xref: /linux/tools/lib/bpf/libbpf.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define MAX_EVENT_NAME_LEN	64
63 
64 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
65 
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67 
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69  * compilation if user enables corresponding warning. Disable it explicitly.
70  */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72 
73 #define __printf(a, b)	__attribute__((format(printf, a, b)))
74 
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
77 static int map_set_def_max_entries(struct bpf_map *map);
78 
79 static const char * const attach_type_name[] = {
80 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
81 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
82 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
83 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
84 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
85 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
86 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
87 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
88 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
89 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
90 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
91 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
92 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
93 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
94 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
95 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
96 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
97 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
98 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
99 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
100 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
101 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
102 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
103 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
104 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
105 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
106 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
107 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
108 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
109 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
110 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
111 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
112 	[BPF_LIRC_MODE2]		= "lirc_mode2",
113 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
114 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
115 	[BPF_TRACE_FENTRY]		= "trace_fentry",
116 	[BPF_TRACE_FEXIT]		= "trace_fexit",
117 	[BPF_MODIFY_RETURN]		= "modify_return",
118 	[BPF_LSM_MAC]			= "lsm_mac",
119 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
120 	[BPF_SK_LOOKUP]			= "sk_lookup",
121 	[BPF_TRACE_ITER]		= "trace_iter",
122 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
123 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
124 	[BPF_XDP]			= "xdp",
125 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
126 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
127 	[BPF_PERF_EVENT]		= "perf_event",
128 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
129 	[BPF_STRUCT_OPS]		= "struct_ops",
130 	[BPF_NETFILTER]			= "netfilter",
131 	[BPF_TCX_INGRESS]		= "tcx_ingress",
132 	[BPF_TCX_EGRESS]		= "tcx_egress",
133 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
134 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
135 	[BPF_NETKIT_PEER]		= "netkit_peer",
136 	[BPF_TRACE_KPROBE_SESSION]	= "trace_kprobe_session",
137 	[BPF_TRACE_UPROBE_SESSION]	= "trace_uprobe_session",
138 };
139 
140 static const char * const link_type_name[] = {
141 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
142 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
143 	[BPF_LINK_TYPE_TRACING]			= "tracing",
144 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
145 	[BPF_LINK_TYPE_ITER]			= "iter",
146 	[BPF_LINK_TYPE_NETNS]			= "netns",
147 	[BPF_LINK_TYPE_XDP]			= "xdp",
148 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
149 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
150 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
151 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
152 	[BPF_LINK_TYPE_TCX]			= "tcx",
153 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
154 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
155 	[BPF_LINK_TYPE_SOCKMAP]			= "sockmap",
156 };
157 
158 static const char * const map_type_name[] = {
159 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
160 	[BPF_MAP_TYPE_HASH]			= "hash",
161 	[BPF_MAP_TYPE_ARRAY]			= "array",
162 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
163 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
164 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
165 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
166 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
167 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
168 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
169 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
170 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
171 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
172 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
173 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
174 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
175 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
176 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
177 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
178 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
179 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
180 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
181 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
182 	[BPF_MAP_TYPE_QUEUE]			= "queue",
183 	[BPF_MAP_TYPE_STACK]			= "stack",
184 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
185 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
186 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
187 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
188 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
189 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
190 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
191 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
192 	[BPF_MAP_TYPE_ARENA]			= "arena",
193 	[BPF_MAP_TYPE_INSN_ARRAY]		= "insn_array",
194 };
195 
196 static const char * const prog_type_name[] = {
197 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
198 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
199 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
200 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
201 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
202 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
203 	[BPF_PROG_TYPE_XDP]			= "xdp",
204 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
205 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
206 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
207 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
208 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
209 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
210 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
211 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
212 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
213 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
214 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
215 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
216 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
217 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
218 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
219 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
220 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
221 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
222 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
223 	[BPF_PROG_TYPE_TRACING]			= "tracing",
224 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
225 	[BPF_PROG_TYPE_EXT]			= "ext",
226 	[BPF_PROG_TYPE_LSM]			= "lsm",
227 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
228 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
229 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
230 };
231 
232 static int __base_pr(enum libbpf_print_level level, const char *format,
233 		     va_list args)
234 {
235 	const char *env_var = "LIBBPF_LOG_LEVEL";
236 	static enum libbpf_print_level min_level = LIBBPF_INFO;
237 	static bool initialized;
238 
239 	if (!initialized) {
240 		char *verbosity;
241 
242 		initialized = true;
243 		verbosity = getenv(env_var);
244 		if (verbosity) {
245 			if (strcasecmp(verbosity, "warn") == 0)
246 				min_level = LIBBPF_WARN;
247 			else if (strcasecmp(verbosity, "debug") == 0)
248 				min_level = LIBBPF_DEBUG;
249 			else if (strcasecmp(verbosity, "info") == 0)
250 				min_level = LIBBPF_INFO;
251 			else
252 				fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
253 					env_var, verbosity);
254 		}
255 	}
256 
257 	/* if too verbose, skip logging  */
258 	if (level > min_level)
259 		return 0;
260 
261 	return vfprintf(stderr, format, args);
262 }
263 
264 static libbpf_print_fn_t __libbpf_pr = __base_pr;
265 
266 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
267 {
268 	libbpf_print_fn_t old_print_fn;
269 
270 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
271 
272 	return old_print_fn;
273 }
274 
275 __printf(2, 3)
276 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
277 {
278 	va_list args;
279 	int old_errno;
280 	libbpf_print_fn_t print_fn;
281 
282 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
283 	if (!print_fn)
284 		return;
285 
286 	old_errno = errno;
287 
288 	va_start(args, format);
289 	print_fn(level, format, args);
290 	va_end(args);
291 
292 	errno = old_errno;
293 }
294 
295 static void pr_perm_msg(int err)
296 {
297 	struct rlimit limit;
298 	char buf[100];
299 
300 	if (err != -EPERM || geteuid() != 0)
301 		return;
302 
303 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
304 	if (err)
305 		return;
306 
307 	if (limit.rlim_cur == RLIM_INFINITY)
308 		return;
309 
310 	if (limit.rlim_cur < 1024)
311 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
312 	else if (limit.rlim_cur < 1024*1024)
313 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
314 	else
315 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
316 
317 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
318 		buf);
319 }
320 
321 /* Copied from tools/perf/util/util.h */
322 #ifndef zfree
323 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
324 #endif
325 
326 #ifndef zclose
327 # define zclose(fd) ({			\
328 	int ___err = 0;			\
329 	if ((fd) >= 0)			\
330 		___err = close((fd));	\
331 	fd = -1;			\
332 	___err; })
333 #endif
334 
335 static inline __u64 ptr_to_u64(const void *ptr)
336 {
337 	return (__u64) (unsigned long) ptr;
338 }
339 
340 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
341 {
342 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
343 	return 0;
344 }
345 
346 __u32 libbpf_major_version(void)
347 {
348 	return LIBBPF_MAJOR_VERSION;
349 }
350 
351 __u32 libbpf_minor_version(void)
352 {
353 	return LIBBPF_MINOR_VERSION;
354 }
355 
356 const char *libbpf_version_string(void)
357 {
358 #define __S(X) #X
359 #define _S(X) __S(X)
360 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
361 #undef _S
362 #undef __S
363 }
364 
365 enum reloc_type {
366 	RELO_LD64,
367 	RELO_CALL,
368 	RELO_DATA,
369 	RELO_EXTERN_LD64,
370 	RELO_EXTERN_CALL,
371 	RELO_SUBPROG_ADDR,
372 	RELO_CORE,
373 	RELO_INSN_ARRAY,
374 };
375 
376 struct reloc_desc {
377 	enum reloc_type type;
378 	int insn_idx;
379 	union {
380 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
381 		struct {
382 			int map_idx;
383 			int sym_off;
384 			/*
385 			 * The following two fields can be unionized, as the
386 			 * ext_idx field is used for extern symbols, and the
387 			 * sym_size is used for jump tables, which are never
388 			 * extern
389 			 */
390 			union {
391 				int ext_idx;
392 				int sym_size;
393 			};
394 		};
395 	};
396 };
397 
398 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
399 enum sec_def_flags {
400 	SEC_NONE = 0,
401 	/* expected_attach_type is optional, if kernel doesn't support that */
402 	SEC_EXP_ATTACH_OPT = 1,
403 	/* legacy, only used by libbpf_get_type_names() and
404 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
405 	 * This used to be associated with cgroup (and few other) BPF programs
406 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
407 	 * meaningless nowadays, though.
408 	 */
409 	SEC_ATTACHABLE = 2,
410 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
411 	/* attachment target is specified through BTF ID in either kernel or
412 	 * other BPF program's BTF object
413 	 */
414 	SEC_ATTACH_BTF = 4,
415 	/* BPF program type allows sleeping/blocking in kernel */
416 	SEC_SLEEPABLE = 8,
417 	/* BPF program support non-linear XDP buffer */
418 	SEC_XDP_FRAGS = 16,
419 	/* Setup proper attach type for usdt probes. */
420 	SEC_USDT = 32,
421 };
422 
423 struct bpf_sec_def {
424 	char *sec;
425 	enum bpf_prog_type prog_type;
426 	enum bpf_attach_type expected_attach_type;
427 	long cookie;
428 	int handler_id;
429 
430 	libbpf_prog_setup_fn_t prog_setup_fn;
431 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
432 	libbpf_prog_attach_fn_t prog_attach_fn;
433 };
434 
435 struct bpf_light_subprog {
436 	__u32 sec_insn_off;
437 	__u32 sub_insn_off;
438 };
439 
440 /*
441  * bpf_prog should be a better name but it has been used in
442  * linux/filter.h.
443  */
444 struct bpf_program {
445 	char *name;
446 	char *sec_name;
447 	size_t sec_idx;
448 	const struct bpf_sec_def *sec_def;
449 	/* this program's instruction offset (in number of instructions)
450 	 * within its containing ELF section
451 	 */
452 	size_t sec_insn_off;
453 	/* number of original instructions in ELF section belonging to this
454 	 * program, not taking into account subprogram instructions possible
455 	 * appended later during relocation
456 	 */
457 	size_t sec_insn_cnt;
458 	/* Offset (in number of instructions) of the start of instruction
459 	 * belonging to this BPF program  within its containing main BPF
460 	 * program. For the entry-point (main) BPF program, this is always
461 	 * zero. For a sub-program, this gets reset before each of main BPF
462 	 * programs are processed and relocated and is used to determined
463 	 * whether sub-program was already appended to the main program, and
464 	 * if yes, at which instruction offset.
465 	 */
466 	size_t sub_insn_off;
467 
468 	/* instructions that belong to BPF program; insns[0] is located at
469 	 * sec_insn_off instruction within its ELF section in ELF file, so
470 	 * when mapping ELF file instruction index to the local instruction,
471 	 * one needs to subtract sec_insn_off; and vice versa.
472 	 */
473 	struct bpf_insn *insns;
474 	/* actual number of instruction in this BPF program's image; for
475 	 * entry-point BPF programs this includes the size of main program
476 	 * itself plus all the used sub-programs, appended at the end
477 	 */
478 	size_t insns_cnt;
479 
480 	struct reloc_desc *reloc_desc;
481 	int nr_reloc;
482 
483 	/* BPF verifier log settings */
484 	char *log_buf;
485 	size_t log_size;
486 	__u32 log_level;
487 
488 	struct bpf_object *obj;
489 
490 	int fd;
491 	bool autoload;
492 	bool autoattach;
493 	bool sym_global;
494 	bool mark_btf_static;
495 	enum bpf_prog_type type;
496 	enum bpf_attach_type expected_attach_type;
497 	int exception_cb_idx;
498 
499 	int prog_ifindex;
500 	__u32 attach_btf_obj_fd;
501 	__u32 attach_btf_id;
502 	__u32 attach_prog_fd;
503 
504 	void *func_info;
505 	__u32 func_info_rec_size;
506 	__u32 func_info_cnt;
507 
508 	void *line_info;
509 	__u32 line_info_rec_size;
510 	__u32 line_info_cnt;
511 	__u32 prog_flags;
512 	__u8  hash[SHA256_DIGEST_LENGTH];
513 
514 	struct bpf_light_subprog *subprogs;
515 	__u32 subprog_cnt;
516 };
517 
518 struct bpf_struct_ops {
519 	struct bpf_program **progs;
520 	__u32 *kern_func_off;
521 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
522 	void *data;
523 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
524 	 *      btf_vmlinux's format.
525 	 * struct bpf_struct_ops_tcp_congestion_ops {
526 	 *	[... some other kernel fields ...]
527 	 *	struct tcp_congestion_ops data;
528 	 * }
529 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
530 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
531 	 * from "data".
532 	 */
533 	void *kern_vdata;
534 	__u32 type_id;
535 };
536 
537 #define DATA_SEC ".data"
538 #define BSS_SEC ".bss"
539 #define RODATA_SEC ".rodata"
540 #define KCONFIG_SEC ".kconfig"
541 #define KSYMS_SEC ".ksyms"
542 #define STRUCT_OPS_SEC ".struct_ops"
543 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
544 #define ARENA_SEC ".addr_space.1"
545 
546 enum libbpf_map_type {
547 	LIBBPF_MAP_UNSPEC,
548 	LIBBPF_MAP_DATA,
549 	LIBBPF_MAP_BSS,
550 	LIBBPF_MAP_RODATA,
551 	LIBBPF_MAP_KCONFIG,
552 };
553 
554 struct bpf_map_def {
555 	unsigned int type;
556 	unsigned int key_size;
557 	unsigned int value_size;
558 	unsigned int max_entries;
559 	unsigned int map_flags;
560 };
561 
562 struct bpf_map {
563 	struct bpf_object *obj;
564 	char *name;
565 	/* real_name is defined for special internal maps (.rodata*,
566 	 * .data*, .bss, .kconfig) and preserves their original ELF section
567 	 * name. This is important to be able to find corresponding BTF
568 	 * DATASEC information.
569 	 */
570 	char *real_name;
571 	int fd;
572 	int sec_idx;
573 	size_t sec_offset;
574 	int map_ifindex;
575 	int inner_map_fd;
576 	struct bpf_map_def def;
577 	__u32 numa_node;
578 	__u32 btf_var_idx;
579 	int mod_btf_fd;
580 	__u32 btf_key_type_id;
581 	__u32 btf_value_type_id;
582 	__u32 btf_vmlinux_value_type_id;
583 	enum libbpf_map_type libbpf_type;
584 	void *mmaped;
585 	struct bpf_struct_ops *st_ops;
586 	struct bpf_map *inner_map;
587 	void **init_slots;
588 	int init_slots_sz;
589 	char *pin_path;
590 	bool pinned;
591 	bool reused;
592 	bool autocreate;
593 	bool autoattach;
594 	__u64 map_extra;
595 	struct bpf_program *excl_prog;
596 };
597 
598 enum extern_type {
599 	EXT_UNKNOWN,
600 	EXT_KCFG,
601 	EXT_KSYM,
602 };
603 
604 enum kcfg_type {
605 	KCFG_UNKNOWN,
606 	KCFG_CHAR,
607 	KCFG_BOOL,
608 	KCFG_INT,
609 	KCFG_TRISTATE,
610 	KCFG_CHAR_ARR,
611 };
612 
613 struct extern_desc {
614 	enum extern_type type;
615 	int sym_idx;
616 	int btf_id;
617 	int sec_btf_id;
618 	char *name;
619 	char *essent_name;
620 	bool is_set;
621 	bool is_weak;
622 	union {
623 		struct {
624 			enum kcfg_type type;
625 			int sz;
626 			int align;
627 			int data_off;
628 			bool is_signed;
629 		} kcfg;
630 		struct {
631 			unsigned long long addr;
632 
633 			/* target btf_id of the corresponding kernel var. */
634 			int kernel_btf_obj_fd;
635 			int kernel_btf_id;
636 
637 			/* local btf_id of the ksym extern's type. */
638 			__u32 type_id;
639 			/* BTF fd index to be patched in for insn->off, this is
640 			 * 0 for vmlinux BTF, index in obj->fd_array for module
641 			 * BTF
642 			 */
643 			__s16 btf_fd_idx;
644 		} ksym;
645 	};
646 };
647 
648 struct module_btf {
649 	struct btf *btf;
650 	char *name;
651 	__u32 id;
652 	int fd;
653 	int fd_array_idx;
654 };
655 
656 enum sec_type {
657 	SEC_UNUSED = 0,
658 	SEC_RELO,
659 	SEC_BSS,
660 	SEC_DATA,
661 	SEC_RODATA,
662 	SEC_ST_OPS,
663 };
664 
665 struct elf_sec_desc {
666 	enum sec_type sec_type;
667 	Elf64_Shdr *shdr;
668 	Elf_Data *data;
669 };
670 
671 struct elf_state {
672 	int fd;
673 	const void *obj_buf;
674 	size_t obj_buf_sz;
675 	Elf *elf;
676 	Elf64_Ehdr *ehdr;
677 	Elf_Data *symbols;
678 	Elf_Data *arena_data;
679 	size_t shstrndx; /* section index for section name strings */
680 	size_t strtabidx;
681 	struct elf_sec_desc *secs;
682 	size_t sec_cnt;
683 	int btf_maps_shndx;
684 	__u32 btf_maps_sec_btf_id;
685 	int text_shndx;
686 	int symbols_shndx;
687 	bool has_st_ops;
688 	int arena_data_shndx;
689 	int jumptables_data_shndx;
690 };
691 
692 struct usdt_manager;
693 
694 enum bpf_object_state {
695 	OBJ_OPEN,
696 	OBJ_PREPARED,
697 	OBJ_LOADED,
698 };
699 
700 struct bpf_object {
701 	char name[BPF_OBJ_NAME_LEN];
702 	char license[64];
703 	__u32 kern_version;
704 
705 	enum bpf_object_state state;
706 	struct bpf_program *programs;
707 	size_t nr_programs;
708 	struct bpf_map *maps;
709 	size_t nr_maps;
710 	size_t maps_cap;
711 
712 	char *kconfig;
713 	struct extern_desc *externs;
714 	int nr_extern;
715 	int kconfig_map_idx;
716 
717 	bool has_subcalls;
718 	bool has_rodata;
719 
720 	struct bpf_gen *gen_loader;
721 
722 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
723 	struct elf_state efile;
724 
725 	unsigned char byteorder;
726 
727 	struct btf *btf;
728 	struct btf_ext *btf_ext;
729 
730 	/* Parse and load BTF vmlinux if any of the programs in the object need
731 	 * it at load time.
732 	 */
733 	struct btf *btf_vmlinux;
734 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
735 	 * override for vmlinux BTF.
736 	 */
737 	char *btf_custom_path;
738 	/* vmlinux BTF override for CO-RE relocations */
739 	struct btf *btf_vmlinux_override;
740 	/* Lazily initialized kernel module BTFs */
741 	struct module_btf *btf_modules;
742 	bool btf_modules_loaded;
743 	size_t btf_module_cnt;
744 	size_t btf_module_cap;
745 
746 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
747 	char *log_buf;
748 	size_t log_size;
749 	__u32 log_level;
750 
751 	int *fd_array;
752 	size_t fd_array_cap;
753 	size_t fd_array_cnt;
754 
755 	struct usdt_manager *usdt_man;
756 
757 	int arena_map_idx;
758 	void *arena_data;
759 	size_t arena_data_sz;
760 
761 	void *jumptables_data;
762 	size_t jumptables_data_sz;
763 
764 	struct {
765 		struct bpf_program *prog;
766 		int sym_off;
767 		int fd;
768 	} *jumptable_maps;
769 	size_t jumptable_map_cnt;
770 
771 	struct kern_feature_cache *feat_cache;
772 	char *token_path;
773 	int token_fd;
774 
775 	char path[];
776 };
777 
778 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
779 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
780 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
781 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
782 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
783 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
784 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
785 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
786 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
787 
788 void bpf_program__unload(struct bpf_program *prog)
789 {
790 	if (!prog)
791 		return;
792 
793 	zclose(prog->fd);
794 
795 	zfree(&prog->func_info);
796 	zfree(&prog->line_info);
797 	zfree(&prog->subprogs);
798 }
799 
800 static void bpf_program__exit(struct bpf_program *prog)
801 {
802 	if (!prog)
803 		return;
804 
805 	bpf_program__unload(prog);
806 	zfree(&prog->name);
807 	zfree(&prog->sec_name);
808 	zfree(&prog->insns);
809 	zfree(&prog->reloc_desc);
810 
811 	prog->nr_reloc = 0;
812 	prog->insns_cnt = 0;
813 	prog->sec_idx = -1;
814 }
815 
816 static bool insn_is_subprog_call(const struct bpf_insn *insn)
817 {
818 	return BPF_CLASS(insn->code) == BPF_JMP &&
819 	       BPF_OP(insn->code) == BPF_CALL &&
820 	       BPF_SRC(insn->code) == BPF_K &&
821 	       insn->src_reg == BPF_PSEUDO_CALL &&
822 	       insn->dst_reg == 0 &&
823 	       insn->off == 0;
824 }
825 
826 static bool is_call_insn(const struct bpf_insn *insn)
827 {
828 	return insn->code == (BPF_JMP | BPF_CALL);
829 }
830 
831 static bool insn_is_pseudo_func(struct bpf_insn *insn)
832 {
833 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
834 }
835 
836 static int
837 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
838 		      const char *name, size_t sec_idx, const char *sec_name,
839 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
840 {
841 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
842 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
843 			sec_name, name, sec_off, insn_data_sz);
844 		return -EINVAL;
845 	}
846 
847 	memset(prog, 0, sizeof(*prog));
848 	prog->obj = obj;
849 
850 	prog->sec_idx = sec_idx;
851 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
852 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
853 	/* insns_cnt can later be increased by appending used subprograms */
854 	prog->insns_cnt = prog->sec_insn_cnt;
855 
856 	prog->type = BPF_PROG_TYPE_UNSPEC;
857 	prog->fd = -1;
858 	prog->exception_cb_idx = -1;
859 
860 	/* libbpf's convention for SEC("?abc...") is that it's just like
861 	 * SEC("abc...") but the corresponding bpf_program starts out with
862 	 * autoload set to false.
863 	 */
864 	if (sec_name[0] == '?') {
865 		prog->autoload = false;
866 		/* from now on forget there was ? in section name */
867 		sec_name++;
868 	} else {
869 		prog->autoload = true;
870 	}
871 
872 	prog->autoattach = true;
873 
874 	/* inherit object's log_level */
875 	prog->log_level = obj->log_level;
876 
877 	prog->sec_name = strdup(sec_name);
878 	if (!prog->sec_name)
879 		goto errout;
880 
881 	prog->name = strdup(name);
882 	if (!prog->name)
883 		goto errout;
884 
885 	prog->insns = malloc(insn_data_sz);
886 	if (!prog->insns)
887 		goto errout;
888 	memcpy(prog->insns, insn_data, insn_data_sz);
889 
890 	return 0;
891 errout:
892 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
893 	bpf_program__exit(prog);
894 	return -ENOMEM;
895 }
896 
897 static int
898 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
899 			 const char *sec_name, int sec_idx)
900 {
901 	Elf_Data *symbols = obj->efile.symbols;
902 	struct bpf_program *prog, *progs;
903 	void *data = sec_data->d_buf;
904 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
905 	int nr_progs, err, i;
906 	const char *name;
907 	Elf64_Sym *sym;
908 
909 	progs = obj->programs;
910 	nr_progs = obj->nr_programs;
911 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
912 
913 	for (i = 0; i < nr_syms; i++) {
914 		sym = elf_sym_by_idx(obj, i);
915 
916 		if (sym->st_shndx != sec_idx)
917 			continue;
918 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
919 			continue;
920 
921 		prog_sz = sym->st_size;
922 		sec_off = sym->st_value;
923 
924 		name = elf_sym_str(obj, sym->st_name);
925 		if (!name) {
926 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
927 				sec_name, sec_off);
928 			return -LIBBPF_ERRNO__FORMAT;
929 		}
930 
931 		if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) {
932 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
933 				sec_name, sec_off);
934 			return -LIBBPF_ERRNO__FORMAT;
935 		}
936 
937 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
938 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
939 			return -ENOTSUP;
940 		}
941 
942 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
943 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
944 
945 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
946 		if (!progs) {
947 			/*
948 			 * In this case the original obj->programs
949 			 * is still valid, so don't need special treat for
950 			 * bpf_close_object().
951 			 */
952 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
953 				sec_name, name);
954 			return -ENOMEM;
955 		}
956 		obj->programs = progs;
957 
958 		prog = &progs[nr_progs];
959 
960 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
961 					    sec_off, data + sec_off, prog_sz);
962 		if (err)
963 			return err;
964 
965 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
966 			prog->sym_global = true;
967 
968 		/* if function is a global/weak symbol, but has restricted
969 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
970 		 * as static to enable more permissive BPF verification mode
971 		 * with more outside context available to BPF verifier
972 		 */
973 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
974 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
975 			prog->mark_btf_static = true;
976 
977 		nr_progs++;
978 		obj->nr_programs = nr_progs;
979 	}
980 
981 	return 0;
982 }
983 
984 static void bpf_object_bswap_progs(struct bpf_object *obj)
985 {
986 	struct bpf_program *prog = obj->programs;
987 	struct bpf_insn *insn;
988 	int p, i;
989 
990 	for (p = 0; p < obj->nr_programs; p++, prog++) {
991 		insn = prog->insns;
992 		for (i = 0; i < prog->insns_cnt; i++, insn++)
993 			bpf_insn_bswap(insn);
994 	}
995 	pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs);
996 }
997 
998 static const struct btf_member *
999 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
1000 {
1001 	struct btf_member *m;
1002 	int i;
1003 
1004 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
1005 		if (btf_member_bit_offset(t, i) == bit_offset)
1006 			return m;
1007 	}
1008 
1009 	return NULL;
1010 }
1011 
1012 static const struct btf_member *
1013 find_member_by_name(const struct btf *btf, const struct btf_type *t,
1014 		    const char *name)
1015 {
1016 	struct btf_member *m;
1017 	int i;
1018 
1019 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
1020 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
1021 			return m;
1022 	}
1023 
1024 	return NULL;
1025 }
1026 
1027 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
1028 			    __u16 kind, struct btf **res_btf,
1029 			    struct module_btf **res_mod_btf);
1030 
1031 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
1032 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
1033 				   const char *name, __u32 kind);
1034 
1035 static int
1036 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
1037 			   struct module_btf **mod_btf,
1038 			   const struct btf_type **type, __u32 *type_id,
1039 			   const struct btf_type **vtype, __u32 *vtype_id,
1040 			   const struct btf_member **data_member)
1041 {
1042 	const struct btf_type *kern_type, *kern_vtype;
1043 	const struct btf_member *kern_data_member;
1044 	struct btf *btf = NULL;
1045 	__s32 kern_vtype_id, kern_type_id;
1046 	char tname[192], stname[256];
1047 	__u32 i;
1048 
1049 	snprintf(tname, sizeof(tname), "%.*s",
1050 		 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
1051 
1052 	snprintf(stname, sizeof(stname), "%s%s", STRUCT_OPS_VALUE_PREFIX, tname);
1053 
1054 	/* Look for the corresponding "map_value" type that will be used
1055 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS) first, figure out the btf
1056 	 * and the mod_btf.
1057 	 * For example, find "struct bpf_struct_ops_tcp_congestion_ops".
1058 	 */
1059 	kern_vtype_id = find_ksym_btf_id(obj, stname, BTF_KIND_STRUCT, &btf, mod_btf);
1060 	if (kern_vtype_id < 0) {
1061 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", stname);
1062 		return kern_vtype_id;
1063 	}
1064 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1065 
1066 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
1067 	if (kern_type_id < 0) {
1068 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", tname);
1069 		return kern_type_id;
1070 	}
1071 	kern_type = btf__type_by_id(btf, kern_type_id);
1072 
1073 	/* Find "struct tcp_congestion_ops" from
1074 	 * struct bpf_struct_ops_tcp_congestion_ops {
1075 	 *	[ ... ]
1076 	 *	struct tcp_congestion_ops data;
1077 	 * }
1078 	 */
1079 	kern_data_member = btf_members(kern_vtype);
1080 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1081 		if (kern_data_member->type == kern_type_id)
1082 			break;
1083 	}
1084 	if (i == btf_vlen(kern_vtype)) {
1085 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s\n",
1086 			tname, stname);
1087 		return -EINVAL;
1088 	}
1089 
1090 	*type = kern_type;
1091 	*type_id = kern_type_id;
1092 	*vtype = kern_vtype;
1093 	*vtype_id = kern_vtype_id;
1094 	*data_member = kern_data_member;
1095 
1096 	return 0;
1097 }
1098 
1099 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1100 {
1101 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1102 }
1103 
1104 static bool is_valid_st_ops_program(struct bpf_object *obj,
1105 				    const struct bpf_program *prog)
1106 {
1107 	int i;
1108 
1109 	for (i = 0; i < obj->nr_programs; i++) {
1110 		if (&obj->programs[i] == prog)
1111 			return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1112 	}
1113 
1114 	return false;
1115 }
1116 
1117 /* For each struct_ops program P, referenced from some struct_ops map M,
1118  * enable P.autoload if there are Ms for which M.autocreate is true,
1119  * disable P.autoload if for all Ms M.autocreate is false.
1120  * Don't change P.autoload for programs that are not referenced from any maps.
1121  */
1122 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1123 {
1124 	struct bpf_program *prog, *slot_prog;
1125 	struct bpf_map *map;
1126 	int i, j, k, vlen;
1127 
1128 	for (i = 0; i < obj->nr_programs; ++i) {
1129 		int should_load = false;
1130 		int use_cnt = 0;
1131 
1132 		prog = &obj->programs[i];
1133 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1134 			continue;
1135 
1136 		for (j = 0; j < obj->nr_maps; ++j) {
1137 			const struct btf_type *type;
1138 
1139 			map = &obj->maps[j];
1140 			if (!bpf_map__is_struct_ops(map))
1141 				continue;
1142 
1143 			type = btf__type_by_id(obj->btf, map->st_ops->type_id);
1144 			vlen = btf_vlen(type);
1145 			for (k = 0; k < vlen; ++k) {
1146 				slot_prog = map->st_ops->progs[k];
1147 				if (prog != slot_prog)
1148 					continue;
1149 
1150 				use_cnt++;
1151 				if (map->autocreate)
1152 					should_load = true;
1153 			}
1154 		}
1155 		if (use_cnt)
1156 			prog->autoload = should_load;
1157 	}
1158 
1159 	return 0;
1160 }
1161 
1162 /* Init the map's fields that depend on kern_btf */
1163 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1164 {
1165 	const struct btf_member *member, *kern_member, *kern_data_member;
1166 	const struct btf_type *type, *kern_type, *kern_vtype;
1167 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1168 	struct bpf_object *obj = map->obj;
1169 	const struct btf *btf = obj->btf;
1170 	struct bpf_struct_ops *st_ops;
1171 	const struct btf *kern_btf;
1172 	struct module_btf *mod_btf = NULL;
1173 	void *data, *kern_data;
1174 	const char *tname;
1175 	int err;
1176 
1177 	st_ops = map->st_ops;
1178 	type = btf__type_by_id(btf, st_ops->type_id);
1179 	tname = btf__name_by_offset(btf, type->name_off);
1180 	err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1181 					 &kern_type, &kern_type_id,
1182 					 &kern_vtype, &kern_vtype_id,
1183 					 &kern_data_member);
1184 	if (err)
1185 		return err;
1186 
1187 	kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1188 
1189 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1190 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1191 
1192 	map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1193 	map->def.value_size = kern_vtype->size;
1194 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1195 
1196 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1197 	if (!st_ops->kern_vdata)
1198 		return -ENOMEM;
1199 
1200 	data = st_ops->data;
1201 	kern_data_off = kern_data_member->offset / 8;
1202 	kern_data = st_ops->kern_vdata + kern_data_off;
1203 
1204 	member = btf_members(type);
1205 	for (i = 0; i < btf_vlen(type); i++, member++) {
1206 		const struct btf_type *mtype, *kern_mtype;
1207 		__u32 mtype_id, kern_mtype_id;
1208 		void *mdata, *kern_mdata;
1209 		struct bpf_program *prog;
1210 		__s64 msize, kern_msize;
1211 		__u32 moff, kern_moff;
1212 		__u32 kern_member_idx;
1213 		const char *mname;
1214 
1215 		mname = btf__name_by_offset(btf, member->name_off);
1216 		moff = member->offset / 8;
1217 		mdata = data + moff;
1218 		msize = btf__resolve_size(btf, member->type);
1219 		if (msize < 0) {
1220 			pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1221 				map->name, mname);
1222 			return msize;
1223 		}
1224 
1225 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1226 		if (!kern_member) {
1227 			if (!libbpf_is_mem_zeroed(mdata, msize)) {
1228 				pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1229 					map->name, mname);
1230 				return -ENOTSUP;
1231 			}
1232 
1233 			if (st_ops->progs[i]) {
1234 				/* If we had declaratively set struct_ops callback, we need to
1235 				 * force its autoload to false, because it doesn't have
1236 				 * a chance of succeeding from POV of the current struct_ops map.
1237 				 * If this program is still referenced somewhere else, though,
1238 				 * then bpf_object_adjust_struct_ops_autoload() will update its
1239 				 * autoload accordingly.
1240 				 */
1241 				st_ops->progs[i]->autoload = false;
1242 				st_ops->progs[i] = NULL;
1243 			}
1244 
1245 			/* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1246 			pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1247 				map->name, mname);
1248 			continue;
1249 		}
1250 
1251 		kern_member_idx = kern_member - btf_members(kern_type);
1252 		if (btf_member_bitfield_size(type, i) ||
1253 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1254 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1255 				map->name, mname);
1256 			return -ENOTSUP;
1257 		}
1258 
1259 		kern_moff = kern_member->offset / 8;
1260 		kern_mdata = kern_data + kern_moff;
1261 
1262 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1263 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1264 						    &kern_mtype_id);
1265 		if (BTF_INFO_KIND(mtype->info) !=
1266 		    BTF_INFO_KIND(kern_mtype->info)) {
1267 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1268 				map->name, mname, BTF_INFO_KIND(mtype->info),
1269 				BTF_INFO_KIND(kern_mtype->info));
1270 			return -ENOTSUP;
1271 		}
1272 
1273 		if (btf_is_ptr(mtype)) {
1274 			prog = *(void **)mdata;
1275 			/* just like for !kern_member case above, reset declaratively
1276 			 * set (at compile time) program's autload to false,
1277 			 * if user replaced it with another program or NULL
1278 			 */
1279 			if (st_ops->progs[i] && st_ops->progs[i] != prog)
1280 				st_ops->progs[i]->autoload = false;
1281 
1282 			/* Update the value from the shadow type */
1283 			st_ops->progs[i] = prog;
1284 			if (!prog)
1285 				continue;
1286 
1287 			if (!is_valid_st_ops_program(obj, prog)) {
1288 				pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1289 					map->name, mname);
1290 				return -ENOTSUP;
1291 			}
1292 
1293 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1294 							    kern_mtype->type,
1295 							    &kern_mtype_id);
1296 
1297 			/* mtype->type must be a func_proto which was
1298 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1299 			 * so only check kern_mtype for func_proto here.
1300 			 */
1301 			if (!btf_is_func_proto(kern_mtype)) {
1302 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1303 					map->name, mname);
1304 				return -ENOTSUP;
1305 			}
1306 
1307 			if (mod_btf)
1308 				prog->attach_btf_obj_fd = mod_btf->fd;
1309 
1310 			/* if we haven't yet processed this BPF program, record proper
1311 			 * attach_btf_id and member_idx
1312 			 */
1313 			if (!prog->attach_btf_id) {
1314 				prog->attach_btf_id = kern_type_id;
1315 				prog->expected_attach_type = kern_member_idx;
1316 			}
1317 
1318 			/* struct_ops BPF prog can be re-used between multiple
1319 			 * .struct_ops & .struct_ops.link as long as it's the
1320 			 * same struct_ops struct definition and the same
1321 			 * function pointer field
1322 			 */
1323 			if (prog->attach_btf_id != kern_type_id) {
1324 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1325 					map->name, mname, prog->name, prog->sec_name, prog->type,
1326 					prog->attach_btf_id, kern_type_id);
1327 				return -EINVAL;
1328 			}
1329 			if (prog->expected_attach_type != kern_member_idx) {
1330 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1331 					map->name, mname, prog->name, prog->sec_name, prog->type,
1332 					prog->expected_attach_type, kern_member_idx);
1333 				return -EINVAL;
1334 			}
1335 
1336 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1337 
1338 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1339 				 map->name, mname, prog->name, moff,
1340 				 kern_moff);
1341 
1342 			continue;
1343 		}
1344 
1345 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1346 		if (kern_msize < 0 || msize != kern_msize) {
1347 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1348 				map->name, mname, (ssize_t)msize,
1349 				(ssize_t)kern_msize);
1350 			return -ENOTSUP;
1351 		}
1352 
1353 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1354 			 map->name, mname, (unsigned int)msize,
1355 			 moff, kern_moff);
1356 		memcpy(kern_mdata, mdata, msize);
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1363 {
1364 	struct bpf_map *map;
1365 	size_t i;
1366 	int err;
1367 
1368 	for (i = 0; i < obj->nr_maps; i++) {
1369 		map = &obj->maps[i];
1370 
1371 		if (!bpf_map__is_struct_ops(map))
1372 			continue;
1373 
1374 		if (!map->autocreate)
1375 			continue;
1376 
1377 		err = bpf_map__init_kern_struct_ops(map);
1378 		if (err)
1379 			return err;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1386 				int shndx, Elf_Data *data)
1387 {
1388 	const struct btf_type *type, *datasec;
1389 	const struct btf_var_secinfo *vsi;
1390 	struct bpf_struct_ops *st_ops;
1391 	const char *tname, *var_name;
1392 	__s32 type_id, datasec_id;
1393 	const struct btf *btf;
1394 	struct bpf_map *map;
1395 	__u32 i;
1396 
1397 	if (shndx == -1)
1398 		return 0;
1399 
1400 	btf = obj->btf;
1401 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1402 					    BTF_KIND_DATASEC);
1403 	if (datasec_id < 0) {
1404 		pr_warn("struct_ops init: DATASEC %s not found\n",
1405 			sec_name);
1406 		return -EINVAL;
1407 	}
1408 
1409 	datasec = btf__type_by_id(btf, datasec_id);
1410 	vsi = btf_var_secinfos(datasec);
1411 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1412 		type = btf__type_by_id(obj->btf, vsi->type);
1413 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1414 
1415 		type_id = btf__resolve_type(obj->btf, vsi->type);
1416 		if (type_id < 0) {
1417 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1418 				vsi->type, sec_name);
1419 			return -EINVAL;
1420 		}
1421 
1422 		type = btf__type_by_id(obj->btf, type_id);
1423 		tname = btf__name_by_offset(obj->btf, type->name_off);
1424 		if (!tname[0]) {
1425 			pr_warn("struct_ops init: anonymous type is not supported\n");
1426 			return -ENOTSUP;
1427 		}
1428 		if (!btf_is_struct(type)) {
1429 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1430 			return -EINVAL;
1431 		}
1432 
1433 		map = bpf_object__add_map(obj);
1434 		if (IS_ERR(map))
1435 			return PTR_ERR(map);
1436 
1437 		map->sec_idx = shndx;
1438 		map->sec_offset = vsi->offset;
1439 		map->name = strdup(var_name);
1440 		if (!map->name)
1441 			return -ENOMEM;
1442 		map->btf_value_type_id = type_id;
1443 
1444 		/* Follow same convention as for programs autoload:
1445 		 * SEC("?.struct_ops") means map is not created by default.
1446 		 */
1447 		if (sec_name[0] == '?') {
1448 			map->autocreate = false;
1449 			/* from now on forget there was ? in section name */
1450 			sec_name++;
1451 		}
1452 
1453 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1454 		map->def.key_size = sizeof(int);
1455 		map->def.value_size = type->size;
1456 		map->def.max_entries = 1;
1457 		map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1458 		map->autoattach = true;
1459 
1460 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1461 		if (!map->st_ops)
1462 			return -ENOMEM;
1463 		st_ops = map->st_ops;
1464 		st_ops->data = malloc(type->size);
1465 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1466 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1467 					       sizeof(*st_ops->kern_func_off));
1468 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1469 			return -ENOMEM;
1470 
1471 		if (vsi->offset + type->size > data->d_size) {
1472 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1473 				var_name, sec_name);
1474 			return -EINVAL;
1475 		}
1476 
1477 		memcpy(st_ops->data,
1478 		       data->d_buf + vsi->offset,
1479 		       type->size);
1480 		st_ops->type_id = type_id;
1481 
1482 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1483 			 tname, type_id, var_name, vsi->offset);
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1490 {
1491 	const char *sec_name;
1492 	int sec_idx, err;
1493 
1494 	for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1495 		struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1496 
1497 		if (desc->sec_type != SEC_ST_OPS)
1498 			continue;
1499 
1500 		sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1501 		if (!sec_name)
1502 			return -LIBBPF_ERRNO__FORMAT;
1503 
1504 		err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1505 		if (err)
1506 			return err;
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 static struct bpf_object *bpf_object__new(const char *path,
1513 					  const void *obj_buf,
1514 					  size_t obj_buf_sz,
1515 					  const char *obj_name)
1516 {
1517 	struct bpf_object *obj;
1518 	char *end;
1519 
1520 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1521 	if (!obj) {
1522 		pr_warn("alloc memory failed for %s\n", path);
1523 		return ERR_PTR(-ENOMEM);
1524 	}
1525 
1526 	strcpy(obj->path, path);
1527 	if (obj_name) {
1528 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1529 	} else {
1530 		/* Using basename() GNU version which doesn't modify arg. */
1531 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1532 		end = strchr(obj->name, '.');
1533 		if (end)
1534 			*end = 0;
1535 	}
1536 
1537 	obj->efile.fd = -1;
1538 	/*
1539 	 * Caller of this function should also call
1540 	 * bpf_object__elf_finish() after data collection to return
1541 	 * obj_buf to user. If not, we should duplicate the buffer to
1542 	 * avoid user freeing them before elf finish.
1543 	 */
1544 	obj->efile.obj_buf = obj_buf;
1545 	obj->efile.obj_buf_sz = obj_buf_sz;
1546 	obj->efile.btf_maps_shndx = -1;
1547 	obj->kconfig_map_idx = -1;
1548 	obj->arena_map_idx = -1;
1549 
1550 	obj->kern_version = get_kernel_version();
1551 	obj->state  = OBJ_OPEN;
1552 
1553 	return obj;
1554 }
1555 
1556 static void bpf_object__elf_finish(struct bpf_object *obj)
1557 {
1558 	if (!obj->efile.elf)
1559 		return;
1560 
1561 	elf_end(obj->efile.elf);
1562 	obj->efile.elf = NULL;
1563 	obj->efile.ehdr = NULL;
1564 	obj->efile.symbols = NULL;
1565 	obj->efile.arena_data = NULL;
1566 
1567 	zfree(&obj->efile.secs);
1568 	obj->efile.sec_cnt = 0;
1569 	zclose(obj->efile.fd);
1570 	obj->efile.obj_buf = NULL;
1571 	obj->efile.obj_buf_sz = 0;
1572 }
1573 
1574 static int bpf_object__elf_init(struct bpf_object *obj)
1575 {
1576 	Elf64_Ehdr *ehdr;
1577 	int err = 0;
1578 	Elf *elf;
1579 
1580 	if (obj->efile.elf) {
1581 		pr_warn("elf: init internal error\n");
1582 		return -LIBBPF_ERRNO__LIBELF;
1583 	}
1584 
1585 	if (obj->efile.obj_buf_sz > 0) {
1586 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1587 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1588 	} else {
1589 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1590 		if (obj->efile.fd < 0) {
1591 			err = -errno;
1592 			pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err));
1593 			return err;
1594 		}
1595 
1596 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1597 	}
1598 
1599 	if (!elf) {
1600 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1601 		err = -LIBBPF_ERRNO__LIBELF;
1602 		goto errout;
1603 	}
1604 
1605 	obj->efile.elf = elf;
1606 
1607 	if (elf_kind(elf) != ELF_K_ELF) {
1608 		err = -LIBBPF_ERRNO__FORMAT;
1609 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1610 		goto errout;
1611 	}
1612 
1613 	if (gelf_getclass(elf) != ELFCLASS64) {
1614 		err = -LIBBPF_ERRNO__FORMAT;
1615 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1616 		goto errout;
1617 	}
1618 
1619 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1620 	if (!obj->efile.ehdr) {
1621 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1622 		err = -LIBBPF_ERRNO__FORMAT;
1623 		goto errout;
1624 	}
1625 
1626 	/* Validate ELF object endianness... */
1627 	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
1628 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
1629 		err = -LIBBPF_ERRNO__ENDIAN;
1630 		pr_warn("elf: '%s' has unknown byte order\n", obj->path);
1631 		goto errout;
1632 	}
1633 	/* and save after bpf_object_open() frees ELF data */
1634 	obj->byteorder = ehdr->e_ident[EI_DATA];
1635 
1636 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1637 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1638 			obj->path, elf_errmsg(-1));
1639 		err = -LIBBPF_ERRNO__FORMAT;
1640 		goto errout;
1641 	}
1642 
1643 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1644 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1645 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1646 			obj->path, elf_errmsg(-1));
1647 		err = -LIBBPF_ERRNO__FORMAT;
1648 		goto errout;
1649 	}
1650 
1651 	/* Old LLVM set e_machine to EM_NONE */
1652 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1653 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1654 		err = -LIBBPF_ERRNO__FORMAT;
1655 		goto errout;
1656 	}
1657 
1658 	return 0;
1659 errout:
1660 	bpf_object__elf_finish(obj);
1661 	return err;
1662 }
1663 
1664 static bool is_native_endianness(struct bpf_object *obj)
1665 {
1666 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1667 	return obj->byteorder == ELFDATA2LSB;
1668 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1669 	return obj->byteorder == ELFDATA2MSB;
1670 #else
1671 # error "Unrecognized __BYTE_ORDER__"
1672 #endif
1673 }
1674 
1675 static int
1676 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1677 {
1678 	if (!data) {
1679 		pr_warn("invalid license section in %s\n", obj->path);
1680 		return -LIBBPF_ERRNO__FORMAT;
1681 	}
1682 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1683 	 * go over allowed ELF data section buffer
1684 	 */
1685 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1686 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1687 	return 0;
1688 }
1689 
1690 static int
1691 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1692 {
1693 	__u32 kver;
1694 
1695 	if (!data || size != sizeof(kver)) {
1696 		pr_warn("invalid kver section in %s\n", obj->path);
1697 		return -LIBBPF_ERRNO__FORMAT;
1698 	}
1699 	memcpy(&kver, data, sizeof(kver));
1700 	obj->kern_version = kver;
1701 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1702 	return 0;
1703 }
1704 
1705 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1706 {
1707 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1708 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1709 		return true;
1710 	return false;
1711 }
1712 
1713 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1714 {
1715 	Elf_Data *data;
1716 	Elf_Scn *scn;
1717 
1718 	if (!name)
1719 		return -EINVAL;
1720 
1721 	scn = elf_sec_by_name(obj, name);
1722 	data = elf_sec_data(obj, scn);
1723 	if (data) {
1724 		*size = data->d_size;
1725 		return 0; /* found it */
1726 	}
1727 
1728 	return -ENOENT;
1729 }
1730 
1731 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1732 {
1733 	Elf_Data *symbols = obj->efile.symbols;
1734 	const char *sname;
1735 	size_t si;
1736 
1737 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1738 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1739 
1740 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1741 			continue;
1742 
1743 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1744 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1745 			continue;
1746 
1747 		sname = elf_sym_str(obj, sym->st_name);
1748 		if (!sname) {
1749 			pr_warn("failed to get sym name string for var %s\n", name);
1750 			return ERR_PTR(-EIO);
1751 		}
1752 		if (strcmp(name, sname) == 0)
1753 			return sym;
1754 	}
1755 
1756 	return ERR_PTR(-ENOENT);
1757 }
1758 
1759 #ifndef MFD_CLOEXEC
1760 #define MFD_CLOEXEC 0x0001U
1761 #endif
1762 #ifndef MFD_NOEXEC_SEAL
1763 #define MFD_NOEXEC_SEAL 0x0008U
1764 #endif
1765 
1766 static int create_placeholder_fd(void)
1767 {
1768 	unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL;
1769 	const char *name = "libbpf-placeholder-fd";
1770 	int fd;
1771 
1772 	fd = ensure_good_fd(sys_memfd_create(name, flags));
1773 	if (fd >= 0)
1774 		return fd;
1775 	else if (errno != EINVAL)
1776 		return -errno;
1777 
1778 	/* Possibly running on kernel without MFD_NOEXEC_SEAL */
1779 	fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL));
1780 	if (fd < 0)
1781 		return -errno;
1782 	return fd;
1783 }
1784 
1785 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1786 {
1787 	struct bpf_map *map;
1788 	int err;
1789 
1790 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1791 				sizeof(*obj->maps), obj->nr_maps + 1);
1792 	if (err)
1793 		return ERR_PTR(err);
1794 
1795 	map = &obj->maps[obj->nr_maps++];
1796 	map->obj = obj;
1797 	/* Preallocate map FD without actually creating BPF map just yet.
1798 	 * These map FD "placeholders" will be reused later without changing
1799 	 * FD value when map is actually created in the kernel.
1800 	 *
1801 	 * This is useful to be able to perform BPF program relocations
1802 	 * without having to create BPF maps before that step. This allows us
1803 	 * to finalize and load BTF very late in BPF object's loading phase,
1804 	 * right before BPF maps have to be created and BPF programs have to
1805 	 * be loaded. By having these map FD placeholders we can perform all
1806 	 * the sanitizations, relocations, and any other adjustments before we
1807 	 * start creating actual BPF kernel objects (BTF, maps, progs).
1808 	 */
1809 	map->fd = create_placeholder_fd();
1810 	if (map->fd < 0)
1811 		return ERR_PTR(map->fd);
1812 	map->inner_map_fd = -1;
1813 	map->autocreate = true;
1814 
1815 	return map;
1816 }
1817 
1818 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1819 {
1820 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1821 	size_t map_sz;
1822 
1823 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1824 	map_sz = roundup(map_sz, page_sz);
1825 	return map_sz;
1826 }
1827 
1828 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1829 {
1830 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1831 
1832 	switch (map->def.type) {
1833 	case BPF_MAP_TYPE_ARRAY:
1834 		return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1835 	case BPF_MAP_TYPE_ARENA:
1836 		return page_sz * map->def.max_entries;
1837 	default:
1838 		return 0; /* not supported */
1839 	}
1840 }
1841 
1842 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1843 {
1844 	void *mmaped;
1845 
1846 	if (!map->mmaped)
1847 		return -EINVAL;
1848 
1849 	if (old_sz == new_sz)
1850 		return 0;
1851 
1852 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1853 	if (mmaped == MAP_FAILED)
1854 		return -errno;
1855 
1856 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1857 	munmap(map->mmaped, old_sz);
1858 	map->mmaped = mmaped;
1859 	return 0;
1860 }
1861 
1862 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1863 {
1864 	char map_name[BPF_OBJ_NAME_LEN], *p;
1865 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1866 
1867 	/* This is one of the more confusing parts of libbpf for various
1868 	 * reasons, some of which are historical. The original idea for naming
1869 	 * internal names was to include as much of BPF object name prefix as
1870 	 * possible, so that it can be distinguished from similar internal
1871 	 * maps of a different BPF object.
1872 	 * As an example, let's say we have bpf_object named 'my_object_name'
1873 	 * and internal map corresponding to '.rodata' ELF section. The final
1874 	 * map name advertised to user and to the kernel will be
1875 	 * 'my_objec.rodata', taking first 8 characters of object name and
1876 	 * entire 7 characters of '.rodata'.
1877 	 * Somewhat confusingly, if internal map ELF section name is shorter
1878 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1879 	 * for the suffix, even though we only have 4 actual characters, and
1880 	 * resulting map will be called 'my_objec.bss', not even using all 15
1881 	 * characters allowed by the kernel. Oh well, at least the truncated
1882 	 * object name is somewhat consistent in this case. But if the map
1883 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1884 	 * (8 chars) and thus will be left with only first 7 characters of the
1885 	 * object name ('my_obje'). Happy guessing, user, that the final map
1886 	 * name will be "my_obje.kconfig".
1887 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1888 	 * and .data.* data sections, it's possible that ELF section name is
1889 	 * longer than allowed 15 chars, so we now need to be careful to take
1890 	 * only up to 15 first characters of ELF name, taking no BPF object
1891 	 * name characters at all. So '.rodata.abracadabra' will result in
1892 	 * '.rodata.abracad' kernel and user-visible name.
1893 	 * We need to keep this convoluted logic intact for .data, .bss and
1894 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1895 	 * maps we use their ELF names as is, not prepending bpf_object name
1896 	 * in front. We still need to truncate them to 15 characters for the
1897 	 * kernel. Full name can be recovered for such maps by using DATASEC
1898 	 * BTF type associated with such map's value type, though.
1899 	 */
1900 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1901 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1902 
1903 	/* if there are two or more dots in map name, it's a custom dot map */
1904 	if (strchr(real_name + 1, '.') != NULL)
1905 		pfx_len = 0;
1906 	else
1907 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1908 
1909 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1910 		 sfx_len, real_name);
1911 
1912 	/* sanities map name to characters allowed by kernel */
1913 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1914 		if (!isalnum(*p) && *p != '_' && *p != '.')
1915 			*p = '_';
1916 
1917 	return strdup(map_name);
1918 }
1919 
1920 static int
1921 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1922 
1923 /* Internal BPF map is mmap()'able only if at least one of corresponding
1924  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1925  * variable and it's not marked as __hidden (which turns it into, effectively,
1926  * a STATIC variable).
