1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define MAX_EVENT_NAME_LEN 64 63 64 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 77 static int map_set_def_max_entries(struct bpf_map *map); 78 79 static const char * const attach_type_name[] = { 80 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 81 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 82 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 83 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 84 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 85 [BPF_CGROUP_DEVICE] = "cgroup_device", 86 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 87 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 88 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 89 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 90 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 91 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 92 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 93 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 94 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 95 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 96 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 97 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 98 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 99 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 100 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 101 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 102 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 103 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 104 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 105 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 106 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 107 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 108 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 109 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 110 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 111 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 112 [BPF_LIRC_MODE2] = "lirc_mode2", 113 [BPF_FLOW_DISSECTOR] = "flow_dissector", 114 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 115 [BPF_TRACE_FENTRY] = "trace_fentry", 116 [BPF_TRACE_FEXIT] = "trace_fexit", 117 [BPF_MODIFY_RETURN] = "modify_return", 118 [BPF_LSM_MAC] = "lsm_mac", 119 [BPF_LSM_CGROUP] = "lsm_cgroup", 120 [BPF_SK_LOOKUP] = "sk_lookup", 121 [BPF_TRACE_ITER] = "trace_iter", 122 [BPF_XDP_DEVMAP] = "xdp_devmap", 123 [BPF_XDP_CPUMAP] = "xdp_cpumap", 124 [BPF_XDP] = "xdp", 125 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 126 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 127 [BPF_PERF_EVENT] = "perf_event", 128 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 129 [BPF_STRUCT_OPS] = "struct_ops", 130 [BPF_NETFILTER] = "netfilter", 131 [BPF_TCX_INGRESS] = "tcx_ingress", 132 [BPF_TCX_EGRESS] = "tcx_egress", 133 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 134 [BPF_NETKIT_PRIMARY] = "netkit_primary", 135 [BPF_NETKIT_PEER] = "netkit_peer", 136 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 137 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 138 }; 139 140 static const char * const link_type_name[] = { 141 [BPF_LINK_TYPE_UNSPEC] = "unspec", 142 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 143 [BPF_LINK_TYPE_TRACING] = "tracing", 144 [BPF_LINK_TYPE_CGROUP] = "cgroup", 145 [BPF_LINK_TYPE_ITER] = "iter", 146 [BPF_LINK_TYPE_NETNS] = "netns", 147 [BPF_LINK_TYPE_XDP] = "xdp", 148 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 149 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 150 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 151 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 152 [BPF_LINK_TYPE_TCX] = "tcx", 153 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 154 [BPF_LINK_TYPE_NETKIT] = "netkit", 155 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 156 }; 157 158 static const char * const map_type_name[] = { 159 [BPF_MAP_TYPE_UNSPEC] = "unspec", 160 [BPF_MAP_TYPE_HASH] = "hash", 161 [BPF_MAP_TYPE_ARRAY] = "array", 162 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 163 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 164 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 165 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 166 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 167 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 168 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 169 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 170 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 171 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 172 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 173 [BPF_MAP_TYPE_DEVMAP] = "devmap", 174 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 175 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 176 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 177 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 178 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 179 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 180 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 181 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 182 [BPF_MAP_TYPE_QUEUE] = "queue", 183 [BPF_MAP_TYPE_STACK] = "stack", 184 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 185 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 186 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 187 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 188 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 189 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 190 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 191 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 192 [BPF_MAP_TYPE_ARENA] = "arena", 193 [BPF_MAP_TYPE_INSN_ARRAY] = "insn_array", 194 }; 195 196 static const char * const prog_type_name[] = { 197 [BPF_PROG_TYPE_UNSPEC] = "unspec", 198 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 199 [BPF_PROG_TYPE_KPROBE] = "kprobe", 200 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 201 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 202 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 203 [BPF_PROG_TYPE_XDP] = "xdp", 204 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 205 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 206 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 207 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 208 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 209 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 210 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 211 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 212 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 213 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 214 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 215 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 216 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 217 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 218 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 219 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 220 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 221 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 222 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 223 [BPF_PROG_TYPE_TRACING] = "tracing", 224 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 225 [BPF_PROG_TYPE_EXT] = "ext", 226 [BPF_PROG_TYPE_LSM] = "lsm", 227 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 228 [BPF_PROG_TYPE_SYSCALL] = "syscall", 229 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 230 }; 231 232 static int __base_pr(enum libbpf_print_level level, const char *format, 233 va_list args) 234 { 235 const char *env_var = "LIBBPF_LOG_LEVEL"; 236 static enum libbpf_print_level min_level = LIBBPF_INFO; 237 static bool initialized; 238 239 if (!initialized) { 240 char *verbosity; 241 242 initialized = true; 243 verbosity = getenv(env_var); 244 if (verbosity) { 245 if (strcasecmp(verbosity, "warn") == 0) 246 min_level = LIBBPF_WARN; 247 else if (strcasecmp(verbosity, "debug") == 0) 248 min_level = LIBBPF_DEBUG; 249 else if (strcasecmp(verbosity, "info") == 0) 250 min_level = LIBBPF_INFO; 251 else 252 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 253 env_var, verbosity); 254 } 255 } 256 257 /* if too verbose, skip logging */ 258 if (level > min_level) 259 return 0; 260 261 return vfprintf(stderr, format, args); 262 } 263 264 static libbpf_print_fn_t __libbpf_pr = __base_pr; 265 266 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 267 { 268 libbpf_print_fn_t old_print_fn; 269 270 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 271 272 return old_print_fn; 273 } 274 275 __printf(2, 3) 276 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 277 { 278 va_list args; 279 int old_errno; 280 libbpf_print_fn_t print_fn; 281 282 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 283 if (!print_fn) 284 return; 285 286 old_errno = errno; 287 288 va_start(args, format); 289 print_fn(level, format, args); 290 va_end(args); 291 292 errno = old_errno; 293 } 294 295 static void pr_perm_msg(int err) 296 { 297 struct rlimit limit; 298 char buf[100]; 299 300 if (err != -EPERM || geteuid() != 0) 301 return; 302 303 err = getrlimit(RLIMIT_MEMLOCK, &limit); 304 if (err) 305 return; 306 307 if (limit.rlim_cur == RLIM_INFINITY) 308 return; 309 310 if (limit.rlim_cur < 1024) 311 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 312 else if (limit.rlim_cur < 1024*1024) 313 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 314 else 315 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 316 317 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 318 buf); 319 } 320 321 /* Copied from tools/perf/util/util.h */ 322 #ifndef zfree 323 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 324 #endif 325 326 #ifndef zclose 327 # define zclose(fd) ({ \ 328 int ___err = 0; \ 329 if ((fd) >= 0) \ 330 ___err = close((fd)); \ 331 fd = -1; \ 332 ___err; }) 333 #endif 334 335 static inline __u64 ptr_to_u64(const void *ptr) 336 { 337 return (__u64) (unsigned long) ptr; 338 } 339 340 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 341 { 342 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 343 return 0; 344 } 345 346 __u32 libbpf_major_version(void) 347 { 348 return LIBBPF_MAJOR_VERSION; 349 } 350 351 __u32 libbpf_minor_version(void) 352 { 353 return LIBBPF_MINOR_VERSION; 354 } 355 356 const char *libbpf_version_string(void) 357 { 358 #define __S(X) #X 359 #define _S(X) __S(X) 360 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 361 #undef _S 362 #undef __S 363 } 364 365 enum reloc_type { 366 RELO_LD64, 367 RELO_CALL, 368 RELO_DATA, 369 RELO_EXTERN_LD64, 370 RELO_EXTERN_CALL, 371 RELO_SUBPROG_ADDR, 372 RELO_CORE, 373 RELO_INSN_ARRAY, 374 }; 375 376 struct reloc_desc { 377 enum reloc_type type; 378 int insn_idx; 379 union { 380 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 381 struct { 382 int map_idx; 383 int sym_off; 384 /* 385 * The following two fields can be unionized, as the 386 * ext_idx field is used for extern symbols, and the 387 * sym_size is used for jump tables, which are never 388 * extern 389 */ 390 union { 391 int ext_idx; 392 int sym_size; 393 }; 394 }; 395 }; 396 }; 397 398 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 399 enum sec_def_flags { 400 SEC_NONE = 0, 401 /* expected_attach_type is optional, if kernel doesn't support that */ 402 SEC_EXP_ATTACH_OPT = 1, 403 /* legacy, only used by libbpf_get_type_names() and 404 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 405 * This used to be associated with cgroup (and few other) BPF programs 406 * that were attachable through BPF_PROG_ATTACH command. Pretty 407 * meaningless nowadays, though. 408 */ 409 SEC_ATTACHABLE = 2, 410 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 411 /* attachment target is specified through BTF ID in either kernel or 412 * other BPF program's BTF object 413 */ 414 SEC_ATTACH_BTF = 4, 415 /* BPF program type allows sleeping/blocking in kernel */ 416 SEC_SLEEPABLE = 8, 417 /* BPF program support non-linear XDP buffer */ 418 SEC_XDP_FRAGS = 16, 419 /* Setup proper attach type for usdt probes. */ 420 SEC_USDT = 32, 421 }; 422 423 struct bpf_sec_def { 424 char *sec; 425 enum bpf_prog_type prog_type; 426 enum bpf_attach_type expected_attach_type; 427 long cookie; 428 int handler_id; 429 430 libbpf_prog_setup_fn_t prog_setup_fn; 431 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 432 libbpf_prog_attach_fn_t prog_attach_fn; 433 }; 434 435 struct bpf_light_subprog { 436 __u32 sec_insn_off; 437 __u32 sub_insn_off; 438 }; 439 440 /* 441 * bpf_prog should be a better name but it has been used in 442 * linux/filter.h. 443 */ 444 struct bpf_program { 445 char *name; 446 char *sec_name; 447 size_t sec_idx; 448 const struct bpf_sec_def *sec_def; 449 /* this program's instruction offset (in number of instructions) 450 * within its containing ELF section 451 */ 452 size_t sec_insn_off; 453 /* number of original instructions in ELF section belonging to this 454 * program, not taking into account subprogram instructions possible 455 * appended later during relocation 456 */ 457 size_t sec_insn_cnt; 458 /* Offset (in number of instructions) of the start of instruction 459 * belonging to this BPF program within its containing main BPF 460 * program. For the entry-point (main) BPF program, this is always 461 * zero. For a sub-program, this gets reset before each of main BPF 462 * programs are processed and relocated and is used to determined 463 * whether sub-program was already appended to the main program, and 464 * if yes, at which instruction offset. 465 */ 466 size_t sub_insn_off; 467 468 /* instructions that belong to BPF program; insns[0] is located at 469 * sec_insn_off instruction within its ELF section in ELF file, so 470 * when mapping ELF file instruction index to the local instruction, 471 * one needs to subtract sec_insn_off; and vice versa. 472 */ 473 struct bpf_insn *insns; 474 /* actual number of instruction in this BPF program's image; for 475 * entry-point BPF programs this includes the size of main program 476 * itself plus all the used sub-programs, appended at the end 477 */ 478 size_t insns_cnt; 479 480 struct reloc_desc *reloc_desc; 481 int nr_reloc; 482 483 /* BPF verifier log settings */ 484 char *log_buf; 485 size_t log_size; 486 __u32 log_level; 487 488 struct bpf_object *obj; 489 490 int fd; 491 bool autoload; 492 bool autoattach; 493 bool sym_global; 494 bool mark_btf_static; 495 enum bpf_prog_type type; 496 enum bpf_attach_type expected_attach_type; 497 int exception_cb_idx; 498 499 int prog_ifindex; 500 __u32 attach_btf_obj_fd; 501 __u32 attach_btf_id; 502 __u32 attach_prog_fd; 503 504 void *func_info; 505 __u32 func_info_rec_size; 506 __u32 func_info_cnt; 507 508 void *line_info; 509 __u32 line_info_rec_size; 510 __u32 line_info_cnt; 511 __u32 prog_flags; 512 __u8 hash[SHA256_DIGEST_LENGTH]; 513 514 struct bpf_light_subprog *subprogs; 515 __u32 subprog_cnt; 516 }; 517 518 struct bpf_struct_ops { 519 struct bpf_program **progs; 520 __u32 *kern_func_off; 521 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 522 void *data; 523 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 524 * btf_vmlinux's format. 525 * struct bpf_struct_ops_tcp_congestion_ops { 526 * [... some other kernel fields ...] 527 * struct tcp_congestion_ops data; 528 * } 529 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 530 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 531 * from "data". 532 */ 533 void *kern_vdata; 534 __u32 type_id; 535 }; 536 537 #define DATA_SEC ".data" 538 #define BSS_SEC ".bss" 539 #define RODATA_SEC ".rodata" 540 #define KCONFIG_SEC ".kconfig" 541 #define KSYMS_SEC ".ksyms" 542 #define STRUCT_OPS_SEC ".struct_ops" 543 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 544 #define ARENA_SEC ".addr_space.1" 545 546 enum libbpf_map_type { 547 LIBBPF_MAP_UNSPEC, 548 LIBBPF_MAP_DATA, 549 LIBBPF_MAP_BSS, 550 LIBBPF_MAP_RODATA, 551 LIBBPF_MAP_KCONFIG, 552 }; 553 554 struct bpf_map_def { 555 unsigned int type; 556 unsigned int key_size; 557 unsigned int value_size; 558 unsigned int max_entries; 559 unsigned int map_flags; 560 }; 561 562 struct bpf_map { 563 struct bpf_object *obj; 564 char *name; 565 /* real_name is defined for special internal maps (.rodata*, 566 * .data*, .bss, .kconfig) and preserves their original ELF section 567 * name. This is important to be able to find corresponding BTF 568 * DATASEC information. 569 */ 570 char *real_name; 571 int fd; 572 int sec_idx; 573 size_t sec_offset; 574 int map_ifindex; 575 int inner_map_fd; 576 struct bpf_map_def def; 577 __u32 numa_node; 578 __u32 btf_var_idx; 579 int mod_btf_fd; 580 __u32 btf_key_type_id; 581 __u32 btf_value_type_id; 582 __u32 btf_vmlinux_value_type_id; 583 enum libbpf_map_type libbpf_type; 584 void *mmaped; 585 struct bpf_struct_ops *st_ops; 586 struct bpf_map *inner_map; 587 void **init_slots; 588 int init_slots_sz; 589 char *pin_path; 590 bool pinned; 591 bool reused; 592 bool autocreate; 593 bool autoattach; 594 __u64 map_extra; 595 struct bpf_program *excl_prog; 596 }; 597 598 enum extern_type { 599 EXT_UNKNOWN, 600 EXT_KCFG, 601 EXT_KSYM, 602 }; 603 604 enum kcfg_type { 605 KCFG_UNKNOWN, 606 KCFG_CHAR, 607 KCFG_BOOL, 608 KCFG_INT, 609 KCFG_TRISTATE, 610 KCFG_CHAR_ARR, 611 }; 612 613 struct extern_desc { 614 enum extern_type type; 615 int sym_idx; 616 int btf_id; 617 int sec_btf_id; 618 char *name; 619 char *essent_name; 620 bool is_set; 621 bool is_weak; 622 union { 623 struct { 624 enum kcfg_type type; 625 int sz; 626 int align; 627 int data_off; 628 bool is_signed; 629 } kcfg; 630 struct { 631 unsigned long long addr; 632 633 /* target btf_id of the corresponding kernel var. */ 634 int kernel_btf_obj_fd; 635 int kernel_btf_id; 636 637 /* local btf_id of the ksym extern's type. */ 638 __u32 type_id; 639 /* BTF fd index to be patched in for insn->off, this is 640 * 0 for vmlinux BTF, index in obj->fd_array for module 641 * BTF 642 */ 643 __s16 btf_fd_idx; 644 } ksym; 645 }; 646 }; 647 648 struct module_btf { 649 struct btf *btf; 650 char *name; 651 __u32 id; 652 int fd; 653 int fd_array_idx; 654 }; 655 656 enum sec_type { 657 SEC_UNUSED = 0, 658 SEC_RELO, 659 SEC_BSS, 660 SEC_DATA, 661 SEC_RODATA, 662 SEC_ST_OPS, 663 }; 664 665 struct elf_sec_desc { 666 enum sec_type sec_type; 667 Elf64_Shdr *shdr; 668 Elf_Data *data; 669 }; 670 671 struct elf_state { 672 int fd; 673 const void *obj_buf; 674 size_t obj_buf_sz; 675 Elf *elf; 676 Elf64_Ehdr *ehdr; 677 Elf_Data *symbols; 678 Elf_Data *arena_data; 679 size_t shstrndx; /* section index for section name strings */ 680 size_t strtabidx; 681 struct elf_sec_desc *secs; 682 size_t sec_cnt; 683 int btf_maps_shndx; 684 __u32 btf_maps_sec_btf_id; 685 int text_shndx; 686 int symbols_shndx; 687 bool has_st_ops; 688 int arena_data_shndx; 689 int jumptables_data_shndx; 690 }; 691 692 struct usdt_manager; 693 694 enum bpf_object_state { 695 OBJ_OPEN, 696 OBJ_PREPARED, 697 OBJ_LOADED, 698 }; 699 700 struct bpf_object { 701 char name[BPF_OBJ_NAME_LEN]; 702 char license[64]; 703 __u32 kern_version; 704 705 enum bpf_object_state state; 706 struct bpf_program *programs; 707 size_t nr_programs; 708 struct bpf_map *maps; 709 size_t nr_maps; 710 size_t maps_cap; 711 712 char *kconfig; 713 struct extern_desc *externs; 714 int nr_extern; 715 int kconfig_map_idx; 716 717 bool has_subcalls; 718 bool has_rodata; 719 720 struct bpf_gen *gen_loader; 721 722 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 723 struct elf_state efile; 724 725 unsigned char byteorder; 726 727 struct btf *btf; 728 struct btf_ext *btf_ext; 729 730 /* Parse and load BTF vmlinux if any of the programs in the object need 731 * it at load time. 732 */ 733 struct btf *btf_vmlinux; 734 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 735 * override for vmlinux BTF. 736 */ 737 char *btf_custom_path; 738 /* vmlinux BTF override for CO-RE relocations */ 739 struct btf *btf_vmlinux_override; 740 /* Lazily initialized kernel module BTFs */ 741 struct module_btf *btf_modules; 742 bool btf_modules_loaded; 743 size_t btf_module_cnt; 744 size_t btf_module_cap; 745 746 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 747 char *log_buf; 748 size_t log_size; 749 __u32 log_level; 750 751 int *fd_array; 752 size_t fd_array_cap; 753 size_t fd_array_cnt; 754 755 struct usdt_manager *usdt_man; 756 757 int arena_map_idx; 758 void *arena_data; 759 size_t arena_data_sz; 760 761 void *jumptables_data; 762 size_t jumptables_data_sz; 763 764 struct { 765 struct bpf_program *prog; 766 int sym_off; 767 int fd; 768 } *jumptable_maps; 769 size_t jumptable_map_cnt; 770 771 struct kern_feature_cache *feat_cache; 772 char *token_path; 773 int token_fd; 774 775 char path[]; 776 }; 777 778 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 779 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 780 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 781 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 782 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 783 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 784 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 785 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 786 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 787 788 void bpf_program__unload(struct bpf_program *prog) 789 { 790 if (!prog) 791 return; 792 793 zclose(prog->fd); 794 795 zfree(&prog->func_info); 796 zfree(&prog->line_info); 797 zfree(&prog->subprogs); 798 } 799 800 static void bpf_program__exit(struct bpf_program *prog) 801 { 802 if (!prog) 803 return; 804 805 bpf_program__unload(prog); 806 zfree(&prog->name); 807 zfree(&prog->sec_name); 808 zfree(&prog->insns); 809 zfree(&prog->reloc_desc); 810 811 prog->nr_reloc = 0; 812 prog->insns_cnt = 0; 813 prog->sec_idx = -1; 814 } 815 816 static bool insn_is_subprog_call(const struct bpf_insn *insn) 817 { 818 return BPF_CLASS(insn->code) == BPF_JMP && 819 BPF_OP(insn->code) == BPF_CALL && 820 BPF_SRC(insn->code) == BPF_K && 821 insn->src_reg == BPF_PSEUDO_CALL && 822 insn->dst_reg == 0 && 823 insn->off == 0; 824 } 825 826 static bool is_call_insn(const struct bpf_insn *insn) 827 { 828 return insn->code == (BPF_JMP | BPF_CALL); 829 } 830 831 static bool insn_is_pseudo_func(struct bpf_insn *insn) 832 { 833 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 834 } 835 836 static int 837 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 838 const char *name, size_t sec_idx, const char *sec_name, 839 size_t sec_off, void *insn_data, size_t insn_data_sz) 840 { 841 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 842 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 843 sec_name, name, sec_off, insn_data_sz); 844 return -EINVAL; 845 } 846 847 memset(prog, 0, sizeof(*prog)); 848 prog->obj = obj; 849 850 prog->sec_idx = sec_idx; 851 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 852 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 853 /* insns_cnt can later be increased by appending used subprograms */ 854 prog->insns_cnt = prog->sec_insn_cnt; 855 856 prog->type = BPF_PROG_TYPE_UNSPEC; 857 prog->fd = -1; 858 prog->exception_cb_idx = -1; 859 860 /* libbpf's convention for SEC("?abc...") is that it's just like 861 * SEC("abc...") but the corresponding bpf_program starts out with 862 * autoload set to false. 863 */ 864 if (sec_name[0] == '?') { 865 prog->autoload = false; 866 /* from now on forget there was ? in section name */ 867 sec_name++; 868 } else { 869 prog->autoload = true; 870 } 871 872 prog->autoattach = true; 873 874 /* inherit object's log_level */ 875 prog->log_level = obj->log_level; 876 877 prog->sec_name = strdup(sec_name); 878 if (!prog->sec_name) 879 goto errout; 880 881 prog->name = strdup(name); 882 if (!prog->name) 883 goto errout; 884 885 prog->insns = malloc(insn_data_sz); 886 if (!prog->insns) 887 goto errout; 888 memcpy(prog->insns, insn_data, insn_data_sz); 889 890 return 0; 891 errout: 892 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 893 bpf_program__exit(prog); 894 return -ENOMEM; 895 } 896 897 static int 898 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 899 const char *sec_name, int sec_idx) 900 { 901 Elf_Data *symbols = obj->efile.symbols; 902 struct bpf_program *prog, *progs; 903 void *data = sec_data->d_buf; 904 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 905 int nr_progs, err, i; 906 const char *name; 907 Elf64_Sym *sym; 908 909 progs = obj->programs; 910 nr_progs = obj->nr_programs; 911 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 912 913 for (i = 0; i < nr_syms; i++) { 914 sym = elf_sym_by_idx(obj, i); 915 916 if (sym->st_shndx != sec_idx) 917 continue; 918 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 919 continue; 920 921 prog_sz = sym->st_size; 922 sec_off = sym->st_value; 923 924 name = elf_sym_str(obj, sym->st_name); 925 if (!name) { 926 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 927 sec_name, sec_off); 928 return -LIBBPF_ERRNO__FORMAT; 929 } 930 931 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) { 932 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 933 sec_name, sec_off); 934 return -LIBBPF_ERRNO__FORMAT; 935 } 936 937 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 938 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 939 return -ENOTSUP; 940 } 941 942 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 943 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 944 945 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 946 if (!progs) { 947 /* 948 * In this case the original obj->programs 949 * is still valid, so don't need special treat for 950 * bpf_close_object(). 951 */ 952 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 953 sec_name, name); 954 return -ENOMEM; 955 } 956 obj->programs = progs; 957 958 prog = &progs[nr_progs]; 959 960 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 961 sec_off, data + sec_off, prog_sz); 962 if (err) 963 return err; 964 965 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 966 prog->sym_global = true; 967 968 /* if function is a global/weak symbol, but has restricted 969 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 970 * as static to enable more permissive BPF verification mode 971 * with more outside context available to BPF verifier 972 */ 973 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 974 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 975 prog->mark_btf_static = true; 976 977 nr_progs++; 978 obj->nr_programs = nr_progs; 979 } 980 981 return 0; 982 } 983 984 static void bpf_object_bswap_progs(struct bpf_object *obj) 985 { 986 struct bpf_program *prog = obj->programs; 987 struct bpf_insn *insn; 988 int p, i; 989 990 for (p = 0; p < obj->nr_programs; p++, prog++) { 991 insn = prog->insns; 992 for (i = 0; i < prog->insns_cnt; i++, insn++) 993 bpf_insn_bswap(insn); 994 } 995 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 996 } 997 998 static const struct btf_member * 999 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 1000 { 1001 struct btf_member *m; 1002 int i; 1003 1004 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 1005 if (btf_member_bit_offset(t, i) == bit_offset) 1006 return m; 1007 } 1008 1009 return NULL; 1010 } 1011 1012 static const struct btf_member * 1013 find_member_by_name(const struct btf *btf, const struct btf_type *t, 1014 const char *name) 1015 { 1016 struct btf_member *m; 1017 int i; 1018 1019 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 1020 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 1021 return m; 1022 } 1023 1024 return NULL; 1025 } 1026 1027 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 1028 __u16 kind, struct btf **res_btf, 1029 struct module_btf **res_mod_btf); 1030 1031 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 1032 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 1033 const char *name, __u32 kind); 1034 1035 static int 1036 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 1037 struct module_btf **mod_btf, 1038 const struct btf_type **type, __u32 *type_id, 1039 const struct btf_type **vtype, __u32 *vtype_id, 1040 const struct btf_member **data_member) 1041 { 1042 const struct btf_type *kern_type, *kern_vtype; 1043 const struct btf_member *kern_data_member; 1044 struct btf *btf = NULL; 1045 __s32 kern_vtype_id, kern_type_id; 1046 char tname[192], stname[256]; 1047 __u32 i; 1048 1049 snprintf(tname, sizeof(tname), "%.*s", 1050 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1051 1052 snprintf(stname, sizeof(stname), "%s%s", STRUCT_OPS_VALUE_PREFIX, tname); 1053 1054 /* Look for the corresponding "map_value" type that will be used 1055 * in map_update(BPF_MAP_TYPE_STRUCT_OPS) first, figure out the btf 1056 * and the mod_btf. 1057 * For example, find "struct bpf_struct_ops_tcp_congestion_ops". 1058 */ 1059 kern_vtype_id = find_ksym_btf_id(obj, stname, BTF_KIND_STRUCT, &btf, mod_btf); 1060 if (kern_vtype_id < 0) { 1061 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", stname); 1062 return kern_vtype_id; 1063 } 1064 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1065 1066 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 1067 if (kern_type_id < 0) { 1068 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", tname); 1069 return kern_type_id; 1070 } 1071 kern_type = btf__type_by_id(btf, kern_type_id); 1072 1073 /* Find "struct tcp_congestion_ops" from 1074 * struct bpf_struct_ops_tcp_congestion_ops { 1075 * [ ... ] 1076 * struct tcp_congestion_ops data; 1077 * } 1078 */ 1079 kern_data_member = btf_members(kern_vtype); 1080 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1081 if (kern_data_member->type == kern_type_id) 1082 break; 1083 } 1084 if (i == btf_vlen(kern_vtype)) { 1085 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s\n", 1086 tname, stname); 1087 return -EINVAL; 1088 } 1089 1090 *type = kern_type; 1091 *type_id = kern_type_id; 1092 *vtype = kern_vtype; 1093 *vtype_id = kern_vtype_id; 1094 *data_member = kern_data_member; 1095 1096 return 0; 1097 } 1098 1099 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1100 { 1101 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1102 } 1103 1104 static bool is_valid_st_ops_program(struct bpf_object *obj, 1105 const struct bpf_program *prog) 1106 { 1107 int i; 1108 1109 for (i = 0; i < obj->nr_programs; i++) { 1110 if (&obj->programs[i] == prog) 1111 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1112 } 1113 1114 return false; 1115 } 1116 1117 /* For each struct_ops program P, referenced from some struct_ops map M, 1118 * enable P.autoload if there are Ms for which M.autocreate is true, 1119 * disable P.autoload if for all Ms M.autocreate is false. 1120 * Don't change P.autoload for programs that are not referenced from any maps. 1121 */ 1122 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1123 { 1124 struct bpf_program *prog, *slot_prog; 1125 struct bpf_map *map; 1126 int i, j, k, vlen; 1127 1128 for (i = 0; i < obj->nr_programs; ++i) { 1129 int should_load = false; 1130 int use_cnt = 0; 1131 1132 prog = &obj->programs[i]; 1133 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1134 continue; 1135 1136 for (j = 0; j < obj->nr_maps; ++j) { 1137 const struct btf_type *type; 1138 1139 map = &obj->maps[j]; 1140 if (!bpf_map__is_struct_ops(map)) 1141 continue; 1142 1143 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1144 vlen = btf_vlen(type); 1145 for (k = 0; k < vlen; ++k) { 1146 slot_prog = map->st_ops->progs[k]; 1147 if (prog != slot_prog) 1148 continue; 1149 1150 use_cnt++; 1151 if (map->autocreate) 1152 should_load = true; 1153 } 1154 } 1155 if (use_cnt) 1156 prog->autoload = should_load; 1157 } 1158 1159 return 0; 1160 } 1161 1162 /* Init the map's fields that depend on kern_btf */ 1163 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1164 { 1165 const struct btf_member *member, *kern_member, *kern_data_member; 1166 const struct btf_type *type, *kern_type, *kern_vtype; 1167 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1168 struct bpf_object *obj = map->obj; 1169 const struct btf *btf = obj->btf; 1170 struct bpf_struct_ops *st_ops; 1171 const struct btf *kern_btf; 1172 struct module_btf *mod_btf = NULL; 1173 void *data, *kern_data; 1174 const char *tname; 1175 int err; 1176 1177 st_ops = map->st_ops; 1178 type = btf__type_by_id(btf, st_ops->type_id); 1179 tname = btf__name_by_offset(btf, type->name_off); 1180 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1181 &kern_type, &kern_type_id, 1182 &kern_vtype, &kern_vtype_id, 1183 &kern_data_member); 1184 if (err) 1185 return err; 1186 1187 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1188 1189 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1190 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1191 1192 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1193 map->def.value_size = kern_vtype->size; 1194 map->btf_vmlinux_value_type_id = kern_vtype_id; 1195 1196 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1197 if (!st_ops->kern_vdata) 1198 return -ENOMEM; 1199 1200 data = st_ops->data; 1201 kern_data_off = kern_data_member->offset / 8; 1202 kern_data = st_ops->kern_vdata + kern_data_off; 1203 1204 member = btf_members(type); 1205 for (i = 0; i < btf_vlen(type); i++, member++) { 1206 const struct btf_type *mtype, *kern_mtype; 1207 __u32 mtype_id, kern_mtype_id; 1208 void *mdata, *kern_mdata; 1209 struct bpf_program *prog; 1210 __s64 msize, kern_msize; 1211 __u32 moff, kern_moff; 1212 __u32 kern_member_idx; 1213 const char *mname; 1214 1215 mname = btf__name_by_offset(btf, member->name_off); 1216 moff = member->offset / 8; 1217 mdata = data + moff; 1218 msize = btf__resolve_size(btf, member->type); 1219 if (msize < 0) { 1220 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1221 map->name, mname); 1222 return msize; 1223 } 1224 1225 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1226 if (!kern_member) { 1227 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1228 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1229 map->name, mname); 1230 return -ENOTSUP; 1231 } 1232 1233 if (st_ops->progs[i]) { 1234 /* If we had declaratively set struct_ops callback, we need to 1235 * force its autoload to false, because it doesn't have 1236 * a chance of succeeding from POV of the current struct_ops map. 1237 * If this program is still referenced somewhere else, though, 1238 * then bpf_object_adjust_struct_ops_autoload() will update its 1239 * autoload accordingly. 1240 */ 1241 st_ops->progs[i]->autoload = false; 1242 st_ops->progs[i] = NULL; 1243 } 1244 1245 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1246 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1247 map->name, mname); 1248 continue; 1249 } 1250 1251 kern_member_idx = kern_member - btf_members(kern_type); 1252 if (btf_member_bitfield_size(type, i) || 1253 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1254 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1255 map->name, mname); 1256 return -ENOTSUP; 1257 } 1258 1259 kern_moff = kern_member->offset / 8; 1260 kern_mdata = kern_data + kern_moff; 1261 1262 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1263 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1264 &kern_mtype_id); 1265 if (BTF_INFO_KIND(mtype->info) != 1266 BTF_INFO_KIND(kern_mtype->info)) { 1267 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1268 map->name, mname, BTF_INFO_KIND(mtype->info), 1269 BTF_INFO_KIND(kern_mtype->info)); 1270 return -ENOTSUP; 1271 } 1272 1273 if (btf_is_ptr(mtype)) { 1274 prog = *(void **)mdata; 1275 /* just like for !kern_member case above, reset declaratively 1276 * set (at compile time) program's autload to false, 1277 * if user replaced it with another program or NULL 1278 */ 1279 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1280 st_ops->progs[i]->autoload = false; 1281 1282 /* Update the value from the shadow type */ 1283 st_ops->progs[i] = prog; 1284 if (!prog) 1285 continue; 1286 1287 if (!is_valid_st_ops_program(obj, prog)) { 1288 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1289 map->name, mname); 1290 return -ENOTSUP; 1291 } 1292 1293 kern_mtype = skip_mods_and_typedefs(kern_btf, 1294 kern_mtype->type, 1295 &kern_mtype_id); 1296 1297 /* mtype->type must be a func_proto which was 1298 * guaranteed in bpf_object__collect_st_ops_relos(), 1299 * so only check kern_mtype for func_proto here. 1300 */ 1301 if (!btf_is_func_proto(kern_mtype)) { 1302 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1303 map->name, mname); 1304 return -ENOTSUP; 1305 } 1306 1307 if (mod_btf) 1308 prog->attach_btf_obj_fd = mod_btf->fd; 1309 1310 /* if we haven't yet processed this BPF program, record proper 1311 * attach_btf_id and member_idx 1312 */ 1313 if (!prog->attach_btf_id) { 1314 prog->attach_btf_id = kern_type_id; 1315 prog->expected_attach_type = kern_member_idx; 1316 } 1317 1318 /* struct_ops BPF prog can be re-used between multiple 1319 * .struct_ops & .struct_ops.link as long as it's the 1320 * same struct_ops struct definition and the same 1321 * function pointer field 1322 */ 1323 if (prog->attach_btf_id != kern_type_id) { 1324 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1325 map->name, mname, prog->name, prog->sec_name, prog->type, 1326 prog->attach_btf_id, kern_type_id); 1327 return -EINVAL; 1328 } 1329 if (prog->expected_attach_type != kern_member_idx) { 1330 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1331 map->name, mname, prog->name, prog->sec_name, prog->type, 1332 prog->expected_attach_type, kern_member_idx); 1333 return -EINVAL; 1334 } 1335 1336 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1337 1338 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1339 map->name, mname, prog->name, moff, 1340 kern_moff); 1341 1342 continue; 1343 } 1344 1345 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1346 if (kern_msize < 0 || msize != kern_msize) { 1347 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1348 map->name, mname, (ssize_t)msize, 1349 (ssize_t)kern_msize); 1350 return -ENOTSUP; 1351 } 1352 1353 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1354 map->name, mname, (unsigned int)msize, 1355 moff, kern_moff); 1356 memcpy(kern_mdata, mdata, msize); 1357 } 1358 1359 return 0; 1360 } 1361 1362 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1363 { 1364 struct bpf_map *map; 1365 size_t i; 1366 int err; 1367 1368 for (i = 0; i < obj->nr_maps; i++) { 1369 map = &obj->maps[i]; 1370 1371 if (!bpf_map__is_struct_ops(map)) 1372 continue; 1373 1374 if (!map->autocreate) 1375 continue; 1376 1377 err = bpf_map__init_kern_struct_ops(map); 1378 if (err) 1379 return err; 1380 } 1381 1382 return 0; 1383 } 1384 1385 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1386 int shndx, Elf_Data *data) 1387 { 1388 const struct btf_type *type, *datasec; 1389 const struct btf_var_secinfo *vsi; 1390 struct bpf_struct_ops *st_ops; 1391 const char *tname, *var_name; 1392 __s32 type_id, datasec_id; 1393 const struct btf *btf; 1394 struct bpf_map *map; 1395 __u32 i; 1396 1397 if (shndx == -1) 1398 return 0; 1399 1400 btf = obj->btf; 1401 datasec_id = btf__find_by_name_kind(btf, sec_name, 1402 BTF_KIND_DATASEC); 1403 if (datasec_id < 0) { 1404 pr_warn("struct_ops init: DATASEC %s not found\n", 1405 sec_name); 1406 return -EINVAL; 1407 } 1408 1409 datasec = btf__type_by_id(btf, datasec_id); 1410 vsi = btf_var_secinfos(datasec); 1411 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1412 type = btf__type_by_id(obj->btf, vsi->type); 1413 var_name = btf__name_by_offset(obj->btf, type->name_off); 1414 1415 type_id = btf__resolve_type(obj->btf, vsi->type); 1416 if (type_id < 0) { 1417 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1418 vsi->type, sec_name); 1419 return -EINVAL; 1420 } 1421 1422 type = btf__type_by_id(obj->btf, type_id); 1423 tname = btf__name_by_offset(obj->btf, type->name_off); 1424 if (!tname[0]) { 1425 pr_warn("struct_ops init: anonymous type is not supported\n"); 1426 return -ENOTSUP; 1427 } 1428 if (!btf_is_struct(type)) { 1429 pr_warn("struct_ops init: %s is not a struct\n", tname); 1430 return -EINVAL; 1431 } 1432 1433 map = bpf_object__add_map(obj); 1434 if (IS_ERR(map)) 1435 return PTR_ERR(map); 1436 1437 map->sec_idx = shndx; 1438 map->sec_offset = vsi->offset; 1439 map->name = strdup(var_name); 1440 if (!map->name) 1441 return -ENOMEM; 1442 map->btf_value_type_id = type_id; 1443 1444 /* Follow same convention as for programs autoload: 1445 * SEC("?.struct_ops") means map is not created by default. 1446 */ 1447 if (sec_name[0] == '?') { 1448 map->autocreate = false; 1449 /* from now on forget there was ? in section name */ 1450 sec_name++; 1451 } 1452 1453 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1454 map->def.key_size = sizeof(int); 1455 map->def.value_size = type->size; 1456 map->def.max_entries = 1; 1457 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1458 map->autoattach = true; 1459 1460 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1461 if (!map->st_ops) 1462 return -ENOMEM; 1463 st_ops = map->st_ops; 1464 st_ops->data = malloc(type->size); 1465 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1466 st_ops->kern_func_off = malloc(btf_vlen(type) * 1467 sizeof(*st_ops->kern_func_off)); 1468 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1469 return -ENOMEM; 1470 1471 if (vsi->offset + type->size > data->d_size) { 1472 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1473 var_name, sec_name); 1474 return -EINVAL; 1475 } 1476 1477 memcpy(st_ops->data, 1478 data->d_buf + vsi->offset, 1479 type->size); 1480 st_ops->type_id = type_id; 1481 1482 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1483 tname, type_id, var_name, vsi->offset); 1484 } 1485 1486 return 0; 1487 } 1488 1489 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1490 { 1491 const char *sec_name; 1492 int sec_idx, err; 1493 1494 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1495 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1496 1497 if (desc->sec_type != SEC_ST_OPS) 1498 continue; 1499 1500 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1501 if (!sec_name) 1502 return -LIBBPF_ERRNO__FORMAT; 1503 1504 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1505 if (err) 1506 return err; 1507 } 1508 1509 return 0; 1510 } 1511 1512 static struct bpf_object *bpf_object__new(const char *path, 1513 const void *obj_buf, 1514 size_t obj_buf_sz, 1515 const char *obj_name) 1516 { 1517 struct bpf_object *obj; 1518 char *end; 1519 1520 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1521 if (!obj) { 1522 pr_warn("alloc memory failed for %s\n", path); 1523 return ERR_PTR(-ENOMEM); 1524 } 1525 1526 strcpy(obj->path, path); 1527 if (obj_name) { 1528 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1529 } else { 1530 /* Using basename() GNU version which doesn't modify arg. */ 1531 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1532 end = strchr(obj->name, '.'); 1533 if (end) 1534 *end = 0; 1535 } 1536 1537 obj->efile.fd = -1; 1538 /* 1539 * Caller of this function should also call 1540 * bpf_object__elf_finish() after data collection to return 1541 * obj_buf to user. If not, we should duplicate the buffer to 1542 * avoid user freeing them before elf finish. 1543 */ 1544 obj->efile.obj_buf = obj_buf; 1545 obj->efile.obj_buf_sz = obj_buf_sz; 1546 obj->efile.btf_maps_shndx = -1; 1547 obj->kconfig_map_idx = -1; 1548 obj->arena_map_idx = -1; 1549 1550 obj->kern_version = get_kernel_version(); 1551 obj->state = OBJ_OPEN; 1552 1553 return obj; 1554 } 1555 1556 static void bpf_object__elf_finish(struct bpf_object *obj) 1557 { 1558 if (!obj->efile.elf) 1559 return; 1560 1561 elf_end(obj->efile.elf); 1562 obj->efile.elf = NULL; 1563 obj->efile.ehdr = NULL; 1564 obj->efile.symbols = NULL; 1565 obj->efile.arena_data = NULL; 1566 1567 zfree(&obj->efile.secs); 1568 obj->efile.sec_cnt = 0; 1569 zclose(obj->efile.fd); 1570 obj->efile.obj_buf = NULL; 1571 obj->efile.obj_buf_sz = 0; 1572 } 1573 1574 static int bpf_object__elf_init(struct bpf_object *obj) 1575 { 1576 Elf64_Ehdr *ehdr; 1577 int err = 0; 1578 Elf *elf; 1579 1580 if (obj->efile.elf) { 1581 pr_warn("elf: init internal error\n"); 1582 return -LIBBPF_ERRNO__LIBELF; 1583 } 1584 1585 if (obj->efile.obj_buf_sz > 0) { 1586 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1587 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1588 } else { 1589 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1590 if (obj->efile.fd < 0) { 1591 err = -errno; 1592 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1593 return err; 1594 } 1595 1596 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1597 } 1598 1599 if (!elf) { 1600 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1601 err = -LIBBPF_ERRNO__LIBELF; 1602 goto errout; 1603 } 1604 1605 obj->efile.elf = elf; 1606 1607 if (elf_kind(elf) != ELF_K_ELF) { 1608 err = -LIBBPF_ERRNO__FORMAT; 1609 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1610 goto errout; 1611 } 1612 1613 if (gelf_getclass(elf) != ELFCLASS64) { 1614 err = -LIBBPF_ERRNO__FORMAT; 1615 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1616 goto errout; 1617 } 1618 1619 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1620 if (!obj->efile.ehdr) { 1621 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1622 err = -LIBBPF_ERRNO__FORMAT; 1623 goto errout; 1624 } 1625 1626 /* Validate ELF object endianness... */ 1627 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1628 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1629 err = -LIBBPF_ERRNO__ENDIAN; 1630 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1631 goto errout; 1632 } 1633 /* and save after bpf_object_open() frees ELF data */ 1634 obj->byteorder = ehdr->e_ident[EI_DATA]; 1635 1636 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1637 pr_warn("elf: failed to get section names section index for %s: %s\n", 1638 obj->path, elf_errmsg(-1)); 1639 err = -LIBBPF_ERRNO__FORMAT; 1640 goto errout; 1641 } 1642 1643 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1644 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1645 pr_warn("elf: failed to get section names strings from %s: %s\n", 1646 obj->path, elf_errmsg(-1)); 1647 err = -LIBBPF_ERRNO__FORMAT; 1648 goto errout; 1649 } 1650 1651 /* Old LLVM set e_machine to EM_NONE */ 1652 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1653 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1654 err = -LIBBPF_ERRNO__FORMAT; 1655 goto errout; 1656 } 1657 1658 return 0; 1659 errout: 1660 bpf_object__elf_finish(obj); 1661 return err; 1662 } 1663 1664 static bool is_native_endianness(struct bpf_object *obj) 1665 { 1666 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1667 return obj->byteorder == ELFDATA2LSB; 1668 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1669 return obj->byteorder == ELFDATA2MSB; 1670 #else 1671 # error "Unrecognized __BYTE_ORDER__" 1672 #endif 1673 } 1674 1675 static int 1676 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1677 { 1678 if (!data) { 1679 pr_warn("invalid license section in %s\n", obj->path); 1680 return -LIBBPF_ERRNO__FORMAT; 1681 } 1682 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1683 * go over allowed ELF data section buffer 1684 */ 1685 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1686 pr_debug("license of %s is %s\n", obj->path, obj->license); 1687 return 0; 1688 } 1689 1690 static int 1691 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1692 { 1693 __u32 kver; 1694 1695 if (!data || size != sizeof(kver)) { 1696 pr_warn("invalid kver section in %s\n", obj->path); 1697 return -LIBBPF_ERRNO__FORMAT; 1698 } 1699 memcpy(&kver, data, sizeof(kver)); 1700 obj->kern_version = kver; 1701 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1702 return 0; 1703 } 1704 1705 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1706 { 1707 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1708 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1709 return true; 1710 return false; 1711 } 1712 1713 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1714 { 1715 Elf_Data *data; 1716 Elf_Scn *scn; 1717 1718 if (!name) 1719 return -EINVAL; 1720 1721 scn = elf_sec_by_name(obj, name); 1722 data = elf_sec_data(obj, scn); 1723 if (data) { 1724 *size = data->d_size; 1725 return 0; /* found it */ 1726 } 1727 1728 return -ENOENT; 1729 } 1730 1731 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1732 { 1733 Elf_Data *symbols = obj->efile.symbols; 1734 const char *sname; 1735 size_t si; 1736 1737 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1738 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1739 1740 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1741 continue; 1742 1743 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1744 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1745 continue; 1746 1747 sname = elf_sym_str(obj, sym->st_name); 1748 if (!sname) { 1749 pr_warn("failed to get sym name string for var %s\n", name); 1750 return ERR_PTR(-EIO); 1751 } 1752 if (strcmp(name, sname) == 0) 1753 return sym; 1754 } 1755 1756 return ERR_PTR(-ENOENT); 1757 } 1758 1759 #ifndef MFD_CLOEXEC 1760 #define MFD_CLOEXEC 0x0001U 1761 #endif 1762 #ifndef MFD_NOEXEC_SEAL 1763 #define MFD_NOEXEC_SEAL 0x0008U 1764 #endif 1765 1766 static int create_placeholder_fd(void) 1767 { 1768 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL; 1769 const char *name = "libbpf-placeholder-fd"; 1770 int fd; 1771 1772 fd = ensure_good_fd(sys_memfd_create(name, flags)); 1773 if (fd >= 0) 1774 return fd; 1775 else if (errno != EINVAL) 1776 return -errno; 1777 1778 /* Possibly running on kernel without MFD_NOEXEC_SEAL */ 1779 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL)); 1780 if (fd < 0) 1781 return -errno; 1782 return fd; 1783 } 1784 1785 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1786 { 1787 struct bpf_map *map; 1788 int err; 1789 1790 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1791 sizeof(*obj->maps), obj->nr_maps + 1); 1792 if (err) 1793 return ERR_PTR(err); 1794 1795 map = &obj->maps[obj->nr_maps++]; 1796 map->obj = obj; 1797 /* Preallocate map FD without actually creating BPF map just yet. 1798 * These map FD "placeholders" will be reused later without changing 1799 * FD value when map is actually created in the kernel. 1800 * 1801 * This is useful to be able to perform BPF program relocations 1802 * without having to create BPF maps before that step. This allows us 1803 * to finalize and load BTF very late in BPF object's loading phase, 1804 * right before BPF maps have to be created and BPF programs have to 1805 * be loaded. By having these map FD placeholders we can perform all 1806 * the sanitizations, relocations, and any other adjustments before we 1807 * start creating actual BPF kernel objects (BTF, maps, progs). 1808 */ 1809 map->fd = create_placeholder_fd(); 1810 if (map->fd < 0) 1811 return ERR_PTR(map->fd); 1812 map->inner_map_fd = -1; 1813 map->autocreate = true; 1814 1815 return map; 1816 } 1817 1818 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1819 { 1820 const long page_sz = sysconf(_SC_PAGE_SIZE); 1821 size_t map_sz; 1822 1823 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1824 map_sz = roundup(map_sz, page_sz); 1825 return map_sz; 1826 } 1827 1828 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1829 { 1830 const long page_sz = sysconf(_SC_PAGE_SIZE); 1831 1832 switch (map->def.type) { 1833 case BPF_MAP_TYPE_ARRAY: 1834 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1835 case BPF_MAP_TYPE_ARENA: 1836 return page_sz * map->def.max_entries; 1837 default: 1838 return 0; /* not supported */ 1839 } 1840 } 1841 1842 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1843 { 1844 void *mmaped; 1845 1846 if (!map->mmaped) 1847 return -EINVAL; 1848 1849 if (old_sz == new_sz) 1850 return 0; 1851 1852 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1853 if (mmaped == MAP_FAILED) 1854 return -errno; 1855 1856 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1857 munmap(map->mmaped, old_sz); 1858 map->mmaped = mmaped; 1859 return 0; 1860 } 1861 1862 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1863 { 1864 char map_name[BPF_OBJ_NAME_LEN], *p; 1865 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1866 1867 /* This is one of the more confusing parts of libbpf for various 1868 * reasons, some of which are historical. The original idea for naming 1869 * internal names was to include as much of BPF object name prefix as 1870 * possible, so that it can be distinguished from similar internal 1871 * maps of a different BPF object. 1872 * As an example, let's say we have bpf_object named 'my_object_name' 1873 * and internal map corresponding to '.rodata' ELF section. The final 1874 * map name advertised to user and to the kernel will be 1875 * 'my_objec.rodata', taking first 8 characters of object name and 1876 * entire 7 characters of '.rodata'. 