1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 /* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to 160 * get all possible values we compensate last +1, and then (2*x - 1) 161 * to get the bit mask 162 */ 163 if (mode != LIBBPF_STRICT_ALL 164 && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1))) 165 return errno = EINVAL, -EINVAL; 166 167 libbpf_mode = mode; 168 return 0; 169 } 170 171 enum kern_feature_id { 172 /* v4.14: kernel support for program & map names. */ 173 FEAT_PROG_NAME, 174 /* v5.2: kernel support for global data sections. */ 175 FEAT_GLOBAL_DATA, 176 /* BTF support */ 177 FEAT_BTF, 178 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 179 FEAT_BTF_FUNC, 180 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 181 FEAT_BTF_DATASEC, 182 /* BTF_FUNC_GLOBAL is supported */ 183 FEAT_BTF_GLOBAL_FUNC, 184 /* BPF_F_MMAPABLE is supported for arrays */ 185 FEAT_ARRAY_MMAP, 186 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 187 FEAT_EXP_ATTACH_TYPE, 188 /* bpf_probe_read_{kernel,user}[_str] helpers */ 189 FEAT_PROBE_READ_KERN, 190 /* BPF_PROG_BIND_MAP is supported */ 191 FEAT_PROG_BIND_MAP, 192 /* Kernel support for module BTFs */ 193 FEAT_MODULE_BTF, 194 /* BTF_KIND_FLOAT support */ 195 FEAT_BTF_FLOAT, 196 /* BPF perf link support */ 197 FEAT_PERF_LINK, 198 /* BTF_KIND_TAG support */ 199 FEAT_BTF_TAG, 200 __FEAT_CNT, 201 }; 202 203 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id); 204 205 enum reloc_type { 206 RELO_LD64, 207 RELO_CALL, 208 RELO_DATA, 209 RELO_EXTERN_VAR, 210 RELO_EXTERN_FUNC, 211 RELO_SUBPROG_ADDR, 212 }; 213 214 struct reloc_desc { 215 enum reloc_type type; 216 int insn_idx; 217 int map_idx; 218 int sym_off; 219 }; 220 221 struct bpf_sec_def; 222 223 typedef int (*init_fn_t)(struct bpf_program *prog, long cookie); 224 typedef int (*preload_fn_t)(struct bpf_program *prog, struct bpf_prog_load_params *attr, long cookie); 225 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_program *prog, long cookie); 226 227 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 228 enum sec_def_flags { 229 SEC_NONE = 0, 230 /* expected_attach_type is optional, if kernel doesn't support that */ 231 SEC_EXP_ATTACH_OPT = 1, 232 /* legacy, only used by libbpf_get_type_names() and 233 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 234 * This used to be associated with cgroup (and few other) BPF programs 235 * that were attachable through BPF_PROG_ATTACH command. Pretty 236 * meaningless nowadays, though. 237 */ 238 SEC_ATTACHABLE = 2, 239 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 240 /* attachment target is specified through BTF ID in either kernel or 241 * other BPF program's BTF object */ 242 SEC_ATTACH_BTF = 4, 243 /* BPF program type allows sleeping/blocking in kernel */ 244 SEC_SLEEPABLE = 8, 245 /* allow non-strict prefix matching */ 246 SEC_SLOPPY_PFX = 16, 247 }; 248 249 struct bpf_sec_def { 250 const char *sec; 251 enum bpf_prog_type prog_type; 252 enum bpf_attach_type expected_attach_type; 253 long cookie; 254 255 init_fn_t init_fn; 256 preload_fn_t preload_fn; 257 attach_fn_t attach_fn; 258 }; 259 260 /* 261 * bpf_prog should be a better name but it has been used in 262 * linux/filter.h. 263 */ 264 struct bpf_program { 265 const struct bpf_sec_def *sec_def; 266 char *sec_name; 267 size_t sec_idx; 268 /* this program's instruction offset (in number of instructions) 269 * within its containing ELF section 270 */ 271 size_t sec_insn_off; 272 /* number of original instructions in ELF section belonging to this 273 * program, not taking into account subprogram instructions possible 274 * appended later during relocation 275 */ 276 size_t sec_insn_cnt; 277 /* Offset (in number of instructions) of the start of instruction 278 * belonging to this BPF program within its containing main BPF 279 * program. For the entry-point (main) BPF program, this is always 280 * zero. For a sub-program, this gets reset before each of main BPF 281 * programs are processed and relocated and is used to determined 282 * whether sub-program was already appended to the main program, and 283 * if yes, at which instruction offset. 284 */ 285 size_t sub_insn_off; 286 287 char *name; 288 /* sec_name with / replaced by _; makes recursive pinning 289 * in bpf_object__pin_programs easier 290 */ 291 char *pin_name; 292 293 /* instructions that belong to BPF program; insns[0] is located at 294 * sec_insn_off instruction within its ELF section in ELF file, so 295 * when mapping ELF file instruction index to the local instruction, 296 * one needs to subtract sec_insn_off; and vice versa. 297 */ 298 struct bpf_insn *insns; 299 /* actual number of instruction in this BPF program's image; for 300 * entry-point BPF programs this includes the size of main program 301 * itself plus all the used sub-programs, appended at the end 302 */ 303 size_t insns_cnt; 304 305 struct reloc_desc *reloc_desc; 306 int nr_reloc; 307 int log_level; 308 309 struct { 310 int nr; 311 int *fds; 312 } instances; 313 bpf_program_prep_t preprocessor; 314 315 struct bpf_object *obj; 316 void *priv; 317 bpf_program_clear_priv_t clear_priv; 318 319 bool load; 320 bool mark_btf_static; 321 enum bpf_prog_type type; 322 enum bpf_attach_type expected_attach_type; 323 int prog_ifindex; 324 __u32 attach_btf_obj_fd; 325 __u32 attach_btf_id; 326 __u32 attach_prog_fd; 327 void *func_info; 328 __u32 func_info_rec_size; 329 __u32 func_info_cnt; 330 331 void *line_info; 332 __u32 line_info_rec_size; 333 __u32 line_info_cnt; 334 __u32 prog_flags; 335 }; 336 337 struct bpf_struct_ops { 338 const char *tname; 339 const struct btf_type *type; 340 struct bpf_program **progs; 341 __u32 *kern_func_off; 342 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 343 void *data; 344 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 345 * btf_vmlinux's format. 346 * struct bpf_struct_ops_tcp_congestion_ops { 347 * [... some other kernel fields ...] 348 * struct tcp_congestion_ops data; 349 * } 350 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 351 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 352 * from "data". 353 */ 354 void *kern_vdata; 355 __u32 type_id; 356 }; 357 358 #define DATA_SEC ".data" 359 #define BSS_SEC ".bss" 360 #define RODATA_SEC ".rodata" 361 #define KCONFIG_SEC ".kconfig" 362 #define KSYMS_SEC ".ksyms" 363 #define STRUCT_OPS_SEC ".struct_ops" 364 365 enum libbpf_map_type { 366 LIBBPF_MAP_UNSPEC, 367 LIBBPF_MAP_DATA, 368 LIBBPF_MAP_BSS, 369 LIBBPF_MAP_RODATA, 370 LIBBPF_MAP_KCONFIG, 371 }; 372 373 static const char * const libbpf_type_to_btf_name[] = { 374 [LIBBPF_MAP_DATA] = DATA_SEC, 375 [LIBBPF_MAP_BSS] = BSS_SEC, 376 [LIBBPF_MAP_RODATA] = RODATA_SEC, 377 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 378 }; 379 380 struct bpf_map { 381 char *name; 382 int fd; 383 int sec_idx; 384 size_t sec_offset; 385 int map_ifindex; 386 int inner_map_fd; 387 struct bpf_map_def def; 388 __u32 numa_node; 389 __u32 btf_var_idx; 390 __u32 btf_key_type_id; 391 __u32 btf_value_type_id; 392 __u32 btf_vmlinux_value_type_id; 393 void *priv; 394 bpf_map_clear_priv_t clear_priv; 395 enum libbpf_map_type libbpf_type; 396 void *mmaped; 397 struct bpf_struct_ops *st_ops; 398 struct bpf_map *inner_map; 399 void **init_slots; 400 int init_slots_sz; 401 char *pin_path; 402 bool pinned; 403 bool reused; 404 }; 405 406 enum extern_type { 407 EXT_UNKNOWN, 408 EXT_KCFG, 409 EXT_KSYM, 410 }; 411 412 enum kcfg_type { 413 KCFG_UNKNOWN, 414 KCFG_CHAR, 415 KCFG_BOOL, 416 KCFG_INT, 417 KCFG_TRISTATE, 418 KCFG_CHAR_ARR, 419 }; 420 421 struct extern_desc { 422 enum extern_type type; 423 int sym_idx; 424 int btf_id; 425 int sec_btf_id; 426 const char *name; 427 bool is_set; 428 bool is_weak; 429 union { 430 struct { 431 enum kcfg_type type; 432 int sz; 433 int align; 434 int data_off; 435 bool is_signed; 436 } kcfg; 437 struct { 438 unsigned long long addr; 439 440 /* target btf_id of the corresponding kernel var. */ 441 int kernel_btf_obj_fd; 442 int kernel_btf_id; 443 444 /* local btf_id of the ksym extern's type. */ 445 __u32 type_id; 446 } ksym; 447 }; 448 }; 449 450 static LIST_HEAD(bpf_objects_list); 451 452 struct module_btf { 453 struct btf *btf; 454 char *name; 455 __u32 id; 456 int fd; 457 }; 458 459 struct bpf_object { 460 char name[BPF_OBJ_NAME_LEN]; 461 char license[64]; 462 __u32 kern_version; 463 464 struct bpf_program *programs; 465 size_t nr_programs; 466 struct bpf_map *maps; 467 size_t nr_maps; 468 size_t maps_cap; 469 470 char *kconfig; 471 struct extern_desc *externs; 472 int nr_extern; 473 int kconfig_map_idx; 474 int rodata_map_idx; 475 476 bool loaded; 477 bool has_subcalls; 478 479 struct bpf_gen *gen_loader; 480 481 /* 482 * Information when doing elf related work. Only valid if fd 483 * is valid. 484 */ 485 struct { 486 int fd; 487 const void *obj_buf; 488 size_t obj_buf_sz; 489 Elf *elf; 490 GElf_Ehdr ehdr; 491 Elf_Data *symbols; 492 Elf_Data *data; 493 Elf_Data *rodata; 494 Elf_Data *bss; 495 Elf_Data *st_ops_data; 496 size_t shstrndx; /* section index for section name strings */ 497 size_t strtabidx; 498 struct { 499 GElf_Shdr shdr; 500 Elf_Data *data; 501 } *reloc_sects; 502 int nr_reloc_sects; 503 int maps_shndx; 504 int btf_maps_shndx; 505 __u32 btf_maps_sec_btf_id; 506 int text_shndx; 507 int symbols_shndx; 508 int data_shndx; 509 int rodata_shndx; 510 int bss_shndx; 511 int st_ops_shndx; 512 } efile; 513 /* 514 * All loaded bpf_object is linked in a list, which is 515 * hidden to caller. bpf_objects__<func> handlers deal with 516 * all objects. 517 */ 518 struct list_head list; 519 520 struct btf *btf; 521 struct btf_ext *btf_ext; 522 523 /* Parse and load BTF vmlinux if any of the programs in the object need 524 * it at load time. 525 */ 526 struct btf *btf_vmlinux; 527 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 528 * override for vmlinux BTF. 529 */ 530 char *btf_custom_path; 531 /* vmlinux BTF override for CO-RE relocations */ 532 struct btf *btf_vmlinux_override; 533 /* Lazily initialized kernel module BTFs */ 534 struct module_btf *btf_modules; 535 bool btf_modules_loaded; 536 size_t btf_module_cnt; 537 size_t btf_module_cap; 538 539 void *priv; 540 bpf_object_clear_priv_t clear_priv; 541 542 char path[]; 543 }; 544 #define obj_elf_valid(o) ((o)->efile.elf) 545 546 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 547 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 548 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 549 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 550 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 551 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 552 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 553 554 void bpf_program__unload(struct bpf_program *prog) 555 { 556 int i; 557 558 if (!prog) 559 return; 560 561 /* 562 * If the object is opened but the program was never loaded, 563 * it is possible that prog->instances.nr == -1. 564 */ 565 if (prog->instances.nr > 0) { 566 for (i = 0; i < prog->instances.nr; i++) 567 zclose(prog->instances.fds[i]); 568 } else if (prog->instances.nr != -1) { 569 pr_warn("Internal error: instances.nr is %d\n", 570 prog->instances.nr); 571 } 572 573 prog->instances.nr = -1; 574 zfree(&prog->instances.fds); 575 576 zfree(&prog->func_info); 577 zfree(&prog->line_info); 578 } 579 580 static void bpf_program__exit(struct bpf_program *prog) 581 { 582 if (!prog) 583 return; 584 585 if (prog->clear_priv) 586 prog->clear_priv(prog, prog->priv); 587 588 prog->priv = NULL; 589 prog->clear_priv = NULL; 590 591 bpf_program__unload(prog); 592 zfree(&prog->name); 593 zfree(&prog->sec_name); 594 zfree(&prog->pin_name); 595 zfree(&prog->insns); 596 zfree(&prog->reloc_desc); 597 598 prog->nr_reloc = 0; 599 prog->insns_cnt = 0; 600 prog->sec_idx = -1; 601 } 602 603 static char *__bpf_program__pin_name(struct bpf_program *prog) 604 { 605 char *name, *p; 606 607 name = p = strdup(prog->sec_name); 608 while ((p = strchr(p, '/'))) 609 *p = '_'; 610 611 return name; 612 } 613 614 static bool insn_is_subprog_call(const struct bpf_insn *insn) 615 { 616 return BPF_CLASS(insn->code) == BPF_JMP && 617 BPF_OP(insn->code) == BPF_CALL && 618 BPF_SRC(insn->code) == BPF_K && 619 insn->src_reg == BPF_PSEUDO_CALL && 620 insn->dst_reg == 0 && 621 insn->off == 0; 622 } 623 624 static bool is_call_insn(const struct bpf_insn *insn) 625 { 626 return insn->code == (BPF_JMP | BPF_CALL); 627 } 628 629 static bool insn_is_pseudo_func(struct bpf_insn *insn) 630 { 631 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 632 } 633 634 static int 635 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 636 const char *name, size_t sec_idx, const char *sec_name, 637 size_t sec_off, void *insn_data, size_t insn_data_sz) 638 { 639 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 640 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 641 sec_name, name, sec_off, insn_data_sz); 642 return -EINVAL; 643 } 644 645 memset(prog, 0, sizeof(*prog)); 646 prog->obj = obj; 647 648 prog->sec_idx = sec_idx; 649 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 650 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 651 /* insns_cnt can later be increased by appending used subprograms */ 652 prog->insns_cnt = prog->sec_insn_cnt; 653 654 prog->type = BPF_PROG_TYPE_UNSPEC; 655 prog->load = true; 656 657 prog->instances.fds = NULL; 658 prog->instances.nr = -1; 659 660 prog->sec_name = strdup(sec_name); 661 if (!prog->sec_name) 662 goto errout; 663 664 prog->name = strdup(name); 665 if (!prog->name) 666 goto errout; 667 668 prog->pin_name = __bpf_program__pin_name(prog); 669 if (!prog->pin_name) 670 goto errout; 671 672 prog->insns = malloc(insn_data_sz); 673 if (!prog->insns) 674 goto errout; 675 memcpy(prog->insns, insn_data, insn_data_sz); 676 677 return 0; 678 errout: 679 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 680 bpf_program__exit(prog); 681 return -ENOMEM; 682 } 683 684 static int 685 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 686 const char *sec_name, int sec_idx) 687 { 688 Elf_Data *symbols = obj->efile.symbols; 689 struct bpf_program *prog, *progs; 690 void *data = sec_data->d_buf; 691 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 692 int nr_progs, err, i; 693 const char *name; 694 GElf_Sym sym; 695 696 progs = obj->programs; 697 nr_progs = obj->nr_programs; 698 nr_syms = symbols->d_size / sizeof(GElf_Sym); 699 sec_off = 0; 700 701 for (i = 0; i < nr_syms; i++) { 702 if (!gelf_getsym(symbols, i, &sym)) 703 continue; 704 if (sym.st_shndx != sec_idx) 705 continue; 706 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 707 continue; 708 709 prog_sz = sym.st_size; 710 sec_off = sym.st_value; 711 712 name = elf_sym_str(obj, sym.st_name); 713 if (!name) { 714 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 715 sec_name, sec_off); 716 return -LIBBPF_ERRNO__FORMAT; 717 } 718 719 if (sec_off + prog_sz > sec_sz) { 720 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 721 sec_name, sec_off); 722 return -LIBBPF_ERRNO__FORMAT; 723 } 724 725 if (sec_idx != obj->efile.text_shndx && GELF_ST_BIND(sym.st_info) == STB_LOCAL) { 726 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 727 return -ENOTSUP; 728 } 729 730 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 731 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 732 733 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 734 if (!progs) { 735 /* 736 * In this case the original obj->programs 737 * is still valid, so don't need special treat for 738 * bpf_close_object(). 739 */ 740 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 741 sec_name, name); 742 return -ENOMEM; 743 } 744 obj->programs = progs; 745 746 prog = &progs[nr_progs]; 747 748 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 749 sec_off, data + sec_off, prog_sz); 750 if (err) 751 return err; 752 753 /* if function is a global/weak symbol, but has restricted 754 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 755 * as static to enable more permissive BPF verification mode 756 * with more outside context available to BPF verifier 757 */ 758 if (GELF_ST_BIND(sym.st_info) != STB_LOCAL 759 && (GELF_ST_VISIBILITY(sym.st_other) == STV_HIDDEN 760 || GELF_ST_VISIBILITY(sym.st_other) == STV_INTERNAL)) 761 prog->mark_btf_static = true; 762 763 nr_progs++; 764 obj->nr_programs = nr_progs; 765 } 766 767 return 0; 768 } 769 770 static __u32 get_kernel_version(void) 771 { 772 __u32 major, minor, patch; 773 struct utsname info; 774 775 uname(&info); 776 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 777 return 0; 778 return KERNEL_VERSION(major, minor, patch); 779 } 780 781 static const struct btf_member * 782 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 783 { 784 struct btf_member *m; 785 int i; 786 787 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 788 if (btf_member_bit_offset(t, i) == bit_offset) 789 return m; 790 } 791 792 return NULL; 793 } 794 795 static const struct btf_member * 796 find_member_by_name(const struct btf *btf, const struct btf_type *t, 797 const char *name) 798 { 799 struct btf_member *m; 800 int i; 801 802 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 803 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 804 return m; 805 } 806 807 return NULL; 808 } 809 810 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 811 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 812 const char *name, __u32 kind); 813 814 static int 815 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 816 const struct btf_type **type, __u32 *type_id, 817 const struct btf_type **vtype, __u32 *vtype_id, 818 const struct btf_member **data_member) 819 { 820 const struct btf_type *kern_type, *kern_vtype; 821 const struct btf_member *kern_data_member; 822 __s32 kern_vtype_id, kern_type_id; 823 __u32 i; 824 825 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 826 if (kern_type_id < 0) { 827 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 828 tname); 829 return kern_type_id; 830 } 831 kern_type = btf__type_by_id(btf, kern_type_id); 832 833 /* Find the corresponding "map_value" type that will be used 834 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 835 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 836 * btf_vmlinux. 837 */ 838 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 839 tname, BTF_KIND_STRUCT); 840 if (kern_vtype_id < 0) { 841 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 842 STRUCT_OPS_VALUE_PREFIX, tname); 843 return kern_vtype_id; 844 } 845 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 846 847 /* Find "struct tcp_congestion_ops" from 848 * struct bpf_struct_ops_tcp_congestion_ops { 849 * [ ... ] 850 * struct tcp_congestion_ops data; 851 * } 852 */ 853 kern_data_member = btf_members(kern_vtype); 854 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 855 if (kern_data_member->type == kern_type_id) 856 break; 857 } 858 if (i == btf_vlen(kern_vtype)) { 859 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 860 tname, STRUCT_OPS_VALUE_PREFIX, tname); 861 return -EINVAL; 862 } 863 864 *type = kern_type; 865 *type_id = kern_type_id; 866 *vtype = kern_vtype; 867 *vtype_id = kern_vtype_id; 868 *data_member = kern_data_member; 869 870 return 0; 871 } 872 873 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 874 { 875 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 876 } 877 878 /* Init the map's fields that depend on kern_btf */ 879 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 880 const struct btf *btf, 881 const struct btf *kern_btf) 882 { 883 const struct btf_member *member, *kern_member, *kern_data_member; 884 const struct btf_type *type, *kern_type, *kern_vtype; 885 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 886 struct bpf_struct_ops *st_ops; 887 void *data, *kern_data; 888 const char *tname; 889 int err; 890 891 st_ops = map->st_ops; 892 type = st_ops->type; 893 tname = st_ops->tname; 894 err = find_struct_ops_kern_types(kern_btf, tname, 895 &kern_type, &kern_type_id, 896 &kern_vtype, &kern_vtype_id, 897 &kern_data_member); 898 if (err) 899 return err; 900 901 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 902 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 903 904 map->def.value_size = kern_vtype->size; 905 map->btf_vmlinux_value_type_id = kern_vtype_id; 906 907 st_ops->kern_vdata = calloc(1, kern_vtype->size); 908 if (!st_ops->kern_vdata) 909 return -ENOMEM; 910 911 data = st_ops->data; 912 kern_data_off = kern_data_member->offset / 8; 913 kern_data = st_ops->kern_vdata + kern_data_off; 914 915 member = btf_members(type); 916 for (i = 0; i < btf_vlen(type); i++, member++) { 917 const struct btf_type *mtype, *kern_mtype; 918 __u32 mtype_id, kern_mtype_id; 919 void *mdata, *kern_mdata; 920 __s64 msize, kern_msize; 921 __u32 moff, kern_moff; 922 __u32 kern_member_idx; 923 const char *mname; 924 925 mname = btf__name_by_offset(btf, member->name_off); 926 kern_member = find_member_by_name(kern_btf, kern_type, mname); 927 if (!kern_member) { 928 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 929 map->name, mname); 930 return -ENOTSUP; 931 } 932 933 kern_member_idx = kern_member - btf_members(kern_type); 934 if (btf_member_bitfield_size(type, i) || 935 btf_member_bitfield_size(kern_type, kern_member_idx)) { 936 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 937 map->name, mname); 938 return -ENOTSUP; 939 } 940 941 moff = member->offset / 8; 942 kern_moff = kern_member->offset / 8; 943 944 mdata = data + moff; 945 kern_mdata = kern_data + kern_moff; 946 947 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 948 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 949 &kern_mtype_id); 950 if (BTF_INFO_KIND(mtype->info) != 951 BTF_INFO_KIND(kern_mtype->info)) { 952 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 953 map->name, mname, BTF_INFO_KIND(mtype->info), 954 BTF_INFO_KIND(kern_mtype->info)); 955 return -ENOTSUP; 956 } 957 958 if (btf_is_ptr(mtype)) { 959 struct bpf_program *prog; 960 961 prog = st_ops->progs[i]; 962 if (!prog) 963 continue; 964 965 kern_mtype = skip_mods_and_typedefs(kern_btf, 966 kern_mtype->type, 967 &kern_mtype_id); 968 969 /* mtype->type must be a func_proto which was 970 * guaranteed in bpf_object__collect_st_ops_relos(), 971 * so only check kern_mtype for func_proto here. 972 */ 973 if (!btf_is_func_proto(kern_mtype)) { 974 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 975 map->name, mname); 976 return -ENOTSUP; 977 } 978 979 prog->attach_btf_id = kern_type_id; 980 prog->expected_attach_type = kern_member_idx; 981 982 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 983 984 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 985 map->name, mname, prog->name, moff, 986 kern_moff); 987 988 continue; 989 } 990 991 msize = btf__resolve_size(btf, mtype_id); 992 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 993 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 994 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 995 map->name, mname, (ssize_t)msize, 996 (ssize_t)kern_msize); 997 return -ENOTSUP; 998 } 999 1000 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1001 map->name, mname, (unsigned int)msize, 1002 moff, kern_moff); 1003 memcpy(kern_mdata, mdata, msize); 1004 } 1005 1006 return 0; 1007 } 1008 1009 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1010 { 1011 struct bpf_map *map; 1012 size_t i; 1013 int err; 1014 1015 for (i = 0; i < obj->nr_maps; i++) { 1016 map = &obj->maps[i]; 1017 1018 if (!bpf_map__is_struct_ops(map)) 1019 continue; 1020 1021 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1022 obj->btf_vmlinux); 1023 if (err) 1024 return err; 1025 } 1026 1027 return 0; 1028 } 1029 1030 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1031 { 1032 const struct btf_type *type, *datasec; 1033 const struct btf_var_secinfo *vsi; 1034 struct bpf_struct_ops *st_ops; 1035 const char *tname, *var_name; 1036 __s32 type_id, datasec_id; 1037 const struct btf *btf; 1038 struct bpf_map *map; 1039 __u32 i; 1040 1041 if (obj->efile.st_ops_shndx == -1) 1042 return 0; 1043 1044 btf = obj->btf; 1045 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1046 BTF_KIND_DATASEC); 1047 if (datasec_id < 0) { 1048 pr_warn("struct_ops init: DATASEC %s not found\n", 1049 STRUCT_OPS_SEC); 1050 return -EINVAL; 1051 } 1052 1053 datasec = btf__type_by_id(btf, datasec_id); 1054 vsi = btf_var_secinfos(datasec); 1055 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1056 type = btf__type_by_id(obj->btf, vsi->type); 1057 var_name = btf__name_by_offset(obj->btf, type->name_off); 1058 1059 type_id = btf__resolve_type(obj->btf, vsi->type); 1060 if (type_id < 0) { 1061 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1062 vsi->type, STRUCT_OPS_SEC); 1063 return -EINVAL; 1064 } 1065 1066 type = btf__type_by_id(obj->btf, type_id); 1067 tname = btf__name_by_offset(obj->btf, type->name_off); 1068 if (!tname[0]) { 1069 pr_warn("struct_ops init: anonymous type is not supported\n"); 1070 return -ENOTSUP; 1071 } 1072 if (!btf_is_struct(type)) { 1073 pr_warn("struct_ops init: %s is not a struct\n", tname); 1074 return -EINVAL; 1075 } 1076 1077 map = bpf_object__add_map(obj); 1078 if (IS_ERR(map)) 1079 return PTR_ERR(map); 1080 1081 map->sec_idx = obj->efile.st_ops_shndx; 1082 map->sec_offset = vsi->offset; 1083 map->name = strdup(var_name); 1084 if (!map->name) 1085 return -ENOMEM; 1086 1087 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1088 map->def.key_size = sizeof(int); 1089 map->def.value_size = type->size; 1090 map->def.max_entries = 1; 1091 1092 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1093 if (!map->st_ops) 1094 return -ENOMEM; 1095 st_ops = map->st_ops; 1096 st_ops->data = malloc(type->size); 1097 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1098 st_ops->kern_func_off = malloc(btf_vlen(type) * 1099 sizeof(*st_ops->kern_func_off)); 1100 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1101 return -ENOMEM; 1102 1103 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1104 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1105 var_name, STRUCT_OPS_SEC); 1106 return -EINVAL; 1107 } 1108 1109 memcpy(st_ops->data, 1110 obj->efile.st_ops_data->d_buf + vsi->offset, 1111 type->size); 1112 st_ops->tname = tname; 1113 st_ops->type = type; 1114 st_ops->type_id = type_id; 1115 1116 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1117 tname, type_id, var_name, vsi->offset); 1118 } 1119 1120 return 0; 1121 } 1122 1123 static struct bpf_object *bpf_object__new(const char *path, 1124 const void *obj_buf, 1125 size_t obj_buf_sz, 1126 const char *obj_name) 1127 { 1128 struct bpf_object *obj; 1129 char *end; 1130 1131 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1132 if (!obj) { 1133 pr_warn("alloc memory failed for %s\n", path); 1134 return ERR_PTR(-ENOMEM); 1135 } 1136 1137 strcpy(obj->path, path); 1138 if (obj_name) { 1139 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1140 obj->name[sizeof(obj->name) - 1] = 0; 1141 } else { 1142 /* Using basename() GNU version which doesn't modify arg. */ 1143 strncpy(obj->name, basename((void *)path), 1144 sizeof(obj->name) - 1); 1145 end = strchr(obj->name, '.'); 1146 if (end) 1147 *end = 0; 1148 } 1149 1150 obj->efile.fd = -1; 1151 /* 1152 * Caller of this function should also call 1153 * bpf_object__elf_finish() after data collection to return 1154 * obj_buf to user. If not, we should duplicate the buffer to 1155 * avoid user freeing them before elf finish. 