1927  */
1928 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1929 {
1930 	const struct btf_type *t, *vt;
1931 	struct btf_var_secinfo *vsi;
1932 	int i, n;
1933 
1934 	if (!map->btf_value_type_id)
1935 		return false;
1936 
1937 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1938 	if (!btf_is_datasec(t))
1939 		return false;
1940 
1941 	vsi = btf_var_secinfos(t);
1942 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1943 		vt = btf__type_by_id(obj->btf, vsi->type);
1944 		if (!btf_is_var(vt))
1945 			continue;
1946 
1947 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1948 			return true;
1949 	}
1950 
1951 	return false;
1952 }
1953 
1954 static int
1955 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1956 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1957 {
1958 	struct bpf_map_def *def;
1959 	struct bpf_map *map;
1960 	size_t mmap_sz;
1961 	int err;
1962 
1963 	map = bpf_object__add_map(obj);
1964 	if (IS_ERR(map))
1965 		return PTR_ERR(map);
1966 
1967 	map->libbpf_type = type;
1968 	map->sec_idx = sec_idx;
1969 	map->sec_offset = 0;
1970 	map->real_name = strdup(real_name);
1971 	map->name = internal_map_name(obj, real_name);
1972 	if (!map->real_name || !map->name) {
1973 		zfree(&map->real_name);
1974 		zfree(&map->name);
1975 		return -ENOMEM;
1976 	}
1977 
1978 	def = &map->def;
1979 	def->type = BPF_MAP_TYPE_ARRAY;
1980 	def->key_size = sizeof(int);
1981 	def->value_size = data_sz;
1982 	def->max_entries = 1;
1983 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1984 		? BPF_F_RDONLY_PROG : 0;
1985 
1986 	/* failures are fine because of maps like .rodata.str1.1 */
1987 	(void) map_fill_btf_type_info(obj, map);
1988 
1989 	if (map_is_mmapable(obj, map))
1990 		def->map_flags |= BPF_F_MMAPABLE;
1991 
1992 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1993 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1994 
1995 	mmap_sz = bpf_map_mmap_sz(map);
1996 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1997 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1998 	if (map->mmaped == MAP_FAILED) {
1999 		err = -errno;
2000 		map->mmaped = NULL;
2001 		pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err));
2002 		zfree(&map->real_name);
2003 		zfree(&map->name);
2004 		return err;
2005 	}
2006 
2007 	if (data)
2008 		memcpy(map->mmaped, data, data_sz);
2009 
2010 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
2011 	return 0;
2012 }
2013 
2014 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
2015 {
2016 	struct elf_sec_desc *sec_desc;
2017 	const char *sec_name;
2018 	int err = 0, sec_idx;
2019 
2020 	/*
2021 	 * Populate obj->maps with libbpf internal maps.
2022 	 */
2023 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
2024 		sec_desc = &obj->efile.secs[sec_idx];
2025 
2026 		/* Skip recognized sections with size 0. */
2027 		if (!sec_desc->data || sec_desc->data->d_size == 0)
2028 			continue;
2029 
2030 		switch (sec_desc->sec_type) {
2031 		case SEC_DATA:
2032 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2033 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
2034 							    sec_name, sec_idx,
2035 							    sec_desc->data->d_buf,
2036 							    sec_desc->data->d_size);
2037 			break;
2038 		case SEC_RODATA:
2039 			obj->has_rodata = true;
2040 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2041 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
2042 							    sec_name, sec_idx,
2043 							    sec_desc->data->d_buf,
2044 							    sec_desc->data->d_size);
2045 			break;
2046 		case SEC_BSS:
2047 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2048 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
2049 							    sec_name, sec_idx,
2050 							    NULL,
2051 							    sec_desc->data->d_size);
2052 			break;
2053 		default:
2054 			/* skip */
2055 			break;
2056 		}
2057 		if (err)
2058 			return err;
2059 	}
2060 	return 0;
2061 }
2062 
2063 
2064 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2065 					       const void *name)
2066 {
2067 	int i;
2068 
2069 	for (i = 0; i < obj->nr_extern; i++) {
2070 		if (strcmp(obj->externs[i].name, name) == 0)
2071 			return &obj->externs[i];
2072 	}
2073 	return NULL;
2074 }
2075 
2076 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2077 							const void *name, int len)
2078 {
2079 	const char *ext_name;
2080 	int i;
2081 
2082 	for (i = 0; i < obj->nr_extern; i++) {
2083 		ext_name = obj->externs[i].name;
2084 		if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2085 			return &obj->externs[i];
2086 	}
2087 	return NULL;
2088 }
2089 
2090 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2091 			      char value)
2092 {
2093 	switch (ext->kcfg.type) {
2094 	case KCFG_BOOL:
2095 		if (value == 'm') {
2096 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2097 				ext->name, value);
2098 			return -EINVAL;
2099 		}
2100 		*(bool *)ext_val = value == 'y' ? true : false;
2101 		break;
2102 	case KCFG_TRISTATE:
2103 		if (value == 'y')
2104 			*(enum libbpf_tristate *)ext_val = TRI_YES;
2105 		else if (value == 'm')
2106 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
2107 		else /* value == 'n' */
2108 			*(enum libbpf_tristate *)ext_val = TRI_NO;
2109 		break;
2110 	case KCFG_CHAR:
2111 		*(char *)ext_val = value;
2112 		break;
2113 	case KCFG_UNKNOWN:
2114 	case KCFG_INT:
2115 	case KCFG_CHAR_ARR:
2116 	default:
2117 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2118 			ext->name, value);
2119 		return -EINVAL;
2120 	}
2121 	ext->is_set = true;
2122 	return 0;
2123 }
2124 
2125 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2126 			      const char *value)
2127 {
2128 	size_t len;
2129 
2130 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
2131 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2132 			ext->name, value);
2133 		return -EINVAL;
2134 	}
2135 
2136 	len = strlen(value);
2137 	if (len < 2 || value[len - 1] != '"') {
2138 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2139 			ext->name, value);
2140 		return -EINVAL;
2141 	}
2142 
2143 	/* strip quotes */
2144 	len -= 2;
2145 	if (len >= ext->kcfg.sz) {
2146 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2147 			ext->name, value, len, ext->kcfg.sz - 1);
2148 		len = ext->kcfg.sz - 1;
2149 	}
2150 	memcpy(ext_val, value + 1, len);
2151 	ext_val[len] = '\0';
2152 	ext->is_set = true;
2153 	return 0;
2154 }
2155 
2156 static int parse_u64(const char *value, __u64 *res)
2157 {
2158 	char *value_end;
2159 	int err;
2160 
2161 	errno = 0;
2162 	*res = strtoull(value, &value_end, 0);
2163 	if (errno) {
2164 		err = -errno;
2165 		pr_warn("failed to parse '%s': %s\n", value, errstr(err));
2166 		return err;
2167 	}
2168 	if (*value_end) {
2169 		pr_warn("failed to parse '%s' as integer completely\n", value);
2170 		return -EINVAL;
2171 	}
2172 	return 0;
2173 }
2174 
2175 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2176 {
2177 	int bit_sz = ext->kcfg.sz * 8;
2178 
2179 	if (ext->kcfg.sz == 8)
2180 		return true;
2181 
2182 	/* Validate that value stored in u64 fits in integer of `ext->sz`
2183 	 * bytes size without any loss of information. If the target integer
2184 	 * is signed, we rely on the following limits of integer type of
2185 	 * Y bits and subsequent transformation:
2186 	 *
2187 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2188 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
2189 	 *            0 <= X + 2^(Y-1) <  2^Y
2190 	 *
2191 	 *  For unsigned target integer, check that all the (64 - Y) bits are
2192 	 *  zero.
2193 	 */
2194 	if (ext->kcfg.is_signed)
2195 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2196 	else
2197 		return (v >> bit_sz) == 0;
2198 }
2199 
2200 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2201 			      __u64 value)
2202 {
2203 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2204 	    ext->kcfg.type != KCFG_BOOL) {
2205 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2206 			ext->name, (unsigned long long)value);
2207 		return -EINVAL;
2208 	}
2209 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2210 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2211 			ext->name, (unsigned long long)value);
2212 		return -EINVAL;
2213 
2214 	}
2215 	if (!is_kcfg_value_in_range(ext, value)) {
2216 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2217 			ext->name, (unsigned long long)value, ext->kcfg.sz);
2218 		return -ERANGE;
2219 	}
2220 	switch (ext->kcfg.sz) {
2221 	case 1:
2222 		*(__u8 *)ext_val = value;
2223 		break;
2224 	case 2:
2225 		*(__u16 *)ext_val = value;
2226 		break;
2227 	case 4:
2228 		*(__u32 *)ext_val = value;
2229 		break;
2230 	case 8:
2231 		*(__u64 *)ext_val = value;
2232 		break;
2233 	default:
2234 		return -EINVAL;
2235 	}
2236 	ext->is_set = true;
2237 	return 0;
2238 }
2239 
2240 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2241 					    char *buf, void *data)
2242 {
2243 	struct extern_desc *ext;
2244 	char *sep, *value;
2245 	int len, err = 0;
2246 	void *ext_val;
2247 	__u64 num;
2248 
2249 	if (!str_has_pfx(buf, "CONFIG_"))
2250 		return 0;
2251 
2252 	sep = strchr(buf, '=');
2253 	if (!sep) {
2254 		pr_warn("failed to parse '%s': no separator\n", buf);
2255 		return -EINVAL;
2256 	}
2257 
2258 	/* Trim ending '\n' */
2259 	len = strlen(buf);
2260 	if (buf[len - 1] == '\n')
2261 		buf[len - 1] = '\0';
2262 	/* Split on '=' and ensure that a value is present. */
2263 	*sep = '\0';
2264 	if (!sep[1]) {
2265 		*sep = '=';
2266 		pr_warn("failed to parse '%s': no value\n", buf);
2267 		return -EINVAL;
2268 	}
2269 
2270 	ext = find_extern_by_name(obj, buf);
2271 	if (!ext || ext->is_set)
2272 		return 0;
2273 
2274 	ext_val = data + ext->kcfg.data_off;
2275 	value = sep + 1;
2276 
2277 	switch (*value) {
2278 	case 'y': case 'n': case 'm':
2279 		err = set_kcfg_value_tri(ext, ext_val, *value);
2280 		break;
2281 	case '"':
2282 		err = set_kcfg_value_str(ext, ext_val, value);
2283 		break;
2284 	default:
2285 		/* assume integer */
2286 		err = parse_u64(value, &num);
2287 		if (err) {
2288 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2289 			return err;
2290 		}
2291 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2292 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2293 			return -EINVAL;
2294 		}
2295 		err = set_kcfg_value_num(ext, ext_val, num);
2296 		break;
2297 	}
2298 	if (err)
2299 		return err;
2300 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2301 	return 0;
2302 }
2303 
2304 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2305 {
2306 	char buf[PATH_MAX];
2307 	struct utsname uts;
2308 	int len, err = 0;
2309 	gzFile file;
2310 
2311 	uname(&uts);
2312 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2313 	if (len < 0)
2314 		return -EINVAL;
2315 	else if (len >= PATH_MAX)
2316 		return -ENAMETOOLONG;
2317 
2318 	/* gzopen also accepts uncompressed files. */
2319 	file = gzopen(buf, "re");
2320 	if (!file)
2321 		file = gzopen("/proc/config.gz", "re");
2322 
2323 	if (!file) {
2324 		pr_warn("failed to open system Kconfig\n");
2325 		return -ENOENT;
2326 	}
2327 
2328 	while (gzgets(file, buf, sizeof(buf))) {
2329 		err = bpf_object__process_kconfig_line(obj, buf, data);
2330 		if (err) {
2331 			pr_warn("error parsing system Kconfig line '%s': %s\n",
2332 				buf, errstr(err));
2333 			goto out;
2334 		}
2335 	}
2336 
2337 out:
2338 	gzclose(file);
2339 	return err;
2340 }
2341 
2342 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2343 					const char *config, void *data)
2344 {
2345 	char buf[PATH_MAX];
2346 	int err = 0;
2347 	FILE *file;
2348 
2349 	file = fmemopen((void *)config, strlen(config), "r");
2350 	if (!file) {
2351 		err = -errno;
2352 		pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err));
2353 		return err;
2354 	}
2355 
2356 	while (fgets(buf, sizeof(buf), file)) {
2357 		err = bpf_object__process_kconfig_line(obj, buf, data);
2358 		if (err) {
2359 			pr_warn("error parsing in-memory Kconfig line '%s': %s\n",
2360 				buf, errstr(err));
2361 			break;
2362 		}
2363 	}
2364 
2365 	fclose(file);
2366 	return err;
2367 }
2368 
2369 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2370 {
2371 	struct extern_desc *last_ext = NULL, *ext;
2372 	size_t map_sz;
2373 	int i, err;
2374 
2375 	for (i = 0; i < obj->nr_extern; i++) {
2376 		ext = &obj->externs[i];
2377 		if (ext->type == EXT_KCFG)
2378 			last_ext = ext;
2379 	}
2380 
2381 	if (!last_ext)
2382 		return 0;
2383 
2384 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2385 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2386 					    ".kconfig", obj->efile.symbols_shndx,
2387 					    NULL, map_sz);
2388 	if (err)
2389 		return err;
2390 
2391 	obj->kconfig_map_idx = obj->nr_maps - 1;
2392 
2393 	return 0;
2394 }
2395 
2396 const struct btf_type *
2397 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2398 {
2399 	const struct btf_type *t = btf__type_by_id(btf, id);
2400 
2401 	if (res_id)
2402 		*res_id = id;
2403 
2404 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2405 		if (res_id)
2406 			*res_id = t->type;
2407 		t = btf__type_by_id(btf, t->type);
2408 	}
2409 
2410 	return t;
2411 }
2412 
2413 static const struct btf_type *
2414 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2415 {
2416 	const struct btf_type *t;
2417 
2418 	t = skip_mods_and_typedefs(btf, id, NULL);
2419 	if (!btf_is_ptr(t))
2420 		return NULL;
2421 
2422 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2423 
2424 	return btf_is_func_proto(t) ? t : NULL;
2425 }
2426 
2427 static const char *__btf_kind_str(__u16 kind)
2428 {
2429 	switch (kind) {
2430 	case BTF_KIND_UNKN: return "void";
2431 	case BTF_KIND_INT: return "int";
2432 	case BTF_KIND_PTR: return "ptr";
2433 	case BTF_KIND_ARRAY: return "array";
2434 	case BTF_KIND_STRUCT: return "struct";
2435 	case BTF_KIND_UNION: return "union";
2436 	case BTF_KIND_ENUM: return "enum";
2437 	case BTF_KIND_FWD: return "fwd";
2438 	case BTF_KIND_TYPEDEF: return "typedef";
2439 	case BTF_KIND_VOLATILE: return "volatile";
2440 	case BTF_KIND_CONST: return "const";
2441 	case BTF_KIND_RESTRICT: return "restrict";
2442 	case BTF_KIND_FUNC: return "func";
2443 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2444 	case BTF_KIND_VAR: return "var";
2445 	case BTF_KIND_DATASEC: return "datasec";
2446 	case BTF_KIND_FLOAT: return "float";
2447 	case BTF_KIND_DECL_TAG: return "decl_tag";
2448 	case BTF_KIND_TYPE_TAG: return "type_tag";
2449 	case BTF_KIND_ENUM64: return "enum64";
2450 	default: return "unknown";
2451 	}
2452 }
2453 
2454 const char *btf_kind_str(const struct btf_type *t)
2455 {
2456 	return __btf_kind_str(btf_kind(t));
2457 }
2458 
2459 /*
2460  * Fetch integer attribute of BTF map definition. Such attributes are
2461  * represented using a pointer to an array, in which dimensionality of array
2462  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2463  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2464  * type definition, while using only sizeof(void *) space in ELF data section.
2465  */
2466 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2467 			      const struct btf_member *m, __u32 *res)
2468 {
2469 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2470 	const char *name = btf__name_by_offset(btf, m->name_off);
2471 	const struct btf_array *arr_info;
2472 	const struct btf_type *arr_t;
2473 
2474 	if (!btf_is_ptr(t)) {
2475 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2476 			map_name, name, btf_kind_str(t));
2477 		return false;
2478 	}
2479 
2480 	arr_t = btf__type_by_id(btf, t->type);
2481 	if (!arr_t) {
2482 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2483 			map_name, name, t->type);
2484 		return false;
2485 	}
2486 	if (!btf_is_array(arr_t)) {
2487 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2488 			map_name, name, btf_kind_str(arr_t));
2489 		return false;
2490 	}
2491 	arr_info = btf_array(arr_t);
2492 	*res = arr_info->nelems;
2493 	return true;
2494 }
2495 
2496 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2497 			       const struct btf_member *m, __u64 *res)
2498 {
2499 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2500 	const char *name = btf__name_by_offset(btf, m->name_off);
2501 
2502 	if (btf_is_ptr(t)) {
2503 		__u32 res32;
2504 		bool ret;
2505 
2506 		ret = get_map_field_int(map_name, btf, m, &res32);
2507 		if (ret)
2508 			*res = (__u64)res32;
2509 		return ret;
2510 	}
2511 
2512 	if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2513 		pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2514 			map_name, name, btf_kind_str(t));
2515 		return false;
2516 	}
2517 
2518 	if (btf_vlen(t) != 1) {
2519 		pr_warn("map '%s': attr '%s': invalid __ulong\n",
2520 			map_name, name);
2521 		return false;
2522 	}
2523 
2524 	if (btf_is_enum(t)) {
2525 		const struct btf_enum *e = btf_enum(t);
2526 
2527 		*res = e->val;
2528 	} else {
2529 		const struct btf_enum64 *e = btf_enum64(t);
2530 
2531 		*res = btf_enum64_value(e);
2532 	}
2533 	return true;
2534 }
2535 
2536 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2537 {
2538 	int len;
2539 
2540 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2541 	if (len < 0)
2542 		return -EINVAL;
2543 	if (len >= buf_sz)
2544 		return -ENAMETOOLONG;
2545 
2546 	return 0;
2547 }
2548 
2549 static int build_map_pin_path(struct bpf_map *map, const char *path)
2550 {
2551 	char buf[PATH_MAX];
2552 	int err;
2553 
2554 	if (!path)
2555 		path = BPF_FS_DEFAULT_PATH;
2556 
2557 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2558 	if (err)
2559 		return err;
2560 
2561 	return bpf_map__set_pin_path(map, buf);
2562 }
2563 
2564 /* should match definition in bpf_helpers.h */
2565 enum libbpf_pin_type {
2566 	LIBBPF_PIN_NONE,
2567 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2568 	LIBBPF_PIN_BY_NAME,
2569 };
2570 
2571 int parse_btf_map_def(const char *map_name, struct btf *btf,
2572 		      const struct btf_type *def_t, bool strict,
2573 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2574 {
2575 	const struct btf_type *t;
2576 	const struct btf_member *m;
2577 	bool is_inner = inner_def == NULL;
2578 	int vlen, i;
2579 
2580 	vlen = btf_vlen(def_t);
2581 	m = btf_members(def_t);
2582 	for (i = 0; i < vlen; i++, m++) {
2583 		const char *name = btf__name_by_offset(btf, m->name_off);
2584 
2585 		if (!name) {
2586 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2587 			return -EINVAL;
2588 		}
2589 		if (strcmp(name, "type") == 0) {
2590 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2591 				return -EINVAL;
2592 			map_def->parts |= MAP_DEF_MAP_TYPE;
2593 		} else if (strcmp(name, "max_entries") == 0) {
2594 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2595 				return -EINVAL;
2596 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2597 		} else if (strcmp(name, "map_flags") == 0) {
2598 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2599 				return -EINVAL;
2600 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2601 		} else if (strcmp(name, "numa_node") == 0) {
2602 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2603 				return -EINVAL;
2604 			map_def->parts |= MAP_DEF_NUMA_NODE;
2605 		} else if (strcmp(name, "key_size") == 0) {
2606 			__u32 sz;
2607 
2608 			if (!get_map_field_int(map_name, btf, m, &sz))
2609 				return -EINVAL;
2610 			if (map_def->key_size && map_def->key_size != sz) {
2611 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2612 					map_name, map_def->key_size, sz);
2613 				return -EINVAL;
2614 			}
2615 			map_def->key_size = sz;
2616 			map_def->parts |= MAP_DEF_KEY_SIZE;
2617 		} else if (strcmp(name, "key") == 0) {
2618 			__s64 sz;
2619 
2620 			t = btf__type_by_id(btf, m->type);
2621 			if (!t) {
2622 				pr_warn("map '%s': key type [%d] not found.\n",
2623 					map_name, m->type);
2624 				return -EINVAL;
2625 			}
2626 			if (!btf_is_ptr(t)) {
2627 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2628 					map_name, btf_kind_str(t));
2629 				return -EINVAL;
2630 			}
2631 			sz = btf__resolve_size(btf, t->type);
2632 			if (sz < 0) {
2633 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2634 					map_name, t->type, (ssize_t)sz);
2635 				return sz;
2636 			}
2637 			if (map_def->key_size && map_def->key_size != sz) {
2638 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2639 					map_name, map_def->key_size, (ssize_t)sz);
2640 				return -EINVAL;
2641 			}
2642 			map_def->key_size = sz;
2643 			map_def->key_type_id = t->type;
2644 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2645 		} else if (strcmp(name, "value_size") == 0) {
2646 			__u32 sz;
2647 
2648 			if (!get_map_field_int(map_name, btf, m, &sz))
2649 				return -EINVAL;
2650 			if (map_def->value_size && map_def->value_size != sz) {
2651 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2652 					map_name, map_def->value_size, sz);
2653 				return -EINVAL;
2654 			}
2655 			map_def->value_size = sz;
2656 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2657 		} else if (strcmp(name, "value") == 0) {
2658 			__s64 sz;
2659 
2660 			t = btf__type_by_id(btf, m->type);
2661 			if (!t) {
2662 				pr_warn("map '%s': value type [%d] not found.\n",
2663 					map_name, m->type);
2664 				return -EINVAL;
2665 			}
2666 			if (!btf_is_ptr(t)) {
2667 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2668 					map_name, btf_kind_str(t));
2669 				return -EINVAL;
2670 			}
2671 			sz = btf__resolve_size(btf, t->type);
2672 			if (sz < 0) {
2673 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2674 					map_name, t->type, (ssize_t)sz);
2675 				return sz;
2676 			}
2677 			if (map_def->value_size && map_def->value_size != sz) {
2678 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2679 					map_name, map_def->value_size, (ssize_t)sz);
2680 				return -EINVAL;
2681 			}
2682 			map_def->value_size = sz;
2683 			map_def->value_type_id = t->type;
2684 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2685 		}
2686 		else if (strcmp(name, "values") == 0) {
2687 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2688 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2689 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2690 			char inner_map_name[128];
2691 			int err;
2692 
2693 			if (is_inner) {
2694 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2695 					map_name);
2696 				return -ENOTSUP;
2697 			}
2698 			if (i != vlen - 1) {
2699 				pr_warn("map '%s': '%s' member should be last.\n",
2700 					map_name, name);
2701 				return -EINVAL;
2702 			}
2703 			if (!is_map_in_map && !is_prog_array) {
2704 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2705 					map_name);
2706 				return -ENOTSUP;
2707 			}
2708 			if (map_def->value_size && map_def->value_size != 4) {
2709 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2710 					map_name, map_def->value_size);
2711 				return -EINVAL;
2712 			}
2713 			map_def->value_size = 4;
2714 			t = btf__type_by_id(btf, m->type);
2715 			if (!t) {
2716 				pr_warn("map '%s': %s type [%d] not found.\n",
2717 					map_name, desc, m->type);
2718 				return -EINVAL;
2719 			}
2720 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2721 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2722 					map_name, desc);
2723 				return -EINVAL;
2724 			}
2725 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2726 			if (!btf_is_ptr(t)) {
2727 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2728 					map_name, desc, btf_kind_str(t));
2729 				return -EINVAL;
2730 			}
2731 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2732 			if (is_prog_array) {
2733 				if (!btf_is_func_proto(t)) {
2734 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2735 						map_name, btf_kind_str(t));
2736 					return -EINVAL;
2737 				}
2738 				continue;
2739 			}
2740 			if (!btf_is_struct(t)) {
2741 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2742 					map_name, btf_kind_str(t));
2743 				return -EINVAL;
2744 			}
2745 
2746 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2747 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2748 			if (err)
2749 				return err;
2750 
2751 			map_def->parts |= MAP_DEF_INNER_MAP;
2752 		} else if (strcmp(name, "pinning") == 0) {
2753 			__u32 val;
2754 
2755 			if (is_inner) {
2756 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2757 				return -EINVAL;
2758 			}
2759 			if (!get_map_field_int(map_name, btf, m, &val))
2760 				return -EINVAL;
2761 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2762 				pr_warn("map '%s': invalid pinning value %u.\n",
2763 					map_name, val);
2764 				return -EINVAL;
2765 			}
2766 			map_def->pinning = val;
2767 			map_def->parts |= MAP_DEF_PINNING;
2768 		} else if (strcmp(name, "map_extra") == 0) {
2769 			__u64 map_extra;
2770 
2771 			if (!get_map_field_long(map_name, btf, m, &map_extra))
2772 				return -EINVAL;
2773 			map_def->map_extra = map_extra;
2774 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2775 		} else {
2776 			if (strict) {
2777 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2778 				return -ENOTSUP;
2779 			}
2780 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2781 		}
2782 	}
2783 
2784 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2785 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2786 		return -EINVAL;
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 static size_t adjust_ringbuf_sz(size_t sz)
2793 {
2794 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2795 	__u32 mul;
2796 
2797 	/* if user forgot to set any size, make sure they see error */
2798 	if (sz == 0)
2799 		return 0;
2800 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2801 	 * a power-of-2 multiple of kernel's page size. If user diligently
2802 	 * satisified these conditions, pass the size through.
2803 	 */
2804 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2805 		return sz;
2806 
2807 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2808 	 * user-set size to satisfy both user size request and kernel
2809 	 * requirements and substitute correct max_entries for map creation.
2810 	 */
2811 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2812 		if (mul * page_sz > sz)
2813 			return mul * page_sz;
2814 	}
2815 
2816 	/* if it's impossible to satisfy the conditions (i.e., user size is
2817 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2818 	 * page_size) then just return original size and let kernel reject it
2819 	 */
2820 	return sz;
2821 }
2822 
2823 static bool map_is_ringbuf(const struct bpf_map *map)
2824 {
2825 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2826 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2827 }
2828 
2829 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2830 {
2831 	map->def.type = def->map_type;
2832 	map->def.key_size = def->key_size;
2833 	map->def.value_size = def->value_size;
2834 	map->def.max_entries = def->max_entries;
2835 	map->def.map_flags = def->map_flags;
2836 	map->map_extra = def->map_extra;
2837 
2838 	map->numa_node = def->numa_node;
2839 	map->btf_key_type_id = def->key_type_id;
2840 	map->btf_value_type_id = def->value_type_id;
2841 
2842 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2843 	if (map_is_ringbuf(map))
2844 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2845 
2846 	if (def->parts & MAP_DEF_MAP_TYPE)
2847 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2848 
2849 	if (def->parts & MAP_DEF_KEY_TYPE)
2850 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2851 			 map->name, def->key_type_id, def->key_size);
2852 	else if (def->parts & MAP_DEF_KEY_SIZE)
2853 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2854 
2855 	if (def->parts & MAP_DEF_VALUE_TYPE)
2856 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2857 			 map->name, def->value_type_id, def->value_size);
2858 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2859 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2860 
2861 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2862 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2863 	if (def->parts & MAP_DEF_MAP_FLAGS)
2864 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2865 	if (def->parts & MAP_DEF_MAP_EXTRA)
2866 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2867 			 (unsigned long long)def->map_extra);
2868 	if (def->parts & MAP_DEF_PINNING)
2869 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2870 	if (def->parts & MAP_DEF_NUMA_NODE)
2871 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2872 
2873 	if (def->parts & MAP_DEF_INNER_MAP)
2874 		pr_debug("map '%s': found inner map definition.\n", map->name);
2875 }
2876 
2877 static const char *btf_var_linkage_str(__u32 linkage)
2878 {
2879 	switch (linkage) {
2880 	case BTF_VAR_STATIC: return "static";
2881 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2882 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2883 	default: return "unknown";
2884 	}
2885 }
2886 
2887 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2888 					 const struct btf_type *sec,
2889 					 int var_idx, int sec_idx,
2890 					 const Elf_Data *data, bool strict,
2891 					 const char *pin_root_path)
2892 {
2893 	struct btf_map_def map_def = {}, inner_def = {};
2894 	const struct btf_type *var, *def;
2895 	const struct btf_var_secinfo *vi;
2896 	const struct btf_var *var_extra;
2897 	const char *map_name;
2898 	struct bpf_map *map;
2899 	int err;
2900 
2901 	vi = btf_var_secinfos(sec) + var_idx;
2902 	var = btf__type_by_id(obj->btf, vi->type);
2903 	var_extra = btf_var(var);
2904 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2905 
2906 	if (map_name == NULL || map_name[0] == '\0') {
2907 		pr_warn("map #%d: empty name.\n", var_idx);
2908 		return -EINVAL;
2909 	}
2910 	if ((__u64)vi->offset + vi->size > data->d_size) {
2911 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2912 		return -EINVAL;
2913 	}
2914 	if (!btf_is_var(var)) {
2915 		pr_warn("map '%s': unexpected var kind %s.\n",
2916 			map_name, btf_kind_str(var));
2917 		return -EINVAL;
2918 	}
2919 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2920 		pr_warn("map '%s': unsupported map linkage %s.\n",
2921 			map_name, btf_var_linkage_str(var_extra->linkage));
2922 		return -EOPNOTSUPP;
2923 	}
2924 
2925 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2926 	if (!btf_is_struct(def)) {
2927 		pr_warn("map '%s': unexpected def kind %s.\n",
2928 			map_name, btf_kind_str(var));
2929 		return -EINVAL;
2930 	}
2931 	if (def->size > vi->size) {
2932 		pr_warn("map '%s': invalid def size.\n", map_name);
2933 		return -EINVAL;
2934 	}
2935 
2936 	map = bpf_object__add_map(obj);
2937 	if (IS_ERR(map))
2938 		return PTR_ERR(map);
2939 	map->name = strdup(map_name);
2940 	if (!map->name) {
2941 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2942 		return -ENOMEM;
2943 	}
2944 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2945 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2946 	map->sec_idx = sec_idx;
2947 	map->sec_offset = vi->offset;
2948 	map->btf_var_idx = var_idx;
2949 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2950 		 map_name, map->sec_idx, map->sec_offset);
2951 
2952 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2953 	if (err)
2954 		return err;
2955 
2956 	fill_map_from_def(map, &map_def);
2957 
2958 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2959 		err = build_map_pin_path(map, pin_root_path);
2960 		if (err) {
2961 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2962 			return err;
2963 		}
2964 	}
2965 
2966 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2967 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2968 		if (!map->inner_map)
2969 			return -ENOMEM;
2970 		map->inner_map->fd = create_placeholder_fd();
2971 		if (map->inner_map->fd < 0)
2972 			return map->inner_map->fd;
2973 		map->inner_map->sec_idx = sec_idx;
2974 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2975 		if (!map->inner_map->name)
2976 			return -ENOMEM;
2977 		sprintf(map->inner_map->name, "%s.inner", map_name);
2978 
2979 		fill_map_from_def(map->inner_map, &inner_def);
2980 	}
2981 
2982 	err = map_fill_btf_type_info(obj, map);
2983 	if (err)
2984 		return err;
2985 
2986 	return 0;
2987 }
2988 
2989 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2990 			       const char *sec_name, int sec_idx,
2991 			       void *data, size_t data_sz)
2992 {
2993 	const long page_sz = sysconf(_SC_PAGE_SIZE);
2994 	size_t mmap_sz;
2995 
2996 	mmap_sz = bpf_map_mmap_sz(map);
2997 	if (roundup(data_sz, page_sz) > mmap_sz) {
2998 		pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2999 			sec_name, mmap_sz, data_sz);
3000 		return -E2BIG;
3001 	}
3002 
3003 	obj->arena_data = malloc(data_sz);
3004 	if (!obj->arena_data)
3005 		return -ENOMEM;
3006 	memcpy(obj->arena_data, data, data_sz);
3007 	obj->arena_data_sz = data_sz;
3008 
3009 	/* make bpf_map__init_value() work for ARENA maps */
3010 	map->mmaped = obj->arena_data;
3011 
3012 	return 0;
3013 }
3014 
3015 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
3016 					  const char *pin_root_path)
3017 {
3018 	const struct btf_type *sec = NULL;
3019 	int nr_types, i, vlen, err;
3020 	const struct btf_type *t;
3021 	const char *name;
3022 	Elf_Data *data;
3023 	Elf_Scn *scn;
3024 
3025 	if (obj->efile.btf_maps_shndx < 0)
3026 		return 0;
3027 
3028 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
3029 	data = elf_sec_data(obj, scn);
3030 	if (!data) {
3031 		pr_warn("elf: failed to get %s map definitions for %s\n",
3032 			MAPS_ELF_SEC, obj->path);
3033 		return -EINVAL;
3034 	}
3035 
3036 	nr_types = btf__type_cnt(obj->btf);
3037 	for (i = 1; i < nr_types; i++) {
3038 		t = btf__type_by_id(obj->btf, i);
3039 		if (!btf_is_datasec(t))
3040 			continue;
3041 		name = btf__name_by_offset(obj->btf, t->name_off);
3042 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
3043 			sec = t;
3044 			obj->efile.btf_maps_sec_btf_id = i;
3045 			break;
3046 		}
3047 	}
3048 
3049 	if (!sec) {
3050 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
3051 		return -ENOENT;
3052 	}
3053 
3054 	vlen = btf_vlen(sec);
3055 	for (i = 0; i < vlen; i++) {
3056 		err = bpf_object__init_user_btf_map(obj, sec, i,
3057 						    obj->efile.btf_maps_shndx,
3058 						    data, strict,
3059 						    pin_root_path);
3060 		if (err)
3061 			return err;
3062 	}
3063 
3064 	for (i = 0; i < obj->nr_maps; i++) {
3065 		struct bpf_map *map = &obj->maps[i];
3066 
3067 		if (map->def.type != BPF_MAP_TYPE_ARENA)
3068 			continue;
3069 
3070 		if (obj->arena_map_idx >= 0) {
3071 			pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3072 				map->name, obj->maps[obj->arena_map_idx].name);
3073 			return -EINVAL;
3074 		}
3075 		obj->arena_map_idx = i;
3076 
3077 		if (obj->efile.arena_data) {
3078 			err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3079 						  obj->efile.arena_data->d_buf,
3080 						  obj->efile.arena_data->d_size);
3081 			if (err)
3082 				return err;
3083 		}
3084 	}
3085 	if (obj->efile.arena_data && obj->arena_map_idx < 0) {
3086 		pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3087 			ARENA_SEC);
3088 		return -ENOENT;
3089 	}
3090 
3091 	return 0;
3092 }
3093 
3094 static int bpf_object__init_maps(struct bpf_object *obj,
3095 				 const struct bpf_object_open_opts *opts)
3096 {
3097 	const char *pin_root_path;
3098 	bool strict;
3099 	int err = 0;
3100 
3101 	strict = !OPTS_GET(opts, relaxed_maps, false);
3102 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3103 
3104 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3105 	err = err ?: bpf_object__init_global_data_maps(obj);
3106 	err = err ?: bpf_object__init_kconfig_map(obj);
3107 	err = err ?: bpf_object_init_struct_ops(obj);
3108 
3109 	return err;
3110 }
3111 
3112 static bool section_have_execinstr(struct bpf_object *obj, int idx)
3113 {
3114 	Elf64_Shdr *sh;
3115 
3116 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3117 	if (!sh)
3118 		return false;
3119 
3120 	return sh->sh_flags & SHF_EXECINSTR;
3121 }
3122 
3123 static bool starts_with_qmark(const char *s)
3124 {
3125 	return s && s[0] == '?';
3126 }
3127 
3128 static bool btf_needs_sanitization(struct bpf_object *obj)
3129 {
3130 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3131 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3132 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3133 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3134 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3135 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3136 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3137 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3138 
3139 	return !has_func || !has_datasec || !has_func_global || !has_float ||
3140 	       !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3141 }
3142 
3143 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3144 {
3145 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3146 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3147 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3148 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3149 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3150 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3151 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3152 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3153 	int enum64_placeholder_id = 0;
3154 	struct btf_type *t;
3155 	int i, j, vlen;
3156 
3157 	for (i = 1; i < btf__type_cnt(btf); i++) {
3158 		t = (struct btf_type *)btf__type_by_id(btf, i);
3159 
3160 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3161 			/* replace VAR/DECL_TAG with INT */
3162 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3163 			/*
3164 			 * using size = 1 is the safest choice, 4 will be too
3165 			 * big and cause kernel BTF validation failure if
3166 			 * original variable took less than 4 bytes
3167 			 */
3168 			t->size = 1;
3169 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3170 		} else if (!has_datasec && btf_is_datasec(t)) {
3171 			/* replace DATASEC with STRUCT */
3172 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
3173 			struct btf_member *m = btf_members(t);
3174 			struct btf_type *vt;
3175 			char *name;
3176 
3177 			name = (char *)btf__name_by_offset(btf, t->name_off);
3178 			while (*name) {
3179 				if (*name == '.' || *name == '?')
3180 					*name = '_';
3181 				name++;
3182 			}
3183 
3184 			vlen = btf_vlen(t);
3185 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3186 			for (j = 0; j < vlen; j++, v++, m++) {
3187 				/* order of field assignments is important */
3188 				m->offset = v->offset * 8;
3189 				m->type = v->type;
3190 				/* preserve variable name as member name */
3191 				vt = (void *)btf__type_by_id(btf, v->type);
3192 				m->name_off = vt->name_off;
3193 			}
3194 		} else if (!has_qmark_datasec && btf_is_datasec(t) &&
3195 			   starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3196 			/* replace '?' prefix with '_' for DATASEC names */
3197 			char *name;
3198 
3199 			name = (char *)btf__name_by_offset(btf, t->name_off);
3200 			if (name[0] == '?')
3201 				name[0] = '_';
3202 		} else if (!has_func && btf_is_func_proto(t)) {
3203 			/* replace FUNC_PROTO with ENUM */
3204 			vlen = btf_vlen(t);
3205 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3206 			t->size = sizeof(__u32); /* kernel enforced */
3207 		} else if (!has_func && btf_is_func(t)) {
3208 			/* replace FUNC with TYPEDEF */
3209 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3210 		} else if (!has_func_global && btf_is_func(t)) {
3211 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3212 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3213 		} else if (!has_float && btf_is_float(t)) {
3214 			/* replace FLOAT with an equally-sized empty STRUCT;
3215 			 * since C compilers do not accept e.g. "float" as a
3216 			 * valid struct name, make it anonymous
3217 			 */
3218 			t->name_off = 0;
3219 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3220 		} else if (!has_type_tag && btf_is_type_tag(t)) {
3221 			/* replace TYPE_TAG with a CONST */
3222 			t->name_off = 0;
3223 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3224 		} else if (!has_enum64 && btf_is_enum(t)) {
3225 			/* clear the kflag */
3226 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3227 		} else if (!has_enum64 && btf_is_enum64(t)) {
3228 			/* replace ENUM64 with a union */
3229 			struct btf_member *m;
3230 
3231 			if (enum64_placeholder_id == 0) {
3232 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3233 				if (enum64_placeholder_id < 0)
3234 					return enum64_placeholder_id;
3235 
3236 				t = (struct btf_type *)btf__type_by_id(btf, i);
3237 			}
3238 
3239 			m = btf_members(t);
3240 			vlen = btf_vlen(t);
3241 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3242 			for (j = 0; j < vlen; j++, m++) {
3243 				m->type = enum64_placeholder_id;
3244 				m->offset = 0;
3245 			}
3246 		}
3247 	}
3248 
3249 	return 0;
3250 }
3251 
3252 static bool libbpf_needs_btf(const struct bpf_object *obj)
3253 {
3254 	return obj->efile.btf_maps_shndx >= 0 ||
3255 	       obj->efile.has_st_ops ||
3256 	       obj->nr_extern > 0;
3257 }
3258 
3259 static bool kernel_needs_btf(const struct bpf_object *obj)
3260 {
3261 	return obj->efile.has_st_ops;
3262 }
3263 
3264 static int bpf_object__init_btf(struct bpf_object *obj,
3265 				Elf_Data *btf_data,
3266 				Elf_Data *btf_ext_data)
3267 {
3268 	int err = -ENOENT;
3269 
3270 	if (btf_data) {
3271 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3272 		err = libbpf_get_error(obj->btf);
3273 		if (err) {
3274 			obj->btf = NULL;
3275 			pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err));
3276 			goto out;
3277 		}
3278 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3279 		btf__set_pointer_size(obj->btf, 8);
3280 	}
3281 	if (btf_ext_data) {
3282 		struct btf_ext_info *ext_segs[3];
3283 		int seg_num, sec_num;
3284 
3285 		if (!obj->btf) {
3286 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3287 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3288 			goto out;
3289 		}
3290 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3291 		err = libbpf_get_error(obj->btf_ext);
3292 		if (err) {
3293 			pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n",
3294 				BTF_EXT_ELF_SEC, errstr(err));
3295 			obj->btf_ext = NULL;
3296 			goto out;
3297 		}
3298 
3299 		/* setup .BTF.ext to ELF section mapping */
3300 		ext_segs[0] = &obj->btf_ext->func_info;
3301 		ext_segs[1] = &obj->btf_ext->line_info;
3302 		ext_segs[2] = &obj->btf_ext->core_relo_info;
3303 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3304 			struct btf_ext_info *seg = ext_segs[seg_num];
3305 			const struct btf_ext_info_sec *sec;
3306 			const char *sec_name;
3307 			Elf_Scn *scn;
3308 
3309 			if (seg->sec_cnt == 0)
3310 				continue;
3311 
3312 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3313 			if (!seg->sec_idxs) {
3314 				err = -ENOMEM;
3315 				goto out;
3316 			}
3317 
3318 			sec_num = 0;
3319 			for_each_btf_ext_sec(seg, sec) {
3320 				/* preventively increment index to avoid doing
3321 				 * this before every continue below
3322 				 */
3323 				sec_num++;
3324 
3325 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3326 				if (str_is_empty(sec_name))
3327 					continue;
3328 				scn = elf_sec_by_name(obj, sec_name);
3329 				if (!scn)
3330 					continue;
3331 
3332 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3333 			}
3334 		}
3335 	}
3336 out:
3337 	if (err && libbpf_needs_btf(obj)) {
3338 		pr_warn("BTF is required, but is missing or corrupted.\n");
3339 		return err;
3340 	}
3341 	return 0;
3342 }
3343 
3344 static int compare_vsi_off(const void *_a, const void *_b)
3345 {
3346 	const struct btf_var_secinfo *a = _a;
3347 	const struct btf_var_secinfo *b = _b;
3348 
3349 	return a->offset - b->offset;
3350 }
3351 
3352 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3353 			     struct btf_type *t)
3354 {
3355 	__u32 size = 0, i, vars = btf_vlen(t);
3356 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
3357 	struct btf_var_secinfo *vsi;
3358 	bool fixup_offsets = false;
3359 	int err;
3360 
3361 	if (!sec_name) {
3362 		pr_debug("No name found in string section for DATASEC kind.\n");
3363 		return -ENOENT;
3364 	}
3365 
3366 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3367 	 * variable offsets set at the previous step. Further, not every
3368 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3369 	 * all fixups altogether for such sections and go straight to sorting
3370 	 * VARs within their DATASEC.
3371 	 */
3372 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3373 		goto sort_vars;
3374 
3375 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3376 	 * fix this up. But BPF static linker already fixes this up and fills
3377 	 * all the sizes and offsets during static linking. So this step has
3378 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
3379 	 * non-extern DATASEC, so the variable fixup loop below handles both
3380 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
3381 	 * symbol matching just once.
3382 	 */
3383 	if (t->size == 0) {
3384 		err = find_elf_sec_sz(obj, sec_name, &size);
3385 		if (err || !size) {
3386 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n",
3387 				 sec_name, size, errstr(err));
3388 			return -ENOENT;
3389 		}
3390 
3391 		t->size = size;
3392 		fixup_offsets = true;
3393 	}
3394 
3395 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3396 		const struct btf_type *t_var;
3397 		struct btf_var *var;
3398 		const char *var_name;
3399 		Elf64_Sym *sym;
3400 
3401 		t_var = btf__type_by_id(btf, vsi->type);
3402 		if (!t_var || !btf_is_var(t_var)) {
3403 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3404 			return -EINVAL;
3405 		}
3406 
3407 		var = btf_var(t_var);
3408 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3409 			continue;
3410 
3411 		var_name = btf__name_by_offset(btf, t_var->name_off);
3412 		if (!var_name) {
3413 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3414 				 sec_name, i);
3415 			return -ENOENT;
3416 		}
3417 
3418 		sym = find_elf_var_sym(obj, var_name);
3419 		if (IS_ERR(sym)) {
3420 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3421 				 sec_name, var_name);
3422 			return -ENOENT;
3423 		}
3424 
3425 		if (fixup_offsets)
3426 			vsi->offset = sym->st_value;
3427 
3428 		/* if variable is a global/weak symbol, but has restricted
3429 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3430 		 * as static. This follows similar logic for functions (BPF
3431 		 * subprogs) and influences libbpf's further decisions about
3432 		 * whether to make global data BPF array maps as
3433 		 * BPF_F_MMAPABLE.
3434 		 */
3435 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3436 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3437 			var->linkage = BTF_VAR_STATIC;
3438 	}
3439 
3440 sort_vars:
3441 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3442 	return 0;
3443 }
3444 
3445 static int bpf_object_fixup_btf(struct bpf_object *obj)
3446 {
3447 	int i, n, err = 0;
3448 
3449 	if (!obj->btf)
3450 		return 0;
3451 
3452 	n = btf__type_cnt(obj->btf);
3453 	for (i = 1; i < n; i++) {
3454 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3455 
3456 		/* Loader needs to fix up some of the things compiler
3457 		 * couldn't get its hands on while emitting BTF. This
3458 		 * is section size and global variable offset. We use
3459 		 * the info from the ELF itself for this purpose.
3460 		 */
3461 		if (btf_is_datasec(t)) {
3462 			err = btf_fixup_datasec(obj, obj->btf, t);
3463 			if (err)
3464 				return err;
3465 		}
3466 	}
3467 
3468 	return 0;
3469 }
3470 
3471 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3472 {
3473 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3474 	    prog->type == BPF_PROG_TYPE_LSM)
3475 		return true;
3476 
3477 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3478 	 * also need vmlinux BTF
3479 	 */
3480 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3481 		return true;
3482 
3483 	return false;
3484 }
3485 
3486 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3487 {
3488 	return bpf_map__is_struct_ops(map);
3489 }
3490 
3491 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3492 {
3493 	struct bpf_program *prog;
3494 	struct bpf_map *map;
3495 	int i;
3496 
3497 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3498 	 * is not specified
3499 	 */
3500 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3501 		return true;
3502 
3503 	/* Support for typed ksyms needs kernel BTF */
3504 	for (i = 0; i < obj->nr_extern; i++) {
3505 		const struct extern_desc *ext;
3506 
3507 		ext = &obj->externs[i];
3508 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3509 			return true;
3510 	}
3511 
3512 	bpf_object__for_each_program(prog, obj) {
3513 		if (!prog->autoload)
3514 			continue;
3515 		if (prog_needs_vmlinux_btf(prog))
3516 			return true;
3517 	}
3518 
3519 	bpf_object__for_each_map(map, obj) {
3520 		if (map_needs_vmlinux_btf(map))
3521 			return true;
3522 	}
3523 
3524 	return false;
3525 }
3526 
3527 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3528 {
3529 	int err;
3530 
3531 	/* btf_vmlinux could be loaded earlier */
3532 	if (obj->btf_vmlinux || obj->gen_loader)
3533 		return 0;
3534 
3535 	if (!force && !obj_needs_vmlinux_btf(obj))
3536 		return 0;
3537 
3538 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3539 	err = libbpf_get_error(obj->btf_vmlinux);
3540 	if (err) {
3541 		pr_warn("Error loading vmlinux BTF: %s\n", errstr(err));
3542 		obj->btf_vmlinux = NULL;
3543 		return err;
3544 	}
3545 	return 0;
3546 }
3547 
3548 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3549 {
3550 	struct btf *kern_btf = obj->btf;
3551 	bool btf_mandatory, sanitize;
3552 	int i, err = 0;
3553 
3554 	if (!obj->btf)
3555 		return 0;
3556 
3557 	if (!kernel_supports(obj, FEAT_BTF)) {
3558 		if (kernel_needs_btf(obj)) {
3559 			err = -EOPNOTSUPP;
3560 			goto report;
3561 		}
3562 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3563 		return 0;
3564 	}
3565 
3566 	/* Even though some subprogs are global/weak, user might prefer more
3567 	 * permissive BPF verification process that BPF verifier performs for
3568 	 * static functions, taking into account more context from the caller
3569 	 * functions. In such case, they need to mark such subprogs with
3570 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3571 	 * corresponding FUNC BTF type to be marked as static and trigger more
3572 	 * involved BPF verification process.
3573 	 */
3574 	for (i = 0; i < obj->nr_programs; i++) {
3575 		struct bpf_program *prog = &obj->programs[i];
3576 		struct btf_type *t;
3577 		const char *name;
3578 		int j, n;
3579 
3580 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3581 			continue;
3582 
3583 		n = btf__type_cnt(obj->btf);
3584 		for (j = 1; j < n; j++) {
3585 			t = btf_type_by_id(obj->btf, j);
3586 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3587 				continue;
3588 
3589 			name = btf__str_by_offset(obj->btf, t->name_off);
3590 			if (strcmp(name, prog->name) != 0)
3591 				continue;
3592 
3593 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3594 			break;
3595 		}
3596 	}
3597 
3598 	sanitize = btf_needs_sanitization(obj);
3599 	if (sanitize) {
3600 		const void *raw_data;
3601 		__u32 sz;
3602 
3603 		/* clone BTF to sanitize a copy and leave the original intact */
3604 		raw_data = btf__raw_data(obj->btf, &sz);
3605 		kern_btf = btf__new(raw_data, sz);
3606 		err = libbpf_get_error(kern_btf);
3607 		if (err)
3608 			return err;
3609 
3610 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3611 		btf__set_pointer_size(obj->btf, 8);
3612 		err = bpf_object__sanitize_btf(obj, kern_btf);
3613 		if (err)
3614 			return err;
3615 	}
3616 
3617 	if (obj->gen_loader) {
3618 		__u32 raw_size = 0;
3619 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3620 
3621 		if (!raw_data)
3622 			return -ENOMEM;
3623 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3624 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3625 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3626 		 */
3627 		btf__set_fd(kern_btf, 0);
3628 	} else {
3629 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3630 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3631 					   obj->log_level ? 1 : 0, obj->token_fd);
3632 	}
3633 	if (sanitize) {
3634 		if (!err) {
3635 			/* move fd to libbpf's BTF */
3636 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3637 			btf__set_fd(kern_btf, -1);
3638 		}
3639 		btf__free(kern_btf);
3640 	}
3641 report:
3642 	if (err) {
3643 		btf_mandatory = kernel_needs_btf(obj);
3644 		if (btf_mandatory) {
3645 			pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n",
3646 				errstr(err));
3647 		} else {
3648 			pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n",
3649 				errstr(err));
3650 			err = 0;
3651 		}
3652 	}
3653 	return err;
3654 }
3655 
3656 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3657 {
3658 	const char *name;
3659 
3660 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3661 	if (!name) {
3662 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3663 			off, obj->path, elf_errmsg(-1));
3664 		return NULL;
3665 	}
3666 
3667 	return name;
3668 }
3669 
3670 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3671 {
3672 	const char *name;
3673 
3674 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3675 	if (!name) {
3676 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3677 			off, obj->path, elf_errmsg(-1));
3678 		return NULL;
3679 	}
3680 
3681 	return name;
3682 }
3683 
3684 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3685 {
3686 	Elf_Scn *scn;
3687 
3688 	scn = elf_getscn(obj->efile.elf, idx);
3689 	if (!scn) {
3690 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3691 			idx, obj->path, elf_errmsg(-1));
3692 		return NULL;
3693 	}
3694 	return scn;
3695 }
3696 
3697 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3698 {
3699 	Elf_Scn *scn = NULL;
3700 	Elf *elf = obj->efile.elf;
3701 	const char *sec_name;
3702 
3703 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3704 		sec_name = elf_sec_name(obj, scn);
3705 		if (!sec_name)
3706 			return NULL;
3707 
3708 		if (strcmp(sec_name, name) != 0)
3709 			continue;
3710 
3711 		return scn;
3712 	}
3713 	return NULL;
3714 }
3715 
3716 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3717 {
3718 	Elf64_Shdr *shdr;
3719 
3720 	if (!scn)
3721 		return NULL;
3722 
3723 	shdr = elf64_getshdr(scn);
3724 	if (!shdr) {
3725 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3726 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3727 		return NULL;
3728 	}
3729 
3730 	return shdr;
3731 }
3732 
3733 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3734 {
3735 	const char *name;
3736 	Elf64_Shdr *sh;
3737 
3738 	if (!scn)
3739 		return NULL;
3740 
3741 	sh = elf_sec_hdr(obj, scn);
3742 	if (!sh)
3743 		return NULL;
3744 
3745 	name = elf_sec_str(obj, sh->sh_name);
3746 	if (!name) {
3747 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3748 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3749 		return NULL;
3750 	}
3751 
3752 	return name;
3753 }
3754 
3755 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3756 {
3757 	Elf_Data *data;
3758 
3759 	if (!scn)
3760 		return NULL;
3761 
3762 	data = elf_getdata(scn, 0);
3763 	if (!data) {
3764 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3765 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3766 			obj->path, elf_errmsg(-1));
3767 		return NULL;
3768 	}
3769 
3770 	return data;
3771 }
3772 
3773 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3774 {
3775 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3776 		return NULL;
3777 
3778 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3779 }
3780 
3781 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3782 {
3783 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3784 		return NULL;
3785 
3786 	return (Elf64_Rel *)data->d_buf + idx;
3787 }
3788 
3789 static bool is_sec_name_dwarf(const char *name)
3790 {
3791 	/* approximation, but the actual list is too long */
3792 	return str_has_pfx(name, ".debug_");
3793 }
3794 
3795 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3796 {
3797 	/* no special handling of .strtab */
3798 	if (hdr->sh_type == SHT_STRTAB)
3799 		return true;
3800 
3801 	/* ignore .llvm_addrsig section as well */
3802 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3803 		return true;
3804 
3805 	/* no subprograms will lead to an empty .text section, ignore it */
3806 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3807 	    strcmp(name, ".text") == 0)
3808 		return true;
3809 
3810 	/* DWARF sections */
3811 	if (is_sec_name_dwarf(name))
3812 		return true;
3813 
3814 	if (str_has_pfx(name, ".rel")) {
3815 		name += sizeof(".rel") - 1;
3816 		/* DWARF section relocations */
3817 		if (is_sec_name_dwarf(name))
3818 			return true;
3819 
3820 		/* .BTF and .BTF.ext don't need relocations */
3821 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3822 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3823 			return true;
3824 	}
3825 
3826 	return false;
3827 }
3828 
3829 static int cmp_progs(const void *_a, const void *_b)
3830 {
3831 	const struct bpf_program *a = _a;
3832 	const struct bpf_program *b = _b;
3833 
3834 	if (a->sec_idx != b->sec_idx)
3835 		return a->sec_idx < b->sec_idx ? -1 : 1;
3836 
3837 	/* sec_insn_off can't be the same within the section */
3838 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3839 }
3840 
3841 static int bpf_object__elf_collect(struct bpf_object *obj)
3842 {
3843 	struct elf_sec_desc *sec_desc;
3844 	Elf *elf = obj->efile.elf;
3845 	Elf_Data *btf_ext_data = NULL;
3846 	Elf_Data *btf_data = NULL;
3847 	int idx = 0, err = 0;
3848 	const char *name;
3849 	Elf_Data *data;
3850 	Elf_Scn *scn;
3851 	Elf64_Shdr *sh;
3852 
3853 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3854 	 * section. Since section count retrieved by elf_getshdrnum() does
3855 	 * include sec #0, it is already the necessary size of an array to keep
3856 	 * all the sections.
