1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 64 65 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 66 67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 68 * compilation if user enables corresponding warning. Disable it explicitly. 69 */ 70 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 71 72 #define __printf(a, b) __attribute__((format(printf, a, b))) 73 74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 76 static int map_set_def_max_entries(struct bpf_map *map); 77 78 static const char * const attach_type_name[] = { 79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 84 [BPF_CGROUP_DEVICE] = "cgroup_device", 85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 111 [BPF_LIRC_MODE2] = "lirc_mode2", 112 [BPF_FLOW_DISSECTOR] = "flow_dissector", 113 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 114 [BPF_TRACE_FENTRY] = "trace_fentry", 115 [BPF_TRACE_FEXIT] = "trace_fexit", 116 [BPF_MODIFY_RETURN] = "modify_return", 117 [BPF_LSM_MAC] = "lsm_mac", 118 [BPF_LSM_CGROUP] = "lsm_cgroup", 119 [BPF_SK_LOOKUP] = "sk_lookup", 120 [BPF_TRACE_ITER] = "trace_iter", 121 [BPF_XDP_DEVMAP] = "xdp_devmap", 122 [BPF_XDP_CPUMAP] = "xdp_cpumap", 123 [BPF_XDP] = "xdp", 124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 126 [BPF_PERF_EVENT] = "perf_event", 127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 128 [BPF_STRUCT_OPS] = "struct_ops", 129 [BPF_NETFILTER] = "netfilter", 130 [BPF_TCX_INGRESS] = "tcx_ingress", 131 [BPF_TCX_EGRESS] = "tcx_egress", 132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 133 [BPF_NETKIT_PRIMARY] = "netkit_primary", 134 [BPF_NETKIT_PEER] = "netkit_peer", 135 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 136 }; 137 138 static const char * const link_type_name[] = { 139 [BPF_LINK_TYPE_UNSPEC] = "unspec", 140 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 141 [BPF_LINK_TYPE_TRACING] = "tracing", 142 [BPF_LINK_TYPE_CGROUP] = "cgroup", 143 [BPF_LINK_TYPE_ITER] = "iter", 144 [BPF_LINK_TYPE_NETNS] = "netns", 145 [BPF_LINK_TYPE_XDP] = "xdp", 146 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 147 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 148 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 149 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 150 [BPF_LINK_TYPE_TCX] = "tcx", 151 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 152 [BPF_LINK_TYPE_NETKIT] = "netkit", 153 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 154 }; 155 156 static const char * const map_type_name[] = { 157 [BPF_MAP_TYPE_UNSPEC] = "unspec", 158 [BPF_MAP_TYPE_HASH] = "hash", 159 [BPF_MAP_TYPE_ARRAY] = "array", 160 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 161 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 162 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 163 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 164 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 165 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 166 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 167 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 168 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 169 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 170 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 171 [BPF_MAP_TYPE_DEVMAP] = "devmap", 172 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 173 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 174 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 175 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 176 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 177 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 178 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 179 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 180 [BPF_MAP_TYPE_QUEUE] = "queue", 181 [BPF_MAP_TYPE_STACK] = "stack", 182 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 183 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 184 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 185 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 186 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 187 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 188 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 189 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 190 [BPF_MAP_TYPE_ARENA] = "arena", 191 }; 192 193 static const char * const prog_type_name[] = { 194 [BPF_PROG_TYPE_UNSPEC] = "unspec", 195 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 196 [BPF_PROG_TYPE_KPROBE] = "kprobe", 197 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 198 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 199 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 200 [BPF_PROG_TYPE_XDP] = "xdp", 201 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 202 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 203 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 204 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 205 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 206 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 207 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 208 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 209 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 210 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 211 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 212 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 213 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 214 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 215 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 216 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 217 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 218 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 219 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 220 [BPF_PROG_TYPE_TRACING] = "tracing", 221 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 222 [BPF_PROG_TYPE_EXT] = "ext", 223 [BPF_PROG_TYPE_LSM] = "lsm", 224 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 225 [BPF_PROG_TYPE_SYSCALL] = "syscall", 226 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 227 }; 228 229 static int __base_pr(enum libbpf_print_level level, const char *format, 230 va_list args) 231 { 232 const char *env_var = "LIBBPF_LOG_LEVEL"; 233 static enum libbpf_print_level min_level = LIBBPF_INFO; 234 static bool initialized; 235 236 if (!initialized) { 237 char *verbosity; 238 239 initialized = true; 240 verbosity = getenv(env_var); 241 if (verbosity) { 242 if (strcasecmp(verbosity, "warn") == 0) 243 min_level = LIBBPF_WARN; 244 else if (strcasecmp(verbosity, "debug") == 0) 245 min_level = LIBBPF_DEBUG; 246 else if (strcasecmp(verbosity, "info") == 0) 247 min_level = LIBBPF_INFO; 248 else 249 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 250 env_var, verbosity); 251 } 252 } 253 254 /* if too verbose, skip logging */ 255 if (level > min_level) 256 return 0; 257 258 return vfprintf(stderr, format, args); 259 } 260 261 static libbpf_print_fn_t __libbpf_pr = __base_pr; 262 263 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 264 { 265 libbpf_print_fn_t old_print_fn; 266 267 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 268 269 return old_print_fn; 270 } 271 272 __printf(2, 3) 273 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 274 { 275 va_list args; 276 int old_errno; 277 libbpf_print_fn_t print_fn; 278 279 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 280 if (!print_fn) 281 return; 282 283 old_errno = errno; 284 285 va_start(args, format); 286 __libbpf_pr(level, format, args); 287 va_end(args); 288 289 errno = old_errno; 290 } 291 292 static void pr_perm_msg(int err) 293 { 294 struct rlimit limit; 295 char buf[100]; 296 297 if (err != -EPERM || geteuid() != 0) 298 return; 299 300 err = getrlimit(RLIMIT_MEMLOCK, &limit); 301 if (err) 302 return; 303 304 if (limit.rlim_cur == RLIM_INFINITY) 305 return; 306 307 if (limit.rlim_cur < 1024) 308 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 309 else if (limit.rlim_cur < 1024*1024) 310 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 311 else 312 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 313 314 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 315 buf); 316 } 317 318 #define STRERR_BUFSIZE 128 319 320 /* Copied from tools/perf/util/util.h */ 321 #ifndef zfree 322 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 323 #endif 324 325 #ifndef zclose 326 # define zclose(fd) ({ \ 327 int ___err = 0; \ 328 if ((fd) >= 0) \ 329 ___err = close((fd)); \ 330 fd = -1; \ 331 ___err; }) 332 #endif 333 334 static inline __u64 ptr_to_u64(const void *ptr) 335 { 336 return (__u64) (unsigned long) ptr; 337 } 338 339 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 340 { 341 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 342 return 0; 343 } 344 345 __u32 libbpf_major_version(void) 346 { 347 return LIBBPF_MAJOR_VERSION; 348 } 349 350 __u32 libbpf_minor_version(void) 351 { 352 return LIBBPF_MINOR_VERSION; 353 } 354 355 const char *libbpf_version_string(void) 356 { 357 #define __S(X) #X 358 #define _S(X) __S(X) 359 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 360 #undef _S 361 #undef __S 362 } 363 364 enum reloc_type { 365 RELO_LD64, 366 RELO_CALL, 367 RELO_DATA, 368 RELO_EXTERN_LD64, 369 RELO_EXTERN_CALL, 370 RELO_SUBPROG_ADDR, 371 RELO_CORE, 372 }; 373 374 struct reloc_desc { 375 enum reloc_type type; 376 int insn_idx; 377 union { 378 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 379 struct { 380 int map_idx; 381 int sym_off; 382 int ext_idx; 383 }; 384 }; 385 }; 386 387 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 388 enum sec_def_flags { 389 SEC_NONE = 0, 390 /* expected_attach_type is optional, if kernel doesn't support that */ 391 SEC_EXP_ATTACH_OPT = 1, 392 /* legacy, only used by libbpf_get_type_names() and 393 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 394 * This used to be associated with cgroup (and few other) BPF programs 395 * that were attachable through BPF_PROG_ATTACH command. Pretty 396 * meaningless nowadays, though. 397 */ 398 SEC_ATTACHABLE = 2, 399 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 400 /* attachment target is specified through BTF ID in either kernel or 401 * other BPF program's BTF object 402 */ 403 SEC_ATTACH_BTF = 4, 404 /* BPF program type allows sleeping/blocking in kernel */ 405 SEC_SLEEPABLE = 8, 406 /* BPF program support non-linear XDP buffer */ 407 SEC_XDP_FRAGS = 16, 408 /* Setup proper attach type for usdt probes. */ 409 SEC_USDT = 32, 410 }; 411 412 struct bpf_sec_def { 413 char *sec; 414 enum bpf_prog_type prog_type; 415 enum bpf_attach_type expected_attach_type; 416 long cookie; 417 int handler_id; 418 419 libbpf_prog_setup_fn_t prog_setup_fn; 420 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 421 libbpf_prog_attach_fn_t prog_attach_fn; 422 }; 423 424 /* 425 * bpf_prog should be a better name but it has been used in 426 * linux/filter.h. 427 */ 428 struct bpf_program { 429 char *name; 430 char *sec_name; 431 size_t sec_idx; 432 const struct bpf_sec_def *sec_def; 433 /* this program's instruction offset (in number of instructions) 434 * within its containing ELF section 435 */ 436 size_t sec_insn_off; 437 /* number of original instructions in ELF section belonging to this 438 * program, not taking into account subprogram instructions possible 439 * appended later during relocation 440 */ 441 size_t sec_insn_cnt; 442 /* Offset (in number of instructions) of the start of instruction 443 * belonging to this BPF program within its containing main BPF 444 * program. For the entry-point (main) BPF program, this is always 445 * zero. For a sub-program, this gets reset before each of main BPF 446 * programs are processed and relocated and is used to determined 447 * whether sub-program was already appended to the main program, and 448 * if yes, at which instruction offset. 449 */ 450 size_t sub_insn_off; 451 452 /* instructions that belong to BPF program; insns[0] is located at 453 * sec_insn_off instruction within its ELF section in ELF file, so 454 * when mapping ELF file instruction index to the local instruction, 455 * one needs to subtract sec_insn_off; and vice versa. 456 */ 457 struct bpf_insn *insns; 458 /* actual number of instruction in this BPF program's image; for 459 * entry-point BPF programs this includes the size of main program 460 * itself plus all the used sub-programs, appended at the end 461 */ 462 size_t insns_cnt; 463 464 struct reloc_desc *reloc_desc; 465 int nr_reloc; 466 467 /* BPF verifier log settings */ 468 char *log_buf; 469 size_t log_size; 470 __u32 log_level; 471 472 struct bpf_object *obj; 473 474 int fd; 475 bool autoload; 476 bool autoattach; 477 bool sym_global; 478 bool mark_btf_static; 479 enum bpf_prog_type type; 480 enum bpf_attach_type expected_attach_type; 481 int exception_cb_idx; 482 483 int prog_ifindex; 484 __u32 attach_btf_obj_fd; 485 __u32 attach_btf_id; 486 __u32 attach_prog_fd; 487 488 void *func_info; 489 __u32 func_info_rec_size; 490 __u32 func_info_cnt; 491 492 void *line_info; 493 __u32 line_info_rec_size; 494 __u32 line_info_cnt; 495 __u32 prog_flags; 496 }; 497 498 struct bpf_struct_ops { 499 const char *tname; 500 const struct btf_type *type; 501 struct bpf_program **progs; 502 __u32 *kern_func_off; 503 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 504 void *data; 505 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 506 * btf_vmlinux's format. 507 * struct bpf_struct_ops_tcp_congestion_ops { 508 * [... some other kernel fields ...] 509 * struct tcp_congestion_ops data; 510 * } 511 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 512 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 513 * from "data". 514 */ 515 void *kern_vdata; 516 __u32 type_id; 517 }; 518 519 #define DATA_SEC ".data" 520 #define BSS_SEC ".bss" 521 #define RODATA_SEC ".rodata" 522 #define KCONFIG_SEC ".kconfig" 523 #define KSYMS_SEC ".ksyms" 524 #define STRUCT_OPS_SEC ".struct_ops" 525 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 526 #define ARENA_SEC ".addr_space.1" 527 528 enum libbpf_map_type { 529 LIBBPF_MAP_UNSPEC, 530 LIBBPF_MAP_DATA, 531 LIBBPF_MAP_BSS, 532 LIBBPF_MAP_RODATA, 533 LIBBPF_MAP_KCONFIG, 534 }; 535 536 struct bpf_map_def { 537 unsigned int type; 538 unsigned int key_size; 539 unsigned int value_size; 540 unsigned int max_entries; 541 unsigned int map_flags; 542 }; 543 544 struct bpf_map { 545 struct bpf_object *obj; 546 char *name; 547 /* real_name is defined for special internal maps (.rodata*, 548 * .data*, .bss, .kconfig) and preserves their original ELF section 549 * name. This is important to be able to find corresponding BTF 550 * DATASEC information. 551 */ 552 char *real_name; 553 int fd; 554 int sec_idx; 555 size_t sec_offset; 556 int map_ifindex; 557 int inner_map_fd; 558 struct bpf_map_def def; 559 __u32 numa_node; 560 __u32 btf_var_idx; 561 int mod_btf_fd; 562 __u32 btf_key_type_id; 563 __u32 btf_value_type_id; 564 __u32 btf_vmlinux_value_type_id; 565 enum libbpf_map_type libbpf_type; 566 void *mmaped; 567 struct bpf_struct_ops *st_ops; 568 struct bpf_map *inner_map; 569 void **init_slots; 570 int init_slots_sz; 571 char *pin_path; 572 bool pinned; 573 bool reused; 574 bool autocreate; 575 __u64 map_extra; 576 }; 577 578 enum extern_type { 579 EXT_UNKNOWN, 580 EXT_KCFG, 581 EXT_KSYM, 582 }; 583 584 enum kcfg_type { 585 KCFG_UNKNOWN, 586 KCFG_CHAR, 587 KCFG_BOOL, 588 KCFG_INT, 589 KCFG_TRISTATE, 590 KCFG_CHAR_ARR, 591 }; 592 593 struct extern_desc { 594 enum extern_type type; 595 int sym_idx; 596 int btf_id; 597 int sec_btf_id; 598 const char *name; 599 char *essent_name; 600 bool is_set; 601 bool is_weak; 602 union { 603 struct { 604 enum kcfg_type type; 605 int sz; 606 int align; 607 int data_off; 608 bool is_signed; 609 } kcfg; 610 struct { 611 unsigned long long addr; 612 613 /* target btf_id of the corresponding kernel var. */ 614 int kernel_btf_obj_fd; 615 int kernel_btf_id; 616 617 /* local btf_id of the ksym extern's type. */ 618 __u32 type_id; 619 /* BTF fd index to be patched in for insn->off, this is 620 * 0 for vmlinux BTF, index in obj->fd_array for module 621 * BTF 622 */ 623 __s16 btf_fd_idx; 624 } ksym; 625 }; 626 }; 627 628 struct module_btf { 629 struct btf *btf; 630 char *name; 631 __u32 id; 632 int fd; 633 int fd_array_idx; 634 }; 635 636 enum sec_type { 637 SEC_UNUSED = 0, 638 SEC_RELO, 639 SEC_BSS, 640 SEC_DATA, 641 SEC_RODATA, 642 SEC_ST_OPS, 643 }; 644 645 struct elf_sec_desc { 646 enum sec_type sec_type; 647 Elf64_Shdr *shdr; 648 Elf_Data *data; 649 }; 650 651 struct elf_state { 652 int fd; 653 const void *obj_buf; 654 size_t obj_buf_sz; 655 Elf *elf; 656 Elf64_Ehdr *ehdr; 657 Elf_Data *symbols; 658 Elf_Data *arena_data; 659 size_t shstrndx; /* section index for section name strings */ 660 size_t strtabidx; 661 struct elf_sec_desc *secs; 662 size_t sec_cnt; 663 int btf_maps_shndx; 664 __u32 btf_maps_sec_btf_id; 665 int text_shndx; 666 int symbols_shndx; 667 bool has_st_ops; 668 int arena_data_shndx; 669 }; 670 671 struct usdt_manager; 672 673 struct bpf_object { 674 char name[BPF_OBJ_NAME_LEN]; 675 char license[64]; 676 __u32 kern_version; 677 678 struct bpf_program *programs; 679 size_t nr_programs; 680 struct bpf_map *maps; 681 size_t nr_maps; 682 size_t maps_cap; 683 684 char *kconfig; 685 struct extern_desc *externs; 686 int nr_extern; 687 int kconfig_map_idx; 688 689 bool loaded; 690 bool has_subcalls; 691 bool has_rodata; 692 693 struct bpf_gen *gen_loader; 694 695 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 696 struct elf_state efile; 697 698 struct btf *btf; 699 struct btf_ext *btf_ext; 700 701 /* Parse and load BTF vmlinux if any of the programs in the object need 702 * it at load time. 703 */ 704 struct btf *btf_vmlinux; 705 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 706 * override for vmlinux BTF. 707 */ 708 char *btf_custom_path; 709 /* vmlinux BTF override for CO-RE relocations */ 710 struct btf *btf_vmlinux_override; 711 /* Lazily initialized kernel module BTFs */ 712 struct module_btf *btf_modules; 713 bool btf_modules_loaded; 714 size_t btf_module_cnt; 715 size_t btf_module_cap; 716 717 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 718 char *log_buf; 719 size_t log_size; 720 __u32 log_level; 721 722 int *fd_array; 723 size_t fd_array_cap; 724 size_t fd_array_cnt; 725 726 struct usdt_manager *usdt_man; 727 728 struct bpf_map *arena_map; 729 void *arena_data; 730 size_t arena_data_sz; 731 732 struct kern_feature_cache *feat_cache; 733 char *token_path; 734 int token_fd; 735 736 char path[]; 737 }; 738 739 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 740 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 741 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 742 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 743 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 744 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 745 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 746 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 747 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 748 749 void bpf_program__unload(struct bpf_program *prog) 750 { 751 if (!prog) 752 return; 753 754 zclose(prog->fd); 755 756 zfree(&prog->func_info); 757 zfree(&prog->line_info); 758 } 759 760 static void bpf_program__exit(struct bpf_program *prog) 761 { 762 if (!prog) 763 return; 764 765 bpf_program__unload(prog); 766 zfree(&prog->name); 767 zfree(&prog->sec_name); 768 zfree(&prog->insns); 769 zfree(&prog->reloc_desc); 770 771 prog->nr_reloc = 0; 772 prog->insns_cnt = 0; 773 prog->sec_idx = -1; 774 } 775 776 static bool insn_is_subprog_call(const struct bpf_insn *insn) 777 { 778 return BPF_CLASS(insn->code) == BPF_JMP && 779 BPF_OP(insn->code) == BPF_CALL && 780 BPF_SRC(insn->code) == BPF_K && 781 insn->src_reg == BPF_PSEUDO_CALL && 782 insn->dst_reg == 0 && 783 insn->off == 0; 784 } 785 786 static bool is_call_insn(const struct bpf_insn *insn) 787 { 788 return insn->code == (BPF_JMP | BPF_CALL); 789 } 790 791 static bool insn_is_pseudo_func(struct bpf_insn *insn) 792 { 793 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 794 } 795 796 static int 797 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 798 const char *name, size_t sec_idx, const char *sec_name, 799 size_t sec_off, void *insn_data, size_t insn_data_sz) 800 { 801 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 802 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 803 sec_name, name, sec_off, insn_data_sz); 804 return -EINVAL; 805 } 806 807 memset(prog, 0, sizeof(*prog)); 808 prog->obj = obj; 809 810 prog->sec_idx = sec_idx; 811 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 812 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 813 /* insns_cnt can later be increased by appending used subprograms */ 814 prog->insns_cnt = prog->sec_insn_cnt; 815 816 prog->type = BPF_PROG_TYPE_UNSPEC; 817 prog->fd = -1; 818 prog->exception_cb_idx = -1; 819 820 /* libbpf's convention for SEC("?abc...") is that it's just like 821 * SEC("abc...") but the corresponding bpf_program starts out with 822 * autoload set to false. 823 */ 824 if (sec_name[0] == '?') { 825 prog->autoload = false; 826 /* from now on forget there was ? in section name */ 827 sec_name++; 828 } else { 829 prog->autoload = true; 830 } 831 832 prog->autoattach = true; 833 834 /* inherit object's log_level */ 835 prog->log_level = obj->log_level; 836 837 prog->sec_name = strdup(sec_name); 838 if (!prog->sec_name) 839 goto errout; 840 841 prog->name = strdup(name); 842 if (!prog->name) 843 goto errout; 844 845 prog->insns = malloc(insn_data_sz); 846 if (!prog->insns) 847 goto errout; 848 memcpy(prog->insns, insn_data, insn_data_sz); 849 850 return 0; 851 errout: 852 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 853 bpf_program__exit(prog); 854 return -ENOMEM; 855 } 856 857 static int 858 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 859 const char *sec_name, int sec_idx) 860 { 861 Elf_Data *symbols = obj->efile.symbols; 862 struct bpf_program *prog, *progs; 863 void *data = sec_data->d_buf; 864 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 865 int nr_progs, err, i; 866 const char *name; 867 Elf64_Sym *sym; 868 869 progs = obj->programs; 870 nr_progs = obj->nr_programs; 871 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 872 873 for (i = 0; i < nr_syms; i++) { 874 sym = elf_sym_by_idx(obj, i); 875 876 if (sym->st_shndx != sec_idx) 877 continue; 878 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 879 continue; 880 881 prog_sz = sym->st_size; 882 sec_off = sym->st_value; 883 884 name = elf_sym_str(obj, sym->st_name); 885 if (!name) { 886 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 887 sec_name, sec_off); 888 return -LIBBPF_ERRNO__FORMAT; 889 } 890 891 if (sec_off + prog_sz > sec_sz) { 892 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 893 sec_name, sec_off); 894 return -LIBBPF_ERRNO__FORMAT; 895 } 896 897 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 898 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 899 return -ENOTSUP; 900 } 901 902 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 903 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 904 905 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 906 if (!progs) { 907 /* 908 * In this case the original obj->programs 909 * is still valid, so don't need special treat for 910 * bpf_close_object(). 911 */ 912 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 913 sec_name, name); 914 return -ENOMEM; 915 } 916 obj->programs = progs; 917 918 prog = &progs[nr_progs]; 919 920 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 921 sec_off, data + sec_off, prog_sz); 922 if (err) 923 return err; 924 925 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 926 prog->sym_global = true; 927 928 /* if function is a global/weak symbol, but has restricted 929 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 930 * as static to enable more permissive BPF verification mode 931 * with more outside context available to BPF verifier 932 */ 933 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 934 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 935 prog->mark_btf_static = true; 936 937 nr_progs++; 938 obj->nr_programs = nr_progs; 939 } 940 941 return 0; 942 } 943 944 static const struct btf_member * 945 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 946 { 947 struct btf_member *m; 948 int i; 949 950 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 951 if (btf_member_bit_offset(t, i) == bit_offset) 952 return m; 953 } 954 955 return NULL; 956 } 957 958 static const struct btf_member * 959 find_member_by_name(const struct btf *btf, const struct btf_type *t, 960 const char *name) 961 { 962 struct btf_member *m; 963 int i; 964 965 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 966 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 967 return m; 968 } 969 970 return NULL; 971 } 972 973 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 974 __u16 kind, struct btf **res_btf, 975 struct module_btf **res_mod_btf); 976 977 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 978 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 979 const char *name, __u32 kind); 980 981 static int 982 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 983 struct module_btf **mod_btf, 984 const struct btf_type **type, __u32 *type_id, 985 const struct btf_type **vtype, __u32 *vtype_id, 986 const struct btf_member **data_member) 987 { 988 const struct btf_type *kern_type, *kern_vtype; 989 const struct btf_member *kern_data_member; 990 struct btf *btf; 991 __s32 kern_vtype_id, kern_type_id; 992 char tname[256]; 993 __u32 i; 994 995 snprintf(tname, sizeof(tname), "%.*s", 996 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 997 998 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 999 &btf, mod_btf); 1000 if (kern_type_id < 0) { 1001 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1002 tname); 1003 return kern_type_id; 1004 } 1005 kern_type = btf__type_by_id(btf, kern_type_id); 1006 1007 /* Find the corresponding "map_value" type that will be used 1008 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1009 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1010 * btf_vmlinux. 1011 */ 1012 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1013 tname, BTF_KIND_STRUCT); 1014 if (kern_vtype_id < 0) { 1015 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1016 STRUCT_OPS_VALUE_PREFIX, tname); 1017 return kern_vtype_id; 1018 } 1019 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1020 1021 /* Find "struct tcp_congestion_ops" from 1022 * struct bpf_struct_ops_tcp_congestion_ops { 1023 * [ ... ] 1024 * struct tcp_congestion_ops data; 1025 * } 1026 */ 1027 kern_data_member = btf_members(kern_vtype); 1028 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1029 if (kern_data_member->type == kern_type_id) 1030 break; 1031 } 1032 if (i == btf_vlen(kern_vtype)) { 1033 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1034 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1035 return -EINVAL; 1036 } 1037 1038 *type = kern_type; 1039 *type_id = kern_type_id; 1040 *vtype = kern_vtype; 1041 *vtype_id = kern_vtype_id; 1042 *data_member = kern_data_member; 1043 1044 return 0; 1045 } 1046 1047 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1048 { 1049 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1050 } 1051 1052 static bool is_valid_st_ops_program(struct bpf_object *obj, 1053 const struct bpf_program *prog) 1054 { 1055 int i; 1056 1057 for (i = 0; i < obj->nr_programs; i++) { 1058 if (&obj->programs[i] == prog) 1059 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1060 } 1061 1062 return false; 1063 } 1064 1065 /* For each struct_ops program P, referenced from some struct_ops map M, 1066 * enable P.autoload if there are Ms for which M.autocreate is true, 1067 * disable P.autoload if for all Ms M.autocreate is false. 1068 * Don't change P.autoload for programs that are not referenced from any maps. 1069 */ 1070 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1071 { 1072 struct bpf_program *prog, *slot_prog; 1073 struct bpf_map *map; 1074 int i, j, k, vlen; 1075 1076 for (i = 0; i < obj->nr_programs; ++i) { 1077 int should_load = false; 1078 int use_cnt = 0; 1079 1080 prog = &obj->programs[i]; 1081 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1082 continue; 1083 1084 for (j = 0; j < obj->nr_maps; ++j) { 1085 map = &obj->maps[j]; 1086 if (!bpf_map__is_struct_ops(map)) 1087 continue; 1088 1089 vlen = btf_vlen(map->st_ops->type); 1090 for (k = 0; k < vlen; ++k) { 1091 slot_prog = map->st_ops->progs[k]; 1092 if (prog != slot_prog) 1093 continue; 1094 1095 use_cnt++; 1096 if (map->autocreate) 1097 should_load = true; 1098 } 1099 } 1100 if (use_cnt) 1101 prog->autoload = should_load; 1102 } 1103 1104 return 0; 1105 } 1106 1107 /* Init the map's fields that depend on kern_btf */ 1108 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1109 { 1110 const struct btf_member *member, *kern_member, *kern_data_member; 1111 const struct btf_type *type, *kern_type, *kern_vtype; 1112 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1113 struct bpf_object *obj = map->obj; 1114 const struct btf *btf = obj->btf; 1115 struct bpf_struct_ops *st_ops; 1116 const struct btf *kern_btf; 1117 struct module_btf *mod_btf; 1118 void *data, *kern_data; 1119 const char *tname; 1120 int err; 1121 1122 st_ops = map->st_ops; 1123 type = st_ops->type; 1124 tname = st_ops->tname; 1125 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1126 &kern_type, &kern_type_id, 1127 &kern_vtype, &kern_vtype_id, 1128 &kern_data_member); 1129 if (err) 1130 return err; 1131 1132 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1133 1134 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1135 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1136 1137 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1138 map->def.value_size = kern_vtype->size; 1139 map->btf_vmlinux_value_type_id = kern_vtype_id; 1140 1141 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1142 if (!st_ops->kern_vdata) 1143 return -ENOMEM; 1144 1145 data = st_ops->data; 1146 kern_data_off = kern_data_member->offset / 8; 1147 kern_data = st_ops->kern_vdata + kern_data_off; 1148 1149 member = btf_members(type); 1150 for (i = 0; i < btf_vlen(type); i++, member++) { 1151 const struct btf_type *mtype, *kern_mtype; 1152 __u32 mtype_id, kern_mtype_id; 1153 void *mdata, *kern_mdata; 1154 struct bpf_program *prog; 1155 __s64 msize, kern_msize; 1156 __u32 moff, kern_moff; 1157 __u32 kern_member_idx; 1158 const char *mname; 1159 1160 mname = btf__name_by_offset(btf, member->name_off); 1161 moff = member->offset / 8; 1162 mdata = data + moff; 1163 msize = btf__resolve_size(btf, member->type); 1164 if (msize < 0) { 1165 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1166 map->name, mname); 1167 return msize; 1168 } 1169 1170 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1171 if (!kern_member) { 1172 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1173 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1174 map->name, mname); 1175 return -ENOTSUP; 1176 } 1177 1178 if (st_ops->progs[i]) { 1179 /* If we had declaratively set struct_ops callback, we need to 1180 * force its autoload to false, because it doesn't have 1181 * a chance of succeeding from POV of the current struct_ops map. 1182 * If this program is still referenced somewhere else, though, 1183 * then bpf_object_adjust_struct_ops_autoload() will update its 1184 * autoload accordingly. 1185 */ 1186 st_ops->progs[i]->autoload = false; 1187 st_ops->progs[i] = NULL; 1188 } 1189 1190 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1191 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1192 map->name, mname); 1193 continue; 1194 } 1195 1196 kern_member_idx = kern_member - btf_members(kern_type); 1197 if (btf_member_bitfield_size(type, i) || 1198 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1199 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1200 map->name, mname); 1201 return -ENOTSUP; 1202 } 1203 1204 kern_moff = kern_member->offset / 8; 1205 kern_mdata = kern_data + kern_moff; 1206 1207 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1208 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1209 &kern_mtype_id); 1210 if (BTF_INFO_KIND(mtype->info) != 1211 BTF_INFO_KIND(kern_mtype->info)) { 1212 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1213 map->name, mname, BTF_INFO_KIND(mtype->info), 1214 BTF_INFO_KIND(kern_mtype->info)); 1215 return -ENOTSUP; 1216 } 1217 1218 if (btf_is_ptr(mtype)) { 1219 prog = *(void **)mdata; 1220 /* just like for !kern_member case above, reset declaratively 1221 * set (at compile time) program's autload to false, 1222 * if user replaced it with another program or NULL 1223 */ 1224 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1225 st_ops->progs[i]->autoload = false; 1226 1227 /* Update the value from the shadow type */ 1228 st_ops->progs[i] = prog; 1229 if (!prog) 1230 continue; 1231 1232 if (!is_valid_st_ops_program(obj, prog)) { 1233 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1234 map->name, mname); 1235 return -ENOTSUP; 1236 } 1237 1238 kern_mtype = skip_mods_and_typedefs(kern_btf, 1239 kern_mtype->type, 1240 &kern_mtype_id); 1241 1242 /* mtype->type must be a func_proto which was 1243 * guaranteed in bpf_object__collect_st_ops_relos(), 1244 * so only check kern_mtype for func_proto here. 1245 */ 1246 if (!btf_is_func_proto(kern_mtype)) { 1247 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1248 map->name, mname); 1249 return -ENOTSUP; 1250 } 1251 1252 if (mod_btf) 1253 prog->attach_btf_obj_fd = mod_btf->fd; 1254 1255 /* if we haven't yet processed this BPF program, record proper 1256 * attach_btf_id and member_idx 1257 */ 1258 if (!prog->attach_btf_id) { 1259 prog->attach_btf_id = kern_type_id; 1260 prog->expected_attach_type = kern_member_idx; 1261 } 1262 1263 /* struct_ops BPF prog can be re-used between multiple 1264 * .struct_ops & .struct_ops.link as long as it's the 1265 * same struct_ops struct definition and the same 1266 * function pointer field 1267 */ 1268 if (prog->attach_btf_id != kern_type_id) { 1269 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1270 map->name, mname, prog->name, prog->sec_name, prog->type, 1271 prog->attach_btf_id, kern_type_id); 1272 return -EINVAL; 1273 } 1274 if (prog->expected_attach_type != kern_member_idx) { 1275 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1276 map->name, mname, prog->name, prog->sec_name, prog->type, 1277 prog->expected_attach_type, kern_member_idx); 1278 return -EINVAL; 1279 } 1280 1281 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1282 1283 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1284 map->name, mname, prog->name, moff, 1285 kern_moff); 1286 1287 continue; 1288 } 1289 1290 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1291 if (kern_msize < 0 || msize != kern_msize) { 1292 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1293 map->name, mname, (ssize_t)msize, 1294 (ssize_t)kern_msize); 1295 return -ENOTSUP; 1296 } 1297 1298 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1299 map->name, mname, (unsigned int)msize, 1300 moff, kern_moff); 1301 memcpy(kern_mdata, mdata, msize); 1302 } 1303 1304 return 0; 1305 } 1306 1307 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1308 { 1309 struct bpf_map *map; 1310 size_t i; 1311 int err; 1312 1313 for (i = 0; i < obj->nr_maps; i++) { 1314 map = &obj->maps[i]; 1315 1316 if (!bpf_map__is_struct_ops(map)) 1317 continue; 1318 1319 if (!map->autocreate) 1320 continue; 1321 1322 err = bpf_map__init_kern_struct_ops(map); 1323 if (err) 1324 return err; 1325 } 1326 1327 return 0; 1328 } 1329 1330 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1331 int shndx, Elf_Data *data) 1332 { 1333 const struct btf_type *type, *datasec; 1334 const struct btf_var_secinfo *vsi; 1335 struct bpf_struct_ops *st_ops; 1336 const char *tname, *var_name; 1337 __s32 type_id, datasec_id; 1338 const struct btf *btf; 1339 struct bpf_map *map; 1340 __u32 i; 1341 1342 if (shndx == -1) 1343 return 0; 1344 1345 btf = obj->btf; 1346 datasec_id = btf__find_by_name_kind(btf, sec_name, 1347 BTF_KIND_DATASEC); 1348 if (datasec_id < 0) { 1349 pr_warn("struct_ops init: DATASEC %s not found\n", 1350 sec_name); 1351 return -EINVAL; 1352 } 1353 1354 datasec = btf__type_by_id(btf, datasec_id); 1355 vsi = btf_var_secinfos(datasec); 1356 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1357 type = btf__type_by_id(obj->btf, vsi->type); 1358 var_name = btf__name_by_offset(obj->btf, type->name_off); 1359 1360 type_id = btf__resolve_type(obj->btf, vsi->type); 1361 if (type_id < 0) { 1362 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1363 vsi->type, sec_name); 1364 return -EINVAL; 1365 } 1366 1367 type = btf__type_by_id(obj->btf, type_id); 1368 tname = btf__name_by_offset(obj->btf, type->name_off); 1369 if (!tname[0]) { 1370 pr_warn("struct_ops init: anonymous type is not supported\n"); 1371 return -ENOTSUP; 1372 } 1373 if (!btf_is_struct(type)) { 1374 pr_warn("struct_ops init: %s is not a struct\n", tname); 1375 return -EINVAL; 1376 } 1377 1378 map = bpf_object__add_map(obj); 1379 if (IS_ERR(map)) 1380 return PTR_ERR(map); 1381 1382 map->sec_idx = shndx; 1383 map->sec_offset = vsi->offset; 1384 map->name = strdup(var_name); 1385 if (!map->name) 1386 return -ENOMEM; 1387 map->btf_value_type_id = type_id; 1388 1389 /* Follow same convention as for programs autoload: 1390 * SEC("?.struct_ops") means map is not created by default. 1391 */ 1392 if (sec_name[0] == '?') { 1393 map->autocreate = false; 1394 /* from now on forget there was ? in section name */ 1395 sec_name++; 1396 } 1397 1398 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1399 map->def.key_size = sizeof(int); 1400 map->def.value_size = type->size; 1401 map->def.max_entries = 1; 1402 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1403 1404 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1405 if (!map->st_ops) 1406 return -ENOMEM; 1407 st_ops = map->st_ops; 1408 st_ops->data = malloc(type->size); 1409 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1410 st_ops->kern_func_off = malloc(btf_vlen(type) * 1411 sizeof(*st_ops->kern_func_off)); 1412 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1413 return -ENOMEM; 1414 1415 if (vsi->offset + type->size > data->d_size) { 1416 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1417 var_name, sec_name); 1418 return -EINVAL; 1419 } 1420 1421 memcpy(st_ops->data, 1422 data->d_buf + vsi->offset, 1423 type->size); 1424 st_ops->tname = tname; 1425 st_ops->type = type; 1426 st_ops->type_id = type_id; 1427 1428 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1429 tname, type_id, var_name, vsi->offset); 1430 } 1431 1432 return 0; 1433 } 1434 1435 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1436 { 1437 const char *sec_name; 1438 int sec_idx, err; 1439 1440 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1441 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1442 1443 if (desc->sec_type != SEC_ST_OPS) 1444 continue; 1445 1446 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1447 if (!sec_name) 1448 return -LIBBPF_ERRNO__FORMAT; 1449 1450 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1451 if (err) 1452 return err; 1453 } 1454 1455 return 0; 1456 } 1457 1458 static struct bpf_object *bpf_object__new(const char *path, 1459 const void *obj_buf, 1460 size_t obj_buf_sz, 1461 const char *obj_name) 1462 { 1463 struct bpf_object *obj; 1464 char *end; 1465 1466 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1467 if (!obj) { 1468 pr_warn("alloc memory failed for %s\n", path); 1469 return ERR_PTR(-ENOMEM); 1470 } 1471 1472 strcpy(obj->path, path); 1473 if (obj_name) { 1474 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1475 } else { 1476 /* Using basename() GNU version which doesn't modify arg. */ 1477 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1478 end = strchr(obj->name, '.'); 1479 if (end) 1480 *end = 0; 1481 } 1482 1483 obj->efile.fd = -1; 1484 /* 1485 * Caller of this function should also call 1486 * bpf_object__elf_finish() after data collection to return 1487 * obj_buf to user. If not, we should duplicate the buffer to 1488 * avoid user freeing them before elf finish. 1489 */ 1490 obj->efile.obj_buf = obj_buf; 1491 obj->efile.obj_buf_sz = obj_buf_sz; 1492 obj->efile.btf_maps_shndx = -1; 1493 obj->kconfig_map_idx = -1; 1494 1495 obj->kern_version = get_kernel_version(); 1496 obj->loaded = false; 1497 1498 return obj; 1499 } 1500 1501 static void bpf_object__elf_finish(struct bpf_object *obj) 1502 { 1503 if (!obj->efile.elf) 1504 return; 1505 1506 elf_end(obj->efile.elf); 1507 obj->efile.elf = NULL; 1508 obj->efile.symbols = NULL; 1509 obj->efile.arena_data = NULL; 1510 1511 zfree(&obj->efile.secs); 1512 obj->efile.sec_cnt = 0; 1513 zclose(obj->efile.fd); 1514 obj->efile.obj_buf = NULL; 1515 obj->efile.obj_buf_sz = 0; 1516 } 1517 1518 static int bpf_object__elf_init(struct bpf_object *obj) 1519 { 1520 Elf64_Ehdr *ehdr; 1521 int err = 0; 1522 Elf *elf; 1523 1524 if (obj->efile.elf) { 1525 pr_warn("elf: init internal error\n"); 1526 return -LIBBPF_ERRNO__LIBELF; 1527 } 1528 1529 if (obj->efile.obj_buf_sz > 0) { 1530 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1531 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1532 } else { 1533 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1534 if (obj->efile.fd < 0) { 1535 char errmsg[STRERR_BUFSIZE], *cp; 1536 1537 err = -errno; 1538 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1539 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1540 return err; 1541 } 1542 1543 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1544 } 1545 1546 if (!elf) { 1547 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1548 err = -LIBBPF_ERRNO__LIBELF; 1549 goto errout; 1550 } 1551 1552 obj->efile.elf = elf; 1553 1554 if (elf_kind(elf) != ELF_K_ELF) { 1555 err = -LIBBPF_ERRNO__FORMAT; 1556 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1557 goto errout; 1558 } 1559 1560 if (gelf_getclass(elf) != ELFCLASS64) { 1561 err = -LIBBPF_ERRNO__FORMAT; 1562 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1563 goto errout; 1564 } 1565 1566 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1567 if (!obj->efile.ehdr) { 1568 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1569 err = -LIBBPF_ERRNO__FORMAT; 1570 goto errout; 1571 } 1572 1573 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1574 pr_warn("elf: failed to get section names section index for %s: %s\n", 1575 obj->path, elf_errmsg(-1)); 1576 err = -LIBBPF_ERRNO__FORMAT; 1577 goto errout; 1578 } 1579 1580 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1581 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1582 pr_warn("elf: failed to get section names strings from %s: %s\n", 1583 obj->path, elf_errmsg(-1)); 1584 err = -LIBBPF_ERRNO__FORMAT; 1585 goto errout; 1586 } 1587 1588 /* Old LLVM set e_machine to EM_NONE */ 1589 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1590 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1591 err = -LIBBPF_ERRNO__FORMAT; 1592 goto errout; 1593 } 1594 1595 return 0; 1596 errout: 1597 bpf_object__elf_finish(obj); 1598 return err; 1599 } 1600 1601 static int bpf_object__check_endianness(struct bpf_object *obj) 1602 { 1603 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1604 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1605 return 0; 1606 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1607 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1608 return 0; 1609 #else 1610 # error "Unrecognized __BYTE_ORDER__" 1611 #endif 1612 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1613 return -LIBBPF_ERRNO__ENDIAN; 1614 } 1615 1616 static int 1617 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1618 { 1619 if (!data) { 1620 pr_warn("invalid license section in %s\n", obj->path); 1621 return -LIBBPF_ERRNO__FORMAT; 1622 } 1623 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1624 * go over allowed ELF data section buffer 1625 */ 1626 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1627 pr_debug("license of %s is %s\n", obj->path, obj->license); 1628 return 0; 1629 } 1630 1631 static int 1632 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1633 { 1634 __u32 kver; 1635 1636 if (!data || size != sizeof(kver)) { 1637 pr_warn("invalid kver section in %s\n", obj->path); 1638 return -LIBBPF_ERRNO__FORMAT; 1639 } 1640 memcpy(&kver, data, sizeof(kver)); 1641 obj->kern_version = kver; 1642 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1643 return 0; 1644 } 1645 1646 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1647 { 1648 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1649 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1650 return true; 1651 return false; 1652 } 1653 1654 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1655 { 1656 Elf_Data *data; 1657 Elf_Scn *scn; 1658 1659 if (!name) 1660 return -EINVAL; 1661 1662 scn = elf_sec_by_name(obj, name); 1663 data = elf_sec_data(obj, scn); 1664 if (data) { 1665 *size = data->d_size; 1666 return 0; /* found it */ 1667 } 1668 1669 return -ENOENT; 1670 } 1671 1672 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1673 { 1674 Elf_Data *symbols = obj->efile.symbols; 1675 const char *sname; 1676 size_t si; 1677 1678 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1679 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1680 1681 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1682 continue; 1683 1684 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1685 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1686 continue; 1687 1688 sname = elf_sym_str(obj, sym->st_name); 1689 if (!sname) { 1690 pr_warn("failed to get sym name string for var %s\n", name); 1691 return ERR_PTR(-EIO); 1692 } 1693 if (strcmp(name, sname) == 0) 1694 return sym; 1695 } 1696 1697 return ERR_PTR(-ENOENT); 1698 } 1699 1700 /* Some versions of Android don't provide memfd_create() in their libc 1701 * implementation, so avoid complications and just go straight to Linux 1702 * syscall. 1703 */ 1704 static int sys_memfd_create(const char *name, unsigned flags) 1705 { 1706 return syscall(__NR_memfd_create, name, flags); 1707 } 1708 1709 #ifndef MFD_CLOEXEC 1710 #define MFD_CLOEXEC 0x0001U 1711 #endif 1712 1713 static int create_placeholder_fd(void) 1714 { 1715 int fd; 1716 1717 fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1718 if (fd < 0) 1719 return -errno; 1720 return fd; 1721 } 1722 1723 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1724 { 1725 struct bpf_map *map; 1726 int err; 1727 1728 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1729 sizeof(*obj->maps), obj->nr_maps + 1); 1730 if (err) 1731 return ERR_PTR(err); 1732 1733 map = &obj->maps[obj->nr_maps++]; 1734 map->obj = obj; 1735 /* Preallocate map FD without actually creating BPF map just yet. 1736 * These map FD "placeholders" will be reused later without changing 1737 * FD value when map is actually created in the kernel. 1738 * 1739 * This is useful to be able to perform BPF program relocations 1740 * without having to create BPF maps before that step. This allows us 1741 * to finalize and load BTF very late in BPF object's loading phase, 1742 * right before BPF maps have to be created and BPF programs have to 1743 * be loaded. By having these map FD placeholders we can perform all 1744 * the sanitizations, relocations, and any other adjustments before we 1745 * start creating actual BPF kernel objects (BTF, maps, progs). 1746 */ 1747 map->fd = create_placeholder_fd(); 1748 if (map->fd < 0) 1749 return ERR_PTR(map->fd); 1750 map->inner_map_fd = -1; 1751 map->autocreate = true; 1752 1753 return map; 1754 } 1755 1756 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1757 { 1758 const long page_sz = sysconf(_SC_PAGE_SIZE); 1759 size_t map_sz; 1760 1761 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1762 map_sz = roundup(map_sz, page_sz); 1763 return map_sz; 1764 } 1765 1766 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1767 { 1768 const long page_sz = sysconf(_SC_PAGE_SIZE); 1769 1770 switch (map->def.type) { 1771 case BPF_MAP_TYPE_ARRAY: 1772 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1773 case BPF_MAP_TYPE_ARENA: 1774 return page_sz * map->def.max_entries; 1775 default: 1776 return 0; /* not supported */ 1777 } 1778 } 1779 1780 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1781 { 1782 void *mmaped; 1783 1784 if (!map->mmaped) 1785 return -EINVAL; 1786 1787 if (old_sz == new_sz) 1788 return 0; 1789 1790 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1791 if (mmaped == MAP_FAILED) 1792 return -errno; 1793 1794 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1795 munmap(map->mmaped, old_sz); 1796 map->mmaped = mmaped; 1797 return 0; 1798 } 1799 1800 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1801 { 1802 char map_name[BPF_OBJ_NAME_LEN], *p; 1803 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1804 1805 /* This is one of the more confusing parts of libbpf for various 1806 * reasons, some of which are historical. The original idea for naming 1807 * internal names was to include as much of BPF object name prefix as 1808 * possible, so that it can be distinguished from similar internal 1809 * maps of a different BPF object. 1810 * As an example, let's say we have bpf_object named 'my_object_name' 1811 * and internal map corresponding to '.rodata' ELF section. The final 1812 * map name advertised to user and to the kernel will be 1813 * 'my_objec.rodata', taking first 8 characters of object name and 1814 * entire 7 characters of '.rodata'. 1815 * Somewhat confusingly, if internal map ELF section name is shorter 1816 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1817 * for the suffix, even though we only have 4 actual characters, and 1818 * resulting map will be called 'my_objec.bss', not even using all 15 1819 * characters allowed by the kernel. Oh well, at least the truncated 1820 * object name is somewhat consistent in this case. But if the map 1821 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1822 * (8 chars) and thus will be left with only first 7 characters of the 1823 * object name ('my_obje'). Happy guessing, user, that the final map 1824 * name will be "my_obje.kconfig". 1825 * Now, with libbpf starting to support arbitrarily named .rodata.* 1826 * and .data.