1156 */ 1157 obj->efile.obj_buf = obj_buf; 1158 obj->efile.obj_buf_sz = obj_buf_sz; 1159 obj->efile.maps_shndx = -1; 1160 obj->efile.btf_maps_shndx = -1; 1161 obj->efile.data_shndx = -1; 1162 obj->efile.rodata_shndx = -1; 1163 obj->efile.bss_shndx = -1; 1164 obj->efile.st_ops_shndx = -1; 1165 obj->kconfig_map_idx = -1; 1166 obj->rodata_map_idx = -1; 1167 1168 obj->kern_version = get_kernel_version(); 1169 obj->loaded = false; 1170 1171 INIT_LIST_HEAD(&obj->list); 1172 list_add(&obj->list, &bpf_objects_list); 1173 return obj; 1174 } 1175 1176 static void bpf_object__elf_finish(struct bpf_object *obj) 1177 { 1178 if (!obj_elf_valid(obj)) 1179 return; 1180 1181 if (obj->efile.elf) { 1182 elf_end(obj->efile.elf); 1183 obj->efile.elf = NULL; 1184 } 1185 obj->efile.symbols = NULL; 1186 obj->efile.data = NULL; 1187 obj->efile.rodata = NULL; 1188 obj->efile.bss = NULL; 1189 obj->efile.st_ops_data = NULL; 1190 1191 zfree(&obj->efile.reloc_sects); 1192 obj->efile.nr_reloc_sects = 0; 1193 zclose(obj->efile.fd); 1194 obj->efile.obj_buf = NULL; 1195 obj->efile.obj_buf_sz = 0; 1196 } 1197 1198 static int bpf_object__elf_init(struct bpf_object *obj) 1199 { 1200 int err = 0; 1201 GElf_Ehdr *ep; 1202 1203 if (obj_elf_valid(obj)) { 1204 pr_warn("elf: init internal error\n"); 1205 return -LIBBPF_ERRNO__LIBELF; 1206 } 1207 1208 if (obj->efile.obj_buf_sz > 0) { 1209 /* 1210 * obj_buf should have been validated by 1211 * bpf_object__open_buffer(). 1212 */ 1213 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1214 obj->efile.obj_buf_sz); 1215 } else { 1216 obj->efile.fd = open(obj->path, O_RDONLY); 1217 if (obj->efile.fd < 0) { 1218 char errmsg[STRERR_BUFSIZE], *cp; 1219 1220 err = -errno; 1221 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1222 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1223 return err; 1224 } 1225 1226 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1227 } 1228 1229 if (!obj->efile.elf) { 1230 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1231 err = -LIBBPF_ERRNO__LIBELF; 1232 goto errout; 1233 } 1234 1235 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1236 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1237 err = -LIBBPF_ERRNO__FORMAT; 1238 goto errout; 1239 } 1240 ep = &obj->efile.ehdr; 1241 1242 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1243 pr_warn("elf: failed to get section names section index for %s: %s\n", 1244 obj->path, elf_errmsg(-1)); 1245 err = -LIBBPF_ERRNO__FORMAT; 1246 goto errout; 1247 } 1248 1249 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1250 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1251 pr_warn("elf: failed to get section names strings from %s: %s\n", 1252 obj->path, elf_errmsg(-1)); 1253 err = -LIBBPF_ERRNO__FORMAT; 1254 goto errout; 1255 } 1256 1257 /* Old LLVM set e_machine to EM_NONE */ 1258 if (ep->e_type != ET_REL || 1259 (ep->e_machine && ep->e_machine != EM_BPF)) { 1260 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1261 err = -LIBBPF_ERRNO__FORMAT; 1262 goto errout; 1263 } 1264 1265 return 0; 1266 errout: 1267 bpf_object__elf_finish(obj); 1268 return err; 1269 } 1270 1271 static int bpf_object__check_endianness(struct bpf_object *obj) 1272 { 1273 #if __BYTE_ORDER == __LITTLE_ENDIAN 1274 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1275 return 0; 1276 #elif __BYTE_ORDER == __BIG_ENDIAN 1277 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1278 return 0; 1279 #else 1280 # error "Unrecognized __BYTE_ORDER__" 1281 #endif 1282 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1283 return -LIBBPF_ERRNO__ENDIAN; 1284 } 1285 1286 static int 1287 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1288 { 1289 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1290 pr_debug("license of %s is %s\n", obj->path, obj->license); 1291 return 0; 1292 } 1293 1294 static int 1295 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1296 { 1297 __u32 kver; 1298 1299 if (size != sizeof(kver)) { 1300 pr_warn("invalid kver section in %s\n", obj->path); 1301 return -LIBBPF_ERRNO__FORMAT; 1302 } 1303 memcpy(&kver, data, sizeof(kver)); 1304 obj->kern_version = kver; 1305 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1306 return 0; 1307 } 1308 1309 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1310 { 1311 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1312 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1313 return true; 1314 return false; 1315 } 1316 1317 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1318 __u32 *size) 1319 { 1320 int ret = -ENOENT; 1321 1322 *size = 0; 1323 if (!name) { 1324 return -EINVAL; 1325 } else if (!strcmp(name, DATA_SEC)) { 1326 if (obj->efile.data) 1327 *size = obj->efile.data->d_size; 1328 } else if (!strcmp(name, BSS_SEC)) { 1329 if (obj->efile.bss) 1330 *size = obj->efile.bss->d_size; 1331 } else if (!strcmp(name, RODATA_SEC)) { 1332 if (obj->efile.rodata) 1333 *size = obj->efile.rodata->d_size; 1334 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1335 if (obj->efile.st_ops_data) 1336 *size = obj->efile.st_ops_data->d_size; 1337 } else { 1338 Elf_Scn *scn = elf_sec_by_name(obj, name); 1339 Elf_Data *data = elf_sec_data(obj, scn); 1340 1341 if (data) { 1342 ret = 0; /* found it */ 1343 *size = data->d_size; 1344 } 1345 } 1346 1347 return *size ? 0 : ret; 1348 } 1349 1350 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1351 __u32 *off) 1352 { 1353 Elf_Data *symbols = obj->efile.symbols; 1354 const char *sname; 1355 size_t si; 1356 1357 if (!name || !off) 1358 return -EINVAL; 1359 1360 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1361 GElf_Sym sym; 1362 1363 if (!gelf_getsym(symbols, si, &sym)) 1364 continue; 1365 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1366 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1367 continue; 1368 1369 sname = elf_sym_str(obj, sym.st_name); 1370 if (!sname) { 1371 pr_warn("failed to get sym name string for var %s\n", 1372 name); 1373 return -EIO; 1374 } 1375 if (strcmp(name, sname) == 0) { 1376 *off = sym.st_value; 1377 return 0; 1378 } 1379 } 1380 1381 return -ENOENT; 1382 } 1383 1384 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1385 { 1386 struct bpf_map *new_maps; 1387 size_t new_cap; 1388 int i; 1389 1390 if (obj->nr_maps < obj->maps_cap) 1391 return &obj->maps[obj->nr_maps++]; 1392 1393 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1394 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1395 if (!new_maps) { 1396 pr_warn("alloc maps for object failed\n"); 1397 return ERR_PTR(-ENOMEM); 1398 } 1399 1400 obj->maps_cap = new_cap; 1401 obj->maps = new_maps; 1402 1403 /* zero out new maps */ 1404 memset(obj->maps + obj->nr_maps, 0, 1405 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1406 /* 1407 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1408 * when failure (zclose won't close negative fd)). 1409 */ 1410 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1411 obj->maps[i].fd = -1; 1412 obj->maps[i].inner_map_fd = -1; 1413 } 1414 1415 return &obj->maps[obj->nr_maps++]; 1416 } 1417 1418 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1419 { 1420 long page_sz = sysconf(_SC_PAGE_SIZE); 1421 size_t map_sz; 1422 1423 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1424 map_sz = roundup(map_sz, page_sz); 1425 return map_sz; 1426 } 1427 1428 static char *internal_map_name(struct bpf_object *obj, 1429 enum libbpf_map_type type) 1430 { 1431 char map_name[BPF_OBJ_NAME_LEN], *p; 1432 const char *sfx = libbpf_type_to_btf_name[type]; 1433 int sfx_len = max((size_t)7, strlen(sfx)); 1434 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1435 strlen(obj->name)); 1436 1437 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1438 sfx_len, libbpf_type_to_btf_name[type]); 1439 1440 /* sanitise map name to characters allowed by kernel */ 1441 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1442 if (!isalnum(*p) && *p != '_' && *p != '.') 1443 *p = '_'; 1444 1445 return strdup(map_name); 1446 } 1447 1448 static int 1449 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1450 int sec_idx, void *data, size_t data_sz) 1451 { 1452 struct bpf_map_def *def; 1453 struct bpf_map *map; 1454 int err; 1455 1456 map = bpf_object__add_map(obj); 1457 if (IS_ERR(map)) 1458 return PTR_ERR(map); 1459 1460 map->libbpf_type = type; 1461 map->sec_idx = sec_idx; 1462 map->sec_offset = 0; 1463 map->name = internal_map_name(obj, type); 1464 if (!map->name) { 1465 pr_warn("failed to alloc map name\n"); 1466 return -ENOMEM; 1467 } 1468 1469 def = &map->def; 1470 def->type = BPF_MAP_TYPE_ARRAY; 1471 def->key_size = sizeof(int); 1472 def->value_size = data_sz; 1473 def->max_entries = 1; 1474 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1475 ? BPF_F_RDONLY_PROG : 0; 1476 def->map_flags |= BPF_F_MMAPABLE; 1477 1478 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1479 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1480 1481 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1482 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1483 if (map->mmaped == MAP_FAILED) { 1484 err = -errno; 1485 map->mmaped = NULL; 1486 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1487 map->name, err); 1488 zfree(&map->name); 1489 return err; 1490 } 1491 1492 if (data) 1493 memcpy(map->mmaped, data, data_sz); 1494 1495 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1496 return 0; 1497 } 1498 1499 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1500 { 1501 int err; 1502 1503 /* 1504 * Populate obj->maps with libbpf internal maps. 1505 */ 1506 if (obj->efile.data_shndx >= 0) { 1507 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1508 obj->efile.data_shndx, 1509 obj->efile.data->d_buf, 1510 obj->efile.data->d_size); 1511 if (err) 1512 return err; 1513 } 1514 if (obj->efile.rodata_shndx >= 0) { 1515 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1516 obj->efile.rodata_shndx, 1517 obj->efile.rodata->d_buf, 1518 obj->efile.rodata->d_size); 1519 if (err) 1520 return err; 1521 1522 obj->rodata_map_idx = obj->nr_maps - 1; 1523 } 1524 if (obj->efile.bss_shndx >= 0) { 1525 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1526 obj->efile.bss_shndx, 1527 NULL, 1528 obj->efile.bss->d_size); 1529 if (err) 1530 return err; 1531 } 1532 return 0; 1533 } 1534 1535 1536 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1537 const void *name) 1538 { 1539 int i; 1540 1541 for (i = 0; i < obj->nr_extern; i++) { 1542 if (strcmp(obj->externs[i].name, name) == 0) 1543 return &obj->externs[i]; 1544 } 1545 return NULL; 1546 } 1547 1548 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1549 char value) 1550 { 1551 switch (ext->kcfg.type) { 1552 case KCFG_BOOL: 1553 if (value == 'm') { 1554 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1555 ext->name, value); 1556 return -EINVAL; 1557 } 1558 *(bool *)ext_val = value == 'y' ? true : false; 1559 break; 1560 case KCFG_TRISTATE: 1561 if (value == 'y') 1562 *(enum libbpf_tristate *)ext_val = TRI_YES; 1563 else if (value == 'm') 1564 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1565 else /* value == 'n' */ 1566 *(enum libbpf_tristate *)ext_val = TRI_NO; 1567 break; 1568 case KCFG_CHAR: 1569 *(char *)ext_val = value; 1570 break; 1571 case KCFG_UNKNOWN: 1572 case KCFG_INT: 1573 case KCFG_CHAR_ARR: 1574 default: 1575 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1576 ext->name, value); 1577 return -EINVAL; 1578 } 1579 ext->is_set = true; 1580 return 0; 1581 } 1582 1583 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1584 const char *value) 1585 { 1586 size_t len; 1587 1588 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1589 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1590 return -EINVAL; 1591 } 1592 1593 len = strlen(value); 1594 if (value[len - 1] != '"') { 1595 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1596 ext->name, value); 1597 return -EINVAL; 1598 } 1599 1600 /* strip quotes */ 1601 len -= 2; 1602 if (len >= ext->kcfg.sz) { 1603 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1604 ext->name, value, len, ext->kcfg.sz - 1); 1605 len = ext->kcfg.sz - 1; 1606 } 1607 memcpy(ext_val, value + 1, len); 1608 ext_val[len] = '\0'; 1609 ext->is_set = true; 1610 return 0; 1611 } 1612 1613 static int parse_u64(const char *value, __u64 *res) 1614 { 1615 char *value_end; 1616 int err; 1617 1618 errno = 0; 1619 *res = strtoull(value, &value_end, 0); 1620 if (errno) { 1621 err = -errno; 1622 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1623 return err; 1624 } 1625 if (*value_end) { 1626 pr_warn("failed to parse '%s' as integer completely\n", value); 1627 return -EINVAL; 1628 } 1629 return 0; 1630 } 1631 1632 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1633 { 1634 int bit_sz = ext->kcfg.sz * 8; 1635 1636 if (ext->kcfg.sz == 8) 1637 return true; 1638 1639 /* Validate that value stored in u64 fits in integer of `ext->sz` 1640 * bytes size without any loss of information. If the target integer 1641 * is signed, we rely on the following limits of integer type of 1642 * Y bits and subsequent transformation: 1643 * 1644 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1645 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1646 * 0 <= X + 2^(Y-1) < 2^Y 1647 * 1648 * For unsigned target integer, check that all the (64 - Y) bits are 1649 * zero. 1650 */ 1651 if (ext->kcfg.is_signed) 1652 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1653 else 1654 return (v >> bit_sz) == 0; 1655 } 1656 1657 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1658 __u64 value) 1659 { 1660 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1661 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1662 ext->name, (unsigned long long)value); 1663 return -EINVAL; 1664 } 1665 if (!is_kcfg_value_in_range(ext, value)) { 1666 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1667 ext->name, (unsigned long long)value, ext->kcfg.sz); 1668 return -ERANGE; 1669 } 1670 switch (ext->kcfg.sz) { 1671 case 1: *(__u8 *)ext_val = value; break; 1672 case 2: *(__u16 *)ext_val = value; break; 1673 case 4: *(__u32 *)ext_val = value; break; 1674 case 8: *(__u64 *)ext_val = value; break; 1675 default: 1676 return -EINVAL; 1677 } 1678 ext->is_set = true; 1679 return 0; 1680 } 1681 1682 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1683 char *buf, void *data) 1684 { 1685 struct extern_desc *ext; 1686 char *sep, *value; 1687 int len, err = 0; 1688 void *ext_val; 1689 __u64 num; 1690 1691 if (!str_has_pfx(buf, "CONFIG_")) 1692 return 0; 1693 1694 sep = strchr(buf, '='); 1695 if (!sep) { 1696 pr_warn("failed to parse '%s': no separator\n", buf); 1697 return -EINVAL; 1698 } 1699 1700 /* Trim ending '\n' */ 1701 len = strlen(buf); 1702 if (buf[len - 1] == '\n') 1703 buf[len - 1] = '\0'; 1704 /* Split on '=' and ensure that a value is present. */ 1705 *sep = '\0'; 1706 if (!sep[1]) { 1707 *sep = '='; 1708 pr_warn("failed to parse '%s': no value\n", buf); 1709 return -EINVAL; 1710 } 1711 1712 ext = find_extern_by_name(obj, buf); 1713 if (!ext || ext->is_set) 1714 return 0; 1715 1716 ext_val = data + ext->kcfg.data_off; 1717 value = sep + 1; 1718 1719 switch (*value) { 1720 case 'y': case 'n': case 'm': 1721 err = set_kcfg_value_tri(ext, ext_val, *value); 1722 break; 1723 case '"': 1724 err = set_kcfg_value_str(ext, ext_val, value); 1725 break; 1726 default: 1727 /* assume integer */ 1728 err = parse_u64(value, &num); 1729 if (err) { 1730 pr_warn("extern (kcfg) %s=%s should be integer\n", 1731 ext->name, value); 1732 return err; 1733 } 1734 err = set_kcfg_value_num(ext, ext_val, num); 1735 break; 1736 } 1737 if (err) 1738 return err; 1739 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1740 return 0; 1741 } 1742 1743 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1744 { 1745 char buf[PATH_MAX]; 1746 struct utsname uts; 1747 int len, err = 0; 1748 gzFile file; 1749 1750 uname(&uts); 1751 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1752 if (len < 0) 1753 return -EINVAL; 1754 else if (len >= PATH_MAX) 1755 return -ENAMETOOLONG; 1756 1757 /* gzopen also accepts uncompressed files. */ 1758 file = gzopen(buf, "r"); 1759 if (!file) 1760 file = gzopen("/proc/config.gz", "r"); 1761 1762 if (!file) { 1763 pr_warn("failed to open system Kconfig\n"); 1764 return -ENOENT; 1765 } 1766 1767 while (gzgets(file, buf, sizeof(buf))) { 1768 err = bpf_object__process_kconfig_line(obj, buf, data); 1769 if (err) { 1770 pr_warn("error parsing system Kconfig line '%s': %d\n", 1771 buf, err); 1772 goto out; 1773 } 1774 } 1775 1776 out: 1777 gzclose(file); 1778 return err; 1779 } 1780 1781 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1782 const char *config, void *data) 1783 { 1784 char buf[PATH_MAX]; 1785 int err = 0; 1786 FILE *file; 1787 1788 file = fmemopen((void *)config, strlen(config), "r"); 1789 if (!file) { 1790 err = -errno; 1791 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1792 return err; 1793 } 1794 1795 while (fgets(buf, sizeof(buf), file)) { 1796 err = bpf_object__process_kconfig_line(obj, buf, data); 1797 if (err) { 1798 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1799 buf, err); 1800 break; 1801 } 1802 } 1803 1804 fclose(file); 1805 return err; 1806 } 1807 1808 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1809 { 1810 struct extern_desc *last_ext = NULL, *ext; 1811 size_t map_sz; 1812 int i, err; 1813 1814 for (i = 0; i < obj->nr_extern; i++) { 1815 ext = &obj->externs[i]; 1816 if (ext->type == EXT_KCFG) 1817 last_ext = ext; 1818 } 1819 1820 if (!last_ext) 1821 return 0; 1822 1823 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1824 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1825 obj->efile.symbols_shndx, 1826 NULL, map_sz); 1827 if (err) 1828 return err; 1829 1830 obj->kconfig_map_idx = obj->nr_maps - 1; 1831 1832 return 0; 1833 } 1834 1835 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1836 { 1837 Elf_Data *symbols = obj->efile.symbols; 1838 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1839 Elf_Data *data = NULL; 1840 Elf_Scn *scn; 1841 1842 if (obj->efile.maps_shndx < 0) 1843 return 0; 1844 1845 if (!symbols) 1846 return -EINVAL; 1847 1848 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1849 data = elf_sec_data(obj, scn); 1850 if (!scn || !data) { 1851 pr_warn("elf: failed to get legacy map definitions for %s\n", 1852 obj->path); 1853 return -EINVAL; 1854 } 1855 1856 /* 1857 * Count number of maps. Each map has a name. 1858 * Array of maps is not supported: only the first element is 1859 * considered. 1860 * 1861 * TODO: Detect array of map and report error. 1862 */ 1863 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1864 for (i = 0; i < nr_syms; i++) { 1865 GElf_Sym sym; 1866 1867 if (!gelf_getsym(symbols, i, &sym)) 1868 continue; 1869 if (sym.st_shndx != obj->efile.maps_shndx) 1870 continue; 1871 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) 1872 continue; 1873 nr_maps++; 1874 } 1875 /* Assume equally sized map definitions */ 1876 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1877 nr_maps, data->d_size, obj->path); 1878 1879 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1880 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1881 obj->path); 1882 return -EINVAL; 1883 } 1884 map_def_sz = data->d_size / nr_maps; 1885 1886 /* Fill obj->maps using data in "maps" section. */ 1887 for (i = 0; i < nr_syms; i++) { 1888 GElf_Sym sym; 1889 const char *map_name; 1890 struct bpf_map_def *def; 1891 struct bpf_map *map; 1892 1893 if (!gelf_getsym(symbols, i, &sym)) 1894 continue; 1895 if (sym.st_shndx != obj->efile.maps_shndx) 1896 continue; 1897 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) 1898 continue; 1899 1900 map = bpf_object__add_map(obj); 1901 if (IS_ERR(map)) 1902 return PTR_ERR(map); 1903 1904 map_name = elf_sym_str(obj, sym.st_name); 1905 if (!map_name) { 1906 pr_warn("failed to get map #%d name sym string for obj %s\n", 1907 i, obj->path); 1908 return -LIBBPF_ERRNO__FORMAT; 1909 } 1910 1911 if (GELF_ST_BIND(sym.st_info) == STB_LOCAL) { 1912 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 1913 return -ENOTSUP; 1914 } 1915 1916 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1917 map->sec_idx = sym.st_shndx; 1918 map->sec_offset = sym.st_value; 1919 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1920 map_name, map->sec_idx, map->sec_offset); 1921 if (sym.st_value + map_def_sz > data->d_size) { 1922 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1923 obj->path, map_name); 1924 return -EINVAL; 1925 } 1926 1927 map->name = strdup(map_name); 1928 if (!map->name) { 1929 pr_warn("failed to alloc map name\n"); 1930 return -ENOMEM; 1931 } 1932 pr_debug("map %d is \"%s\"\n", i, map->name); 1933 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1934 /* 1935 * If the definition of the map in the object file fits in 1936 * bpf_map_def, copy it. Any extra fields in our version 1937 * of bpf_map_def will default to zero as a result of the 1938 * calloc above. 1939 */ 1940 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1941 memcpy(&map->def, def, map_def_sz); 1942 } else { 1943 /* 1944 * Here the map structure being read is bigger than what 1945 * we expect, truncate if the excess bits are all zero. 1946 * If they are not zero, reject this map as 1947 * incompatible. 1948 */ 1949 char *b; 1950 1951 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1952 b < ((char *)def) + map_def_sz; b++) { 1953 if (*b != 0) { 1954 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1955 obj->path, map_name); 1956 if (strict) 1957 return -EINVAL; 1958 } 1959 } 1960 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1961 } 1962 } 1963 return 0; 1964 } 1965 1966 const struct btf_type * 1967 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1968 { 1969 const struct btf_type *t = btf__type_by_id(btf, id); 1970 1971 if (res_id) 1972 *res_id = id; 1973 1974 while (btf_is_mod(t) || btf_is_typedef(t)) { 1975 if (res_id) 1976 *res_id = t->type; 1977 t = btf__type_by_id(btf, t->type); 1978 } 1979 1980 return t; 1981 } 1982 1983 static const struct btf_type * 1984 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1985 { 1986 const struct btf_type *t; 1987 1988 t = skip_mods_and_typedefs(btf, id, NULL); 1989 if (!btf_is_ptr(t)) 1990 return NULL; 1991 1992 t = skip_mods_and_typedefs(btf, t->type, res_id); 1993 1994 return btf_is_func_proto(t) ? t : NULL; 1995 } 1996 1997 static const char *__btf_kind_str(__u16 kind) 1998 { 1999 switch (kind) { 2000 case BTF_KIND_UNKN: return "void"; 2001 case BTF_KIND_INT: return "int"; 2002 case BTF_KIND_PTR: return "ptr"; 2003 case BTF_KIND_ARRAY: return "array"; 2004 case BTF_KIND_STRUCT: return "struct"; 2005 case BTF_KIND_UNION: return "union"; 2006 case BTF_KIND_ENUM: return "enum"; 2007 case BTF_KIND_FWD: return "fwd"; 2008 case BTF_KIND_TYPEDEF: return "typedef"; 2009 case BTF_KIND_VOLATILE: return "volatile"; 2010 case BTF_KIND_CONST: return "const"; 2011 case BTF_KIND_RESTRICT: return "restrict"; 2012 case BTF_KIND_FUNC: return "func"; 2013 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2014 case BTF_KIND_VAR: return "var"; 2015 case BTF_KIND_DATASEC: return "datasec"; 2016 case BTF_KIND_FLOAT: return "float"; 2017 case BTF_KIND_TAG: return "tag"; 2018 default: return "unknown"; 2019 } 2020 } 2021 2022 const char *btf_kind_str(const struct btf_type *t) 2023 { 2024 return __btf_kind_str(btf_kind(t)); 2025 } 2026 2027 /* 2028 * Fetch integer attribute of BTF map definition. Such attributes are 2029 * represented using a pointer to an array, in which dimensionality of array 2030 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2031 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2032 * type definition, while using only sizeof(void *) space in ELF data section. 