3857 	 */
3858 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3859 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3860 			obj->path, elf_errmsg(-1));
3861 		return -LIBBPF_ERRNO__FORMAT;
3862 	}
3863 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3864 	if (!obj->efile.secs)
3865 		return -ENOMEM;
3866 
3867 	/* a bunch of ELF parsing functionality depends on processing symbols,
3868 	 * so do the first pass and find the symbol table
3869 	 */
3870 	scn = NULL;
3871 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3872 		sh = elf_sec_hdr(obj, scn);
3873 		if (!sh)
3874 			return -LIBBPF_ERRNO__FORMAT;
3875 
3876 		if (sh->sh_type == SHT_SYMTAB) {
3877 			if (obj->efile.symbols) {
3878 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3879 				return -LIBBPF_ERRNO__FORMAT;
3880 			}
3881 
3882 			data = elf_sec_data(obj, scn);
3883 			if (!data)
3884 				return -LIBBPF_ERRNO__FORMAT;
3885 
3886 			idx = elf_ndxscn(scn);
3887 
3888 			obj->efile.symbols = data;
3889 			obj->efile.symbols_shndx = idx;
3890 			obj->efile.strtabidx = sh->sh_link;
3891 		}
3892 	}
3893 
3894 	if (!obj->efile.symbols) {
3895 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3896 			obj->path);
3897 		return -ENOENT;
3898 	}
3899 
3900 	scn = NULL;
3901 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3902 		idx = elf_ndxscn(scn);
3903 		sec_desc = &obj->efile.secs[idx];
3904 
3905 		sh = elf_sec_hdr(obj, scn);
3906 		if (!sh)
3907 			return -LIBBPF_ERRNO__FORMAT;
3908 
3909 		name = elf_sec_str(obj, sh->sh_name);
3910 		if (!name)
3911 			return -LIBBPF_ERRNO__FORMAT;
3912 
3913 		if (ignore_elf_section(sh, name))
3914 			continue;
3915 
3916 		data = elf_sec_data(obj, scn);
3917 		if (!data)
3918 			return -LIBBPF_ERRNO__FORMAT;
3919 
3920 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3921 			 idx, name, (unsigned long)data->d_size,
3922 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3923 			 (int)sh->sh_type);
3924 
3925 		if (strcmp(name, "license") == 0) {
3926 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3927 			if (err)
3928 				return err;
3929 		} else if (strcmp(name, "version") == 0) {
3930 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3931 			if (err)
3932 				return err;
3933 		} else if (strcmp(name, "maps") == 0) {
3934 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3935 			return -ENOTSUP;
3936 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3937 			obj->efile.btf_maps_shndx = idx;
3938 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3939 			if (sh->sh_type != SHT_PROGBITS)
3940 				return -LIBBPF_ERRNO__FORMAT;
3941 			btf_data = data;
3942 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3943 			if (sh->sh_type != SHT_PROGBITS)
3944 				return -LIBBPF_ERRNO__FORMAT;
3945 			btf_ext_data = data;
3946 		} else if (sh->sh_type == SHT_SYMTAB) {
3947 			/* already processed during the first pass above */
3948 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3949 			if (sh->sh_flags & SHF_EXECINSTR) {
3950 				if (strcmp(name, ".text") == 0)
3951 					obj->efile.text_shndx = idx;
3952 				err = bpf_object__add_programs(obj, data, name, idx);
3953 				if (err)
3954 					return err;
3955 			} else if (strcmp(name, DATA_SEC) == 0 ||
3956 				   str_has_pfx(name, DATA_SEC ".")) {
3957 				sec_desc->sec_type = SEC_DATA;
3958 				sec_desc->shdr = sh;
3959 				sec_desc->data = data;
3960 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3961 				   str_has_pfx(name, RODATA_SEC ".")) {
3962 				sec_desc->sec_type = SEC_RODATA;
3963 				sec_desc->shdr = sh;
3964 				sec_desc->data = data;
3965 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3966 				   strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3967 				   strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3968 				   strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3969 				sec_desc->sec_type = SEC_ST_OPS;
3970 				sec_desc->shdr = sh;
3971 				sec_desc->data = data;
3972 				obj->efile.has_st_ops = true;
3973 			} else if (strcmp(name, ARENA_SEC) == 0) {
3974 				obj->efile.arena_data = data;
3975 				obj->efile.arena_data_shndx = idx;
3976 			} else if (strcmp(name, JUMPTABLES_SEC) == 0) {
3977 				obj->jumptables_data = malloc(data->d_size);
3978 				if (!obj->jumptables_data)
3979 					return -ENOMEM;
3980 				memcpy(obj->jumptables_data, data->d_buf, data->d_size);
3981 				obj->jumptables_data_sz = data->d_size;
3982 				obj->efile.jumptables_data_shndx = idx;
3983 			} else {
3984 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3985 					idx, name);
3986 			}
3987 		} else if (sh->sh_type == SHT_REL) {
3988 			int targ_sec_idx = sh->sh_info; /* points to other section */
3989 
3990 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3991 			    targ_sec_idx >= obj->efile.sec_cnt)
3992 				return -LIBBPF_ERRNO__FORMAT;
3993 
3994 			/* Only do relo for section with exec instructions */
3995 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3996 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3997 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3998 			    strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3999 			    strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
4000 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
4001 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
4002 					idx, name, targ_sec_idx,
4003 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
4004 				continue;
4005 			}
4006 
4007 			sec_desc->sec_type = SEC_RELO;
4008 			sec_desc->shdr = sh;
4009 			sec_desc->data = data;
4010 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
4011 							 str_has_pfx(name, BSS_SEC "."))) {
4012 			sec_desc->sec_type = SEC_BSS;
4013 			sec_desc->shdr = sh;
4014 			sec_desc->data = data;
4015 		} else {
4016 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
4017 				(size_t)sh->sh_size);
4018 		}
4019 	}
4020 
4021 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
4022 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
4023 		return -LIBBPF_ERRNO__FORMAT;
4024 	}
4025 
4026 	/* change BPF program insns to native endianness for introspection */
4027 	if (!is_native_endianness(obj))
4028 		bpf_object_bswap_progs(obj);
4029 
4030 	/* sort BPF programs by section name and in-section instruction offset
4031 	 * for faster search
4032 	 */
4033 	if (obj->nr_programs)
4034 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
4035 
4036 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
4037 }
4038 
4039 static bool sym_is_extern(const Elf64_Sym *sym)
4040 {
4041 	int bind = ELF64_ST_BIND(sym->st_info);
4042 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
4043 	return sym->st_shndx == SHN_UNDEF &&
4044 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
4045 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
4046 }
4047 
4048 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
4049 {
4050 	int bind = ELF64_ST_BIND(sym->st_info);
4051 	int type = ELF64_ST_TYPE(sym->st_info);
4052 
4053 	/* in .text section */
4054 	if (sym->st_shndx != text_shndx)
4055 		return false;
4056 
4057 	/* local function */
4058 	if (bind == STB_LOCAL && type == STT_SECTION)
4059 		return true;
4060 
4061 	/* global function */
4062 	return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
4063 }
4064 
4065 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
4066 {
4067 	const struct btf_type *t;
4068 	const char *tname;
4069 	int i, n;
4070 
4071 	if (!btf)
4072 		return -ESRCH;
4073 
4074 	n = btf__type_cnt(btf);
4075 	for (i = 1; i < n; i++) {
4076 		t = btf__type_by_id(btf, i);
4077 
4078 		if (!btf_is_var(t) && !btf_is_func(t))
4079 			continue;
4080 
4081 		tname = btf__name_by_offset(btf, t->name_off);
4082 		if (strcmp(tname, ext_name))
4083 			continue;
4084 
4085 		if (btf_is_var(t) &&
4086 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4087 			return -EINVAL;
4088 
4089 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4090 			return -EINVAL;
4091 
4092 		return i;
4093 	}
4094 
4095 	return -ENOENT;
4096 }
4097 
4098 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4099 	const struct btf_var_secinfo *vs;
4100 	const struct btf_type *t;
4101 	int i, j, n;
4102 
4103 	if (!btf)
4104 		return -ESRCH;
4105 
4106 	n = btf__type_cnt(btf);
4107 	for (i = 1; i < n; i++) {
4108 		t = btf__type_by_id(btf, i);
4109 
4110 		if (!btf_is_datasec(t))
4111 			continue;
4112 
4113 		vs = btf_var_secinfos(t);
4114 		for (j = 0; j < btf_vlen(t); j++, vs++) {
4115 			if (vs->type == ext_btf_id)
4116 				return i;
4117 		}
4118 	}
4119 
4120 	return -ENOENT;
4121 }
4122 
4123 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4124 				     bool *is_signed)
4125 {
4126 	const struct btf_type *t;
4127 	const char *name;
4128 
4129 	t = skip_mods_and_typedefs(btf, id, NULL);
4130 	name = btf__name_by_offset(btf, t->name_off);
4131 
4132 	if (is_signed)
4133 		*is_signed = false;
4134 	switch (btf_kind(t)) {
4135 	case BTF_KIND_INT: {
4136 		int enc = btf_int_encoding(t);
4137 
4138 		if (enc & BTF_INT_BOOL)
4139 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4140 		if (is_signed)
4141 			*is_signed = enc & BTF_INT_SIGNED;
4142 		if (t->size == 1)
4143 			return KCFG_CHAR;
4144 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4145 			return KCFG_UNKNOWN;
4146 		return KCFG_INT;
4147 	}
4148 	case BTF_KIND_ENUM:
4149 		if (t->size != 4)
4150 			return KCFG_UNKNOWN;
4151 		if (strcmp(name, "libbpf_tristate"))
4152 			return KCFG_UNKNOWN;
4153 		return KCFG_TRISTATE;
4154 	case BTF_KIND_ENUM64:
4155 		if (strcmp(name, "libbpf_tristate"))
4156 			return KCFG_UNKNOWN;
4157 		return KCFG_TRISTATE;
4158 	case BTF_KIND_ARRAY:
4159 		if (btf_array(t)->nelems == 0)
4160 			return KCFG_UNKNOWN;
4161 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4162 			return KCFG_UNKNOWN;
4163 		return KCFG_CHAR_ARR;
4164 	default:
4165 		return KCFG_UNKNOWN;
4166 	}
4167 }
4168 
4169 static int cmp_externs(const void *_a, const void *_b)
4170 {
4171 	const struct extern_desc *a = _a;
4172 	const struct extern_desc *b = _b;
4173 
4174 	if (a->type != b->type)
4175 		return a->type < b->type ? -1 : 1;
4176 
4177 	if (a->type == EXT_KCFG) {
4178 		/* descending order by alignment requirements */
4179 		if (a->kcfg.align != b->kcfg.align)
4180 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
4181 		/* ascending order by size, within same alignment class */
4182 		if (a->kcfg.sz != b->kcfg.sz)
4183 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4184 	}
4185 
4186 	/* resolve ties by name */
4187 	return strcmp(a->name, b->name);
4188 }
4189 
4190 static int find_int_btf_id(const struct btf *btf)
4191 {
4192 	const struct btf_type *t;
4193 	int i, n;
4194 
4195 	n = btf__type_cnt(btf);
4196 	for (i = 1; i < n; i++) {
4197 		t = btf__type_by_id(btf, i);
4198 
4199 		if (btf_is_int(t) && btf_int_bits(t) == 32)
4200 			return i;
4201 	}
4202 
4203 	return 0;
4204 }
4205 
4206 static int add_dummy_ksym_var(struct btf *btf)
4207 {
4208 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4209 	const struct btf_var_secinfo *vs;
4210 	const struct btf_type *sec;
4211 
4212 	if (!btf)
4213 		return 0;
4214 
4215 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4216 					    BTF_KIND_DATASEC);
4217 	if (sec_btf_id < 0)
4218 		return 0;
4219 
4220 	sec = btf__type_by_id(btf, sec_btf_id);
4221 	vs = btf_var_secinfos(sec);
4222 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
4223 		const struct btf_type *vt;
4224 
4225 		vt = btf__type_by_id(btf, vs->type);
4226 		if (btf_is_func(vt))
4227 			break;
4228 	}
4229 
4230 	/* No func in ksyms sec.  No need to add dummy var. */
4231 	if (i == btf_vlen(sec))
4232 		return 0;
4233 
4234 	int_btf_id = find_int_btf_id(btf);
4235 	dummy_var_btf_id = btf__add_var(btf,
4236 					"dummy_ksym",
4237 					BTF_VAR_GLOBAL_ALLOCATED,
4238 					int_btf_id);
4239 	if (dummy_var_btf_id < 0)
4240 		pr_warn("cannot create a dummy_ksym var\n");
4241 
4242 	return dummy_var_btf_id;
4243 }
4244 
4245 static int bpf_object__collect_externs(struct bpf_object *obj)
4246 {
4247 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4248 	const struct btf_type *t;
4249 	struct extern_desc *ext;
4250 	int i, n, off, dummy_var_btf_id;
4251 	const char *ext_name, *sec_name;
4252 	size_t ext_essent_len;
4253 	Elf_Scn *scn;
4254 	Elf64_Shdr *sh;
4255 
4256 	if (!obj->efile.symbols)
4257 		return 0;
4258 
4259 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4260 	sh = elf_sec_hdr(obj, scn);
4261 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4262 		return -LIBBPF_ERRNO__FORMAT;
4263 
4264 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4265 	if (dummy_var_btf_id < 0)
4266 		return dummy_var_btf_id;
4267 
4268 	n = sh->sh_size / sh->sh_entsize;
4269 	pr_debug("looking for externs among %d symbols...\n", n);
4270 
4271 	for (i = 0; i < n; i++) {
4272 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4273 
4274 		if (!sym)
4275 			return -LIBBPF_ERRNO__FORMAT;
4276 		if (!sym_is_extern(sym))
4277 			continue;
4278 		ext_name = elf_sym_str(obj, sym->st_name);
4279 		if (!ext_name || !ext_name[0])
4280 			continue;
4281 
4282 		ext = obj->externs;
4283 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4284 		if (!ext)
4285 			return -ENOMEM;
4286 		obj->externs = ext;
4287 		ext = &ext[obj->nr_extern];
4288 		memset(ext, 0, sizeof(*ext));
4289 		obj->nr_extern++;
4290 
4291 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4292 		if (ext->btf_id <= 0) {
4293 			pr_warn("failed to find BTF for extern '%s': %d\n",
4294 				ext_name, ext->btf_id);
4295 			return ext->btf_id;
4296 		}
4297 		t = btf__type_by_id(obj->btf, ext->btf_id);
4298 		ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off));
4299 		if (!ext->name)
4300 			return -ENOMEM;
4301 		ext->sym_idx = i;
4302 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4303 
4304 		ext_essent_len = bpf_core_essential_name_len(ext->name);
4305 		ext->essent_name = NULL;
4306 		if (ext_essent_len != strlen(ext->name)) {
4307 			ext->essent_name = strndup(ext->name, ext_essent_len);
4308 			if (!ext->essent_name)
4309 				return -ENOMEM;
4310 		}
4311 
4312 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4313 		if (ext->sec_btf_id <= 0) {
4314 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4315 				ext_name, ext->btf_id, ext->sec_btf_id);
4316 			return ext->sec_btf_id;
4317 		}
4318 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4319 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4320 
4321 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4322 			if (btf_is_func(t)) {
4323 				pr_warn("extern function %s is unsupported under %s section\n",
4324 					ext->name, KCONFIG_SEC);
4325 				return -ENOTSUP;
4326 			}
4327 			kcfg_sec = sec;
4328 			ext->type = EXT_KCFG;
4329 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4330 			if (ext->kcfg.sz <= 0) {
4331 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4332 					ext_name, ext->kcfg.sz);
4333 				return ext->kcfg.sz;
4334 			}
4335 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
4336 			if (ext->kcfg.align <= 0) {
4337 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4338 					ext_name, ext->kcfg.align);
4339 				return -EINVAL;
4340 			}
4341 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4342 							&ext->kcfg.is_signed);
4343 			if (ext->kcfg.type == KCFG_UNKNOWN) {
4344 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4345 				return -ENOTSUP;
4346 			}
4347 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4348 			ksym_sec = sec;
4349 			ext->type = EXT_KSYM;
4350 			skip_mods_and_typedefs(obj->btf, t->type,
4351 					       &ext->ksym.type_id);
4352 		} else {
4353 			pr_warn("unrecognized extern section '%s'\n", sec_name);
4354 			return -ENOTSUP;
4355 		}
4356 	}
4357 	pr_debug("collected %d externs total\n", obj->nr_extern);
4358 
4359 	if (!obj->nr_extern)
4360 		return 0;
4361 
4362 	/* sort externs by type, for kcfg ones also by (align, size, name) */
4363 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4364 
4365 	/* for .ksyms section, we need to turn all externs into allocated
4366 	 * variables in BTF to pass kernel verification; we do this by
4367 	 * pretending that each extern is a 8-byte variable
4368 	 */
4369 	if (ksym_sec) {
4370 		/* find existing 4-byte integer type in BTF to use for fake
4371 		 * extern variables in DATASEC
4372 		 */
4373 		int int_btf_id = find_int_btf_id(obj->btf);
4374 		/* For extern function, a dummy_var added earlier
4375 		 * will be used to replace the vs->type and
4376 		 * its name string will be used to refill
4377 		 * the missing param's name.
4378 		 */
4379 		const struct btf_type *dummy_var;
4380 
4381 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4382 		for (i = 0; i < obj->nr_extern; i++) {
4383 			ext = &obj->externs[i];
4384 			if (ext->type != EXT_KSYM)
4385 				continue;
4386 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4387 				 i, ext->sym_idx, ext->name);
4388 		}
4389 
4390 		sec = ksym_sec;
4391 		n = btf_vlen(sec);
4392 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4393 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4394 			struct btf_type *vt;
4395 
4396 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4397 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4398 			ext = find_extern_by_name(obj, ext_name);
4399 			if (!ext) {
4400 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4401 					btf_kind_str(vt), ext_name);
4402 				return -ESRCH;
4403 			}
4404 			if (btf_is_func(vt)) {
4405 				const struct btf_type *func_proto;
4406 				struct btf_param *param;
4407 				int j;
4408 
4409 				func_proto = btf__type_by_id(obj->btf,
4410 							     vt->type);
4411 				param = btf_params(func_proto);
4412 				/* Reuse the dummy_var string if the
4413 				 * func proto does not have param name.
4414 				 */
4415 				for (j = 0; j < btf_vlen(func_proto); j++)
4416 					if (param[j].type && !param[j].name_off)
4417 						param[j].name_off =
4418 							dummy_var->name_off;
4419 				vs->type = dummy_var_btf_id;
4420 				vt->info &= ~0xffff;
4421 				vt->info |= BTF_FUNC_GLOBAL;
4422 			} else {
4423 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4424 				vt->type = int_btf_id;
4425 			}
4426 			vs->offset = off;
4427 			vs->size = sizeof(int);
4428 		}
4429 		sec->size = off;
4430 	}
4431 
4432 	if (kcfg_sec) {
4433 		sec = kcfg_sec;
4434 		/* for kcfg externs calculate their offsets within a .kconfig map */
4435 		off = 0;
4436 		for (i = 0; i < obj->nr_extern; i++) {
4437 			ext = &obj->externs[i];
4438 			if (ext->type != EXT_KCFG)
4439 				continue;
4440 
4441 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4442 			off = ext->kcfg.data_off + ext->kcfg.sz;
4443 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4444 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4445 		}
4446 		sec->size = off;
4447 		n = btf_vlen(sec);
4448 		for (i = 0; i < n; i++) {
4449 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4450 
4451 			t = btf__type_by_id(obj->btf, vs->type);
4452 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4453 			ext = find_extern_by_name(obj, ext_name);
4454 			if (!ext) {
4455 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4456 					ext_name);
4457 				return -ESRCH;
4458 			}
4459 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4460 			vs->offset = ext->kcfg.data_off;
4461 		}
4462 	}
4463 	return 0;
4464 }
4465 
4466 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4467 {
4468 	return prog->sec_idx == obj->efile.text_shndx;
4469 }
4470 
4471 struct bpf_program *
4472 bpf_object__find_program_by_name(const struct bpf_object *obj,
4473 				 const char *name)
4474 {
4475 	struct bpf_program *prog;
4476 
4477 	bpf_object__for_each_program(prog, obj) {
4478 		if (prog_is_subprog(obj, prog))
4479 			continue;
4480 		if (!strcmp(prog->name, name))
4481 			return prog;
4482 	}
4483 	return errno = ENOENT, NULL;
4484 }
4485 
4486 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4487 				      int shndx)
4488 {
4489 	switch (obj->efile.secs[shndx].sec_type) {
4490 	case SEC_BSS:
4491 	case SEC_DATA:
4492 	case SEC_RODATA:
4493 		return true;
4494 	default:
4495 		return false;
4496 	}
4497 }
4498 
4499 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4500 				      int shndx)
4501 {
4502 	return shndx == obj->efile.btf_maps_shndx;
4503 }
4504 
4505 static enum libbpf_map_type
4506 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4507 {
4508 	if (shndx == obj->efile.symbols_shndx)
4509 		return LIBBPF_MAP_KCONFIG;
4510 
4511 	switch (obj->efile.secs[shndx].sec_type) {
4512 	case SEC_BSS:
4513 		return LIBBPF_MAP_BSS;
4514 	case SEC_DATA:
4515 		return LIBBPF_MAP_DATA;
4516 	case SEC_RODATA:
4517 		return LIBBPF_MAP_RODATA;
4518 	default:
4519 		return LIBBPF_MAP_UNSPEC;
4520 	}
4521 }
4522 
4523 static int bpf_prog_compute_hash(struct bpf_program *prog)
4524 {
4525 	struct bpf_insn *purged;
4526 	int i, err = 0;
4527 
4528 	purged = calloc(prog->insns_cnt, BPF_INSN_SZ);
4529 	if (!purged)
4530 		return -ENOMEM;
4531 
4532 	/* If relocations have been done, the map_fd needs to be
4533 	 * discarded for the digest calculation.
4534 	 */
4535 	for (i = 0; i < prog->insns_cnt; i++) {
4536 		purged[i] = prog->insns[i];
4537 		if (purged[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
4538 		    (purged[i].src_reg == BPF_PSEUDO_MAP_FD ||
4539 		     purged[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
4540 			purged[i].imm = 0;
4541 			i++;
4542 			if (i >= prog->insns_cnt ||
4543 			    prog->insns[i].code != 0 ||
4544 			    prog->insns[i].dst_reg != 0 ||
4545 			    prog->insns[i].src_reg != 0 ||
4546 			    prog->insns[i].off != 0) {
4547 				err = -EINVAL;
4548 				goto out;
4549 			}
4550 			purged[i] = prog->insns[i];
4551 			purged[i].imm = 0;
4552 		}
4553 	}
4554 	libbpf_sha256(purged, prog->insns_cnt * sizeof(struct bpf_insn),
4555 		      prog->hash);
4556 out:
4557 	free(purged);
4558 	return err;
4559 }
4560 
4561 static int bpf_program__record_reloc(struct bpf_program *prog,
4562 				     struct reloc_desc *reloc_desc,
4563 				     __u32 insn_idx, const char *sym_name,
4564 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4565 {
4566 	struct bpf_insn *insn = &prog->insns[insn_idx];
4567 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4568 	struct bpf_object *obj = prog->obj;
4569 	__u32 shdr_idx = sym->st_shndx;
4570 	enum libbpf_map_type type;
4571 	const char *sym_sec_name;
4572 	struct bpf_map *map;
4573 
4574 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4575 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4576 			prog->name, sym_name, insn_idx, insn->code);
4577 		return -LIBBPF_ERRNO__RELOC;
4578 	}
4579 
4580 	if (sym_is_extern(sym)) {
4581 		int sym_idx = ELF64_R_SYM(rel->r_info);
4582 		int i, n = obj->nr_extern;
4583 		struct extern_desc *ext;
4584 
4585 		for (i = 0; i < n; i++) {
4586 			ext = &obj->externs[i];
4587 			if (ext->sym_idx == sym_idx)
4588 				break;
4589 		}
4590 		if (i >= n) {
4591 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4592 				prog->name, sym_name, sym_idx);
4593 			return -LIBBPF_ERRNO__RELOC;
4594 		}
4595 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4596 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4597 		if (insn->code == (BPF_JMP | BPF_CALL))
4598 			reloc_desc->type = RELO_EXTERN_CALL;
4599 		else
4600 			reloc_desc->type = RELO_EXTERN_LD64;
4601 		reloc_desc->insn_idx = insn_idx;
4602 		reloc_desc->ext_idx = i;
4603 		return 0;
4604 	}
4605 
4606 	/* sub-program call relocation */
4607 	if (is_call_insn(insn)) {
4608 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4609 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4610 			return -LIBBPF_ERRNO__RELOC;
4611 		}
4612 		/* text_shndx can be 0, if no default "main" program exists */
4613 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4614 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4615 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4616 				prog->name, sym_name, sym_sec_name);
4617 			return -LIBBPF_ERRNO__RELOC;
4618 		}
4619 		if (sym->st_value % BPF_INSN_SZ) {
4620 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4621 				prog->name, sym_name, (size_t)sym->st_value);
4622 			return -LIBBPF_ERRNO__RELOC;
4623 		}
4624 		reloc_desc->type = RELO_CALL;
4625 		reloc_desc->insn_idx = insn_idx;
4626 		reloc_desc->sym_off = sym->st_value;
4627 		return 0;
4628 	}
4629 
4630 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4631 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4632 			prog->name, sym_name, shdr_idx);
4633 		return -LIBBPF_ERRNO__RELOC;
4634 	}
4635 
4636 	/* loading subprog addresses */
4637 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4638 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4639 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4640 		 */
4641 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4642 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4643 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4644 			return -LIBBPF_ERRNO__RELOC;
4645 		}
4646 
4647 		reloc_desc->type = RELO_SUBPROG_ADDR;
4648 		reloc_desc->insn_idx = insn_idx;
4649 		reloc_desc->sym_off = sym->st_value;
4650 		return 0;
4651 	}
4652 
4653 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4654 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4655 
4656 	/* arena data relocation */
4657 	if (shdr_idx == obj->efile.arena_data_shndx) {
4658 		if (obj->arena_map_idx < 0) {
4659 			pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n",
4660 				prog->name, insn_idx);
4661 			return -LIBBPF_ERRNO__RELOC;
4662 		}
4663 		reloc_desc->type = RELO_DATA;
4664 		reloc_desc->insn_idx = insn_idx;
4665 		reloc_desc->map_idx = obj->arena_map_idx;
4666 		reloc_desc->sym_off = sym->st_value;
4667 
4668 		map = &obj->maps[obj->arena_map_idx];
4669 		pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n",
4670 			 prog->name, obj->arena_map_idx, map->name, map->sec_idx,
4671 			 map->sec_offset, insn_idx);
4672 		return 0;
4673 	}
4674 
4675 	/* jump table data relocation */
4676 	if (shdr_idx == obj->efile.jumptables_data_shndx) {
4677 		reloc_desc->type = RELO_INSN_ARRAY;
4678 		reloc_desc->insn_idx = insn_idx;
4679 		reloc_desc->map_idx = -1;
4680 		reloc_desc->sym_off = sym->st_value;
4681 		reloc_desc->sym_size = sym->st_size;
4682 		return 0;
4683 	}
4684 
4685 	/* generic map reference relocation */
4686 	if (type == LIBBPF_MAP_UNSPEC) {
4687 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4688 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4689 				prog->name, sym_name, sym_sec_name);
4690 			return -LIBBPF_ERRNO__RELOC;
4691 		}
4692 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4693 			map = &obj->maps[map_idx];
4694 			if (map->libbpf_type != type ||
4695 			    map->sec_idx != sym->st_shndx ||
4696 			    map->sec_offset != sym->st_value)
4697 				continue;
4698 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4699 				 prog->name, map_idx, map->name, map->sec_idx,
4700 				 map->sec_offset, insn_idx);
4701 			break;
4702 		}
4703 		if (map_idx >= nr_maps) {
4704 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4705 				prog->name, sym_sec_name, (size_t)sym->st_value);
4706 			return -LIBBPF_ERRNO__RELOC;
4707 		}
4708 		reloc_desc->type = RELO_LD64;
4709 		reloc_desc->insn_idx = insn_idx;
4710 		reloc_desc->map_idx = map_idx;
4711 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4712 		return 0;
4713 	}
4714 
4715 	/* global data map relocation */
4716 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4717 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4718 			prog->name, sym_sec_name);
4719 		return -LIBBPF_ERRNO__RELOC;
4720 	}
4721 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4722 		map = &obj->maps[map_idx];
4723 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4724 			continue;
4725 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4726 			 prog->name, map_idx, map->name, map->sec_idx,
4727 			 map->sec_offset, insn_idx);
4728 		break;
4729 	}
4730 	if (map_idx >= nr_maps) {
4731 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4732 			prog->name, sym_sec_name);
4733 		return -LIBBPF_ERRNO__RELOC;
4734 	}
4735 
4736 	reloc_desc->type = RELO_DATA;
4737 	reloc_desc->insn_idx = insn_idx;
4738 	reloc_desc->map_idx = map_idx;
4739 	reloc_desc->sym_off = sym->st_value;
4740 	return 0;
4741 }
4742 
4743 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4744 {
4745 	return insn_idx >= prog->sec_insn_off &&
4746 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4747 }
4748 
4749 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4750 						 size_t sec_idx, size_t insn_idx)
4751 {
4752 	int l = 0, r = obj->nr_programs - 1, m;
4753 	struct bpf_program *prog;
4754 
4755 	if (!obj->nr_programs)
4756 		return NULL;
4757 
4758 	while (l < r) {
4759 		m = l + (r - l + 1) / 2;
4760 		prog = &obj->programs[m];
4761 
4762 		if (prog->sec_idx < sec_idx ||
4763 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4764 			l = m;
4765 		else
4766 			r = m - 1;
4767 	}
4768 	/* matching program could be at index l, but it still might be the
4769 	 * wrong one, so we need to double check conditions for the last time
4770 	 */
4771 	prog = &obj->programs[l];
4772 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4773 		return prog;
4774 	return NULL;
4775 }
4776 
4777 static int
4778 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4779 {
4780 	const char *relo_sec_name, *sec_name;
4781 	size_t sec_idx = shdr->sh_info, sym_idx;
4782 	struct bpf_program *prog;
4783 	struct reloc_desc *relos;
4784 	int err, i, nrels;
4785 	const char *sym_name;
4786 	__u32 insn_idx;
4787 	Elf_Scn *scn;
4788 	Elf_Data *scn_data;
4789 	Elf64_Sym *sym;
4790 	Elf64_Rel *rel;
4791 
4792 	if (sec_idx >= obj->efile.sec_cnt)
4793 		return -EINVAL;
4794 
4795 	scn = elf_sec_by_idx(obj, sec_idx);
4796 	scn_data = elf_sec_data(obj, scn);
4797 	if (!scn_data)
4798 		return -LIBBPF_ERRNO__FORMAT;
4799 
4800 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4801 	sec_name = elf_sec_name(obj, scn);
4802 	if (!relo_sec_name || !sec_name)
4803 		return -EINVAL;
4804 
4805 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4806 		 relo_sec_name, sec_idx, sec_name);
4807 	nrels = shdr->sh_size / shdr->sh_entsize;
4808 
4809 	for (i = 0; i < nrels; i++) {
4810 		rel = elf_rel_by_idx(data, i);
4811 		if (!rel) {
4812 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4813 			return -LIBBPF_ERRNO__FORMAT;
4814 		}
4815 
4816 		sym_idx = ELF64_R_SYM(rel->r_info);
4817 		sym = elf_sym_by_idx(obj, sym_idx);
4818 		if (!sym) {
4819 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4820 				relo_sec_name, sym_idx, i);
4821 			return -LIBBPF_ERRNO__FORMAT;
4822 		}
4823 
4824 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4825 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4826 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4827 			return -LIBBPF_ERRNO__FORMAT;
4828 		}
4829 
4830 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4831 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4832 				relo_sec_name, (size_t)rel->r_offset, i);
4833 			return -LIBBPF_ERRNO__FORMAT;
4834 		}
4835 
4836 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4837 		/* relocations against static functions are recorded as
4838 		 * relocations against the section that contains a function;
4839 		 * in such case, symbol will be STT_SECTION and sym.st_name
4840 		 * will point to empty string (0), so fetch section name
4841 		 * instead
4842 		 */
4843 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4844 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4845 		else
4846 			sym_name = elf_sym_str(obj, sym->st_name);
4847 		sym_name = sym_name ?: "<?";
4848 
4849 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4850 			 relo_sec_name, i, insn_idx, sym_name);
4851 
4852 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4853 		if (!prog) {
4854 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4855 				relo_sec_name, i, sec_name, insn_idx);
4856 			continue;
4857 		}
4858 
4859 		relos = libbpf_reallocarray(prog->reloc_desc,
4860 					    prog->nr_reloc + 1, sizeof(*relos));
4861 		if (!relos)
4862 			return -ENOMEM;
4863 		prog->reloc_desc = relos;
4864 
4865 		/* adjust insn_idx to local BPF program frame of reference */
4866 		insn_idx -= prog->sec_insn_off;
4867 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4868 						insn_idx, sym_name, sym, rel);
4869 		if (err)
4870 			return err;
4871 
4872 		prog->nr_reloc++;
4873 	}
4874 	return 0;
4875 }
4876 
4877 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4878 {
4879 	int id;
4880 
4881 	if (!obj->btf)
4882 		return -ENOENT;
4883 
4884 	/* if it's BTF-defined map, we don't need to search for type IDs.
4885 	 * For struct_ops map, it does not need btf_key_type_id and
4886 	 * btf_value_type_id.
4887 	 */
4888 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4889 		return 0;
4890 
4891 	/*
4892 	 * LLVM annotates global data differently in BTF, that is,
4893 	 * only as '.data', '.bss' or '.rodata'.
4894 	 */
4895 	if (!bpf_map__is_internal(map))
4896 		return -ENOENT;
4897 
4898 	id = btf__find_by_name(obj->btf, map->real_name);
4899 	if (id < 0)
4900 		return id;
4901 
4902 	map->btf_key_type_id = 0;
4903 	map->btf_value_type_id = id;
4904 	return 0;
4905 }
4906 
4907 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4908 {
4909 	char file[PATH_MAX], buff[4096];
4910 	FILE *fp;
4911 	__u32 val;
4912 	int err;
4913 
4914 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4915 	memset(info, 0, sizeof(*info));
4916 
4917 	fp = fopen(file, "re");
4918 	if (!fp) {
4919 		err = -errno;
4920 		pr_warn("failed to open %s: %s. No procfs support?\n", file,
4921 			errstr(err));
4922 		return err;
4923 	}
4924 
4925 	while (fgets(buff, sizeof(buff), fp)) {
4926 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4927 			info->type = val;
4928 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4929 			info->key_size = val;
4930 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4931 			info->value_size = val;
4932 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4933 			info->max_entries = val;
4934 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4935 			info->map_flags = val;
4936 	}
4937 
4938 	fclose(fp);
4939 
4940 	return 0;
4941 }
4942 
4943 static bool map_is_created(const struct bpf_map *map)
4944 {
4945 	return map->obj->state >= OBJ_PREPARED || map->reused;
4946 }
4947 
4948 bool bpf_map__autocreate(const struct bpf_map *map)
4949 {
4950 	return map->autocreate;
4951 }
4952 
4953 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4954 {
4955 	if (map_is_created(map))
4956 		return libbpf_err(-EBUSY);
4957 
4958 	map->autocreate = autocreate;
4959 	return 0;
4960 }
4961 
4962 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4963 {
4964 	if (!bpf_map__is_struct_ops(map))
4965 		return libbpf_err(-EINVAL);
4966 
4967 	map->autoattach = autoattach;
4968 	return 0;
4969 }
4970 
4971 bool bpf_map__autoattach(const struct bpf_map *map)
4972 {
4973 	return map->autoattach;
4974 }
4975 
4976 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4977 {
4978 	struct bpf_map_info info;
4979 	__u32 len = sizeof(info), name_len;
4980 	int new_fd, err;
4981 	char *new_name;
4982 
4983 	memset(&info, 0, len);
4984 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4985 	if (err && errno == EINVAL)
4986 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4987 	if (err)
4988 		return libbpf_err(err);
4989 
4990 	name_len = strlen(info.name);
4991 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4992 		new_name = strdup(map->name);
4993 	else
4994 		new_name = strdup(info.name);
4995 
4996 	if (!new_name)
4997 		return libbpf_err(-errno);
4998 
4999 	/*
5000 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
5001 	 * This is similar to what we do in ensure_good_fd(), but without
5002 	 * closing original FD.
5003 	 */
5004 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
5005 	if (new_fd < 0) {
5006 		err = -errno;
5007 		goto err_free_new_name;
5008 	}
5009 
5010 	err = reuse_fd(map->fd, new_fd);
5011 	if (err)
5012 		goto err_free_new_name;
5013 
5014 	free(map->name);
5015 
5016 	map->name = new_name;
5017 	map->def.type = info.type;
5018 	map->def.key_size = info.key_size;
5019 	map->def.value_size = info.value_size;
5020 	map->def.max_entries = info.max_entries;
5021 	map->def.map_flags = info.map_flags;
5022 	map->btf_key_type_id = info.btf_key_type_id;
5023 	map->btf_value_type_id = info.btf_value_type_id;
5024 	map->reused = true;
5025 	map->map_extra = info.map_extra;
5026 
5027 	return 0;
5028 
5029 err_free_new_name:
5030 	free(new_name);
5031 	return libbpf_err(err);
5032 }
5033 
5034 __u32 bpf_map__max_entries(const struct bpf_map *map)
5035 {
5036 	return map->def.max_entries;
5037 }
5038 
5039 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
5040 {
5041 	if (!bpf_map_type__is_map_in_map(map->def.type))
5042 		return errno = EINVAL, NULL;
5043 
5044 	return map->inner_map;
5045 }
5046 
5047 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
5048 {
5049 	if (map_is_created(map))
5050 		return libbpf_err(-EBUSY);
5051 
5052 	map->def.max_entries = max_entries;
5053 
5054 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
5055 	if (map_is_ringbuf(map))
5056 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
5057 
5058 	return 0;
5059 }
5060 
5061 static int bpf_object_prepare_token(struct bpf_object *obj)
5062 {
5063 	const char *bpffs_path;
5064 	int bpffs_fd = -1, token_fd, err;
5065 	bool mandatory;
5066 	enum libbpf_print_level level;
5067 
5068 	/* token is explicitly prevented */
5069 	if (obj->token_path && obj->token_path[0] == '\0') {
5070 		pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
5071 		return 0;
5072 	}
5073 
5074 	mandatory = obj->token_path != NULL;
5075 	level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
5076 
5077 	bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
5078 	bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
5079 	if (bpffs_fd < 0) {
5080 		err = -errno;
5081 		__pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n",
5082 		     obj->name, errstr(err), bpffs_path,
5083 		     mandatory ? "" : ", skipping optional step...");
5084 		return mandatory ? err : 0;
5085 	}
5086 
5087 	token_fd = bpf_token_create(bpffs_fd, 0);
5088 	close(bpffs_fd);
5089 	if (token_fd < 0) {
5090 		if (!mandatory && token_fd == -ENOENT) {
5091 			pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
5092 				 obj->name, bpffs_path);
5093 			return 0;
5094 		}
5095 		__pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
5096 		     obj->name, token_fd, bpffs_path,
5097 		     mandatory ? "" : ", skipping optional step...");
5098 		return mandatory ? token_fd : 0;
5099 	}
5100 
5101 	obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
5102 	if (!obj->feat_cache) {
5103 		close(token_fd);
5104 		return -ENOMEM;
5105 	}
5106 
5107 	obj->token_fd = token_fd;
5108 	obj->feat_cache->token_fd = token_fd;
5109 
5110 	return 0;
5111 }
5112 
5113 static int
5114 bpf_object__probe_loading(struct bpf_object *obj)
5115 {
5116 	struct bpf_insn insns[] = {
5117 		BPF_MOV64_IMM(BPF_REG_0, 0),
5118 		BPF_EXIT_INSN(),
5119 	};
5120 	int ret, insn_cnt = ARRAY_SIZE(insns);
5121 	LIBBPF_OPTS(bpf_prog_load_opts, opts,
5122 		.token_fd = obj->token_fd,
5123 		.prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
5124 	);
5125 
5126 	if (obj->gen_loader)
5127 		return 0;
5128 
5129 	ret = bump_rlimit_memlock();
5130 	if (ret)
5131 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n",
5132 			errstr(ret));
5133 
5134 	/* make sure basic loading works */
5135 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
5136 	if (ret < 0)
5137 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5138 	if (ret < 0) {
5139 		ret = errno;
5140 		pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n",
5141 			__func__, errstr(ret));
5142 		return -ret;
5143 	}
5144 	close(ret);
5145 
5146 	return 0;
5147 }
5148 
5149 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5150 {
5151 	if (obj->gen_loader)
5152 		/* To generate loader program assume the latest kernel
5153 		 * to avoid doing extra prog_load, map_create syscalls.
5154 		 */
5155 		return true;
5156 
5157 	if (obj->token_fd)
5158 		return feat_supported(obj->feat_cache, feat_id);
5159 
5160 	return feat_supported(NULL, feat_id);
5161 }
5162 
5163 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5164 {
5165 	struct bpf_map_info map_info;
5166 	__u32 map_info_len = sizeof(map_info);
5167 	int err;
5168 
5169 	memset(&map_info, 0, map_info_len);
5170 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5171 	if (err && errno == EINVAL)
5172 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5173 	if (err) {
5174 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5175 			errstr(err));
5176 		return false;
5177 	}
5178 
5179 	/*
5180 	 * bpf_get_map_info_by_fd() for DEVMAP will always return flags with
5181 	 * BPF_F_RDONLY_PROG set, but it generally is not set at map creation time.
5182 	 * Thus, ignore the BPF_F_RDONLY_PROG flag in the flags returned from
5183 	 * bpf_get_map_info_by_fd() when checking for compatibility with an
5184 	 * existing DEVMAP.
5185 	 */
5186 	if (map->def.type == BPF_MAP_TYPE_DEVMAP || map->def.type == BPF_MAP_TYPE_DEVMAP_HASH)
5187 		map_info.map_flags &= ~BPF_F_RDONLY_PROG;
5188 
5189 	return (map_info.type == map->def.type &&
5190 		map_info.key_size == map->def.key_size &&
5191 		map_info.value_size == map->def.value_size &&
5192 		map_info.max_entries == map->def.max_entries &&
5193 		map_info.map_flags == map->def.map_flags &&
5194 		map_info.map_extra == map->map_extra);
5195 }
5196 
5197 static int
5198 bpf_object__reuse_map(struct bpf_map *map)
5199 {
5200 	int err, pin_fd;
5201 
5202 	pin_fd = bpf_obj_get(map->pin_path);
5203 	if (pin_fd < 0) {
5204 		err = -errno;
5205 		if (err == -ENOENT) {
5206 			pr_debug("found no pinned map to reuse at '%s'\n",
5207 				 map->pin_path);
5208 			return 0;
5209 		}
5210 
5211 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5212 			map->pin_path, errstr(err));
5213 		return err;
5214 	}
5215 
5216 	if (!map_is_reuse_compat(map, pin_fd)) {
5217 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5218 			map->pin_path);
5219 		close(pin_fd);
5220 		return -EINVAL;
5221 	}
5222 
5223 	err = bpf_map__reuse_fd(map, pin_fd);
5224 	close(pin_fd);
5225 	if (err)
5226 		return err;
5227 
5228 	map->pinned = true;
5229 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5230 
5231 	return 0;
5232 }
5233 
5234 static int
5235 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5236 {
5237 	enum libbpf_map_type map_type = map->libbpf_type;
5238 	int err, zero = 0;
5239 	size_t mmap_sz;
5240 
5241 	if (obj->gen_loader) {
5242 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5243 					 map->mmaped, map->def.value_size);
5244 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5245 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5246 		return 0;
5247 	}
5248 
5249 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5250 	if (err) {
5251 		err = -errno;
5252 		pr_warn("map '%s': failed to set initial contents: %s\n",
5253 			bpf_map__name(map), errstr(err));
5254 		return err;
5255 	}
5256 
5257 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5258 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5259 		err = bpf_map_freeze(map->fd);
5260 		if (err) {
5261 			err = -errno;
5262 			pr_warn("map '%s': failed to freeze as read-only: %s\n",
5263 				bpf_map__name(map), errstr(err));
5264 			return err;
5265 		}
5266 	}
5267 
5268 	/* Remap anonymous mmap()-ed "map initialization image" as
5269 	 * a BPF map-backed mmap()-ed memory, but preserving the same
5270 	 * memory address. This will cause kernel to change process'
5271 	 * page table to point to a different piece of kernel memory,
5272 	 * but from userspace point of view memory address (and its
5273 	 * contents, being identical at this point) will stay the
5274 	 * same. This mapping will be released by bpf_object__close()
5275 	 * as per normal clean up procedure.
5276 	 */
5277 	mmap_sz = bpf_map_mmap_sz(map);
5278 	if (map->def.map_flags & BPF_F_MMAPABLE) {
5279 		void *mmaped;
5280 		int prot;
5281 
5282 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
5283 			prot = PROT_READ;
5284 		else
5285 			prot = PROT_READ | PROT_WRITE;
5286 		mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0);
5287 		if (mmaped == MAP_FAILED) {
5288 			err = -errno;
5289 			pr_warn("map '%s': failed to re-mmap() contents: %s\n",
5290 				bpf_map__name(map), errstr(err));
5291 			return err;
5292 		}
5293 		map->mmaped = mmaped;
5294 	} else if (map->mmaped) {
5295 		munmap(map->mmaped, mmap_sz);
5296 		map->mmaped = NULL;
5297 	}
5298 
5299 	return 0;
5300 }
5301 
5302 static void bpf_map__destroy(struct bpf_map *map);
5303 
5304 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5305 {
5306 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5307 	struct bpf_map_def *def = &map->def;
5308 	const char *map_name = NULL;
5309 	int err = 0, map_fd;
5310 
5311 	if (kernel_supports(obj, FEAT_PROG_NAME))
5312 		map_name = map->name;
5313 	create_attr.map_ifindex = map->map_ifindex;
5314 	create_attr.map_flags = def->map_flags;
5315 	create_attr.numa_node = map->numa_node;
5316 	create_attr.map_extra = map->map_extra;
5317 	create_attr.token_fd = obj->token_fd;
5318 	if (obj->token_fd)
5319 		create_attr.map_flags |= BPF_F_TOKEN_FD;
5320 	if (map->excl_prog) {
5321 		err = bpf_prog_compute_hash(map->excl_prog);
5322 		if (err)
5323 			return err;
5324 
5325 		create_attr.excl_prog_hash = map->excl_prog->hash;
5326 		create_attr.excl_prog_hash_size = SHA256_DIGEST_LENGTH;
5327 	}
5328 
5329 	if (bpf_map__is_struct_ops(map)) {
5330 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5331 		if (map->mod_btf_fd >= 0) {
5332 			create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5333 			create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5334 		}
5335 	}
5336 
5337 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5338 		create_attr.btf_fd = btf__fd(obj->btf);
5339 		create_attr.btf_key_type_id = map->btf_key_type_id;
5340 		create_attr.btf_value_type_id = map->btf_value_type_id;
5341 	}
5342 
5343 	if (bpf_map_type__is_map_in_map(def->type)) {
5344 		if (map->inner_map) {
5345 			err = map_set_def_max_entries(map->inner_map);
5346 			if (err)
5347 				return err;
5348 			err = bpf_object__create_map(obj, map->inner_map, true);
5349 			if (err) {
5350 				pr_warn("map '%s': failed to create inner map: %s\n",
5351 					map->name, errstr(err));
5352 				return err;
5353 			}
5354 			map->inner_map_fd = map->inner_map->fd;
5355 		}
5356 		if (map->inner_map_fd >= 0)
5357 			create_attr.inner_map_fd = map->inner_map_fd;
5358 	}
5359 
5360 	switch (def->type) {
5361 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5362 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5363 	case BPF_MAP_TYPE_STACK_TRACE:
5364 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5365 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5366 	case BPF_MAP_TYPE_DEVMAP:
5367 	case BPF_MAP_TYPE_DEVMAP_HASH:
5368 	case BPF_MAP_TYPE_CPUMAP:
5369 	case BPF_MAP_TYPE_XSKMAP:
5370 	case BPF_MAP_TYPE_SOCKMAP:
5371 	case BPF_MAP_TYPE_SOCKHASH:
5372 	case BPF_MAP_TYPE_QUEUE:
5373 	case BPF_MAP_TYPE_STACK:
5374 	case BPF_MAP_TYPE_ARENA:
5375 		create_attr.btf_fd = 0;
5376 		create_attr.btf_key_type_id = 0;
5377 		create_attr.btf_value_type_id = 0;
5378 		map->btf_key_type_id = 0;
5379 		map->btf_value_type_id = 0;
5380 		break;
5381 	case BPF_MAP_TYPE_STRUCT_OPS:
5382 		create_attr.btf_value_type_id = 0;
5383 		break;
5384 	default:
5385 		break;
5386 	}
5387 
5388 	if (obj->gen_loader) {
5389 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5390 				    def->key_size, def->value_size, def->max_entries,
5391 				    &create_attr, is_inner ? -1 : map - obj->maps);
5392 		/* We keep pretenting we have valid FD to pass various fd >= 0
5393 		 * checks by just keeping original placeholder FDs in place.
5394 		 * See bpf_object__add_map() comment.
5395 		 * This placeholder fd will not be used with any syscall and
5396 		 * will be reset to -1 eventually.
5397 		 */
5398 		map_fd = map->fd;
5399 	} else {
5400 		map_fd = bpf_map_create(def->type, map_name,
5401 					def->key_size, def->value_size,
5402 					def->max_entries, &create_attr);
5403 	}
5404 	if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5405 		err = -errno;
5406 		pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n",
5407 			map->name, errstr(err));
5408 		create_attr.btf_fd = 0;
5409 		create_attr.btf_key_type_id = 0;
5410 		create_attr.btf_value_type_id = 0;
5411 		map->btf_key_type_id = 0;
5412 		map->btf_value_type_id = 0;
5413 		map_fd = bpf_map_create(def->type, map_name,
5414 					def->key_size, def->value_size,
5415 					def->max_entries, &create_attr);
5416 	}
5417 
5418 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5419 		if (obj->gen_loader)
5420 			map->inner_map->fd = -1;
5421 		bpf_map__destroy(map->inner_map);
5422 		zfree(&map->inner_map);
5423 	}
5424 
5425 	if (map_fd < 0)
5426 		return map_fd;
5427 
5428 	/* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5429 	if (map->fd == map_fd)
5430 		return 0;
5431 
5432 	/* Keep placeholder FD value but now point it to the BPF map object.
5433 	 * This way everything that relied on this map's FD (e.g., relocated
5434 	 * ldimm64 instructions) will stay valid and won't need adjustments.
5435 	 * map->fd stays valid but now point to what map_fd points to.