* data sections, it's possible that ELF section name is 1827 * longer than allowed 15 chars, so we now need to be careful to take 1828 * only up to 15 first characters of ELF name, taking no BPF object 1829 * name characters at all. So '.rodata.abracadabra' will result in 1830 * '.rodata.abracad' kernel and user-visible name. 1831 * We need to keep this convoluted logic intact for .data, .bss and 1832 * .rodata maps, but for new custom .data.custom and .rodata.custom 1833 * maps we use their ELF names as is, not prepending bpf_object name 1834 * in front. We still need to truncate them to 15 characters for the 1835 * kernel. Full name can be recovered for such maps by using DATASEC 1836 * BTF type associated with such map's value type, though. 1837 */ 1838 if (sfx_len >= BPF_OBJ_NAME_LEN) 1839 sfx_len = BPF_OBJ_NAME_LEN - 1; 1840 1841 /* if there are two or more dots in map name, it's a custom dot map */ 1842 if (strchr(real_name + 1, '.') != NULL) 1843 pfx_len = 0; 1844 else 1845 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1846 1847 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1848 sfx_len, real_name); 1849 1850 /* sanitise map name to characters allowed by kernel */ 1851 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1852 if (!isalnum(*p) && *p != '_' && *p != '.') 1853 *p = '_'; 1854 1855 return strdup(map_name); 1856 } 1857 1858 static int 1859 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1860 1861 /* Internal BPF map is mmap()'able only if at least one of corresponding 1862 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1863 * variable and it's not marked as __hidden (which turns it into, effectively, 1864 * a STATIC variable). 1865 */ 1866 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1867 { 1868 const struct btf_type *t, *vt; 1869 struct btf_var_secinfo *vsi; 1870 int i, n; 1871 1872 if (!map->btf_value_type_id) 1873 return false; 1874 1875 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1876 if (!btf_is_datasec(t)) 1877 return false; 1878 1879 vsi = btf_var_secinfos(t); 1880 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1881 vt = btf__type_by_id(obj->btf, vsi->type); 1882 if (!btf_is_var(vt)) 1883 continue; 1884 1885 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1886 return true; 1887 } 1888 1889 return false; 1890 } 1891 1892 static int 1893 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1894 const char *real_name, int sec_idx, void *data, size_t data_sz) 1895 { 1896 struct bpf_map_def *def; 1897 struct bpf_map *map; 1898 size_t mmap_sz; 1899 int err; 1900 1901 map = bpf_object__add_map(obj); 1902 if (IS_ERR(map)) 1903 return PTR_ERR(map); 1904 1905 map->libbpf_type = type; 1906 map->sec_idx = sec_idx; 1907 map->sec_offset = 0; 1908 map->real_name = strdup(real_name); 1909 map->name = internal_map_name(obj, real_name); 1910 if (!map->real_name || !map->name) { 1911 zfree(&map->real_name); 1912 zfree(&map->name); 1913 return -ENOMEM; 1914 } 1915 1916 def = &map->def; 1917 def->type = BPF_MAP_TYPE_ARRAY; 1918 def->key_size = sizeof(int); 1919 def->value_size = data_sz; 1920 def->max_entries = 1; 1921 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1922 ? BPF_F_RDONLY_PROG : 0; 1923 1924 /* failures are fine because of maps like .rodata.str1.1 */ 1925 (void) map_fill_btf_type_info(obj, map); 1926 1927 if (map_is_mmapable(obj, map)) 1928 def->map_flags |= BPF_F_MMAPABLE; 1929 1930 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1931 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1932 1933 mmap_sz = bpf_map_mmap_sz(map); 1934 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1935 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1936 if (map->mmaped == MAP_FAILED) { 1937 err = -errno; 1938 map->mmaped = NULL; 1939 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1940 map->name, err); 1941 zfree(&map->real_name); 1942 zfree(&map->name); 1943 return err; 1944 } 1945 1946 if (data) 1947 memcpy(map->mmaped, data, data_sz); 1948 1949 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1950 return 0; 1951 } 1952 1953 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1954 { 1955 struct elf_sec_desc *sec_desc; 1956 const char *sec_name; 1957 int err = 0, sec_idx; 1958 1959 /* 1960 * Populate obj->maps with libbpf internal maps. 1961 */ 1962 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1963 sec_desc = &obj->efile.secs[sec_idx]; 1964 1965 /* Skip recognized sections with size 0. */ 1966 if (!sec_desc->data || sec_desc->data->d_size == 0) 1967 continue; 1968 1969 switch (sec_desc->sec_type) { 1970 case SEC_DATA: 1971 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1972 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1973 sec_name, sec_idx, 1974 sec_desc->data->d_buf, 1975 sec_desc->data->d_size); 1976 break; 1977 case SEC_RODATA: 1978 obj->has_rodata = true; 1979 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1980 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1981 sec_name, sec_idx, 1982 sec_desc->data->d_buf, 1983 sec_desc->data->d_size); 1984 break; 1985 case SEC_BSS: 1986 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1987 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1988 sec_name, sec_idx, 1989 NULL, 1990 sec_desc->data->d_size); 1991 break; 1992 default: 1993 /* skip */ 1994 break; 1995 } 1996 if (err) 1997 return err; 1998 } 1999 return 0; 2000 } 2001 2002 2003 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2004 const void *name) 2005 { 2006 int i; 2007 2008 for (i = 0; i < obj->nr_extern; i++) { 2009 if (strcmp(obj->externs[i].name, name) == 0) 2010 return &obj->externs[i]; 2011 } 2012 return NULL; 2013 } 2014 2015 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2016 const void *name, int len) 2017 { 2018 const char *ext_name; 2019 int i; 2020 2021 for (i = 0; i < obj->nr_extern; i++) { 2022 ext_name = obj->externs[i].name; 2023 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2024 return &obj->externs[i]; 2025 } 2026 return NULL; 2027 } 2028 2029 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2030 char value) 2031 { 2032 switch (ext->kcfg.type) { 2033 case KCFG_BOOL: 2034 if (value == 'm') { 2035 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2036 ext->name, value); 2037 return -EINVAL; 2038 } 2039 *(bool *)ext_val = value == 'y' ? true : false; 2040 break; 2041 case KCFG_TRISTATE: 2042 if (value == 'y') 2043 *(enum libbpf_tristate *)ext_val = TRI_YES; 2044 else if (value == 'm') 2045 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2046 else /* value == 'n' */ 2047 *(enum libbpf_tristate *)ext_val = TRI_NO; 2048 break; 2049 case KCFG_CHAR: 2050 *(char *)ext_val = value; 2051 break; 2052 case KCFG_UNKNOWN: 2053 case KCFG_INT: 2054 case KCFG_CHAR_ARR: 2055 default: 2056 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2057 ext->name, value); 2058 return -EINVAL; 2059 } 2060 ext->is_set = true; 2061 return 0; 2062 } 2063 2064 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2065 const char *value) 2066 { 2067 size_t len; 2068 2069 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2070 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2071 ext->name, value); 2072 return -EINVAL; 2073 } 2074 2075 len = strlen(value); 2076 if (value[len - 1] != '"') { 2077 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2078 ext->name, value); 2079 return -EINVAL; 2080 } 2081 2082 /* strip quotes */ 2083 len -= 2; 2084 if (len >= ext->kcfg.sz) { 2085 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2086 ext->name, value, len, ext->kcfg.sz - 1); 2087 len = ext->kcfg.sz - 1; 2088 } 2089 memcpy(ext_val, value + 1, len); 2090 ext_val[len] = '\0'; 2091 ext->is_set = true; 2092 return 0; 2093 } 2094 2095 static int parse_u64(const char *value, __u64 *res) 2096 { 2097 char *value_end; 2098 int err; 2099 2100 errno = 0; 2101 *res = strtoull(value, &value_end, 0); 2102 if (errno) { 2103 err = -errno; 2104 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 2105 return err; 2106 } 2107 if (*value_end) { 2108 pr_warn("failed to parse '%s' as integer completely\n", value); 2109 return -EINVAL; 2110 } 2111 return 0; 2112 } 2113 2114 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2115 { 2116 int bit_sz = ext->kcfg.sz * 8; 2117 2118 if (ext->kcfg.sz == 8) 2119 return true; 2120 2121 /* Validate that value stored in u64 fits in integer of `ext->sz` 2122 * bytes size without any loss of information. If the target integer 2123 * is signed, we rely on the following limits of integer type of 2124 * Y bits and subsequent transformation: 2125 * 2126 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2127 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2128 * 0 <= X + 2^(Y-1) < 2^Y 2129 * 2130 * For unsigned target integer, check that all the (64 - Y) bits are 2131 * zero. 2132 */ 2133 if (ext->kcfg.is_signed) 2134 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2135 else 2136 return (v >> bit_sz) == 0; 2137 } 2138 2139 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2140 __u64 value) 2141 { 2142 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2143 ext->kcfg.type != KCFG_BOOL) { 2144 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2145 ext->name, (unsigned long long)value); 2146 return -EINVAL; 2147 } 2148 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2149 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2150 ext->name, (unsigned long long)value); 2151 return -EINVAL; 2152 2153 } 2154 if (!is_kcfg_value_in_range(ext, value)) { 2155 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2156 ext->name, (unsigned long long)value, ext->kcfg.sz); 2157 return -ERANGE; 2158 } 2159 switch (ext->kcfg.sz) { 2160 case 1: 2161 *(__u8 *)ext_val = value; 2162 break; 2163 case 2: 2164 *(__u16 *)ext_val = value; 2165 break; 2166 case 4: 2167 *(__u32 *)ext_val = value; 2168 break; 2169 case 8: 2170 *(__u64 *)ext_val = value; 2171 break; 2172 default: 2173 return -EINVAL; 2174 } 2175 ext->is_set = true; 2176 return 0; 2177 } 2178 2179 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2180 char *buf, void *data) 2181 { 2182 struct extern_desc *ext; 2183 char *sep, *value; 2184 int len, err = 0; 2185 void *ext_val; 2186 __u64 num; 2187 2188 if (!str_has_pfx(buf, "CONFIG_")) 2189 return 0; 2190 2191 sep = strchr(buf, '='); 2192 if (!sep) { 2193 pr_warn("failed to parse '%s': no separator\n", buf); 2194 return -EINVAL; 2195 } 2196 2197 /* Trim ending '\n' */ 2198 len = strlen(buf); 2199 if (buf[len - 1] == '\n') 2200 buf[len - 1] = '\0'; 2201 /* Split on '=' and ensure that a value is present. */ 2202 *sep = '\0'; 2203 if (!sep[1]) { 2204 *sep = '='; 2205 pr_warn("failed to parse '%s': no value\n", buf); 2206 return -EINVAL; 2207 } 2208 2209 ext = find_extern_by_name(obj, buf); 2210 if (!ext || ext->is_set) 2211 return 0; 2212 2213 ext_val = data + ext->kcfg.data_off; 2214 value = sep + 1; 2215 2216 switch (*value) { 2217 case 'y': case 'n': case 'm': 2218 err = set_kcfg_value_tri(ext, ext_val, *value); 2219 break; 2220 case '"': 2221 err = set_kcfg_value_str(ext, ext_val, value); 2222 break; 2223 default: 2224 /* assume integer */ 2225 err = parse_u64(value, &num); 2226 if (err) { 2227 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2228 return err; 2229 } 2230 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2231 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2232 return -EINVAL; 2233 } 2234 err = set_kcfg_value_num(ext, ext_val, num); 2235 break; 2236 } 2237 if (err) 2238 return err; 2239 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2240 return 0; 2241 } 2242 2243 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2244 { 2245 char buf[PATH_MAX]; 2246 struct utsname uts; 2247 int len, err = 0; 2248 gzFile file; 2249 2250 uname(&uts); 2251 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2252 if (len < 0) 2253 return -EINVAL; 2254 else if (len >= PATH_MAX) 2255 return -ENAMETOOLONG; 2256 2257 /* gzopen also accepts uncompressed files. */ 2258 file = gzopen(buf, "re"); 2259 if (!file) 2260 file = gzopen("/proc/config.gz", "re"); 2261 2262 if (!file) { 2263 pr_warn("failed to open system Kconfig\n"); 2264 return -ENOENT; 2265 } 2266 2267 while (gzgets(file, buf, sizeof(buf))) { 2268 err = bpf_object__process_kconfig_line(obj, buf, data); 2269 if (err) { 2270 pr_warn("error parsing system Kconfig line '%s': %d\n", 2271 buf, err); 2272 goto out; 2273 } 2274 } 2275 2276 out: 2277 gzclose(file); 2278 return err; 2279 } 2280 2281 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2282 const char *config, void *data) 2283 { 2284 char buf[PATH_MAX]; 2285 int err = 0; 2286 FILE *file; 2287 2288 file = fmemopen((void *)config, strlen(config), "r"); 2289 if (!file) { 2290 err = -errno; 2291 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2292 return err; 2293 } 2294 2295 while (fgets(buf, sizeof(buf), file)) { 2296 err = bpf_object__process_kconfig_line(obj, buf, data); 2297 if (err) { 2298 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2299 buf, err); 2300 break; 2301 } 2302 } 2303 2304 fclose(file); 2305 return err; 2306 } 2307 2308 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2309 { 2310 struct extern_desc *last_ext = NULL, *ext; 2311 size_t map_sz; 2312 int i, err; 2313 2314 for (i = 0; i < obj->nr_extern; i++) { 2315 ext = &obj->externs[i]; 2316 if (ext->type == EXT_KCFG) 2317 last_ext = ext; 2318 } 2319 2320 if (!last_ext) 2321 return 0; 2322 2323 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2324 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2325 ".kconfig", obj->efile.symbols_shndx, 2326 NULL, map_sz); 2327 if (err) 2328 return err; 2329 2330 obj->kconfig_map_idx = obj->nr_maps - 1; 2331 2332 return 0; 2333 } 2334 2335 const struct btf_type * 2336 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2337 { 2338 const struct btf_type *t = btf__type_by_id(btf, id); 2339 2340 if (res_id) 2341 *res_id = id; 2342 2343 while (btf_is_mod(t) || btf_is_typedef(t)) { 2344 if (res_id) 2345 *res_id = t->type; 2346 t = btf__type_by_id(btf, t->type); 2347 } 2348 2349 return t; 2350 } 2351 2352 static const struct btf_type * 2353 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2354 { 2355 const struct btf_type *t; 2356 2357 t = skip_mods_and_typedefs(btf, id, NULL); 2358 if (!btf_is_ptr(t)) 2359 return NULL; 2360 2361 t = skip_mods_and_typedefs(btf, t->type, res_id); 2362 2363 return btf_is_func_proto(t) ? t : NULL; 2364 } 2365 2366 static const char *__btf_kind_str(__u16 kind) 2367 { 2368 switch (kind) { 2369 case BTF_KIND_UNKN: return "void"; 2370 case BTF_KIND_INT: return "int"; 2371 case BTF_KIND_PTR: return "ptr"; 2372 case BTF_KIND_ARRAY: return "array"; 2373 case BTF_KIND_STRUCT: return "struct"; 2374 case BTF_KIND_UNION: return "union"; 2375 case BTF_KIND_ENUM: return "enum"; 2376 case BTF_KIND_FWD: return "fwd"; 2377 case BTF_KIND_TYPEDEF: return "typedef"; 2378 case BTF_KIND_VOLATILE: return "volatile"; 2379 case BTF_KIND_CONST: return "const"; 2380 case BTF_KIND_RESTRICT: return "restrict"; 2381 case BTF_KIND_FUNC: return "func"; 2382 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2383 case BTF_KIND_VAR: return "var"; 2384 case BTF_KIND_DATASEC: return "datasec"; 2385 case BTF_KIND_FLOAT: return "float"; 2386 case BTF_KIND_DECL_TAG: return "decl_tag"; 2387 case BTF_KIND_TYPE_TAG: return "type_tag"; 2388 case BTF_KIND_ENUM64: return "enum64"; 2389 default: return "unknown"; 2390 } 2391 } 2392 2393 const char *btf_kind_str(const struct btf_type *t) 2394 { 2395 return __btf_kind_str(btf_kind(t)); 2396 } 2397 2398 /* 2399 * Fetch integer attribute of BTF map definition. Such attributes are 2400 * represented using a pointer to an array, in which dimensionality of array 2401 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2402 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2403 * type definition, while using only sizeof(void *) space in ELF data section. 2404 */ 2405 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2406 const struct btf_member *m, __u32 *res) 2407 { 2408 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2409 const char *name = btf__name_by_offset(btf, m->name_off); 2410 const struct btf_array *arr_info; 2411 const struct btf_type *arr_t; 2412 2413 if (!btf_is_ptr(t)) { 2414 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2415 map_name, name, btf_kind_str(t)); 2416 return false; 2417 } 2418 2419 arr_t = btf__type_by_id(btf, t->type); 2420 if (!arr_t) { 2421 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2422 map_name, name, t->type); 2423 return false; 2424 } 2425 if (!btf_is_array(arr_t)) { 2426 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2427 map_name, name, btf_kind_str(arr_t)); 2428 return false; 2429 } 2430 arr_info = btf_array(arr_t); 2431 *res = arr_info->nelems; 2432 return true; 2433 } 2434 2435 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2436 const struct btf_member *m, __u64 *res) 2437 { 2438 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2439 const char *name = btf__name_by_offset(btf, m->name_off); 2440 2441 if (btf_is_ptr(t)) { 2442 __u32 res32; 2443 bool ret; 2444 2445 ret = get_map_field_int(map_name, btf, m, &res32); 2446 if (ret) 2447 *res = (__u64)res32; 2448 return ret; 2449 } 2450 2451 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2452 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2453 map_name, name, btf_kind_str(t)); 2454 return false; 2455 } 2456 2457 if (btf_vlen(t) != 1) { 2458 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2459 map_name, name); 2460 return false; 2461 } 2462 2463 if (btf_is_enum(t)) { 2464 const struct btf_enum *e = btf_enum(t); 2465 2466 *res = e->val; 2467 } else { 2468 const struct btf_enum64 *e = btf_enum64(t); 2469 2470 *res = btf_enum64_value(e); 2471 } 2472 return true; 2473 } 2474 2475 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2476 { 2477 int len; 2478 2479 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2480 if (len < 0) 2481 return -EINVAL; 2482 if (len >= buf_sz) 2483 return -ENAMETOOLONG; 2484 2485 return 0; 2486 } 2487 2488 static int build_map_pin_path(struct bpf_map *map, const char *path) 2489 { 2490 char buf[PATH_MAX]; 2491 int err; 2492 2493 if (!path) 2494 path = BPF_FS_DEFAULT_PATH; 2495 2496 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2497 if (err) 2498 return err; 2499 2500 return bpf_map__set_pin_path(map, buf); 2501 } 2502 2503 /* should match definition in bpf_helpers.h */ 2504 enum libbpf_pin_type { 2505 LIBBPF_PIN_NONE, 2506 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2507 LIBBPF_PIN_BY_NAME, 2508 }; 2509 2510 int parse_btf_map_def(const char *map_name, struct btf *btf, 2511 const struct btf_type *def_t, bool strict, 2512 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2513 { 2514 const struct btf_type *t; 2515 const struct btf_member *m; 2516 bool is_inner = inner_def == NULL; 2517 int vlen, i; 2518 2519 vlen = btf_vlen(def_t); 2520 m = btf_members(def_t); 2521 for (i = 0; i < vlen; i++, m++) { 2522 const char *name = btf__name_by_offset(btf, m->name_off); 2523 2524 if (!name) { 2525 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2526 return -EINVAL; 2527 } 2528 if (strcmp(name, "type") == 0) { 2529 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2530 return -EINVAL; 2531 map_def->parts |= MAP_DEF_MAP_TYPE; 2532 } else if (strcmp(name, "max_entries") == 0) { 2533 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2534 return -EINVAL; 2535 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2536 } else if (strcmp(name, "map_flags") == 0) { 2537 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2538 return -EINVAL; 2539 map_def->parts |= MAP_DEF_MAP_FLAGS; 2540 } else if (strcmp(name, "numa_node") == 0) { 2541 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2542 return -EINVAL; 2543 map_def->parts |= MAP_DEF_NUMA_NODE; 2544 } else if (strcmp(name, "key_size") == 0) { 2545 __u32 sz; 2546 2547 if (!get_map_field_int(map_name, btf, m, &sz)) 2548 return -EINVAL; 2549 if (map_def->key_size && map_def->key_size != sz) { 2550 pr_warn("map '%s': conflicting key size %u != %u.\n", 2551 map_name, map_def->key_size, sz); 2552 return -EINVAL; 2553 } 2554 map_def->key_size = sz; 2555 map_def->parts |= MAP_DEF_KEY_SIZE; 2556 } else if (strcmp(name, "key") == 0) { 2557 __s64 sz; 2558 2559 t = btf__type_by_id(btf, m->type); 2560 if (!t) { 2561 pr_warn("map '%s': key type [%d] not found.\n", 2562 map_name, m->type); 2563 return -EINVAL; 2564 } 2565 if (!btf_is_ptr(t)) { 2566 pr_warn("map '%s': key spec is not PTR: %s.\n", 2567 map_name, btf_kind_str(t)); 2568 return -EINVAL; 2569 } 2570 sz = btf__resolve_size(btf, t->type); 2571 if (sz < 0) { 2572 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2573 map_name, t->type, (ssize_t)sz); 2574 return sz; 2575 } 2576 if (map_def->key_size && map_def->key_size != sz) { 2577 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2578 map_name, map_def->key_size, (ssize_t)sz); 2579 return -EINVAL; 2580 } 2581 map_def->key_size = sz; 2582 map_def->key_type_id = t->type; 2583 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2584 } else if (strcmp(name, "value_size") == 0) { 2585 __u32 sz; 2586 2587 if (!get_map_field_int(map_name, btf, m, &sz)) 2588 return -EINVAL; 2589 if (map_def->value_size && map_def->value_size != sz) { 2590 pr_warn("map '%s': conflicting value size %u != %u.\n", 2591 map_name, map_def->value_size, sz); 2592 return -EINVAL; 2593 } 2594 map_def->value_size = sz; 2595 map_def->parts |= MAP_DEF_VALUE_SIZE; 2596 } else if (strcmp(name, "value") == 0) { 2597 __s64 sz; 2598 2599 t = btf__type_by_id(btf, m->type); 2600 if (!t) { 2601 pr_warn("map '%s': value type [%d] not found.\n", 2602 map_name, m->type); 2603 return -EINVAL; 2604 } 2605 if (!btf_is_ptr(t)) { 2606 pr_warn("map '%s': value spec is not PTR: %s.\n", 2607 map_name, btf_kind_str(t)); 2608 return -EINVAL; 2609 } 2610 sz = btf__resolve_size(btf, t->type); 2611 if (sz < 0) { 2612 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2613 map_name, t->type, (ssize_t)sz); 2614 return sz; 2615 } 2616 if (map_def->value_size && map_def->value_size != sz) { 2617 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2618 map_name, map_def->value_size, (ssize_t)sz); 2619 return -EINVAL; 2620 } 2621 map_def->value_size = sz; 2622 map_def->value_type_id = t->type; 2623 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2624 } 2625 else if (strcmp(name, "values") == 0) { 2626 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2627 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2628 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2629 char inner_map_name[128]; 2630 int err; 2631 2632 if (is_inner) { 2633 pr_warn("map '%s': multi-level inner maps not supported.\n", 2634 map_name); 2635 return -ENOTSUP; 2636 } 2637 if (i != vlen - 1) { 2638 pr_warn("map '%s': '%s' member should be last.\n", 2639 map_name, name); 2640 return -EINVAL; 2641 } 2642 if (!is_map_in_map && !is_prog_array) { 2643 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2644 map_name); 2645 return -ENOTSUP; 2646 } 2647 if (map_def->value_size && map_def->value_size != 4) { 2648 pr_warn("map '%s': conflicting value size %u != 4.\n", 2649 map_name, map_def->value_size); 2650 return -EINVAL; 2651 } 2652 map_def->value_size = 4; 2653 t = btf__type_by_id(btf, m->type); 2654 if (!t) { 2655 pr_warn("map '%s': %s type [%d] not found.\n", 2656 map_name, desc, m->type); 2657 return -EINVAL; 2658 } 2659 if (!btf_is_array(t) || btf_array(t)->nelems) { 2660 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2661 map_name, desc); 2662 return -EINVAL; 2663 } 2664 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2665 if (!btf_is_ptr(t)) { 2666 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2667 map_name, desc, btf_kind_str(t)); 2668 return -EINVAL; 2669 } 2670 t = skip_mods_and_typedefs(btf, t->type, NULL); 2671 if (is_prog_array) { 2672 if (!btf_is_func_proto(t)) { 2673 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2674 map_name, btf_kind_str(t)); 2675 return -EINVAL; 2676 } 2677 continue; 2678 } 2679 if (!btf_is_struct(t)) { 2680 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2681 map_name, btf_kind_str(t)); 2682 return -EINVAL; 2683 } 2684 2685 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2686 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2687 if (err) 2688 return err; 2689 2690 map_def->parts |= MAP_DEF_INNER_MAP; 2691 } else if (strcmp(name, "pinning") == 0) { 2692 __u32 val; 2693 2694 if (is_inner) { 2695 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2696 return -EINVAL; 2697 } 2698 if (!get_map_field_int(map_name, btf, m, &val)) 2699 return -EINVAL; 2700 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2701 pr_warn("map '%s': invalid pinning value %u.\n", 2702 map_name, val); 2703 return -EINVAL; 2704 } 2705 map_def->pinning = val; 2706 map_def->parts |= MAP_DEF_PINNING; 2707 } else if (strcmp(name, "map_extra") == 0) { 2708 __u64 map_extra; 2709 2710 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2711 return -EINVAL; 2712 map_def->map_extra = map_extra; 2713 map_def->parts |= MAP_DEF_MAP_EXTRA; 2714 } else { 2715 if (strict) { 2716 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2717 return -ENOTSUP; 2718 } 2719 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2720 } 2721 } 2722 2723 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2724 pr_warn("map '%s': map type isn't specified.\n", map_name); 2725 return -EINVAL; 2726 } 2727 2728 return 0; 2729 } 2730 2731 static size_t adjust_ringbuf_sz(size_t sz) 2732 { 2733 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2734 __u32 mul; 2735 2736 /* if user forgot to set any size, make sure they see error */ 2737 if (sz == 0) 2738 return 0; 2739 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2740 * a power-of-2 multiple of kernel's page size. If user diligently 2741 * satisified these conditions, pass the size through. 2742 */ 2743 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2744 return sz; 2745 2746 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2747 * user-set size to satisfy both user size request and kernel 2748 * requirements and substitute correct max_entries for map creation. 2749 */ 2750 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2751 if (mul * page_sz > sz) 2752 return mul * page_sz; 2753 } 2754 2755 /* if it's impossible to satisfy the conditions (i.e., user size is 2756 * very close to UINT_MAX but is not a power-of-2 multiple of 2757 * page_size) then just return original size and let kernel reject it 2758 */ 2759 return sz; 2760 } 2761 2762 static bool map_is_ringbuf(const struct bpf_map *map) 2763 { 2764 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2765 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2766 } 2767 2768 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2769 { 2770 map->def.type = def->map_type; 2771 map->def.key_size = def->key_size; 2772 map->def.value_size = def->value_size; 2773 map->def.max_entries = def->max_entries; 2774 map->def.map_flags = def->map_flags; 2775 map->map_extra = def->map_extra; 2776 2777 map->numa_node = def->numa_node; 2778 map->btf_key_type_id = def->key_type_id; 2779 map->btf_value_type_id = def->value_type_id; 2780 2781 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2782 if (map_is_ringbuf(map)) 2783 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2784 2785 if (def->parts & MAP_DEF_MAP_TYPE) 2786 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2787 2788 if (def->parts & MAP_DEF_KEY_TYPE) 2789 pr_debug("map '%s': found key [%u], sz = %u.\n", 2790 map->name, def->key_type_id, def->key_size); 2791 else if (def->parts & MAP_DEF_KEY_SIZE) 2792 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2793 2794 if (def->parts & MAP_DEF_VALUE_TYPE) 2795 pr_debug("map '%s': found value [%u], sz = %u.\n", 2796 map->name, def->value_type_id, def->value_size); 2797 else if (def->parts & MAP_DEF_VALUE_SIZE) 2798 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2799 2800 if (def->parts & MAP_DEF_MAX_ENTRIES) 2801 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2802 if (def->parts & MAP_DEF_MAP_FLAGS) 2803 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2804 if (def->parts & MAP_DEF_MAP_EXTRA) 2805 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2806 (unsigned long long)def->map_extra); 2807 if (def->parts & MAP_DEF_PINNING) 2808 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2809 if (def->parts & MAP_DEF_NUMA_NODE) 2810 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2811 2812 if (def->parts & MAP_DEF_INNER_MAP) 2813 pr_debug("map '%s': found inner map definition.\n", map->name); 2814 } 2815 2816 static const char *btf_var_linkage_str(__u32 linkage) 2817 { 2818 switch (linkage) { 2819 case BTF_VAR_STATIC: return "static"; 2820 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2821 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2822 default: return "unknown"; 2823 } 2824 } 2825 2826 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2827 const struct btf_type *sec, 2828 int var_idx, int sec_idx, 2829 const Elf_Data *data, bool strict, 2830 const char *pin_root_path) 2831 { 2832 struct btf_map_def map_def = {}, inner_def = {}; 2833 const struct btf_type *var, *def; 2834 const struct btf_var_secinfo *vi; 2835 const struct btf_var *var_extra; 2836 const char *map_name; 2837 struct bpf_map *map; 2838 int err; 2839 2840 vi = btf_var_secinfos(sec) + var_idx; 2841 var = btf__type_by_id(obj->btf, vi->type); 2842 var_extra = btf_var(var); 2843 map_name = btf__name_by_offset(obj->btf, var->name_off); 2844 2845 if (map_name == NULL || map_name[0] == '\0') { 2846 pr_warn("map #%d: empty name.\n", var_idx); 2847 return -EINVAL; 2848 } 2849 if ((__u64)vi->offset + vi->size > data->d_size) { 2850 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2851 return -EINVAL; 2852 } 2853 if (!btf_is_var(var)) { 2854 pr_warn("map '%s': unexpected var kind %s.\n", 2855 map_name, btf_kind_str(var)); 2856 return -EINVAL; 2857 } 2858 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2859 pr_warn("map '%s': unsupported map linkage %s.\n", 2860 map_name, btf_var_linkage_str(var_extra->linkage)); 2861 return -EOPNOTSUPP; 2862 } 2863 2864 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2865 if (!btf_is_struct(def)) { 2866 pr_warn("map '%s': unexpected def kind %s.\n", 2867 map_name, btf_kind_str(var)); 2868 return -EINVAL; 2869 } 2870 if (def->size > vi->size) { 2871 pr_warn("map '%s': invalid def size.\n", map_name); 2872 return -EINVAL; 2873 } 2874 2875 map = bpf_object__add_map(obj); 2876 if (IS_ERR(map)) 2877 return PTR_ERR(map); 2878 map->name = strdup(map_name); 2879 if (!map->name) { 2880 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2881 return -ENOMEM; 2882 } 2883 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2884 map->def.type = BPF_MAP_TYPE_UNSPEC; 2885 map->sec_idx = sec_idx; 2886 map->sec_offset = vi->offset; 2887 map->btf_var_idx = var_idx; 2888 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2889 map_name, map->sec_idx, map->sec_offset); 2890 2891 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2892 if (err) 2893 return err; 2894 2895 fill_map_from_def(map, &map_def); 2896 2897 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2898 err = build_map_pin_path(map, pin_root_path); 2899 if (err) { 2900 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2901 return err; 2902 } 2903 } 2904 2905 if (map_def.parts & MAP_DEF_INNER_MAP) { 2906 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2907 if (!map->inner_map) 2908 return -ENOMEM; 2909 map->inner_map->fd = create_placeholder_fd(); 2910 if (map->inner_map->fd < 0) 2911 return map->inner_map->fd; 2912 map->inner_map->sec_idx = sec_idx; 2913 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2914 if (!map->inner_map->name) 2915 return -ENOMEM; 2916 sprintf(map->inner_map->name, "%s.inner", map_name); 2917 2918 fill_map_from_def(map->inner_map, &inner_def); 2919 } 2920 2921 err = map_fill_btf_type_info(obj, map); 2922 if (err) 2923 return err; 2924 2925 return 0; 2926 } 2927 2928 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2929 const char *sec_name, int sec_idx, 2930 void *data, size_t data_sz) 2931 { 2932 const long page_sz = sysconf(_SC_PAGE_SIZE); 2933 size_t mmap_sz; 2934 2935 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2936 if (roundup(data_sz, page_sz) > mmap_sz) { 2937 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2938 sec_name, mmap_sz, data_sz); 2939 return -E2BIG; 2940 } 2941 2942 obj->arena_data = malloc(data_sz); 2943 if (!obj->arena_data) 2944 return -ENOMEM; 2945 memcpy(obj->arena_data, data, data_sz); 2946 obj->arena_data_sz = data_sz; 2947 2948 /* make bpf_map__init_value() work for ARENA maps */ 2949 map->mmaped = obj->arena_data; 2950 2951 return 0; 2952 } 2953 2954 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2955 const char *pin_root_path) 2956 { 2957 const struct btf_type *sec = NULL; 2958 int nr_types, i, vlen, err; 2959 const struct btf_type *t; 2960 const char *name; 2961 Elf_Data *data; 2962 Elf_Scn *scn; 2963 2964 if (obj->efile.btf_maps_shndx < 0) 2965 return 0; 2966 2967 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2968 data = elf_sec_data(obj, scn); 2969 if (!scn || !data) { 2970 pr_warn("elf: failed to get %s map definitions for %s\n", 2971 MAPS_ELF_SEC, obj->path); 2972 return -EINVAL; 2973 } 2974 2975 nr_types = btf__type_cnt(obj->btf); 2976 for (i = 1; i < nr_types; i++) { 2977 t = btf__type_by_id(obj->btf, i); 2978 if (!btf_is_datasec(t)) 2979 continue; 2980 name = btf__name_by_offset(obj->btf, t->name_off); 2981 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2982 sec = t; 2983 obj->efile.btf_maps_sec_btf_id = i; 2984 break; 2985 } 2986 } 2987 2988 if (!sec) { 2989 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2990 return -ENOENT; 2991 } 2992 2993 vlen = btf_vlen(sec); 2994 for (i = 0; i < vlen; i++) { 2995 err = bpf_object__init_user_btf_map(obj, sec, i, 2996 obj->efile.btf_maps_shndx, 2997 data, strict, 2998 pin_root_path); 2999 if (err) 3000 return err; 3001 } 3002 3003 for (i = 0; i < obj->nr_maps; i++) { 3004 struct bpf_map *map = &obj->maps[i]; 3005 3006 if (map->def.type != BPF_MAP_TYPE_ARENA) 3007 continue; 3008 3009 if (obj->arena_map) { 3010 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3011 map->name, obj->arena_map->name); 3012 return -EINVAL; 3013 } 3014 obj->arena_map = map; 3015 3016 if (obj->efile.arena_data) { 3017 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3018 obj->efile.arena_data->d_buf, 3019 obj->efile.arena_data->d_size); 3020 if (err) 3021 return err; 3022 } 3023 } 3024 if (obj->efile.arena_data && !obj->arena_map) { 3025 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3026 ARENA_SEC); 3027 return -ENOENT; 3028 } 3029 3030 return 0; 3031 } 3032 3033 static int bpf_object__init_maps(struct bpf_object *obj, 3034 const struct bpf_object_open_opts *opts) 3035 { 3036 const char *pin_root_path; 3037 bool strict; 3038 int err = 0; 3039 3040 strict = !OPTS_GET(opts, relaxed_maps, false); 3041 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3042 3043 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3044 err = err ?: bpf_object__init_global_data_maps(obj); 3045 err = err ?: bpf_object__init_kconfig_map(obj); 3046 err = err ?: bpf_object_init_struct_ops(obj); 3047 3048 return err; 3049 } 3050 3051 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3052 { 3053 Elf64_Shdr *sh; 3054 3055 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3056 if (!sh) 3057 return false; 3058 3059 return sh->sh_flags & SHF_EXECINSTR; 3060 } 3061 3062 static bool starts_with_qmark(const char *s) 3063 { 3064 return s && s[0] == '?'; 3065 } 3066 3067 static bool btf_needs_sanitization(struct bpf_object *obj) 3068 { 3069 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3070 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3071 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3072 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3073 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3074 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3075 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3076 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3077 3078 return !has_func || !has_datasec || !has_func_global || !has_float || 3079 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3080 } 3081 3082 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3083 { 3084 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3085 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3086 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3087 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3088 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3089 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3090 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3091 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3092 int enum64_placeholder_id = 0; 3093 struct btf_type *t; 3094 int i, j, vlen; 3095 3096 for (i = 1; i < btf__type_cnt(btf); i++) { 3097 t = (struct btf_type *)btf__type_by_id(btf, i); 3098 3099 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3100 /* replace VAR/DECL_TAG with INT */ 3101 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3102 /* 3103 * using size = 1 is the safest choice, 4 will be too 3104 * big and cause kernel BTF validation failure if 3105 * original variable took less than 4 bytes 3106 */ 3107 t->size = 1; 3108 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3109 } else if (!has_datasec && btf_is_datasec(t)) { 3110 /* replace DATASEC with STRUCT */ 3111 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3112 struct btf_member *m = btf_members(t); 3113 struct btf_type *vt; 3114 char *name; 3115 3116 name = (char *)btf__name_by_offset(btf, t->name_off); 3117 while (*name) { 3118 if (*name == '.' || *name == '?') 3119 *name = '_'; 3120 name++; 3121 } 3122 3123 vlen = btf_vlen(t); 3124 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3125 for (j = 0; j < vlen; j++, v++, m++) { 3126 /* order of field assignments is important */ 3127 m->offset = v->offset * 8; 3128 m->type = v->type; 3129 /* preserve variable name as member name */ 3130 vt = (void *)btf__type_by_id(btf, v->type); 3131 m->name_off = vt->name_off; 3132 } 3133 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3134 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3135 /* replace '?' prefix with '_' for DATASEC names */ 3136 char *name; 3137 3138 name = (char *)btf__name_by_offset(btf, t->name_off); 3139 if (name[0] == '?') 3140 name[0] = '_'; 3141 } else if (!has_func && btf_is_func_proto(t)) { 3142 /* replace FUNC_PROTO with ENUM */ 3143 vlen = btf_vlen(t); 3144 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3145 t->size = sizeof(__u32); /* kernel enforced */ 3146 } else if (!has_func && btf_is_func(t)) { 3147 /* replace FUNC with TYPEDEF */ 3148 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3149 } else if (!has_func_global && btf_is_func(t)) { 3150 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3151 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3152 } else if (!has_float && btf_is_float(t)) { 3153 /* replace FLOAT with an equally-sized empty STRUCT; 3154 * since C compilers do not accept e.g. "float" as a 3155 * valid struct name, make it anonymous 3156 */ 3157 t->name_off = 0; 3158 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3159 } else if (!has_type_tag && btf_is_type_tag(t)) { 3160 /* replace TYPE_TAG with a CONST */ 3161 t->name_off = 0; 3162 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3163 } else if (!has_enum64 && btf_is_enum(t)) { 3164 /* clear the kflag */ 3165 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3166 } else if (!has_enum64 && btf_is_enum64(t)) { 3167 /* replace ENUM64 with a union */ 3168 struct btf_member *m; 3169 3170 if (enum64_placeholder_id == 0) { 3171 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3172 if (enum64_placeholder_id < 0) 3173 return enum64_placeholder_id; 3174 3175 t = (struct btf_type *)btf__type_by_id(btf, i); 3176 } 3177 3178 m = btf_members(t); 3179 vlen = btf_vlen(t); 3180 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3181 for (j = 0; j < vlen; j++, m++) { 3182 m->type = enum64_placeholder_id; 3183 m->offset = 0; 3184 } 3185 } 3186 } 3187 3188 return 0; 3189 } 3190 3191 static bool libbpf_needs_btf(const struct bpf_object *obj) 3192 { 3193 return obj->efile.btf_maps_shndx >= 0 || 3194 obj->efile.has_st_ops || 3195 obj->nr_extern > 0; 3196 } 3197 3198 static bool kernel_needs_btf(const struct bpf_object *obj) 3199 { 3200 return obj->efile.has_st_ops; 3201 } 3202 3203 static int bpf_object__init_btf(struct bpf_object *obj, 3204 Elf_Data *btf_data, 3205 Elf_Data *btf_ext_data) 3206 { 3207 int err = -ENOENT; 3208 3209 if (btf_data) { 3210 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3211 err = libbpf_get_error(obj->btf); 3212 if (err) { 3213 obj->btf = NULL; 3214 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 3215 goto out; 3216 } 3217 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3218 btf__set_pointer_size(obj->btf, 8); 3219 } 3220 if (btf_ext_data) { 3221 struct btf_ext_info *ext_segs[3]; 3222 int seg_num, sec_num; 3223 3224 if (!obj->btf) { 3225 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3226 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3227 goto out; 3228 } 3229 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3230 err = libbpf_get_error(obj->btf_ext); 3231 if (err) { 3232 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 3233 BTF_EXT_ELF_SEC, err); 3234 obj->btf_ext = NULL; 3235 goto out; 3236 } 3237 3238 /* setup .BTF.ext to ELF section mapping */ 3239 ext_segs[0] = &obj->btf_ext->func_info; 3240 ext_segs[1] = &obj->btf_ext->line_info; 3241 ext_segs[2] = &obj->btf_ext->core_relo_info; 3242 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3243 struct btf_ext_info *seg = ext_segs[seg_num]; 3244 const struct btf_ext_info_sec *sec; 3245 const char *sec_name; 3246 Elf_Scn *scn; 3247 3248 if (seg->sec_cnt == 0) 3249 continue; 3250 3251 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3252 if (!seg->sec_idxs) { 3253 err = -ENOMEM; 3254 goto out; 3255 } 3256 3257 sec_num = 0; 3258 for_each_btf_ext_sec(seg, sec) { 3259 /* preventively increment index to avoid doing 3260 * this before every continue below 3261 */ 3262 sec_num++; 3263 3264 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3265 if (str_is_empty(sec_name)) 3266 continue; 3267 scn = elf_sec_by_name(obj, sec_name); 3268 if (!scn) 3269 continue; 3270 3271 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3272 } 3273 } 3274 } 3275 out: 3276 if (err && libbpf_needs_btf(obj)) { 3277 pr_warn("BTF is required, but is missing or corrupted.\n"); 3278 return err; 3279 } 3280 return 0; 3281 } 3282 3283 static int compare_vsi_off(const void *_a, const void *_b) 3284 { 3285 const struct btf_var_secinfo *a = _a; 3286 const struct btf_var_secinfo *b = _b; 3287 3288 return a->offset - b->offset; 3289 } 3290 3291 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3292 struct btf_type *t) 3293 { 3294 __u32 size = 0, i, vars = btf_vlen(t); 3295 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3296 struct btf_var_secinfo *vsi; 3297 bool fixup_offsets = false; 3298 int err; 3299 3300 if (!sec_name) { 3301 pr_debug("No name found in string section for DATASEC kind.\n"); 3302 return -ENOENT; 3303 } 3304 3305 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3306 * variable offsets set at the previous step. Further, not every 3307 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3308 * all fixups altogether for such sections and go straight to sorting 3309 * VARs within their DATASEC. 3310 */ 3311 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3312 goto sort_vars; 3313 3314 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3315 * fix this up. But BPF static linker already fixes this up and fills 3316 * all the sizes and offsets during static linking. So this step has 3317 * to be optional. But the STV_HIDDEN handling is non-optional for any 3318 * non-extern DATASEC, so the variable fixup loop below handles both 3319 * functions at the same time, paying the cost of BTF VAR <-> ELF 3320 * symbol matching just once. 3321 */ 3322 if (t->size == 0) { 3323 err = find_elf_sec_sz(obj, sec_name, &size); 3324 if (err || !size) { 3325 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 3326 sec_name, size, err); 3327 return -ENOENT; 3328 } 3329 3330 t->size = size; 3331 fixup_offsets = true; 3332 } 3333 3334 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3335 const struct btf_type *t_var; 3336 struct btf_var *var; 3337 const char *var_name; 3338 Elf64_Sym *sym; 3339 3340 t_var = btf__type_by_id(btf, vsi->type); 3341 if (!t_var || !btf_is_var(t_var)) { 3342 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3343 return -EINVAL; 3344 } 3345 3346 var = btf_var(t_var); 3347 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3348 continue; 3349 3350 var_name = btf__name_by_offset(btf, t_var->name_off); 3351 if (!var_name) { 3352 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3353 sec_name, i); 3354 return -ENOENT; 3355 } 3356 3357 sym = find_elf_var_sym(obj, var_name); 3358 if (IS_ERR(sym)) { 3359 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3360 sec_name, var_name); 3361 return -ENOENT; 3362 } 3363 3364 if (fixup_offsets) 3365 vsi->offset = sym->st_value; 3366 3367 /* if variable is a global/weak symbol, but has restricted 3368 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3369 * as static. This follows similar logic for functions (BPF 3370 * subprogs) and influences libbpf's further decisions about 3371 * whether to make global data BPF array maps as 3372 * BPF_F_MMAPABLE. 3373 */ 3374 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3375 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3376 var->linkage = BTF_VAR_STATIC; 3377 } 3378 3379 sort_vars: 3380 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3381 return 0; 3382 } 3383 3384 static int bpf_object_fixup_btf(struct bpf_object *obj) 3385 { 3386 int i, n, err = 0; 3387 3388 if (!obj->btf) 3389 return 0; 3390 3391 n = btf__type_cnt(obj->btf); 3392 for (i = 1; i < n; i++) { 3393 struct btf_type *t = btf_type_by_id(obj->btf, i); 3394 3395 /* Loader needs to fix up some of the things compiler 3396 * couldn't get its hands on while emitting BTF. This 3397 * is section size and global variable offset. We use 3398 * the info from the ELF itself for this purpose. 3399 */ 3400 if (btf_is_datasec(t)) { 3401 err = btf_fixup_datasec(obj, obj->btf, t); 3402 if (err) 3403 return err; 3404 } 3405 } 3406 3407 return 0; 3408 } 3409 3410 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3411 { 3412 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3413 prog->type == BPF_PROG_TYPE_LSM) 3414 return true; 3415 3416 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3417 * also need vmlinux BTF 3418 */ 3419 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3420 return true; 3421 3422 return false; 3423 } 3424 3425 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3426 { 3427 return bpf_map__is_struct_ops(map); 3428 } 3429 3430 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3431 { 3432 struct bpf_program *prog; 3433 struct bpf_map *map; 3434 int i; 3435 3436 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3437 * is not specified 3438 */ 3439 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3440 return true; 3441 3442 /* Support for typed ksyms needs kernel BTF */ 3443 for (i = 0; i < obj->nr_extern; i++) { 3444 const struct extern_desc *ext; 3445 3446 ext = &obj->externs[i]; 3447 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3448 return true; 3449 } 3450 3451 bpf_object__for_each_program(prog, obj) { 3452 if (!prog->autoload) 3453 continue; 3454 if (prog_needs_vmlinux_btf(prog)) 3455 return true; 3456 } 3457 3458 bpf_object__for_each_map(map, obj) { 3459 if (map_needs_vmlinux_btf(map)) 3460 return true; 3461 } 3462 3463 return false; 3464 } 3465 3466 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3467 { 3468 int err; 3469 3470 /* btf_vmlinux could be loaded earlier */ 3471 if (obj->btf_vmlinux || obj->gen_loader) 3472 return 0; 3473 3474 if (!force && !obj_needs_vmlinux_btf(obj)) 3475 return 0; 3476 3477 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3478 err = libbpf_get_error(obj->btf_vmlinux); 3479 if (err) { 3480 pr_warn("Error loading vmlinux BTF: %d\n", err); 3481 obj->btf_vmlinux = NULL; 3482 return err; 3483 } 3484 return 0; 3485 } 3486 3487 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3488 { 3489 struct btf *kern_btf = obj->btf; 3490 bool btf_mandatory, sanitize; 3491 int i, err = 0; 3492 3493 if (!obj->btf) 3494 return 0; 3495 3496 if (!kernel_supports(obj, FEAT_BTF)) { 3497 if (kernel_needs_btf(obj)) { 3498 err = -EOPNOTSUPP; 3499 goto report; 3500 } 3501 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3502 return 0; 3503 } 3504 3505 /* Even though some subprogs are global/weak, user might prefer more 3506 * permissive BPF verification process that BPF verifier performs for 3507 * static functions, taking into account more context from the caller 3508 * functions. In such case, they need to mark such subprogs with 3509 * __attribute__((visibility("hidden"))) and libbpf will adjust 3510 * corresponding FUNC BTF type to be marked as static and trigger more 3511 * involved BPF verification process. 3512 */ 3513 for (i = 0; i < obj->nr_programs; i++) { 3514 struct bpf_program *prog = &obj->programs[i]; 3515 struct btf_type *t; 3516 const char *name; 3517 int j, n; 3518 3519 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3520 continue; 3521 3522 n = btf__type_cnt(obj->btf); 3523 for (j = 1; j < n; j++) { 3524 t = btf_type_by_id(obj->btf, j); 3525 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3526 continue; 3527 3528 name = btf__str_by_offset(obj->btf, t->name_off); 3529 if (strcmp(name, prog->name) != 0) 3530 continue; 3531 3532 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3533 break; 3534 } 3535 } 3536 3537 sanitize = btf_needs_sanitization(obj); 3538 if (sanitize) { 3539 const void *raw_data; 3540 __u32 sz; 3541 3542 /* clone BTF to sanitize a copy and leave the original intact */ 3543 raw_data = btf__raw_data(obj->btf, &sz); 3544 kern_btf = btf__new(raw_data, sz); 3545 err = libbpf_get_error(kern_btf); 3546 if (err) 3547 return err; 3548 3549 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3550 btf__set_pointer_size(obj->btf, 8); 3551 err = bpf_object__sanitize_btf(obj, kern_btf); 3552 if (err) 3553 return err; 3554 } 3555 3556 if (obj->gen_loader) { 3557 __u32 raw_size = 0; 3558 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3559 3560 if (!raw_data) 3561 return -ENOMEM; 3562 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3563 /* Pretend to have valid FD to pass various fd >= 0 checks. 