1877 * Somewhat confusingly, if internal map ELF section name is shorter 1878 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1879 * for the suffix, even though we only have 4 actual characters, and 1880 * resulting map will be called 'my_objec.bss', not even using all 15 1881 * characters allowed by the kernel. Oh well, at least the truncated 1882 * object name is somewhat consistent in this case. But if the map 1883 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1884 * (8 chars) and thus will be left with only first 7 characters of the 1885 * object name ('my_obje'). Happy guessing, user, that the final map 1886 * name will be "my_obje.kconfig". 1887 * Now, with libbpf starting to support arbitrarily named .rodata.* 1888 * and .data.* data sections, it's possible that ELF section name is 1889 * longer than allowed 15 chars, so we now need to be careful to take 1890 * only up to 15 first characters of ELF name, taking no BPF object 1891 * name characters at all. So '.rodata.abracadabra' will result in 1892 * '.rodata.abracad' kernel and user-visible name. 1893 * We need to keep this convoluted logic intact for .data, .bss and 1894 * .rodata maps, but for new custom .data.custom and .rodata.custom 1895 * maps we use their ELF names as is, not prepending bpf_object name 1896 * in front. We still need to truncate them to 15 characters for the 1897 * kernel. Full name can be recovered for such maps by using DATASEC 1898 * BTF type associated with such map's value type, though. 1899 */ 1900 if (sfx_len >= BPF_OBJ_NAME_LEN) 1901 sfx_len = BPF_OBJ_NAME_LEN - 1; 1902 1903 /* if there are two or more dots in map name, it's a custom dot map */ 1904 if (strchr(real_name + 1, '.') != NULL) 1905 pfx_len = 0; 1906 else 1907 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1908 1909 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1910 sfx_len, real_name); 1911 1912 /* sanities map name to characters allowed by kernel */ 1913 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1914 if (!isalnum(*p) && *p != '_' && *p != '.') 1915 *p = '_'; 1916 1917 return strdup(map_name); 1918 } 1919 1920 static int 1921 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1922 1923 /* Internal BPF map is mmap()'able only if at least one of corresponding 1924 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1925 * variable and it's not marked as __hidden (which turns it into, effectively, 1926 * a STATIC variable). 1927 */ 1928 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1929 { 1930 const struct btf_type *t, *vt; 1931 struct btf_var_secinfo *vsi; 1932 int i, n; 1933 1934 if (!map->btf_value_type_id) 1935 return false; 1936 1937 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1938 if (!btf_is_datasec(t)) 1939 return false; 1940 1941 vsi = btf_var_secinfos(t); 1942 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1943 vt = btf__type_by_id(obj->btf, vsi->type); 1944 if (!btf_is_var(vt)) 1945 continue; 1946 1947 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1948 return true; 1949 } 1950 1951 return false; 1952 } 1953 1954 static int 1955 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1956 const char *real_name, int sec_idx, void *data, size_t data_sz) 1957 { 1958 struct bpf_map_def *def; 1959 struct bpf_map *map; 1960 size_t mmap_sz; 1961 int err; 1962 1963 map = bpf_object__add_map(obj); 1964 if (IS_ERR(map)) 1965 return PTR_ERR(map); 1966 1967 map->libbpf_type = type; 1968 map->sec_idx = sec_idx; 1969 map->sec_offset = 0; 1970 map->real_name = strdup(real_name); 1971 map->name = internal_map_name(obj, real_name); 1972 if (!map->real_name || !map->name) { 1973 zfree(&map->real_name); 1974 zfree(&map->name); 1975 return -ENOMEM; 1976 } 1977 1978 def = &map->def; 1979 def->type = BPF_MAP_TYPE_ARRAY; 1980 def->key_size = sizeof(int); 1981 def->value_size = data_sz; 1982 def->max_entries = 1; 1983 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1984 ? BPF_F_RDONLY_PROG : 0; 1985 1986 /* failures are fine because of maps like .rodata.str1.1 */ 1987 (void) map_fill_btf_type_info(obj, map); 1988 1989 if (map_is_mmapable(obj, map)) 1990 def->map_flags |= BPF_F_MMAPABLE; 1991 1992 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1993 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1994 1995 mmap_sz = bpf_map_mmap_sz(map); 1996 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1997 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1998 if (map->mmaped == MAP_FAILED) { 1999 err = -errno; 2000 map->mmaped = NULL; 2001 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 2002 zfree(&map->real_name); 2003 zfree(&map->name); 2004 return err; 2005 } 2006 2007 if (data) 2008 memcpy(map->mmaped, data, data_sz); 2009 2010 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 2011 return 0; 2012 } 2013 2014 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 2015 { 2016 struct elf_sec_desc *sec_desc; 2017 const char *sec_name; 2018 int err = 0, sec_idx; 2019 2020 /* 2021 * Populate obj->maps with libbpf internal maps. 2022 */ 2023 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 2024 sec_desc = &obj->efile.secs[sec_idx]; 2025 2026 /* Skip recognized sections with size 0. */ 2027 if (!sec_desc->data || sec_desc->data->d_size == 0) 2028 continue; 2029 2030 switch (sec_desc->sec_type) { 2031 case SEC_DATA: 2032 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2033 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 2034 sec_name, sec_idx, 2035 sec_desc->data->d_buf, 2036 sec_desc->data->d_size); 2037 break; 2038 case SEC_RODATA: 2039 obj->has_rodata = true; 2040 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2041 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2042 sec_name, sec_idx, 2043 sec_desc->data->d_buf, 2044 sec_desc->data->d_size); 2045 break; 2046 case SEC_BSS: 2047 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2048 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2049 sec_name, sec_idx, 2050 NULL, 2051 sec_desc->data->d_size); 2052 break; 2053 default: 2054 /* skip */ 2055 break; 2056 } 2057 if (err) 2058 return err; 2059 } 2060 return 0; 2061 } 2062 2063 2064 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2065 const void *name) 2066 { 2067 int i; 2068 2069 for (i = 0; i < obj->nr_extern; i++) { 2070 if (strcmp(obj->externs[i].name, name) == 0) 2071 return &obj->externs[i]; 2072 } 2073 return NULL; 2074 } 2075 2076 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2077 const void *name, int len) 2078 { 2079 const char *ext_name; 2080 int i; 2081 2082 for (i = 0; i < obj->nr_extern; i++) { 2083 ext_name = obj->externs[i].name; 2084 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2085 return &obj->externs[i]; 2086 } 2087 return NULL; 2088 } 2089 2090 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2091 char value) 2092 { 2093 switch (ext->kcfg.type) { 2094 case KCFG_BOOL: 2095 if (value == 'm') { 2096 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2097 ext->name, value); 2098 return -EINVAL; 2099 } 2100 *(bool *)ext_val = value == 'y' ? true : false; 2101 break; 2102 case KCFG_TRISTATE: 2103 if (value == 'y') 2104 *(enum libbpf_tristate *)ext_val = TRI_YES; 2105 else if (value == 'm') 2106 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2107 else /* value == 'n' */ 2108 *(enum libbpf_tristate *)ext_val = TRI_NO; 2109 break; 2110 case KCFG_CHAR: 2111 *(char *)ext_val = value; 2112 break; 2113 case KCFG_UNKNOWN: 2114 case KCFG_INT: 2115 case KCFG_CHAR_ARR: 2116 default: 2117 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2118 ext->name, value); 2119 return -EINVAL; 2120 } 2121 ext->is_set = true; 2122 return 0; 2123 } 2124 2125 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2126 const char *value) 2127 { 2128 size_t len; 2129 2130 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2131 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2132 ext->name, value); 2133 return -EINVAL; 2134 } 2135 2136 len = strlen(value); 2137 if (len < 2 || value[len - 1] != '"') { 2138 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2139 ext->name, value); 2140 return -EINVAL; 2141 } 2142 2143 /* strip quotes */ 2144 len -= 2; 2145 if (len >= ext->kcfg.sz) { 2146 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2147 ext->name, value, len, ext->kcfg.sz - 1); 2148 len = ext->kcfg.sz - 1; 2149 } 2150 memcpy(ext_val, value + 1, len); 2151 ext_val[len] = '\0'; 2152 ext->is_set = true; 2153 return 0; 2154 } 2155 2156 static int parse_u64(const char *value, __u64 *res) 2157 { 2158 char *value_end; 2159 int err; 2160 2161 errno = 0; 2162 *res = strtoull(value, &value_end, 0); 2163 if (errno) { 2164 err = -errno; 2165 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2166 return err; 2167 } 2168 if (*value_end) { 2169 pr_warn("failed to parse '%s' as integer completely\n", value); 2170 return -EINVAL; 2171 } 2172 return 0; 2173 } 2174 2175 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2176 { 2177 int bit_sz = ext->kcfg.sz * 8; 2178 2179 if (ext->kcfg.sz == 8) 2180 return true; 2181 2182 /* Validate that value stored in u64 fits in integer of `ext->sz` 2183 * bytes size without any loss of information. If the target integer 2184 * is signed, we rely on the following limits of integer type of 2185 * Y bits and subsequent transformation: 2186 * 2187 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2188 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2189 * 0 <= X + 2^(Y-1) < 2^Y 2190 * 2191 * For unsigned target integer, check that all the (64 - Y) bits are 2192 * zero. 2193 */ 2194 if (ext->kcfg.is_signed) 2195 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2196 else 2197 return (v >> bit_sz) == 0; 2198 } 2199 2200 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2201 __u64 value) 2202 { 2203 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2204 ext->kcfg.type != KCFG_BOOL) { 2205 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2206 ext->name, (unsigned long long)value); 2207 return -EINVAL; 2208 } 2209 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2210 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2211 ext->name, (unsigned long long)value); 2212 return -EINVAL; 2213 2214 } 2215 if (!is_kcfg_value_in_range(ext, value)) { 2216 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2217 ext->name, (unsigned long long)value, ext->kcfg.sz); 2218 return -ERANGE; 2219 } 2220 switch (ext->kcfg.sz) { 2221 case 1: 2222 *(__u8 *)ext_val = value; 2223 break; 2224 case 2: 2225 *(__u16 *)ext_val = value; 2226 break; 2227 case 4: 2228 *(__u32 *)ext_val = value; 2229 break; 2230 case 8: 2231 *(__u64 *)ext_val = value; 2232 break; 2233 default: 2234 return -EINVAL; 2235 } 2236 ext->is_set = true; 2237 return 0; 2238 } 2239 2240 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2241 char *buf, void *data) 2242 { 2243 struct extern_desc *ext; 2244 char *sep, *value; 2245 int len, err = 0; 2246 void *ext_val; 2247 __u64 num; 2248 2249 if (!str_has_pfx(buf, "CONFIG_")) 2250 return 0; 2251 2252 sep = strchr(buf, '='); 2253 if (!sep) { 2254 pr_warn("failed to parse '%s': no separator\n", buf); 2255 return -EINVAL; 2256 } 2257 2258 /* Trim ending '\n' */ 2259 len = strlen(buf); 2260 if (buf[len - 1] == '\n') 2261 buf[len - 1] = '\0'; 2262 /* Split on '=' and ensure that a value is present. */ 2263 *sep = '\0'; 2264 if (!sep[1]) { 2265 *sep = '='; 2266 pr_warn("failed to parse '%s': no value\n", buf); 2267 return -EINVAL; 2268 } 2269 2270 ext = find_extern_by_name(obj, buf); 2271 if (!ext || ext->is_set) 2272 return 0; 2273 2274 ext_val = data + ext->kcfg.data_off; 2275 value = sep + 1; 2276 2277 switch (*value) { 2278 case 'y': case 'n': case 'm': 2279 err = set_kcfg_value_tri(ext, ext_val, *value); 2280 break; 2281 case '"': 2282 err = set_kcfg_value_str(ext, ext_val, value); 2283 break; 2284 default: 2285 /* assume integer */ 2286 err = parse_u64(value, &num); 2287 if (err) { 2288 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2289 return err; 2290 } 2291 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2292 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2293 return -EINVAL; 2294 } 2295 err = set_kcfg_value_num(ext, ext_val, num); 2296 break; 2297 } 2298 if (err) 2299 return err; 2300 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2301 return 0; 2302 } 2303 2304 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2305 { 2306 char buf[PATH_MAX]; 2307 struct utsname uts; 2308 int len, err = 0; 2309 gzFile file; 2310 2311 uname(&uts); 2312 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2313 if (len < 0) 2314 return -EINVAL; 2315 else if (len >= PATH_MAX) 2316 return -ENAMETOOLONG; 2317 2318 /* gzopen also accepts uncompressed files. */ 2319 file = gzopen(buf, "re"); 2320 if (!file) 2321 file = gzopen("/proc/config.gz", "re"); 2322 2323 if (!file) { 2324 pr_warn("failed to open system Kconfig\n"); 2325 return -ENOENT; 2326 } 2327 2328 while (gzgets(file, buf, sizeof(buf))) { 2329 err = bpf_object__process_kconfig_line(obj, buf, data); 2330 if (err) { 2331 pr_warn("error parsing system Kconfig line '%s': %s\n", 2332 buf, errstr(err)); 2333 goto out; 2334 } 2335 } 2336 2337 out: 2338 gzclose(file); 2339 return err; 2340 } 2341 2342 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2343 const char *config, void *data) 2344 { 2345 char buf[PATH_MAX]; 2346 int err = 0; 2347 FILE *file; 2348 2349 file = fmemopen((void *)config, strlen(config), "r"); 2350 if (!file) { 2351 err = -errno; 2352 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2353 return err; 2354 } 2355 2356 while (fgets(buf, sizeof(buf), file)) { 2357 err = bpf_object__process_kconfig_line(obj, buf, data); 2358 if (err) { 2359 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2360 buf, errstr(err)); 2361 break; 2362 } 2363 } 2364 2365 fclose(file); 2366 return err; 2367 } 2368 2369 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2370 { 2371 struct extern_desc *last_ext = NULL, *ext; 2372 size_t map_sz; 2373 int i, err; 2374 2375 for (i = 0; i < obj->nr_extern; i++) { 2376 ext = &obj->externs[i]; 2377 if (ext->type == EXT_KCFG) 2378 last_ext = ext; 2379 } 2380 2381 if (!last_ext) 2382 return 0; 2383 2384 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2385 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2386 ".kconfig", obj->efile.symbols_shndx, 2387 NULL, map_sz); 2388 if (err) 2389 return err; 2390 2391 obj->kconfig_map_idx = obj->nr_maps - 1; 2392 2393 return 0; 2394 } 2395 2396 const struct btf_type * 2397 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2398 { 2399 const struct btf_type *t = btf__type_by_id(btf, id); 2400 2401 if (res_id) 2402 *res_id = id; 2403 2404 while (btf_is_mod(t) || btf_is_typedef(t)) { 2405 if (res_id) 2406 *res_id = t->type; 2407 t = btf__type_by_id(btf, t->type); 2408 } 2409 2410 return t; 2411 } 2412 2413 static const struct btf_type * 2414 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2415 { 2416 const struct btf_type *t; 2417 2418 t = skip_mods_and_typedefs(btf, id, NULL); 2419 if (!btf_is_ptr(t)) 2420 return NULL; 2421 2422 t = skip_mods_and_typedefs(btf, t->type, res_id); 2423 2424 return btf_is_func_proto(t) ? t : NULL; 2425 } 2426 2427 static const char *__btf_kind_str(__u16 kind) 2428 { 2429 switch (kind) { 2430 case BTF_KIND_UNKN: return "void"; 2431 case BTF_KIND_INT: return "int"; 2432 case BTF_KIND_PTR: return "ptr"; 2433 case BTF_KIND_ARRAY: return "array"; 2434 case BTF_KIND_STRUCT: return "struct"; 2435 case BTF_KIND_UNION: return "union"; 2436 case BTF_KIND_ENUM: return "enum"; 2437 case BTF_KIND_FWD: return "fwd"; 2438 case BTF_KIND_TYPEDEF: return "typedef"; 2439 case BTF_KIND_VOLATILE: return "volatile"; 2440 case BTF_KIND_CONST: return "const"; 2441 case BTF_KIND_RESTRICT: return "restrict"; 2442 case BTF_KIND_FUNC: return "func"; 2443 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2444 case BTF_KIND_VAR: return "var"; 2445 case BTF_KIND_DATASEC: return "datasec"; 2446 case BTF_KIND_FLOAT: return "float"; 2447 case BTF_KIND_DECL_TAG: return "decl_tag"; 2448 case BTF_KIND_TYPE_TAG: return "type_tag"; 2449 case BTF_KIND_ENUM64: return "enum64"; 2450 default: return "unknown"; 2451 } 2452 } 2453 2454 const char *btf_kind_str(const struct btf_type *t) 2455 { 2456 return __btf_kind_str(btf_kind(t)); 2457 } 2458 2459 /* 2460 * Fetch integer attribute of BTF map definition. Such attributes are 2461 * represented using a pointer to an array, in which dimensionality of array 2462 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2463 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2464 * type definition, while using only sizeof(void *) space in ELF data section. 2465 */ 2466 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2467 const struct btf_member *m, __u32 *res) 2468 { 2469 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2470 const char *name = btf__name_by_offset(btf, m->name_off); 2471 const struct btf_array *arr_info; 2472 const struct btf_type *arr_t; 2473 2474 if (!btf_is_ptr(t)) { 2475 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2476 map_name, name, btf_kind_str(t)); 2477 return false; 2478 } 2479 2480 arr_t = btf__type_by_id(btf, t->type); 2481 if (!arr_t) { 2482 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2483 map_name, name, t->type); 2484 return false; 2485 } 2486 if (!btf_is_array(arr_t)) { 2487 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2488 map_name, name, btf_kind_str(arr_t)); 2489 return false; 2490 } 2491 arr_info = btf_array(arr_t); 2492 *res = arr_info->nelems; 2493 return true; 2494 } 2495 2496 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2497 const struct btf_member *m, __u64 *res) 2498 { 2499 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2500 const char *name = btf__name_by_offset(btf, m->name_off); 2501 2502 if (btf_is_ptr(t)) { 2503 __u32 res32; 2504 bool ret; 2505 2506 ret = get_map_field_int(map_name, btf, m, &res32); 2507 if (ret) 2508 *res = (__u64)res32; 2509 return ret; 2510 } 2511 2512 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2513 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2514 map_name, name, btf_kind_str(t)); 2515 return false; 2516 } 2517 2518 if (btf_vlen(t) != 1) { 2519 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2520 map_name, name); 2521 return false; 2522 } 2523 2524 if (btf_is_enum(t)) { 2525 const struct btf_enum *e = btf_enum(t); 2526 2527 *res = e->val; 2528 } else { 2529 const struct btf_enum64 *e = btf_enum64(t); 2530 2531 *res = btf_enum64_value(e); 2532 } 2533 return true; 2534 } 2535 2536 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2537 { 2538 int len; 2539 2540 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2541 if (len < 0) 2542 return -EINVAL; 2543 if (len >= buf_sz) 2544 return -ENAMETOOLONG; 2545 2546 return 0; 2547 } 2548 2549 static int build_map_pin_path(struct bpf_map *map, const char *path) 2550 { 2551 char buf[PATH_MAX]; 2552 int err; 2553 2554 if (!path) 2555 path = BPF_FS_DEFAULT_PATH; 2556 2557 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2558 if (err) 2559 return err; 2560 2561 return bpf_map__set_pin_path(map, buf); 2562 } 2563 2564 /* should match definition in bpf_helpers.h */ 2565 enum libbpf_pin_type { 2566 LIBBPF_PIN_NONE, 2567 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2568 LIBBPF_PIN_BY_NAME, 2569 }; 2570 2571 int parse_btf_map_def(const char *map_name, struct btf *btf, 2572 const struct btf_type *def_t, bool strict, 2573 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2574 { 2575 const struct btf_type *t; 2576 const struct btf_member *m; 2577 bool is_inner = inner_def == NULL; 2578 int vlen, i; 2579 2580 vlen = btf_vlen(def_t); 2581 m = btf_members(def_t); 2582 for (i = 0; i < vlen; i++, m++) { 2583 const char *name = btf__name_by_offset(btf, m->name_off); 2584 2585 if (!name) { 2586 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2587 return -EINVAL; 2588 } 2589 if (strcmp(name, "type") == 0) { 2590 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2591 return -EINVAL; 2592 map_def->parts |= MAP_DEF_MAP_TYPE; 2593 } else if (strcmp(name, "max_entries") == 0) { 2594 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2595 return -EINVAL; 2596 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2597 } else if (strcmp(name, "map_flags") == 0) { 2598 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2599 return -EINVAL; 2600 map_def->parts |= MAP_DEF_MAP_FLAGS; 2601 } else if (strcmp(name, "numa_node") == 0) { 2602 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2603 return -EINVAL; 2604 map_def->parts |= MAP_DEF_NUMA_NODE; 2605 } else if (strcmp(name, "key_size") == 0) { 2606 __u32 sz; 2607 2608 if (!get_map_field_int(map_name, btf, m, &sz)) 2609 return -EINVAL; 2610 if (map_def->key_size && map_def->key_size != sz) { 2611 pr_warn("map '%s': conflicting key size %u != %u.\n", 2612 map_name, map_def->key_size, sz); 2613 return -EINVAL; 2614 } 2615 map_def->key_size = sz; 2616 map_def->parts |= MAP_DEF_KEY_SIZE; 2617 } else if (strcmp(name, "key") == 0) { 2618 __s64 sz; 2619 2620 t = btf__type_by_id(btf, m->type); 2621 if (!t) { 2622 pr_warn("map '%s': key type [%d] not found.\n", 2623 map_name, m->type); 2624 return -EINVAL; 2625 } 2626 if (!btf_is_ptr(t)) { 2627 pr_warn("map '%s': key spec is not PTR: %s.\n", 2628 map_name, btf_kind_str(t)); 2629 return -EINVAL; 2630 } 2631 sz = btf__resolve_size(btf, t->type); 2632 if (sz < 0) { 2633 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2634 map_name, t->type, (ssize_t)sz); 2635 return sz; 2636 } 2637 if (map_def->key_size && map_def->key_size != sz) { 2638 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2639 map_name, map_def->key_size, (ssize_t)sz); 2640 return -EINVAL; 2641 } 2642 map_def->key_size = sz; 2643 map_def->key_type_id = t->type; 2644 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2645 } else if (strcmp(name, "value_size") == 0) { 2646 __u32 sz; 2647 2648 if (!get_map_field_int(map_name, btf, m, &sz)) 2649 return -EINVAL; 2650 if (map_def->value_size && map_def->value_size != sz) { 2651 pr_warn("map '%s': conflicting value size %u != %u.\n", 2652 map_name, map_def->value_size, sz); 2653 return -EINVAL; 2654 } 2655 map_def->value_size = sz; 2656 map_def->parts |= MAP_DEF_VALUE_SIZE; 2657 } else if (strcmp(name, "value") == 0) { 2658 __s64 sz; 2659 2660 t = btf__type_by_id(btf, m->type); 2661 if (!t) { 2662 pr_warn("map '%s': value type [%d] not found.\n", 2663 map_name, m->type); 2664 return -EINVAL; 2665 } 2666 if (!btf_is_ptr(t)) { 2667 pr_warn("map '%s': value spec is not PTR: %s.\n", 2668 map_name, btf_kind_str(t)); 2669 return -EINVAL; 2670 } 2671 sz = btf__resolve_size(btf, t->type); 2672 if (sz < 0) { 2673 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2674 map_name, t->type, (ssize_t)sz); 2675 return sz; 2676 } 2677 if (map_def->value_size && map_def->value_size != sz) { 2678 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2679 map_name, map_def->value_size, (ssize_t)sz); 2680 return -EINVAL; 2681 } 2682 map_def->value_size = sz; 2683 map_def->value_type_id = t->type; 2684 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2685 } 2686 else if (strcmp(name, "values") == 0) { 2687 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2688 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2689 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2690 char inner_map_name[128]; 2691 int err; 2692 2693 if (is_inner) { 2694 pr_warn("map '%s': multi-level inner maps not supported.\n", 2695 map_name); 2696 return -ENOTSUP; 2697 } 2698 if (i != vlen - 1) { 2699 pr_warn("map '%s': '%s' member should be last.\n", 2700 map_name, name); 2701 return -EINVAL; 2702 } 2703 if (!is_map_in_map && !is_prog_array) { 2704 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2705 map_name); 2706 return -ENOTSUP; 2707 } 2708 if (map_def->value_size && map_def->value_size != 4) { 2709 pr_warn("map '%s': conflicting value size %u != 4.\n", 2710 map_name, map_def->value_size); 2711 return -EINVAL; 2712 } 2713 map_def->value_size = 4; 2714 t = btf__type_by_id(btf, m->type); 2715 if (!t) { 2716 pr_warn("map '%s': %s type [%d] not found.\n", 2717 map_name, desc, m->type); 2718 return -EINVAL; 2719 } 2720 if (!btf_is_array(t) || btf_array(t)->nelems) { 2721 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2722 map_name, desc); 2723 return -EINVAL; 2724 } 2725 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2726 if (!btf_is_ptr(t)) { 2727 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2728 map_name, desc, btf_kind_str(t)); 2729 return -EINVAL; 2730 } 2731 t = skip_mods_and_typedefs(btf, t->type, NULL); 2732 if (is_prog_array) { 2733 if (!btf_is_func_proto(t)) { 2734 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2735 map_name, btf_kind_str(t)); 2736 return -EINVAL; 2737 } 2738 continue; 2739 } 2740 if (!btf_is_struct(t)) { 2741 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2742 map_name, btf_kind_str(t)); 2743 return -EINVAL; 2744 } 2745 2746 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2747 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2748 if (err) 2749 return err; 2750 2751 map_def->parts |= MAP_DEF_INNER_MAP; 2752 } else if (strcmp(name, "pinning") == 0) { 2753 __u32 val; 2754 2755 if (is_inner) { 2756 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2757 return -EINVAL; 2758 } 2759 if (!get_map_field_int(map_name, btf, m, &val)) 2760 return -EINVAL; 2761 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2762 pr_warn("map '%s': invalid pinning value %u.\n", 2763 map_name, val); 2764 return -EINVAL; 2765 } 2766 map_def->pinning = val; 2767 map_def->parts |= MAP_DEF_PINNING; 2768 } else if (strcmp(name, "map_extra") == 0) { 2769 __u64 map_extra; 2770 2771 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2772 return -EINVAL; 2773 map_def->map_extra = map_extra; 2774 map_def->parts |= MAP_DEF_MAP_EXTRA; 2775 } else { 2776 if (strict) { 2777 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2778 return -ENOTSUP; 2779 } 2780 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2781 } 2782 } 2783 2784 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2785 pr_warn("map '%s': map type isn't specified.\n", map_name); 2786 return -EINVAL; 2787 } 2788 2789 return 0; 2790 } 2791 2792 static size_t adjust_ringbuf_sz(size_t sz) 2793 { 2794 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2795 __u32 mul; 2796 2797 /* if user forgot to set any size, make sure they see error */ 2798 if (sz == 0) 2799 return 0; 2800 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2801 * a power-of-2 multiple of kernel's page size. If user diligently 2802 * satisified these conditions, pass the size through. 2803 */ 2804 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2805 return sz; 2806 2807 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2808 * user-set size to satisfy both user size request and kernel 2809 * requirements and substitute correct max_entries for map creation. 2810 */ 2811 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2812 if (mul * page_sz > sz) 2813 return mul * page_sz; 2814 } 2815 2816 /* if it's impossible to satisfy the conditions (i.e., user size is 2817 * very close to UINT_MAX but is not a power-of-2 multiple of 2818 * page_size) then just return original size and let kernel reject it 2819 */ 2820 return sz; 2821 } 2822 2823 static bool map_is_ringbuf(const struct bpf_map *map) 2824 { 2825 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2826 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2827 } 2828 2829 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2830 { 2831 map->def.type = def->map_type; 2832 map->def.key_size = def->key_size; 2833 map->def.value_size = def->value_size; 2834 map->def.max_entries = def->max_entries; 2835 map->def.map_flags = def->map_flags; 2836 map->map_extra = def->map_extra; 2837 2838 map->numa_node = def->numa_node; 2839 map->btf_key_type_id = def->key_type_id; 2840 map->btf_value_type_id = def->value_type_id; 2841 2842 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2843 if (map_is_ringbuf(map)) 2844 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2845 2846 if (def->parts & MAP_DEF_MAP_TYPE) 2847 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2848 2849 if (def->parts & MAP_DEF_KEY_TYPE) 2850 pr_debug("map '%s': found key [%u], sz = %u.\n", 2851 map->name, def->key_type_id, def->key_size); 2852 else if (def->parts & MAP_DEF_KEY_SIZE) 2853 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2854 2855 if (def->parts & MAP_DEF_VALUE_TYPE) 2856 pr_debug("map '%s': found value [%u], sz = %u.\n", 2857 map->name, def->value_type_id, def->value_size); 2858 else if (def->parts & MAP_DEF_VALUE_SIZE) 2859 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2860 2861 if (def->parts & MAP_DEF_MAX_ENTRIES) 2862 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2863 if (def->parts & MAP_DEF_MAP_FLAGS) 2864 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2865 if (def->parts & MAP_DEF_MAP_EXTRA) 2866 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2867 (unsigned long long)def->map_extra); 2868 if (def->parts & MAP_DEF_PINNING) 2869 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2870 if (def->parts & MAP_DEF_NUMA_NODE) 2871 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2872 2873 if (def->parts & MAP_DEF_INNER_MAP) 2874 pr_debug("map '%s': found inner map definition.\n", map->name); 2875 } 2876 2877 static const char *btf_var_linkage_str(__u32 linkage) 2878 { 2879 switch (linkage) { 2880 case BTF_VAR_STATIC: return "static"; 2881 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2882 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2883 default: return "unknown"; 2884 } 2885 } 2886 2887 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2888 const struct btf_type *sec, 2889 int var_idx, int sec_idx, 2890 const Elf_Data *data, bool strict, 2891 const char *pin_root_path) 2892 { 2893 struct btf_map_def map_def = {}, inner_def = {}; 2894 const struct btf_type *var, *def; 2895 const struct btf_var_secinfo *vi; 2896 const struct btf_var *var_extra; 2897 const char *map_name; 2898 struct bpf_map *map; 2899 int err; 2900 2901 vi = btf_var_secinfos(sec) + var_idx; 2902 var = btf__type_by_id(obj->btf, vi->type); 2903 var_extra = btf_var(var); 2904 map_name = btf__name_by_offset(obj->btf, var->name_off); 2905 2906 if (map_name == NULL || map_name[0] == '\0') { 2907 pr_warn("map #%d: empty name.\n", var_idx); 2908 return -EINVAL; 2909 } 2910 if ((__u64)vi->offset + vi->size > data->d_size) { 2911 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2912 return -EINVAL; 2913 } 2914 if (!btf_is_var(var)) { 2915 pr_warn("map '%s': unexpected var kind %s.\n", 2916 map_name, btf_kind_str(var)); 2917 return -EINVAL; 2918 } 2919 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2920 pr_warn("map '%s': unsupported map linkage %s.\n", 2921 map_name, btf_var_linkage_str(var_extra->linkage)); 2922 return -EOPNOTSUPP; 2923 } 2924 2925 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2926 if (!btf_is_struct(def)) { 2927 pr_warn("map '%s': unexpected def kind %s.\n", 2928 map_name, btf_kind_str(var)); 2929 return -EINVAL; 2930 } 2931 if (def->size > vi->size) { 2932 pr_warn("map '%s': invalid def size.\n", map_name); 2933 return -EINVAL; 2934 } 2935 2936 map = bpf_object__add_map(obj); 2937 if (IS_ERR(map)) 2938 return PTR_ERR(map); 2939 map->name = strdup(map_name); 2940 if (!map->name) { 2941 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2942 return -ENOMEM; 2943 } 2944 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2945 map->def.type = BPF_MAP_TYPE_UNSPEC; 2946 map->sec_idx = sec_idx; 2947 map->sec_offset = vi->offset; 2948 map->btf_var_idx = var_idx; 2949 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2950 map_name, map->sec_idx, map->sec_offset); 2951 2952 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2953 if (err) 2954 return err; 2955 2956 fill_map_from_def(map, &map_def); 2957 2958 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2959 err = build_map_pin_path(map, pin_root_path); 2960 if (err) { 2961 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2962 return err; 2963 } 2964 } 2965 2966 if (map_def.parts & MAP_DEF_INNER_MAP) { 2967 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2968 if (!map->inner_map) 2969 return -ENOMEM; 2970 map->inner_map->fd = create_placeholder_fd(); 2971 if (map->inner_map->fd < 0) 2972 return map->inner_map->fd; 2973 map->inner_map->sec_idx = sec_idx; 2974 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2975 if (!map->inner_map->name) 2976 return -ENOMEM; 2977 sprintf(map->inner_map->name, "%s.inner", map_name); 2978 2979 fill_map_from_def(map->inner_map, &inner_def); 2980 } 2981 2982 err = map_fill_btf_type_info(obj, map); 2983 if (err) 2984 return err; 2985 2986 return 0; 2987 } 2988 2989 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2990 const char *sec_name, int sec_idx, 2991 void *data, size_t data_sz) 2992 { 2993 const long page_sz = sysconf(_SC_PAGE_SIZE); 2994 size_t mmap_sz; 2995 2996 mmap_sz = bpf_map_mmap_sz(map); 2997 if (roundup(data_sz, page_sz) > mmap_sz) { 2998 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2999 sec_name, mmap_sz, data_sz); 3000 return -E2BIG; 3001 } 3002 3003 obj->arena_data = malloc(data_sz); 3004 if (!obj->arena_data) 3005 return -ENOMEM; 3006 memcpy(obj->arena_data, data, data_sz); 3007 obj->arena_data_sz = data_sz; 3008 3009 /* make bpf_map__init_value() work for ARENA maps */ 3010 map->mmaped = obj->arena_data; 3011 3012 return 0; 3013 } 3014 3015 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 3016 const char *pin_root_path) 3017 { 3018 const struct btf_type *sec = NULL; 3019 int nr_types, i, vlen, err; 3020 const struct btf_type *t; 3021 const char *name; 3022 Elf_Data *data; 3023 Elf_Scn *scn; 3024 3025 if (obj->efile.btf_maps_shndx < 0) 3026 return 0; 3027 3028 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 3029 data = elf_sec_data(obj, scn); 3030 if (!data) { 3031 pr_warn("elf: failed to get %s map definitions for %s\n", 3032 MAPS_ELF_SEC, obj->path); 3033 return -EINVAL; 3034 } 3035 3036 nr_types = btf__type_cnt(obj->btf); 3037 for (i = 1; i < nr_types; i++) { 3038 t = btf__type_by_id(obj->btf, i); 3039 if (!btf_is_datasec(t)) 3040 continue; 3041 name = btf__name_by_offset(obj->btf, t->name_off); 3042 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3043 sec = t; 3044 obj->efile.btf_maps_sec_btf_id = i; 3045 break; 3046 } 3047 } 3048 3049 if (!sec) { 3050 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3051 return -ENOENT; 3052 } 3053 3054 vlen = btf_vlen(sec); 3055 for (i = 0; i < vlen; i++) { 3056 err = bpf_object__init_user_btf_map(obj, sec, i, 3057 obj->efile.btf_maps_shndx, 3058 data, strict, 3059 pin_root_path); 3060 if (err) 3061 return err; 3062 } 3063 3064 for (i = 0; i < obj->nr_maps; i++) { 3065 struct bpf_map *map = &obj->maps[i]; 3066 3067 if (map->def.type != BPF_MAP_TYPE_ARENA) 3068 continue; 3069 3070 if (obj->arena_map_idx >= 0) { 3071 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3072 map->name, obj->maps[obj->arena_map_idx].name); 3073 return -EINVAL; 3074 } 3075 obj->arena_map_idx = i; 3076 3077 if (obj->efile.arena_data) { 3078 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3079 obj->efile.arena_data->d_buf, 3080 obj->efile.arena_data->d_size); 3081 if (err) 3082 return err; 3083 } 3084 } 3085 if (obj->efile.arena_data && obj->arena_map_idx < 0) { 3086 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3087 ARENA_SEC); 3088 return -ENOENT; 3089 } 3090 3091 return 0; 3092 } 3093 3094 static int bpf_object__init_maps(struct bpf_object *obj, 3095 const struct bpf_object_open_opts *opts) 3096 { 3097 const char *pin_root_path; 3098 bool strict; 3099 int err = 0; 3100 3101 strict = !OPTS_GET(opts, relaxed_maps, false); 3102 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3103 3104 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3105 err = err ?: bpf_object__init_global_data_maps(obj); 3106 err = err ?: bpf_object__init_kconfig_map(obj); 3107 err = err ?: bpf_object_init_struct_ops(obj); 3108 3109 return err; 3110 } 3111 3112 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3113 { 3114 Elf64_Shdr *sh; 3115 3116 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3117 if (!sh) 3118 return false; 3119 3120 return sh->sh_flags & SHF_EXECINSTR; 3121 } 3122 3123 static bool starts_with_qmark(const char *s) 3124 { 3125 return s && s[0] == '?'; 3126 } 3127 3128 static bool btf_needs_sanitization(struct bpf_object *obj) 3129 { 3130 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3131 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3132 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3133 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3134 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3135 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3136 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3137 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3138 3139 return !has_func || !has_datasec || !has_func_global || !has_float || 3140 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3141 } 3142 3143 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3144 { 3145 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3146 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3147 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3148 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3149 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3150 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3151 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3152 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3153 int enum64_placeholder_id = 0; 3154 struct btf_type *t; 3155 int i, j, vlen; 3156 3157 for (i = 1; i < btf__type_cnt(btf); i++) { 3158 t = (struct btf_type *)btf__type_by_id(btf, i); 3159 3160 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3161 /* replace VAR/DECL_TAG with INT */ 3162 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3163 /* 3164 * using size = 1 is the safest choice, 4 will be too 3165 * big and cause kernel BTF validation failure if 3166 * original variable took less than 4 bytes 3167 */ 3168 t->size = 1; 3169 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3170 } else if (!has_datasec && btf_is_datasec(t)) { 3171 /* replace DATASEC with STRUCT */ 3172 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3173 struct btf_member *m = btf_members(t); 3174 struct btf_type *vt; 3175 char *name; 3176 3177 name = (char *)btf__name_by_offset(btf, t->name_off); 3178 while (*name) { 3179 if (*name == '.' || *name == '?') 3180 *name = '_'; 3181 name++; 3182 } 3183 3184 vlen = btf_vlen(t); 3185 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3186 for (j = 0; j < vlen; j++, v++, m++) { 3187 /* order of field assignments is important */ 3188 m->offset = v->offset * 8; 3189 m->type = v->type; 3190 /* preserve variable name as member name */ 3191 vt = (void *)btf__type_by_id(btf, v->type); 3192 m->name_off = vt->name_off; 3193 } 3194 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3195 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3196 /* replace '?' prefix with '_' for DATASEC names */ 3197 char *name; 3198 3199 name = (char *)btf__name_by_offset(btf, t->name_off); 3200 if (name[0] == '?') 3201 name[0] = '_'; 3202 } else if (!has_func && btf_is_func_proto(t)) { 3203 /* replace FUNC_PROTO with ENUM */ 3204 vlen = btf_vlen(t); 3205 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3206 t->size = sizeof(__u32); /* kernel enforced */ 3207 } else if (!has_func && btf_is_func(t)) { 3208 /* replace FUNC with TYPEDEF */ 3209 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3210 } else if (!has_func_global && btf_is_func(t)) { 3211 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3212 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3213 } else if (!has_float && btf_is_float(t)) { 3214 /* replace FLOAT with an equally-sized empty STRUCT; 3215 * since C compilers do not accept e.g. "float" as a 3216 * valid struct name, make it anonymous 3217 */ 3218 t->name_off = 0; 3219 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3220 } else if (!has_type_tag && btf_is_type_tag(t)) { 3221 /* replace TYPE_TAG with a CONST */ 3222 t->name_off = 0; 3223 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3224 } else if (!has_enum64 && btf_is_enum(t)) { 3225 /* clear the kflag */ 3226 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3227 } else if (!has_enum64 && btf_is_enum64(t)) { 3228 /* replace ENUM64 with a union */ 3229 struct btf_member *m; 3230 3231 if (enum64_placeholder_id == 0) { 3232 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3233 if (enum64_placeholder_id < 0) 3234 return enum64_placeholder_id; 3235 3236 t = (struct btf_type *)btf__type_by_id(btf, i); 3237 } 3238 3239 m = btf_members(t); 3240 vlen = btf_vlen(t); 3241 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3242 for (j = 0; j < vlen; j++, m++) { 3243 m->type = enum64_placeholder_id; 3244 m->offset = 0; 3245 } 3246 } 3247 } 3248 3249 return 0; 3250 } 3251 3252 static bool libbpf_needs_btf(const struct bpf_object *obj) 3253 { 3254 return obj->efile.btf_maps_shndx >= 0 || 3255 obj->efile.has_st_ops || 3256 obj->nr_extern > 0; 3257 } 3258 3259 static bool kernel_needs_btf(const struct bpf_object *obj) 3260 { 3261 return obj->efile.has_st_ops; 3262 } 3263 3264 static int bpf_object__init_btf(struct bpf_object *obj, 3265 Elf_Data *btf_data, 3266 Elf_Data *btf_ext_data) 3267 { 3268 int err = -ENOENT; 3269 3270 if (btf_data) { 3271 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3272 err = libbpf_get_error(obj->btf); 3273 if (err) { 3274 obj->btf = NULL; 3275 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3276 goto out; 3277 } 3278 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3279 btf__set_pointer_size(obj->btf, 8); 3280 } 3281 if (btf_ext_data) { 3282 struct btf_ext_info *ext_segs[3]; 3283 int seg_num, sec_num; 3284 3285 if (!obj->btf) { 3286 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3287 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3288 goto out; 3289 } 3290 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3291 err = libbpf_get_error(obj->btf_ext); 3292 if (err) { 3293 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3294 BTF_EXT_ELF_SEC, errstr(err)); 3295 obj->btf_ext = NULL; 3296 goto out; 3297 } 3298 3299 /* setup .BTF.ext to ELF section mapping */ 3300 ext_segs[0] = &obj->btf_ext->func_info; 3301 ext_segs[1] = &obj->btf_ext->line_info; 3302 ext_segs[2] = &obj->btf_ext->core_relo_info; 3303 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3304 struct btf_ext_info *seg = ext_segs[seg_num]; 3305 const struct btf_ext_info_sec *sec; 3306 const char *sec_name; 3307 Elf_Scn *scn; 3308 3309 if (seg->sec_cnt == 0) 3310 continue; 3311 3312 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3313 if (!seg->sec_idxs) { 3314 err = -ENOMEM; 3315 goto out; 3316 } 3317 3318 sec_num = 0; 3319 for_each_btf_ext_sec(seg, sec) { 3320 /* preventively increment index to avoid doing 3321 * this before every continue below 3322 */ 3323 sec_num++; 3324 3325 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3326 if (str_is_empty(sec_name)) 3327 continue; 3328 scn = elf_sec_by_name(obj, sec_name); 3329 if (!scn) 3330 continue; 3331 3332 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3333 } 3334 } 3335 } 3336 out: 3337 if (err && libbpf_needs_btf(obj)) { 3338 pr_warn("BTF is required, but is missing or corrupted.\n"); 3339 return err; 3340 } 3341 return 0; 3342 } 3343 3344 static int compare_vsi_off(const void *_a, const void *_b) 3345 { 3346 const struct btf_var_secinfo *a = _a; 3347 const struct btf_var_secinfo *b = _b; 3348 3349 return a->offset - b->offset; 3350 } 3351 3352 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3353 struct btf_type *t) 3354 { 3355 __u32 size = 0, i, vars = btf_vlen(t); 3356 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3357 struct btf_var_secinfo *vsi; 3358 bool fixup_offsets = false; 3359 int err; 3360 3361 if (!sec_name) { 3362 pr_debug("No name found in string section for DATASEC kind.\n"); 3363 return -ENOENT; 3364 } 3365 3366 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3367 * variable offsets set at the previous step. Further, not every 3368 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3369 * all fixups altogether for such sections and go straight to sorting 3370 * VARs within their DATASEC. 3371 */ 3372 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3373 goto sort_vars; 3374 3375 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3376 * fix this up. But BPF static linker already fixes this up and fills 3377 * all the sizes and offsets during static linking. So this step has 3378 * to be optional. But the STV_HIDDEN handling is non-optional for any 3379 * non-extern DATASEC, so the variable fixup loop below handles both 3380 * functions at the same time, paying the cost of BTF VAR <-> ELF 3381 * symbol matching just once. 3382 */ 3383 if (t->size == 0) { 3384 err = find_elf_sec_sz(obj, sec_name, &size); 3385 if (err || !size) { 3386 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3387 sec_name, size, errstr(err)); 3388 return -ENOENT; 3389 } 3390 3391 t->size = size; 3392 fixup_offsets = true; 3393 } 3394 3395 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3396 const struct btf_type *t_var; 3397 struct btf_var *var; 3398 const char *var_name; 3399 Elf64_Sym *sym; 3400 3401 t_var = btf__type_by_id(btf, vsi->type); 3402 if (!t_var || !btf_is_var(t_var)) { 3403 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3404 return -EINVAL; 3405 } 3406 3407 var = btf_var(t_var); 3408 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3409 continue; 3410 3411 var_name = btf__name_by_offset(btf, t_var->name_off); 3412 if (!var_name) { 3413 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3414 sec_name, i); 3415 return -ENOENT; 3416 } 3417 3418 sym = find_elf_var_sym(obj, var_name); 3419 if (IS_ERR(sym)) { 3420 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3421 sec_name, var_name); 3422 return -ENOENT; 3423 } 3424 3425 if (fixup_offsets) 3426 vsi->offset = sym->st_value; 3427 3428 /* if variable is a global/weak symbol, but has restricted 3429 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3430 * as static. This follows similar logic for functions (BPF 3431 * subprogs) and influences libbpf's further decisions about 3432 * whether to make global data BPF array maps as 3433 * BPF_F_MMAPABLE. 3434 */ 3435 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3436 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3437 var->linkage = BTF_VAR_STATIC; 3438 } 3439 3440 sort_vars: 3441 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3442 return 0; 3443 } 3444 3445 static int bpf_object_fixup_btf(struct bpf_object *obj) 3446 { 3447 int i, n, err = 0; 3448 3449 if (!obj->btf) 3450 return 0; 3451 3452 n = btf__type_cnt(obj->btf); 3453 for (i = 1; i < n; i++) { 3454 struct btf_type *t = btf_type_by_id(obj->btf, i); 3455 3456 /* Loader needs to fix up some of the things compiler 3457 * couldn't get its hands on while emitting BTF. This 3458 * is section size and global variable offset. We use 3459 * the info from the ELF itself for this purpose. 3460 */ 3461 if (btf_is_datasec(t)) { 3462 err = btf_fixup_datasec(obj, obj->btf, t); 3463 if (err) 3464 return err; 3465 } 3466 } 3467 3468 return 0; 3469 } 3470 3471 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3472 { 3473 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3474 prog->type == BPF_PROG_TYPE_LSM) 3475 return true; 3476 3477 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3478 * also need vmlinux BTF 3479 */ 3480 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3481 return true; 3482 3483 return false; 3484 } 3485 3486 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3487 { 3488 return bpf_map__is_struct_ops(map); 3489 } 3490 3491 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3492 { 3493 struct bpf_program *prog; 3494 struct bpf_map *map; 3495 int i; 3496 3497 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3498 * is not specified 3499 */ 3500 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3501 return true; 3502 3503 /* Support for typed ksyms needs kernel BTF */ 3504 for (i = 0; i < obj->nr_extern; i++) { 3505 const struct extern_desc *ext; 3506 3507 ext = &obj->externs[i]; 3508 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3509 return true; 3510 } 3511 3512 bpf_object__for_each_program(prog, obj) { 3513 if (!prog->autoload) 3514 continue; 3515 if (prog_needs_vmlinux_btf(prog)) 3516 return true; 3517 } 3518 3519 bpf_object__for_each_map(map, obj) { 3520 if (map_needs_vmlinux_btf(map)) 3521 return true; 3522 } 3523 3524 return false; 3525 } 3526 3527 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3528 { 3529 int err; 3530 3531 /* btf_vmlinux could be loaded earlier */ 3532 if (obj->btf_vmlinux || obj->gen_loader) 3533 return 0; 3534 3535 if (!force && !obj_needs_vmlinux_btf(obj)) 3536 return 0; 3537 3538 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3539 err = libbpf_get_error(obj->btf_vmlinux); 3540 if (err) { 3541 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3542 obj->btf_vmlinux = NULL; 3543 return err; 3544 } 3545 return 0; 3546 } 3547 3548 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3549 { 3550 struct btf *kern_btf = obj->btf; 3551 bool btf_mandatory, sanitize; 3552 int i, err = 0; 3553 3554 if (!obj->btf) 3555 return 0; 3556 3557 if (!kernel_supports(obj, FEAT_BTF)) { 3558 if (kernel_needs_btf(obj)) { 3559 err = -EOPNOTSUPP; 3560 goto report; 3561 } 3562 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3563 return 0; 3564 } 3565 3566 /* Even though some subprogs are global/weak, user might prefer more 3567 * permissive BPF verification process that BPF verifier performs for 3568 * static functions, taking into account more context from the caller 3569 * functions. In such case, they need to mark such subprogs with 3570 * __attribute__((visibility("hidden"))) and libbpf will adjust 3571 * corresponding FUNC BTF type to be marked as static and trigger more 3572 * involved BPF verification process. 3573 */ 3574 for (i = 0; i < obj->nr_programs; i++) { 3575 struct bpf_program *prog = &obj->programs[i]; 3576 struct btf_type *t; 3577 const char *name; 3578 int j, n; 3579 3580 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3581 continue; 3582 3583 n = btf__type_cnt(obj->btf); 3584 for (j = 1; j < n; j++) { 3585 t = btf_type_by_id(obj->btf, j); 3586 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3587 continue; 3588 3589 name = btf__str_by_offset(obj->btf, t->name_off); 3590 if (strcmp(name, prog->name) != 0) 3591 continue; 3592 3593 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3594 break; 3595 } 3596 } 3597 3598 sanitize = btf_needs_sanitization(obj); 3599 if (sanitize) { 3600 const void *raw_data; 3601 __u32 sz; 3602 3603 /* clone BTF to sanitize a copy and leave the original intact */ 3604 raw_data = btf__raw_data(obj->btf, &sz); 3605 kern_btf = btf__new(raw_data, sz); 3606 err = libbpf_get_error(kern_btf); 3607 if (err) 3608 return err; 3609 3610 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3611 btf__set_pointer_size(obj->btf, 8); 3612 err = bpf_object__sanitize_btf(obj, kern_btf); 3613 if (err) 3614 return err; 3615 } 3616 3617 if (obj->gen_loader) { 3618 __u32 raw_size = 0; 3619 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3620 3621 if (!raw_data) 3622 return -ENOMEM; 3623 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3624 /* Pretend to have valid FD to pass various fd >= 0 checks. 3625 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3626 */ 3627 btf__set_fd(kern_btf, 0); 3628 } else { 3629 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3630 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3631 obj->log_level ? 