5436 	 */
5437 	return reuse_fd(map->fd, map_fd);
5438 }
5439 
5440 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5441 {
5442 	const struct bpf_map *targ_map;
5443 	unsigned int i;
5444 	int fd, err = 0;
5445 
5446 	for (i = 0; i < map->init_slots_sz; i++) {
5447 		if (!map->init_slots[i])
5448 			continue;
5449 
5450 		targ_map = map->init_slots[i];
5451 		fd = targ_map->fd;
5452 
5453 		if (obj->gen_loader) {
5454 			bpf_gen__populate_outer_map(obj->gen_loader,
5455 						    map - obj->maps, i,
5456 						    targ_map - obj->maps);
5457 		} else {
5458 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5459 		}
5460 		if (err) {
5461 			err = -errno;
5462 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n",
5463 				map->name, i, targ_map->name, fd, errstr(err));
5464 			return err;
5465 		}
5466 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5467 			 map->name, i, targ_map->name, fd);
5468 	}
5469 
5470 	zfree(&map->init_slots);
5471 	map->init_slots_sz = 0;
5472 
5473 	return 0;
5474 }
5475 
5476 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5477 {
5478 	const struct bpf_program *targ_prog;
5479 	unsigned int i;
5480 	int fd, err;
5481 
5482 	if (obj->gen_loader)
5483 		return -ENOTSUP;
5484 
5485 	for (i = 0; i < map->init_slots_sz; i++) {
5486 		if (!map->init_slots[i])
5487 			continue;
5488 
5489 		targ_prog = map->init_slots[i];
5490 		fd = bpf_program__fd(targ_prog);
5491 
5492 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5493 		if (err) {
5494 			err = -errno;
5495 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n",
5496 				map->name, i, targ_prog->name, fd, errstr(err));
5497 			return err;
5498 		}
5499 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5500 			 map->name, i, targ_prog->name, fd);
5501 	}
5502 
5503 	zfree(&map->init_slots);
5504 	map->init_slots_sz = 0;
5505 
5506 	return 0;
5507 }
5508 
5509 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5510 {
5511 	struct bpf_map *map;
5512 	int i, err;
5513 
5514 	for (i = 0; i < obj->nr_maps; i++) {
5515 		map = &obj->maps[i];
5516 
5517 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5518 			continue;
5519 
5520 		err = init_prog_array_slots(obj, map);
5521 		if (err < 0)
5522 			return err;
5523 	}
5524 	return 0;
5525 }
5526 
5527 static int map_set_def_max_entries(struct bpf_map *map)
5528 {
5529 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5530 		int nr_cpus;
5531 
5532 		nr_cpus = libbpf_num_possible_cpus();
5533 		if (nr_cpus < 0) {
5534 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5535 				map->name, nr_cpus);
5536 			return nr_cpus;
5537 		}
5538 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5539 		map->def.max_entries = nr_cpus;
5540 	}
5541 
5542 	return 0;
5543 }
5544 
5545 static int
5546 bpf_object__create_maps(struct bpf_object *obj)
5547 {
5548 	struct bpf_map *map;
5549 	unsigned int i, j;
5550 	int err;
5551 	bool retried;
5552 
5553 	for (i = 0; i < obj->nr_maps; i++) {
5554 		map = &obj->maps[i];
5555 
5556 		/* To support old kernels, we skip creating global data maps
5557 		 * (.rodata, .data, .kconfig, etc); later on, during program
5558 		 * loading, if we detect that at least one of the to-be-loaded
5559 		 * programs is referencing any global data map, we'll error
5560 		 * out with program name and relocation index logged.
5561 		 * This approach allows to accommodate Clang emitting
5562 		 * unnecessary .rodata.str1.1 sections for string literals,
5563 		 * but also it allows to have CO-RE applications that use
5564 		 * global variables in some of BPF programs, but not others.
5565 		 * If those global variable-using programs are not loaded at
5566 		 * runtime due to bpf_program__set_autoload(prog, false),
5567 		 * bpf_object loading will succeed just fine even on old
5568 		 * kernels.
5569 		 */
5570 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5571 			map->autocreate = false;
5572 
5573 		if (!map->autocreate) {
5574 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5575 			continue;
5576 		}
5577 
5578 		err = map_set_def_max_entries(map);
5579 		if (err)
5580 			goto err_out;
5581 
5582 		retried = false;
5583 retry:
5584 		if (map->pin_path) {
5585 			err = bpf_object__reuse_map(map);
5586 			if (err) {
5587 				pr_warn("map '%s': error reusing pinned map\n",
5588 					map->name);
5589 				goto err_out;
5590 			}
5591 			if (retried && map->fd < 0) {
5592 				pr_warn("map '%s': cannot find pinned map\n",
5593 					map->name);
5594 				err = -ENOENT;
5595 				goto err_out;
5596 			}
5597 		}
5598 
5599 		if (map->reused) {
5600 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5601 				 map->name, map->fd);
5602 		} else {
5603 			err = bpf_object__create_map(obj, map, false);
5604 			if (err)
5605 				goto err_out;
5606 
5607 			pr_debug("map '%s': created successfully, fd=%d\n",
5608 				 map->name, map->fd);
5609 
5610 			if (bpf_map__is_internal(map)) {
5611 				err = bpf_object__populate_internal_map(obj, map);
5612 				if (err < 0)
5613 					goto err_out;
5614 			} else if (map->def.type == BPF_MAP_TYPE_ARENA) {
5615 				map->mmaped = mmap((void *)(long)map->map_extra,
5616 						   bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5617 						   map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5618 						   map->fd, 0);
5619 				if (map->mmaped == MAP_FAILED) {
5620 					err = -errno;
5621 					map->mmaped = NULL;
5622 					pr_warn("map '%s': failed to mmap arena: %s\n",
5623 						map->name, errstr(err));
5624 					return err;
5625 				}
5626 				if (obj->arena_data) {
5627 					memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5628 					zfree(&obj->arena_data);
5629 				}
5630 			}
5631 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5632 				err = init_map_in_map_slots(obj, map);
5633 				if (err < 0)
5634 					goto err_out;
5635 			}
5636 		}
5637 
5638 		if (map->pin_path && !map->pinned) {
5639 			err = bpf_map__pin(map, NULL);
5640 			if (err) {
5641 				if (!retried && err == -EEXIST) {
5642 					retried = true;
5643 					goto retry;
5644 				}
5645 				pr_warn("map '%s': failed to auto-pin at '%s': %s\n",
5646 					map->name, map->pin_path, errstr(err));
5647 				goto err_out;
5648 			}
5649 		}
5650 	}
5651 
5652 	return 0;
5653 
5654 err_out:
5655 	pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err));
5656 	pr_perm_msg(err);
5657 	for (j = 0; j < i; j++)
5658 		zclose(obj->maps[j].fd);
5659 	return err;
5660 }
5661 
5662 static bool bpf_core_is_flavor_sep(const char *s)
5663 {
5664 	/* check X___Y name pattern, where X and Y are not underscores */
5665 	return s[0] != '_' &&				      /* X */
5666 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5667 	       s[4] != '_';				      /* Y */
5668 }
5669 
5670 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5671  * before last triple underscore. Struct name part after last triple
5672  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5673  */
5674 size_t bpf_core_essential_name_len(const char *name)
5675 {
5676 	size_t n = strlen(name);
5677 	int i;
5678 
5679 	for (i = n - 5; i >= 0; i--) {
5680 		if (bpf_core_is_flavor_sep(name + i))
5681 			return i + 1;
5682 	}
5683 	return n;
5684 }
5685 
5686 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5687 {
5688 	if (!cands)
5689 		return;
5690 
5691 	free(cands->cands);
5692 	free(cands);
5693 }
5694 
5695 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5696 		       size_t local_essent_len,
5697 		       const struct btf *targ_btf,
5698 		       const char *targ_btf_name,
5699 		       int targ_start_id,
5700 		       struct bpf_core_cand_list *cands)
5701 {
5702 	struct bpf_core_cand *new_cands, *cand;
5703 	const struct btf_type *t, *local_t;
5704 	const char *targ_name, *local_name;
5705 	size_t targ_essent_len;
5706 	int n, i;
5707 
5708 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5709 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5710 
5711 	n = btf__type_cnt(targ_btf);
5712 	for (i = targ_start_id; i < n; i++) {
5713 		t = btf__type_by_id(targ_btf, i);
5714 		if (!btf_kind_core_compat(t, local_t))
5715 			continue;
5716 
5717 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5718 		if (str_is_empty(targ_name))
5719 			continue;
5720 
5721 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5722 		if (targ_essent_len != local_essent_len)
5723 			continue;
5724 
5725 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5726 			continue;
5727 
5728 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5729 			 local_cand->id, btf_kind_str(local_t),
5730 			 local_name, i, btf_kind_str(t), targ_name,
5731 			 targ_btf_name);
5732 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5733 					      sizeof(*cands->cands));
5734 		if (!new_cands)
5735 			return -ENOMEM;
5736 
5737 		cand = &new_cands[cands->len];
5738 		cand->btf = targ_btf;
5739 		cand->id = i;
5740 
5741 		cands->cands = new_cands;
5742 		cands->len++;
5743 	}
5744 	return 0;
5745 }
5746 
5747 static int load_module_btfs(struct bpf_object *obj)
5748 {
5749 	struct bpf_btf_info info;
5750 	struct module_btf *mod_btf;
5751 	struct btf *btf;
5752 	char name[64];
5753 	__u32 id = 0, len;
5754 	int err, fd;
5755 
5756 	if (obj->btf_modules_loaded)
5757 		return 0;
5758 
5759 	if (obj->gen_loader)
5760 		return 0;
5761 
5762 	/* don't do this again, even if we find no module BTFs */
5763 	obj->btf_modules_loaded = true;
5764 
5765 	/* kernel too old to support module BTFs */
5766 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5767 		return 0;
5768 
5769 	while (true) {
5770 		err = bpf_btf_get_next_id(id, &id);
5771 		if (err && errno == ENOENT)
5772 			return 0;
5773 		if (err && errno == EPERM) {
5774 			pr_debug("skipping module BTFs loading, missing privileges\n");
5775 			return 0;
5776 		}
5777 		if (err) {
5778 			err = -errno;
5779 			pr_warn("failed to iterate BTF objects: %s\n", errstr(err));
5780 			return err;
5781 		}
5782 
5783 		fd = bpf_btf_get_fd_by_id(id);
5784 		if (fd < 0) {
5785 			if (errno == ENOENT)
5786 				continue; /* expected race: BTF was unloaded */
5787 			err = -errno;
5788 			pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err));
5789 			return err;
5790 		}
5791 
5792 		len = sizeof(info);
5793 		memset(&info, 0, sizeof(info));
5794 		info.name = ptr_to_u64(name);
5795 		info.name_len = sizeof(name);
5796 
5797 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5798 		if (err) {
5799 			err = -errno;
5800 			pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err));
5801 			goto err_out;
5802 		}
5803 
5804 		/* ignore non-module BTFs */
5805 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5806 			close(fd);
5807 			continue;
5808 		}
5809 
5810 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5811 		err = libbpf_get_error(btf);
5812 		if (err) {
5813 			pr_warn("failed to load module [%s]'s BTF object #%d: %s\n",
5814 				name, id, errstr(err));
5815 			goto err_out;
5816 		}
5817 
5818 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5819 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5820 		if (err)
5821 			goto err_out;
5822 
5823 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5824 
5825 		mod_btf->btf = btf;
5826 		mod_btf->id = id;
5827 		mod_btf->fd = fd;
5828 		mod_btf->name = strdup(name);
5829 		if (!mod_btf->name) {
5830 			err = -ENOMEM;
5831 			goto err_out;
5832 		}
5833 		continue;
5834 
5835 err_out:
5836 		close(fd);
5837 		return err;
5838 	}
5839 
5840 	return 0;
5841 }
5842 
5843 static struct bpf_core_cand_list *
5844 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5845 {
5846 	struct bpf_core_cand local_cand = {};
5847 	struct bpf_core_cand_list *cands;
5848 	const struct btf *main_btf;
5849 	const struct btf_type *local_t;
5850 	const char *local_name;
5851 	size_t local_essent_len;
5852 	int err, i;
5853 
5854 	local_cand.btf = local_btf;
5855 	local_cand.id = local_type_id;
5856 	local_t = btf__type_by_id(local_btf, local_type_id);
5857 	if (!local_t)
5858 		return ERR_PTR(-EINVAL);
5859 
5860 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5861 	if (str_is_empty(local_name))
5862 		return ERR_PTR(-EINVAL);
5863 	local_essent_len = bpf_core_essential_name_len(local_name);
5864 
5865 	cands = calloc(1, sizeof(*cands));
5866 	if (!cands)
5867 		return ERR_PTR(-ENOMEM);
5868 
5869 	/* Attempt to find target candidates in vmlinux BTF first */
5870 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5871 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5872 	if (err)
5873 		goto err_out;
5874 
5875 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5876 	if (cands->len)
5877 		return cands;
5878 
5879 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5880 	if (obj->btf_vmlinux_override)
5881 		return cands;
5882 
5883 	/* now look through module BTFs, trying to still find candidates */
5884 	err = load_module_btfs(obj);
5885 	if (err)
5886 		goto err_out;
5887 
5888 	for (i = 0; i < obj->btf_module_cnt; i++) {
5889 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5890 					 obj->btf_modules[i].btf,
5891 					 obj->btf_modules[i].name,
5892 					 btf__type_cnt(obj->btf_vmlinux),
5893 					 cands);
5894 		if (err)
5895 			goto err_out;
5896 	}
5897 
5898 	return cands;
5899 err_out:
5900 	bpf_core_free_cands(cands);
5901 	return ERR_PTR(err);
5902 }
5903 
5904 /* Check local and target types for compatibility. This check is used for
5905  * type-based CO-RE relocations and follow slightly different rules than
5906  * field-based relocations. This function assumes that root types were already
5907  * checked for name match. Beyond that initial root-level name check, names
5908  * are completely ignored. Compatibility rules are as follows:
5909  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5910  *     kind should match for local and target types (i.e., STRUCT is not
5911  *     compatible with UNION);
5912  *   - for ENUMs, the size is ignored;
5913  *   - for INT, size and signedness are ignored;
5914  *   - for ARRAY, dimensionality is ignored, element types are checked for
5915  *     compatibility recursively;
5916  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5917  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5918  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5919  *     number of input args and compatible return and argument types.
5920  * These rules are not set in stone and probably will be adjusted as we get
5921  * more experience with using BPF CO-RE relocations.
5922  */
5923 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5924 			      const struct btf *targ_btf, __u32 targ_id)
5925 {
5926 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5927 }
5928 
5929 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5930 			 const struct btf *targ_btf, __u32 targ_id)
5931 {
5932 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5933 }
5934 
5935 static size_t bpf_core_hash_fn(const long key, void *ctx)
5936 {
5937 	return key;
5938 }
5939 
5940 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5941 {
5942 	return k1 == k2;
5943 }
5944 
5945 static int record_relo_core(struct bpf_program *prog,
5946 			    const struct bpf_core_relo *core_relo, int insn_idx)
5947 {
5948 	struct reloc_desc *relos, *relo;
5949 
5950 	relos = libbpf_reallocarray(prog->reloc_desc,
5951 				    prog->nr_reloc + 1, sizeof(*relos));
5952 	if (!relos)
5953 		return -ENOMEM;
5954 	relo = &relos[prog->nr_reloc];
5955 	relo->type = RELO_CORE;
5956 	relo->insn_idx = insn_idx;
5957 	relo->core_relo = core_relo;
5958 	prog->reloc_desc = relos;
5959 	prog->nr_reloc++;
5960 	return 0;
5961 }
5962 
5963 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5964 {
5965 	struct reloc_desc *relo;
5966 	int i;
5967 
5968 	for (i = 0; i < prog->nr_reloc; i++) {
5969 		relo = &prog->reloc_desc[i];
5970 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5971 			continue;
5972 
5973 		return relo->core_relo;
5974 	}
5975 
5976 	return NULL;
5977 }
5978 
5979 static int bpf_core_resolve_relo(struct bpf_program *prog,
5980 				 const struct bpf_core_relo *relo,
5981 				 int relo_idx,
5982 				 const struct btf *local_btf,
5983 				 struct hashmap *cand_cache,
5984 				 struct bpf_core_relo_res *targ_res)
5985 {
5986 	struct bpf_core_spec specs_scratch[3] = {};
5987 	struct bpf_core_cand_list *cands = NULL;
5988 	const char *prog_name = prog->name;
5989 	const struct btf_type *local_type;
5990 	const char *local_name;
5991 	__u32 local_id = relo->type_id;
5992 	int err;
5993 
5994 	local_type = btf__type_by_id(local_btf, local_id);
5995 	if (!local_type)
5996 		return -EINVAL;
5997 
5998 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5999 	if (!local_name)
6000 		return -EINVAL;
6001 
6002 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
6003 	    !hashmap__find(cand_cache, local_id, &cands)) {
6004 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
6005 		if (IS_ERR(cands)) {
6006 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
6007 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
6008 				local_name, PTR_ERR(cands));
6009 			return PTR_ERR(cands);
6010 		}
6011 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
6012 		if (err) {
6013 			bpf_core_free_cands(cands);
6014 			return err;
6015 		}
6016 	}
6017 
6018 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
6019 				       targ_res);
6020 }
6021 
6022 static int
6023 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
6024 {
6025 	const struct btf_ext_info_sec *sec;
6026 	struct bpf_core_relo_res targ_res;
6027 	const struct bpf_core_relo *rec;
6028 	const struct btf_ext_info *seg;
6029 	struct hashmap_entry *entry;
6030 	struct hashmap *cand_cache = NULL;
6031 	struct bpf_program *prog;
6032 	struct bpf_insn *insn;
6033 	const char *sec_name;
6034 	int i, err = 0, insn_idx, sec_idx, sec_num;
6035 
6036 	if (obj->btf_ext->core_relo_info.len == 0)
6037 		return 0;
6038 
6039 	if (targ_btf_path) {
6040 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
6041 		err = libbpf_get_error(obj->btf_vmlinux_override);
6042 		if (err) {
6043 			pr_warn("failed to parse target BTF: %s\n", errstr(err));
6044 			return err;
6045 		}
6046 	}
6047 
6048 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6049 	if (IS_ERR(cand_cache)) {
6050 		err = PTR_ERR(cand_cache);
6051 		goto out;
6052 	}
6053 
6054 	seg = &obj->btf_ext->core_relo_info;
6055 	sec_num = 0;
6056 	for_each_btf_ext_sec(seg, sec) {
6057 		sec_idx = seg->sec_idxs[sec_num];
6058 		sec_num++;
6059 
6060 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6061 		if (str_is_empty(sec_name)) {
6062 			err = -EINVAL;
6063 			goto out;
6064 		}
6065 
6066 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
6067 
6068 		for_each_btf_ext_rec(seg, sec, i, rec) {
6069 			if (rec->insn_off % BPF_INSN_SZ)
6070 				return -EINVAL;
6071 			insn_idx = rec->insn_off / BPF_INSN_SZ;
6072 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6073 			if (!prog) {
6074 				/* When __weak subprog is "overridden" by another instance
6075 				 * of the subprog from a different object file, linker still
6076 				 * appends all the .BTF.ext info that used to belong to that
6077 				 * eliminated subprogram.
6078 				 * This is similar to what x86-64 linker does for relocations.
6079 				 * So just ignore such relocations just like we ignore
6080 				 * subprog instructions when discovering subprograms.
6081 				 */
6082 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
6083 					 sec_name, i, insn_idx);
6084 				continue;
6085 			}
6086 			/* no need to apply CO-RE relocation if the program is
6087 			 * not going to be loaded
6088 			 */
6089 			if (!prog->autoload)
6090 				continue;
6091 
6092 			/* adjust insn_idx from section frame of reference to the local
6093 			 * program's frame of reference; (sub-)program code is not yet
6094 			 * relocated, so it's enough to just subtract in-section offset
6095 			 */
6096 			insn_idx = insn_idx - prog->sec_insn_off;
6097 			if (insn_idx >= prog->insns_cnt)
6098 				return -EINVAL;
6099 			insn = &prog->insns[insn_idx];
6100 
6101 			err = record_relo_core(prog, rec, insn_idx);
6102 			if (err) {
6103 				pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n",
6104 					prog->name, i, errstr(err));
6105 				goto out;
6106 			}
6107 
6108 			if (prog->obj->gen_loader)
6109 				continue;
6110 
6111 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
6112 			if (err) {
6113 				pr_warn("prog '%s': relo #%d: failed to relocate: %s\n",
6114 					prog->name, i, errstr(err));
6115 				goto out;
6116 			}
6117 
6118 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
6119 			if (err) {
6120 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n",
6121 					prog->name, i, insn_idx, errstr(err));
6122 				goto out;
6123 			}
6124 		}
6125 	}
6126 
6127 out:
6128 	/* obj->btf_vmlinux and module BTFs are freed after object load */
6129 	btf__free(obj->btf_vmlinux_override);
6130 	obj->btf_vmlinux_override = NULL;
6131 
6132 	if (!IS_ERR_OR_NULL(cand_cache)) {
6133 		hashmap__for_each_entry(cand_cache, entry, i) {
6134 			bpf_core_free_cands(entry->pvalue);
6135 		}
6136 		hashmap__free(cand_cache);
6137 	}
6138 	return err;
6139 }
6140 
6141 /* base map load ldimm64 special constant, used also for log fixup logic */
6142 #define POISON_LDIMM64_MAP_BASE 2001000000
6143 #define POISON_LDIMM64_MAP_PFX "200100"
6144 
6145 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6146 			       int insn_idx, struct bpf_insn *insn,
6147 			       int map_idx, const struct bpf_map *map)
6148 {
6149 	int i;
6150 
6151 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6152 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
6153 
6154 	/* we turn single ldimm64 into two identical invalid calls */
6155 	for (i = 0; i < 2; i++) {
6156 		insn->code = BPF_JMP | BPF_CALL;
6157 		insn->dst_reg = 0;
6158 		insn->src_reg = 0;
6159 		insn->off = 0;
6160 		/* if this instruction is reachable (not a dead code),
6161 		 * verifier will complain with something like:
6162 		 * invalid func unknown#2001000123
6163 		 * where lower 123 is map index into obj->maps[] array
6164 		 */
6165 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6166 
6167 		insn++;
6168 	}
6169 }
6170 
6171 /* unresolved kfunc call special constant, used also for log fixup logic */
6172 #define POISON_CALL_KFUNC_BASE 2002000000
6173 #define POISON_CALL_KFUNC_PFX "2002"
6174 
6175 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6176 			      int insn_idx, struct bpf_insn *insn,
6177 			      int ext_idx, const struct extern_desc *ext)
6178 {
6179 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6180 		 prog->name, relo_idx, insn_idx, ext->name);
6181 
6182 	/* we turn kfunc call into invalid helper call with identifiable constant */
6183 	insn->code = BPF_JMP | BPF_CALL;
6184 	insn->dst_reg = 0;
6185 	insn->src_reg = 0;
6186 	insn->off = 0;
6187 	/* if this instruction is reachable (not a dead code),
6188 	 * verifier will complain with something like:
6189 	 * invalid func unknown#2001000123
6190 	 * where lower 123 is extern index into obj->externs[] array
6191 	 */
6192 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6193 }
6194 
6195 static int find_jt_map(struct bpf_object *obj, struct bpf_program *prog, int sym_off)
6196 {
6197 	size_t i;
6198 
6199 	for (i = 0; i < obj->jumptable_map_cnt; i++) {
6200 		/*
6201 		 * This might happen that same offset is used for two different
6202 		 * programs (as jump tables can be the same). However, for
6203 		 * different programs different maps should be created.
6204 		 */
6205 		if (obj->jumptable_maps[i].sym_off == sym_off &&
6206 		    obj->jumptable_maps[i].prog == prog)
6207 			return obj->jumptable_maps[i].fd;
6208 	}
6209 
6210 	return -ENOENT;
6211 }
6212 
6213 static int add_jt_map(struct bpf_object *obj, struct bpf_program *prog, int sym_off, int map_fd)
6214 {
6215 	size_t cnt = obj->jumptable_map_cnt;
6216 	size_t size = sizeof(obj->jumptable_maps[0]);
6217 	void *tmp;
6218 
6219 	tmp = libbpf_reallocarray(obj->jumptable_maps, cnt + 1, size);
6220 	if (!tmp)
6221 		return -ENOMEM;
6222 
6223 	obj->jumptable_maps = tmp;
6224 	obj->jumptable_maps[cnt].prog = prog;
6225 	obj->jumptable_maps[cnt].sym_off = sym_off;
6226 	obj->jumptable_maps[cnt].fd = map_fd;
6227 	obj->jumptable_map_cnt++;
6228 
6229 	return 0;
6230 }
6231 
6232 static int find_subprog_idx(struct bpf_program *prog, int insn_idx)
6233 {
6234 	int i;
6235 
6236 	for (i = prog->subprog_cnt - 1; i >= 0; i--) {
6237 		if (insn_idx >= prog->subprogs[i].sub_insn_off)
6238 			return i;
6239 	}
6240 
6241 	return -1;
6242 }
6243 
6244 static int create_jt_map(struct bpf_object *obj, struct bpf_program *prog, struct reloc_desc *relo)
6245 {
6246 	const __u32 jt_entry_size = 8;
6247 	int sym_off = relo->sym_off;
6248 	int jt_size = relo->sym_size;
6249 	__u32 max_entries = jt_size / jt_entry_size;
6250 	__u32 value_size = sizeof(struct bpf_insn_array_value);
6251 	struct bpf_insn_array_value val = {};
6252 	int subprog_idx;
6253 	int map_fd, err;
6254 	__u64 insn_off;
6255 	__u64 *jt;
6256 	__u32 i;
6257 
6258 	map_fd = find_jt_map(obj, prog, sym_off);
6259 	if (map_fd >= 0)
6260 		return map_fd;
6261 
6262 	if (sym_off % jt_entry_size) {
6263 		pr_warn("map '.jumptables': jumptable start %d should be multiple of %u\n",
6264 			sym_off, jt_entry_size);
6265 		return -EINVAL;
6266 	}
6267 
6268 	if (jt_size % jt_entry_size) {
6269 		pr_warn("map '.jumptables': jumptable size %d should be multiple of %u\n",
6270 			jt_size, jt_entry_size);
6271 		return -EINVAL;
6272 	}
6273 
6274 	map_fd = bpf_map_create(BPF_MAP_TYPE_INSN_ARRAY, ".jumptables",
6275 				4, value_size, max_entries, NULL);
6276 	if (map_fd < 0)
6277 		return map_fd;
6278 
6279 	if (!obj->jumptables_data) {
6280 		pr_warn("map '.jumptables': ELF file is missing jump table data\n");
6281 		err = -EINVAL;
6282 		goto err_close;
6283 	}
6284 	if (sym_off + jt_size > obj->jumptables_data_sz) {
6285 		pr_warn("map '.jumptables': jumptables_data size is %zd, trying to access %d\n",
6286 			obj->jumptables_data_sz, sym_off + jt_size);
6287 		err = -EINVAL;
6288 		goto err_close;
6289 	}
6290 
6291 	subprog_idx = -1; /* main program */
6292 	if (relo->insn_idx < 0 || relo->insn_idx >= prog->insns_cnt) {
6293 		pr_warn("map '.jumptables': invalid instruction index %d\n", relo->insn_idx);
6294 		err = -EINVAL;
6295 		goto err_close;
6296 	}
6297 	if (prog->subprogs)
6298 		subprog_idx = find_subprog_idx(prog, relo->insn_idx);
6299 
6300 	jt = (__u64 *)(obj->jumptables_data + sym_off);
6301 	for (i = 0; i < max_entries; i++) {
6302 		/*
6303 		 * The offset should be made to be relative to the beginning of
6304 		 * the main function, not the subfunction.
6305 		 */
6306 		insn_off = jt[i]/sizeof(struct bpf_insn);
6307 		if (subprog_idx >= 0) {
6308 			insn_off -= prog->subprogs[subprog_idx].sec_insn_off;
6309 			insn_off += prog->subprogs[subprog_idx].sub_insn_off;
6310 		} else {
6311 			insn_off -= prog->sec_insn_off;
6312 		}
6313 
6314 		/*
6315 		 * LLVM-generated jump tables contain u64 records, however
6316 		 * should contain values that fit in u32.
6317 		 */
6318 		if (insn_off > UINT32_MAX) {
6319 			pr_warn("map '.jumptables': invalid jump table value 0x%llx at offset %d\n",
6320 				(long long)jt[i], sym_off + i * jt_entry_size);
6321 			err = -EINVAL;
6322 			goto err_close;
6323 		}
6324 
6325 		val.orig_off = insn_off;
6326 		err = bpf_map_update_elem(map_fd, &i, &val, 0);
6327 		if (err)
6328 			goto err_close;
6329 	}
6330 
6331 	err = bpf_map_freeze(map_fd);
6332 	if (err)
6333 		goto err_close;
6334 
6335 	err = add_jt_map(obj, prog, sym_off, map_fd);
6336 	if (err)
6337 		goto err_close;
6338 
6339 	return map_fd;
6340 
6341 err_close:
6342 	close(map_fd);
6343 	return err;
6344 }
6345 
6346 /* Relocate data references within program code:
6347  *  - map references;
6348  *  - global variable references;
6349  *  - extern references.
6350  */
6351 static int
6352 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6353 {
6354 	int i;
6355 
6356 	for (i = 0; i < prog->nr_reloc; i++) {
6357 		struct reloc_desc *relo = &prog->reloc_desc[i];
6358 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6359 		const struct bpf_map *map;
6360 		struct extern_desc *ext;
6361 
6362 		switch (relo->type) {
6363 		case RELO_LD64:
6364 			map = &obj->maps[relo->map_idx];
6365 			if (obj->gen_loader) {
6366 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6367 				insn[0].imm = relo->map_idx;
6368 			} else if (map->autocreate) {
6369 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6370 				insn[0].imm = map->fd;
6371 			} else {
6372 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6373 						   relo->map_idx, map);
6374 			}
6375 			break;
6376 		case RELO_DATA:
6377 			map = &obj->maps[relo->map_idx];
6378 			insn[1].imm = insn[0].imm + relo->sym_off;
6379 			if (obj->gen_loader) {
6380 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6381 				insn[0].imm = relo->map_idx;
6382 			} else if (map->autocreate) {
6383 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6384 				insn[0].imm = map->fd;
6385 			} else {
6386 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6387 						   relo->map_idx, map);
6388 			}
6389 			break;
6390 		case RELO_EXTERN_LD64:
6391 			ext = &obj->externs[relo->ext_idx];
6392 			if (ext->type == EXT_KCFG) {
6393 				if (obj->gen_loader) {
6394 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6395 					insn[0].imm = obj->kconfig_map_idx;
6396 				} else {
6397 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6398 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6399 				}
6400 				insn[1].imm = ext->kcfg.data_off;
6401 			} else /* EXT_KSYM */ {
6402 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6403 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6404 					insn[0].imm = ext->ksym.kernel_btf_id;
6405 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6406 				} else { /* typeless ksyms or unresolved typed ksyms */
6407 					insn[0].imm = (__u32)ext->ksym.addr;
6408 					insn[1].imm = ext->ksym.addr >> 32;
6409 				}
6410 			}
6411 			break;
6412 		case RELO_EXTERN_CALL:
6413 			ext = &obj->externs[relo->ext_idx];
6414 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6415 			if (ext->is_set) {
6416 				insn[0].imm = ext->ksym.kernel_btf_id;
6417 				insn[0].off = ext->ksym.btf_fd_idx;
6418 			} else { /* unresolved weak kfunc call */
6419 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6420 						  relo->ext_idx, ext);
6421 			}
6422 			break;
6423 		case RELO_SUBPROG_ADDR:
6424 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6425 				pr_warn("prog '%s': relo #%d: bad insn\n",
6426 					prog->name, i);
6427 				return -EINVAL;
6428 			}
6429 			/* handled already */
6430 			break;
6431 		case RELO_CALL:
6432 			/* handled already */
6433 			break;
6434 		case RELO_CORE:
6435 			/* will be handled by bpf_program_record_relos() */
6436 			break;
6437 		case RELO_INSN_ARRAY: {
6438 			int map_fd;
6439 
6440 			map_fd = create_jt_map(obj, prog, relo);
6441 			if (map_fd < 0) {
6442 				pr_warn("prog '%s': relo #%d: can't create jump table: sym_off %u\n",
6443 					prog->name, i, relo->sym_off);
6444 				return map_fd;
6445 			}
6446 			insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6447 			insn->imm = map_fd;
6448 			insn->off = 0;
6449 		}
6450 			break;
6451 		default:
6452 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6453 				prog->name, i, relo->type);
6454 			return -EINVAL;
6455 		}
6456 	}
6457 
6458 	return 0;
6459 }
6460 
6461 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6462 				    const struct bpf_program *prog,
6463 				    const struct btf_ext_info *ext_info,
6464 				    void **prog_info, __u32 *prog_rec_cnt,
6465 				    __u32 *prog_rec_sz)
6466 {
6467 	void *copy_start = NULL, *copy_end = NULL;
6468 	void *rec, *rec_end, *new_prog_info;
6469 	const struct btf_ext_info_sec *sec;
6470 	size_t old_sz, new_sz;
6471 	int i, sec_num, sec_idx, off_adj;
6472 
6473 	sec_num = 0;
6474 	for_each_btf_ext_sec(ext_info, sec) {
6475 		sec_idx = ext_info->sec_idxs[sec_num];
6476 		sec_num++;
6477 		if (prog->sec_idx != sec_idx)
6478 			continue;
6479 
6480 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6481 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6482 
6483 			if (insn_off < prog->sec_insn_off)
6484 				continue;
6485 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6486 				break;
6487 
6488 			if (!copy_start)
6489 				copy_start = rec;
6490 			copy_end = rec + ext_info->rec_size;
6491 		}
6492 
6493 		if (!copy_start)
6494 			return -ENOENT;
6495 
6496 		/* append func/line info of a given (sub-)program to the main
6497 		 * program func/line info
6498 		 */
6499 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6500 		new_sz = old_sz + (copy_end - copy_start);
6501 		new_prog_info = realloc(*prog_info, new_sz);
6502 		if (!new_prog_info)
6503 			return -ENOMEM;
6504 		*prog_info = new_prog_info;
6505 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6506 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6507 
6508 		/* Kernel instruction offsets are in units of 8-byte
6509 		 * instructions, while .BTF.ext instruction offsets generated
6510 		 * by Clang are in units of bytes. So convert Clang offsets
6511 		 * into kernel offsets and adjust offset according to program
6512 		 * relocated position.
6513 		 */
6514 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6515 		rec = new_prog_info + old_sz;
6516 		rec_end = new_prog_info + new_sz;
6517 		for (; rec < rec_end; rec += ext_info->rec_size) {
6518 			__u32 *insn_off = rec;
6519 
6520 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6521 		}
6522 		*prog_rec_sz = ext_info->rec_size;
6523 		return 0;
6524 	}
6525 
6526 	return -ENOENT;
6527 }
6528 
6529 static int
6530 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6531 			      struct bpf_program *main_prog,
6532 			      const struct bpf_program *prog)
6533 {
6534 	int err;
6535 
6536 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6537 	 * support func/line info
6538 	 */
6539 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6540 		return 0;
6541 
6542 	/* only attempt func info relocation if main program's func_info
6543 	 * relocation was successful
6544 	 */
6545 	if (main_prog != prog && !main_prog->func_info)
6546 		goto line_info;
6547 
6548 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6549 				       &main_prog->func_info,
6550 				       &main_prog->func_info_cnt,
6551 				       &main_prog->func_info_rec_size);
6552 	if (err) {
6553 		if (err != -ENOENT) {
6554 			pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n",
6555 				prog->name, errstr(err));
6556 			return err;
6557 		}
6558 		if (main_prog->func_info) {
6559 			/*
6560 			 * Some info has already been found but has problem
6561 			 * in the last btf_ext reloc. Must have to error out.
6562 			 */
6563 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6564 			return err;
6565 		}
6566 		/* Have problem loading the very first info. Ignore the rest. */
6567 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6568 			prog->name);
6569 	}
6570 
6571 line_info:
6572 	/* don't relocate line info if main program's relocation failed */
6573 	if (main_prog != prog && !main_prog->line_info)
6574 		return 0;
6575 
6576 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6577 				       &main_prog->line_info,
6578 				       &main_prog->line_info_cnt,
6579 				       &main_prog->line_info_rec_size);
6580 	if (err) {
6581 		if (err != -ENOENT) {
6582 			pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n",
6583 				prog->name, errstr(err));
6584 			return err;
6585 		}
6586 		if (main_prog->line_info) {
6587 			/*
6588 			 * Some info has already been found but has problem
6589 			 * in the last btf_ext reloc. Must have to error out.
6590 			 */
6591 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6592 			return err;
6593 		}
6594 		/* Have problem loading the very first info. Ignore the rest. */
6595 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6596 			prog->name);
6597 	}
6598 	return 0;
6599 }
6600 
6601 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6602 {
6603 	size_t insn_idx = *(const size_t *)key;
6604 	const struct reloc_desc *relo = elem;
6605 
6606 	if (insn_idx == relo->insn_idx)
6607 		return 0;
6608 	return insn_idx < relo->insn_idx ? -1 : 1;
6609 }
6610 
6611 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6612 {
6613 	if (!prog->nr_reloc)
6614 		return NULL;
6615 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6616 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6617 }
6618 
6619 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6620 {
6621 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6622 	struct reloc_desc *relos;
6623 	int i;
6624 
6625 	if (main_prog == subprog)
6626 		return 0;
6627 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6628 	/* if new count is zero, reallocarray can return a valid NULL result;
6629 	 * in this case the previous pointer will be freed, so we *have to*
6630 	 * reassign old pointer to the new value (even if it's NULL)
6631 	 */
6632 	if (!relos && new_cnt)
6633 		return -ENOMEM;
6634 	if (subprog->nr_reloc)
6635 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6636 		       sizeof(*relos) * subprog->nr_reloc);
6637 
6638 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6639 		relos[i].insn_idx += subprog->sub_insn_off;
6640 	/* After insn_idx adjustment the 'relos' array is still sorted
6641 	 * by insn_idx and doesn't break bsearch.
6642 	 */
6643 	main_prog->reloc_desc = relos;
6644 	main_prog->nr_reloc = new_cnt;
6645 	return 0;
6646 }
6647 
6648 static int save_subprog_offsets(struct bpf_program *main_prog, struct bpf_program *subprog)
6649 {
6650 	size_t size = sizeof(main_prog->subprogs[0]);
6651 	int cnt = main_prog->subprog_cnt;
6652 	void *tmp;
6653 
6654 	tmp = libbpf_reallocarray(main_prog->subprogs, cnt + 1, size);
6655 	if (!tmp)
6656 		return -ENOMEM;
6657 
6658 	main_prog->subprogs = tmp;
6659 	main_prog->subprogs[cnt].sec_insn_off = subprog->sec_insn_off;
6660 	main_prog->subprogs[cnt].sub_insn_off = subprog->sub_insn_off;
6661 	main_prog->subprog_cnt++;
6662 
6663 	return 0;
6664 }
6665 
6666 static int
6667 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6668 				struct bpf_program *subprog)
6669 {
6670 	struct bpf_insn *insns;
6671 	size_t new_cnt;
6672 	int err;
6673 
6674 	subprog->sub_insn_off = main_prog->insns_cnt;
6675 
6676 	new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6677 	insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6678 	if (!insns) {
6679 		pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6680 		return -ENOMEM;
6681 	}
6682 	main_prog->insns = insns;
6683 	main_prog->insns_cnt = new_cnt;
6684 
6685 	memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6686 	       subprog->insns_cnt * sizeof(*insns));
6687 
6688 	pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6689 		 main_prog->name, subprog->insns_cnt, subprog->name);
6690 
6691 	/* The subprog insns are now appended. Append its relos too. */
6692 	err = append_subprog_relos(main_prog, subprog);
6693 	if (err)
6694 		return err;
6695 
6696 	err = save_subprog_offsets(main_prog, subprog);
6697 	if (err) {
6698 		pr_warn("prog '%s': failed to add subprog offsets: %s\n",
6699 			main_prog->name, errstr(err));
6700 		return err;
6701 	}
6702 
6703 	return 0;
6704 }
6705 
6706 static int
6707 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6708 		       struct bpf_program *prog)
6709 {
6710 	size_t sub_insn_idx, insn_idx;
6711 	struct bpf_program *subprog;
6712 	struct reloc_desc *relo;
6713 	struct bpf_insn *insn;
6714 	int err;
6715 
6716 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6717 	if (err)
6718 		return err;
6719 
6720 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6721 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6722 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6723 			continue;
6724 
6725 		relo = find_prog_insn_relo(prog, insn_idx);
6726 		if (relo && relo->type == RELO_EXTERN_CALL)
6727 			/* kfunc relocations will be handled later
6728 			 * in bpf_object__relocate_data()
6729 			 */
6730 			continue;
6731 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6732 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6733 				prog->name, insn_idx, relo->type);
6734 			return -LIBBPF_ERRNO__RELOC;
6735 		}
6736 		if (relo) {
6737 			/* sub-program instruction index is a combination of
6738 			 * an offset of a symbol pointed to by relocation and
6739 			 * call instruction's imm field; for global functions,
6740 			 * call always has imm = -1, but for static functions
6741 			 * relocation is against STT_SECTION and insn->imm
6742 			 * points to a start of a static function
6743 			 *
6744 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6745 			 * the byte offset in the corresponding section.
6746 			 */
6747 			if (relo->type == RELO_CALL)
6748 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6749 			else
6750 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6751 		} else if (insn_is_pseudo_func(insn)) {
6752 			/*
6753 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6754 			 * functions are in the same section, so it shouldn't reach here.
6755 			 */
6756 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6757 				prog->name, insn_idx);
6758 			return -LIBBPF_ERRNO__RELOC;
6759 		} else {
6760 			/* if subprogram call is to a static function within
6761 			 * the same ELF section, there won't be any relocation
6762 			 * emitted, but it also means there is no additional
6763 			 * offset necessary, insns->imm is relative to
6764 			 * instruction's original position within the section
6765 			 */
6766 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6767 		}
6768 
6769 		/* we enforce that sub-programs should be in .text section */
6770 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6771 		if (!subprog) {
6772 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6773 				prog->name);
6774 			return -LIBBPF_ERRNO__RELOC;
6775 		}
6776 
6777 		/* if it's the first call instruction calling into this
6778 		 * subprogram (meaning this subprog hasn't been processed
6779 		 * yet) within the context of current main program:
6780 		 *   - append it at the end of main program's instructions blog;
6781 		 *   - process is recursively, while current program is put on hold;
6782 		 *   - if that subprogram calls some other not yet processes
6783 		 *   subprogram, same thing will happen recursively until
6784 		 *   there are no more unprocesses subprograms left to append
6785 		 *   and relocate.
6786 		 */
6787 		if (subprog->sub_insn_off == 0) {
6788 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6789 			if (err)
6790 				return err;
6791 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6792 			if (err)
6793 				return err;
6794 		}
6795 
6796 		/* main_prog->insns memory could have been re-allocated, so
6797 		 * calculate pointer again
6798 		 */
6799 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6800 		/* calculate correct instruction position within current main
6801 		 * prog; each main prog can have a different set of
6802 		 * subprograms appended (potentially in different order as
6803 		 * well), so position of any subprog can be different for
6804 		 * different main programs
6805 		 */
6806 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6807 
6808 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6809 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6810 	}
6811 
6812 	return 0;
6813 }
6814 
6815 /*
6816  * Relocate sub-program calls.
6817  *
6818  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6819  * main prog) is processed separately. For each subprog (non-entry functions,
6820  * that can be called from either entry progs or other subprogs) gets their
6821  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6822  * hasn't been yet appended and relocated within current main prog. Once its
6823  * relocated, sub_insn_off will point at the position within current main prog
6824  * where given subprog was appended. This will further be used to relocate all
6825  * the call instructions jumping into this subprog.
6826  *
6827  * We start with main program and process all call instructions. If the call
6828  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6829  * is zero), subprog instructions are appended at the end of main program's
6830  * instruction array. Then main program is "put on hold" while we recursively
6831  * process newly appended subprogram. If that subprogram calls into another
6832  * subprogram that hasn't been appended, new subprogram is appended again to
6833  * the *main* prog's instructions (subprog's instructions are always left
6834  * untouched, as they need to be in unmodified state for subsequent main progs
6835  * and subprog instructions are always sent only as part of a main prog) and
6836  * the process continues recursively. Once all the subprogs called from a main
6837  * prog or any of its subprogs are appended (and relocated), all their
6838  * positions within finalized instructions array are known, so it's easy to
6839  * rewrite call instructions with correct relative offsets, corresponding to
6840  * desired target subprog.
6841  *
6842  * Its important to realize that some subprogs might not be called from some
6843  * main prog and any of its called/used subprogs. Those will keep their
6844  * subprog->sub_insn_off as zero at all times and won't be appended to current
6845  * main prog and won't be relocated within the context of current main prog.
6846  * They might still be used from other main progs later.
6847  *
6848  * Visually this process can be shown as below. Suppose we have two main
6849  * programs mainA and mainB and BPF object contains three subprogs: subA,
6850  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6851  * subC both call subB:
6852  *
6853  *        +--------+ +-------+
6854  *        |        v v       |
6855  *     +--+---+ +--+-+-+ +---+--+
6856  *     | subA | | subB | | subC |
6857  *     +--+---+ +------+ +---+--+
6858  *        ^                  ^
6859  *        |                  |
6860  *    +---+-------+   +------+----+
6861  *    |   mainA   |   |   mainB   |
6862  *    +-----------+   +-----------+
6863  *
6864  * We'll start relocating mainA, will find subA, append it and start
6865  * processing sub A recursively:
6866  *
6867  *    +-----------+------+
6868  *    |   mainA   | subA |
6869  *    +-----------+------+
6870  *
6871  * At this point we notice that subB is used from subA, so we append it and
6872  * relocate (there are no further subcalls from subB):
6873  *
6874  *    +-----------+------+------+
6875  *    |   mainA   | subA | subB |
6876  *    +-----------+------+------+
6877  *
6878  * At this point, we relocate subA calls, then go one level up and finish with
6879  * relocatin mainA calls. mainA is done.
6880  *
6881  * For mainB process is similar but results in different order. We start with
6882  * mainB and skip subA and subB, as mainB never calls them (at least
6883  * directly), but we see subC is needed, so we append and start processing it:
6884  *
6885  *    +-----------+------+
6886  *    |   mainB   | subC |
6887  *    +-----------+------+
6888  * Now we see subC needs subB, so we go back to it, append and relocate it:
6889  *
6890  *    +-----------+------+------+
6891  *    |   mainB   | subC | subB |
6892  *    +-----------+------+------+
6893  *
6894  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6895  */
6896 static int
6897 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6898 {
6899 	struct bpf_program *subprog;
6900 	int i, err;
6901 
6902 	/* mark all subprogs as not relocated (yet) within the context of
6903 	 * current main program
6904 	 */
6905 	for (i = 0; i < obj->nr_programs; i++) {
6906 		subprog = &obj->programs[i];
6907 		if (!prog_is_subprog(obj, subprog))
6908 			continue;
6909 
6910 		subprog->sub_insn_off = 0;
6911 	}
6912 
6913 	err = bpf_object__reloc_code(obj, prog, prog);
6914 	if (err)
6915 		return err;
6916 
6917 	return 0;
6918 }
6919 
6920 static void
6921 bpf_object__free_relocs(struct bpf_object *obj)
6922 {
6923 	struct bpf_program *prog;
6924 	int i;
6925 
6926 	/* free up relocation descriptors */
6927 	for (i = 0; i < obj->nr_programs; i++) {
6928 		prog = &obj->programs[i];
6929 		zfree(&prog->reloc_desc);
6930 		prog->nr_reloc = 0;
6931 	}
6932 }
6933 
6934 static int cmp_relocs(const void *_a, const void *_b)
6935 {
6936 	const struct reloc_desc *a = _a;
6937 	const struct reloc_desc *b = _b;
6938 
6939 	if (a->insn_idx != b->insn_idx)
6940 		return a->insn_idx < b->insn_idx ? -1 : 1;
6941 
6942 	/* no two relocations should have the same insn_idx, but ... */
6943 	if (a->type != b->type)
6944 		return a->type < b->type ? -1 : 1;
6945 
6946 	return 0;
6947 }
6948 
6949 static void bpf_object__sort_relos(struct bpf_object *obj)
6950 {
6951 	int i;
6952 
6953 	for (i = 0; i < obj->nr_programs; i++) {
6954 		struct bpf_program *p = &obj->programs[i];
6955 
6956 		if (!p->nr_reloc)
6957 			continue;
6958 
6959 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6960 	}
6961 }
6962 
6963 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6964 {
6965 	const char *str = "exception_callback:";
6966 	size_t pfx_len = strlen(str);
6967 	int i, j, n;
6968 
6969 	if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6970 		return 0;
6971 
6972 	n = btf__type_cnt(obj->btf);
6973 	for (i = 1; i < n; i++) {
6974 		const char *name;
6975 		struct btf_type *t;
6976 
6977 		t = btf_type_by_id(obj->btf, i);
6978 		if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6979 			continue;
6980 
6981 		name = btf__str_by_offset(obj->btf, t->name_off);
6982 		if (strncmp(name, str, pfx_len) != 0)
6983 			continue;
6984 
6985 		t = btf_type_by_id(obj->btf, t->type);
6986 		if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6987 			pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6988 				prog->name);
6989 			return -EINVAL;
6990 		}
6991 		if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6992 			continue;
6993 		/* Multiple callbacks are specified for the same prog,
6994 		 * the verifier will eventually return an error for this
6995 		 * case, hence simply skip appending a subprog.
6996 		 */
6997 		if (prog->exception_cb_idx >= 0) {
6998 			prog->exception_cb_idx = -1;
6999 			break;
7000 		}
7001 
7002 		name += pfx_len;
7003 		if (str_is_empty(name)) {
7004 			pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
7005 				prog->name);
7006 			return -EINVAL;
7007 		}
7008 
7009 		for (j = 0; j < obj->nr_programs; j++) {
7010 			struct bpf_program *subprog = &obj->programs[j];
7011 
7012 			if (!prog_is_subprog(obj, subprog))
7013 				continue;
7014 			if (strcmp(name, subprog->name) != 0)
7015 				continue;
7016 			/* Enforce non-hidden, as from verifier point of
7017 			 * view it expects global functions, whereas the
7018 			 * mark_btf_static fixes up linkage as static.
7019 			 */
7020 			if (!subprog->sym_global || subprog->mark_btf_static) {
7021 				pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
7022 					prog->name, subprog->name);
7023 				return -EINVAL;
7024 			}
7025 			/* Let's see if we already saw a static exception callback with the same name */
7026 			if (prog->exception_cb_idx >= 0) {
7027 				pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
7028 					prog->name, subprog->name);
7029 				return -EINVAL;
7030 			}
7031 			prog->exception_cb_idx = j;
7032 			break;
7033 		}
7034 
7035 		if (prog->exception_cb_idx >= 0)
7036 			continue;
7037 
7038 		pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
7039 		return -ENOENT;
7040 	}
7041 
7042 	return 0;
7043 }
7044 
7045 static struct {
7046 	enum bpf_prog_type prog_type;
7047 	const char *ctx_name;
7048 } global_ctx_map[] = {
7049 	{ BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
7050 	{ BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
7051 	{ BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
7052 	{ BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
7053 	{ BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
7054 	{ BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
7055 	{ BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
7056 	{ BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
7057 	{ BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
7058 	{ BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
7059 	{ BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
7060 	{ BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
7061 	{ BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
7062 	{ BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
7063 	{ BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
7064 	{ BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
7065 	{ BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
7066 	{ BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
7067 	{ BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
7068 	{ BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
7069 	{ BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
7070 	{ BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
7071 	{ BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
7072 	{ BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
7073 	{ BPF_PROG_TYPE_XDP,                     "xdp_md" },
7074 	/* all other program types don't have "named" context structs */
7075 };
7076 
7077 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
7078  * for below __builtin_types_compatible_p() checks;
7079  * with this approach we don't need any extra arch-specific #ifdef guards
7080  */
7081 struct pt_regs;
7082 struct user_pt_regs;
7083 struct user_regs_struct;
7084 
7085 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
7086 				     const char *subprog_name, int arg_idx,
7087 				     int arg_type_id, const char *ctx_name)
7088 {
7089 	const struct btf_type *t;
7090 	const char *tname;
7091 
7092 	/* check if existing parameter already matches verifier expectations */
7093 	t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
7094 	if (!btf_is_ptr(t))
7095 		goto out_warn;
7096 
7097 	/* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
7098 	 * and perf_event programs, so check this case early on and forget
7099 	 * about it for subsequent checks
7100 	 */
7101 	while (btf_is_mod(t))
7102 		t = btf__type_by_id(btf, t->type);
7103 	if (btf_is_typedef(t) &&
7104 	    (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
7105 		tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
7106 		if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
7107 			return false; /* canonical type for kprobe/perf_event */
7108 	}
7109 
7110 	/* now we can ignore typedefs moving forward */
7111 	t = skip_mods_and_typedefs(btf, t->type, NULL);
7112 
7113 	/* if it's `void *`, definitely fix up BTF info */
7114 	if (btf_is_void(t))
7115 		return true;
7116 
7117 	/* if it's already proper canonical type, no need to fix up */
7118 	tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
7119 	if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
7120 		return false;
7121 
7122 	/* special cases */
7123 	switch (prog->type) {
7124 	case BPF_PROG_TYPE_KPROBE:
7125 		/* `struct pt_regs *` is expected, but we need to fix up */
7126 		if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
7127 			return true;
7128 		break;
7129 	case BPF_PROG_TYPE_PERF_EVENT:
7130 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
7131 		    btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
7132 			return true;
7133 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
7134 		    btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
7135 			return true;
7136 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
7137 		    btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
7138 			return true;
7139 		break;
7140 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7141 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
7142 		/* allow u64* as ctx */
7143 		if (btf_is_int(t) && t->size == 8)
7144 			return true;
7145 		break;
7146 	default:
7147 		break;
7148 	}
7149 
7150 out_warn:
7151 	pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
7152 		prog->name, subprog_name, arg_idx, ctx_name);
7153 	return false;
7154 }
7155 
7156 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
7157 {
7158 	int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
7159 	int i, err, arg_cnt, fn_name_off, linkage;
7160 	struct btf_type *fn_t, *fn_proto_t, *t;
7161 	struct btf_param *p;
7162 
7163 	/* caller already validated FUNC -> FUNC_PROTO validity */
7164 	fn_t = btf_type_by_id(btf, orig_fn_id);
7165 	fn_proto_t = btf_type_by_id(btf, fn_t->type);
7166 
7167 	/* Note that each btf__add_xxx() operation invalidates
7168 	 * all btf_type and string pointers, so we need to be
7169 	 * very careful when cloning BTF types. BTF type
7170 	 * pointers have to be always refetched. And to avoid
7171 	 * problems with invalidated string pointers, we
7172 	 * add empty strings initially, then just fix up
7173 	 * name_off offsets in place. Offsets are stable for
7174 	 * existing strings, so that works out.