3564 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3565 */ 3566 btf__set_fd(kern_btf, 0); 3567 } else { 3568 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3569 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3570 obj->log_level ? 1 : 0, obj->token_fd); 3571 } 3572 if (sanitize) { 3573 if (!err) { 3574 /* move fd to libbpf's BTF */ 3575 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3576 btf__set_fd(kern_btf, -1); 3577 } 3578 btf__free(kern_btf); 3579 } 3580 report: 3581 if (err) { 3582 btf_mandatory = kernel_needs_btf(obj); 3583 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3584 btf_mandatory ? "BTF is mandatory, can't proceed." 3585 : "BTF is optional, ignoring."); 3586 if (!btf_mandatory) 3587 err = 0; 3588 } 3589 return err; 3590 } 3591 3592 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3593 { 3594 const char *name; 3595 3596 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3597 if (!name) { 3598 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3599 off, obj->path, elf_errmsg(-1)); 3600 return NULL; 3601 } 3602 3603 return name; 3604 } 3605 3606 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3607 { 3608 const char *name; 3609 3610 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3611 if (!name) { 3612 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3613 off, obj->path, elf_errmsg(-1)); 3614 return NULL; 3615 } 3616 3617 return name; 3618 } 3619 3620 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3621 { 3622 Elf_Scn *scn; 3623 3624 scn = elf_getscn(obj->efile.elf, idx); 3625 if (!scn) { 3626 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3627 idx, obj->path, elf_errmsg(-1)); 3628 return NULL; 3629 } 3630 return scn; 3631 } 3632 3633 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3634 { 3635 Elf_Scn *scn = NULL; 3636 Elf *elf = obj->efile.elf; 3637 const char *sec_name; 3638 3639 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3640 sec_name = elf_sec_name(obj, scn); 3641 if (!sec_name) 3642 return NULL; 3643 3644 if (strcmp(sec_name, name) != 0) 3645 continue; 3646 3647 return scn; 3648 } 3649 return NULL; 3650 } 3651 3652 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3653 { 3654 Elf64_Shdr *shdr; 3655 3656 if (!scn) 3657 return NULL; 3658 3659 shdr = elf64_getshdr(scn); 3660 if (!shdr) { 3661 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3662 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3663 return NULL; 3664 } 3665 3666 return shdr; 3667 } 3668 3669 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3670 { 3671 const char *name; 3672 Elf64_Shdr *sh; 3673 3674 if (!scn) 3675 return NULL; 3676 3677 sh = elf_sec_hdr(obj, scn); 3678 if (!sh) 3679 return NULL; 3680 3681 name = elf_sec_str(obj, sh->sh_name); 3682 if (!name) { 3683 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3684 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3685 return NULL; 3686 } 3687 3688 return name; 3689 } 3690 3691 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3692 { 3693 Elf_Data *data; 3694 3695 if (!scn) 3696 return NULL; 3697 3698 data = elf_getdata(scn, 0); 3699 if (!data) { 3700 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3701 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3702 obj->path, elf_errmsg(-1)); 3703 return NULL; 3704 } 3705 3706 return data; 3707 } 3708 3709 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3710 { 3711 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3712 return NULL; 3713 3714 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3715 } 3716 3717 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3718 { 3719 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3720 return NULL; 3721 3722 return (Elf64_Rel *)data->d_buf + idx; 3723 } 3724 3725 static bool is_sec_name_dwarf(const char *name) 3726 { 3727 /* approximation, but the actual list is too long */ 3728 return str_has_pfx(name, ".debug_"); 3729 } 3730 3731 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3732 { 3733 /* no special handling of .strtab */ 3734 if (hdr->sh_type == SHT_STRTAB) 3735 return true; 3736 3737 /* ignore .llvm_addrsig section as well */ 3738 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3739 return true; 3740 3741 /* no subprograms will lead to an empty .text section, ignore it */ 3742 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3743 strcmp(name, ".text") == 0) 3744 return true; 3745 3746 /* DWARF sections */ 3747 if (is_sec_name_dwarf(name)) 3748 return true; 3749 3750 if (str_has_pfx(name, ".rel")) { 3751 name += sizeof(".rel") - 1; 3752 /* DWARF section relocations */ 3753 if (is_sec_name_dwarf(name)) 3754 return true; 3755 3756 /* .BTF and .BTF.ext don't need relocations */ 3757 if (strcmp(name, BTF_ELF_SEC) == 0 || 3758 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3759 return true; 3760 } 3761 3762 return false; 3763 } 3764 3765 static int cmp_progs(const void *_a, const void *_b) 3766 { 3767 const struct bpf_program *a = _a; 3768 const struct bpf_program *b = _b; 3769 3770 if (a->sec_idx != b->sec_idx) 3771 return a->sec_idx < b->sec_idx ? -1 : 1; 3772 3773 /* sec_insn_off can't be the same within the section */ 3774 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3775 } 3776 3777 static int bpf_object__elf_collect(struct bpf_object *obj) 3778 { 3779 struct elf_sec_desc *sec_desc; 3780 Elf *elf = obj->efile.elf; 3781 Elf_Data *btf_ext_data = NULL; 3782 Elf_Data *btf_data = NULL; 3783 int idx = 0, err = 0; 3784 const char *name; 3785 Elf_Data *data; 3786 Elf_Scn *scn; 3787 Elf64_Shdr *sh; 3788 3789 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3790 * section. Since section count retrieved by elf_getshdrnum() does 3791 * include sec #0, it is already the necessary size of an array to keep 3792 * all the sections. 3793 */ 3794 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3795 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3796 obj->path, elf_errmsg(-1)); 3797 return -LIBBPF_ERRNO__FORMAT; 3798 } 3799 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3800 if (!obj->efile.secs) 3801 return -ENOMEM; 3802 3803 /* a bunch of ELF parsing functionality depends on processing symbols, 3804 * so do the first pass and find the symbol table 3805 */ 3806 scn = NULL; 3807 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3808 sh = elf_sec_hdr(obj, scn); 3809 if (!sh) 3810 return -LIBBPF_ERRNO__FORMAT; 3811 3812 if (sh->sh_type == SHT_SYMTAB) { 3813 if (obj->efile.symbols) { 3814 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3815 return -LIBBPF_ERRNO__FORMAT; 3816 } 3817 3818 data = elf_sec_data(obj, scn); 3819 if (!data) 3820 return -LIBBPF_ERRNO__FORMAT; 3821 3822 idx = elf_ndxscn(scn); 3823 3824 obj->efile.symbols = data; 3825 obj->efile.symbols_shndx = idx; 3826 obj->efile.strtabidx = sh->sh_link; 3827 } 3828 } 3829 3830 if (!obj->efile.symbols) { 3831 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3832 obj->path); 3833 return -ENOENT; 3834 } 3835 3836 scn = NULL; 3837 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3838 idx = elf_ndxscn(scn); 3839 sec_desc = &obj->efile.secs[idx]; 3840 3841 sh = elf_sec_hdr(obj, scn); 3842 if (!sh) 3843 return -LIBBPF_ERRNO__FORMAT; 3844 3845 name = elf_sec_str(obj, sh->sh_name); 3846 if (!name) 3847 return -LIBBPF_ERRNO__FORMAT; 3848 3849 if (ignore_elf_section(sh, name)) 3850 continue; 3851 3852 data = elf_sec_data(obj, scn); 3853 if (!data) 3854 return -LIBBPF_ERRNO__FORMAT; 3855 3856 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3857 idx, name, (unsigned long)data->d_size, 3858 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3859 (int)sh->sh_type); 3860 3861 if (strcmp(name, "license") == 0) { 3862 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3863 if (err) 3864 return err; 3865 } else if (strcmp(name, "version") == 0) { 3866 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3867 if (err) 3868 return err; 3869 } else if (strcmp(name, "maps") == 0) { 3870 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3871 return -ENOTSUP; 3872 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3873 obj->efile.btf_maps_shndx = idx; 3874 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3875 if (sh->sh_type != SHT_PROGBITS) 3876 return -LIBBPF_ERRNO__FORMAT; 3877 btf_data = data; 3878 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3879 if (sh->sh_type != SHT_PROGBITS) 3880 return -LIBBPF_ERRNO__FORMAT; 3881 btf_ext_data = data; 3882 } else if (sh->sh_type == SHT_SYMTAB) { 3883 /* already processed during the first pass above */ 3884 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3885 if (sh->sh_flags & SHF_EXECINSTR) { 3886 if (strcmp(name, ".text") == 0) 3887 obj->efile.text_shndx = idx; 3888 err = bpf_object__add_programs(obj, data, name, idx); 3889 if (err) 3890 return err; 3891 } else if (strcmp(name, DATA_SEC) == 0 || 3892 str_has_pfx(name, DATA_SEC ".")) { 3893 sec_desc->sec_type = SEC_DATA; 3894 sec_desc->shdr = sh; 3895 sec_desc->data = data; 3896 } else if (strcmp(name, RODATA_SEC) == 0 || 3897 str_has_pfx(name, RODATA_SEC ".")) { 3898 sec_desc->sec_type = SEC_RODATA; 3899 sec_desc->shdr = sh; 3900 sec_desc->data = data; 3901 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3902 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3903 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3904 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3905 sec_desc->sec_type = SEC_ST_OPS; 3906 sec_desc->shdr = sh; 3907 sec_desc->data = data; 3908 obj->efile.has_st_ops = true; 3909 } else if (strcmp(name, ARENA_SEC) == 0) { 3910 obj->efile.arena_data = data; 3911 obj->efile.arena_data_shndx = idx; 3912 } else { 3913 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3914 idx, name); 3915 } 3916 } else if (sh->sh_type == SHT_REL) { 3917 int targ_sec_idx = sh->sh_info; /* points to other section */ 3918 3919 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3920 targ_sec_idx >= obj->efile.sec_cnt) 3921 return -LIBBPF_ERRNO__FORMAT; 3922 3923 /* Only do relo for section with exec instructions */ 3924 if (!section_have_execinstr(obj, targ_sec_idx) && 3925 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3926 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3927 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3928 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3929 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3930 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3931 idx, name, targ_sec_idx, 3932 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3933 continue; 3934 } 3935 3936 sec_desc->sec_type = SEC_RELO; 3937 sec_desc->shdr = sh; 3938 sec_desc->data = data; 3939 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3940 str_has_pfx(name, BSS_SEC "."))) { 3941 sec_desc->sec_type = SEC_BSS; 3942 sec_desc->shdr = sh; 3943 sec_desc->data = data; 3944 } else { 3945 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3946 (size_t)sh->sh_size); 3947 } 3948 } 3949 3950 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3951 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3952 return -LIBBPF_ERRNO__FORMAT; 3953 } 3954 3955 /* sort BPF programs by section name and in-section instruction offset 3956 * for faster search 3957 */ 3958 if (obj->nr_programs) 3959 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3960 3961 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3962 } 3963 3964 static bool sym_is_extern(const Elf64_Sym *sym) 3965 { 3966 int bind = ELF64_ST_BIND(sym->st_info); 3967 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3968 return sym->st_shndx == SHN_UNDEF && 3969 (bind == STB_GLOBAL || bind == STB_WEAK) && 3970 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3971 } 3972 3973 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3974 { 3975 int bind = ELF64_ST_BIND(sym->st_info); 3976 int type = ELF64_ST_TYPE(sym->st_info); 3977 3978 /* in .text section */ 3979 if (sym->st_shndx != text_shndx) 3980 return false; 3981 3982 /* local function */ 3983 if (bind == STB_LOCAL && type == STT_SECTION) 3984 return true; 3985 3986 /* global function */ 3987 return bind == STB_GLOBAL && type == STT_FUNC; 3988 } 3989 3990 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3991 { 3992 const struct btf_type *t; 3993 const char *tname; 3994 int i, n; 3995 3996 if (!btf) 3997 return -ESRCH; 3998 3999 n = btf__type_cnt(btf); 4000 for (i = 1; i < n; i++) { 4001 t = btf__type_by_id(btf, i); 4002 4003 if (!btf_is_var(t) && !btf_is_func(t)) 4004 continue; 4005 4006 tname = btf__name_by_offset(btf, t->name_off); 4007 if (strcmp(tname, ext_name)) 4008 continue; 4009 4010 if (btf_is_var(t) && 4011 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4012 return -EINVAL; 4013 4014 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4015 return -EINVAL; 4016 4017 return i; 4018 } 4019 4020 return -ENOENT; 4021 } 4022 4023 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4024 const struct btf_var_secinfo *vs; 4025 const struct btf_type *t; 4026 int i, j, n; 4027 4028 if (!btf) 4029 return -ESRCH; 4030 4031 n = btf__type_cnt(btf); 4032 for (i = 1; i < n; i++) { 4033 t = btf__type_by_id(btf, i); 4034 4035 if (!btf_is_datasec(t)) 4036 continue; 4037 4038 vs = btf_var_secinfos(t); 4039 for (j = 0; j < btf_vlen(t); j++, vs++) { 4040 if (vs->type == ext_btf_id) 4041 return i; 4042 } 4043 } 4044 4045 return -ENOENT; 4046 } 4047 4048 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4049 bool *is_signed) 4050 { 4051 const struct btf_type *t; 4052 const char *name; 4053 4054 t = skip_mods_and_typedefs(btf, id, NULL); 4055 name = btf__name_by_offset(btf, t->name_off); 4056 4057 if (is_signed) 4058 *is_signed = false; 4059 switch (btf_kind(t)) { 4060 case BTF_KIND_INT: { 4061 int enc = btf_int_encoding(t); 4062 4063 if (enc & BTF_INT_BOOL) 4064 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4065 if (is_signed) 4066 *is_signed = enc & BTF_INT_SIGNED; 4067 if (t->size == 1) 4068 return KCFG_CHAR; 4069 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4070 return KCFG_UNKNOWN; 4071 return KCFG_INT; 4072 } 4073 case BTF_KIND_ENUM: 4074 if (t->size != 4) 4075 return KCFG_UNKNOWN; 4076 if (strcmp(name, "libbpf_tristate")) 4077 return KCFG_UNKNOWN; 4078 return KCFG_TRISTATE; 4079 case BTF_KIND_ENUM64: 4080 if (strcmp(name, "libbpf_tristate")) 4081 return KCFG_UNKNOWN; 4082 return KCFG_TRISTATE; 4083 case BTF_KIND_ARRAY: 4084 if (btf_array(t)->nelems == 0) 4085 return KCFG_UNKNOWN; 4086 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4087 return KCFG_UNKNOWN; 4088 return KCFG_CHAR_ARR; 4089 default: 4090 return KCFG_UNKNOWN; 4091 } 4092 } 4093 4094 static int cmp_externs(const void *_a, const void *_b) 4095 { 4096 const struct extern_desc *a = _a; 4097 const struct extern_desc *b = _b; 4098 4099 if (a->type != b->type) 4100 return a->type < b->type ? -1 : 1; 4101 4102 if (a->type == EXT_KCFG) { 4103 /* descending order by alignment requirements */ 4104 if (a->kcfg.align != b->kcfg.align) 4105 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4106 /* ascending order by size, within same alignment class */ 4107 if (a->kcfg.sz != b->kcfg.sz) 4108 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4109 } 4110 4111 /* resolve ties by name */ 4112 return strcmp(a->name, b->name); 4113 } 4114 4115 static int find_int_btf_id(const struct btf *btf) 4116 { 4117 const struct btf_type *t; 4118 int i, n; 4119 4120 n = btf__type_cnt(btf); 4121 for (i = 1; i < n; i++) { 4122 t = btf__type_by_id(btf, i); 4123 4124 if (btf_is_int(t) && btf_int_bits(t) == 32) 4125 return i; 4126 } 4127 4128 return 0; 4129 } 4130 4131 static int add_dummy_ksym_var(struct btf *btf) 4132 { 4133 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4134 const struct btf_var_secinfo *vs; 4135 const struct btf_type *sec; 4136 4137 if (!btf) 4138 return 0; 4139 4140 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4141 BTF_KIND_DATASEC); 4142 if (sec_btf_id < 0) 4143 return 0; 4144 4145 sec = btf__type_by_id(btf, sec_btf_id); 4146 vs = btf_var_secinfos(sec); 4147 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4148 const struct btf_type *vt; 4149 4150 vt = btf__type_by_id(btf, vs->type); 4151 if (btf_is_func(vt)) 4152 break; 4153 } 4154 4155 /* No func in ksyms sec. No need to add dummy var. */ 4156 if (i == btf_vlen(sec)) 4157 return 0; 4158 4159 int_btf_id = find_int_btf_id(btf); 4160 dummy_var_btf_id = btf__add_var(btf, 4161 "dummy_ksym", 4162 BTF_VAR_GLOBAL_ALLOCATED, 4163 int_btf_id); 4164 if (dummy_var_btf_id < 0) 4165 pr_warn("cannot create a dummy_ksym var\n"); 4166 4167 return dummy_var_btf_id; 4168 } 4169 4170 static int bpf_object__collect_externs(struct bpf_object *obj) 4171 { 4172 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4173 const struct btf_type *t; 4174 struct extern_desc *ext; 4175 int i, n, off, dummy_var_btf_id; 4176 const char *ext_name, *sec_name; 4177 size_t ext_essent_len; 4178 Elf_Scn *scn; 4179 Elf64_Shdr *sh; 4180 4181 if (!obj->efile.symbols) 4182 return 0; 4183 4184 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4185 sh = elf_sec_hdr(obj, scn); 4186 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4187 return -LIBBPF_ERRNO__FORMAT; 4188 4189 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4190 if (dummy_var_btf_id < 0) 4191 return dummy_var_btf_id; 4192 4193 n = sh->sh_size / sh->sh_entsize; 4194 pr_debug("looking for externs among %d symbols...\n", n); 4195 4196 for (i = 0; i < n; i++) { 4197 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4198 4199 if (!sym) 4200 return -LIBBPF_ERRNO__FORMAT; 4201 if (!sym_is_extern(sym)) 4202 continue; 4203 ext_name = elf_sym_str(obj, sym->st_name); 4204 if (!ext_name || !ext_name[0]) 4205 continue; 4206 4207 ext = obj->externs; 4208 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4209 if (!ext) 4210 return -ENOMEM; 4211 obj->externs = ext; 4212 ext = &ext[obj->nr_extern]; 4213 memset(ext, 0, sizeof(*ext)); 4214 obj->nr_extern++; 4215 4216 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4217 if (ext->btf_id <= 0) { 4218 pr_warn("failed to find BTF for extern '%s': %d\n", 4219 ext_name, ext->btf_id); 4220 return ext->btf_id; 4221 } 4222 t = btf__type_by_id(obj->btf, ext->btf_id); 4223 ext->name = btf__name_by_offset(obj->btf, t->name_off); 4224 ext->sym_idx = i; 4225 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4226 4227 ext_essent_len = bpf_core_essential_name_len(ext->name); 4228 ext->essent_name = NULL; 4229 if (ext_essent_len != strlen(ext->name)) { 4230 ext->essent_name = strndup(ext->name, ext_essent_len); 4231 if (!ext->essent_name) 4232 return -ENOMEM; 4233 } 4234 4235 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4236 if (ext->sec_btf_id <= 0) { 4237 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4238 ext_name, ext->btf_id, ext->sec_btf_id); 4239 return ext->sec_btf_id; 4240 } 4241 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4242 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4243 4244 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4245 if (btf_is_func(t)) { 4246 pr_warn("extern function %s is unsupported under %s section\n", 4247 ext->name, KCONFIG_SEC); 4248 return -ENOTSUP; 4249 } 4250 kcfg_sec = sec; 4251 ext->type = EXT_KCFG; 4252 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4253 if (ext->kcfg.sz <= 0) { 4254 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4255 ext_name, ext->kcfg.sz); 4256 return ext->kcfg.sz; 4257 } 4258 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4259 if (ext->kcfg.align <= 0) { 4260 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4261 ext_name, ext->kcfg.align); 4262 return -EINVAL; 4263 } 4264 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4265 &ext->kcfg.is_signed); 4266 if (ext->kcfg.type == KCFG_UNKNOWN) { 4267 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4268 return -ENOTSUP; 4269 } 4270 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4271 ksym_sec = sec; 4272 ext->type = EXT_KSYM; 4273 skip_mods_and_typedefs(obj->btf, t->type, 4274 &ext->ksym.type_id); 4275 } else { 4276 pr_warn("unrecognized extern section '%s'\n", sec_name); 4277 return -ENOTSUP; 4278 } 4279 } 4280 pr_debug("collected %d externs total\n", obj->nr_extern); 4281 4282 if (!obj->nr_extern) 4283 return 0; 4284 4285 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4286 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4287 4288 /* for .ksyms section, we need to turn all externs into allocated 4289 * variables in BTF to pass kernel verification; we do this by 4290 * pretending that each extern is a 8-byte variable 4291 */ 4292 if (ksym_sec) { 4293 /* find existing 4-byte integer type in BTF to use for fake 4294 * extern variables in DATASEC 4295 */ 4296 int int_btf_id = find_int_btf_id(obj->btf); 4297 /* For extern function, a dummy_var added earlier 4298 * will be used to replace the vs->type and 4299 * its name string will be used to refill 4300 * the missing param's name. 4301 */ 4302 const struct btf_type *dummy_var; 4303 4304 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4305 for (i = 0; i < obj->nr_extern; i++) { 4306 ext = &obj->externs[i]; 4307 if (ext->type != EXT_KSYM) 4308 continue; 4309 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4310 i, ext->sym_idx, ext->name); 4311 } 4312 4313 sec = ksym_sec; 4314 n = btf_vlen(sec); 4315 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4316 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4317 struct btf_type *vt; 4318 4319 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4320 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4321 ext = find_extern_by_name(obj, ext_name); 4322 if (!ext) { 4323 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4324 btf_kind_str(vt), ext_name); 4325 return -ESRCH; 4326 } 4327 if (btf_is_func(vt)) { 4328 const struct btf_type *func_proto; 4329 struct btf_param *param; 4330 int j; 4331 4332 func_proto = btf__type_by_id(obj->btf, 4333 vt->type); 4334 param = btf_params(func_proto); 4335 /* Reuse the dummy_var string if the 4336 * func proto does not have param name. 4337 */ 4338 for (j = 0; j < btf_vlen(func_proto); j++) 4339 if (param[j].type && !param[j].name_off) 4340 param[j].name_off = 4341 dummy_var->name_off; 4342 vs->type = dummy_var_btf_id; 4343 vt->info &= ~0xffff; 4344 vt->info |= BTF_FUNC_GLOBAL; 4345 } else { 4346 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4347 vt->type = int_btf_id; 4348 } 4349 vs->offset = off; 4350 vs->size = sizeof(int); 4351 } 4352 sec->size = off; 4353 } 4354 4355 if (kcfg_sec) { 4356 sec = kcfg_sec; 4357 /* for kcfg externs calculate their offsets within a .kconfig map */ 4358 off = 0; 4359 for (i = 0; i < obj->nr_extern; i++) { 4360 ext = &obj->externs[i]; 4361 if (ext->type != EXT_KCFG) 4362 continue; 4363 4364 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4365 off = ext->kcfg.data_off + ext->kcfg.sz; 4366 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4367 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4368 } 4369 sec->size = off; 4370 n = btf_vlen(sec); 4371 for (i = 0; i < n; i++) { 4372 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4373 4374 t = btf__type_by_id(obj->btf, vs->type); 4375 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4376 ext = find_extern_by_name(obj, ext_name); 4377 if (!ext) { 4378 pr_warn("failed to find extern definition for BTF var '%s'\n", 4379 ext_name); 4380 return -ESRCH; 4381 } 4382 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4383 vs->offset = ext->kcfg.data_off; 4384 } 4385 } 4386 return 0; 4387 } 4388 4389 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4390 { 4391 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4392 } 4393 4394 struct bpf_program * 4395 bpf_object__find_program_by_name(const struct bpf_object *obj, 4396 const char *name) 4397 { 4398 struct bpf_program *prog; 4399 4400 bpf_object__for_each_program(prog, obj) { 4401 if (prog_is_subprog(obj, prog)) 4402 continue; 4403 if (!strcmp(prog->name, name)) 4404 return prog; 4405 } 4406 return errno = ENOENT, NULL; 4407 } 4408 4409 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4410 int shndx) 4411 { 4412 switch (obj->efile.secs[shndx].sec_type) { 4413 case SEC_BSS: 4414 case SEC_DATA: 4415 case SEC_RODATA: 4416 return true; 4417 default: 4418 return false; 4419 } 4420 } 4421 4422 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4423 int shndx) 4424 { 4425 return shndx == obj->efile.btf_maps_shndx; 4426 } 4427 4428 static enum libbpf_map_type 4429 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4430 { 4431 if (shndx == obj->efile.symbols_shndx) 4432 return LIBBPF_MAP_KCONFIG; 4433 4434 switch (obj->efile.secs[shndx].sec_type) { 4435 case SEC_BSS: 4436 return LIBBPF_MAP_BSS; 4437 case SEC_DATA: 4438 return LIBBPF_MAP_DATA; 4439 case SEC_RODATA: 4440 return LIBBPF_MAP_RODATA; 4441 default: 4442 return LIBBPF_MAP_UNSPEC; 4443 } 4444 } 4445 4446 static int bpf_program__record_reloc(struct bpf_program *prog, 4447 struct reloc_desc *reloc_desc, 4448 __u32 insn_idx, const char *sym_name, 4449 const Elf64_Sym *sym, const Elf64_Rel *rel) 4450 { 4451 struct bpf_insn *insn = &prog->insns[insn_idx]; 4452 size_t map_idx, nr_maps = prog->obj->nr_maps; 4453 struct bpf_object *obj = prog->obj; 4454 __u32 shdr_idx = sym->st_shndx; 4455 enum libbpf_map_type type; 4456 const char *sym_sec_name; 4457 struct bpf_map *map; 4458 4459 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4460 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4461 prog->name, sym_name, insn_idx, insn->code); 4462 return -LIBBPF_ERRNO__RELOC; 4463 } 4464 4465 if (sym_is_extern(sym)) { 4466 int sym_idx = ELF64_R_SYM(rel->r_info); 4467 int i, n = obj->nr_extern; 4468 struct extern_desc *ext; 4469 4470 for (i = 0; i < n; i++) { 4471 ext = &obj->externs[i]; 4472 if (ext->sym_idx == sym_idx) 4473 break; 4474 } 4475 if (i >= n) { 4476 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4477 prog->name, sym_name, sym_idx); 4478 return -LIBBPF_ERRNO__RELOC; 4479 } 4480 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4481 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4482 if (insn->code == (BPF_JMP | BPF_CALL)) 4483 reloc_desc->type = RELO_EXTERN_CALL; 4484 else 4485 reloc_desc->type = RELO_EXTERN_LD64; 4486 reloc_desc->insn_idx = insn_idx; 4487 reloc_desc->ext_idx = i; 4488 return 0; 4489 } 4490 4491 /* sub-program call relocation */ 4492 if (is_call_insn(insn)) { 4493 if (insn->src_reg != BPF_PSEUDO_CALL) { 4494 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4495 return -LIBBPF_ERRNO__RELOC; 4496 } 4497 /* text_shndx can be 0, if no default "main" program exists */ 4498 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4499 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4500 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4501 prog->name, sym_name, sym_sec_name); 4502 return -LIBBPF_ERRNO__RELOC; 4503 } 4504 if (sym->st_value % BPF_INSN_SZ) { 4505 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4506 prog->name, sym_name, (size_t)sym->st_value); 4507 return -LIBBPF_ERRNO__RELOC; 4508 } 4509 reloc_desc->type = RELO_CALL; 4510 reloc_desc->insn_idx = insn_idx; 4511 reloc_desc->sym_off = sym->st_value; 4512 return 0; 4513 } 4514 4515 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4516 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4517 prog->name, sym_name, shdr_idx); 4518 return -LIBBPF_ERRNO__RELOC; 4519 } 4520 4521 /* loading subprog addresses */ 4522 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4523 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4524 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4525 */ 4526 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4527 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4528 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4529 return -LIBBPF_ERRNO__RELOC; 4530 } 4531 4532 reloc_desc->type = RELO_SUBPROG_ADDR; 4533 reloc_desc->insn_idx = insn_idx; 4534 reloc_desc->sym_off = sym->st_value; 4535 return 0; 4536 } 4537 4538 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4539 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4540 4541 /* arena data relocation */ 4542 if (shdr_idx == obj->efile.arena_data_shndx) { 4543 reloc_desc->type = RELO_DATA; 4544 reloc_desc->insn_idx = insn_idx; 4545 reloc_desc->map_idx = obj->arena_map - obj->maps; 4546 reloc_desc->sym_off = sym->st_value; 4547 return 0; 4548 } 4549 4550 /* generic map reference relocation */ 4551 if (type == LIBBPF_MAP_UNSPEC) { 4552 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4553 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4554 prog->name, sym_name, sym_sec_name); 4555 return -LIBBPF_ERRNO__RELOC; 4556 } 4557 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4558 map = &obj->maps[map_idx]; 4559 if (map->libbpf_type != type || 4560 map->sec_idx != sym->st_shndx || 4561 map->sec_offset != sym->st_value) 4562 continue; 4563 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4564 prog->name, map_idx, map->name, map->sec_idx, 4565 map->sec_offset, insn_idx); 4566 break; 4567 } 4568 if (map_idx >= nr_maps) { 4569 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4570 prog->name, sym_sec_name, (size_t)sym->st_value); 4571 return -LIBBPF_ERRNO__RELOC; 4572 } 4573 reloc_desc->type = RELO_LD64; 4574 reloc_desc->insn_idx = insn_idx; 4575 reloc_desc->map_idx = map_idx; 4576 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4577 return 0; 4578 } 4579 4580 /* global data map relocation */ 4581 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4582 pr_warn("prog '%s': bad data relo against section '%s'\n", 4583 prog->name, sym_sec_name); 4584 return -LIBBPF_ERRNO__RELOC; 4585 } 4586 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4587 map = &obj->maps[map_idx]; 4588 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4589 continue; 4590 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4591 prog->name, map_idx, map->name, map->sec_idx, 4592 map->sec_offset, insn_idx); 4593 break; 4594 } 4595 if (map_idx >= nr_maps) { 4596 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4597 prog->name, sym_sec_name); 4598 return -LIBBPF_ERRNO__RELOC; 4599 } 4600 4601 reloc_desc->type = RELO_DATA; 4602 reloc_desc->insn_idx = insn_idx; 4603 reloc_desc->map_idx = map_idx; 4604 reloc_desc->sym_off = sym->st_value; 4605 return 0; 4606 } 4607 4608 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4609 { 4610 return insn_idx >= prog->sec_insn_off && 4611 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4612 } 4613 4614 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4615 size_t sec_idx, size_t insn_idx) 4616 { 4617 int l = 0, r = obj->nr_programs - 1, m; 4618 struct bpf_program *prog; 4619 4620 if (!obj->nr_programs) 4621 return NULL; 4622 4623 while (l < r) { 4624 m = l + (r - l + 1) / 2; 4625 prog = &obj->programs[m]; 4626 4627 if (prog->sec_idx < sec_idx || 4628 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4629 l = m; 4630 else 4631 r = m - 1; 4632 } 4633 /* matching program could be at index l, but it still might be the 4634 * wrong one, so we need to double check conditions for the last time 4635 */ 4636 prog = &obj->programs[l]; 4637 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4638 return prog; 4639 return NULL; 4640 } 4641 4642 static int 4643 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4644 { 4645 const char *relo_sec_name, *sec_name; 4646 size_t sec_idx = shdr->sh_info, sym_idx; 4647 struct bpf_program *prog; 4648 struct reloc_desc *relos; 4649 int err, i, nrels; 4650 const char *sym_name; 4651 __u32 insn_idx; 4652 Elf_Scn *scn; 4653 Elf_Data *scn_data; 4654 Elf64_Sym *sym; 4655 Elf64_Rel *rel; 4656 4657 if (sec_idx >= obj->efile.sec_cnt) 4658 return -EINVAL; 4659 4660 scn = elf_sec_by_idx(obj, sec_idx); 4661 scn_data = elf_sec_data(obj, scn); 4662 if (!scn_data) 4663 return -LIBBPF_ERRNO__FORMAT; 4664 4665 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4666 sec_name = elf_sec_name(obj, scn); 4667 if (!relo_sec_name || !sec_name) 4668 return -EINVAL; 4669 4670 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4671 relo_sec_name, sec_idx, sec_name); 4672 nrels = shdr->sh_size / shdr->sh_entsize; 4673 4674 for (i = 0; i < nrels; i++) { 4675 rel = elf_rel_by_idx(data, i); 4676 if (!rel) { 4677 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4678 return -LIBBPF_ERRNO__FORMAT; 4679 } 4680 4681 sym_idx = ELF64_R_SYM(rel->r_info); 4682 sym = elf_sym_by_idx(obj, sym_idx); 4683 if (!sym) { 4684 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4685 relo_sec_name, sym_idx, i); 4686 return -LIBBPF_ERRNO__FORMAT; 4687 } 4688 4689 if (sym->st_shndx >= obj->efile.sec_cnt) { 4690 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4691 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4692 return -LIBBPF_ERRNO__FORMAT; 4693 } 4694 4695 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4696 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4697 relo_sec_name, (size_t)rel->r_offset, i); 4698 return -LIBBPF_ERRNO__FORMAT; 4699 } 4700 4701 insn_idx = rel->r_offset / BPF_INSN_SZ; 4702 /* relocations against static functions are recorded as 4703 * relocations against the section that contains a function; 4704 * in such case, symbol will be STT_SECTION and sym.st_name 4705 * will point to empty string (0), so fetch section name 4706 * instead 4707 */ 4708 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4709 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4710 else 4711 sym_name = elf_sym_str(obj, sym->st_name); 4712 sym_name = sym_name ?: "<?"; 4713 4714 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4715 relo_sec_name, i, insn_idx, sym_name); 4716 4717 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4718 if (!prog) { 4719 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4720 relo_sec_name, i, sec_name, insn_idx); 4721 continue; 4722 } 4723 4724 relos = libbpf_reallocarray(prog->reloc_desc, 4725 prog->nr_reloc + 1, sizeof(*relos)); 4726 if (!relos) 4727 return -ENOMEM; 4728 prog->reloc_desc = relos; 4729 4730 /* adjust insn_idx to local BPF program frame of reference */ 4731 insn_idx -= prog->sec_insn_off; 4732 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4733 insn_idx, sym_name, sym, rel); 4734 if (err) 4735 return err; 4736 4737 prog->nr_reloc++; 4738 } 4739 return 0; 4740 } 4741 4742 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4743 { 4744 int id; 4745 4746 if (!obj->btf) 4747 return -ENOENT; 4748 4749 /* if it's BTF-defined map, we don't need to search for type IDs. 4750 * For struct_ops map, it does not need btf_key_type_id and 4751 * btf_value_type_id. 4752 */ 4753 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4754 return 0; 4755 4756 /* 4757 * LLVM annotates global data differently in BTF, that is, 4758 * only as '.data', '.bss' or '.rodata'. 4759 */ 4760 if (!bpf_map__is_internal(map)) 4761 return -ENOENT; 4762 4763 id = btf__find_by_name(obj->btf, map->real_name); 4764 if (id < 0) 4765 return id; 4766 4767 map->btf_key_type_id = 0; 4768 map->btf_value_type_id = id; 4769 return 0; 4770 } 4771 4772 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4773 { 4774 char file[PATH_MAX], buff[4096]; 4775 FILE *fp; 4776 __u32 val; 4777 int err; 4778 4779 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4780 memset(info, 0, sizeof(*info)); 4781 4782 fp = fopen(file, "re"); 4783 if (!fp) { 4784 err = -errno; 4785 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4786 err); 4787 return err; 4788 } 4789 4790 while (fgets(buff, sizeof(buff), fp)) { 4791 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4792 info->type = val; 4793 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4794 info->key_size = val; 4795 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4796 info->value_size = val; 4797 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4798 info->max_entries = val; 4799 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4800 info->map_flags = val; 4801 } 4802 4803 fclose(fp); 4804 4805 return 0; 4806 } 4807 4808 bool bpf_map__autocreate(const struct bpf_map *map) 4809 { 4810 return map->autocreate; 4811 } 4812 4813 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4814 { 4815 if (map->obj->loaded) 4816 return libbpf_err(-EBUSY); 4817 4818 map->autocreate = autocreate; 4819 return 0; 4820 } 4821 4822 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4823 { 4824 struct bpf_map_info info; 4825 __u32 len = sizeof(info), name_len; 4826 int new_fd, err; 4827 char *new_name; 4828 4829 memset(&info, 0, len); 4830 err = bpf_map_get_info_by_fd(fd, &info, &len); 4831 if (err && errno == EINVAL) 4832 err = bpf_get_map_info_from_fdinfo(fd, &info); 4833 if (err) 4834 return libbpf_err(err); 4835 4836 name_len = strlen(info.name); 4837 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4838 new_name = strdup(map->name); 4839 else 4840 new_name = strdup(info.name); 4841 4842 if (!new_name) 4843 return libbpf_err(-errno); 4844 4845 /* 4846 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4847 * This is similar to what we do in ensure_good_fd(), but without 4848 * closing original FD. 4849 */ 4850 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4851 if (new_fd < 0) { 4852 err = -errno; 4853 goto err_free_new_name; 4854 } 4855 4856 err = reuse_fd(map->fd, new_fd); 4857 if (err) 4858 goto err_free_new_name; 4859 4860 free(map->name); 4861 4862 map->name = new_name; 4863 map->def.type = info.type; 4864 map->def.key_size = info.key_size; 4865 map->def.value_size = info.value_size; 4866 map->def.max_entries = info.max_entries; 4867 map->def.map_flags = info.map_flags; 4868 map->btf_key_type_id = info.btf_key_type_id; 4869 map->btf_value_type_id = info.btf_value_type_id; 4870 map->reused = true; 4871 map->map_extra = info.map_extra; 4872 4873 return 0; 4874 4875 err_free_new_name: 4876 free(new_name); 4877 return libbpf_err(err); 4878 } 4879 4880 __u32 bpf_map__max_entries(const struct bpf_map *map) 4881 { 4882 return map->def.max_entries; 4883 } 4884 4885 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4886 { 4887 if (!bpf_map_type__is_map_in_map(map->def.type)) 4888 return errno = EINVAL, NULL; 4889 4890 return map->inner_map; 4891 } 4892 4893 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4894 { 4895 if (map->obj->loaded) 4896 return libbpf_err(-EBUSY); 4897 4898 map->def.max_entries = max_entries; 4899 4900 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4901 if (map_is_ringbuf(map)) 4902 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4903 4904 return 0; 4905 } 4906 4907 static int bpf_object_prepare_token(struct bpf_object *obj) 4908 { 4909 const char *bpffs_path; 4910 int bpffs_fd = -1, token_fd, err; 4911 bool mandatory; 4912 enum libbpf_print_level level; 4913 4914 /* token is explicitly prevented */ 4915 if (obj->token_path && obj->token_path[0] == '\0') { 4916 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4917 return 0; 4918 } 4919 4920 mandatory = obj->token_path != NULL; 4921 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4922 4923 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4924 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4925 if (bpffs_fd < 0) { 4926 err = -errno; 4927 __pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n", 4928 obj->name, err, bpffs_path, 4929 mandatory ? "" : ", skipping optional step..."); 4930 return mandatory ? err : 0; 4931 } 4932 4933 token_fd = bpf_token_create(bpffs_fd, 0); 4934 close(bpffs_fd); 4935 if (token_fd < 0) { 4936 if (!mandatory && token_fd == -ENOENT) { 4937 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4938 obj->name, bpffs_path); 4939 return 0; 4940 } 4941 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 4942 obj->name, token_fd, bpffs_path, 4943 mandatory ? "" : ", skipping optional step..."); 4944 return mandatory ? token_fd : 0; 4945 } 4946 4947 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 4948 if (!obj->feat_cache) { 4949 close(token_fd); 4950 return -ENOMEM; 4951 } 4952 4953 obj->token_fd = token_fd; 4954 obj->feat_cache->token_fd = token_fd; 4955 4956 return 0; 4957 } 4958 4959 static int 4960 bpf_object__probe_loading(struct bpf_object *obj) 4961 { 4962 char *cp, errmsg[STRERR_BUFSIZE]; 4963 struct bpf_insn insns[] = { 4964 BPF_MOV64_IMM(BPF_REG_0, 0), 4965 BPF_EXIT_INSN(), 4966 }; 4967 int ret, insn_cnt = ARRAY_SIZE(insns); 4968 LIBBPF_OPTS(bpf_prog_load_opts, opts, 4969 .token_fd = obj->token_fd, 4970 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 4971 ); 4972 4973 if (obj->gen_loader) 4974 return 0; 4975 4976 ret = bump_rlimit_memlock(); 4977 if (ret) 4978 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4979 4980 /* make sure basic loading works */ 4981 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 4982 if (ret < 0) 4983 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 4984 if (ret < 0) { 4985 ret = errno; 4986 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4987 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4988 "program. Make sure your kernel supports BPF " 4989 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4990 "set to big enough value.\n", __func__, cp, ret); 4991 return -ret; 4992 } 4993 close(ret); 4994 4995 return 0; 4996 } 4997 4998 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4999 { 5000 if (obj->gen_loader) 5001 /* To generate loader program assume the latest kernel 5002 * to avoid doing extra prog_load, map_create syscalls. 5003 */ 5004 return true; 5005 5006 if (obj->token_fd) 5007 return feat_supported(obj->feat_cache, feat_id); 5008 5009 return feat_supported(NULL, feat_id); 5010 } 5011 5012 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5013 { 5014 struct bpf_map_info map_info; 5015 char msg[STRERR_BUFSIZE]; 5016 __u32 map_info_len = sizeof(map_info); 5017 int err; 5018 5019 memset(&map_info, 0, map_info_len); 5020 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5021 if (err && errno == EINVAL) 5022 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5023 if (err) { 5024 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5025 libbpf_strerror_r(errno, msg, sizeof(msg))); 5026 return false; 5027 } 5028 5029 return (map_info.type == map->def.type && 5030 map_info.key_size == map->def.key_size && 5031 map_info.value_size == map->def.value_size && 5032 map_info.max_entries == map->def.max_entries && 5033 map_info.map_flags == map->def.map_flags && 5034 map_info.map_extra == map->map_extra); 5035 } 5036 5037 static int 5038 bpf_object__reuse_map(struct bpf_map *map) 5039 { 5040 char *cp, errmsg[STRERR_BUFSIZE]; 5041 int err, pin_fd; 5042 5043 pin_fd = bpf_obj_get(map->pin_path); 5044 if (pin_fd < 0) { 5045 err = -errno; 5046 if (err == -ENOENT) { 5047 pr_debug("found no pinned map to reuse at '%s'\n", 5048 map->pin_path); 5049 return 0; 5050 } 5051 5052 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5053 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5054 map->pin_path, cp); 5055 return err; 5056 } 5057 5058 if (!map_is_reuse_compat(map, pin_fd)) { 5059 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5060 map->pin_path); 5061 close(pin_fd); 5062 return -EINVAL; 5063 } 5064 5065 err = bpf_map__reuse_fd(map, pin_fd); 5066 close(pin_fd); 5067 if (err) 5068 return err; 5069 5070 map->pinned = true; 5071 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5072 5073 return 0; 5074 } 5075 5076 static int 5077 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5078 { 5079 enum libbpf_map_type map_type = map->libbpf_type; 5080 char *cp, errmsg[STRERR_BUFSIZE]; 5081 int err, zero = 0; 5082 5083 if (obj->gen_loader) { 5084 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5085 map->mmaped, map->def.value_size); 5086 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5087 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5088 return 0; 5089 } 5090 5091 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5092 if (err) { 5093 err = -errno; 5094 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5095 pr_warn("Error setting initial map(%s) contents: %s\n", 5096 map->name, cp); 5097 return err; 5098 } 5099 5100 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5101 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5102 err = bpf_map_freeze(map->fd); 5103 if (err) { 5104 err = -errno; 5105 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5106 pr_warn("Error freezing map(%s) as read-only: %s\n", 5107 map->name, cp); 5108 return err; 5109 } 5110 } 5111 return 0; 5112 } 5113 5114 static void bpf_map__destroy(struct bpf_map *map); 5115 5116 static bool map_is_created(const struct bpf_map *map) 5117 { 5118 return map->obj->loaded || map->reused; 5119 } 5120 5121 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5122 { 5123 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5124 struct bpf_map_def *def = &map->def; 5125 const char *map_name = NULL; 5126 int err = 0, map_fd; 5127 5128 if (kernel_supports(obj, FEAT_PROG_NAME)) 5129 map_name = map->name; 5130 create_attr.map_ifindex = map->map_ifindex; 5131 create_attr.map_flags = def->map_flags; 5132 create_attr.numa_node = map->numa_node; 5133 create_attr.map_extra = map->map_extra; 5134 create_attr.token_fd = obj->token_fd; 5135 if (obj->token_fd) 5136 create_attr.map_flags |= BPF_F_TOKEN_FD; 5137 5138 if (bpf_map__is_struct_ops(map)) { 5139 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5140 if (map->mod_btf_fd >= 0) { 5141 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5142 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5143 } 5144 } 5145 5146 if (obj->btf && btf__fd(obj->btf) >= 0) { 5147 create_attr.btf_fd = btf__fd(obj->btf); 5148 create_attr.btf_key_type_id = map->btf_key_type_id; 5149 create_attr.btf_value_type_id = map->btf_value_type_id; 5150 } 5151 5152 if (bpf_map_type__is_map_in_map(def->type)) { 5153 if (map->inner_map) { 5154 err = map_set_def_max_entries(map->inner_map); 5155 if (err) 5156 return err; 5157 err = bpf_object__create_map(obj, map->inner_map, true); 5158 if (err) { 5159 pr_warn("map '%s': failed to create inner map: %d\n", 5160 map->name, err); 5161 return err; 5162 } 5163 map->inner_map_fd = map->inner_map->fd; 5164 } 5165 if (map->inner_map_fd >= 0) 5166 create_attr.inner_map_fd = map->inner_map_fd; 5167 } 5168 5169 switch (def->type) { 5170 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5171 case BPF_MAP_TYPE_CGROUP_ARRAY: 5172 case BPF_MAP_TYPE_STACK_TRACE: 5173 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5174 case BPF_MAP_TYPE_HASH_OF_MAPS: 5175 case BPF_MAP_TYPE_DEVMAP: 5176 case BPF_MAP_TYPE_DEVMAP_HASH: 5177 case BPF_MAP_TYPE_CPUMAP: 5178 case BPF_MAP_TYPE_XSKMAP: 5179 case BPF_MAP_TYPE_SOCKMAP: 5180 case BPF_MAP_TYPE_SOCKHASH: 5181 case BPF_MAP_TYPE_QUEUE: 5182 case BPF_MAP_TYPE_STACK: 5183 case BPF_MAP_TYPE_ARENA: 5184 create_attr.btf_fd = 0; 5185 create_attr.btf_key_type_id = 0; 5186 create_attr.btf_value_type_id = 0; 5187 map->btf_key_type_id = 0; 5188 map->btf_value_type_id = 0; 5189 break; 5190 case BPF_MAP_TYPE_STRUCT_OPS: 5191 create_attr.btf_value_type_id = 0; 5192 break; 5193 default: 5194 break; 5195 } 5196 5197 if (obj->gen_loader) { 5198 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5199 def->key_size, def->value_size, def->max_entries, 5200 &create_attr, is_inner ? -1 : map - obj->maps); 5201 /* We keep pretenting we have valid FD to pass various fd >= 0 5202 * checks by just keeping original placeholder FDs in place. 5203 * See bpf_object__add_map() comment. 5204 * This placeholder fd will not be used with any syscall and 5205 * will be reset to -1 eventually. 5206 */ 5207 map_fd = map->fd; 5208 } else { 5209 map_fd = bpf_map_create(def->type, map_name, 5210 def->key_size, def->value_size, 5211 def->max_entries, &create_attr); 5212 } 5213 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5214 char *cp, errmsg[STRERR_BUFSIZE]; 5215 5216 err = -errno; 5217 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5218 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5219 map->name, cp, err); 5220 create_attr.btf_fd = 0; 5221 create_attr.btf_key_type_id = 0; 5222 create_attr.btf_value_type_id = 0; 5223 map->btf_key_type_id = 0; 5224 map->btf_value_type_id = 0; 5225 map_fd = bpf_map_create(def->type, map_name, 5226 def->key_size, def->value_size, 5227 def->max_entries, &create_attr); 5228 } 5229 5230 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5231 if (obj->gen_loader) 5232 map->inner_map->fd = -1; 5233 bpf_map__destroy(map->inner_map); 5234 zfree(&map->inner_map); 5235 } 5236 5237 if (map_fd < 0) 5238 return map_fd; 5239 5240 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5241 if (map->fd == map_fd) 5242 return 0; 5243 5244 /* Keep placeholder FD value but now point it to the BPF map object. 5245 * This way everything that relied on this map's FD (e.g., relocated 5246 * ldimm64 instructions) will stay valid and won't need adjustments. 5247 * map->fd stays valid but now point to what map_fd points to. 5248 */ 5249 return reuse_fd(map->fd, map_fd); 5250 } 5251 5252 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5253 { 5254 const struct bpf_map *targ_map; 5255 unsigned int i; 5256 int fd, err = 0; 5257 5258 for (i = 0; i < map->init_slots_sz; i++) { 5259 if (!map->init_slots[i]) 5260 continue; 5261 5262 targ_map = map->init_slots[i]; 5263 fd = targ_map->fd; 5264 5265 if (obj->gen_loader) { 5266 bpf_gen__populate_outer_map(obj->gen_loader, 5267 map - obj->maps, i, 5268 targ_map - obj->maps); 5269 } else { 5270 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5271 } 5272 if (err) { 5273 err = -errno; 5274 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5275 map->name, i, targ_map->name, fd, err); 5276 return err; 5277 } 5278 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5279 map->name, i, targ_map->name, fd); 5280 } 5281 5282 zfree(&map->init_slots); 5283 map->init_slots_sz = 0; 5284 5285 return 0; 5286 } 5287 5288 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5289 { 5290 const struct bpf_program *targ_prog; 5291 unsigned int i; 5292 int fd, err; 5293 5294 if (obj->gen_loader) 5295 return -ENOTSUP; 5296 5297 for (i = 0; i < map->init_slots_sz; i++) { 5298 if (!map->init_slots[i]) 5299 continue; 5300 5301 targ_prog = map->init_slots[i]; 5302 fd = bpf_program__fd(targ_prog); 5303 5304 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5305 if (err) { 5306 err = -errno; 5307 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5308 map->name, i, targ_prog->name, fd, err); 5309 return err; 5310 } 5311 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5312 map->name, i, targ_prog->name, fd); 5313 } 5314 5315 zfree(&map->init_slots); 5316 map->init_slots_sz = 0; 5317 5318 return 0; 5319 } 5320 5321 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5322 { 5323 struct bpf_map *map; 5324 int i, err; 5325 5326 for (i = 0; i < obj->nr_maps; i++) { 5327 map = &obj->maps[i]; 5328 5329 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5330 continue; 5331 5332 err = init_prog_array_slots(obj, map); 5333 if (err < 0) 5334 return err; 5335 } 5336 return 0; 5337 } 5338 5339 static int map_set_def_max_entries(struct bpf_map *map) 5340 { 5341 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5342 int nr_cpus; 5343 5344 nr_cpus = libbpf_num_possible_cpus(); 5345 if (nr_cpus < 0) { 5346 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5347 map->name, nr_cpus); 5348 return nr_cpus; 5349 } 5350 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5351 map->def.max_entries = nr_cpus; 5352 } 5353 5354 return 0; 5355 } 5356 5357 static int 5358 bpf_object__create_maps(struct bpf_object *obj) 5359 { 5360 struct bpf_map *map; 5361 char *cp, errmsg[STRERR_BUFSIZE]; 5362 unsigned int i, j; 5363 int err; 5364 bool retried; 5365 5366 for (i = 0; i < obj->nr_maps; i++) { 5367 map = &obj->maps[i]; 5368 5369 /* To support old kernels, we skip creating global data maps 5370 * (.rodata, .data, .kconfig, etc); later on, during program 5371 * loading, if we detect that at least one of the to-be-loaded 5372 * programs is referencing any global data map, we'll error 5373 * out with program name and relocation index logged. 