2033 */ 2034 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2035 const struct btf_member *m, __u32 *res) 2036 { 2037 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2038 const char *name = btf__name_by_offset(btf, m->name_off); 2039 const struct btf_array *arr_info; 2040 const struct btf_type *arr_t; 2041 2042 if (!btf_is_ptr(t)) { 2043 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2044 map_name, name, btf_kind_str(t)); 2045 return false; 2046 } 2047 2048 arr_t = btf__type_by_id(btf, t->type); 2049 if (!arr_t) { 2050 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2051 map_name, name, t->type); 2052 return false; 2053 } 2054 if (!btf_is_array(arr_t)) { 2055 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2056 map_name, name, btf_kind_str(arr_t)); 2057 return false; 2058 } 2059 arr_info = btf_array(arr_t); 2060 *res = arr_info->nelems; 2061 return true; 2062 } 2063 2064 static int build_map_pin_path(struct bpf_map *map, const char *path) 2065 { 2066 char buf[PATH_MAX]; 2067 int len; 2068 2069 if (!path) 2070 path = "/sys/fs/bpf"; 2071 2072 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2073 if (len < 0) 2074 return -EINVAL; 2075 else if (len >= PATH_MAX) 2076 return -ENAMETOOLONG; 2077 2078 return bpf_map__set_pin_path(map, buf); 2079 } 2080 2081 int parse_btf_map_def(const char *map_name, struct btf *btf, 2082 const struct btf_type *def_t, bool strict, 2083 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2084 { 2085 const struct btf_type *t; 2086 const struct btf_member *m; 2087 bool is_inner = inner_def == NULL; 2088 int vlen, i; 2089 2090 vlen = btf_vlen(def_t); 2091 m = btf_members(def_t); 2092 for (i = 0; i < vlen; i++, m++) { 2093 const char *name = btf__name_by_offset(btf, m->name_off); 2094 2095 if (!name) { 2096 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2097 return -EINVAL; 2098 } 2099 if (strcmp(name, "type") == 0) { 2100 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2101 return -EINVAL; 2102 map_def->parts |= MAP_DEF_MAP_TYPE; 2103 } else if (strcmp(name, "max_entries") == 0) { 2104 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2105 return -EINVAL; 2106 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2107 } else if (strcmp(name, "map_flags") == 0) { 2108 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2109 return -EINVAL; 2110 map_def->parts |= MAP_DEF_MAP_FLAGS; 2111 } else if (strcmp(name, "numa_node") == 0) { 2112 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2113 return -EINVAL; 2114 map_def->parts |= MAP_DEF_NUMA_NODE; 2115 } else if (strcmp(name, "key_size") == 0) { 2116 __u32 sz; 2117 2118 if (!get_map_field_int(map_name, btf, m, &sz)) 2119 return -EINVAL; 2120 if (map_def->key_size && map_def->key_size != sz) { 2121 pr_warn("map '%s': conflicting key size %u != %u.\n", 2122 map_name, map_def->key_size, sz); 2123 return -EINVAL; 2124 } 2125 map_def->key_size = sz; 2126 map_def->parts |= MAP_DEF_KEY_SIZE; 2127 } else if (strcmp(name, "key") == 0) { 2128 __s64 sz; 2129 2130 t = btf__type_by_id(btf, m->type); 2131 if (!t) { 2132 pr_warn("map '%s': key type [%d] not found.\n", 2133 map_name, m->type); 2134 return -EINVAL; 2135 } 2136 if (!btf_is_ptr(t)) { 2137 pr_warn("map '%s': key spec is not PTR: %s.\n", 2138 map_name, btf_kind_str(t)); 2139 return -EINVAL; 2140 } 2141 sz = btf__resolve_size(btf, t->type); 2142 if (sz < 0) { 2143 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2144 map_name, t->type, (ssize_t)sz); 2145 return sz; 2146 } 2147 if (map_def->key_size && map_def->key_size != sz) { 2148 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2149 map_name, map_def->key_size, (ssize_t)sz); 2150 return -EINVAL; 2151 } 2152 map_def->key_size = sz; 2153 map_def->key_type_id = t->type; 2154 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2155 } else if (strcmp(name, "value_size") == 0) { 2156 __u32 sz; 2157 2158 if (!get_map_field_int(map_name, btf, m, &sz)) 2159 return -EINVAL; 2160 if (map_def->value_size && map_def->value_size != sz) { 2161 pr_warn("map '%s': conflicting value size %u != %u.\n", 2162 map_name, map_def->value_size, sz); 2163 return -EINVAL; 2164 } 2165 map_def->value_size = sz; 2166 map_def->parts |= MAP_DEF_VALUE_SIZE; 2167 } else if (strcmp(name, "value") == 0) { 2168 __s64 sz; 2169 2170 t = btf__type_by_id(btf, m->type); 2171 if (!t) { 2172 pr_warn("map '%s': value type [%d] not found.\n", 2173 map_name, m->type); 2174 return -EINVAL; 2175 } 2176 if (!btf_is_ptr(t)) { 2177 pr_warn("map '%s': value spec is not PTR: %s.\n", 2178 map_name, btf_kind_str(t)); 2179 return -EINVAL; 2180 } 2181 sz = btf__resolve_size(btf, t->type); 2182 if (sz < 0) { 2183 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2184 map_name, t->type, (ssize_t)sz); 2185 return sz; 2186 } 2187 if (map_def->value_size && map_def->value_size != sz) { 2188 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2189 map_name, map_def->value_size, (ssize_t)sz); 2190 return -EINVAL; 2191 } 2192 map_def->value_size = sz; 2193 map_def->value_type_id = t->type; 2194 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2195 } 2196 else if (strcmp(name, "values") == 0) { 2197 char inner_map_name[128]; 2198 int err; 2199 2200 if (is_inner) { 2201 pr_warn("map '%s': multi-level inner maps not supported.\n", 2202 map_name); 2203 return -ENOTSUP; 2204 } 2205 if (i != vlen - 1) { 2206 pr_warn("map '%s': '%s' member should be last.\n", 2207 map_name, name); 2208 return -EINVAL; 2209 } 2210 if (!bpf_map_type__is_map_in_map(map_def->map_type)) { 2211 pr_warn("map '%s': should be map-in-map.\n", 2212 map_name); 2213 return -ENOTSUP; 2214 } 2215 if (map_def->value_size && map_def->value_size != 4) { 2216 pr_warn("map '%s': conflicting value size %u != 4.\n", 2217 map_name, map_def->value_size); 2218 return -EINVAL; 2219 } 2220 map_def->value_size = 4; 2221 t = btf__type_by_id(btf, m->type); 2222 if (!t) { 2223 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2224 map_name, m->type); 2225 return -EINVAL; 2226 } 2227 if (!btf_is_array(t) || btf_array(t)->nelems) { 2228 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2229 map_name); 2230 return -EINVAL; 2231 } 2232 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2233 if (!btf_is_ptr(t)) { 2234 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2235 map_name, btf_kind_str(t)); 2236 return -EINVAL; 2237 } 2238 t = skip_mods_and_typedefs(btf, t->type, NULL); 2239 if (!btf_is_struct(t)) { 2240 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2241 map_name, btf_kind_str(t)); 2242 return -EINVAL; 2243 } 2244 2245 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2246 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2247 if (err) 2248 return err; 2249 2250 map_def->parts |= MAP_DEF_INNER_MAP; 2251 } else if (strcmp(name, "pinning") == 0) { 2252 __u32 val; 2253 2254 if (is_inner) { 2255 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2256 return -EINVAL; 2257 } 2258 if (!get_map_field_int(map_name, btf, m, &val)) 2259 return -EINVAL; 2260 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2261 pr_warn("map '%s': invalid pinning value %u.\n", 2262 map_name, val); 2263 return -EINVAL; 2264 } 2265 map_def->pinning = val; 2266 map_def->parts |= MAP_DEF_PINNING; 2267 } else { 2268 if (strict) { 2269 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2270 return -ENOTSUP; 2271 } 2272 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2273 } 2274 } 2275 2276 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2277 pr_warn("map '%s': map type isn't specified.\n", map_name); 2278 return -EINVAL; 2279 } 2280 2281 return 0; 2282 } 2283 2284 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2285 { 2286 map->def.type = def->map_type; 2287 map->def.key_size = def->key_size; 2288 map->def.value_size = def->value_size; 2289 map->def.max_entries = def->max_entries; 2290 map->def.map_flags = def->map_flags; 2291 2292 map->numa_node = def->numa_node; 2293 map->btf_key_type_id = def->key_type_id; 2294 map->btf_value_type_id = def->value_type_id; 2295 2296 if (def->parts & MAP_DEF_MAP_TYPE) 2297 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2298 2299 if (def->parts & MAP_DEF_KEY_TYPE) 2300 pr_debug("map '%s': found key [%u], sz = %u.\n", 2301 map->name, def->key_type_id, def->key_size); 2302 else if (def->parts & MAP_DEF_KEY_SIZE) 2303 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2304 2305 if (def->parts & MAP_DEF_VALUE_TYPE) 2306 pr_debug("map '%s': found value [%u], sz = %u.\n", 2307 map->name, def->value_type_id, def->value_size); 2308 else if (def->parts & MAP_DEF_VALUE_SIZE) 2309 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2310 2311 if (def->parts & MAP_DEF_MAX_ENTRIES) 2312 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2313 if (def->parts & MAP_DEF_MAP_FLAGS) 2314 pr_debug("map '%s': found map_flags = %u.\n", map->name, def->map_flags); 2315 if (def->parts & MAP_DEF_PINNING) 2316 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2317 if (def->parts & MAP_DEF_NUMA_NODE) 2318 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2319 2320 if (def->parts & MAP_DEF_INNER_MAP) 2321 pr_debug("map '%s': found inner map definition.\n", map->name); 2322 } 2323 2324 static const char *btf_var_linkage_str(__u32 linkage) 2325 { 2326 switch (linkage) { 2327 case BTF_VAR_STATIC: return "static"; 2328 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2329 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2330 default: return "unknown"; 2331 } 2332 } 2333 2334 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2335 const struct btf_type *sec, 2336 int var_idx, int sec_idx, 2337 const Elf_Data *data, bool strict, 2338 const char *pin_root_path) 2339 { 2340 struct btf_map_def map_def = {}, inner_def = {}; 2341 const struct btf_type *var, *def; 2342 const struct btf_var_secinfo *vi; 2343 const struct btf_var *var_extra; 2344 const char *map_name; 2345 struct bpf_map *map; 2346 int err; 2347 2348 vi = btf_var_secinfos(sec) + var_idx; 2349 var = btf__type_by_id(obj->btf, vi->type); 2350 var_extra = btf_var(var); 2351 map_name = btf__name_by_offset(obj->btf, var->name_off); 2352 2353 if (map_name == NULL || map_name[0] == '\0') { 2354 pr_warn("map #%d: empty name.\n", var_idx); 2355 return -EINVAL; 2356 } 2357 if ((__u64)vi->offset + vi->size > data->d_size) { 2358 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2359 return -EINVAL; 2360 } 2361 if (!btf_is_var(var)) { 2362 pr_warn("map '%s': unexpected var kind %s.\n", 2363 map_name, btf_kind_str(var)); 2364 return -EINVAL; 2365 } 2366 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2367 pr_warn("map '%s': unsupported map linkage %s.\n", 2368 map_name, btf_var_linkage_str(var_extra->linkage)); 2369 return -EOPNOTSUPP; 2370 } 2371 2372 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2373 if (!btf_is_struct(def)) { 2374 pr_warn("map '%s': unexpected def kind %s.\n", 2375 map_name, btf_kind_str(var)); 2376 return -EINVAL; 2377 } 2378 if (def->size > vi->size) { 2379 pr_warn("map '%s': invalid def size.\n", map_name); 2380 return -EINVAL; 2381 } 2382 2383 map = bpf_object__add_map(obj); 2384 if (IS_ERR(map)) 2385 return PTR_ERR(map); 2386 map->name = strdup(map_name); 2387 if (!map->name) { 2388 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2389 return -ENOMEM; 2390 } 2391 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2392 map->def.type = BPF_MAP_TYPE_UNSPEC; 2393 map->sec_idx = sec_idx; 2394 map->sec_offset = vi->offset; 2395 map->btf_var_idx = var_idx; 2396 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2397 map_name, map->sec_idx, map->sec_offset); 2398 2399 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2400 if (err) 2401 return err; 2402 2403 fill_map_from_def(map, &map_def); 2404 2405 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2406 err = build_map_pin_path(map, pin_root_path); 2407 if (err) { 2408 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2409 return err; 2410 } 2411 } 2412 2413 if (map_def.parts & MAP_DEF_INNER_MAP) { 2414 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2415 if (!map->inner_map) 2416 return -ENOMEM; 2417 map->inner_map->fd = -1; 2418 map->inner_map->sec_idx = sec_idx; 2419 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2420 if (!map->inner_map->name) 2421 return -ENOMEM; 2422 sprintf(map->inner_map->name, "%s.inner", map_name); 2423 2424 fill_map_from_def(map->inner_map, &inner_def); 2425 } 2426 2427 return 0; 2428 } 2429 2430 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2431 const char *pin_root_path) 2432 { 2433 const struct btf_type *sec = NULL; 2434 int nr_types, i, vlen, err; 2435 const struct btf_type *t; 2436 const char *name; 2437 Elf_Data *data; 2438 Elf_Scn *scn; 2439 2440 if (obj->efile.btf_maps_shndx < 0) 2441 return 0; 2442 2443 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2444 data = elf_sec_data(obj, scn); 2445 if (!scn || !data) { 2446 pr_warn("elf: failed to get %s map definitions for %s\n", 2447 MAPS_ELF_SEC, obj->path); 2448 return -EINVAL; 2449 } 2450 2451 nr_types = btf__get_nr_types(obj->btf); 2452 for (i = 1; i <= nr_types; i++) { 2453 t = btf__type_by_id(obj->btf, i); 2454 if (!btf_is_datasec(t)) 2455 continue; 2456 name = btf__name_by_offset(obj->btf, t->name_off); 2457 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2458 sec = t; 2459 obj->efile.btf_maps_sec_btf_id = i; 2460 break; 2461 } 2462 } 2463 2464 if (!sec) { 2465 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2466 return -ENOENT; 2467 } 2468 2469 vlen = btf_vlen(sec); 2470 for (i = 0; i < vlen; i++) { 2471 err = bpf_object__init_user_btf_map(obj, sec, i, 2472 obj->efile.btf_maps_shndx, 2473 data, strict, 2474 pin_root_path); 2475 if (err) 2476 return err; 2477 } 2478 2479 return 0; 2480 } 2481 2482 static int bpf_object__init_maps(struct bpf_object *obj, 2483 const struct bpf_object_open_opts *opts) 2484 { 2485 const char *pin_root_path; 2486 bool strict; 2487 int err; 2488 2489 strict = !OPTS_GET(opts, relaxed_maps, false); 2490 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2491 2492 err = bpf_object__init_user_maps(obj, strict); 2493 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2494 err = err ?: bpf_object__init_global_data_maps(obj); 2495 err = err ?: bpf_object__init_kconfig_map(obj); 2496 err = err ?: bpf_object__init_struct_ops_maps(obj); 2497 2498 return err; 2499 } 2500 2501 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2502 { 2503 GElf_Shdr sh; 2504 2505 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2506 return false; 2507 2508 return sh.sh_flags & SHF_EXECINSTR; 2509 } 2510 2511 static bool btf_needs_sanitization(struct bpf_object *obj) 2512 { 2513 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2514 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2515 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2516 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2517 bool has_tag = kernel_supports(obj, FEAT_BTF_TAG); 2518 2519 return !has_func || !has_datasec || !has_func_global || !has_float || !has_tag; 2520 } 2521 2522 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2523 { 2524 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2525 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2526 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2527 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2528 bool has_tag = kernel_supports(obj, FEAT_BTF_TAG); 2529 struct btf_type *t; 2530 int i, j, vlen; 2531 2532 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2533 t = (struct btf_type *)btf__type_by_id(btf, i); 2534 2535 if ((!has_datasec && btf_is_var(t)) || (!has_tag && btf_is_tag(t))) { 2536 /* replace VAR/TAG with INT */ 2537 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2538 /* 2539 * using size = 1 is the safest choice, 4 will be too 2540 * big and cause kernel BTF validation failure if 2541 * original variable took less than 4 bytes 2542 */ 2543 t->size = 1; 2544 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2545 } else if (!has_datasec && btf_is_datasec(t)) { 2546 /* replace DATASEC with STRUCT */ 2547 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2548 struct btf_member *m = btf_members(t); 2549 struct btf_type *vt; 2550 char *name; 2551 2552 name = (char *)btf__name_by_offset(btf, t->name_off); 2553 while (*name) { 2554 if (*name == '.') 2555 *name = '_'; 2556 name++; 2557 } 2558 2559 vlen = btf_vlen(t); 2560 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2561 for (j = 0; j < vlen; j++, v++, m++) { 2562 /* order of field assignments is important */ 2563 m->offset = v->offset * 8; 2564 m->type = v->type; 2565 /* preserve variable name as member name */ 2566 vt = (void *)btf__type_by_id(btf, v->type); 2567 m->name_off = vt->name_off; 2568 } 2569 } else if (!has_func && btf_is_func_proto(t)) { 2570 /* replace FUNC_PROTO with ENUM */ 2571 vlen = btf_vlen(t); 2572 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2573 t->size = sizeof(__u32); /* kernel enforced */ 2574 } else if (!has_func && btf_is_func(t)) { 2575 /* replace FUNC with TYPEDEF */ 2576 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2577 } else if (!has_func_global && btf_is_func(t)) { 2578 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2579 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2580 } else if (!has_float && btf_is_float(t)) { 2581 /* replace FLOAT with an equally-sized empty STRUCT; 2582 * since C compilers do not accept e.g. "float" as a 2583 * valid struct name, make it anonymous 2584 */ 2585 t->name_off = 0; 2586 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2587 } 2588 } 2589 } 2590 2591 static bool libbpf_needs_btf(const struct bpf_object *obj) 2592 { 2593 return obj->efile.btf_maps_shndx >= 0 || 2594 obj->efile.st_ops_shndx >= 0 || 2595 obj->nr_extern > 0; 2596 } 2597 2598 static bool kernel_needs_btf(const struct bpf_object *obj) 2599 { 2600 return obj->efile.st_ops_shndx >= 0; 2601 } 2602 2603 static int bpf_object__init_btf(struct bpf_object *obj, 2604 Elf_Data *btf_data, 2605 Elf_Data *btf_ext_data) 2606 { 2607 int err = -ENOENT; 2608 2609 if (btf_data) { 2610 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2611 err = libbpf_get_error(obj->btf); 2612 if (err) { 2613 obj->btf = NULL; 2614 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2615 goto out; 2616 } 2617 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2618 btf__set_pointer_size(obj->btf, 8); 2619 } 2620 if (btf_ext_data) { 2621 if (!obj->btf) { 2622 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2623 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2624 goto out; 2625 } 2626 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2627 err = libbpf_get_error(obj->btf_ext); 2628 if (err) { 2629 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2630 BTF_EXT_ELF_SEC, err); 2631 obj->btf_ext = NULL; 2632 goto out; 2633 } 2634 } 2635 out: 2636 if (err && libbpf_needs_btf(obj)) { 2637 pr_warn("BTF is required, but is missing or corrupted.\n"); 2638 return err; 2639 } 2640 return 0; 2641 } 2642 2643 static int bpf_object__finalize_btf(struct bpf_object *obj) 2644 { 2645 int err; 2646 2647 if (!obj->btf) 2648 return 0; 2649 2650 err = btf__finalize_data(obj, obj->btf); 2651 if (err) { 2652 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2653 return err; 2654 } 2655 2656 return 0; 2657 } 2658 2659 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2660 { 2661 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2662 prog->type == BPF_PROG_TYPE_LSM) 2663 return true; 2664 2665 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2666 * also need vmlinux BTF 2667 */ 2668 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2669 return true; 2670 2671 return false; 2672 } 2673 2674 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2675 { 2676 struct bpf_program *prog; 2677 int i; 2678 2679 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2680 * is not specified 2681 */ 2682 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2683 return true; 2684 2685 /* Support for typed ksyms needs kernel BTF */ 2686 for (i = 0; i < obj->nr_extern; i++) { 2687 const struct extern_desc *ext; 2688 2689 ext = &obj->externs[i]; 2690 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2691 return true; 2692 } 2693 2694 bpf_object__for_each_program(prog, obj) { 2695 if (!prog->load) 2696 continue; 2697 if (prog_needs_vmlinux_btf(prog)) 2698 return true; 2699 } 2700 2701 return false; 2702 } 2703 2704 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2705 { 2706 int err; 2707 2708 /* btf_vmlinux could be loaded earlier */ 2709 if (obj->btf_vmlinux || obj->gen_loader) 2710 return 0; 2711 2712 if (!force && !obj_needs_vmlinux_btf(obj)) 2713 return 0; 2714 2715 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2716 err = libbpf_get_error(obj->btf_vmlinux); 2717 if (err) { 2718 pr_warn("Error loading vmlinux BTF: %d\n", err); 2719 obj->btf_vmlinux = NULL; 2720 return err; 2721 } 2722 return 0; 2723 } 2724 2725 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2726 { 2727 struct btf *kern_btf = obj->btf; 2728 bool btf_mandatory, sanitize; 2729 int i, err = 0; 2730 2731 if (!obj->btf) 2732 return 0; 2733 2734 if (!kernel_supports(obj, FEAT_BTF)) { 2735 if (kernel_needs_btf(obj)) { 2736 err = -EOPNOTSUPP; 2737 goto report; 2738 } 2739 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2740 return 0; 2741 } 2742 2743 /* Even though some subprogs are global/weak, user might prefer more 2744 * permissive BPF verification process that BPF verifier performs for 2745 * static functions, taking into account more context from the caller 2746 * functions. In such case, they need to mark such subprogs with 2747 * __attribute__((visibility("hidden"))) and libbpf will adjust 2748 * corresponding FUNC BTF type to be marked as static and trigger more 2749 * involved BPF verification process. 2750 */ 2751 for (i = 0; i < obj->nr_programs; i++) { 2752 struct bpf_program *prog = &obj->programs[i]; 2753 struct btf_type *t; 2754 const char *name; 2755 int j, n; 2756 2757 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2758 continue; 2759 2760 n = btf__get_nr_types(obj->btf); 2761 for (j = 1; j <= n; j++) { 2762 t = btf_type_by_id(obj->btf, j); 2763 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2764 continue; 2765 2766 name = btf__str_by_offset(obj->btf, t->name_off); 2767 if (strcmp(name, prog->name) != 0) 2768 continue; 2769 2770 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2771 break; 2772 } 2773 } 2774 2775 sanitize = btf_needs_sanitization(obj); 2776 if (sanitize) { 2777 const void *raw_data; 2778 __u32 sz; 2779 2780 /* clone BTF to sanitize a copy and leave the original intact */ 2781 raw_data = btf__get_raw_data(obj->btf, &sz); 2782 kern_btf = btf__new(raw_data, sz); 2783 err = libbpf_get_error(kern_btf); 2784 if (err) 2785 return err; 2786 2787 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2788 btf__set_pointer_size(obj->btf, 8); 2789 bpf_object__sanitize_btf(obj, kern_btf); 2790 } 2791 2792 if (obj->gen_loader) { 2793 __u32 raw_size = 0; 2794 const void *raw_data = btf__get_raw_data(kern_btf, &raw_size); 2795 2796 if (!raw_data) 2797 return -ENOMEM; 2798 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 2799 /* Pretend to have valid FD to pass various fd >= 0 checks. 2800 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 2801 */ 2802 btf__set_fd(kern_btf, 0); 2803 } else { 2804 err = btf__load_into_kernel(kern_btf); 2805 } 2806 if (sanitize) { 2807 if (!err) { 2808 /* move fd to libbpf's BTF */ 2809 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2810 btf__set_fd(kern_btf, -1); 2811 } 2812 btf__free(kern_btf); 2813 } 2814 report: 2815 if (err) { 2816 btf_mandatory = kernel_needs_btf(obj); 2817 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2818 btf_mandatory ? "BTF is mandatory, can't proceed." 