1 : 0, obj->token_fd); 3632 } 3633 if (sanitize) { 3634 if (!err) { 3635 /* move fd to libbpf's BTF */ 3636 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3637 btf__set_fd(kern_btf, -1); 3638 } 3639 btf__free(kern_btf); 3640 } 3641 report: 3642 if (err) { 3643 btf_mandatory = kernel_needs_btf(obj); 3644 if (btf_mandatory) { 3645 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3646 errstr(err)); 3647 } else { 3648 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3649 errstr(err)); 3650 err = 0; 3651 } 3652 } 3653 return err; 3654 } 3655 3656 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3657 { 3658 const char *name; 3659 3660 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3661 if (!name) { 3662 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3663 off, obj->path, elf_errmsg(-1)); 3664 return NULL; 3665 } 3666 3667 return name; 3668 } 3669 3670 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3671 { 3672 const char *name; 3673 3674 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3675 if (!name) { 3676 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3677 off, obj->path, elf_errmsg(-1)); 3678 return NULL; 3679 } 3680 3681 return name; 3682 } 3683 3684 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3685 { 3686 Elf_Scn *scn; 3687 3688 scn = elf_getscn(obj->efile.elf, idx); 3689 if (!scn) { 3690 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3691 idx, obj->path, elf_errmsg(-1)); 3692 return NULL; 3693 } 3694 return scn; 3695 } 3696 3697 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3698 { 3699 Elf_Scn *scn = NULL; 3700 Elf *elf = obj->efile.elf; 3701 const char *sec_name; 3702 3703 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3704 sec_name = elf_sec_name(obj, scn); 3705 if (!sec_name) 3706 return NULL; 3707 3708 if (strcmp(sec_name, name) != 0) 3709 continue; 3710 3711 return scn; 3712 } 3713 return NULL; 3714 } 3715 3716 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3717 { 3718 Elf64_Shdr *shdr; 3719 3720 if (!scn) 3721 return NULL; 3722 3723 shdr = elf64_getshdr(scn); 3724 if (!shdr) { 3725 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3726 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3727 return NULL; 3728 } 3729 3730 return shdr; 3731 } 3732 3733 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3734 { 3735 const char *name; 3736 Elf64_Shdr *sh; 3737 3738 if (!scn) 3739 return NULL; 3740 3741 sh = elf_sec_hdr(obj, scn); 3742 if (!sh) 3743 return NULL; 3744 3745 name = elf_sec_str(obj, sh->sh_name); 3746 if (!name) { 3747 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3748 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3749 return NULL; 3750 } 3751 3752 return name; 3753 } 3754 3755 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3756 { 3757 Elf_Data *data; 3758 3759 if (!scn) 3760 return NULL; 3761 3762 data = elf_getdata(scn, 0); 3763 if (!data) { 3764 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3765 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3766 obj->path, elf_errmsg(-1)); 3767 return NULL; 3768 } 3769 3770 return data; 3771 } 3772 3773 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3774 { 3775 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3776 return NULL; 3777 3778 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3779 } 3780 3781 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3782 { 3783 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3784 return NULL; 3785 3786 return (Elf64_Rel *)data->d_buf + idx; 3787 } 3788 3789 static bool is_sec_name_dwarf(const char *name) 3790 { 3791 /* approximation, but the actual list is too long */ 3792 return str_has_pfx(name, ".debug_"); 3793 } 3794 3795 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3796 { 3797 /* no special handling of .strtab */ 3798 if (hdr->sh_type == SHT_STRTAB) 3799 return true; 3800 3801 /* ignore .llvm_addrsig section as well */ 3802 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3803 return true; 3804 3805 /* no subprograms will lead to an empty .text section, ignore it */ 3806 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3807 strcmp(name, ".text") == 0) 3808 return true; 3809 3810 /* DWARF sections */ 3811 if (is_sec_name_dwarf(name)) 3812 return true; 3813 3814 if (str_has_pfx(name, ".rel")) { 3815 name += sizeof(".rel") - 1; 3816 /* DWARF section relocations */ 3817 if (is_sec_name_dwarf(name)) 3818 return true; 3819 3820 /* .BTF and .BTF.ext don't need relocations */ 3821 if (strcmp(name, BTF_ELF_SEC) == 0 || 3822 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3823 return true; 3824 } 3825 3826 return false; 3827 } 3828 3829 static int cmp_progs(const void *_a, const void *_b) 3830 { 3831 const struct bpf_program *a = _a; 3832 const struct bpf_program *b = _b; 3833 3834 if (a->sec_idx != b->sec_idx) 3835 return a->sec_idx < b->sec_idx ? -1 : 1; 3836 3837 /* sec_insn_off can't be the same within the section */ 3838 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3839 } 3840 3841 static int bpf_object__elf_collect(struct bpf_object *obj) 3842 { 3843 struct elf_sec_desc *sec_desc; 3844 Elf *elf = obj->efile.elf; 3845 Elf_Data *btf_ext_data = NULL; 3846 Elf_Data *btf_data = NULL; 3847 int idx = 0, err = 0; 3848 const char *name; 3849 Elf_Data *data; 3850 Elf_Scn *scn; 3851 Elf64_Shdr *sh; 3852 3853 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3854 * section. Since section count retrieved by elf_getshdrnum() does 3855 * include sec #0, it is already the necessary size of an array to keep 3856 * all the sections. 3857 */ 3858 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3859 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3860 obj->path, elf_errmsg(-1)); 3861 return -LIBBPF_ERRNO__FORMAT; 3862 } 3863 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3864 if (!obj->efile.secs) 3865 return -ENOMEM; 3866 3867 /* a bunch of ELF parsing functionality depends on processing symbols, 3868 * so do the first pass and find the symbol table 3869 */ 3870 scn = NULL; 3871 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3872 sh = elf_sec_hdr(obj, scn); 3873 if (!sh) 3874 return -LIBBPF_ERRNO__FORMAT; 3875 3876 if (sh->sh_type == SHT_SYMTAB) { 3877 if (obj->efile.symbols) { 3878 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3879 return -LIBBPF_ERRNO__FORMAT; 3880 } 3881 3882 data = elf_sec_data(obj, scn); 3883 if (!data) 3884 return -LIBBPF_ERRNO__FORMAT; 3885 3886 idx = elf_ndxscn(scn); 3887 3888 obj->efile.symbols = data; 3889 obj->efile.symbols_shndx = idx; 3890 obj->efile.strtabidx = sh->sh_link; 3891 } 3892 } 3893 3894 if (!obj->efile.symbols) { 3895 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3896 obj->path); 3897 return -ENOENT; 3898 } 3899 3900 scn = NULL; 3901 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3902 idx = elf_ndxscn(scn); 3903 sec_desc = &obj->efile.secs[idx]; 3904 3905 sh = elf_sec_hdr(obj, scn); 3906 if (!sh) 3907 return -LIBBPF_ERRNO__FORMAT; 3908 3909 name = elf_sec_str(obj, sh->sh_name); 3910 if (!name) 3911 return -LIBBPF_ERRNO__FORMAT; 3912 3913 if (ignore_elf_section(sh, name)) 3914 continue; 3915 3916 data = elf_sec_data(obj, scn); 3917 if (!data) 3918 return -LIBBPF_ERRNO__FORMAT; 3919 3920 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3921 idx, name, (unsigned long)data->d_size, 3922 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3923 (int)sh->sh_type); 3924 3925 if (strcmp(name, "license") == 0) { 3926 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3927 if (err) 3928 return err; 3929 } else if (strcmp(name, "version") == 0) { 3930 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3931 if (err) 3932 return err; 3933 } else if (strcmp(name, "maps") == 0) { 3934 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3935 return -ENOTSUP; 3936 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3937 obj->efile.btf_maps_shndx = idx; 3938 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3939 if (sh->sh_type != SHT_PROGBITS) 3940 return -LIBBPF_ERRNO__FORMAT; 3941 btf_data = data; 3942 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3943 if (sh->sh_type != SHT_PROGBITS) 3944 return -LIBBPF_ERRNO__FORMAT; 3945 btf_ext_data = data; 3946 } else if (sh->sh_type == SHT_SYMTAB) { 3947 /* already processed during the first pass above */ 3948 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3949 if (sh->sh_flags & SHF_EXECINSTR) { 3950 if (strcmp(name, ".text") == 0) 3951 obj->efile.text_shndx = idx; 3952 err = bpf_object__add_programs(obj, data, name, idx); 3953 if (err) 3954 return err; 3955 } else if (strcmp(name, DATA_SEC) == 0 || 3956 str_has_pfx(name, DATA_SEC ".")) { 3957 sec_desc->sec_type = SEC_DATA; 3958 sec_desc->shdr = sh; 3959 sec_desc->data = data; 3960 } else if (strcmp(name, RODATA_SEC) == 0 || 3961 str_has_pfx(name, RODATA_SEC ".")) { 3962 sec_desc->sec_type = SEC_RODATA; 3963 sec_desc->shdr = sh; 3964 sec_desc->data = data; 3965 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3966 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3967 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3968 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3969 sec_desc->sec_type = SEC_ST_OPS; 3970 sec_desc->shdr = sh; 3971 sec_desc->data = data; 3972 obj->efile.has_st_ops = true; 3973 } else if (strcmp(name, ARENA_SEC) == 0) { 3974 obj->efile.arena_data = data; 3975 obj->efile.arena_data_shndx = idx; 3976 } else if (strcmp(name, JUMPTABLES_SEC) == 0) { 3977 obj->jumptables_data = malloc(data->d_size); 3978 if (!obj->jumptables_data) 3979 return -ENOMEM; 3980 memcpy(obj->jumptables_data, data->d_buf, data->d_size); 3981 obj->jumptables_data_sz = data->d_size; 3982 obj->efile.jumptables_data_shndx = idx; 3983 } else { 3984 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3985 idx, name); 3986 } 3987 } else if (sh->sh_type == SHT_REL) { 3988 int targ_sec_idx = sh->sh_info; /* points to other section */ 3989 3990 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3991 targ_sec_idx >= obj->efile.sec_cnt) 3992 return -LIBBPF_ERRNO__FORMAT; 3993 3994 /* Only do relo for section with exec instructions */ 3995 if (!section_have_execinstr(obj, targ_sec_idx) && 3996 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3997 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3998 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3999 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 4000 strcmp(name, ".rel" MAPS_ELF_SEC)) { 4001 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 4002 idx, name, targ_sec_idx, 4003 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 4004 continue; 4005 } 4006 4007 sec_desc->sec_type = SEC_RELO; 4008 sec_desc->shdr = sh; 4009 sec_desc->data = data; 4010 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 4011 str_has_pfx(name, BSS_SEC "."))) { 4012 sec_desc->sec_type = SEC_BSS; 4013 sec_desc->shdr = sh; 4014 sec_desc->data = data; 4015 } else { 4016 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 4017 (size_t)sh->sh_size); 4018 } 4019 } 4020 4021 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 4022 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 4023 return -LIBBPF_ERRNO__FORMAT; 4024 } 4025 4026 /* change BPF program insns to native endianness for introspection */ 4027 if (!is_native_endianness(obj)) 4028 bpf_object_bswap_progs(obj); 4029 4030 /* sort BPF programs by section name and in-section instruction offset 4031 * for faster search 4032 */ 4033 if (obj->nr_programs) 4034 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 4035 4036 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 4037 } 4038 4039 static bool sym_is_extern(const Elf64_Sym *sym) 4040 { 4041 int bind = ELF64_ST_BIND(sym->st_info); 4042 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 4043 return sym->st_shndx == SHN_UNDEF && 4044 (bind == STB_GLOBAL || bind == STB_WEAK) && 4045 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4046 } 4047 4048 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4049 { 4050 int bind = ELF64_ST_BIND(sym->st_info); 4051 int type = ELF64_ST_TYPE(sym->st_info); 4052 4053 /* in .text section */ 4054 if (sym->st_shndx != text_shndx) 4055 return false; 4056 4057 /* local function */ 4058 if (bind == STB_LOCAL && type == STT_SECTION) 4059 return true; 4060 4061 /* global function */ 4062 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4063 } 4064 4065 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4066 { 4067 const struct btf_type *t; 4068 const char *tname; 4069 int i, n; 4070 4071 if (!btf) 4072 return -ESRCH; 4073 4074 n = btf__type_cnt(btf); 4075 for (i = 1; i < n; i++) { 4076 t = btf__type_by_id(btf, i); 4077 4078 if (!btf_is_var(t) && !btf_is_func(t)) 4079 continue; 4080 4081 tname = btf__name_by_offset(btf, t->name_off); 4082 if (strcmp(tname, ext_name)) 4083 continue; 4084 4085 if (btf_is_var(t) && 4086 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4087 return -EINVAL; 4088 4089 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4090 return -EINVAL; 4091 4092 return i; 4093 } 4094 4095 return -ENOENT; 4096 } 4097 4098 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4099 const struct btf_var_secinfo *vs; 4100 const struct btf_type *t; 4101 int i, j, n; 4102 4103 if (!btf) 4104 return -ESRCH; 4105 4106 n = btf__type_cnt(btf); 4107 for (i = 1; i < n; i++) { 4108 t = btf__type_by_id(btf, i); 4109 4110 if (!btf_is_datasec(t)) 4111 continue; 4112 4113 vs = btf_var_secinfos(t); 4114 for (j = 0; j < btf_vlen(t); j++, vs++) { 4115 if (vs->type == ext_btf_id) 4116 return i; 4117 } 4118 } 4119 4120 return -ENOENT; 4121 } 4122 4123 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4124 bool *is_signed) 4125 { 4126 const struct btf_type *t; 4127 const char *name; 4128 4129 t = skip_mods_and_typedefs(btf, id, NULL); 4130 name = btf__name_by_offset(btf, t->name_off); 4131 4132 if (is_signed) 4133 *is_signed = false; 4134 switch (btf_kind(t)) { 4135 case BTF_KIND_INT: { 4136 int enc = btf_int_encoding(t); 4137 4138 if (enc & BTF_INT_BOOL) 4139 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4140 if (is_signed) 4141 *is_signed = enc & BTF_INT_SIGNED; 4142 if (t->size == 1) 4143 return KCFG_CHAR; 4144 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4145 return KCFG_UNKNOWN; 4146 return KCFG_INT; 4147 } 4148 case BTF_KIND_ENUM: 4149 if (t->size != 4) 4150 return KCFG_UNKNOWN; 4151 if (strcmp(name, "libbpf_tristate")) 4152 return KCFG_UNKNOWN; 4153 return KCFG_TRISTATE; 4154 case BTF_KIND_ENUM64: 4155 if (strcmp(name, "libbpf_tristate")) 4156 return KCFG_UNKNOWN; 4157 return KCFG_TRISTATE; 4158 case BTF_KIND_ARRAY: 4159 if (btf_array(t)->nelems == 0) 4160 return KCFG_UNKNOWN; 4161 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4162 return KCFG_UNKNOWN; 4163 return KCFG_CHAR_ARR; 4164 default: 4165 return KCFG_UNKNOWN; 4166 } 4167 } 4168 4169 static int cmp_externs(const void *_a, const void *_b) 4170 { 4171 const struct extern_desc *a = _a; 4172 const struct extern_desc *b = _b; 4173 4174 if (a->type != b->type) 4175 return a->type < b->type ? -1 : 1; 4176 4177 if (a->type == EXT_KCFG) { 4178 /* descending order by alignment requirements */ 4179 if (a->kcfg.align != b->kcfg.align) 4180 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4181 /* ascending order by size, within same alignment class */ 4182 if (a->kcfg.sz != b->kcfg.sz) 4183 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4184 } 4185 4186 /* resolve ties by name */ 4187 return strcmp(a->name, b->name); 4188 } 4189 4190 static int find_int_btf_id(const struct btf *btf) 4191 { 4192 const struct btf_type *t; 4193 int i, n; 4194 4195 n = btf__type_cnt(btf); 4196 for (i = 1; i < n; i++) { 4197 t = btf__type_by_id(btf, i); 4198 4199 if (btf_is_int(t) && btf_int_bits(t) == 32) 4200 return i; 4201 } 4202 4203 return 0; 4204 } 4205 4206 static int add_dummy_ksym_var(struct btf *btf) 4207 { 4208 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4209 const struct btf_var_secinfo *vs; 4210 const struct btf_type *sec; 4211 4212 if (!btf) 4213 return 0; 4214 4215 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4216 BTF_KIND_DATASEC); 4217 if (sec_btf_id < 0) 4218 return 0; 4219 4220 sec = btf__type_by_id(btf, sec_btf_id); 4221 vs = btf_var_secinfos(sec); 4222 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4223 const struct btf_type *vt; 4224 4225 vt = btf__type_by_id(btf, vs->type); 4226 if (btf_is_func(vt)) 4227 break; 4228 } 4229 4230 /* No func in ksyms sec. No need to add dummy var. */ 4231 if (i == btf_vlen(sec)) 4232 return 0; 4233 4234 int_btf_id = find_int_btf_id(btf); 4235 dummy_var_btf_id = btf__add_var(btf, 4236 "dummy_ksym", 4237 BTF_VAR_GLOBAL_ALLOCATED, 4238 int_btf_id); 4239 if (dummy_var_btf_id < 0) 4240 pr_warn("cannot create a dummy_ksym var\n"); 4241 4242 return dummy_var_btf_id; 4243 } 4244 4245 static int bpf_object__collect_externs(struct bpf_object *obj) 4246 { 4247 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4248 const struct btf_type *t; 4249 struct extern_desc *ext; 4250 int i, n, off, dummy_var_btf_id; 4251 const char *ext_name, *sec_name; 4252 size_t ext_essent_len; 4253 Elf_Scn *scn; 4254 Elf64_Shdr *sh; 4255 4256 if (!obj->efile.symbols) 4257 return 0; 4258 4259 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4260 sh = elf_sec_hdr(obj, scn); 4261 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4262 return -LIBBPF_ERRNO__FORMAT; 4263 4264 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4265 if (dummy_var_btf_id < 0) 4266 return dummy_var_btf_id; 4267 4268 n = sh->sh_size / sh->sh_entsize; 4269 pr_debug("looking for externs among %d symbols...\n", n); 4270 4271 for (i = 0; i < n; i++) { 4272 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4273 4274 if (!sym) 4275 return -LIBBPF_ERRNO__FORMAT; 4276 if (!sym_is_extern(sym)) 4277 continue; 4278 ext_name = elf_sym_str(obj, sym->st_name); 4279 if (!ext_name || !ext_name[0]) 4280 continue; 4281 4282 ext = obj->externs; 4283 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4284 if (!ext) 4285 return -ENOMEM; 4286 obj->externs = ext; 4287 ext = &ext[obj->nr_extern]; 4288 memset(ext, 0, sizeof(*ext)); 4289 obj->nr_extern++; 4290 4291 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4292 if (ext->btf_id <= 0) { 4293 pr_warn("failed to find BTF for extern '%s': %d\n", 4294 ext_name, ext->btf_id); 4295 return ext->btf_id; 4296 } 4297 t = btf__type_by_id(obj->btf, ext->btf_id); 4298 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off)); 4299 if (!ext->name) 4300 return -ENOMEM; 4301 ext->sym_idx = i; 4302 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4303 4304 ext_essent_len = bpf_core_essential_name_len(ext->name); 4305 ext->essent_name = NULL; 4306 if (ext_essent_len != strlen(ext->name)) { 4307 ext->essent_name = strndup(ext->name, ext_essent_len); 4308 if (!ext->essent_name) 4309 return -ENOMEM; 4310 } 4311 4312 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4313 if (ext->sec_btf_id <= 0) { 4314 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4315 ext_name, ext->btf_id, ext->sec_btf_id); 4316 return ext->sec_btf_id; 4317 } 4318 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4319 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4320 4321 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4322 if (btf_is_func(t)) { 4323 pr_warn("extern function %s is unsupported under %s section\n", 4324 ext->name, KCONFIG_SEC); 4325 return -ENOTSUP; 4326 } 4327 kcfg_sec = sec; 4328 ext->type = EXT_KCFG; 4329 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4330 if (ext->kcfg.sz <= 0) { 4331 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4332 ext_name, ext->kcfg.sz); 4333 return ext->kcfg.sz; 4334 } 4335 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4336 if (ext->kcfg.align <= 0) { 4337 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4338 ext_name, ext->kcfg.align); 4339 return -EINVAL; 4340 } 4341 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4342 &ext->kcfg.is_signed); 4343 if (ext->kcfg.type == KCFG_UNKNOWN) { 4344 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4345 return -ENOTSUP; 4346 } 4347 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4348 ksym_sec = sec; 4349 ext->type = EXT_KSYM; 4350 skip_mods_and_typedefs(obj->btf, t->type, 4351 &ext->ksym.type_id); 4352 } else { 4353 pr_warn("unrecognized extern section '%s'\n", sec_name); 4354 return -ENOTSUP; 4355 } 4356 } 4357 pr_debug("collected %d externs total\n", obj->nr_extern); 4358 4359 if (!obj->nr_extern) 4360 return 0; 4361 4362 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4363 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4364 4365 /* for .ksyms section, we need to turn all externs into allocated 4366 * variables in BTF to pass kernel verification; we do this by 4367 * pretending that each extern is a 8-byte variable 4368 */ 4369 if (ksym_sec) { 4370 /* find existing 4-byte integer type in BTF to use for fake 4371 * extern variables in DATASEC 4372 */ 4373 int int_btf_id = find_int_btf_id(obj->btf); 4374 /* For extern function, a dummy_var added earlier 4375 * will be used to replace the vs->type and 4376 * its name string will be used to refill 4377 * the missing param's name. 4378 */ 4379 const struct btf_type *dummy_var; 4380 4381 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4382 for (i = 0; i < obj->nr_extern; i++) { 4383 ext = &obj->externs[i]; 4384 if (ext->type != EXT_KSYM) 4385 continue; 4386 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4387 i, ext->sym_idx, ext->name); 4388 } 4389 4390 sec = ksym_sec; 4391 n = btf_vlen(sec); 4392 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4393 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4394 struct btf_type *vt; 4395 4396 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4397 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4398 ext = find_extern_by_name(obj, ext_name); 4399 if (!ext) { 4400 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4401 btf_kind_str(vt), ext_name); 4402 return -ESRCH; 4403 } 4404 if (btf_is_func(vt)) { 4405 const struct btf_type *func_proto; 4406 struct btf_param *param; 4407 int j; 4408 4409 func_proto = btf__type_by_id(obj->btf, 4410 vt->type); 4411 param = btf_params(func_proto); 4412 /* Reuse the dummy_var string if the 4413 * func proto does not have param name. 4414 */ 4415 for (j = 0; j < btf_vlen(func_proto); j++) 4416 if (param[j].type && !param[j].name_off) 4417 param[j].name_off = 4418 dummy_var->name_off; 4419 vs->type = dummy_var_btf_id; 4420 vt->info &= ~0xffff; 4421 vt->info |= BTF_FUNC_GLOBAL; 4422 } else { 4423 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4424 vt->type = int_btf_id; 4425 } 4426 vs->offset = off; 4427 vs->size = sizeof(int); 4428 } 4429 sec->size = off; 4430 } 4431 4432 if (kcfg_sec) { 4433 sec = kcfg_sec; 4434 /* for kcfg externs calculate their offsets within a .kconfig map */ 4435 off = 0; 4436 for (i = 0; i < obj->nr_extern; i++) { 4437 ext = &obj->externs[i]; 4438 if (ext->type != EXT_KCFG) 4439 continue; 4440 4441 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4442 off = ext->kcfg.data_off + ext->kcfg.sz; 4443 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4444 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4445 } 4446 sec->size = off; 4447 n = btf_vlen(sec); 4448 for (i = 0; i < n; i++) { 4449 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4450 4451 t = btf__type_by_id(obj->btf, vs->type); 4452 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4453 ext = find_extern_by_name(obj, ext_name); 4454 if (!ext) { 4455 pr_warn("failed to find extern definition for BTF var '%s'\n", 4456 ext_name); 4457 return -ESRCH; 4458 } 4459 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4460 vs->offset = ext->kcfg.data_off; 4461 } 4462 } 4463 return 0; 4464 } 4465 4466 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4467 { 4468 return prog->sec_idx == obj->efile.text_shndx; 4469 } 4470 4471 struct bpf_program * 4472 bpf_object__find_program_by_name(const struct bpf_object *obj, 4473 const char *name) 4474 { 4475 struct bpf_program *prog; 4476 4477 bpf_object__for_each_program(prog, obj) { 4478 if (prog_is_subprog(obj, prog)) 4479 continue; 4480 if (!strcmp(prog->name, name)) 4481 return prog; 4482 } 4483 return errno = ENOENT, NULL; 4484 } 4485 4486 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4487 int shndx) 4488 { 4489 switch (obj->efile.secs[shndx].sec_type) { 4490 case SEC_BSS: 4491 case SEC_DATA: 4492 case SEC_RODATA: 4493 return true; 4494 default: 4495 return false; 4496 } 4497 } 4498 4499 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4500 int shndx) 4501 { 4502 return shndx == obj->efile.btf_maps_shndx; 4503 } 4504 4505 static enum libbpf_map_type 4506 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4507 { 4508 if (shndx == obj->efile.symbols_shndx) 4509 return LIBBPF_MAP_KCONFIG; 4510 4511 switch (obj->efile.secs[shndx].sec_type) { 4512 case SEC_BSS: 4513 return LIBBPF_MAP_BSS; 4514 case SEC_DATA: 4515 return LIBBPF_MAP_DATA; 4516 case SEC_RODATA: 4517 return LIBBPF_MAP_RODATA; 4518 default: 4519 return LIBBPF_MAP_UNSPEC; 4520 } 4521 } 4522 4523 static int bpf_prog_compute_hash(struct bpf_program *prog) 4524 { 4525 struct bpf_insn *purged; 4526 int i, err = 0; 4527 4528 purged = calloc(prog->insns_cnt, BPF_INSN_SZ); 4529 if (!purged) 4530 return -ENOMEM; 4531 4532 /* If relocations have been done, the map_fd needs to be 4533 * discarded for the digest calculation. 4534 */ 4535 for (i = 0; i < prog->insns_cnt; i++) { 4536 purged[i] = prog->insns[i]; 4537 if (purged[i].code == (BPF_LD | BPF_IMM | BPF_DW) && 4538 (purged[i].src_reg == BPF_PSEUDO_MAP_FD || 4539 purged[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { 4540 purged[i].imm = 0; 4541 i++; 4542 if (i >= prog->insns_cnt || 4543 prog->insns[i].code != 0 || 4544 prog->insns[i].dst_reg != 0 || 4545 prog->insns[i].src_reg != 0 || 4546 prog->insns[i].off != 0) { 4547 err = -EINVAL; 4548 goto out; 4549 } 4550 purged[i] = prog->insns[i]; 4551 purged[i].imm = 0; 4552 } 4553 } 4554 libbpf_sha256(purged, prog->insns_cnt * sizeof(struct bpf_insn), 4555 prog->hash); 4556 out: 4557 free(purged); 4558 return err; 4559 } 4560 4561 static int bpf_program__record_reloc(struct bpf_program *prog, 4562 struct reloc_desc *reloc_desc, 4563 __u32 insn_idx, const char *sym_name, 4564 const Elf64_Sym *sym, const Elf64_Rel *rel) 4565 { 4566 struct bpf_insn *insn = &prog->insns[insn_idx]; 4567 size_t map_idx, nr_maps = prog->obj->nr_maps; 4568 struct bpf_object *obj = prog->obj; 4569 __u32 shdr_idx = sym->st_shndx; 4570 enum libbpf_map_type type; 4571 const char *sym_sec_name; 4572 struct bpf_map *map; 4573 4574 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4575 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4576 prog->name, sym_name, insn_idx, insn->code); 4577 return -LIBBPF_ERRNO__RELOC; 4578 } 4579 4580 if (sym_is_extern(sym)) { 4581 int sym_idx = ELF64_R_SYM(rel->r_info); 4582 int i, n = obj->nr_extern; 4583 struct extern_desc *ext; 4584 4585 for (i = 0; i < n; i++) { 4586 ext = &obj->externs[i]; 4587 if (ext->sym_idx == sym_idx) 4588 break; 4589 } 4590 if (i >= n) { 4591 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4592 prog->name, sym_name, sym_idx); 4593 return -LIBBPF_ERRNO__RELOC; 4594 } 4595 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4596 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4597 if (insn->code == (BPF_JMP | BPF_CALL)) 4598 reloc_desc->type = RELO_EXTERN_CALL; 4599 else 4600 reloc_desc->type = RELO_EXTERN_LD64; 4601 reloc_desc->insn_idx = insn_idx; 4602 reloc_desc->ext_idx = i; 4603 return 0; 4604 } 4605 4606 /* sub-program call relocation */ 4607 if (is_call_insn(insn)) { 4608 if (insn->src_reg != BPF_PSEUDO_CALL) { 4609 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4610 return -LIBBPF_ERRNO__RELOC; 4611 } 4612 /* text_shndx can be 0, if no default "main" program exists */ 4613 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4614 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4615 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4616 prog->name, sym_name, sym_sec_name); 4617 return -LIBBPF_ERRNO__RELOC; 4618 } 4619 if (sym->st_value % BPF_INSN_SZ) { 4620 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4621 prog->name, sym_name, (size_t)sym->st_value); 4622 return -LIBBPF_ERRNO__RELOC; 4623 } 4624 reloc_desc->type = RELO_CALL; 4625 reloc_desc->insn_idx = insn_idx; 4626 reloc_desc->sym_off = sym->st_value; 4627 return 0; 4628 } 4629 4630 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4631 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4632 prog->name, sym_name, shdr_idx); 4633 return -LIBBPF_ERRNO__RELOC; 4634 } 4635 4636 /* loading subprog addresses */ 4637 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4638 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4639 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4640 */ 4641 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4642 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4643 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4644 return -LIBBPF_ERRNO__RELOC; 4645 } 4646 4647 reloc_desc->type = RELO_SUBPROG_ADDR; 4648 reloc_desc->insn_idx = insn_idx; 4649 reloc_desc->sym_off = sym->st_value; 4650 return 0; 4651 } 4652 4653 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4654 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4655 4656 /* arena data relocation */ 4657 if (shdr_idx == obj->efile.arena_data_shndx) { 4658 if (obj->arena_map_idx < 0) { 4659 pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n", 4660 prog->name, insn_idx); 4661 return -LIBBPF_ERRNO__RELOC; 4662 } 4663 reloc_desc->type = RELO_DATA; 4664 reloc_desc->insn_idx = insn_idx; 4665 reloc_desc->map_idx = obj->arena_map_idx; 4666 reloc_desc->sym_off = sym->st_value; 4667 4668 map = &obj->maps[obj->arena_map_idx]; 4669 pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n", 4670 prog->name, obj->arena_map_idx, map->name, map->sec_idx, 4671 map->sec_offset, insn_idx); 4672 return 0; 4673 } 4674 4675 /* jump table data relocation */ 4676 if (shdr_idx == obj->efile.jumptables_data_shndx) { 4677 reloc_desc->type = RELO_INSN_ARRAY; 4678 reloc_desc->insn_idx = insn_idx; 4679 reloc_desc->map_idx = -1; 4680 reloc_desc->sym_off = sym->st_value; 4681 reloc_desc->sym_size = sym->st_size; 4682 return 0; 4683 } 4684 4685 /* generic map reference relocation */ 4686 if (type == LIBBPF_MAP_UNSPEC) { 4687 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4688 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4689 prog->name, sym_name, sym_sec_name); 4690 return -LIBBPF_ERRNO__RELOC; 4691 } 4692 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4693 map = &obj->maps[map_idx]; 4694 if (map->libbpf_type != type || 4695 map->sec_idx != sym->st_shndx || 4696 map->sec_offset != sym->st_value) 4697 continue; 4698 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4699 prog->name, map_idx, map->name, map->sec_idx, 4700 map->sec_offset, insn_idx); 4701 break; 4702 } 4703 if (map_idx >= nr_maps) { 4704 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4705 prog->name, sym_sec_name, (size_t)sym->st_value); 4706 return -LIBBPF_ERRNO__RELOC; 4707 } 4708 reloc_desc->type = RELO_LD64; 4709 reloc_desc->insn_idx = insn_idx; 4710 reloc_desc->map_idx = map_idx; 4711 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4712 return 0; 4713 } 4714 4715 /* global data map relocation */ 4716 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4717 pr_warn("prog '%s': bad data relo against section '%s'\n", 4718 prog->name, sym_sec_name); 4719 return -LIBBPF_ERRNO__RELOC; 4720 } 4721 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4722 map = &obj->maps[map_idx]; 4723 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4724 continue; 4725 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4726 prog->name, map_idx, map->name, map->sec_idx, 4727 map->sec_offset, insn_idx); 4728 break; 4729 } 4730 if (map_idx >= nr_maps) { 4731 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4732 prog->name, sym_sec_name); 4733 return -LIBBPF_ERRNO__RELOC; 4734 } 4735 4736 reloc_desc->type = RELO_DATA; 4737 reloc_desc->insn_idx = insn_idx; 4738 reloc_desc->map_idx = map_idx; 4739 reloc_desc->sym_off = sym->st_value; 4740 return 0; 4741 } 4742 4743 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4744 { 4745 return insn_idx >= prog->sec_insn_off && 4746 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4747 } 4748 4749 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4750 size_t sec_idx, size_t insn_idx) 4751 { 4752 int l = 0, r = obj->nr_programs - 1, m; 4753 struct bpf_program *prog; 4754 4755 if (!obj->nr_programs) 4756 return NULL; 4757 4758 while (l < r) { 4759 m = l + (r - l + 1) / 2; 4760 prog = &obj->programs[m]; 4761 4762 if (prog->sec_idx < sec_idx || 4763 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4764 l = m; 4765 else 4766 r = m - 1; 4767 } 4768 /* matching program could be at index l, but it still might be the 4769 * wrong one, so we need to double check conditions for the last time 4770 */ 4771 prog = &obj->programs[l]; 4772 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4773 return prog; 4774 return NULL; 4775 } 4776 4777 static int 4778 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4779 { 4780 const char *relo_sec_name, *sec_name; 4781 size_t sec_idx = shdr->sh_info, sym_idx; 4782 struct bpf_program *prog; 4783 struct reloc_desc *relos; 4784 int err, i, nrels; 4785 const char *sym_name; 4786 __u32 insn_idx; 4787 Elf_Scn *scn; 4788 Elf_Data *scn_data; 4789 Elf64_Sym *sym; 4790 Elf64_Rel *rel; 4791 4792 if (sec_idx >= obj->efile.sec_cnt) 4793 return -EINVAL; 4794 4795 scn = elf_sec_by_idx(obj, sec_idx); 4796 scn_data = elf_sec_data(obj, scn); 4797 if (!scn_data) 4798 return -LIBBPF_ERRNO__FORMAT; 4799 4800 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4801 sec_name = elf_sec_name(obj, scn); 4802 if (!relo_sec_name || !sec_name) 4803 return -EINVAL; 4804 4805 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4806 relo_sec_name, sec_idx, sec_name); 4807 nrels = shdr->sh_size / shdr->sh_entsize; 4808 4809 for (i = 0; i < nrels; i++) { 4810 rel = elf_rel_by_idx(data, i); 4811 if (!rel) { 4812 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4813 return -LIBBPF_ERRNO__FORMAT; 4814 } 4815 4816 sym_idx = ELF64_R_SYM(rel->r_info); 4817 sym = elf_sym_by_idx(obj, sym_idx); 4818 if (!sym) { 4819 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4820 relo_sec_name, sym_idx, i); 4821 return -LIBBPF_ERRNO__FORMAT; 4822 } 4823 4824 if (sym->st_shndx >= obj->efile.sec_cnt) { 4825 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4826 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4827 return -LIBBPF_ERRNO__FORMAT; 4828 } 4829 4830 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4831 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4832 relo_sec_name, (size_t)rel->r_offset, i); 4833 return -LIBBPF_ERRNO__FORMAT; 4834 } 4835 4836 insn_idx = rel->r_offset / BPF_INSN_SZ; 4837 /* relocations against static functions are recorded as 4838 * relocations against the section that contains a function; 4839 * in such case, symbol will be STT_SECTION and sym.st_name 4840 * will point to empty string (0), so fetch section name 4841 * instead 4842 */ 4843 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4844 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4845 else 4846 sym_name = elf_sym_str(obj, sym->st_name); 4847 sym_name = sym_name ?: "<?"; 4848 4849 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4850 relo_sec_name, i, insn_idx, sym_name); 4851 4852 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4853 if (!prog) { 4854 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4855 relo_sec_name, i, sec_name, insn_idx); 4856 continue; 4857 } 4858 4859 relos = libbpf_reallocarray(prog->reloc_desc, 4860 prog->nr_reloc + 1, sizeof(*relos)); 4861 if (!relos) 4862 return -ENOMEM; 4863 prog->reloc_desc = relos; 4864 4865 /* adjust insn_idx to local BPF program frame of reference */ 4866 insn_idx -= prog->sec_insn_off; 4867 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4868 insn_idx, sym_name, sym, rel); 4869 if (err) 4870 return err; 4871 4872 prog->nr_reloc++; 4873 } 4874 return 0; 4875 } 4876 4877 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4878 { 4879 int id; 4880 4881 if (!obj->btf) 4882 return -ENOENT; 4883 4884 /* if it's BTF-defined map, we don't need to search for type IDs. 4885 * For struct_ops map, it does not need btf_key_type_id and 4886 * btf_value_type_id. 4887 */ 4888 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4889 return 0; 4890 4891 /* 4892 * LLVM annotates global data differently in BTF, that is, 4893 * only as '.data', '.bss' or '.rodata'. 4894 */ 4895 if (!bpf_map__is_internal(map)) 4896 return -ENOENT; 4897 4898 id = btf__find_by_name(obj->btf, map->real_name); 4899 if (id < 0) 4900 return id; 4901 4902 map->btf_key_type_id = 0; 4903 map->btf_value_type_id = id; 4904 return 0; 4905 } 4906 4907 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4908 { 4909 char file[PATH_MAX], buff[4096]; 4910 FILE *fp; 4911 __u32 val; 4912 int err; 4913 4914 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4915 memset(info, 0, sizeof(*info)); 4916 4917 fp = fopen(file, "re"); 4918 if (!fp) { 4919 err = -errno; 4920 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4921 errstr(err)); 4922 return err; 4923 } 4924 4925 while (fgets(buff, sizeof(buff), fp)) { 4926 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4927 info->type = val; 4928 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4929 info->key_size = val; 4930 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4931 info->value_size = val; 4932 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4933 info->max_entries = val; 4934 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4935 info->map_flags = val; 4936 } 4937 4938 fclose(fp); 4939 4940 return 0; 4941 } 4942 4943 static bool map_is_created(const struct bpf_map *map) 4944 { 4945 return map->obj->state >= OBJ_PREPARED || map->reused; 4946 } 4947 4948 bool bpf_map__autocreate(const struct bpf_map *map) 4949 { 4950 return map->autocreate; 4951 } 4952 4953 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4954 { 4955 if (map_is_created(map)) 4956 return libbpf_err(-EBUSY); 4957 4958 map->autocreate = autocreate; 4959 return 0; 4960 } 4961 4962 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4963 { 4964 if (!bpf_map__is_struct_ops(map)) 4965 return libbpf_err(-EINVAL); 4966 4967 map->autoattach = autoattach; 4968 return 0; 4969 } 4970 4971 bool bpf_map__autoattach(const struct bpf_map *map) 4972 { 4973 return map->autoattach; 4974 } 4975 4976 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4977 { 4978 struct bpf_map_info info; 4979 __u32 len = sizeof(info), name_len; 4980 int new_fd, err; 4981 char *new_name; 4982 4983 memset(&info, 0, len); 4984 err = bpf_map_get_info_by_fd(fd, &info, &len); 4985 if (err && errno == EINVAL) 4986 err = bpf_get_map_info_from_fdinfo(fd, &info); 4987 if (err) 4988 return libbpf_err(err); 4989 4990 name_len = strlen(info.name); 4991 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4992 new_name = strdup(map->name); 4993 else 4994 new_name = strdup(info.name); 4995 4996 if (!new_name) 4997 return libbpf_err(-errno); 4998 4999 /* 5000 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 5001 * This is similar to what we do in ensure_good_fd(), but without 5002 * closing original FD. 5003 */ 5004 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 5005 if (new_fd < 0) { 5006 err = -errno; 5007 goto err_free_new_name; 5008 } 5009 5010 err = reuse_fd(map->fd, new_fd); 5011 if (err) 5012 goto err_free_new_name; 5013 5014 free(map->name); 5015 5016 map->name = new_name; 5017 map->def.type = info.type; 5018 map->def.key_size = info.key_size; 5019 map->def.value_size = info.value_size; 5020 map->def.max_entries = info.max_entries; 5021 map->def.map_flags = info.map_flags; 5022 map->btf_key_type_id = info.btf_key_type_id; 5023 map->btf_value_type_id = info.btf_value_type_id; 5024 map->reused = true; 5025 map->map_extra = info.map_extra; 5026 5027 return 0; 5028 5029 err_free_new_name: 5030 free(new_name); 5031 return libbpf_err(err); 5032 } 5033 5034 __u32 bpf_map__max_entries(const struct bpf_map *map) 5035 { 5036 return map->def.max_entries; 5037 } 5038 5039 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 5040 { 5041 if (!bpf_map_type__is_map_in_map(map->def.type)) 5042 return errno = EINVAL, NULL; 5043 5044 return map->inner_map; 5045 } 5046 5047 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 5048 { 5049 if (map_is_created(map)) 5050 return libbpf_err(-EBUSY); 5051 5052 map->def.max_entries = max_entries; 5053 5054 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 5055 if (map_is_ringbuf(map)) 5056 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 5057 5058 return 0; 5059 } 5060 5061 static int bpf_object_prepare_token(struct bpf_object *obj) 5062 { 5063 const char *bpffs_path; 5064 int bpffs_fd = -1, token_fd, err; 5065 bool mandatory; 5066 enum libbpf_print_level level; 5067 5068 /* token is explicitly prevented */ 5069 if (obj->token_path && obj->token_path[0] == '\0') { 5070 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 5071 return 0; 5072 } 5073 5074 mandatory = obj->token_path != NULL; 5075 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 5076 5077 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 5078 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 5079 if (bpffs_fd < 0) { 5080 err = -errno; 5081 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 5082 obj->name, errstr(err), bpffs_path, 5083 mandatory ? "" : ", skipping optional step..."); 5084 return mandatory ? err : 0; 5085 } 5086 5087 token_fd = bpf_token_create(bpffs_fd, 0); 5088 close(bpffs_fd); 5089 if (token_fd < 0) { 5090 if (!mandatory && token_fd == -ENOENT) { 5091 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 5092 obj->name, bpffs_path); 5093 return 0; 5094 } 5095 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 5096 obj->name, token_fd, bpffs_path, 5097 mandatory ? "" : ", skipping optional step..."); 5098 return mandatory ? token_fd : 0; 5099 } 5100 5101 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 5102 if (!obj->feat_cache) { 5103 close(token_fd); 5104 return -ENOMEM; 5105 } 5106 5107 obj->token_fd = token_fd; 5108 obj->feat_cache->token_fd = token_fd; 5109 5110 return 0; 5111 } 5112 5113 static int 5114 bpf_object__probe_loading(struct bpf_object *obj) 5115 { 5116 struct bpf_insn insns[] = { 5117 BPF_MOV64_IMM(BPF_REG_0, 0), 5118 BPF_EXIT_INSN(), 5119 }; 5120 int ret, insn_cnt = ARRAY_SIZE(insns); 5121 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5122 .token_fd = obj->token_fd, 5123 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5124 ); 5125 5126 if (obj->gen_loader) 5127 return 0; 5128 5129 ret = bump_rlimit_memlock(); 5130 if (ret) 5131 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5132 errstr(ret)); 5133 5134 /* make sure basic loading works */ 5135 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5136 if (ret < 0) 5137 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5138 if (ret < 0) { 5139 ret = errno; 5140 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5141 __func__, errstr(ret)); 5142 return -ret; 5143 } 5144 close(ret); 5145 5146 return 0; 5147 } 5148 5149 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5150 { 5151 if (obj->gen_loader) 5152 /* To generate loader program assume the latest kernel 5153 * to avoid doing extra prog_load, map_create syscalls. 5154 */ 5155 return true; 5156 5157 if (obj->token_fd) 5158 return feat_supported(obj->feat_cache, feat_id); 5159 5160 return feat_supported(NULL, feat_id); 5161 } 5162 5163 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5164 { 5165 struct bpf_map_info map_info; 5166 __u32 map_info_len = sizeof(map_info); 5167 int err; 5168 5169 memset(&map_info, 0, map_info_len); 5170 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5171 if (err && errno == EINVAL) 5172 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5173 if (err) { 5174 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5175 errstr(err)); 5176 return false; 5177 } 5178 5179 /* 5180 * bpf_get_map_info_by_fd() for DEVMAP will always return flags with 5181 * BPF_F_RDONLY_PROG set, but it generally is not set at map creation time. 5182 * Thus, ignore the BPF_F_RDONLY_PROG flag in the flags returned from 5183 * bpf_get_map_info_by_fd() when checking for compatibility with an 5184 * existing DEVMAP. 5185 */ 5186 if (map->def.type == BPF_MAP_TYPE_DEVMAP || map->def.type == BPF_MAP_TYPE_DEVMAP_HASH) 5187 map_info.map_flags &= ~BPF_F_RDONLY_PROG; 5188 5189 return (map_info.type == map->def.type && 5190 map_info.key_size == map->def.key_size && 5191 map_info.value_size == map->def.value_size && 5192 map_info.max_entries == map->def.max_entries && 5193 map_info.map_flags == map->def.map_flags && 5194 map_info.map_extra == map->map_extra); 5195 } 5196 5197 static int 5198 bpf_object__reuse_map(struct bpf_map *map) 5199 { 5200 int err, pin_fd; 5201 5202 pin_fd = bpf_obj_get(map->pin_path); 5203 if (pin_fd < 0) { 5204 err = -errno; 5205 if (err == -ENOENT) { 5206 pr_debug("found no pinned map to reuse at '%s'\n", 5207 map->pin_path); 5208 return 0; 5209 } 5210 5211 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5212 map->pin_path, errstr(err)); 5213 return err; 5214 } 5215 5216 if (!map_is_reuse_compat(map, pin_fd)) { 5217 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5218 map->pin_path); 5219 close(pin_fd); 5220 return -EINVAL; 5221 } 5222 5223 err = bpf_map__reuse_fd(map, pin_fd); 5224 close(pin_fd); 5225 if (err) 5226 return err; 5227 5228 map->pinned = true; 5229 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5230 5231 return 0; 5232 } 5233 5234 static int 5235 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5236 { 5237 enum libbpf_map_type map_type = map->libbpf_type; 5238 int err, zero = 0; 5239 size_t mmap_sz; 5240 5241 if (obj->gen_loader) { 5242 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5243 map->mmaped, map->def.value_size); 5244 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5245 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5246 return 0; 5247 } 5248 5249 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5250 if (err) { 5251 err = -errno; 5252 pr_warn("map '%s': failed to set initial contents: %s\n", 5253 bpf_map__name(map), errstr(err)); 5254 return err; 5255 } 5256 5257 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5258 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5259 err = bpf_map_freeze(map->fd); 5260 if (err) { 5261 err = -errno; 5262 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5263 bpf_map__name(map), errstr(err)); 5264 return err; 5265 } 5266 } 5267 5268 /* Remap anonymous mmap()-ed "map initialization image" as 5269 * a BPF map-backed mmap()-ed memory, but preserving the same 5270 * memory address. This will cause kernel to change process' 5271 * page table to point to a different piece of kernel memory, 5272 * but from userspace point of view memory address (and its 5273 * contents, being identical at this point) will stay the 5274 * same. This mapping will be released by bpf_object__close() 5275 * as per normal clean up procedure. 5276 */ 5277 mmap_sz = bpf_map_mmap_sz(map); 5278 if (map->def.map_flags & BPF_F_MMAPABLE) { 5279 void *mmaped; 5280 int prot; 5281 5282 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5283 prot = PROT_READ; 5284 else 5285 prot = PROT_READ | PROT_WRITE; 5286 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5287 if (mmaped == MAP_FAILED) { 5288 err = -errno; 5289 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5290 bpf_map__name(map), errstr(err)); 5291 return err; 5292 } 5293 map->mmaped = mmaped; 5294 } else if (map->mmaped) { 5295 munmap(map->mmaped, mmap_sz); 5296 map->mmaped = NULL; 5297 } 5298 5299 return 0; 5300 } 5301 5302 static void bpf_map__destroy(struct bpf_map *map); 5303 5304 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5305 { 5306 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5307 struct bpf_map_def *def = &map->def; 5308 const char *map_name = NULL; 5309 int err = 0, map_fd; 5310 5311 if (kernel_supports(obj, FEAT_PROG_NAME)) 5312 map_name = map->name; 5313 create_attr.map_ifindex = map->map_ifindex; 5314 create_attr.map_flags = def->map_flags; 5315 create_attr.numa_node = map->numa_node; 5316 create_attr.map_extra = map->map_extra; 5317 create_attr.token_fd = obj->token_fd; 5318 if (obj->token_fd) 5319 create_attr.map_flags |= BPF_F_TOKEN_FD; 5320 if (map->excl_prog) { 5321 err = bpf_prog_compute_hash(map->excl_prog); 5322 if (err) 5323 return err; 5324 5325 create_attr.excl_prog_hash = map->excl_prog->hash; 5326 create_attr.excl_prog_hash_size = SHA256_DIGEST_LENGTH; 5327 } 5328 5329 if (bpf_map__is_struct_ops(map)) { 5330 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5331 if (map->mod_btf_fd >= 0) { 5332 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5333 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5334 } 5335 } 5336 5337 if (obj->btf && btf__fd(obj->btf) >= 0) { 5338 create_attr.btf_fd = btf__fd(obj->btf); 5339 create_attr.btf_key_type_id = map->btf_key_type_id; 5340 create_attr.btf_value_type_id = map->btf_value_type_id; 5341 } 5342 5343 if (bpf_map_type__is_map_in_map(def->type)) { 5344 if (map->inner_map) { 5345 err = map_set_def_max_entries(map->inner_map); 5346 if (err) 5347 return err; 5348 err = bpf_object__create_map(obj, map->inner_map, true); 5349 if (err) { 5350 pr_warn("map '%s': failed to create inner map: %s\n", 5351 map->name, errstr(err)); 5352 return err; 5353 } 5354 map->inner_map_fd = map->inner_map->fd; 5355 } 5356 if (map->inner_map_fd >= 0) 5357 create_attr.inner_map_fd = map->inner_map_fd; 5358 } 5359 5360 switch (def->type) { 5361 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5362 case BPF_MAP_TYPE_CGROUP_ARRAY: 5363 case BPF_MAP_TYPE_STACK_TRACE: 5364 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5365 case BPF_MAP_TYPE_HASH_OF_MAPS: 5366 case BPF_MAP_TYPE_DEVMAP: 5367 case BPF_MAP_TYPE_DEVMAP_HASH: 5368 case BPF_MAP_TYPE_CPUMAP: 5369 case BPF_MAP_TYPE_XSKMAP: 5370 case BPF_MAP_TYPE_SOCKMAP: 5371 case BPF_MAP_TYPE_SOCKHASH: 5372 case BPF_MAP_TYPE_QUEUE: 5373 case BPF_MAP_TYPE_STACK: 5374 case BPF_MAP_TYPE_ARENA: 5375 create_attr.btf_fd = 0; 5376 create_attr.btf_key_type_id = 0; 5377 create_attr.btf_value_type_id = 0; 5378 map->btf_key_type_id = 0; 5379 map->btf_value_type_id = 0; 5380 break; 5381 case BPF_MAP_TYPE_STRUCT_OPS: 5382 create_attr.btf_value_type_id = 0; 5383 break; 5384 default: 5385 break; 5386 } 5387 5388 if (obj->gen_loader) { 5389 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5390 def->key_size, def->value_size, def->max_entries, 5391 &create_attr, is_inner ? -1 : map - obj->maps); 5392 /* We keep pretenting we have valid FD to pass various fd >= 0 5393 * checks by just keeping original placeholder FDs in place. 5394 * See bpf_object__add_map() comment. 5395 * This placeholder fd will not be used with any syscall and 5396 * will be reset to -1 eventually. 5397 */ 5398 map_fd = map->fd; 5399 } else { 5400 map_fd = bpf_map_create(def->type, map_name, 5401 def->key_size, def->value_size, 5402 def->max_entries, &create_attr); 5403 } 5404 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5405 err = -errno; 5406 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5407 map->name, errstr(err)); 5408 create_attr.btf_fd = 0; 5409 create_attr.btf_key_type_id = 0; 5410 create_attr.btf_value_type_id = 0; 5411 map->btf_key_type_id = 0; 5412 map->btf_value_type_id = 0; 5413 map_fd = bpf_map_create(def->type, map_name, 5414 def->key_size, def->value_size, 5415 def->max_entries, &create_attr); 5416 } 5417 5418 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5419 if (obj->gen_loader) 5420 map->inner_map->fd = -1; 5421 bpf_map__destroy(map->inner_map); 5422 zfree(&map->inner_map); 5423 } 5424 5425 if (map_fd < 0) 5426 return map_fd; 5427 5428 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5429 if (map->fd == map_fd) 5430 return 0; 5431 5432 /* Keep placeholder FD value but now point it to the BPF map object. 5433 * This way everything that relied on this map's FD (e.g., relocated 5434 * ldimm64 instructions) will stay valid and won't need adjustments. 