7175 	 */
7176 	fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
7177 	linkage = btf_func_linkage(fn_t);
7178 	orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
7179 	ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
7180 	arg_cnt = btf_vlen(fn_proto_t);
7181 
7182 	/* clone FUNC_PROTO and its params */
7183 	fn_proto_id = btf__add_func_proto(btf, ret_type_id);
7184 	if (fn_proto_id < 0)
7185 		return -EINVAL;
7186 
7187 	for (i = 0; i < arg_cnt; i++) {
7188 		int name_off;
7189 
7190 		/* copy original parameter data */
7191 		t = btf_type_by_id(btf, orig_proto_id);
7192 		p = &btf_params(t)[i];
7193 		name_off = p->name_off;
7194 
7195 		err = btf__add_func_param(btf, "", p->type);
7196 		if (err)
7197 			return err;
7198 
7199 		fn_proto_t = btf_type_by_id(btf, fn_proto_id);
7200 		p = &btf_params(fn_proto_t)[i];
7201 		p->name_off = name_off; /* use remembered str offset */
7202 	}
7203 
7204 	/* clone FUNC now, btf__add_func() enforces non-empty name, so use
7205 	 * entry program's name as a placeholder, which we replace immediately
7206 	 * with original name_off
7207 	 */
7208 	fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
7209 	if (fn_id < 0)
7210 		return -EINVAL;
7211 
7212 	fn_t = btf_type_by_id(btf, fn_id);
7213 	fn_t->name_off = fn_name_off; /* reuse original string */
7214 
7215 	return fn_id;
7216 }
7217 
7218 /* Check if main program or global subprog's function prototype has `arg:ctx`
7219  * argument tags, and, if necessary, substitute correct type to match what BPF
7220  * verifier would expect, taking into account specific program type. This
7221  * allows to support __arg_ctx tag transparently on old kernels that don't yet
7222  * have a native support for it in the verifier, making user's life much
7223  * easier.
7224  */
7225 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
7226 {
7227 	const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
7228 	struct bpf_func_info_min *func_rec;
7229 	struct btf_type *fn_t, *fn_proto_t;
7230 	struct btf *btf = obj->btf;
7231 	const struct btf_type *t;
7232 	struct btf_param *p;
7233 	int ptr_id = 0, struct_id, tag_id, orig_fn_id;
7234 	int i, n, arg_idx, arg_cnt, err, rec_idx;
7235 	int *orig_ids;
7236 
7237 	/* no .BTF.ext, no problem */
7238 	if (!obj->btf_ext || !prog->func_info)
7239 		return 0;
7240 
7241 	/* don't do any fix ups if kernel natively supports __arg_ctx */
7242 	if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
7243 		return 0;
7244 
7245 	/* some BPF program types just don't have named context structs, so
7246 	 * this fallback mechanism doesn't work for them
7247 	 */
7248 	for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
7249 		if (global_ctx_map[i].prog_type != prog->type)
7250 			continue;
7251 		ctx_name = global_ctx_map[i].ctx_name;
7252 		break;
7253 	}
7254 	if (!ctx_name)
7255 		return 0;
7256 
7257 	/* remember original func BTF IDs to detect if we already cloned them */
7258 	orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
7259 	if (!orig_ids)
7260 		return -ENOMEM;
7261 	for (i = 0; i < prog->func_info_cnt; i++) {
7262 		func_rec = prog->func_info + prog->func_info_rec_size * i;
7263 		orig_ids[i] = func_rec->type_id;
7264 	}
7265 
7266 	/* go through each DECL_TAG with "arg:ctx" and see if it points to one
7267 	 * of our subprogs; if yes and subprog is global and needs adjustment,
7268 	 * clone and adjust FUNC -> FUNC_PROTO combo
7269 	 */
7270 	for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
7271 		/* only DECL_TAG with "arg:ctx" value are interesting */
7272 		t = btf__type_by_id(btf, i);
7273 		if (!btf_is_decl_tag(t))
7274 			continue;
7275 		if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
7276 			continue;
7277 
7278 		/* only global funcs need adjustment, if at all */
7279 		orig_fn_id = t->type;
7280 		fn_t = btf_type_by_id(btf, orig_fn_id);
7281 		if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
7282 			continue;
7283 
7284 		/* sanity check FUNC -> FUNC_PROTO chain, just in case */
7285 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
7286 		if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
7287 			continue;
7288 
7289 		/* find corresponding func_info record */
7290 		func_rec = NULL;
7291 		for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
7292 			if (orig_ids[rec_idx] == t->type) {
7293 				func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
7294 				break;
7295 			}
7296 		}
7297 		/* current main program doesn't call into this subprog */
7298 		if (!func_rec)
7299 			continue;
7300 
7301 		/* some more sanity checking of DECL_TAG */
7302 		arg_cnt = btf_vlen(fn_proto_t);
7303 		arg_idx = btf_decl_tag(t)->component_idx;
7304 		if (arg_idx < 0 || arg_idx >= arg_cnt)
7305 			continue;
7306 
7307 		/* check if we should fix up argument type */
7308 		p = &btf_params(fn_proto_t)[arg_idx];
7309 		fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
7310 		if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
7311 			continue;
7312 
7313 		/* clone fn/fn_proto, unless we already did it for another arg */
7314 		if (func_rec->type_id == orig_fn_id) {
7315 			int fn_id;
7316 
7317 			fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
7318 			if (fn_id < 0) {
7319 				err = fn_id;
7320 				goto err_out;
7321 			}
7322 
7323 			/* point func_info record to a cloned FUNC type */
7324 			func_rec->type_id = fn_id;
7325 		}
7326 
7327 		/* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
7328 		 * we do it just once per main BPF program, as all global
7329 		 * funcs share the same program type, so need only PTR ->
7330 		 * STRUCT type chain
7331 		 */
7332 		if (ptr_id == 0) {
7333 			struct_id = btf__add_struct(btf, ctx_name, 0);
7334 			ptr_id = btf__add_ptr(btf, struct_id);
7335 			if (ptr_id < 0 || struct_id < 0) {
7336 				err = -EINVAL;
7337 				goto err_out;
7338 			}
7339 		}
7340 
7341 		/* for completeness, clone DECL_TAG and point it to cloned param */
7342 		tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7343 		if (tag_id < 0) {
7344 			err = -EINVAL;
7345 			goto err_out;
7346 		}
7347 
7348 		/* all the BTF manipulations invalidated pointers, refetch them */
7349 		fn_t = btf_type_by_id(btf, func_rec->type_id);
7350 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
7351 
7352 		/* fix up type ID pointed to by param */
7353 		p = &btf_params(fn_proto_t)[arg_idx];
7354 		p->type = ptr_id;
7355 	}
7356 
7357 	free(orig_ids);
7358 	return 0;
7359 err_out:
7360 	free(orig_ids);
7361 	return err;
7362 }
7363 
7364 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7365 {
7366 	struct bpf_program *prog;
7367 	size_t i, j;
7368 	int err;
7369 
7370 	if (obj->btf_ext) {
7371 		err = bpf_object__relocate_core(obj, targ_btf_path);
7372 		if (err) {
7373 			pr_warn("failed to perform CO-RE relocations: %s\n",
7374 				errstr(err));
7375 			return err;
7376 		}
7377 		bpf_object__sort_relos(obj);
7378 	}
7379 
7380 	/* Before relocating calls pre-process relocations and mark
7381 	 * few ld_imm64 instructions that points to subprogs.
7382 	 * Otherwise bpf_object__reloc_code() later would have to consider
7383 	 * all ld_imm64 insns as relocation candidates. That would
7384 	 * reduce relocation speed, since amount of find_prog_insn_relo()
7385 	 * would increase and most of them will fail to find a relo.
7386 	 */
7387 	for (i = 0; i < obj->nr_programs; i++) {
7388 		prog = &obj->programs[i];
7389 		for (j = 0; j < prog->nr_reloc; j++) {
7390 			struct reloc_desc *relo = &prog->reloc_desc[j];
7391 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7392 
7393 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
7394 			if (relo->type == RELO_SUBPROG_ADDR)
7395 				insn[0].src_reg = BPF_PSEUDO_FUNC;
7396 		}
7397 	}
7398 
7399 	/* relocate subprogram calls and append used subprograms to main
7400 	 * programs; each copy of subprogram code needs to be relocated
7401 	 * differently for each main program, because its code location might
7402 	 * have changed.
7403 	 * Append subprog relos to main programs to allow data relos to be
7404 	 * processed after text is completely relocated.
7405 	 */
7406 	for (i = 0; i < obj->nr_programs; i++) {
7407 		prog = &obj->programs[i];
7408 		/* sub-program's sub-calls are relocated within the context of
7409 		 * its main program only
7410 		 */
7411 		if (prog_is_subprog(obj, prog))
7412 			continue;
7413 		if (!prog->autoload)
7414 			continue;
7415 
7416 		err = bpf_object__relocate_calls(obj, prog);
7417 		if (err) {
7418 			pr_warn("prog '%s': failed to relocate calls: %s\n",
7419 				prog->name, errstr(err));
7420 			return err;
7421 		}
7422 
7423 		err = bpf_prog_assign_exc_cb(obj, prog);
7424 		if (err)
7425 			return err;
7426 		/* Now, also append exception callback if it has not been done already. */
7427 		if (prog->exception_cb_idx >= 0) {
7428 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7429 
7430 			/* Calling exception callback directly is disallowed, which the
7431 			 * verifier will reject later. In case it was processed already,
7432 			 * we can skip this step, otherwise for all other valid cases we
7433 			 * have to append exception callback now.
7434 			 */
7435 			if (subprog->sub_insn_off == 0) {
7436 				err = bpf_object__append_subprog_code(obj, prog, subprog);
7437 				if (err)
7438 					return err;
7439 				err = bpf_object__reloc_code(obj, prog, subprog);
7440 				if (err)
7441 					return err;
7442 			}
7443 		}
7444 	}
7445 	for (i = 0; i < obj->nr_programs; i++) {
7446 		prog = &obj->programs[i];
7447 		if (prog_is_subprog(obj, prog))
7448 			continue;
7449 		if (!prog->autoload)
7450 			continue;
7451 
7452 		/* Process data relos for main programs */
7453 		err = bpf_object__relocate_data(obj, prog);
7454 		if (err) {
7455 			pr_warn("prog '%s': failed to relocate data references: %s\n",
7456 				prog->name, errstr(err));
7457 			return err;
7458 		}
7459 
7460 		/* Fix up .BTF.ext information, if necessary */
7461 		err = bpf_program_fixup_func_info(obj, prog);
7462 		if (err) {
7463 			pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n",
7464 				prog->name, errstr(err));
7465 			return err;
7466 		}
7467 	}
7468 
7469 	return 0;
7470 }
7471 
7472 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7473 					    Elf64_Shdr *shdr, Elf_Data *data);
7474 
7475 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7476 					 Elf64_Shdr *shdr, Elf_Data *data)
7477 {
7478 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7479 	int i, j, nrels, new_sz;
7480 	const struct btf_var_secinfo *vi = NULL;
7481 	const struct btf_type *sec, *var, *def;
7482 	struct bpf_map *map = NULL, *targ_map = NULL;
7483 	struct bpf_program *targ_prog = NULL;
7484 	bool is_prog_array, is_map_in_map;
7485 	const struct btf_member *member;
7486 	const char *name, *mname, *type;
7487 	unsigned int moff;
7488 	Elf64_Sym *sym;
7489 	Elf64_Rel *rel;
7490 	void *tmp;
7491 
7492 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7493 		return -EINVAL;
7494 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7495 	if (!sec)
7496 		return -EINVAL;
7497 
7498 	nrels = shdr->sh_size / shdr->sh_entsize;
7499 	for (i = 0; i < nrels; i++) {
7500 		rel = elf_rel_by_idx(data, i);
7501 		if (!rel) {
7502 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7503 			return -LIBBPF_ERRNO__FORMAT;
7504 		}
7505 
7506 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7507 		if (!sym) {
7508 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7509 				i, (size_t)ELF64_R_SYM(rel->r_info));
7510 			return -LIBBPF_ERRNO__FORMAT;
7511 		}
7512 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7513 
7514 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7515 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7516 			 (size_t)rel->r_offset, sym->st_name, name);
7517 
7518 		for (j = 0; j < obj->nr_maps; j++) {
7519 			map = &obj->maps[j];
7520 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7521 				continue;
7522 
7523 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7524 			if (vi->offset <= rel->r_offset &&
7525 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7526 				break;
7527 		}
7528 		if (j == obj->nr_maps) {
7529 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7530 				i, name, (size_t)rel->r_offset);
7531 			return -EINVAL;
7532 		}
7533 
7534 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7535 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7536 		type = is_map_in_map ? "map" : "prog";
7537 		if (is_map_in_map) {
7538 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7539 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7540 					i, name);
7541 				return -LIBBPF_ERRNO__RELOC;
7542 			}
7543 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7544 			    map->def.key_size != sizeof(int)) {
7545 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7546 					i, map->name, sizeof(int));
7547 				return -EINVAL;
7548 			}
7549 			targ_map = bpf_object__find_map_by_name(obj, name);
7550 			if (!targ_map) {
7551 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7552 					i, name);
7553 				return -ESRCH;
7554 			}
7555 		} else if (is_prog_array) {
7556 			targ_prog = bpf_object__find_program_by_name(obj, name);
7557 			if (!targ_prog) {
7558 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7559 					i, name);
7560 				return -ESRCH;
7561 			}
7562 			if (targ_prog->sec_idx != sym->st_shndx ||
7563 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
7564 			    prog_is_subprog(obj, targ_prog)) {
7565 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7566 					i, name);
7567 				return -LIBBPF_ERRNO__RELOC;
7568 			}
7569 		} else {
7570 			return -EINVAL;
7571 		}
7572 
7573 		var = btf__type_by_id(obj->btf, vi->type);
7574 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7575 		if (btf_vlen(def) == 0)
7576 			return -EINVAL;
7577 		member = btf_members(def) + btf_vlen(def) - 1;
7578 		mname = btf__name_by_offset(obj->btf, member->name_off);
7579 		if (strcmp(mname, "values"))
7580 			return -EINVAL;
7581 
7582 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7583 		if (rel->r_offset - vi->offset < moff)
7584 			return -EINVAL;
7585 
7586 		moff = rel->r_offset - vi->offset - moff;
7587 		/* here we use BPF pointer size, which is always 64 bit, as we
7588 		 * are parsing ELF that was built for BPF target
7589 		 */
7590 		if (moff % bpf_ptr_sz)
7591 			return -EINVAL;
7592 		moff /= bpf_ptr_sz;
7593 		if (moff >= map->init_slots_sz) {
7594 			new_sz = moff + 1;
7595 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7596 			if (!tmp)
7597 				return -ENOMEM;
7598 			map->init_slots = tmp;
7599 			memset(map->init_slots + map->init_slots_sz, 0,
7600 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7601 			map->init_slots_sz = new_sz;
7602 		}
7603 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7604 
7605 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7606 			 i, map->name, moff, type, name);
7607 	}
7608 
7609 	return 0;
7610 }
7611 
7612 static int bpf_object__collect_relos(struct bpf_object *obj)
7613 {
7614 	int i, err;
7615 
7616 	for (i = 0; i < obj->efile.sec_cnt; i++) {
7617 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7618 		Elf64_Shdr *shdr;
7619 		Elf_Data *data;
7620 		int idx;
7621 
7622 		if (sec_desc->sec_type != SEC_RELO)
7623 			continue;
7624 
7625 		shdr = sec_desc->shdr;
7626 		data = sec_desc->data;
7627 		idx = shdr->sh_info;
7628 
7629 		if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7630 			pr_warn("internal error at %d\n", __LINE__);
7631 			return -LIBBPF_ERRNO__INTERNAL;
7632 		}
7633 
7634 		if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7635 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7636 		else if (idx == obj->efile.btf_maps_shndx)
7637 			err = bpf_object__collect_map_relos(obj, shdr, data);
7638 		else
7639 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7640 		if (err)
7641 			return err;
7642 	}
7643 
7644 	bpf_object__sort_relos(obj);
7645 	return 0;
7646 }
7647 
7648 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7649 {
7650 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7651 	    BPF_OP(insn->code) == BPF_CALL &&
7652 	    BPF_SRC(insn->code) == BPF_K &&
7653 	    insn->src_reg == 0 &&
7654 	    insn->dst_reg == 0) {
7655 		    *func_id = insn->imm;
7656 		    return true;
7657 	}
7658 	return false;
7659 }
7660 
7661 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7662 {
7663 	struct bpf_insn *insn = prog->insns;
7664 	enum bpf_func_id func_id;
7665 	int i;
7666 
7667 	if (obj->gen_loader)
7668 		return 0;
7669 
7670 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7671 		if (!insn_is_helper_call(insn, &func_id))
7672 			continue;
7673 
7674 		/* on kernels that don't yet support
7675 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7676 		 * to bpf_probe_read() which works well for old kernels
7677 		 */
7678 		switch (func_id) {
7679 		case BPF_FUNC_probe_read_kernel:
7680 		case BPF_FUNC_probe_read_user:
7681 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7682 				insn->imm = BPF_FUNC_probe_read;
7683 			break;
7684 		case BPF_FUNC_probe_read_kernel_str:
7685 		case BPF_FUNC_probe_read_user_str:
7686 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7687 				insn->imm = BPF_FUNC_probe_read_str;
7688 			break;
7689 		default:
7690 			break;
7691 		}
7692 	}
7693 	return 0;
7694 }
7695 
7696 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7697 				     int *btf_obj_fd, int *btf_type_id);
7698 
7699 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7700 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7701 				    struct bpf_prog_load_opts *opts, long cookie)
7702 {
7703 	enum sec_def_flags def = cookie;
7704 
7705 	/* old kernels might not support specifying expected_attach_type */
7706 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7707 		opts->expected_attach_type = 0;
7708 
7709 	if (def & SEC_SLEEPABLE)
7710 		opts->prog_flags |= BPF_F_SLEEPABLE;
7711 
7712 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7713 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7714 
7715 	/* special check for usdt to use uprobe_multi link */
7716 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
7717 		/* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
7718 		 * in prog, and expected_attach_type we set in kernel is from opts, so we
7719 		 * update both.
7720 		 */
7721 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7722 		opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7723 	}
7724 
7725 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7726 		int btf_obj_fd = 0, btf_type_id = 0, err;
7727 		const char *attach_name;
7728 
7729 		attach_name = strchr(prog->sec_name, '/');
7730 		if (!attach_name) {
7731 			/* if BPF program is annotated with just SEC("fentry")
7732 			 * (or similar) without declaratively specifying
7733 			 * target, then it is expected that target will be
7734 			 * specified with bpf_program__set_attach_target() at
7735 			 * runtime before BPF object load step. If not, then
7736 			 * there is nothing to load into the kernel as BPF
7737 			 * verifier won't be able to validate BPF program
7738 			 * correctness anyways.
7739 			 */
7740 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7741 				prog->name);
7742 			return -EINVAL;
7743 		}
7744 		attach_name++; /* skip over / */
7745 
7746 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7747 		if (err)
7748 			return err;
7749 
7750 		/* cache resolved BTF FD and BTF type ID in the prog */
7751 		prog->attach_btf_obj_fd = btf_obj_fd;
7752 		prog->attach_btf_id = btf_type_id;
7753 
7754 		/* but by now libbpf common logic is not utilizing
7755 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7756 		 * this callback is called after opts were populated by
7757 		 * libbpf, so this callback has to update opts explicitly here
7758 		 */
7759 		opts->attach_btf_obj_fd = btf_obj_fd;
7760 		opts->attach_btf_id = btf_type_id;
7761 	}
7762 	return 0;
7763 }
7764 
7765 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7766 
7767 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7768 				struct bpf_insn *insns, int insns_cnt,
7769 				const char *license, __u32 kern_version, int *prog_fd)
7770 {
7771 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7772 	const char *prog_name = NULL;
7773 	size_t log_buf_size = 0;
7774 	char *log_buf = NULL, *tmp;
7775 	bool own_log_buf = true;
7776 	__u32 log_level = prog->log_level;
7777 	int ret, err;
7778 
7779 	/* Be more helpful by rejecting programs that can't be validated early
7780 	 * with more meaningful and actionable error message.
7781 	 */
7782 	switch (prog->type) {
7783 	case BPF_PROG_TYPE_UNSPEC:
7784 		/*
7785 		 * The program type must be set.  Most likely we couldn't find a proper
7786 		 * section definition at load time, and thus we didn't infer the type.
7787 		 */
7788 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7789 			prog->name, prog->sec_name);
7790 		return -EINVAL;
7791 	case BPF_PROG_TYPE_STRUCT_OPS:
7792 		if (prog->attach_btf_id == 0) {
7793 			pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7794 				prog->name);
7795 			return -EINVAL;
7796 		}
7797 		break;
7798 	default:
7799 		break;
7800 	}
7801 
7802 	if (!insns || !insns_cnt)
7803 		return -EINVAL;
7804 
7805 	if (kernel_supports(obj, FEAT_PROG_NAME))
7806 		prog_name = prog->name;
7807 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7808 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7809 	load_attr.attach_btf_id = prog->attach_btf_id;
7810 	load_attr.kern_version = kern_version;
7811 	load_attr.prog_ifindex = prog->prog_ifindex;
7812 	load_attr.expected_attach_type = prog->expected_attach_type;
7813 
7814 	/* specify func_info/line_info only if kernel supports them */
7815 	if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7816 		load_attr.prog_btf_fd = btf__fd(obj->btf);
7817 		load_attr.func_info = prog->func_info;
7818 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7819 		load_attr.func_info_cnt = prog->func_info_cnt;
7820 		load_attr.line_info = prog->line_info;
7821 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7822 		load_attr.line_info_cnt = prog->line_info_cnt;
7823 	}
7824 	load_attr.log_level = log_level;
7825 	load_attr.prog_flags = prog->prog_flags;
7826 	load_attr.fd_array = obj->fd_array;
7827 
7828 	load_attr.token_fd = obj->token_fd;
7829 	if (obj->token_fd)
7830 		load_attr.prog_flags |= BPF_F_TOKEN_FD;
7831 
7832 	/* adjust load_attr if sec_def provides custom preload callback */
7833 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7834 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7835 		if (err < 0) {
7836 			pr_warn("prog '%s': failed to prepare load attributes: %s\n",
7837 				prog->name, errstr(err));
7838 			return err;
7839 		}
7840 		insns = prog->insns;
7841 		insns_cnt = prog->insns_cnt;
7842 	}
7843 
7844 	if (obj->gen_loader) {
7845 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7846 				   license, insns, insns_cnt, &load_attr,
7847 				   prog - obj->programs);
7848 		*prog_fd = -1;
7849 		return 0;
7850 	}
7851 
7852 retry_load:
7853 	/* if log_level is zero, we don't request logs initially even if
7854 	 * custom log_buf is specified; if the program load fails, then we'll
7855 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7856 	 * our own and retry the load to get details on what failed
7857 	 */
7858 	if (log_level) {
7859 		if (prog->log_buf) {
7860 			log_buf = prog->log_buf;
7861 			log_buf_size = prog->log_size;
7862 			own_log_buf = false;
7863 		} else if (obj->log_buf) {
7864 			log_buf = obj->log_buf;
7865 			log_buf_size = obj->log_size;
7866 			own_log_buf = false;
7867 		} else {
7868 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7869 			tmp = realloc(log_buf, log_buf_size);
7870 			if (!tmp) {
7871 				ret = -ENOMEM;
7872 				goto out;
7873 			}
7874 			log_buf = tmp;
7875 			log_buf[0] = '\0';
7876 			own_log_buf = true;
7877 		}
7878 	}
7879 
7880 	load_attr.log_buf = log_buf;
7881 	load_attr.log_size = log_buf_size;
7882 	load_attr.log_level = log_level;
7883 
7884 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7885 	if (ret >= 0) {
7886 		if (log_level && own_log_buf) {
7887 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7888 				 prog->name, log_buf);
7889 		}
7890 
7891 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7892 			struct bpf_map *map;
7893 			int i;
7894 
7895 			for (i = 0; i < obj->nr_maps; i++) {
7896 				map = &prog->obj->maps[i];
7897 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7898 					continue;
7899 
7900 				if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7901 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7902 						prog->name, map->real_name, errstr(errno));
7903 					/* Don't fail hard if can't bind rodata. */
7904 				}
7905 			}
7906 		}
7907 
7908 		*prog_fd = ret;
7909 		ret = 0;
7910 		goto out;
7911 	}
7912 
7913 	if (log_level == 0) {
7914 		log_level = 1;
7915 		goto retry_load;
7916 	}
7917 	/* On ENOSPC, increase log buffer size and retry, unless custom
7918 	 * log_buf is specified.
7919 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7920 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7921 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7922 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7923 	 */
7924 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7925 		goto retry_load;
7926 
7927 	ret = -errno;
7928 
7929 	/* post-process verifier log to improve error descriptions */
7930 	fixup_verifier_log(prog, log_buf, log_buf_size);
7931 
7932 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno));
7933 	pr_perm_msg(ret);
7934 
7935 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7936 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7937 			prog->name, log_buf);
7938 	}
7939 
7940 out:
7941 	if (own_log_buf)
7942 		free(log_buf);
7943 	return ret;
7944 }
7945 
7946 static char *find_prev_line(char *buf, char *cur)
7947 {
7948 	char *p;
7949 
7950 	if (cur == buf) /* end of a log buf */
7951 		return NULL;
7952 
7953 	p = cur - 1;
7954 	while (p - 1 >= buf && *(p - 1) != '\n')
7955 		p--;
7956 
7957 	return p;
7958 }
7959 
7960 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7961 		      char *orig, size_t orig_sz, const char *patch)
7962 {
7963 	/* size of the remaining log content to the right from the to-be-replaced part */
7964 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7965 	size_t patch_sz = strlen(patch);
7966 
7967 	if (patch_sz != orig_sz) {
7968 		/* If patch line(s) are longer than original piece of verifier log,
7969 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7970 		 * starting from after to-be-replaced part of the log.
7971 		 *
7972 		 * If patch line(s) are shorter than original piece of verifier log,
7973 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7974 		 * starting from after to-be-replaced part of the log
7975 		 *
7976 		 * We need to be careful about not overflowing available
7977 		 * buf_sz capacity. If that's the case, we'll truncate the end
7978 		 * of the original log, as necessary.
7979 		 */
7980 		if (patch_sz > orig_sz) {
7981 			if (orig + patch_sz >= buf + buf_sz) {
7982 				/* patch is big enough to cover remaining space completely */
7983 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7984 				rem_sz = 0;
7985 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7986 				/* patch causes part of remaining log to be truncated */
7987 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7988 			}
7989 		}
7990 		/* shift remaining log to the right by calculated amount */
7991 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7992 	}
7993 
7994 	memcpy(orig, patch, patch_sz);
7995 }
7996 
7997 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7998 				       char *buf, size_t buf_sz, size_t log_sz,
7999 				       char *line1, char *line2, char *line3)
8000 {
8001 	/* Expected log for failed and not properly guarded CO-RE relocation:
8002 	 * line1 -> 123: (85) call unknown#195896080
8003 	 * line2 -> invalid func unknown#195896080
8004 	 * line3 -> <anything else or end of buffer>
8005 	 *
8006 	 * "123" is the index of the instruction that was poisoned. We extract
8007 	 * instruction index to find corresponding CO-RE relocation and
8008 	 * replace this part of the log with more relevant information about
8009 	 * failed CO-RE relocation.
8010 	 */
8011 	const struct bpf_core_relo *relo;
8012 	struct bpf_core_spec spec;
8013 	char patch[512], spec_buf[256];
8014 	int insn_idx, err, spec_len;
8015 
8016 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
8017 		return;
8018 
8019 	relo = find_relo_core(prog, insn_idx);
8020 	if (!relo)
8021 		return;
8022 
8023 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
8024 	if (err)
8025 		return;
8026 
8027 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
8028 	snprintf(patch, sizeof(patch),
8029 		 "%d: <invalid CO-RE relocation>\n"
8030 		 "failed to resolve CO-RE relocation %s%s\n",
8031 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
8032 
8033 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
8034 }
8035 
8036 static void fixup_log_missing_map_load(struct bpf_program *prog,
8037 				       char *buf, size_t buf_sz, size_t log_sz,
8038 				       char *line1, char *line2, char *line3)
8039 {
8040 	/* Expected log for failed and not properly guarded map reference:
8041 	 * line1 -> 123: (85) call unknown#2001000345
8042 	 * line2 -> invalid func unknown#2001000345
8043 	 * line3 -> <anything else or end of buffer>
8044 	 *
8045 	 * "123" is the index of the instruction that was poisoned.
8046 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
8047 	 */
8048 	struct bpf_object *obj = prog->obj;
8049 	const struct bpf_map *map;
8050 	int insn_idx, map_idx;
8051 	char patch[128];
8052 
8053 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
8054 		return;
8055 
8056 	map_idx -= POISON_LDIMM64_MAP_BASE;
8057 	if (map_idx < 0 || map_idx >= obj->nr_maps)
8058 		return;
8059 	map = &obj->maps[map_idx];
8060 
8061 	snprintf(patch, sizeof(patch),
8062 		 "%d: <invalid BPF map reference>\n"
8063 		 "BPF map '%s' is referenced but wasn't created\n",
8064 		 insn_idx, map->name);
8065 
8066 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
8067 }
8068 
8069 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
8070 					 char *buf, size_t buf_sz, size_t log_sz,
8071 					 char *line1, char *line2, char *line3)
8072 {
8073 	/* Expected log for failed and not properly guarded kfunc call:
8074 	 * line1 -> 123: (85) call unknown#2002000345
8075 	 * line2 -> invalid func unknown#2002000345
8076 	 * line3 -> <anything else or end of buffer>
8077 	 *
8078 	 * "123" is the index of the instruction that was poisoned.
8079 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
8080 	 */
8081 	struct bpf_object *obj = prog->obj;
8082 	const struct extern_desc *ext;
8083 	int insn_idx, ext_idx;
8084 	char patch[128];
8085 
8086 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
8087 		return;
8088 
8089 	ext_idx -= POISON_CALL_KFUNC_BASE;
8090 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
8091 		return;
8092 	ext = &obj->externs[ext_idx];
8093 
8094 	snprintf(patch, sizeof(patch),
8095 		 "%d: <invalid kfunc call>\n"
8096 		 "kfunc '%s' is referenced but wasn't resolved\n",
8097 		 insn_idx, ext->name);
8098 
8099 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
8100 }
8101 
8102 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
8103 {
8104 	/* look for familiar error patterns in last N lines of the log */
8105 	const size_t max_last_line_cnt = 10;
8106 	char *prev_line, *cur_line, *next_line;
8107 	size_t log_sz;
8108 	int i;
8109 
8110 	if (!buf)
8111 		return;
8112 
8113 	log_sz = strlen(buf) + 1;
8114 	next_line = buf + log_sz - 1;
8115 
8116 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
8117 		cur_line = find_prev_line(buf, next_line);
8118 		if (!cur_line)
8119 			return;
8120 
8121 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
8122 			prev_line = find_prev_line(buf, cur_line);
8123 			if (!prev_line)
8124 				continue;
8125 
8126 			/* failed CO-RE relocation case */
8127 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
8128 						   prev_line, cur_line, next_line);
8129 			return;
8130 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
8131 			prev_line = find_prev_line(buf, cur_line);
8132 			if (!prev_line)
8133 				continue;
8134 
8135 			/* reference to uncreated BPF map */
8136 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
8137 						   prev_line, cur_line, next_line);
8138 			return;
8139 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
8140 			prev_line = find_prev_line(buf, cur_line);
8141 			if (!prev_line)
8142 				continue;
8143 
8144 			/* reference to unresolved kfunc */
8145 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
8146 						     prev_line, cur_line, next_line);
8147 			return;
8148 		}
8149 	}
8150 }
8151 
8152 static int bpf_program_record_relos(struct bpf_program *prog)
8153 {
8154 	struct bpf_object *obj = prog->obj;
8155 	int i;
8156 
8157 	for (i = 0; i < prog->nr_reloc; i++) {
8158 		struct reloc_desc *relo = &prog->reloc_desc[i];
8159 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
8160 		int kind;
8161 
8162 		switch (relo->type) {
8163 		case RELO_EXTERN_LD64:
8164 			if (ext->type != EXT_KSYM)
8165 				continue;
8166 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
8167 				BTF_KIND_VAR : BTF_KIND_FUNC;
8168 			bpf_gen__record_extern(obj->gen_loader, ext->name,
8169 					       ext->is_weak, !ext->ksym.type_id,
8170 					       true, kind, relo->insn_idx);
8171 			break;
8172 		case RELO_EXTERN_CALL:
8173 			bpf_gen__record_extern(obj->gen_loader, ext->name,
8174 					       ext->is_weak, false, false, BTF_KIND_FUNC,
8175 					       relo->insn_idx);
8176 			break;
8177 		case RELO_CORE: {
8178 			struct bpf_core_relo cr = {
8179 				.insn_off = relo->insn_idx * 8,
8180 				.type_id = relo->core_relo->type_id,
8181 				.access_str_off = relo->core_relo->access_str_off,
8182 				.kind = relo->core_relo->kind,
8183 			};
8184 
8185 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
8186 			break;
8187 		}
8188 		default:
8189 			continue;
8190 		}
8191 	}
8192 	return 0;
8193 }
8194 
8195 static int
8196 bpf_object__load_progs(struct bpf_object *obj, int log_level)
8197 {
8198 	struct bpf_program *prog;
8199 	size_t i;
8200 	int err;
8201 
8202 	for (i = 0; i < obj->nr_programs; i++) {
8203 		prog = &obj->programs[i];
8204 		if (prog_is_subprog(obj, prog))
8205 			continue;
8206 		if (!prog->autoload) {
8207 			pr_debug("prog '%s': skipped loading\n", prog->name);
8208 			continue;
8209 		}
8210 		prog->log_level |= log_level;
8211 
8212 		if (obj->gen_loader)
8213 			bpf_program_record_relos(prog);
8214 
8215 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
8216 					   obj->license, obj->kern_version, &prog->fd);
8217 		if (err) {
8218 			pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err));
8219 			return err;
8220 		}
8221 	}
8222 
8223 	bpf_object__free_relocs(obj);
8224 	return 0;
8225 }
8226 
8227 static int bpf_object_prepare_progs(struct bpf_object *obj)
8228 {
8229 	struct bpf_program *prog;
8230 	size_t i;
8231 	int err;
8232 
8233 	for (i = 0; i < obj->nr_programs; i++) {
8234 		prog = &obj->programs[i];
8235 		err = bpf_object__sanitize_prog(obj, prog);
8236 		if (err)
8237 			return err;
8238 	}
8239 	return 0;
8240 }
8241 
8242 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
8243 
8244 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
8245 {
8246 	struct bpf_program *prog;
8247 	int err;
8248 
8249 	bpf_object__for_each_program(prog, obj) {
8250 		prog->sec_def = find_sec_def(prog->sec_name);
8251 		if (!prog->sec_def) {
8252 			/* couldn't guess, but user might manually specify */
8253 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
8254 				prog->name, prog->sec_name);
8255 			continue;
8256 		}
8257 
8258 		prog->type = prog->sec_def->prog_type;
8259 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
8260 
8261 		/* sec_def can have custom callback which should be called
8262 		 * after bpf_program is initialized to adjust its properties
8263 		 */
8264 		if (prog->sec_def->prog_setup_fn) {
8265 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
8266 			if (err < 0) {
8267 				pr_warn("prog '%s': failed to initialize: %s\n",
8268 					prog->name, errstr(err));
8269 				return err;
8270 			}
8271 		}
8272 	}
8273 
8274 	return 0;
8275 }
8276 
8277 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
8278 					  const char *obj_name,
8279 					  const struct bpf_object_open_opts *opts)
8280 {
8281 	const char *kconfig, *btf_tmp_path, *token_path;
8282 	struct bpf_object *obj;
8283 	int err;
8284 	char *log_buf;
8285 	size_t log_size;
8286 	__u32 log_level;
8287 
8288 	if (obj_buf && !obj_name)
8289 		return ERR_PTR(-EINVAL);
8290 
8291 	if (elf_version(EV_CURRENT) == EV_NONE) {
8292 		pr_warn("failed to init libelf for %s\n",
8293 			path ? : "(mem buf)");
8294 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
8295 	}
8296 
8297 	if (!OPTS_VALID(opts, bpf_object_open_opts))
8298 		return ERR_PTR(-EINVAL);
8299 
8300 	obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name;
8301 	if (obj_buf) {
8302 		path = obj_name;
8303 		pr_debug("loading object '%s' from buffer\n", obj_name);
8304 	} else {
8305 		pr_debug("loading object from %s\n", path);
8306 	}
8307 
8308 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
8309 	log_size = OPTS_GET(opts, kernel_log_size, 0);
8310 	log_level = OPTS_GET(opts, kernel_log_level, 0);
8311 	if (log_size > UINT_MAX)
8312 		return ERR_PTR(-EINVAL);
8313 	if (log_size && !log_buf)
8314 		return ERR_PTR(-EINVAL);
8315 
8316 	token_path = OPTS_GET(opts, bpf_token_path, NULL);
8317 	/* if user didn't specify bpf_token_path explicitly, check if
8318 	 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
8319 	 * option
8320 	 */
8321 	if (!token_path)
8322 		token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
8323 	if (token_path && strlen(token_path) >= PATH_MAX)
8324 		return ERR_PTR(-ENAMETOOLONG);
8325 
8326 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
8327 	if (IS_ERR(obj))
8328 		return obj;
8329 
8330 	obj->log_buf = log_buf;
8331 	obj->log_size = log_size;
8332 	obj->log_level = log_level;
8333 
8334 	if (token_path) {
8335 		obj->token_path = strdup(token_path);
8336 		if (!obj->token_path) {
8337 			err = -ENOMEM;
8338 			goto out;
8339 		}
8340 	}
8341 
8342 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
8343 	if (btf_tmp_path) {
8344 		if (strlen(btf_tmp_path) >= PATH_MAX) {
8345 			err = -ENAMETOOLONG;
8346 			goto out;
8347 		}
8348 		obj->btf_custom_path = strdup(btf_tmp_path);
8349 		if (!obj->btf_custom_path) {
8350 			err = -ENOMEM;
8351 			goto out;
8352 		}
8353 	}
8354 
8355 	kconfig = OPTS_GET(opts, kconfig, NULL);
8356 	if (kconfig) {
8357 		obj->kconfig = strdup(kconfig);
8358 		if (!obj->kconfig) {
8359 			err = -ENOMEM;
8360 			goto out;
8361 		}
8362 	}
8363 
8364 	err = bpf_object__elf_init(obj);
8365 	err = err ? : bpf_object__elf_collect(obj);
8366 	err = err ? : bpf_object__collect_externs(obj);
8367 	err = err ? : bpf_object_fixup_btf(obj);
8368 	err = err ? : bpf_object__init_maps(obj, opts);
8369 	err = err ? : bpf_object_init_progs(obj, opts);
8370 	err = err ? : bpf_object__collect_relos(obj);
8371 	if (err)
8372 		goto out;
8373 
8374 	bpf_object__elf_finish(obj);
8375 
8376 	return obj;
8377 out:
8378 	bpf_object__close(obj);
8379 	return ERR_PTR(err);
8380 }
8381 
8382 struct bpf_object *
8383 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8384 {
8385 	if (!path)
8386 		return libbpf_err_ptr(-EINVAL);
8387 
8388 	return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts));
8389 }
8390 
8391 struct bpf_object *bpf_object__open(const char *path)
8392 {
8393 	return bpf_object__open_file(path, NULL);
8394 }
8395 
8396 struct bpf_object *
8397 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8398 		     const struct bpf_object_open_opts *opts)
8399 {
8400 	char tmp_name[64];
8401 
8402 	if (!obj_buf || obj_buf_sz == 0)
8403 		return libbpf_err_ptr(-EINVAL);
8404 
8405 	/* create a (quite useless) default "name" for this memory buffer object */
8406 	snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz);
8407 
8408 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts));
8409 }
8410 
8411 static int bpf_object_unload(struct bpf_object *obj)
8412 {
8413 	size_t i;
8414 
8415 	if (!obj)
8416 		return libbpf_err(-EINVAL);
8417 
8418 	for (i = 0; i < obj->nr_maps; i++) {
8419 		zclose(obj->maps[i].fd);
8420 		if (obj->maps[i].st_ops)
8421 			zfree(&obj->maps[i].st_ops->kern_vdata);
8422 	}
8423 
8424 	for (i = 0; i < obj->nr_programs; i++)
8425 		bpf_program__unload(&obj->programs[i]);
8426 
8427 	return 0;
8428 }
8429 
8430 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8431 {
8432 	struct bpf_map *m;
8433 
8434 	bpf_object__for_each_map(m, obj) {
8435 		if (!bpf_map__is_internal(m))
8436 			continue;
8437 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8438 			m->def.map_flags &= ~BPF_F_MMAPABLE;
8439 	}
8440 
8441 	return 0;
8442 }
8443 
8444 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8445 			     const char *sym_name, void *ctx);
8446 
8447 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8448 {
8449 	char sym_type, sym_name[500];
8450 	unsigned long long sym_addr;
8451 	int ret, err = 0;
8452 	FILE *f;
8453 
8454 	f = fopen("/proc/kallsyms", "re");
8455 	if (!f) {
8456 		err = -errno;
8457 		pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err));
8458 		return err;
8459 	}
8460 
8461 	while (true) {
8462 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8463 			     &sym_addr, &sym_type, sym_name);
8464 		if (ret == EOF && feof(f))
8465 			break;
8466 		if (ret != 3) {
8467 			pr_warn("failed to read kallsyms entry: %d\n", ret);
8468 			err = -EINVAL;
8469 			break;
8470 		}
8471 
8472 		err = cb(sym_addr, sym_type, sym_name, ctx);
8473 		if (err)
8474 			break;
8475 	}
8476 
8477 	fclose(f);
8478 	return err;
8479 }
8480 
8481 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8482 		       const char *sym_name, void *ctx)
8483 {
8484 	struct bpf_object *obj = ctx;
8485 	const struct btf_type *t;
8486 	struct extern_desc *ext;
8487 	char *res;
8488 
8489 	res = strstr(sym_name, ".llvm.");
8490 	if (sym_type == 'd' && res)
8491 		ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8492 	else
8493 		ext = find_extern_by_name(obj, sym_name);
8494 	if (!ext || ext->type != EXT_KSYM)
8495 		return 0;
8496 
8497 	t = btf__type_by_id(obj->btf, ext->btf_id);
8498 	if (!btf_is_var(t))
8499 		return 0;
8500 
8501 	if (ext->is_set && ext->ksym.addr != sym_addr) {
8502 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8503 			sym_name, ext->ksym.addr, sym_addr);
8504 		return -EINVAL;
8505 	}
8506 	if (!ext->is_set) {
8507 		ext->is_set = true;
8508 		ext->ksym.addr = sym_addr;
8509 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8510 	}
8511 	return 0;
8512 }
8513 
8514 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8515 {
8516 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
8517 }
8518 
8519 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8520 			    __u16 kind, struct btf **res_btf,
8521 			    struct module_btf **res_mod_btf)
8522 {
8523 	struct module_btf *mod_btf;
8524 	struct btf *btf;
8525 	int i, id, err;
8526 
8527 	btf = obj->btf_vmlinux;
8528 	mod_btf = NULL;
8529 	id = btf__find_by_name_kind(btf, ksym_name, kind);
8530 
8531 	if (id == -ENOENT) {
8532 		err = load_module_btfs(obj);
8533 		if (err)
8534 			return err;
8535 
8536 		for (i = 0; i < obj->btf_module_cnt; i++) {
8537 			/* we assume module_btf's BTF FD is always >0 */
8538 			mod_btf = &obj->btf_modules[i];
8539 			btf = mod_btf->btf;
8540 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8541 			if (id != -ENOENT)
8542 				break;
8543 		}
8544 	}
8545 	if (id <= 0)
8546 		return -ESRCH;
8547 
8548 	*res_btf = btf;
8549 	*res_mod_btf = mod_btf;
8550 	return id;
8551 }
8552 
8553 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8554 					       struct extern_desc *ext)
8555 {
8556 	const struct btf_type *targ_var, *targ_type;
8557 	__u32 targ_type_id, local_type_id;
8558 	struct module_btf *mod_btf = NULL;
8559 	const char *targ_var_name;
8560 	struct btf *btf = NULL;
8561 	int id, err;
8562 
8563 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8564 	if (id < 0) {
8565 		if (id == -ESRCH && ext->is_weak)
8566 			return 0;
8567 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8568 			ext->name);
8569 		return id;
8570 	}
8571 
8572 	/* find local type_id */
8573 	local_type_id = ext->ksym.type_id;
8574 
8575 	/* find target type_id */
8576 	targ_var = btf__type_by_id(btf, id);
8577 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8578 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8579 
8580 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
8581 					btf, targ_type_id);
8582 	if (err <= 0) {
8583 		const struct btf_type *local_type;
8584 		const char *targ_name, *local_name;
8585 
8586 		local_type = btf__type_by_id(obj->btf, local_type_id);
8587 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8588 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
8589 
8590 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8591 			ext->name, local_type_id,
8592 			btf_kind_str(local_type), local_name, targ_type_id,
8593 			btf_kind_str(targ_type), targ_name);
8594 		return -EINVAL;
8595 	}
8596 
8597 	ext->is_set = true;
8598 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8599 	ext->ksym.kernel_btf_id = id;
8600 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8601 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8602 
8603 	return 0;
8604 }
8605 
8606 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8607 						struct extern_desc *ext)
8608 {
8609 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
8610 	struct module_btf *mod_btf = NULL;
8611 	const struct btf_type *kern_func;
8612 	struct btf *kern_btf = NULL;
8613 	int ret;
8614 
8615 	local_func_proto_id = ext->ksym.type_id;
8616 
8617 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8618 				    &mod_btf);
8619 	if (kfunc_id < 0) {
8620 		if (kfunc_id == -ESRCH && ext->is_weak)
8621 			return 0;
8622 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8623 			ext->name);
8624 		return kfunc_id;
8625 	}
8626 
8627 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
8628 	kfunc_proto_id = kern_func->type;
8629 
8630 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8631 					kern_btf, kfunc_proto_id);
8632 	if (ret <= 0) {
8633 		if (ext->is_weak)
8634 			return 0;
8635 
8636 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8637 			ext->name, local_func_proto_id,
8638 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8639 		return -EINVAL;
8640 	}
8641 
8642 	/* set index for module BTF fd in fd_array, if unset */
8643 	if (mod_btf && !mod_btf->fd_array_idx) {
8644 		/* insn->off is s16 */
8645 		if (obj->fd_array_cnt == INT16_MAX) {
8646 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8647 				ext->name, mod_btf->fd_array_idx);
8648 			return -E2BIG;
8649 		}
8650 		/* Cannot use index 0 for module BTF fd */
8651 		if (!obj->fd_array_cnt)
8652 			obj->fd_array_cnt = 1;
8653 
8654 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8655 					obj->fd_array_cnt + 1);
8656 		if (ret)
8657 			return ret;
8658 		mod_btf->fd_array_idx = obj->fd_array_cnt;
8659 		/* we assume module BTF FD is always >0 */
8660 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8661 	}
8662 
8663 	ext->is_set = true;
8664 	ext->ksym.kernel_btf_id = kfunc_id;
8665 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8666 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8667 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8668 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8669 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8670 	 */
8671 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8672 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8673 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8674 
8675 	return 0;
8676 }
8677 
8678 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8679 {
8680 	const struct btf_type *t;
8681 	struct extern_desc *ext;
8682 	int i, err;
8683 
8684 	for (i = 0; i < obj->nr_extern; i++) {
8685 		ext = &obj->externs[i];
8686 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8687 			continue;
8688 
8689 		if (obj->gen_loader) {
8690 			ext->is_set = true;
8691 			ext->ksym.kernel_btf_obj_fd = 0;
8692 			ext->ksym.kernel_btf_id = 0;
8693 			continue;
8694 		}
8695 		t = btf__type_by_id(obj->btf, ext->btf_id);
8696 		if (btf_is_var(t))
8697 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8698 		else
8699 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8700 		if (err)
8701 			return err;
8702 	}
8703 	return 0;
8704 }
8705 
8706 static int bpf_object__resolve_externs(struct bpf_object *obj,
8707 				       const char *extra_kconfig)
8708 {
8709 	bool need_config = false, need_kallsyms = false;
8710 	bool need_vmlinux_btf = false;
8711 	struct extern_desc *ext;
8712 	void *kcfg_data = NULL;
8713 	int err, i;
8714 
8715 	if (obj->nr_extern == 0)
8716 		return 0;
8717 
8718 	if (obj->kconfig_map_idx >= 0)
8719 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8720 
8721 	for (i = 0; i < obj->nr_extern; i++) {
8722 		ext = &obj->externs[i];
8723 
8724 		if (ext->type == EXT_KSYM) {
8725 			if (ext->ksym.type_id)
8726 				need_vmlinux_btf = true;
8727 			else
8728 				need_kallsyms = true;
8729 			continue;
8730 		} else if (ext->type == EXT_KCFG) {
8731 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8732 			__u64 value = 0;
8733 
8734 			/* Kconfig externs need actual /proc/config.gz */
8735 			if (str_has_pfx(ext->name, "CONFIG_")) {
8736 				need_config = true;
8737 				continue;
8738 			}
8739 
8740 			/* Virtual kcfg externs are customly handled by libbpf */
8741 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8742 				value = get_kernel_version();
8743 				if (!value) {
8744 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8745 					return -EINVAL;
8746 				}
8747 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8748 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
8749 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8750 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8751 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8752 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8753 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
8754 				 * customly by libbpf (their values don't come from Kconfig).
8755 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8756 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
8757 				 * externs.
8758 				 */
8759 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8760 				return -EINVAL;
8761 			}
8762 
8763 			err = set_kcfg_value_num(ext, ext_ptr, value);
8764 			if (err)
8765 				return err;
8766 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8767 				 ext->name, (long long)value);
8768 		} else {
8769 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8770 			return -EINVAL;
8771 		}
8772 	}
8773 	if (need_config && extra_kconfig) {
8774 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8775 		if (err)
8776 			return -EINVAL;
8777 		need_config = false;
8778 		for (i = 0; i < obj->nr_extern; i++) {
8779 			ext = &obj->externs[i];
8780 			if (ext->type == EXT_KCFG && !ext->is_set) {
8781 				need_config = true;
8782 				break;
8783 			}
8784 		}
8785 	}
8786 	if (need_config) {
8787 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8788 		if (err)
8789 			return -EINVAL;
8790 	}
8791 	if (need_kallsyms) {
8792 		err = bpf_object__read_kallsyms_file(obj);
8793 		if (err)
8794 			return -EINVAL;
8795 	}
8796 	if (need_vmlinux_btf) {
8797 		err = bpf_object__resolve_ksyms_btf_id(obj);
8798 		if (err)
8799 			return -EINVAL;
8800 	}
8801 	for (i = 0; i < obj->nr_extern; i++) {
8802 		ext = &obj->externs[i];
8803 
8804 		if (!ext->is_set && !ext->is_weak) {
8805 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8806 			return -ESRCH;
8807 		} else if (!ext->is_set) {
8808 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8809 				 ext->name);
8810 		}
8811 	}
8812 
8813 	return 0;
8814 }
8815 
8816 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8817 {
8818 	const struct btf_type *type;
8819 	struct bpf_struct_ops *st_ops;
8820 	__u32 i;
8821 
8822 	st_ops = map->st_ops;
8823 	type = btf__type_by_id(map->obj->btf, st_ops->type_id);
8824 	for (i = 0; i < btf_vlen(type); i++) {
8825 		struct bpf_program *prog = st_ops->progs[i];
8826 		void *kern_data;
8827 		int prog_fd;
8828 
8829 		if (!prog)
8830 			continue;
8831 
8832 		prog_fd = bpf_program__fd(prog);
8833 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8834 		*(unsigned long *)kern_data = prog_fd;
8835 	}
8836 }
8837 
8838 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8839 {
8840 	struct bpf_map *map;
8841 	int i;
8842 
8843 	for (i = 0; i < obj->nr_maps; i++) {
8844 		map = &obj->maps[i];
8845 
8846 		if (!bpf_map__is_struct_ops(map))
8847 			continue;
8848 
8849 		if (!map->autocreate)
8850 			continue;
8851 
8852 		bpf_map_prepare_vdata(map);
8853 	}
8854 
8855 	return 0;
8856 }
8857 
8858 static void bpf_object_unpin(struct bpf_object *obj)
8859 {
8860 	int i;
8861 
8862 	/* unpin any maps that were auto-pinned during load */
8863 	for (i = 0; i < obj->nr_maps; i++)
8864 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8865 			bpf_map__unpin(&obj->maps[i], NULL);
8866 }
8867 
8868 static void bpf_object_post_load_cleanup(struct bpf_object *obj)
8869 {
8870 	int i;
8871 
8872 	/* clean up fd_array */
8873 	zfree(&obj->fd_array);
8874 
8875 	/* clean up module BTFs */
8876 	for (i = 0; i < obj->btf_module_cnt; i++) {
8877 		close(obj->btf_modules[i].fd);
8878 		btf__free(obj->btf_modules[i].btf);
8879 		free(obj->btf_modules[i].name);
8880 	}
8881 	obj->btf_module_cnt = 0;
8882 	zfree(&obj->btf_modules);
8883 
8884 	/* clean up vmlinux BTF */
8885 	btf__free(obj->btf_vmlinux);
8886 	obj->btf_vmlinux = NULL;
8887 }
8888 
8889 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path)
8890 {
8891 	int err;
8892 
8893 	if (obj->state >= OBJ_PREPARED) {
8894 		pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name);
8895 		return -EINVAL;
8896 	}
8897 
8898 	err = bpf_object_prepare_token(obj);
8899 	err = err ? : bpf_object__probe_loading(obj);
8900 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8901 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8902 	err = err ? : bpf_object__sanitize_maps(obj);
8903 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8904 	err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8905 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8906 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8907 	err = err ? : bpf_object__create_maps(obj);
8908 	err = err ? : bpf_object_prepare_progs(obj);
8909 
8910 	if (err) {
8911 		bpf_object_unpin(obj);
8912 		bpf_object_unload(obj);
8913 		obj->state = OBJ_LOADED;
8914 		return err;
8915 	}
8916 
8917 	obj->state = OBJ_PREPARED;
8918 	return 0;
8919 }
8920 
8921 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8922 {
8923 	int err;
8924 
8925 	if (!obj)
8926 		return libbpf_err(-EINVAL);
8927 
8928 	if (obj->state >= OBJ_LOADED) {
8929 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8930 		return libbpf_err(-EINVAL);
8931 	}
8932 
8933 	/* Disallow kernel loading programs of non-native endianness but
8934 	 * permit cross-endian creation of "light skeleton".