2819 : "BTF is optional, ignoring."); 2820 if (!btf_mandatory) 2821 err = 0; 2822 } 2823 return err; 2824 } 2825 2826 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2827 { 2828 const char *name; 2829 2830 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2831 if (!name) { 2832 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2833 off, obj->path, elf_errmsg(-1)); 2834 return NULL; 2835 } 2836 2837 return name; 2838 } 2839 2840 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2841 { 2842 const char *name; 2843 2844 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2845 if (!name) { 2846 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2847 off, obj->path, elf_errmsg(-1)); 2848 return NULL; 2849 } 2850 2851 return name; 2852 } 2853 2854 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2855 { 2856 Elf_Scn *scn; 2857 2858 scn = elf_getscn(obj->efile.elf, idx); 2859 if (!scn) { 2860 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2861 idx, obj->path, elf_errmsg(-1)); 2862 return NULL; 2863 } 2864 return scn; 2865 } 2866 2867 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2868 { 2869 Elf_Scn *scn = NULL; 2870 Elf *elf = obj->efile.elf; 2871 const char *sec_name; 2872 2873 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2874 sec_name = elf_sec_name(obj, scn); 2875 if (!sec_name) 2876 return NULL; 2877 2878 if (strcmp(sec_name, name) != 0) 2879 continue; 2880 2881 return scn; 2882 } 2883 return NULL; 2884 } 2885 2886 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2887 { 2888 if (!scn) 2889 return -EINVAL; 2890 2891 if (gelf_getshdr(scn, hdr) != hdr) { 2892 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2893 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2894 return -EINVAL; 2895 } 2896 2897 return 0; 2898 } 2899 2900 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2901 { 2902 const char *name; 2903 GElf_Shdr sh; 2904 2905 if (!scn) 2906 return NULL; 2907 2908 if (elf_sec_hdr(obj, scn, &sh)) 2909 return NULL; 2910 2911 name = elf_sec_str(obj, sh.sh_name); 2912 if (!name) { 2913 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2914 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2915 return NULL; 2916 } 2917 2918 return name; 2919 } 2920 2921 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2922 { 2923 Elf_Data *data; 2924 2925 if (!scn) 2926 return NULL; 2927 2928 data = elf_getdata(scn, 0); 2929 if (!data) { 2930 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2931 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2932 obj->path, elf_errmsg(-1)); 2933 return NULL; 2934 } 2935 2936 return data; 2937 } 2938 2939 static bool is_sec_name_dwarf(const char *name) 2940 { 2941 /* approximation, but the actual list is too long */ 2942 return str_has_pfx(name, ".debug_"); 2943 } 2944 2945 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2946 { 2947 /* no special handling of .strtab */ 2948 if (hdr->sh_type == SHT_STRTAB) 2949 return true; 2950 2951 /* ignore .llvm_addrsig section as well */ 2952 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 2953 return true; 2954 2955 /* no subprograms will lead to an empty .text section, ignore it */ 2956 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2957 strcmp(name, ".text") == 0) 2958 return true; 2959 2960 /* DWARF sections */ 2961 if (is_sec_name_dwarf(name)) 2962 return true; 2963 2964 if (str_has_pfx(name, ".rel")) { 2965 name += sizeof(".rel") - 1; 2966 /* DWARF section relocations */ 2967 if (is_sec_name_dwarf(name)) 2968 return true; 2969 2970 /* .BTF and .BTF.ext don't need relocations */ 2971 if (strcmp(name, BTF_ELF_SEC) == 0 || 2972 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2973 return true; 2974 } 2975 2976 return false; 2977 } 2978 2979 static int cmp_progs(const void *_a, const void *_b) 2980 { 2981 const struct bpf_program *a = _a; 2982 const struct bpf_program *b = _b; 2983 2984 if (a->sec_idx != b->sec_idx) 2985 return a->sec_idx < b->sec_idx ? -1 : 1; 2986 2987 /* sec_insn_off can't be the same within the section */ 2988 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2989 } 2990 2991 static int bpf_object__elf_collect(struct bpf_object *obj) 2992 { 2993 Elf *elf = obj->efile.elf; 2994 Elf_Data *btf_ext_data = NULL; 2995 Elf_Data *btf_data = NULL; 2996 int idx = 0, err = 0; 2997 const char *name; 2998 Elf_Data *data; 2999 Elf_Scn *scn; 3000 GElf_Shdr sh; 3001 3002 /* a bunch of ELF parsing functionality depends on processing symbols, 3003 * so do the first pass and find the symbol table 3004 */ 3005 scn = NULL; 3006 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3007 if (elf_sec_hdr(obj, scn, &sh)) 3008 return -LIBBPF_ERRNO__FORMAT; 3009 3010 if (sh.sh_type == SHT_SYMTAB) { 3011 if (obj->efile.symbols) { 3012 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3013 return -LIBBPF_ERRNO__FORMAT; 3014 } 3015 3016 data = elf_sec_data(obj, scn); 3017 if (!data) 3018 return -LIBBPF_ERRNO__FORMAT; 3019 3020 obj->efile.symbols = data; 3021 obj->efile.symbols_shndx = elf_ndxscn(scn); 3022 obj->efile.strtabidx = sh.sh_link; 3023 } 3024 } 3025 3026 if (!obj->efile.symbols) { 3027 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3028 obj->path); 3029 return -ENOENT; 3030 } 3031 3032 scn = NULL; 3033 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3034 idx++; 3035 3036 if (elf_sec_hdr(obj, scn, &sh)) 3037 return -LIBBPF_ERRNO__FORMAT; 3038 3039 name = elf_sec_str(obj, sh.sh_name); 3040 if (!name) 3041 return -LIBBPF_ERRNO__FORMAT; 3042 3043 if (ignore_elf_section(&sh, name)) 3044 continue; 3045 3046 data = elf_sec_data(obj, scn); 3047 if (!data) 3048 return -LIBBPF_ERRNO__FORMAT; 3049 3050 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3051 idx, name, (unsigned long)data->d_size, 3052 (int)sh.sh_link, (unsigned long)sh.sh_flags, 3053 (int)sh.sh_type); 3054 3055 if (strcmp(name, "license") == 0) { 3056 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3057 if (err) 3058 return err; 3059 } else if (strcmp(name, "version") == 0) { 3060 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3061 if (err) 3062 return err; 3063 } else if (strcmp(name, "maps") == 0) { 3064 obj->efile.maps_shndx = idx; 3065 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3066 obj->efile.btf_maps_shndx = idx; 3067 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3068 btf_data = data; 3069 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3070 btf_ext_data = data; 3071 } else if (sh.sh_type == SHT_SYMTAB) { 3072 /* already processed during the first pass above */ 3073 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 3074 if (sh.sh_flags & SHF_EXECINSTR) { 3075 if (strcmp(name, ".text") == 0) 3076 obj->efile.text_shndx = idx; 3077 err = bpf_object__add_programs(obj, data, name, idx); 3078 if (err) 3079 return err; 3080 } else if (strcmp(name, DATA_SEC) == 0) { 3081 obj->efile.data = data; 3082 obj->efile.data_shndx = idx; 3083 } else if (strcmp(name, RODATA_SEC) == 0) { 3084 obj->efile.rodata = data; 3085 obj->efile.rodata_shndx = idx; 3086 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3087 obj->efile.st_ops_data = data; 3088 obj->efile.st_ops_shndx = idx; 3089 } else { 3090 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3091 idx, name); 3092 } 3093 } else if (sh.sh_type == SHT_REL) { 3094 int nr_sects = obj->efile.nr_reloc_sects; 3095 void *sects = obj->efile.reloc_sects; 3096 int sec = sh.sh_info; /* points to other section */ 3097 3098 /* Only do relo for section with exec instructions */ 3099 if (!section_have_execinstr(obj, sec) && 3100 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3101 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3102 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3103 idx, name, sec, 3104 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 3105 continue; 3106 } 3107 3108 sects = libbpf_reallocarray(sects, nr_sects + 1, 3109 sizeof(*obj->efile.reloc_sects)); 3110 if (!sects) 3111 return -ENOMEM; 3112 3113 obj->efile.reloc_sects = sects; 3114 obj->efile.nr_reloc_sects++; 3115 3116 obj->efile.reloc_sects[nr_sects].shdr = sh; 3117 obj->efile.reloc_sects[nr_sects].data = data; 3118 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3119 obj->efile.bss = data; 3120 obj->efile.bss_shndx = idx; 3121 } else { 3122 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3123 (size_t)sh.sh_size); 3124 } 3125 } 3126 3127 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3128 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3129 return -LIBBPF_ERRNO__FORMAT; 3130 } 3131 3132 /* sort BPF programs by section name and in-section instruction offset 3133 * for faster search */ 3134 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3135 3136 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3137 } 3138 3139 static bool sym_is_extern(const GElf_Sym *sym) 3140 { 3141 int bind = GELF_ST_BIND(sym->st_info); 3142 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3143 return sym->st_shndx == SHN_UNDEF && 3144 (bind == STB_GLOBAL || bind == STB_WEAK) && 3145 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 3146 } 3147 3148 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx) 3149 { 3150 int bind = GELF_ST_BIND(sym->st_info); 3151 int type = GELF_ST_TYPE(sym->st_info); 3152 3153 /* in .text section */ 3154 if (sym->st_shndx != text_shndx) 3155 return false; 3156 3157 /* local function */ 3158 if (bind == STB_LOCAL && type == STT_SECTION) 3159 return true; 3160 3161 /* global function */ 3162 return bind == STB_GLOBAL && type == STT_FUNC; 3163 } 3164 3165 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3166 { 3167 const struct btf_type *t; 3168 const char *tname; 3169 int i, n; 3170 3171 if (!btf) 3172 return -ESRCH; 3173 3174 n = btf__get_nr_types(btf); 3175 for (i = 1; i <= n; i++) { 3176 t = btf__type_by_id(btf, i); 3177 3178 if (!btf_is_var(t) && !btf_is_func(t)) 3179 continue; 3180 3181 tname = btf__name_by_offset(btf, t->name_off); 3182 if (strcmp(tname, ext_name)) 3183 continue; 3184 3185 if (btf_is_var(t) && 3186 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3187 return -EINVAL; 3188 3189 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3190 return -EINVAL; 3191 3192 return i; 3193 } 3194 3195 return -ENOENT; 3196 } 3197 3198 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3199 const struct btf_var_secinfo *vs; 3200 const struct btf_type *t; 3201 int i, j, n; 3202 3203 if (!btf) 3204 return -ESRCH; 3205 3206 n = btf__get_nr_types(btf); 3207 for (i = 1; i <= n; i++) { 3208 t = btf__type_by_id(btf, i); 3209 3210 if (!btf_is_datasec(t)) 3211 continue; 3212 3213 vs = btf_var_secinfos(t); 3214 for (j = 0; j < btf_vlen(t); j++, vs++) { 3215 if (vs->type == ext_btf_id) 3216 return i; 3217 } 3218 } 3219 3220 return -ENOENT; 3221 } 3222 3223 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3224 bool *is_signed) 3225 { 3226 const struct btf_type *t; 3227 const char *name; 3228 3229 t = skip_mods_and_typedefs(btf, id, NULL); 3230 name = btf__name_by_offset(btf, t->name_off); 3231 3232 if (is_signed) 3233 *is_signed = false; 3234 switch (btf_kind(t)) { 3235 case BTF_KIND_INT: { 3236 int enc = btf_int_encoding(t); 3237 3238 if (enc & BTF_INT_BOOL) 3239 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3240 if (is_signed) 3241 *is_signed = enc & BTF_INT_SIGNED; 3242 if (t->size == 1) 3243 return KCFG_CHAR; 3244 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3245 return KCFG_UNKNOWN; 3246 return KCFG_INT; 3247 } 3248 case BTF_KIND_ENUM: 3249 if (t->size != 4) 3250 return KCFG_UNKNOWN; 3251 if (strcmp(name, "libbpf_tristate")) 3252 return KCFG_UNKNOWN; 3253 return KCFG_TRISTATE; 3254 case BTF_KIND_ARRAY: 3255 if (btf_array(t)->nelems == 0) 3256 return KCFG_UNKNOWN; 3257 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3258 return KCFG_UNKNOWN; 3259 return KCFG_CHAR_ARR; 3260 default: 3261 return KCFG_UNKNOWN; 3262 } 3263 } 3264 3265 static int cmp_externs(const void *_a, const void *_b) 3266 { 3267 const struct extern_desc *a = _a; 3268 const struct extern_desc *b = _b; 3269 3270 if (a->type != b->type) 3271 return a->type < b->type ? -1 : 1; 3272 3273 if (a->type == EXT_KCFG) { 3274 /* descending order by alignment requirements */ 3275 if (a->kcfg.align != b->kcfg.align) 3276 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3277 /* ascending order by size, within same alignment class */ 3278 if (a->kcfg.sz != b->kcfg.sz) 3279 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3280 } 3281 3282 /* resolve ties by name */ 3283 return strcmp(a->name, b->name); 3284 } 3285 3286 static int find_int_btf_id(const struct btf *btf) 3287 { 3288 const struct btf_type *t; 3289 int i, n; 3290 3291 n = btf__get_nr_types(btf); 3292 for (i = 1; i <= n; i++) { 3293 t = btf__type_by_id(btf, i); 3294 3295 if (btf_is_int(t) && btf_int_bits(t) == 32) 3296 return i; 3297 } 3298 3299 return 0; 3300 } 3301 3302 static int add_dummy_ksym_var(struct btf *btf) 3303 { 3304 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3305 const struct btf_var_secinfo *vs; 3306 const struct btf_type *sec; 3307 3308 if (!btf) 3309 return 0; 3310 3311 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3312 BTF_KIND_DATASEC); 3313 if (sec_btf_id < 0) 3314 return 0; 3315 3316 sec = btf__type_by_id(btf, sec_btf_id); 3317 vs = btf_var_secinfos(sec); 3318 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3319 const struct btf_type *vt; 3320 3321 vt = btf__type_by_id(btf, vs->type); 3322 if (btf_is_func(vt)) 3323 break; 3324 } 3325 3326 /* No func in ksyms sec. No need to add dummy var. */ 3327 if (i == btf_vlen(sec)) 3328 return 0; 3329 3330 int_btf_id = find_int_btf_id(btf); 3331 dummy_var_btf_id = btf__add_var(btf, 3332 "dummy_ksym", 3333 BTF_VAR_GLOBAL_ALLOCATED, 3334 int_btf_id); 3335 if (dummy_var_btf_id < 0) 3336 pr_warn("cannot create a dummy_ksym var\n"); 3337 3338 return dummy_var_btf_id; 3339 } 3340 3341 static int bpf_object__collect_externs(struct bpf_object *obj) 3342 { 3343 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3344 const struct btf_type *t; 3345 struct extern_desc *ext; 3346 int i, n, off, dummy_var_btf_id; 3347 const char *ext_name, *sec_name; 3348 Elf_Scn *scn; 3349 GElf_Shdr sh; 3350 3351 if (!obj->efile.symbols) 3352 return 0; 3353 3354 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3355 if (elf_sec_hdr(obj, scn, &sh)) 3356 return -LIBBPF_ERRNO__FORMAT; 3357 3358 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3359 if (dummy_var_btf_id < 0) 3360 return dummy_var_btf_id; 3361 3362 n = sh.sh_size / sh.sh_entsize; 3363 pr_debug("looking for externs among %d symbols...\n", n); 3364 3365 for (i = 0; i < n; i++) { 3366 GElf_Sym sym; 3367 3368 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3369 return -LIBBPF_ERRNO__FORMAT; 3370 if (!sym_is_extern(&sym)) 3371 continue; 3372 ext_name = elf_sym_str(obj, sym.st_name); 3373 if (!ext_name || !ext_name[0]) 3374 continue; 3375 3376 ext = obj->externs; 3377 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3378 if (!ext) 3379 return -ENOMEM; 3380 obj->externs = ext; 3381 ext = &ext[obj->nr_extern]; 3382 memset(ext, 0, sizeof(*ext)); 3383 obj->nr_extern++; 3384 3385 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3386 if (ext->btf_id <= 0) { 3387 pr_warn("failed to find BTF for extern '%s': %d\n", 3388 ext_name, ext->btf_id); 3389 return ext->btf_id; 3390 } 3391 t = btf__type_by_id(obj->btf, ext->btf_id); 3392 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3393 ext->sym_idx = i; 3394 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3395 3396 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3397 if (ext->sec_btf_id <= 0) { 3398 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3399 ext_name, ext->btf_id, ext->sec_btf_id); 3400 return ext->sec_btf_id; 3401 } 3402 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3403 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3404 3405 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3406 if (btf_is_func(t)) { 3407 pr_warn("extern function %s is unsupported under %s section\n", 3408 ext->name, KCONFIG_SEC); 3409 return -ENOTSUP; 3410 } 3411 kcfg_sec = sec; 3412 ext->type = EXT_KCFG; 3413 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3414 if (ext->kcfg.sz <= 0) { 3415 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3416 ext_name, ext->kcfg.sz); 3417 return ext->kcfg.sz; 3418 } 3419 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3420 if (ext->kcfg.align <= 0) { 3421 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3422 ext_name, ext->kcfg.align); 3423 return -EINVAL; 3424 } 3425 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3426 &ext->kcfg.is_signed); 3427 if (ext->kcfg.type == KCFG_UNKNOWN) { 3428 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3429 return -ENOTSUP; 3430 } 3431 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3432 if (btf_is_func(t) && ext->is_weak) { 3433 pr_warn("extern weak function %s is unsupported\n", 3434 ext->name); 3435 return -ENOTSUP; 3436 } 3437 ksym_sec = sec; 3438 ext->type = EXT_KSYM; 3439 skip_mods_and_typedefs(obj->btf, t->type, 3440 &ext->ksym.type_id); 3441 } else { 3442 pr_warn("unrecognized extern section '%s'\n", sec_name); 3443 return -ENOTSUP; 3444 } 3445 } 3446 pr_debug("collected %d externs total\n", obj->nr_extern); 3447 3448 if (!obj->nr_extern) 3449 return 0; 3450 3451 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3452 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3453 3454 /* for .ksyms section, we need to turn all externs into allocated 3455 * variables in BTF to pass kernel verification; we do this by 3456 * pretending that each extern is a 8-byte variable 3457 */ 3458 if (ksym_sec) { 3459 /* find existing 4-byte integer type in BTF to use for fake 3460 * extern variables in DATASEC 3461 */ 3462 int int_btf_id = find_int_btf_id(obj->btf); 3463 /* For extern function, a dummy_var added earlier 3464 * will be used to replace the vs->type and 3465 * its name string will be used to refill 3466 * the missing param's name. 3467 */ 3468 const struct btf_type *dummy_var; 3469 3470 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3471 for (i = 0; i < obj->nr_extern; i++) { 3472 ext = &obj->externs[i]; 3473 if (ext->type != EXT_KSYM) 3474 continue; 3475 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3476 i, ext->sym_idx, ext->name); 3477 } 3478 3479 sec = ksym_sec; 3480 n = btf_vlen(sec); 3481 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3482 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3483 struct btf_type *vt; 3484 3485 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3486 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3487 ext = find_extern_by_name(obj, ext_name); 3488 if (!ext) { 3489 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3490 btf_kind_str(vt), ext_name); 3491 return -ESRCH; 3492 } 3493 if (btf_is_func(vt)) { 3494 const struct btf_type *func_proto; 3495 struct btf_param *param; 3496 int j; 3497 3498 func_proto = btf__type_by_id(obj->btf, 3499 vt->type); 3500 param = btf_params(func_proto); 3501 /* Reuse the dummy_var string if the 3502 * func proto does not have param name. 3503 */ 3504 for (j = 0; j < btf_vlen(func_proto); j++) 3505 if (param[j].type && !param[j].name_off) 3506 param[j].name_off = 3507 dummy_var->name_off; 3508 vs->type = dummy_var_btf_id; 3509 vt->info &= ~0xffff; 3510 vt->info |= BTF_FUNC_GLOBAL; 3511 } else { 3512 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3513 vt->type = int_btf_id; 3514 } 3515 vs->offset = off; 3516 vs->size = sizeof(int); 3517 } 3518 sec->size = off; 3519 } 3520 3521 if (kcfg_sec) { 3522 sec = kcfg_sec; 3523 /* for kcfg externs calculate their offsets within a .kconfig map */ 3524 off = 0; 3525 for (i = 0; i < obj->nr_extern; i++) { 3526 ext = &obj->externs[i]; 3527 if (ext->type != EXT_KCFG) 3528 continue; 3529 3530 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3531 off = ext->kcfg.data_off + ext->kcfg.sz; 3532 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3533 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3534 } 3535 sec->size = off; 3536 n = btf_vlen(sec); 3537 for (i = 0; i < n; i++) { 3538 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3539 3540 t = btf__type_by_id(obj->btf, vs->type); 3541 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3542 ext = find_extern_by_name(obj, ext_name); 3543 if (!ext) { 3544 pr_warn("failed to find extern definition for BTF var '%s'\n", 3545 ext_name); 3546 return -ESRCH; 3547 } 3548 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3549 vs->offset = ext->kcfg.data_off; 3550 } 3551 } 3552 return 0; 3553 } 3554 3555 struct bpf_program * 3556 bpf_object__find_program_by_title(const struct bpf_object *obj, 3557 const char *title) 3558 { 3559 struct bpf_program *pos; 3560 3561 bpf_object__for_each_program(pos, obj) { 3562 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3563 return pos; 3564 } 3565 return errno = ENOENT, NULL; 3566 } 3567 3568 static bool prog_is_subprog(const struct bpf_object *obj, 3569 const struct bpf_program *prog) 3570 { 3571 /* For legacy reasons, libbpf supports an entry-point BPF programs 3572 * without SEC() attribute, i.e., those in the .text section. But if 3573 * there are 2 or more such programs in the .text section, they all 3574 * must be subprograms called from entry-point BPF programs in 3575 * designated SEC()'tions, otherwise there is no way to distinguish 3576 * which of those programs should be loaded vs which are a subprogram. 3577 * Similarly, if there is a function/program in .text and at least one 3578 * other BPF program with custom SEC() attribute, then we just assume 3579 * .text programs are subprograms (even if they are not called from 3580 * other programs), because libbpf never explicitly supported mixing 3581 * SEC()-designated BPF programs and .text entry-point BPF programs. 3582 */ 3583 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3584 } 3585 3586 struct bpf_program * 3587 bpf_object__find_program_by_name(const struct bpf_object *obj, 3588 const char *name) 3589 { 3590 struct bpf_program *prog; 3591 3592 bpf_object__for_each_program(prog, obj) { 3593 if (prog_is_subprog(obj, prog)) 3594 continue; 3595 if (!strcmp(prog->name, name)) 3596 return prog; 3597 } 3598 return errno = ENOENT, NULL; 3599 } 3600 3601 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3602 int shndx) 3603 { 3604 return shndx == obj->efile.data_shndx || 3605 shndx == obj->efile.bss_shndx || 3606 shndx == obj->efile.rodata_shndx; 3607 } 3608 3609 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3610 int shndx) 3611 { 3612 return shndx == obj->efile.maps_shndx || 3613 shndx == obj->efile.btf_maps_shndx; 3614 } 3615 3616 static enum libbpf_map_type 3617 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3618 { 3619 if (shndx == obj->efile.data_shndx) 3620 return LIBBPF_MAP_DATA; 3621 else if (shndx == obj->efile.bss_shndx) 3622 return LIBBPF_MAP_BSS; 3623 else if (shndx == obj->efile.rodata_shndx) 3624 return LIBBPF_MAP_RODATA; 3625 else if (shndx == obj->efile.symbols_shndx) 3626 return LIBBPF_MAP_KCONFIG; 3627 else 3628 return LIBBPF_MAP_UNSPEC; 3629 } 3630 3631 static int bpf_program__record_reloc(struct bpf_program *prog, 3632 struct reloc_desc *reloc_desc, 3633 __u32 insn_idx, const char *sym_name, 3634 const GElf_Sym *sym, const GElf_Rel *rel) 3635 { 3636 struct bpf_insn *insn = &prog->insns[insn_idx]; 3637 size_t map_idx, nr_maps = prog->obj->nr_maps; 3638 struct bpf_object *obj = prog->obj; 3639 __u32 shdr_idx = sym->st_shndx; 3640 enum libbpf_map_type type; 3641 const char *sym_sec_name; 3642 struct bpf_map *map; 3643 3644 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3645 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3646 prog->name, sym_name, insn_idx, insn->code); 3647 return -LIBBPF_ERRNO__RELOC; 3648 } 3649 3650 if (sym_is_extern(sym)) { 3651 int sym_idx = GELF_R_SYM(rel->r_info); 3652 int i, n = obj->nr_extern; 3653 struct extern_desc *ext; 3654 3655 for (i = 0; i < n; i++) { 3656 ext = &obj->externs[i]; 3657 if (ext->sym_idx == sym_idx) 3658 break; 3659 } 3660 if (i >= n) { 3661 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3662 prog->name, sym_name, sym_idx); 3663 return -LIBBPF_ERRNO__RELOC; 3664 } 3665 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3666 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3667 if (insn->code == (BPF_JMP | BPF_CALL)) 3668 reloc_desc->type = RELO_EXTERN_FUNC; 3669 else 3670 reloc_desc->type = RELO_EXTERN_VAR; 3671 reloc_desc->insn_idx = insn_idx; 3672 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3673 return 0; 3674 } 3675 3676 /* sub-program call relocation */ 3677 if (is_call_insn(insn)) { 3678 if (insn->src_reg != BPF_PSEUDO_CALL) { 3679 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3680 return -LIBBPF_ERRNO__RELOC; 3681 } 3682 /* text_shndx can be 0, if no default "main" program exists */ 3683 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3684 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3685 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3686 prog->name, sym_name, sym_sec_name); 3687 return -LIBBPF_ERRNO__RELOC; 3688 } 3689 if (sym->st_value % BPF_INSN_SZ) { 3690 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3691 prog->name, sym_name, (size_t)sym->st_value); 3692 return -LIBBPF_ERRNO__RELOC; 3693 } 3694 reloc_desc->type = RELO_CALL; 3695 reloc_desc->insn_idx = insn_idx; 3696 reloc_desc->sym_off = sym->st_value; 3697 return 0; 3698 } 3699 3700 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3701 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3702 prog->name, sym_name, shdr_idx); 3703 return -LIBBPF_ERRNO__RELOC; 3704 } 3705 3706 /* loading subprog addresses */ 3707 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3708 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3709 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3710 */ 3711 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3712 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3713 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3714 return -LIBBPF_ERRNO__RELOC; 3715 } 3716 3717 reloc_desc->type = RELO_SUBPROG_ADDR; 3718 reloc_desc->insn_idx = insn_idx; 3719 reloc_desc->sym_off = sym->st_value; 3720 return 0; 3721 } 3722 3723 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3724 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3725 3726 /* generic map reference relocation */ 3727 if (type == LIBBPF_MAP_UNSPEC) { 3728 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3729 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3730 prog->name, sym_name, sym_sec_name); 3731 return -LIBBPF_ERRNO__RELOC; 3732 } 3733 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3734 map = &obj->maps[map_idx]; 3735 if (map->libbpf_type != type || 3736 map->sec_idx != sym->st_shndx || 3737 map->sec_offset != sym->st_value) 3738 continue; 3739 