5374 * This approach allows to accommodate Clang emitting 5375 * unnecessary .rodata.str1.1 sections for string literals, 5376 * but also it allows to have CO-RE applications that use 5377 * global variables in some of BPF programs, but not others. 5378 * If those global variable-using programs are not loaded at 5379 * runtime due to bpf_program__set_autoload(prog, false), 5380 * bpf_object loading will succeed just fine even on old 5381 * kernels. 5382 */ 5383 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5384 map->autocreate = false; 5385 5386 if (!map->autocreate) { 5387 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5388 continue; 5389 } 5390 5391 err = map_set_def_max_entries(map); 5392 if (err) 5393 goto err_out; 5394 5395 retried = false; 5396 retry: 5397 if (map->pin_path) { 5398 err = bpf_object__reuse_map(map); 5399 if (err) { 5400 pr_warn("map '%s': error reusing pinned map\n", 5401 map->name); 5402 goto err_out; 5403 } 5404 if (retried && map->fd < 0) { 5405 pr_warn("map '%s': cannot find pinned map\n", 5406 map->name); 5407 err = -ENOENT; 5408 goto err_out; 5409 } 5410 } 5411 5412 if (map->reused) { 5413 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5414 map->name, map->fd); 5415 } else { 5416 err = bpf_object__create_map(obj, map, false); 5417 if (err) 5418 goto err_out; 5419 5420 pr_debug("map '%s': created successfully, fd=%d\n", 5421 map->name, map->fd); 5422 5423 if (bpf_map__is_internal(map)) { 5424 err = bpf_object__populate_internal_map(obj, map); 5425 if (err < 0) 5426 goto err_out; 5427 } 5428 if (map->def.type == BPF_MAP_TYPE_ARENA) { 5429 map->mmaped = mmap((void *)(long)map->map_extra, 5430 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5431 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5432 map->fd, 0); 5433 if (map->mmaped == MAP_FAILED) { 5434 err = -errno; 5435 map->mmaped = NULL; 5436 pr_warn("map '%s': failed to mmap arena: %d\n", 5437 map->name, err); 5438 return err; 5439 } 5440 if (obj->arena_data) { 5441 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5442 zfree(&obj->arena_data); 5443 } 5444 } 5445 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5446 err = init_map_in_map_slots(obj, map); 5447 if (err < 0) 5448 goto err_out; 5449 } 5450 } 5451 5452 if (map->pin_path && !map->pinned) { 5453 err = bpf_map__pin(map, NULL); 5454 if (err) { 5455 if (!retried && err == -EEXIST) { 5456 retried = true; 5457 goto retry; 5458 } 5459 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5460 map->name, map->pin_path, err); 5461 goto err_out; 5462 } 5463 } 5464 } 5465 5466 return 0; 5467 5468 err_out: 5469 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5470 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5471 pr_perm_msg(err); 5472 for (j = 0; j < i; j++) 5473 zclose(obj->maps[j].fd); 5474 return err; 5475 } 5476 5477 static bool bpf_core_is_flavor_sep(const char *s) 5478 { 5479 /* check X___Y name pattern, where X and Y are not underscores */ 5480 return s[0] != '_' && /* X */ 5481 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5482 s[4] != '_'; /* Y */ 5483 } 5484 5485 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5486 * before last triple underscore. Struct name part after last triple 5487 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5488 */ 5489 size_t bpf_core_essential_name_len(const char *name) 5490 { 5491 size_t n = strlen(name); 5492 int i; 5493 5494 for (i = n - 5; i >= 0; i--) { 5495 if (bpf_core_is_flavor_sep(name + i)) 5496 return i + 1; 5497 } 5498 return n; 5499 } 5500 5501 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5502 { 5503 if (!cands) 5504 return; 5505 5506 free(cands->cands); 5507 free(cands); 5508 } 5509 5510 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5511 size_t local_essent_len, 5512 const struct btf *targ_btf, 5513 const char *targ_btf_name, 5514 int targ_start_id, 5515 struct bpf_core_cand_list *cands) 5516 { 5517 struct bpf_core_cand *new_cands, *cand; 5518 const struct btf_type *t, *local_t; 5519 const char *targ_name, *local_name; 5520 size_t targ_essent_len; 5521 int n, i; 5522 5523 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5524 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5525 5526 n = btf__type_cnt(targ_btf); 5527 for (i = targ_start_id; i < n; i++) { 5528 t = btf__type_by_id(targ_btf, i); 5529 if (!btf_kind_core_compat(t, local_t)) 5530 continue; 5531 5532 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5533 if (str_is_empty(targ_name)) 5534 continue; 5535 5536 targ_essent_len = bpf_core_essential_name_len(targ_name); 5537 if (targ_essent_len != local_essent_len) 5538 continue; 5539 5540 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5541 continue; 5542 5543 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5544 local_cand->id, btf_kind_str(local_t), 5545 local_name, i, btf_kind_str(t), targ_name, 5546 targ_btf_name); 5547 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5548 sizeof(*cands->cands)); 5549 if (!new_cands) 5550 return -ENOMEM; 5551 5552 cand = &new_cands[cands->len]; 5553 cand->btf = targ_btf; 5554 cand->id = i; 5555 5556 cands->cands = new_cands; 5557 cands->len++; 5558 } 5559 return 0; 5560 } 5561 5562 static int load_module_btfs(struct bpf_object *obj) 5563 { 5564 struct bpf_btf_info info; 5565 struct module_btf *mod_btf; 5566 struct btf *btf; 5567 char name[64]; 5568 __u32 id = 0, len; 5569 int err, fd; 5570 5571 if (obj->btf_modules_loaded) 5572 return 0; 5573 5574 if (obj->gen_loader) 5575 return 0; 5576 5577 /* don't do this again, even if we find no module BTFs */ 5578 obj->btf_modules_loaded = true; 5579 5580 /* kernel too old to support module BTFs */ 5581 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5582 return 0; 5583 5584 while (true) { 5585 err = bpf_btf_get_next_id(id, &id); 5586 if (err && errno == ENOENT) 5587 return 0; 5588 if (err && errno == EPERM) { 5589 pr_debug("skipping module BTFs loading, missing privileges\n"); 5590 return 0; 5591 } 5592 if (err) { 5593 err = -errno; 5594 pr_warn("failed to iterate BTF objects: %d\n", err); 5595 return err; 5596 } 5597 5598 fd = bpf_btf_get_fd_by_id(id); 5599 if (fd < 0) { 5600 if (errno == ENOENT) 5601 continue; /* expected race: BTF was unloaded */ 5602 err = -errno; 5603 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5604 return err; 5605 } 5606 5607 len = sizeof(info); 5608 memset(&info, 0, sizeof(info)); 5609 info.name = ptr_to_u64(name); 5610 info.name_len = sizeof(name); 5611 5612 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5613 if (err) { 5614 err = -errno; 5615 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5616 goto err_out; 5617 } 5618 5619 /* ignore non-module BTFs */ 5620 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5621 close(fd); 5622 continue; 5623 } 5624 5625 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5626 err = libbpf_get_error(btf); 5627 if (err) { 5628 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5629 name, id, err); 5630 goto err_out; 5631 } 5632 5633 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5634 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5635 if (err) 5636 goto err_out; 5637 5638 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5639 5640 mod_btf->btf = btf; 5641 mod_btf->id = id; 5642 mod_btf->fd = fd; 5643 mod_btf->name = strdup(name); 5644 if (!mod_btf->name) { 5645 err = -ENOMEM; 5646 goto err_out; 5647 } 5648 continue; 5649 5650 err_out: 5651 close(fd); 5652 return err; 5653 } 5654 5655 return 0; 5656 } 5657 5658 static struct bpf_core_cand_list * 5659 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5660 { 5661 struct bpf_core_cand local_cand = {}; 5662 struct bpf_core_cand_list *cands; 5663 const struct btf *main_btf; 5664 const struct btf_type *local_t; 5665 const char *local_name; 5666 size_t local_essent_len; 5667 int err, i; 5668 5669 local_cand.btf = local_btf; 5670 local_cand.id = local_type_id; 5671 local_t = btf__type_by_id(local_btf, local_type_id); 5672 if (!local_t) 5673 return ERR_PTR(-EINVAL); 5674 5675 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5676 if (str_is_empty(local_name)) 5677 return ERR_PTR(-EINVAL); 5678 local_essent_len = bpf_core_essential_name_len(local_name); 5679 5680 cands = calloc(1, sizeof(*cands)); 5681 if (!cands) 5682 return ERR_PTR(-ENOMEM); 5683 5684 /* Attempt to find target candidates in vmlinux BTF first */ 5685 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5686 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5687 if (err) 5688 goto err_out; 5689 5690 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5691 if (cands->len) 5692 return cands; 5693 5694 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5695 if (obj->btf_vmlinux_override) 5696 return cands; 5697 5698 /* now look through module BTFs, trying to still find candidates */ 5699 err = load_module_btfs(obj); 5700 if (err) 5701 goto err_out; 5702 5703 for (i = 0; i < obj->btf_module_cnt; i++) { 5704 err = bpf_core_add_cands(&local_cand, local_essent_len, 5705 obj->btf_modules[i].btf, 5706 obj->btf_modules[i].name, 5707 btf__type_cnt(obj->btf_vmlinux), 5708 cands); 5709 if (err) 5710 goto err_out; 5711 } 5712 5713 return cands; 5714 err_out: 5715 bpf_core_free_cands(cands); 5716 return ERR_PTR(err); 5717 } 5718 5719 /* Check local and target types for compatibility. This check is used for 5720 * type-based CO-RE relocations and follow slightly different rules than 5721 * field-based relocations. This function assumes that root types were already 5722 * checked for name match. Beyond that initial root-level name check, names 5723 * are completely ignored. Compatibility rules are as follows: 5724 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5725 * kind should match for local and target types (i.e., STRUCT is not 5726 * compatible with UNION); 5727 * - for ENUMs, the size is ignored; 5728 * - for INT, size and signedness are ignored; 5729 * - for ARRAY, dimensionality is ignored, element types are checked for 5730 * compatibility recursively; 5731 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5732 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5733 * - FUNC_PROTOs are compatible if they have compatible signature: same 5734 * number of input args and compatible return and argument types. 5735 * These rules are not set in stone and probably will be adjusted as we get 5736 * more experience with using BPF CO-RE relocations. 5737 */ 5738 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5739 const struct btf *targ_btf, __u32 targ_id) 5740 { 5741 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5742 } 5743 5744 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5745 const struct btf *targ_btf, __u32 targ_id) 5746 { 5747 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5748 } 5749 5750 static size_t bpf_core_hash_fn(const long key, void *ctx) 5751 { 5752 return key; 5753 } 5754 5755 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5756 { 5757 return k1 == k2; 5758 } 5759 5760 static int record_relo_core(struct bpf_program *prog, 5761 const struct bpf_core_relo *core_relo, int insn_idx) 5762 { 5763 struct reloc_desc *relos, *relo; 5764 5765 relos = libbpf_reallocarray(prog->reloc_desc, 5766 prog->nr_reloc + 1, sizeof(*relos)); 5767 if (!relos) 5768 return -ENOMEM; 5769 relo = &relos[prog->nr_reloc]; 5770 relo->type = RELO_CORE; 5771 relo->insn_idx = insn_idx; 5772 relo->core_relo = core_relo; 5773 prog->reloc_desc = relos; 5774 prog->nr_reloc++; 5775 return 0; 5776 } 5777 5778 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5779 { 5780 struct reloc_desc *relo; 5781 int i; 5782 5783 for (i = 0; i < prog->nr_reloc; i++) { 5784 relo = &prog->reloc_desc[i]; 5785 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5786 continue; 5787 5788 return relo->core_relo; 5789 } 5790 5791 return NULL; 5792 } 5793 5794 static int bpf_core_resolve_relo(struct bpf_program *prog, 5795 const struct bpf_core_relo *relo, 5796 int relo_idx, 5797 const struct btf *local_btf, 5798 struct hashmap *cand_cache, 5799 struct bpf_core_relo_res *targ_res) 5800 { 5801 struct bpf_core_spec specs_scratch[3] = {}; 5802 struct bpf_core_cand_list *cands = NULL; 5803 const char *prog_name = prog->name; 5804 const struct btf_type *local_type; 5805 const char *local_name; 5806 __u32 local_id = relo->type_id; 5807 int err; 5808 5809 local_type = btf__type_by_id(local_btf, local_id); 5810 if (!local_type) 5811 return -EINVAL; 5812 5813 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5814 if (!local_name) 5815 return -EINVAL; 5816 5817 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5818 !hashmap__find(cand_cache, local_id, &cands)) { 5819 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5820 if (IS_ERR(cands)) { 5821 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5822 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5823 local_name, PTR_ERR(cands)); 5824 return PTR_ERR(cands); 5825 } 5826 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5827 if (err) { 5828 bpf_core_free_cands(cands); 5829 return err; 5830 } 5831 } 5832 5833 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5834 targ_res); 5835 } 5836 5837 static int 5838 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5839 { 5840 const struct btf_ext_info_sec *sec; 5841 struct bpf_core_relo_res targ_res; 5842 const struct bpf_core_relo *rec; 5843 const struct btf_ext_info *seg; 5844 struct hashmap_entry *entry; 5845 struct hashmap *cand_cache = NULL; 5846 struct bpf_program *prog; 5847 struct bpf_insn *insn; 5848 const char *sec_name; 5849 int i, err = 0, insn_idx, sec_idx, sec_num; 5850 5851 if (obj->btf_ext->core_relo_info.len == 0) 5852 return 0; 5853 5854 if (targ_btf_path) { 5855 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5856 err = libbpf_get_error(obj->btf_vmlinux_override); 5857 if (err) { 5858 pr_warn("failed to parse target BTF: %d\n", err); 5859 return err; 5860 } 5861 } 5862 5863 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5864 if (IS_ERR(cand_cache)) { 5865 err = PTR_ERR(cand_cache); 5866 goto out; 5867 } 5868 5869 seg = &obj->btf_ext->core_relo_info; 5870 sec_num = 0; 5871 for_each_btf_ext_sec(seg, sec) { 5872 sec_idx = seg->sec_idxs[sec_num]; 5873 sec_num++; 5874 5875 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5876 if (str_is_empty(sec_name)) { 5877 err = -EINVAL; 5878 goto out; 5879 } 5880 5881 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5882 5883 for_each_btf_ext_rec(seg, sec, i, rec) { 5884 if (rec->insn_off % BPF_INSN_SZ) 5885 return -EINVAL; 5886 insn_idx = rec->insn_off / BPF_INSN_SZ; 5887 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5888 if (!prog) { 5889 /* When __weak subprog is "overridden" by another instance 5890 * of the subprog from a different object file, linker still 5891 * appends all the .BTF.ext info that used to belong to that 5892 * eliminated subprogram. 5893 * This is similar to what x86-64 linker does for relocations. 5894 * So just ignore such relocations just like we ignore 5895 * subprog instructions when discovering subprograms. 5896 */ 5897 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5898 sec_name, i, insn_idx); 5899 continue; 5900 } 5901 /* no need to apply CO-RE relocation if the program is 5902 * not going to be loaded 5903 */ 5904 if (!prog->autoload) 5905 continue; 5906 5907 /* adjust insn_idx from section frame of reference to the local 5908 * program's frame of reference; (sub-)program code is not yet 5909 * relocated, so it's enough to just subtract in-section offset 5910 */ 5911 insn_idx = insn_idx - prog->sec_insn_off; 5912 if (insn_idx >= prog->insns_cnt) 5913 return -EINVAL; 5914 insn = &prog->insns[insn_idx]; 5915 5916 err = record_relo_core(prog, rec, insn_idx); 5917 if (err) { 5918 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5919 prog->name, i, err); 5920 goto out; 5921 } 5922 5923 if (prog->obj->gen_loader) 5924 continue; 5925 5926 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5927 if (err) { 5928 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5929 prog->name, i, err); 5930 goto out; 5931 } 5932 5933 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5934 if (err) { 5935 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5936 prog->name, i, insn_idx, err); 5937 goto out; 5938 } 5939 } 5940 } 5941 5942 out: 5943 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5944 btf__free(obj->btf_vmlinux_override); 5945 obj->btf_vmlinux_override = NULL; 5946 5947 if (!IS_ERR_OR_NULL(cand_cache)) { 5948 hashmap__for_each_entry(cand_cache, entry, i) { 5949 bpf_core_free_cands(entry->pvalue); 5950 } 5951 hashmap__free(cand_cache); 5952 } 5953 return err; 5954 } 5955 5956 /* base map load ldimm64 special constant, used also for log fixup logic */ 5957 #define POISON_LDIMM64_MAP_BASE 2001000000 5958 #define POISON_LDIMM64_MAP_PFX "200100" 5959 5960 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5961 int insn_idx, struct bpf_insn *insn, 5962 int map_idx, const struct bpf_map *map) 5963 { 5964 int i; 5965 5966 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5967 prog->name, relo_idx, insn_idx, map_idx, map->name); 5968 5969 /* we turn single ldimm64 into two identical invalid calls */ 5970 for (i = 0; i < 2; i++) { 5971 insn->code = BPF_JMP | BPF_CALL; 5972 insn->dst_reg = 0; 5973 insn->src_reg = 0; 5974 insn->off = 0; 5975 /* if this instruction is reachable (not a dead code), 5976 * verifier will complain with something like: 5977 * invalid func unknown#2001000123 5978 * where lower 123 is map index into obj->maps[] array 5979 */ 5980 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5981 5982 insn++; 5983 } 5984 } 5985 5986 /* unresolved kfunc call special constant, used also for log fixup logic */ 5987 #define POISON_CALL_KFUNC_BASE 2002000000 5988 #define POISON_CALL_KFUNC_PFX "2002" 5989 5990 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5991 int insn_idx, struct bpf_insn *insn, 5992 int ext_idx, const struct extern_desc *ext) 5993 { 5994 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5995 prog->name, relo_idx, insn_idx, ext->name); 5996 5997 /* we turn kfunc call into invalid helper call with identifiable constant */ 5998 insn->code = BPF_JMP | BPF_CALL; 5999 insn->dst_reg = 0; 6000 insn->src_reg = 0; 6001 insn->off = 0; 6002 /* if this instruction is reachable (not a dead code), 6003 * verifier will complain with something like: 6004 * invalid func unknown#2001000123 6005 * where lower 123 is extern index into obj->externs[] array 6006 */ 6007 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6008 } 6009 6010 /* Relocate data references within program code: 6011 * - map references; 6012 * - global variable references; 6013 * - extern references. 6014 */ 6015 static int 6016 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6017 { 6018 int i; 6019 6020 for (i = 0; i < prog->nr_reloc; i++) { 6021 struct reloc_desc *relo = &prog->reloc_desc[i]; 6022 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6023 const struct bpf_map *map; 6024 struct extern_desc *ext; 6025 6026 switch (relo->type) { 6027 case RELO_LD64: 6028 map = &obj->maps[relo->map_idx]; 6029 if (obj->gen_loader) { 6030 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6031 insn[0].imm = relo->map_idx; 6032 } else if (map->autocreate) { 6033 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6034 insn[0].imm = map->fd; 6035 } else { 6036 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6037 relo->map_idx, map); 6038 } 6039 break; 6040 case RELO_DATA: 6041 map = &obj->maps[relo->map_idx]; 6042 insn[1].imm = insn[0].imm + relo->sym_off; 6043 if (obj->gen_loader) { 6044 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6045 insn[0].imm = relo->map_idx; 6046 } else if (map->autocreate) { 6047 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6048 insn[0].imm = map->fd; 6049 } else { 6050 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6051 relo->map_idx, map); 6052 } 6053 break; 6054 case RELO_EXTERN_LD64: 6055 ext = &obj->externs[relo->ext_idx]; 6056 if (ext->type == EXT_KCFG) { 6057 if (obj->gen_loader) { 6058 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6059 insn[0].imm = obj->kconfig_map_idx; 6060 } else { 6061 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6062 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6063 } 6064 insn[1].imm = ext->kcfg.data_off; 6065 } else /* EXT_KSYM */ { 6066 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6067 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6068 insn[0].imm = ext->ksym.kernel_btf_id; 6069 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6070 } else { /* typeless ksyms or unresolved typed ksyms */ 6071 insn[0].imm = (__u32)ext->ksym.addr; 6072 insn[1].imm = ext->ksym.addr >> 32; 6073 } 6074 } 6075 break; 6076 case RELO_EXTERN_CALL: 6077 ext = &obj->externs[relo->ext_idx]; 6078 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6079 if (ext->is_set) { 6080 insn[0].imm = ext->ksym.kernel_btf_id; 6081 insn[0].off = ext->ksym.btf_fd_idx; 6082 } else { /* unresolved weak kfunc call */ 6083 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6084 relo->ext_idx, ext); 6085 } 6086 break; 6087 case RELO_SUBPROG_ADDR: 6088 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6089 pr_warn("prog '%s': relo #%d: bad insn\n", 6090 prog->name, i); 6091 return -EINVAL; 6092 } 6093 /* handled already */ 6094 break; 6095 case RELO_CALL: 6096 /* handled already */ 6097 break; 6098 case RELO_CORE: 6099 /* will be handled by bpf_program_record_relos() */ 6100 break; 6101 default: 6102 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6103 prog->name, i, relo->type); 6104 return -EINVAL; 6105 } 6106 } 6107 6108 return 0; 6109 } 6110 6111 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6112 const struct bpf_program *prog, 6113 const struct btf_ext_info *ext_info, 6114 void **prog_info, __u32 *prog_rec_cnt, 6115 __u32 *prog_rec_sz) 6116 { 6117 void *copy_start = NULL, *copy_end = NULL; 6118 void *rec, *rec_end, *new_prog_info; 6119 const struct btf_ext_info_sec *sec; 6120 size_t old_sz, new_sz; 6121 int i, sec_num, sec_idx, off_adj; 6122 6123 sec_num = 0; 6124 for_each_btf_ext_sec(ext_info, sec) { 6125 sec_idx = ext_info->sec_idxs[sec_num]; 6126 sec_num++; 6127 if (prog->sec_idx != sec_idx) 6128 continue; 6129 6130 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6131 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6132 6133 if (insn_off < prog->sec_insn_off) 6134 continue; 6135 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6136 break; 6137 6138 if (!copy_start) 6139 copy_start = rec; 6140 copy_end = rec + ext_info->rec_size; 6141 } 6142 6143 if (!copy_start) 6144 return -ENOENT; 6145 6146 /* append func/line info of a given (sub-)program to the main 6147 * program func/line info 6148 */ 6149 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6150 new_sz = old_sz + (copy_end - copy_start); 6151 new_prog_info = realloc(*prog_info, new_sz); 6152 if (!new_prog_info) 6153 return -ENOMEM; 6154 *prog_info = new_prog_info; 6155 *prog_rec_cnt = new_sz / ext_info->rec_size; 6156 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6157 6158 /* Kernel instruction offsets are in units of 8-byte 6159 * instructions, while .BTF.ext instruction offsets generated 6160 * by Clang are in units of bytes. So convert Clang offsets 6161 * into kernel offsets and adjust offset according to program 6162 * relocated position. 6163 */ 6164 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6165 rec = new_prog_info + old_sz; 6166 rec_end = new_prog_info + new_sz; 6167 for (; rec < rec_end; rec += ext_info->rec_size) { 6168 __u32 *insn_off = rec; 6169 6170 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6171 } 6172 *prog_rec_sz = ext_info->rec_size; 6173 return 0; 6174 } 6175 6176 return -ENOENT; 6177 } 6178 6179 static int 6180 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6181 struct bpf_program *main_prog, 6182 const struct bpf_program *prog) 6183 { 6184 int err; 6185 6186 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6187 * support func/line info 6188 */ 6189 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6190 return 0; 6191 6192 /* only attempt func info relocation if main program's func_info 6193 * relocation was successful 6194 */ 6195 if (main_prog != prog && !main_prog->func_info) 6196 goto line_info; 6197 6198 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6199 &main_prog->func_info, 6200 &main_prog->func_info_cnt, 6201 &main_prog->func_info_rec_size); 6202 if (err) { 6203 if (err != -ENOENT) { 6204 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6205 prog->name, err); 6206 return err; 6207 } 6208 if (main_prog->func_info) { 6209 /* 6210 * Some info has already been found but has problem 6211 * in the last btf_ext reloc. Must have to error out. 6212 */ 6213 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6214 return err; 6215 } 6216 /* Have problem loading the very first info. Ignore the rest. */ 6217 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6218 prog->name); 6219 } 6220 6221 line_info: 6222 /* don't relocate line info if main program's relocation failed */ 6223 if (main_prog != prog && !main_prog->line_info) 6224 return 0; 6225 6226 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6227 &main_prog->line_info, 6228 &main_prog->line_info_cnt, 6229 &main_prog->line_info_rec_size); 6230 if (err) { 6231 if (err != -ENOENT) { 6232 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6233 prog->name, err); 6234 return err; 6235 } 6236 if (main_prog->line_info) { 6237 /* 6238 * Some info has already been found but has problem 6239 * in the last btf_ext reloc. Must have to error out. 6240 */ 6241 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6242 return err; 6243 } 6244 /* Have problem loading the very first info. Ignore the rest. */ 6245 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6246 prog->name); 6247 } 6248 return 0; 6249 } 6250 6251 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6252 { 6253 size_t insn_idx = *(const size_t *)key; 6254 const struct reloc_desc *relo = elem; 6255 6256 if (insn_idx == relo->insn_idx) 6257 return 0; 6258 return insn_idx < relo->insn_idx ? -1 : 1; 6259 } 6260 6261 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6262 { 6263 if (!prog->nr_reloc) 6264 return NULL; 6265 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6266 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6267 } 6268 6269 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6270 { 6271 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6272 struct reloc_desc *relos; 6273 int i; 6274 6275 if (main_prog == subprog) 6276 return 0; 6277 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6278 /* if new count is zero, reallocarray can return a valid NULL result; 6279 * in this case the previous pointer will be freed, so we *have to* 6280 * reassign old pointer to the new value (even if it's NULL) 6281 */ 6282 if (!relos && new_cnt) 6283 return -ENOMEM; 6284 if (subprog->nr_reloc) 6285 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6286 sizeof(*relos) * subprog->nr_reloc); 6287 6288 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6289 relos[i].insn_idx += subprog->sub_insn_off; 6290 /* After insn_idx adjustment the 'relos' array is still sorted 6291 * by insn_idx and doesn't break bsearch. 6292 */ 6293 main_prog->reloc_desc = relos; 6294 main_prog->nr_reloc = new_cnt; 6295 return 0; 6296 } 6297 6298 static int 6299 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6300 struct bpf_program *subprog) 6301 { 6302 struct bpf_insn *insns; 6303 size_t new_cnt; 6304 int err; 6305 6306 subprog->sub_insn_off = main_prog->insns_cnt; 6307 6308 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6309 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6310 if (!insns) { 6311 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6312 return -ENOMEM; 6313 } 6314 main_prog->insns = insns; 6315 main_prog->insns_cnt = new_cnt; 6316 6317 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6318 subprog->insns_cnt * sizeof(*insns)); 6319 6320 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6321 main_prog->name, subprog->insns_cnt, subprog->name); 6322 6323 /* The subprog insns are now appended. Append its relos too. */ 6324 err = append_subprog_relos(main_prog, subprog); 6325 if (err) 6326 return err; 6327 return 0; 6328 } 6329 6330 static int 6331 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6332 struct bpf_program *prog) 6333 { 6334 size_t sub_insn_idx, insn_idx; 6335 struct bpf_program *subprog; 6336 struct reloc_desc *relo; 6337 struct bpf_insn *insn; 6338 int err; 6339 6340 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6341 if (err) 6342 return err; 6343 6344 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6345 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6346 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6347 continue; 6348 6349 relo = find_prog_insn_relo(prog, insn_idx); 6350 if (relo && relo->type == RELO_EXTERN_CALL) 6351 /* kfunc relocations will be handled later 6352 * in bpf_object__relocate_data() 6353 */ 6354 continue; 6355 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6356 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6357 prog->name, insn_idx, relo->type); 6358 return -LIBBPF_ERRNO__RELOC; 6359 } 6360 if (relo) { 6361 /* sub-program instruction index is a combination of 6362 * an offset of a symbol pointed to by relocation and 6363 * call instruction's imm field; for global functions, 6364 * call always has imm = -1, but for static functions 6365 * relocation is against STT_SECTION and insn->imm 6366 * points to a start of a static function 6367 * 6368 * for subprog addr relocation, the relo->sym_off + insn->imm is 6369 * the byte offset in the corresponding section. 6370 */ 6371 if (relo->type == RELO_CALL) 6372 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6373 else 6374 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6375 } else if (insn_is_pseudo_func(insn)) { 6376 /* 6377 * RELO_SUBPROG_ADDR relo is always emitted even if both 6378 * functions are in the same section, so it shouldn't reach here. 6379 */ 6380 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6381 prog->name, insn_idx); 6382 return -LIBBPF_ERRNO__RELOC; 6383 } else { 6384 /* if subprogram call is to a static function within 6385 * the same ELF section, there won't be any relocation 6386 * emitted, but it also means there is no additional 6387 * offset necessary, insns->imm is relative to 6388 * instruction's original position within the section 6389 */ 6390 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6391 } 6392 6393 /* we enforce that sub-programs should be in .text section */ 6394 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6395 if (!subprog) { 6396 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6397 prog->name); 6398 return -LIBBPF_ERRNO__RELOC; 6399 } 6400 6401 /* if it's the first call instruction calling into this 6402 * subprogram (meaning this subprog hasn't been processed 6403 * yet) within the context of current main program: 6404 * - append it at the end of main program's instructions blog; 6405 * - process is recursively, while current program is put on hold; 6406 * - if that subprogram calls some other not yet processes 6407 * subprogram, same thing will happen recursively until 6408 * there are no more unprocesses subprograms left to append 6409 * and relocate. 6410 */ 6411 if (subprog->sub_insn_off == 0) { 6412 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6413 if (err) 6414 return err; 6415 err = bpf_object__reloc_code(obj, main_prog, subprog); 6416 if (err) 6417 return err; 6418 } 6419 6420 /* main_prog->insns memory could have been re-allocated, so 6421 * calculate pointer again 6422 */ 6423 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6424 /* calculate correct instruction position within current main 6425 * prog; each main prog can have a different set of 6426 * subprograms appended (potentially in different order as 6427 * well), so position of any subprog can be different for 6428 * different main programs 6429 */ 6430 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6431 6432 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6433 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6434 } 6435 6436 return 0; 6437 } 6438 6439 /* 6440 * Relocate sub-program calls. 6441 * 6442 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6443 * main prog) is processed separately. For each subprog (non-entry functions, 6444 * that can be called from either entry progs or other subprogs) gets their 6445 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6446 * hasn't been yet appended and relocated within current main prog. Once its 6447 * relocated, sub_insn_off will point at the position within current main prog 6448 * where given subprog was appended. This will further be used to relocate all 6449 * the call instructions jumping into this subprog. 6450 * 6451 * We start with main program and process all call instructions. If the call 6452 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6453 * is zero), subprog instructions are appended at the end of main program's 6454 * instruction array. Then main program is "put on hold" while we recursively 6455 * process newly appended subprogram. If that subprogram calls into another 6456 * subprogram that hasn't been appended, new subprogram is appended again to 6457 * the *main* prog's instructions (subprog's instructions are always left 6458 * untouched, as they need to be in unmodified state for subsequent main progs 6459 * and subprog instructions are always sent only as part of a main prog) and 6460 * the process continues recursively. Once all the subprogs called from a main 6461 * prog or any of its subprogs are appended (and relocated), all their 6462 * positions within finalized instructions array are known, so it's easy to 6463 * rewrite call instructions with correct relative offsets, corresponding to 6464 * desired target subprog. 6465 * 6466 * Its important to realize that some subprogs might not be called from some 6467 * main prog and any of its called/used subprogs. Those will keep their 6468 * subprog->sub_insn_off as zero at all times and won't be appended to current 6469 * main prog and won't be relocated within the context of current main prog. 6470 * They might still be used from other main progs later. 6471 * 6472 * Visually this process can be shown as below. Suppose we have two main 6473 * programs mainA and mainB and BPF object contains three subprogs: subA, 6474 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6475 * subC both call subB: 6476 * 6477 * +--------+ +-------+ 6478 * | v v | 6479 * +--+---+ +--+-+-+ +---+--+ 6480 * | subA | | subB | | subC | 6481 * +--+---+ +------+ +---+--+ 6482 * ^ ^ 6483 * | | 6484 * +---+-------+ +------+----+ 6485 * | mainA | | mainB | 6486 * +-----------+ +-----------+ 6487 * 6488 * We'll start relocating mainA, will find subA, append it and start 6489 * processing sub A recursively: 6490 * 6491 * +-----------+------+ 6492 * | mainA | subA | 6493 * +-----------+------+ 6494 * 6495 * At this point we notice that subB is used from subA, so we append it and 6496 * relocate (there are no further subcalls from subB): 6497 * 6498 * +-----------+------+------+ 6499 * | mainA | subA | subB | 6500 * +-----------+------+------+ 6501 * 6502 * At this point, we relocate subA calls, then go one level up and finish with 6503 * relocatin mainA calls. mainA is done. 6504 * 6505 * For mainB process is similar but results in different order. We start with 6506 * mainB and skip subA and subB, as mainB never calls them (at least 6507 * directly), but we see subC is needed, so we append and start processing it: 6508 * 6509 * +-----------+------+ 6510 * | mainB | subC | 6511 * +-----------+------+ 6512 * Now we see subC needs subB, so we go back to it, append and relocate it: 6513 * 6514 * +-----------+------+------+ 6515 * | mainB | subC | subB | 6516 * +-----------+------+------+ 6517 * 6518 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6519 */ 6520 static int 6521 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6522 { 6523 struct bpf_program *subprog; 6524 int i, err; 6525 6526 /* mark all subprogs as not relocated (yet) within the context of 6527 * current main program 6528 */ 6529 for (i = 0; i < obj->nr_programs; i++) { 6530 subprog = &obj->programs[i]; 6531 if (!prog_is_subprog(obj, subprog)) 6532 continue; 6533 6534 subprog->sub_insn_off = 0; 6535 } 6536 6537 err = bpf_object__reloc_code(obj, prog, prog); 6538 if (err) 6539 return err; 6540 6541 return 0; 6542 } 6543 6544 static void 6545 bpf_object__free_relocs(struct bpf_object *obj) 6546 { 6547 struct bpf_program *prog; 6548 int i; 6549 6550 /* free up relocation descriptors */ 6551 for (i = 0; i < obj->nr_programs; i++) { 6552 prog = &obj->programs[i]; 6553 zfree(&prog->reloc_desc); 6554 prog->nr_reloc = 0; 6555 } 6556 } 6557 6558 static int cmp_relocs(const void *_a, const void *_b) 6559 { 6560 const struct reloc_desc *a = _a; 6561 const struct reloc_desc *b = _b; 6562 6563 if (a->insn_idx != b->insn_idx) 6564 return a->insn_idx < b->insn_idx ? -1 : 1; 6565 6566 /* no two relocations should have the same insn_idx, but ... */ 6567 if (a->type != b->type) 6568 return a->type < b->type ? -1 : 1; 6569 6570 return 0; 6571 } 6572 6573 static void bpf_object__sort_relos(struct bpf_object *obj) 6574 { 6575 int i; 6576 6577 for (i = 0; i < obj->nr_programs; i++) { 6578 struct bpf_program *p = &obj->programs[i]; 6579 6580 if (!p->nr_reloc) 6581 continue; 6582 6583 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6584 } 6585 } 6586 6587 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6588 { 6589 const char *str = "exception_callback:"; 6590 size_t pfx_len = strlen(str); 6591 int i, j, n; 6592 6593 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6594 return 0; 6595 6596 n = btf__type_cnt(obj->btf); 6597 for (i = 1; i < n; i++) { 6598 const char *name; 6599 struct btf_type *t; 6600 6601 t = btf_type_by_id(obj->btf, i); 6602 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6603 continue; 6604 6605 name = btf__str_by_offset(obj->btf, t->name_off); 6606 if (strncmp(name, str, pfx_len) != 0) 6607 continue; 6608 6609 t = btf_type_by_id(obj->btf, t->type); 6610 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6611 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6612 prog->name); 6613 return -EINVAL; 6614 } 6615 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6616 continue; 6617 /* Multiple callbacks are specified for the same prog, 6618 * the verifier will eventually return an error for this 6619 * case, hence simply skip appending a subprog. 6620 */ 6621 if (prog->exception_cb_idx >= 0) { 6622 prog->exception_cb_idx = -1; 6623 break; 6624 } 6625 6626 name += pfx_len; 6627 if (str_is_empty(name)) { 6628 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6629 prog->name); 6630 return -EINVAL; 6631 } 6632 6633 for (j = 0; j < obj->nr_programs; j++) { 6634 struct bpf_program *subprog = &obj->programs[j]; 6635 6636 if (!prog_is_subprog(obj, subprog)) 6637 continue; 6638 if (strcmp(name, subprog->name) != 0) 6639 continue; 6640 /* Enforce non-hidden, as from verifier point of 6641 * view it expects global functions, whereas the 6642 * mark_btf_static fixes up linkage as static. 6643 */ 6644 if (!subprog->sym_global || subprog->mark_btf_static) { 6645 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6646 prog->name, subprog->name); 6647 return -EINVAL; 6648 } 6649 /* Let's see if we already saw a static exception callback with the same name */ 6650 if (prog->exception_cb_idx >= 0) { 6651 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6652 prog->name, subprog->name); 6653 return -EINVAL; 6654 } 6655 prog->exception_cb_idx = j; 6656 break; 6657 } 6658 6659 if (prog->exception_cb_idx >= 0) 6660 continue; 6661 6662 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6663 return -ENOENT; 6664 } 6665 6666 return 0; 6667 } 6668 6669 static struct { 6670 enum bpf_prog_type prog_type; 6671 const char *ctx_name; 6672 } global_ctx_map[] = { 6673 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6674 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6675 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6676 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6677 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6678 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6679 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6680 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6681 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6682 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6683 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6684 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6685 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6686 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6687 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6688 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6689 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6690 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6691 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6692 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6693 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6694 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6695 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6696 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6697 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6698 /* all other program types don't have "named" context structs */ 6699 }; 6700 6701 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6702 * for below __builtin_types_compatible_p() checks; 6703 * with this approach we don't need any extra arch-specific #ifdef guards 6704 */ 6705 struct pt_regs; 6706 struct user_pt_regs; 6707 struct user_regs_struct; 6708 6709 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6710 const char *subprog_name, int arg_idx, 6711 int arg_type_id, const char *ctx_name) 6712 { 6713 const struct btf_type *t; 6714 const char *tname; 6715 6716 /* check if existing parameter already matches verifier expectations */ 6717 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6718 if (!btf_is_ptr(t)) 6719 goto out_warn; 6720 6721 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6722 * and perf_event programs, so check this case early on and forget 6723 * about it for subsequent checks 6724 */ 6725 while (btf_is_mod(t)) 6726 t = btf__type_by_id(btf, t->type); 6727 if (btf_is_typedef(t) && 6728 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6729 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6730 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6731 return false; /* canonical type for kprobe/perf_event */ 6732 } 6733 6734 /* now we can ignore typedefs moving forward */ 6735 t = skip_mods_and_typedefs(btf, t->type, NULL); 6736 6737 /* if it's `void *`, definitely fix up BTF info */ 6738 if (btf_is_void(t)) 6739 return true; 6740 6741 /* if it's already proper canonical type, no need to fix up */ 6742 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6743 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6744 return false; 6745 6746 /* special cases */ 6747 switch (prog->type) { 6748 case BPF_PROG_TYPE_KPROBE: 6749 /* `struct pt_regs *` is expected, but we need to fix up */ 6750 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6751 return true; 6752 break; 6753 case BPF_PROG_TYPE_PERF_EVENT: 6754 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6755 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6756 return true; 6757 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6758 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6759 return true; 6760 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6761 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6762 return true; 6763 break; 6764 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6765 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6766 /* allow u64* as ctx */ 6767 if (btf_is_int(t) && t->size == 8) 6768 return true; 6769 break; 6770 default: 6771 break; 6772 } 6773 6774 out_warn: 6775 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6776 prog->name, subprog_name, arg_idx, ctx_name); 6777 return false; 6778 } 6779 6780 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6781 { 6782 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6783 int i, err, arg_cnt, fn_name_off, linkage; 6784 struct btf_type *fn_t, *fn_proto_t, *t; 6785 struct btf_param *p; 6786 6787 /* caller already validated FUNC -> FUNC_PROTO validity */ 6788 fn_t = btf_type_by_id(btf, orig_fn_id); 6789 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6790 6791 /* Note that each btf__add_xxx() operation invalidates 6792 * all btf_type and string pointers, so we need to be 6793 * very careful when cloning BTF types. BTF type 6794 * pointers have to be always refetched. And to avoid 6795 * problems with invalidated string pointers, we 6796 * add empty strings initially, then just fix up 6797 * name_off offsets in place. Offsets are stable for 6798 * existing strings, so that works out. 6799 */ 6800 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6801 linkage = btf_func_linkage(fn_t); 6802 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6803 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6804 arg_cnt = btf_vlen(fn_proto_t); 6805 6806 /* clone FUNC_PROTO and its params */ 6807 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6808 if (fn_proto_id < 0) 6809 return -EINVAL; 6810 6811 for (i = 0; i < arg_cnt; i++) { 6812 int name_off; 6813 6814 /* copy original parameter data */ 6815 t = btf_type_by_id(btf, orig_proto_id); 6816 p = &btf_params(t)[i]; 6817 name_off = p->name_off; 6818 6819 err = btf__add_func_param(btf, "", p->type); 6820 if (err) 6821 return err; 6822 6823 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6824 p = &btf_params(fn_proto_t)[i]; 6825 p->name_off = name_off; /* use remembered str offset */ 6826 } 6827 6828 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6829 * entry program's name as a placeholder, which we replace immediately 6830 * with original name_off 6831 */ 6832 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6833 if (fn_id < 0) 6834 return -EINVAL; 6835 6836 fn_t = btf_type_by_id(btf, fn_id); 6837 fn_t->name_off = fn_name_off; /* reuse original string */ 6838 6839 return fn_id; 6840 } 6841 6842 /* Check if main program or global subprog's function prototype has `arg:ctx` 6843 * argument tags, and, if necessary, substitute correct type to match what BPF 6844 * verifier would expect, taking into account specific program type. This 6845 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6846 * have a native support for it in the verifier, making user's life much 6847 * easier. 