5435 * map->fd stays valid but now point to what map_fd points to. 5436 */ 5437 return reuse_fd(map->fd, map_fd); 5438 } 5439 5440 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5441 { 5442 const struct bpf_map *targ_map; 5443 unsigned int i; 5444 int fd, err = 0; 5445 5446 for (i = 0; i < map->init_slots_sz; i++) { 5447 if (!map->init_slots[i]) 5448 continue; 5449 5450 targ_map = map->init_slots[i]; 5451 fd = targ_map->fd; 5452 5453 if (obj->gen_loader) { 5454 bpf_gen__populate_outer_map(obj->gen_loader, 5455 map - obj->maps, i, 5456 targ_map - obj->maps); 5457 } else { 5458 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5459 } 5460 if (err) { 5461 err = -errno; 5462 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5463 map->name, i, targ_map->name, fd, errstr(err)); 5464 return err; 5465 } 5466 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5467 map->name, i, targ_map->name, fd); 5468 } 5469 5470 zfree(&map->init_slots); 5471 map->init_slots_sz = 0; 5472 5473 return 0; 5474 } 5475 5476 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5477 { 5478 const struct bpf_program *targ_prog; 5479 unsigned int i; 5480 int fd, err; 5481 5482 if (obj->gen_loader) 5483 return -ENOTSUP; 5484 5485 for (i = 0; i < map->init_slots_sz; i++) { 5486 if (!map->init_slots[i]) 5487 continue; 5488 5489 targ_prog = map->init_slots[i]; 5490 fd = bpf_program__fd(targ_prog); 5491 5492 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5493 if (err) { 5494 err = -errno; 5495 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5496 map->name, i, targ_prog->name, fd, errstr(err)); 5497 return err; 5498 } 5499 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5500 map->name, i, targ_prog->name, fd); 5501 } 5502 5503 zfree(&map->init_slots); 5504 map->init_slots_sz = 0; 5505 5506 return 0; 5507 } 5508 5509 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5510 { 5511 struct bpf_map *map; 5512 int i, err; 5513 5514 for (i = 0; i < obj->nr_maps; i++) { 5515 map = &obj->maps[i]; 5516 5517 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5518 continue; 5519 5520 err = init_prog_array_slots(obj, map); 5521 if (err < 0) 5522 return err; 5523 } 5524 return 0; 5525 } 5526 5527 static int map_set_def_max_entries(struct bpf_map *map) 5528 { 5529 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5530 int nr_cpus; 5531 5532 nr_cpus = libbpf_num_possible_cpus(); 5533 if (nr_cpus < 0) { 5534 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5535 map->name, nr_cpus); 5536 return nr_cpus; 5537 } 5538 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5539 map->def.max_entries = nr_cpus; 5540 } 5541 5542 return 0; 5543 } 5544 5545 static int 5546 bpf_object__create_maps(struct bpf_object *obj) 5547 { 5548 struct bpf_map *map; 5549 unsigned int i, j; 5550 int err; 5551 bool retried; 5552 5553 for (i = 0; i < obj->nr_maps; i++) { 5554 map = &obj->maps[i]; 5555 5556 /* To support old kernels, we skip creating global data maps 5557 * (.rodata, .data, .kconfig, etc); later on, during program 5558 * loading, if we detect that at least one of the to-be-loaded 5559 * programs is referencing any global data map, we'll error 5560 * out with program name and relocation index logged. 5561 * This approach allows to accommodate Clang emitting 5562 * unnecessary .rodata.str1.1 sections for string literals, 5563 * but also it allows to have CO-RE applications that use 5564 * global variables in some of BPF programs, but not others. 5565 * If those global variable-using programs are not loaded at 5566 * runtime due to bpf_program__set_autoload(prog, false), 5567 * bpf_object loading will succeed just fine even on old 5568 * kernels. 5569 */ 5570 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5571 map->autocreate = false; 5572 5573 if (!map->autocreate) { 5574 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5575 continue; 5576 } 5577 5578 err = map_set_def_max_entries(map); 5579 if (err) 5580 goto err_out; 5581 5582 retried = false; 5583 retry: 5584 if (map->pin_path) { 5585 err = bpf_object__reuse_map(map); 5586 if (err) { 5587 pr_warn("map '%s': error reusing pinned map\n", 5588 map->name); 5589 goto err_out; 5590 } 5591 if (retried && map->fd < 0) { 5592 pr_warn("map '%s': cannot find pinned map\n", 5593 map->name); 5594 err = -ENOENT; 5595 goto err_out; 5596 } 5597 } 5598 5599 if (map->reused) { 5600 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5601 map->name, map->fd); 5602 } else { 5603 err = bpf_object__create_map(obj, map, false); 5604 if (err) 5605 goto err_out; 5606 5607 pr_debug("map '%s': created successfully, fd=%d\n", 5608 map->name, map->fd); 5609 5610 if (bpf_map__is_internal(map)) { 5611 err = bpf_object__populate_internal_map(obj, map); 5612 if (err < 0) 5613 goto err_out; 5614 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5615 map->mmaped = mmap((void *)(long)map->map_extra, 5616 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5617 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5618 map->fd, 0); 5619 if (map->mmaped == MAP_FAILED) { 5620 err = -errno; 5621 map->mmaped = NULL; 5622 pr_warn("map '%s': failed to mmap arena: %s\n", 5623 map->name, errstr(err)); 5624 return err; 5625 } 5626 if (obj->arena_data) { 5627 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5628 zfree(&obj->arena_data); 5629 } 5630 } 5631 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5632 err = init_map_in_map_slots(obj, map); 5633 if (err < 0) 5634 goto err_out; 5635 } 5636 } 5637 5638 if (map->pin_path && !map->pinned) { 5639 err = bpf_map__pin(map, NULL); 5640 if (err) { 5641 if (!retried && err == -EEXIST) { 5642 retried = true; 5643 goto retry; 5644 } 5645 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5646 map->name, map->pin_path, errstr(err)); 5647 goto err_out; 5648 } 5649 } 5650 } 5651 5652 return 0; 5653 5654 err_out: 5655 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5656 pr_perm_msg(err); 5657 for (j = 0; j < i; j++) 5658 zclose(obj->maps[j].fd); 5659 return err; 5660 } 5661 5662 static bool bpf_core_is_flavor_sep(const char *s) 5663 { 5664 /* check X___Y name pattern, where X and Y are not underscores */ 5665 return s[0] != '_' && /* X */ 5666 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5667 s[4] != '_'; /* Y */ 5668 } 5669 5670 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5671 * before last triple underscore. Struct name part after last triple 5672 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5673 */ 5674 size_t bpf_core_essential_name_len(const char *name) 5675 { 5676 size_t n = strlen(name); 5677 int i; 5678 5679 for (i = n - 5; i >= 0; i--) { 5680 if (bpf_core_is_flavor_sep(name + i)) 5681 return i + 1; 5682 } 5683 return n; 5684 } 5685 5686 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5687 { 5688 if (!cands) 5689 return; 5690 5691 free(cands->cands); 5692 free(cands); 5693 } 5694 5695 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5696 size_t local_essent_len, 5697 const struct btf *targ_btf, 5698 const char *targ_btf_name, 5699 int targ_start_id, 5700 struct bpf_core_cand_list *cands) 5701 { 5702 struct bpf_core_cand *new_cands, *cand; 5703 const struct btf_type *t, *local_t; 5704 const char *targ_name, *local_name; 5705 size_t targ_essent_len; 5706 int n, i; 5707 5708 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5709 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5710 5711 n = btf__type_cnt(targ_btf); 5712 for (i = targ_start_id; i < n; i++) { 5713 t = btf__type_by_id(targ_btf, i); 5714 if (!btf_kind_core_compat(t, local_t)) 5715 continue; 5716 5717 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5718 if (str_is_empty(targ_name)) 5719 continue; 5720 5721 targ_essent_len = bpf_core_essential_name_len(targ_name); 5722 if (targ_essent_len != local_essent_len) 5723 continue; 5724 5725 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5726 continue; 5727 5728 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5729 local_cand->id, btf_kind_str(local_t), 5730 local_name, i, btf_kind_str(t), targ_name, 5731 targ_btf_name); 5732 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5733 sizeof(*cands->cands)); 5734 if (!new_cands) 5735 return -ENOMEM; 5736 5737 cand = &new_cands[cands->len]; 5738 cand->btf = targ_btf; 5739 cand->id = i; 5740 5741 cands->cands = new_cands; 5742 cands->len++; 5743 } 5744 return 0; 5745 } 5746 5747 static int load_module_btfs(struct bpf_object *obj) 5748 { 5749 struct bpf_btf_info info; 5750 struct module_btf *mod_btf; 5751 struct btf *btf; 5752 char name[64]; 5753 __u32 id = 0, len; 5754 int err, fd; 5755 5756 if (obj->btf_modules_loaded) 5757 return 0; 5758 5759 if (obj->gen_loader) 5760 return 0; 5761 5762 /* don't do this again, even if we find no module BTFs */ 5763 obj->btf_modules_loaded = true; 5764 5765 /* kernel too old to support module BTFs */ 5766 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5767 return 0; 5768 5769 while (true) { 5770 err = bpf_btf_get_next_id(id, &id); 5771 if (err && errno == ENOENT) 5772 return 0; 5773 if (err && errno == EPERM) { 5774 pr_debug("skipping module BTFs loading, missing privileges\n"); 5775 return 0; 5776 } 5777 if (err) { 5778 err = -errno; 5779 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5780 return err; 5781 } 5782 5783 fd = bpf_btf_get_fd_by_id(id); 5784 if (fd < 0) { 5785 if (errno == ENOENT) 5786 continue; /* expected race: BTF was unloaded */ 5787 err = -errno; 5788 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5789 return err; 5790 } 5791 5792 len = sizeof(info); 5793 memset(&info, 0, sizeof(info)); 5794 info.name = ptr_to_u64(name); 5795 info.name_len = sizeof(name); 5796 5797 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5798 if (err) { 5799 err = -errno; 5800 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5801 goto err_out; 5802 } 5803 5804 /* ignore non-module BTFs */ 5805 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5806 close(fd); 5807 continue; 5808 } 5809 5810 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5811 err = libbpf_get_error(btf); 5812 if (err) { 5813 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5814 name, id, errstr(err)); 5815 goto err_out; 5816 } 5817 5818 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5819 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5820 if (err) 5821 goto err_out; 5822 5823 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5824 5825 mod_btf->btf = btf; 5826 mod_btf->id = id; 5827 mod_btf->fd = fd; 5828 mod_btf->name = strdup(name); 5829 if (!mod_btf->name) { 5830 err = -ENOMEM; 5831 goto err_out; 5832 } 5833 continue; 5834 5835 err_out: 5836 close(fd); 5837 return err; 5838 } 5839 5840 return 0; 5841 } 5842 5843 static struct bpf_core_cand_list * 5844 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5845 { 5846 struct bpf_core_cand local_cand = {}; 5847 struct bpf_core_cand_list *cands; 5848 const struct btf *main_btf; 5849 const struct btf_type *local_t; 5850 const char *local_name; 5851 size_t local_essent_len; 5852 int err, i; 5853 5854 local_cand.btf = local_btf; 5855 local_cand.id = local_type_id; 5856 local_t = btf__type_by_id(local_btf, local_type_id); 5857 if (!local_t) 5858 return ERR_PTR(-EINVAL); 5859 5860 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5861 if (str_is_empty(local_name)) 5862 return ERR_PTR(-EINVAL); 5863 local_essent_len = bpf_core_essential_name_len(local_name); 5864 5865 cands = calloc(1, sizeof(*cands)); 5866 if (!cands) 5867 return ERR_PTR(-ENOMEM); 5868 5869 /* Attempt to find target candidates in vmlinux BTF first */ 5870 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5871 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5872 if (err) 5873 goto err_out; 5874 5875 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5876 if (cands->len) 5877 return cands; 5878 5879 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5880 if (obj->btf_vmlinux_override) 5881 return cands; 5882 5883 /* now look through module BTFs, trying to still find candidates */ 5884 err = load_module_btfs(obj); 5885 if (err) 5886 goto err_out; 5887 5888 for (i = 0; i < obj->btf_module_cnt; i++) { 5889 err = bpf_core_add_cands(&local_cand, local_essent_len, 5890 obj->btf_modules[i].btf, 5891 obj->btf_modules[i].name, 5892 btf__type_cnt(obj->btf_vmlinux), 5893 cands); 5894 if (err) 5895 goto err_out; 5896 } 5897 5898 return cands; 5899 err_out: 5900 bpf_core_free_cands(cands); 5901 return ERR_PTR(err); 5902 } 5903 5904 /* Check local and target types for compatibility. This check is used for 5905 * type-based CO-RE relocations and follow slightly different rules than 5906 * field-based relocations. This function assumes that root types were already 5907 * checked for name match. Beyond that initial root-level name check, names 5908 * are completely ignored. Compatibility rules are as follows: 5909 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5910 * kind should match for local and target types (i.e., STRUCT is not 5911 * compatible with UNION); 5912 * - for ENUMs, the size is ignored; 5913 * - for INT, size and signedness are ignored; 5914 * - for ARRAY, dimensionality is ignored, element types are checked for 5915 * compatibility recursively; 5916 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5917 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5918 * - FUNC_PROTOs are compatible if they have compatible signature: same 5919 * number of input args and compatible return and argument types. 5920 * These rules are not set in stone and probably will be adjusted as we get 5921 * more experience with using BPF CO-RE relocations. 5922 */ 5923 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5924 const struct btf *targ_btf, __u32 targ_id) 5925 { 5926 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5927 } 5928 5929 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5930 const struct btf *targ_btf, __u32 targ_id) 5931 { 5932 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5933 } 5934 5935 static size_t bpf_core_hash_fn(const long key, void *ctx) 5936 { 5937 return key; 5938 } 5939 5940 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5941 { 5942 return k1 == k2; 5943 } 5944 5945 static int record_relo_core(struct bpf_program *prog, 5946 const struct bpf_core_relo *core_relo, int insn_idx) 5947 { 5948 struct reloc_desc *relos, *relo; 5949 5950 relos = libbpf_reallocarray(prog->reloc_desc, 5951 prog->nr_reloc + 1, sizeof(*relos)); 5952 if (!relos) 5953 return -ENOMEM; 5954 relo = &relos[prog->nr_reloc]; 5955 relo->type = RELO_CORE; 5956 relo->insn_idx = insn_idx; 5957 relo->core_relo = core_relo; 5958 prog->reloc_desc = relos; 5959 prog->nr_reloc++; 5960 return 0; 5961 } 5962 5963 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5964 { 5965 struct reloc_desc *relo; 5966 int i; 5967 5968 for (i = 0; i < prog->nr_reloc; i++) { 5969 relo = &prog->reloc_desc[i]; 5970 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5971 continue; 5972 5973 return relo->core_relo; 5974 } 5975 5976 return NULL; 5977 } 5978 5979 static int bpf_core_resolve_relo(struct bpf_program *prog, 5980 const struct bpf_core_relo *relo, 5981 int relo_idx, 5982 const struct btf *local_btf, 5983 struct hashmap *cand_cache, 5984 struct bpf_core_relo_res *targ_res) 5985 { 5986 struct bpf_core_spec specs_scratch[3] = {}; 5987 struct bpf_core_cand_list *cands = NULL; 5988 const char *prog_name = prog->name; 5989 const struct btf_type *local_type; 5990 const char *local_name; 5991 __u32 local_id = relo->type_id; 5992 int err; 5993 5994 local_type = btf__type_by_id(local_btf, local_id); 5995 if (!local_type) 5996 return -EINVAL; 5997 5998 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5999 if (!local_name) 6000 return -EINVAL; 6001 6002 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 6003 !hashmap__find(cand_cache, local_id, &cands)) { 6004 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 6005 if (IS_ERR(cands)) { 6006 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 6007 prog_name, relo_idx, local_id, btf_kind_str(local_type), 6008 local_name, PTR_ERR(cands)); 6009 return PTR_ERR(cands); 6010 } 6011 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 6012 if (err) { 6013 bpf_core_free_cands(cands); 6014 return err; 6015 } 6016 } 6017 6018 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 6019 targ_res); 6020 } 6021 6022 static int 6023 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6024 { 6025 const struct btf_ext_info_sec *sec; 6026 struct bpf_core_relo_res targ_res; 6027 const struct bpf_core_relo *rec; 6028 const struct btf_ext_info *seg; 6029 struct hashmap_entry *entry; 6030 struct hashmap *cand_cache = NULL; 6031 struct bpf_program *prog; 6032 struct bpf_insn *insn; 6033 const char *sec_name; 6034 int i, err = 0, insn_idx, sec_idx, sec_num; 6035 6036 if (obj->btf_ext->core_relo_info.len == 0) 6037 return 0; 6038 6039 if (targ_btf_path) { 6040 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6041 err = libbpf_get_error(obj->btf_vmlinux_override); 6042 if (err) { 6043 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 6044 return err; 6045 } 6046 } 6047 6048 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6049 if (IS_ERR(cand_cache)) { 6050 err = PTR_ERR(cand_cache); 6051 goto out; 6052 } 6053 6054 seg = &obj->btf_ext->core_relo_info; 6055 sec_num = 0; 6056 for_each_btf_ext_sec(seg, sec) { 6057 sec_idx = seg->sec_idxs[sec_num]; 6058 sec_num++; 6059 6060 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6061 if (str_is_empty(sec_name)) { 6062 err = -EINVAL; 6063 goto out; 6064 } 6065 6066 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 6067 6068 for_each_btf_ext_rec(seg, sec, i, rec) { 6069 if (rec->insn_off % BPF_INSN_SZ) 6070 return -EINVAL; 6071 insn_idx = rec->insn_off / BPF_INSN_SZ; 6072 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6073 if (!prog) { 6074 /* When __weak subprog is "overridden" by another instance 6075 * of the subprog from a different object file, linker still 6076 * appends all the .BTF.ext info that used to belong to that 6077 * eliminated subprogram. 6078 * This is similar to what x86-64 linker does for relocations. 6079 * So just ignore such relocations just like we ignore 6080 * subprog instructions when discovering subprograms. 6081 */ 6082 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 6083 sec_name, i, insn_idx); 6084 continue; 6085 } 6086 /* no need to apply CO-RE relocation if the program is 6087 * not going to be loaded 6088 */ 6089 if (!prog->autoload) 6090 continue; 6091 6092 /* adjust insn_idx from section frame of reference to the local 6093 * program's frame of reference; (sub-)program code is not yet 6094 * relocated, so it's enough to just subtract in-section offset 6095 */ 6096 insn_idx = insn_idx - prog->sec_insn_off; 6097 if (insn_idx >= prog->insns_cnt) 6098 return -EINVAL; 6099 insn = &prog->insns[insn_idx]; 6100 6101 err = record_relo_core(prog, rec, insn_idx); 6102 if (err) { 6103 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 6104 prog->name, i, errstr(err)); 6105 goto out; 6106 } 6107 6108 if (prog->obj->gen_loader) 6109 continue; 6110 6111 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 6112 if (err) { 6113 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 6114 prog->name, i, errstr(err)); 6115 goto out; 6116 } 6117 6118 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 6119 if (err) { 6120 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 6121 prog->name, i, insn_idx, errstr(err)); 6122 goto out; 6123 } 6124 } 6125 } 6126 6127 out: 6128 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6129 btf__free(obj->btf_vmlinux_override); 6130 obj->btf_vmlinux_override = NULL; 6131 6132 if (!IS_ERR_OR_NULL(cand_cache)) { 6133 hashmap__for_each_entry(cand_cache, entry, i) { 6134 bpf_core_free_cands(entry->pvalue); 6135 } 6136 hashmap__free(cand_cache); 6137 } 6138 return err; 6139 } 6140 6141 /* base map load ldimm64 special constant, used also for log fixup logic */ 6142 #define POISON_LDIMM64_MAP_BASE 2001000000 6143 #define POISON_LDIMM64_MAP_PFX "200100" 6144 6145 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6146 int insn_idx, struct bpf_insn *insn, 6147 int map_idx, const struct bpf_map *map) 6148 { 6149 int i; 6150 6151 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6152 prog->name, relo_idx, insn_idx, map_idx, map->name); 6153 6154 /* we turn single ldimm64 into two identical invalid calls */ 6155 for (i = 0; i < 2; i++) { 6156 insn->code = BPF_JMP | BPF_CALL; 6157 insn->dst_reg = 0; 6158 insn->src_reg = 0; 6159 insn->off = 0; 6160 /* if this instruction is reachable (not a dead code), 6161 * verifier will complain with something like: 6162 * invalid func unknown#2001000123 6163 * where lower 123 is map index into obj->maps[] array 6164 */ 6165 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6166 6167 insn++; 6168 } 6169 } 6170 6171 /* unresolved kfunc call special constant, used also for log fixup logic */ 6172 #define POISON_CALL_KFUNC_BASE 2002000000 6173 #define POISON_CALL_KFUNC_PFX "2002" 6174 6175 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6176 int insn_idx, struct bpf_insn *insn, 6177 int ext_idx, const struct extern_desc *ext) 6178 { 6179 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6180 prog->name, relo_idx, insn_idx, ext->name); 6181 6182 /* we turn kfunc call into invalid helper call with identifiable constant */ 6183 insn->code = BPF_JMP | BPF_CALL; 6184 insn->dst_reg = 0; 6185 insn->src_reg = 0; 6186 insn->off = 0; 6187 /* if this instruction is reachable (not a dead code), 6188 * verifier will complain with something like: 6189 * invalid func unknown#2001000123 6190 * where lower 123 is extern index into obj->externs[] array 6191 */ 6192 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6193 } 6194 6195 static int find_jt_map(struct bpf_object *obj, struct bpf_program *prog, int sym_off) 6196 { 6197 size_t i; 6198 6199 for (i = 0; i < obj->jumptable_map_cnt; i++) { 6200 /* 6201 * This might happen that same offset is used for two different 6202 * programs (as jump tables can be the same). However, for 6203 * different programs different maps should be created. 6204 */ 6205 if (obj->jumptable_maps[i].sym_off == sym_off && 6206 obj->jumptable_maps[i].prog == prog) 6207 return obj->jumptable_maps[i].fd; 6208 } 6209 6210 return -ENOENT; 6211 } 6212 6213 static int add_jt_map(struct bpf_object *obj, struct bpf_program *prog, int sym_off, int map_fd) 6214 { 6215 size_t cnt = obj->jumptable_map_cnt; 6216 size_t size = sizeof(obj->jumptable_maps[0]); 6217 void *tmp; 6218 6219 tmp = libbpf_reallocarray(obj->jumptable_maps, cnt + 1, size); 6220 if (!tmp) 6221 return -ENOMEM; 6222 6223 obj->jumptable_maps = tmp; 6224 obj->jumptable_maps[cnt].prog = prog; 6225 obj->jumptable_maps[cnt].sym_off = sym_off; 6226 obj->jumptable_maps[cnt].fd = map_fd; 6227 obj->jumptable_map_cnt++; 6228 6229 return 0; 6230 } 6231 6232 static int find_subprog_idx(struct bpf_program *prog, int insn_idx) 6233 { 6234 int i; 6235 6236 for (i = prog->subprog_cnt - 1; i >= 0; i--) { 6237 if (insn_idx >= prog->subprogs[i].sub_insn_off) 6238 return i; 6239 } 6240 6241 return -1; 6242 } 6243 6244 static int create_jt_map(struct bpf_object *obj, struct bpf_program *prog, struct reloc_desc *relo) 6245 { 6246 const __u32 jt_entry_size = 8; 6247 int sym_off = relo->sym_off; 6248 int jt_size = relo->sym_size; 6249 __u32 max_entries = jt_size / jt_entry_size; 6250 __u32 value_size = sizeof(struct bpf_insn_array_value); 6251 struct bpf_insn_array_value val = {}; 6252 int subprog_idx; 6253 int map_fd, err; 6254 __u64 insn_off; 6255 __u64 *jt; 6256 __u32 i; 6257 6258 map_fd = find_jt_map(obj, prog, sym_off); 6259 if (map_fd >= 0) 6260 return map_fd; 6261 6262 if (sym_off % jt_entry_size) { 6263 pr_warn("map '.jumptables': jumptable start %d should be multiple of %u\n", 6264 sym_off, jt_entry_size); 6265 return -EINVAL; 6266 } 6267 6268 if (jt_size % jt_entry_size) { 6269 pr_warn("map '.jumptables': jumptable size %d should be multiple of %u\n", 6270 jt_size, jt_entry_size); 6271 return -EINVAL; 6272 } 6273 6274 map_fd = bpf_map_create(BPF_MAP_TYPE_INSN_ARRAY, ".jumptables", 6275 4, value_size, max_entries, NULL); 6276 if (map_fd < 0) 6277 return map_fd; 6278 6279 if (!obj->jumptables_data) { 6280 pr_warn("map '.jumptables': ELF file is missing jump table data\n"); 6281 err = -EINVAL; 6282 goto err_close; 6283 } 6284 if (sym_off + jt_size > obj->jumptables_data_sz) { 6285 pr_warn("map '.jumptables': jumptables_data size is %zd, trying to access %d\n", 6286 obj->jumptables_data_sz, sym_off + jt_size); 6287 err = -EINVAL; 6288 goto err_close; 6289 } 6290 6291 subprog_idx = -1; /* main program */ 6292 if (relo->insn_idx < 0 || relo->insn_idx >= prog->insns_cnt) { 6293 pr_warn("map '.jumptables': invalid instruction index %d\n", relo->insn_idx); 6294 err = -EINVAL; 6295 goto err_close; 6296 } 6297 if (prog->subprogs) 6298 subprog_idx = find_subprog_idx(prog, relo->insn_idx); 6299 6300 jt = (__u64 *)(obj->jumptables_data + sym_off); 6301 for (i = 0; i < max_entries; i++) { 6302 /* 6303 * The offset should be made to be relative to the beginning of 6304 * the main function, not the subfunction. 6305 */ 6306 insn_off = jt[i]/sizeof(struct bpf_insn); 6307 if (subprog_idx >= 0) { 6308 insn_off -= prog->subprogs[subprog_idx].sec_insn_off; 6309 insn_off += prog->subprogs[subprog_idx].sub_insn_off; 6310 } else { 6311 insn_off -= prog->sec_insn_off; 6312 } 6313 6314 /* 6315 * LLVM-generated jump tables contain u64 records, however 6316 * should contain values that fit in u32. 6317 */ 6318 if (insn_off > UINT32_MAX) { 6319 pr_warn("map '.jumptables': invalid jump table value 0x%llx at offset %d\n", 6320 (long long)jt[i], sym_off + i * jt_entry_size); 6321 err = -EINVAL; 6322 goto err_close; 6323 } 6324 6325 val.orig_off = insn_off; 6326 err = bpf_map_update_elem(map_fd, &i, &val, 0); 6327 if (err) 6328 goto err_close; 6329 } 6330 6331 err = bpf_map_freeze(map_fd); 6332 if (err) 6333 goto err_close; 6334 6335 err = add_jt_map(obj, prog, sym_off, map_fd); 6336 if (err) 6337 goto err_close; 6338 6339 return map_fd; 6340 6341 err_close: 6342 close(map_fd); 6343 return err; 6344 } 6345 6346 /* Relocate data references within program code: 6347 * - map references; 6348 * - global variable references; 6349 * - extern references. 6350 */ 6351 static int 6352 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6353 { 6354 int i; 6355 6356 for (i = 0; i < prog->nr_reloc; i++) { 6357 struct reloc_desc *relo = &prog->reloc_desc[i]; 6358 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6359 const struct bpf_map *map; 6360 struct extern_desc *ext; 6361 6362 switch (relo->type) { 6363 case RELO_LD64: 6364 map = &obj->maps[relo->map_idx]; 6365 if (obj->gen_loader) { 6366 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6367 insn[0].imm = relo->map_idx; 6368 } else if (map->autocreate) { 6369 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6370 insn[0].imm = map->fd; 6371 } else { 6372 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6373 relo->map_idx, map); 6374 } 6375 break; 6376 case RELO_DATA: 6377 map = &obj->maps[relo->map_idx]; 6378 insn[1].imm = insn[0].imm + relo->sym_off; 6379 if (obj->gen_loader) { 6380 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6381 insn[0].imm = relo->map_idx; 6382 } else if (map->autocreate) { 6383 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6384 insn[0].imm = map->fd; 6385 } else { 6386 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6387 relo->map_idx, map); 6388 } 6389 break; 6390 case RELO_EXTERN_LD64: 6391 ext = &obj->externs[relo->ext_idx]; 6392 if (ext->type == EXT_KCFG) { 6393 if (obj->gen_loader) { 6394 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6395 insn[0].imm = obj->kconfig_map_idx; 6396 } else { 6397 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6398 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6399 } 6400 insn[1].imm = ext->kcfg.data_off; 6401 } else /* EXT_KSYM */ { 6402 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6403 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6404 insn[0].imm = ext->ksym.kernel_btf_id; 6405 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6406 } else { /* typeless ksyms or unresolved typed ksyms */ 6407 insn[0].imm = (__u32)ext->ksym.addr; 6408 insn[1].imm = ext->ksym.addr >> 32; 6409 } 6410 } 6411 break; 6412 case RELO_EXTERN_CALL: 6413 ext = &obj->externs[relo->ext_idx]; 6414 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6415 if (ext->is_set) { 6416 insn[0].imm = ext->ksym.kernel_btf_id; 6417 insn[0].off = ext->ksym.btf_fd_idx; 6418 } else { /* unresolved weak kfunc call */ 6419 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6420 relo->ext_idx, ext); 6421 } 6422 break; 6423 case RELO_SUBPROG_ADDR: 6424 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6425 pr_warn("prog '%s': relo #%d: bad insn\n", 6426 prog->name, i); 6427 return -EINVAL; 6428 } 6429 /* handled already */ 6430 break; 6431 case RELO_CALL: 6432 /* handled already */ 6433 break; 6434 case RELO_CORE: 6435 /* will be handled by bpf_program_record_relos() */ 6436 break; 6437 case RELO_INSN_ARRAY: { 6438 int map_fd; 6439 6440 map_fd = create_jt_map(obj, prog, relo); 6441 if (map_fd < 0) { 6442 pr_warn("prog '%s': relo #%d: can't create jump table: sym_off %u\n", 6443 prog->name, i, relo->sym_off); 6444 return map_fd; 6445 } 6446 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6447 insn->imm = map_fd; 6448 insn->off = 0; 6449 } 6450 break; 6451 default: 6452 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6453 prog->name, i, relo->type); 6454 return -EINVAL; 6455 } 6456 } 6457 6458 return 0; 6459 } 6460 6461 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6462 const struct bpf_program *prog, 6463 const struct btf_ext_info *ext_info, 6464 void **prog_info, __u32 *prog_rec_cnt, 6465 __u32 *prog_rec_sz) 6466 { 6467 void *copy_start = NULL, *copy_end = NULL; 6468 void *rec, *rec_end, *new_prog_info; 6469 const struct btf_ext_info_sec *sec; 6470 size_t old_sz, new_sz; 6471 int i, sec_num, sec_idx, off_adj; 6472 6473 sec_num = 0; 6474 for_each_btf_ext_sec(ext_info, sec) { 6475 sec_idx = ext_info->sec_idxs[sec_num]; 6476 sec_num++; 6477 if (prog->sec_idx != sec_idx) 6478 continue; 6479 6480 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6481 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6482 6483 if (insn_off < prog->sec_insn_off) 6484 continue; 6485 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6486 break; 6487 6488 if (!copy_start) 6489 copy_start = rec; 6490 copy_end = rec + ext_info->rec_size; 6491 } 6492 6493 if (!copy_start) 6494 return -ENOENT; 6495 6496 /* append func/line info of a given (sub-)program to the main 6497 * program func/line info 6498 */ 6499 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6500 new_sz = old_sz + (copy_end - copy_start); 6501 new_prog_info = realloc(*prog_info, new_sz); 6502 if (!new_prog_info) 6503 return -ENOMEM; 6504 *prog_info = new_prog_info; 6505 *prog_rec_cnt = new_sz / ext_info->rec_size; 6506 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6507 6508 /* Kernel instruction offsets are in units of 8-byte 6509 * instructions, while .BTF.ext instruction offsets generated 6510 * by Clang are in units of bytes. So convert Clang offsets 6511 * into kernel offsets and adjust offset according to program 6512 * relocated position. 6513 */ 6514 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6515 rec = new_prog_info + old_sz; 6516 rec_end = new_prog_info + new_sz; 6517 for (; rec < rec_end; rec += ext_info->rec_size) { 6518 __u32 *insn_off = rec; 6519 6520 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6521 } 6522 *prog_rec_sz = ext_info->rec_size; 6523 return 0; 6524 } 6525 6526 return -ENOENT; 6527 } 6528 6529 static int 6530 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6531 struct bpf_program *main_prog, 6532 const struct bpf_program *prog) 6533 { 6534 int err; 6535 6536 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6537 * support func/line info 6538 */ 6539 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6540 return 0; 6541 6542 /* only attempt func info relocation if main program's func_info 6543 * relocation was successful 6544 */ 6545 if (main_prog != prog && !main_prog->func_info) 6546 goto line_info; 6547 6548 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6549 &main_prog->func_info, 6550 &main_prog->func_info_cnt, 6551 &main_prog->func_info_rec_size); 6552 if (err) { 6553 if (err != -ENOENT) { 6554 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6555 prog->name, errstr(err)); 6556 return err; 6557 } 6558 if (main_prog->func_info) { 6559 /* 6560 * Some info has already been found but has problem 6561 * in the last btf_ext reloc. Must have to error out. 6562 */ 6563 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6564 return err; 6565 } 6566 /* Have problem loading the very first info. Ignore the rest. */ 6567 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6568 prog->name); 6569 } 6570 6571 line_info: 6572 /* don't relocate line info if main program's relocation failed */ 6573 if (main_prog != prog && !main_prog->line_info) 6574 return 0; 6575 6576 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6577 &main_prog->line_info, 6578 &main_prog->line_info_cnt, 6579 &main_prog->line_info_rec_size); 6580 if (err) { 6581 if (err != -ENOENT) { 6582 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6583 prog->name, errstr(err)); 6584 return err; 6585 } 6586 if (main_prog->line_info) { 6587 /* 6588 * Some info has already been found but has problem 6589 * in the last btf_ext reloc. Must have to error out. 6590 */ 6591 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6592 return err; 6593 } 6594 /* Have problem loading the very first info. Ignore the rest. */ 6595 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6596 prog->name); 6597 } 6598 return 0; 6599 } 6600 6601 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6602 { 6603 size_t insn_idx = *(const size_t *)key; 6604 const struct reloc_desc *relo = elem; 6605 6606 if (insn_idx == relo->insn_idx) 6607 return 0; 6608 return insn_idx < relo->insn_idx ? -1 : 1; 6609 } 6610 6611 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6612 { 6613 if (!prog->nr_reloc) 6614 return NULL; 6615 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6616 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6617 } 6618 6619 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6620 { 6621 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6622 struct reloc_desc *relos; 6623 int i; 6624 6625 if (main_prog == subprog) 6626 return 0; 6627 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6628 /* if new count is zero, reallocarray can return a valid NULL result; 6629 * in this case the previous pointer will be freed, so we *have to* 6630 * reassign old pointer to the new value (even if it's NULL) 6631 */ 6632 if (!relos && new_cnt) 6633 return -ENOMEM; 6634 if (subprog->nr_reloc) 6635 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6636 sizeof(*relos) * subprog->nr_reloc); 6637 6638 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6639 relos[i].insn_idx += subprog->sub_insn_off; 6640 /* After insn_idx adjustment the 'relos' array is still sorted 6641 * by insn_idx and doesn't break bsearch. 6642 */ 6643 main_prog->reloc_desc = relos; 6644 main_prog->nr_reloc = new_cnt; 6645 return 0; 6646 } 6647 6648 static int save_subprog_offsets(struct bpf_program *main_prog, struct bpf_program *subprog) 6649 { 6650 size_t size = sizeof(main_prog->subprogs[0]); 6651 int cnt = main_prog->subprog_cnt; 6652 void *tmp; 6653 6654 tmp = libbpf_reallocarray(main_prog->subprogs, cnt + 1, size); 6655 if (!tmp) 6656 return -ENOMEM; 6657 6658 main_prog->subprogs = tmp; 6659 main_prog->subprogs[cnt].sec_insn_off = subprog->sec_insn_off; 6660 main_prog->subprogs[cnt].sub_insn_off = subprog->sub_insn_off; 6661 main_prog->subprog_cnt++; 6662 6663 return 0; 6664 } 6665 6666 static int 6667 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6668 struct bpf_program *subprog) 6669 { 6670 struct bpf_insn *insns; 6671 size_t new_cnt; 6672 int err; 6673 6674 subprog->sub_insn_off = main_prog->insns_cnt; 6675 6676 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6677 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6678 if (!insns) { 6679 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6680 return -ENOMEM; 6681 } 6682 main_prog->insns = insns; 6683 main_prog->insns_cnt = new_cnt; 6684 6685 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6686 subprog->insns_cnt * sizeof(*insns)); 6687 6688 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6689 main_prog->name, subprog->insns_cnt, subprog->name); 6690 6691 /* The subprog insns are now appended. Append its relos too. */ 6692 err = append_subprog_relos(main_prog, subprog); 6693 if (err) 6694 return err; 6695 6696 err = save_subprog_offsets(main_prog, subprog); 6697 if (err) { 6698 pr_warn("prog '%s': failed to add subprog offsets: %s\n", 6699 main_prog->name, errstr(err)); 6700 return err; 6701 } 6702 6703 return 0; 6704 } 6705 6706 static int 6707 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6708 struct bpf_program *prog) 6709 { 6710 size_t sub_insn_idx, insn_idx; 6711 struct bpf_program *subprog; 6712 struct reloc_desc *relo; 6713 struct bpf_insn *insn; 6714 int err; 6715 6716 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6717 if (err) 6718 return err; 6719 6720 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6721 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6722 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6723 continue; 6724 6725 relo = find_prog_insn_relo(prog, insn_idx); 6726 if (relo && relo->type == RELO_EXTERN_CALL) 6727 /* kfunc relocations will be handled later 6728 * in bpf_object__relocate_data() 6729 */ 6730 continue; 6731 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6732 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6733 prog->name, insn_idx, relo->type); 6734 return -LIBBPF_ERRNO__RELOC; 6735 } 6736 if (relo) { 6737 /* sub-program instruction index is a combination of 6738 * an offset of a symbol pointed to by relocation and 6739 * call instruction's imm field; for global functions, 6740 * call always has imm = -1, but for static functions 6741 * relocation is against STT_SECTION and insn->imm 6742 * points to a start of a static function 6743 * 6744 * for subprog addr relocation, the relo->sym_off + insn->imm is 6745 * the byte offset in the corresponding section. 6746 */ 6747 if (relo->type == RELO_CALL) 6748 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6749 else 6750 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6751 } else if (insn_is_pseudo_func(insn)) { 6752 /* 6753 * RELO_SUBPROG_ADDR relo is always emitted even if both 6754 * functions are in the same section, so it shouldn't reach here. 6755 */ 6756 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6757 prog->name, insn_idx); 6758 return -LIBBPF_ERRNO__RELOC; 6759 } else { 6760 /* if subprogram call is to a static function within 6761 * the same ELF section, there won't be any relocation 6762 * emitted, but it also means there is no additional 6763 * offset necessary, insns->imm is relative to 6764 * instruction's original position within the section 6765 */ 6766 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6767 } 6768 6769 /* we enforce that sub-programs should be in .text section */ 6770 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6771 if (!subprog) { 6772 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6773 prog->name); 6774 return -LIBBPF_ERRNO__RELOC; 6775 } 6776 6777 /* if it's the first call instruction calling into this 6778 * subprogram (meaning this subprog hasn't been processed 6779 * yet) within the context of current main program: 6780 * - append it at the end of main program's instructions blog; 6781 * - process is recursively, while current program is put on hold; 6782 * - if that subprogram calls some other not yet processes 6783 * subprogram, same thing will happen recursively until 6784 * there are no more unprocesses subprograms left to append 6785 * and relocate. 6786 */ 6787 if (subprog->sub_insn_off == 0) { 6788 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6789 if (err) 6790 return err; 6791 err = bpf_object__reloc_code(obj, main_prog, subprog); 6792 if (err) 6793 return err; 6794 } 6795 6796 /* main_prog->insns memory could have been re-allocated, so 6797 * calculate pointer again 6798 */ 6799 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6800 /* calculate correct instruction position within current main 6801 * prog; each main prog can have a different set of 6802 * subprograms appended (potentially in different order as 6803 * well), so position of any subprog can be different for 6804 * different main programs 6805 */ 6806 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6807 6808 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6809 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6810 } 6811 6812 return 0; 6813 } 6814 6815 /* 6816 * Relocate sub-program calls. 6817 * 6818 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6819 * main prog) is processed separately. For each subprog (non-entry functions, 6820 * that can be called from either entry progs or other subprogs) gets their 6821 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6822 * hasn't been yet appended and relocated within current main prog. Once its 6823 * relocated, sub_insn_off will point at the position within current main prog 6824 * where given subprog was appended. This will further be used to relocate all 6825 * the call instructions jumping into this subprog. 6826 * 6827 * We start with main program and process all call instructions. If the call 6828 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6829 * is zero), subprog instructions are appended at the end of main program's 6830 * instruction array. Then main program is "put on hold" while we recursively 6831 * process newly appended subprogram. If that subprogram calls into another 6832 * subprogram that hasn't been appended, new subprogram is appended again to 6833 * the *main* prog's instructions (subprog's instructions are always left 6834 * untouched, as they need to be in unmodified state for subsequent main progs 6835 * and subprog instructions are always sent only as part of a main prog) and 6836 * the process continues recursively. Once all the subprogs called from a main 6837 * prog or any of its subprogs are appended (and relocated), all their 6838 * positions within finalized instructions array are known, so it's easy to 6839 * rewrite call instructions with correct relative offsets, corresponding to 6840 * desired target subprog. 6841 * 6842 * Its important to realize that some subprogs might not be called from some 6843 * main prog and any of its called/used subprogs. Those will keep their 6844 * subprog->sub_insn_off as zero at all times and won't be appended to current 6845 * main prog and won't be relocated within the context of current main prog. 6846 * They might still be used from other main progs later. 6847 * 6848 * Visually this process can be shown as below. Suppose we have two main 6849 * programs mainA and mainB and BPF object contains three subprogs: subA, 6850 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6851 * subC both call subB: 6852 * 6853 * +--------+ +-------+ 6854 * | v v | 6855 * +--+---+ +--+-+-+ +---+--+ 6856 * | subA | | subB | | subC | 6857 * +--+---+ +------+ +---+--+ 6858 * ^ ^ 6859 * | | 6860 * +---+-------+ +------+----+ 6861 * | mainA | | mainB | 6862 * +-----------+ +-----------+ 6863 * 6864 * We'll start relocating mainA, will find subA, append it and start 6865 * processing sub A recursively: 6866 * 6867 * +-----------+------+ 6868 * | mainA | subA | 6869 * +-----------+------+ 6870 * 6871 * At this point we notice that subB is used from subA, so we append it and 6872 * relocate (there are no further subcalls from subB): 6873 * 6874 * +-----------+------+------+ 6875 * | mainA | subA | subB | 6876 * +-----------+------+------+ 6877 * 6878 * At this point, we relocate subA calls, then go one level up and finish with 6879 * relocatin mainA calls. mainA is done. 6880 * 6881 * For mainB process is similar but results in different order. We start with 6882 * mainB and skip subA and subB, as mainB never calls them (at least 6883 * directly), but we see subC is needed, so we append and start processing it: 6884 * 6885 * +-----------+------+ 6886 * | mainB | subC | 6887 * +-----------+------+ 6888 * Now we see subC needs subB, so we go back to it, append and relocate it: 6889 * 6890 * +-----------+------+------+ 6891 * | mainB | subC | subB | 6892 * +-----------+------+------+ 6893 * 6894 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6895 */ 6896 static int 6897 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6898 { 6899 struct bpf_program *subprog; 6900 int i, err; 6901 6902 /* mark all subprogs as not relocated (yet) within the context of 6903 * current main program 6904 */ 6905 for (i = 0; i < obj->nr_programs; i++) { 6906 subprog = &obj->programs[i]; 6907 if (!prog_is_subprog(obj, subprog)) 6908 continue; 6909 6910 subprog->sub_insn_off = 0; 6911 } 6912 6913 err = bpf_object__reloc_code(obj, prog, prog); 6914 if (err) 6915 return err; 6916 6917 return 0; 6918 } 6919 6920 static void 6921 bpf_object__free_relocs(struct bpf_object *obj) 6922 { 6923 struct bpf_program *prog; 6924 int i; 6925 6926 /* free up relocation descriptors */ 6927 for (i = 0; i < obj->nr_programs; i++) { 6928 prog = &obj->programs[i]; 6929 zfree(&prog->reloc_desc); 6930 prog->nr_reloc = 0; 6931 } 6932 } 6933 6934 static int cmp_relocs(const void *_a, const void *_b) 6935 { 6936 const struct reloc_desc *a = _a; 6937 const struct reloc_desc *b = _b; 6938 6939 if (a->insn_idx != b->insn_idx) 6940 return a->insn_idx < b->insn_idx ? -1 : 1; 6941 6942 /* no two relocations should have the same insn_idx, but ... */ 6943 if (a->type != b->type) 6944 return a->type < b->type ? -1 : 1; 6945 6946 return 0; 6947 } 6948 6949 static void bpf_object__sort_relos(struct bpf_object *obj) 6950 { 6951 int i; 6952 6953 for (i = 0; i < obj->nr_programs; i++) { 6954 struct bpf_program *p = &obj->programs[i]; 6955 6956 if (!p->nr_reloc) 6957 continue; 6958 6959 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6960 } 6961 } 6962 6963 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6964 { 6965 const char *str = "exception_callback:"; 6966 size_t pfx_len = strlen(str); 6967 int i, j, n; 6968 6969 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6970 return 0; 6971 6972 n = btf__type_cnt(obj->btf); 6973 for (i = 1; i < n; i++) { 6974 const char *name; 6975 struct btf_type *t; 6976 6977 t = btf_type_by_id(obj->btf, i); 6978 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6979 continue; 6980 6981 name = btf__str_by_offset(obj->btf, t->name_off); 6982 if (strncmp(name, str, pfx_len) != 0) 6983 continue; 6984 6985 t = btf_type_by_id(obj->btf, t->type); 6986 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6987 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6988 prog->name); 6989 return -EINVAL; 6990 } 6991 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6992 continue; 6993 /* Multiple callbacks are specified for the same prog, 6994 * the verifier will eventually return an error for this 6995 * case, hence simply skip appending a subprog. 6996 */ 6997 if (prog->exception_cb_idx >= 0) { 6998 prog->exception_cb_idx = -1; 6999 break; 7000 } 7001 7002 name += pfx_len; 7003 if (str_is_empty(name)) { 7004 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 7005 prog->name); 7006 return -EINVAL; 7007 } 7008 7009 for (j = 0; j < obj->nr_programs; j++) { 7010 struct bpf_program *subprog = &obj->programs[j]; 7011 7012 if (!prog_is_subprog(obj, subprog)) 7013 continue; 7014 if (strcmp(name, subprog->name) != 0) 7015 continue; 7016 /* Enforce non-hidden, as from verifier point of 7017 * view it expects global functions, whereas the 7018 * mark_btf_static fixes up linkage as static. 7019 */ 7020 if (!subprog->sym_global || subprog->mark_btf_static) { 7021 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 7022 prog->name, subprog->name); 7023 return -EINVAL; 7024 } 7025 /* Let's see if we already saw a static exception callback with the same name */ 7026 if (prog->exception_cb_idx >= 0) { 7027 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 7028 prog->name, subprog->name); 7029 return -EINVAL; 7030 } 7031 prog->exception_cb_idx = j; 7032 break; 7033 } 7034 7035 if (prog->exception_cb_idx >= 0) 7036 continue; 7037 7038 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 7039 return -ENOENT; 7040 } 7041 7042 return 0; 7043 } 7044 7045 static struct { 7046 enum bpf_prog_type prog_type; 7047 const char *ctx_name; 7048 } global_ctx_map[] = { 7049 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 7050 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 7051 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 7052 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 7053 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 7054 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 7055 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 7056 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 7057 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 7058 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 7059 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 7060 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 7061 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 7062 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 7063 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 7064 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 7065 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 7066 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 7067 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 7068 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 7069 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 7070 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 7071 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 7072 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 7073 { BPF_PROG_TYPE_XDP, "xdp_md" }, 7074 /* all other program types don't have "named" context structs */ 7075 }; 7076 7077 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 7078 * for below __builtin_types_compatible_p() checks; 7079 * with this approach we don't need any extra arch-specific #ifdef guards 7080 */ 7081 struct pt_regs; 7082 struct user_pt_regs; 7083 struct user_regs_struct; 7084 7085 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 7086 const char *subprog_name, int arg_idx, 7087 int arg_type_id, const char *ctx_name) 7088 { 7089 const struct btf_type *t; 7090 const char *tname; 7091 7092 /* check if existing parameter already matches verifier expectations */ 7093 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 7094 if (!btf_is_ptr(t)) 7095 goto out_warn; 7096 7097 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 7098 * and perf_event programs, so check this case early on and forget 7099 * about it for subsequent checks 7100 */ 7101 while (btf_is_mod(t)) 7102 t = btf__type_by_id(btf, t->type); 7103 if (btf_is_typedef(t) && 7104 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 7105 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 7106 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 7107 return false; /* canonical type for kprobe/perf_event */ 7108 } 7109 7110 /* now we can ignore typedefs moving forward */ 7111 t = skip_mods_and_typedefs(btf, t->type, NULL); 7112 7113 /* if it's `void *`, definitely fix up BTF info */ 7114 if (btf_is_void(t)) 7115 return true; 7116 7117 /* if it's already proper canonical type, no need to fix up */ 7118 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 7119 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 7120 return false; 7121 7122 /* special cases */ 7123 switch (prog->type) { 7124 case BPF_PROG_TYPE_KPROBE: 7125 /* `struct pt_regs *` is expected, but we need to fix up */ 7126 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 7127 return true; 7128 break; 7129 case BPF_PROG_TYPE_PERF_EVENT: 7130 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 7131 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 7132 return true; 7133 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 7134 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 7135 return true; 7136 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 7137 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 7138 return true; 7139 break; 7140 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7141 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 7142 /* allow u64* as ctx */ 7143 if (btf_is_int(t) && t->size == 8) 7144 return true; 7145 break; 7146 default: 7147 break; 7148 } 7149 7150 out_warn: 7151 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 7152 prog->name, subprog_name, arg_idx, ctx_name); 7153 return false; 7154 } 7155 7156 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 7157 { 7158 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 7159 int i, err, arg_cnt, fn_name_off, linkage; 7160 struct btf_type *fn_t, *fn_proto_t, *t; 7161 struct btf_param *p; 7162 7163 /* caller already validated FUNC -> FUNC_PROTO validity */ 7164 fn_t = btf_type_by_id(btf, orig_fn_id); 7165 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7166 7167 /* Note that each btf__add_xxx() operation invalidates 7168 * all btf_type and string pointers, so we need to be 7169 * very careful when cloning BTF types. BTF type 7170 * pointers have to be always refetched. And to avoid 7171 * problems with invalidated string pointers, we 7172 * add empty strings initially, then just fix up 7173 * name_off offsets in place. Offsets are stable for 7174 * existing strings, so that works out. 7175 */ 7176 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 7177 linkage = btf_func_linkage(fn_t); 7178 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 7179 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 7180 arg_cnt = btf_vlen(fn_proto_t); 7181 7182 /* clone FUNC_PROTO and its params */ 7183 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 7184 if (fn_proto_id < 0) 7185 return -EINVAL; 7186 7187 for (i = 0; i < arg_cnt; i++) { 7188 int name_off; 7189 7190 /* copy original parameter data */ 7191 t = btf_type_by_id(btf, orig_proto_id); 7192 p = &btf_params(t)[i]; 7193 name_off = p->name_off; 7194 7195 err = btf__add_func_param(btf, "", p->type); 7196 if (err) 7197 return err; 7198 7199 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 7200 p = &btf_params(fn_proto_t)[i]; 7201 p->name_off = name_off; /* use remembered str offset */ 7202 } 7203 7204 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 7205 * entry program's name as a placeholder, which we replace immediately 7206 * with original name_off 7207 */ 7208 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 7209 if (fn_id < 0) 7210 return -EINVAL; 7211 7212 fn_t = btf_type_by_id(btf, fn_id); 7213 fn_t->name_off = fn_name_off; /* reuse original string */ 7214 7215 return fn_id; 7216 } 7217 7218 /* Check if main program or global subprog's function prototype has `arg:ctx` 7219 * argument tags, and, if necessary, substitute correct type to match what BPF 7220 * verifier would expect, taking into account specific program type. This 7221 * allows to support __arg_ctx tag transparently on old kernels that don't yet 7222 * have a native support for it in the verifier, making user's life much 7223 * easier. 