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3740 prog->name, map_idx, map->name, map->sec_idx, 3741 map->sec_offset, insn_idx); 3742 break; 3743 } 3744 if (map_idx >= nr_maps) { 3745 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3746 prog->name, sym_sec_name, (size_t)sym->st_value); 3747 return -LIBBPF_ERRNO__RELOC; 3748 } 3749 reloc_desc->type = RELO_LD64; 3750 reloc_desc->insn_idx = insn_idx; 3751 reloc_desc->map_idx = map_idx; 3752 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3753 return 0; 3754 } 3755 3756 /* global data map relocation */ 3757 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3758 pr_warn("prog '%s': bad data relo against section '%s'\n", 3759 prog->name, sym_sec_name); 3760 return -LIBBPF_ERRNO__RELOC; 3761 } 3762 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3763 map = &obj->maps[map_idx]; 3764 if (map->libbpf_type != type) 3765 continue; 3766 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3767 prog->name, map_idx, map->name, map->sec_idx, 3768 map->sec_offset, insn_idx); 3769 break; 3770 } 3771 if (map_idx >= nr_maps) { 3772 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3773 prog->name, sym_sec_name); 3774 return -LIBBPF_ERRNO__RELOC; 3775 } 3776 3777 reloc_desc->type = RELO_DATA; 3778 reloc_desc->insn_idx = insn_idx; 3779 reloc_desc->map_idx = map_idx; 3780 reloc_desc->sym_off = sym->st_value; 3781 return 0; 3782 } 3783 3784 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3785 { 3786 return insn_idx >= prog->sec_insn_off && 3787 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3788 } 3789 3790 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3791 size_t sec_idx, size_t insn_idx) 3792 { 3793 int l = 0, r = obj->nr_programs - 1, m; 3794 struct bpf_program *prog; 3795 3796 while (l < r) { 3797 m = l + (r - l + 1) / 2; 3798 prog = &obj->programs[m]; 3799 3800 if (prog->sec_idx < sec_idx || 3801 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3802 l = m; 3803 else 3804 r = m - 1; 3805 } 3806 /* matching program could be at index l, but it still might be the 3807 * wrong one, so we need to double check conditions for the last time 3808 */ 3809 prog = &obj->programs[l]; 3810 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3811 return prog; 3812 return NULL; 3813 } 3814 3815 static int 3816 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3817 { 3818 Elf_Data *symbols = obj->efile.symbols; 3819 const char *relo_sec_name, *sec_name; 3820 size_t sec_idx = shdr->sh_info; 3821 struct bpf_program *prog; 3822 struct reloc_desc *relos; 3823 int err, i, nrels; 3824 const char *sym_name; 3825 __u32 insn_idx; 3826 Elf_Scn *scn; 3827 Elf_Data *scn_data; 3828 GElf_Sym sym; 3829 GElf_Rel rel; 3830 3831 scn = elf_sec_by_idx(obj, sec_idx); 3832 scn_data = elf_sec_data(obj, scn); 3833 3834 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3835 sec_name = elf_sec_name(obj, scn); 3836 if (!relo_sec_name || !sec_name) 3837 return -EINVAL; 3838 3839 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3840 relo_sec_name, sec_idx, sec_name); 3841 nrels = shdr->sh_size / shdr->sh_entsize; 3842 3843 for (i = 0; i < nrels; i++) { 3844 if (!gelf_getrel(data, i, &rel)) { 3845 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3846 return -LIBBPF_ERRNO__FORMAT; 3847 } 3848 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3849 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3850 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3851 return -LIBBPF_ERRNO__FORMAT; 3852 } 3853 3854 if (rel.r_offset % BPF_INSN_SZ || rel.r_offset >= scn_data->d_size) { 3855 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3856 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3857 return -LIBBPF_ERRNO__FORMAT; 3858 } 3859 3860 insn_idx = rel.r_offset / BPF_INSN_SZ; 3861 /* relocations against static functions are recorded as 3862 * relocations against the section that contains a function; 3863 * in such case, symbol will be STT_SECTION and sym.st_name 3864 * will point to empty string (0), so fetch section name 3865 * instead 3866 */ 3867 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3868 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3869 else 3870 sym_name = elf_sym_str(obj, sym.st_name); 3871 sym_name = sym_name ?: "<?"; 3872 3873 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3874 relo_sec_name, i, insn_idx, sym_name); 3875 3876 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3877 if (!prog) { 3878 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 3879 relo_sec_name, i, sec_name, insn_idx); 3880 continue; 3881 } 3882 3883 relos = libbpf_reallocarray(prog->reloc_desc, 3884 prog->nr_reloc + 1, sizeof(*relos)); 3885 if (!relos) 3886 return -ENOMEM; 3887 prog->reloc_desc = relos; 3888 3889 /* adjust insn_idx to local BPF program frame of reference */ 3890 insn_idx -= prog->sec_insn_off; 3891 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3892 insn_idx, sym_name, &sym, &rel); 3893 if (err) 3894 return err; 3895 3896 prog->nr_reloc++; 3897 } 3898 return 0; 3899 } 3900 3901 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3902 { 3903 struct bpf_map_def *def = &map->def; 3904 __u32 key_type_id = 0, value_type_id = 0; 3905 int ret; 3906 3907 /* if it's BTF-defined map, we don't need to search for type IDs. 3908 * For struct_ops map, it does not need btf_key_type_id and 3909 * btf_value_type_id. 3910 */ 3911 if (map->sec_idx == obj->efile.btf_maps_shndx || 3912 bpf_map__is_struct_ops(map)) 3913 return 0; 3914 3915 if (!bpf_map__is_internal(map)) { 3916 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3917 def->value_size, &key_type_id, 3918 &value_type_id); 3919 } else { 3920 /* 3921 * LLVM annotates global data differently in BTF, that is, 3922 * only as '.data', '.bss' or '.rodata'. 3923 */ 3924 ret = btf__find_by_name(obj->btf, 3925 libbpf_type_to_btf_name[map->libbpf_type]); 3926 } 3927 if (ret < 0) 3928 return ret; 3929 3930 map->btf_key_type_id = key_type_id; 3931 map->btf_value_type_id = bpf_map__is_internal(map) ? 3932 ret : value_type_id; 3933 return 0; 3934 } 3935 3936 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 3937 { 3938 char file[PATH_MAX], buff[4096]; 3939 FILE *fp; 3940 __u32 val; 3941 int err; 3942 3943 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 3944 memset(info, 0, sizeof(*info)); 3945 3946 fp = fopen(file, "r"); 3947 if (!fp) { 3948 err = -errno; 3949 pr_warn("failed to open %s: %d. No procfs support?\n", file, 3950 err); 3951 return err; 3952 } 3953 3954 while (fgets(buff, sizeof(buff), fp)) { 3955 if (sscanf(buff, "map_type:\t%u", &val) == 1) 3956 info->type = val; 3957 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 3958 info->key_size = val; 3959 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 3960 info->value_size = val; 3961 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 3962 info->max_entries = val; 3963 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 3964 info->map_flags = val; 3965 } 3966 3967 fclose(fp); 3968 3969 return 0; 3970 } 3971 3972 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3973 { 3974 struct bpf_map_info info = {}; 3975 __u32 len = sizeof(info); 3976 int new_fd, err; 3977 char *new_name; 3978 3979 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3980 if (err && errno == EINVAL) 3981 err = bpf_get_map_info_from_fdinfo(fd, &info); 3982 if (err) 3983 return libbpf_err(err); 3984 3985 new_name = strdup(info.name); 3986 if (!new_name) 3987 return libbpf_err(-errno); 3988 3989 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3990 if (new_fd < 0) { 3991 err = -errno; 3992 goto err_free_new_name; 3993 } 3994 3995 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3996 if (new_fd < 0) { 3997 err = -errno; 3998 goto err_close_new_fd; 3999 } 4000 4001 err = zclose(map->fd); 4002 if (err) { 4003 err = -errno; 4004 goto err_close_new_fd; 4005 } 4006 free(map->name); 4007 4008 map->fd = new_fd; 4009 map->name = new_name; 4010 map->def.type = info.type; 4011 map->def.key_size = info.key_size; 4012 map->def.value_size = info.value_size; 4013 map->def.max_entries = info.max_entries; 4014 map->def.map_flags = info.map_flags; 4015 map->btf_key_type_id = info.btf_key_type_id; 4016 map->btf_value_type_id = info.btf_value_type_id; 4017 map->reused = true; 4018 4019 return 0; 4020 4021 err_close_new_fd: 4022 close(new_fd); 4023 err_free_new_name: 4024 free(new_name); 4025 return libbpf_err(err); 4026 } 4027 4028 __u32 bpf_map__max_entries(const struct bpf_map *map) 4029 { 4030 return map->def.max_entries; 4031 } 4032 4033 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4034 { 4035 if (!bpf_map_type__is_map_in_map(map->def.type)) 4036 return errno = EINVAL, NULL; 4037 4038 return map->inner_map; 4039 } 4040 4041 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4042 { 4043 if (map->fd >= 0) 4044 return libbpf_err(-EBUSY); 4045 map->def.max_entries = max_entries; 4046 return 0; 4047 } 4048 4049 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4050 { 4051 if (!map || !max_entries) 4052 return libbpf_err(-EINVAL); 4053 4054 return bpf_map__set_max_entries(map, max_entries); 4055 } 4056 4057 static int 4058 bpf_object__probe_loading(struct bpf_object *obj) 4059 { 4060 struct bpf_load_program_attr attr; 4061 char *cp, errmsg[STRERR_BUFSIZE]; 4062 struct bpf_insn insns[] = { 4063 BPF_MOV64_IMM(BPF_REG_0, 0), 4064 BPF_EXIT_INSN(), 4065 }; 4066 int ret; 4067 4068 if (obj->gen_loader) 4069 return 0; 4070 4071 /* make sure basic loading works */ 4072 4073 memset(&attr, 0, sizeof(attr)); 4074 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4075 attr.insns = insns; 4076 attr.insns_cnt = ARRAY_SIZE(insns); 4077 attr.license = "GPL"; 4078 4079 ret = bpf_load_program_xattr(&attr, NULL, 0); 4080 if (ret < 0) { 4081 attr.prog_type = BPF_PROG_TYPE_TRACEPOINT; 4082 ret = bpf_load_program_xattr(&attr, NULL, 0); 4083 } 4084 if (ret < 0) { 4085 ret = errno; 4086 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4087 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4088 "program. Make sure your kernel supports BPF " 4089 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4090 "set to big enough value.\n", __func__, cp, ret); 4091 return -ret; 4092 } 4093 close(ret); 4094 4095 return 0; 4096 } 4097 4098 static int probe_fd(int fd) 4099 { 4100 if (fd >= 0) 4101 close(fd); 4102 return fd >= 0; 4103 } 4104 4105 static int probe_kern_prog_name(void) 4106 { 4107 struct bpf_load_program_attr attr; 4108 struct bpf_insn insns[] = { 4109 BPF_MOV64_IMM(BPF_REG_0, 0), 4110 BPF_EXIT_INSN(), 4111 }; 4112 int ret; 4113 4114 /* make sure loading with name works */ 4115 4116 memset(&attr, 0, sizeof(attr)); 4117 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4118 attr.insns = insns; 4119 attr.insns_cnt = ARRAY_SIZE(insns); 4120 attr.license = "GPL"; 4121 attr.name = "test"; 4122 ret = bpf_load_program_xattr(&attr, NULL, 0); 4123 return probe_fd(ret); 4124 } 4125 4126 static int probe_kern_global_data(void) 4127 { 4128 struct bpf_load_program_attr prg_attr; 4129 struct bpf_create_map_attr map_attr; 4130 char *cp, errmsg[STRERR_BUFSIZE]; 4131 struct bpf_insn insns[] = { 4132 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4133 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4134 BPF_MOV64_IMM(BPF_REG_0, 0), 4135 BPF_EXIT_INSN(), 4136 }; 4137 int ret, map; 4138 4139 memset(&map_attr, 0, sizeof(map_attr)); 4140 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4141 map_attr.key_size = sizeof(int); 4142 map_attr.value_size = 32; 4143 map_attr.max_entries = 1; 4144 4145 map = bpf_create_map_xattr(&map_attr); 4146 if (map < 0) { 4147 ret = -errno; 4148 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4149 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4150 __func__, cp, -ret); 4151 return ret; 4152 } 4153 4154 insns[0].imm = map; 4155 4156 memset(&prg_attr, 0, sizeof(prg_attr)); 4157 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4158 prg_attr.insns = insns; 4159 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4160 prg_attr.license = "GPL"; 4161 4162 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 4163 close(map); 4164 return probe_fd(ret); 4165 } 4166 4167 static int probe_kern_btf(void) 4168 { 4169 static const char strs[] = "\0int"; 4170 __u32 types[] = { 4171 /* int */ 4172 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4173 }; 4174 4175 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4176 strs, sizeof(strs))); 4177 } 4178 4179 static int probe_kern_btf_func(void) 4180 { 4181 static const char strs[] = "\0int\0x\0a"; 4182 /* void x(int a) {} */ 4183 __u32 types[] = { 4184 /* int */ 4185 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4186 /* FUNC_PROTO */ /* [2] */ 4187 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4188 BTF_PARAM_ENC(7, 1), 4189 /* FUNC x */ /* [3] */ 4190 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4191 }; 4192 4193 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4194 strs, sizeof(strs))); 4195 } 4196 4197 static int probe_kern_btf_func_global(void) 4198 { 4199 static const char strs[] = "\0int\0x\0a"; 4200 /* static void x(int a) {} */ 4201 __u32 types[] = { 4202 /* int */ 4203 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4204 /* FUNC_PROTO */ /* [2] */ 4205 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4206 BTF_PARAM_ENC(7, 1), 4207 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4208 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4209 }; 4210 4211 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4212 strs, sizeof(strs))); 4213 } 4214 4215 static int probe_kern_btf_datasec(void) 4216 { 4217 static const char strs[] = "\0x\0.data"; 4218 /* static int a; */ 4219 __u32 types[] = { 4220 /* int */ 4221 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4222 /* VAR x */ /* [2] */ 4223 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4224 BTF_VAR_STATIC, 4225 /* DATASEC val */ /* [3] */ 4226 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4227 BTF_VAR_SECINFO_ENC(2, 0, 4), 4228 }; 4229 4230 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4231 strs, sizeof(strs))); 4232 } 4233 4234 static int probe_kern_btf_float(void) 4235 { 4236 static const char strs[] = "\0float"; 4237 __u32 types[] = { 4238 /* float */ 4239 BTF_TYPE_FLOAT_ENC(1, 4), 4240 }; 4241 4242 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4243 strs, sizeof(strs))); 4244 } 4245 4246 static int probe_kern_btf_tag(void) 4247 { 4248 static const char strs[] = "\0tag"; 4249 __u32 types[] = { 4250 /* int */ 4251 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4252 /* VAR x */ /* [2] */ 4253 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4254 BTF_VAR_STATIC, 4255 /* attr */ 4256 BTF_TYPE_TAG_ENC(1, 2, -1), 4257 }; 4258 4259 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4260 strs, sizeof(strs))); 4261 } 4262 4263 static int probe_kern_array_mmap(void) 4264 { 4265 struct bpf_create_map_attr attr = { 4266 .map_type = BPF_MAP_TYPE_ARRAY, 4267 .map_flags = BPF_F_MMAPABLE, 4268 .key_size = sizeof(int), 4269 .value_size = sizeof(int), 4270 .max_entries = 1, 4271 }; 4272 4273 return probe_fd(bpf_create_map_xattr(&attr)); 4274 } 4275 4276 static int probe_kern_exp_attach_type(void) 4277 { 4278 struct bpf_load_program_attr attr; 4279 struct bpf_insn insns[] = { 4280 BPF_MOV64_IMM(BPF_REG_0, 0), 4281 BPF_EXIT_INSN(), 4282 }; 4283 4284 memset(&attr, 0, sizeof(attr)); 4285 /* use any valid combination of program type and (optional) 4286 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4287 * to see if kernel supports expected_attach_type field for 4288 * BPF_PROG_LOAD command 4289 */ 4290 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 4291 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 4292 attr.insns = insns; 4293 attr.insns_cnt = ARRAY_SIZE(insns); 4294 attr.license = "GPL"; 4295 4296 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4297 } 4298 4299 static int probe_kern_probe_read_kernel(void) 4300 { 4301 struct bpf_load_program_attr attr; 4302 struct bpf_insn insns[] = { 4303 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4304 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4305 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4306 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4307 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4308 BPF_EXIT_INSN(), 4309 }; 4310 4311 memset(&attr, 0, sizeof(attr)); 4312 attr.prog_type = BPF_PROG_TYPE_KPROBE; 4313 attr.insns = insns; 4314 attr.insns_cnt = ARRAY_SIZE(insns); 4315 attr.license = "GPL"; 4316 4317 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4318 } 4319 4320 static int probe_prog_bind_map(void) 4321 { 4322 struct bpf_load_program_attr prg_attr; 4323 struct bpf_create_map_attr map_attr; 4324 char *cp, errmsg[STRERR_BUFSIZE]; 4325 struct bpf_insn insns[] = { 4326 BPF_MOV64_IMM(BPF_REG_0, 0), 4327 BPF_EXIT_INSN(), 4328 }; 4329 int ret, map, prog; 4330 4331 memset(&map_attr, 0, sizeof(map_attr)); 4332 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4333 map_attr.key_size = sizeof(int); 4334 map_attr.value_size = 32; 4335 map_attr.max_entries = 1; 4336 4337 map = bpf_create_map_xattr(&map_attr); 4338 if (map < 0) { 4339 ret = -errno; 4340 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4341 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4342 __func__, cp, -ret); 4343 return ret; 4344 } 4345 4346 memset(&prg_attr, 0, sizeof(prg_attr)); 4347 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4348 prg_attr.insns = insns; 4349 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4350 prg_attr.license = "GPL"; 4351 4352 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 4353 if (prog < 0) { 4354 close(map); 4355 return 0; 4356 } 4357 4358 ret = bpf_prog_bind_map(prog, map, NULL); 4359 4360 close(map); 4361 close(prog); 4362 4363 return ret >= 0; 4364 } 4365 4366 static int probe_module_btf(void) 4367 { 4368 static const char strs[] = "\0int"; 4369 __u32 types[] = { 4370 /* int */ 4371 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4372 }; 4373 struct bpf_btf_info info; 4374 __u32 len = sizeof(info); 4375 char name[16]; 4376 int fd, err; 4377 4378 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4379 if (fd < 0) 4380 return 0; /* BTF not supported at all */ 4381 4382 memset(&info, 0, sizeof(info)); 4383 info.name = ptr_to_u64(name); 4384 info.name_len = sizeof(name); 4385 4386 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4387 * kernel's module BTF support coincides with support for 4388 * name/name_len fields in struct bpf_btf_info. 4389 */ 4390 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4391 close(fd); 4392 return !err; 4393 } 4394 4395 static int probe_perf_link(void) 4396 { 4397 struct bpf_load_program_attr attr; 4398 struct bpf_insn insns[] = { 4399 BPF_MOV64_IMM(BPF_REG_0, 0), 4400 BPF_EXIT_INSN(), 4401 }; 4402 int prog_fd, link_fd, err; 4403 4404 memset(&attr, 0, sizeof(attr)); 4405 attr.prog_type = BPF_PROG_TYPE_TRACEPOINT; 4406 attr.insns = insns; 4407 attr.insns_cnt = ARRAY_SIZE(insns); 4408 attr.license = "GPL"; 4409 prog_fd = bpf_load_program_xattr(&attr, NULL, 0); 4410 if (prog_fd < 0) 4411 return -errno; 4412 4413 /* use invalid perf_event FD to get EBADF, if link is supported; 4414 * otherwise EINVAL should be returned 4415 */ 4416 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4417 err = -errno; /* close() can clobber errno */ 4418 4419 if (link_fd >= 0) 4420 close(link_fd); 4421 close(prog_fd); 4422 4423 return link_fd < 0 && err == -EBADF; 4424 } 4425 4426 enum kern_feature_result { 4427 FEAT_UNKNOWN = 0, 4428 FEAT_SUPPORTED = 1, 4429 FEAT_MISSING = 2, 4430 }; 4431 4432 typedef int (*feature_probe_fn)(void); 4433 4434 static struct kern_feature_desc { 4435 const char *desc; 4436 feature_probe_fn probe; 4437 enum kern_feature_result res; 4438 } feature_probes[__FEAT_CNT] = { 4439 [FEAT_PROG_NAME] = { 4440 "BPF program name", probe_kern_prog_name, 4441 }, 4442 [FEAT_GLOBAL_DATA] = { 4443 "global variables", probe_kern_global_data, 4444 }, 4445 [FEAT_BTF] = { 4446 "minimal BTF", probe_kern_btf, 4447 }, 4448 [FEAT_BTF_FUNC] = { 4449 "BTF functions", probe_kern_btf_func, 4450 }, 4451 [FEAT_BTF_GLOBAL_FUNC] = { 4452 "BTF global function", probe_kern_btf_func_global, 4453 }, 4454 [FEAT_BTF_DATASEC] = { 4455 "BTF data section and variable", probe_kern_btf_datasec, 4456 }, 4457 [FEAT_ARRAY_MMAP] = { 4458 "ARRAY map mmap()", probe_kern_array_mmap, 4459 }, 4460 [FEAT_EXP_ATTACH_TYPE] = { 4461 "BPF_PROG_LOAD expected_attach_type attribute", 4462 probe_kern_exp_attach_type, 4463 }, 4464 [FEAT_PROBE_READ_KERN] = { 4465 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4466 }, 4467 [FEAT_PROG_BIND_MAP] = { 4468 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4469 }, 4470 [FEAT_MODULE_BTF] = { 4471 "module BTF support", probe_module_btf, 4472 }, 4473 [FEAT_BTF_FLOAT] = { 4474 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4475 }, 4476 [FEAT_PERF_LINK] = { 4477 "BPF perf link support", probe_perf_link, 4478 }, 4479 [FEAT_BTF_TAG] = { 4480 "BTF_KIND_TAG support", probe_kern_btf_tag, 4481 }, 4482 }; 4483 4484 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4485 { 4486 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4487 int ret; 4488 4489 if (obj->gen_loader) 4490 /* To generate loader program assume the latest kernel 4491 * to avoid doing extra prog_load, map_create syscalls. 4492 */ 4493 return true; 4494 4495 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4496 ret = feat->probe(); 4497 if (ret > 0) { 4498 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4499 } else if (ret == 0) { 4500 WRITE_ONCE(feat->res, FEAT_MISSING); 4501 } else { 4502 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4503 WRITE_ONCE(feat->res, FEAT_MISSING); 4504 } 4505 } 4506 4507 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4508 } 4509 4510 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4511 { 4512 struct bpf_map_info map_info = {}; 4513 char msg[STRERR_BUFSIZE]; 4514 __u32 map_info_len; 4515 int err; 4516 4517 map_info_len = sizeof(map_info); 4518 4519 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4520 if (err && errno == EINVAL) 4521 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4522 if (err) { 4523 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4524 libbpf_strerror_r(errno, msg, sizeof(msg))); 4525 return false; 4526 } 4527 4528 return (map_info.type == map->def.type && 4529 map_info.key_size == map->def.key_size && 4530 map_info.value_size == map->def.value_size && 4531 map_info.max_entries == map->def.max_entries && 4532 map_info.map_flags == map->def.map_flags); 4533 } 4534 4535 static int 4536 bpf_object__reuse_map(struct bpf_map *map) 4537 { 4538 char *cp, errmsg[STRERR_BUFSIZE]; 4539 int err, pin_fd; 4540 4541 pin_fd = bpf_obj_get(map->pin_path); 4542 if (pin_fd < 0) { 4543 err = -errno; 4544 if (err == -ENOENT) { 4545 pr_debug("found no pinned map to reuse at '%s'\n", 4546 map->pin_path); 4547 return 0; 4548 } 4549 4550 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4551 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4552 map->pin_path, cp); 4553 return err; 4554 } 4555 4556 if (!map_is_reuse_compat(map, pin_fd)) { 4557 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4558 map->pin_path); 4559 close(pin_fd); 4560 return -EINVAL; 4561 } 4562 4563 err = bpf_map__reuse_fd(map, pin_fd); 4564 if (err) { 4565 close(pin_fd); 4566 return err; 4567 } 4568 map->pinned = true; 4569 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4570 4571 return 0; 4572 } 4573 4574 static int 4575 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4576 { 4577 enum libbpf_map_type map_type = map->libbpf_type; 4578 char *cp, errmsg[STRERR_BUFSIZE]; 4579 int err, zero = 0; 4580 4581 if (obj->gen_loader) { 4582 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4583 map->mmaped, map->def.value_size); 4584 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4585 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4586 return 0; 4587 } 4588 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4589 if (err) { 4590 err = -errno; 4591 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4592 pr_warn("Error setting initial map(%s) contents: %s\n", 4593 map->name, cp); 4594 return err; 4595 } 4596 4597 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4598 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4599 err = bpf_map_freeze(map->fd); 4600 if (err) { 4601 err = -errno; 4602 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4603 pr_warn("Error freezing map(%s) as read-only: %s\n", 4604 map->name, cp); 4605 return err; 4606 } 4607 } 4608 return 0; 4609 } 4610 4611 static void bpf_map__destroy(struct bpf_map *map); 4612 4613 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4614 { 4615 struct bpf_create_map_attr create_attr; 4616 struct bpf_map_def *def = &map->def; 4617 int err = 0; 4618 4619 memset(&create_attr, 0, sizeof(create_attr)); 4620 4621 if (kernel_supports(obj, FEAT_PROG_NAME)) 4622 create_attr.name = map->name; 4623 create_attr.map_ifindex = map->map_ifindex; 4624 create_attr.map_type = def->type; 4625 create_attr.map_flags = def->map_flags; 4626 create_attr.key_size = def->key_size; 4627 create_attr.value_size = def->value_size; 4628 create_attr.numa_node = map->numa_node; 4629 4630 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4631 int nr_cpus; 4632 4633 nr_cpus = libbpf_num_possible_cpus(); 4634 if (nr_cpus < 0) { 4635 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4636 map->name, nr_cpus); 4637 return nr_cpus; 4638 } 4639 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4640 create_attr.max_entries = nr_cpus; 4641 } else { 4642 create_attr.max_entries = def->max_entries; 4643 } 4644 4645 if (bpf_map__is_struct_ops(map)) 4646 create_attr.btf_vmlinux_value_type_id = 4647 map->btf_vmlinux_value_type_id; 4648 4649 create_attr.btf_fd = 0; 4650 create_attr.btf_key_type_id = 0; 4651 create_attr.btf_value_type_id = 0; 4652 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4653 create_attr.btf_fd = btf__fd(obj->btf); 4654 create_attr.btf_key_type_id = map->btf_key_type_id; 4655 create_attr.btf_value_type_id = map->btf_value_type_id; 4656 } 4657 4658 if (bpf_map_type__is_map_in_map(def->type)) { 4659 if (map->inner_map) { 4660 err = bpf_object__create_map(obj, map->inner_map, true); 4661 if (err) { 4662 pr_warn("map '%s': failed to create inner map: %d\n", 4663 map->name, err); 4664 return err; 4665 } 4666 map->inner_map_fd = bpf_map__fd(map->inner_map); 4667 } 4668 if (map->inner_map_fd >= 0) 4669 create_attr.inner_map_fd = map->inner_map_fd; 4670 } 4671 4672 switch (def->type) { 4673 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4674 case BPF_MAP_TYPE_CGROUP_ARRAY: 4675 case BPF_MAP_TYPE_STACK_TRACE: 4676 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4677 case BPF_MAP_TYPE_HASH_OF_MAPS: 4678 case BPF_MAP_TYPE_DEVMAP: 4679 case BPF_MAP_TYPE_DEVMAP_HASH: 4680 case BPF_MAP_TYPE_CPUMAP: 4681 case BPF_MAP_TYPE_XSKMAP: 4682 case BPF_MAP_TYPE_SOCKMAP: 4683 case BPF_MAP_TYPE_SOCKHASH: 4684 case BPF_MAP_TYPE_QUEUE: 4685 case BPF_MAP_TYPE_STACK: 4686 case BPF_MAP_TYPE_RINGBUF: 4687 create_attr.btf_fd = 0; 4688 create_attr.btf_key_type_id = 0; 4689 create_attr.btf_value_type_id = 0; 4690 map->btf_key_type_id = 0; 4691 map->btf_value_type_id = 0; 4692 default: 4693 break; 4694 } 4695 4696 if (obj->gen_loader) { 4697 bpf_gen__map_create(obj->gen_loader, &create_attr, is_inner ? -1 : map - obj->maps); 4698 /* Pretend to have valid FD to pass various fd >= 0 checks. 