6848 */ 6849 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6850 { 6851 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6852 struct bpf_func_info_min *func_rec; 6853 struct btf_type *fn_t, *fn_proto_t; 6854 struct btf *btf = obj->btf; 6855 const struct btf_type *t; 6856 struct btf_param *p; 6857 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6858 int i, n, arg_idx, arg_cnt, err, rec_idx; 6859 int *orig_ids; 6860 6861 /* no .BTF.ext, no problem */ 6862 if (!obj->btf_ext || !prog->func_info) 6863 return 0; 6864 6865 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6866 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6867 return 0; 6868 6869 /* some BPF program types just don't have named context structs, so 6870 * this fallback mechanism doesn't work for them 6871 */ 6872 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6873 if (global_ctx_map[i].prog_type != prog->type) 6874 continue; 6875 ctx_name = global_ctx_map[i].ctx_name; 6876 break; 6877 } 6878 if (!ctx_name) 6879 return 0; 6880 6881 /* remember original func BTF IDs to detect if we already cloned them */ 6882 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6883 if (!orig_ids) 6884 return -ENOMEM; 6885 for (i = 0; i < prog->func_info_cnt; i++) { 6886 func_rec = prog->func_info + prog->func_info_rec_size * i; 6887 orig_ids[i] = func_rec->type_id; 6888 } 6889 6890 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6891 * of our subprogs; if yes and subprog is global and needs adjustment, 6892 * clone and adjust FUNC -> FUNC_PROTO combo 6893 */ 6894 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6895 /* only DECL_TAG with "arg:ctx" value are interesting */ 6896 t = btf__type_by_id(btf, i); 6897 if (!btf_is_decl_tag(t)) 6898 continue; 6899 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6900 continue; 6901 6902 /* only global funcs need adjustment, if at all */ 6903 orig_fn_id = t->type; 6904 fn_t = btf_type_by_id(btf, orig_fn_id); 6905 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6906 continue; 6907 6908 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6909 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6910 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6911 continue; 6912 6913 /* find corresponding func_info record */ 6914 func_rec = NULL; 6915 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6916 if (orig_ids[rec_idx] == t->type) { 6917 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6918 break; 6919 } 6920 } 6921 /* current main program doesn't call into this subprog */ 6922 if (!func_rec) 6923 continue; 6924 6925 /* some more sanity checking of DECL_TAG */ 6926 arg_cnt = btf_vlen(fn_proto_t); 6927 arg_idx = btf_decl_tag(t)->component_idx; 6928 if (arg_idx < 0 || arg_idx >= arg_cnt) 6929 continue; 6930 6931 /* check if we should fix up argument type */ 6932 p = &btf_params(fn_proto_t)[arg_idx]; 6933 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 6934 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 6935 continue; 6936 6937 /* clone fn/fn_proto, unless we already did it for another arg */ 6938 if (func_rec->type_id == orig_fn_id) { 6939 int fn_id; 6940 6941 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 6942 if (fn_id < 0) { 6943 err = fn_id; 6944 goto err_out; 6945 } 6946 6947 /* point func_info record to a cloned FUNC type */ 6948 func_rec->type_id = fn_id; 6949 } 6950 6951 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 6952 * we do it just once per main BPF program, as all global 6953 * funcs share the same program type, so need only PTR -> 6954 * STRUCT type chain 6955 */ 6956 if (ptr_id == 0) { 6957 struct_id = btf__add_struct(btf, ctx_name, 0); 6958 ptr_id = btf__add_ptr(btf, struct_id); 6959 if (ptr_id < 0 || struct_id < 0) { 6960 err = -EINVAL; 6961 goto err_out; 6962 } 6963 } 6964 6965 /* for completeness, clone DECL_TAG and point it to cloned param */ 6966 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 6967 if (tag_id < 0) { 6968 err = -EINVAL; 6969 goto err_out; 6970 } 6971 6972 /* all the BTF manipulations invalidated pointers, refetch them */ 6973 fn_t = btf_type_by_id(btf, func_rec->type_id); 6974 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6975 6976 /* fix up type ID pointed to by param */ 6977 p = &btf_params(fn_proto_t)[arg_idx]; 6978 p->type = ptr_id; 6979 } 6980 6981 free(orig_ids); 6982 return 0; 6983 err_out: 6984 free(orig_ids); 6985 return err; 6986 } 6987 6988 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6989 { 6990 struct bpf_program *prog; 6991 size_t i, j; 6992 int err; 6993 6994 if (obj->btf_ext) { 6995 err = bpf_object__relocate_core(obj, targ_btf_path); 6996 if (err) { 6997 pr_warn("failed to perform CO-RE relocations: %d\n", 6998 err); 6999 return err; 7000 } 7001 bpf_object__sort_relos(obj); 7002 } 7003 7004 /* Before relocating calls pre-process relocations and mark 7005 * few ld_imm64 instructions that points to subprogs. 7006 * Otherwise bpf_object__reloc_code() later would have to consider 7007 * all ld_imm64 insns as relocation candidates. That would 7008 * reduce relocation speed, since amount of find_prog_insn_relo() 7009 * would increase and most of them will fail to find a relo. 7010 */ 7011 for (i = 0; i < obj->nr_programs; i++) { 7012 prog = &obj->programs[i]; 7013 for (j = 0; j < prog->nr_reloc; j++) { 7014 struct reloc_desc *relo = &prog->reloc_desc[j]; 7015 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7016 7017 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7018 if (relo->type == RELO_SUBPROG_ADDR) 7019 insn[0].src_reg = BPF_PSEUDO_FUNC; 7020 } 7021 } 7022 7023 /* relocate subprogram calls and append used subprograms to main 7024 * programs; each copy of subprogram code needs to be relocated 7025 * differently for each main program, because its code location might 7026 * have changed. 7027 * Append subprog relos to main programs to allow data relos to be 7028 * processed after text is completely relocated. 7029 */ 7030 for (i = 0; i < obj->nr_programs; i++) { 7031 prog = &obj->programs[i]; 7032 /* sub-program's sub-calls are relocated within the context of 7033 * its main program only 7034 */ 7035 if (prog_is_subprog(obj, prog)) 7036 continue; 7037 if (!prog->autoload) 7038 continue; 7039 7040 err = bpf_object__relocate_calls(obj, prog); 7041 if (err) { 7042 pr_warn("prog '%s': failed to relocate calls: %d\n", 7043 prog->name, err); 7044 return err; 7045 } 7046 7047 err = bpf_prog_assign_exc_cb(obj, prog); 7048 if (err) 7049 return err; 7050 /* Now, also append exception callback if it has not been done already. */ 7051 if (prog->exception_cb_idx >= 0) { 7052 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7053 7054 /* Calling exception callback directly is disallowed, which the 7055 * verifier will reject later. In case it was processed already, 7056 * we can skip this step, otherwise for all other valid cases we 7057 * have to append exception callback now. 7058 */ 7059 if (subprog->sub_insn_off == 0) { 7060 err = bpf_object__append_subprog_code(obj, prog, subprog); 7061 if (err) 7062 return err; 7063 err = bpf_object__reloc_code(obj, prog, subprog); 7064 if (err) 7065 return err; 7066 } 7067 } 7068 } 7069 for (i = 0; i < obj->nr_programs; i++) { 7070 prog = &obj->programs[i]; 7071 if (prog_is_subprog(obj, prog)) 7072 continue; 7073 if (!prog->autoload) 7074 continue; 7075 7076 /* Process data relos for main programs */ 7077 err = bpf_object__relocate_data(obj, prog); 7078 if (err) { 7079 pr_warn("prog '%s': failed to relocate data references: %d\n", 7080 prog->name, err); 7081 return err; 7082 } 7083 7084 /* Fix up .BTF.ext information, if necessary */ 7085 err = bpf_program_fixup_func_info(obj, prog); 7086 if (err) { 7087 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n", 7088 prog->name, err); 7089 return err; 7090 } 7091 } 7092 7093 return 0; 7094 } 7095 7096 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7097 Elf64_Shdr *shdr, Elf_Data *data); 7098 7099 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7100 Elf64_Shdr *shdr, Elf_Data *data) 7101 { 7102 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7103 int i, j, nrels, new_sz; 7104 const struct btf_var_secinfo *vi = NULL; 7105 const struct btf_type *sec, *var, *def; 7106 struct bpf_map *map = NULL, *targ_map = NULL; 7107 struct bpf_program *targ_prog = NULL; 7108 bool is_prog_array, is_map_in_map; 7109 const struct btf_member *member; 7110 const char *name, *mname, *type; 7111 unsigned int moff; 7112 Elf64_Sym *sym; 7113 Elf64_Rel *rel; 7114 void *tmp; 7115 7116 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7117 return -EINVAL; 7118 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7119 if (!sec) 7120 return -EINVAL; 7121 7122 nrels = shdr->sh_size / shdr->sh_entsize; 7123 for (i = 0; i < nrels; i++) { 7124 rel = elf_rel_by_idx(data, i); 7125 if (!rel) { 7126 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7127 return -LIBBPF_ERRNO__FORMAT; 7128 } 7129 7130 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7131 if (!sym) { 7132 pr_warn(".maps relo #%d: symbol %zx not found\n", 7133 i, (size_t)ELF64_R_SYM(rel->r_info)); 7134 return -LIBBPF_ERRNO__FORMAT; 7135 } 7136 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7137 7138 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7139 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7140 (size_t)rel->r_offset, sym->st_name, name); 7141 7142 for (j = 0; j < obj->nr_maps; j++) { 7143 map = &obj->maps[j]; 7144 if (map->sec_idx != obj->efile.btf_maps_shndx) 7145 continue; 7146 7147 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7148 if (vi->offset <= rel->r_offset && 7149 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7150 break; 7151 } 7152 if (j == obj->nr_maps) { 7153 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7154 i, name, (size_t)rel->r_offset); 7155 return -EINVAL; 7156 } 7157 7158 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7159 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7160 type = is_map_in_map ? "map" : "prog"; 7161 if (is_map_in_map) { 7162 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7163 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7164 i, name); 7165 return -LIBBPF_ERRNO__RELOC; 7166 } 7167 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7168 map->def.key_size != sizeof(int)) { 7169 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7170 i, map->name, sizeof(int)); 7171 return -EINVAL; 7172 } 7173 targ_map = bpf_object__find_map_by_name(obj, name); 7174 if (!targ_map) { 7175 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7176 i, name); 7177 return -ESRCH; 7178 } 7179 } else if (is_prog_array) { 7180 targ_prog = bpf_object__find_program_by_name(obj, name); 7181 if (!targ_prog) { 7182 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7183 i, name); 7184 return -ESRCH; 7185 } 7186 if (targ_prog->sec_idx != sym->st_shndx || 7187 targ_prog->sec_insn_off * 8 != sym->st_value || 7188 prog_is_subprog(obj, targ_prog)) { 7189 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7190 i, name); 7191 return -LIBBPF_ERRNO__RELOC; 7192 } 7193 } else { 7194 return -EINVAL; 7195 } 7196 7197 var = btf__type_by_id(obj->btf, vi->type); 7198 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7199 if (btf_vlen(def) == 0) 7200 return -EINVAL; 7201 member = btf_members(def) + btf_vlen(def) - 1; 7202 mname = btf__name_by_offset(obj->btf, member->name_off); 7203 if (strcmp(mname, "values")) 7204 return -EINVAL; 7205 7206 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7207 if (rel->r_offset - vi->offset < moff) 7208 return -EINVAL; 7209 7210 moff = rel->r_offset - vi->offset - moff; 7211 /* here we use BPF pointer size, which is always 64 bit, as we 7212 * are parsing ELF that was built for BPF target 7213 */ 7214 if (moff % bpf_ptr_sz) 7215 return -EINVAL; 7216 moff /= bpf_ptr_sz; 7217 if (moff >= map->init_slots_sz) { 7218 new_sz = moff + 1; 7219 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7220 if (!tmp) 7221 return -ENOMEM; 7222 map->init_slots = tmp; 7223 memset(map->init_slots + map->init_slots_sz, 0, 7224 (new_sz - map->init_slots_sz) * host_ptr_sz); 7225 map->init_slots_sz = new_sz; 7226 } 7227 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7228 7229 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7230 i, map->name, moff, type, name); 7231 } 7232 7233 return 0; 7234 } 7235 7236 static int bpf_object__collect_relos(struct bpf_object *obj) 7237 { 7238 int i, err; 7239 7240 for (i = 0; i < obj->efile.sec_cnt; i++) { 7241 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7242 Elf64_Shdr *shdr; 7243 Elf_Data *data; 7244 int idx; 7245 7246 if (sec_desc->sec_type != SEC_RELO) 7247 continue; 7248 7249 shdr = sec_desc->shdr; 7250 data = sec_desc->data; 7251 idx = shdr->sh_info; 7252 7253 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7254 pr_warn("internal error at %d\n", __LINE__); 7255 return -LIBBPF_ERRNO__INTERNAL; 7256 } 7257 7258 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7259 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7260 else if (idx == obj->efile.btf_maps_shndx) 7261 err = bpf_object__collect_map_relos(obj, shdr, data); 7262 else 7263 err = bpf_object__collect_prog_relos(obj, shdr, data); 7264 if (err) 7265 return err; 7266 } 7267 7268 bpf_object__sort_relos(obj); 7269 return 0; 7270 } 7271 7272 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7273 { 7274 if (BPF_CLASS(insn->code) == BPF_JMP && 7275 BPF_OP(insn->code) == BPF_CALL && 7276 BPF_SRC(insn->code) == BPF_K && 7277 insn->src_reg == 0 && 7278 insn->dst_reg == 0) { 7279 *func_id = insn->imm; 7280 return true; 7281 } 7282 return false; 7283 } 7284 7285 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7286 { 7287 struct bpf_insn *insn = prog->insns; 7288 enum bpf_func_id func_id; 7289 int i; 7290 7291 if (obj->gen_loader) 7292 return 0; 7293 7294 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7295 if (!insn_is_helper_call(insn, &func_id)) 7296 continue; 7297 7298 /* on kernels that don't yet support 7299 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7300 * to bpf_probe_read() which works well for old kernels 7301 */ 7302 switch (func_id) { 7303 case BPF_FUNC_probe_read_kernel: 7304 case BPF_FUNC_probe_read_user: 7305 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7306 insn->imm = BPF_FUNC_probe_read; 7307 break; 7308 case BPF_FUNC_probe_read_kernel_str: 7309 case BPF_FUNC_probe_read_user_str: 7310 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7311 insn->imm = BPF_FUNC_probe_read_str; 7312 break; 7313 default: 7314 break; 7315 } 7316 } 7317 return 0; 7318 } 7319 7320 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7321 int *btf_obj_fd, int *btf_type_id); 7322 7323 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7324 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7325 struct bpf_prog_load_opts *opts, long cookie) 7326 { 7327 enum sec_def_flags def = cookie; 7328 7329 /* old kernels might not support specifying expected_attach_type */ 7330 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7331 opts->expected_attach_type = 0; 7332 7333 if (def & SEC_SLEEPABLE) 7334 opts->prog_flags |= BPF_F_SLEEPABLE; 7335 7336 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7337 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7338 7339 /* special check for usdt to use uprobe_multi link */ 7340 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 7341 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7342 7343 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7344 int btf_obj_fd = 0, btf_type_id = 0, err; 7345 const char *attach_name; 7346 7347 attach_name = strchr(prog->sec_name, '/'); 7348 if (!attach_name) { 7349 /* if BPF program is annotated with just SEC("fentry") 7350 * (or similar) without declaratively specifying 7351 * target, then it is expected that target will be 7352 * specified with bpf_program__set_attach_target() at 7353 * runtime before BPF object load step. If not, then 7354 * there is nothing to load into the kernel as BPF 7355 * verifier won't be able to validate BPF program 7356 * correctness anyways. 7357 */ 7358 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7359 prog->name); 7360 return -EINVAL; 7361 } 7362 attach_name++; /* skip over / */ 7363 7364 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7365 if (err) 7366 return err; 7367 7368 /* cache resolved BTF FD and BTF type ID in the prog */ 7369 prog->attach_btf_obj_fd = btf_obj_fd; 7370 prog->attach_btf_id = btf_type_id; 7371 7372 /* but by now libbpf common logic is not utilizing 7373 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7374 * this callback is called after opts were populated by 7375 * libbpf, so this callback has to update opts explicitly here 7376 */ 7377 opts->attach_btf_obj_fd = btf_obj_fd; 7378 opts->attach_btf_id = btf_type_id; 7379 } 7380 return 0; 7381 } 7382 7383 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7384 7385 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7386 struct bpf_insn *insns, int insns_cnt, 7387 const char *license, __u32 kern_version, int *prog_fd) 7388 { 7389 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7390 const char *prog_name = NULL; 7391 char *cp, errmsg[STRERR_BUFSIZE]; 7392 size_t log_buf_size = 0; 7393 char *log_buf = NULL, *tmp; 7394 bool own_log_buf = true; 7395 __u32 log_level = prog->log_level; 7396 int ret, err; 7397 7398 /* Be more helpful by rejecting programs that can't be validated early 7399 * with more meaningful and actionable error message. 7400 */ 7401 switch (prog->type) { 7402 case BPF_PROG_TYPE_UNSPEC: 7403 /* 7404 * The program type must be set. Most likely we couldn't find a proper 7405 * section definition at load time, and thus we didn't infer the type. 7406 */ 7407 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7408 prog->name, prog->sec_name); 7409 return -EINVAL; 7410 case BPF_PROG_TYPE_STRUCT_OPS: 7411 if (prog->attach_btf_id == 0) { 7412 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7413 prog->name); 7414 return -EINVAL; 7415 } 7416 break; 7417 default: 7418 break; 7419 } 7420 7421 if (!insns || !insns_cnt) 7422 return -EINVAL; 7423 7424 if (kernel_supports(obj, FEAT_PROG_NAME)) 7425 prog_name = prog->name; 7426 load_attr.attach_prog_fd = prog->attach_prog_fd; 7427 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7428 load_attr.attach_btf_id = prog->attach_btf_id; 7429 load_attr.kern_version = kern_version; 7430 load_attr.prog_ifindex = prog->prog_ifindex; 7431 7432 /* specify func_info/line_info only if kernel supports them */ 7433 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7434 load_attr.prog_btf_fd = btf__fd(obj->btf); 7435 load_attr.func_info = prog->func_info; 7436 load_attr.func_info_rec_size = prog->func_info_rec_size; 7437 load_attr.func_info_cnt = prog->func_info_cnt; 7438 load_attr.line_info = prog->line_info; 7439 load_attr.line_info_rec_size = prog->line_info_rec_size; 7440 load_attr.line_info_cnt = prog->line_info_cnt; 7441 } 7442 load_attr.log_level = log_level; 7443 load_attr.prog_flags = prog->prog_flags; 7444 load_attr.fd_array = obj->fd_array; 7445 7446 load_attr.token_fd = obj->token_fd; 7447 if (obj->token_fd) 7448 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7449 7450 /* adjust load_attr if sec_def provides custom preload callback */ 7451 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7452 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7453 if (err < 0) { 7454 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7455 prog->name, err); 7456 return err; 7457 } 7458 insns = prog->insns; 7459 insns_cnt = prog->insns_cnt; 7460 } 7461 7462 /* allow prog_prepare_load_fn to change expected_attach_type */ 7463 load_attr.expected_attach_type = prog->expected_attach_type; 7464 7465 if (obj->gen_loader) { 7466 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7467 license, insns, insns_cnt, &load_attr, 7468 prog - obj->programs); 7469 *prog_fd = -1; 7470 return 0; 7471 } 7472 7473 retry_load: 7474 /* if log_level is zero, we don't request logs initially even if 7475 * custom log_buf is specified; if the program load fails, then we'll 7476 * bump log_level to 1 and use either custom log_buf or we'll allocate 7477 * our own and retry the load to get details on what failed 7478 */ 7479 if (log_level) { 7480 if (prog->log_buf) { 7481 log_buf = prog->log_buf; 7482 log_buf_size = prog->log_size; 7483 own_log_buf = false; 7484 } else if (obj->log_buf) { 7485 log_buf = obj->log_buf; 7486 log_buf_size = obj->log_size; 7487 own_log_buf = false; 7488 } else { 7489 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7490 tmp = realloc(log_buf, log_buf_size); 7491 if (!tmp) { 7492 ret = -ENOMEM; 7493 goto out; 7494 } 7495 log_buf = tmp; 7496 log_buf[0] = '\0'; 7497 own_log_buf = true; 7498 } 7499 } 7500 7501 load_attr.log_buf = log_buf; 7502 load_attr.log_size = log_buf_size; 7503 load_attr.log_level = log_level; 7504 7505 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7506 if (ret >= 0) { 7507 if (log_level && own_log_buf) { 7508 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7509 prog->name, log_buf); 7510 } 7511 7512 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7513 struct bpf_map *map; 7514 int i; 7515 7516 for (i = 0; i < obj->nr_maps; i++) { 7517 map = &prog->obj->maps[i]; 7518 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7519 continue; 7520 7521 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7522 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7523 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7524 prog->name, map->real_name, cp); 7525 /* Don't fail hard if can't bind rodata. */ 7526 } 7527 } 7528 } 7529 7530 *prog_fd = ret; 7531 ret = 0; 7532 goto out; 7533 } 7534 7535 if (log_level == 0) { 7536 log_level = 1; 7537 goto retry_load; 7538 } 7539 /* On ENOSPC, increase log buffer size and retry, unless custom 7540 * log_buf is specified. 7541 * Be careful to not overflow u32, though. Kernel's log buf size limit 7542 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7543 * multiply by 2 unless we are sure we'll fit within 32 bits. 7544 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7545 */ 7546 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7547 goto retry_load; 7548 7549 ret = -errno; 7550 7551 /* post-process verifier log to improve error descriptions */ 7552 fixup_verifier_log(prog, log_buf, log_buf_size); 7553 7554 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7555 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7556 pr_perm_msg(ret); 7557 7558 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7559 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7560 prog->name, log_buf); 7561 } 7562 7563 out: 7564 if (own_log_buf) 7565 free(log_buf); 7566 return ret; 7567 } 7568 7569 static char *find_prev_line(char *buf, char *cur) 7570 { 7571 char *p; 7572 7573 if (cur == buf) /* end of a log buf */ 7574 return NULL; 7575 7576 p = cur - 1; 7577 while (p - 1 >= buf && *(p - 1) != '\n') 7578 p--; 7579 7580 return p; 7581 } 7582 7583 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7584 char *orig, size_t orig_sz, const char *patch) 7585 { 7586 /* size of the remaining log content to the right from the to-be-replaced part */ 7587 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7588 size_t patch_sz = strlen(patch); 7589 7590 if (patch_sz != orig_sz) { 7591 /* If patch line(s) are longer than original piece of verifier log, 7592 * shift log contents by (patch_sz - orig_sz) bytes to the right 7593 * starting from after to-be-replaced part of the log. 7594 * 7595 * If patch line(s) are shorter than original piece of verifier log, 7596 * shift log contents by (orig_sz - patch_sz) bytes to the left 7597 * starting from after to-be-replaced part of the log 7598 * 7599 * We need to be careful about not overflowing available 7600 * buf_sz capacity. If that's the case, we'll truncate the end 7601 * of the original log, as necessary. 7602 */ 7603 if (patch_sz > orig_sz) { 7604 if (orig + patch_sz >= buf + buf_sz) { 7605 /* patch is big enough to cover remaining space completely */ 7606 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7607 rem_sz = 0; 7608 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7609 /* patch causes part of remaining log to be truncated */ 7610 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7611 } 7612 } 7613 /* shift remaining log to the right by calculated amount */ 7614 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7615 } 7616 7617 memcpy(orig, patch, patch_sz); 7618 } 7619 7620 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7621 char *buf, size_t buf_sz, size_t log_sz, 7622 char *line1, char *line2, char *line3) 7623 { 7624 /* Expected log for failed and not properly guarded CO-RE relocation: 7625 * line1 -> 123: (85) call unknown#195896080 7626 * line2 -> invalid func unknown#195896080 7627 * line3 -> <anything else or end of buffer> 7628 * 7629 * "123" is the index of the instruction that was poisoned. We extract 7630 * instruction index to find corresponding CO-RE relocation and 7631 * replace this part of the log with more relevant information about 7632 * failed CO-RE relocation. 7633 */ 7634 const struct bpf_core_relo *relo; 7635 struct bpf_core_spec spec; 7636 char patch[512], spec_buf[256]; 7637 int insn_idx, err, spec_len; 7638 7639 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7640 return; 7641 7642 relo = find_relo_core(prog, insn_idx); 7643 if (!relo) 7644 return; 7645 7646 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7647 if (err) 7648 return; 7649 7650 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7651 snprintf(patch, sizeof(patch), 7652 "%d: <invalid CO-RE relocation>\n" 7653 "failed to resolve CO-RE relocation %s%s\n", 7654 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7655 7656 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7657 } 7658 7659 static void fixup_log_missing_map_load(struct bpf_program *prog, 7660 char *buf, size_t buf_sz, size_t log_sz, 7661 char *line1, char *line2, char *line3) 7662 { 7663 /* Expected log for failed and not properly guarded map reference: 7664 * line1 -> 123: (85) call unknown#2001000345 7665 * line2 -> invalid func unknown#2001000345 7666 * line3 -> <anything else or end of buffer> 7667 * 7668 * "123" is the index of the instruction that was poisoned. 7669 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7670 */ 7671 struct bpf_object *obj = prog->obj; 7672 const struct bpf_map *map; 7673 int insn_idx, map_idx; 7674 char patch[128]; 7675 7676 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7677 return; 7678 7679 map_idx -= POISON_LDIMM64_MAP_BASE; 7680 if (map_idx < 0 || map_idx >= obj->nr_maps) 7681 return; 7682 map = &obj->maps[map_idx]; 7683 7684 snprintf(patch, sizeof(patch), 7685 "%d: <invalid BPF map reference>\n" 7686 "BPF map '%s' is referenced but wasn't created\n", 7687 insn_idx, map->name); 7688 7689 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7690 } 7691 7692 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7693 char *buf, size_t buf_sz, size_t log_sz, 7694 char *line1, char *line2, char *line3) 7695 { 7696 /* Expected log for failed and not properly guarded kfunc call: 7697 * line1 -> 123: (85) call unknown#2002000345 7698 * line2 -> invalid func unknown#2002000345 7699 * line3 -> <anything else or end of buffer> 7700 * 7701 * "123" is the index of the instruction that was poisoned. 7702 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7703 */ 7704 struct bpf_object *obj = prog->obj; 7705 const struct extern_desc *ext; 7706 int insn_idx, ext_idx; 7707 char patch[128]; 7708 7709 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7710 return; 7711 7712 ext_idx -= POISON_CALL_KFUNC_BASE; 7713 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7714 return; 7715 ext = &obj->externs[ext_idx]; 7716 7717 snprintf(patch, sizeof(patch), 7718 "%d: <invalid kfunc call>\n" 7719 "kfunc '%s' is referenced but wasn't resolved\n", 7720 insn_idx, ext->name); 7721 7722 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7723 } 7724 7725 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7726 { 7727 /* look for familiar error patterns in last N lines of the log */ 7728 const size_t max_last_line_cnt = 10; 7729 char *prev_line, *cur_line, *next_line; 7730 size_t log_sz; 7731 int i; 7732 7733 if (!buf) 7734 return; 7735 7736 log_sz = strlen(buf) + 1; 7737 next_line = buf + log_sz - 1; 7738 7739 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7740 cur_line = find_prev_line(buf, next_line); 7741 if (!cur_line) 7742 return; 7743 7744 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7745 prev_line = find_prev_line(buf, cur_line); 7746 if (!prev_line) 7747 continue; 7748 7749 /* failed CO-RE relocation case */ 7750 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7751 prev_line, cur_line, next_line); 7752 return; 7753 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7754 prev_line = find_prev_line(buf, cur_line); 7755 if (!prev_line) 7756 continue; 7757 7758 /* reference to uncreated BPF map */ 7759 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7760 prev_line, cur_line, next_line); 7761 return; 7762 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7763 prev_line = find_prev_line(buf, cur_line); 7764 if (!prev_line) 7765 continue; 7766 7767 /* reference to unresolved kfunc */ 7768 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7769 prev_line, cur_line, next_line); 7770 return; 7771 } 7772 } 7773 } 7774 7775 static int bpf_program_record_relos(struct bpf_program *prog) 7776 { 7777 struct bpf_object *obj = prog->obj; 7778 int i; 7779 7780 for (i = 0; i < prog->nr_reloc; i++) { 7781 struct reloc_desc *relo = &prog->reloc_desc[i]; 7782 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7783 int kind; 7784 7785 switch (relo->type) { 7786 case RELO_EXTERN_LD64: 7787 if (ext->type != EXT_KSYM) 7788 continue; 7789 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7790 BTF_KIND_VAR : BTF_KIND_FUNC; 7791 bpf_gen__record_extern(obj->gen_loader, ext->name, 7792 ext->is_weak, !ext->ksym.type_id, 7793 true, kind, relo->insn_idx); 7794 break; 7795 case RELO_EXTERN_CALL: 7796 bpf_gen__record_extern(obj->gen_loader, ext->name, 7797 ext->is_weak, false, false, BTF_KIND_FUNC, 7798 relo->insn_idx); 7799 break; 7800 case RELO_CORE: { 7801 struct bpf_core_relo cr = { 7802 .insn_off = relo->insn_idx * 8, 7803 .type_id = relo->core_relo->type_id, 7804 .access_str_off = relo->core_relo->access_str_off, 7805 .kind = relo->core_relo->kind, 7806 }; 7807 7808 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7809 break; 7810 } 7811 default: 7812 continue; 7813 } 7814 } 7815 return 0; 7816 } 7817 7818 static int 7819 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7820 { 7821 struct bpf_program *prog; 7822 size_t i; 7823 int err; 7824 7825 for (i = 0; i < obj->nr_programs; i++) { 7826 prog = &obj->programs[i]; 7827 err = bpf_object__sanitize_prog(obj, prog); 7828 if (err) 7829 return err; 7830 } 7831 7832 for (i = 0; i < obj->nr_programs; i++) { 7833 prog = &obj->programs[i]; 7834 if (prog_is_subprog(obj, prog)) 7835 continue; 7836 if (!prog->autoload) { 7837 pr_debug("prog '%s': skipped loading\n", prog->name); 7838 continue; 7839 } 7840 prog->log_level |= log_level; 7841 7842 if (obj->gen_loader) 7843 bpf_program_record_relos(prog); 7844 7845 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7846 obj->license, obj->kern_version, &prog->fd); 7847 if (err) { 7848 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7849 return err; 7850 } 7851 } 7852 7853 bpf_object__free_relocs(obj); 7854 return 0; 7855 } 7856 7857 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7858 7859 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7860 { 7861 struct bpf_program *prog; 7862 int err; 7863 7864 bpf_object__for_each_program(prog, obj) { 7865 prog->sec_def = find_sec_def(prog->sec_name); 7866 if (!prog->sec_def) { 7867 /* couldn't guess, but user might manually specify */ 7868 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7869 prog->name, prog->sec_name); 7870 continue; 7871 } 7872 7873 prog->type = prog->sec_def->prog_type; 7874 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7875 7876 /* sec_def can have custom callback which should be called 7877 * after bpf_program is initialized to adjust its properties 7878 */ 7879 if (prog->sec_def->prog_setup_fn) { 7880 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7881 if (err < 0) { 7882 pr_warn("prog '%s': failed to initialize: %d\n", 7883 prog->name, err); 7884 return err; 7885 } 7886 } 7887 } 7888 7889 return 0; 7890 } 7891 7892 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7893 const struct bpf_object_open_opts *opts) 7894 { 7895 const char *obj_name, *kconfig, *btf_tmp_path, *token_path; 7896 struct bpf_object *obj; 7897 char tmp_name[64]; 7898 int err; 7899 char *log_buf; 7900 size_t log_size; 7901 __u32 log_level; 7902 7903 if (elf_version(EV_CURRENT) == EV_NONE) { 7904 pr_warn("failed to init libelf for %s\n", 7905 path ? : "(mem buf)"); 7906 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7907 } 7908 7909 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7910 return ERR_PTR(-EINVAL); 7911 7912 obj_name = OPTS_GET(opts, object_name, NULL); 7913 if (obj_buf) { 7914 if (!obj_name) { 7915 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7916 (unsigned long)obj_buf, 7917 (unsigned long)obj_buf_sz); 7918 obj_name = tmp_name; 7919 } 7920 path = obj_name; 7921 pr_debug("loading object '%s' from buffer\n", obj_name); 7922 } 7923 7924 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7925 log_size = OPTS_GET(opts, kernel_log_size, 0); 7926 log_level = OPTS_GET(opts, kernel_log_level, 0); 7927 if (log_size > UINT_MAX) 7928 return ERR_PTR(-EINVAL); 7929 if (log_size && !log_buf) 7930 return ERR_PTR(-EINVAL); 7931 7932 token_path = OPTS_GET(opts, bpf_token_path, NULL); 7933 /* if user didn't specify bpf_token_path explicitly, check if 7934 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 7935 * option 7936 */ 7937 if (!token_path) 7938 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 7939 if (token_path && strlen(token_path) >= PATH_MAX) 7940 return ERR_PTR(-ENAMETOOLONG); 7941 7942 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7943 if (IS_ERR(obj)) 7944 return obj; 7945 7946 obj->log_buf = log_buf; 7947 obj->log_size = log_size; 7948 obj->log_level = log_level; 7949 7950 if (token_path) { 7951 obj->token_path = strdup(token_path); 7952 if (!obj->token_path) { 7953 err = -ENOMEM; 7954 goto out; 7955 } 7956 } 7957 7958 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7959 if (btf_tmp_path) { 7960 if (strlen(btf_tmp_path) >= PATH_MAX) { 7961 err = -ENAMETOOLONG; 7962 goto out; 7963 } 7964 obj->btf_custom_path = strdup(btf_tmp_path); 7965 if (!obj->btf_custom_path) { 7966 err = -ENOMEM; 7967 goto out; 7968 } 7969 } 7970 7971 kconfig = OPTS_GET(opts, kconfig, NULL); 7972 if (kconfig) { 7973 obj->kconfig = strdup(kconfig); 7974 if (!obj->kconfig) { 7975 err = -ENOMEM; 7976 goto out; 7977 } 7978 } 7979 7980 err = bpf_object__elf_init(obj); 7981 err = err ? : bpf_object__check_endianness(obj); 7982 err = err ? : bpf_object__elf_collect(obj); 7983 err = err ? : bpf_object__collect_externs(obj); 7984 err = err ? : bpf_object_fixup_btf(obj); 7985 err = err ? : bpf_object__init_maps(obj, opts); 7986 err = err ? : bpf_object_init_progs(obj, opts); 7987 err = err ? : bpf_object__collect_relos(obj); 7988 if (err) 7989 goto out; 7990 7991 bpf_object__elf_finish(obj); 7992 7993 return obj; 7994 out: 7995 bpf_object__close(obj); 7996 return ERR_PTR(err); 7997 } 7998 7999 struct bpf_object * 8000 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8001 { 8002 if (!path) 8003 return libbpf_err_ptr(-EINVAL); 8004 8005 pr_debug("loading %s\n", path); 8006 8007 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 8008 } 8009 8010 struct bpf_object *bpf_object__open(const char *path) 8011 { 8012 return bpf_object__open_file(path, NULL); 8013 } 8014 8015 struct bpf_object * 8016 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8017 const struct bpf_object_open_opts *opts) 8018 { 8019 if (!obj_buf || obj_buf_sz == 0) 8020 return libbpf_err_ptr(-EINVAL); 8021 8022 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 8023 } 8024 8025 static int bpf_object_unload(struct bpf_object *obj) 8026 { 8027 size_t i; 8028 8029 if (!obj) 8030 return libbpf_err(-EINVAL); 8031 8032 for (i = 0; i < obj->nr_maps; i++) { 8033 zclose(obj->maps[i].fd); 8034 if (obj->maps[i].st_ops) 8035 zfree(&obj->maps[i].st_ops->kern_vdata); 8036 } 8037 8038 for (i = 0; i < obj->nr_programs; i++) 8039 bpf_program__unload(&obj->programs[i]); 8040 8041 return 0; 8042 } 8043 8044 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8045 { 8046 struct bpf_map *m; 8047 8048 bpf_object__for_each_map(m, obj) { 8049 if (!bpf_map__is_internal(m)) 8050 continue; 8051 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8052 m->def.map_flags &= ~BPF_F_MMAPABLE; 8053 } 8054 8055 return 0; 8056 } 8057 8058 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8059 const char *sym_name, void *ctx); 8060 8061 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8062 { 8063 char sym_type, sym_name[500]; 8064 unsigned long long sym_addr; 8065 int ret, err = 0; 8066 FILE *f; 8067 8068 f = fopen("/proc/kallsyms", "re"); 8069 if (!f) { 8070 err = -errno; 8071 pr_warn("failed to open /proc/kallsyms: %d\n", err); 8072 return err; 8073 } 8074 8075 while (true) { 8076 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8077 &sym_addr, &sym_type, sym_name); 8078 if (ret == EOF && feof(f)) 8079 break; 8080 if (ret != 3) { 8081 pr_warn("failed to read kallsyms entry: %d\n", ret); 8082 err = -EINVAL; 8083 break; 8084 } 8085 8086 err = cb(sym_addr, sym_type, sym_name, ctx); 8087 if (err) 8088 break; 8089 } 8090 8091 fclose(f); 8092 return err; 8093 } 8094 8095 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8096 const char *sym_name, void *ctx) 8097 { 8098 struct bpf_object *obj = ctx; 8099 const struct btf_type *t; 8100 struct extern_desc *ext; 8101 char *res; 8102 8103 res = strstr(sym_name, ".llvm."); 8104 if (sym_type == 'd' && res) 8105 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8106 else 8107 ext = find_extern_by_name(obj, sym_name); 8108 if (!ext || ext->type != EXT_KSYM) 8109 return 0; 8110 8111 t = btf__type_by_id(obj->btf, ext->btf_id); 8112 if (!btf_is_var(t)) 8113 return 0; 8114 8115 if (ext->is_set && ext->ksym.addr != sym_addr) { 8116 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8117 sym_name, ext->ksym.addr, sym_addr); 8118 return -EINVAL; 8119 } 8120 if (!ext->is_set) { 8121 ext->is_set = true; 8122 ext->ksym.addr = sym_addr; 8123 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8124 } 8125 return 0; 8126 } 8127 8128 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8129 { 8130 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8131 } 8132 8133 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8134 __u16 kind, struct btf **res_btf, 8135 struct module_btf **res_mod_btf) 8136 { 8137 struct module_btf *mod_btf; 8138 struct btf *btf; 8139 int i, id, err; 8140 8141 btf = obj->btf_vmlinux; 8142 mod_btf = NULL; 8143 id = btf__find_by_name_kind(btf, ksym_name, kind); 8144 8145 if (id == -ENOENT) { 8146 err = load_module_btfs(obj); 8147 if (err) 8148 return err; 8149 8150 for (i = 0; i < obj->btf_module_cnt; i++) { 8151 /* we assume module_btf's BTF FD is always >0 */ 8152 mod_btf = &obj->btf_modules[i]; 8153 btf = mod_btf->btf; 8154 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8155 if (id != -ENOENT) 8156 break; 8157 } 8158 } 8159 if (id <= 0) 8160 return -ESRCH; 8161 8162 *res_btf = btf; 8163 *res_mod_btf = mod_btf; 8164 return id; 8165 } 8166 8167 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8168 struct extern_desc *ext) 8169 { 8170 const struct btf_type *targ_var, *targ_type; 8171 __u32 targ_type_id, local_type_id; 8172 struct module_btf *mod_btf = NULL; 8173 const char *targ_var_name; 8174 struct btf *btf = NULL; 8175 int id, err; 8176 8177 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8178 if (id < 0) { 8179 if (id == -ESRCH && ext->is_weak) 8180 return 0; 8181 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8182 ext->name); 8183 return id; 8184 } 8185 8186 /* find local type_id */ 8187 local_type_id = ext->ksym.type_id; 8188 8189 /* find target type_id */ 8190 targ_var = btf__type_by_id(btf, id); 8191 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8192 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8193 8194 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8195 btf, targ_type_id); 8196 if (err <= 0) { 8197 const struct btf_type *local_type; 8198 const char *targ_name, *local_name; 8199 8200 local_type = btf__type_by_id(obj->btf, local_type_id); 8201 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8202 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8203 8204 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8205 ext->name, local_type_id, 8206 btf_kind_str(local_type), local_name, targ_type_id, 8207 btf_kind_str(targ_type), targ_name); 8208 return -EINVAL; 8209 } 8210 8211 ext->is_set = true; 8212 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8213 ext->ksym.kernel_btf_id = id; 8214 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8215 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8216 8217 return 0; 8218 } 8219 8220 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8221 struct extern_desc *ext) 8222 { 8223 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8224 struct module_btf *mod_btf = NULL; 8225 const struct btf_type *kern_func; 8226 struct btf *kern_btf = NULL; 8227 int ret; 8228 8229 local_func_proto_id = ext->ksym.type_id; 8230 8231 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8232 &mod_btf); 8233 if (kfunc_id < 0) { 8234 if (kfunc_id == -ESRCH && ext->is_weak) 8235 return 0; 8236 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8237 ext->name); 8238 return kfunc_id; 8239 } 8240 8241 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8242 kfunc_proto_id = kern_func->type; 8243 8244 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8245 kern_btf, kfunc_proto_id); 8246 if (ret <= 0) { 8247 if (ext->is_weak) 8248 return 0; 8249 8250 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8251 ext->name, local_func_proto_id, 8252 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8253 return -EINVAL; 8254 } 8255 8256 /* set index for module BTF fd in fd_array, if unset */ 8257 if (mod_btf && !mod_btf->fd_array_idx) { 8258 /* insn->off is s16 */ 8259 if (obj->fd_array_cnt == INT16_MAX) { 8260 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8261 ext->name, mod_btf->fd_array_idx); 8262 return -E2BIG; 8263 } 8264 /* Cannot use index 0 for module BTF fd */ 8265 if (!obj->fd_array_cnt) 8266 obj->fd_array_cnt = 1; 8267 8268 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8269 obj->fd_array_cnt + 1); 8270 if (ret) 8271 return ret; 8272 mod_btf->fd_array_idx = obj->fd_array_cnt; 8273 /* we assume module BTF FD is always >0 */ 8274 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8275 } 8276 8277 ext->is_set = true; 8278 ext->ksym.kernel_btf_id = kfunc_id; 8279 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8280 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8281 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8282 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8283 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8284 */ 8285 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8286 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8287 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8288 8289 return 0; 8290 } 8291 8292 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8293 { 8294 const struct btf_type *t; 8295 struct extern_desc *ext; 8296 int i, err; 8297 8298 for (i = 0; i < obj->nr_extern; i++) { 8299 ext = &obj->externs[i]; 8300 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8301 continue; 8302 8303 if (obj->gen_loader) { 8304 ext->is_set = true; 8305 ext->ksym.kernel_btf_obj_fd = 0; 8306 ext->ksym.kernel_btf_id = 0; 8307 continue; 8308 } 8309 t = btf__type_by_id(obj->btf, ext->btf_id); 8310 if (btf_is_var(t)) 8311 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8312 else 8313 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8314 if (err) 8315 return err; 8316 } 8317 return 0; 8318 } 8319 8320 static int bpf_object__resolve_externs(struct bpf_object *obj, 8321 const char *extra_kconfig) 8322 { 8323 bool need_config = false, need_kallsyms = false; 8324 bool need_vmlinux_btf = false; 8325 struct extern_desc *ext; 8326 void *kcfg_data = NULL; 8327 int err, i; 8328 8329 if (obj->nr_extern == 0) 8330 return 0; 8331 8332 if (obj->kconfig_map_idx >= 0) 8333 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8334 8335 for (i = 0; i < obj->nr_extern; i++) { 8336 ext = &obj->externs[i]; 8337 8338 if (ext->type == EXT_KSYM) { 8339 if (ext->ksym.type_id) 8340 need_vmlinux_btf = true; 8341 else 8342 need_kallsyms = true; 8343 continue; 8344 } else if (ext->type == EXT_KCFG) { 8345 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8346 __u64 value = 0; 8347 8348 /* Kconfig externs need actual /proc/config.gz */ 8349 if (str_has_pfx(ext->name, "CONFIG_")) { 8350 need_config = true; 8351 continue; 8352 } 8353 8354 /* Virtual kcfg externs are customly handled by libbpf */ 8355 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8356 value = get_kernel_version(); 8357 if (!value) { 8358 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8359 return -EINVAL; 8360 } 8361 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8362 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8363 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8364 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8365 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8366 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8367 * __kconfig externs, where LINUX_ ones are virtual and filled out 8368 * customly by libbpf (their values don't come from Kconfig). 8369 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8370 * __weak, it defaults to zero value, just like for CONFIG_xxx 8371 * externs. 8372 */ 8373 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8374 return -EINVAL; 8375 } 8376 8377 err = set_kcfg_value_num(ext, ext_ptr, value); 8378 if (err) 8379 return err; 8380 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8381 ext->name, (long long)value); 8382 } else { 8383 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8384 return -EINVAL; 8385 } 8386 } 8387 if (need_config && extra_kconfig) { 8388 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8389 if (err) 8390 return -EINVAL; 8391 need_config = false; 8392 for (i = 0; i < obj->nr_extern; i++) { 8393 ext = &obj->externs[i]; 8394 if (ext->type == EXT_KCFG && !ext->is_set) { 8395 need_config = true; 8396 break; 8397 } 8398 } 8399 } 8400 if (need_config) { 8401 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8402 if (err) 8403 return -EINVAL; 8404 } 8405 if (need_kallsyms) { 8406 err = bpf_object__read_kallsyms_file(obj); 8407 if (err) 8408 return -EINVAL; 8409 } 8410 if (need_vmlinux_btf) { 8411 err = bpf_object__resolve_ksyms_btf_id(obj); 8412 if (err) 8413 return -EINVAL; 8414 } 8415 for (i = 0; i < obj->nr_extern; i++) { 8416 ext = &obj->externs[i]; 8417 8418 if (!ext->is_set && !ext->is_weak) { 8419 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8420 return -ESRCH; 8421 } else if (!ext->is_set) { 8422 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8423 ext->name); 8424 } 8425 } 8426 8427 return 0; 8428 } 8429 8430 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8431 { 8432 struct bpf_struct_ops *st_ops; 8433 __u32 i; 8434 8435 st_ops = map->st_ops; 8436 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8437 struct bpf_program *prog = st_ops->progs[i]; 8438 void *kern_data; 8439 int prog_fd; 8440 8441 if (!prog) 8442 continue; 8443 8444 prog_fd = bpf_program__fd(prog); 8445 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8446 *(unsigned long *)kern_data = prog_fd; 8447 } 8448 } 8449 8450 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8451 { 8452 struct bpf_map *map; 8453 int i; 8454 8455 for (i = 0; i < obj->nr_maps; i++) { 8456 map = &obj->maps[i]; 8457 8458 if (!bpf_map__is_struct_ops(map)) 8459 continue; 8460 8461 if (!map->autocreate) 8462 continue; 8463 8464 bpf_map_prepare_vdata(map); 8465 } 8466 8467 return 0; 8468 } 8469 8470 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8471 { 8472 int err, i; 8473 8474 if (!obj) 8475 return libbpf_err(-EINVAL); 8476 8477 if (obj->loaded) { 8478 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8479 return libbpf_err(-EINVAL); 8480 } 8481 8482 if (obj->gen_loader) 8483 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8484 8485 err = bpf_object_prepare_token(obj); 8486 err = err ? : bpf_object__probe_loading(obj); 8487 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8488 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8489 err = err ? : bpf_object__sanitize_maps(obj); 8490 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8491 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8492 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8493 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8494 err = err ? : bpf_object__create_maps(obj); 8495 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8496 err = err ? : bpf_object_init_prog_arrays(obj); 8497 err = err ? : bpf_object_prepare_struct_ops(obj); 8498 8499 if (obj->gen_loader) { 8500 /* reset FDs */ 8501 if (obj->btf) 8502 btf__set_fd(obj->btf, -1); 8503 if (!err) 8504 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8505 } 8506 8507 /* clean up fd_array */ 8508 zfree(&obj->fd_array); 8509 8510 /* clean up module BTFs */ 8511 for (i = 0; i < obj->btf_module_cnt; i++) { 8512 close(obj->btf_modules[i].fd); 8513 btf__free(obj->btf_modules[i].btf); 8514 free(obj->btf_modules[i].name); 8515 } 8516 free(obj->btf_modules); 8517 8518 /* clean up vmlinux BTF */ 8519 btf__free(obj->btf_vmlinux); 8520 obj->btf_vmlinux = NULL; 8521 8522 obj->loaded = true; /* doesn't matter if successfully or not */ 8523 8524 if (err) 8525 goto out; 8526 8527 return 0; 8528 out: 8529 /* unpin any maps that were auto-pinned during load */ 8530 for (i = 0; i < obj->nr_maps; i++) 8531 if (obj->maps[i].pinned && !obj->maps[i].reused) 8532 bpf_map__unpin(&obj->maps[i], NULL); 8533 8534 bpf_object_unload(obj); 8535 pr_warn("failed to load object '%s'\n", obj->path); 8536 return libbpf_err(err); 8537 } 8538 8539 int bpf_object__load(struct bpf_object *obj) 8540 { 8541 return bpf_object_load(obj, 0, NULL); 8542 } 8543 8544 static int make_parent_dir(const char *path) 8545 { 8546 char *cp, errmsg[STRERR_BUFSIZE]; 8547 char *dname, *dir; 8548 int err = 0; 8549 8550 dname = strdup(path); 8551 if (dname == NULL) 8552 return -ENOMEM; 8553 8554 dir = dirname(dname); 8555 if (mkdir(dir, 0700) && errno != EEXIST) 8556 err = -errno; 8557 8558 free(dname); 8559 if (err) { 8560 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8561 pr_warn("failed to mkdir %s: %s\n", path, cp); 8562 } 8563 return err; 8564 } 8565 8566 static int check_path(const char *path) 8567 { 8568 char *cp, errmsg[STRERR_BUFSIZE]; 8569 struct statfs st_fs; 8570 char *dname, *dir; 8571 int err = 0; 8572 8573 if (path == NULL) 8574 return -EINVAL; 8575 8576 dname = strdup(path); 8577 if (dname == NULL) 8578 return -ENOMEM; 8579 8580 dir = dirname(dname); 8581 if (statfs(dir, &st_fs)) { 8582 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8583 pr_warn("failed to statfs %s: %s\n", dir, cp); 8584 err = -errno; 8585 } 8586 free(dname); 8587 8588 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8589 pr_warn("specified path %s is not on BPF FS\n", path); 8590 err = -EINVAL; 8591 } 8592 8593 return err; 8594 } 8595 8596 int bpf_program__pin(struct bpf_program *prog, const char *path) 8597 { 8598 char *cp, errmsg[STRERR_BUFSIZE]; 8599 int err; 8600 8601 if (prog->fd < 0) { 8602 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8603 return libbpf_err(-EINVAL); 8604 } 8605 8606 err = make_parent_dir(path); 8607 if (err) 8608 return libbpf_err(err); 8609 8610 err = check_path(path); 8611 if (err) 8612 return libbpf_err(err); 8613 8614 if (bpf_obj_pin(prog->fd, path)) { 8615 err = -errno; 8616 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8617 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8618 return libbpf_err(err); 8619 } 8620 8621 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8622 return 0; 8623 } 8624 8625 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8626 { 8627 int err; 8628 8629 if (prog->fd < 0) { 8630 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8631 return libbpf_err(-EINVAL); 8632 } 8633 8634 err = check_path(path); 8635 if (err) 8636 return libbpf_err(err); 8637 8638 err = unlink(path); 8639 if (err) 8640 return libbpf_err(-errno); 8641 8642 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8643 return 0; 8644 } 8645 8646 int bpf_map__pin(struct bpf_map *map, const char *path) 8647 { 8648 char *cp, errmsg[STRERR_BUFSIZE]; 8649 int err; 8650 8651 if (map == NULL) { 8652 pr_warn("invalid map pointer\n"); 8653 return libbpf_err(-EINVAL); 8654 } 8655 8656 if (map->fd < 0) { 8657 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8658 return libbpf_err(-EINVAL); 8659 } 8660 8661 if (map->pin_path) { 8662 if (path && strcmp(path, map->pin_path)) { 8663 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8664 bpf_map__name(map), map->pin_path, path); 8665 return libbpf_err(-EINVAL); 8666 } else if (map->pinned) { 8667 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8668 bpf_map__name(map), map->pin_path); 8669 return 0; 8670 } 8671 } else { 8672 if (!path) { 8673 pr_warn("missing a path to pin map '%s' at\n", 8674 bpf_map__name(map)); 8675 return libbpf_err(-EINVAL); 8676 } else if (map->pinned) { 8677 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8678 return libbpf_err(-EEXIST); 8679 } 8680 8681 map->pin_path = strdup(path); 8682 if (!map->pin_path) { 8683 err = -errno; 8684 goto out_err; 8685 } 8686 } 8687 8688 err = make_parent_dir(map->pin_path); 8689 if (err) 8690 return libbpf_err(err); 8691 8692 err = check_path(map->pin_path); 8693 if (err) 8694 return libbpf_err(err); 8695 8696 if (bpf_obj_pin(map->fd, map->pin_path)) { 8697 err = -errno; 8698 goto out_err; 8699 } 8700 8701 map->pinned = true; 8702 pr_debug("pinned map '%s'\n", map->pin_path); 8703 8704 return 0; 8705 8706 out_err: 8707 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8708 pr_warn("failed to pin map: %s\n", cp); 8709 return libbpf_err(err); 8710 } 8711 8712 int bpf_map__unpin(struct bpf_map *map, const char *path) 8713 { 8714 int err; 8715 8716 if (map == NULL) { 8717 pr_warn("invalid map pointer\n"); 8718 return libbpf_err(-EINVAL); 8719 } 8720 8721 if (map->pin_path) { 8722 if (path && strcmp(path, map->pin_path)) { 8723 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8724 bpf_map__name(map), map->pin_path, path); 8725 return libbpf_err(-EINVAL); 8726 } 8727 path = map->pin_path; 8728 } else if (!path) { 8729 pr_warn("no path to unpin map '%s' from\n", 8730 bpf_map__name(map)); 8731 return libbpf_err(-EINVAL); 8732 } 8733 8734 err = check_path(path); 8735 if (err) 8736 return libbpf_err(err); 8737 8738 err = unlink(path); 8739 if (err != 0) 8740 return libbpf_err(-errno); 8741 8742 map->pinned = false; 8743 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8744 8745 return 0; 8746 } 8747 8748 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8749 { 8750 char *new = NULL; 8751 8752 if (path) { 8753 new = strdup(path); 8754 if (!new) 8755 return libbpf_err(-errno); 8756 } 8757 8758 free(map->pin_path); 8759 map->pin_path = new; 8760 return 0; 8761 } 8762 8763 __alias(bpf_map__pin_path) 8764 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8765 8766 const char *bpf_map__pin_path(const struct bpf_map *map) 8767 { 8768 return map->pin_path; 8769 } 8770 8771 bool bpf_map__is_pinned(const struct bpf_map *map) 8772 { 8773 return map->pinned; 8774 } 8775 8776 static void sanitize_pin_path(char *s) 8777 { 8778 /* bpffs disallows periods in path names */ 8779 while (*s) { 8780 if (*s == '.') 