7224 */ 7225 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 7226 { 7227 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 7228 struct bpf_func_info_min *func_rec; 7229 struct btf_type *fn_t, *fn_proto_t; 7230 struct btf *btf = obj->btf; 7231 const struct btf_type *t; 7232 struct btf_param *p; 7233 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 7234 int i, n, arg_idx, arg_cnt, err, rec_idx; 7235 int *orig_ids; 7236 7237 /* no .BTF.ext, no problem */ 7238 if (!obj->btf_ext || !prog->func_info) 7239 return 0; 7240 7241 /* don't do any fix ups if kernel natively supports __arg_ctx */ 7242 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 7243 return 0; 7244 7245 /* some BPF program types just don't have named context structs, so 7246 * this fallback mechanism doesn't work for them 7247 */ 7248 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 7249 if (global_ctx_map[i].prog_type != prog->type) 7250 continue; 7251 ctx_name = global_ctx_map[i].ctx_name; 7252 break; 7253 } 7254 if (!ctx_name) 7255 return 0; 7256 7257 /* remember original func BTF IDs to detect if we already cloned them */ 7258 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 7259 if (!orig_ids) 7260 return -ENOMEM; 7261 for (i = 0; i < prog->func_info_cnt; i++) { 7262 func_rec = prog->func_info + prog->func_info_rec_size * i; 7263 orig_ids[i] = func_rec->type_id; 7264 } 7265 7266 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 7267 * of our subprogs; if yes and subprog is global and needs adjustment, 7268 * clone and adjust FUNC -> FUNC_PROTO combo 7269 */ 7270 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 7271 /* only DECL_TAG with "arg:ctx" value are interesting */ 7272 t = btf__type_by_id(btf, i); 7273 if (!btf_is_decl_tag(t)) 7274 continue; 7275 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 7276 continue; 7277 7278 /* only global funcs need adjustment, if at all */ 7279 orig_fn_id = t->type; 7280 fn_t = btf_type_by_id(btf, orig_fn_id); 7281 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 7282 continue; 7283 7284 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 7285 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7286 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 7287 continue; 7288 7289 /* find corresponding func_info record */ 7290 func_rec = NULL; 7291 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 7292 if (orig_ids[rec_idx] == t->type) { 7293 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 7294 break; 7295 } 7296 } 7297 /* current main program doesn't call into this subprog */ 7298 if (!func_rec) 7299 continue; 7300 7301 /* some more sanity checking of DECL_TAG */ 7302 arg_cnt = btf_vlen(fn_proto_t); 7303 arg_idx = btf_decl_tag(t)->component_idx; 7304 if (arg_idx < 0 || arg_idx >= arg_cnt) 7305 continue; 7306 7307 /* check if we should fix up argument type */ 7308 p = &btf_params(fn_proto_t)[arg_idx]; 7309 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 7310 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 7311 continue; 7312 7313 /* clone fn/fn_proto, unless we already did it for another arg */ 7314 if (func_rec->type_id == orig_fn_id) { 7315 int fn_id; 7316 7317 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7318 if (fn_id < 0) { 7319 err = fn_id; 7320 goto err_out; 7321 } 7322 7323 /* point func_info record to a cloned FUNC type */ 7324 func_rec->type_id = fn_id; 7325 } 7326 7327 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7328 * we do it just once per main BPF program, as all global 7329 * funcs share the same program type, so need only PTR -> 7330 * STRUCT type chain 7331 */ 7332 if (ptr_id == 0) { 7333 struct_id = btf__add_struct(btf, ctx_name, 0); 7334 ptr_id = btf__add_ptr(btf, struct_id); 7335 if (ptr_id < 0 || struct_id < 0) { 7336 err = -EINVAL; 7337 goto err_out; 7338 } 7339 } 7340 7341 /* for completeness, clone DECL_TAG and point it to cloned param */ 7342 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7343 if (tag_id < 0) { 7344 err = -EINVAL; 7345 goto err_out; 7346 } 7347 7348 /* all the BTF manipulations invalidated pointers, refetch them */ 7349 fn_t = btf_type_by_id(btf, func_rec->type_id); 7350 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7351 7352 /* fix up type ID pointed to by param */ 7353 p = &btf_params(fn_proto_t)[arg_idx]; 7354 p->type = ptr_id; 7355 } 7356 7357 free(orig_ids); 7358 return 0; 7359 err_out: 7360 free(orig_ids); 7361 return err; 7362 } 7363 7364 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7365 { 7366 struct bpf_program *prog; 7367 size_t i, j; 7368 int err; 7369 7370 if (obj->btf_ext) { 7371 err = bpf_object__relocate_core(obj, targ_btf_path); 7372 if (err) { 7373 pr_warn("failed to perform CO-RE relocations: %s\n", 7374 errstr(err)); 7375 return err; 7376 } 7377 bpf_object__sort_relos(obj); 7378 } 7379 7380 /* Before relocating calls pre-process relocations and mark 7381 * few ld_imm64 instructions that points to subprogs. 7382 * Otherwise bpf_object__reloc_code() later would have to consider 7383 * all ld_imm64 insns as relocation candidates. That would 7384 * reduce relocation speed, since amount of find_prog_insn_relo() 7385 * would increase and most of them will fail to find a relo. 7386 */ 7387 for (i = 0; i < obj->nr_programs; i++) { 7388 prog = &obj->programs[i]; 7389 for (j = 0; j < prog->nr_reloc; j++) { 7390 struct reloc_desc *relo = &prog->reloc_desc[j]; 7391 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7392 7393 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7394 if (relo->type == RELO_SUBPROG_ADDR) 7395 insn[0].src_reg = BPF_PSEUDO_FUNC; 7396 } 7397 } 7398 7399 /* relocate subprogram calls and append used subprograms to main 7400 * programs; each copy of subprogram code needs to be relocated 7401 * differently for each main program, because its code location might 7402 * have changed. 7403 * Append subprog relos to main programs to allow data relos to be 7404 * processed after text is completely relocated. 7405 */ 7406 for (i = 0; i < obj->nr_programs; i++) { 7407 prog = &obj->programs[i]; 7408 /* sub-program's sub-calls are relocated within the context of 7409 * its main program only 7410 */ 7411 if (prog_is_subprog(obj, prog)) 7412 continue; 7413 if (!prog->autoload) 7414 continue; 7415 7416 err = bpf_object__relocate_calls(obj, prog); 7417 if (err) { 7418 pr_warn("prog '%s': failed to relocate calls: %s\n", 7419 prog->name, errstr(err)); 7420 return err; 7421 } 7422 7423 err = bpf_prog_assign_exc_cb(obj, prog); 7424 if (err) 7425 return err; 7426 /* Now, also append exception callback if it has not been done already. */ 7427 if (prog->exception_cb_idx >= 0) { 7428 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7429 7430 /* Calling exception callback directly is disallowed, which the 7431 * verifier will reject later. In case it was processed already, 7432 * we can skip this step, otherwise for all other valid cases we 7433 * have to append exception callback now. 7434 */ 7435 if (subprog->sub_insn_off == 0) { 7436 err = bpf_object__append_subprog_code(obj, prog, subprog); 7437 if (err) 7438 return err; 7439 err = bpf_object__reloc_code(obj, prog, subprog); 7440 if (err) 7441 return err; 7442 } 7443 } 7444 } 7445 for (i = 0; i < obj->nr_programs; i++) { 7446 prog = &obj->programs[i]; 7447 if (prog_is_subprog(obj, prog)) 7448 continue; 7449 if (!prog->autoload) 7450 continue; 7451 7452 /* Process data relos for main programs */ 7453 err = bpf_object__relocate_data(obj, prog); 7454 if (err) { 7455 pr_warn("prog '%s': failed to relocate data references: %s\n", 7456 prog->name, errstr(err)); 7457 return err; 7458 } 7459 7460 /* Fix up .BTF.ext information, if necessary */ 7461 err = bpf_program_fixup_func_info(obj, prog); 7462 if (err) { 7463 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7464 prog->name, errstr(err)); 7465 return err; 7466 } 7467 } 7468 7469 return 0; 7470 } 7471 7472 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7473 Elf64_Shdr *shdr, Elf_Data *data); 7474 7475 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7476 Elf64_Shdr *shdr, Elf_Data *data) 7477 { 7478 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7479 int i, j, nrels, new_sz; 7480 const struct btf_var_secinfo *vi = NULL; 7481 const struct btf_type *sec, *var, *def; 7482 struct bpf_map *map = NULL, *targ_map = NULL; 7483 struct bpf_program *targ_prog = NULL; 7484 bool is_prog_array, is_map_in_map; 7485 const struct btf_member *member; 7486 const char *name, *mname, *type; 7487 unsigned int moff; 7488 Elf64_Sym *sym; 7489 Elf64_Rel *rel; 7490 void *tmp; 7491 7492 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7493 return -EINVAL; 7494 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7495 if (!sec) 7496 return -EINVAL; 7497 7498 nrels = shdr->sh_size / shdr->sh_entsize; 7499 for (i = 0; i < nrels; i++) { 7500 rel = elf_rel_by_idx(data, i); 7501 if (!rel) { 7502 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7503 return -LIBBPF_ERRNO__FORMAT; 7504 } 7505 7506 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7507 if (!sym) { 7508 pr_warn(".maps relo #%d: symbol %zx not found\n", 7509 i, (size_t)ELF64_R_SYM(rel->r_info)); 7510 return -LIBBPF_ERRNO__FORMAT; 7511 } 7512 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7513 7514 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7515 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7516 (size_t)rel->r_offset, sym->st_name, name); 7517 7518 for (j = 0; j < obj->nr_maps; j++) { 7519 map = &obj->maps[j]; 7520 if (map->sec_idx != obj->efile.btf_maps_shndx) 7521 continue; 7522 7523 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7524 if (vi->offset <= rel->r_offset && 7525 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7526 break; 7527 } 7528 if (j == obj->nr_maps) { 7529 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7530 i, name, (size_t)rel->r_offset); 7531 return -EINVAL; 7532 } 7533 7534 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7535 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7536 type = is_map_in_map ? "map" : "prog"; 7537 if (is_map_in_map) { 7538 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7539 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7540 i, name); 7541 return -LIBBPF_ERRNO__RELOC; 7542 } 7543 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7544 map->def.key_size != sizeof(int)) { 7545 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7546 i, map->name, sizeof(int)); 7547 return -EINVAL; 7548 } 7549 targ_map = bpf_object__find_map_by_name(obj, name); 7550 if (!targ_map) { 7551 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7552 i, name); 7553 return -ESRCH; 7554 } 7555 } else if (is_prog_array) { 7556 targ_prog = bpf_object__find_program_by_name(obj, name); 7557 if (!targ_prog) { 7558 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7559 i, name); 7560 return -ESRCH; 7561 } 7562 if (targ_prog->sec_idx != sym->st_shndx || 7563 targ_prog->sec_insn_off * 8 != sym->st_value || 7564 prog_is_subprog(obj, targ_prog)) { 7565 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7566 i, name); 7567 return -LIBBPF_ERRNO__RELOC; 7568 } 7569 } else { 7570 return -EINVAL; 7571 } 7572 7573 var = btf__type_by_id(obj->btf, vi->type); 7574 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7575 if (btf_vlen(def) == 0) 7576 return -EINVAL; 7577 member = btf_members(def) + btf_vlen(def) - 1; 7578 mname = btf__name_by_offset(obj->btf, member->name_off); 7579 if (strcmp(mname, "values")) 7580 return -EINVAL; 7581 7582 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7583 if (rel->r_offset - vi->offset < moff) 7584 return -EINVAL; 7585 7586 moff = rel->r_offset - vi->offset - moff; 7587 /* here we use BPF pointer size, which is always 64 bit, as we 7588 * are parsing ELF that was built for BPF target 7589 */ 7590 if (moff % bpf_ptr_sz) 7591 return -EINVAL; 7592 moff /= bpf_ptr_sz; 7593 if (moff >= map->init_slots_sz) { 7594 new_sz = moff + 1; 7595 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7596 if (!tmp) 7597 return -ENOMEM; 7598 map->init_slots = tmp; 7599 memset(map->init_slots + map->init_slots_sz, 0, 7600 (new_sz - map->init_slots_sz) * host_ptr_sz); 7601 map->init_slots_sz = new_sz; 7602 } 7603 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7604 7605 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7606 i, map->name, moff, type, name); 7607 } 7608 7609 return 0; 7610 } 7611 7612 static int bpf_object__collect_relos(struct bpf_object *obj) 7613 { 7614 int i, err; 7615 7616 for (i = 0; i < obj->efile.sec_cnt; i++) { 7617 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7618 Elf64_Shdr *shdr; 7619 Elf_Data *data; 7620 int idx; 7621 7622 if (sec_desc->sec_type != SEC_RELO) 7623 continue; 7624 7625 shdr = sec_desc->shdr; 7626 data = sec_desc->data; 7627 idx = shdr->sh_info; 7628 7629 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7630 pr_warn("internal error at %d\n", __LINE__); 7631 return -LIBBPF_ERRNO__INTERNAL; 7632 } 7633 7634 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7635 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7636 else if (idx == obj->efile.btf_maps_shndx) 7637 err = bpf_object__collect_map_relos(obj, shdr, data); 7638 else 7639 err = bpf_object__collect_prog_relos(obj, shdr, data); 7640 if (err) 7641 return err; 7642 } 7643 7644 bpf_object__sort_relos(obj); 7645 return 0; 7646 } 7647 7648 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7649 { 7650 if (BPF_CLASS(insn->code) == BPF_JMP && 7651 BPF_OP(insn->code) == BPF_CALL && 7652 BPF_SRC(insn->code) == BPF_K && 7653 insn->src_reg == 0 && 7654 insn->dst_reg == 0) { 7655 *func_id = insn->imm; 7656 return true; 7657 } 7658 return false; 7659 } 7660 7661 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7662 { 7663 struct bpf_insn *insn = prog->insns; 7664 enum bpf_func_id func_id; 7665 int i; 7666 7667 if (obj->gen_loader) 7668 return 0; 7669 7670 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7671 if (!insn_is_helper_call(insn, &func_id)) 7672 continue; 7673 7674 /* on kernels that don't yet support 7675 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7676 * to bpf_probe_read() which works well for old kernels 7677 */ 7678 switch (func_id) { 7679 case BPF_FUNC_probe_read_kernel: 7680 case BPF_FUNC_probe_read_user: 7681 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7682 insn->imm = BPF_FUNC_probe_read; 7683 break; 7684 case BPF_FUNC_probe_read_kernel_str: 7685 case BPF_FUNC_probe_read_user_str: 7686 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7687 insn->imm = BPF_FUNC_probe_read_str; 7688 break; 7689 default: 7690 break; 7691 } 7692 } 7693 return 0; 7694 } 7695 7696 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7697 int *btf_obj_fd, int *btf_type_id); 7698 7699 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7700 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7701 struct bpf_prog_load_opts *opts, long cookie) 7702 { 7703 enum sec_def_flags def = cookie; 7704 7705 /* old kernels might not support specifying expected_attach_type */ 7706 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7707 opts->expected_attach_type = 0; 7708 7709 if (def & SEC_SLEEPABLE) 7710 opts->prog_flags |= BPF_F_SLEEPABLE; 7711 7712 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7713 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7714 7715 /* special check for usdt to use uprobe_multi link */ 7716 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7717 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7718 * in prog, and expected_attach_type we set in kernel is from opts, so we 7719 * update both. 7720 */ 7721 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7722 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7723 } 7724 7725 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7726 int btf_obj_fd = 0, btf_type_id = 0, err; 7727 const char *attach_name; 7728 7729 attach_name = strchr(prog->sec_name, '/'); 7730 if (!attach_name) { 7731 /* if BPF program is annotated with just SEC("fentry") 7732 * (or similar) without declaratively specifying 7733 * target, then it is expected that target will be 7734 * specified with bpf_program__set_attach_target() at 7735 * runtime before BPF object load step. If not, then 7736 * there is nothing to load into the kernel as BPF 7737 * verifier won't be able to validate BPF program 7738 * correctness anyways. 7739 */ 7740 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7741 prog->name); 7742 return -EINVAL; 7743 } 7744 attach_name++; /* skip over / */ 7745 7746 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7747 if (err) 7748 return err; 7749 7750 /* cache resolved BTF FD and BTF type ID in the prog */ 7751 prog->attach_btf_obj_fd = btf_obj_fd; 7752 prog->attach_btf_id = btf_type_id; 7753 7754 /* but by now libbpf common logic is not utilizing 7755 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7756 * this callback is called after opts were populated by 7757 * libbpf, so this callback has to update opts explicitly here 7758 */ 7759 opts->attach_btf_obj_fd = btf_obj_fd; 7760 opts->attach_btf_id = btf_type_id; 7761 } 7762 return 0; 7763 } 7764 7765 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7766 7767 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7768 struct bpf_insn *insns, int insns_cnt, 7769 const char *license, __u32 kern_version, int *prog_fd) 7770 { 7771 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7772 const char *prog_name = NULL; 7773 size_t log_buf_size = 0; 7774 char *log_buf = NULL, *tmp; 7775 bool own_log_buf = true; 7776 __u32 log_level = prog->log_level; 7777 int ret, err; 7778 7779 /* Be more helpful by rejecting programs that can't be validated early 7780 * with more meaningful and actionable error message. 7781 */ 7782 switch (prog->type) { 7783 case BPF_PROG_TYPE_UNSPEC: 7784 /* 7785 * The program type must be set. Most likely we couldn't find a proper 7786 * section definition at load time, and thus we didn't infer the type. 7787 */ 7788 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7789 prog->name, prog->sec_name); 7790 return -EINVAL; 7791 case BPF_PROG_TYPE_STRUCT_OPS: 7792 if (prog->attach_btf_id == 0) { 7793 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7794 prog->name); 7795 return -EINVAL; 7796 } 7797 break; 7798 default: 7799 break; 7800 } 7801 7802 if (!insns || !insns_cnt) 7803 return -EINVAL; 7804 7805 if (kernel_supports(obj, FEAT_PROG_NAME)) 7806 prog_name = prog->name; 7807 load_attr.attach_prog_fd = prog->attach_prog_fd; 7808 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7809 load_attr.attach_btf_id = prog->attach_btf_id; 7810 load_attr.kern_version = kern_version; 7811 load_attr.prog_ifindex = prog->prog_ifindex; 7812 load_attr.expected_attach_type = prog->expected_attach_type; 7813 7814 /* specify func_info/line_info only if kernel supports them */ 7815 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7816 load_attr.prog_btf_fd = btf__fd(obj->btf); 7817 load_attr.func_info = prog->func_info; 7818 load_attr.func_info_rec_size = prog->func_info_rec_size; 7819 load_attr.func_info_cnt = prog->func_info_cnt; 7820 load_attr.line_info = prog->line_info; 7821 load_attr.line_info_rec_size = prog->line_info_rec_size; 7822 load_attr.line_info_cnt = prog->line_info_cnt; 7823 } 7824 load_attr.log_level = log_level; 7825 load_attr.prog_flags = prog->prog_flags; 7826 load_attr.fd_array = obj->fd_array; 7827 7828 load_attr.token_fd = obj->token_fd; 7829 if (obj->token_fd) 7830 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7831 7832 /* adjust load_attr if sec_def provides custom preload callback */ 7833 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7834 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7835 if (err < 0) { 7836 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7837 prog->name, errstr(err)); 7838 return err; 7839 } 7840 insns = prog->insns; 7841 insns_cnt = prog->insns_cnt; 7842 } 7843 7844 if (obj->gen_loader) { 7845 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7846 license, insns, insns_cnt, &load_attr, 7847 prog - obj->programs); 7848 *prog_fd = -1; 7849 return 0; 7850 } 7851 7852 retry_load: 7853 /* if log_level is zero, we don't request logs initially even if 7854 * custom log_buf is specified; if the program load fails, then we'll 7855 * bump log_level to 1 and use either custom log_buf or we'll allocate 7856 * our own and retry the load to get details on what failed 7857 */ 7858 if (log_level) { 7859 if (prog->log_buf) { 7860 log_buf = prog->log_buf; 7861 log_buf_size = prog->log_size; 7862 own_log_buf = false; 7863 } else if (obj->log_buf) { 7864 log_buf = obj->log_buf; 7865 log_buf_size = obj->log_size; 7866 own_log_buf = false; 7867 } else { 7868 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7869 tmp = realloc(log_buf, log_buf_size); 7870 if (!tmp) { 7871 ret = -ENOMEM; 7872 goto out; 7873 } 7874 log_buf = tmp; 7875 log_buf[0] = '\0'; 7876 own_log_buf = true; 7877 } 7878 } 7879 7880 load_attr.log_buf = log_buf; 7881 load_attr.log_size = log_buf_size; 7882 load_attr.log_level = log_level; 7883 7884 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7885 if (ret >= 0) { 7886 if (log_level && own_log_buf) { 7887 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7888 prog->name, log_buf); 7889 } 7890 7891 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7892 struct bpf_map *map; 7893 int i; 7894 7895 for (i = 0; i < obj->nr_maps; i++) { 7896 map = &prog->obj->maps[i]; 7897 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7898 continue; 7899 7900 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7901 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7902 prog->name, map->real_name, errstr(errno)); 7903 /* Don't fail hard if can't bind rodata. */ 7904 } 7905 } 7906 } 7907 7908 *prog_fd = ret; 7909 ret = 0; 7910 goto out; 7911 } 7912 7913 if (log_level == 0) { 7914 log_level = 1; 7915 goto retry_load; 7916 } 7917 /* On ENOSPC, increase log buffer size and retry, unless custom 7918 * log_buf is specified. 7919 * Be careful to not overflow u32, though. Kernel's log buf size limit 7920 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7921 * multiply by 2 unless we are sure we'll fit within 32 bits. 7922 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7923 */ 7924 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7925 goto retry_load; 7926 7927 ret = -errno; 7928 7929 /* post-process verifier log to improve error descriptions */ 7930 fixup_verifier_log(prog, log_buf, log_buf_size); 7931 7932 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7933 pr_perm_msg(ret); 7934 7935 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7936 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7937 prog->name, log_buf); 7938 } 7939 7940 out: 7941 if (own_log_buf) 7942 free(log_buf); 7943 return ret; 7944 } 7945 7946 static char *find_prev_line(char *buf, char *cur) 7947 { 7948 char *p; 7949 7950 if (cur == buf) /* end of a log buf */ 7951 return NULL; 7952 7953 p = cur - 1; 7954 while (p - 1 >= buf && *(p - 1) != '\n') 7955 p--; 7956 7957 return p; 7958 } 7959 7960 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7961 char *orig, size_t orig_sz, const char *patch) 7962 { 7963 /* size of the remaining log content to the right from the to-be-replaced part */ 7964 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7965 size_t patch_sz = strlen(patch); 7966 7967 if (patch_sz != orig_sz) { 7968 /* If patch line(s) are longer than original piece of verifier log, 7969 * shift log contents by (patch_sz - orig_sz) bytes to the right 7970 * starting from after to-be-replaced part of the log. 7971 * 7972 * If patch line(s) are shorter than original piece of verifier log, 7973 * shift log contents by (orig_sz - patch_sz) bytes to the left 7974 * starting from after to-be-replaced part of the log 7975 * 7976 * We need to be careful about not overflowing available 7977 * buf_sz capacity. If that's the case, we'll truncate the end 7978 * of the original log, as necessary. 7979 */ 7980 if (patch_sz > orig_sz) { 7981 if (orig + patch_sz >= buf + buf_sz) { 7982 /* patch is big enough to cover remaining space completely */ 7983 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7984 rem_sz = 0; 7985 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7986 /* patch causes part of remaining log to be truncated */ 7987 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7988 } 7989 } 7990 /* shift remaining log to the right by calculated amount */ 7991 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7992 } 7993 7994 memcpy(orig, patch, patch_sz); 7995 } 7996 7997 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7998 char *buf, size_t buf_sz, size_t log_sz, 7999 char *line1, char *line2, char *line3) 8000 { 8001 /* Expected log for failed and not properly guarded CO-RE relocation: 8002 * line1 -> 123: (85) call unknown#195896080 8003 * line2 -> invalid func unknown#195896080 8004 * line3 -> <anything else or end of buffer> 8005 * 8006 * "123" is the index of the instruction that was poisoned. We extract 8007 * instruction index to find corresponding CO-RE relocation and 8008 * replace this part of the log with more relevant information about 8009 * failed CO-RE relocation. 8010 */ 8011 const struct bpf_core_relo *relo; 8012 struct bpf_core_spec spec; 8013 char patch[512], spec_buf[256]; 8014 int insn_idx, err, spec_len; 8015 8016 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 8017 return; 8018 8019 relo = find_relo_core(prog, insn_idx); 8020 if (!relo) 8021 return; 8022 8023 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 8024 if (err) 8025 return; 8026 8027 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 8028 snprintf(patch, sizeof(patch), 8029 "%d: <invalid CO-RE relocation>\n" 8030 "failed to resolve CO-RE relocation %s%s\n", 8031 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 8032 8033 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 8034 } 8035 8036 static void fixup_log_missing_map_load(struct bpf_program *prog, 8037 char *buf, size_t buf_sz, size_t log_sz, 8038 char *line1, char *line2, char *line3) 8039 { 8040 /* Expected log for failed and not properly guarded map reference: 8041 * line1 -> 123: (85) call unknown#2001000345 8042 * line2 -> invalid func unknown#2001000345 8043 * line3 -> <anything else or end of buffer> 8044 * 8045 * "123" is the index of the instruction that was poisoned. 8046 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 8047 */ 8048 struct bpf_object *obj = prog->obj; 8049 const struct bpf_map *map; 8050 int insn_idx, map_idx; 8051 char patch[128]; 8052 8053 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 8054 return; 8055 8056 map_idx -= POISON_LDIMM64_MAP_BASE; 8057 if (map_idx < 0 || map_idx >= obj->nr_maps) 8058 return; 8059 map = &obj->maps[map_idx]; 8060 8061 snprintf(patch, sizeof(patch), 8062 "%d: <invalid BPF map reference>\n" 8063 "BPF map '%s' is referenced but wasn't created\n", 8064 insn_idx, map->name); 8065 8066 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 8067 } 8068 8069 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 8070 char *buf, size_t buf_sz, size_t log_sz, 8071 char *line1, char *line2, char *line3) 8072 { 8073 /* Expected log for failed and not properly guarded kfunc call: 8074 * line1 -> 123: (85) call unknown#2002000345 8075 * line2 -> invalid func unknown#2002000345 8076 * line3 -> <anything else or end of buffer> 8077 * 8078 * "123" is the index of the instruction that was poisoned. 8079 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 8080 */ 8081 struct bpf_object *obj = prog->obj; 8082 const struct extern_desc *ext; 8083 int insn_idx, ext_idx; 8084 char patch[128]; 8085 8086 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 8087 return; 8088 8089 ext_idx -= POISON_CALL_KFUNC_BASE; 8090 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 8091 return; 8092 ext = &obj->externs[ext_idx]; 8093 8094 snprintf(patch, sizeof(patch), 8095 "%d: <invalid kfunc call>\n" 8096 "kfunc '%s' is referenced but wasn't resolved\n", 8097 insn_idx, ext->name); 8098 8099 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 8100 } 8101 8102 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 8103 { 8104 /* look for familiar error patterns in last N lines of the log */ 8105 const size_t max_last_line_cnt = 10; 8106 char *prev_line, *cur_line, *next_line; 8107 size_t log_sz; 8108 int i; 8109 8110 if (!buf) 8111 return; 8112 8113 log_sz = strlen(buf) + 1; 8114 next_line = buf + log_sz - 1; 8115 8116 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 8117 cur_line = find_prev_line(buf, next_line); 8118 if (!cur_line) 8119 return; 8120 8121 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 8122 prev_line = find_prev_line(buf, cur_line); 8123 if (!prev_line) 8124 continue; 8125 8126 /* failed CO-RE relocation case */ 8127 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 8128 prev_line, cur_line, next_line); 8129 return; 8130 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 8131 prev_line = find_prev_line(buf, cur_line); 8132 if (!prev_line) 8133 continue; 8134 8135 /* reference to uncreated BPF map */ 8136 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 8137 prev_line, cur_line, next_line); 8138 return; 8139 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 8140 prev_line = find_prev_line(buf, cur_line); 8141 if (!prev_line) 8142 continue; 8143 8144 /* reference to unresolved kfunc */ 8145 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 8146 prev_line, cur_line, next_line); 8147 return; 8148 } 8149 } 8150 } 8151 8152 static int bpf_program_record_relos(struct bpf_program *prog) 8153 { 8154 struct bpf_object *obj = prog->obj; 8155 int i; 8156 8157 for (i = 0; i < prog->nr_reloc; i++) { 8158 struct reloc_desc *relo = &prog->reloc_desc[i]; 8159 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 8160 int kind; 8161 8162 switch (relo->type) { 8163 case RELO_EXTERN_LD64: 8164 if (ext->type != EXT_KSYM) 8165 continue; 8166 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 8167 BTF_KIND_VAR : BTF_KIND_FUNC; 8168 bpf_gen__record_extern(obj->gen_loader, ext->name, 8169 ext->is_weak, !ext->ksym.type_id, 8170 true, kind, relo->insn_idx); 8171 break; 8172 case RELO_EXTERN_CALL: 8173 bpf_gen__record_extern(obj->gen_loader, ext->name, 8174 ext->is_weak, false, false, BTF_KIND_FUNC, 8175 relo->insn_idx); 8176 break; 8177 case RELO_CORE: { 8178 struct bpf_core_relo cr = { 8179 .insn_off = relo->insn_idx * 8, 8180 .type_id = relo->core_relo->type_id, 8181 .access_str_off = relo->core_relo->access_str_off, 8182 .kind = relo->core_relo->kind, 8183 }; 8184 8185 bpf_gen__record_relo_core(obj->gen_loader, &cr); 8186 break; 8187 } 8188 default: 8189 continue; 8190 } 8191 } 8192 return 0; 8193 } 8194 8195 static int 8196 bpf_object__load_progs(struct bpf_object *obj, int log_level) 8197 { 8198 struct bpf_program *prog; 8199 size_t i; 8200 int err; 8201 8202 for (i = 0; i < obj->nr_programs; i++) { 8203 prog = &obj->programs[i]; 8204 if (prog_is_subprog(obj, prog)) 8205 continue; 8206 if (!prog->autoload) { 8207 pr_debug("prog '%s': skipped loading\n", prog->name); 8208 continue; 8209 } 8210 prog->log_level |= log_level; 8211 8212 if (obj->gen_loader) 8213 bpf_program_record_relos(prog); 8214 8215 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 8216 obj->license, obj->kern_version, &prog->fd); 8217 if (err) { 8218 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 8219 return err; 8220 } 8221 } 8222 8223 bpf_object__free_relocs(obj); 8224 return 0; 8225 } 8226 8227 static int bpf_object_prepare_progs(struct bpf_object *obj) 8228 { 8229 struct bpf_program *prog; 8230 size_t i; 8231 int err; 8232 8233 for (i = 0; i < obj->nr_programs; i++) { 8234 prog = &obj->programs[i]; 8235 err = bpf_object__sanitize_prog(obj, prog); 8236 if (err) 8237 return err; 8238 } 8239 return 0; 8240 } 8241 8242 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 8243 8244 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 8245 { 8246 struct bpf_program *prog; 8247 int err; 8248 8249 bpf_object__for_each_program(prog, obj) { 8250 prog->sec_def = find_sec_def(prog->sec_name); 8251 if (!prog->sec_def) { 8252 /* couldn't guess, but user might manually specify */ 8253 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 8254 prog->name, prog->sec_name); 8255 continue; 8256 } 8257 8258 prog->type = prog->sec_def->prog_type; 8259 prog->expected_attach_type = prog->sec_def->expected_attach_type; 8260 8261 /* sec_def can have custom callback which should be called 8262 * after bpf_program is initialized to adjust its properties 8263 */ 8264 if (prog->sec_def->prog_setup_fn) { 8265 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 8266 if (err < 0) { 8267 pr_warn("prog '%s': failed to initialize: %s\n", 8268 prog->name, errstr(err)); 8269 return err; 8270 } 8271 } 8272 } 8273 8274 return 0; 8275 } 8276 8277 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 8278 const char *obj_name, 8279 const struct bpf_object_open_opts *opts) 8280 { 8281 const char *kconfig, *btf_tmp_path, *token_path; 8282 struct bpf_object *obj; 8283 int err; 8284 char *log_buf; 8285 size_t log_size; 8286 __u32 log_level; 8287 8288 if (obj_buf && !obj_name) 8289 return ERR_PTR(-EINVAL); 8290 8291 if (elf_version(EV_CURRENT) == EV_NONE) { 8292 pr_warn("failed to init libelf for %s\n", 8293 path ? : "(mem buf)"); 8294 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 8295 } 8296 8297 if (!OPTS_VALID(opts, bpf_object_open_opts)) 8298 return ERR_PTR(-EINVAL); 8299 8300 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 8301 if (obj_buf) { 8302 path = obj_name; 8303 pr_debug("loading object '%s' from buffer\n", obj_name); 8304 } else { 8305 pr_debug("loading object from %s\n", path); 8306 } 8307 8308 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 8309 log_size = OPTS_GET(opts, kernel_log_size, 0); 8310 log_level = OPTS_GET(opts, kernel_log_level, 0); 8311 if (log_size > UINT_MAX) 8312 return ERR_PTR(-EINVAL); 8313 if (log_size && !log_buf) 8314 return ERR_PTR(-EINVAL); 8315 8316 token_path = OPTS_GET(opts, bpf_token_path, NULL); 8317 /* if user didn't specify bpf_token_path explicitly, check if 8318 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 8319 * option 8320 */ 8321 if (!token_path) 8322 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 8323 if (token_path && strlen(token_path) >= PATH_MAX) 8324 return ERR_PTR(-ENAMETOOLONG); 8325 8326 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8327 if (IS_ERR(obj)) 8328 return obj; 8329 8330 obj->log_buf = log_buf; 8331 obj->log_size = log_size; 8332 obj->log_level = log_level; 8333 8334 if (token_path) { 8335 obj->token_path = strdup(token_path); 8336 if (!obj->token_path) { 8337 err = -ENOMEM; 8338 goto out; 8339 } 8340 } 8341 8342 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8343 if (btf_tmp_path) { 8344 if (strlen(btf_tmp_path) >= PATH_MAX) { 8345 err = -ENAMETOOLONG; 8346 goto out; 8347 } 8348 obj->btf_custom_path = strdup(btf_tmp_path); 8349 if (!obj->btf_custom_path) { 8350 err = -ENOMEM; 8351 goto out; 8352 } 8353 } 8354 8355 kconfig = OPTS_GET(opts, kconfig, NULL); 8356 if (kconfig) { 8357 obj->kconfig = strdup(kconfig); 8358 if (!obj->kconfig) { 8359 err = -ENOMEM; 8360 goto out; 8361 } 8362 } 8363 8364 err = bpf_object__elf_init(obj); 8365 err = err ? : bpf_object__elf_collect(obj); 8366 err = err ? : bpf_object__collect_externs(obj); 8367 err = err ? : bpf_object_fixup_btf(obj); 8368 err = err ? : bpf_object__init_maps(obj, opts); 8369 err = err ? : bpf_object_init_progs(obj, opts); 8370 err = err ? : bpf_object__collect_relos(obj); 8371 if (err) 8372 goto out; 8373 8374 bpf_object__elf_finish(obj); 8375 8376 return obj; 8377 out: 8378 bpf_object__close(obj); 8379 return ERR_PTR(err); 8380 } 8381 8382 struct bpf_object * 8383 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8384 { 8385 if (!path) 8386 return libbpf_err_ptr(-EINVAL); 8387 8388 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8389 } 8390 8391 struct bpf_object *bpf_object__open(const char *path) 8392 { 8393 return bpf_object__open_file(path, NULL); 8394 } 8395 8396 struct bpf_object * 8397 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8398 const struct bpf_object_open_opts *opts) 8399 { 8400 char tmp_name[64]; 8401 8402 if (!obj_buf || obj_buf_sz == 0) 8403 return libbpf_err_ptr(-EINVAL); 8404 8405 /* create a (quite useless) default "name" for this memory buffer object */ 8406 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8407 8408 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8409 } 8410 8411 static int bpf_object_unload(struct bpf_object *obj) 8412 { 8413 size_t i; 8414 8415 if (!obj) 8416 return libbpf_err(-EINVAL); 8417 8418 for (i = 0; i < obj->nr_maps; i++) { 8419 zclose(obj->maps[i].fd); 8420 if (obj->maps[i].st_ops) 8421 zfree(&obj->maps[i].st_ops->kern_vdata); 8422 } 8423 8424 for (i = 0; i < obj->nr_programs; i++) 8425 bpf_program__unload(&obj->programs[i]); 8426 8427 return 0; 8428 } 8429 8430 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8431 { 8432 struct bpf_map *m; 8433 8434 bpf_object__for_each_map(m, obj) { 8435 if (!bpf_map__is_internal(m)) 8436 continue; 8437 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8438 m->def.map_flags &= ~BPF_F_MMAPABLE; 8439 } 8440 8441 return 0; 8442 } 8443 8444 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8445 const char *sym_name, void *ctx); 8446 8447 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8448 { 8449 char sym_type, sym_name[500]; 8450 unsigned long long sym_addr; 8451 int ret, err = 0; 8452 FILE *f; 8453 8454 f = fopen("/proc/kallsyms", "re"); 8455 if (!f) { 8456 err = -errno; 8457 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8458 return err; 8459 } 8460 8461 while (true) { 8462 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8463 &sym_addr, &sym_type, sym_name); 8464 if (ret == EOF && feof(f)) 8465 break; 8466 if (ret != 3) { 8467 pr_warn("failed to read kallsyms entry: %d\n", ret); 8468 err = -EINVAL; 8469 break; 8470 } 8471 8472 err = cb(sym_addr, sym_type, sym_name, ctx); 8473 if (err) 8474 break; 8475 } 8476 8477 fclose(f); 8478 return err; 8479 } 8480 8481 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8482 const char *sym_name, void *ctx) 8483 { 8484 struct bpf_object *obj = ctx; 8485 const struct btf_type *t; 8486 struct extern_desc *ext; 8487 char *res; 8488 8489 res = strstr(sym_name, ".llvm."); 8490 if (sym_type == 'd' && res) 8491 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8492 else 8493 ext = find_extern_by_name(obj, sym_name); 8494 if (!ext || ext->type != EXT_KSYM) 8495 return 0; 8496 8497 t = btf__type_by_id(obj->btf, ext->btf_id); 8498 if (!btf_is_var(t)) 8499 return 0; 8500 8501 if (ext->is_set && ext->ksym.addr != sym_addr) { 8502 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8503 sym_name, ext->ksym.addr, sym_addr); 8504 return -EINVAL; 8505 } 8506 if (!ext->is_set) { 8507 ext->is_set = true; 8508 ext->ksym.addr = sym_addr; 8509 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8510 } 8511 return 0; 8512 } 8513 8514 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8515 { 8516 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8517 } 8518 8519 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8520 __u16 kind, struct btf **res_btf, 8521 struct module_btf **res_mod_btf) 8522 { 8523 struct module_btf *mod_btf; 8524 struct btf *btf; 8525 int i, id, err; 8526 8527 btf = obj->btf_vmlinux; 8528 mod_btf = NULL; 8529 id = btf__find_by_name_kind(btf, ksym_name, kind); 8530 8531 if (id == -ENOENT) { 8532 err = load_module_btfs(obj); 8533 if (err) 8534 return err; 8535 8536 for (i = 0; i < obj->btf_module_cnt; i++) { 8537 /* we assume module_btf's BTF FD is always >0 */ 8538 mod_btf = &obj->btf_modules[i]; 8539 btf = mod_btf->btf; 8540 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8541 if (id != -ENOENT) 8542 break; 8543 } 8544 } 8545 if (id <= 0) 8546 return -ESRCH; 8547 8548 *res_btf = btf; 8549 *res_mod_btf = mod_btf; 8550 return id; 8551 } 8552 8553 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8554 struct extern_desc *ext) 8555 { 8556 const struct btf_type *targ_var, *targ_type; 8557 __u32 targ_type_id, local_type_id; 8558 struct module_btf *mod_btf = NULL; 8559 const char *targ_var_name; 8560 struct btf *btf = NULL; 8561 int id, err; 8562 8563 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8564 if (id < 0) { 8565 if (id == -ESRCH && ext->is_weak) 8566 return 0; 8567 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8568 ext->name); 8569 return id; 8570 } 8571 8572 /* find local type_id */ 8573 local_type_id = ext->ksym.type_id; 8574 8575 /* find target type_id */ 8576 targ_var = btf__type_by_id(btf, id); 8577 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8578 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8579 8580 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8581 btf, targ_type_id); 8582 if (err <= 0) { 8583 const struct btf_type *local_type; 8584 const char *targ_name, *local_name; 8585 8586 local_type = btf__type_by_id(obj->btf, local_type_id); 8587 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8588 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8589 8590 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8591 ext->name, local_type_id, 8592 btf_kind_str(local_type), local_name, targ_type_id, 8593 btf_kind_str(targ_type), targ_name); 8594 return -EINVAL; 8595 } 8596 8597 ext->is_set = true; 8598 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8599 ext->ksym.kernel_btf_id = id; 8600 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8601 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8602 8603 return 0; 8604 } 8605 8606 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8607 struct extern_desc *ext) 8608 { 8609 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8610 struct module_btf *mod_btf = NULL; 8611 const struct btf_type *kern_func; 8612 struct btf *kern_btf = NULL; 8613 int ret; 8614 8615 local_func_proto_id = ext->ksym.type_id; 8616 8617 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8618 &mod_btf); 8619 if (kfunc_id < 0) { 8620 if (kfunc_id == -ESRCH && ext->is_weak) 8621 return 0; 8622 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8623 ext->name); 8624 return kfunc_id; 8625 } 8626 8627 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8628 kfunc_proto_id = kern_func->type; 8629 8630 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8631 kern_btf, kfunc_proto_id); 8632 if (ret <= 0) { 8633 if (ext->is_weak) 8634 return 0; 8635 8636 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8637 ext->name, local_func_proto_id, 8638 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8639 return -EINVAL; 8640 } 8641 8642 /* set index for module BTF fd in fd_array, if unset */ 8643 if (mod_btf && !mod_btf->fd_array_idx) { 8644 /* insn->off is s16 */ 8645 if (obj->fd_array_cnt == INT16_MAX) { 8646 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8647 ext->name, mod_btf->fd_array_idx); 8648 return -E2BIG; 8649 } 8650 /* Cannot use index 0 for module BTF fd */ 8651 if (!obj->fd_array_cnt) 8652 obj->fd_array_cnt = 1; 8653 8654 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8655 obj->fd_array_cnt + 1); 8656 if (ret) 8657 return ret; 8658 mod_btf->fd_array_idx = obj->fd_array_cnt; 8659 /* we assume module BTF FD is always >0 */ 8660 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8661 } 8662 8663 ext->is_set = true; 8664 ext->ksym.kernel_btf_id = kfunc_id; 8665 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8666 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8667 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8668 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8669 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8670 */ 8671 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8672 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8673 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8674 8675 return 0; 8676 } 8677 8678 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8679 { 8680 const struct btf_type *t; 8681 struct extern_desc *ext; 8682 int i, err; 8683 8684 for (i = 0; i < obj->nr_extern; i++) { 8685 ext = &obj->externs[i]; 8686 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8687 continue; 8688 8689 if (obj->gen_loader) { 8690 ext->is_set = true; 8691 ext->ksym.kernel_btf_obj_fd = 0; 8692 ext->ksym.kernel_btf_id = 0; 8693 continue; 8694 } 8695 t = btf__type_by_id(obj->btf, ext->btf_id); 8696 if (btf_is_var(t)) 8697 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8698 else 8699 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8700 if (err) 8701 return err; 8702 } 8703 return 0; 8704 } 8705 8706 static int bpf_object__resolve_externs(struct bpf_object *obj, 8707 const char *extra_kconfig) 8708 { 8709 bool need_config = false, need_kallsyms = false; 8710 bool need_vmlinux_btf = false; 8711 struct extern_desc *ext; 8712 void *kcfg_data = NULL; 8713 int err, i; 8714 8715 if (obj->nr_extern == 0) 8716 return 0; 8717 8718 if (obj->kconfig_map_idx >= 0) 8719 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8720 8721 for (i = 0; i < obj->nr_extern; i++) { 8722 ext = &obj->externs[i]; 8723 8724 if (ext->type == EXT_KSYM) { 8725 if (ext->ksym.type_id) 8726 need_vmlinux_btf = true; 8727 else 8728 need_kallsyms = true; 8729 continue; 8730 } else if (ext->type == EXT_KCFG) { 8731 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8732 __u64 value = 0; 8733 8734 /* Kconfig externs need actual /proc/config.gz */ 8735 if (str_has_pfx(ext->name, "CONFIG_")) { 8736 need_config = true; 8737 continue; 8738 } 8739 8740 /* Virtual kcfg externs are customly handled by libbpf */ 8741 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8742 value = get_kernel_version(); 8743 if (!value) { 8744 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8745 return -EINVAL; 8746 } 8747 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8748 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8749 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8750 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8751 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8752 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8753 * __kconfig externs, where LINUX_ ones are virtual and filled out 8754 * customly by libbpf (their values don't come from Kconfig). 8755 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8756 * __weak, it defaults to zero value, just like for CONFIG_xxx 8757 * externs. 8758 */ 8759 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8760 return -EINVAL; 8761 } 8762 8763 err = set_kcfg_value_num(ext, ext_ptr, value); 8764 if (err) 8765 return err; 8766 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8767 ext->name, (long long)value); 8768 } else { 8769 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8770 return -EINVAL; 8771 } 8772 } 8773 if (need_config && extra_kconfig) { 8774 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8775 if (err) 8776 return -EINVAL; 8777 need_config = false; 8778 for (i = 0; i < obj->nr_extern; i++) { 8779 ext = &obj->externs[i]; 8780 if (ext->type == EXT_KCFG && !ext->is_set) { 8781 need_config = true; 8782 break; 8783 } 8784 } 8785 } 8786 if (need_config) { 8787 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8788 if (err) 8789 return -EINVAL; 8790 } 8791 if (need_kallsyms) { 8792 err = bpf_object__read_kallsyms_file(obj); 8793 if (err) 8794 return -EINVAL; 8795 } 8796 if (need_vmlinux_btf) { 8797 err = bpf_object__resolve_ksyms_btf_id(obj); 8798 if (err) 8799 return -EINVAL; 8800 } 8801 for (i = 0; i < obj->nr_extern; i++) { 8802 ext = &obj->externs[i]; 8803 8804 if (!ext->is_set && !ext->is_weak) { 8805 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8806 return -ESRCH; 8807 } else if (!ext->is_set) { 8808 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8809 ext->name); 8810 } 8811 } 8812 8813 return 0; 8814 } 8815 8816 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8817 { 8818 const struct btf_type *type; 8819 struct bpf_struct_ops *st_ops; 8820 __u32 i; 8821 8822 st_ops = map->st_ops; 8823 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8824 for (i = 0; i < btf_vlen(type); i++) { 8825 struct bpf_program *prog = st_ops->progs[i]; 8826 void *kern_data; 8827 int prog_fd; 8828 8829 if (!prog) 8830 continue; 8831 8832 prog_fd = bpf_program__fd(prog); 8833 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8834 *(unsigned long *)kern_data = prog_fd; 8835 } 8836 } 8837 8838 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8839 { 8840 struct bpf_map *map; 8841 int i; 8842 8843 for (i = 0; i < obj->nr_maps; i++) { 8844 map = &obj->maps[i]; 8845 8846 if (!bpf_map__is_struct_ops(map)) 8847 continue; 8848 8849 if (!map->autocreate) 8850 continue; 8851 8852 bpf_map_prepare_vdata(map); 8853 } 8854 8855 return 0; 8856 } 8857 8858 static void bpf_object_unpin(struct bpf_object *obj) 8859 { 8860 int i; 8861 8862 /* unpin any maps that were auto-pinned during load */ 8863 for (i = 0; i < obj->nr_maps; i++) 8864 if (obj->maps[i].pinned && !obj->maps[i].reused) 8865 bpf_map__unpin(&obj->maps[i], NULL); 8866 } 8867 8868 static void bpf_object_post_load_cleanup(struct bpf_object *obj) 8869 { 8870 int i; 8871 8872 /* clean up fd_array */ 8873 zfree(&obj->fd_array); 8874 8875 /* clean up module BTFs */ 8876 for (i = 0; i < obj->btf_module_cnt; i++) { 8877 close(obj->btf_modules[i].fd); 8878 btf__free(obj->btf_modules[i].btf); 8879 free(obj->btf_modules[i].name); 8880 } 8881 obj->btf_module_cnt = 0; 8882 zfree(&obj->btf_modules); 8883 8884 /* clean up vmlinux BTF */ 8885 btf__free(obj->btf_vmlinux); 8886 obj->btf_vmlinux = NULL; 8887 } 8888 8889 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path) 8890 { 8891 int err; 8892 8893 if (obj->state >= OBJ_PREPARED) { 8894 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name); 8895 return -EINVAL; 8896 } 8897 8898 err = bpf_object_prepare_token(obj); 8899 err = err ? : bpf_object__probe_loading(obj); 8900 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8901 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8902 err = err ? : bpf_object__sanitize_maps(obj); 8903 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8904 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8905 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8906 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8907 err = err ? : bpf_object__create_maps(obj); 8908 err = err ? : bpf_object_prepare_progs(obj); 8909 8910 if (err) { 8911 bpf_object_unpin(obj); 8912 bpf_object_unload(obj); 8913 obj->state = OBJ_LOADED; 8914 return err; 8915 } 8916 8917 obj->state = OBJ_PREPARED; 8918 return 0; 8919 } 8920 8921 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8922 { 8923 int err; 8924 8925 if (!obj) 8926 return libbpf_err(-EINVAL); 8927 8928 if (obj->state >= OBJ_LOADED) { 8929 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8930 return libbpf_err(-EINVAL); 8931 } 8932 8933 /* Disallow kernel loading programs of non-native endianness but 8934 * permit cross-endian creation of "light skeleton". 