 		size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13117 		int prot, map_fd = bpf_map__fd(map);
13118 		void **mmaped = s->maps[i].mmaped;
13119 
13120 		if (!mmaped)
13121 			continue;
13122 
13123 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13124 			*mmaped = NULL;
13125 			continue;
13126 		}
13127 
13128 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13129 			prot = PROT_READ;
13130 		else
13131 			prot = PROT_READ | PROT_WRITE;
13132 
13133 		/* Remap anonymous mmap()-ed "map initialization image" as
13134 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13135 		 * memory address. This will cause kernel to change process'
13136 		 * page table to point to a different piece of kernel memory,
13137 		 * but from userspace point of view memory address (and its
13138 		 * contents, being identical at this point) will stay the
13139 		 * same. This mapping will be released by bpf_object__close()
13140 		 * as per normal clean up procedure, so we don't need to worry
13141 		 * about it from skeleton's clean up perspective.
13142 		 */
13143 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13144 		if (*mmaped == MAP_FAILED) {
13145 			err = -errno;
13146 			*mmaped = NULL;
13147 			pr_warn("failed to re-mmap() map '%s': %d\n",
13148 				 bpf_map__name(map), err);
13149 			return libbpf_err(err);
13150 		}
13151 	}
13152 
13153 	return 0;
13154 }
13155 
13156 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13157 {
13158 	int i, err;
13159 
13160 	for (i = 0; i < s->prog_cnt; i++) {
13161 		struct bpf_program *prog = *s->progs[i].prog;
13162 		struct bpf_link **link = s->progs[i].link;
13163 
13164 		if (!prog->autoload || !prog->autoattach)
13165 			continue;
13166 
13167 		/* auto-attaching not supported for this program */
13168 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13169 			continue;
13170 
13171 		/* if user already set the link manually, don't attempt auto-attach */
13172 		if (*link)
13173 			continue;
13174 
13175 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13176 		if (err) {
13177 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13178 				bpf_program__name(prog), err);
13179 			return libbpf_err(err);
13180 		}
13181 
13182 		/* It's possible that for some SEC() definitions auto-attach
13183 		 * is supported in some cases (e.g., if definition completely
13184 		 * specifies target information), but is not in other cases.
13185 		 * SEC("uprobe") is one such case. If user specified target
13186 		 * binary and function name, such BPF program can be
13187 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13188 		 * attach to fail. It should just be skipped.
13189 		 * attach_fn signals such case with returning 0 (no error) and
13190 		 * setting link to NULL.
13191 		 */
13192 	}
13193 
13194 	return 0;
13195 }
13196 
13197 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13198 {
13199 	int i;
13200 
13201 	for (i = 0; i < s->prog_cnt; i++) {
13202 		struct bpf_link **link = s->progs[i].link;
13203 
13204 		bpf_link__destroy(*link);
13205 		*link = NULL;
13206 	}
13207 }
13208 
13209 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13210 {
13211 	if (!s)
13212 		return;
13213 
13214 	if (s->progs)
13215 		bpf_object__detach_skeleton(s);
13216 	if (s->obj)
13217 		bpf_object__close(*s->obj);
13218 	free(s->maps);
13219 	free(s->progs);
13220 	free(s);
13221 }
13222