4699 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4700 */ 4701 map->fd = 0; 4702 } else { 4703 map->fd = bpf_create_map_xattr(&create_attr); 4704 } 4705 if (map->fd < 0 && (create_attr.btf_key_type_id || 4706 create_attr.btf_value_type_id)) { 4707 char *cp, errmsg[STRERR_BUFSIZE]; 4708 4709 err = -errno; 4710 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4711 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4712 map->name, cp, err); 4713 create_attr.btf_fd = 0; 4714 create_attr.btf_key_type_id = 0; 4715 create_attr.btf_value_type_id = 0; 4716 map->btf_key_type_id = 0; 4717 map->btf_value_type_id = 0; 4718 map->fd = bpf_create_map_xattr(&create_attr); 4719 } 4720 4721 err = map->fd < 0 ? -errno : 0; 4722 4723 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4724 if (obj->gen_loader) 4725 map->inner_map->fd = -1; 4726 bpf_map__destroy(map->inner_map); 4727 zfree(&map->inner_map); 4728 } 4729 4730 return err; 4731 } 4732 4733 static int init_map_slots(struct bpf_object *obj, struct bpf_map *map) 4734 { 4735 const struct bpf_map *targ_map; 4736 unsigned int i; 4737 int fd, err = 0; 4738 4739 for (i = 0; i < map->init_slots_sz; i++) { 4740 if (!map->init_slots[i]) 4741 continue; 4742 4743 targ_map = map->init_slots[i]; 4744 fd = bpf_map__fd(targ_map); 4745 if (obj->gen_loader) { 4746 pr_warn("// TODO map_update_elem: idx %td key %d value==map_idx %td\n", 4747 map - obj->maps, i, targ_map - obj->maps); 4748 return -ENOTSUP; 4749 } else { 4750 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4751 } 4752 if (err) { 4753 err = -errno; 4754 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4755 map->name, i, targ_map->name, 4756 fd, err); 4757 return err; 4758 } 4759 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4760 map->name, i, targ_map->name, fd); 4761 } 4762 4763 zfree(&map->init_slots); 4764 map->init_slots_sz = 0; 4765 4766 return 0; 4767 } 4768 4769 static int 4770 bpf_object__create_maps(struct bpf_object *obj) 4771 { 4772 struct bpf_map *map; 4773 char *cp, errmsg[STRERR_BUFSIZE]; 4774 unsigned int i, j; 4775 int err; 4776 bool retried; 4777 4778 for (i = 0; i < obj->nr_maps; i++) { 4779 map = &obj->maps[i]; 4780 4781 retried = false; 4782 retry: 4783 if (map->pin_path) { 4784 err = bpf_object__reuse_map(map); 4785 if (err) { 4786 pr_warn("map '%s': error reusing pinned map\n", 4787 map->name); 4788 goto err_out; 4789 } 4790 if (retried && map->fd < 0) { 4791 pr_warn("map '%s': cannot find pinned map\n", 4792 map->name); 4793 err = -ENOENT; 4794 goto err_out; 4795 } 4796 } 4797 4798 if (map->fd >= 0) { 4799 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4800 map->name, map->fd); 4801 } else { 4802 err = bpf_object__create_map(obj, map, false); 4803 if (err) 4804 goto err_out; 4805 4806 pr_debug("map '%s': created successfully, fd=%d\n", 4807 map->name, map->fd); 4808 4809 if (bpf_map__is_internal(map)) { 4810 err = bpf_object__populate_internal_map(obj, map); 4811 if (err < 0) { 4812 zclose(map->fd); 4813 goto err_out; 4814 } 4815 } 4816 4817 if (map->init_slots_sz) { 4818 err = init_map_slots(obj, map); 4819 if (err < 0) { 4820 zclose(map->fd); 4821 goto err_out; 4822 } 4823 } 4824 } 4825 4826 if (map->pin_path && !map->pinned) { 4827 err = bpf_map__pin(map, NULL); 4828 if (err) { 4829 zclose(map->fd); 4830 if (!retried && err == -EEXIST) { 4831 retried = true; 4832 goto retry; 4833 } 4834 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4835 map->name, map->pin_path, err); 4836 goto err_out; 4837 } 4838 } 4839 } 4840 4841 return 0; 4842 4843 err_out: 4844 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4845 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4846 pr_perm_msg(err); 4847 for (j = 0; j < i; j++) 4848 zclose(obj->maps[j].fd); 4849 return err; 4850 } 4851 4852 static bool bpf_core_is_flavor_sep(const char *s) 4853 { 4854 /* check X___Y name pattern, where X and Y are not underscores */ 4855 return s[0] != '_' && /* X */ 4856 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4857 s[4] != '_'; /* Y */ 4858 } 4859 4860 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4861 * before last triple underscore. Struct name part after last triple 4862 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4863 */ 4864 size_t bpf_core_essential_name_len(const char *name) 4865 { 4866 size_t n = strlen(name); 4867 int i; 4868 4869 for (i = n - 5; i >= 0; i--) { 4870 if (bpf_core_is_flavor_sep(name + i)) 4871 return i + 1; 4872 } 4873 return n; 4874 } 4875 4876 static void bpf_core_free_cands(struct bpf_core_cand_list *cands) 4877 { 4878 free(cands->cands); 4879 free(cands); 4880 } 4881 4882 static int bpf_core_add_cands(struct bpf_core_cand *local_cand, 4883 size_t local_essent_len, 4884 const struct btf *targ_btf, 4885 const char *targ_btf_name, 4886 int targ_start_id, 4887 struct bpf_core_cand_list *cands) 4888 { 4889 struct bpf_core_cand *new_cands, *cand; 4890 const struct btf_type *t; 4891 const char *targ_name; 4892 size_t targ_essent_len; 4893 int n, i; 4894 4895 n = btf__get_nr_types(targ_btf); 4896 for (i = targ_start_id; i <= n; i++) { 4897 t = btf__type_by_id(targ_btf, i); 4898 if (btf_kind(t) != btf_kind(local_cand->t)) 4899 continue; 4900 4901 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4902 if (str_is_empty(targ_name)) 4903 continue; 4904 4905 targ_essent_len = bpf_core_essential_name_len(targ_name); 4906 if (targ_essent_len != local_essent_len) 4907 continue; 4908 4909 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 4910 continue; 4911 4912 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 4913 local_cand->id, btf_kind_str(local_cand->t), 4914 local_cand->name, i, btf_kind_str(t), targ_name, 4915 targ_btf_name); 4916 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 4917 sizeof(*cands->cands)); 4918 if (!new_cands) 4919 return -ENOMEM; 4920 4921 cand = &new_cands[cands->len]; 4922 cand->btf = targ_btf; 4923 cand->t = t; 4924 cand->name = targ_name; 4925 cand->id = i; 4926 4927 cands->cands = new_cands; 4928 cands->len++; 4929 } 4930 return 0; 4931 } 4932 4933 static int load_module_btfs(struct bpf_object *obj) 4934 { 4935 struct bpf_btf_info info; 4936 struct module_btf *mod_btf; 4937 struct btf *btf; 4938 char name[64]; 4939 __u32 id = 0, len; 4940 int err, fd; 4941 4942 if (obj->btf_modules_loaded) 4943 return 0; 4944 4945 if (obj->gen_loader) 4946 return 0; 4947 4948 /* don't do this again, even if we find no module BTFs */ 4949 obj->btf_modules_loaded = true; 4950 4951 /* kernel too old to support module BTFs */ 4952 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 4953 return 0; 4954 4955 while (true) { 4956 err = bpf_btf_get_next_id(id, &id); 4957 if (err && errno == ENOENT) 4958 return 0; 4959 if (err) { 4960 err = -errno; 4961 pr_warn("failed to iterate BTF objects: %d\n", err); 4962 return err; 4963 } 4964 4965 fd = bpf_btf_get_fd_by_id(id); 4966 if (fd < 0) { 4967 if (errno == ENOENT) 4968 continue; /* expected race: BTF was unloaded */ 4969 err = -errno; 4970 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 4971 return err; 4972 } 4973 4974 len = sizeof(info); 4975 memset(&info, 0, sizeof(info)); 4976 info.name = ptr_to_u64(name); 4977 info.name_len = sizeof(name); 4978 4979 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4980 if (err) { 4981 err = -errno; 4982 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 4983 goto err_out; 4984 } 4985 4986 /* ignore non-module BTFs */ 4987 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 4988 close(fd); 4989 continue; 4990 } 4991 4992 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 4993 err = libbpf_get_error(btf); 4994 if (err) { 4995 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 4996 name, id, err); 4997 goto err_out; 4998 } 4999 5000 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5001 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5002 if (err) 5003 goto err_out; 5004 5005 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5006 5007 mod_btf->btf = btf; 5008 mod_btf->id = id; 5009 mod_btf->fd = fd; 5010 mod_btf->name = strdup(name); 5011 if (!mod_btf->name) { 5012 err = -ENOMEM; 5013 goto err_out; 5014 } 5015 continue; 5016 5017 err_out: 5018 close(fd); 5019 return err; 5020 } 5021 5022 return 0; 5023 } 5024 5025 static struct bpf_core_cand_list * 5026 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5027 { 5028 struct bpf_core_cand local_cand = {}; 5029 struct bpf_core_cand_list *cands; 5030 const struct btf *main_btf; 5031 size_t local_essent_len; 5032 int err, i; 5033 5034 local_cand.btf = local_btf; 5035 local_cand.t = btf__type_by_id(local_btf, local_type_id); 5036 if (!local_cand.t) 5037 return ERR_PTR(-EINVAL); 5038 5039 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 5040 if (str_is_empty(local_cand.name)) 5041 return ERR_PTR(-EINVAL); 5042 local_essent_len = bpf_core_essential_name_len(local_cand.name); 5043 5044 cands = calloc(1, sizeof(*cands)); 5045 if (!cands) 5046 return ERR_PTR(-ENOMEM); 5047 5048 /* Attempt to find target candidates in vmlinux BTF first */ 5049 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5050 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5051 if (err) 5052 goto err_out; 5053 5054 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5055 if (cands->len) 5056 return cands; 5057 5058 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5059 if (obj->btf_vmlinux_override) 5060 return cands; 5061 5062 /* now look through module BTFs, trying to still find candidates */ 5063 err = load_module_btfs(obj); 5064 if (err) 5065 goto err_out; 5066 5067 for (i = 0; i < obj->btf_module_cnt; i++) { 5068 err = bpf_core_add_cands(&local_cand, local_essent_len, 5069 obj->btf_modules[i].btf, 5070 obj->btf_modules[i].name, 5071 btf__get_nr_types(obj->btf_vmlinux) + 1, 5072 cands); 5073 if (err) 5074 goto err_out; 5075 } 5076 5077 return cands; 5078 err_out: 5079 bpf_core_free_cands(cands); 5080 return ERR_PTR(err); 5081 } 5082 5083 /* Check local and target types for compatibility. This check is used for 5084 * type-based CO-RE relocations and follow slightly different rules than 5085 * field-based relocations. This function assumes that root types were already 5086 * checked for name match. Beyond that initial root-level name check, names 5087 * are completely ignored. Compatibility rules are as follows: 5088 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5089 * kind should match for local and target types (i.e., STRUCT is not 5090 * compatible with UNION); 5091 * - for ENUMs, the size is ignored; 5092 * - for INT, size and signedness are ignored; 5093 * - for ARRAY, dimensionality is ignored, element types are checked for 5094 * compatibility recursively; 5095 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5096 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5097 * - FUNC_PROTOs are compatible if they have compatible signature: same 5098 * number of input args and compatible return and argument types. 5099 * These rules are not set in stone and probably will be adjusted as we get 5100 * more experience with using BPF CO-RE relocations. 5101 */ 5102 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5103 const struct btf *targ_btf, __u32 targ_id) 5104 { 5105 const struct btf_type *local_type, *targ_type; 5106 int depth = 32; /* max recursion depth */ 5107 5108 /* caller made sure that names match (ignoring flavor suffix) */ 5109 local_type = btf__type_by_id(local_btf, local_id); 5110 targ_type = btf__type_by_id(targ_btf, targ_id); 5111 if (btf_kind(local_type) != btf_kind(targ_type)) 5112 return 0; 5113 5114 recur: 5115 depth--; 5116 if (depth < 0) 5117 return -EINVAL; 5118 5119 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5120 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5121 if (!local_type || !targ_type) 5122 return -EINVAL; 5123 5124 if (btf_kind(local_type) != btf_kind(targ_type)) 5125 return 0; 5126 5127 switch (btf_kind(local_type)) { 5128 case BTF_KIND_UNKN: 5129 case BTF_KIND_STRUCT: 5130 case BTF_KIND_UNION: 5131 case BTF_KIND_ENUM: 5132 case BTF_KIND_FWD: 5133 return 1; 5134 case BTF_KIND_INT: 5135 /* just reject deprecated bitfield-like integers; all other 5136 * integers are by default compatible between each other 5137 */ 5138 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5139 case BTF_KIND_PTR: 5140 local_id = local_type->type; 5141 targ_id = targ_type->type; 5142 goto recur; 5143 case BTF_KIND_ARRAY: 5144 local_id = btf_array(local_type)->type; 5145 targ_id = btf_array(targ_type)->type; 5146 goto recur; 5147 case BTF_KIND_FUNC_PROTO: { 5148 struct btf_param *local_p = btf_params(local_type); 5149 struct btf_param *targ_p = btf_params(targ_type); 5150 __u16 local_vlen = btf_vlen(local_type); 5151 __u16 targ_vlen = btf_vlen(targ_type); 5152 int i, err; 5153 5154 if (local_vlen != targ_vlen) 5155 return 0; 5156 5157 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5158 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5159 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5160 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5161 if (err <= 0) 5162 return err; 5163 } 5164 5165 /* tail recurse for return type check */ 5166 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5167 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5168 goto recur; 5169 } 5170 default: 5171 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5172 btf_kind_str(local_type), local_id, targ_id); 5173 return 0; 5174 } 5175 } 5176 5177 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5178 { 5179 return (size_t)key; 5180 } 5181 5182 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5183 { 5184 return k1 == k2; 5185 } 5186 5187 static void *u32_as_hash_key(__u32 x) 5188 { 5189 return (void *)(uintptr_t)x; 5190 } 5191 5192 static int bpf_core_apply_relo(struct bpf_program *prog, 5193 const struct bpf_core_relo *relo, 5194 int relo_idx, 5195 const struct btf *local_btf, 5196 struct hashmap *cand_cache) 5197 { 5198 const void *type_key = u32_as_hash_key(relo->type_id); 5199 struct bpf_core_cand_list *cands = NULL; 5200 const char *prog_name = prog->name; 5201 const struct btf_type *local_type; 5202 const char *local_name; 5203 __u32 local_id = relo->type_id; 5204 struct bpf_insn *insn; 5205 int insn_idx, err; 5206 5207 if (relo->insn_off % BPF_INSN_SZ) 5208 return -EINVAL; 5209 insn_idx = relo->insn_off / BPF_INSN_SZ; 5210 /* adjust insn_idx from section frame of reference to the local 5211 * program's frame of reference; (sub-)program code is not yet 5212 * relocated, so it's enough to just subtract in-section offset 5213 */ 5214 insn_idx = insn_idx - prog->sec_insn_off; 5215 if (insn_idx > prog->insns_cnt) 5216 return -EINVAL; 5217 insn = &prog->insns[insn_idx]; 5218 5219 local_type = btf__type_by_id(local_btf, local_id); 5220 if (!local_type) 5221 return -EINVAL; 5222 5223 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5224 if (!local_name) 5225 return -EINVAL; 5226 5227 if (prog->obj->gen_loader) { 5228 pr_warn("// TODO core_relo: prog %td insn[%d] %s kind %d\n", 5229 prog - prog->obj->programs, relo->insn_off / 8, 5230 local_name, relo->kind); 5231 return -ENOTSUP; 5232 } 5233 5234 if (relo->kind != BPF_TYPE_ID_LOCAL && 5235 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5236 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5237 if (IS_ERR(cands)) { 5238 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5239 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5240 local_name, PTR_ERR(cands)); 5241 return PTR_ERR(cands); 5242 } 5243 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5244 if (err) { 5245 bpf_core_free_cands(cands); 5246 return err; 5247 } 5248 } 5249 5250 return bpf_core_apply_relo_insn(prog_name, insn, insn_idx, relo, relo_idx, local_btf, cands); 5251 } 5252 5253 static int 5254 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5255 { 5256 const struct btf_ext_info_sec *sec; 5257 const struct bpf_core_relo *rec; 5258 const struct btf_ext_info *seg; 5259 struct hashmap_entry *entry; 5260 struct hashmap *cand_cache = NULL; 5261 struct bpf_program *prog; 5262 const char *sec_name; 5263 int i, err = 0, insn_idx, sec_idx; 5264 5265 if (obj->btf_ext->core_relo_info.len == 0) 5266 return 0; 5267 5268 if (targ_btf_path) { 5269 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5270 err = libbpf_get_error(obj->btf_vmlinux_override); 5271 if (err) { 5272 pr_warn("failed to parse target BTF: %d\n", err); 5273 return err; 5274 } 5275 } 5276 5277 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5278 if (IS_ERR(cand_cache)) { 5279 err = PTR_ERR(cand_cache); 5280 goto out; 5281 } 5282 5283 seg = &obj->btf_ext->core_relo_info; 5284 for_each_btf_ext_sec(seg, sec) { 5285 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5286 if (str_is_empty(sec_name)) { 5287 err = -EINVAL; 5288 goto out; 5289 } 5290 /* bpf_object's ELF is gone by now so it's not easy to find 5291 * section index by section name, but we can find *any* 5292 * bpf_program within desired section name and use it's 5293 * prog->sec_idx to do a proper search by section index and 5294 * instruction offset 5295 */ 5296 prog = NULL; 5297 for (i = 0; i < obj->nr_programs; i++) { 5298 prog = &obj->programs[i]; 5299 if (strcmp(prog->sec_name, sec_name) == 0) 5300 break; 5301 } 5302 if (!prog) { 5303 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5304 return -ENOENT; 5305 } 5306 sec_idx = prog->sec_idx; 5307 5308 pr_debug("sec '%s': found %d CO-RE relocations\n", 5309 sec_name, sec->num_info); 5310 5311 for_each_btf_ext_rec(seg, sec, i, rec) { 5312 insn_idx = rec->insn_off / BPF_INSN_SZ; 5313 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5314 if (!prog) { 5315 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5316 sec_name, insn_idx, i); 5317 err = -EINVAL; 5318 goto out; 5319 } 5320 /* no need to apply CO-RE relocation if the program is 5321 * not going to be loaded 5322 */ 5323 if (!prog->load) 5324 continue; 5325 5326 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 5327 if (err) { 5328 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5329 prog->name, i, err); 5330 goto out; 5331 } 5332 } 5333 } 5334 5335 out: 5336 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5337 btf__free(obj->btf_vmlinux_override); 5338 obj->btf_vmlinux_override = NULL; 5339 5340 if (!IS_ERR_OR_NULL(cand_cache)) { 5341 hashmap__for_each_entry(cand_cache, entry, i) { 5342 bpf_core_free_cands(entry->value); 5343 } 5344 hashmap__free(cand_cache); 5345 } 5346 return err; 5347 } 5348 5349 /* Relocate data references within program code: 5350 * - map references; 5351 * - global variable references; 5352 * - extern references. 5353 */ 5354 static int 5355 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5356 { 5357 int i; 5358 5359 for (i = 0; i < prog->nr_reloc; i++) { 5360 struct reloc_desc *relo = &prog->reloc_desc[i]; 5361 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5362 struct extern_desc *ext; 5363 5364 switch (relo->type) { 5365 case RELO_LD64: 5366 if (obj->gen_loader) { 5367 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5368 insn[0].imm = relo->map_idx; 5369 } else { 5370 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5371 insn[0].imm = obj->maps[relo->map_idx].fd; 5372 } 5373 break; 5374 case RELO_DATA: 5375 insn[1].imm = insn[0].imm + relo->sym_off; 5376 if (obj->gen_loader) { 5377 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5378 insn[0].imm = relo->map_idx; 5379 } else { 5380 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5381 insn[0].imm = obj->maps[relo->map_idx].fd; 5382 } 5383 break; 5384 case RELO_EXTERN_VAR: 5385 ext = &obj->externs[relo->sym_off]; 5386 if (ext->type == EXT_KCFG) { 5387 if (obj->gen_loader) { 5388 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5389 insn[0].imm = obj->kconfig_map_idx; 5390 } else { 5391 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5392 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5393 } 5394 insn[1].imm = ext->kcfg.data_off; 5395 } else /* EXT_KSYM */ { 5396 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5397 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5398 insn[0].imm = ext->ksym.kernel_btf_id; 5399 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5400 } else { /* typeless ksyms or unresolved typed ksyms */ 5401 insn[0].imm = (__u32)ext->ksym.addr; 5402 insn[1].imm = ext->ksym.addr >> 32; 5403 } 5404 } 5405 break; 5406 case RELO_EXTERN_FUNC: 5407 ext = &obj->externs[relo->sym_off]; 5408 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5409 insn[0].imm = ext->ksym.kernel_btf_id; 5410 break; 5411 case RELO_SUBPROG_ADDR: 5412 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5413 pr_warn("prog '%s': relo #%d: bad insn\n", 5414 prog->name, i); 5415 return -EINVAL; 5416 } 5417 /* handled already */ 5418 break; 5419 case RELO_CALL: 5420 /* handled already */ 5421 break; 5422 default: 5423 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5424 prog->name, i, relo->type); 5425 return -EINVAL; 5426 } 5427 } 5428 5429 return 0; 5430 } 5431 5432 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5433 const struct bpf_program *prog, 5434 const struct btf_ext_info *ext_info, 5435 void **prog_info, __u32 *prog_rec_cnt, 5436 __u32 *prog_rec_sz) 5437 { 5438 void *copy_start = NULL, *copy_end = NULL; 5439 void *rec, *rec_end, *new_prog_info; 5440 const struct btf_ext_info_sec *sec; 5441 size_t old_sz, new_sz; 5442 const char *sec_name; 5443 int i, off_adj; 5444 5445 for_each_btf_ext_sec(ext_info, sec) { 5446 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5447 if (!sec_name) 5448 return -EINVAL; 5449 if (strcmp(sec_name, prog->sec_name) != 0) 5450 continue; 5451 5452 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5453 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5454 5455 if (insn_off < prog->sec_insn_off) 5456 continue; 5457 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5458 break; 5459 5460 if (!copy_start) 5461 copy_start = rec; 5462 copy_end = rec + ext_info->rec_size; 5463 } 5464 5465 if (!copy_start) 5466 return -ENOENT; 5467 5468 /* append func/line info of a given (sub-)program to the main 5469 * program func/line info 5470 */ 5471 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5472 new_sz = old_sz + (copy_end - copy_start); 5473 new_prog_info = realloc(*prog_info, new_sz); 5474 if (!new_prog_info) 5475 return -ENOMEM; 5476 *prog_info = new_prog_info; 5477 *prog_rec_cnt = new_sz / ext_info->rec_size; 5478 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5479 5480 /* Kernel instruction offsets are in units of 8-byte 5481 * instructions, while .BTF.ext instruction offsets generated 5482 * by Clang are in units of bytes. So convert Clang offsets 5483 * into kernel offsets and adjust offset according to program 5484 * relocated position. 