8935 */ 8936 if (obj->gen_loader) { 8937 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8938 } else if (!is_native_endianness(obj)) { 8939 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8940 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8941 } 8942 8943 if (obj->state < OBJ_PREPARED) { 8944 err = bpf_object_prepare(obj, target_btf_path); 8945 if (err) 8946 return libbpf_err(err); 8947 } 8948 err = bpf_object__load_progs(obj, extra_log_level); 8949 err = err ? : bpf_object_init_prog_arrays(obj); 8950 err = err ? : bpf_object_prepare_struct_ops(obj); 8951 8952 if (obj->gen_loader) { 8953 /* reset FDs */ 8954 if (obj->btf) 8955 btf__set_fd(obj->btf, -1); 8956 if (!err) 8957 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8958 } 8959 8960 bpf_object_post_load_cleanup(obj); 8961 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */ 8962 8963 if (err) { 8964 bpf_object_unpin(obj); 8965 bpf_object_unload(obj); 8966 pr_warn("failed to load object '%s'\n", obj->path); 8967 return libbpf_err(err); 8968 } 8969 8970 return 0; 8971 } 8972 8973 int bpf_object__prepare(struct bpf_object *obj) 8974 { 8975 return libbpf_err(bpf_object_prepare(obj, NULL)); 8976 } 8977 8978 int bpf_object__load(struct bpf_object *obj) 8979 { 8980 return bpf_object_load(obj, 0, NULL); 8981 } 8982 8983 static int make_parent_dir(const char *path) 8984 { 8985 char *dname, *dir; 8986 int err = 0; 8987 8988 dname = strdup(path); 8989 if (dname == NULL) 8990 return -ENOMEM; 8991 8992 dir = dirname(dname); 8993 if (mkdir(dir, 0700) && errno != EEXIST) 8994 err = -errno; 8995 8996 free(dname); 8997 if (err) { 8998 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8999 } 9000 return err; 9001 } 9002 9003 static int check_path(const char *path) 9004 { 9005 struct statfs st_fs; 9006 char *dname, *dir; 9007 int err = 0; 9008 9009 if (path == NULL) 9010 return -EINVAL; 9011 9012 dname = strdup(path); 9013 if (dname == NULL) 9014 return -ENOMEM; 9015 9016 dir = dirname(dname); 9017 if (statfs(dir, &st_fs)) { 9018 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 9019 err = -errno; 9020 } 9021 free(dname); 9022 9023 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 9024 pr_warn("specified path %s is not on BPF FS\n", path); 9025 err = -EINVAL; 9026 } 9027 9028 return err; 9029 } 9030 9031 int bpf_program__pin(struct bpf_program *prog, const char *path) 9032 { 9033 int err; 9034 9035 if (prog->fd < 0) { 9036 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 9037 return libbpf_err(-EINVAL); 9038 } 9039 9040 err = make_parent_dir(path); 9041 if (err) 9042 return libbpf_err(err); 9043 9044 err = check_path(path); 9045 if (err) 9046 return libbpf_err(err); 9047 9048 if (bpf_obj_pin(prog->fd, path)) { 9049 err = -errno; 9050 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 9051 return libbpf_err(err); 9052 } 9053 9054 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 9055 return 0; 9056 } 9057 9058 int bpf_program__unpin(struct bpf_program *prog, const char *path) 9059 { 9060 int err; 9061 9062 if (prog->fd < 0) { 9063 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 9064 return libbpf_err(-EINVAL); 9065 } 9066 9067 err = check_path(path); 9068 if (err) 9069 return libbpf_err(err); 9070 9071 err = unlink(path); 9072 if (err) 9073 return libbpf_err(-errno); 9074 9075 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 9076 return 0; 9077 } 9078 9079 int bpf_map__pin(struct bpf_map *map, const char *path) 9080 { 9081 int err; 9082 9083 if (map == NULL) { 9084 pr_warn("invalid map pointer\n"); 9085 return libbpf_err(-EINVAL); 9086 } 9087 9088 if (map->fd < 0) { 9089 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 9090 return libbpf_err(-EINVAL); 9091 } 9092 9093 if (map->pin_path) { 9094 if (path && strcmp(path, map->pin_path)) { 9095 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 9096 bpf_map__name(map), map->pin_path, path); 9097 return libbpf_err(-EINVAL); 9098 } else if (map->pinned) { 9099 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 9100 bpf_map__name(map), map->pin_path); 9101 return 0; 9102 } 9103 } else { 9104 if (!path) { 9105 pr_warn("missing a path to pin map '%s' at\n", 9106 bpf_map__name(map)); 9107 return libbpf_err(-EINVAL); 9108 } else if (map->pinned) { 9109 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 9110 return libbpf_err(-EEXIST); 9111 } 9112 9113 map->pin_path = strdup(path); 9114 if (!map->pin_path) { 9115 err = -errno; 9116 goto out_err; 9117 } 9118 } 9119 9120 err = make_parent_dir(map->pin_path); 9121 if (err) 9122 return libbpf_err(err); 9123 9124 err = check_path(map->pin_path); 9125 if (err) 9126 return libbpf_err(err); 9127 9128 if (bpf_obj_pin(map->fd, map->pin_path)) { 9129 err = -errno; 9130 goto out_err; 9131 } 9132 9133 map->pinned = true; 9134 pr_debug("pinned map '%s'\n", map->pin_path); 9135 9136 return 0; 9137 9138 out_err: 9139 pr_warn("failed to pin map: %s\n", errstr(err)); 9140 return libbpf_err(err); 9141 } 9142 9143 int bpf_map__unpin(struct bpf_map *map, const char *path) 9144 { 9145 int err; 9146 9147 if (map == NULL) { 9148 pr_warn("invalid map pointer\n"); 9149 return libbpf_err(-EINVAL); 9150 } 9151 9152 if (map->pin_path) { 9153 if (path && strcmp(path, map->pin_path)) { 9154 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 9155 bpf_map__name(map), map->pin_path, path); 9156 return libbpf_err(-EINVAL); 9157 } 9158 path = map->pin_path; 9159 } else if (!path) { 9160 pr_warn("no path to unpin map '%s' from\n", 9161 bpf_map__name(map)); 9162 return libbpf_err(-EINVAL); 9163 } 9164 9165 err = check_path(path); 9166 if (err) 9167 return libbpf_err(err); 9168 9169 err = unlink(path); 9170 if (err != 0) 9171 return libbpf_err(-errno); 9172 9173 map->pinned = false; 9174 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 9175 9176 return 0; 9177 } 9178 9179 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 9180 { 9181 char *new = NULL; 9182 9183 if (path) { 9184 new = strdup(path); 9185 if (!new) 9186 return libbpf_err(-errno); 9187 } 9188 9189 free(map->pin_path); 9190 map->pin_path = new; 9191 return 0; 9192 } 9193 9194 __alias(bpf_map__pin_path) 9195 const char *bpf_map__get_pin_path(const struct bpf_map *map); 9196 9197 const char *bpf_map__pin_path(const struct bpf_map *map) 9198 { 9199 return map->pin_path; 9200 } 9201 9202 bool bpf_map__is_pinned(const struct bpf_map *map) 9203 { 9204 return map->pinned; 9205 } 9206 9207 static void sanitize_pin_path(char *s) 9208 { 9209 /* bpffs disallows periods in path names */ 9210 while (*s) { 9211 if (*s == '.') 9212 *s = '_'; 9213 s++; 9214 } 9215 } 9216 9217 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 9218 { 9219 struct bpf_map *map; 9220 int err; 9221 9222 if (!obj) 9223 return libbpf_err(-ENOENT); 9224 9225 if (obj->state < OBJ_PREPARED) { 9226 pr_warn("object not yet loaded; load it first\n"); 9227 return libbpf_err(-ENOENT); 9228 } 9229 9230 bpf_object__for_each_map(map, obj) { 9231 char *pin_path = NULL; 9232 char buf[PATH_MAX]; 9233 9234 if (!map->autocreate) 9235 continue; 9236 9237 if (path) { 9238 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 9239 if (err) 9240 goto err_unpin_maps; 9241 sanitize_pin_path(buf); 9242 pin_path = buf; 9243 } else if (!map->pin_path) { 9244 continue; 9245 } 9246 9247 err = bpf_map__pin(map, pin_path); 9248 if (err) 9249 goto err_unpin_maps; 9250 } 9251 9252 return 0; 9253 9254 err_unpin_maps: 9255 while ((map = bpf_object__prev_map(obj, map))) { 9256 if (!map->pin_path) 9257 continue; 9258 9259 bpf_map__unpin(map, NULL); 9260 } 9261 9262 return libbpf_err(err); 9263 } 9264 9265 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 9266 { 9267 struct bpf_map *map; 9268 int err; 9269 9270 if (!obj) 9271 return libbpf_err(-ENOENT); 9272 9273 bpf_object__for_each_map(map, obj) { 9274 char *pin_path = NULL; 9275 char buf[PATH_MAX]; 9276 9277 if (path) { 9278 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 9279 if (err) 9280 return libbpf_err(err); 9281 sanitize_pin_path(buf); 9282 pin_path = buf; 9283 } else if (!map->pin_path) { 9284 continue; 9285 } 9286 9287 err = bpf_map__unpin(map, pin_path); 9288 if (err) 9289 return libbpf_err(err); 9290 } 9291 9292 return 0; 9293 } 9294 9295 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 9296 { 9297 struct bpf_program *prog; 9298 char buf[PATH_MAX]; 9299 int err; 9300 9301 if (!obj) 9302 return libbpf_err(-ENOENT); 9303 9304 if (obj->state < OBJ_LOADED) { 9305 pr_warn("object not yet loaded; load it first\n"); 9306 return libbpf_err(-ENOENT); 9307 } 9308 9309 bpf_object__for_each_program(prog, obj) { 9310 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9311 if (err) 9312 goto err_unpin_programs; 9313 9314 err = bpf_program__pin(prog, buf); 9315 if (err) 9316 goto err_unpin_programs; 9317 } 9318 9319 return 0; 9320 9321 err_unpin_programs: 9322 while ((prog = bpf_object__prev_program(obj, prog))) { 9323 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 9324 continue; 9325 9326 bpf_program__unpin(prog, buf); 9327 } 9328 9329 return libbpf_err(err); 9330 } 9331 9332 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 9333 { 9334 struct bpf_program *prog; 9335 int err; 9336 9337 if (!obj) 9338 return libbpf_err(-ENOENT); 9339 9340 bpf_object__for_each_program(prog, obj) { 9341 char buf[PATH_MAX]; 9342 9343 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9344 if (err) 9345 return libbpf_err(err); 9346 9347 err = bpf_program__unpin(prog, buf); 9348 if (err) 9349 return libbpf_err(err); 9350 } 9351 9352 return 0; 9353 } 9354 9355 int bpf_object__pin(struct bpf_object *obj, const char *path) 9356 { 9357 int err; 9358 9359 err = bpf_object__pin_maps(obj, path); 9360 if (err) 9361 return libbpf_err(err); 9362 9363 err = bpf_object__pin_programs(obj, path); 9364 if (err) { 9365 bpf_object__unpin_maps(obj, path); 9366 return libbpf_err(err); 9367 } 9368 9369 return 0; 9370 } 9371 9372 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9373 { 9374 int err; 9375 9376 err = bpf_object__unpin_programs(obj, path); 9377 if (err) 9378 return libbpf_err(err); 9379 9380 err = bpf_object__unpin_maps(obj, path); 9381 if (err) 9382 return libbpf_err(err); 9383 9384 return 0; 9385 } 9386 9387 static void bpf_map__destroy(struct bpf_map *map) 9388 { 9389 if (map->inner_map) { 9390 bpf_map__destroy(map->inner_map); 9391 zfree(&map->inner_map); 9392 } 9393 9394 zfree(&map->init_slots); 9395 map->init_slots_sz = 0; 9396 9397 if (map->mmaped && map->mmaped != map->obj->arena_data) 9398 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9399 map->mmaped = NULL; 9400 9401 if (map->st_ops) { 9402 zfree(&map->st_ops->data); 9403 zfree(&map->st_ops->progs); 9404 zfree(&map->st_ops->kern_func_off); 9405 zfree(&map->st_ops); 9406 } 9407 9408 zfree(&map->name); 9409 zfree(&map->real_name); 9410 zfree(&map->pin_path); 9411 9412 if (map->fd >= 0) 9413 zclose(map->fd); 9414 } 9415 9416 void bpf_object__close(struct bpf_object *obj) 9417 { 9418 size_t i; 9419 9420 if (IS_ERR_OR_NULL(obj)) 9421 return; 9422 9423 /* 9424 * if user called bpf_object__prepare() without ever getting to 9425 * bpf_object__load(), we need to clean up stuff that is normally 9426 * cleaned up at the end of loading step 9427 */ 9428 bpf_object_post_load_cleanup(obj); 9429 9430 usdt_manager_free(obj->usdt_man); 9431 obj->usdt_man = NULL; 9432 9433 bpf_gen__free(obj->gen_loader); 9434 bpf_object__elf_finish(obj); 9435 bpf_object_unload(obj); 9436 btf__free(obj->btf); 9437 btf__free(obj->btf_vmlinux); 9438 btf_ext__free(obj->btf_ext); 9439 9440 for (i = 0; i < obj->nr_maps; i++) 9441 bpf_map__destroy(&obj->maps[i]); 9442 9443 zfree(&obj->btf_custom_path); 9444 zfree(&obj->kconfig); 9445 9446 for (i = 0; i < obj->nr_extern; i++) { 9447 zfree(&obj->externs[i].name); 9448 zfree(&obj->externs[i].essent_name); 9449 } 9450 9451 zfree(&obj->externs); 9452 obj->nr_extern = 0; 9453 9454 zfree(&obj->maps); 9455 obj->nr_maps = 0; 9456 9457 if (obj->programs && obj->nr_programs) { 9458 for (i = 0; i < obj->nr_programs; i++) 9459 bpf_program__exit(&obj->programs[i]); 9460 } 9461 zfree(&obj->programs); 9462 9463 zfree(&obj->feat_cache); 9464 zfree(&obj->token_path); 9465 if (obj->token_fd > 0) 9466 close(obj->token_fd); 9467 9468 zfree(&obj->arena_data); 9469 9470 zfree(&obj->jumptables_data); 9471 obj->jumptables_data_sz = 0; 9472 9473 for (i = 0; i < obj->jumptable_map_cnt; i++) 9474 close(obj->jumptable_maps[i].fd); 9475 zfree(&obj->jumptable_maps); 9476 9477 free(obj); 9478 } 9479 9480 const char *bpf_object__name(const struct bpf_object *obj) 9481 { 9482 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9483 } 9484 9485 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9486 { 9487 return obj ? obj->kern_version : 0; 9488 } 9489 9490 int bpf_object__token_fd(const struct bpf_object *obj) 9491 { 9492 return obj->token_fd ?: -1; 9493 } 9494 9495 struct btf *bpf_object__btf(const struct bpf_object *obj) 9496 { 9497 return obj ? obj->btf : NULL; 9498 } 9499 9500 int bpf_object__btf_fd(const struct bpf_object *obj) 9501 { 9502 return obj->btf ? btf__fd(obj->btf) : -1; 9503 } 9504 9505 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9506 { 9507 if (obj->state >= OBJ_LOADED) 9508 return libbpf_err(-EINVAL); 9509 9510 obj->kern_version = kern_version; 9511 9512 return 0; 9513 } 9514 9515 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9516 { 9517 struct bpf_gen *gen; 9518 9519 if (!opts) 9520 return libbpf_err(-EFAULT); 9521 if (!OPTS_VALID(opts, gen_loader_opts)) 9522 return libbpf_err(-EINVAL); 9523 gen = calloc(1, sizeof(*gen)); 9524 if (!gen) 9525 return libbpf_err(-ENOMEM); 9526 gen->opts = opts; 9527 gen->swapped_endian = !is_native_endianness(obj); 9528 obj->gen_loader = gen; 9529 return 0; 9530 } 9531 9532 static struct bpf_program * 9533 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9534 bool forward) 9535 { 9536 size_t nr_programs = obj->nr_programs; 9537 ssize_t idx; 9538 9539 if (!nr_programs) 9540 return NULL; 9541 9542 if (!p) 9543 /* Iter from the beginning */ 9544 return forward ? &obj->programs[0] : 9545 &obj->programs[nr_programs - 1]; 9546 9547 if (p->obj != obj) { 9548 pr_warn("error: program handler doesn't match object\n"); 9549 return errno = EINVAL, NULL; 9550 } 9551 9552 idx = (p - obj->programs) + (forward ? 1 : -1); 9553 if (idx >= obj->nr_programs || idx < 0) 9554 return NULL; 9555 return &obj->programs[idx]; 9556 } 9557 9558 struct bpf_program * 9559 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9560 { 9561 struct bpf_program *prog = prev; 9562 9563 do { 9564 prog = __bpf_program__iter(prog, obj, true); 9565 } while (prog && prog_is_subprog(obj, prog)); 9566 9567 return prog; 9568 } 9569 9570 struct bpf_program * 9571 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9572 { 9573 struct bpf_program *prog = next; 9574 9575 do { 9576 prog = __bpf_program__iter(prog, obj, false); 9577 } while (prog && prog_is_subprog(obj, prog)); 9578 9579 return prog; 9580 } 9581 9582 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9583 { 9584 prog->prog_ifindex = ifindex; 9585 } 9586 9587 const char *bpf_program__name(const struct bpf_program *prog) 9588 { 9589 return prog->name; 9590 } 9591 9592 const char *bpf_program__section_name(const struct bpf_program *prog) 9593 { 9594 return prog->sec_name; 9595 } 9596 9597 bool bpf_program__autoload(const struct bpf_program *prog) 9598 { 9599 return prog->autoload; 9600 } 9601 9602 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9603 { 9604 if (prog->obj->state >= OBJ_LOADED) 9605 return libbpf_err(-EINVAL); 9606 9607 prog->autoload = autoload; 9608 return 0; 9609 } 9610 9611 bool bpf_program__autoattach(const struct bpf_program *prog) 9612 { 9613 return prog->autoattach; 9614 } 9615 9616 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9617 { 9618 prog->autoattach = autoattach; 9619 } 9620 9621 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9622 { 9623 return prog->insns; 9624 } 9625 9626 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9627 { 9628 return prog->insns_cnt; 9629 } 9630 9631 int bpf_program__set_insns(struct bpf_program *prog, 9632 struct bpf_insn *new_insns, size_t new_insn_cnt) 9633 { 9634 struct bpf_insn *insns; 9635 9636 if (prog->obj->state >= OBJ_LOADED) 9637 return libbpf_err(-EBUSY); 9638 9639 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9640 /* NULL is a valid return from reallocarray if the new count is zero */ 9641 if (!insns && new_insn_cnt) { 9642 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9643 return libbpf_err(-ENOMEM); 9644 } 9645 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9646 9647 prog->insns = insns; 9648 prog->insns_cnt = new_insn_cnt; 9649 return 0; 9650 } 9651 9652 int bpf_program__fd(const struct bpf_program *prog) 9653 { 9654 if (!prog) 9655 return libbpf_err(-EINVAL); 9656 9657 if (prog->fd < 0) 9658 return libbpf_err(-ENOENT); 9659 9660 return prog->fd; 9661 } 9662 9663 __alias(bpf_program__type) 9664 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9665 9666 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9667 { 9668 return prog->type; 9669 } 9670 9671 static size_t custom_sec_def_cnt; 9672 static struct bpf_sec_def *custom_sec_defs; 9673 static struct bpf_sec_def custom_fallback_def; 9674 static bool has_custom_fallback_def; 9675 static int last_custom_sec_def_handler_id; 9676 9677 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9678 { 9679 if (prog->obj->state >= OBJ_LOADED) 9680 return libbpf_err(-EBUSY); 9681 9682 /* if type is not changed, do nothing */ 9683 if (prog->type == type) 9684 return 0; 9685 9686 prog->type = type; 9687 9688 /* If a program type was changed, we need to reset associated SEC() 9689 * handler, as it will be invalid now. The only exception is a generic 9690 * fallback handler, which by definition is program type-agnostic and 9691 * is a catch-all custom handler, optionally set by the application, 9692 * so should be able to handle any type of BPF program. 9693 */ 9694 if (prog->sec_def != &custom_fallback_def) 9695 prog->sec_def = NULL; 9696 return 0; 9697 } 9698 9699 __alias(bpf_program__expected_attach_type) 9700 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9701 9702 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9703 { 9704 return prog->expected_attach_type; 9705 } 9706 9707 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9708 enum bpf_attach_type type) 9709 { 9710 if (prog->obj->state >= OBJ_LOADED) 9711 return libbpf_err(-EBUSY); 9712 9713 prog->expected_attach_type = type; 9714 return 0; 9715 } 9716 9717 __u32 bpf_program__flags(const struct bpf_program *prog) 9718 { 9719 return prog->prog_flags; 9720 } 9721 9722 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9723 { 9724 if (prog->obj->state >= OBJ_LOADED) 9725 return libbpf_err(-EBUSY); 9726 9727 prog->prog_flags = flags; 9728 return 0; 9729 } 9730 9731 __u32 bpf_program__log_level(const struct bpf_program *prog) 9732 { 9733 return prog->log_level; 9734 } 9735 9736 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9737 { 9738 if (prog->obj->state >= OBJ_LOADED) 9739 return libbpf_err(-EBUSY); 9740 9741 prog->log_level = log_level; 9742 return 0; 9743 } 9744 9745 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9746 { 9747 *log_size = prog->log_size; 9748 return prog->log_buf; 9749 } 9750 9751 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9752 { 9753 if (log_size && !log_buf) 9754 return libbpf_err(-EINVAL); 9755 if (prog->log_size > UINT_MAX) 9756 return libbpf_err(-EINVAL); 9757 if (prog->obj->state >= OBJ_LOADED) 9758 return libbpf_err(-EBUSY); 9759 9760 prog->log_buf = log_buf; 9761 prog->log_size = log_size; 9762 return 0; 9763 } 9764 9765 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog) 9766 { 9767 if (prog->func_info_rec_size != sizeof(struct bpf_func_info)) 9768 return libbpf_err_ptr(-EOPNOTSUPP); 9769 return prog->func_info; 9770 } 9771 9772 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog) 9773 { 9774 return prog->func_info_cnt; 9775 } 9776 9777 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog) 9778 { 9779 if (prog->line_info_rec_size != sizeof(struct bpf_line_info)) 9780 return libbpf_err_ptr(-EOPNOTSUPP); 9781 return prog->line_info; 9782 } 9783 9784 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog) 9785 { 9786 return prog->line_info_cnt; 9787 } 9788 9789 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9790 .sec = (char *)sec_pfx, \ 9791 .prog_type = BPF_PROG_TYPE_##ptype, \ 9792 .expected_attach_type = atype, \ 9793 .cookie = (long)(flags), \ 9794 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9795 __VA_ARGS__ \ 9796 } 9797 9798 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9799 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9800 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9801 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9802 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9803 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9804 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9805 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9806 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9807 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9808 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9809 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9810 9811 static const struct bpf_sec_def section_defs[] = { 9812 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9813 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9814 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9815 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9816 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9817 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9818 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9819 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9820 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9821 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9822 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9823 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9824 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9825 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9826 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9827 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9828 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9829 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9830 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9831 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9832 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9833 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9834 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9835 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9836 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9837 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9838 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9839 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9840 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9841 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9842 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9843 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9844 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9845 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9846 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9847 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9848 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9849 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9850 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9851 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9852 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9853 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9854 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9855 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9856 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9857 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9858 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9859 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9860 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9861 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9862 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9863 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9864 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9865 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9866 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9867 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9868 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9869 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9870 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9871 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9872 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9873 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9874 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9875 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9876 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9877 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9878 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9879 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9880 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9881 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9882 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9883 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9884 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9885 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9886 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9887 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9888 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9889 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9890 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9891 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9892 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9893 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9894 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9895 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9896 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9897 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9898 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9899 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9900 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9901 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9902 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9903 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9904 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9905 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9906 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9907 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9908 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9909 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9910 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9911 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9912 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9913 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9914 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9915 }; 9916 9917 int libbpf_register_prog_handler(const char *sec, 9918 enum bpf_prog_type prog_type, 9919 enum bpf_attach_type exp_attach_type, 9920 const struct libbpf_prog_handler_opts *opts) 9921 { 9922 struct bpf_sec_def *sec_def; 9923 9924 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9925 return libbpf_err(-EINVAL); 9926 9927 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9928 return libbpf_err(-E2BIG); 9929 9930 if (sec) { 9931 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9932 sizeof(*sec_def)); 9933 if (!sec_def) 9934 return libbpf_err(-ENOMEM); 9935 9936 custom_sec_defs = sec_def; 9937 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9938 } else { 9939 if (has_custom_fallback_def) 9940 return libbpf_err(-EBUSY); 9941 9942 sec_def = &custom_fallback_def; 9943 } 9944 9945 sec_def->sec = sec ? strdup(sec) : NULL; 9946 if (sec && !sec_def->sec) 9947 return libbpf_err(-ENOMEM); 9948 9949 sec_def->prog_type = prog_type; 9950 sec_def->expected_attach_type = exp_attach_type; 9951 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9952 9953 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9954 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9955 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9956 9957 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9958 9959 if (sec) 9960 custom_sec_def_cnt++; 9961 else 9962 has_custom_fallback_def = true; 9963 9964 return sec_def->handler_id; 9965 } 9966 9967 int libbpf_unregister_prog_handler(int handler_id) 9968 { 9969 struct bpf_sec_def *sec_defs; 9970 int i; 9971 9972 if (handler_id <= 0) 9973 return libbpf_err(-EINVAL); 9974 9975 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9976 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9977 has_custom_fallback_def = false; 9978 return 0; 9979 } 9980 9981 for (i = 0; i < custom_sec_def_cnt; i++) { 9982 if (custom_sec_defs[i].handler_id == handler_id) 9983 break; 9984 } 9985 9986 if (i == custom_sec_def_cnt) 9987 return libbpf_err(-ENOENT); 9988 9989 free(custom_sec_defs[i].sec); 9990 for (i = i + 1; i < custom_sec_def_cnt; i++) 9991 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9992 custom_sec_def_cnt--; 9993 9994 /* try to shrink the array, but it's ok if we couldn't */ 9995 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9996 /* if new count is zero, reallocarray can return a valid NULL result; 9997 * in this case the previous pointer will be freed, so we *have to* 9998 * reassign old pointer to the new value (even if it's NULL) 9999 */ 10000 if (sec_defs || custom_sec_def_cnt == 0) 10001 custom_sec_defs = sec_defs; 10002 10003 return 0; 10004 } 10005 10006 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 10007 { 10008 size_t len = strlen(sec_def->sec); 10009 10010 /* "type/" always has to have proper SEC("type/extras") form */ 10011 if (sec_def->sec[len - 1] == '/') { 10012 if (str_has_pfx(sec_name, sec_def->sec)) 10013 return true; 10014 return false; 10015 } 10016 10017 /* "type+" means it can be either exact SEC("type") or 10018 * well-formed SEC("type/extras") with proper '/' separator 10019 */ 10020 if (sec_def->sec[len - 1] == '+') { 10021 len--; 10022 /* not even a prefix */ 10023 if (strncmp(sec_name, sec_def->sec, len) != 0) 10024 return false; 10025 /* exact match or has '/' separator */ 10026 if (sec_name[len] == '\0' || sec_name[len] == '/') 10027 return true; 10028 return false; 10029 } 10030 10031 return strcmp(sec_name, sec_def->sec) == 0; 10032 } 10033 10034 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 10035 { 10036 const struct bpf_sec_def *sec_def; 10037 int i, n; 10038 10039 n = custom_sec_def_cnt; 10040 for (i = 0; i < n; i++) { 10041 sec_def = &custom_sec_defs[i]; 10042 if (sec_def_matches(sec_def, sec_name)) 10043 return sec_def; 10044 } 10045 10046 n = ARRAY_SIZE(section_defs); 10047 for (i = 0; i < n; i++) { 10048 sec_def = §ion_defs[i]; 10049 if (sec_def_matches(sec_def, sec_name)) 10050 return sec_def; 10051 } 10052 10053 if (has_custom_fallback_def) 10054 return &custom_fallback_def; 10055 10056 return NULL; 10057 } 10058 10059 #define MAX_TYPE_NAME_SIZE 32 10060 10061 static char *libbpf_get_type_names(bool attach_type) 10062 { 10063 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 10064 char *buf; 10065 10066 buf = malloc(len); 10067 if (!buf) 10068 return NULL; 10069 10070 buf[0] = '\0'; 10071 /* Forge string buf with all available names */ 10072 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 10073 const struct bpf_sec_def *sec_def = §ion_defs[i]; 10074 10075 if (attach_type) { 10076 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10077 continue; 10078 10079 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10080 continue; 10081 } 10082 10083 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 10084 free(buf); 10085 return NULL; 10086 } 10087 strcat(buf, " "); 10088 strcat(buf, section_defs[i].sec); 10089 } 10090 10091 return buf; 10092 } 10093 10094 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 10095 enum bpf_attach_type *expected_attach_type) 10096 { 10097 const struct bpf_sec_def *sec_def; 10098 char *type_names; 10099 10100 if (!name) 10101 return libbpf_err(-EINVAL); 10102 10103 sec_def = find_sec_def(name); 10104 if (sec_def) { 10105 *prog_type = sec_def->prog_type; 10106 *expected_attach_type = sec_def->expected_attach_type; 10107 return 0; 10108 } 10109 10110 pr_debug("failed to guess program type from ELF section '%s'\n", name); 10111 type_names = libbpf_get_type_names(false); 10112 if (type_names != NULL) { 10113 pr_debug("supported section(type) names are:%s\n", type_names); 10114 free(type_names); 10115 } 10116 10117 return libbpf_err(-ESRCH); 10118 } 10119 10120 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 10121 { 10122 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 10123 return NULL; 10124 10125 return attach_type_name[t]; 10126 } 10127 10128 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 10129 { 10130 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 10131 return NULL; 10132 10133 return link_type_name[t]; 10134 } 10135 10136 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 10137 { 10138 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 10139 return NULL; 10140 10141 return map_type_name[t]; 10142 } 10143 10144 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 10145 { 10146 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 10147 return NULL; 10148 10149 return prog_type_name[t]; 10150 } 10151 10152 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 10153 int sec_idx, 10154 size_t offset) 10155 { 10156 struct bpf_map *map; 10157 size_t i; 10158 10159 for (i = 0; i < obj->nr_maps; i++) { 10160 map = &obj->maps[i]; 10161 if (!bpf_map__is_struct_ops(map)) 10162 continue; 10163 if (map->sec_idx == sec_idx && 10164 map->sec_offset <= offset && 10165 offset - map->sec_offset < map->def.value_size) 10166 return map; 10167 } 10168 10169 return NULL; 10170 } 10171 10172 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 10173 * st_ops->data for shadow type. 10174 */ 10175 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 10176 Elf64_Shdr *shdr, Elf_Data *data) 10177 { 10178 const struct btf_type *type; 10179 const struct btf_member *member; 10180 struct bpf_struct_ops *st_ops; 10181 struct bpf_program *prog; 10182 unsigned int shdr_idx; 10183 const struct btf *btf; 10184 struct bpf_map *map; 10185 unsigned int moff, insn_idx; 10186 const char *name; 10187 __u32 member_idx; 10188 Elf64_Sym *sym; 10189 Elf64_Rel *rel; 10190 int i, nrels; 10191 10192 btf = obj->btf; 10193 nrels = shdr->sh_size / shdr->sh_entsize; 10194 for (i = 0; i < nrels; i++) { 10195 rel = elf_rel_by_idx(data, i); 10196 if (!rel) { 10197 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 10198 return -LIBBPF_ERRNO__FORMAT; 10199 } 10200 10201 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 10202 if (!sym) { 10203 pr_warn("struct_ops reloc: symbol %zx not found\n", 10204 (size_t)ELF64_R_SYM(rel->r_info)); 10205 return -LIBBPF_ERRNO__FORMAT; 10206 } 10207 10208 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 10209 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 10210 if (!map) { 10211 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 10212 (size_t)rel->r_offset); 10213 return -EINVAL; 10214 } 10215 10216 moff = rel->r_offset - map->sec_offset; 10217 shdr_idx = sym->st_shndx; 10218 st_ops = map->st_ops; 10219 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 10220 map->name, 10221 (long long)(rel->r_info >> 32), 10222 (long long)sym->st_value, 10223 shdr_idx, (size_t)rel->r_offset, 10224 map->sec_offset, sym->st_name, name); 10225 10226 if (shdr_idx >= SHN_LORESERVE) { 10227 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 10228 map->name, (size_t)rel->r_offset, shdr_idx); 10229 return -LIBBPF_ERRNO__RELOC; 10230 } 10231 if (sym->st_value % BPF_INSN_SZ) { 10232 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 10233 map->name, (unsigned long long)sym->st_value); 10234 return -LIBBPF_ERRNO__FORMAT; 10235 } 10236 insn_idx = sym->st_value / BPF_INSN_SZ; 10237 10238 type = btf__type_by_id(btf, st_ops->type_id); 10239 member = find_member_by_offset(type, moff * 8); 10240 if (!member) { 10241 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 10242 map->name, moff); 10243 return -EINVAL; 10244 } 10245 member_idx = member - btf_members(type); 10246 name = btf__name_by_offset(btf, member->name_off); 10247 10248 if (!resolve_func_ptr(btf, member->type, NULL)) { 10249 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 10250 map->name, name); 10251 return -EINVAL; 10252 } 10253 10254 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 10255 if (!prog) { 10256 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 10257 map->name, shdr_idx, name); 10258 return -EINVAL; 10259 } 10260 10261 /* prevent the use of BPF prog with invalid type */ 10262 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 10263 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 10264 map->name, prog->name); 10265 return -EINVAL; 10266 } 10267 10268 st_ops->progs[member_idx] = prog; 10269 10270 /* st_ops->data will be exposed to users, being returned by 10271 * bpf_map__initial_value() as a pointer to the shadow 10272 * type. All function pointers in the original struct type 10273 * should be converted to a pointer to struct bpf_program 10274 * in the shadow type. 10275 */ 10276 *((struct bpf_program **)(st_ops->data + moff)) = prog; 10277 } 10278 10279 return 0; 10280 } 10281 10282 #define BTF_TRACE_PREFIX "btf_trace_" 10283 #define BTF_LSM_PREFIX "bpf_lsm_" 10284 #define BTF_ITER_PREFIX "bpf_iter_" 10285 #define BTF_MAX_NAME_SIZE 128 10286 10287 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 10288 const char **prefix, int *kind) 10289 { 10290 switch (attach_type) { 10291 case BPF_TRACE_RAW_TP: 10292 *prefix = BTF_TRACE_PREFIX; 10293 *kind = BTF_KIND_TYPEDEF; 10294 break; 10295 case BPF_LSM_MAC: 10296 case BPF_LSM_CGROUP: 10297 *prefix = BTF_LSM_PREFIX; 10298 *kind = BTF_KIND_FUNC; 10299 break; 10300 case BPF_TRACE_ITER: 10301 *prefix = BTF_ITER_PREFIX; 10302 *kind = BTF_KIND_FUNC; 10303 break; 10304 default: 10305 *prefix = ""; 10306 *kind = BTF_KIND_FUNC; 10307 } 10308 } 10309 10310 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 10311 const char *name, __u32 kind) 10312 { 10313 char btf_type_name[BTF_MAX_NAME_SIZE]; 10314 int ret; 10315 10316 ret = snprintf(btf_type_name, sizeof(btf_type_name), 10317 "%s%s", prefix, name); 10318 /* snprintf returns the number of characters written excluding the 10319 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 10320 * indicates truncation. 10321 */ 10322 if (ret < 0 || ret >= sizeof(btf_type_name)) 10323 return -ENAMETOOLONG; 10324 return btf__find_by_name_kind(btf, btf_type_name, kind); 10325 } 10326 10327 static inline int find_attach_btf_id(struct btf *btf, const char *name, 10328 enum bpf_attach_type attach_type) 10329 { 10330 const char *prefix; 10331 int kind; 10332 10333 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 10334 return find_btf_by_prefix_kind(btf, prefix, name, kind); 10335 } 10336 10337 int libbpf_find_vmlinux_btf_id(const char *name, 10338 enum bpf_attach_type attach_type) 10339 { 10340 struct btf *btf; 10341 int err; 10342 10343 btf = btf__load_vmlinux_btf(); 10344 err = libbpf_get_error(btf); 10345 if (err) { 10346 pr_warn("vmlinux BTF is not found\n"); 10347 return libbpf_err(err); 10348 } 10349 10350 err = find_attach_btf_id(btf, name, attach_type); 10351 if (err <= 0) 10352 pr_warn("%s is not found in vmlinux BTF\n", name); 10353 10354 btf__free(btf); 10355 return libbpf_err(err); 10356 } 10357 10358 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd) 10359 { 10360 struct bpf_prog_info info; 10361 __u32 info_len = sizeof(info); 10362 struct btf *btf; 10363 int err; 10364 10365 memset(&info, 0, info_len); 10366 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 10367 if (err) { 10368 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 10369 attach_prog_fd, errstr(err)); 10370 return err; 10371 } 10372 10373 err = -EINVAL; 10374 if (!info.btf_id) { 10375 pr_warn("The target program doesn't have BTF\n"); 10376 goto out; 10377 } 10378 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd); 10379 err = libbpf_get_error(btf); 10380 if (err) { 10381 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 10382 goto out; 10383 } 10384 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 10385 btf__free(btf); 10386 if (err <= 0) { 10387 pr_warn("%s is not found in prog's BTF\n", name); 10388 goto out; 10389 } 10390 out: 10391 return err; 10392 } 10393 10394 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 10395 enum bpf_attach_type attach_type, 10396 int *btf_obj_fd, int *btf_type_id) 10397 { 10398 int ret, i, mod_len = 0; 10399 const char *fn_name, *mod_name = NULL; 10400 10401 fn_name = strchr(attach_name, ':'); 10402 if (fn_name) { 10403 mod_name = attach_name; 10404 mod_len = fn_name - mod_name; 10405 fn_name++; 10406 } 10407 10408 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10409 ret = find_attach_btf_id(obj->btf_vmlinux, 10410 mod_name ? fn_name : attach_name, 10411 attach_type); 10412 if (ret > 0) { 10413 *btf_obj_fd = 0; /* vmlinux BTF */ 10414 *btf_type_id = ret; 10415 return 0; 10416 } 10417 if (ret != -ENOENT) 10418 return ret; 10419 } 10420 10421 ret = load_module_btfs(obj); 10422 if (ret) 10423 return ret; 10424 10425 for (i = 0; i < obj->btf_module_cnt; i++) { 10426 const struct module_btf *mod = &obj->btf_modules[i]; 10427 10428 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10429 continue; 10430 10431 ret = find_attach_btf_id(mod->btf, 10432 mod_name ? fn_name : attach_name, 10433 attach_type); 10434 if (ret > 0) { 10435 *btf_obj_fd = mod->fd; 10436 *btf_type_id = ret; 10437 return 0; 10438 } 10439 if (ret == -ENOENT) 10440 continue; 10441 10442 return ret; 10443 } 10444 10445 return -ESRCH; 10446 } 10447 10448 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10449 int *btf_obj_fd, int *btf_type_id) 10450 { 10451 enum bpf_attach_type attach_type = prog->expected_attach_type; 10452 __u32 attach_prog_fd = prog->attach_prog_fd; 10453 int err = 0; 10454 10455 /* BPF program's BTF ID */ 10456 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10457 if (!attach_prog_fd) { 10458 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10459 return -EINVAL; 10460 } 10461 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd); 10462 if (err < 0) { 10463 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10464 prog->name, attach_prog_fd, attach_name, errstr(err)); 10465 return err; 10466 } 10467 *btf_obj_fd = 0; 10468 *btf_type_id = err; 10469 return 0; 10470 } 10471 10472 /* kernel/module BTF ID */ 10473 if (prog->obj->gen_loader) { 10474 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10475 *btf_obj_fd = 0; 10476 *btf_type_id = 1; 10477 } else { 10478 err = find_kernel_btf_id(prog->obj, attach_name, 10479 attach_type, btf_obj_fd, 10480 btf_type_id); 10481 } 10482 if (err) { 10483 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10484 prog->name, attach_name, errstr(err)); 10485 return err; 10486 } 10487 return 0; 10488 } 10489 10490 int libbpf_attach_type_by_name(const char *name, 10491 enum bpf_attach_type *attach_type) 10492 { 10493 char *type_names; 10494 const struct bpf_sec_def *sec_def; 10495 10496 if (!name) 10497 return libbpf_err(-EINVAL); 10498 10499 sec_def = find_sec_def(name); 10500 if (!sec_def) { 10501 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10502 type_names = libbpf_get_type_names(true); 10503 if (type_names != NULL) { 10504 pr_debug("attachable section(type) names are:%s\n", type_names); 10505 free(type_names); 10506 } 10507 10508 return libbpf_err(-EINVAL); 10509 } 10510 10511 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10512 return libbpf_err(-EINVAL); 10513 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10514 return libbpf_err(-EINVAL); 10515 10516 *attach_type = sec_def->expected_attach_type; 10517 return 0; 10518 } 10519 10520 int bpf_map__fd(const struct bpf_map *map) 10521 { 10522 if (!map) 10523 return libbpf_err(-EINVAL); 10524 if (!map_is_created(map)) 10525 return -1; 10526 return map->fd; 10527 } 10528 10529 static bool map_uses_real_name(const struct bpf_map *map) 10530 { 10531 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10532 * their user-visible name differs from kernel-visible name. Users see 10533 * such map's corresponding ELF section name as a map name. 10534 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10535 * maps to know which name has to be returned to the user. 10536 */ 10537 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10538 return true; 10539 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10540 return true; 10541 return false; 10542 } 10543 10544 const char *bpf_map__name(const struct bpf_map *map) 10545 { 10546 if (!map) 10547 return NULL; 10548 10549 if (map_uses_real_name(map)) 10550 return map->real_name; 10551 10552 return map->name; 10553 } 10554 10555 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10556 { 10557 return map->def.type; 10558 } 10559 10560 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10561 { 10562 if (map_is_created(map)) 10563 return libbpf_err(-EBUSY); 10564 map->def.type = type; 10565 return 0; 10566 } 10567 10568 __u32 bpf_map__map_flags(const struct bpf_map *map) 10569 { 10570 return map->def.map_flags; 10571 } 10572 10573 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10574 { 10575 if (map_is_created(map)) 10576 return libbpf_err(-EBUSY); 10577 map->def.map_flags = flags; 10578 return 0; 10579 } 10580 10581 __u64 bpf_map__map_extra(const struct bpf_map *map) 10582 { 10583 return map->map_extra; 10584 } 10585 10586 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10587 { 10588 if (map_is_created(map)) 10589 return libbpf_err(-EBUSY); 10590 map->map_extra = map_extra; 10591 return 0; 10592 } 10593 10594 __u32 bpf_map__numa_node(const struct bpf_map *map) 10595 { 10596 return map->numa_node; 10597 } 10598 10599 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10600 { 10601 if (map_is_created(map)) 10602 return libbpf_err(-EBUSY); 10603 map->numa_node = numa_node; 10604 return 0; 10605 } 10606 10607 __u32 bpf_map__key_size(const struct bpf_map *map) 10608 { 10609 return map->def.key_size; 10610 } 10611 10612 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10613 { 10614 if (map_is_created(map)) 10615 return libbpf_err(-EBUSY); 10616 map->def.key_size = size; 10617 return 0; 10618 } 10619 10620 __u32 bpf_map__value_size(const struct bpf_map *map) 10621 { 10622 return map->def.value_size; 10623 } 10624 10625 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10626 { 10627 struct btf *btf; 10628 struct btf_type *datasec_type, *var_type; 10629 struct btf_var_secinfo *var; 10630 const struct btf_type *array_type; 10631 const struct btf_array *array; 10632 int vlen, element_sz, new_array_id; 10633 __u32 nr_elements; 10634 10635 /* check btf existence */ 10636 btf = bpf_object__btf(map->obj); 10637 if (!btf) 10638 return -ENOENT; 10639 10640 /* verify map is datasec */ 10641 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10642 if (!btf_is_datasec(datasec_type)) { 10643 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10644 bpf_map__name(map)); 10645 return -EINVAL; 10646 } 10647 10648 /* verify datasec has at least one var */ 10649 vlen = btf_vlen(datasec_type); 10650 if (vlen == 0) { 10651 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10652 bpf_map__name(map)); 10653 return -EINVAL; 10654 } 10655 10656 /* verify last var in the datasec is an array */ 10657 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10658 var_type = btf_type_by_id(btf, var->type); 10659 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10660 if (!btf_is_array(array_type)) { 10661 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10662 bpf_map__name(map)); 10663 return -EINVAL; 10664 } 10665 10666 /* verify request size aligns with array */ 10667 array = btf_array(array_type); 10668 element_sz = btf__resolve_size(btf, array->type); 10669 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10670 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10671 bpf_map__name(map), element_sz, size); 10672 return -EINVAL; 10673 } 10674 10675 /* create a new array based on the existing array, but with new length */ 10676 nr_elements = (size - var->offset) / element_sz; 10677 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10678 if (new_array_id < 0) 10679 return new_array_id; 10680 10681 /* adding a new btf type invalidates existing pointers to btf objects, 10682 * so refresh pointers before proceeding 10683 */ 10684 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10685 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10686 var_type = btf_type_by_id(btf, var->type); 10687 10688 /* finally update btf info */ 10689 datasec_type->size = size; 10690 var->size = size - var->offset; 10691 var_type->type = new_array_id; 10692 10693 return 0; 10694 } 10695 10696 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10697 { 10698 if (map_is_created(map)) 10699 return libbpf_err(-EBUSY); 10700 10701 if (map->mmaped) { 10702 size_t mmap_old_sz, mmap_new_sz; 10703 int err; 10704 10705 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10706 return libbpf_err(-EOPNOTSUPP); 10707 10708 mmap_old_sz = bpf_map_mmap_sz(map); 10709 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10710 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10711 if (err) { 10712 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10713 bpf_map__name(map), errstr(err)); 10714 return libbpf_err(err); 10715 } 10716 err = map_btf_datasec_resize(map, size); 10717 if (err && err != -ENOENT) { 10718 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10719 bpf_map__name(map), errstr(err)); 10720 map->btf_value_type_id = 0; 10721 map->btf_key_type_id = 0; 10722 } 10723 } 10724 10725 map->def.value_size = size; 10726 return 0; 10727 } 10728 10729 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10730 { 10731 return map ? map->btf_key_type_id : 0; 10732 } 10733 10734 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10735 { 10736 return map ? map->btf_value_type_id : 0; 10737 } 10738 10739 int bpf_map__set_initial_value(struct bpf_map *map, 10740 const void *data, size_t size) 10741 { 10742 size_t actual_sz; 10743 10744 if (map_is_created(map)) 10745 return libbpf_err(-EBUSY); 10746 10747 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10748 return libbpf_err(-EINVAL); 10749 10750 if (map->def.type == BPF_MAP_TYPE_ARENA) 10751 actual_sz = map->obj->arena_data_sz; 10752 else 10753 actual_sz = map->def.value_size; 10754 if (size != actual_sz) 10755 return libbpf_err(-EINVAL); 10756 10757 memcpy(map->mmaped, data, size); 10758 return 0; 10759 } 10760 10761 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10762 { 10763 if (bpf_map__is_struct_ops(map)) { 10764 if (psize) 10765 *psize = map->def.value_size; 10766 return map->st_ops->data; 10767 } 10768 10769 if (!map->mmaped) 10770 return NULL; 10771 10772 if (map->def.type == BPF_MAP_TYPE_ARENA) 10773 *psize = map->obj->arena_data_sz; 10774 else 10775 *psize = map->def.value_size; 10776 10777 return map->mmaped; 10778 } 10779 10780 bool bpf_map__is_internal(const struct bpf_map *map) 10781 { 10782 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10783 } 10784 10785 __u32 bpf_map__ifindex(const struct bpf_map *map) 10786 { 10787 return map->map_ifindex; 10788 } 10789 10790 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10791 { 10792 if (map_is_created(map)) 10793 return libbpf_err(-EBUSY); 10794 map->map_ifindex = ifindex; 10795 return 0; 10796 } 10797 10798 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10799 { 10800 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10801 pr_warn("error: unsupported map type\n"); 10802 return libbpf_err(-EINVAL); 10803 } 10804 if (map->inner_map_fd != -1) { 10805 pr_warn("error: inner_map_fd already specified\n"); 10806 return libbpf_err(-EINVAL); 10807 } 10808 if (map->inner_map) { 10809 bpf_map__destroy(map->inner_map); 10810 zfree(&map->inner_map); 10811 } 10812 map->inner_map_fd = fd; 10813 return 0; 10814 } 10815 10816 int bpf_map__set_exclusive_program(struct bpf_map *map, struct bpf_program *prog) 10817 { 10818 if (map_is_created(map)) { 10819 pr_warn("exclusive programs must be set before map creation\n"); 10820 return libbpf_err(-EINVAL); 10821 } 10822 10823 if (map->obj != prog->obj) { 10824 pr_warn("excl_prog and map must be from the same bpf object\n"); 10825 return libbpf_err(-EINVAL); 10826 } 10827 10828 map->excl_prog = prog; 10829 return 0; 10830 } 10831 10832 struct bpf_program *bpf_map__exclusive_program(struct bpf_map *map) 10833 { 10834 return map->excl_prog; 10835 } 10836 10837 static struct bpf_map * 10838 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10839 { 10840 ssize_t idx; 10841 struct bpf_map *s, *e; 10842 10843 if (!obj || !obj->maps) 10844 return errno = EINVAL, NULL; 10845 10846 s = obj->maps; 10847 e = obj->maps + obj->nr_maps; 10848 10849 if ((m < s) || (m >= e)) { 10850 pr_warn("error in %s: map handler doesn't belong to object\n", 10851 __func__); 10852 return errno = EINVAL, NULL; 10853 } 10854 10855 idx = (m - obj->maps) + i; 10856 if (idx >= obj->nr_maps || idx < 0) 10857 return NULL; 10858 return &obj->maps[idx]; 10859 } 10860 10861 struct bpf_map * 10862 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10863 { 10864 if (prev == NULL && obj != NULL) 10865 return obj->maps; 10866 10867 return __bpf_map__iter(prev, obj, 1); 10868 } 10869 10870 struct bpf_map * 10871 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10872 { 10873 if (next == NULL && obj != NULL) { 10874 if (!obj->nr_maps) 10875 return NULL; 10876 return obj->maps + obj->nr_maps - 1; 10877 } 10878 10879 return __bpf_map__iter(next, obj, -1); 10880 } 10881 10882 struct bpf_map * 10883 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10884 { 10885 struct bpf_map *pos; 10886 10887 bpf_object__for_each_map(pos, obj) { 10888 /* if it's a special internal map name (which always starts 10889 * with dot) then check if that special name matches the 10890 * real map name (ELF section name) 10891 */ 10892 if (name[0] == '.') { 10893 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10894 return pos; 10895 continue; 10896 } 10897 /* otherwise map name has to be an exact match */ 10898 if (map_uses_real_name(pos)) { 10899 if (strcmp(pos->real_name, name) == 0) 10900 return pos; 10901 continue; 10902 } 10903 if (strcmp(pos->name, name) == 0) 10904 return pos; 10905 } 10906 return errno = ENOENT, NULL; 10907 } 10908 10909 int 10910 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10911 { 10912 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10913 } 10914 10915 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10916 size_t value_sz, bool check_value_sz) 10917 { 10918 if (!map_is_created(map)) /* map is not yet created */ 10919 return -ENOENT; 10920 10921 if (map->def.key_size != key_sz) { 10922 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10923 map->name, key_sz, map->def.key_size); 10924 return -EINVAL; 10925 } 10926 10927 if (map->fd < 0) { 10928 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10929 return -EINVAL; 10930 } 10931 10932 if (!check_value_sz) 10933 return 0; 10934 10935 switch (map->def.type) { 10936 case BPF_MAP_TYPE_PERCPU_ARRAY: 10937 case BPF_MAP_TYPE_PERCPU_HASH: 10938 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10939 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10940 int num_cpu = libbpf_num_possible_cpus(); 10941 size_t elem_sz = roundup(map->def.value_size, 8); 10942 10943 if (value_sz != num_cpu * elem_sz) { 10944 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10945 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10946 return -EINVAL; 10947 } 10948 break; 10949 } 10950 default: 10951 if (map->def.value_size != value_sz) { 10952 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10953 map->name, value_sz, map->def.value_size); 10954 return -EINVAL; 10955 } 10956 break; 10957 } 10958 return 0; 10959 } 10960 10961 int bpf_map__lookup_elem(const struct bpf_map *map, 10962 const void *key, size_t key_sz, 10963 void *value, size_t value_sz, __u64 flags) 10964 { 10965 int err; 10966 10967 err = validate_map_op(map, key_sz, value_sz, true); 10968 if (err) 10969 return libbpf_err(err); 10970 10971 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10972 } 10973 10974 int bpf_map__update_elem(const struct bpf_map *map, 10975 const void *key, size_t key_sz, 10976 const void *value, size_t value_sz, __u64 flags) 10977 { 10978 int err; 10979 10980 err = validate_map_op(map, key_sz, value_sz, true); 10981 if (err) 10982 return libbpf_err(err); 10983 10984 return bpf_map_update_elem(map->fd, key, value, flags); 10985 } 10986 10987 int bpf_map__delete_elem(const struct bpf_map *map, 10988 const void *key, size_t key_sz, __u64 flags) 10989 { 10990 int err; 10991 10992 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10993 if (err) 10994 return libbpf_err(err); 10995 10996 return bpf_map_delete_elem_flags(map->fd, key, flags); 10997 } 10998 10999 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 11000 const void *key, size_t key_sz, 11001 void *value, size_t value_sz, __u64 flags) 11002 { 11003 int err; 11004 11005 err = validate_map_op(map, key_sz, value_sz, true); 11006 if (err) 11007 return libbpf_err(err); 11008 11009 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 11010 } 11011 11012 int bpf_map__get_next_key(const struct bpf_map *map, 11013 const void *cur_key, void *next_key, size_t key_sz) 11014 { 11015 int err; 11016 11017 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 11018 if (err) 11019 return libbpf_err(err); 11020 11021 return bpf_map_get_next_key(map->fd, cur_key, next_key); 11022 } 11023 11024 long libbpf_get_error(const void *ptr) 11025 { 11026 if (!IS_ERR_OR_NULL(ptr)) 11027 return 0; 11028 11029 if (IS_ERR(ptr)) 11030 errno = -PTR_ERR(ptr); 11031 11032 /* If ptr == NULL, then errno should be already set by the failing 11033 * API, because libbpf never returns NULL on success and it now always 11034 * sets errno on error. So no extra errno handling for ptr == NULL 11035 * case. 11036 */ 11037 return -errno; 11038 } 11039 11040 /* Replace link's underlying BPF program with the new one */ 11041 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 11042 { 11043 int ret; 11044 int prog_fd = bpf_program__fd(prog); 11045 11046 if (prog_fd < 0) { 11047 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 11048 prog->name); 11049 return libbpf_err(-EINVAL); 11050 } 11051 11052 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 11053 return libbpf_err_errno(ret); 11054 } 11055 11056 /* Release "ownership" of underlying BPF resource (typically, BPF program 11057 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 11058 * link, when destructed through bpf_link__destroy() call won't attempt to 11059 * detach/unregisted that BPF resource. This is useful in situations where, 11060 * say, attached BPF program has to outlive userspace program that attached it 11061 * in the system. Depending on type of BPF program, though, there might be 11062 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 11063 * exit of userspace program doesn't trigger automatic detachment and clean up 11064 * inside the kernel. 