8781 *s = '_'; 8782 s++; 8783 } 8784 } 8785 8786 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8787 { 8788 struct bpf_map *map; 8789 int err; 8790 8791 if (!obj) 8792 return libbpf_err(-ENOENT); 8793 8794 if (!obj->loaded) { 8795 pr_warn("object not yet loaded; load it first\n"); 8796 return libbpf_err(-ENOENT); 8797 } 8798 8799 bpf_object__for_each_map(map, obj) { 8800 char *pin_path = NULL; 8801 char buf[PATH_MAX]; 8802 8803 if (!map->autocreate) 8804 continue; 8805 8806 if (path) { 8807 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8808 if (err) 8809 goto err_unpin_maps; 8810 sanitize_pin_path(buf); 8811 pin_path = buf; 8812 } else if (!map->pin_path) { 8813 continue; 8814 } 8815 8816 err = bpf_map__pin(map, pin_path); 8817 if (err) 8818 goto err_unpin_maps; 8819 } 8820 8821 return 0; 8822 8823 err_unpin_maps: 8824 while ((map = bpf_object__prev_map(obj, map))) { 8825 if (!map->pin_path) 8826 continue; 8827 8828 bpf_map__unpin(map, NULL); 8829 } 8830 8831 return libbpf_err(err); 8832 } 8833 8834 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8835 { 8836 struct bpf_map *map; 8837 int err; 8838 8839 if (!obj) 8840 return libbpf_err(-ENOENT); 8841 8842 bpf_object__for_each_map(map, obj) { 8843 char *pin_path = NULL; 8844 char buf[PATH_MAX]; 8845 8846 if (path) { 8847 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8848 if (err) 8849 return libbpf_err(err); 8850 sanitize_pin_path(buf); 8851 pin_path = buf; 8852 } else if (!map->pin_path) { 8853 continue; 8854 } 8855 8856 err = bpf_map__unpin(map, pin_path); 8857 if (err) 8858 return libbpf_err(err); 8859 } 8860 8861 return 0; 8862 } 8863 8864 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8865 { 8866 struct bpf_program *prog; 8867 char buf[PATH_MAX]; 8868 int err; 8869 8870 if (!obj) 8871 return libbpf_err(-ENOENT); 8872 8873 if (!obj->loaded) { 8874 pr_warn("object not yet loaded; load it first\n"); 8875 return libbpf_err(-ENOENT); 8876 } 8877 8878 bpf_object__for_each_program(prog, obj) { 8879 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8880 if (err) 8881 goto err_unpin_programs; 8882 8883 err = bpf_program__pin(prog, buf); 8884 if (err) 8885 goto err_unpin_programs; 8886 } 8887 8888 return 0; 8889 8890 err_unpin_programs: 8891 while ((prog = bpf_object__prev_program(obj, prog))) { 8892 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8893 continue; 8894 8895 bpf_program__unpin(prog, buf); 8896 } 8897 8898 return libbpf_err(err); 8899 } 8900 8901 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8902 { 8903 struct bpf_program *prog; 8904 int err; 8905 8906 if (!obj) 8907 return libbpf_err(-ENOENT); 8908 8909 bpf_object__for_each_program(prog, obj) { 8910 char buf[PATH_MAX]; 8911 8912 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8913 if (err) 8914 return libbpf_err(err); 8915 8916 err = bpf_program__unpin(prog, buf); 8917 if (err) 8918 return libbpf_err(err); 8919 } 8920 8921 return 0; 8922 } 8923 8924 int bpf_object__pin(struct bpf_object *obj, const char *path) 8925 { 8926 int err; 8927 8928 err = bpf_object__pin_maps(obj, path); 8929 if (err) 8930 return libbpf_err(err); 8931 8932 err = bpf_object__pin_programs(obj, path); 8933 if (err) { 8934 bpf_object__unpin_maps(obj, path); 8935 return libbpf_err(err); 8936 } 8937 8938 return 0; 8939 } 8940 8941 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8942 { 8943 int err; 8944 8945 err = bpf_object__unpin_programs(obj, path); 8946 if (err) 8947 return libbpf_err(err); 8948 8949 err = bpf_object__unpin_maps(obj, path); 8950 if (err) 8951 return libbpf_err(err); 8952 8953 return 0; 8954 } 8955 8956 static void bpf_map__destroy(struct bpf_map *map) 8957 { 8958 if (map->inner_map) { 8959 bpf_map__destroy(map->inner_map); 8960 zfree(&map->inner_map); 8961 } 8962 8963 zfree(&map->init_slots); 8964 map->init_slots_sz = 0; 8965 8966 if (map->mmaped && map->mmaped != map->obj->arena_data) 8967 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8968 map->mmaped = NULL; 8969 8970 if (map->st_ops) { 8971 zfree(&map->st_ops->data); 8972 zfree(&map->st_ops->progs); 8973 zfree(&map->st_ops->kern_func_off); 8974 zfree(&map->st_ops); 8975 } 8976 8977 zfree(&map->name); 8978 zfree(&map->real_name); 8979 zfree(&map->pin_path); 8980 8981 if (map->fd >= 0) 8982 zclose(map->fd); 8983 } 8984 8985 void bpf_object__close(struct bpf_object *obj) 8986 { 8987 size_t i; 8988 8989 if (IS_ERR_OR_NULL(obj)) 8990 return; 8991 8992 usdt_manager_free(obj->usdt_man); 8993 obj->usdt_man = NULL; 8994 8995 bpf_gen__free(obj->gen_loader); 8996 bpf_object__elf_finish(obj); 8997 bpf_object_unload(obj); 8998 btf__free(obj->btf); 8999 btf__free(obj->btf_vmlinux); 9000 btf_ext__free(obj->btf_ext); 9001 9002 for (i = 0; i < obj->nr_maps; i++) 9003 bpf_map__destroy(&obj->maps[i]); 9004 9005 zfree(&obj->btf_custom_path); 9006 zfree(&obj->kconfig); 9007 9008 for (i = 0; i < obj->nr_extern; i++) 9009 zfree(&obj->externs[i].essent_name); 9010 9011 zfree(&obj->externs); 9012 obj->nr_extern = 0; 9013 9014 zfree(&obj->maps); 9015 obj->nr_maps = 0; 9016 9017 if (obj->programs && obj->nr_programs) { 9018 for (i = 0; i < obj->nr_programs; i++) 9019 bpf_program__exit(&obj->programs[i]); 9020 } 9021 zfree(&obj->programs); 9022 9023 zfree(&obj->feat_cache); 9024 zfree(&obj->token_path); 9025 if (obj->token_fd > 0) 9026 close(obj->token_fd); 9027 9028 zfree(&obj->arena_data); 9029 9030 free(obj); 9031 } 9032 9033 const char *bpf_object__name(const struct bpf_object *obj) 9034 { 9035 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9036 } 9037 9038 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9039 { 9040 return obj ? obj->kern_version : 0; 9041 } 9042 9043 struct btf *bpf_object__btf(const struct bpf_object *obj) 9044 { 9045 return obj ? obj->btf : NULL; 9046 } 9047 9048 int bpf_object__btf_fd(const struct bpf_object *obj) 9049 { 9050 return obj->btf ? btf__fd(obj->btf) : -1; 9051 } 9052 9053 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9054 { 9055 if (obj->loaded) 9056 return libbpf_err(-EINVAL); 9057 9058 obj->kern_version = kern_version; 9059 9060 return 0; 9061 } 9062 9063 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9064 { 9065 struct bpf_gen *gen; 9066 9067 if (!opts) 9068 return -EFAULT; 9069 if (!OPTS_VALID(opts, gen_loader_opts)) 9070 return -EINVAL; 9071 gen = calloc(sizeof(*gen), 1); 9072 if (!gen) 9073 return -ENOMEM; 9074 gen->opts = opts; 9075 obj->gen_loader = gen; 9076 return 0; 9077 } 9078 9079 static struct bpf_program * 9080 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9081 bool forward) 9082 { 9083 size_t nr_programs = obj->nr_programs; 9084 ssize_t idx; 9085 9086 if (!nr_programs) 9087 return NULL; 9088 9089 if (!p) 9090 /* Iter from the beginning */ 9091 return forward ? &obj->programs[0] : 9092 &obj->programs[nr_programs - 1]; 9093 9094 if (p->obj != obj) { 9095 pr_warn("error: program handler doesn't match object\n"); 9096 return errno = EINVAL, NULL; 9097 } 9098 9099 idx = (p - obj->programs) + (forward ? 1 : -1); 9100 if (idx >= obj->nr_programs || idx < 0) 9101 return NULL; 9102 return &obj->programs[idx]; 9103 } 9104 9105 struct bpf_program * 9106 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9107 { 9108 struct bpf_program *prog = prev; 9109 9110 do { 9111 prog = __bpf_program__iter(prog, obj, true); 9112 } while (prog && prog_is_subprog(obj, prog)); 9113 9114 return prog; 9115 } 9116 9117 struct bpf_program * 9118 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9119 { 9120 struct bpf_program *prog = next; 9121 9122 do { 9123 prog = __bpf_program__iter(prog, obj, false); 9124 } while (prog && prog_is_subprog(obj, prog)); 9125 9126 return prog; 9127 } 9128 9129 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9130 { 9131 prog->prog_ifindex = ifindex; 9132 } 9133 9134 const char *bpf_program__name(const struct bpf_program *prog) 9135 { 9136 return prog->name; 9137 } 9138 9139 const char *bpf_program__section_name(const struct bpf_program *prog) 9140 { 9141 return prog->sec_name; 9142 } 9143 9144 bool bpf_program__autoload(const struct bpf_program *prog) 9145 { 9146 return prog->autoload; 9147 } 9148 9149 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9150 { 9151 if (prog->obj->loaded) 9152 return libbpf_err(-EINVAL); 9153 9154 prog->autoload = autoload; 9155 return 0; 9156 } 9157 9158 bool bpf_program__autoattach(const struct bpf_program *prog) 9159 { 9160 return prog->autoattach; 9161 } 9162 9163 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9164 { 9165 prog->autoattach = autoattach; 9166 } 9167 9168 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9169 { 9170 return prog->insns; 9171 } 9172 9173 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9174 { 9175 return prog->insns_cnt; 9176 } 9177 9178 int bpf_program__set_insns(struct bpf_program *prog, 9179 struct bpf_insn *new_insns, size_t new_insn_cnt) 9180 { 9181 struct bpf_insn *insns; 9182 9183 if (prog->obj->loaded) 9184 return -EBUSY; 9185 9186 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9187 /* NULL is a valid return from reallocarray if the new count is zero */ 9188 if (!insns && new_insn_cnt) { 9189 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9190 return -ENOMEM; 9191 } 9192 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9193 9194 prog->insns = insns; 9195 prog->insns_cnt = new_insn_cnt; 9196 return 0; 9197 } 9198 9199 int bpf_program__fd(const struct bpf_program *prog) 9200 { 9201 if (!prog) 9202 return libbpf_err(-EINVAL); 9203 9204 if (prog->fd < 0) 9205 return libbpf_err(-ENOENT); 9206 9207 return prog->fd; 9208 } 9209 9210 __alias(bpf_program__type) 9211 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9212 9213 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9214 { 9215 return prog->type; 9216 } 9217 9218 static size_t custom_sec_def_cnt; 9219 static struct bpf_sec_def *custom_sec_defs; 9220 static struct bpf_sec_def custom_fallback_def; 9221 static bool has_custom_fallback_def; 9222 static int last_custom_sec_def_handler_id; 9223 9224 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9225 { 9226 if (prog->obj->loaded) 9227 return libbpf_err(-EBUSY); 9228 9229 /* if type is not changed, do nothing */ 9230 if (prog->type == type) 9231 return 0; 9232 9233 prog->type = type; 9234 9235 /* If a program type was changed, we need to reset associated SEC() 9236 * handler, as it will be invalid now. The only exception is a generic 9237 * fallback handler, which by definition is program type-agnostic and 9238 * is a catch-all custom handler, optionally set by the application, 9239 * so should be able to handle any type of BPF program. 9240 */ 9241 if (prog->sec_def != &custom_fallback_def) 9242 prog->sec_def = NULL; 9243 return 0; 9244 } 9245 9246 __alias(bpf_program__expected_attach_type) 9247 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9248 9249 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9250 { 9251 return prog->expected_attach_type; 9252 } 9253 9254 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9255 enum bpf_attach_type type) 9256 { 9257 if (prog->obj->loaded) 9258 return libbpf_err(-EBUSY); 9259 9260 prog->expected_attach_type = type; 9261 return 0; 9262 } 9263 9264 __u32 bpf_program__flags(const struct bpf_program *prog) 9265 { 9266 return prog->prog_flags; 9267 } 9268 9269 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9270 { 9271 if (prog->obj->loaded) 9272 return libbpf_err(-EBUSY); 9273 9274 prog->prog_flags = flags; 9275 return 0; 9276 } 9277 9278 __u32 bpf_program__log_level(const struct bpf_program *prog) 9279 { 9280 return prog->log_level; 9281 } 9282 9283 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9284 { 9285 if (prog->obj->loaded) 9286 return libbpf_err(-EBUSY); 9287 9288 prog->log_level = log_level; 9289 return 0; 9290 } 9291 9292 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9293 { 9294 *log_size = prog->log_size; 9295 return prog->log_buf; 9296 } 9297 9298 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9299 { 9300 if (log_size && !log_buf) 9301 return -EINVAL; 9302 if (prog->log_size > UINT_MAX) 9303 return -EINVAL; 9304 if (prog->obj->loaded) 9305 return -EBUSY; 9306 9307 prog->log_buf = log_buf; 9308 prog->log_size = log_size; 9309 return 0; 9310 } 9311 9312 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9313 .sec = (char *)sec_pfx, \ 9314 .prog_type = BPF_PROG_TYPE_##ptype, \ 9315 .expected_attach_type = atype, \ 9316 .cookie = (long)(flags), \ 9317 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9318 __VA_ARGS__ \ 9319 } 9320 9321 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9322 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9323 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9324 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9325 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9326 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9327 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9328 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9329 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9330 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9331 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9332 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9333 9334 static const struct bpf_sec_def section_defs[] = { 9335 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9336 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9337 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9338 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9339 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9340 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9341 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9342 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9343 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9344 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9345 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9346 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9347 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9348 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9349 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9350 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9351 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9352 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9353 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9354 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9355 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9356 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9357 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9358 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9359 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9360 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9361 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9362 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9363 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9364 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9365 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9366 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9367 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9368 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9369 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9370 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9371 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9372 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9373 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9374 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9375 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9376 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9377 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9378 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9379 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9380 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9381 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9382 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9383 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9384 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9385 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9386 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9387 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9388 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9389 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9390 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9391 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9392 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9393 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9394 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9395 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9396 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9397 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9398 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9399 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9400 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9401 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9402 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9403 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9404 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9405 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9406 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9407 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9408 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9409 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9410 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9411 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9412 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9413 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9414 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9415 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9416 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9417 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9418 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9419 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9420 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9421 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9422 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9423 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9424 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9425 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9426 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9427 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9428 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9429 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9430 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9431 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9432 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9433 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9434 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9435 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9436 }; 9437 9438 int libbpf_register_prog_handler(const char *sec, 9439 enum bpf_prog_type prog_type, 9440 enum bpf_attach_type exp_attach_type, 9441 const struct libbpf_prog_handler_opts *opts) 9442 { 9443 struct bpf_sec_def *sec_def; 9444 9445 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9446 return libbpf_err(-EINVAL); 9447 9448 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9449 return libbpf_err(-E2BIG); 9450 9451 if (sec) { 9452 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9453 sizeof(*sec_def)); 9454 if (!sec_def) 9455 return libbpf_err(-ENOMEM); 9456 9457 custom_sec_defs = sec_def; 9458 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9459 } else { 9460 if (has_custom_fallback_def) 9461 return libbpf_err(-EBUSY); 9462 9463 sec_def = &custom_fallback_def; 9464 } 9465 9466 sec_def->sec = sec ? strdup(sec) : NULL; 9467 if (sec && !sec_def->sec) 9468 return libbpf_err(-ENOMEM); 9469 9470 sec_def->prog_type = prog_type; 9471 sec_def->expected_attach_type = exp_attach_type; 9472 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9473 9474 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9475 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9476 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9477 9478 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9479 9480 if (sec) 9481 custom_sec_def_cnt++; 9482 else 9483 has_custom_fallback_def = true; 9484 9485 return sec_def->handler_id; 9486 } 9487 9488 int libbpf_unregister_prog_handler(int handler_id) 9489 { 9490 struct bpf_sec_def *sec_defs; 9491 int i; 9492 9493 if (handler_id <= 0) 9494 return libbpf_err(-EINVAL); 9495 9496 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9497 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9498 has_custom_fallback_def = false; 9499 return 0; 9500 } 9501 9502 for (i = 0; i < custom_sec_def_cnt; i++) { 9503 if (custom_sec_defs[i].handler_id == handler_id) 9504 break; 9505 } 9506 9507 if (i == custom_sec_def_cnt) 9508 return libbpf_err(-ENOENT); 9509 9510 free(custom_sec_defs[i].sec); 9511 for (i = i + 1; i < custom_sec_def_cnt; i++) 9512 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9513 custom_sec_def_cnt--; 9514 9515 /* try to shrink the array, but it's ok if we couldn't */ 9516 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9517 /* if new count is zero, reallocarray can return a valid NULL result; 9518 * in this case the previous pointer will be freed, so we *have to* 9519 * reassign old pointer to the new value (even if it's NULL) 9520 */ 9521 if (sec_defs || custom_sec_def_cnt == 0) 9522 custom_sec_defs = sec_defs; 9523 9524 return 0; 9525 } 9526 9527 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9528 { 9529 size_t len = strlen(sec_def->sec); 9530 9531 /* "type/" always has to have proper SEC("type/extras") form */ 9532 if (sec_def->sec[len - 1] == '/') { 9533 if (str_has_pfx(sec_name, sec_def->sec)) 9534 return true; 9535 return false; 9536 } 9537 9538 /* "type+" means it can be either exact SEC("type") or 9539 * well-formed SEC("type/extras") with proper '/' separator 9540 */ 9541 if (sec_def->sec[len - 1] == '+') { 9542 len--; 9543 /* not even a prefix */ 9544 if (strncmp(sec_name, sec_def->sec, len) != 0) 9545 return false; 9546 /* exact match or has '/' separator */ 9547 if (sec_name[len] == '\0' || sec_name[len] == '/') 9548 return true; 9549 return false; 9550 } 9551 9552 return strcmp(sec_name, sec_def->sec) == 0; 9553 } 9554 9555 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9556 { 9557 const struct bpf_sec_def *sec_def; 9558 int i, n; 9559 9560 n = custom_sec_def_cnt; 9561 for (i = 0; i < n; i++) { 9562 sec_def = &custom_sec_defs[i]; 9563 if (sec_def_matches(sec_def, sec_name)) 9564 return sec_def; 9565 } 9566 9567 n = ARRAY_SIZE(section_defs); 9568 for (i = 0; i < n; i++) { 9569 sec_def = §ion_defs[i]; 9570 if (sec_def_matches(sec_def, sec_name)) 9571 return sec_def; 9572 } 9573 9574 if (has_custom_fallback_def) 9575 return &custom_fallback_def; 9576 9577 return NULL; 9578 } 9579 9580 #define MAX_TYPE_NAME_SIZE 32 9581 9582 static char *libbpf_get_type_names(bool attach_type) 9583 { 9584 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9585 char *buf; 9586 9587 buf = malloc(len); 9588 if (!buf) 9589 return NULL; 9590 9591 buf[0] = '\0'; 9592 /* Forge string buf with all available names */ 9593 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9594 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9595 9596 if (attach_type) { 9597 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9598 continue; 9599 9600 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9601 continue; 9602 } 9603 9604 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9605 free(buf); 9606 return NULL; 9607 } 9608 strcat(buf, " "); 9609 strcat(buf, section_defs[i].sec); 9610 } 9611 9612 return buf; 9613 } 9614 9615 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9616 enum bpf_attach_type *expected_attach_type) 9617 { 9618 const struct bpf_sec_def *sec_def; 9619 char *type_names; 9620 9621 if (!name) 9622 return libbpf_err(-EINVAL); 9623 9624 sec_def = find_sec_def(name); 9625 if (sec_def) { 9626 *prog_type = sec_def->prog_type; 9627 *expected_attach_type = sec_def->expected_attach_type; 9628 return 0; 9629 } 9630 9631 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9632 type_names = libbpf_get_type_names(false); 9633 if (type_names != NULL) { 9634 pr_debug("supported section(type) names are:%s\n", type_names); 9635 free(type_names); 9636 } 9637 9638 return libbpf_err(-ESRCH); 9639 } 9640 9641 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9642 { 9643 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9644 return NULL; 9645 9646 return attach_type_name[t]; 9647 } 9648 9649 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9650 { 9651 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9652 return NULL; 9653 9654 return link_type_name[t]; 9655 } 9656 9657 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9658 { 9659 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9660 return NULL; 9661 9662 return map_type_name[t]; 9663 } 9664 9665 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9666 { 9667 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9668 return NULL; 9669 9670 return prog_type_name[t]; 9671 } 9672 9673 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9674 int sec_idx, 9675 size_t offset) 9676 { 9677 struct bpf_map *map; 9678 size_t i; 9679 9680 for (i = 0; i < obj->nr_maps; i++) { 9681 map = &obj->maps[i]; 9682 if (!bpf_map__is_struct_ops(map)) 9683 continue; 9684 if (map->sec_idx == sec_idx && 9685 map->sec_offset <= offset && 9686 offset - map->sec_offset < map->def.value_size) 9687 return map; 9688 } 9689 9690 return NULL; 9691 } 9692 9693 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9694 * st_ops->data for shadow type. 9695 */ 9696 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9697 Elf64_Shdr *shdr, Elf_Data *data) 9698 { 9699 const struct btf_member *member; 9700 struct bpf_struct_ops *st_ops; 9701 struct bpf_program *prog; 9702 unsigned int shdr_idx; 9703 const struct btf *btf; 9704 struct bpf_map *map; 9705 unsigned int moff, insn_idx; 9706 const char *name; 9707 __u32 member_idx; 9708 Elf64_Sym *sym; 9709 Elf64_Rel *rel; 9710 int i, nrels; 9711 9712 btf = obj->btf; 9713 nrels = shdr->sh_size / shdr->sh_entsize; 9714 for (i = 0; i < nrels; i++) { 9715 rel = elf_rel_by_idx(data, i); 9716 if (!rel) { 9717 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9718 return -LIBBPF_ERRNO__FORMAT; 9719 } 9720 9721 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9722 if (!sym) { 9723 pr_warn("struct_ops reloc: symbol %zx not found\n", 9724 (size_t)ELF64_R_SYM(rel->r_info)); 9725 return -LIBBPF_ERRNO__FORMAT; 9726 } 9727 9728 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9729 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9730 if (!map) { 9731 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9732 (size_t)rel->r_offset); 9733 return -EINVAL; 9734 } 9735 9736 moff = rel->r_offset - map->sec_offset; 9737 shdr_idx = sym->st_shndx; 9738 st_ops = map->st_ops; 9739 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9740 map->name, 9741 (long long)(rel->r_info >> 32), 9742 (long long)sym->st_value, 9743 shdr_idx, (size_t)rel->r_offset, 9744 map->sec_offset, sym->st_name, name); 9745 9746 if (shdr_idx >= SHN_LORESERVE) { 9747 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9748 map->name, (size_t)rel->r_offset, shdr_idx); 9749 return -LIBBPF_ERRNO__RELOC; 9750 } 9751 if (sym->st_value % BPF_INSN_SZ) { 9752 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9753 map->name, (unsigned long long)sym->st_value); 9754 return -LIBBPF_ERRNO__FORMAT; 9755 } 9756 insn_idx = sym->st_value / BPF_INSN_SZ; 9757 9758 member = find_member_by_offset(st_ops->type, moff * 8); 9759 if (!member) { 9760 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9761 map->name, moff); 9762 return -EINVAL; 9763 } 9764 member_idx = member - btf_members(st_ops->type); 9765 name = btf__name_by_offset(btf, member->name_off); 9766 9767 if (!resolve_func_ptr(btf, member->type, NULL)) { 9768 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9769 map->name, name); 9770 return -EINVAL; 9771 } 9772 9773 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9774 if (!prog) { 9775 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9776 map->name, shdr_idx, name); 9777 return -EINVAL; 9778 } 9779 9780 /* prevent the use of BPF prog with invalid type */ 9781 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9782 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9783 map->name, prog->name); 9784 return -EINVAL; 9785 } 9786 9787 st_ops->progs[member_idx] = prog; 9788 9789 /* st_ops->data will be exposed to users, being returned by 9790 * bpf_map__initial_value() as a pointer to the shadow 9791 * type. All function pointers in the original struct type 9792 * should be converted to a pointer to struct bpf_program 9793 * in the shadow type. 9794 */ 9795 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9796 } 9797 9798 return 0; 9799 } 9800 9801 #define BTF_TRACE_PREFIX "btf_trace_" 9802 #define BTF_LSM_PREFIX "bpf_lsm_" 9803 #define BTF_ITER_PREFIX "bpf_iter_" 9804 #define BTF_MAX_NAME_SIZE 128 9805 9806 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9807 const char **prefix, int *kind) 9808 { 9809 switch (attach_type) { 9810 case BPF_TRACE_RAW_TP: 9811 *prefix = BTF_TRACE_PREFIX; 9812 *kind = BTF_KIND_TYPEDEF; 9813 break; 9814 case BPF_LSM_MAC: 9815 case BPF_LSM_CGROUP: 9816 *prefix = BTF_LSM_PREFIX; 9817 *kind = BTF_KIND_FUNC; 9818 break; 9819 case BPF_TRACE_ITER: 9820 *prefix = BTF_ITER_PREFIX; 9821 *kind = BTF_KIND_FUNC; 9822 break; 9823 default: 9824 *prefix = ""; 9825 *kind = BTF_KIND_FUNC; 9826 } 9827 } 9828 9829 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9830 const char *name, __u32 kind) 9831 { 9832 char btf_type_name[BTF_MAX_NAME_SIZE]; 9833 int ret; 9834 9835 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9836 "%s%s", prefix, name); 9837 /* snprintf returns the number of characters written excluding the 9838 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9839 * indicates truncation. 9840 */ 9841 if (ret < 0 || ret >= sizeof(btf_type_name)) 9842 return -ENAMETOOLONG; 9843 return btf__find_by_name_kind(btf, btf_type_name, kind); 9844 } 9845 9846 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9847 enum bpf_attach_type attach_type) 9848 { 9849 const char *prefix; 9850 int kind; 9851 9852 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9853 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9854 } 9855 9856 int libbpf_find_vmlinux_btf_id(const char *name, 9857 enum bpf_attach_type attach_type) 9858 { 9859 struct btf *btf; 9860 int err; 9861 9862 btf = btf__load_vmlinux_btf(); 9863 err = libbpf_get_error(btf); 9864 if (err) { 9865 pr_warn("vmlinux BTF is not found\n"); 9866 return libbpf_err(err); 9867 } 9868 9869 err = find_attach_btf_id(btf, name, attach_type); 9870 if (err <= 0) 9871 pr_warn("%s is not found in vmlinux BTF\n", name); 9872 9873 btf__free(btf); 9874 return libbpf_err(err); 9875 } 9876 9877 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9878 { 9879 struct bpf_prog_info info; 9880 __u32 info_len = sizeof(info); 9881 struct btf *btf; 9882 int err; 9883 9884 memset(&info, 0, info_len); 9885 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9886 if (err) { 9887 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9888 attach_prog_fd, err); 9889 return err; 9890 } 9891 9892 err = -EINVAL; 9893 if (!info.btf_id) { 9894 pr_warn("The target program doesn't have BTF\n"); 9895 goto out; 9896 } 9897 btf = btf__load_from_kernel_by_id(info.btf_id); 9898 err = libbpf_get_error(btf); 9899 if (err) { 9900 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9901 goto out; 9902 } 9903 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9904 btf__free(btf); 9905 if (err <= 0) { 9906 pr_warn("%s is not found in prog's BTF\n", name); 9907 goto out; 9908 } 9909 out: 9910 return err; 9911 } 9912 9913 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9914 enum bpf_attach_type attach_type, 9915 int *btf_obj_fd, int *btf_type_id) 9916 { 9917 int ret, i, mod_len; 9918 const char *fn_name, *mod_name = NULL; 9919 9920 fn_name = strchr(attach_name, ':'); 9921 if (fn_name) { 9922 mod_name = attach_name; 9923 mod_len = fn_name - mod_name; 9924 fn_name++; 9925 } 9926 9927 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 9928 ret = find_attach_btf_id(obj->btf_vmlinux, 9929 mod_name ? fn_name : attach_name, 9930 attach_type); 9931 if (ret > 0) { 9932 *btf_obj_fd = 0; /* vmlinux BTF */ 9933 *btf_type_id = ret; 9934 return 0; 9935 } 9936 if (ret != -ENOENT) 9937 return ret; 9938 } 9939 9940 ret = load_module_btfs(obj); 9941 if (ret) 9942 return ret; 9943 9944 for (i = 0; i < obj->btf_module_cnt; i++) { 9945 const struct module_btf *mod = &obj->btf_modules[i]; 9946 9947 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 9948 continue; 9949 9950 ret = find_attach_btf_id(mod->btf, 9951 mod_name ? fn_name : attach_name, 9952 attach_type); 9953 if (ret > 0) { 9954 *btf_obj_fd = mod->fd; 9955 *btf_type_id = ret; 9956 return 0; 9957 } 9958 if (ret == -ENOENT) 9959 continue; 9960 9961 return ret; 9962 } 9963 9964 return -ESRCH; 9965 } 9966 9967 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9968 int *btf_obj_fd, int *btf_type_id) 9969 { 9970 enum bpf_attach_type attach_type = prog->expected_attach_type; 9971 __u32 attach_prog_fd = prog->attach_prog_fd; 9972 int err = 0; 9973 9974 /* BPF program's BTF ID */ 9975 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9976 if (!attach_prog_fd) { 9977 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9978 return -EINVAL; 9979 } 9980 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9981 if (err < 0) { 9982 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9983 prog->name, attach_prog_fd, attach_name, err); 9984 return err; 9985 } 9986 *btf_obj_fd = 0; 9987 *btf_type_id = err; 9988 return 0; 9989 } 9990 9991 /* kernel/module BTF ID */ 9992 if (prog->obj->gen_loader) { 9993 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9994 *btf_obj_fd = 0; 9995 *btf_type_id = 1; 9996 } else { 9997 err = find_kernel_btf_id(prog->obj, attach_name, 9998 attach_type, btf_obj_fd, 9999 btf_type_id); 10000 } 10001 if (err) { 10002 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 10003 prog->name, attach_name, err); 10004 return err; 10005 } 10006 return 0; 10007 } 10008 10009 int libbpf_attach_type_by_name(const char *name, 10010 enum bpf_attach_type *attach_type) 10011 { 10012 char *type_names; 10013 const struct bpf_sec_def *sec_def; 10014 10015 if (!name) 10016 return libbpf_err(-EINVAL); 10017 10018 sec_def = find_sec_def(name); 10019 if (!sec_def) { 10020 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10021 type_names = libbpf_get_type_names(true); 10022 if (type_names != NULL) { 10023 pr_debug("attachable section(type) names are:%s\n", type_names); 10024 free(type_names); 10025 } 10026 10027 return libbpf_err(-EINVAL); 10028 } 10029 10030 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10031 return libbpf_err(-EINVAL); 10032 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10033 return libbpf_err(-EINVAL); 10034 10035 *attach_type = sec_def->expected_attach_type; 10036 return 0; 10037 } 10038 10039 int bpf_map__fd(const struct bpf_map *map) 10040 { 10041 if (!map) 10042 return libbpf_err(-EINVAL); 10043 if (!map_is_created(map)) 10044 return -1; 10045 return map->fd; 10046 } 10047 10048 static bool map_uses_real_name(const struct bpf_map *map) 10049 { 10050 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10051 * their user-visible name differs from kernel-visible name. Users see 10052 * such map's corresponding ELF section name as a map name. 10053 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10054 * maps to know which name has to be returned to the user. 10055 */ 10056 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10057 return true; 10058 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10059 return true; 10060 return false; 10061 } 10062 10063 const char *bpf_map__name(const struct bpf_map *map) 10064 { 10065 if (!map) 10066 return NULL; 10067 10068 if (map_uses_real_name(map)) 10069 return map->real_name; 10070 10071 return map->name; 10072 } 10073 10074 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10075 { 10076 return map->def.type; 10077 } 10078 10079 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10080 { 10081 if (map_is_created(map)) 10082 return libbpf_err(-EBUSY); 10083 map->def.type = type; 10084 return 0; 10085 } 10086 10087 __u32 bpf_map__map_flags(const struct bpf_map *map) 10088 { 10089 return map->def.map_flags; 10090 } 10091 10092 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10093 { 10094 if (map_is_created(map)) 10095 return libbpf_err(-EBUSY); 10096 map->def.map_flags = flags; 10097 return 0; 10098 } 10099 10100 __u64 bpf_map__map_extra(const struct bpf_map *map) 10101 { 10102 return map->map_extra; 10103 } 10104 10105 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10106 { 10107 if (map_is_created(map)) 10108 return libbpf_err(-EBUSY); 10109 map->map_extra = map_extra; 10110 return 0; 10111 } 10112 10113 __u32 bpf_map__numa_node(const struct bpf_map *map) 10114 { 10115 return map->numa_node; 10116 } 10117 10118 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10119 { 10120 if (map_is_created(map)) 10121 return libbpf_err(-EBUSY); 10122 map->numa_node = numa_node; 10123 return 0; 10124 } 10125 10126 __u32 bpf_map__key_size(const struct bpf_map *map) 10127 { 10128 return map->def.key_size; 10129 } 10130 10131 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10132 { 10133 if (map_is_created(map)) 10134 return libbpf_err(-EBUSY); 10135 map->def.key_size = size; 10136 return 0; 10137 } 10138 10139 __u32 bpf_map__value_size(const struct bpf_map *map) 10140 { 10141 return map->def.value_size; 10142 } 10143 10144 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10145 { 10146 struct btf *btf; 10147 struct btf_type *datasec_type, *var_type; 10148 struct btf_var_secinfo *var; 10149 const struct btf_type *array_type; 10150 const struct btf_array *array; 10151 int vlen, element_sz, new_array_id; 10152 __u32 nr_elements; 10153 10154 /* check btf existence */ 10155 btf = bpf_object__btf(map->obj); 10156 if (!btf) 10157 return -ENOENT; 10158 10159 /* verify map is datasec */ 10160 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10161 if (!btf_is_datasec(datasec_type)) { 10162 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10163 bpf_map__name(map)); 10164 return -EINVAL; 10165 } 10166 10167 /* verify datasec has at least one var */ 10168 vlen = btf_vlen(datasec_type); 10169 if (vlen == 0) { 10170 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10171 bpf_map__name(map)); 10172 return -EINVAL; 10173 } 10174 10175 /* verify last var in the datasec is an array */ 10176 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10177 var_type = btf_type_by_id(btf, var->type); 10178 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10179 if (!btf_is_array(array_type)) { 10180 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10181 bpf_map__name(map)); 10182 return -EINVAL; 10183 } 10184 10185 /* verify request size aligns with array */ 10186 array = btf_array(array_type); 10187 element_sz = btf__resolve_size(btf, array->type); 10188 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10189 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10190 bpf_map__name(map), element_sz, size); 10191 return -EINVAL; 10192 } 10193 10194 /* create a new array based on the existing array, but with new length */ 10195 nr_elements = (size - var->offset) / element_sz; 10196 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10197 if (new_array_id < 0) 10198 return new_array_id; 10199 10200 /* adding a new btf type invalidates existing pointers to btf objects, 10201 * so refresh pointers before proceeding 10202 */ 10203 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10204 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10205 var_type = btf_type_by_id(btf, var->type); 10206 10207 /* finally update btf info */ 10208 datasec_type->size = size; 10209 var->size = size - var->offset; 10210 var_type->type = new_array_id; 10211 10212 return 0; 10213 } 10214 10215 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10216 { 10217 if (map->obj->loaded || map->reused) 10218 return libbpf_err(-EBUSY); 10219 10220 if (map->mmaped) { 10221 size_t mmap_old_sz, mmap_new_sz; 10222 int err; 10223 10224 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10225 return -EOPNOTSUPP; 10226 10227 mmap_old_sz = bpf_map_mmap_sz(map); 10228 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10229 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10230 if (err) { 10231 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 10232 bpf_map__name(map), err); 10233 return err; 10234 } 10235 err = map_btf_datasec_resize(map, size); 10236 if (err && err != -ENOENT) { 10237 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 10238 bpf_map__name(map), err); 10239 map->btf_value_type_id = 0; 10240 map->btf_key_type_id = 0; 10241 } 10242 } 10243 10244 map->def.value_size = size; 10245 return 0; 10246 } 10247 10248 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10249 { 10250 return map ? map->btf_key_type_id : 0; 10251 } 10252 10253 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10254 { 10255 return map ? map->btf_value_type_id : 0; 10256 } 10257 10258 int bpf_map__set_initial_value(struct bpf_map *map, 10259 const void *data, size_t size) 10260 { 10261 size_t actual_sz; 10262 10263 if (map->obj->loaded || map->reused) 10264 return libbpf_err(-EBUSY); 10265 10266 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10267 return libbpf_err(-EINVAL); 10268 10269 if (map->def.type == BPF_MAP_TYPE_ARENA) 10270 actual_sz = map->obj->arena_data_sz; 10271 else 10272 actual_sz = map->def.value_size; 10273 if (size != actual_sz) 10274 return libbpf_err(-EINVAL); 10275 10276 memcpy(map->mmaped, data, size); 10277 return 0; 10278 } 10279 10280 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10281 { 10282 if (bpf_map__is_struct_ops(map)) { 10283 if (psize) 10284 *psize = map->def.value_size; 10285 return map->st_ops->data; 10286 } 10287 10288 if (!map->mmaped) 10289 return NULL; 10290 10291 if (map->def.type == BPF_MAP_TYPE_ARENA) 10292 *psize = map->obj->arena_data_sz; 10293 else 10294 *psize = map->def.value_size; 10295 10296 return map->mmaped; 10297 } 10298 10299 bool bpf_map__is_internal(const struct bpf_map *map) 10300 { 10301 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10302 } 10303 10304 __u32 bpf_map__ifindex(const struct bpf_map *map) 10305 { 10306 return map->map_ifindex; 10307 } 10308 10309 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10310 { 10311 if (map_is_created(map)) 10312 return libbpf_err(-EBUSY); 10313 map->map_ifindex = ifindex; 10314 return 0; 10315 } 10316 10317 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10318 { 10319 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10320 pr_warn("error: unsupported map type\n"); 10321 return libbpf_err(-EINVAL); 10322 } 10323 if (map->inner_map_fd != -1) { 10324 pr_warn("error: inner_map_fd already specified\n"); 10325 return libbpf_err(-EINVAL); 10326 } 10327 if (map->inner_map) { 10328 bpf_map__destroy(map->inner_map); 10329 zfree(&map->inner_map); 10330 } 10331 map->inner_map_fd = fd; 10332 return 0; 10333 } 10334 10335 static struct bpf_map * 10336 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10337 { 10338 ssize_t idx; 10339 struct bpf_map *s, *e; 10340 10341 if (!obj || !obj->maps) 10342 return errno = EINVAL, NULL; 10343 10344 s = obj->maps; 10345 e = obj->maps + obj->nr_maps; 10346 10347 if ((m < s) || (m >= e)) { 10348 pr_warn("error in %s: map handler doesn't belong to object\n", 10349 __func__); 10350 return errno = EINVAL, NULL; 10351 } 10352 10353 idx = (m - obj->maps) + i; 10354 if (idx >= obj->nr_maps || idx < 0) 10355 return NULL; 10356 return &obj->maps[idx]; 10357 } 10358 10359 struct bpf_map * 10360 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10361 { 10362 if (prev == NULL) 10363 return obj->maps; 10364 10365 return __bpf_map__iter(prev, obj, 1); 10366 } 10367 10368 struct bpf_map * 10369 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10370 { 10371 if (next == NULL) { 10372 if (!obj->nr_maps) 10373 return NULL; 10374 return obj->maps + obj->nr_maps - 1; 10375 } 10376 10377 return __bpf_map__iter(next, obj, -1); 10378 } 10379 10380 struct bpf_map * 10381 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10382 { 10383 struct bpf_map *pos; 10384 10385 bpf_object__for_each_map(pos, obj) { 10386 /* if it's a special internal map name (which always starts 10387 * with dot) then check if that special name matches the 10388 * real map name (ELF section name) 10389 */ 10390 if (name[0] == '.') { 10391 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10392 return pos; 10393 continue; 10394 } 10395 /* otherwise map name has to be an exact match */ 10396 if (map_uses_real_name(pos)) { 10397 if (strcmp(pos->real_name, name) == 0) 10398 return pos; 10399 continue; 10400 } 10401 if (strcmp(pos->name, name) == 0) 10402 return pos; 10403 } 10404 return errno = ENOENT, NULL; 10405 } 10406 10407 int 10408 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10409 { 10410 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10411 } 10412 10413 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10414 size_t value_sz, bool check_value_sz) 10415 { 10416 if (!map_is_created(map)) /* map is not yet created */ 10417 return -ENOENT; 10418 10419 if (map->def.key_size != key_sz) { 10420 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10421 map->name, key_sz, map->def.key_size); 10422 return -EINVAL; 10423 } 10424 10425 if (map->fd < 0) { 10426 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10427 return -EINVAL; 10428 } 10429 10430 if (!check_value_sz) 10431 return 0; 10432 10433 switch (map->def.type) { 10434 case BPF_MAP_TYPE_PERCPU_ARRAY: 10435 case BPF_MAP_TYPE_PERCPU_HASH: 10436 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10437 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10438 int num_cpu = libbpf_num_possible_cpus(); 10439 size_t elem_sz = roundup(map->def.value_size, 8); 10440 10441 if (value_sz != num_cpu * elem_sz) { 10442 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10443 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10444 return -EINVAL; 10445 } 10446 break; 10447 } 10448 default: 10449 if (map->def.value_size != value_sz) { 10450 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10451 map->name, value_sz, map->def.value_size); 10452 return -EINVAL; 10453 } 10454 break; 10455 } 10456 return 0; 10457 } 10458 10459 int bpf_map__lookup_elem(const struct bpf_map *map, 10460 const void *key, size_t key_sz, 10461 void *value, size_t value_sz, __u64 flags) 10462 { 10463 int err; 10464 10465 err = validate_map_op(map, key_sz, value_sz, true); 10466 if (err) 10467 return libbpf_err(err); 10468 10469 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10470 } 10471 10472 int bpf_map__update_elem(const struct bpf_map *map, 10473 const void *key, size_t key_sz, 10474 const void *value, size_t value_sz, __u64 flags) 10475 { 10476 int err; 10477 10478 err = validate_map_op(map, key_sz, value_sz, true); 10479 if (err) 10480 return libbpf_err(err); 10481 10482 return bpf_map_update_elem(map->fd, key, value, flags); 10483 } 10484 10485 int bpf_map__delete_elem(const struct bpf_map *map, 10486 const void *key, size_t key_sz, __u64 flags) 10487 { 10488 int err; 10489 10490 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10491 if (err) 10492 return libbpf_err(err); 10493 10494 return bpf_map_delete_elem_flags(map->fd, key, flags); 10495 } 10496 10497 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10498 const void *key, size_t key_sz, 10499 void *value, size_t value_sz, __u64 flags) 10500 { 10501 int err; 10502 10503 err = validate_map_op(map, key_sz, value_sz, true); 10504 if (err) 10505 return libbpf_err(err); 10506 10507 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10508 } 10509 10510 int bpf_map__get_next_key(const struct bpf_map *map, 10511 const void *cur_key, void *next_key, size_t key_sz) 10512 { 10513 int err; 10514 10515 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10516 if (err) 10517 return libbpf_err(err); 10518 10519 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10520 } 10521 10522 long libbpf_get_error(const void *ptr) 10523 { 10524 if (!IS_ERR_OR_NULL(ptr)) 10525 return 0; 10526 10527 if (IS_ERR(ptr)) 10528 errno = -PTR_ERR(ptr); 10529 10530 /* If ptr == NULL, then errno should be already set by the failing 10531 * API, because libbpf never returns NULL on success and it now always 10532 * sets errno on error. So no extra errno handling for ptr == NULL 10533 * case. 10534 */ 10535 return -errno; 10536 } 10537 10538 /* Replace link's underlying BPF program with the new one */ 10539 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10540 { 10541 int ret; 10542 int prog_fd = bpf_program__fd(prog); 10543 10544 if (prog_fd < 0) { 10545 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10546 prog->name); 10547 return libbpf_err(-EINVAL); 10548 } 10549 10550 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10551 return libbpf_err_errno(ret); 10552 } 10553 10554 /* Release "ownership" of underlying BPF resource (typically, BPF program 10555 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10556 * link, when destructed through bpf_link__destroy() call won't attempt to 10557 * detach/unregisted that BPF resource. This is useful in situations where, 10558 * say, attached BPF program has to outlive userspace program that attached it 10559 * in the system. Depending on type of BPF program, though, there might be 10560 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10561 * exit of userspace program doesn't trigger automatic detachment and clean up 10562 * inside the kernel. 