8935 	 */
8936 	if (obj->gen_loader) {
8937 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8938 	} else if (!is_native_endianness(obj)) {
8939 		pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name);
8940 		return libbpf_err(-LIBBPF_ERRNO__ENDIAN);
8941 	}
8942 
8943 	if (obj->state < OBJ_PREPARED) {
8944 		err = bpf_object_prepare(obj, target_btf_path);
8945 		if (err)
8946 			return libbpf_err(err);
8947 	}
8948 	err = bpf_object__load_progs(obj, extra_log_level);
8949 	err = err ? : bpf_object_init_prog_arrays(obj);
8950 	err = err ? : bpf_object_prepare_struct_ops(obj);
8951 
8952 	if (obj->gen_loader) {
8953 		/* reset FDs */
8954 		if (obj->btf)
8955 			btf__set_fd(obj->btf, -1);
8956 		if (!err)
8957 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8958 	}
8959 
8960 	bpf_object_post_load_cleanup(obj);
8961 	obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */
8962 
8963 	if (err) {
8964 		bpf_object_unpin(obj);
8965 		bpf_object_unload(obj);
8966 		pr_warn("failed to load object '%s'\n", obj->path);
8967 		return libbpf_err(err);
8968 	}
8969 
8970 	return 0;
8971 }
8972 
8973 int bpf_object__prepare(struct bpf_object *obj)
8974 {
8975 	return libbpf_err(bpf_object_prepare(obj, NULL));
8976 }
8977 
8978 int bpf_object__load(struct bpf_object *obj)
8979 {
8980 	return bpf_object_load(obj, 0, NULL);
8981 }
8982 
8983 static int make_parent_dir(const char *path)
8984 {
8985 	char *dname, *dir;
8986 	int err = 0;
8987 
8988 	dname = strdup(path);
8989 	if (dname == NULL)
8990 		return -ENOMEM;
8991 
8992 	dir = dirname(dname);
8993 	if (mkdir(dir, 0700) && errno != EEXIST)
8994 		err = -errno;
8995 
8996 	free(dname);
8997 	if (err) {
8998 		pr_warn("failed to mkdir %s: %s\n", path, errstr(err));
8999 	}
9000 	return err;
9001 }
9002 
9003 static int check_path(const char *path)
9004 {
9005 	struct statfs st_fs;
9006 	char *dname, *dir;
9007 	int err = 0;
9008 
9009 	if (path == NULL)
9010 		return -EINVAL;
9011 
9012 	dname = strdup(path);
9013 	if (dname == NULL)
9014 		return -ENOMEM;
9015 
9016 	dir = dirname(dname);
9017 	if (statfs(dir, &st_fs)) {
9018 		pr_warn("failed to statfs %s: %s\n", dir, errstr(errno));
9019 		err = -errno;
9020 	}
9021 	free(dname);
9022 
9023 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
9024 		pr_warn("specified path %s is not on BPF FS\n", path);
9025 		err = -EINVAL;
9026 	}
9027 
9028 	return err;
9029 }
9030 
9031 int bpf_program__pin(struct bpf_program *prog, const char *path)
9032 {
9033 	int err;
9034 
9035 	if (prog->fd < 0) {
9036 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
9037 		return libbpf_err(-EINVAL);
9038 	}
9039 
9040 	err = make_parent_dir(path);
9041 	if (err)
9042 		return libbpf_err(err);
9043 
9044 	err = check_path(path);
9045 	if (err)
9046 		return libbpf_err(err);
9047 
9048 	if (bpf_obj_pin(prog->fd, path)) {
9049 		err = -errno;
9050 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err));
9051 		return libbpf_err(err);
9052 	}
9053 
9054 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
9055 	return 0;
9056 }
9057 
9058 int bpf_program__unpin(struct bpf_program *prog, const char *path)
9059 {
9060 	int err;
9061 
9062 	if (prog->fd < 0) {
9063 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
9064 		return libbpf_err(-EINVAL);
9065 	}
9066 
9067 	err = check_path(path);
9068 	if (err)
9069 		return libbpf_err(err);
9070 
9071 	err = unlink(path);
9072 	if (err)
9073 		return libbpf_err(-errno);
9074 
9075 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
9076 	return 0;
9077 }
9078 
9079 int bpf_map__pin(struct bpf_map *map, const char *path)
9080 {
9081 	int err;
9082 
9083 	if (map == NULL) {
9084 		pr_warn("invalid map pointer\n");
9085 		return libbpf_err(-EINVAL);
9086 	}
9087 
9088 	if (map->fd < 0) {
9089 		pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
9090 		return libbpf_err(-EINVAL);
9091 	}
9092 
9093 	if (map->pin_path) {
9094 		if (path && strcmp(path, map->pin_path)) {
9095 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
9096 				bpf_map__name(map), map->pin_path, path);
9097 			return libbpf_err(-EINVAL);
9098 		} else if (map->pinned) {
9099 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
9100 				 bpf_map__name(map), map->pin_path);
9101 			return 0;
9102 		}
9103 	} else {
9104 		if (!path) {
9105 			pr_warn("missing a path to pin map '%s' at\n",
9106 				bpf_map__name(map));
9107 			return libbpf_err(-EINVAL);
9108 		} else if (map->pinned) {
9109 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
9110 			return libbpf_err(-EEXIST);
9111 		}
9112 
9113 		map->pin_path = strdup(path);
9114 		if (!map->pin_path) {
9115 			err = -errno;
9116 			goto out_err;
9117 		}
9118 	}
9119 
9120 	err = make_parent_dir(map->pin_path);
9121 	if (err)
9122 		return libbpf_err(err);
9123 
9124 	err = check_path(map->pin_path);
9125 	if (err)
9126 		return libbpf_err(err);
9127 
9128 	if (bpf_obj_pin(map->fd, map->pin_path)) {
9129 		err = -errno;
9130 		goto out_err;
9131 	}
9132 
9133 	map->pinned = true;
9134 	pr_debug("pinned map '%s'\n", map->pin_path);
9135 
9136 	return 0;
9137 
9138 out_err:
9139 	pr_warn("failed to pin map: %s\n", errstr(err));
9140 	return libbpf_err(err);
9141 }
9142 
9143 int bpf_map__unpin(struct bpf_map *map, const char *path)
9144 {
9145 	int err;
9146 
9147 	if (map == NULL) {
9148 		pr_warn("invalid map pointer\n");
9149 		return libbpf_err(-EINVAL);
9150 	}
9151 
9152 	if (map->pin_path) {
9153 		if (path && strcmp(path, map->pin_path)) {
9154 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
9155 				bpf_map__name(map), map->pin_path, path);
9156 			return libbpf_err(-EINVAL);
9157 		}
9158 		path = map->pin_path;
9159 	} else if (!path) {
9160 		pr_warn("no path to unpin map '%s' from\n",
9161 			bpf_map__name(map));
9162 		return libbpf_err(-EINVAL);
9163 	}
9164 
9165 	err = check_path(path);
9166 	if (err)
9167 		return libbpf_err(err);
9168 
9169 	err = unlink(path);
9170 	if (err != 0)
9171 		return libbpf_err(-errno);
9172 
9173 	map->pinned = false;
9174 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
9175 
9176 	return 0;
9177 }
9178 
9179 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
9180 {
9181 	char *new = NULL;
9182 
9183 	if (path) {
9184 		new = strdup(path);
9185 		if (!new)
9186 			return libbpf_err(-errno);
9187 	}
9188 
9189 	free(map->pin_path);
9190 	map->pin_path = new;
9191 	return 0;
9192 }
9193 
9194 __alias(bpf_map__pin_path)
9195 const char *bpf_map__get_pin_path(const struct bpf_map *map);
9196 
9197 const char *bpf_map__pin_path(const struct bpf_map *map)
9198 {
9199 	return map->pin_path;
9200 }
9201 
9202 bool bpf_map__is_pinned(const struct bpf_map *map)
9203 {
9204 	return map->pinned;
9205 }
9206 
9207 static void sanitize_pin_path(char *s)
9208 {
9209 	/* bpffs disallows periods in path names */
9210 	while (*s) {
9211 		if (*s == '.')
9212 			*s = '_';
9213 		s++;
9214 	}
9215 }
9216 
9217 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
9218 {
9219 	struct bpf_map *map;
9220 	int err;
9221 
9222 	if (!obj)
9223 		return libbpf_err(-ENOENT);
9224 
9225 	if (obj->state < OBJ_PREPARED) {
9226 		pr_warn("object not yet loaded; load it first\n");
9227 		return libbpf_err(-ENOENT);
9228 	}
9229 
9230 	bpf_object__for_each_map(map, obj) {
9231 		char *pin_path = NULL;
9232 		char buf[PATH_MAX];
9233 
9234 		if (!map->autocreate)
9235 			continue;
9236 
9237 		if (path) {
9238 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
9239 			if (err)
9240 				goto err_unpin_maps;
9241 			sanitize_pin_path(buf);
9242 			pin_path = buf;
9243 		} else if (!map->pin_path) {
9244 			continue;
9245 		}
9246 
9247 		err = bpf_map__pin(map, pin_path);
9248 		if (err)
9249 			goto err_unpin_maps;
9250 	}
9251 
9252 	return 0;
9253 
9254 err_unpin_maps:
9255 	while ((map = bpf_object__prev_map(obj, map))) {
9256 		if (!map->pin_path)
9257 			continue;
9258 
9259 		bpf_map__unpin(map, NULL);
9260 	}
9261 
9262 	return libbpf_err(err);
9263 }
9264 
9265 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
9266 {
9267 	struct bpf_map *map;
9268 	int err;
9269 
9270 	if (!obj)
9271 		return libbpf_err(-ENOENT);
9272 
9273 	bpf_object__for_each_map(map, obj) {
9274 		char *pin_path = NULL;
9275 		char buf[PATH_MAX];
9276 
9277 		if (path) {
9278 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
9279 			if (err)
9280 				return libbpf_err(err);
9281 			sanitize_pin_path(buf);
9282 			pin_path = buf;
9283 		} else if (!map->pin_path) {
9284 			continue;
9285 		}
9286 
9287 		err = bpf_map__unpin(map, pin_path);
9288 		if (err)
9289 			return libbpf_err(err);
9290 	}
9291 
9292 	return 0;
9293 }
9294 
9295 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
9296 {
9297 	struct bpf_program *prog;
9298 	char buf[PATH_MAX];
9299 	int err;
9300 
9301 	if (!obj)
9302 		return libbpf_err(-ENOENT);
9303 
9304 	if (obj->state < OBJ_LOADED) {
9305 		pr_warn("object not yet loaded; load it first\n");
9306 		return libbpf_err(-ENOENT);
9307 	}
9308 
9309 	bpf_object__for_each_program(prog, obj) {
9310 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
9311 		if (err)
9312 			goto err_unpin_programs;
9313 
9314 		err = bpf_program__pin(prog, buf);
9315 		if (err)
9316 			goto err_unpin_programs;
9317 	}
9318 
9319 	return 0;
9320 
9321 err_unpin_programs:
9322 	while ((prog = bpf_object__prev_program(obj, prog))) {
9323 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
9324 			continue;
9325 
9326 		bpf_program__unpin(prog, buf);
9327 	}
9328 
9329 	return libbpf_err(err);
9330 }
9331 
9332 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
9333 {
9334 	struct bpf_program *prog;
9335 	int err;
9336 
9337 	if (!obj)
9338 		return libbpf_err(-ENOENT);
9339 
9340 	bpf_object__for_each_program(prog, obj) {
9341 		char buf[PATH_MAX];
9342 
9343 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
9344 		if (err)
9345 			return libbpf_err(err);
9346 
9347 		err = bpf_program__unpin(prog, buf);
9348 		if (err)
9349 			return libbpf_err(err);
9350 	}
9351 
9352 	return 0;
9353 }
9354 
9355 int bpf_object__pin(struct bpf_object *obj, const char *path)
9356 {
9357 	int err;
9358 
9359 	err = bpf_object__pin_maps(obj, path);
9360 	if (err)
9361 		return libbpf_err(err);
9362 
9363 	err = bpf_object__pin_programs(obj, path);
9364 	if (err) {
9365 		bpf_object__unpin_maps(obj, path);
9366 		return libbpf_err(err);
9367 	}
9368 
9369 	return 0;
9370 }
9371 
9372 int bpf_object__unpin(struct bpf_object *obj, const char *path)
9373 {
9374 	int err;
9375 
9376 	err = bpf_object__unpin_programs(obj, path);
9377 	if (err)
9378 		return libbpf_err(err);
9379 
9380 	err = bpf_object__unpin_maps(obj, path);
9381 	if (err)
9382 		return libbpf_err(err);
9383 
9384 	return 0;
9385 }
9386 
9387 static void bpf_map__destroy(struct bpf_map *map)
9388 {
9389 	if (map->inner_map) {
9390 		bpf_map__destroy(map->inner_map);
9391 		zfree(&map->inner_map);
9392 	}
9393 
9394 	zfree(&map->init_slots);
9395 	map->init_slots_sz = 0;
9396 
9397 	if (map->mmaped && map->mmaped != map->obj->arena_data)
9398 		munmap(map->mmaped, bpf_map_mmap_sz(map));
9399 	map->mmaped = NULL;
9400 
9401 	if (map->st_ops) {
9402 		zfree(&map->st_ops->data);
9403 		zfree(&map->st_ops->progs);
9404 		zfree(&map->st_ops->kern_func_off);
9405 		zfree(&map->st_ops);
9406 	}
9407 
9408 	zfree(&map->name);
9409 	zfree(&map->real_name);
9410 	zfree(&map->pin_path);
9411 
9412 	if (map->fd >= 0)
9413 		zclose(map->fd);
9414 }
9415 
9416 void bpf_object__close(struct bpf_object *obj)
9417 {
9418 	size_t i;
9419 
9420 	if (IS_ERR_OR_NULL(obj))
9421 		return;
9422 
9423 	/*
9424 	 * if user called bpf_object__prepare() without ever getting to
9425 	 * bpf_object__load(), we need to clean up stuff that is normally
9426 	 * cleaned up at the end of loading step
9427 	 */
9428 	bpf_object_post_load_cleanup(obj);
9429 
9430 	usdt_manager_free(obj->usdt_man);
9431 	obj->usdt_man = NULL;
9432 
9433 	bpf_gen__free(obj->gen_loader);
9434 	bpf_object__elf_finish(obj);
9435 	bpf_object_unload(obj);
9436 	btf__free(obj->btf);
9437 	btf__free(obj->btf_vmlinux);
9438 	btf_ext__free(obj->btf_ext);
9439 
9440 	for (i = 0; i < obj->nr_maps; i++)
9441 		bpf_map__destroy(&obj->maps[i]);
9442 
9443 	zfree(&obj->btf_custom_path);
9444 	zfree(&obj->kconfig);
9445 
9446 	for (i = 0; i < obj->nr_extern; i++) {
9447 		zfree(&obj->externs[i].name);
9448 		zfree(&obj->externs[i].essent_name);
9449 	}
9450 
9451 	zfree(&obj->externs);
9452 	obj->nr_extern = 0;
9453 
9454 	zfree(&obj->maps);
9455 	obj->nr_maps = 0;
9456 
9457 	if (obj->programs && obj->nr_programs) {
9458 		for (i = 0; i < obj->nr_programs; i++)
9459 			bpf_program__exit(&obj->programs[i]);
9460 	}
9461 	zfree(&obj->programs);
9462 
9463 	zfree(&obj->feat_cache);
9464 	zfree(&obj->token_path);
9465 	if (obj->token_fd > 0)
9466 		close(obj->token_fd);
9467 
9468 	zfree(&obj->arena_data);
9469 
9470 	zfree(&obj->jumptables_data);
9471 	obj->jumptables_data_sz = 0;
9472 
9473 	for (i = 0; i < obj->jumptable_map_cnt; i++)
9474 		close(obj->jumptable_maps[i].fd);
9475 	zfree(&obj->jumptable_maps);
9476 
9477 	free(obj);
9478 }
9479 
9480 const char *bpf_object__name(const struct bpf_object *obj)
9481 {
9482 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9483 }
9484 
9485 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9486 {
9487 	return obj ? obj->kern_version : 0;
9488 }
9489 
9490 int bpf_object__token_fd(const struct bpf_object *obj)
9491 {
9492 	return obj->token_fd ?: -1;
9493 }
9494 
9495 struct btf *bpf_object__btf(const struct bpf_object *obj)
9496 {
9497 	return obj ? obj->btf : NULL;
9498 }
9499 
9500 int bpf_object__btf_fd(const struct bpf_object *obj)
9501 {
9502 	return obj->btf ? btf__fd(obj->btf) : -1;
9503 }
9504 
9505 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9506 {
9507 	if (obj->state >= OBJ_LOADED)
9508 		return libbpf_err(-EINVAL);
9509 
9510 	obj->kern_version = kern_version;
9511 
9512 	return 0;
9513 }
9514 
9515 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9516 {
9517 	struct bpf_gen *gen;
9518 
9519 	if (!opts)
9520 		return libbpf_err(-EFAULT);
9521 	if (!OPTS_VALID(opts, gen_loader_opts))
9522 		return libbpf_err(-EINVAL);
9523 	gen = calloc(1, sizeof(*gen));
9524 	if (!gen)
9525 		return libbpf_err(-ENOMEM);
9526 	gen->opts = opts;
9527 	gen->swapped_endian = !is_native_endianness(obj);
9528 	obj->gen_loader = gen;
9529 	return 0;
9530 }
9531 
9532 static struct bpf_program *
9533 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9534 		    bool forward)
9535 {
9536 	size_t nr_programs = obj->nr_programs;
9537 	ssize_t idx;
9538 
9539 	if (!nr_programs)
9540 		return NULL;
9541 
9542 	if (!p)
9543 		/* Iter from the beginning */
9544 		return forward ? &obj->programs[0] :
9545 			&obj->programs[nr_programs - 1];
9546 
9547 	if (p->obj != obj) {
9548 		pr_warn("error: program handler doesn't match object\n");
9549 		return errno = EINVAL, NULL;
9550 	}
9551 
9552 	idx = (p - obj->programs) + (forward ? 1 : -1);
9553 	if (idx >= obj->nr_programs || idx < 0)
9554 		return NULL;
9555 	return &obj->programs[idx];
9556 }
9557 
9558 struct bpf_program *
9559 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9560 {
9561 	struct bpf_program *prog = prev;
9562 
9563 	do {
9564 		prog = __bpf_program__iter(prog, obj, true);
9565 	} while (prog && prog_is_subprog(obj, prog));
9566 
9567 	return prog;
9568 }
9569 
9570 struct bpf_program *
9571 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9572 {
9573 	struct bpf_program *prog = next;
9574 
9575 	do {
9576 		prog = __bpf_program__iter(prog, obj, false);
9577 	} while (prog && prog_is_subprog(obj, prog));
9578 
9579 	return prog;
9580 }
9581 
9582 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9583 {
9584 	prog->prog_ifindex = ifindex;
9585 }
9586 
9587 const char *bpf_program__name(const struct bpf_program *prog)
9588 {
9589 	return prog->name;
9590 }
9591 
9592 const char *bpf_program__section_name(const struct bpf_program *prog)
9593 {
9594 	return prog->sec_name;
9595 }
9596 
9597 bool bpf_program__autoload(const struct bpf_program *prog)
9598 {
9599 	return prog->autoload;
9600 }
9601 
9602 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9603 {
9604 	if (prog->obj->state >= OBJ_LOADED)
9605 		return libbpf_err(-EINVAL);
9606 
9607 	prog->autoload = autoload;
9608 	return 0;
9609 }
9610 
9611 bool bpf_program__autoattach(const struct bpf_program *prog)
9612 {
9613 	return prog->autoattach;
9614 }
9615 
9616 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9617 {
9618 	prog->autoattach = autoattach;
9619 }
9620 
9621 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9622 {
9623 	return prog->insns;
9624 }
9625 
9626 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9627 {
9628 	return prog->insns_cnt;
9629 }
9630 
9631 int bpf_program__set_insns(struct bpf_program *prog,
9632 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
9633 {
9634 	struct bpf_insn *insns;
9635 
9636 	if (prog->obj->state >= OBJ_LOADED)
9637 		return libbpf_err(-EBUSY);
9638 
9639 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9640 	/* NULL is a valid return from reallocarray if the new count is zero */
9641 	if (!insns && new_insn_cnt) {
9642 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9643 		return libbpf_err(-ENOMEM);
9644 	}
9645 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9646 
9647 	prog->insns = insns;
9648 	prog->insns_cnt = new_insn_cnt;
9649 	return 0;
9650 }
9651 
9652 int bpf_program__fd(const struct bpf_program *prog)
9653 {
9654 	if (!prog)
9655 		return libbpf_err(-EINVAL);
9656 
9657 	if (prog->fd < 0)
9658 		return libbpf_err(-ENOENT);
9659 
9660 	return prog->fd;
9661 }
9662 
9663 __alias(bpf_program__type)
9664 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9665 
9666 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9667 {
9668 	return prog->type;
9669 }
9670 
9671 static size_t custom_sec_def_cnt;
9672 static struct bpf_sec_def *custom_sec_defs;
9673 static struct bpf_sec_def custom_fallback_def;
9674 static bool has_custom_fallback_def;
9675 static int last_custom_sec_def_handler_id;
9676 
9677 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9678 {
9679 	if (prog->obj->state >= OBJ_LOADED)
9680 		return libbpf_err(-EBUSY);
9681 
9682 	/* if type is not changed, do nothing */
9683 	if (prog->type == type)
9684 		return 0;
9685 
9686 	prog->type = type;
9687 
9688 	/* If a program type was changed, we need to reset associated SEC()
9689 	 * handler, as it will be invalid now. The only exception is a generic
9690 	 * fallback handler, which by definition is program type-agnostic and
9691 	 * is a catch-all custom handler, optionally set by the application,
9692 	 * so should be able to handle any type of BPF program.
9693 	 */
9694 	if (prog->sec_def != &custom_fallback_def)
9695 		prog->sec_def = NULL;
9696 	return 0;
9697 }
9698 
9699 __alias(bpf_program__expected_attach_type)
9700 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9701 
9702 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9703 {
9704 	return prog->expected_attach_type;
9705 }
9706 
9707 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9708 					   enum bpf_attach_type type)
9709 {
9710 	if (prog->obj->state >= OBJ_LOADED)
9711 		return libbpf_err(-EBUSY);
9712 
9713 	prog->expected_attach_type = type;
9714 	return 0;
9715 }
9716 
9717 __u32 bpf_program__flags(const struct bpf_program *prog)
9718 {
9719 	return prog->prog_flags;
9720 }
9721 
9722 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9723 {
9724 	if (prog->obj->state >= OBJ_LOADED)
9725 		return libbpf_err(-EBUSY);
9726 
9727 	prog->prog_flags = flags;
9728 	return 0;
9729 }
9730 
9731 __u32 bpf_program__log_level(const struct bpf_program *prog)
9732 {
9733 	return prog->log_level;
9734 }
9735 
9736 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9737 {
9738 	if (prog->obj->state >= OBJ_LOADED)
9739 		return libbpf_err(-EBUSY);
9740 
9741 	prog->log_level = log_level;
9742 	return 0;
9743 }
9744 
9745 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9746 {
9747 	*log_size = prog->log_size;
9748 	return prog->log_buf;
9749 }
9750 
9751 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9752 {
9753 	if (log_size && !log_buf)
9754 		return libbpf_err(-EINVAL);
9755 	if (prog->log_size > UINT_MAX)
9756 		return libbpf_err(-EINVAL);
9757 	if (prog->obj->state >= OBJ_LOADED)
9758 		return libbpf_err(-EBUSY);
9759 
9760 	prog->log_buf = log_buf;
9761 	prog->log_size = log_size;
9762 	return 0;
9763 }
9764 
9765 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog)
9766 {
9767 	if (prog->func_info_rec_size != sizeof(struct bpf_func_info))
9768 		return libbpf_err_ptr(-EOPNOTSUPP);
9769 	return prog->func_info;
9770 }
9771 
9772 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog)
9773 {
9774 	return prog->func_info_cnt;
9775 }
9776 
9777 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog)
9778 {
9779 	if (prog->line_info_rec_size != sizeof(struct bpf_line_info))
9780 		return libbpf_err_ptr(-EOPNOTSUPP);
9781 	return prog->line_info;
9782 }
9783 
9784 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog)
9785 {
9786 	return prog->line_info_cnt;
9787 }
9788 
9789 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
9790 	.sec = (char *)sec_pfx,						    \
9791 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9792 	.expected_attach_type = atype,					    \
9793 	.cookie = (long)(flags),					    \
9794 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
9795 	__VA_ARGS__							    \
9796 }
9797 
9798 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9799 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9800 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9801 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9802 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9803 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9804 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9805 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9806 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9807 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9808 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9809 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9810 
9811 static const struct bpf_sec_def section_defs[] = {
9812 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
9813 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9814 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9815 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9816 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9817 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
9818 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9819 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9820 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9821 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9822 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9823 	SEC_DEF("kprobe.session+",	KPROBE,	BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9824 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9825 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9826 	SEC_DEF("uprobe.session+",	KPROBE,	BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi),
9827 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9828 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9829 	SEC_DEF("uprobe.session.s+",	KPROBE,	BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi),
9830 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
9831 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
9832 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
9833 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9834 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9835 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9836 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9837 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9838 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9839 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9840 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9841 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9842 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9843 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9844 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9845 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9846 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9847 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9848 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9849 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9850 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9851 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9852 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9853 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9854 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9855 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9856 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9857 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9858 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9859 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9860 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9861 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9862 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9863 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9864 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9865 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9866 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9867 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9868 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9869 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
9870 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
9871 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
9872 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
9873 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
9874 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9875 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9876 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9877 	SEC_DEF("sk_skb/verdict",	SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9878 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
9879 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9880 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9881 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9882 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9883 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9884 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
9885 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9886 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9887 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9888 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9889 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9890 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9891 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9892 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9893 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9894 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9895 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9896 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9897 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9898 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9899 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9900 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9901 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9902 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9903 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9904 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9905 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9906 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9907 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9908 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9909 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9910 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9911 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9912 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9913 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9914 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9915 };
9916 
9917 int libbpf_register_prog_handler(const char *sec,
9918 				 enum bpf_prog_type prog_type,
9919 				 enum bpf_attach_type exp_attach_type,
9920 				 const struct libbpf_prog_handler_opts *opts)
9921 {
9922 	struct bpf_sec_def *sec_def;
9923 
9924 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9925 		return libbpf_err(-EINVAL);
9926 
9927 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9928 		return libbpf_err(-E2BIG);
9929 
9930 	if (sec) {
9931 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9932 					      sizeof(*sec_def));
9933 		if (!sec_def)
9934 			return libbpf_err(-ENOMEM);
9935 
9936 		custom_sec_defs = sec_def;
9937 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9938 	} else {
9939 		if (has_custom_fallback_def)
9940 			return libbpf_err(-EBUSY);
9941 
9942 		sec_def = &custom_fallback_def;
9943 	}
9944 
9945 	sec_def->sec = sec ? strdup(sec) : NULL;
9946 	if (sec && !sec_def->sec)
9947 		return libbpf_err(-ENOMEM);
9948 
9949 	sec_def->prog_type = prog_type;
9950 	sec_def->expected_attach_type = exp_attach_type;
9951 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9952 
9953 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9954 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9955 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9956 
9957 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9958 
9959 	if (sec)
9960 		custom_sec_def_cnt++;
9961 	else
9962 		has_custom_fallback_def = true;
9963 
9964 	return sec_def->handler_id;
9965 }
9966 
9967 int libbpf_unregister_prog_handler(int handler_id)
9968 {
9969 	struct bpf_sec_def *sec_defs;
9970 	int i;
9971 
9972 	if (handler_id <= 0)
9973 		return libbpf_err(-EINVAL);
9974 
9975 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9976 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9977 		has_custom_fallback_def = false;
9978 		return 0;
9979 	}
9980 
9981 	for (i = 0; i < custom_sec_def_cnt; i++) {
9982 		if (custom_sec_defs[i].handler_id == handler_id)
9983 			break;
9984 	}
9985 
9986 	if (i == custom_sec_def_cnt)
9987 		return libbpf_err(-ENOENT);
9988 
9989 	free(custom_sec_defs[i].sec);
9990 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9991 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9992 	custom_sec_def_cnt--;
9993 
9994 	/* try to shrink the array, but it's ok if we couldn't */
9995 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9996 	/* if new count is zero, reallocarray can return a valid NULL result;
9997 	 * in this case the previous pointer will be freed, so we *have to*
9998 	 * reassign old pointer to the new value (even if it's NULL)
9999 	 */
10000 	if (sec_defs || custom_sec_def_cnt == 0)
10001 		custom_sec_defs = sec_defs;
10002 
10003 	return 0;
10004 }
10005 
10006 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
10007 {
10008 	size_t len = strlen(sec_def->sec);
10009 
10010 	/* "type/" always has to have proper SEC("type/extras") form */
10011 	if (sec_def->sec[len - 1] == '/') {
10012 		if (str_has_pfx(sec_name, sec_def->sec))
10013 			return true;
10014 		return false;
10015 	}
10016 
10017 	/* "type+" means it can be either exact SEC("type") or
10018 	 * well-formed SEC("type/extras") with proper '/' separator
10019 	 */
10020 	if (sec_def->sec[len - 1] == '+') {
10021 		len--;
10022 		/* not even a prefix */
10023 		if (strncmp(sec_name, sec_def->sec, len) != 0)
10024 			return false;
10025 		/* exact match or has '/' separator */
10026 		if (sec_name[len] == '\0' || sec_name[len] == '/')
10027 			return true;
10028 		return false;
10029 	}
10030 
10031 	return strcmp(sec_name, sec_def->sec) == 0;
10032 }
10033 
10034 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
10035 {
10036 	const struct bpf_sec_def *sec_def;
10037 	int i, n;
10038 
10039 	n = custom_sec_def_cnt;
10040 	for (i = 0; i < n; i++) {
10041 		sec_def = &custom_sec_defs[i];
10042 		if (sec_def_matches(sec_def, sec_name))
10043 			return sec_def;
10044 	}
10045 
10046 	n = ARRAY_SIZE(section_defs);
10047 	for (i = 0; i < n; i++) {
10048 		sec_def = &section_defs[i];
10049 		if (sec_def_matches(sec_def, sec_name))
10050 			return sec_def;
10051 	}
10052 
10053 	if (has_custom_fallback_def)
10054 		return &custom_fallback_def;
10055 
10056 	return NULL;
10057 }
10058 
10059 #define MAX_TYPE_NAME_SIZE 32
10060 
10061 static char *libbpf_get_type_names(bool attach_type)
10062 {
10063 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
10064 	char *buf;
10065 
10066 	buf = malloc(len);
10067 	if (!buf)
10068 		return NULL;
10069 
10070 	buf[0] = '\0';
10071 	/* Forge string buf with all available names */
10072 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
10073 		const struct bpf_sec_def *sec_def = &section_defs[i];
10074 
10075 		if (attach_type) {
10076 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10077 				continue;
10078 
10079 			if (!(sec_def->cookie & SEC_ATTACHABLE))
10080 				continue;
10081 		}
10082 
10083 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
10084 			free(buf);
10085 			return NULL;
10086 		}
10087 		strcat(buf, " ");
10088 		strcat(buf, section_defs[i].sec);
10089 	}
10090 
10091 	return buf;
10092 }
10093 
10094 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
10095 			     enum bpf_attach_type *expected_attach_type)
10096 {
10097 	const struct bpf_sec_def *sec_def;
10098 	char *type_names;
10099 
10100 	if (!name)
10101 		return libbpf_err(-EINVAL);
10102 
10103 	sec_def = find_sec_def(name);
10104 	if (sec_def) {
10105 		*prog_type = sec_def->prog_type;
10106 		*expected_attach_type = sec_def->expected_attach_type;
10107 		return 0;
10108 	}
10109 
10110 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
10111 	type_names = libbpf_get_type_names(false);
10112 	if (type_names != NULL) {
10113 		pr_debug("supported section(type) names are:%s\n", type_names);
10114 		free(type_names);
10115 	}
10116 
10117 	return libbpf_err(-ESRCH);
10118 }
10119 
10120 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
10121 {
10122 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
10123 		return NULL;
10124 
10125 	return attach_type_name[t];
10126 }
10127 
10128 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
10129 {
10130 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
10131 		return NULL;
10132 
10133 	return link_type_name[t];
10134 }
10135 
10136 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
10137 {
10138 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
10139 		return NULL;
10140 
10141 	return map_type_name[t];
10142 }
10143 
10144 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
10145 {
10146 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
10147 		return NULL;
10148 
10149 	return prog_type_name[t];
10150 }
10151 
10152 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
10153 						     int sec_idx,
10154 						     size_t offset)
10155 {
10156 	struct bpf_map *map;
10157 	size_t i;
10158 
10159 	for (i = 0; i < obj->nr_maps; i++) {
10160 		map = &obj->maps[i];
10161 		if (!bpf_map__is_struct_ops(map))
10162 			continue;
10163 		if (map->sec_idx == sec_idx &&
10164 		    map->sec_offset <= offset &&
10165 		    offset - map->sec_offset < map->def.value_size)
10166 			return map;
10167 	}
10168 
10169 	return NULL;
10170 }
10171 
10172 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
10173  * st_ops->data for shadow type.
10174  */
10175 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
10176 					    Elf64_Shdr *shdr, Elf_Data *data)
10177 {
10178 	const struct btf_type *type;
10179 	const struct btf_member *member;
10180 	struct bpf_struct_ops *st_ops;
10181 	struct bpf_program *prog;
10182 	unsigned int shdr_idx;
10183 	const struct btf *btf;
10184 	struct bpf_map *map;
10185 	unsigned int moff, insn_idx;
10186 	const char *name;
10187 	__u32 member_idx;
10188 	Elf64_Sym *sym;
10189 	Elf64_Rel *rel;
10190 	int i, nrels;
10191 
10192 	btf = obj->btf;
10193 	nrels = shdr->sh_size / shdr->sh_entsize;
10194 	for (i = 0; i < nrels; i++) {
10195 		rel = elf_rel_by_idx(data, i);
10196 		if (!rel) {
10197 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
10198 			return -LIBBPF_ERRNO__FORMAT;
10199 		}
10200 
10201 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
10202 		if (!sym) {
10203 			pr_warn("struct_ops reloc: symbol %zx not found\n",
10204 				(size_t)ELF64_R_SYM(rel->r_info));
10205 			return -LIBBPF_ERRNO__FORMAT;
10206 		}
10207 
10208 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
10209 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
10210 		if (!map) {
10211 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
10212 				(size_t)rel->r_offset);
10213 			return -EINVAL;
10214 		}
10215 
10216 		moff = rel->r_offset - map->sec_offset;
10217 		shdr_idx = sym->st_shndx;
10218 		st_ops = map->st_ops;
10219 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
10220 			 map->name,
10221 			 (long long)(rel->r_info >> 32),
10222 			 (long long)sym->st_value,
10223 			 shdr_idx, (size_t)rel->r_offset,
10224 			 map->sec_offset, sym->st_name, name);
10225 
10226 		if (shdr_idx >= SHN_LORESERVE) {
10227 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
10228 				map->name, (size_t)rel->r_offset, shdr_idx);
10229 			return -LIBBPF_ERRNO__RELOC;
10230 		}
10231 		if (sym->st_value % BPF_INSN_SZ) {
10232 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
10233 				map->name, (unsigned long long)sym->st_value);
10234 			return -LIBBPF_ERRNO__FORMAT;
10235 		}
10236 		insn_idx = sym->st_value / BPF_INSN_SZ;
10237 
10238 		type = btf__type_by_id(btf, st_ops->type_id);
10239 		member = find_member_by_offset(type, moff * 8);
10240 		if (!member) {
10241 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
10242 				map->name, moff);
10243 			return -EINVAL;
10244 		}
10245 		member_idx = member - btf_members(type);
10246 		name = btf__name_by_offset(btf, member->name_off);
10247 
10248 		if (!resolve_func_ptr(btf, member->type, NULL)) {
10249 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
10250 				map->name, name);
10251 			return -EINVAL;
10252 		}
10253 
10254 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
10255 		if (!prog) {
10256 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
10257 				map->name, shdr_idx, name);
10258 			return -EINVAL;
10259 		}
10260 
10261 		/* prevent the use of BPF prog with invalid type */
10262 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
10263 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
10264 				map->name, prog->name);
10265 			return -EINVAL;
10266 		}
10267 
10268 		st_ops->progs[member_idx] = prog;
10269 
10270 		/* st_ops->data will be exposed to users, being returned by
10271 		 * bpf_map__initial_value() as a pointer to the shadow
10272 		 * type. All function pointers in the original struct type
10273 		 * should be converted to a pointer to struct bpf_program
10274 		 * in the shadow type.
10275 		 */
10276 		*((struct bpf_program **)(st_ops->data + moff)) = prog;
10277 	}
10278 
10279 	return 0;
10280 }
10281 
10282 #define BTF_TRACE_PREFIX "btf_trace_"
10283 #define BTF_LSM_PREFIX "bpf_lsm_"
10284 #define BTF_ITER_PREFIX "bpf_iter_"
10285 #define BTF_MAX_NAME_SIZE 128
10286 
10287 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
10288 				const char **prefix, int *kind)
10289 {
10290 	switch (attach_type) {
10291 	case BPF_TRACE_RAW_TP:
10292 		*prefix = BTF_TRACE_PREFIX;
10293 		*kind = BTF_KIND_TYPEDEF;
10294 		break;
10295 	case BPF_LSM_MAC:
10296 	case BPF_LSM_CGROUP:
10297 		*prefix = BTF_LSM_PREFIX;
10298 		*kind = BTF_KIND_FUNC;
10299 		break;
10300 	case BPF_TRACE_ITER:
10301 		*prefix = BTF_ITER_PREFIX;
10302 		*kind = BTF_KIND_FUNC;
10303 		break;
10304 	default:
10305 		*prefix = "";
10306 		*kind = BTF_KIND_FUNC;
10307 	}
10308 }
10309 
10310 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
10311 				   const char *name, __u32 kind)
10312 {
10313 	char btf_type_name[BTF_MAX_NAME_SIZE];
10314 	int ret;
10315 
10316 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
10317 		       "%s%s", prefix, name);
10318 	/* snprintf returns the number of characters written excluding the
10319 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
10320 	 * indicates truncation.
10321 	 */
10322 	if (ret < 0 || ret >= sizeof(btf_type_name))
10323 		return -ENAMETOOLONG;
10324 	return btf__find_by_name_kind(btf, btf_type_name, kind);
10325 }
10326 
10327 static inline int find_attach_btf_id(struct btf *btf, const char *name,
10328 				     enum bpf_attach_type attach_type)
10329 {
10330 	const char *prefix;
10331 	int kind;
10332 
10333 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
10334 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
10335 }
10336 
10337 int libbpf_find_vmlinux_btf_id(const char *name,
10338 			       enum bpf_attach_type attach_type)
10339 {
10340 	struct btf *btf;
10341 	int err;
10342 
10343 	btf = btf__load_vmlinux_btf();
10344 	err = libbpf_get_error(btf);
10345 	if (err) {
10346 		pr_warn("vmlinux BTF is not found\n");
10347 		return libbpf_err(err);
10348 	}
10349 
10350 	err = find_attach_btf_id(btf, name, attach_type);
10351 	if (err <= 0)
10352 		pr_warn("%s is not found in vmlinux BTF\n", name);
10353 
10354 	btf__free(btf);
10355 	return libbpf_err(err);
10356 }
10357 
10358 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd)
10359 {
10360 	struct bpf_prog_info info;
10361 	__u32 info_len = sizeof(info);
10362 	struct btf *btf;
10363 	int err;
10364 
10365 	memset(&info, 0, info_len);
10366 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
10367 	if (err) {
10368 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n",
10369 			attach_prog_fd, errstr(err));
10370 		return err;
10371 	}
10372 
10373 	err = -EINVAL;
10374 	if (!info.btf_id) {
10375 		pr_warn("The target program doesn't have BTF\n");
10376 		goto out;
10377 	}
10378 	btf = btf_load_from_kernel(info.btf_id, NULL, token_fd);
10379 	err = libbpf_get_error(btf);
10380 	if (err) {
10381 		pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err));
10382 		goto out;
10383 	}
10384 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
10385 	btf__free(btf);
10386 	if (err <= 0) {
10387 		pr_warn("%s is not found in prog's BTF\n", name);
10388 		goto out;
10389 	}
10390 out:
10391 	return err;
10392 }
10393 
10394 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
10395 			      enum bpf_attach_type attach_type,
10396 			      int *btf_obj_fd, int *btf_type_id)
10397 {
10398 	int ret, i, mod_len = 0;
10399 	const char *fn_name, *mod_name = NULL;
10400 
10401 	fn_name = strchr(attach_name, ':');
10402 	if (fn_name) {
10403 		mod_name = attach_name;
10404 		mod_len = fn_name - mod_name;
10405 		fn_name++;
10406 	}
10407 
10408 	if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
10409 		ret = find_attach_btf_id(obj->btf_vmlinux,
10410 					 mod_name ? fn_name : attach_name,
10411 					 attach_type);
10412 		if (ret > 0) {
10413 			*btf_obj_fd = 0; /* vmlinux BTF */
10414 			*btf_type_id = ret;
10415 			return 0;
10416 		}
10417 		if (ret != -ENOENT)
10418 			return ret;
10419 	}
10420 
10421 	ret = load_module_btfs(obj);
10422 	if (ret)
10423 		return ret;
10424 
10425 	for (i = 0; i < obj->btf_module_cnt; i++) {
10426 		const struct module_btf *mod = &obj->btf_modules[i];
10427 
10428 		if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
10429 			continue;
10430 
10431 		ret = find_attach_btf_id(mod->btf,
10432 					 mod_name ? fn_name : attach_name,
10433 					 attach_type);
10434 		if (ret > 0) {
10435 			*btf_obj_fd = mod->fd;
10436 			*btf_type_id = ret;
10437 			return 0;
10438 		}
10439 		if (ret == -ENOENT)
10440 			continue;
10441 
10442 		return ret;
10443 	}
10444 
10445 	return -ESRCH;
10446 }
10447 
10448 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
10449 				     int *btf_obj_fd, int *btf_type_id)
10450 {
10451 	enum bpf_attach_type attach_type = prog->expected_attach_type;
10452 	__u32 attach_prog_fd = prog->attach_prog_fd;
10453 	int err = 0;
10454 
10455 	/* BPF program's BTF ID */
10456 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
10457 		if (!attach_prog_fd) {
10458 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
10459 			return -EINVAL;
10460 		}
10461 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd);
10462 		if (err < 0) {
10463 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n",
10464 				prog->name, attach_prog_fd, attach_name, errstr(err));
10465 			return err;
10466 		}
10467 		*btf_obj_fd = 0;
10468 		*btf_type_id = err;
10469 		return 0;
10470 	}
10471 
10472 	/* kernel/module BTF ID */
10473 	if (prog->obj->gen_loader) {
10474 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10475 		*btf_obj_fd = 0;
10476 		*btf_type_id = 1;
10477 	} else {
10478 		err = find_kernel_btf_id(prog->obj, attach_name,
10479 					 attach_type, btf_obj_fd,
10480 					 btf_type_id);
10481 	}
10482 	if (err) {
10483 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n",
10484 			prog->name, attach_name, errstr(err));
10485 		return err;
10486 	}
10487 	return 0;
10488 }
10489 
10490 int libbpf_attach_type_by_name(const char *name,
10491 			       enum bpf_attach_type *attach_type)
10492 {
10493 	char *type_names;
10494 	const struct bpf_sec_def *sec_def;
10495 
10496 	if (!name)
10497 		return libbpf_err(-EINVAL);
10498 
10499 	sec_def = find_sec_def(name);
10500 	if (!sec_def) {
10501 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10502 		type_names = libbpf_get_type_names(true);
10503 		if (type_names != NULL) {
10504 			pr_debug("attachable section(type) names are:%s\n", type_names);
10505 			free(type_names);
10506 		}
10507 
10508 		return libbpf_err(-EINVAL);
10509 	}
10510 
10511 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10512 		return libbpf_err(-EINVAL);
10513 	if (!(sec_def->cookie & SEC_ATTACHABLE))
10514 		return libbpf_err(-EINVAL);
10515 
10516 	*attach_type = sec_def->expected_attach_type;
10517 	return 0;
10518 }
10519 
10520 int bpf_map__fd(const struct bpf_map *map)
10521 {
10522 	if (!map)
10523 		return libbpf_err(-EINVAL);
10524 	if (!map_is_created(map))
10525 		return -1;
10526 	return map->fd;
10527 }
10528 
10529 static bool map_uses_real_name(const struct bpf_map *map)
10530 {
10531 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
10532 	 * their user-visible name differs from kernel-visible name. Users see
10533 	 * such map's corresponding ELF section name as a map name.
10534 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10535 	 * maps to know which name has to be returned to the user.
10536 	 */
10537 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10538 		return true;
10539 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10540 		return true;
10541 	return false;
10542 }
10543 
10544 const char *bpf_map__name(const struct bpf_map *map)
10545 {
10546 	if (!map)
10547 		return NULL;
10548 
10549 	if (map_uses_real_name(map))
10550 		return map->real_name;
10551 
10552 	return map->name;
10553 }
10554 
10555 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10556 {
10557 	return map->def.type;
10558 }
10559 
10560 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10561 {
10562 	if (map_is_created(map))
10563 		return libbpf_err(-EBUSY);
10564 	map->def.type = type;
10565 	return 0;
10566 }
10567 
10568 __u32 bpf_map__map_flags(const struct bpf_map *map)
10569 {
10570 	return map->def.map_flags;
10571 }
10572 
10573 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10574 {
10575 	if (map_is_created(map))
10576 		return libbpf_err(-EBUSY);
10577 	map->def.map_flags = flags;
10578 	return 0;
10579 }
10580 
10581 __u64 bpf_map__map_extra(const struct bpf_map *map)
10582 {
10583 	return map->map_extra;
10584 }
10585 
10586 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10587 {
10588 	if (map_is_created(map))
10589 		return libbpf_err(-EBUSY);
10590 	map->map_extra = map_extra;
10591 	return 0;
10592 }
10593 
10594 __u32 bpf_map__numa_node(const struct bpf_map *map)
10595 {
10596 	return map->numa_node;
10597 }
10598 
10599 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10600 {
10601 	if (map_is_created(map))
10602 		return libbpf_err(-EBUSY);
10603 	map->numa_node = numa_node;
10604 	return 0;
10605 }
10606 
10607 __u32 bpf_map__key_size(const struct bpf_map *map)
10608 {
10609 	return map->def.key_size;
10610 }
10611 
10612 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10613 {
10614 	if (map_is_created(map))
10615 		return libbpf_err(-EBUSY);
10616 	map->def.key_size = size;
10617 	return 0;
10618 }
10619 
10620 __u32 bpf_map__value_size(const struct bpf_map *map)
10621 {
10622 	return map->def.value_size;
10623 }
10624 
10625 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10626 {
10627 	struct btf *btf;
10628 	struct btf_type *datasec_type, *var_type;
10629 	struct btf_var_secinfo *var;
10630 	const struct btf_type *array_type;
10631 	const struct btf_array *array;
10632 	int vlen, element_sz, new_array_id;
10633 	__u32 nr_elements;
10634 
10635 	/* check btf existence */
10636 	btf = bpf_object__btf(map->obj);
10637 	if (!btf)
10638 		return -ENOENT;
10639 
10640 	/* verify map is datasec */
10641 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10642 	if (!btf_is_datasec(datasec_type)) {
10643 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10644 			bpf_map__name(map));
10645 		return -EINVAL;
10646 	}
10647 
10648 	/* verify datasec has at least one var */
10649 	vlen = btf_vlen(datasec_type);
10650 	if (vlen == 0) {
10651 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10652 			bpf_map__name(map));
10653 		return -EINVAL;
10654 	}
10655 
10656 	/* verify last var in the datasec is an array */
10657 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10658 	var_type = btf_type_by_id(btf, var->type);
10659 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10660 	if (!btf_is_array(array_type)) {
10661 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
10662 			bpf_map__name(map));
10663 		return -EINVAL;
10664 	}
10665 
10666 	/* verify request size aligns with array */
10667 	array = btf_array(array_type);
10668 	element_sz = btf__resolve_size(btf, array->type);
10669 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10670 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10671 			bpf_map__name(map), element_sz, size);
10672 		return -EINVAL;
10673 	}
10674 
10675 	/* create a new array based on the existing array, but with new length */
10676 	nr_elements = (size - var->offset) / element_sz;
10677 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10678 	if (new_array_id < 0)
10679 		return new_array_id;
10680 
10681 	/* adding a new btf type invalidates existing pointers to btf objects,
10682 	 * so refresh pointers before proceeding
10683 	 */
10684 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10685 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10686 	var_type = btf_type_by_id(btf, var->type);
10687 
10688 	/* finally update btf info */
10689 	datasec_type->size = size;
10690 	var->size = size - var->offset;
10691 	var_type->type = new_array_id;
10692 
10693 	return 0;
10694 }
10695 
10696 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10697 {
10698 	if (map_is_created(map))
10699 		return libbpf_err(-EBUSY);
10700 
10701 	if (map->mmaped) {
10702 		size_t mmap_old_sz, mmap_new_sz;
10703 		int err;
10704 
10705 		if (map->def.type != BPF_MAP_TYPE_ARRAY)
10706 			return libbpf_err(-EOPNOTSUPP);
10707 
10708 		mmap_old_sz = bpf_map_mmap_sz(map);
10709 		mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10710 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10711 		if (err) {
10712 			pr_warn("map '%s': failed to resize memory-mapped region: %s\n",
10713 				bpf_map__name(map), errstr(err));
10714 			return libbpf_err(err);
10715 		}
10716 		err = map_btf_datasec_resize(map, size);
10717 		if (err && err != -ENOENT) {
10718 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n",
10719 				bpf_map__name(map), errstr(err));
10720 			map->btf_value_type_id = 0;
10721 			map->btf_key_type_id = 0;
10722 		}
10723 	}
10724 
10725 	map->def.value_size = size;
10726 	return 0;
10727 }
10728 
10729 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10730 {
10731 	return map ? map->btf_key_type_id : 0;
10732 }
10733 
10734 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10735 {
10736 	return map ? map->btf_value_type_id : 0;
10737 }
10738 
10739 int bpf_map__set_initial_value(struct bpf_map *map,
10740 			       const void *data, size_t size)
10741 {
10742 	size_t actual_sz;
10743 
10744 	if (map_is_created(map))
10745 		return libbpf_err(-EBUSY);
10746 
10747 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10748 		return libbpf_err(-EINVAL);
10749 
10750 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10751 		actual_sz = map->obj->arena_data_sz;
10752 	else
10753 		actual_sz = map->def.value_size;
10754 	if (size != actual_sz)
10755 		return libbpf_err(-EINVAL);
10756 
10757 	memcpy(map->mmaped, data, size);
10758 	return 0;
10759 }
10760 
10761 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10762 {
10763 	if (bpf_map__is_struct_ops(map)) {
10764 		if (psize)
10765 			*psize = map->def.value_size;
10766 		return map->st_ops->data;
10767 	}
10768 
10769 	if (!map->mmaped)
10770 		return NULL;
10771 
10772 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10773 		*psize = map->obj->arena_data_sz;
10774 	else
10775 		*psize = map->def.value_size;
10776 
10777 	return map->mmaped;
10778 }
10779 
10780 bool bpf_map__is_internal(const struct bpf_map *map)
10781 {
10782 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10783 }
10784 
10785 __u32 bpf_map__ifindex(const struct bpf_map *map)
10786 {
10787 	return map->map_ifindex;
10788 }
10789 
10790 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10791 {
10792 	if (map_is_created(map))
10793 		return libbpf_err(-EBUSY);
10794 	map->map_ifindex = ifindex;
10795 	return 0;
10796 }
10797 
10798 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10799 {
10800 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
10801 		pr_warn("error: unsupported map type\n");
10802 		return libbpf_err(-EINVAL);
10803 	}
10804 	if (map->inner_map_fd != -1) {
10805 		pr_warn("error: inner_map_fd already specified\n");
10806 		return libbpf_err(-EINVAL);
10807 	}
10808 	if (map->inner_map) {
10809 		bpf_map__destroy(map->inner_map);
10810 		zfree(&map->inner_map);
10811 	}
10812 	map->inner_map_fd = fd;
10813 	return 0;
10814 }
10815 
10816 int bpf_map__set_exclusive_program(struct bpf_map *map, struct bpf_program *prog)
10817 {
10818 	if (map_is_created(map)) {
10819 		pr_warn("exclusive programs must be set before map creation\n");
10820 		return libbpf_err(-EINVAL);
10821 	}
10822 
10823 	if (map->obj != prog->obj) {
10824 		pr_warn("excl_prog and map must be from the same bpf object\n");
10825 		return libbpf_err(-EINVAL);
10826 	}
10827 
10828 	map->excl_prog = prog;
10829 	return 0;
10830 }
10831 
10832 struct bpf_program *bpf_map__exclusive_program(struct bpf_map *map)
10833 {
10834 	return map->excl_prog;
10835 }
10836 
10837 static struct bpf_map *
10838 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10839 {
10840 	ssize_t idx;
10841 	struct bpf_map *s, *e;
10842 
10843 	if (!obj || !obj->maps)
10844 		return errno = EINVAL, NULL;
10845 
10846 	s = obj->maps;
10847 	e = obj->maps + obj->nr_maps;
10848 
10849 	if ((m < s) || (m >= e)) {
10850 		pr_warn("error in %s: map handler doesn't belong to object\n",
10851 			 __func__);
10852 		return errno = EINVAL, NULL;
10853 	}
10854 
10855 	idx = (m - obj->maps) + i;
10856 	if (idx >= obj->nr_maps || idx < 0)
10857 		return NULL;
10858 	return &obj->maps[idx];
10859 }
10860 
10861 struct bpf_map *
10862 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10863 {
10864 	if (prev == NULL && obj != NULL)
10865 		return obj->maps;
10866 
10867 	return __bpf_map__iter(prev, obj, 1);
10868 }
10869 
10870 struct bpf_map *
10871 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10872 {
10873 	if (next == NULL && obj != NULL) {
10874 		if (!obj->nr_maps)
10875 			return NULL;
10876 		return obj->maps + obj->nr_maps - 1;
10877 	}
10878 
10879 	return __bpf_map__iter(next, obj, -1);
10880 }
10881 
10882 struct bpf_map *
10883 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10884 {
10885 	struct bpf_map *pos;
10886 
10887 	bpf_object__for_each_map(pos, obj) {
10888 		/* if it's a special internal map name (which always starts
10889 		 * with dot) then check if that special name matches the
10890 		 * real map name (ELF section name)
10891 		 */
10892 		if (name[0] == '.') {
10893 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
10894 				return pos;
10895 			continue;
10896 		}
10897 		/* otherwise map name has to be an exact match */
10898 		if (map_uses_real_name(pos)) {
10899 			if (strcmp(pos->real_name, name) == 0)
10900 				return pos;
10901 			continue;
10902 		}
10903 		if (strcmp(pos->name, name) == 0)
10904 			return pos;
10905 	}
10906 	return errno = ENOENT, NULL;
10907 }
10908 
10909 int
10910 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10911 {
10912 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10913 }
10914 
10915 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10916 			   size_t value_sz, bool check_value_sz)
10917 {
10918 	if (!map_is_created(map)) /* map is not yet created */
10919 		return -ENOENT;
10920 
10921 	if (map->def.key_size != key_sz) {
10922 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10923 			map->name, key_sz, map->def.key_size);
10924 		return -EINVAL;
10925 	}
10926 
10927 	if (map->fd < 0) {
10928 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10929 		return -EINVAL;
10930 	}
10931 
10932 	if (!check_value_sz)
10933 		return 0;
10934 
10935 	switch (map->def.type) {
10936 	case BPF_MAP_TYPE_PERCPU_ARRAY:
10937 	case BPF_MAP_TYPE_PERCPU_HASH:
10938 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10939 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10940 		int num_cpu = libbpf_num_possible_cpus();
10941 		size_t elem_sz = roundup(map->def.value_size, 8);
10942 
10943 		if (value_sz != num_cpu * elem_sz) {
10944 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10945 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10946 			return -EINVAL;
10947 		}
10948 		break;
10949 	}
10950 	default:
10951 		if (map->def.value_size != value_sz) {
10952 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10953 				map->name, value_sz, map->def.value_size);
10954 			return -EINVAL;
10955 		}
10956 		break;
10957 	}
10958 	return 0;
10959 }
10960 
10961 int bpf_map__lookup_elem(const struct bpf_map *map,
10962 			 const void *key, size_t key_sz,
10963 			 void *value, size_t value_sz, __u64 flags)
10964 {
10965 	int err;
10966 
10967 	err = validate_map_op(map, key_sz, value_sz, true);
10968 	if (err)
10969 		return libbpf_err(err);
10970 
10971 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10972 }
10973 
10974 int bpf_map__update_elem(const struct bpf_map *map,
10975 			 const void *key, size_t key_sz,
10976 			 const void *value, size_t value_sz, __u64 flags)
10977 {
10978 	int err;
10979 
10980 	err = validate_map_op(map, key_sz, value_sz, true);
10981 	if (err)
10982 		return libbpf_err(err);
10983 
10984 	return bpf_map_update_elem(map->fd, key, value, flags);
10985 }
10986 
10987 int bpf_map__delete_elem(const struct bpf_map *map,
10988 			 const void *key, size_t key_sz, __u64 flags)
10989 {
10990 	int err;
10991 
10992 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10993 	if (err)
10994 		return libbpf_err(err);
10995 
10996 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10997 }
10998 
10999 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
11000 				    const void *key, size_t key_sz,
11001 				    void *value, size_t value_sz, __u64 flags)
11002 {
11003 	int err;
11004 
11005 	err = validate_map_op(map, key_sz, value_sz, true);
11006 	if (err)
11007 		return libbpf_err(err);
11008 
11009 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
11010 }
11011 
11012 int bpf_map__get_next_key(const struct bpf_map *map,
11013 			  const void *cur_key, void *next_key, size_t key_sz)
11014 {
11015 	int err;
11016 
11017 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
11018 	if (err)
11019 		return libbpf_err(err);
11020 
11021 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
11022 }
11023 
11024 long libbpf_get_error(const void *ptr)
11025 {
11026 	if (!IS_ERR_OR_NULL(ptr))
11027 		return 0;
11028 
11029 	if (IS_ERR(ptr))
11030 		errno = -PTR_ERR(ptr);
11031 
11032 	/* If ptr == NULL, then errno should be already set by the failing
11033 	 * API, because libbpf never returns NULL on success and it now always
11034 	 * sets errno on error. So no extra errno handling for ptr == NULL
11035 	 * case.