5485 */ 5486 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5487 rec = new_prog_info + old_sz; 5488 rec_end = new_prog_info + new_sz; 5489 for (; rec < rec_end; rec += ext_info->rec_size) { 5490 __u32 *insn_off = rec; 5491 5492 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5493 } 5494 *prog_rec_sz = ext_info->rec_size; 5495 return 0; 5496 } 5497 5498 return -ENOENT; 5499 } 5500 5501 static int 5502 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5503 struct bpf_program *main_prog, 5504 const struct bpf_program *prog) 5505 { 5506 int err; 5507 5508 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5509 * supprot func/line info 5510 */ 5511 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5512 return 0; 5513 5514 /* only attempt func info relocation if main program's func_info 5515 * relocation was successful 5516 */ 5517 if (main_prog != prog && !main_prog->func_info) 5518 goto line_info; 5519 5520 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5521 &main_prog->func_info, 5522 &main_prog->func_info_cnt, 5523 &main_prog->func_info_rec_size); 5524 if (err) { 5525 if (err != -ENOENT) { 5526 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5527 prog->name, err); 5528 return err; 5529 } 5530 if (main_prog->func_info) { 5531 /* 5532 * Some info has already been found but has problem 5533 * in the last btf_ext reloc. Must have to error out. 5534 */ 5535 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5536 return err; 5537 } 5538 /* Have problem loading the very first info. Ignore the rest. */ 5539 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5540 prog->name); 5541 } 5542 5543 line_info: 5544 /* don't relocate line info if main program's relocation failed */ 5545 if (main_prog != prog && !main_prog->line_info) 5546 return 0; 5547 5548 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5549 &main_prog->line_info, 5550 &main_prog->line_info_cnt, 5551 &main_prog->line_info_rec_size); 5552 if (err) { 5553 if (err != -ENOENT) { 5554 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5555 prog->name, err); 5556 return err; 5557 } 5558 if (main_prog->line_info) { 5559 /* 5560 * Some info has already been found but has problem 5561 * in the last btf_ext reloc. Must have to error out. 5562 */ 5563 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5564 return err; 5565 } 5566 /* Have problem loading the very first info. Ignore the rest. */ 5567 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5568 prog->name); 5569 } 5570 return 0; 5571 } 5572 5573 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5574 { 5575 size_t insn_idx = *(const size_t *)key; 5576 const struct reloc_desc *relo = elem; 5577 5578 if (insn_idx == relo->insn_idx) 5579 return 0; 5580 return insn_idx < relo->insn_idx ? -1 : 1; 5581 } 5582 5583 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5584 { 5585 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5586 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5587 } 5588 5589 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5590 { 5591 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5592 struct reloc_desc *relos; 5593 int i; 5594 5595 if (main_prog == subprog) 5596 return 0; 5597 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5598 if (!relos) 5599 return -ENOMEM; 5600 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5601 sizeof(*relos) * subprog->nr_reloc); 5602 5603 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5604 relos[i].insn_idx += subprog->sub_insn_off; 5605 /* After insn_idx adjustment the 'relos' array is still sorted 5606 * by insn_idx and doesn't break bsearch. 5607 */ 5608 main_prog->reloc_desc = relos; 5609 main_prog->nr_reloc = new_cnt; 5610 return 0; 5611 } 5612 5613 static int 5614 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5615 struct bpf_program *prog) 5616 { 5617 size_t sub_insn_idx, insn_idx, new_cnt; 5618 struct bpf_program *subprog; 5619 struct bpf_insn *insns, *insn; 5620 struct reloc_desc *relo; 5621 int err; 5622 5623 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 5624 if (err) 5625 return err; 5626 5627 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 5628 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5629 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 5630 continue; 5631 5632 relo = find_prog_insn_relo(prog, insn_idx); 5633 if (relo && relo->type == RELO_EXTERN_FUNC) 5634 /* kfunc relocations will be handled later 5635 * in bpf_object__relocate_data() 5636 */ 5637 continue; 5638 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 5639 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 5640 prog->name, insn_idx, relo->type); 5641 return -LIBBPF_ERRNO__RELOC; 5642 } 5643 if (relo) { 5644 /* sub-program instruction index is a combination of 5645 * an offset of a symbol pointed to by relocation and 5646 * call instruction's imm field; for global functions, 5647 * call always has imm = -1, but for static functions 5648 * relocation is against STT_SECTION and insn->imm 5649 * points to a start of a static function 5650 * 5651 * for subprog addr relocation, the relo->sym_off + insn->imm is 5652 * the byte offset in the corresponding section. 5653 */ 5654 if (relo->type == RELO_CALL) 5655 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 5656 else 5657 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 5658 } else if (insn_is_pseudo_func(insn)) { 5659 /* 5660 * RELO_SUBPROG_ADDR relo is always emitted even if both 5661 * functions are in the same section, so it shouldn't reach here. 5662 */ 5663 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 5664 prog->name, insn_idx); 5665 return -LIBBPF_ERRNO__RELOC; 5666 } else { 5667 /* if subprogram call is to a static function within 5668 * the same ELF section, there won't be any relocation 5669 * emitted, but it also means there is no additional 5670 * offset necessary, insns->imm is relative to 5671 * instruction's original position within the section 5672 */ 5673 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 5674 } 5675 5676 /* we enforce that sub-programs should be in .text section */ 5677 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 5678 if (!subprog) { 5679 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 5680 prog->name); 5681 return -LIBBPF_ERRNO__RELOC; 5682 } 5683 5684 /* if it's the first call instruction calling into this 5685 * subprogram (meaning this subprog hasn't been processed 5686 * yet) within the context of current main program: 5687 * - append it at the end of main program's instructions blog; 5688 * - process is recursively, while current program is put on hold; 5689 * - if that subprogram calls some other not yet processes 5690 * subprogram, same thing will happen recursively until 5691 * there are no more unprocesses subprograms left to append 5692 * and relocate. 5693 */ 5694 if (subprog->sub_insn_off == 0) { 5695 subprog->sub_insn_off = main_prog->insns_cnt; 5696 5697 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 5698 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 5699 if (!insns) { 5700 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 5701 return -ENOMEM; 5702 } 5703 main_prog->insns = insns; 5704 main_prog->insns_cnt = new_cnt; 5705 5706 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 5707 subprog->insns_cnt * sizeof(*insns)); 5708 5709 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 5710 main_prog->name, subprog->insns_cnt, subprog->name); 5711 5712 /* The subprog insns are now appended. Append its relos too. */ 5713 err = append_subprog_relos(main_prog, subprog); 5714 if (err) 5715 return err; 5716 err = bpf_object__reloc_code(obj, main_prog, subprog); 5717 if (err) 5718 return err; 5719 } 5720 5721 /* main_prog->insns memory could have been re-allocated, so 5722 * calculate pointer again 5723 */ 5724 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5725 /* calculate correct instruction position within current main 5726 * prog; each main prog can have a different set of 5727 * subprograms appended (potentially in different order as 5728 * well), so position of any subprog can be different for 5729 * different main programs */ 5730 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 5731 5732 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 5733 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 5734 } 5735 5736 return 0; 5737 } 5738 5739 /* 5740 * Relocate sub-program calls. 5741 * 5742 * Algorithm operates as follows. Each entry-point BPF program (referred to as 5743 * main prog) is processed separately. For each subprog (non-entry functions, 5744 * that can be called from either entry progs or other subprogs) gets their 5745 * sub_insn_off reset to zero. This serves as indicator that this subprogram 5746 * hasn't been yet appended and relocated within current main prog. Once its 5747 * relocated, sub_insn_off will point at the position within current main prog 5748 * where given subprog was appended. This will further be used to relocate all 5749 * the call instructions jumping into this subprog. 5750 * 5751 * We start with main program and process all call instructions. If the call 5752 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 5753 * is zero), subprog instructions are appended at the end of main program's 5754 * instruction array. Then main program is "put on hold" while we recursively 5755 * process newly appended subprogram. If that subprogram calls into another 5756 * subprogram that hasn't been appended, new subprogram is appended again to 5757 * the *main* prog's instructions (subprog's instructions are always left 5758 * untouched, as they need to be in unmodified state for subsequent main progs 5759 * and subprog instructions are always sent only as part of a main prog) and 5760 * the process continues recursively. Once all the subprogs called from a main 5761 * prog or any of its subprogs are appended (and relocated), all their 5762 * positions within finalized instructions array are known, so it's easy to 5763 * rewrite call instructions with correct relative offsets, corresponding to 5764 * desired target subprog. 5765 * 5766 * Its important to realize that some subprogs might not be called from some 5767 * main prog and any of its called/used subprogs. Those will keep their 5768 * subprog->sub_insn_off as zero at all times and won't be appended to current 5769 * main prog and won't be relocated within the context of current main prog. 5770 * They might still be used from other main progs later. 5771 * 5772 * Visually this process can be shown as below. Suppose we have two main 5773 * programs mainA and mainB and BPF object contains three subprogs: subA, 5774 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 5775 * subC both call subB: 5776 * 5777 * +--------+ +-------+ 5778 * | v v | 5779 * +--+---+ +--+-+-+ +---+--+ 5780 * | subA | | subB | | subC | 5781 * +--+---+ +------+ +---+--+ 5782 * ^ ^ 5783 * | | 5784 * +---+-------+ +------+----+ 5785 * | mainA | | mainB | 5786 * +-----------+ +-----------+ 5787 * 5788 * We'll start relocating mainA, will find subA, append it and start 5789 * processing sub A recursively: 5790 * 5791 * +-----------+------+ 5792 * | mainA | subA | 5793 * +-----------+------+ 5794 * 5795 * At this point we notice that subB is used from subA, so we append it and 5796 * relocate (there are no further subcalls from subB): 5797 * 5798 * +-----------+------+------+ 5799 * | mainA | subA | subB | 5800 * +-----------+------+------+ 5801 * 5802 * At this point, we relocate subA calls, then go one level up and finish with 5803 * relocatin mainA calls. mainA is done. 5804 * 5805 * For mainB process is similar but results in different order. We start with 5806 * mainB and skip subA and subB, as mainB never calls them (at least 5807 * directly), but we see subC is needed, so we append and start processing it: 5808 * 5809 * +-----------+------+ 5810 * | mainB | subC | 5811 * +-----------+------+ 5812 * Now we see subC needs subB, so we go back to it, append and relocate it: 5813 * 5814 * +-----------+------+------+ 5815 * | mainB | subC | subB | 5816 * +-----------+------+------+ 5817 * 5818 * At this point we unwind recursion, relocate calls in subC, then in mainB. 5819 */ 5820 static int 5821 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 5822 { 5823 struct bpf_program *subprog; 5824 int i, err; 5825 5826 /* mark all subprogs as not relocated (yet) within the context of 5827 * current main program 5828 */ 5829 for (i = 0; i < obj->nr_programs; i++) { 5830 subprog = &obj->programs[i]; 5831 if (!prog_is_subprog(obj, subprog)) 5832 continue; 5833 5834 subprog->sub_insn_off = 0; 5835 } 5836 5837 err = bpf_object__reloc_code(obj, prog, prog); 5838 if (err) 5839 return err; 5840 5841 5842 return 0; 5843 } 5844 5845 static void 5846 bpf_object__free_relocs(struct bpf_object *obj) 5847 { 5848 struct bpf_program *prog; 5849 int i; 5850 5851 /* free up relocation descriptors */ 5852 for (i = 0; i < obj->nr_programs; i++) { 5853 prog = &obj->programs[i]; 5854 zfree(&prog->reloc_desc); 5855 prog->nr_reloc = 0; 5856 } 5857 } 5858 5859 static int 5860 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 5861 { 5862 struct bpf_program *prog; 5863 size_t i, j; 5864 int err; 5865 5866 if (obj->btf_ext) { 5867 err = bpf_object__relocate_core(obj, targ_btf_path); 5868 if (err) { 5869 pr_warn("failed to perform CO-RE relocations: %d\n", 5870 err); 5871 return err; 5872 } 5873 } 5874 5875 /* Before relocating calls pre-process relocations and mark 5876 * few ld_imm64 instructions that points to subprogs. 5877 * Otherwise bpf_object__reloc_code() later would have to consider 5878 * all ld_imm64 insns as relocation candidates. That would 5879 * reduce relocation speed, since amount of find_prog_insn_relo() 5880 * would increase and most of them will fail to find a relo. 5881 */ 5882 for (i = 0; i < obj->nr_programs; i++) { 5883 prog = &obj->programs[i]; 5884 for (j = 0; j < prog->nr_reloc; j++) { 5885 struct reloc_desc *relo = &prog->reloc_desc[j]; 5886 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5887 5888 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 5889 if (relo->type == RELO_SUBPROG_ADDR) 5890 insn[0].src_reg = BPF_PSEUDO_FUNC; 5891 } 5892 } 5893 5894 /* relocate subprogram calls and append used subprograms to main 5895 * programs; each copy of subprogram code needs to be relocated 5896 * differently for each main program, because its code location might 5897 * have changed. 5898 * Append subprog relos to main programs to allow data relos to be 5899 * processed after text is completely relocated. 5900 */ 5901 for (i = 0; i < obj->nr_programs; i++) { 5902 prog = &obj->programs[i]; 5903 /* sub-program's sub-calls are relocated within the context of 5904 * its main program only 5905 */ 5906 if (prog_is_subprog(obj, prog)) 5907 continue; 5908 5909 err = bpf_object__relocate_calls(obj, prog); 5910 if (err) { 5911 pr_warn("prog '%s': failed to relocate calls: %d\n", 5912 prog->name, err); 5913 return err; 5914 } 5915 } 5916 /* Process data relos for main programs */ 5917 for (i = 0; i < obj->nr_programs; i++) { 5918 prog = &obj->programs[i]; 5919 if (prog_is_subprog(obj, prog)) 5920 continue; 5921 err = bpf_object__relocate_data(obj, prog); 5922 if (err) { 5923 pr_warn("prog '%s': failed to relocate data references: %d\n", 5924 prog->name, err); 5925 return err; 5926 } 5927 } 5928 if (!obj->gen_loader) 5929 bpf_object__free_relocs(obj); 5930 return 0; 5931 } 5932 5933 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 5934 GElf_Shdr *shdr, Elf_Data *data); 5935 5936 static int bpf_object__collect_map_relos(struct bpf_object *obj, 5937 GElf_Shdr *shdr, Elf_Data *data) 5938 { 5939 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 5940 int i, j, nrels, new_sz; 5941 const struct btf_var_secinfo *vi = NULL; 5942 const struct btf_type *sec, *var, *def; 5943 struct bpf_map *map = NULL, *targ_map; 5944 const struct btf_member *member; 5945 const char *name, *mname; 5946 Elf_Data *symbols; 5947 unsigned int moff; 5948 GElf_Sym sym; 5949 GElf_Rel rel; 5950 void *tmp; 5951 5952 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 5953 return -EINVAL; 5954 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 5955 if (!sec) 5956 return -EINVAL; 5957 5958 symbols = obj->efile.symbols; 5959 nrels = shdr->sh_size / shdr->sh_entsize; 5960 for (i = 0; i < nrels; i++) { 5961 if (!gelf_getrel(data, i, &rel)) { 5962 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 5963 return -LIBBPF_ERRNO__FORMAT; 5964 } 5965 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 5966 pr_warn(".maps relo #%d: symbol %zx not found\n", 5967 i, (size_t)GELF_R_SYM(rel.r_info)); 5968 return -LIBBPF_ERRNO__FORMAT; 5969 } 5970 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 5971 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 5972 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 5973 i, name); 5974 return -LIBBPF_ERRNO__RELOC; 5975 } 5976 5977 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 5978 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 5979 (size_t)rel.r_offset, sym.st_name, name); 5980 5981 for (j = 0; j < obj->nr_maps; j++) { 5982 map = &obj->maps[j]; 5983 if (map->sec_idx != obj->efile.btf_maps_shndx) 5984 continue; 5985 5986 vi = btf_var_secinfos(sec) + map->btf_var_idx; 5987 if (vi->offset <= rel.r_offset && 5988 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 5989 break; 5990 } 5991 if (j == obj->nr_maps) { 5992 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 5993 i, name, (size_t)rel.r_offset); 5994 return -EINVAL; 5995 } 5996 5997 if (!bpf_map_type__is_map_in_map(map->def.type)) 5998 return -EINVAL; 5999 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6000 map->def.key_size != sizeof(int)) { 6001 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6002 i, map->name, sizeof(int)); 6003 return -EINVAL; 6004 } 6005 6006 targ_map = bpf_object__find_map_by_name(obj, name); 6007 if (!targ_map) 6008 return -ESRCH; 6009 6010 var = btf__type_by_id(obj->btf, vi->type); 6011 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6012 if (btf_vlen(def) == 0) 6013 return -EINVAL; 6014 member = btf_members(def) + btf_vlen(def) - 1; 6015 mname = btf__name_by_offset(obj->btf, member->name_off); 6016 if (strcmp(mname, "values")) 6017 return -EINVAL; 6018 6019 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6020 if (rel.r_offset - vi->offset < moff) 6021 return -EINVAL; 6022 6023 moff = rel.r_offset - vi->offset - moff; 6024 /* here we use BPF pointer size, which is always 64 bit, as we 6025 * are parsing ELF that was built for BPF target 6026 */ 6027 if (moff % bpf_ptr_sz) 6028 return -EINVAL; 6029 moff /= bpf_ptr_sz; 6030 if (moff >= map->init_slots_sz) { 6031 new_sz = moff + 1; 6032 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6033 if (!tmp) 6034 return -ENOMEM; 6035 map->init_slots = tmp; 6036 memset(map->init_slots + map->init_slots_sz, 0, 6037 (new_sz - map->init_slots_sz) * host_ptr_sz); 6038 map->init_slots_sz = new_sz; 6039 } 6040 map->init_slots[moff] = targ_map; 6041 6042 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6043 i, map->name, moff, name); 6044 } 6045 6046 return 0; 6047 } 6048 6049 static int cmp_relocs(const void *_a, const void *_b) 6050 { 6051 const struct reloc_desc *a = _a; 6052 const struct reloc_desc *b = _b; 6053 6054 if (a->insn_idx != b->insn_idx) 6055 return a->insn_idx < b->insn_idx ? -1 : 1; 6056 6057 /* no two relocations should have the same insn_idx, but ... */ 6058 if (a->type != b->type) 6059 return a->type < b->type ? -1 : 1; 6060 6061 return 0; 6062 } 6063 6064 static int bpf_object__collect_relos(struct bpf_object *obj) 6065 { 6066 int i, err; 6067 6068 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6069 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6070 Elf_Data *data = obj->efile.reloc_sects[i].data; 6071 int idx = shdr->sh_info; 6072 6073 if (shdr->sh_type != SHT_REL) { 6074 pr_warn("internal error at %d\n", __LINE__); 6075 return -LIBBPF_ERRNO__INTERNAL; 6076 } 6077 6078 if (idx == obj->efile.st_ops_shndx) 6079 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6080 else if (idx == obj->efile.btf_maps_shndx) 6081 err = bpf_object__collect_map_relos(obj, shdr, data); 6082 else 6083 err = bpf_object__collect_prog_relos(obj, shdr, data); 6084 if (err) 6085 return err; 6086 } 6087 6088 for (i = 0; i < obj->nr_programs; i++) { 6089 struct bpf_program *p = &obj->programs[i]; 6090 6091 if (!p->nr_reloc) 6092 continue; 6093 6094 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6095 } 6096 return 0; 6097 } 6098 6099 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6100 { 6101 if (BPF_CLASS(insn->code) == BPF_JMP && 6102 BPF_OP(insn->code) == BPF_CALL && 6103 BPF_SRC(insn->code) == BPF_K && 6104 insn->src_reg == 0 && 6105 insn->dst_reg == 0) { 6106 *func_id = insn->imm; 6107 return true; 6108 } 6109 return false; 6110 } 6111 6112 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6113 { 6114 struct bpf_insn *insn = prog->insns; 6115 enum bpf_func_id func_id; 6116 int i; 6117 6118 if (obj->gen_loader) 6119 return 0; 6120 6121 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6122 if (!insn_is_helper_call(insn, &func_id)) 6123 continue; 6124 6125 /* on kernels that don't yet support 6126 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6127 * to bpf_probe_read() which works well for old kernels 6128 */ 6129 switch (func_id) { 6130 case BPF_FUNC_probe_read_kernel: 6131 case BPF_FUNC_probe_read_user: 6132 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6133 insn->imm = BPF_FUNC_probe_read; 6134 break; 6135 case BPF_FUNC_probe_read_kernel_str: 6136 case BPF_FUNC_probe_read_user_str: 6137 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6138 insn->imm = BPF_FUNC_probe_read_str; 6139 break; 6140 default: 6141 break; 6142 } 6143 } 6144 return 0; 6145 } 6146 6147 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6148 int *btf_obj_fd, int *btf_type_id); 6149 6150 /* this is called as prog->sec_def->preload_fn for libbpf-supported sec_defs */ 6151 static int libbpf_preload_prog(struct bpf_program *prog, 6152 struct bpf_prog_load_params *attr, long cookie) 6153 { 6154 enum sec_def_flags def = cookie; 6155 6156 /* old kernels might not support specifying expected_attach_type */ 6157 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6158 attr->expected_attach_type = 0; 6159 6160 if (def & SEC_SLEEPABLE) 6161 attr->prog_flags |= BPF_F_SLEEPABLE; 6162 6163 if ((prog->type == BPF_PROG_TYPE_TRACING || 6164 prog->type == BPF_PROG_TYPE_LSM || 6165 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6166 int btf_obj_fd = 0, btf_type_id = 0, err; 6167 const char *attach_name; 6168 6169 attach_name = strchr(prog->sec_name, '/') + 1; 6170 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6171 if (err) 6172 return err; 6173 6174 /* cache resolved BTF FD and BTF type ID in the prog */ 6175 prog->attach_btf_obj_fd = btf_obj_fd; 6176 prog->attach_btf_id = btf_type_id; 6177 6178 /* but by now libbpf common logic is not utilizing 6179 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6180 * this callback is called after attrs were populated by 6181 * libbpf, so this callback has to update attr explicitly here 6182 */ 6183 attr->attach_btf_obj_fd = btf_obj_fd; 6184 attr->attach_btf_id = btf_type_id; 6185 } 6186 return 0; 6187 } 6188 6189 static int 6190 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6191 char *license, __u32 kern_version, int *pfd) 6192 { 6193 struct bpf_prog_load_params load_attr = {}; 6194 char *cp, errmsg[STRERR_BUFSIZE]; 6195 size_t log_buf_size = 0; 6196 char *log_buf = NULL; 6197 int btf_fd, ret, err; 6198 6199 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6200 /* 6201 * The program type must be set. Most likely we couldn't find a proper 6202 * section definition at load time, and thus we didn't infer the type. 6203 */ 6204 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6205 prog->name, prog->sec_name); 6206 return -EINVAL; 6207 } 6208 6209 if (!insns || !insns_cnt) 6210 return -EINVAL; 6211 6212 load_attr.prog_type = prog->type; 6213 load_attr.expected_attach_type = prog->expected_attach_type; 6214 if (kernel_supports(prog->obj, FEAT_PROG_NAME)) 6215 load_attr.name = prog->name; 6216 load_attr.insns = insns; 6217 load_attr.insn_cnt = insns_cnt; 6218 load_attr.license = license; 6219 load_attr.attach_btf_id = prog->attach_btf_id; 6220 load_attr.attach_prog_fd = prog->attach_prog_fd; 6221 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6222 load_attr.attach_btf_id = prog->attach_btf_id; 6223 load_attr.kern_version = kern_version; 6224 load_attr.prog_ifindex = prog->prog_ifindex; 6225 6226 /* specify func_info/line_info only if kernel supports them */ 6227 btf_fd = bpf_object__btf_fd(prog->obj); 6228 if (btf_fd >= 0 && kernel_supports(prog->obj, FEAT_BTF_FUNC)) { 6229 load_attr.prog_btf_fd = btf_fd; 6230 load_attr.func_info = prog->func_info; 6231 load_attr.func_info_rec_size = prog->func_info_rec_size; 6232 load_attr.func_info_cnt = prog->func_info_cnt; 6233 load_attr.line_info = prog->line_info; 6234 load_attr.line_info_rec_size = prog->line_info_rec_size; 6235 load_attr.line_info_cnt = prog->line_info_cnt; 6236 } 6237 load_attr.log_level = prog->log_level; 6238 load_attr.prog_flags = prog->prog_flags; 6239 6240 /* adjust load_attr if sec_def provides custom preload callback */ 6241 if (prog->sec_def && prog->sec_def->preload_fn) { 6242 err = prog->sec_def->preload_fn(prog, &load_attr, prog->sec_def->cookie); 6243 if (err < 0) { 6244 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6245 prog->name, err); 6246 return err; 6247 } 6248 } 6249 6250 if (prog->obj->gen_loader) { 6251 bpf_gen__prog_load(prog->obj->gen_loader, &load_attr, 6252 prog - prog->obj->programs); 6253 *pfd = -1; 6254 return 0; 6255 } 6256 retry_load: 6257 if (log_buf_size) { 6258 log_buf = malloc(log_buf_size); 6259 if (!log_buf) 6260 return -ENOMEM; 6261 6262 *log_buf = 0; 6263 } 6264 6265 load_attr.log_buf = log_buf; 6266 load_attr.log_buf_sz = log_buf_size; 6267 ret = libbpf__bpf_prog_load(&load_attr); 6268 