10563 */ 10564 void bpf_link__disconnect(struct bpf_link *link) 10565 { 10566 link->disconnected = true; 10567 } 10568 10569 int bpf_link__destroy(struct bpf_link *link) 10570 { 10571 int err = 0; 10572 10573 if (IS_ERR_OR_NULL(link)) 10574 return 0; 10575 10576 if (!link->disconnected && link->detach) 10577 err = link->detach(link); 10578 if (link->pin_path) 10579 free(link->pin_path); 10580 if (link->dealloc) 10581 link->dealloc(link); 10582 else 10583 free(link); 10584 10585 return libbpf_err(err); 10586 } 10587 10588 int bpf_link__fd(const struct bpf_link *link) 10589 { 10590 return link->fd; 10591 } 10592 10593 const char *bpf_link__pin_path(const struct bpf_link *link) 10594 { 10595 return link->pin_path; 10596 } 10597 10598 static int bpf_link__detach_fd(struct bpf_link *link) 10599 { 10600 return libbpf_err_errno(close(link->fd)); 10601 } 10602 10603 struct bpf_link *bpf_link__open(const char *path) 10604 { 10605 struct bpf_link *link; 10606 int fd; 10607 10608 fd = bpf_obj_get(path); 10609 if (fd < 0) { 10610 fd = -errno; 10611 pr_warn("failed to open link at %s: %d\n", path, fd); 10612 return libbpf_err_ptr(fd); 10613 } 10614 10615 link = calloc(1, sizeof(*link)); 10616 if (!link) { 10617 close(fd); 10618 return libbpf_err_ptr(-ENOMEM); 10619 } 10620 link->detach = &bpf_link__detach_fd; 10621 link->fd = fd; 10622 10623 link->pin_path = strdup(path); 10624 if (!link->pin_path) { 10625 bpf_link__destroy(link); 10626 return libbpf_err_ptr(-ENOMEM); 10627 } 10628 10629 return link; 10630 } 10631 10632 int bpf_link__detach(struct bpf_link *link) 10633 { 10634 return bpf_link_detach(link->fd) ? -errno : 0; 10635 } 10636 10637 int bpf_link__pin(struct bpf_link *link, const char *path) 10638 { 10639 int err; 10640 10641 if (link->pin_path) 10642 return libbpf_err(-EBUSY); 10643 err = make_parent_dir(path); 10644 if (err) 10645 return libbpf_err(err); 10646 err = check_path(path); 10647 if (err) 10648 return libbpf_err(err); 10649 10650 link->pin_path = strdup(path); 10651 if (!link->pin_path) 10652 return libbpf_err(-ENOMEM); 10653 10654 if (bpf_obj_pin(link->fd, link->pin_path)) { 10655 err = -errno; 10656 zfree(&link->pin_path); 10657 return libbpf_err(err); 10658 } 10659 10660 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10661 return 0; 10662 } 10663 10664 int bpf_link__unpin(struct bpf_link *link) 10665 { 10666 int err; 10667 10668 if (!link->pin_path) 10669 return libbpf_err(-EINVAL); 10670 10671 err = unlink(link->pin_path); 10672 if (err != 0) 10673 return -errno; 10674 10675 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10676 zfree(&link->pin_path); 10677 return 0; 10678 } 10679 10680 struct bpf_link_perf { 10681 struct bpf_link link; 10682 int perf_event_fd; 10683 /* legacy kprobe support: keep track of probe identifier and type */ 10684 char *legacy_probe_name; 10685 bool legacy_is_kprobe; 10686 bool legacy_is_retprobe; 10687 }; 10688 10689 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10690 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10691 10692 static int bpf_link_perf_detach(struct bpf_link *link) 10693 { 10694 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10695 int err = 0; 10696 10697 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10698 err = -errno; 10699 10700 if (perf_link->perf_event_fd != link->fd) 10701 close(perf_link->perf_event_fd); 10702 close(link->fd); 10703 10704 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10705 if (perf_link->legacy_probe_name) { 10706 if (perf_link->legacy_is_kprobe) { 10707 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10708 perf_link->legacy_is_retprobe); 10709 } else { 10710 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10711 perf_link->legacy_is_retprobe); 10712 } 10713 } 10714 10715 return err; 10716 } 10717 10718 static void bpf_link_perf_dealloc(struct bpf_link *link) 10719 { 10720 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10721 10722 free(perf_link->legacy_probe_name); 10723 free(perf_link); 10724 } 10725 10726 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10727 const struct bpf_perf_event_opts *opts) 10728 { 10729 char errmsg[STRERR_BUFSIZE]; 10730 struct bpf_link_perf *link; 10731 int prog_fd, link_fd = -1, err; 10732 bool force_ioctl_attach; 10733 10734 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10735 return libbpf_err_ptr(-EINVAL); 10736 10737 if (pfd < 0) { 10738 pr_warn("prog '%s': invalid perf event FD %d\n", 10739 prog->name, pfd); 10740 return libbpf_err_ptr(-EINVAL); 10741 } 10742 prog_fd = bpf_program__fd(prog); 10743 if (prog_fd < 0) { 10744 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10745 prog->name); 10746 return libbpf_err_ptr(-EINVAL); 10747 } 10748 10749 link = calloc(1, sizeof(*link)); 10750 if (!link) 10751 return libbpf_err_ptr(-ENOMEM); 10752 link->link.detach = &bpf_link_perf_detach; 10753 link->link.dealloc = &bpf_link_perf_dealloc; 10754 link->perf_event_fd = pfd; 10755 10756 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10757 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10758 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10759 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10760 10761 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10762 if (link_fd < 0) { 10763 err = -errno; 10764 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10765 prog->name, pfd, 10766 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10767 goto err_out; 10768 } 10769 link->link.fd = link_fd; 10770 } else { 10771 if (OPTS_GET(opts, bpf_cookie, 0)) { 10772 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10773 err = -EOPNOTSUPP; 10774 goto err_out; 10775 } 10776 10777 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10778 err = -errno; 10779 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10780 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10781 if (err == -EPROTO) 10782 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10783 prog->name, pfd); 10784 goto err_out; 10785 } 10786 link->link.fd = pfd; 10787 } 10788 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10789 err = -errno; 10790 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10791 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10792 goto err_out; 10793 } 10794 10795 return &link->link; 10796 err_out: 10797 if (link_fd >= 0) 10798 close(link_fd); 10799 free(link); 10800 return libbpf_err_ptr(err); 10801 } 10802 10803 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10804 { 10805 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10806 } 10807 10808 /* 10809 * this function is expected to parse integer in the range of [0, 2^31-1] from 10810 * given file using scanf format string fmt. If actual parsed value is 10811 * negative, the result might be indistinguishable from error 10812 */ 10813 static int parse_uint_from_file(const char *file, const char *fmt) 10814 { 10815 char buf[STRERR_BUFSIZE]; 10816 int err, ret; 10817 FILE *f; 10818 10819 f = fopen(file, "re"); 10820 if (!f) { 10821 err = -errno; 10822 pr_debug("failed to open '%s': %s\n", file, 10823 libbpf_strerror_r(err, buf, sizeof(buf))); 10824 return err; 10825 } 10826 err = fscanf(f, fmt, &ret); 10827 if (err != 1) { 10828 err = err == EOF ? -EIO : -errno; 10829 pr_debug("failed to parse '%s': %s\n", file, 10830 libbpf_strerror_r(err, buf, sizeof(buf))); 10831 fclose(f); 10832 return err; 10833 } 10834 fclose(f); 10835 return ret; 10836 } 10837 10838 static int determine_kprobe_perf_type(void) 10839 { 10840 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10841 10842 return parse_uint_from_file(file, "%d\n"); 10843 } 10844 10845 static int determine_uprobe_perf_type(void) 10846 { 10847 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10848 10849 return parse_uint_from_file(file, "%d\n"); 10850 } 10851 10852 static int determine_kprobe_retprobe_bit(void) 10853 { 10854 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10855 10856 return parse_uint_from_file(file, "config:%d\n"); 10857 } 10858 10859 static int determine_uprobe_retprobe_bit(void) 10860 { 10861 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10862 10863 return parse_uint_from_file(file, "config:%d\n"); 10864 } 10865 10866 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10867 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10868 10869 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10870 uint64_t offset, int pid, size_t ref_ctr_off) 10871 { 10872 const size_t attr_sz = sizeof(struct perf_event_attr); 10873 struct perf_event_attr attr; 10874 char errmsg[STRERR_BUFSIZE]; 10875 int type, pfd; 10876 10877 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10878 return -EINVAL; 10879 10880 memset(&attr, 0, attr_sz); 10881 10882 type = uprobe ? determine_uprobe_perf_type() 10883 : determine_kprobe_perf_type(); 10884 if (type < 0) { 10885 pr_warn("failed to determine %s perf type: %s\n", 10886 uprobe ? "uprobe" : "kprobe", 10887 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10888 return type; 10889 } 10890 if (retprobe) { 10891 int bit = uprobe ? determine_uprobe_retprobe_bit() 10892 : determine_kprobe_retprobe_bit(); 10893 10894 if (bit < 0) { 10895 pr_warn("failed to determine %s retprobe bit: %s\n", 10896 uprobe ? "uprobe" : "kprobe", 10897 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10898 return bit; 10899 } 10900 attr.config |= 1 << bit; 10901 } 10902 attr.size = attr_sz; 10903 attr.type = type; 10904 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10905 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10906 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10907 10908 /* pid filter is meaningful only for uprobes */ 10909 pfd = syscall(__NR_perf_event_open, &attr, 10910 pid < 0 ? -1 : pid /* pid */, 10911 pid == -1 ? 0 : -1 /* cpu */, 10912 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10913 return pfd >= 0 ? pfd : -errno; 10914 } 10915 10916 static int append_to_file(const char *file, const char *fmt, ...) 10917 { 10918 int fd, n, err = 0; 10919 va_list ap; 10920 char buf[1024]; 10921 10922 va_start(ap, fmt); 10923 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10924 va_end(ap); 10925 10926 if (n < 0 || n >= sizeof(buf)) 10927 return -EINVAL; 10928 10929 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10930 if (fd < 0) 10931 return -errno; 10932 10933 if (write(fd, buf, n) < 0) 10934 err = -errno; 10935 10936 close(fd); 10937 return err; 10938 } 10939 10940 #define DEBUGFS "/sys/kernel/debug/tracing" 10941 #define TRACEFS "/sys/kernel/tracing" 10942 10943 static bool use_debugfs(void) 10944 { 10945 static int has_debugfs = -1; 10946 10947 if (has_debugfs < 0) 10948 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10949 10950 return has_debugfs == 1; 10951 } 10952 10953 static const char *tracefs_path(void) 10954 { 10955 return use_debugfs() ? DEBUGFS : TRACEFS; 10956 } 10957 10958 static const char *tracefs_kprobe_events(void) 10959 { 10960 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10961 } 10962 10963 static const char *tracefs_uprobe_events(void) 10964 { 10965 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10966 } 10967 10968 static const char *tracefs_available_filter_functions(void) 10969 { 10970 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10971 : TRACEFS"/available_filter_functions"; 10972 } 10973 10974 static const char *tracefs_available_filter_functions_addrs(void) 10975 { 10976 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10977 : TRACEFS"/available_filter_functions_addrs"; 10978 } 10979 10980 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10981 const char *kfunc_name, size_t offset) 10982 { 10983 static int index = 0; 10984 int i; 10985 10986 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10987 __sync_fetch_and_add(&index, 1)); 10988 10989 /* sanitize binary_path in the probe name */ 10990 for (i = 0; buf[i]; i++) { 10991 if (!isalnum(buf[i])) 10992 buf[i] = '_'; 10993 } 10994 } 10995 10996 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10997 const char *kfunc_name, size_t offset) 10998 { 10999 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11000 retprobe ? 'r' : 'p', 11001 retprobe ? "kretprobes" : "kprobes", 11002 probe_name, kfunc_name, offset); 11003 } 11004 11005 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11006 { 11007 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11008 retprobe ? "kretprobes" : "kprobes", probe_name); 11009 } 11010 11011 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11012 { 11013 char file[256]; 11014 11015 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11016 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11017 11018 return parse_uint_from_file(file, "%d\n"); 11019 } 11020 11021 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11022 const char *kfunc_name, size_t offset, int pid) 11023 { 11024 const size_t attr_sz = sizeof(struct perf_event_attr); 11025 struct perf_event_attr attr; 11026 char errmsg[STRERR_BUFSIZE]; 11027 int type, pfd, err; 11028 11029 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11030 if (err < 0) { 11031 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11032 kfunc_name, offset, 11033 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11034 return err; 11035 } 11036 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11037 if (type < 0) { 11038 err = type; 11039 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11040 kfunc_name, offset, 11041 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11042 goto err_clean_legacy; 11043 } 11044 11045 memset(&attr, 0, attr_sz); 11046 attr.size = attr_sz; 11047 attr.config = type; 11048 attr.type = PERF_TYPE_TRACEPOINT; 11049 11050 pfd = syscall(__NR_perf_event_open, &attr, 11051 pid < 0 ? -1 : pid, /* pid */ 11052 pid == -1 ? 0 : -1, /* cpu */ 11053 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11054 if (pfd < 0) { 11055 err = -errno; 11056 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11057 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11058 goto err_clean_legacy; 11059 } 11060 return pfd; 11061 11062 err_clean_legacy: 11063 /* Clear the newly added legacy kprobe_event */ 11064 remove_kprobe_event_legacy(probe_name, retprobe); 11065 return err; 11066 } 11067 11068 static const char *arch_specific_syscall_pfx(void) 11069 { 11070 #if defined(__x86_64__) 11071 return "x64"; 11072 #elif defined(__i386__) 11073 return "ia32"; 11074 #elif defined(__s390x__) 11075 return "s390x"; 11076 #elif defined(__s390__) 11077 return "s390"; 11078 #elif defined(__arm__) 11079 return "arm"; 11080 #elif defined(__aarch64__) 11081 return "arm64"; 11082 #elif defined(__mips__) 11083 return "mips"; 11084 #elif defined(__riscv) 11085 return "riscv"; 11086 #elif defined(__powerpc__) 11087 return "powerpc"; 11088 #elif defined(__powerpc64__) 11089 return "powerpc64"; 11090 #else 11091 return NULL; 11092 #endif 11093 } 11094 11095 int probe_kern_syscall_wrapper(int token_fd) 11096 { 11097 char syscall_name[64]; 11098 const char *ksys_pfx; 11099 11100 ksys_pfx = arch_specific_syscall_pfx(); 11101 if (!ksys_pfx) 11102 return 0; 11103 11104 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11105 11106 if (determine_kprobe_perf_type() >= 0) { 11107 int pfd; 11108 11109 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11110 if (pfd >= 0) 11111 close(pfd); 11112 11113 return pfd >= 0 ? 1 : 0; 11114 } else { /* legacy mode */ 11115 char probe_name[128]; 11116 11117 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11118 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11119 return 0; 11120 11121 (void)remove_kprobe_event_legacy(probe_name, false); 11122 return 1; 11123 } 11124 } 11125 11126 struct bpf_link * 11127 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11128 const char *func_name, 11129 const struct bpf_kprobe_opts *opts) 11130 { 11131 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11132 enum probe_attach_mode attach_mode; 11133 char errmsg[STRERR_BUFSIZE]; 11134 char *legacy_probe = NULL; 11135 struct bpf_link *link; 11136 size_t offset; 11137 bool retprobe, legacy; 11138 int pfd, err; 11139 11140 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11141 return libbpf_err_ptr(-EINVAL); 11142 11143 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11144 retprobe = OPTS_GET(opts, retprobe, false); 11145 offset = OPTS_GET(opts, offset, 0); 11146 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11147 11148 legacy = determine_kprobe_perf_type() < 0; 11149 switch (attach_mode) { 11150 case PROBE_ATTACH_MODE_LEGACY: 11151 legacy = true; 11152 pe_opts.force_ioctl_attach = true; 11153 break; 11154 case PROBE_ATTACH_MODE_PERF: 11155 if (legacy) 11156 return libbpf_err_ptr(-ENOTSUP); 11157 pe_opts.force_ioctl_attach = true; 11158 break; 11159 case PROBE_ATTACH_MODE_LINK: 11160 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11161 return libbpf_err_ptr(-ENOTSUP); 11162 break; 11163 case PROBE_ATTACH_MODE_DEFAULT: 11164 break; 11165 default: 11166 return libbpf_err_ptr(-EINVAL); 11167 } 11168 11169 if (!legacy) { 11170 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11171 func_name, offset, 11172 -1 /* pid */, 0 /* ref_ctr_off */); 11173 } else { 11174 char probe_name[256]; 11175 11176 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11177 func_name, offset); 11178 11179 legacy_probe = strdup(probe_name); 11180 if (!legacy_probe) 11181 return libbpf_err_ptr(-ENOMEM); 11182 11183 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11184 offset, -1 /* pid */); 11185 } 11186 if (pfd < 0) { 11187 err = -errno; 11188 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11189 prog->name, retprobe ? "kretprobe" : "kprobe", 11190 func_name, offset, 11191 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11192 goto err_out; 11193 } 11194 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11195 err = libbpf_get_error(link); 11196 if (err) { 11197 close(pfd); 11198 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11199 prog->name, retprobe ? "kretprobe" : "kprobe", 11200 func_name, offset, 11201 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11202 goto err_clean_legacy; 11203 } 11204 if (legacy) { 11205 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11206 11207 perf_link->legacy_probe_name = legacy_probe; 11208 perf_link->legacy_is_kprobe = true; 11209 perf_link->legacy_is_retprobe = retprobe; 11210 } 11211 11212 return link; 11213 11214 err_clean_legacy: 11215 if (legacy) 11216 remove_kprobe_event_legacy(legacy_probe, retprobe); 11217 err_out: 11218 free(legacy_probe); 11219 return libbpf_err_ptr(err); 11220 } 11221 11222 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11223 bool retprobe, 11224 const char *func_name) 11225 { 11226 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11227 .retprobe = retprobe, 11228 ); 11229 11230 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11231 } 11232 11233 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11234 const char *syscall_name, 11235 const struct bpf_ksyscall_opts *opts) 11236 { 11237 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11238 char func_name[128]; 11239 11240 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11241 return libbpf_err_ptr(-EINVAL); 11242 11243 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11244 /* arch_specific_syscall_pfx() should never return NULL here 11245 * because it is guarded by kernel_supports(). However, since 11246 * compiler does not know that we have an explicit conditional 11247 * as well. 11248 */ 11249 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11250 arch_specific_syscall_pfx() ? : "", syscall_name); 11251 } else { 11252 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11253 } 11254 11255 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11256 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11257 11258 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11259 } 11260 11261 /* Adapted from perf/util/string.c */ 11262 bool glob_match(const char *str, const char *pat) 11263 { 11264 while (*str && *pat && *pat != '*') { 11265 if (*pat == '?') { /* Matches any single character */ 11266 str++; 11267 pat++; 11268 continue; 11269 } 11270 if (*str != *pat) 11271 return false; 11272 str++; 11273 pat++; 11274 } 11275 /* Check wild card */ 11276 if (*pat == '*') { 11277 while (*pat == '*') 11278 pat++; 11279 if (!*pat) /* Tail wild card matches all */ 11280 return true; 11281 while (*str) 11282 if (glob_match(str++, pat)) 11283 return true; 11284 } 11285 return !*str && !*pat; 11286 } 11287 11288 struct kprobe_multi_resolve { 11289 const char *pattern; 11290 unsigned long *addrs; 11291 size_t cap; 11292 size_t cnt; 11293 }; 11294 11295 struct avail_kallsyms_data { 11296 char **syms; 11297 size_t cnt; 11298 struct kprobe_multi_resolve *res; 11299 }; 11300 11301 static int avail_func_cmp(const void *a, const void *b) 11302 { 11303 return strcmp(*(const char **)a, *(const char **)b); 11304 } 11305 11306 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11307 const char *sym_name, void *ctx) 11308 { 11309 struct avail_kallsyms_data *data = ctx; 11310 struct kprobe_multi_resolve *res = data->res; 11311 int err; 11312 11313 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11314 return 0; 11315 11316 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11317 if (err) 11318 return err; 11319 11320 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11321 return 0; 11322 } 11323 11324 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11325 { 11326 const char *available_functions_file = tracefs_available_filter_functions(); 11327 struct avail_kallsyms_data data; 11328 char sym_name[500]; 11329 FILE *f; 11330 int err = 0, ret, i; 11331 char **syms = NULL; 11332 size_t cap = 0, cnt = 0; 11333 11334 f = fopen(available_functions_file, "re"); 11335 if (!f) { 11336 err = -errno; 11337 pr_warn("failed to open %s: %d\n", available_functions_file, err); 11338 return err; 11339 } 11340 11341 while (true) { 11342 char *name; 11343 11344 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11345 if (ret == EOF && feof(f)) 11346 break; 11347 11348 if (ret != 1) { 11349 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11350 err = -EINVAL; 11351 goto cleanup; 11352 } 11353 11354 if (!glob_match(sym_name, res->pattern)) 11355 continue; 11356 11357 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11358 if (err) 11359 goto cleanup; 11360 11361 name = strdup(sym_name); 11362 if (!name) { 11363 err = -errno; 11364 goto cleanup; 11365 } 11366 11367 syms[cnt++] = name; 11368 } 11369 11370 /* no entries found, bail out */ 11371 if (cnt == 0) { 11372 err = -ENOENT; 11373 goto cleanup; 11374 } 11375 11376 /* sort available functions */ 11377 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11378 11379 data.syms = syms; 11380 data.res = res; 11381 data.cnt = cnt; 11382 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11383 11384 if (res->cnt == 0) 11385 err = -ENOENT; 11386 11387 cleanup: 11388 for (i = 0; i < cnt; i++) 11389 free((char *)syms[i]); 11390 free(syms); 11391 11392 fclose(f); 11393 return err; 11394 } 11395 11396 static bool has_available_filter_functions_addrs(void) 11397 { 11398 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11399 } 11400 11401 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11402 { 11403 const char *available_path = tracefs_available_filter_functions_addrs(); 11404 char sym_name[500]; 11405 FILE *f; 11406 int ret, err = 0; 11407 unsigned long long sym_addr; 11408 11409 f = fopen(available_path, "re"); 11410 if (!f) { 11411 err = -errno; 11412 pr_warn("failed to open %s: %d\n", available_path, err); 11413 return err; 11414 } 11415 11416 while (true) { 11417 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11418 if (ret == EOF && feof(f)) 11419 break; 11420 11421 if (ret != 2) { 11422 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11423 ret); 11424 err = -EINVAL; 11425 goto cleanup; 11426 } 11427 11428 if (!glob_match(sym_name, res->pattern)) 11429 continue; 11430 11431 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11432 sizeof(*res->addrs), res->cnt + 1); 11433 if (err) 11434 goto cleanup; 11435 11436 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11437 } 11438 11439 if (res->cnt == 0) 11440 err = -ENOENT; 11441 11442 cleanup: 11443 fclose(f); 11444 return err; 11445 } 11446 11447 struct bpf_link * 11448 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11449 const char *pattern, 11450 const struct bpf_kprobe_multi_opts *opts) 11451 { 11452 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11453 struct kprobe_multi_resolve res = { 11454 .pattern = pattern, 11455 }; 11456 enum bpf_attach_type attach_type; 11457 struct bpf_link *link = NULL; 11458 char errmsg[STRERR_BUFSIZE]; 11459 const unsigned long *addrs; 11460 int err, link_fd, prog_fd; 11461 bool retprobe, session; 11462 const __u64 *cookies; 11463 const char **syms; 11464 size_t cnt; 11465 11466 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11467 return libbpf_err_ptr(-EINVAL); 11468 11469 prog_fd = bpf_program__fd(prog); 11470 if (prog_fd < 0) { 11471 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11472 prog->name); 11473 return libbpf_err_ptr(-EINVAL); 11474 } 11475 11476 syms = OPTS_GET(opts, syms, false); 11477 addrs = OPTS_GET(opts, addrs, false); 11478 cnt = OPTS_GET(opts, cnt, false); 11479 cookies = OPTS_GET(opts, cookies, false); 11480 11481 if (!pattern && !addrs && !syms) 11482 return libbpf_err_ptr(-EINVAL); 11483 if (pattern && (addrs || syms || cookies || cnt)) 11484 return libbpf_err_ptr(-EINVAL); 11485 if (!pattern && !cnt) 11486 return libbpf_err_ptr(-EINVAL); 11487 if (addrs && syms) 11488 return libbpf_err_ptr(-EINVAL); 11489 11490 if (pattern) { 11491 if (has_available_filter_functions_addrs()) 11492 err = libbpf_available_kprobes_parse(&res); 11493 else 11494 err = libbpf_available_kallsyms_parse(&res); 11495 if (err) 11496 goto error; 11497 addrs = res.addrs; 11498 cnt = res.cnt; 11499 } 11500 11501 retprobe = OPTS_GET(opts, retprobe, false); 11502 session = OPTS_GET(opts, session, false); 11503 11504 if (retprobe && session) 11505 return libbpf_err_ptr(-EINVAL); 11506 11507 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11508 11509 lopts.kprobe_multi.syms = syms; 11510 lopts.kprobe_multi.addrs = addrs; 11511 lopts.kprobe_multi.cookies = cookies; 11512 lopts.kprobe_multi.cnt = cnt; 11513 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11514 11515 link = calloc(1, sizeof(*link)); 11516 if (!link) { 11517 err = -ENOMEM; 11518 goto error; 11519 } 11520 link->detach = &bpf_link__detach_fd; 11521 11522 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11523 if (link_fd < 0) { 11524 err = -errno; 11525 pr_warn("prog '%s': failed to attach: %s\n", 11526 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11527 goto error; 11528 } 11529 link->fd = link_fd; 11530 free(res.addrs); 11531 return link; 11532 11533 error: 11534 free(link); 11535 free(res.addrs); 11536 return libbpf_err_ptr(err); 11537 } 11538 11539 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11540 { 11541 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11542 unsigned long offset = 0; 11543 const char *func_name; 11544 char *func; 11545 int n; 11546 11547 *link = NULL; 11548 11549 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11550 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11551 return 0; 11552 11553 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11554 if (opts.retprobe) 11555 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11556 else 11557 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11558 11559 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11560 if (n < 1) { 11561 pr_warn("kprobe name is invalid: %s\n", func_name); 11562 return -EINVAL; 11563 } 11564 if (opts.retprobe && offset != 0) { 11565 free(func); 11566 pr_warn("kretprobes do not support offset specification\n"); 11567 return -EINVAL; 11568 } 11569 11570 opts.offset = offset; 11571 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11572 free(func); 11573 return libbpf_get_error(*link); 11574 } 11575 11576 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11577 { 11578 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11579 const char *syscall_name; 11580 11581 *link = NULL; 11582 11583 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11584 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11585 return 0; 11586 11587 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11588 if (opts.retprobe) 11589 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11590 else 11591 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11592 11593 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11594 return *link ? 0 : -errno; 11595 } 11596 11597 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11598 { 11599 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11600 const char *spec; 11601 char *pattern; 11602 int n; 11603 11604 *link = NULL; 11605 11606 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11607 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11608 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11609 return 0; 11610 11611 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11612 if (opts.retprobe) 11613 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11614 else 11615 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11616 11617 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11618 if (n < 1) { 11619 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11620 return -EINVAL; 11621 } 11622 11623 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11624 free(pattern); 11625 return libbpf_get_error(*link); 11626 } 11627 11628 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11629 struct bpf_link **link) 11630 { 11631 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11632 const char *spec; 11633 char *pattern; 11634 int n; 11635 11636 *link = NULL; 11637 11638 /* no auto-attach for SEC("kprobe.session") */ 11639 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11640 return 0; 11641 11642 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11643 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11644 if (n < 1) { 11645 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11646 return -EINVAL; 11647 } 11648 11649 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11650 free(pattern); 11651 return *link ? 0 : -errno; 11652 } 11653 11654 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11655 { 11656 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11657 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11658 int n, ret = -EINVAL; 11659 11660 *link = NULL; 11661 11662 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11663 &probe_type, &binary_path, &func_name); 11664 switch (n) { 11665 case 1: 11666 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11667 ret = 0; 11668 break; 11669 case 3: 11670 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11671 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11672 ret = libbpf_get_error(*link); 11673 break; 11674 default: 11675 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11676 prog->sec_name); 11677 break; 11678 } 11679 free(probe_type); 11680 free(binary_path); 11681 free(func_name); 11682 return ret; 11683 } 11684 11685 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11686 const char *binary_path, uint64_t offset) 11687 { 11688 int i; 11689 11690 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11691 11692 /* sanitize binary_path in the probe name */ 11693 for (i = 0; buf[i]; i++) { 11694 if (!isalnum(buf[i])) 11695 buf[i] = '_'; 11696 } 11697 } 11698 11699 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11700 const char *binary_path, size_t offset) 11701 { 11702 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11703 retprobe ? 'r' : 'p', 11704 retprobe ? "uretprobes" : "uprobes", 11705 probe_name, binary_path, offset); 11706 } 11707 11708 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11709 { 11710 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11711 retprobe ? "uretprobes" : "uprobes", probe_name); 11712 } 11713 11714 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11715 { 11716 char file[512]; 11717 11718 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11719 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11720 11721 return parse_uint_from_file(file, "%d\n"); 11722 } 11723 11724 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11725 const char *binary_path, size_t offset, int pid) 11726 { 11727 const size_t attr_sz = sizeof(struct perf_event_attr); 11728 struct perf_event_attr attr; 11729 int type, pfd, err; 11730 11731 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11732 if (err < 0) { 11733 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11734 binary_path, (size_t)offset, err); 11735 return err; 11736 } 11737 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11738 if (type < 0) { 11739 err = type; 11740 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11741 binary_path, offset, err); 11742 goto err_clean_legacy; 11743 } 11744 11745 memset(&attr, 0, attr_sz); 11746 attr.size = attr_sz; 11747 attr.config = type; 11748 attr.type = PERF_TYPE_TRACEPOINT; 11749 11750 pfd = syscall(__NR_perf_event_open, &attr, 11751 pid < 0 ? -1 : pid, /* pid */ 11752 pid == -1 ? 0 : -1, /* cpu */ 11753 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11754 if (pfd < 0) { 11755 err = -errno; 11756 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11757 goto err_clean_legacy; 11758 } 11759 return pfd; 11760 11761 err_clean_legacy: 11762 /* Clear the newly added legacy uprobe_event */ 11763 remove_uprobe_event_legacy(probe_name, retprobe); 11764 return err; 11765 } 11766 11767 /* Find offset of function name in archive specified by path. Currently 11768 * supported are .zip files that do not compress their contents, as used on 11769 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11770 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11771 * library functions. 11772 * 11773 * An overview of the APK format specifically provided here: 11774 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11775 */ 11776 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11777 const char *func_name) 11778 { 11779 struct zip_archive *archive; 11780 struct zip_entry entry; 11781 long ret; 11782 Elf *elf; 11783 11784 archive = zip_archive_open(archive_path); 11785 if (IS_ERR(archive)) { 11786 ret = PTR_ERR(archive); 11787 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11788 return ret; 11789 } 11790 11791 ret = zip_archive_find_entry(archive, file_name, &entry); 11792 if (ret) { 11793 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11794 archive_path, ret); 11795 goto out; 11796 } 11797 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11798 (unsigned long)entry.data_offset); 11799 11800 if (entry.compression) { 11801 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11802 archive_path); 11803 ret = -LIBBPF_ERRNO__FORMAT; 11804 goto out; 11805 } 11806 11807 elf = elf_memory((void *)entry.data, entry.data_length); 11808 if (!elf) { 11809 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11810 elf_errmsg(-1)); 11811 ret = -LIBBPF_ERRNO__LIBELF; 11812 goto out; 11813 } 11814 11815 ret = elf_find_func_offset(elf, file_name, func_name); 11816 if (ret > 0) { 11817 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11818 func_name, file_name, archive_path, entry.data_offset, ret, 11819 ret + entry.data_offset); 11820 ret += entry.data_offset; 11821 } 11822 elf_end(elf); 11823 11824 out: 11825 zip_archive_close(archive); 11826 return ret; 11827 } 11828 11829 static const char *arch_specific_lib_paths(void) 11830 { 11831 /* 11832 * Based on https://packages.debian.org/sid/libc6. 11833 * 11834 * Assume that the traced program is built for the same architecture 11835 * as libbpf, which should cover the vast majority of cases. 11836 */ 11837 #if defined(__x86_64__) 11838 return "/lib/x86_64-linux-gnu"; 11839 #elif defined(__i386__) 11840 return "/lib/i386-linux-gnu"; 11841 #elif defined(__s390x__) 11842 return "/lib/s390x-linux-gnu"; 11843 #elif defined(__s390__) 11844 return "/lib/s390-linux-gnu"; 11845 #elif defined(__arm__) && defined(__SOFTFP__) 11846 return "/lib/arm-linux-gnueabi"; 11847 #elif defined(__arm__) && !defined(__SOFTFP__) 11848 return "/lib/arm-linux-gnueabihf"; 11849 #elif defined(__aarch64__) 11850 return "/lib/aarch64-linux-gnu"; 11851 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11852 return "/lib/mips64el-linux-gnuabi64"; 11853 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11854 return "/lib/mipsel-linux-gnu"; 11855 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11856 return "/lib/powerpc64le-linux-gnu"; 11857 #elif defined(__sparc__) && defined(__arch64__) 11858 return "/lib/sparc64-linux-gnu"; 11859 #elif defined(__riscv) && __riscv_xlen == 64 11860 return "/lib/riscv64-linux-gnu"; 11861 #else 11862 return NULL; 11863 #endif 11864 } 11865 11866 /* Get full path to program/shared library. */ 11867 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11868 { 11869 const char *search_paths[3] = {}; 11870 int i, perm; 11871 11872 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11873 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11874 search_paths[1] = "/usr/lib64:/usr/lib"; 11875 search_paths[2] = arch_specific_lib_paths(); 11876 perm = R_OK; 11877 } else { 11878 search_paths[0] = getenv("PATH"); 11879 search_paths[1] = "/usr/bin:/usr/sbin"; 11880 perm = R_OK | X_OK; 11881 } 11882 11883 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11884 const char *s; 11885 11886 if (!search_paths[i]) 11887 continue; 11888 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11889 char *next_path; 11890 int seg_len; 11891 11892 if (s[0] == ':') 11893 s++; 11894 next_path = strchr(s, ':'); 11895 seg_len = next_path ? next_path - s : strlen(s); 11896 if (!seg_len) 11897 continue; 11898 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11899 /* ensure it has required permissions */ 11900 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11901 continue; 11902 pr_debug("resolved '%s' to '%s'\n", file, result); 11903 return 0; 11904 } 11905 } 11906 return -ENOENT; 11907 } 11908 11909 struct bpf_link * 11910 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11911 pid_t pid, 11912 const char *path, 11913 const char *func_pattern, 11914 const struct bpf_uprobe_multi_opts *opts) 11915 { 11916 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11917 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11918 unsigned long *resolved_offsets = NULL; 11919 int err = 0, link_fd, prog_fd; 11920 struct bpf_link *link = NULL; 11921 char errmsg[STRERR_BUFSIZE]; 11922 char full_path[PATH_MAX]; 11923 const __u64 *cookies; 11924 const char **syms; 11925 size_t cnt; 11926 11927 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11928 return libbpf_err_ptr(-EINVAL); 11929 11930 prog_fd = bpf_program__fd(prog); 11931 if (prog_fd < 0) { 11932 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11933 prog->name); 11934 return libbpf_err_ptr(-EINVAL); 11935 } 11936 11937 syms = OPTS_GET(opts, syms, NULL); 11938 offsets = OPTS_GET(opts, offsets, NULL); 11939 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11940 cookies = OPTS_GET(opts, cookies, NULL); 11941 cnt = OPTS_GET(opts, cnt, 0); 11942 11943 /* 11944 * User can specify 2 mutually exclusive set of inputs: 11945 * 11946 * 1) use only path/func_pattern/pid arguments 11947 * 11948 * 2) use path/pid with allowed combinations of: 11949 * syms/offsets/ref_ctr_offsets/cookies/cnt 11950 * 11951 * - syms and offsets are mutually exclusive 11952 * - ref_ctr_offsets and cookies are optional 11953 * 11954 * Any other usage results in error. 11955 */ 11956 11957 if (!path) 11958 return libbpf_err_ptr(-EINVAL); 11959 if (!func_pattern && cnt == 0) 11960 return libbpf_err_ptr(-EINVAL); 11961 11962 if (func_pattern) { 11963 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11964 return libbpf_err_ptr(-EINVAL); 11965 } else { 11966 if (!!syms == !!offsets) 11967 return libbpf_err_ptr(-EINVAL); 11968 } 11969 11970 if (func_pattern) { 11971 if (!strchr(path, '/')) { 11972 err = resolve_full_path(path, full_path, sizeof(full_path)); 11973 if (err) { 11974 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11975 prog->name, path, err); 11976 return libbpf_err_ptr(err); 11977 } 11978 path = full_path; 11979 } 11980 11981 err = elf_resolve_pattern_offsets(path, func_pattern, 11982 &resolved_offsets, &cnt); 11983 if (err < 0) 11984 return libbpf_err_ptr(err); 11985 offsets = resolved_offsets; 11986 } else if (syms) { 11987 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 11988 if (err < 0) 11989 return libbpf_err_ptr(err); 11990 offsets = resolved_offsets; 11991 } 11992 11993 lopts.uprobe_multi.path = path; 11994 lopts.uprobe_multi.offsets = offsets; 11995 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11996 lopts.uprobe_multi.cookies = cookies; 11997 lopts.uprobe_multi.cnt = cnt; 11998 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11999 12000 if (pid == 0) 12001 pid = getpid(); 12002 if (pid > 0) 12003 lopts.uprobe_multi.pid = pid; 12004 12005 link = calloc(1, sizeof(*link)); 12006 if (!link) { 12007 err = -ENOMEM; 12008 goto error; 12009 } 12010 link->detach = &bpf_link__detach_fd; 12011 12012 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 12013 if (link_fd < 0) { 12014 err = -errno; 12015 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12016 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12017 goto error; 12018 } 12019 link->fd = link_fd; 12020 free(resolved_offsets); 12021 return link; 12022 12023 error: 12024 free(resolved_offsets); 12025 free(link); 12026 return libbpf_err_ptr(err); 12027 } 12028 12029 LIBBPF_API struct bpf_link * 12030 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12031 const char *binary_path, size_t func_offset, 12032 const struct bpf_uprobe_opts *opts) 12033 { 12034 const char *archive_path = NULL, *archive_sep = NULL; 12035 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 12036 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12037 enum probe_attach_mode attach_mode; 12038 char full_path[PATH_MAX]; 12039 struct bpf_link *link; 12040 size_t ref_ctr_off; 12041 int pfd, err; 12042 bool retprobe, legacy; 12043 const char *func_name; 12044 12045 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12046 return libbpf_err_ptr(-EINVAL); 12047 12048 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12049 retprobe = OPTS_GET(opts, retprobe, false); 12050 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12051 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12052 12053 if (!binary_path) 12054 return libbpf_err_ptr(-EINVAL); 12055 12056 /* Check if "binary_path" refers to an archive. */ 12057 archive_sep = strstr(binary_path, "!/"); 12058 if (archive_sep) { 12059 full_path[0] = '\0'; 12060 libbpf_strlcpy(full_path, binary_path, 12061 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12062 archive_path = full_path; 12063 binary_path = archive_sep + 2; 12064 } else if (!strchr(binary_path, '/')) { 12065 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12066 if (err) { 12067 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12068 prog->name, binary_path, err); 12069 return libbpf_err_ptr(err); 12070 } 12071 binary_path = full_path; 12072 } 12073 func_name = OPTS_GET(opts, func_name, NULL); 12074 if (func_name) { 12075 long sym_off; 12076 12077 if (archive_path) { 12078 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12079 func_name); 12080 binary_path = archive_path; 12081 } else { 12082 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12083 } 12084 if (sym_off < 0) 12085 return libbpf_err_ptr(sym_off); 12086 func_offset += sym_off; 12087 } 12088 12089 legacy = determine_uprobe_perf_type() < 0; 12090 switch (attach_mode) { 12091 case PROBE_ATTACH_MODE_LEGACY: 12092 legacy = true; 12093 pe_opts.force_ioctl_attach = true; 12094 break; 12095 case PROBE_ATTACH_MODE_PERF: 12096 if (legacy) 12097 return libbpf_err_ptr(-ENOTSUP); 12098 pe_opts.force_ioctl_attach = true; 12099 break; 12100 case PROBE_ATTACH_MODE_LINK: 12101 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12102 return libbpf_err_ptr(-ENOTSUP); 12103 break; 12104 case PROBE_ATTACH_MODE_DEFAULT: 12105 break; 12106 default: 12107 return libbpf_err_ptr(-EINVAL); 12108 } 12109 12110 if (!legacy) { 12111 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12112 func_offset, pid, ref_ctr_off); 12113 } else { 12114 char probe_name[PATH_MAX + 64]; 12115 12116 if (ref_ctr_off) 12117 return libbpf_err_ptr(-EINVAL); 12118 12119 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 12120 binary_path, func_offset); 12121 12122 legacy_probe = strdup(probe_name); 12123 if (!legacy_probe) 12124 return libbpf_err_ptr(-ENOMEM); 12125 12126 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12127 binary_path, func_offset, pid); 12128 } 12129 if (pfd < 0) { 12130 err = -errno; 12131 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12132 prog->name, retprobe ? "uretprobe" : "uprobe", 12133 binary_path, func_offset, 12134 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12135 goto err_out; 12136 } 12137 12138 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12139 err = libbpf_get_error(link); 12140 if (err) { 12141 close(pfd); 12142 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12143 prog->name, retprobe ? "uretprobe" : "uprobe", 12144 binary_path, func_offset, 12145 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12146 goto err_clean_legacy; 12147 } 12148 if (legacy) { 12149 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12150 12151 perf_link->legacy_probe_name = legacy_probe; 12152 perf_link->legacy_is_kprobe = false; 12153 perf_link->legacy_is_retprobe = retprobe; 12154 } 12155 return link; 12156 12157 err_clean_legacy: 12158 if (legacy) 12159 remove_uprobe_event_legacy(legacy_probe, retprobe); 12160 err_out: 12161 free(legacy_probe); 12162 return libbpf_err_ptr(err); 12163 } 12164 12165 /* Format of u[ret]probe section definition supporting auto-attach: 12166 * u[ret]probe/binary:function[+offset] 12167 * 12168 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12169 * full binary path via bpf_program__attach_uprobe_opts. 12170 * 12171 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12172 * specified (and auto-attach is not possible) or the above format is specified for 12173 * auto-attach. 