11065 */ 11066 void bpf_link__disconnect(struct bpf_link *link) 11067 { 11068 link->disconnected = true; 11069 } 11070 11071 int bpf_link__destroy(struct bpf_link *link) 11072 { 11073 int err = 0; 11074 11075 if (IS_ERR_OR_NULL(link)) 11076 return 0; 11077 11078 if (!link->disconnected && link->detach) 11079 err = link->detach(link); 11080 if (link->pin_path) 11081 free(link->pin_path); 11082 if (link->dealloc) 11083 link->dealloc(link); 11084 else 11085 free(link); 11086 11087 return libbpf_err(err); 11088 } 11089 11090 int bpf_link__fd(const struct bpf_link *link) 11091 { 11092 return link->fd; 11093 } 11094 11095 const char *bpf_link__pin_path(const struct bpf_link *link) 11096 { 11097 return link->pin_path; 11098 } 11099 11100 static int bpf_link__detach_fd(struct bpf_link *link) 11101 { 11102 return libbpf_err_errno(close(link->fd)); 11103 } 11104 11105 struct bpf_link *bpf_link__open(const char *path) 11106 { 11107 struct bpf_link *link; 11108 int fd; 11109 11110 fd = bpf_obj_get(path); 11111 if (fd < 0) { 11112 fd = -errno; 11113 pr_warn("failed to open link at %s: %d\n", path, fd); 11114 return libbpf_err_ptr(fd); 11115 } 11116 11117 link = calloc(1, sizeof(*link)); 11118 if (!link) { 11119 close(fd); 11120 return libbpf_err_ptr(-ENOMEM); 11121 } 11122 link->detach = &bpf_link__detach_fd; 11123 link->fd = fd; 11124 11125 link->pin_path = strdup(path); 11126 if (!link->pin_path) { 11127 bpf_link__destroy(link); 11128 return libbpf_err_ptr(-ENOMEM); 11129 } 11130 11131 return link; 11132 } 11133 11134 int bpf_link__detach(struct bpf_link *link) 11135 { 11136 return bpf_link_detach(link->fd) ? -errno : 0; 11137 } 11138 11139 int bpf_link__pin(struct bpf_link *link, const char *path) 11140 { 11141 int err; 11142 11143 if (link->pin_path) 11144 return libbpf_err(-EBUSY); 11145 err = make_parent_dir(path); 11146 if (err) 11147 return libbpf_err(err); 11148 err = check_path(path); 11149 if (err) 11150 return libbpf_err(err); 11151 11152 link->pin_path = strdup(path); 11153 if (!link->pin_path) 11154 return libbpf_err(-ENOMEM); 11155 11156 if (bpf_obj_pin(link->fd, link->pin_path)) { 11157 err = -errno; 11158 zfree(&link->pin_path); 11159 return libbpf_err(err); 11160 } 11161 11162 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 11163 return 0; 11164 } 11165 11166 int bpf_link__unpin(struct bpf_link *link) 11167 { 11168 int err; 11169 11170 if (!link->pin_path) 11171 return libbpf_err(-EINVAL); 11172 11173 err = unlink(link->pin_path); 11174 if (err != 0) 11175 return -errno; 11176 11177 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 11178 zfree(&link->pin_path); 11179 return 0; 11180 } 11181 11182 struct bpf_link_perf { 11183 struct bpf_link link; 11184 int perf_event_fd; 11185 /* legacy kprobe support: keep track of probe identifier and type */ 11186 char *legacy_probe_name; 11187 bool legacy_is_kprobe; 11188 bool legacy_is_retprobe; 11189 }; 11190 11191 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 11192 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 11193 11194 static int bpf_link_perf_detach(struct bpf_link *link) 11195 { 11196 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11197 int err = 0; 11198 11199 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 11200 err = -errno; 11201 11202 if (perf_link->perf_event_fd != link->fd) 11203 close(perf_link->perf_event_fd); 11204 close(link->fd); 11205 11206 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 11207 if (perf_link->legacy_probe_name) { 11208 if (perf_link->legacy_is_kprobe) { 11209 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 11210 perf_link->legacy_is_retprobe); 11211 } else { 11212 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 11213 perf_link->legacy_is_retprobe); 11214 } 11215 } 11216 11217 return err; 11218 } 11219 11220 static void bpf_link_perf_dealloc(struct bpf_link *link) 11221 { 11222 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11223 11224 free(perf_link->legacy_probe_name); 11225 free(perf_link); 11226 } 11227 11228 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 11229 const struct bpf_perf_event_opts *opts) 11230 { 11231 struct bpf_link_perf *link; 11232 int prog_fd, link_fd = -1, err; 11233 bool force_ioctl_attach; 11234 11235 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 11236 return libbpf_err_ptr(-EINVAL); 11237 11238 if (pfd < 0) { 11239 pr_warn("prog '%s': invalid perf event FD %d\n", 11240 prog->name, pfd); 11241 return libbpf_err_ptr(-EINVAL); 11242 } 11243 prog_fd = bpf_program__fd(prog); 11244 if (prog_fd < 0) { 11245 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11246 prog->name); 11247 return libbpf_err_ptr(-EINVAL); 11248 } 11249 11250 link = calloc(1, sizeof(*link)); 11251 if (!link) 11252 return libbpf_err_ptr(-ENOMEM); 11253 link->link.detach = &bpf_link_perf_detach; 11254 link->link.dealloc = &bpf_link_perf_dealloc; 11255 link->perf_event_fd = pfd; 11256 11257 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 11258 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 11259 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 11260 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 11261 11262 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 11263 if (link_fd < 0) { 11264 err = -errno; 11265 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 11266 prog->name, pfd, errstr(err)); 11267 goto err_out; 11268 } 11269 link->link.fd = link_fd; 11270 } else { 11271 if (OPTS_GET(opts, bpf_cookie, 0)) { 11272 pr_warn("prog '%s': user context value is not supported\n", prog->name); 11273 err = -EOPNOTSUPP; 11274 goto err_out; 11275 } 11276 11277 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 11278 err = -errno; 11279 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 11280 prog->name, pfd, errstr(err)); 11281 if (err == -EPROTO) 11282 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 11283 prog->name, pfd); 11284 goto err_out; 11285 } 11286 link->link.fd = pfd; 11287 } 11288 11289 if (!OPTS_GET(opts, dont_enable, false)) { 11290 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11291 err = -errno; 11292 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 11293 prog->name, pfd, errstr(err)); 11294 goto err_out; 11295 } 11296 } 11297 11298 return &link->link; 11299 err_out: 11300 if (link_fd >= 0) 11301 close(link_fd); 11302 free(link); 11303 return libbpf_err_ptr(err); 11304 } 11305 11306 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 11307 { 11308 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 11309 } 11310 11311 /* 11312 * this function is expected to parse integer in the range of [0, 2^31-1] from 11313 * given file using scanf format string fmt. If actual parsed value is 11314 * negative, the result might be indistinguishable from error 11315 */ 11316 static int parse_uint_from_file(const char *file, const char *fmt) 11317 { 11318 int err, ret; 11319 FILE *f; 11320 11321 f = fopen(file, "re"); 11322 if (!f) { 11323 err = -errno; 11324 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 11325 return err; 11326 } 11327 err = fscanf(f, fmt, &ret); 11328 if (err != 1) { 11329 err = err == EOF ? -EIO : -errno; 11330 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 11331 fclose(f); 11332 return err; 11333 } 11334 fclose(f); 11335 return ret; 11336 } 11337 11338 static int determine_kprobe_perf_type(void) 11339 { 11340 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 11341 11342 return parse_uint_from_file(file, "%d\n"); 11343 } 11344 11345 static int determine_uprobe_perf_type(void) 11346 { 11347 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 11348 11349 return parse_uint_from_file(file, "%d\n"); 11350 } 11351 11352 static int determine_kprobe_retprobe_bit(void) 11353 { 11354 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 11355 11356 return parse_uint_from_file(file, "config:%d\n"); 11357 } 11358 11359 static int determine_uprobe_retprobe_bit(void) 11360 { 11361 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 11362 11363 return parse_uint_from_file(file, "config:%d\n"); 11364 } 11365 11366 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 11367 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 11368 11369 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 11370 uint64_t offset, int pid, size_t ref_ctr_off) 11371 { 11372 const size_t attr_sz = sizeof(struct perf_event_attr); 11373 struct perf_event_attr attr; 11374 int type, pfd; 11375 11376 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 11377 return -EINVAL; 11378 11379 memset(&attr, 0, attr_sz); 11380 11381 type = uprobe ? determine_uprobe_perf_type() 11382 : determine_kprobe_perf_type(); 11383 if (type < 0) { 11384 pr_warn("failed to determine %s perf type: %s\n", 11385 uprobe ? "uprobe" : "kprobe", 11386 errstr(type)); 11387 return type; 11388 } 11389 if (retprobe) { 11390 int bit = uprobe ? determine_uprobe_retprobe_bit() 11391 : determine_kprobe_retprobe_bit(); 11392 11393 if (bit < 0) { 11394 pr_warn("failed to determine %s retprobe bit: %s\n", 11395 uprobe ? "uprobe" : "kprobe", 11396 errstr(bit)); 11397 return bit; 11398 } 11399 attr.config |= 1 << bit; 11400 } 11401 attr.size = attr_sz; 11402 attr.type = type; 11403 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11404 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 11405 attr.config2 = offset; /* kprobe_addr or probe_offset */ 11406 11407 /* pid filter is meaningful only for uprobes */ 11408 pfd = syscall(__NR_perf_event_open, &attr, 11409 pid < 0 ? -1 : pid /* pid */, 11410 pid == -1 ? 0 : -1 /* cpu */, 11411 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11412 return pfd >= 0 ? pfd : -errno; 11413 } 11414 11415 static int append_to_file(const char *file, const char *fmt, ...) 11416 { 11417 int fd, n, err = 0; 11418 va_list ap; 11419 char buf[1024]; 11420 11421 va_start(ap, fmt); 11422 n = vsnprintf(buf, sizeof(buf), fmt, ap); 11423 va_end(ap); 11424 11425 if (n < 0 || n >= sizeof(buf)) 11426 return -EINVAL; 11427 11428 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 11429 if (fd < 0) 11430 return -errno; 11431 11432 if (write(fd, buf, n) < 0) 11433 err = -errno; 11434 11435 close(fd); 11436 return err; 11437 } 11438 11439 #define DEBUGFS "/sys/kernel/debug/tracing" 11440 #define TRACEFS "/sys/kernel/tracing" 11441 11442 static bool use_debugfs(void) 11443 { 11444 static int has_debugfs = -1; 11445 11446 if (has_debugfs < 0) 11447 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11448 11449 return has_debugfs == 1; 11450 } 11451 11452 static const char *tracefs_path(void) 11453 { 11454 return use_debugfs() ? DEBUGFS : TRACEFS; 11455 } 11456 11457 static const char *tracefs_kprobe_events(void) 11458 { 11459 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11460 } 11461 11462 static const char *tracefs_uprobe_events(void) 11463 { 11464 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11465 } 11466 11467 static const char *tracefs_available_filter_functions(void) 11468 { 11469 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11470 : TRACEFS"/available_filter_functions"; 11471 } 11472 11473 static const char *tracefs_available_filter_functions_addrs(void) 11474 { 11475 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11476 : TRACEFS"/available_filter_functions_addrs"; 11477 } 11478 11479 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz, 11480 const char *name, size_t offset) 11481 { 11482 static int index = 0; 11483 int i; 11484 11485 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(), 11486 __sync_fetch_and_add(&index, 1), name, offset); 11487 11488 /* sanitize name in the probe name */ 11489 for (i = 0; buf[i]; i++) { 11490 if (!isalnum(buf[i])) 11491 buf[i] = '_'; 11492 } 11493 } 11494 11495 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11496 const char *kfunc_name, size_t offset) 11497 { 11498 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11499 retprobe ? 'r' : 'p', 11500 retprobe ? "kretprobes" : "kprobes", 11501 probe_name, kfunc_name, offset); 11502 } 11503 11504 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11505 { 11506 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11507 retprobe ? "kretprobes" : "kprobes", probe_name); 11508 } 11509 11510 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11511 { 11512 char file[256]; 11513 11514 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11515 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11516 11517 return parse_uint_from_file(file, "%d\n"); 11518 } 11519 11520 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11521 const char *kfunc_name, size_t offset, int pid) 11522 { 11523 const size_t attr_sz = sizeof(struct perf_event_attr); 11524 struct perf_event_attr attr; 11525 int type, pfd, err; 11526 11527 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11528 if (err < 0) { 11529 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11530 kfunc_name, offset, 11531 errstr(err)); 11532 return err; 11533 } 11534 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11535 if (type < 0) { 11536 err = type; 11537 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11538 kfunc_name, offset, 11539 errstr(err)); 11540 goto err_clean_legacy; 11541 } 11542 11543 memset(&attr, 0, attr_sz); 11544 attr.size = attr_sz; 11545 attr.config = type; 11546 attr.type = PERF_TYPE_TRACEPOINT; 11547 11548 pfd = syscall(__NR_perf_event_open, &attr, 11549 pid < 0 ? -1 : pid, /* pid */ 11550 pid == -1 ? 0 : -1, /* cpu */ 11551 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11552 if (pfd < 0) { 11553 err = -errno; 11554 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11555 errstr(err)); 11556 goto err_clean_legacy; 11557 } 11558 return pfd; 11559 11560 err_clean_legacy: 11561 /* Clear the newly added legacy kprobe_event */ 11562 remove_kprobe_event_legacy(probe_name, retprobe); 11563 return err; 11564 } 11565 11566 static const char *arch_specific_syscall_pfx(void) 11567 { 11568 #if defined(__x86_64__) 11569 return "x64"; 11570 #elif defined(__i386__) 11571 return "ia32"; 11572 #elif defined(__s390x__) 11573 return "s390x"; 11574 #elif defined(__arm__) 11575 return "arm"; 11576 #elif defined(__aarch64__) 11577 return "arm64"; 11578 #elif defined(__mips__) 11579 return "mips"; 11580 #elif defined(__riscv) 11581 return "riscv"; 11582 #elif defined(__powerpc__) 11583 return "powerpc"; 11584 #elif defined(__powerpc64__) 11585 return "powerpc64"; 11586 #else 11587 return NULL; 11588 #endif 11589 } 11590 11591 int probe_kern_syscall_wrapper(int token_fd) 11592 { 11593 char syscall_name[64]; 11594 const char *ksys_pfx; 11595 11596 ksys_pfx = arch_specific_syscall_pfx(); 11597 if (!ksys_pfx) 11598 return 0; 11599 11600 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11601 11602 if (determine_kprobe_perf_type() >= 0) { 11603 int pfd; 11604 11605 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11606 if (pfd >= 0) 11607 close(pfd); 11608 11609 return pfd >= 0 ? 1 : 0; 11610 } else { /* legacy mode */ 11611 char probe_name[MAX_EVENT_NAME_LEN]; 11612 11613 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11614 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11615 return 0; 11616 11617 (void)remove_kprobe_event_legacy(probe_name, false); 11618 return 1; 11619 } 11620 } 11621 11622 struct bpf_link * 11623 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11624 const char *func_name, 11625 const struct bpf_kprobe_opts *opts) 11626 { 11627 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11628 enum probe_attach_mode attach_mode; 11629 char *legacy_probe = NULL; 11630 struct bpf_link *link; 11631 size_t offset; 11632 bool retprobe, legacy; 11633 int pfd, err; 11634 11635 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11636 return libbpf_err_ptr(-EINVAL); 11637 11638 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11639 retprobe = OPTS_GET(opts, retprobe, false); 11640 offset = OPTS_GET(opts, offset, 0); 11641 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11642 11643 legacy = determine_kprobe_perf_type() < 0; 11644 switch (attach_mode) { 11645 case PROBE_ATTACH_MODE_LEGACY: 11646 legacy = true; 11647 pe_opts.force_ioctl_attach = true; 11648 break; 11649 case PROBE_ATTACH_MODE_PERF: 11650 if (legacy) 11651 return libbpf_err_ptr(-ENOTSUP); 11652 pe_opts.force_ioctl_attach = true; 11653 break; 11654 case PROBE_ATTACH_MODE_LINK: 11655 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11656 return libbpf_err_ptr(-ENOTSUP); 11657 break; 11658 case PROBE_ATTACH_MODE_DEFAULT: 11659 break; 11660 default: 11661 return libbpf_err_ptr(-EINVAL); 11662 } 11663 11664 if (!legacy) { 11665 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11666 func_name, offset, 11667 -1 /* pid */, 0 /* ref_ctr_off */); 11668 } else { 11669 char probe_name[MAX_EVENT_NAME_LEN]; 11670 11671 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 11672 func_name, offset); 11673 11674 legacy_probe = strdup(probe_name); 11675 if (!legacy_probe) 11676 return libbpf_err_ptr(-ENOMEM); 11677 11678 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11679 offset, -1 /* pid */); 11680 } 11681 if (pfd < 0) { 11682 err = -errno; 11683 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11684 prog->name, retprobe ? "kretprobe" : "kprobe", 11685 func_name, offset, 11686 errstr(err)); 11687 goto err_out; 11688 } 11689 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11690 err = libbpf_get_error(link); 11691 if (err) { 11692 close(pfd); 11693 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11694 prog->name, retprobe ? "kretprobe" : "kprobe", 11695 func_name, offset, 11696 errstr(err)); 11697 goto err_clean_legacy; 11698 } 11699 if (legacy) { 11700 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11701 11702 perf_link->legacy_probe_name = legacy_probe; 11703 perf_link->legacy_is_kprobe = true; 11704 perf_link->legacy_is_retprobe = retprobe; 11705 } 11706 11707 return link; 11708 11709 err_clean_legacy: 11710 if (legacy) 11711 remove_kprobe_event_legacy(legacy_probe, retprobe); 11712 err_out: 11713 free(legacy_probe); 11714 return libbpf_err_ptr(err); 11715 } 11716 11717 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11718 bool retprobe, 11719 const char *func_name) 11720 { 11721 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11722 .retprobe = retprobe, 11723 ); 11724 11725 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11726 } 11727 11728 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11729 const char *syscall_name, 11730 const struct bpf_ksyscall_opts *opts) 11731 { 11732 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11733 char func_name[128]; 11734 11735 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11736 return libbpf_err_ptr(-EINVAL); 11737 11738 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11739 /* arch_specific_syscall_pfx() should never return NULL here 11740 * because it is guarded by kernel_supports(). However, since 11741 * compiler does not know that we have an explicit conditional 11742 * as well. 11743 */ 11744 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11745 arch_specific_syscall_pfx() ? : "", syscall_name); 11746 } else { 11747 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11748 } 11749 11750 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11751 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11752 11753 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11754 } 11755 11756 /* Adapted from perf/util/string.c */ 11757 bool glob_match(const char *str, const char *pat) 11758 { 11759 while (*str && *pat && *pat != '*') { 11760 if (*pat == '?') { /* Matches any single character */ 11761 str++; 11762 pat++; 11763 continue; 11764 } 11765 if (*str != *pat) 11766 return false; 11767 str++; 11768 pat++; 11769 } 11770 /* Check wild card */ 11771 if (*pat == '*') { 11772 while (*pat == '*') 11773 pat++; 11774 if (!*pat) /* Tail wild card matches all */ 11775 return true; 11776 while (*str) 11777 if (glob_match(str++, pat)) 11778 return true; 11779 } 11780 return !*str && !*pat; 11781 } 11782 11783 struct kprobe_multi_resolve { 11784 const char *pattern; 11785 unsigned long *addrs; 11786 size_t cap; 11787 size_t cnt; 11788 }; 11789 11790 struct avail_kallsyms_data { 11791 char **syms; 11792 size_t cnt; 11793 struct kprobe_multi_resolve *res; 11794 }; 11795 11796 static int avail_func_cmp(const void *a, const void *b) 11797 { 11798 return strcmp(*(const char **)a, *(const char **)b); 11799 } 11800 11801 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11802 const char *sym_name, void *ctx) 11803 { 11804 struct avail_kallsyms_data *data = ctx; 11805 struct kprobe_multi_resolve *res = data->res; 11806 int err; 11807 11808 if (!glob_match(sym_name, res->pattern)) 11809 return 0; 11810 11811 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) { 11812 /* Some versions of kernel strip out .llvm.<hash> suffix from 11813 * function names reported in available_filter_functions, but 11814 * don't do so for kallsyms. While this is clearly a kernel 11815 * bug (fixed by [0]) we try to accommodate that in libbpf to 11816 * make multi-kprobe usability a bit better: if no match is 11817 * found, we will strip .llvm. suffix and try one more time. 11818 * 11819 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG") 11820 */ 11821 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx; 11822 11823 if (!(sym_sfx = strstr(sym_name, ".llvm."))) 11824 return 0; 11825 11826 /* psym_trim vs sym_trim dance is done to avoid pointer vs array 11827 * coercion differences and get proper `const char **` pointer 11828 * which avail_func_cmp() expects 11829 */ 11830 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name); 11831 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11832 return 0; 11833 } 11834 11835 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11836 if (err) 11837 return err; 11838 11839 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11840 return 0; 11841 } 11842 11843 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11844 { 11845 const char *available_functions_file = tracefs_available_filter_functions(); 11846 struct avail_kallsyms_data data; 11847 char sym_name[500]; 11848 FILE *f; 11849 int err = 0, ret, i; 11850 char **syms = NULL; 11851 size_t cap = 0, cnt = 0; 11852 11853 f = fopen(available_functions_file, "re"); 11854 if (!f) { 11855 err = -errno; 11856 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11857 return err; 11858 } 11859 11860 while (true) { 11861 char *name; 11862 11863 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11864 if (ret == EOF && feof(f)) 11865 break; 11866 11867 if (ret != 1) { 11868 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11869 err = -EINVAL; 11870 goto cleanup; 11871 } 11872 11873 if (!glob_match(sym_name, res->pattern)) 11874 continue; 11875 11876 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11877 if (err) 11878 goto cleanup; 11879 11880 name = strdup(sym_name); 11881 if (!name) { 11882 err = -errno; 11883 goto cleanup; 11884 } 11885 11886 syms[cnt++] = name; 11887 } 11888 11889 /* no entries found, bail out */ 11890 if (cnt == 0) { 11891 err = -ENOENT; 11892 goto cleanup; 11893 } 11894 11895 /* sort available functions */ 11896 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11897 11898 data.syms = syms; 11899 data.res = res; 11900 data.cnt = cnt; 11901 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11902 11903 if (res->cnt == 0) 11904 err = -ENOENT; 11905 11906 cleanup: 11907 for (i = 0; i < cnt; i++) 11908 free((char *)syms[i]); 11909 free(syms); 11910 11911 fclose(f); 11912 return err; 11913 } 11914 11915 static bool has_available_filter_functions_addrs(void) 11916 { 11917 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11918 } 11919 11920 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11921 { 11922 const char *available_path = tracefs_available_filter_functions_addrs(); 11923 char sym_name[500]; 11924 FILE *f; 11925 int ret, err = 0; 11926 unsigned long long sym_addr; 11927 11928 f = fopen(available_path, "re"); 11929 if (!f) { 11930 err = -errno; 11931 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11932 return err; 11933 } 11934 11935 while (true) { 11936 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11937 if (ret == EOF && feof(f)) 11938 break; 11939 11940 if (ret != 2) { 11941 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11942 ret); 11943 err = -EINVAL; 11944 goto cleanup; 11945 } 11946 11947 if (!glob_match(sym_name, res->pattern)) 11948 continue; 11949 11950 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11951 sizeof(*res->addrs), res->cnt + 1); 11952 if (err) 11953 goto cleanup; 11954 11955 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11956 } 11957 11958 if (res->cnt == 0) 11959 err = -ENOENT; 11960 11961 cleanup: 11962 fclose(f); 11963 return err; 11964 } 11965 11966 struct bpf_link * 11967 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11968 const char *pattern, 11969 const struct bpf_kprobe_multi_opts *opts) 11970 { 11971 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11972 struct kprobe_multi_resolve res = { 11973 .pattern = pattern, 11974 }; 11975 enum bpf_attach_type attach_type; 11976 struct bpf_link *link = NULL; 11977 const unsigned long *addrs; 11978 int err, link_fd, prog_fd; 11979 bool retprobe, session, unique_match; 11980 const __u64 *cookies; 11981 const char **syms; 11982 size_t cnt; 11983 11984 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11985 return libbpf_err_ptr(-EINVAL); 11986 11987 prog_fd = bpf_program__fd(prog); 11988 if (prog_fd < 0) { 11989 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11990 prog->name); 11991 return libbpf_err_ptr(-EINVAL); 11992 } 11993 11994 syms = OPTS_GET(opts, syms, false); 11995 addrs = OPTS_GET(opts, addrs, false); 11996 cnt = OPTS_GET(opts, cnt, false); 11997 cookies = OPTS_GET(opts, cookies, false); 11998 unique_match = OPTS_GET(opts, unique_match, false); 11999 12000 if (!pattern && !addrs && !syms) 12001 return libbpf_err_ptr(-EINVAL); 12002 if (pattern && (addrs || syms || cookies || cnt)) 12003 return libbpf_err_ptr(-EINVAL); 12004 if (!pattern && !cnt) 12005 return libbpf_err_ptr(-EINVAL); 12006 if (!pattern && unique_match) 12007 return libbpf_err_ptr(-EINVAL); 12008 if (addrs && syms) 12009 return libbpf_err_ptr(-EINVAL); 12010 12011 if (pattern) { 12012 if (has_available_filter_functions_addrs()) 12013 err = libbpf_available_kprobes_parse(&res); 12014 else 12015 err = libbpf_available_kallsyms_parse(&res); 12016 if (err) 12017 goto error; 12018 12019 if (unique_match && res.cnt != 1) { 12020 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n", 12021 prog->name, pattern, res.cnt); 12022 err = -EINVAL; 12023 goto error; 12024 } 12025 12026 addrs = res.addrs; 12027 cnt = res.cnt; 12028 } 12029 12030 retprobe = OPTS_GET(opts, retprobe, false); 12031 session = OPTS_GET(opts, session, false); 12032 12033 if (retprobe && session) 12034 return libbpf_err_ptr(-EINVAL); 12035 12036 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 12037 12038 lopts.kprobe_multi.syms = syms; 12039 lopts.kprobe_multi.addrs = addrs; 12040 lopts.kprobe_multi.cookies = cookies; 12041 lopts.kprobe_multi.cnt = cnt; 12042 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 12043 12044 link = calloc(1, sizeof(*link)); 12045 if (!link) { 12046 err = -ENOMEM; 12047 goto error; 12048 } 12049 link->detach = &bpf_link__detach_fd; 12050 12051 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12052 if (link_fd < 0) { 12053 err = -errno; 12054 pr_warn("prog '%s': failed to attach: %s\n", 12055 prog->name, errstr(err)); 12056 goto error; 12057 } 12058 link->fd = link_fd; 12059 free(res.addrs); 12060 return link; 12061 12062 error: 12063 free(link); 12064 free(res.addrs); 12065 return libbpf_err_ptr(err); 12066 } 12067 12068 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12069 { 12070 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 12071 unsigned long offset = 0; 12072 const char *func_name; 12073 char *func; 12074 int n; 12075 12076 *link = NULL; 12077 12078 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 12079 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 12080 return 0; 12081 12082 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 12083 if (opts.retprobe) 12084 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 12085 else 12086 func_name = prog->sec_name + sizeof("kprobe/") - 1; 12087 12088 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 12089 if (n < 1) { 12090 pr_warn("kprobe name is invalid: %s\n", func_name); 12091 return -EINVAL; 12092 } 12093 if (opts.retprobe && offset != 0) { 12094 free(func); 12095 pr_warn("kretprobes do not support offset specification\n"); 12096 return -EINVAL; 12097 } 12098 12099 opts.offset = offset; 12100 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 12101 free(func); 12102 return libbpf_get_error(*link); 12103 } 12104 12105 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12106 { 12107 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 12108 const char *syscall_name; 12109 12110 *link = NULL; 12111 12112 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 12113 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 12114 return 0; 12115 12116 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 12117 if (opts.retprobe) 12118 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 12119 else 12120 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 12121 12122 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 12123 return *link ? 0 : -errno; 12124 } 12125 12126 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12127 { 12128 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 12129 const char *spec; 12130 char *pattern; 12131 int n; 12132 12133 *link = NULL; 12134 12135 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 12136 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 12137 strcmp(prog->sec_name, "kretprobe.multi") == 0) 12138 return 0; 12139 12140 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 12141 if (opts.retprobe) 12142 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 12143 else 12144 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 12145 12146 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 12147 if (n < 1) { 12148 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 12149 return -EINVAL; 12150 } 12151 12152 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 12153 free(pattern); 12154 return libbpf_get_error(*link); 12155 } 12156 12157 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 12158 struct bpf_link **link) 12159 { 12160 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 12161 const char *spec; 12162 char *pattern; 12163 int n; 12164 12165 *link = NULL; 12166 12167 /* no auto-attach for SEC("kprobe.session") */ 12168 if (strcmp(prog->sec_name, "kprobe.session") == 0) 12169 return 0; 12170 12171 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 12172 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 12173 if (n < 1) { 12174 pr_warn("kprobe session pattern is invalid: %s\n", spec); 12175 return -EINVAL; 12176 } 12177 12178 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 12179 free(pattern); 12180 return *link ? 0 : -errno; 12181 } 12182 12183 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12184 { 12185 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 12186 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 12187 int n, ret = -EINVAL; 12188 12189 *link = NULL; 12190 12191 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12192 &probe_type, &binary_path, &func_name); 12193 switch (n) { 12194 case 1: 12195 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12196 ret = 0; 12197 break; 12198 case 3: 12199 opts.session = str_has_pfx(probe_type, "uprobe.session"); 12200 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 12201 12202 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 12203 ret = libbpf_get_error(*link); 12204 break; 12205 default: 12206 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12207 prog->sec_name); 12208 break; 12209 } 12210 free(probe_type); 12211 free(binary_path); 12212 free(func_name); 12213 return ret; 12214 } 12215 12216 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 12217 const char *binary_path, size_t offset) 12218 { 12219 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 12220 retprobe ? 'r' : 'p', 12221 retprobe ? "uretprobes" : "uprobes", 12222 probe_name, binary_path, offset); 12223 } 12224 12225 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 12226 { 12227 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 12228 retprobe ? "uretprobes" : "uprobes", probe_name); 12229 } 12230 12231 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 12232 { 12233 char file[512]; 12234 12235 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12236 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 12237 12238 return parse_uint_from_file(file, "%d\n"); 12239 } 12240 12241 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 12242 const char *binary_path, size_t offset, int pid) 12243 { 12244 const size_t attr_sz = sizeof(struct perf_event_attr); 12245 struct perf_event_attr attr; 12246 int type, pfd, err; 12247 12248 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 12249 if (err < 0) { 12250 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 12251 binary_path, (size_t)offset, errstr(err)); 12252 return err; 12253 } 12254 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 12255 if (type < 0) { 12256 err = type; 12257 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 12258 binary_path, offset, errstr(err)); 12259 goto err_clean_legacy; 12260 } 12261 12262 memset(&attr, 0, attr_sz); 12263 attr.size = attr_sz; 12264 attr.config = type; 12265 attr.type = PERF_TYPE_TRACEPOINT; 12266 12267 pfd = syscall(__NR_perf_event_open, &attr, 12268 pid < 0 ? -1 : pid, /* pid */ 12269 pid == -1 ? 0 : -1, /* cpu */ 12270 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12271 if (pfd < 0) { 12272 err = -errno; 12273 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 12274 goto err_clean_legacy; 12275 } 12276 return pfd; 12277 12278 err_clean_legacy: 12279 /* Clear the newly added legacy uprobe_event */ 12280 remove_uprobe_event_legacy(probe_name, retprobe); 12281 return err; 12282 } 12283 12284 /* Find offset of function name in archive specified by path. Currently 12285 * supported are .zip files that do not compress their contents, as used on 12286 * Android in the form of APKs, for example. "file_name" is the name of the ELF 12287 * file inside the archive. "func_name" matches symbol name or name@@LIB for 12288 * library functions. 12289 * 12290 * An overview of the APK format specifically provided here: 12291 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 12292 */ 12293 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 12294 const char *func_name) 12295 { 12296 struct zip_archive *archive; 12297 struct zip_entry entry; 12298 long ret; 12299 Elf *elf; 12300 12301 archive = zip_archive_open(archive_path); 12302 if (IS_ERR(archive)) { 12303 ret = PTR_ERR(archive); 12304 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 12305 return ret; 12306 } 12307 12308 ret = zip_archive_find_entry(archive, file_name, &entry); 12309 if (ret) { 12310 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 12311 archive_path, ret); 12312 goto out; 12313 } 12314 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 12315 (unsigned long)entry.data_offset); 12316 12317 if (entry.compression) { 12318 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 12319 archive_path); 12320 ret = -LIBBPF_ERRNO__FORMAT; 12321 goto out; 12322 } 12323 12324 elf = elf_memory((void *)entry.data, entry.data_length); 12325 if (!elf) { 12326 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 12327 elf_errmsg(-1)); 12328 ret = -LIBBPF_ERRNO__LIBELF; 12329 goto out; 12330 } 12331 12332 ret = elf_find_func_offset(elf, file_name, func_name); 12333 if (ret > 0) { 12334 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 12335 func_name, file_name, archive_path, entry.data_offset, ret, 12336 ret + entry.data_offset); 12337 ret += entry.data_offset; 12338 } 12339 elf_end(elf); 12340 12341 out: 12342 zip_archive_close(archive); 12343 return ret; 12344 } 12345 12346 static const char *arch_specific_lib_paths(void) 12347 { 12348 /* 12349 * Based on https://packages.debian.org/sid/libc6. 12350 * 12351 * Assume that the traced program is built for the same architecture 12352 * as libbpf, which should cover the vast majority of cases. 12353 */ 12354 #if defined(__x86_64__) 12355 return "/lib/x86_64-linux-gnu"; 12356 #elif defined(__i386__) 12357 return "/lib/i386-linux-gnu"; 12358 #elif defined(__s390x__) 12359 return "/lib/s390x-linux-gnu"; 12360 #elif defined(__arm__) && defined(__SOFTFP__) 12361 return "/lib/arm-linux-gnueabi"; 12362 #elif defined(__arm__) && !defined(__SOFTFP__) 12363 return "/lib/arm-linux-gnueabihf"; 12364 #elif defined(__aarch64__) 12365 return "/lib/aarch64-linux-gnu"; 12366 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 12367 return "/lib/mips64el-linux-gnuabi64"; 12368 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 12369 return "/lib/mipsel-linux-gnu"; 12370 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 12371 return "/lib/powerpc64le-linux-gnu"; 12372 #elif defined(__sparc__) && defined(__arch64__) 12373 return "/lib/sparc64-linux-gnu"; 12374 #elif defined(__riscv) && __riscv_xlen == 64 12375 return "/lib/riscv64-linux-gnu"; 12376 #else 12377 return NULL; 12378 #endif 12379 } 12380 12381 /* Get full path to program/shared library. */ 12382 static int resolve_full_path(const char *file, char *result, size_t result_sz) 12383 { 12384 const char *search_paths[3] = {}; 12385 int i, perm; 12386 12387 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 12388 search_paths[0] = getenv("LD_LIBRARY_PATH"); 12389 search_paths[1] = "/usr/lib64:/usr/lib"; 12390 search_paths[2] = arch_specific_lib_paths(); 12391 perm = R_OK; 12392 } else { 12393 search_paths[0] = getenv("PATH"); 12394 search_paths[1] = "/usr/bin:/usr/sbin"; 12395 perm = R_OK | X_OK; 12396 } 12397 12398 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 12399 const char *s; 12400 12401 if (!search_paths[i]) 12402 continue; 12403 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 12404 char *next_path; 12405 int seg_len; 12406 12407 if (s[0] == ':') 12408 s++; 12409 next_path = strchr(s, ':'); 12410 seg_len = next_path ? next_path - s : strlen(s); 12411 if (!seg_len) 12412 continue; 12413 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 12414 /* ensure it has required permissions */ 12415 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 12416 continue; 12417 pr_debug("resolved '%s' to '%s'\n", file, result); 12418 return 0; 12419 } 12420 } 12421 return -ENOENT; 12422 } 12423 12424 struct bpf_link * 12425 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 12426 pid_t pid, 12427 const char *path, 12428 const char *func_pattern, 12429 const struct bpf_uprobe_multi_opts *opts) 12430 { 12431 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 12432 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12433 unsigned long *resolved_offsets = NULL; 12434 enum bpf_attach_type attach_type; 12435 int err = 0, link_fd, prog_fd; 12436 struct bpf_link *link = NULL; 12437 char full_path[PATH_MAX]; 12438 bool retprobe, session; 12439 const __u64 *cookies; 12440 const char **syms; 12441 size_t cnt; 12442 12443 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 12444 return libbpf_err_ptr(-EINVAL); 12445 12446 prog_fd = bpf_program__fd(prog); 12447 if (prog_fd < 0) { 12448 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12449 prog->name); 12450 return libbpf_err_ptr(-EINVAL); 12451 } 12452 12453 syms = OPTS_GET(opts, syms, NULL); 12454 offsets = OPTS_GET(opts, offsets, NULL); 12455 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12456 cookies = OPTS_GET(opts, cookies, NULL); 12457 cnt = OPTS_GET(opts, cnt, 0); 12458 retprobe = OPTS_GET(opts, retprobe, false); 12459 session = OPTS_GET(opts, session, false); 12460 12461 /* 12462 * User can specify 2 mutually exclusive set of inputs: 12463 * 12464 * 1) use only path/func_pattern/pid arguments 12465 * 12466 * 2) use path/pid with allowed combinations of: 12467 * syms/offsets/ref_ctr_offsets/cookies/cnt 12468 * 12469 * - syms and offsets are mutually exclusive 12470 * - ref_ctr_offsets and cookies are optional 12471 * 12472 * Any other usage results in error. 12473 */ 12474 12475 if (!path) 12476 return libbpf_err_ptr(-EINVAL); 12477 if (!func_pattern && cnt == 0) 12478 return libbpf_err_ptr(-EINVAL); 12479 12480 if (func_pattern) { 12481 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12482 return libbpf_err_ptr(-EINVAL); 12483 } else { 12484 if (!!syms == !!offsets) 12485 return libbpf_err_ptr(-EINVAL); 12486 } 12487 12488 if (retprobe && session) 12489 return libbpf_err_ptr(-EINVAL); 12490 12491 if (func_pattern) { 12492 if (!strchr(path, '/')) { 12493 err = resolve_full_path(path, full_path, sizeof(full_path)); 12494 if (err) { 12495 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12496 prog->name, path, errstr(err)); 12497 return libbpf_err_ptr(err); 12498 } 12499 path = full_path; 12500 } 12501 12502 err = elf_resolve_pattern_offsets(path, func_pattern, 12503 &resolved_offsets, &cnt); 12504 if (err < 0) 12505 return libbpf_err_ptr(err); 12506 offsets = resolved_offsets; 12507 } else if (syms) { 12508 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12509 if (err < 0) 12510 return libbpf_err_ptr(err); 12511 offsets = resolved_offsets; 12512 } 12513 12514 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12515 12516 lopts.uprobe_multi.path = path; 12517 lopts.uprobe_multi.offsets = offsets; 12518 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12519 lopts.uprobe_multi.cookies = cookies; 12520 lopts.uprobe_multi.cnt = cnt; 12521 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12522 12523 if (pid == 0) 12524 pid = getpid(); 12525 if (pid > 0) 12526 lopts.uprobe_multi.pid = pid; 12527 12528 link = calloc(1, sizeof(*link)); 12529 if (!link) { 12530 err = -ENOMEM; 12531 goto error; 12532 } 12533 link->detach = &bpf_link__detach_fd; 12534 12535 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12536 if (link_fd < 0) { 12537 err = -errno; 12538 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12539 prog->name, errstr(err)); 12540 goto error; 12541 } 12542 link->fd = link_fd; 12543 free(resolved_offsets); 12544 return link; 12545 12546 error: 12547 free(resolved_offsets); 12548 free(link); 12549 return libbpf_err_ptr(err); 12550 } 12551 12552 LIBBPF_API struct bpf_link * 12553 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12554 const char *binary_path, size_t func_offset, 12555 const struct bpf_uprobe_opts *opts) 12556 { 12557 const char *archive_path = NULL, *archive_sep = NULL; 12558 char *legacy_probe = NULL; 12559 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12560 enum probe_attach_mode attach_mode; 12561 char full_path[PATH_MAX]; 12562 struct bpf_link *link; 12563 size_t ref_ctr_off; 12564 int pfd, err; 12565 bool retprobe, legacy; 12566 const char *func_name; 12567 12568 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12569 return libbpf_err_ptr(-EINVAL); 12570 12571 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12572 retprobe = OPTS_GET(opts, retprobe, false); 12573 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12574 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12575 12576 if (!binary_path) 12577 return libbpf_err_ptr(-EINVAL); 12578 12579 /* Check if "binary_path" refers to an archive. */ 12580 archive_sep = strstr(binary_path, "!/"); 12581 if (archive_sep) { 12582 full_path[0] = '\0'; 12583 libbpf_strlcpy(full_path, binary_path, 12584 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12585 archive_path = full_path; 12586 binary_path = archive_sep + 2; 12587 } else if (!strchr(binary_path, '/')) { 12588 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12589 if (err) { 12590 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12591 prog->name, binary_path, errstr(err)); 12592 return libbpf_err_ptr(err); 12593 } 12594 binary_path = full_path; 12595 } 12596 func_name = OPTS_GET(opts, func_name, NULL); 12597 if (func_name) { 12598 long sym_off; 12599 12600 if (archive_path) { 12601 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12602 func_name); 12603 binary_path = archive_path; 12604 } else { 12605 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12606 } 12607 if (sym_off < 0) 12608 return libbpf_err_ptr(sym_off); 12609 func_offset += sym_off; 12610 } 12611 12612 legacy = determine_uprobe_perf_type() < 0; 12613 switch (attach_mode) { 12614 case PROBE_ATTACH_MODE_LEGACY: 12615 legacy = true; 12616 pe_opts.force_ioctl_attach = true; 12617 break; 12618 case PROBE_ATTACH_MODE_PERF: 12619 if (legacy) 12620 return libbpf_err_ptr(-ENOTSUP); 12621 pe_opts.force_ioctl_attach = true; 12622 break; 12623 case PROBE_ATTACH_MODE_LINK: 12624 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12625 return libbpf_err_ptr(-ENOTSUP); 12626 break; 12627 case PROBE_ATTACH_MODE_DEFAULT: 12628 break; 12629 default: 12630 return libbpf_err_ptr(-EINVAL); 12631 } 12632 12633 if (!legacy) { 12634 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12635 func_offset, pid, ref_ctr_off); 12636 } else { 12637 char probe_name[MAX_EVENT_NAME_LEN]; 12638 12639 if (ref_ctr_off) 12640 return libbpf_err_ptr(-EINVAL); 12641 12642 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 12643 strrchr(binary_path, '/') ? : binary_path, 12644 func_offset); 12645 12646 legacy_probe = strdup(probe_name); 12647 if (!legacy_probe) 12648 return libbpf_err_ptr(-ENOMEM); 12649 12650 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12651 binary_path, func_offset, pid); 12652 } 12653 if (pfd < 0) { 12654 err = -errno; 12655 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12656 prog->name, retprobe ? "uretprobe" : "uprobe", 12657 binary_path, func_offset, 12658 errstr(err)); 12659 goto err_out; 12660 } 12661 12662 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12663 err = libbpf_get_error(link); 12664 if (err) { 12665 close(pfd); 12666 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12667 prog->name, retprobe ? "uretprobe" : "uprobe", 12668 binary_path, func_offset, 12669 errstr(err)); 12670 goto err_clean_legacy; 12671 } 12672 if (legacy) { 12673 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12674 12675 perf_link->legacy_probe_name = legacy_probe; 12676 perf_link->legacy_is_kprobe = false; 12677 perf_link->legacy_is_retprobe = retprobe; 12678 } 12679 return link; 12680 12681 err_clean_legacy: 12682 if (legacy) 12683 remove_uprobe_event_legacy(legacy_probe, retprobe); 12684 err_out: 12685 free(legacy_probe); 12686 return libbpf_err_ptr(err); 12687 } 12688 12689 /* Format of u[ret]probe section definition supporting auto-attach: 12690 * u[ret]probe/binary:function[+offset] 12691 * 12692 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12693 * full binary path via bpf_program__attach_uprobe_opts. 12694 * 12695 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12696 * specified (and auto-attach is not possible) or the above format is specified for 12697 * auto-attach. 