11036 	 */
11037 	return -errno;
11038 }
11039 
11040 /* Replace link's underlying BPF program with the new one */
11041 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
11042 {
11043 	int ret;
11044 	int prog_fd = bpf_program__fd(prog);
11045 
11046 	if (prog_fd < 0) {
11047 		pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
11048 			prog->name);
11049 		return libbpf_err(-EINVAL);
11050 	}
11051 
11052 	ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
11053 	return libbpf_err_errno(ret);
11054 }
11055 
11056 /* Release "ownership" of underlying BPF resource (typically, BPF program
11057  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
11058  * link, when destructed through bpf_link__destroy() call won't attempt to
11059  * detach/unregisted that BPF resource. This is useful in situations where,
11060  * say, attached BPF program has to outlive userspace program that attached it
11061  * in the system. Depending on type of BPF program, though, there might be
11062  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
11063  * exit of userspace program doesn't trigger automatic detachment and clean up
11064  * inside the kernel.
11065  */
11066 void bpf_link__disconnect(struct bpf_link *link)
11067 {
11068 	link->disconnected = true;
11069 }
11070 
11071 int bpf_link__destroy(struct bpf_link *link)
11072 {
11073 	int err = 0;
11074 
11075 	if (IS_ERR_OR_NULL(link))
11076 		return 0;
11077 
11078 	if (!link->disconnected && link->detach)
11079 		err = link->detach(link);
11080 	if (link->pin_path)
11081 		free(link->pin_path);
11082 	if (link->dealloc)
11083 		link->dealloc(link);
11084 	else
11085 		free(link);
11086 
11087 	return libbpf_err(err);
11088 }
11089 
11090 int bpf_link__fd(const struct bpf_link *link)
11091 {
11092 	return link->fd;
11093 }
11094 
11095 const char *bpf_link__pin_path(const struct bpf_link *link)
11096 {
11097 	return link->pin_path;
11098 }
11099 
11100 static int bpf_link__detach_fd(struct bpf_link *link)
11101 {
11102 	return libbpf_err_errno(close(link->fd));
11103 }
11104 
11105 struct bpf_link *bpf_link__open(const char *path)
11106 {
11107 	struct bpf_link *link;
11108 	int fd;
11109 
11110 	fd = bpf_obj_get(path);
11111 	if (fd < 0) {
11112 		fd = -errno;
11113 		pr_warn("failed to open link at %s: %d\n", path, fd);
11114 		return libbpf_err_ptr(fd);
11115 	}
11116 
11117 	link = calloc(1, sizeof(*link));
11118 	if (!link) {
11119 		close(fd);
11120 		return libbpf_err_ptr(-ENOMEM);
11121 	}
11122 	link->detach = &bpf_link__detach_fd;
11123 	link->fd = fd;
11124 
11125 	link->pin_path = strdup(path);
11126 	if (!link->pin_path) {
11127 		bpf_link__destroy(link);
11128 		return libbpf_err_ptr(-ENOMEM);
11129 	}
11130 
11131 	return link;
11132 }
11133 
11134 int bpf_link__detach(struct bpf_link *link)
11135 {
11136 	return bpf_link_detach(link->fd) ? -errno : 0;
11137 }
11138 
11139 int bpf_link__pin(struct bpf_link *link, const char *path)
11140 {
11141 	int err;
11142 
11143 	if (link->pin_path)
11144 		return libbpf_err(-EBUSY);
11145 	err = make_parent_dir(path);
11146 	if (err)
11147 		return libbpf_err(err);
11148 	err = check_path(path);
11149 	if (err)
11150 		return libbpf_err(err);
11151 
11152 	link->pin_path = strdup(path);
11153 	if (!link->pin_path)
11154 		return libbpf_err(-ENOMEM);
11155 
11156 	if (bpf_obj_pin(link->fd, link->pin_path)) {
11157 		err = -errno;
11158 		zfree(&link->pin_path);
11159 		return libbpf_err(err);
11160 	}
11161 
11162 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
11163 	return 0;
11164 }
11165 
11166 int bpf_link__unpin(struct bpf_link *link)
11167 {
11168 	int err;
11169 
11170 	if (!link->pin_path)
11171 		return libbpf_err(-EINVAL);
11172 
11173 	err = unlink(link->pin_path);
11174 	if (err != 0)
11175 		return -errno;
11176 
11177 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
11178 	zfree(&link->pin_path);
11179 	return 0;
11180 }
11181 
11182 struct bpf_link_perf {
11183 	struct bpf_link link;
11184 	int perf_event_fd;
11185 	/* legacy kprobe support: keep track of probe identifier and type */
11186 	char *legacy_probe_name;
11187 	bool legacy_is_kprobe;
11188 	bool legacy_is_retprobe;
11189 };
11190 
11191 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
11192 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
11193 
11194 static int bpf_link_perf_detach(struct bpf_link *link)
11195 {
11196 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11197 	int err = 0;
11198 
11199 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
11200 		err = -errno;
11201 
11202 	if (perf_link->perf_event_fd != link->fd)
11203 		close(perf_link->perf_event_fd);
11204 	close(link->fd);
11205 
11206 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
11207 	if (perf_link->legacy_probe_name) {
11208 		if (perf_link->legacy_is_kprobe) {
11209 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
11210 							 perf_link->legacy_is_retprobe);
11211 		} else {
11212 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
11213 							 perf_link->legacy_is_retprobe);
11214 		}
11215 	}
11216 
11217 	return err;
11218 }
11219 
11220 static void bpf_link_perf_dealloc(struct bpf_link *link)
11221 {
11222 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11223 
11224 	free(perf_link->legacy_probe_name);
11225 	free(perf_link);
11226 }
11227 
11228 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
11229 						     const struct bpf_perf_event_opts *opts)
11230 {
11231 	struct bpf_link_perf *link;
11232 	int prog_fd, link_fd = -1, err;
11233 	bool force_ioctl_attach;
11234 
11235 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
11236 		return libbpf_err_ptr(-EINVAL);
11237 
11238 	if (pfd < 0) {
11239 		pr_warn("prog '%s': invalid perf event FD %d\n",
11240 			prog->name, pfd);
11241 		return libbpf_err_ptr(-EINVAL);
11242 	}
11243 	prog_fd = bpf_program__fd(prog);
11244 	if (prog_fd < 0) {
11245 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11246 			prog->name);
11247 		return libbpf_err_ptr(-EINVAL);
11248 	}
11249 
11250 	link = calloc(1, sizeof(*link));
11251 	if (!link)
11252 		return libbpf_err_ptr(-ENOMEM);
11253 	link->link.detach = &bpf_link_perf_detach;
11254 	link->link.dealloc = &bpf_link_perf_dealloc;
11255 	link->perf_event_fd = pfd;
11256 
11257 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
11258 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
11259 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
11260 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
11261 
11262 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
11263 		if (link_fd < 0) {
11264 			err = -errno;
11265 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n",
11266 				prog->name, pfd, errstr(err));
11267 			goto err_out;
11268 		}
11269 		link->link.fd = link_fd;
11270 	} else {
11271 		if (OPTS_GET(opts, bpf_cookie, 0)) {
11272 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
11273 			err = -EOPNOTSUPP;
11274 			goto err_out;
11275 		}
11276 
11277 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
11278 			err = -errno;
11279 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
11280 				prog->name, pfd, errstr(err));
11281 			if (err == -EPROTO)
11282 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
11283 					prog->name, pfd);
11284 			goto err_out;
11285 		}
11286 		link->link.fd = pfd;
11287 	}
11288 
11289 	if (!OPTS_GET(opts, dont_enable, false)) {
11290 		if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11291 			err = -errno;
11292 			pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
11293 				prog->name, pfd, errstr(err));
11294 			goto err_out;
11295 		}
11296 	}
11297 
11298 	return &link->link;
11299 err_out:
11300 	if (link_fd >= 0)
11301 		close(link_fd);
11302 	free(link);
11303 	return libbpf_err_ptr(err);
11304 }
11305 
11306 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
11307 {
11308 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
11309 }
11310 
11311 /*
11312  * this function is expected to parse integer in the range of [0, 2^31-1] from
11313  * given file using scanf format string fmt. If actual parsed value is
11314  * negative, the result might be indistinguishable from error
11315  */
11316 static int parse_uint_from_file(const char *file, const char *fmt)
11317 {
11318 	int err, ret;
11319 	FILE *f;
11320 
11321 	f = fopen(file, "re");
11322 	if (!f) {
11323 		err = -errno;
11324 		pr_debug("failed to open '%s': %s\n", file, errstr(err));
11325 		return err;
11326 	}
11327 	err = fscanf(f, fmt, &ret);
11328 	if (err != 1) {
11329 		err = err == EOF ? -EIO : -errno;
11330 		pr_debug("failed to parse '%s': %s\n", file, errstr(err));
11331 		fclose(f);
11332 		return err;
11333 	}
11334 	fclose(f);
11335 	return ret;
11336 }
11337 
11338 static int determine_kprobe_perf_type(void)
11339 {
11340 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
11341 
11342 	return parse_uint_from_file(file, "%d\n");
11343 }
11344 
11345 static int determine_uprobe_perf_type(void)
11346 {
11347 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
11348 
11349 	return parse_uint_from_file(file, "%d\n");
11350 }
11351 
11352 static int determine_kprobe_retprobe_bit(void)
11353 {
11354 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
11355 
11356 	return parse_uint_from_file(file, "config:%d\n");
11357 }
11358 
11359 static int determine_uprobe_retprobe_bit(void)
11360 {
11361 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
11362 
11363 	return parse_uint_from_file(file, "config:%d\n");
11364 }
11365 
11366 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
11367 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
11368 
11369 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
11370 				 uint64_t offset, int pid, size_t ref_ctr_off)
11371 {
11372 	const size_t attr_sz = sizeof(struct perf_event_attr);
11373 	struct perf_event_attr attr;
11374 	int type, pfd;
11375 
11376 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
11377 		return -EINVAL;
11378 
11379 	memset(&attr, 0, attr_sz);
11380 
11381 	type = uprobe ? determine_uprobe_perf_type()
11382 		      : determine_kprobe_perf_type();
11383 	if (type < 0) {
11384 		pr_warn("failed to determine %s perf type: %s\n",
11385 			uprobe ? "uprobe" : "kprobe",
11386 			errstr(type));
11387 		return type;
11388 	}
11389 	if (retprobe) {
11390 		int bit = uprobe ? determine_uprobe_retprobe_bit()
11391 				 : determine_kprobe_retprobe_bit();
11392 
11393 		if (bit < 0) {
11394 			pr_warn("failed to determine %s retprobe bit: %s\n",
11395 				uprobe ? "uprobe" : "kprobe",
11396 				errstr(bit));
11397 			return bit;
11398 		}
11399 		attr.config |= 1 << bit;
11400 	}
11401 	attr.size = attr_sz;
11402 	attr.type = type;
11403 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11404 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
11405 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
11406 
11407 	/* pid filter is meaningful only for uprobes */
11408 	pfd = syscall(__NR_perf_event_open, &attr,
11409 		      pid < 0 ? -1 : pid /* pid */,
11410 		      pid == -1 ? 0 : -1 /* cpu */,
11411 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11412 	return pfd >= 0 ? pfd : -errno;
11413 }
11414 
11415 static int append_to_file(const char *file, const char *fmt, ...)
11416 {
11417 	int fd, n, err = 0;
11418 	va_list ap;
11419 	char buf[1024];
11420 
11421 	va_start(ap, fmt);
11422 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
11423 	va_end(ap);
11424 
11425 	if (n < 0 || n >= sizeof(buf))
11426 		return -EINVAL;
11427 
11428 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
11429 	if (fd < 0)
11430 		return -errno;
11431 
11432 	if (write(fd, buf, n) < 0)
11433 		err = -errno;
11434 
11435 	close(fd);
11436 	return err;
11437 }
11438 
11439 #define DEBUGFS "/sys/kernel/debug/tracing"
11440 #define TRACEFS "/sys/kernel/tracing"
11441 
11442 static bool use_debugfs(void)
11443 {
11444 	static int has_debugfs = -1;
11445 
11446 	if (has_debugfs < 0)
11447 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
11448 
11449 	return has_debugfs == 1;
11450 }
11451 
11452 static const char *tracefs_path(void)
11453 {
11454 	return use_debugfs() ? DEBUGFS : TRACEFS;
11455 }
11456 
11457 static const char *tracefs_kprobe_events(void)
11458 {
11459 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
11460 }
11461 
11462 static const char *tracefs_uprobe_events(void)
11463 {
11464 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
11465 }
11466 
11467 static const char *tracefs_available_filter_functions(void)
11468 {
11469 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
11470 			     : TRACEFS"/available_filter_functions";
11471 }
11472 
11473 static const char *tracefs_available_filter_functions_addrs(void)
11474 {
11475 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
11476 			     : TRACEFS"/available_filter_functions_addrs";
11477 }
11478 
11479 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz,
11480 					const char *name, size_t offset)
11481 {
11482 	static int index = 0;
11483 	int i;
11484 
11485 	snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(),
11486 		 __sync_fetch_and_add(&index, 1), name, offset);
11487 
11488 	/* sanitize name in the probe name */
11489 	for (i = 0; buf[i]; i++) {
11490 		if (!isalnum(buf[i]))
11491 			buf[i] = '_';
11492 	}
11493 }
11494 
11495 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11496 				   const char *kfunc_name, size_t offset)
11497 {
11498 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11499 			      retprobe ? 'r' : 'p',
11500 			      retprobe ? "kretprobes" : "kprobes",
11501 			      probe_name, kfunc_name, offset);
11502 }
11503 
11504 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11505 {
11506 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11507 			      retprobe ? "kretprobes" : "kprobes", probe_name);
11508 }
11509 
11510 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11511 {
11512 	char file[256];
11513 
11514 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11515 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11516 
11517 	return parse_uint_from_file(file, "%d\n");
11518 }
11519 
11520 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11521 					 const char *kfunc_name, size_t offset, int pid)
11522 {
11523 	const size_t attr_sz = sizeof(struct perf_event_attr);
11524 	struct perf_event_attr attr;
11525 	int type, pfd, err;
11526 
11527 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11528 	if (err < 0) {
11529 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11530 			kfunc_name, offset,
11531 			errstr(err));
11532 		return err;
11533 	}
11534 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11535 	if (type < 0) {
11536 		err = type;
11537 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11538 			kfunc_name, offset,
11539 			errstr(err));
11540 		goto err_clean_legacy;
11541 	}
11542 
11543 	memset(&attr, 0, attr_sz);
11544 	attr.size = attr_sz;
11545 	attr.config = type;
11546 	attr.type = PERF_TYPE_TRACEPOINT;
11547 
11548 	pfd = syscall(__NR_perf_event_open, &attr,
11549 		      pid < 0 ? -1 : pid, /* pid */
11550 		      pid == -1 ? 0 : -1, /* cpu */
11551 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11552 	if (pfd < 0) {
11553 		err = -errno;
11554 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11555 			errstr(err));
11556 		goto err_clean_legacy;
11557 	}
11558 	return pfd;
11559 
11560 err_clean_legacy:
11561 	/* Clear the newly added legacy kprobe_event */
11562 	remove_kprobe_event_legacy(probe_name, retprobe);
11563 	return err;
11564 }
11565 
11566 static const char *arch_specific_syscall_pfx(void)
11567 {
11568 #if defined(__x86_64__)
11569 	return "x64";
11570 #elif defined(__i386__)
11571 	return "ia32";
11572 #elif defined(__s390x__)
11573 	return "s390x";
11574 #elif defined(__arm__)
11575 	return "arm";
11576 #elif defined(__aarch64__)
11577 	return "arm64";
11578 #elif defined(__mips__)
11579 	return "mips";
11580 #elif defined(__riscv)
11581 	return "riscv";
11582 #elif defined(__powerpc__)
11583 	return "powerpc";
11584 #elif defined(__powerpc64__)
11585 	return "powerpc64";
11586 #else
11587 	return NULL;
11588 #endif
11589 }
11590 
11591 int probe_kern_syscall_wrapper(int token_fd)
11592 {
11593 	char syscall_name[64];
11594 	const char *ksys_pfx;
11595 
11596 	ksys_pfx = arch_specific_syscall_pfx();
11597 	if (!ksys_pfx)
11598 		return 0;
11599 
11600 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11601 
11602 	if (determine_kprobe_perf_type() >= 0) {
11603 		int pfd;
11604 
11605 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11606 		if (pfd >= 0)
11607 			close(pfd);
11608 
11609 		return pfd >= 0 ? 1 : 0;
11610 	} else { /* legacy mode */
11611 		char probe_name[MAX_EVENT_NAME_LEN];
11612 
11613 		gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11614 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11615 			return 0;
11616 
11617 		(void)remove_kprobe_event_legacy(probe_name, false);
11618 		return 1;
11619 	}
11620 }
11621 
11622 struct bpf_link *
11623 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11624 				const char *func_name,
11625 				const struct bpf_kprobe_opts *opts)
11626 {
11627 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11628 	enum probe_attach_mode attach_mode;
11629 	char *legacy_probe = NULL;
11630 	struct bpf_link *link;
11631 	size_t offset;
11632 	bool retprobe, legacy;
11633 	int pfd, err;
11634 
11635 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
11636 		return libbpf_err_ptr(-EINVAL);
11637 
11638 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11639 	retprobe = OPTS_GET(opts, retprobe, false);
11640 	offset = OPTS_GET(opts, offset, 0);
11641 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11642 
11643 	legacy = determine_kprobe_perf_type() < 0;
11644 	switch (attach_mode) {
11645 	case PROBE_ATTACH_MODE_LEGACY:
11646 		legacy = true;
11647 		pe_opts.force_ioctl_attach = true;
11648 		break;
11649 	case PROBE_ATTACH_MODE_PERF:
11650 		if (legacy)
11651 			return libbpf_err_ptr(-ENOTSUP);
11652 		pe_opts.force_ioctl_attach = true;
11653 		break;
11654 	case PROBE_ATTACH_MODE_LINK:
11655 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11656 			return libbpf_err_ptr(-ENOTSUP);
11657 		break;
11658 	case PROBE_ATTACH_MODE_DEFAULT:
11659 		break;
11660 	default:
11661 		return libbpf_err_ptr(-EINVAL);
11662 	}
11663 
11664 	if (!legacy) {
11665 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11666 					    func_name, offset,
11667 					    -1 /* pid */, 0 /* ref_ctr_off */);
11668 	} else {
11669 		char probe_name[MAX_EVENT_NAME_LEN];
11670 
11671 		gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
11672 					    func_name, offset);
11673 
11674 		legacy_probe = strdup(probe_name);
11675 		if (!legacy_probe)
11676 			return libbpf_err_ptr(-ENOMEM);
11677 
11678 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11679 						    offset, -1 /* pid */);
11680 	}
11681 	if (pfd < 0) {
11682 		err = -errno;
11683 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11684 			prog->name, retprobe ? "kretprobe" : "kprobe",
11685 			func_name, offset,
11686 			errstr(err));
11687 		goto err_out;
11688 	}
11689 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11690 	err = libbpf_get_error(link);
11691 	if (err) {
11692 		close(pfd);
11693 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11694 			prog->name, retprobe ? "kretprobe" : "kprobe",
11695 			func_name, offset,
11696 			errstr(err));
11697 		goto err_clean_legacy;
11698 	}
11699 	if (legacy) {
11700 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11701 
11702 		perf_link->legacy_probe_name = legacy_probe;
11703 		perf_link->legacy_is_kprobe = true;
11704 		perf_link->legacy_is_retprobe = retprobe;
11705 	}
11706 
11707 	return link;
11708 
11709 err_clean_legacy:
11710 	if (legacy)
11711 		remove_kprobe_event_legacy(legacy_probe, retprobe);
11712 err_out:
11713 	free(legacy_probe);
11714 	return libbpf_err_ptr(err);
11715 }
11716 
11717 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11718 					    bool retprobe,
11719 					    const char *func_name)
11720 {
11721 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11722 		.retprobe = retprobe,
11723 	);
11724 
11725 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11726 }
11727 
11728 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11729 					      const char *syscall_name,
11730 					      const struct bpf_ksyscall_opts *opts)
11731 {
11732 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11733 	char func_name[128];
11734 
11735 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11736 		return libbpf_err_ptr(-EINVAL);
11737 
11738 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11739 		/* arch_specific_syscall_pfx() should never return NULL here
11740 		 * because it is guarded by kernel_supports(). However, since
11741 		 * compiler does not know that we have an explicit conditional
11742 		 * as well.
11743 		 */
11744 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11745 			 arch_specific_syscall_pfx() ? : "", syscall_name);
11746 	} else {
11747 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11748 	}
11749 
11750 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11751 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11752 
11753 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11754 }
11755 
11756 /* Adapted from perf/util/string.c */
11757 bool glob_match(const char *str, const char *pat)
11758 {
11759 	while (*str && *pat && *pat != '*') {
11760 		if (*pat == '?') {      /* Matches any single character */
11761 			str++;
11762 			pat++;
11763 			continue;
11764 		}
11765 		if (*str != *pat)
11766 			return false;
11767 		str++;
11768 		pat++;
11769 	}
11770 	/* Check wild card */
11771 	if (*pat == '*') {
11772 		while (*pat == '*')
11773 			pat++;
11774 		if (!*pat) /* Tail wild card matches all */
11775 			return true;
11776 		while (*str)
11777 			if (glob_match(str++, pat))
11778 				return true;
11779 	}
11780 	return !*str && !*pat;
11781 }
11782 
11783 struct kprobe_multi_resolve {
11784 	const char *pattern;
11785 	unsigned long *addrs;
11786 	size_t cap;
11787 	size_t cnt;
11788 };
11789 
11790 struct avail_kallsyms_data {
11791 	char **syms;
11792 	size_t cnt;
11793 	struct kprobe_multi_resolve *res;
11794 };
11795 
11796 static int avail_func_cmp(const void *a, const void *b)
11797 {
11798 	return strcmp(*(const char **)a, *(const char **)b);
11799 }
11800 
11801 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11802 			     const char *sym_name, void *ctx)
11803 {
11804 	struct avail_kallsyms_data *data = ctx;
11805 	struct kprobe_multi_resolve *res = data->res;
11806 	int err;
11807 
11808 	if (!glob_match(sym_name, res->pattern))
11809 		return 0;
11810 
11811 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) {
11812 		/* Some versions of kernel strip out .llvm.<hash> suffix from
11813 		 * function names reported in available_filter_functions, but
11814 		 * don't do so for kallsyms. While this is clearly a kernel
11815 		 * bug (fixed by [0]) we try to accommodate that in libbpf to
11816 		 * make multi-kprobe usability a bit better: if no match is
11817 		 * found, we will strip .llvm. suffix and try one more time.
11818 		 *
11819 		 *   [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG")
11820 		 */
11821 		char sym_trim[256], *psym_trim = sym_trim, *sym_sfx;
11822 
11823 		if (!(sym_sfx = strstr(sym_name, ".llvm.")))
11824 			return 0;
11825 
11826 		/* psym_trim vs sym_trim dance is done to avoid pointer vs array
11827 		 * coercion differences and get proper `const char **` pointer
11828 		 * which avail_func_cmp() expects
11829 		 */
11830 		snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name);
11831 		if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11832 			return 0;
11833 	}
11834 
11835 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11836 	if (err)
11837 		return err;
11838 
11839 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
11840 	return 0;
11841 }
11842 
11843 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11844 {
11845 	const char *available_functions_file = tracefs_available_filter_functions();
11846 	struct avail_kallsyms_data data;
11847 	char sym_name[500];
11848 	FILE *f;
11849 	int err = 0, ret, i;
11850 	char **syms = NULL;
11851 	size_t cap = 0, cnt = 0;
11852 
11853 	f = fopen(available_functions_file, "re");
11854 	if (!f) {
11855 		err = -errno;
11856 		pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err));
11857 		return err;
11858 	}
11859 
11860 	while (true) {
11861 		char *name;
11862 
11863 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11864 		if (ret == EOF && feof(f))
11865 			break;
11866 
11867 		if (ret != 1) {
11868 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11869 			err = -EINVAL;
11870 			goto cleanup;
11871 		}
11872 
11873 		if (!glob_match(sym_name, res->pattern))
11874 			continue;
11875 
11876 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11877 		if (err)
11878 			goto cleanup;
11879 
11880 		name = strdup(sym_name);
11881 		if (!name) {
11882 			err = -errno;
11883 			goto cleanup;
11884 		}
11885 
11886 		syms[cnt++] = name;
11887 	}
11888 
11889 	/* no entries found, bail out */
11890 	if (cnt == 0) {
11891 		err = -ENOENT;
11892 		goto cleanup;
11893 	}
11894 
11895 	/* sort available functions */
11896 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11897 
11898 	data.syms = syms;
11899 	data.res = res;
11900 	data.cnt = cnt;
11901 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11902 
11903 	if (res->cnt == 0)
11904 		err = -ENOENT;
11905 
11906 cleanup:
11907 	for (i = 0; i < cnt; i++)
11908 		free((char *)syms[i]);
11909 	free(syms);
11910 
11911 	fclose(f);
11912 	return err;
11913 }
11914 
11915 static bool has_available_filter_functions_addrs(void)
11916 {
11917 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11918 }
11919 
11920 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11921 {
11922 	const char *available_path = tracefs_available_filter_functions_addrs();
11923 	char sym_name[500];
11924 	FILE *f;
11925 	int ret, err = 0;
11926 	unsigned long long sym_addr;
11927 
11928 	f = fopen(available_path, "re");
11929 	if (!f) {
11930 		err = -errno;
11931 		pr_warn("failed to open %s: %s\n", available_path, errstr(err));
11932 		return err;
11933 	}
11934 
11935 	while (true) {
11936 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11937 		if (ret == EOF && feof(f))
11938 			break;
11939 
11940 		if (ret != 2) {
11941 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11942 				ret);
11943 			err = -EINVAL;
11944 			goto cleanup;
11945 		}
11946 
11947 		if (!glob_match(sym_name, res->pattern))
11948 			continue;
11949 
11950 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11951 					sizeof(*res->addrs), res->cnt + 1);
11952 		if (err)
11953 			goto cleanup;
11954 
11955 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
11956 	}
11957 
11958 	if (res->cnt == 0)
11959 		err = -ENOENT;
11960 
11961 cleanup:
11962 	fclose(f);
11963 	return err;
11964 }
11965 
11966 struct bpf_link *
11967 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11968 				      const char *pattern,
11969 				      const struct bpf_kprobe_multi_opts *opts)
11970 {
11971 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11972 	struct kprobe_multi_resolve res = {
11973 		.pattern = pattern,
11974 	};
11975 	enum bpf_attach_type attach_type;
11976 	struct bpf_link *link = NULL;
11977 	const unsigned long *addrs;
11978 	int err, link_fd, prog_fd;
11979 	bool retprobe, session, unique_match;
11980 	const __u64 *cookies;
11981 	const char **syms;
11982 	size_t cnt;
11983 
11984 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11985 		return libbpf_err_ptr(-EINVAL);
11986 
11987 	prog_fd = bpf_program__fd(prog);
11988 	if (prog_fd < 0) {
11989 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11990 			prog->name);
11991 		return libbpf_err_ptr(-EINVAL);
11992 	}
11993 
11994 	syms    = OPTS_GET(opts, syms, false);
11995 	addrs   = OPTS_GET(opts, addrs, false);
11996 	cnt     = OPTS_GET(opts, cnt, false);
11997 	cookies = OPTS_GET(opts, cookies, false);
11998 	unique_match = OPTS_GET(opts, unique_match, false);
11999 
12000 	if (!pattern && !addrs && !syms)
12001 		return libbpf_err_ptr(-EINVAL);
12002 	if (pattern && (addrs || syms || cookies || cnt))
12003 		return libbpf_err_ptr(-EINVAL);
12004 	if (!pattern && !cnt)
12005 		return libbpf_err_ptr(-EINVAL);
12006 	if (!pattern && unique_match)
12007 		return libbpf_err_ptr(-EINVAL);
12008 	if (addrs && syms)
12009 		return libbpf_err_ptr(-EINVAL);
12010 
12011 	if (pattern) {
12012 		if (has_available_filter_functions_addrs())
12013 			err = libbpf_available_kprobes_parse(&res);
12014 		else
12015 			err = libbpf_available_kallsyms_parse(&res);
12016 		if (err)
12017 			goto error;
12018 
12019 		if (unique_match && res.cnt != 1) {
12020 			pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n",
12021 				prog->name, pattern, res.cnt);
12022 			err = -EINVAL;
12023 			goto error;
12024 		}
12025 
12026 		addrs = res.addrs;
12027 		cnt = res.cnt;
12028 	}
12029 
12030 	retprobe = OPTS_GET(opts, retprobe, false);
12031 	session  = OPTS_GET(opts, session, false);
12032 
12033 	if (retprobe && session)
12034 		return libbpf_err_ptr(-EINVAL);
12035 
12036 	attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
12037 
12038 	lopts.kprobe_multi.syms = syms;
12039 	lopts.kprobe_multi.addrs = addrs;
12040 	lopts.kprobe_multi.cookies = cookies;
12041 	lopts.kprobe_multi.cnt = cnt;
12042 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
12043 
12044 	link = calloc(1, sizeof(*link));
12045 	if (!link) {
12046 		err = -ENOMEM;
12047 		goto error;
12048 	}
12049 	link->detach = &bpf_link__detach_fd;
12050 
12051 	link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
12052 	if (link_fd < 0) {
12053 		err = -errno;
12054 		pr_warn("prog '%s': failed to attach: %s\n",
12055 			prog->name, errstr(err));
12056 		goto error;
12057 	}
12058 	link->fd = link_fd;
12059 	free(res.addrs);
12060 	return link;
12061 
12062 error:
12063 	free(link);
12064 	free(res.addrs);
12065 	return libbpf_err_ptr(err);
12066 }
12067 
12068 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12069 {
12070 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
12071 	unsigned long offset = 0;
12072 	const char *func_name;
12073 	char *func;
12074 	int n;
12075 
12076 	*link = NULL;
12077 
12078 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
12079 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
12080 		return 0;
12081 
12082 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
12083 	if (opts.retprobe)
12084 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
12085 	else
12086 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
12087 
12088 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
12089 	if (n < 1) {
12090 		pr_warn("kprobe name is invalid: %s\n", func_name);
12091 		return -EINVAL;
12092 	}
12093 	if (opts.retprobe && offset != 0) {
12094 		free(func);
12095 		pr_warn("kretprobes do not support offset specification\n");
12096 		return -EINVAL;
12097 	}
12098 
12099 	opts.offset = offset;
12100 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
12101 	free(func);
12102 	return libbpf_get_error(*link);
12103 }
12104 
12105 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12106 {
12107 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
12108 	const char *syscall_name;
12109 
12110 	*link = NULL;
12111 
12112 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
12113 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
12114 		return 0;
12115 
12116 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
12117 	if (opts.retprobe)
12118 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
12119 	else
12120 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
12121 
12122 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
12123 	return *link ? 0 : -errno;
12124 }
12125 
12126 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12127 {
12128 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
12129 	const char *spec;
12130 	char *pattern;
12131 	int n;
12132 
12133 	*link = NULL;
12134 
12135 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
12136 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
12137 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
12138 		return 0;
12139 
12140 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
12141 	if (opts.retprobe)
12142 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
12143 	else
12144 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
12145 
12146 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
12147 	if (n < 1) {
12148 		pr_warn("kprobe multi pattern is invalid: %s\n", spec);
12149 		return -EINVAL;
12150 	}
12151 
12152 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
12153 	free(pattern);
12154 	return libbpf_get_error(*link);
12155 }
12156 
12157 static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
12158 				 struct bpf_link **link)
12159 {
12160 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
12161 	const char *spec;
12162 	char *pattern;
12163 	int n;
12164 
12165 	*link = NULL;
12166 
12167 	/* no auto-attach for SEC("kprobe.session") */
12168 	if (strcmp(prog->sec_name, "kprobe.session") == 0)
12169 		return 0;
12170 
12171 	spec = prog->sec_name + sizeof("kprobe.session/") - 1;
12172 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
12173 	if (n < 1) {
12174 		pr_warn("kprobe session pattern is invalid: %s\n", spec);
12175 		return -EINVAL;
12176 	}
12177 
12178 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
12179 	free(pattern);
12180 	return *link ? 0 : -errno;
12181 }
12182 
12183 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12184 {
12185 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
12186 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
12187 	int n, ret = -EINVAL;
12188 
12189 	*link = NULL;
12190 
12191 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12192 		   &probe_type, &binary_path, &func_name);
12193 	switch (n) {
12194 	case 1:
12195 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12196 		ret = 0;
12197 		break;
12198 	case 3:
12199 		opts.session = str_has_pfx(probe_type, "uprobe.session");
12200 		opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi");
12201 
12202 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
12203 		ret = libbpf_get_error(*link);
12204 		break;
12205 	default:
12206 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12207 			prog->sec_name);
12208 		break;
12209 	}
12210 	free(probe_type);
12211 	free(binary_path);
12212 	free(func_name);
12213 	return ret;
12214 }
12215 
12216 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
12217 					  const char *binary_path, size_t offset)
12218 {
12219 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
12220 			      retprobe ? 'r' : 'p',
12221 			      retprobe ? "uretprobes" : "uprobes",
12222 			      probe_name, binary_path, offset);
12223 }
12224 
12225 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
12226 {
12227 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
12228 			      retprobe ? "uretprobes" : "uprobes", probe_name);
12229 }
12230 
12231 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
12232 {
12233 	char file[512];
12234 
12235 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12236 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
12237 
12238 	return parse_uint_from_file(file, "%d\n");
12239 }
12240 
12241 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
12242 					 const char *binary_path, size_t offset, int pid)
12243 {
12244 	const size_t attr_sz = sizeof(struct perf_event_attr);
12245 	struct perf_event_attr attr;
12246 	int type, pfd, err;
12247 
12248 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
12249 	if (err < 0) {
12250 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n",
12251 			binary_path, (size_t)offset, errstr(err));
12252 		return err;
12253 	}
12254 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
12255 	if (type < 0) {
12256 		err = type;
12257 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n",
12258 			binary_path, offset, errstr(err));
12259 		goto err_clean_legacy;
12260 	}
12261 
12262 	memset(&attr, 0, attr_sz);
12263 	attr.size = attr_sz;
12264 	attr.config = type;
12265 	attr.type = PERF_TYPE_TRACEPOINT;
12266 
12267 	pfd = syscall(__NR_perf_event_open, &attr,
12268 		      pid < 0 ? -1 : pid, /* pid */
12269 		      pid == -1 ? 0 : -1, /* cpu */
12270 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
12271 	if (pfd < 0) {
12272 		err = -errno;
12273 		pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err));
12274 		goto err_clean_legacy;
12275 	}
12276 	return pfd;
12277 
12278 err_clean_legacy:
12279 	/* Clear the newly added legacy uprobe_event */
12280 	remove_uprobe_event_legacy(probe_name, retprobe);
12281 	return err;
12282 }
12283 
12284 /* Find offset of function name in archive specified by path. Currently
12285  * supported are .zip files that do not compress their contents, as used on
12286  * Android in the form of APKs, for example. "file_name" is the name of the ELF
12287  * file inside the archive. "func_name" matches symbol name or name@@LIB for
12288  * library functions.
12289  *
12290  * An overview of the APK format specifically provided here:
12291  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
12292  */
12293 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
12294 					      const char *func_name)
12295 {
12296 	struct zip_archive *archive;
12297 	struct zip_entry entry;
12298 	long ret;
12299 	Elf *elf;
12300 
12301 	archive = zip_archive_open(archive_path);
12302 	if (IS_ERR(archive)) {
12303 		ret = PTR_ERR(archive);
12304 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
12305 		return ret;
12306 	}
12307 
12308 	ret = zip_archive_find_entry(archive, file_name, &entry);
12309 	if (ret) {
12310 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
12311 			archive_path, ret);
12312 		goto out;
12313 	}
12314 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
12315 		 (unsigned long)entry.data_offset);
12316 
12317 	if (entry.compression) {
12318 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
12319 			archive_path);
12320 		ret = -LIBBPF_ERRNO__FORMAT;
12321 		goto out;
12322 	}
12323 
12324 	elf = elf_memory((void *)entry.data, entry.data_length);
12325 	if (!elf) {
12326 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
12327 			elf_errmsg(-1));
12328 		ret = -LIBBPF_ERRNO__LIBELF;
12329 		goto out;
12330 	}
12331 
12332 	ret = elf_find_func_offset(elf, file_name, func_name);
12333 	if (ret > 0) {
12334 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
12335 			 func_name, file_name, archive_path, entry.data_offset, ret,
12336 			 ret + entry.data_offset);
12337 		ret += entry.data_offset;
12338 	}
12339 	elf_end(elf);
12340 
12341 out:
12342 	zip_archive_close(archive);
12343 	return ret;
12344 }
12345 
12346 static const char *arch_specific_lib_paths(void)
12347 {
12348 	/*
12349 	 * Based on https://packages.debian.org/sid/libc6.
12350 	 *
12351 	 * Assume that the traced program is built for the same architecture
12352 	 * as libbpf, which should cover the vast majority of cases.
12353 	 */
12354 #if defined(__x86_64__)
12355 	return "/lib/x86_64-linux-gnu";
12356 #elif defined(__i386__)
12357 	return "/lib/i386-linux-gnu";
12358 #elif defined(__s390x__)
12359 	return "/lib/s390x-linux-gnu";
12360 #elif defined(__arm__) && defined(__SOFTFP__)
12361 	return "/lib/arm-linux-gnueabi";
12362 #elif defined(__arm__) && !defined(__SOFTFP__)
12363 	return "/lib/arm-linux-gnueabihf";
12364 #elif defined(__aarch64__)
12365 	return "/lib/aarch64-linux-gnu";
12366 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
12367 	return "/lib/mips64el-linux-gnuabi64";
12368 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
12369 	return "/lib/mipsel-linux-gnu";
12370 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
12371 	return "/lib/powerpc64le-linux-gnu";
12372 #elif defined(__sparc__) && defined(__arch64__)
12373 	return "/lib/sparc64-linux-gnu";
12374 #elif defined(__riscv) && __riscv_xlen == 64
12375 	return "/lib/riscv64-linux-gnu";
12376 #else
12377 	return NULL;
12378 #endif
12379 }
12380 
12381 /* Get full path to program/shared library. */
12382 static int resolve_full_path(const char *file, char *result, size_t result_sz)
12383 {
12384 	const char *search_paths[3] = {};
12385 	int i, perm;
12386 
12387 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
12388 		search_paths[0] = getenv("LD_LIBRARY_PATH");
12389 		search_paths[1] = "/usr/lib64:/usr/lib";
12390 		search_paths[2] = arch_specific_lib_paths();
12391 		perm = R_OK;
12392 	} else {
12393 		search_paths[0] = getenv("PATH");
12394 		search_paths[1] = "/usr/bin:/usr/sbin";
12395 		perm = R_OK | X_OK;
12396 	}
12397 
12398 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
12399 		const char *s;
12400 
12401 		if (!search_paths[i])
12402 			continue;
12403 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
12404 			char *next_path;
12405 			int seg_len;
12406 
12407 			if (s[0] == ':')
12408 				s++;
12409 			next_path = strchr(s, ':');
12410 			seg_len = next_path ? next_path - s : strlen(s);
12411 			if (!seg_len)
12412 				continue;
12413 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
12414 			/* ensure it has required permissions */
12415 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
12416 				continue;
12417 			pr_debug("resolved '%s' to '%s'\n", file, result);
12418 			return 0;
12419 		}
12420 	}
12421 	return -ENOENT;
12422 }
12423 
12424 struct bpf_link *
12425 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
12426 				 pid_t pid,
12427 				 const char *path,
12428 				 const char *func_pattern,
12429 				 const struct bpf_uprobe_multi_opts *opts)
12430 {
12431 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
12432 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12433 	unsigned long *resolved_offsets = NULL;
12434 	enum bpf_attach_type attach_type;
12435 	int err = 0, link_fd, prog_fd;
12436 	struct bpf_link *link = NULL;
12437 	char full_path[PATH_MAX];
12438 	bool retprobe, session;
12439 	const __u64 *cookies;
12440 	const char **syms;
12441 	size_t cnt;
12442 
12443 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
12444 		return libbpf_err_ptr(-EINVAL);
12445 
12446 	prog_fd = bpf_program__fd(prog);
12447 	if (prog_fd < 0) {
12448 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12449 			prog->name);
12450 		return libbpf_err_ptr(-EINVAL);
12451 	}
12452 
12453 	syms = OPTS_GET(opts, syms, NULL);
12454 	offsets = OPTS_GET(opts, offsets, NULL);
12455 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
12456 	cookies = OPTS_GET(opts, cookies, NULL);
12457 	cnt = OPTS_GET(opts, cnt, 0);
12458 	retprobe = OPTS_GET(opts, retprobe, false);
12459 	session  = OPTS_GET(opts, session, false);
12460 
12461 	/*
12462 	 * User can specify 2 mutually exclusive set of inputs:
12463 	 *
12464 	 * 1) use only path/func_pattern/pid arguments
12465 	 *
12466 	 * 2) use path/pid with allowed combinations of:
12467 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
12468 	 *
12469 	 *    - syms and offsets are mutually exclusive
12470 	 *    - ref_ctr_offsets and cookies are optional
12471 	 *
12472 	 * Any other usage results in error.
12473 	 */
12474 
12475 	if (!path)
12476 		return libbpf_err_ptr(-EINVAL);
12477 	if (!func_pattern && cnt == 0)
12478 		return libbpf_err_ptr(-EINVAL);
12479 
12480 	if (func_pattern) {
12481 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
12482 			return libbpf_err_ptr(-EINVAL);
12483 	} else {
12484 		if (!!syms == !!offsets)
12485 			return libbpf_err_ptr(-EINVAL);
12486 	}
12487 
12488 	if (retprobe && session)
12489 		return libbpf_err_ptr(-EINVAL);
12490 
12491 	if (func_pattern) {
12492 		if (!strchr(path, '/')) {
12493 			err = resolve_full_path(path, full_path, sizeof(full_path));
12494 			if (err) {
12495 				pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12496 					prog->name, path, errstr(err));
12497 				return libbpf_err_ptr(err);
12498 			}
12499 			path = full_path;
12500 		}
12501 
12502 		err = elf_resolve_pattern_offsets(path, func_pattern,
12503 						  &resolved_offsets, &cnt);
12504 		if (err < 0)
12505 			return libbpf_err_ptr(err);
12506 		offsets = resolved_offsets;
12507 	} else if (syms) {
12508 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12509 		if (err < 0)
12510 			return libbpf_err_ptr(err);
12511 		offsets = resolved_offsets;
12512 	}
12513 
12514 	attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI;
12515 
12516 	lopts.uprobe_multi.path = path;
12517 	lopts.uprobe_multi.offsets = offsets;
12518 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12519 	lopts.uprobe_multi.cookies = cookies;
12520 	lopts.uprobe_multi.cnt = cnt;
12521 	lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0;
12522 
12523 	if (pid == 0)
12524 		pid = getpid();
12525 	if (pid > 0)
12526 		lopts.uprobe_multi.pid = pid;
12527 
12528 	link = calloc(1, sizeof(*link));
12529 	if (!link) {
12530 		err = -ENOMEM;
12531 		goto error;
12532 	}
12533 	link->detach = &bpf_link__detach_fd;
12534 
12535 	link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
12536 	if (link_fd < 0) {
12537 		err = -errno;
12538 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12539 			prog->name, errstr(err));
12540 		goto error;
12541 	}
12542 	link->fd = link_fd;
12543 	free(resolved_offsets);
12544 	return link;
12545 
12546 error:
12547 	free(resolved_offsets);
12548 	free(link);
12549 	return libbpf_err_ptr(err);
12550 }
12551 
12552 LIBBPF_API struct bpf_link *
12553 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12554 				const char *binary_path, size_t func_offset,
12555 				const struct bpf_uprobe_opts *opts)
12556 {
12557 	const char *archive_path = NULL, *archive_sep = NULL;
12558 	char *legacy_probe = NULL;
12559 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12560 	enum probe_attach_mode attach_mode;
12561 	char full_path[PATH_MAX];
12562 	struct bpf_link *link;
12563 	size_t ref_ctr_off;
12564 	int pfd, err;
12565 	bool retprobe, legacy;
12566 	const char *func_name;
12567 
12568 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12569 		return libbpf_err_ptr(-EINVAL);
12570 
12571 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12572 	retprobe = OPTS_GET(opts, retprobe, false);
12573 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12574 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12575 
12576 	if (!binary_path)
12577 		return libbpf_err_ptr(-EINVAL);
12578 
12579 	/* Check if "binary_path" refers to an archive. */
12580 	archive_sep = strstr(binary_path, "!/");
12581 	if (archive_sep) {
12582 		full_path[0] = '\0';
12583 		libbpf_strlcpy(full_path, binary_path,
12584 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12585 		archive_path = full_path;
12586 		binary_path = archive_sep + 2;
12587 	} else if (!strchr(binary_path, '/')) {
12588 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12589 		if (err) {
12590 			pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12591 				prog->name, binary_path, errstr(err));
12592 			return libbpf_err_ptr(err);
12593 		}
12594 		binary_path = full_path;
12595 	}
12596 	func_name = OPTS_GET(opts, func_name, NULL);
12597 	if (func_name) {
12598 		long sym_off;
12599 
12600 		if (archive_path) {
12601 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12602 								    func_name);
12603 			binary_path = archive_path;
12604 		} else {
12605 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12606 		}
12607 		if (sym_off < 0)
12608 			return libbpf_err_ptr(sym_off);
12609 		func_offset += sym_off;
12610 	}
12611 
12612 	legacy = determine_uprobe_perf_type() < 0;
12613 	switch (attach_mode) {
12614 	case PROBE_ATTACH_MODE_LEGACY:
12615 		legacy = true;
12616 		pe_opts.force_ioctl_attach = true;
12617 		break;
12618 	case PROBE_ATTACH_MODE_PERF:
12619 		if (legacy)
12620 			return libbpf_err_ptr(-ENOTSUP);
12621 		pe_opts.force_ioctl_attach = true;
12622 		break;
12623 	case PROBE_ATTACH_MODE_LINK:
12624 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12625 			return libbpf_err_ptr(-ENOTSUP);
12626 		break;
12627 	case PROBE_ATTACH_MODE_DEFAULT:
12628 		break;
12629 	default:
12630 		return libbpf_err_ptr(-EINVAL);
12631 	}
12632 
12633 	if (!legacy) {
12634 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12635 					    func_offset, pid, ref_ctr_off);
12636 	} else {
12637 		char probe_name[MAX_EVENT_NAME_LEN];
12638 
12639 		if (ref_ctr_off)
12640 			return libbpf_err_ptr(-EINVAL);
12641 
12642 		gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
12643 					    strrchr(binary_path, '/') ? : binary_path,
12644 					    func_offset);
12645 
12646 		legacy_probe = strdup(probe_name);
12647 		if (!legacy_probe)
12648 			return libbpf_err_ptr(-ENOMEM);
12649 
12650 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12651 						    binary_path, func_offset, pid);
12652 	}
12653 	if (pfd < 0) {
12654 		err = -errno;
12655 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12656 			prog->name, retprobe ? "uretprobe" : "uprobe",
12657 			binary_path, func_offset,
12658 			errstr(err));
12659 		goto err_out;
12660 	}
12661 
12662 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12663 	err = libbpf_get_error(link);
12664 	if (err) {
12665 		close(pfd);
12666 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12667 			prog->name, retprobe ? "uretprobe" : "uprobe",
12668 			binary_path, func_offset,
12669 			errstr(err));
12670 		goto err_clean_legacy;
12671 	}
12672 	if (legacy) {
12673 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12674 
12675 		perf_link->legacy_probe_name = legacy_probe;
12676 		perf_link->legacy_is_kprobe = false;
12677 		perf_link->legacy_is_retprobe = retprobe;
12678 	}
12679 	return link;
12680 
12681 err_clean_legacy:
12682 	if (legacy)
12683 		remove_uprobe_event_legacy(legacy_probe, retprobe);
12684 err_out:
12685 	free(legacy_probe);
12686 	return libbpf_err_ptr(err);
12687 }
12688 
12689 /* Format of u[ret]probe section definition supporting auto-attach:
12690  * u[ret]probe/binary:function[+offset]
12691  *
12692  * binary can be an absolute/relative path or a filename; the latter is resolved to a
12693  * full binary path via bpf_program__attach_uprobe_opts.