12174 */ 12175 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12176 { 12177 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12178 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12179 int n, c, ret = -EINVAL; 12180 long offset = 0; 12181 12182 *link = NULL; 12183 12184 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12185 &probe_type, &binary_path, &func_name); 12186 switch (n) { 12187 case 1: 12188 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12189 ret = 0; 12190 break; 12191 case 2: 12192 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12193 prog->name, prog->sec_name); 12194 break; 12195 case 3: 12196 /* check if user specifies `+offset`, if yes, this should be 12197 * the last part of the string, make sure sscanf read to EOL 12198 */ 12199 func_off = strrchr(func_name, '+'); 12200 if (func_off) { 12201 n = sscanf(func_off, "+%li%n", &offset, &c); 12202 if (n == 1 && *(func_off + c) == '\0') 12203 func_off[0] = '\0'; 12204 else 12205 offset = 0; 12206 } 12207 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12208 strcmp(probe_type, "uretprobe.s") == 0; 12209 if (opts.retprobe && offset != 0) { 12210 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12211 prog->name); 12212 break; 12213 } 12214 opts.func_name = func_name; 12215 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12216 ret = libbpf_get_error(*link); 12217 break; 12218 default: 12219 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12220 prog->sec_name); 12221 break; 12222 } 12223 free(probe_type); 12224 free(binary_path); 12225 free(func_name); 12226 12227 return ret; 12228 } 12229 12230 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12231 bool retprobe, pid_t pid, 12232 const char *binary_path, 12233 size_t func_offset) 12234 { 12235 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12236 12237 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12238 } 12239 12240 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12241 pid_t pid, const char *binary_path, 12242 const char *usdt_provider, const char *usdt_name, 12243 const struct bpf_usdt_opts *opts) 12244 { 12245 char resolved_path[512]; 12246 struct bpf_object *obj = prog->obj; 12247 struct bpf_link *link; 12248 __u64 usdt_cookie; 12249 int err; 12250 12251 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12252 return libbpf_err_ptr(-EINVAL); 12253 12254 if (bpf_program__fd(prog) < 0) { 12255 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12256 prog->name); 12257 return libbpf_err_ptr(-EINVAL); 12258 } 12259 12260 if (!binary_path) 12261 return libbpf_err_ptr(-EINVAL); 12262 12263 if (!strchr(binary_path, '/')) { 12264 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12265 if (err) { 12266 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12267 prog->name, binary_path, err); 12268 return libbpf_err_ptr(err); 12269 } 12270 binary_path = resolved_path; 12271 } 12272 12273 /* USDT manager is instantiated lazily on first USDT attach. It will 12274 * be destroyed together with BPF object in bpf_object__close(). 12275 */ 12276 if (IS_ERR(obj->usdt_man)) 12277 return libbpf_ptr(obj->usdt_man); 12278 if (!obj->usdt_man) { 12279 obj->usdt_man = usdt_manager_new(obj); 12280 if (IS_ERR(obj->usdt_man)) 12281 return libbpf_ptr(obj->usdt_man); 12282 } 12283 12284 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12285 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12286 usdt_provider, usdt_name, usdt_cookie); 12287 err = libbpf_get_error(link); 12288 if (err) 12289 return libbpf_err_ptr(err); 12290 return link; 12291 } 12292 12293 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12294 { 12295 char *path = NULL, *provider = NULL, *name = NULL; 12296 const char *sec_name; 12297 int n, err; 12298 12299 sec_name = bpf_program__section_name(prog); 12300 if (strcmp(sec_name, "usdt") == 0) { 12301 /* no auto-attach for just SEC("usdt") */ 12302 *link = NULL; 12303 return 0; 12304 } 12305 12306 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12307 if (n != 3) { 12308 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12309 sec_name); 12310 err = -EINVAL; 12311 } else { 12312 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12313 provider, name, NULL); 12314 err = libbpf_get_error(*link); 12315 } 12316 free(path); 12317 free(provider); 12318 free(name); 12319 return err; 12320 } 12321 12322 static int determine_tracepoint_id(const char *tp_category, 12323 const char *tp_name) 12324 { 12325 char file[PATH_MAX]; 12326 int ret; 12327 12328 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12329 tracefs_path(), tp_category, tp_name); 12330 if (ret < 0) 12331 return -errno; 12332 if (ret >= sizeof(file)) { 12333 pr_debug("tracepoint %s/%s path is too long\n", 12334 tp_category, tp_name); 12335 return -E2BIG; 12336 } 12337 return parse_uint_from_file(file, "%d\n"); 12338 } 12339 12340 static int perf_event_open_tracepoint(const char *tp_category, 12341 const char *tp_name) 12342 { 12343 const size_t attr_sz = sizeof(struct perf_event_attr); 12344 struct perf_event_attr attr; 12345 char errmsg[STRERR_BUFSIZE]; 12346 int tp_id, pfd, err; 12347 12348 tp_id = determine_tracepoint_id(tp_category, tp_name); 12349 if (tp_id < 0) { 12350 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12351 tp_category, tp_name, 12352 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 12353 return tp_id; 12354 } 12355 12356 memset(&attr, 0, attr_sz); 12357 attr.type = PERF_TYPE_TRACEPOINT; 12358 attr.size = attr_sz; 12359 attr.config = tp_id; 12360 12361 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12362 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12363 if (pfd < 0) { 12364 err = -errno; 12365 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12366 tp_category, tp_name, 12367 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12368 return err; 12369 } 12370 return pfd; 12371 } 12372 12373 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12374 const char *tp_category, 12375 const char *tp_name, 12376 const struct bpf_tracepoint_opts *opts) 12377 { 12378 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12379 char errmsg[STRERR_BUFSIZE]; 12380 struct bpf_link *link; 12381 int pfd, err; 12382 12383 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12384 return libbpf_err_ptr(-EINVAL); 12385 12386 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12387 12388 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12389 if (pfd < 0) { 12390 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12391 prog->name, tp_category, tp_name, 12392 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12393 return libbpf_err_ptr(pfd); 12394 } 12395 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12396 err = libbpf_get_error(link); 12397 if (err) { 12398 close(pfd); 12399 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12400 prog->name, tp_category, tp_name, 12401 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12402 return libbpf_err_ptr(err); 12403 } 12404 return link; 12405 } 12406 12407 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12408 const char *tp_category, 12409 const char *tp_name) 12410 { 12411 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12412 } 12413 12414 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12415 { 12416 char *sec_name, *tp_cat, *tp_name; 12417 12418 *link = NULL; 12419 12420 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12421 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12422 return 0; 12423 12424 sec_name = strdup(prog->sec_name); 12425 if (!sec_name) 12426 return -ENOMEM; 12427 12428 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12429 if (str_has_pfx(prog->sec_name, "tp/")) 12430 tp_cat = sec_name + sizeof("tp/") - 1; 12431 else 12432 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12433 tp_name = strchr(tp_cat, '/'); 12434 if (!tp_name) { 12435 free(sec_name); 12436 return -EINVAL; 12437 } 12438 *tp_name = '\0'; 12439 tp_name++; 12440 12441 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12442 free(sec_name); 12443 return libbpf_get_error(*link); 12444 } 12445 12446 struct bpf_link * 12447 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12448 const char *tp_name, 12449 struct bpf_raw_tracepoint_opts *opts) 12450 { 12451 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12452 char errmsg[STRERR_BUFSIZE]; 12453 struct bpf_link *link; 12454 int prog_fd, pfd; 12455 12456 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12457 return libbpf_err_ptr(-EINVAL); 12458 12459 prog_fd = bpf_program__fd(prog); 12460 if (prog_fd < 0) { 12461 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12462 return libbpf_err_ptr(-EINVAL); 12463 } 12464 12465 link = calloc(1, sizeof(*link)); 12466 if (!link) 12467 return libbpf_err_ptr(-ENOMEM); 12468 link->detach = &bpf_link__detach_fd; 12469 12470 raw_opts.tp_name = tp_name; 12471 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12472 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12473 if (pfd < 0) { 12474 pfd = -errno; 12475 free(link); 12476 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12477 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12478 return libbpf_err_ptr(pfd); 12479 } 12480 link->fd = pfd; 12481 return link; 12482 } 12483 12484 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12485 const char *tp_name) 12486 { 12487 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12488 } 12489 12490 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12491 { 12492 static const char *const prefixes[] = { 12493 "raw_tp", 12494 "raw_tracepoint", 12495 "raw_tp.w", 12496 "raw_tracepoint.w", 12497 }; 12498 size_t i; 12499 const char *tp_name = NULL; 12500 12501 *link = NULL; 12502 12503 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12504 size_t pfx_len; 12505 12506 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12507 continue; 12508 12509 pfx_len = strlen(prefixes[i]); 12510 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12511 if (prog->sec_name[pfx_len] == '\0') 12512 return 0; 12513 12514 if (prog->sec_name[pfx_len] != '/') 12515 continue; 12516 12517 tp_name = prog->sec_name + pfx_len + 1; 12518 break; 12519 } 12520 12521 if (!tp_name) { 12522 pr_warn("prog '%s': invalid section name '%s'\n", 12523 prog->name, prog->sec_name); 12524 return -EINVAL; 12525 } 12526 12527 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12528 return libbpf_get_error(*link); 12529 } 12530 12531 /* Common logic for all BPF program types that attach to a btf_id */ 12532 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12533 const struct bpf_trace_opts *opts) 12534 { 12535 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12536 char errmsg[STRERR_BUFSIZE]; 12537 struct bpf_link *link; 12538 int prog_fd, pfd; 12539 12540 if (!OPTS_VALID(opts, bpf_trace_opts)) 12541 return libbpf_err_ptr(-EINVAL); 12542 12543 prog_fd = bpf_program__fd(prog); 12544 if (prog_fd < 0) { 12545 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12546 return libbpf_err_ptr(-EINVAL); 12547 } 12548 12549 link = calloc(1, sizeof(*link)); 12550 if (!link) 12551 return libbpf_err_ptr(-ENOMEM); 12552 link->detach = &bpf_link__detach_fd; 12553 12554 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12555 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12556 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12557 if (pfd < 0) { 12558 pfd = -errno; 12559 free(link); 12560 pr_warn("prog '%s': failed to attach: %s\n", 12561 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12562 return libbpf_err_ptr(pfd); 12563 } 12564 link->fd = pfd; 12565 return link; 12566 } 12567 12568 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12569 { 12570 return bpf_program__attach_btf_id(prog, NULL); 12571 } 12572 12573 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12574 const struct bpf_trace_opts *opts) 12575 { 12576 return bpf_program__attach_btf_id(prog, opts); 12577 } 12578 12579 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12580 { 12581 return bpf_program__attach_btf_id(prog, NULL); 12582 } 12583 12584 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12585 { 12586 *link = bpf_program__attach_trace(prog); 12587 return libbpf_get_error(*link); 12588 } 12589 12590 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12591 { 12592 *link = bpf_program__attach_lsm(prog); 12593 return libbpf_get_error(*link); 12594 } 12595 12596 static struct bpf_link * 12597 bpf_program_attach_fd(const struct bpf_program *prog, 12598 int target_fd, const char *target_name, 12599 const struct bpf_link_create_opts *opts) 12600 { 12601 enum bpf_attach_type attach_type; 12602 char errmsg[STRERR_BUFSIZE]; 12603 struct bpf_link *link; 12604 int prog_fd, link_fd; 12605 12606 prog_fd = bpf_program__fd(prog); 12607 if (prog_fd < 0) { 12608 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12609 return libbpf_err_ptr(-EINVAL); 12610 } 12611 12612 link = calloc(1, sizeof(*link)); 12613 if (!link) 12614 return libbpf_err_ptr(-ENOMEM); 12615 link->detach = &bpf_link__detach_fd; 12616 12617 attach_type = bpf_program__expected_attach_type(prog); 12618 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12619 if (link_fd < 0) { 12620 link_fd = -errno; 12621 free(link); 12622 pr_warn("prog '%s': failed to attach to %s: %s\n", 12623 prog->name, target_name, 12624 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12625 return libbpf_err_ptr(link_fd); 12626 } 12627 link->fd = link_fd; 12628 return link; 12629 } 12630 12631 struct bpf_link * 12632 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12633 { 12634 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12635 } 12636 12637 struct bpf_link * 12638 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12639 { 12640 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12641 } 12642 12643 struct bpf_link * 12644 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12645 { 12646 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12647 } 12648 12649 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12650 { 12651 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12652 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12653 } 12654 12655 struct bpf_link * 12656 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12657 const struct bpf_tcx_opts *opts) 12658 { 12659 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12660 __u32 relative_id; 12661 int relative_fd; 12662 12663 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12664 return libbpf_err_ptr(-EINVAL); 12665 12666 relative_id = OPTS_GET(opts, relative_id, 0); 12667 relative_fd = OPTS_GET(opts, relative_fd, 0); 12668 12669 /* validate we don't have unexpected combinations of non-zero fields */ 12670 if (!ifindex) { 12671 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12672 prog->name); 12673 return libbpf_err_ptr(-EINVAL); 12674 } 12675 if (relative_fd && relative_id) { 12676 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12677 prog->name); 12678 return libbpf_err_ptr(-EINVAL); 12679 } 12680 12681 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12682 link_create_opts.tcx.relative_fd = relative_fd; 12683 link_create_opts.tcx.relative_id = relative_id; 12684 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12685 12686 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12687 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12688 } 12689 12690 struct bpf_link * 12691 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12692 const struct bpf_netkit_opts *opts) 12693 { 12694 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12695 __u32 relative_id; 12696 int relative_fd; 12697 12698 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12699 return libbpf_err_ptr(-EINVAL); 12700 12701 relative_id = OPTS_GET(opts, relative_id, 0); 12702 relative_fd = OPTS_GET(opts, relative_fd, 0); 12703 12704 /* validate we don't have unexpected combinations of non-zero fields */ 12705 if (!ifindex) { 12706 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12707 prog->name); 12708 return libbpf_err_ptr(-EINVAL); 12709 } 12710 if (relative_fd && relative_id) { 12711 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12712 prog->name); 12713 return libbpf_err_ptr(-EINVAL); 12714 } 12715 12716 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12717 link_create_opts.netkit.relative_fd = relative_fd; 12718 link_create_opts.netkit.relative_id = relative_id; 12719 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12720 12721 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12722 } 12723 12724 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12725 int target_fd, 12726 const char *attach_func_name) 12727 { 12728 int btf_id; 12729 12730 if (!!target_fd != !!attach_func_name) { 12731 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12732 prog->name); 12733 return libbpf_err_ptr(-EINVAL); 12734 } 12735 12736 if (prog->type != BPF_PROG_TYPE_EXT) { 12737 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12738 prog->name); 12739 return libbpf_err_ptr(-EINVAL); 12740 } 12741 12742 if (target_fd) { 12743 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12744 12745 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12746 if (btf_id < 0) 12747 return libbpf_err_ptr(btf_id); 12748 12749 target_opts.target_btf_id = btf_id; 12750 12751 return bpf_program_attach_fd(prog, target_fd, "freplace", 12752 &target_opts); 12753 } else { 12754 /* no target, so use raw_tracepoint_open for compatibility 12755 * with old kernels 12756 */ 12757 return bpf_program__attach_trace(prog); 12758 } 12759 } 12760 12761 struct bpf_link * 12762 bpf_program__attach_iter(const struct bpf_program *prog, 12763 const struct bpf_iter_attach_opts *opts) 12764 { 12765 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12766 char errmsg[STRERR_BUFSIZE]; 12767 struct bpf_link *link; 12768 int prog_fd, link_fd; 12769 __u32 target_fd = 0; 12770 12771 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12772 return libbpf_err_ptr(-EINVAL); 12773 12774 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12775 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12776 12777 prog_fd = bpf_program__fd(prog); 12778 if (prog_fd < 0) { 12779 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12780 return libbpf_err_ptr(-EINVAL); 12781 } 12782 12783 link = calloc(1, sizeof(*link)); 12784 if (!link) 12785 return libbpf_err_ptr(-ENOMEM); 12786 link->detach = &bpf_link__detach_fd; 12787 12788 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12789 &link_create_opts); 12790 if (link_fd < 0) { 12791 link_fd = -errno; 12792 free(link); 12793 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12794 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12795 return libbpf_err_ptr(link_fd); 12796 } 12797 link->fd = link_fd; 12798 return link; 12799 } 12800 12801 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12802 { 12803 *link = bpf_program__attach_iter(prog, NULL); 12804 return libbpf_get_error(*link); 12805 } 12806 12807 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12808 const struct bpf_netfilter_opts *opts) 12809 { 12810 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12811 struct bpf_link *link; 12812 int prog_fd, link_fd; 12813 12814 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12815 return libbpf_err_ptr(-EINVAL); 12816 12817 prog_fd = bpf_program__fd(prog); 12818 if (prog_fd < 0) { 12819 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12820 return libbpf_err_ptr(-EINVAL); 12821 } 12822 12823 link = calloc(1, sizeof(*link)); 12824 if (!link) 12825 return libbpf_err_ptr(-ENOMEM); 12826 12827 link->detach = &bpf_link__detach_fd; 12828 12829 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12830 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12831 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12832 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12833 12834 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12835 if (link_fd < 0) { 12836 char errmsg[STRERR_BUFSIZE]; 12837 12838 link_fd = -errno; 12839 free(link); 12840 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12841 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12842 return libbpf_err_ptr(link_fd); 12843 } 12844 link->fd = link_fd; 12845 12846 return link; 12847 } 12848 12849 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12850 { 12851 struct bpf_link *link = NULL; 12852 int err; 12853 12854 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12855 return libbpf_err_ptr(-EOPNOTSUPP); 12856 12857 if (bpf_program__fd(prog) < 0) { 12858 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12859 prog->name); 12860 return libbpf_err_ptr(-EINVAL); 12861 } 12862 12863 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12864 if (err) 12865 return libbpf_err_ptr(err); 12866 12867 /* When calling bpf_program__attach() explicitly, auto-attach support 12868 * is expected to work, so NULL returned link is considered an error. 12869 * This is different for skeleton's attach, see comment in 12870 * bpf_object__attach_skeleton(). 12871 */ 12872 if (!link) 12873 return libbpf_err_ptr(-EOPNOTSUPP); 12874 12875 return link; 12876 } 12877 12878 struct bpf_link_struct_ops { 12879 struct bpf_link link; 12880 int map_fd; 12881 }; 12882 12883 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12884 { 12885 struct bpf_link_struct_ops *st_link; 12886 __u32 zero = 0; 12887 12888 st_link = container_of(link, struct bpf_link_struct_ops, link); 12889 12890 if (st_link->map_fd < 0) 12891 /* w/o a real link */ 12892 return bpf_map_delete_elem(link->fd, &zero); 12893 12894 return close(link->fd); 12895 } 12896 12897 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12898 { 12899 struct bpf_link_struct_ops *link; 12900 __u32 zero = 0; 12901 int err, fd; 12902 12903 if (!bpf_map__is_struct_ops(map)) 12904 return libbpf_err_ptr(-EINVAL); 12905 12906 if (map->fd < 0) { 12907 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 12908 return libbpf_err_ptr(-EINVAL); 12909 } 12910 12911 link = calloc(1, sizeof(*link)); 12912 if (!link) 12913 return libbpf_err_ptr(-EINVAL); 12914 12915 /* kern_vdata should be prepared during the loading phase. */ 12916 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12917 /* It can be EBUSY if the map has been used to create or 12918 * update a link before. We don't allow updating the value of 12919 * a struct_ops once it is set. That ensures that the value 12920 * never changed. So, it is safe to skip EBUSY. 12921 */ 12922 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12923 free(link); 12924 return libbpf_err_ptr(err); 12925 } 12926 12927 link->link.detach = bpf_link__detach_struct_ops; 12928 12929 if (!(map->def.map_flags & BPF_F_LINK)) { 12930 /* w/o a real link */ 12931 link->link.fd = map->fd; 12932 link->map_fd = -1; 12933 return &link->link; 12934 } 12935 12936 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12937 if (fd < 0) { 12938 free(link); 12939 return libbpf_err_ptr(fd); 12940 } 12941 12942 link->link.fd = fd; 12943 link->map_fd = map->fd; 12944 12945 return &link->link; 12946 } 12947 12948 /* 12949 * Swap the back struct_ops of a link with a new struct_ops map. 12950 */ 12951 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12952 { 12953 struct bpf_link_struct_ops *st_ops_link; 12954 __u32 zero = 0; 12955 int err; 12956 12957 if (!bpf_map__is_struct_ops(map)) 12958 return -EINVAL; 12959 12960 if (map->fd < 0) { 12961 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 12962 return -EINVAL; 12963 } 12964 12965 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12966 /* Ensure the type of a link is correct */ 12967 if (st_ops_link->map_fd < 0) 12968 return -EINVAL; 12969 12970 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12971 /* It can be EBUSY if the map has been used to create or 12972 * update a link before. We don't allow updating the value of 12973 * a struct_ops once it is set. That ensures that the value 12974 * never changed. So, it is safe to skip EBUSY. 12975 */ 12976 if (err && err != -EBUSY) 12977 return err; 12978 12979 err = bpf_link_update(link->fd, map->fd, NULL); 12980 if (err < 0) 12981 return err; 12982 12983 st_ops_link->map_fd = map->fd; 12984 12985 return 0; 12986 } 12987 12988 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12989 void *private_data); 12990 12991 static enum bpf_perf_event_ret 12992 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12993 void **copy_mem, size_t *copy_size, 12994 bpf_perf_event_print_t fn, void *private_data) 12995 { 12996 struct perf_event_mmap_page *header = mmap_mem; 12997 __u64 data_head = ring_buffer_read_head(header); 12998 __u64 data_tail = header->data_tail; 12999 void *base = ((__u8 *)header) + page_size; 13000 int ret = LIBBPF_PERF_EVENT_CONT; 13001 struct perf_event_header *ehdr; 13002 size_t ehdr_size; 13003 13004 while (data_head != data_tail) { 13005 ehdr = base + (data_tail & (mmap_size - 1)); 13006 ehdr_size = ehdr->size; 13007 13008 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13009 void *copy_start = ehdr; 13010 size_t len_first = base + mmap_size - copy_start; 13011 size_t len_secnd = ehdr_size - len_first; 13012 13013 if (*copy_size < ehdr_size) { 13014 free(*copy_mem); 13015 *copy_mem = malloc(ehdr_size); 13016 if (!*copy_mem) { 13017 *copy_size = 0; 13018 ret = LIBBPF_PERF_EVENT_ERROR; 13019 break; 13020 } 13021 *copy_size = ehdr_size; 13022 } 13023 13024 memcpy(*copy_mem, copy_start, len_first); 13025 memcpy(*copy_mem + len_first, base, len_secnd); 13026 ehdr = *copy_mem; 13027 } 13028 13029 ret = fn(ehdr, private_data); 13030 data_tail += ehdr_size; 13031 if (ret != LIBBPF_PERF_EVENT_CONT) 13032 break; 13033 } 13034 13035 ring_buffer_write_tail(header, data_tail); 13036 return libbpf_err(ret); 13037 } 13038 13039 struct perf_buffer; 13040 13041 struct perf_buffer_params { 13042 struct perf_event_attr *attr; 13043 /* if event_cb is specified, it takes precendence */ 13044 perf_buffer_event_fn event_cb; 13045 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13046 perf_buffer_sample_fn sample_cb; 13047 perf_buffer_lost_fn lost_cb; 13048 void *ctx; 13049 int cpu_cnt; 13050 int *cpus; 13051 int *map_keys; 13052 }; 13053 13054 struct perf_cpu_buf { 13055 struct perf_buffer *pb; 13056 void *base; /* mmap()'ed memory */ 13057 void *buf; /* for reconstructing segmented data */ 13058 size_t buf_size; 13059 int fd; 13060 int cpu; 13061 int map_key; 13062 }; 13063 13064 struct perf_buffer { 13065 perf_buffer_event_fn event_cb; 13066 perf_buffer_sample_fn sample_cb; 13067 perf_buffer_lost_fn lost_cb; 13068 void *ctx; /* passed into callbacks */ 13069 13070 size_t page_size; 13071 size_t mmap_size; 13072 struct perf_cpu_buf **cpu_bufs; 13073 struct epoll_event *events; 13074 int cpu_cnt; /* number of allocated CPU buffers */ 13075 int epoll_fd; /* perf event FD */ 13076 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13077 }; 13078 13079 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13080 struct perf_cpu_buf *cpu_buf) 13081 { 13082 if (!cpu_buf) 13083 return; 13084 if (cpu_buf->base && 13085 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13086 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13087 if (cpu_buf->fd >= 0) { 13088 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13089 close(cpu_buf->fd); 13090 } 13091 free(cpu_buf->buf); 13092 free(cpu_buf); 13093 } 13094 13095 void perf_buffer__free(struct perf_buffer *pb) 13096 { 13097 int i; 13098 13099 if (IS_ERR_OR_NULL(pb)) 13100 return; 13101 if (pb->cpu_bufs) { 13102 for (i = 0; i < pb->cpu_cnt; i++) { 13103 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13104 13105 if (!cpu_buf) 13106 continue; 13107 13108 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13109 perf_buffer__free_cpu_buf(pb, cpu_buf); 13110 } 13111 free(pb->cpu_bufs); 13112 } 13113 if (pb->epoll_fd >= 0) 13114 close(pb->epoll_fd); 13115 free(pb->events); 13116 free(pb); 13117 } 13118 13119 static struct perf_cpu_buf * 13120 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13121 int cpu, int map_key) 13122 { 13123 struct perf_cpu_buf *cpu_buf; 13124 char msg[STRERR_BUFSIZE]; 13125 int err; 13126 13127 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13128 if (!cpu_buf) 13129 return ERR_PTR(-ENOMEM); 13130 13131 cpu_buf->pb = pb; 13132 cpu_buf->cpu = cpu; 13133 cpu_buf->map_key = map_key; 13134 13135 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13136 -1, PERF_FLAG_FD_CLOEXEC); 13137 if (cpu_buf->fd < 0) { 13138 err = -errno; 13139 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13140 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13141 goto error; 13142 } 13143 13144 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13145 PROT_READ | PROT_WRITE, MAP_SHARED, 13146 cpu_buf->fd, 0); 13147 if (cpu_buf->base == MAP_FAILED) { 13148 cpu_buf->base = NULL; 13149 err = -errno; 13150 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13151 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13152 goto error; 13153 } 13154 13155 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13156 err = -errno; 13157 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13158 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13159 goto error; 13160 } 13161 13162 return cpu_buf; 13163 13164 error: 13165 perf_buffer__free_cpu_buf(pb, cpu_buf); 13166 return (struct perf_cpu_buf *)ERR_PTR(err); 13167 } 13168 13169 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13170 struct perf_buffer_params *p); 13171 13172 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13173 perf_buffer_sample_fn sample_cb, 13174 perf_buffer_lost_fn lost_cb, 13175 void *ctx, 13176 const struct perf_buffer_opts *opts) 13177 { 13178 const size_t attr_sz = sizeof(struct perf_event_attr); 13179 struct perf_buffer_params p = {}; 13180 struct perf_event_attr attr; 13181 __u32 sample_period; 13182 13183 if (!OPTS_VALID(opts, perf_buffer_opts)) 13184 return libbpf_err_ptr(-EINVAL); 13185 13186 sample_period = OPTS_GET(opts, sample_period, 1); 13187 if (!sample_period) 13188 sample_period = 1; 13189 13190 memset(&attr, 0, attr_sz); 13191 attr.size = attr_sz; 13192 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13193 attr.type = PERF_TYPE_SOFTWARE; 13194 attr.sample_type = PERF_SAMPLE_RAW; 13195 attr.sample_period = sample_period; 13196 attr.wakeup_events = sample_period; 13197 13198 p.attr = &attr; 13199 p.sample_cb = sample_cb; 13200 p.lost_cb = lost_cb; 13201 p.ctx = ctx; 13202 13203 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13204 } 13205 13206 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13207 struct perf_event_attr *attr, 13208 perf_buffer_event_fn event_cb, void *ctx, 13209 const struct perf_buffer_raw_opts *opts) 13210 { 13211 struct perf_buffer_params p = {}; 13212 13213 if (!attr) 13214 return libbpf_err_ptr(-EINVAL); 13215 13216 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13217 return libbpf_err_ptr(-EINVAL); 13218 13219 p.attr = attr; 13220 p.event_cb = event_cb; 13221 p.ctx = ctx; 13222 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13223 p.cpus = OPTS_GET(opts, cpus, NULL); 13224 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13225 13226 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13227 } 13228 13229 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13230 struct perf_buffer_params *p) 13231 { 13232 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13233 struct bpf_map_info map; 13234 char msg[STRERR_BUFSIZE]; 13235 struct perf_buffer *pb; 13236 bool *online = NULL; 13237 __u32 map_info_len; 13238 int err, i, j, n; 13239 13240 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13241 pr_warn("page count should be power of two, but is %zu\n", 13242 page_cnt); 13243 return ERR_PTR(-EINVAL); 13244 } 13245 13246 /* best-effort sanity checks */ 13247 memset(&map, 0, sizeof(map)); 13248 map_info_len = sizeof(map); 13249 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13250 if (err) { 13251 err = -errno; 13252 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13253 * -EBADFD, -EFAULT, or -E2BIG on real error 13254 */ 13255 if (err != -EINVAL) { 13256 pr_warn("failed to get map info for map FD %d: %s\n", 13257 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 13258 return ERR_PTR(err); 13259 } 13260 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13261 map_fd); 13262 } else { 13263 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13264 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13265 map.name); 13266 return ERR_PTR(-EINVAL); 13267 } 13268 } 13269 13270 pb = calloc(1, sizeof(*pb)); 13271 if (!pb) 13272 return ERR_PTR(-ENOMEM); 13273 13274 pb->event_cb = p->event_cb; 13275 pb->sample_cb = p->sample_cb; 13276 pb->lost_cb = p->lost_cb; 13277 pb->ctx = p->ctx; 13278 13279 pb->page_size = getpagesize(); 13280 pb->mmap_size = pb->page_size * page_cnt; 13281 pb->map_fd = map_fd; 13282 13283 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13284 if (pb->epoll_fd < 0) { 13285 err = -errno; 13286 pr_warn("failed to create epoll instance: %s\n", 13287 libbpf_strerror_r(err, msg, sizeof(msg))); 13288 goto error; 13289 } 13290 13291 if (p->cpu_cnt > 0) { 13292 pb->cpu_cnt = p->cpu_cnt; 13293 } else { 13294 pb->cpu_cnt = libbpf_num_possible_cpus(); 13295 if (pb->cpu_cnt < 0) { 13296 err = pb->cpu_cnt; 13297 goto error; 13298 } 13299 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13300 pb->cpu_cnt = map.max_entries; 13301 } 13302 13303 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13304 if (!pb->events) { 13305 err = -ENOMEM; 13306 pr_warn("failed to allocate events: out of memory\n"); 13307 goto error; 13308 } 13309 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13310 if (!pb->cpu_bufs) { 13311 err = -ENOMEM; 13312 pr_warn("failed to allocate buffers: out of memory\n"); 13313 goto error; 13314 } 13315 13316 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13317 if (err) { 13318 pr_warn("failed to get online CPU mask: %d\n", err); 13319 goto error; 13320 } 13321 13322 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13323 struct perf_cpu_buf *cpu_buf; 13324 int cpu, map_key; 13325 13326 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13327 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13328 13329 /* in case user didn't explicitly requested particular CPUs to 13330 * be attached to, skip offline/not present CPUs 13331 */ 13332 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13333 continue; 13334 13335 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13336 if (IS_ERR(cpu_buf)) { 13337 err = PTR_ERR(cpu_buf); 13338 goto error; 13339 } 13340 13341 pb->cpu_bufs[j] = cpu_buf; 13342 13343 err = bpf_map_update_elem(pb->map_fd, &map_key, 13344 &cpu_buf->fd, 0); 13345 if (err) { 13346 err = -errno; 13347 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13348 cpu, map_key, cpu_buf->fd, 13349 libbpf_strerror_r(err, msg, sizeof(msg))); 13350 goto error; 13351 } 13352 13353 pb->events[j].events = EPOLLIN; 13354 pb->events[j].data.ptr = cpu_buf; 13355 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13356 &pb->events[j]) < 0) { 13357 err = -errno; 13358 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13359 cpu, cpu_buf->fd, 13360 libbpf_strerror_r(err, msg, sizeof(msg))); 13361 goto error; 13362 } 13363 j++; 13364 } 13365 pb->cpu_cnt = j; 13366 free(online); 13367 13368 return pb; 13369 13370 error: 13371 free(online); 13372 if (pb) 13373 perf_buffer__free(pb); 13374 return ERR_PTR(err); 13375 } 13376 13377 struct perf_sample_raw { 13378 struct perf_event_header header; 13379 uint32_t size; 13380 char data[]; 13381 }; 13382 13383 struct perf_sample_lost { 13384 struct perf_event_header header; 13385 uint64_t id; 13386 uint64_t lost; 13387 uint64_t sample_id; 13388 }; 13389 13390 static enum bpf_perf_event_ret 13391 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13392 { 13393 struct perf_cpu_buf *cpu_buf = ctx; 13394 struct perf_buffer *pb = cpu_buf->pb; 13395 void *data = e; 13396 13397 /* user wants full control over parsing perf event */ 13398 if (pb->event_cb) 13399 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13400 13401 switch (e->type) { 13402 case PERF_RECORD_SAMPLE: { 13403 struct perf_sample_raw *s = data; 13404 13405 if (pb->sample_cb) 13406 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13407 break; 13408 } 13409 case PERF_RECORD_LOST: { 13410 struct perf_sample_lost *s = data; 13411 13412 if (pb->lost_cb) 13413 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13414 break; 13415 } 13416 default: 13417 pr_warn("unknown perf sample type %d\n", e->type); 13418 return LIBBPF_PERF_EVENT_ERROR; 13419 } 13420 return LIBBPF_PERF_EVENT_CONT; 13421 } 13422 13423 static int perf_buffer__process_records(struct perf_buffer *pb, 13424 struct perf_cpu_buf *cpu_buf) 13425 { 13426 enum bpf_perf_event_ret ret; 13427 13428 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13429 pb->page_size, &cpu_buf->buf, 13430 &cpu_buf->buf_size, 13431 perf_buffer__process_record, cpu_buf); 13432 if (ret != LIBBPF_PERF_EVENT_CONT) 13433 return ret; 13434 return 0; 13435 } 13436 13437 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13438 { 13439 return pb->epoll_fd; 13440 } 13441 13442 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13443 { 13444 int i, cnt, err; 13445 13446 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13447 if (cnt < 0) 13448 return -errno; 13449 13450 for (i = 0; i < cnt; i++) { 13451 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13452 13453 err = perf_buffer__process_records(pb, cpu_buf); 13454 if (err) { 13455 pr_warn("error while processing records: %d\n", err); 13456 return libbpf_err(err); 13457 } 13458 } 13459 return cnt; 13460 } 13461 13462 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13463 * manager. 13464 */ 13465 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13466 { 13467 return pb->cpu_cnt; 13468 } 13469 13470 /* 13471 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13472 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13473 * select()/poll()/epoll() Linux syscalls. 13474 */ 13475 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13476 { 13477 struct perf_cpu_buf *cpu_buf; 13478 13479 if (buf_idx >= pb->cpu_cnt) 13480 return libbpf_err(-EINVAL); 13481 13482 cpu_buf = pb->cpu_bufs[buf_idx]; 13483 if (!cpu_buf) 13484 return libbpf_err(-ENOENT); 13485 13486 return cpu_buf->fd; 13487 } 13488 13489 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13490 { 13491 struct perf_cpu_buf *cpu_buf; 13492 13493 if (buf_idx >= pb->cpu_cnt) 13494 return libbpf_err(-EINVAL); 13495 13496 cpu_buf = pb->cpu_bufs[buf_idx]; 13497 if (!cpu_buf) 13498 return libbpf_err(-ENOENT); 13499 13500 *buf = cpu_buf->base; 13501 *buf_size = pb->mmap_size; 13502 return 0; 13503 } 13504 13505 /* 13506 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13507 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13508 * consume, do nothing and return success. 13509 * Returns: 13510 * - 0 on success; 13511 * - <0 on failure. 13512 */ 13513 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13514 { 13515 struct perf_cpu_buf *cpu_buf; 13516 13517 if (buf_idx >= pb->cpu_cnt) 13518 return libbpf_err(-EINVAL); 13519 13520 cpu_buf = pb->cpu_bufs[buf_idx]; 13521 if (!cpu_buf) 13522 return libbpf_err(-ENOENT); 13523 13524 return perf_buffer__process_records(pb, cpu_buf); 13525 } 13526 13527 int perf_buffer__consume(struct perf_buffer *pb) 13528 { 13529 int i, err; 13530 13531 for (i = 0; i < pb->cpu_cnt; i++) { 13532 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13533 13534 if (!cpu_buf) 13535 continue; 13536 13537 err = perf_buffer__process_records(pb, cpu_buf); 13538 if (err) { 13539 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 13540 return libbpf_err(err); 13541 } 13542 } 13543 return 0; 13544 } 13545 13546 int bpf_program__set_attach_target(struct bpf_program *prog, 13547 int attach_prog_fd, 13548 const char *attach_func_name) 13549 { 13550 int btf_obj_fd = 0, btf_id = 0, err; 13551 13552 if (!prog || attach_prog_fd < 0) 13553 return libbpf_err(-EINVAL); 13554 13555 if (prog->obj->loaded) 13556 return libbpf_err(-EINVAL); 13557 13558 if (attach_prog_fd && !attach_func_name) { 13559 /* remember attach_prog_fd and let bpf_program__load() find 13560 * BTF ID during the program load 13561 */ 13562 prog->attach_prog_fd = attach_prog_fd; 13563 return 0; 13564 } 13565 13566 if (attach_prog_fd) { 13567 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13568 attach_prog_fd); 13569 if (btf_id < 0) 13570 return libbpf_err(btf_id); 13571 } else { 13572 if (!attach_func_name) 13573 return libbpf_err(-EINVAL); 13574 13575 /* load btf_vmlinux, if not yet */ 13576 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13577 if (err) 13578 return libbpf_err(err); 13579 err = find_kernel_btf_id(prog->obj, attach_func_name, 13580 prog->expected_attach_type, 13581 &btf_obj_fd, &btf_id); 13582 if (err) 13583 return libbpf_err(err); 13584 } 13585 13586 prog->attach_btf_id = btf_id; 13587 prog->attach_btf_obj_fd = btf_obj_fd; 13588 prog->attach_prog_fd = attach_prog_fd; 13589 return 0; 13590 } 13591 13592 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13593 { 13594 int err = 0, n, len, start, end = -1; 13595 bool *tmp; 13596 13597 *mask = NULL; 13598 *mask_sz = 0; 13599 13600 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13601 while (*s) { 13602 if (*s == ',' || *s == '\n') { 13603 s++; 13604 continue; 13605 } 13606 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13607 if (n <= 0 || n > 2) { 13608 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13609 err = -EINVAL; 13610 goto cleanup; 13611 } else if (n == 1) { 13612 end = start; 13613 } 13614 if (start < 0 || start > end) { 13615 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13616 start, end, s); 13617 err = -EINVAL; 13618 goto cleanup; 13619 } 13620 tmp = realloc(*mask, end + 1); 13621 if (!tmp) { 13622 err = -ENOMEM; 13623 goto cleanup; 13624 } 13625 *mask = tmp; 13626 memset(tmp + *mask_sz, 0, start - *mask_sz); 13627 memset(tmp + start, 1, end - start + 1); 13628 *mask_sz = end + 1; 13629 s += len; 13630 } 13631 if (!*mask_sz) { 13632 pr_warn("Empty CPU range\n"); 13633 return -EINVAL; 13634 } 13635 return 0; 13636 cleanup: 13637 free(*mask); 13638 *mask = NULL; 13639 return err; 13640 } 13641 13642 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13643 { 13644 int fd, err = 0, len; 13645 char buf[128]; 13646 13647 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13648 if (fd < 0) { 13649 err = -errno; 13650 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13651 return err; 13652 } 13653 len = read(fd, buf, sizeof(buf)); 13654 close(fd); 13655 if (len <= 0) { 13656 err = len ? -errno : -EINVAL; 13657 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13658 return err; 13659 } 13660 if (len >= sizeof(buf)) { 13661 pr_warn("CPU mask is too big in file %s\n", fcpu); 13662 return -E2BIG; 13663 } 13664 buf[len] = '\0'; 13665 13666 return parse_cpu_mask_str(buf, mask, mask_sz); 13667 } 13668 13669 int libbpf_num_possible_cpus(void) 13670 { 13671 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13672 static int cpus; 13673 int err, n, i, tmp_cpus; 13674 bool *mask; 13675 13676 tmp_cpus = READ_ONCE(cpus); 13677 if (tmp_cpus > 0) 13678 return tmp_cpus; 13679 13680 err = parse_cpu_mask_file(fcpu, &mask, &n); 13681 if (err) 13682 return libbpf_err(err); 13683 13684 tmp_cpus = 0; 13685 for (i = 0; i < n; i++) { 13686 if (mask[i]) 13687 tmp_cpus++; 13688 } 13689 free(mask); 13690 13691 WRITE_ONCE(cpus, tmp_cpus); 13692 return tmp_cpus; 13693 } 13694 13695 static int populate_skeleton_maps(const struct bpf_object *obj, 13696 struct bpf_map_skeleton *maps, 13697 size_t map_cnt) 13698 { 13699 int i; 13700 13701 for (i = 0; i < map_cnt; i++) { 13702 struct bpf_map **map = maps[i].map; 13703 const char *name = maps[i].name; 13704 void **mmaped = maps[i].mmaped; 13705 13706 *map = bpf_object__find_map_by_name(obj, name); 13707 if (!*map) { 13708 pr_warn("failed to find skeleton map '%s'\n", name); 13709 return -ESRCH; 13710 } 13711 13712 /* externs shouldn't be pre-setup from user code */ 13713 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13714 *mmaped = (*map)->mmaped; 13715 } 13716 return 0; 13717 } 13718 13719 static int populate_skeleton_progs(const struct bpf_object *obj, 13720 struct bpf_prog_skeleton *progs, 13721 size_t prog_cnt) 13722 { 13723 int i; 13724 13725 for (i = 0; i < prog_cnt; i++) { 13726 struct bpf_program **prog = progs[i].prog; 13727 const char *name = progs[i].name; 13728 13729 *prog = bpf_object__find_program_by_name(obj, name); 13730 if (!*prog) { 13731 pr_warn("failed to find skeleton program '%s'\n", name); 13732 return -ESRCH; 13733 } 13734 } 13735 return 0; 13736 } 13737 13738 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13739 const struct bpf_object_open_opts *opts) 13740 { 13741 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13742 .object_name = s->name, 13743 ); 13744 struct bpf_object *obj; 13745 int err; 13746 13747 /* Attempt to preserve opts->object_name, unless overriden by user 13748 * explicitly. Overwriting object name for skeletons is discouraged, 13749 * as it breaks global data maps, because they contain object name 13750 * prefix as their own map name prefix. When skeleton is generated, 13751 * bpftool is making an assumption that this name will stay the same. 13752 */ 13753 if (opts) { 13754 memcpy(&skel_opts, opts, sizeof(*opts)); 13755 if (!opts->object_name) 13756 skel_opts.object_name = s->name; 13757 } 13758 13759 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13760 err = libbpf_get_error(obj); 13761 if (err) { 13762 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13763 s->name, err); 13764 return libbpf_err(err); 13765 } 13766 13767 *s->obj = obj; 13768 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13769 if (err) { 13770 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13771 return libbpf_err(err); 13772 } 13773 13774 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13775 if (err) { 13776 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13777 return libbpf_err(err); 13778 } 13779 13780 return 0; 13781 } 13782 13783 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13784 { 13785 int err, len, var_idx, i; 13786 const char *var_name; 13787 const struct bpf_map *map; 13788 struct btf *btf; 13789 __u32 map_type_id; 13790 const struct btf_type *map_type, *var_type; 13791 const struct bpf_var_skeleton *var_skel; 13792 struct btf_var_secinfo *var; 13793 13794 if (!s->obj) 13795 return libbpf_err(-EINVAL); 13796 13797 btf = bpf_object__btf(s->obj); 13798 if (!btf) { 13799 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13800 bpf_object__name(s->obj)); 13801 return libbpf_err(-errno); 13802 } 13803 13804 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13805 if (err) { 13806 pr_warn("failed to populate subskeleton maps: %d\n", err); 13807 return libbpf_err(err); 13808 } 13809 13810 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13811 if (err) { 13812 pr_warn("failed to populate subskeleton maps: %d\n", err); 13813 return libbpf_err(err); 13814 } 13815 13816 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13817 var_skel = &s->vars[var_idx]; 13818 map = *var_skel->map; 13819 map_type_id = bpf_map__btf_value_type_id(map); 13820 map_type = btf__type_by_id(btf, map_type_id); 13821 13822 if (!btf_is_datasec(map_type)) { 13823 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13824 bpf_map__name(map), 13825 __btf_kind_str(btf_kind(map_type))); 13826 return libbpf_err(-EINVAL); 13827 } 13828 13829 len = btf_vlen(map_type); 13830 var = btf_var_secinfos(map_type); 13831 for (i = 0; i < len; i++, var++) { 13832 var_type = btf__type_by_id(btf, var->type); 13833 var_name = btf__name_by_offset(btf, var_type->name_off); 13834 if (strcmp(var_name, var_skel->name) == 0) { 13835 *var_skel->addr = map->mmaped + var->offset; 13836 break; 13837 } 13838 } 13839 } 13840 return 0; 13841 } 13842 13843 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13844 { 13845 if (!s) 13846 return; 13847 free(s->maps); 13848 free(s->progs); 13849 free(s->vars); 13850 free(s); 13851 } 13852 13853 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13854 { 13855 int i, err; 13856 13857 err = bpf_object__load(*s->obj); 13858 if (err) { 13859 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13860 return libbpf_err(err); 13861 } 13862 13863 for (i = 0; i < s->map_cnt; i++) { 13864 struct bpf_map *map = *s->maps[i].map; 13865 size_t mmap_sz = bpf_map_mmap_sz(map); 13866 int prot, map_fd = map->fd; 13867 void **mmaped = s->maps[i].mmaped; 13868 13869 if (!mmaped) 13870 continue; 13871 13872 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13873 *mmaped = NULL; 13874 continue; 13875 } 13876 13877 if (map->def.type == BPF_MAP_TYPE_ARENA) { 13878 *mmaped = map->mmaped; 13879 continue; 13880 } 13881 13882 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13883 prot = PROT_READ; 13884 else 13885 prot = PROT_READ | PROT_WRITE; 13886 13887 /* Remap anonymous mmap()-ed "map initialization image" as 13888 * a BPF map-backed mmap()-ed memory, but preserving the same 13889 * memory address. This will cause kernel to change process' 13890 * page table to point to a different piece of kernel memory, 13891 * but from userspace point of view memory address (and its 13892 * contents, being identical at this point) will stay the 13893 * same. This mapping will be released by bpf_object__close() 13894 * as per normal clean up procedure, so we don't need to worry 13895 * about it from skeleton's clean up perspective. 13896 */ 13897 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13898 if (*mmaped == MAP_FAILED) { 13899 err = -errno; 13900 *mmaped = NULL; 13901 pr_warn("failed to re-mmap() map '%s': %d\n", 13902 bpf_map__name(map), err); 13903 return libbpf_err(err); 13904 } 13905 } 13906 13907 return 0; 13908 } 13909 13910 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13911 { 13912 int i, err; 13913 13914 for (i = 0; i < s->prog_cnt; i++) { 13915 struct bpf_program *prog = *s->progs[i].prog; 13916 struct bpf_link **link = s->progs[i].link; 13917 13918 if (!prog->autoload || !prog->autoattach) 13919 continue; 13920 13921 /* auto-attaching not supported for this program */ 13922 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13923 continue; 13924 13925 /* if user already set the link manually, don't attempt auto-attach */ 13926 if (*link) 13927 continue; 13928 13929 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13930 if (err) { 13931 pr_warn("prog '%s': failed to auto-attach: %d\n", 13932 bpf_program__name(prog), err); 13933 return libbpf_err(err); 13934 } 13935 13936 /* It's possible that for some SEC() definitions auto-attach 13937 * is supported in some cases (e.g., if definition completely 13938 * specifies target information), but is not in other cases. 13939 * SEC("uprobe") is one such case. If user specified target 13940 * binary and function name, such BPF program can be 13941 * auto-attached. But if not, it shouldn't trigger skeleton's 13942 * attach to fail. It should just be skipped. 13943 * attach_fn signals such case with returning 0 (no error) and 13944 * setting link to NULL. 13945 */ 13946 } 13947 13948 return 0; 13949 } 13950 13951 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13952 { 13953 int i; 13954 13955 for (i = 0; i < s->prog_cnt; i++) { 13956 struct bpf_link **link = s->progs[i].link; 13957 13958 bpf_link__destroy(*link); 13959 *link = NULL; 13960 } 13961 } 13962 13963 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13964 { 13965 if (!s) 13966 return; 13967 13968 if (s->progs) 13969 bpf_object__detach_skeleton(s); 13970 if (s->obj) 13971 bpf_object__close(*s->obj); 13972 free(s->maps); 13973 free(s->progs); 13974 free(s); 13975 } 13976