12698 */ 12699 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12700 { 12701 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12702 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12703 int n, c, ret = -EINVAL; 12704 long offset = 0; 12705 12706 *link = NULL; 12707 12708 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12709 &probe_type, &binary_path, &func_name); 12710 switch (n) { 12711 case 1: 12712 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12713 ret = 0; 12714 break; 12715 case 2: 12716 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12717 prog->name, prog->sec_name); 12718 break; 12719 case 3: 12720 /* check if user specifies `+offset`, if yes, this should be 12721 * the last part of the string, make sure sscanf read to EOL 12722 */ 12723 func_off = strrchr(func_name, '+'); 12724 if (func_off) { 12725 n = sscanf(func_off, "+%li%n", &offset, &c); 12726 if (n == 1 && *(func_off + c) == '\0') 12727 func_off[0] = '\0'; 12728 else 12729 offset = 0; 12730 } 12731 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12732 strcmp(probe_type, "uretprobe.s") == 0; 12733 if (opts.retprobe && offset != 0) { 12734 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12735 prog->name); 12736 break; 12737 } 12738 opts.func_name = func_name; 12739 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12740 ret = libbpf_get_error(*link); 12741 break; 12742 default: 12743 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12744 prog->sec_name); 12745 break; 12746 } 12747 free(probe_type); 12748 free(binary_path); 12749 free(func_name); 12750 12751 return ret; 12752 } 12753 12754 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12755 bool retprobe, pid_t pid, 12756 const char *binary_path, 12757 size_t func_offset) 12758 { 12759 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12760 12761 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12762 } 12763 12764 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12765 pid_t pid, const char *binary_path, 12766 const char *usdt_provider, const char *usdt_name, 12767 const struct bpf_usdt_opts *opts) 12768 { 12769 char resolved_path[512]; 12770 struct bpf_object *obj = prog->obj; 12771 struct bpf_link *link; 12772 __u64 usdt_cookie; 12773 int err; 12774 12775 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12776 return libbpf_err_ptr(-EINVAL); 12777 12778 if (bpf_program__fd(prog) < 0) { 12779 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12780 prog->name); 12781 return libbpf_err_ptr(-EINVAL); 12782 } 12783 12784 if (!binary_path) 12785 return libbpf_err_ptr(-EINVAL); 12786 12787 if (!strchr(binary_path, '/')) { 12788 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12789 if (err) { 12790 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12791 prog->name, binary_path, errstr(err)); 12792 return libbpf_err_ptr(err); 12793 } 12794 binary_path = resolved_path; 12795 } 12796 12797 /* USDT manager is instantiated lazily on first USDT attach. It will 12798 * be destroyed together with BPF object in bpf_object__close(). 12799 */ 12800 if (IS_ERR(obj->usdt_man)) 12801 return libbpf_ptr(obj->usdt_man); 12802 if (!obj->usdt_man) { 12803 obj->usdt_man = usdt_manager_new(obj); 12804 if (IS_ERR(obj->usdt_man)) 12805 return libbpf_ptr(obj->usdt_man); 12806 } 12807 12808 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12809 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12810 usdt_provider, usdt_name, usdt_cookie); 12811 err = libbpf_get_error(link); 12812 if (err) 12813 return libbpf_err_ptr(err); 12814 return link; 12815 } 12816 12817 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12818 { 12819 char *path = NULL, *provider = NULL, *name = NULL; 12820 const char *sec_name; 12821 int n, err; 12822 12823 sec_name = bpf_program__section_name(prog); 12824 if (strcmp(sec_name, "usdt") == 0) { 12825 /* no auto-attach for just SEC("usdt") */ 12826 *link = NULL; 12827 return 0; 12828 } 12829 12830 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12831 if (n != 3) { 12832 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12833 sec_name); 12834 err = -EINVAL; 12835 } else { 12836 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12837 provider, name, NULL); 12838 err = libbpf_get_error(*link); 12839 } 12840 free(path); 12841 free(provider); 12842 free(name); 12843 return err; 12844 } 12845 12846 static int determine_tracepoint_id(const char *tp_category, 12847 const char *tp_name) 12848 { 12849 char file[PATH_MAX]; 12850 int ret; 12851 12852 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12853 tracefs_path(), tp_category, tp_name); 12854 if (ret < 0) 12855 return -errno; 12856 if (ret >= sizeof(file)) { 12857 pr_debug("tracepoint %s/%s path is too long\n", 12858 tp_category, tp_name); 12859 return -E2BIG; 12860 } 12861 return parse_uint_from_file(file, "%d\n"); 12862 } 12863 12864 static int perf_event_open_tracepoint(const char *tp_category, 12865 const char *tp_name) 12866 { 12867 const size_t attr_sz = sizeof(struct perf_event_attr); 12868 struct perf_event_attr attr; 12869 int tp_id, pfd, err; 12870 12871 tp_id = determine_tracepoint_id(tp_category, tp_name); 12872 if (tp_id < 0) { 12873 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12874 tp_category, tp_name, 12875 errstr(tp_id)); 12876 return tp_id; 12877 } 12878 12879 memset(&attr, 0, attr_sz); 12880 attr.type = PERF_TYPE_TRACEPOINT; 12881 attr.size = attr_sz; 12882 attr.config = tp_id; 12883 12884 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12885 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12886 if (pfd < 0) { 12887 err = -errno; 12888 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12889 tp_category, tp_name, 12890 errstr(err)); 12891 return err; 12892 } 12893 return pfd; 12894 } 12895 12896 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12897 const char *tp_category, 12898 const char *tp_name, 12899 const struct bpf_tracepoint_opts *opts) 12900 { 12901 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12902 struct bpf_link *link; 12903 int pfd, err; 12904 12905 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12906 return libbpf_err_ptr(-EINVAL); 12907 12908 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12909 12910 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12911 if (pfd < 0) { 12912 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12913 prog->name, tp_category, tp_name, 12914 errstr(pfd)); 12915 return libbpf_err_ptr(pfd); 12916 } 12917 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12918 err = libbpf_get_error(link); 12919 if (err) { 12920 close(pfd); 12921 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12922 prog->name, tp_category, tp_name, 12923 errstr(err)); 12924 return libbpf_err_ptr(err); 12925 } 12926 return link; 12927 } 12928 12929 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12930 const char *tp_category, 12931 const char *tp_name) 12932 { 12933 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12934 } 12935 12936 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12937 { 12938 char *sec_name, *tp_cat, *tp_name; 12939 12940 *link = NULL; 12941 12942 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12943 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12944 return 0; 12945 12946 sec_name = strdup(prog->sec_name); 12947 if (!sec_name) 12948 return -ENOMEM; 12949 12950 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12951 if (str_has_pfx(prog->sec_name, "tp/")) 12952 tp_cat = sec_name + sizeof("tp/") - 1; 12953 else 12954 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12955 tp_name = strchr(tp_cat, '/'); 12956 if (!tp_name) { 12957 free(sec_name); 12958 return -EINVAL; 12959 } 12960 *tp_name = '\0'; 12961 tp_name++; 12962 12963 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12964 free(sec_name); 12965 return libbpf_get_error(*link); 12966 } 12967 12968 struct bpf_link * 12969 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12970 const char *tp_name, 12971 struct bpf_raw_tracepoint_opts *opts) 12972 { 12973 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12974 struct bpf_link *link; 12975 int prog_fd, pfd; 12976 12977 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12978 return libbpf_err_ptr(-EINVAL); 12979 12980 prog_fd = bpf_program__fd(prog); 12981 if (prog_fd < 0) { 12982 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12983 return libbpf_err_ptr(-EINVAL); 12984 } 12985 12986 link = calloc(1, sizeof(*link)); 12987 if (!link) 12988 return libbpf_err_ptr(-ENOMEM); 12989 link->detach = &bpf_link__detach_fd; 12990 12991 raw_opts.tp_name = tp_name; 12992 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12993 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12994 if (pfd < 0) { 12995 pfd = -errno; 12996 free(link); 12997 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12998 prog->name, tp_name, errstr(pfd)); 12999 return libbpf_err_ptr(pfd); 13000 } 13001 link->fd = pfd; 13002 return link; 13003 } 13004 13005 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 13006 const char *tp_name) 13007 { 13008 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 13009 } 13010 13011 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 13012 { 13013 static const char *const prefixes[] = { 13014 "raw_tp", 13015 "raw_tracepoint", 13016 "raw_tp.w", 13017 "raw_tracepoint.w", 13018 }; 13019 size_t i; 13020 const char *tp_name = NULL; 13021 13022 *link = NULL; 13023 13024 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 13025 size_t pfx_len; 13026 13027 if (!str_has_pfx(prog->sec_name, prefixes[i])) 13028 continue; 13029 13030 pfx_len = strlen(prefixes[i]); 13031 /* no auto-attach case of, e.g., SEC("raw_tp") */ 13032 if (prog->sec_name[pfx_len] == '\0') 13033 return 0; 13034 13035 if (prog->sec_name[pfx_len] != '/') 13036 continue; 13037 13038 tp_name = prog->sec_name + pfx_len + 1; 13039 break; 13040 } 13041 13042 if (!tp_name) { 13043 pr_warn("prog '%s': invalid section name '%s'\n", 13044 prog->name, prog->sec_name); 13045 return -EINVAL; 13046 } 13047 13048 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 13049 return libbpf_get_error(*link); 13050 } 13051 13052 /* Common logic for all BPF program types that attach to a btf_id */ 13053 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 13054 const struct bpf_trace_opts *opts) 13055 { 13056 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 13057 struct bpf_link *link; 13058 int prog_fd, pfd; 13059 13060 if (!OPTS_VALID(opts, bpf_trace_opts)) 13061 return libbpf_err_ptr(-EINVAL); 13062 13063 prog_fd = bpf_program__fd(prog); 13064 if (prog_fd < 0) { 13065 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13066 return libbpf_err_ptr(-EINVAL); 13067 } 13068 13069 link = calloc(1, sizeof(*link)); 13070 if (!link) 13071 return libbpf_err_ptr(-ENOMEM); 13072 link->detach = &bpf_link__detach_fd; 13073 13074 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 13075 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 13076 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 13077 if (pfd < 0) { 13078 pfd = -errno; 13079 free(link); 13080 pr_warn("prog '%s': failed to attach: %s\n", 13081 prog->name, errstr(pfd)); 13082 return libbpf_err_ptr(pfd); 13083 } 13084 link->fd = pfd; 13085 return link; 13086 } 13087 13088 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 13089 { 13090 return bpf_program__attach_btf_id(prog, NULL); 13091 } 13092 13093 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 13094 const struct bpf_trace_opts *opts) 13095 { 13096 return bpf_program__attach_btf_id(prog, opts); 13097 } 13098 13099 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 13100 { 13101 return bpf_program__attach_btf_id(prog, NULL); 13102 } 13103 13104 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 13105 { 13106 *link = bpf_program__attach_trace(prog); 13107 return libbpf_get_error(*link); 13108 } 13109 13110 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 13111 { 13112 *link = bpf_program__attach_lsm(prog); 13113 return libbpf_get_error(*link); 13114 } 13115 13116 static struct bpf_link * 13117 bpf_program_attach_fd(const struct bpf_program *prog, 13118 int target_fd, const char *target_name, 13119 const struct bpf_link_create_opts *opts) 13120 { 13121 enum bpf_attach_type attach_type; 13122 struct bpf_link *link; 13123 int prog_fd, link_fd; 13124 13125 prog_fd = bpf_program__fd(prog); 13126 if (prog_fd < 0) { 13127 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13128 return libbpf_err_ptr(-EINVAL); 13129 } 13130 13131 link = calloc(1, sizeof(*link)); 13132 if (!link) 13133 return libbpf_err_ptr(-ENOMEM); 13134 link->detach = &bpf_link__detach_fd; 13135 13136 attach_type = bpf_program__expected_attach_type(prog); 13137 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 13138 if (link_fd < 0) { 13139 link_fd = -errno; 13140 free(link); 13141 pr_warn("prog '%s': failed to attach to %s: %s\n", 13142 prog->name, target_name, 13143 errstr(link_fd)); 13144 return libbpf_err_ptr(link_fd); 13145 } 13146 link->fd = link_fd; 13147 return link; 13148 } 13149 13150 struct bpf_link * 13151 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 13152 { 13153 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 13154 } 13155 13156 struct bpf_link * 13157 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 13158 { 13159 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 13160 } 13161 13162 struct bpf_link * 13163 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 13164 { 13165 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 13166 } 13167 13168 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 13169 { 13170 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 13171 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 13172 } 13173 13174 struct bpf_link * 13175 bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd, 13176 const struct bpf_cgroup_opts *opts) 13177 { 13178 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 13179 __u32 relative_id; 13180 int relative_fd; 13181 13182 if (!OPTS_VALID(opts, bpf_cgroup_opts)) 13183 return libbpf_err_ptr(-EINVAL); 13184 13185 relative_id = OPTS_GET(opts, relative_id, 0); 13186 relative_fd = OPTS_GET(opts, relative_fd, 0); 13187 13188 if (relative_fd && relative_id) { 13189 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 13190 prog->name); 13191 return libbpf_err_ptr(-EINVAL); 13192 } 13193 13194 link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0); 13195 link_create_opts.cgroup.relative_fd = relative_fd; 13196 link_create_opts.cgroup.relative_id = relative_id; 13197 link_create_opts.flags = OPTS_GET(opts, flags, 0); 13198 13199 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts); 13200 } 13201 13202 struct bpf_link * 13203 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 13204 const struct bpf_tcx_opts *opts) 13205 { 13206 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 13207 __u32 relative_id; 13208 int relative_fd; 13209 13210 if (!OPTS_VALID(opts, bpf_tcx_opts)) 13211 return libbpf_err_ptr(-EINVAL); 13212 13213 relative_id = OPTS_GET(opts, relative_id, 0); 13214 relative_fd = OPTS_GET(opts, relative_fd, 0); 13215 13216 /* validate we don't have unexpected combinations of non-zero fields */ 13217 if (!ifindex) { 13218 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 13219 prog->name); 13220 return libbpf_err_ptr(-EINVAL); 13221 } 13222 if (relative_fd && relative_id) { 13223 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 13224 prog->name); 13225 return libbpf_err_ptr(-EINVAL); 13226 } 13227 13228 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 13229 link_create_opts.tcx.relative_fd = relative_fd; 13230 link_create_opts.tcx.relative_id = relative_id; 13231 link_create_opts.flags = OPTS_GET(opts, flags, 0); 13232 13233 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 13234 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 13235 } 13236 13237 struct bpf_link * 13238 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 13239 const struct bpf_netkit_opts *opts) 13240 { 13241 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 13242 __u32 relative_id; 13243 int relative_fd; 13244 13245 if (!OPTS_VALID(opts, bpf_netkit_opts)) 13246 return libbpf_err_ptr(-EINVAL); 13247 13248 relative_id = OPTS_GET(opts, relative_id, 0); 13249 relative_fd = OPTS_GET(opts, relative_fd, 0); 13250 13251 /* validate we don't have unexpected combinations of non-zero fields */ 13252 if (!ifindex) { 13253 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 13254 prog->name); 13255 return libbpf_err_ptr(-EINVAL); 13256 } 13257 if (relative_fd && relative_id) { 13258 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 13259 prog->name); 13260 return libbpf_err_ptr(-EINVAL); 13261 } 13262 13263 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 13264 link_create_opts.netkit.relative_fd = relative_fd; 13265 link_create_opts.netkit.relative_id = relative_id; 13266 link_create_opts.flags = OPTS_GET(opts, flags, 0); 13267 13268 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 13269 } 13270 13271 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 13272 int target_fd, 13273 const char *attach_func_name) 13274 { 13275 int btf_id; 13276 13277 if (!!target_fd != !!attach_func_name) { 13278 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 13279 prog->name); 13280 return libbpf_err_ptr(-EINVAL); 13281 } 13282 13283 if (prog->type != BPF_PROG_TYPE_EXT) { 13284 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 13285 prog->name); 13286 return libbpf_err_ptr(-EINVAL); 13287 } 13288 13289 if (target_fd) { 13290 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 13291 13292 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd); 13293 if (btf_id < 0) 13294 return libbpf_err_ptr(btf_id); 13295 13296 target_opts.target_btf_id = btf_id; 13297 13298 return bpf_program_attach_fd(prog, target_fd, "freplace", 13299 &target_opts); 13300 } else { 13301 /* no target, so use raw_tracepoint_open for compatibility 13302 * with old kernels 13303 */ 13304 return bpf_program__attach_trace(prog); 13305 } 13306 } 13307 13308 struct bpf_link * 13309 bpf_program__attach_iter(const struct bpf_program *prog, 13310 const struct bpf_iter_attach_opts *opts) 13311 { 13312 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 13313 struct bpf_link *link; 13314 int prog_fd, link_fd; 13315 __u32 target_fd = 0; 13316 13317 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 13318 return libbpf_err_ptr(-EINVAL); 13319 13320 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 13321 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 13322 13323 prog_fd = bpf_program__fd(prog); 13324 if (prog_fd < 0) { 13325 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13326 return libbpf_err_ptr(-EINVAL); 13327 } 13328 13329 link = calloc(1, sizeof(*link)); 13330 if (!link) 13331 return libbpf_err_ptr(-ENOMEM); 13332 link->detach = &bpf_link__detach_fd; 13333 13334 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 13335 &link_create_opts); 13336 if (link_fd < 0) { 13337 link_fd = -errno; 13338 free(link); 13339 pr_warn("prog '%s': failed to attach to iterator: %s\n", 13340 prog->name, errstr(link_fd)); 13341 return libbpf_err_ptr(link_fd); 13342 } 13343 link->fd = link_fd; 13344 return link; 13345 } 13346 13347 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 13348 { 13349 *link = bpf_program__attach_iter(prog, NULL); 13350 return libbpf_get_error(*link); 13351 } 13352 13353 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 13354 const struct bpf_netfilter_opts *opts) 13355 { 13356 LIBBPF_OPTS(bpf_link_create_opts, lopts); 13357 struct bpf_link *link; 13358 int prog_fd, link_fd; 13359 13360 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 13361 return libbpf_err_ptr(-EINVAL); 13362 13363 prog_fd = bpf_program__fd(prog); 13364 if (prog_fd < 0) { 13365 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13366 return libbpf_err_ptr(-EINVAL); 13367 } 13368 13369 link = calloc(1, sizeof(*link)); 13370 if (!link) 13371 return libbpf_err_ptr(-ENOMEM); 13372 13373 link->detach = &bpf_link__detach_fd; 13374 13375 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 13376 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 13377 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 13378 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 13379 13380 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 13381 if (link_fd < 0) { 13382 link_fd = -errno; 13383 free(link); 13384 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 13385 prog->name, errstr(link_fd)); 13386 return libbpf_err_ptr(link_fd); 13387 } 13388 link->fd = link_fd; 13389 13390 return link; 13391 } 13392 13393 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 13394 { 13395 struct bpf_link *link = NULL; 13396 int err; 13397 13398 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13399 return libbpf_err_ptr(-EOPNOTSUPP); 13400 13401 if (bpf_program__fd(prog) < 0) { 13402 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 13403 prog->name); 13404 return libbpf_err_ptr(-EINVAL); 13405 } 13406 13407 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 13408 if (err) 13409 return libbpf_err_ptr(err); 13410 13411 /* When calling bpf_program__attach() explicitly, auto-attach support 13412 * is expected to work, so NULL returned link is considered an error. 13413 * This is different for skeleton's attach, see comment in 13414 * bpf_object__attach_skeleton(). 13415 */ 13416 if (!link) 13417 return libbpf_err_ptr(-EOPNOTSUPP); 13418 13419 return link; 13420 } 13421 13422 struct bpf_link_struct_ops { 13423 struct bpf_link link; 13424 int map_fd; 13425 }; 13426 13427 static int bpf_link__detach_struct_ops(struct bpf_link *link) 13428 { 13429 struct bpf_link_struct_ops *st_link; 13430 __u32 zero = 0; 13431 13432 st_link = container_of(link, struct bpf_link_struct_ops, link); 13433 13434 if (st_link->map_fd < 0) 13435 /* w/o a real link */ 13436 return bpf_map_delete_elem(link->fd, &zero); 13437 13438 return close(link->fd); 13439 } 13440 13441 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 13442 { 13443 struct bpf_link_struct_ops *link; 13444 __u32 zero = 0; 13445 int err, fd; 13446 13447 if (!bpf_map__is_struct_ops(map)) { 13448 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 13449 return libbpf_err_ptr(-EINVAL); 13450 } 13451 13452 if (map->fd < 0) { 13453 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 13454 return libbpf_err_ptr(-EINVAL); 13455 } 13456 13457 link = calloc(1, sizeof(*link)); 13458 if (!link) 13459 return libbpf_err_ptr(-EINVAL); 13460 13461 /* kern_vdata should be prepared during the loading phase. */ 13462 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13463 /* It can be EBUSY if the map has been used to create or 13464 * update a link before. We don't allow updating the value of 13465 * a struct_ops once it is set. That ensures that the value 13466 * never changed. So, it is safe to skip EBUSY. 13467 */ 13468 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 13469 free(link); 13470 return libbpf_err_ptr(err); 13471 } 13472 13473 link->link.detach = bpf_link__detach_struct_ops; 13474 13475 if (!(map->def.map_flags & BPF_F_LINK)) { 13476 /* w/o a real link */ 13477 link->link.fd = map->fd; 13478 link->map_fd = -1; 13479 return &link->link; 13480 } 13481 13482 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13483 if (fd < 0) { 13484 free(link); 13485 return libbpf_err_ptr(fd); 13486 } 13487 13488 link->link.fd = fd; 13489 link->map_fd = map->fd; 13490 13491 return &link->link; 13492 } 13493 13494 /* 13495 * Swap the back struct_ops of a link with a new struct_ops map. 13496 */ 13497 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13498 { 13499 struct bpf_link_struct_ops *st_ops_link; 13500 __u32 zero = 0; 13501 int err; 13502 13503 if (!bpf_map__is_struct_ops(map)) 13504 return libbpf_err(-EINVAL); 13505 13506 if (map->fd < 0) { 13507 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13508 return libbpf_err(-EINVAL); 13509 } 13510 13511 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13512 /* Ensure the type of a link is correct */ 13513 if (st_ops_link->map_fd < 0) 13514 return libbpf_err(-EINVAL); 13515 13516 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13517 /* It can be EBUSY if the map has been used to create or 13518 * update a link before. We don't allow updating the value of 13519 * a struct_ops once it is set. That ensures that the value 13520 * never changed. So, it is safe to skip EBUSY. 13521 */ 13522 if (err && err != -EBUSY) 13523 return err; 13524 13525 err = bpf_link_update(link->fd, map->fd, NULL); 13526 if (err < 0) 13527 return err; 13528 13529 st_ops_link->map_fd = map->fd; 13530 13531 return 0; 13532 } 13533 13534 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13535 void *private_data); 13536 13537 static enum bpf_perf_event_ret 13538 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13539 void **copy_mem, size_t *copy_size, 13540 bpf_perf_event_print_t fn, void *private_data) 13541 { 13542 struct perf_event_mmap_page *header = mmap_mem; 13543 __u64 data_head = ring_buffer_read_head(header); 13544 __u64 data_tail = header->data_tail; 13545 void *base = ((__u8 *)header) + page_size; 13546 int ret = LIBBPF_PERF_EVENT_CONT; 13547 struct perf_event_header *ehdr; 13548 size_t ehdr_size; 13549 13550 while (data_head != data_tail) { 13551 ehdr = base + (data_tail & (mmap_size - 1)); 13552 ehdr_size = ehdr->size; 13553 13554 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13555 void *copy_start = ehdr; 13556 size_t len_first = base + mmap_size - copy_start; 13557 size_t len_secnd = ehdr_size - len_first; 13558 13559 if (*copy_size < ehdr_size) { 13560 free(*copy_mem); 13561 *copy_mem = malloc(ehdr_size); 13562 if (!*copy_mem) { 13563 *copy_size = 0; 13564 ret = LIBBPF_PERF_EVENT_ERROR; 13565 break; 13566 } 13567 *copy_size = ehdr_size; 13568 } 13569 13570 memcpy(*copy_mem, copy_start, len_first); 13571 memcpy(*copy_mem + len_first, base, len_secnd); 13572 ehdr = *copy_mem; 13573 } 13574 13575 ret = fn(ehdr, private_data); 13576 data_tail += ehdr_size; 13577 if (ret != LIBBPF_PERF_EVENT_CONT) 13578 break; 13579 } 13580 13581 ring_buffer_write_tail(header, data_tail); 13582 return libbpf_err(ret); 13583 } 13584 13585 struct perf_buffer; 13586 13587 struct perf_buffer_params { 13588 struct perf_event_attr *attr; 13589 /* if event_cb is specified, it takes precendence */ 13590 perf_buffer_event_fn event_cb; 13591 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13592 perf_buffer_sample_fn sample_cb; 13593 perf_buffer_lost_fn lost_cb; 13594 void *ctx; 13595 int cpu_cnt; 13596 int *cpus; 13597 int *map_keys; 13598 }; 13599 13600 struct perf_cpu_buf { 13601 struct perf_buffer *pb; 13602 void *base; /* mmap()'ed memory */ 13603 void *buf; /* for reconstructing segmented data */ 13604 size_t buf_size; 13605 int fd; 13606 int cpu; 13607 int map_key; 13608 }; 13609 13610 struct perf_buffer { 13611 perf_buffer_event_fn event_cb; 13612 perf_buffer_sample_fn sample_cb; 13613 perf_buffer_lost_fn lost_cb; 13614 void *ctx; /* passed into callbacks */ 13615 13616 size_t page_size; 13617 size_t mmap_size; 13618 struct perf_cpu_buf **cpu_bufs; 13619 struct epoll_event *events; 13620 int cpu_cnt; /* number of allocated CPU buffers */ 13621 int epoll_fd; /* perf event FD */ 13622 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13623 }; 13624 13625 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13626 struct perf_cpu_buf *cpu_buf) 13627 { 13628 if (!cpu_buf) 13629 return; 13630 if (cpu_buf->base && 13631 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13632 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13633 if (cpu_buf->fd >= 0) { 13634 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13635 close(cpu_buf->fd); 13636 } 13637 free(cpu_buf->buf); 13638 free(cpu_buf); 13639 } 13640 13641 void perf_buffer__free(struct perf_buffer *pb) 13642 { 13643 int i; 13644 13645 if (IS_ERR_OR_NULL(pb)) 13646 return; 13647 if (pb->cpu_bufs) { 13648 for (i = 0; i < pb->cpu_cnt; i++) { 13649 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13650 13651 if (!cpu_buf) 13652 continue; 13653 13654 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13655 perf_buffer__free_cpu_buf(pb, cpu_buf); 13656 } 13657 free(pb->cpu_bufs); 13658 } 13659 if (pb->epoll_fd >= 0) 13660 close(pb->epoll_fd); 13661 free(pb->events); 13662 free(pb); 13663 } 13664 13665 static struct perf_cpu_buf * 13666 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13667 int cpu, int map_key) 13668 { 13669 struct perf_cpu_buf *cpu_buf; 13670 int err; 13671 13672 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13673 if (!cpu_buf) 13674 return ERR_PTR(-ENOMEM); 13675 13676 cpu_buf->pb = pb; 13677 cpu_buf->cpu = cpu; 13678 cpu_buf->map_key = map_key; 13679 13680 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13681 -1, PERF_FLAG_FD_CLOEXEC); 13682 if (cpu_buf->fd < 0) { 13683 err = -errno; 13684 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13685 cpu, errstr(err)); 13686 goto error; 13687 } 13688 13689 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13690 PROT_READ | PROT_WRITE, MAP_SHARED, 13691 cpu_buf->fd, 0); 13692 if (cpu_buf->base == MAP_FAILED) { 13693 cpu_buf->base = NULL; 13694 err = -errno; 13695 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13696 cpu, errstr(err)); 13697 goto error; 13698 } 13699 13700 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13701 err = -errno; 13702 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13703 cpu, errstr(err)); 13704 goto error; 13705 } 13706 13707 return cpu_buf; 13708 13709 error: 13710 perf_buffer__free_cpu_buf(pb, cpu_buf); 13711 return (struct perf_cpu_buf *)ERR_PTR(err); 13712 } 13713 13714 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13715 struct perf_buffer_params *p); 13716 13717 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13718 perf_buffer_sample_fn sample_cb, 13719 perf_buffer_lost_fn lost_cb, 13720 void *ctx, 13721 const struct perf_buffer_opts *opts) 13722 { 13723 const size_t attr_sz = sizeof(struct perf_event_attr); 13724 struct perf_buffer_params p = {}; 13725 struct perf_event_attr attr; 13726 __u32 sample_period; 13727 13728 if (!OPTS_VALID(opts, perf_buffer_opts)) 13729 return libbpf_err_ptr(-EINVAL); 13730 13731 sample_period = OPTS_GET(opts, sample_period, 1); 13732 if (!sample_period) 13733 sample_period = 1; 13734 13735 memset(&attr, 0, attr_sz); 13736 attr.size = attr_sz; 13737 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13738 attr.type = PERF_TYPE_SOFTWARE; 13739 attr.sample_type = PERF_SAMPLE_RAW; 13740 attr.wakeup_events = sample_period; 13741 13742 p.attr = &attr; 13743 p.sample_cb = sample_cb; 13744 p.lost_cb = lost_cb; 13745 p.ctx = ctx; 13746 13747 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13748 } 13749 13750 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13751 struct perf_event_attr *attr, 13752 perf_buffer_event_fn event_cb, void *ctx, 13753 const struct perf_buffer_raw_opts *opts) 13754 { 13755 struct perf_buffer_params p = {}; 13756 13757 if (!attr) 13758 return libbpf_err_ptr(-EINVAL); 13759 13760 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13761 return libbpf_err_ptr(-EINVAL); 13762 13763 p.attr = attr; 13764 p.event_cb = event_cb; 13765 p.ctx = ctx; 13766 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13767 p.cpus = OPTS_GET(opts, cpus, NULL); 13768 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13769 13770 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13771 } 13772 13773 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13774 struct perf_buffer_params *p) 13775 { 13776 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13777 struct bpf_map_info map; 13778 struct perf_buffer *pb; 13779 bool *online = NULL; 13780 __u32 map_info_len; 13781 int err, i, j, n; 13782 13783 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13784 pr_warn("page count should be power of two, but is %zu\n", 13785 page_cnt); 13786 return ERR_PTR(-EINVAL); 13787 } 13788 13789 /* best-effort sanity checks */ 13790 memset(&map, 0, sizeof(map)); 13791 map_info_len = sizeof(map); 13792 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13793 if (err) { 13794 err = -errno; 13795 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13796 * -EBADFD, -EFAULT, or -E2BIG on real error 13797 */ 13798 if (err != -EINVAL) { 13799 pr_warn("failed to get map info for map FD %d: %s\n", 13800 map_fd, errstr(err)); 13801 return ERR_PTR(err); 13802 } 13803 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13804 map_fd); 13805 } else { 13806 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13807 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13808 map.name); 13809 return ERR_PTR(-EINVAL); 13810 } 13811 } 13812 13813 pb = calloc(1, sizeof(*pb)); 13814 if (!pb) 13815 return ERR_PTR(-ENOMEM); 13816 13817 pb->event_cb = p->event_cb; 13818 pb->sample_cb = p->sample_cb; 13819 pb->lost_cb = p->lost_cb; 13820 pb->ctx = p->ctx; 13821 13822 pb->page_size = getpagesize(); 13823 pb->mmap_size = pb->page_size * page_cnt; 13824 pb->map_fd = map_fd; 13825 13826 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13827 if (pb->epoll_fd < 0) { 13828 err = -errno; 13829 pr_warn("failed to create epoll instance: %s\n", 13830 errstr(err)); 13831 goto error; 13832 } 13833 13834 if (p->cpu_cnt > 0) { 13835 pb->cpu_cnt = p->cpu_cnt; 13836 } else { 13837 pb->cpu_cnt = libbpf_num_possible_cpus(); 13838 if (pb->cpu_cnt < 0) { 13839 err = pb->cpu_cnt; 13840 goto error; 13841 } 13842 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13843 pb->cpu_cnt = map.max_entries; 13844 } 13845 13846 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13847 if (!pb->events) { 13848 err = -ENOMEM; 13849 pr_warn("failed to allocate events: out of memory\n"); 13850 goto error; 13851 } 13852 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13853 if (!pb->cpu_bufs) { 13854 err = -ENOMEM; 13855 pr_warn("failed to allocate buffers: out of memory\n"); 13856 goto error; 13857 } 13858 13859 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13860 if (err) { 13861 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13862 goto error; 13863 } 13864 13865 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13866 struct perf_cpu_buf *cpu_buf; 13867 int cpu, map_key; 13868 13869 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13870 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13871 13872 /* in case user didn't explicitly requested particular CPUs to 13873 * be attached to, skip offline/not present CPUs 13874 */ 13875 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13876 continue; 13877 13878 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13879 if (IS_ERR(cpu_buf)) { 13880 err = PTR_ERR(cpu_buf); 13881 goto error; 13882 } 13883 13884 pb->cpu_bufs[j] = cpu_buf; 13885 13886 err = bpf_map_update_elem(pb->map_fd, &map_key, 13887 &cpu_buf->fd, 0); 13888 if (err) { 13889 err = -errno; 13890 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13891 cpu, map_key, cpu_buf->fd, 13892 errstr(err)); 13893 goto error; 13894 } 13895 13896 pb->events[j].events = EPOLLIN; 13897 pb->events[j].data.ptr = cpu_buf; 13898 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13899 &pb->events[j]) < 0) { 13900 err = -errno; 13901 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13902 cpu, cpu_buf->fd, 13903 errstr(err)); 13904 goto error; 13905 } 13906 j++; 13907 } 13908 pb->cpu_cnt = j; 13909 free(online); 13910 13911 return pb; 13912 13913 error: 13914 free(online); 13915 if (pb) 13916 perf_buffer__free(pb); 13917 return ERR_PTR(err); 13918 } 13919 13920 struct perf_sample_raw { 13921 struct perf_event_header header; 13922 uint32_t size; 13923 char data[]; 13924 }; 13925 13926 struct perf_sample_lost { 13927 struct perf_event_header header; 13928 uint64_t id; 13929 uint64_t lost; 13930 uint64_t sample_id; 13931 }; 13932 13933 static enum bpf_perf_event_ret 13934 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13935 { 13936 struct perf_cpu_buf *cpu_buf = ctx; 13937 struct perf_buffer *pb = cpu_buf->pb; 13938 void *data = e; 13939 13940 /* user wants full control over parsing perf event */ 13941 if (pb->event_cb) 13942 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13943 13944 switch (e->type) { 13945 case PERF_RECORD_SAMPLE: { 13946 struct perf_sample_raw *s = data; 13947 13948 if (pb->sample_cb) 13949 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13950 break; 13951 } 13952 case PERF_RECORD_LOST: { 13953 struct perf_sample_lost *s = data; 13954 13955 if (pb->lost_cb) 13956 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13957 break; 13958 } 13959 default: 13960 pr_warn("unknown perf sample type %d\n", e->type); 13961 return LIBBPF_PERF_EVENT_ERROR; 13962 } 13963 return LIBBPF_PERF_EVENT_CONT; 13964 } 13965 13966 static int perf_buffer__process_records(struct perf_buffer *pb, 13967 struct perf_cpu_buf *cpu_buf) 13968 { 13969 enum bpf_perf_event_ret ret; 13970 13971 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13972 pb->page_size, &cpu_buf->buf, 13973 &cpu_buf->buf_size, 13974 perf_buffer__process_record, cpu_buf); 13975 if (ret != LIBBPF_PERF_EVENT_CONT) 13976 return ret; 13977 return 0; 13978 } 13979 13980 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13981 { 13982 return pb->epoll_fd; 13983 } 13984 13985 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13986 { 13987 int i, cnt, err; 13988 13989 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13990 if (cnt < 0) 13991 return -errno; 13992 13993 for (i = 0; i < cnt; i++) { 13994 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13995 13996 err = perf_buffer__process_records(pb, cpu_buf); 13997 if (err) { 13998 pr_warn("error while processing records: %s\n", errstr(err)); 13999 return libbpf_err(err); 14000 } 14001 } 14002 return cnt; 14003 } 14004 14005 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 14006 * manager. 14007 */ 14008 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 14009 { 14010 return pb->cpu_cnt; 14011 } 14012 14013 /* 14014 * Return perf_event FD of a ring buffer in *buf_idx* slot of 14015 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 14016 * select()/poll()/epoll() Linux syscalls. 14017 */ 14018 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 14019 { 14020 struct perf_cpu_buf *cpu_buf; 14021 14022 if (buf_idx >= pb->cpu_cnt) 14023 return libbpf_err(-EINVAL); 14024 14025 cpu_buf = pb->cpu_bufs[buf_idx]; 14026 if (!cpu_buf) 14027 return libbpf_err(-ENOENT); 14028 14029 return cpu_buf->fd; 14030 } 14031 14032 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 14033 { 14034 struct perf_cpu_buf *cpu_buf; 14035 14036 if (buf_idx >= pb->cpu_cnt) 14037 return libbpf_err(-EINVAL); 14038 14039 cpu_buf = pb->cpu_bufs[buf_idx]; 14040 if (!cpu_buf) 14041 return libbpf_err(-ENOENT); 14042 14043 *buf = cpu_buf->base; 14044 *buf_size = pb->mmap_size; 14045 return 0; 14046 } 14047 14048 /* 14049 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 14050 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 14051 * consume, do nothing and return success. 14052 * Returns: 14053 * - 0 on success; 14054 * - <0 on failure. 14055 */ 14056 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 14057 { 14058 struct perf_cpu_buf *cpu_buf; 14059 14060 if (buf_idx >= pb->cpu_cnt) 14061 return libbpf_err(-EINVAL); 14062 14063 cpu_buf = pb->cpu_bufs[buf_idx]; 14064 if (!cpu_buf) 14065 return libbpf_err(-ENOENT); 14066 14067 return perf_buffer__process_records(pb, cpu_buf); 14068 } 14069 14070 int perf_buffer__consume(struct perf_buffer *pb) 14071 { 14072 int i, err; 14073 14074 for (i = 0; i < pb->cpu_cnt; i++) { 14075 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 14076 14077 if (!cpu_buf) 14078 continue; 14079 14080 err = perf_buffer__process_records(pb, cpu_buf); 14081 if (err) { 14082 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 14083 i, errstr(err)); 14084 return libbpf_err(err); 14085 } 14086 } 14087 return 0; 14088 } 14089 14090 int bpf_program__set_attach_target(struct bpf_program *prog, 14091 int attach_prog_fd, 14092 const char *attach_func_name) 14093 { 14094 int btf_obj_fd = 0, btf_id = 0, err; 14095 14096 if (!prog || attach_prog_fd < 0) 14097 return libbpf_err(-EINVAL); 14098 14099 if (prog->obj->state >= OBJ_LOADED) 14100 return libbpf_err(-EINVAL); 14101 14102 if (attach_prog_fd && !attach_func_name) { 14103 /* Store attach_prog_fd. The BTF ID will be resolved later during 14104 * the normal object/program load phase. 14105 */ 14106 prog->attach_prog_fd = attach_prog_fd; 14107 return 0; 14108 } 14109 14110 if (attach_prog_fd) { 14111 btf_id = libbpf_find_prog_btf_id(attach_func_name, 14112 attach_prog_fd, prog->obj->token_fd); 14113 if (btf_id < 0) 14114 return libbpf_err(btf_id); 14115 } else { 14116 if (!attach_func_name) 14117 return libbpf_err(-EINVAL); 14118 14119 /* load btf_vmlinux, if not yet */ 14120 err = bpf_object__load_vmlinux_btf(prog->obj, true); 14121 if (err) 14122 return libbpf_err(err); 14123 err = find_kernel_btf_id(prog->obj, attach_func_name, 14124 prog->expected_attach_type, 14125 &btf_obj_fd, &btf_id); 14126 if (err) 14127 return libbpf_err(err); 14128 } 14129 14130 prog->attach_btf_id = btf_id; 14131 prog->attach_btf_obj_fd = btf_obj_fd; 14132 prog->attach_prog_fd = attach_prog_fd; 14133 return 0; 14134 } 14135 14136 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 14137 { 14138 int err = 0, n, len, start, end = -1; 14139 bool *tmp; 14140 14141 *mask = NULL; 14142 *mask_sz = 0; 14143 14144 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 14145 while (*s) { 14146 if (*s == ',' || *s == '\n') { 14147 s++; 14148 continue; 14149 } 14150 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 14151 if (n <= 0 || n > 2) { 14152 pr_warn("Failed to get CPU range %s: %d\n", s, n); 14153 err = -EINVAL; 14154 goto cleanup; 14155 } else if (n == 1) { 14156 end = start; 14157 } 14158 if (start < 0 || start > end) { 14159 pr_warn("Invalid CPU range [%d,%d] in %s\n", 14160 start, end, s); 14161 err = -EINVAL; 14162 goto cleanup; 14163 } 14164 tmp = realloc(*mask, end + 1); 14165 if (!tmp) { 14166 err = -ENOMEM; 14167 goto cleanup; 14168 } 14169 *mask = tmp; 14170 memset(tmp + *mask_sz, 0, start - *mask_sz); 14171 memset(tmp + start, 1, end - start + 1); 14172 *mask_sz = end + 1; 14173 s += len; 14174 } 14175 if (!*mask_sz) { 14176 pr_warn("Empty CPU range\n"); 14177 return -EINVAL; 14178 } 14179 return 0; 14180 cleanup: 14181 free(*mask); 14182 *mask = NULL; 14183 return err; 14184 } 14185 14186 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 14187 { 14188 int fd, err = 0, len; 14189 char buf[128]; 14190 14191 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 14192 if (fd < 0) { 14193 err = -errno; 14194 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 14195 return err; 14196 } 14197 len = read(fd, buf, sizeof(buf)); 14198 close(fd); 14199 if (len <= 0) { 14200 err = len ? -errno : -EINVAL; 14201 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 14202 return err; 14203 } 14204 if (len >= sizeof(buf)) { 14205 pr_warn("CPU mask is too big in file %s\n", fcpu); 14206 return -E2BIG; 14207 } 14208 buf[len] = '\0'; 14209 14210 return parse_cpu_mask_str(buf, mask, mask_sz); 14211 } 14212 14213 int libbpf_num_possible_cpus(void) 14214 { 14215 static const char *fcpu = "/sys/devices/system/cpu/possible"; 14216 static int cpus; 14217 int err, n, i, tmp_cpus; 14218 bool *mask; 14219 14220 tmp_cpus = READ_ONCE(cpus); 14221 if (tmp_cpus > 0) 14222 return tmp_cpus; 14223 14224 err = parse_cpu_mask_file(fcpu, &mask, &n); 14225 if (err) 14226 return libbpf_err(err); 14227 14228 tmp_cpus = 0; 14229 for (i = 0; i < n; i++) { 14230 if (mask[i]) 14231 tmp_cpus++; 14232 } 14233 free(mask); 14234 14235 WRITE_ONCE(cpus, tmp_cpus); 14236 return tmp_cpus; 14237 } 14238 14239 static int populate_skeleton_maps(const struct bpf_object *obj, 14240 struct bpf_map_skeleton *maps, 14241 size_t map_cnt, size_t map_skel_sz) 14242 { 14243 int i; 14244 14245 for (i = 0; i < map_cnt; i++) { 14246 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 14247 struct bpf_map **map = map_skel->map; 14248 const char *name = map_skel->name; 14249 void **mmaped = map_skel->mmaped; 14250 14251 *map = bpf_object__find_map_by_name(obj, name); 14252 if (!*map) { 14253 pr_warn("failed to find skeleton map '%s'\n", name); 14254 return -ESRCH; 14255 } 14256 14257 /* externs shouldn't be pre-setup from user code */ 14258 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 14259 *mmaped = (*map)->mmaped; 14260 } 14261 return 0; 14262 } 14263 14264 static int populate_skeleton_progs(const struct bpf_object *obj, 14265 struct bpf_prog_skeleton *progs, 14266 size_t prog_cnt, size_t prog_skel_sz) 14267 { 14268 int i; 14269 14270 for (i = 0; i < prog_cnt; i++) { 14271 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 14272 struct bpf_program **prog = prog_skel->prog; 14273 const char *name = prog_skel->name; 14274 14275 *prog = bpf_object__find_program_by_name(obj, name); 14276 if (!*prog) { 14277 pr_warn("failed to find skeleton program '%s'\n", name); 14278 return -ESRCH; 14279 } 14280 } 14281 return 0; 14282 } 14283 14284 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 14285 const struct bpf_object_open_opts *opts) 14286 { 14287 struct bpf_object *obj; 14288 int err; 14289 14290 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 14291 if (IS_ERR(obj)) { 14292 err = PTR_ERR(obj); 14293 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 14294 s->name, errstr(err)); 14295 return libbpf_err(err); 14296 } 14297 14298 *s->obj = obj; 14299 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 14300 if (err) { 14301 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 14302 return libbpf_err(err); 14303 } 14304 14305 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 14306 if (err) { 14307 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 14308 return libbpf_err(err); 14309 } 14310 14311 return 0; 14312 } 14313 14314 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 14315 { 14316 int err, len, var_idx, i; 14317 const char *var_name; 14318 const struct bpf_map *map; 14319 struct btf *btf; 14320 __u32 map_type_id; 14321 const struct btf_type *map_type, *var_type; 14322 const struct bpf_var_skeleton *var_skel; 14323 struct btf_var_secinfo *var; 14324 14325 if (!s->obj) 14326 return libbpf_err(-EINVAL); 14327 14328 btf = bpf_object__btf(s->obj); 14329 if (!btf) { 14330 pr_warn("subskeletons require BTF at runtime (object %s)\n", 14331 bpf_object__name(s->obj)); 14332 return libbpf_err(-errno); 14333 } 14334 14335 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 14336 if (err) { 14337 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14338 return libbpf_err(err); 14339 } 14340 14341 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 14342 if (err) { 14343 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14344 return libbpf_err(err); 14345 } 14346 14347 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 14348 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 14349 map = *var_skel->map; 14350 map_type_id = bpf_map__btf_value_type_id(map); 14351 map_type = btf__type_by_id(btf, map_type_id); 14352 14353 if (!btf_is_datasec(map_type)) { 14354 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 14355 bpf_map__name(map), 14356 __btf_kind_str(btf_kind(map_type))); 14357 return libbpf_err(-EINVAL); 14358 } 14359 14360 len = btf_vlen(map_type); 14361 var = btf_var_secinfos(map_type); 14362 for (i = 0; i < len; i++, var++) { 14363 var_type = btf__type_by_id(btf, var->type); 14364 var_name = btf__name_by_offset(btf, var_type->name_off); 14365 if (strcmp(var_name, var_skel->name) == 0) { 14366 *var_skel->addr = map->mmaped + var->offset; 14367 break; 14368 } 14369 } 14370 } 14371 return 0; 14372 } 14373 14374 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 14375 { 14376 if (!s) 14377 return; 14378 free(s->maps); 14379 free(s->progs); 14380 free(s->vars); 14381 free(s); 14382 } 14383 14384 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 14385 { 14386 int i, err; 14387 14388 err = bpf_object__load(*s->obj); 14389 if (err) { 14390 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 14391 return libbpf_err(err); 14392 } 14393 14394 for (i = 0; i < s->map_cnt; i++) { 14395 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14396 struct bpf_map *map = *map_skel->map; 14397 14398 if (!map_skel->mmaped) 14399 continue; 14400 14401 *map_skel->mmaped = map->mmaped; 14402 } 14403 14404 return 0; 14405 } 14406 14407 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 14408 { 14409 int i, err; 14410 14411 for (i = 0; i < s->prog_cnt; i++) { 14412 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14413 struct bpf_program *prog = *prog_skel->prog; 14414 struct bpf_link **link = prog_skel->link; 14415 14416 if (!prog->autoload || !prog->autoattach) 14417 continue; 14418 14419 /* auto-attaching not supported for this program */ 14420 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 14421 continue; 14422 14423 /* if user already set the link manually, don't attempt auto-attach */ 14424 if (*link) 14425 continue; 14426 14427 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 14428 if (err) { 14429 pr_warn("prog '%s': failed to auto-attach: %s\n", 14430 bpf_program__name(prog), errstr(err)); 14431 return libbpf_err(err); 14432 } 14433 14434 /* It's possible that for some SEC() definitions auto-attach 14435 * is supported in some cases (e.g., if definition completely 14436 * specifies target information), but is not in other cases. 14437 * SEC("uprobe") is one such case. If user specified target 14438 * binary and function name, such BPF program can be 14439 * auto-attached. But if not, it shouldn't trigger skeleton's 14440 * attach to fail. It should just be skipped. 14441 * attach_fn signals such case with returning 0 (no error) and 14442 * setting link to NULL. 14443 */ 14444 } 14445 14446 14447 for (i = 0; i < s->map_cnt; i++) { 14448 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14449 struct bpf_map *map = *map_skel->map; 14450 struct bpf_link **link; 14451 14452 if (!map->autocreate || !map->autoattach) 14453 continue; 14454 14455 /* only struct_ops maps can be attached */ 14456 if (!bpf_map__is_struct_ops(map)) 14457 continue; 14458 14459 /* skeleton is created with earlier version of bpftool, notify user */ 14460 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14461 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14462 bpf_map__name(map)); 14463 continue; 14464 } 14465 14466 link = map_skel->link; 14467 if (!link) { 14468 pr_warn("map '%s': BPF map skeleton link is uninitialized\n", 14469 bpf_map__name(map)); 14470 continue; 14471 } 14472 14473 if (*link) 14474 continue; 14475 14476 *link = bpf_map__attach_struct_ops(map); 14477 if (!*link) { 14478 err = -errno; 14479 pr_warn("map '%s': failed to auto-attach: %s\n", 14480 bpf_map__name(map), errstr(err)); 14481 return libbpf_err(err); 14482 } 14483 } 14484 14485 return 0; 14486 } 14487 14488 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14489 { 14490 int i; 14491 14492 for (i = 0; i < s->prog_cnt; i++) { 14493 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14494 struct bpf_link **link = prog_skel->link; 14495 14496 bpf_link__destroy(*link); 14497 *link = NULL; 14498 } 14499 14500 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14501 return; 14502 14503 for (i = 0; i < s->map_cnt; i++) { 14504 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14505 struct bpf_link **link = map_skel->link; 14506 14507 if (link) { 14508 bpf_link__destroy(*link); 14509 *link = NULL; 14510 } 14511 } 14512 } 14513 14514 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14515 { 14516 if (!s) 14517 return; 14518 14519 bpf_object__detach_skeleton(s); 14520 if (s->obj) 14521 bpf_object__close(*s->obj); 14522 free(s->maps); 14523 free(s->progs); 14524 free(s); 14525 } 14526