12694  *
12695  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12696  * specified (and auto-attach is not possible) or the above format is specified for
12697  * auto-attach.
12698  */
12699 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12700 {
12701 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12702 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12703 	int n, c, ret = -EINVAL;
12704 	long offset = 0;
12705 
12706 	*link = NULL;
12707 
12708 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12709 		   &probe_type, &binary_path, &func_name);
12710 	switch (n) {
12711 	case 1:
12712 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12713 		ret = 0;
12714 		break;
12715 	case 2:
12716 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12717 			prog->name, prog->sec_name);
12718 		break;
12719 	case 3:
12720 		/* check if user specifies `+offset`, if yes, this should be
12721 		 * the last part of the string, make sure sscanf read to EOL
12722 		 */
12723 		func_off = strrchr(func_name, '+');
12724 		if (func_off) {
12725 			n = sscanf(func_off, "+%li%n", &offset, &c);
12726 			if (n == 1 && *(func_off + c) == '\0')
12727 				func_off[0] = '\0';
12728 			else
12729 				offset = 0;
12730 		}
12731 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12732 				strcmp(probe_type, "uretprobe.s") == 0;
12733 		if (opts.retprobe && offset != 0) {
12734 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
12735 				prog->name);
12736 			break;
12737 		}
12738 		opts.func_name = func_name;
12739 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12740 		ret = libbpf_get_error(*link);
12741 		break;
12742 	default:
12743 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12744 			prog->sec_name);
12745 		break;
12746 	}
12747 	free(probe_type);
12748 	free(binary_path);
12749 	free(func_name);
12750 
12751 	return ret;
12752 }
12753 
12754 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12755 					    bool retprobe, pid_t pid,
12756 					    const char *binary_path,
12757 					    size_t func_offset)
12758 {
12759 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12760 
12761 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12762 }
12763 
12764 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12765 					  pid_t pid, const char *binary_path,
12766 					  const char *usdt_provider, const char *usdt_name,
12767 					  const struct bpf_usdt_opts *opts)
12768 {
12769 	char resolved_path[512];
12770 	struct bpf_object *obj = prog->obj;
12771 	struct bpf_link *link;
12772 	__u64 usdt_cookie;
12773 	int err;
12774 
12775 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12776 		return libbpf_err_ptr(-EINVAL);
12777 
12778 	if (bpf_program__fd(prog) < 0) {
12779 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12780 			prog->name);
12781 		return libbpf_err_ptr(-EINVAL);
12782 	}
12783 
12784 	if (!binary_path)
12785 		return libbpf_err_ptr(-EINVAL);
12786 
12787 	if (!strchr(binary_path, '/')) {
12788 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12789 		if (err) {
12790 			pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12791 				prog->name, binary_path, errstr(err));
12792 			return libbpf_err_ptr(err);
12793 		}
12794 		binary_path = resolved_path;
12795 	}
12796 
12797 	/* USDT manager is instantiated lazily on first USDT attach. It will
12798 	 * be destroyed together with BPF object in bpf_object__close().
12799 	 */
12800 	if (IS_ERR(obj->usdt_man))
12801 		return libbpf_ptr(obj->usdt_man);
12802 	if (!obj->usdt_man) {
12803 		obj->usdt_man = usdt_manager_new(obj);
12804 		if (IS_ERR(obj->usdt_man))
12805 			return libbpf_ptr(obj->usdt_man);
12806 	}
12807 
12808 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12809 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12810 					usdt_provider, usdt_name, usdt_cookie);
12811 	err = libbpf_get_error(link);
12812 	if (err)
12813 		return libbpf_err_ptr(err);
12814 	return link;
12815 }
12816 
12817 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12818 {
12819 	char *path = NULL, *provider = NULL, *name = NULL;
12820 	const char *sec_name;
12821 	int n, err;
12822 
12823 	sec_name = bpf_program__section_name(prog);
12824 	if (strcmp(sec_name, "usdt") == 0) {
12825 		/* no auto-attach for just SEC("usdt") */
12826 		*link = NULL;
12827 		return 0;
12828 	}
12829 
12830 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12831 	if (n != 3) {
12832 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12833 			sec_name);
12834 		err = -EINVAL;
12835 	} else {
12836 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12837 						 provider, name, NULL);
12838 		err = libbpf_get_error(*link);
12839 	}
12840 	free(path);
12841 	free(provider);
12842 	free(name);
12843 	return err;
12844 }
12845 
12846 static int determine_tracepoint_id(const char *tp_category,
12847 				   const char *tp_name)
12848 {
12849 	char file[PATH_MAX];
12850 	int ret;
12851 
12852 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12853 		       tracefs_path(), tp_category, tp_name);
12854 	if (ret < 0)
12855 		return -errno;
12856 	if (ret >= sizeof(file)) {
12857 		pr_debug("tracepoint %s/%s path is too long\n",
12858 			 tp_category, tp_name);
12859 		return -E2BIG;
12860 	}
12861 	return parse_uint_from_file(file, "%d\n");
12862 }
12863 
12864 static int perf_event_open_tracepoint(const char *tp_category,
12865 				      const char *tp_name)
12866 {
12867 	const size_t attr_sz = sizeof(struct perf_event_attr);
12868 	struct perf_event_attr attr;
12869 	int tp_id, pfd, err;
12870 
12871 	tp_id = determine_tracepoint_id(tp_category, tp_name);
12872 	if (tp_id < 0) {
12873 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12874 			tp_category, tp_name,
12875 			errstr(tp_id));
12876 		return tp_id;
12877 	}
12878 
12879 	memset(&attr, 0, attr_sz);
12880 	attr.type = PERF_TYPE_TRACEPOINT;
12881 	attr.size = attr_sz;
12882 	attr.config = tp_id;
12883 
12884 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12885 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12886 	if (pfd < 0) {
12887 		err = -errno;
12888 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12889 			tp_category, tp_name,
12890 			errstr(err));
12891 		return err;
12892 	}
12893 	return pfd;
12894 }
12895 
12896 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12897 						     const char *tp_category,
12898 						     const char *tp_name,
12899 						     const struct bpf_tracepoint_opts *opts)
12900 {
12901 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12902 	struct bpf_link *link;
12903 	int pfd, err;
12904 
12905 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12906 		return libbpf_err_ptr(-EINVAL);
12907 
12908 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12909 
12910 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
12911 	if (pfd < 0) {
12912 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12913 			prog->name, tp_category, tp_name,
12914 			errstr(pfd));
12915 		return libbpf_err_ptr(pfd);
12916 	}
12917 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12918 	err = libbpf_get_error(link);
12919 	if (err) {
12920 		close(pfd);
12921 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12922 			prog->name, tp_category, tp_name,
12923 			errstr(err));
12924 		return libbpf_err_ptr(err);
12925 	}
12926 	return link;
12927 }
12928 
12929 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12930 						const char *tp_category,
12931 						const char *tp_name)
12932 {
12933 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12934 }
12935 
12936 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12937 {
12938 	char *sec_name, *tp_cat, *tp_name;
12939 
12940 	*link = NULL;
12941 
12942 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12943 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12944 		return 0;
12945 
12946 	sec_name = strdup(prog->sec_name);
12947 	if (!sec_name)
12948 		return -ENOMEM;
12949 
12950 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12951 	if (str_has_pfx(prog->sec_name, "tp/"))
12952 		tp_cat = sec_name + sizeof("tp/") - 1;
12953 	else
12954 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
12955 	tp_name = strchr(tp_cat, '/');
12956 	if (!tp_name) {
12957 		free(sec_name);
12958 		return -EINVAL;
12959 	}
12960 	*tp_name = '\0';
12961 	tp_name++;
12962 
12963 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12964 	free(sec_name);
12965 	return libbpf_get_error(*link);
12966 }
12967 
12968 struct bpf_link *
12969 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12970 					const char *tp_name,
12971 					struct bpf_raw_tracepoint_opts *opts)
12972 {
12973 	LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12974 	struct bpf_link *link;
12975 	int prog_fd, pfd;
12976 
12977 	if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12978 		return libbpf_err_ptr(-EINVAL);
12979 
12980 	prog_fd = bpf_program__fd(prog);
12981 	if (prog_fd < 0) {
12982 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12983 		return libbpf_err_ptr(-EINVAL);
12984 	}
12985 
12986 	link = calloc(1, sizeof(*link));
12987 	if (!link)
12988 		return libbpf_err_ptr(-ENOMEM);
12989 	link->detach = &bpf_link__detach_fd;
12990 
12991 	raw_opts.tp_name = tp_name;
12992 	raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12993 	pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12994 	if (pfd < 0) {
12995 		pfd = -errno;
12996 		free(link);
12997 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12998 			prog->name, tp_name, errstr(pfd));
12999 		return libbpf_err_ptr(pfd);
13000 	}
13001 	link->fd = pfd;
13002 	return link;
13003 }
13004 
13005 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
13006 						    const char *tp_name)
13007 {
13008 	return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
13009 }
13010 
13011 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
13012 {
13013 	static const char *const prefixes[] = {
13014 		"raw_tp",
13015 		"raw_tracepoint",
13016 		"raw_tp.w",
13017 		"raw_tracepoint.w",
13018 	};
13019 	size_t i;
13020 	const char *tp_name = NULL;
13021 
13022 	*link = NULL;
13023 
13024 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
13025 		size_t pfx_len;
13026 
13027 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
13028 			continue;
13029 
13030 		pfx_len = strlen(prefixes[i]);
13031 		/* no auto-attach case of, e.g., SEC("raw_tp") */
13032 		if (prog->sec_name[pfx_len] == '\0')
13033 			return 0;
13034 
13035 		if (prog->sec_name[pfx_len] != '/')
13036 			continue;
13037 
13038 		tp_name = prog->sec_name + pfx_len + 1;
13039 		break;
13040 	}
13041 
13042 	if (!tp_name) {
13043 		pr_warn("prog '%s': invalid section name '%s'\n",
13044 			prog->name, prog->sec_name);
13045 		return -EINVAL;
13046 	}
13047 
13048 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
13049 	return libbpf_get_error(*link);
13050 }
13051 
13052 /* Common logic for all BPF program types that attach to a btf_id */
13053 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
13054 						   const struct bpf_trace_opts *opts)
13055 {
13056 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
13057 	struct bpf_link *link;
13058 	int prog_fd, pfd;
13059 
13060 	if (!OPTS_VALID(opts, bpf_trace_opts))
13061 		return libbpf_err_ptr(-EINVAL);
13062 
13063 	prog_fd = bpf_program__fd(prog);
13064 	if (prog_fd < 0) {
13065 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13066 		return libbpf_err_ptr(-EINVAL);
13067 	}
13068 
13069 	link = calloc(1, sizeof(*link));
13070 	if (!link)
13071 		return libbpf_err_ptr(-ENOMEM);
13072 	link->detach = &bpf_link__detach_fd;
13073 
13074 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
13075 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
13076 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
13077 	if (pfd < 0) {
13078 		pfd = -errno;
13079 		free(link);
13080 		pr_warn("prog '%s': failed to attach: %s\n",
13081 			prog->name, errstr(pfd));
13082 		return libbpf_err_ptr(pfd);
13083 	}
13084 	link->fd = pfd;
13085 	return link;
13086 }
13087 
13088 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
13089 {
13090 	return bpf_program__attach_btf_id(prog, NULL);
13091 }
13092 
13093 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
13094 						const struct bpf_trace_opts *opts)
13095 {
13096 	return bpf_program__attach_btf_id(prog, opts);
13097 }
13098 
13099 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
13100 {
13101 	return bpf_program__attach_btf_id(prog, NULL);
13102 }
13103 
13104 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
13105 {
13106 	*link = bpf_program__attach_trace(prog);
13107 	return libbpf_get_error(*link);
13108 }
13109 
13110 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
13111 {
13112 	*link = bpf_program__attach_lsm(prog);
13113 	return libbpf_get_error(*link);
13114 }
13115 
13116 static struct bpf_link *
13117 bpf_program_attach_fd(const struct bpf_program *prog,
13118 		      int target_fd, const char *target_name,
13119 		      const struct bpf_link_create_opts *opts)
13120 {
13121 	enum bpf_attach_type attach_type;
13122 	struct bpf_link *link;
13123 	int prog_fd, link_fd;
13124 
13125 	prog_fd = bpf_program__fd(prog);
13126 	if (prog_fd < 0) {
13127 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13128 		return libbpf_err_ptr(-EINVAL);
13129 	}
13130 
13131 	link = calloc(1, sizeof(*link));
13132 	if (!link)
13133 		return libbpf_err_ptr(-ENOMEM);
13134 	link->detach = &bpf_link__detach_fd;
13135 
13136 	attach_type = bpf_program__expected_attach_type(prog);
13137 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
13138 	if (link_fd < 0) {
13139 		link_fd = -errno;
13140 		free(link);
13141 		pr_warn("prog '%s': failed to attach to %s: %s\n",
13142 			prog->name, target_name,
13143 			errstr(link_fd));
13144 		return libbpf_err_ptr(link_fd);
13145 	}
13146 	link->fd = link_fd;
13147 	return link;
13148 }
13149 
13150 struct bpf_link *
13151 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
13152 {
13153 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
13154 }
13155 
13156 struct bpf_link *
13157 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
13158 {
13159 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
13160 }
13161 
13162 struct bpf_link *
13163 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
13164 {
13165 	return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
13166 }
13167 
13168 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
13169 {
13170 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
13171 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
13172 }
13173 
13174 struct bpf_link *
13175 bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd,
13176 				const struct bpf_cgroup_opts *opts)
13177 {
13178 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
13179 	__u32 relative_id;
13180 	int relative_fd;
13181 
13182 	if (!OPTS_VALID(opts, bpf_cgroup_opts))
13183 		return libbpf_err_ptr(-EINVAL);
13184 
13185 	relative_id = OPTS_GET(opts, relative_id, 0);
13186 	relative_fd = OPTS_GET(opts, relative_fd, 0);
13187 
13188 	if (relative_fd && relative_id) {
13189 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
13190 			prog->name);
13191 		return libbpf_err_ptr(-EINVAL);
13192 	}
13193 
13194 	link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0);
13195 	link_create_opts.cgroup.relative_fd = relative_fd;
13196 	link_create_opts.cgroup.relative_id = relative_id;
13197 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
13198 
13199 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts);
13200 }
13201 
13202 struct bpf_link *
13203 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
13204 			const struct bpf_tcx_opts *opts)
13205 {
13206 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
13207 	__u32 relative_id;
13208 	int relative_fd;
13209 
13210 	if (!OPTS_VALID(opts, bpf_tcx_opts))
13211 		return libbpf_err_ptr(-EINVAL);
13212 
13213 	relative_id = OPTS_GET(opts, relative_id, 0);
13214 	relative_fd = OPTS_GET(opts, relative_fd, 0);
13215 
13216 	/* validate we don't have unexpected combinations of non-zero fields */
13217 	if (!ifindex) {
13218 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
13219 			prog->name);
13220 		return libbpf_err_ptr(-EINVAL);
13221 	}
13222 	if (relative_fd && relative_id) {
13223 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
13224 			prog->name);
13225 		return libbpf_err_ptr(-EINVAL);
13226 	}
13227 
13228 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
13229 	link_create_opts.tcx.relative_fd = relative_fd;
13230 	link_create_opts.tcx.relative_id = relative_id;
13231 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
13232 
13233 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
13234 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
13235 }
13236 
13237 struct bpf_link *
13238 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
13239 			   const struct bpf_netkit_opts *opts)
13240 {
13241 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
13242 	__u32 relative_id;
13243 	int relative_fd;
13244 
13245 	if (!OPTS_VALID(opts, bpf_netkit_opts))
13246 		return libbpf_err_ptr(-EINVAL);
13247 
13248 	relative_id = OPTS_GET(opts, relative_id, 0);
13249 	relative_fd = OPTS_GET(opts, relative_fd, 0);
13250 
13251 	/* validate we don't have unexpected combinations of non-zero fields */
13252 	if (!ifindex) {
13253 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
13254 			prog->name);
13255 		return libbpf_err_ptr(-EINVAL);
13256 	}
13257 	if (relative_fd && relative_id) {
13258 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
13259 			prog->name);
13260 		return libbpf_err_ptr(-EINVAL);
13261 	}
13262 
13263 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
13264 	link_create_opts.netkit.relative_fd = relative_fd;
13265 	link_create_opts.netkit.relative_id = relative_id;
13266 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
13267 
13268 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
13269 }
13270 
13271 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
13272 					      int target_fd,
13273 					      const char *attach_func_name)
13274 {
13275 	int btf_id;
13276 
13277 	if (!!target_fd != !!attach_func_name) {
13278 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
13279 			prog->name);
13280 		return libbpf_err_ptr(-EINVAL);
13281 	}
13282 
13283 	if (prog->type != BPF_PROG_TYPE_EXT) {
13284 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n",
13285 			prog->name);
13286 		return libbpf_err_ptr(-EINVAL);
13287 	}
13288 
13289 	if (target_fd) {
13290 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
13291 
13292 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd);
13293 		if (btf_id < 0)
13294 			return libbpf_err_ptr(btf_id);
13295 
13296 		target_opts.target_btf_id = btf_id;
13297 
13298 		return bpf_program_attach_fd(prog, target_fd, "freplace",
13299 					     &target_opts);
13300 	} else {
13301 		/* no target, so use raw_tracepoint_open for compatibility
13302 		 * with old kernels
13303 		 */
13304 		return bpf_program__attach_trace(prog);
13305 	}
13306 }
13307 
13308 struct bpf_link *
13309 bpf_program__attach_iter(const struct bpf_program *prog,
13310 			 const struct bpf_iter_attach_opts *opts)
13311 {
13312 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
13313 	struct bpf_link *link;
13314 	int prog_fd, link_fd;
13315 	__u32 target_fd = 0;
13316 
13317 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
13318 		return libbpf_err_ptr(-EINVAL);
13319 
13320 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
13321 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
13322 
13323 	prog_fd = bpf_program__fd(prog);
13324 	if (prog_fd < 0) {
13325 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13326 		return libbpf_err_ptr(-EINVAL);
13327 	}
13328 
13329 	link = calloc(1, sizeof(*link));
13330 	if (!link)
13331 		return libbpf_err_ptr(-ENOMEM);
13332 	link->detach = &bpf_link__detach_fd;
13333 
13334 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
13335 				  &link_create_opts);
13336 	if (link_fd < 0) {
13337 		link_fd = -errno;
13338 		free(link);
13339 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
13340 			prog->name, errstr(link_fd));
13341 		return libbpf_err_ptr(link_fd);
13342 	}
13343 	link->fd = link_fd;
13344 	return link;
13345 }
13346 
13347 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
13348 {
13349 	*link = bpf_program__attach_iter(prog, NULL);
13350 	return libbpf_get_error(*link);
13351 }
13352 
13353 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
13354 					       const struct bpf_netfilter_opts *opts)
13355 {
13356 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
13357 	struct bpf_link *link;
13358 	int prog_fd, link_fd;
13359 
13360 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
13361 		return libbpf_err_ptr(-EINVAL);
13362 
13363 	prog_fd = bpf_program__fd(prog);
13364 	if (prog_fd < 0) {
13365 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13366 		return libbpf_err_ptr(-EINVAL);
13367 	}
13368 
13369 	link = calloc(1, sizeof(*link));
13370 	if (!link)
13371 		return libbpf_err_ptr(-ENOMEM);
13372 
13373 	link->detach = &bpf_link__detach_fd;
13374 
13375 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
13376 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
13377 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
13378 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
13379 
13380 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
13381 	if (link_fd < 0) {
13382 		link_fd = -errno;
13383 		free(link);
13384 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
13385 			prog->name, errstr(link_fd));
13386 		return libbpf_err_ptr(link_fd);
13387 	}
13388 	link->fd = link_fd;
13389 
13390 	return link;
13391 }
13392 
13393 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
13394 {
13395 	struct bpf_link *link = NULL;
13396 	int err;
13397 
13398 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13399 		return libbpf_err_ptr(-EOPNOTSUPP);
13400 
13401 	if (bpf_program__fd(prog) < 0) {
13402 		pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
13403 			prog->name);
13404 		return libbpf_err_ptr(-EINVAL);
13405 	}
13406 
13407 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
13408 	if (err)
13409 		return libbpf_err_ptr(err);
13410 
13411 	/* When calling bpf_program__attach() explicitly, auto-attach support
13412 	 * is expected to work, so NULL returned link is considered an error.
13413 	 * This is different for skeleton's attach, see comment in
13414 	 * bpf_object__attach_skeleton().
13415 	 */
13416 	if (!link)
13417 		return libbpf_err_ptr(-EOPNOTSUPP);
13418 
13419 	return link;
13420 }
13421 
13422 struct bpf_link_struct_ops {
13423 	struct bpf_link link;
13424 	int map_fd;
13425 };
13426 
13427 static int bpf_link__detach_struct_ops(struct bpf_link *link)
13428 {
13429 	struct bpf_link_struct_ops *st_link;
13430 	__u32 zero = 0;
13431 
13432 	st_link = container_of(link, struct bpf_link_struct_ops, link);
13433 
13434 	if (st_link->map_fd < 0)
13435 		/* w/o a real link */
13436 		return bpf_map_delete_elem(link->fd, &zero);
13437 
13438 	return close(link->fd);
13439 }
13440 
13441 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
13442 {
13443 	struct bpf_link_struct_ops *link;
13444 	__u32 zero = 0;
13445 	int err, fd;
13446 
13447 	if (!bpf_map__is_struct_ops(map)) {
13448 		pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
13449 		return libbpf_err_ptr(-EINVAL);
13450 	}
13451 
13452 	if (map->fd < 0) {
13453 		pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
13454 		return libbpf_err_ptr(-EINVAL);
13455 	}
13456 
13457 	link = calloc(1, sizeof(*link));
13458 	if (!link)
13459 		return libbpf_err_ptr(-EINVAL);
13460 
13461 	/* kern_vdata should be prepared during the loading phase. */
13462 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13463 	/* It can be EBUSY if the map has been used to create or
13464 	 * update a link before.  We don't allow updating the value of
13465 	 * a struct_ops once it is set.  That ensures that the value
13466 	 * never changed.  So, it is safe to skip EBUSY.
13467 	 */
13468 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
13469 		free(link);
13470 		return libbpf_err_ptr(err);
13471 	}
13472 
13473 	link->link.detach = bpf_link__detach_struct_ops;
13474 
13475 	if (!(map->def.map_flags & BPF_F_LINK)) {
13476 		/* w/o a real link */
13477 		link->link.fd = map->fd;
13478 		link->map_fd = -1;
13479 		return &link->link;
13480 	}
13481 
13482 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
13483 	if (fd < 0) {
13484 		free(link);
13485 		return libbpf_err_ptr(fd);
13486 	}
13487 
13488 	link->link.fd = fd;
13489 	link->map_fd = map->fd;
13490 
13491 	return &link->link;
13492 }
13493 
13494 /*
13495  * Swap the back struct_ops of a link with a new struct_ops map.
13496  */
13497 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
13498 {
13499 	struct bpf_link_struct_ops *st_ops_link;
13500 	__u32 zero = 0;
13501 	int err;
13502 
13503 	if (!bpf_map__is_struct_ops(map))
13504 		return libbpf_err(-EINVAL);
13505 
13506 	if (map->fd < 0) {
13507 		pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
13508 		return libbpf_err(-EINVAL);
13509 	}
13510 
13511 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
13512 	/* Ensure the type of a link is correct */
13513 	if (st_ops_link->map_fd < 0)
13514 		return libbpf_err(-EINVAL);
13515 
13516 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13517 	/* It can be EBUSY if the map has been used to create or
13518 	 * update a link before.  We don't allow updating the value of
13519 	 * a struct_ops once it is set.  That ensures that the value
13520 	 * never changed.  So, it is safe to skip EBUSY.
13521 	 */
13522 	if (err && err != -EBUSY)
13523 		return err;
13524 
13525 	err = bpf_link_update(link->fd, map->fd, NULL);
13526 	if (err < 0)
13527 		return err;
13528 
13529 	st_ops_link->map_fd = map->fd;
13530 
13531 	return 0;
13532 }
13533 
13534 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13535 							  void *private_data);
13536 
13537 static enum bpf_perf_event_ret
13538 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13539 		       void **copy_mem, size_t *copy_size,
13540 		       bpf_perf_event_print_t fn, void *private_data)
13541 {
13542 	struct perf_event_mmap_page *header = mmap_mem;
13543 	__u64 data_head = ring_buffer_read_head(header);
13544 	__u64 data_tail = header->data_tail;
13545 	void *base = ((__u8 *)header) + page_size;
13546 	int ret = LIBBPF_PERF_EVENT_CONT;
13547 	struct perf_event_header *ehdr;
13548 	size_t ehdr_size;
13549 
13550 	while (data_head != data_tail) {
13551 		ehdr = base + (data_tail & (mmap_size - 1));
13552 		ehdr_size = ehdr->size;
13553 
13554 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13555 			void *copy_start = ehdr;
13556 			size_t len_first = base + mmap_size - copy_start;
13557 			size_t len_secnd = ehdr_size - len_first;
13558 
13559 			if (*copy_size < ehdr_size) {
13560 				free(*copy_mem);
13561 				*copy_mem = malloc(ehdr_size);
13562 				if (!*copy_mem) {
13563 					*copy_size = 0;
13564 					ret = LIBBPF_PERF_EVENT_ERROR;
13565 					break;
13566 				}
13567 				*copy_size = ehdr_size;
13568 			}
13569 
13570 			memcpy(*copy_mem, copy_start, len_first);
13571 			memcpy(*copy_mem + len_first, base, len_secnd);
13572 			ehdr = *copy_mem;
13573 		}
13574 
13575 		ret = fn(ehdr, private_data);
13576 		data_tail += ehdr_size;
13577 		if (ret != LIBBPF_PERF_EVENT_CONT)
13578 			break;
13579 	}
13580 
13581 	ring_buffer_write_tail(header, data_tail);
13582 	return libbpf_err(ret);
13583 }
13584 
13585 struct perf_buffer;
13586 
13587 struct perf_buffer_params {
13588 	struct perf_event_attr *attr;
13589 	/* if event_cb is specified, it takes precendence */
13590 	perf_buffer_event_fn event_cb;
13591 	/* sample_cb and lost_cb are higher-level common-case callbacks */
13592 	perf_buffer_sample_fn sample_cb;
13593 	perf_buffer_lost_fn lost_cb;
13594 	void *ctx;
13595 	int cpu_cnt;
13596 	int *cpus;
13597 	int *map_keys;
13598 };
13599 
13600 struct perf_cpu_buf {
13601 	struct perf_buffer *pb;
13602 	void *base; /* mmap()'ed memory */
13603 	void *buf; /* for reconstructing segmented data */
13604 	size_t buf_size;
13605 	int fd;
13606 	int cpu;
13607 	int map_key;
13608 };
13609 
13610 struct perf_buffer {
13611 	perf_buffer_event_fn event_cb;
13612 	perf_buffer_sample_fn sample_cb;
13613 	perf_buffer_lost_fn lost_cb;
13614 	void *ctx; /* passed into callbacks */
13615 
13616 	size_t page_size;
13617 	size_t mmap_size;
13618 	struct perf_cpu_buf **cpu_bufs;
13619 	struct epoll_event *events;
13620 	int cpu_cnt; /* number of allocated CPU buffers */
13621 	int epoll_fd; /* perf event FD */
13622 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13623 };
13624 
13625 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13626 				      struct perf_cpu_buf *cpu_buf)
13627 {
13628 	if (!cpu_buf)
13629 		return;
13630 	if (cpu_buf->base &&
13631 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13632 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13633 	if (cpu_buf->fd >= 0) {
13634 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13635 		close(cpu_buf->fd);
13636 	}
13637 	free(cpu_buf->buf);
13638 	free(cpu_buf);
13639 }
13640 
13641 void perf_buffer__free(struct perf_buffer *pb)
13642 {
13643 	int i;
13644 
13645 	if (IS_ERR_OR_NULL(pb))
13646 		return;
13647 	if (pb->cpu_bufs) {
13648 		for (i = 0; i < pb->cpu_cnt; i++) {
13649 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13650 
13651 			if (!cpu_buf)
13652 				continue;
13653 
13654 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13655 			perf_buffer__free_cpu_buf(pb, cpu_buf);
13656 		}
13657 		free(pb->cpu_bufs);
13658 	}
13659 	if (pb->epoll_fd >= 0)
13660 		close(pb->epoll_fd);
13661 	free(pb->events);
13662 	free(pb);
13663 }
13664 
13665 static struct perf_cpu_buf *
13666 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13667 			  int cpu, int map_key)
13668 {
13669 	struct perf_cpu_buf *cpu_buf;
13670 	int err;
13671 
13672 	cpu_buf = calloc(1, sizeof(*cpu_buf));
13673 	if (!cpu_buf)
13674 		return ERR_PTR(-ENOMEM);
13675 
13676 	cpu_buf->pb = pb;
13677 	cpu_buf->cpu = cpu;
13678 	cpu_buf->map_key = map_key;
13679 
13680 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13681 			      -1, PERF_FLAG_FD_CLOEXEC);
13682 	if (cpu_buf->fd < 0) {
13683 		err = -errno;
13684 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13685 			cpu, errstr(err));
13686 		goto error;
13687 	}
13688 
13689 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13690 			     PROT_READ | PROT_WRITE, MAP_SHARED,
13691 			     cpu_buf->fd, 0);
13692 	if (cpu_buf->base == MAP_FAILED) {
13693 		cpu_buf->base = NULL;
13694 		err = -errno;
13695 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13696 			cpu, errstr(err));
13697 		goto error;
13698 	}
13699 
13700 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13701 		err = -errno;
13702 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13703 			cpu, errstr(err));
13704 		goto error;
13705 	}
13706 
13707 	return cpu_buf;
13708 
13709 error:
13710 	perf_buffer__free_cpu_buf(pb, cpu_buf);
13711 	return (struct perf_cpu_buf *)ERR_PTR(err);
13712 }
13713 
13714 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13715 					      struct perf_buffer_params *p);
13716 
13717 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13718 				     perf_buffer_sample_fn sample_cb,
13719 				     perf_buffer_lost_fn lost_cb,
13720 				     void *ctx,
13721 				     const struct perf_buffer_opts *opts)
13722 {
13723 	const size_t attr_sz = sizeof(struct perf_event_attr);
13724 	struct perf_buffer_params p = {};
13725 	struct perf_event_attr attr;
13726 	__u32 sample_period;
13727 
13728 	if (!OPTS_VALID(opts, perf_buffer_opts))
13729 		return libbpf_err_ptr(-EINVAL);
13730 
13731 	sample_period = OPTS_GET(opts, sample_period, 1);
13732 	if (!sample_period)
13733 		sample_period = 1;
13734 
13735 	memset(&attr, 0, attr_sz);
13736 	attr.size = attr_sz;
13737 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13738 	attr.type = PERF_TYPE_SOFTWARE;
13739 	attr.sample_type = PERF_SAMPLE_RAW;
13740 	attr.wakeup_events = sample_period;
13741 
13742 	p.attr = &attr;
13743 	p.sample_cb = sample_cb;
13744 	p.lost_cb = lost_cb;
13745 	p.ctx = ctx;
13746 
13747 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13748 }
13749 
13750 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13751 					 struct perf_event_attr *attr,
13752 					 perf_buffer_event_fn event_cb, void *ctx,
13753 					 const struct perf_buffer_raw_opts *opts)
13754 {
13755 	struct perf_buffer_params p = {};
13756 
13757 	if (!attr)
13758 		return libbpf_err_ptr(-EINVAL);
13759 
13760 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13761 		return libbpf_err_ptr(-EINVAL);
13762 
13763 	p.attr = attr;
13764 	p.event_cb = event_cb;
13765 	p.ctx = ctx;
13766 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13767 	p.cpus = OPTS_GET(opts, cpus, NULL);
13768 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
13769 
13770 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13771 }
13772 
13773 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13774 					      struct perf_buffer_params *p)
13775 {
13776 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
13777 	struct bpf_map_info map;
13778 	struct perf_buffer *pb;
13779 	bool *online = NULL;
13780 	__u32 map_info_len;
13781 	int err, i, j, n;
13782 
13783 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13784 		pr_warn("page count should be power of two, but is %zu\n",
13785 			page_cnt);
13786 		return ERR_PTR(-EINVAL);
13787 	}
13788 
13789 	/* best-effort sanity checks */
13790 	memset(&map, 0, sizeof(map));
13791 	map_info_len = sizeof(map);
13792 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13793 	if (err) {
13794 		err = -errno;
13795 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13796 		 * -EBADFD, -EFAULT, or -E2BIG on real error
13797 		 */
13798 		if (err != -EINVAL) {
13799 			pr_warn("failed to get map info for map FD %d: %s\n",
13800 				map_fd, errstr(err));
13801 			return ERR_PTR(err);
13802 		}
13803 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13804 			 map_fd);
13805 	} else {
13806 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13807 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13808 				map.name);
13809 			return ERR_PTR(-EINVAL);
13810 		}
13811 	}
13812 
13813 	pb = calloc(1, sizeof(*pb));
13814 	if (!pb)
13815 		return ERR_PTR(-ENOMEM);
13816 
13817 	pb->event_cb = p->event_cb;
13818 	pb->sample_cb = p->sample_cb;
13819 	pb->lost_cb = p->lost_cb;
13820 	pb->ctx = p->ctx;
13821 
13822 	pb->page_size = getpagesize();
13823 	pb->mmap_size = pb->page_size * page_cnt;
13824 	pb->map_fd = map_fd;
13825 
13826 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13827 	if (pb->epoll_fd < 0) {
13828 		err = -errno;
13829 		pr_warn("failed to create epoll instance: %s\n",
13830 			errstr(err));
13831 		goto error;
13832 	}
13833 
13834 	if (p->cpu_cnt > 0) {
13835 		pb->cpu_cnt = p->cpu_cnt;
13836 	} else {
13837 		pb->cpu_cnt = libbpf_num_possible_cpus();
13838 		if (pb->cpu_cnt < 0) {
13839 			err = pb->cpu_cnt;
13840 			goto error;
13841 		}
13842 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
13843 			pb->cpu_cnt = map.max_entries;
13844 	}
13845 
13846 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13847 	if (!pb->events) {
13848 		err = -ENOMEM;
13849 		pr_warn("failed to allocate events: out of memory\n");
13850 		goto error;
13851 	}
13852 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13853 	if (!pb->cpu_bufs) {
13854 		err = -ENOMEM;
13855 		pr_warn("failed to allocate buffers: out of memory\n");
13856 		goto error;
13857 	}
13858 
13859 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13860 	if (err) {
13861 		pr_warn("failed to get online CPU mask: %s\n", errstr(err));
13862 		goto error;
13863 	}
13864 
13865 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13866 		struct perf_cpu_buf *cpu_buf;
13867 		int cpu, map_key;
13868 
13869 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13870 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13871 
13872 		/* in case user didn't explicitly requested particular CPUs to
13873 		 * be attached to, skip offline/not present CPUs
13874 		 */
13875 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13876 			continue;
13877 
13878 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13879 		if (IS_ERR(cpu_buf)) {
13880 			err = PTR_ERR(cpu_buf);
13881 			goto error;
13882 		}
13883 
13884 		pb->cpu_bufs[j] = cpu_buf;
13885 
13886 		err = bpf_map_update_elem(pb->map_fd, &map_key,
13887 					  &cpu_buf->fd, 0);
13888 		if (err) {
13889 			err = -errno;
13890 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13891 				cpu, map_key, cpu_buf->fd,
13892 				errstr(err));
13893 			goto error;
13894 		}
13895 
13896 		pb->events[j].events = EPOLLIN;
13897 		pb->events[j].data.ptr = cpu_buf;
13898 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13899 			      &pb->events[j]) < 0) {
13900 			err = -errno;
13901 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13902 				cpu, cpu_buf->fd,
13903 				errstr(err));
13904 			goto error;
13905 		}
13906 		j++;
13907 	}
13908 	pb->cpu_cnt = j;
13909 	free(online);
13910 
13911 	return pb;
13912 
13913 error:
13914 	free(online);
13915 	if (pb)
13916 		perf_buffer__free(pb);
13917 	return ERR_PTR(err);
13918 }
13919 
13920 struct perf_sample_raw {
13921 	struct perf_event_header header;
13922 	uint32_t size;
13923 	char data[];
13924 };
13925 
13926 struct perf_sample_lost {
13927 	struct perf_event_header header;
13928 	uint64_t id;
13929 	uint64_t lost;
13930 	uint64_t sample_id;
13931 };
13932 
13933 static enum bpf_perf_event_ret
13934 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13935 {
13936 	struct perf_cpu_buf *cpu_buf = ctx;
13937 	struct perf_buffer *pb = cpu_buf->pb;
13938 	void *data = e;
13939 
13940 	/* user wants full control over parsing perf event */
13941 	if (pb->event_cb)
13942 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13943 
13944 	switch (e->type) {
13945 	case PERF_RECORD_SAMPLE: {
13946 		struct perf_sample_raw *s = data;
13947 
13948 		if (pb->sample_cb)
13949 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13950 		break;
13951 	}
13952 	case PERF_RECORD_LOST: {
13953 		struct perf_sample_lost *s = data;
13954 
13955 		if (pb->lost_cb)
13956 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13957 		break;
13958 	}
13959 	default:
13960 		pr_warn("unknown perf sample type %d\n", e->type);
13961 		return LIBBPF_PERF_EVENT_ERROR;
13962 	}
13963 	return LIBBPF_PERF_EVENT_CONT;
13964 }
13965 
13966 static int perf_buffer__process_records(struct perf_buffer *pb,
13967 					struct perf_cpu_buf *cpu_buf)
13968 {
13969 	enum bpf_perf_event_ret ret;
13970 
13971 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13972 				     pb->page_size, &cpu_buf->buf,
13973 				     &cpu_buf->buf_size,
13974 				     perf_buffer__process_record, cpu_buf);
13975 	if (ret != LIBBPF_PERF_EVENT_CONT)
13976 		return ret;
13977 	return 0;
13978 }
13979 
13980 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13981 {
13982 	return pb->epoll_fd;
13983 }
13984 
13985 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13986 {
13987 	int i, cnt, err;
13988 
13989 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13990 	if (cnt < 0)
13991 		return -errno;
13992 
13993 	for (i = 0; i < cnt; i++) {
13994 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13995 
13996 		err = perf_buffer__process_records(pb, cpu_buf);
13997 		if (err) {
13998 			pr_warn("error while processing records: %s\n", errstr(err));
13999 			return libbpf_err(err);
14000 		}
14001 	}
14002 	return cnt;
14003 }
14004 
14005 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
14006  * manager.
14007  */
14008 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
14009 {
14010 	return pb->cpu_cnt;
14011 }
14012 
14013 /*
14014  * Return perf_event FD of a ring buffer in *buf_idx* slot of
14015  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
14016  * select()/poll()/epoll() Linux syscalls.
14017  */
14018 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
14019 {
14020 	struct perf_cpu_buf *cpu_buf;
14021 
14022 	if (buf_idx >= pb->cpu_cnt)
14023 		return libbpf_err(-EINVAL);
14024 
14025 	cpu_buf = pb->cpu_bufs[buf_idx];
14026 	if (!cpu_buf)
14027 		return libbpf_err(-ENOENT);
14028 
14029 	return cpu_buf->fd;
14030 }
14031 
14032 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
14033 {
14034 	struct perf_cpu_buf *cpu_buf;
14035 
14036 	if (buf_idx >= pb->cpu_cnt)
14037 		return libbpf_err(-EINVAL);
14038 
14039 	cpu_buf = pb->cpu_bufs[buf_idx];
14040 	if (!cpu_buf)
14041 		return libbpf_err(-ENOENT);
14042 
14043 	*buf = cpu_buf->base;
14044 	*buf_size = pb->mmap_size;
14045 	return 0;
14046 }
14047 
14048 /*
14049  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
14050  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
14051  * consume, do nothing and return success.
14052  * Returns:
14053  *   - 0 on success;
14054  *   - <0 on failure.
14055  */
14056 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
14057 {
14058 	struct perf_cpu_buf *cpu_buf;
14059 
14060 	if (buf_idx >= pb->cpu_cnt)
14061 		return libbpf_err(-EINVAL);
14062 
14063 	cpu_buf = pb->cpu_bufs[buf_idx];
14064 	if (!cpu_buf)
14065 		return libbpf_err(-ENOENT);
14066 
14067 	return perf_buffer__process_records(pb, cpu_buf);
14068 }
14069 
14070 int perf_buffer__consume(struct perf_buffer *pb)
14071 {
14072 	int i, err;
14073 
14074 	for (i = 0; i < pb->cpu_cnt; i++) {
14075 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
14076 
14077 		if (!cpu_buf)
14078 			continue;
14079 
14080 		err = perf_buffer__process_records(pb, cpu_buf);
14081 		if (err) {
14082 			pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n",
14083 				i, errstr(err));
14084 			return libbpf_err(err);
14085 		}
14086 	}
14087 	return 0;
14088 }
14089 
14090 int bpf_program__set_attach_target(struct bpf_program *prog,
14091 				   int attach_prog_fd,
14092 				   const char *attach_func_name)
14093 {
14094 	int btf_obj_fd = 0, btf_id = 0, err;
14095 
14096 	if (!prog || attach_prog_fd < 0)
14097 		return libbpf_err(-EINVAL);
14098 
14099 	if (prog->obj->state >= OBJ_LOADED)
14100 		return libbpf_err(-EINVAL);
14101 
14102 	if (attach_prog_fd && !attach_func_name) {
14103 		/* Store attach_prog_fd. The BTF ID will be resolved later during
14104 		 * the normal object/program load phase.
14105 		 */
14106 		prog->attach_prog_fd = attach_prog_fd;
14107 		return 0;
14108 	}
14109 
14110 	if (attach_prog_fd) {
14111 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
14112 						 attach_prog_fd, prog->obj->token_fd);
14113 		if (btf_id < 0)
14114 			return libbpf_err(btf_id);
14115 	} else {
14116 		if (!attach_func_name)
14117 			return libbpf_err(-EINVAL);
14118 
14119 		/* load btf_vmlinux, if not yet */
14120 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
14121 		if (err)
14122 			return libbpf_err(err);
14123 		err = find_kernel_btf_id(prog->obj, attach_func_name,
14124 					 prog->expected_attach_type,
14125 					 &btf_obj_fd, &btf_id);
14126 		if (err)
14127 			return libbpf_err(err);
14128 	}
14129 
14130 	prog->attach_btf_id = btf_id;
14131 	prog->attach_btf_obj_fd = btf_obj_fd;
14132 	prog->attach_prog_fd = attach_prog_fd;
14133 	return 0;
14134 }
14135 
14136 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
14137 {
14138 	int err = 0, n, len, start, end = -1;
14139 	bool *tmp;
14140 
14141 	*mask = NULL;
14142 	*mask_sz = 0;
14143 
14144 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
14145 	while (*s) {
14146 		if (*s == ',' || *s == '\n') {
14147 			s++;
14148 			continue;
14149 		}
14150 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
14151 		if (n <= 0 || n > 2) {
14152 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
14153 			err = -EINVAL;
14154 			goto cleanup;
14155 		} else if (n == 1) {
14156 			end = start;
14157 		}
14158 		if (start < 0 || start > end) {
14159 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
14160 				start, end, s);
14161 			err = -EINVAL;
14162 			goto cleanup;
14163 		}
14164 		tmp = realloc(*mask, end + 1);
14165 		if (!tmp) {
14166 			err = -ENOMEM;
14167 			goto cleanup;
14168 		}
14169 		*mask = tmp;
14170 		memset(tmp + *mask_sz, 0, start - *mask_sz);
14171 		memset(tmp + start, 1, end - start + 1);
14172 		*mask_sz = end + 1;
14173 		s += len;
14174 	}
14175 	if (!*mask_sz) {
14176 		pr_warn("Empty CPU range\n");
14177 		return -EINVAL;
14178 	}
14179 	return 0;
14180 cleanup:
14181 	free(*mask);
14182 	*mask = NULL;
14183 	return err;
14184 }
14185 
14186 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
14187 {
14188 	int fd, err = 0, len;
14189 	char buf[128];
14190 
14191 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
14192 	if (fd < 0) {
14193 		err = -errno;
14194 		pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err));
14195 		return err;
14196 	}
14197 	len = read(fd, buf, sizeof(buf));
14198 	close(fd);
14199 	if (len <= 0) {
14200 		err = len ? -errno : -EINVAL;
14201 		pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err));
14202 		return err;
14203 	}
14204 	if (len >= sizeof(buf)) {
14205 		pr_warn("CPU mask is too big in file %s\n", fcpu);
14206 		return -E2BIG;
14207 	}
14208 	buf[len] = '\0';
14209 
14210 	return parse_cpu_mask_str(buf, mask, mask_sz);
14211 }
14212 
14213 int libbpf_num_possible_cpus(void)
14214 {
14215 	static const char *fcpu = "/sys/devices/system/cpu/possible";
14216 	static int cpus;
14217 	int err, n, i, tmp_cpus;
14218 	bool *mask;
14219 
14220 	tmp_cpus = READ_ONCE(cpus);
14221 	if (tmp_cpus > 0)
14222 		return tmp_cpus;
14223 
14224 	err = parse_cpu_mask_file(fcpu, &mask, &n);
14225 	if (err)
14226 		return libbpf_err(err);
14227 
14228 	tmp_cpus = 0;
14229 	for (i = 0; i < n; i++) {
14230 		if (mask[i])
14231 			tmp_cpus++;
14232 	}
14233 	free(mask);
14234 
14235 	WRITE_ONCE(cpus, tmp_cpus);
14236 	return tmp_cpus;
14237 }
14238 
14239 static int populate_skeleton_maps(const struct bpf_object *obj,
14240 				  struct bpf_map_skeleton *maps,
14241 				  size_t map_cnt, size_t map_skel_sz)
14242 {
14243 	int i;
14244 
14245 	for (i = 0; i < map_cnt; i++) {
14246 		struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
14247 		struct bpf_map **map = map_skel->map;
14248 		const char *name = map_skel->name;
14249 		void **mmaped = map_skel->mmaped;
14250 
14251 		*map = bpf_object__find_map_by_name(obj, name);
14252 		if (!*map) {
14253 			pr_warn("failed to find skeleton map '%s'\n", name);
14254 			return -ESRCH;
14255 		}
14256 
14257 		/* externs shouldn't be pre-setup from user code */
14258 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
14259 			*mmaped = (*map)->mmaped;
14260 	}
14261 	return 0;
14262 }
14263 
14264 static int populate_skeleton_progs(const struct bpf_object *obj,
14265 				   struct bpf_prog_skeleton *progs,
14266 				   size_t prog_cnt, size_t prog_skel_sz)
14267 {
14268 	int i;
14269 
14270 	for (i = 0; i < prog_cnt; i++) {
14271 		struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
14272 		struct bpf_program **prog = prog_skel->prog;
14273 		const char *name = prog_skel->name;
14274 
14275 		*prog = bpf_object__find_program_by_name(obj, name);
14276 		if (!*prog) {
14277 			pr_warn("failed to find skeleton program '%s'\n", name);
14278 			return -ESRCH;
14279 		}
14280 	}
14281 	return 0;
14282 }
14283 
14284 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
14285 			      const struct bpf_object_open_opts *opts)
14286 {
14287 	struct bpf_object *obj;
14288 	int err;
14289 
14290 	obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts);
14291 	if (IS_ERR(obj)) {
14292 		err = PTR_ERR(obj);
14293 		pr_warn("failed to initialize skeleton BPF object '%s': %s\n",
14294 			s->name, errstr(err));
14295 		return libbpf_err(err);
14296 	}
14297 
14298 	*s->obj = obj;
14299 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
14300 	if (err) {
14301 		pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err));
14302 		return libbpf_err(err);
14303 	}
14304 
14305 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
14306 	if (err) {
14307 		pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err));
14308 		return libbpf_err(err);
14309 	}
14310 
14311 	return 0;
14312 }
14313 
14314 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
14315 {
14316 	int err, len, var_idx, i;
14317 	const char *var_name;
14318 	const struct bpf_map *map;
14319 	struct btf *btf;
14320 	__u32 map_type_id;
14321 	const struct btf_type *map_type, *var_type;
14322 	const struct bpf_var_skeleton *var_skel;
14323 	struct btf_var_secinfo *var;
14324 
14325 	if (!s->obj)
14326 		return libbpf_err(-EINVAL);
14327 
14328 	btf = bpf_object__btf(s->obj);
14329 	if (!btf) {
14330 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
14331 			bpf_object__name(s->obj));
14332 		return libbpf_err(-errno);
14333 	}
14334 
14335 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
14336 	if (err) {
14337 		pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14338 		return libbpf_err(err);
14339 	}
14340 
14341 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
14342 	if (err) {
14343 		pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14344 		return libbpf_err(err);
14345 	}
14346 
14347 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
14348 		var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
14349 		map = *var_skel->map;
14350 		map_type_id = bpf_map__btf_value_type_id(map);
14351 		map_type = btf__type_by_id(btf, map_type_id);
14352 
14353 		if (!btf_is_datasec(map_type)) {
14354 			pr_warn("type for map '%1$s' is not a datasec: %2$s\n",
14355 				bpf_map__name(map),
14356 				__btf_kind_str(btf_kind(map_type)));
14357 			return libbpf_err(-EINVAL);
14358 		}
14359 
14360 		len = btf_vlen(map_type);
14361 		var = btf_var_secinfos(map_type);
14362 		for (i = 0; i < len; i++, var++) {
14363 			var_type = btf__type_by_id(btf, var->type);
14364 			var_name = btf__name_by_offset(btf, var_type->name_off);
14365 			if (strcmp(var_name, var_skel->name) == 0) {
14366 				*var_skel->addr = map->mmaped + var->offset;
14367 				break;
14368 			}
14369 		}
14370 	}
14371 	return 0;
14372 }
14373 
14374 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
14375 {
14376 	if (!s)
14377 		return;
14378 	free(s->maps);
14379 	free(s->progs);
14380 	free(s->vars);
14381 	free(s);
14382 }
14383 
14384 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
14385 {
14386 	int i, err;
14387 
14388 	err = bpf_object__load(*s->obj);
14389 	if (err) {
14390 		pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err));
14391 		return libbpf_err(err);
14392 	}
14393 
14394 	for (i = 0; i < s->map_cnt; i++) {
14395 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14396 		struct bpf_map *map = *map_skel->map;
14397 
14398 		if (!map_skel->mmaped)
14399 			continue;
14400 
14401 		*map_skel->mmaped = map->mmaped;
14402 	}
14403 
14404 	return 0;
14405 }
14406 
14407 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
14408 {
14409 	int i, err;
14410 
14411 	for (i = 0; i < s->prog_cnt; i++) {
14412 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14413 		struct bpf_program *prog = *prog_skel->prog;
14414 		struct bpf_link **link = prog_skel->link;
14415 
14416 		if (!prog->autoload || !prog->autoattach)
14417 			continue;
14418 
14419 		/* auto-attaching not supported for this program */
14420 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
14421 			continue;
14422 
14423 		/* if user already set the link manually, don't attempt auto-attach */
14424 		if (*link)
14425 			continue;
14426 
14427 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
14428 		if (err) {
14429 			pr_warn("prog '%s': failed to auto-attach: %s\n",
14430 				bpf_program__name(prog), errstr(err));
14431 			return libbpf_err(err);
14432 		}
14433 
14434 		/* It's possible that for some SEC() definitions auto-attach
14435 		 * is supported in some cases (e.g., if definition completely
14436 		 * specifies target information), but is not in other cases.
14437 		 * SEC("uprobe") is one such case. If user specified target
14438 		 * binary and function name, such BPF program can be
14439 		 * auto-attached. But if not, it shouldn't trigger skeleton's
14440 		 * attach to fail. It should just be skipped.
14441 		 * attach_fn signals such case with returning 0 (no error) and
14442 		 * setting link to NULL.
14443 		 */
14444 	}
14445 
14446 
14447 	for (i = 0; i < s->map_cnt; i++) {
14448 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14449 		struct bpf_map *map = *map_skel->map;
14450 		struct bpf_link **link;
14451 
14452 		if (!map->autocreate || !map->autoattach)
14453 			continue;
14454 
14455 		/* only struct_ops maps can be attached */
14456 		if (!bpf_map__is_struct_ops(map))
14457 			continue;
14458 
14459 		/* skeleton is created with earlier version of bpftool, notify user */
14460 		if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
14461 			pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
14462 				bpf_map__name(map));
14463 			continue;
14464 		}
14465 
14466 		link = map_skel->link;
14467 		if (!link) {
14468 			pr_warn("map '%s': BPF map skeleton link is uninitialized\n",
14469 				bpf_map__name(map));
14470 			continue;
14471 		}
14472 
14473 		if (*link)
14474 			continue;
14475 
14476 		*link = bpf_map__attach_struct_ops(map);
14477 		if (!*link) {
14478 			err = -errno;
14479 			pr_warn("map '%s': failed to auto-attach: %s\n",
14480 				bpf_map__name(map), errstr(err));
14481 			return libbpf_err(err);
14482 		}
14483 	}
14484 
14485 	return 0;
14486 }
14487 
14488 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14489 {
14490 	int i;
14491 
14492 	for (i = 0; i < s->prog_cnt; i++) {
14493 		struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14494 		struct bpf_link **link = prog_skel->link;
14495 
14496 		bpf_link__destroy(*link);
14497 		*link = NULL;
14498 	}
14499 
14500 	if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14501 		return;
14502 
14503 	for (i = 0; i < s->map_cnt; i++) {
14504 		struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14505 		struct bpf_link **link = map_skel->link;
14506 
14507 		if (link) {
14508 			bpf_link__destroy(*link);
14509 			*link = NULL;
14510 		}
14511 	}
14512 }
14513 
14514 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14515 {
14516 	if (!s)
14517 		return;
14518 
14519 	bpf_object__detach_skeleton(s);
14520 	if (s->obj)
14521 		bpf_object__close(*s->obj);
14522 	free(s->maps);
14523 	free(s->progs);
14524 	free(s);
14525 }
14526