6269 if (ret >= 0) { 6270 if (log_buf && load_attr.log_level) 6271 pr_debug("verifier log:\n%s", log_buf); 6272 6273 if (prog->obj->rodata_map_idx >= 0 && 6274 kernel_supports(prog->obj, FEAT_PROG_BIND_MAP)) { 6275 struct bpf_map *rodata_map = 6276 &prog->obj->maps[prog->obj->rodata_map_idx]; 6277 6278 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 6279 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6280 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6281 prog->name, cp); 6282 /* Don't fail hard if can't bind rodata. */ 6283 } 6284 } 6285 6286 *pfd = ret; 6287 ret = 0; 6288 goto out; 6289 } 6290 6291 if (!log_buf || errno == ENOSPC) { 6292 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6293 log_buf_size << 1); 6294 6295 free(log_buf); 6296 goto retry_load; 6297 } 6298 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6299 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6300 pr_warn("load bpf program failed: %s\n", cp); 6301 pr_perm_msg(ret); 6302 6303 if (log_buf && log_buf[0] != '\0') { 6304 ret = -LIBBPF_ERRNO__VERIFY; 6305 pr_warn("-- BEGIN DUMP LOG ---\n"); 6306 pr_warn("\n%s\n", log_buf); 6307 pr_warn("-- END LOG --\n"); 6308 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 6309 pr_warn("Program too large (%zu insns), at most %d insns\n", 6310 load_attr.insn_cnt, BPF_MAXINSNS); 6311 ret = -LIBBPF_ERRNO__PROG2BIG; 6312 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6313 /* Wrong program type? */ 6314 int fd; 6315 6316 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6317 load_attr.expected_attach_type = 0; 6318 load_attr.log_buf = NULL; 6319 load_attr.log_buf_sz = 0; 6320 fd = libbpf__bpf_prog_load(&load_attr); 6321 if (fd >= 0) { 6322 close(fd); 6323 ret = -LIBBPF_ERRNO__PROGTYPE; 6324 goto out; 6325 } 6326 } 6327 6328 out: 6329 free(log_buf); 6330 return ret; 6331 } 6332 6333 static int bpf_program__record_externs(struct bpf_program *prog) 6334 { 6335 struct bpf_object *obj = prog->obj; 6336 int i; 6337 6338 for (i = 0; i < prog->nr_reloc; i++) { 6339 struct reloc_desc *relo = &prog->reloc_desc[i]; 6340 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6341 6342 switch (relo->type) { 6343 case RELO_EXTERN_VAR: 6344 if (ext->type != EXT_KSYM) 6345 continue; 6346 if (!ext->ksym.type_id) { 6347 pr_warn("typeless ksym %s is not supported yet\n", 6348 ext->name); 6349 return -ENOTSUP; 6350 } 6351 bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_VAR, 6352 relo->insn_idx); 6353 break; 6354 case RELO_EXTERN_FUNC: 6355 bpf_gen__record_extern(obj->gen_loader, ext->name, BTF_KIND_FUNC, 6356 relo->insn_idx); 6357 break; 6358 default: 6359 continue; 6360 } 6361 } 6362 return 0; 6363 } 6364 6365 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6366 { 6367 int err = 0, fd, i; 6368 6369 if (prog->obj->loaded) { 6370 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6371 return libbpf_err(-EINVAL); 6372 } 6373 6374 if (prog->instances.nr < 0 || !prog->instances.fds) { 6375 if (prog->preprocessor) { 6376 pr_warn("Internal error: can't load program '%s'\n", 6377 prog->name); 6378 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6379 } 6380 6381 prog->instances.fds = malloc(sizeof(int)); 6382 if (!prog->instances.fds) { 6383 pr_warn("Not enough memory for BPF fds\n"); 6384 return libbpf_err(-ENOMEM); 6385 } 6386 prog->instances.nr = 1; 6387 prog->instances.fds[0] = -1; 6388 } 6389 6390 if (!prog->preprocessor) { 6391 if (prog->instances.nr != 1) { 6392 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6393 prog->name, prog->instances.nr); 6394 } 6395 if (prog->obj->gen_loader) 6396 bpf_program__record_externs(prog); 6397 err = load_program(prog, prog->insns, prog->insns_cnt, 6398 license, kern_ver, &fd); 6399 if (!err) 6400 prog->instances.fds[0] = fd; 6401 goto out; 6402 } 6403 6404 for (i = 0; i < prog->instances.nr; i++) { 6405 struct bpf_prog_prep_result result; 6406 bpf_program_prep_t preprocessor = prog->preprocessor; 6407 6408 memset(&result, 0, sizeof(result)); 6409 err = preprocessor(prog, i, prog->insns, 6410 prog->insns_cnt, &result); 6411 if (err) { 6412 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6413 i, prog->name); 6414 goto out; 6415 } 6416 6417 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6418 pr_debug("Skip loading the %dth instance of program '%s'\n", 6419 i, prog->name); 6420 prog->instances.fds[i] = -1; 6421 if (result.pfd) 6422 *result.pfd = -1; 6423 continue; 6424 } 6425 6426 err = load_program(prog, result.new_insn_ptr, 6427 result.new_insn_cnt, license, kern_ver, &fd); 6428 if (err) { 6429 pr_warn("Loading the %dth instance of program '%s' failed\n", 6430 i, prog->name); 6431 goto out; 6432 } 6433 6434 if (result.pfd) 6435 *result.pfd = fd; 6436 prog->instances.fds[i] = fd; 6437 } 6438 out: 6439 if (err) 6440 pr_warn("failed to load program '%s'\n", prog->name); 6441 zfree(&prog->insns); 6442 prog->insns_cnt = 0; 6443 return libbpf_err(err); 6444 } 6445 6446 static int 6447 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6448 { 6449 struct bpf_program *prog; 6450 size_t i; 6451 int err; 6452 6453 for (i = 0; i < obj->nr_programs; i++) { 6454 prog = &obj->programs[i]; 6455 err = bpf_object__sanitize_prog(obj, prog); 6456 if (err) 6457 return err; 6458 } 6459 6460 for (i = 0; i < obj->nr_programs; i++) { 6461 prog = &obj->programs[i]; 6462 if (prog_is_subprog(obj, prog)) 6463 continue; 6464 if (!prog->load) { 6465 pr_debug("prog '%s': skipped loading\n", prog->name); 6466 continue; 6467 } 6468 prog->log_level |= log_level; 6469 err = bpf_program__load(prog, obj->license, obj->kern_version); 6470 if (err) 6471 return err; 6472 } 6473 if (obj->gen_loader) 6474 bpf_object__free_relocs(obj); 6475 return 0; 6476 } 6477 6478 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6479 6480 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6481 { 6482 struct bpf_program *prog; 6483 int err; 6484 6485 bpf_object__for_each_program(prog, obj) { 6486 prog->sec_def = find_sec_def(prog->sec_name); 6487 if (!prog->sec_def) { 6488 /* couldn't guess, but user might manually specify */ 6489 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6490 prog->name, prog->sec_name); 6491 continue; 6492 } 6493 6494 bpf_program__set_type(prog, prog->sec_def->prog_type); 6495 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6496 6497 #pragma GCC diagnostic push 6498 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6499 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6500 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6501 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6502 #pragma GCC diagnostic pop 6503 6504 /* sec_def can have custom callback which should be called 6505 * after bpf_program is initialized to adjust its properties 6506 */ 6507 if (prog->sec_def->init_fn) { 6508 err = prog->sec_def->init_fn(prog, prog->sec_def->cookie); 6509 if (err < 0) { 6510 pr_warn("prog '%s': failed to initialize: %d\n", 6511 prog->name, err); 6512 return err; 6513 } 6514 } 6515 } 6516 6517 return 0; 6518 } 6519 6520 static struct bpf_object * 6521 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6522 const struct bpf_object_open_opts *opts) 6523 { 6524 const char *obj_name, *kconfig, *btf_tmp_path; 6525 struct bpf_object *obj; 6526 char tmp_name[64]; 6527 int err; 6528 6529 if (elf_version(EV_CURRENT) == EV_NONE) { 6530 pr_warn("failed to init libelf for %s\n", 6531 path ? : "(mem buf)"); 6532 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6533 } 6534 6535 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6536 return ERR_PTR(-EINVAL); 6537 6538 obj_name = OPTS_GET(opts, object_name, NULL); 6539 if (obj_buf) { 6540 if (!obj_name) { 6541 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6542 (unsigned long)obj_buf, 6543 (unsigned long)obj_buf_sz); 6544 obj_name = tmp_name; 6545 } 6546 path = obj_name; 6547 pr_debug("loading object '%s' from buffer\n", obj_name); 6548 } 6549 6550 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 6551 if (IS_ERR(obj)) 6552 return obj; 6553 6554 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 6555 if (btf_tmp_path) { 6556 if (strlen(btf_tmp_path) >= PATH_MAX) { 6557 err = -ENAMETOOLONG; 6558 goto out; 6559 } 6560 obj->btf_custom_path = strdup(btf_tmp_path); 6561 if (!obj->btf_custom_path) { 6562 err = -ENOMEM; 6563 goto out; 6564 } 6565 } 6566 6567 kconfig = OPTS_GET(opts, kconfig, NULL); 6568 if (kconfig) { 6569 obj->kconfig = strdup(kconfig); 6570 if (!obj->kconfig) { 6571 err = -ENOMEM; 6572 goto out; 6573 } 6574 } 6575 6576 err = bpf_object__elf_init(obj); 6577 err = err ? : bpf_object__check_endianness(obj); 6578 err = err ? : bpf_object__elf_collect(obj); 6579 err = err ? : bpf_object__collect_externs(obj); 6580 err = err ? : bpf_object__finalize_btf(obj); 6581 err = err ? : bpf_object__init_maps(obj, opts); 6582 err = err ? : bpf_object_init_progs(obj, opts); 6583 err = err ? : bpf_object__collect_relos(obj); 6584 if (err) 6585 goto out; 6586 6587 bpf_object__elf_finish(obj); 6588 6589 return obj; 6590 out: 6591 bpf_object__close(obj); 6592 return ERR_PTR(err); 6593 } 6594 6595 static struct bpf_object * 6596 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 6597 { 6598 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6599 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 6600 ); 6601 6602 /* param validation */ 6603 if (!attr->file) 6604 return NULL; 6605 6606 pr_debug("loading %s\n", attr->file); 6607 return __bpf_object__open(attr->file, NULL, 0, &opts); 6608 } 6609 6610 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 6611 { 6612 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 6613 } 6614 6615 struct bpf_object *bpf_object__open(const char *path) 6616 { 6617 struct bpf_object_open_attr attr = { 6618 .file = path, 6619 .prog_type = BPF_PROG_TYPE_UNSPEC, 6620 }; 6621 6622 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 6623 } 6624 6625 struct bpf_object * 6626 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 6627 { 6628 if (!path) 6629 return libbpf_err_ptr(-EINVAL); 6630 6631 pr_debug("loading %s\n", path); 6632 6633 return libbpf_ptr(__bpf_object__open(path, NULL, 0, opts)); 6634 } 6635 6636 struct bpf_object * 6637 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 6638 const struct bpf_object_open_opts *opts) 6639 { 6640 if (!obj_buf || obj_buf_sz == 0) 6641 return libbpf_err_ptr(-EINVAL); 6642 6643 return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, opts)); 6644 } 6645 6646 struct bpf_object * 6647 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 6648 const char *name) 6649 { 6650 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6651 .object_name = name, 6652 /* wrong default, but backwards-compatible */ 6653 .relaxed_maps = true, 6654 ); 6655 6656 /* returning NULL is wrong, but backwards-compatible */ 6657 if (!obj_buf || obj_buf_sz == 0) 6658 return errno = EINVAL, NULL; 6659 6660 return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, &opts)); 6661 } 6662 6663 int bpf_object__unload(struct bpf_object *obj) 6664 { 6665 size_t i; 6666 6667 if (!obj) 6668 return libbpf_err(-EINVAL); 6669 6670 for (i = 0; i < obj->nr_maps; i++) { 6671 zclose(obj->maps[i].fd); 6672 if (obj->maps[i].st_ops) 6673 zfree(&obj->maps[i].st_ops->kern_vdata); 6674 } 6675 6676 for (i = 0; i < obj->nr_programs; i++) 6677 bpf_program__unload(&obj->programs[i]); 6678 6679 return 0; 6680 } 6681 6682 static int bpf_object__sanitize_maps(struct bpf_object *obj) 6683 { 6684 struct bpf_map *m; 6685 6686 bpf_object__for_each_map(m, obj) { 6687 if (!bpf_map__is_internal(m)) 6688 continue; 6689 if (!kernel_supports(obj, FEAT_GLOBAL_DATA)) { 6690 pr_warn("kernel doesn't support global data\n"); 6691 return -ENOTSUP; 6692 } 6693 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 6694 m->def.map_flags ^= BPF_F_MMAPABLE; 6695 } 6696 6697 return 0; 6698 } 6699 6700 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 6701 { 6702 char sym_type, sym_name[500]; 6703 unsigned long long sym_addr; 6704 const struct btf_type *t; 6705 struct extern_desc *ext; 6706 int ret, err = 0; 6707 FILE *f; 6708 6709 f = fopen("/proc/kallsyms", "r"); 6710 if (!f) { 6711 err = -errno; 6712 pr_warn("failed to open /proc/kallsyms: %d\n", err); 6713 return err; 6714 } 6715 6716 while (true) { 6717 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 6718 &sym_addr, &sym_type, sym_name); 6719 if (ret == EOF && feof(f)) 6720 break; 6721 if (ret != 3) { 6722 pr_warn("failed to read kallsyms entry: %d\n", ret); 6723 err = -EINVAL; 6724 goto out; 6725 } 6726 6727 ext = find_extern_by_name(obj, sym_name); 6728 if (!ext || ext->type != EXT_KSYM) 6729 continue; 6730 6731 t = btf__type_by_id(obj->btf, ext->btf_id); 6732 if (!btf_is_var(t)) 6733 continue; 6734 6735 if (ext->is_set && ext->ksym.addr != sym_addr) { 6736 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 6737 sym_name, ext->ksym.addr, sym_addr); 6738 err = -EINVAL; 6739 goto out; 6740 } 6741 if (!ext->is_set) { 6742 ext->is_set = true; 6743 ext->ksym.addr = sym_addr; 6744 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 6745 } 6746 } 6747 6748 out: 6749 fclose(f); 6750 return err; 6751 } 6752 6753 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 6754 __u16 kind, struct btf **res_btf, 6755 int *res_btf_fd) 6756 { 6757 int i, id, btf_fd, err; 6758 struct btf *btf; 6759 6760 btf = obj->btf_vmlinux; 6761 btf_fd = 0; 6762 id = btf__find_by_name_kind(btf, ksym_name, kind); 6763 6764 if (id == -ENOENT) { 6765 err = load_module_btfs(obj); 6766 if (err) 6767 return err; 6768 6769 for (i = 0; i < obj->btf_module_cnt; i++) { 6770 btf = obj->btf_modules[i].btf; 6771 /* we assume module BTF FD is always >0 */ 6772 btf_fd = obj->btf_modules[i].fd; 6773 id = btf__find_by_name_kind(btf, ksym_name, kind); 6774 if (id != -ENOENT) 6775 break; 6776 } 6777 } 6778 if (id <= 0) 6779 return -ESRCH; 6780 6781 *res_btf = btf; 6782 *res_btf_fd = btf_fd; 6783 return id; 6784 } 6785 6786 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 6787 struct extern_desc *ext) 6788 { 6789 const struct btf_type *targ_var, *targ_type; 6790 __u32 targ_type_id, local_type_id; 6791 const char *targ_var_name; 6792 int id, btf_fd = 0, err; 6793 struct btf *btf = NULL; 6794 6795 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &btf_fd); 6796 if (id == -ESRCH && ext->is_weak) { 6797 return 0; 6798 } else if (id < 0) { 6799 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 6800 ext->name); 6801 return id; 6802 } 6803 6804 /* find local type_id */ 6805 local_type_id = ext->ksym.type_id; 6806 6807 /* find target type_id */ 6808 targ_var = btf__type_by_id(btf, id); 6809 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 6810 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 6811 6812 err = bpf_core_types_are_compat(obj->btf, local_type_id, 6813 btf, targ_type_id); 6814 if (err <= 0) { 6815 const struct btf_type *local_type; 6816 const char *targ_name, *local_name; 6817 6818 local_type = btf__type_by_id(obj->btf, local_type_id); 6819 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 6820 targ_name = btf__name_by_offset(btf, targ_type->name_off); 6821 6822 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 6823 ext->name, local_type_id, 6824 btf_kind_str(local_type), local_name, targ_type_id, 6825 btf_kind_str(targ_type), targ_name); 6826 return -EINVAL; 6827 } 6828 6829 ext->is_set = true; 6830 ext->ksym.kernel_btf_obj_fd = btf_fd; 6831 ext->ksym.kernel_btf_id = id; 6832 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 6833 ext->name, id, btf_kind_str(targ_var), targ_var_name); 6834 6835 return 0; 6836 } 6837 6838 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 6839 struct extern_desc *ext) 6840 { 6841 int local_func_proto_id, kfunc_proto_id, kfunc_id; 6842 const struct btf_type *kern_func; 6843 struct btf *kern_btf = NULL; 6844 int ret, kern_btf_fd = 0; 6845 6846 local_func_proto_id = ext->ksym.type_id; 6847 6848 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, 6849 &kern_btf, &kern_btf_fd); 6850 if (kfunc_id < 0) { 6851 pr_warn("extern (func ksym) '%s': not found in kernel BTF\n", 6852 ext->name); 6853 return kfunc_id; 6854 } 6855 6856 if (kern_btf != obj->btf_vmlinux) { 6857 pr_warn("extern (func ksym) '%s': function in kernel module is not supported\n", 6858 ext->name); 6859 return -ENOTSUP; 6860 } 6861 6862 kern_func = btf__type_by_id(kern_btf, kfunc_id); 6863 kfunc_proto_id = kern_func->type; 6864 6865 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 6866 kern_btf, kfunc_proto_id); 6867 if (ret <= 0) { 6868 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 6869 ext->name, local_func_proto_id, kfunc_proto_id); 6870 return -EINVAL; 6871 } 6872 6873 ext->is_set = true; 6874 ext->ksym.kernel_btf_obj_fd = kern_btf_fd; 6875 ext->ksym.kernel_btf_id = kfunc_id; 6876 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 6877 ext->name, kfunc_id); 6878 6879 return 0; 6880 } 6881 6882 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 6883 { 6884 const struct btf_type *t; 6885 struct extern_desc *ext; 6886 int i, err; 6887 6888 for (i = 0; i < obj->nr_extern; i++) { 6889 ext = &obj->externs[i]; 6890 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 6891 continue; 6892 6893 if (obj->gen_loader) { 6894 ext->is_set = true; 6895 ext->ksym.kernel_btf_obj_fd = 0; 6896 ext->ksym.kernel_btf_id = 0; 6897 continue; 6898 } 6899 t = btf__type_by_id(obj->btf, ext->btf_id); 6900 if (btf_is_var(t)) 6901 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 6902 else 6903 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 6904 if (err) 6905 return err; 6906 } 6907 return 0; 6908 } 6909 6910 static int bpf_object__resolve_externs(struct bpf_object *obj, 6911 const char *extra_kconfig) 6912 { 6913 bool need_config = false, need_kallsyms = false; 6914 bool need_vmlinux_btf = false; 6915 struct extern_desc *ext; 6916 void *kcfg_data = NULL; 6917 int err, i; 6918 6919 if (obj->nr_extern == 0) 6920 return 0; 6921 6922 if (obj->kconfig_map_idx >= 0) 6923 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 6924 6925 for (i = 0; i < obj->nr_extern; i++) { 6926 ext = &obj->externs[i]; 6927 6928 if (ext->type == EXT_KCFG && 6929 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 6930 void *ext_val = kcfg_data + ext->kcfg.data_off; 6931 __u32 kver = get_kernel_version(); 6932 6933 if (!kver) { 6934 pr_warn("failed to get kernel version\n"); 6935 return -EINVAL; 6936 } 6937 err = set_kcfg_value_num(ext, ext_val, kver); 6938 if (err) 6939 return err; 6940 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 6941 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 6942 need_config = true; 6943 } else if (ext->type == EXT_KSYM) { 6944 if (ext->ksym.type_id) 6945 need_vmlinux_btf = true; 6946 else 6947 need_kallsyms = true; 6948 } else { 6949 pr_warn("unrecognized extern '%s'\n", ext->name); 6950 return -EINVAL; 6951 } 6952 } 6953 if (need_config && extra_kconfig) { 6954 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 6955 if (err) 6956 return -EINVAL; 6957 need_config = false; 6958 for (i = 0; i < obj->nr_extern; i++) { 6959 ext = &obj->externs[i]; 6960 if (ext->type == EXT_KCFG && !ext->is_set) { 6961 need_config = true; 6962 break; 6963 } 6964 } 6965 } 6966 if (need_config) { 6967 err = bpf_object__read_kconfig_file(obj, kcfg_data); 6968 if (err) 6969 return -EINVAL; 6970 } 6971 if (need_kallsyms) { 6972 err = bpf_object__read_kallsyms_file(obj); 6973 if (err) 6974 return -EINVAL; 6975 } 6976 if (need_vmlinux_btf) { 6977 err = bpf_object__resolve_ksyms_btf_id(obj); 6978 if (err) 6979 return -EINVAL; 6980 } 6981 for (i = 0; i < obj->nr_extern; i++) { 6982 ext = &obj->externs[i]; 6983 6984 if (!ext->is_set && !ext->is_weak) { 6985 pr_warn("extern %s (strong) not resolved\n", ext->name); 6986 return -ESRCH; 6987 } else if (!ext->is_set) { 6988 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 6989 ext->name); 6990 } 6991 } 6992 6993 return 0; 6994 } 6995 6996 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 6997 { 6998 struct bpf_object *obj; 6999 int err, i; 7000 7001 if (!attr) 7002 return libbpf_err(-EINVAL); 7003 obj = attr->obj; 7004 if (!obj) 7005 return libbpf_err(-EINVAL); 7006 7007 if (obj->loaded) { 7008 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7009 return libbpf_err(-EINVAL); 7010 } 7011 7012 if (obj->gen_loader) 7013 bpf_gen__init(obj->gen_loader, attr->log_level); 7014 7015 err = bpf_object__probe_loading(obj); 7016 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7017 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7018 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7019 err = err ? : bpf_object__sanitize_maps(obj); 7020 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7021 err = err ? : bpf_object__create_maps(obj); 7022 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : attr->target_btf_path); 7023 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7024 7025 if (obj->gen_loader) { 7026 /* reset FDs */ 7027 if (obj->btf) 7028 btf__set_fd(obj->btf, -1); 7029 for (i = 0; i < obj->nr_maps; i++) 7030 obj->maps[i].fd = -1; 7031 if (!err) 7032 err = bpf_gen__finish(obj->gen_loader); 7033 } 7034 7035 /* clean up module BTFs */ 7036 for (i = 0; i < obj->btf_module_cnt; i++) { 7037 close(obj->btf_modules[i].fd); 7038 btf__free(obj->btf_modules[i].btf); 7039 free(obj->btf_modules[i].name); 7040 } 7041 free(obj->btf_modules); 7042 7043 /* clean up vmlinux BTF */ 7044 btf__free(obj->btf_vmlinux); 7045 obj->btf_vmlinux = NULL; 7046 7047 obj->loaded = true; /* doesn't matter if successfully or not */ 7048 7049 if (err) 7050 goto out; 7051 7052 return 0; 7053 out: 7054 /* unpin any maps that were auto-pinned during load */ 7055 for (i = 0; i < obj->nr_maps; i++) 7056 if (obj->maps[i].pinned && !obj->maps[i].reused) 7057 bpf_map__unpin(&obj->maps[i], NULL); 7058 7059 bpf_object__unload(obj); 7060 pr_warn("failed to load object '%s'\n", obj->path); 7061 return libbpf_err(err); 7062 } 7063 7064 int bpf_object__load(struct bpf_object *obj) 7065 { 7066 struct bpf_object_load_attr attr = { 7067 .obj = obj, 7068 }; 7069 7070 return bpf_object__load_xattr(&attr); 7071 } 7072 7073 static int make_parent_dir(const char *path) 7074 { 7075 char *cp, errmsg[STRERR_BUFSIZE]; 7076 char *dname, *dir; 7077 int err = 0; 7078 7079 dname = strdup(path); 7080 if (dname == NULL) 7081 return -ENOMEM; 7082 7083 dir = dirname(dname); 7084 if (mkdir(dir, 0700) && errno != EEXIST) 7085 err = -errno; 7086 7087 free(dname); 7088 if (err) { 7089 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7090 pr_warn("failed to mkdir %s: %s\n", path, cp); 7091 } 7092 return err; 7093 } 7094 7095 static int check_path(const char *path) 7096 { 7097 char *cp, errmsg[STRERR_BUFSIZE]; 7098 struct statfs st_fs; 7099 char *dname, *dir; 7100 int err = 0; 7101 7102 if (path == NULL) 7103 return -EINVAL; 7104 7105 dname = strdup(path); 7106 if (dname == NULL) 7107 return -ENOMEM; 7108 7109 dir = dirname(dname); 7110 if (statfs(dir, &st_fs)) { 7111 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7112 pr_warn("failed to statfs %s: %s\n", dir, cp); 7113 err = -errno; 7114 } 7115 free(dname); 7116 7117 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7118 pr_warn("specified path %s is not on BPF FS\n", path); 7119 err = -EINVAL; 7120 } 7121 7122 return err; 7123 } 7124 7125 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7126 int instance) 7127 { 7128 char *cp, errmsg[STRERR_BUFSIZE]; 7129 int err; 7130 7131 err = make_parent_dir(path); 7132 if (err) 7133 return libbpf_err(err); 7134 7135 err = check_path(path); 7136 if (err) 7137 return libbpf_err(err); 7138 7139 if (prog == NULL) { 7140 pr_warn("invalid program pointer\n"); 7141 return libbpf_err(-EINVAL); 7142 } 7143 7144 if (instance < 0 || instance >= prog->instances.nr) { 7145 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7146 instance, prog->name, prog->instances.nr); 7147 return libbpf_err(-EINVAL); 7148 } 7149 7150 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7151 err = -errno; 7152 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7153 pr_warn("failed to pin program: %s\n", cp); 7154 return libbpf_err(err); 7155 } 7156 pr_debug("pinned program '%s'\n", path); 7157 7158 return 0; 7159 } 7160 7161 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7162 int instance) 7163 { 7164 int err; 7165 7166 err = check_path(path); 7167 if (err) 7168 return libbpf_err(err); 7169 7170 if (prog == NULL) { 7171 pr_warn("invalid program pointer\n"); 7172 return libbpf_err(-EINVAL); 7173 } 7174 7175 if (instance < 0 || instance >= prog->instances.nr) { 7176 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7177 instance, prog->name, prog->instances.nr); 7178 return libbpf_err(-EINVAL); 7179 } 7180 7181 err = unlink(path); 7182 if (err != 0) 7183 return libbpf_err(-errno); 7184 7185 pr_debug("unpinned program '%s'\n", path); 7186 7187 return 0; 7188 } 7189 7190 int bpf_program__pin(struct bpf_program *prog, const char *path) 7191 { 7192 int i, err; 7193 7194 err = make_parent_dir(path); 7195 if (err) 7196 return libbpf_err(err); 7197 7198 err = check_path(path); 7199 if (err) 7200 return libbpf_err(err); 7201 7202 if (prog == NULL) { 7203 pr_warn("invalid program pointer\n"); 7204 return libbpf_err(-EINVAL); 7205 } 7206 7207 if (prog->instances.nr <= 0) { 7208 pr_warn("no instances of prog %s to pin\n", prog->name); 7209 return libbpf_err(-EINVAL); 7210 } 7211 7212 if (prog->instances.nr == 1) { 7213 /* don't create subdirs when pinning single instance */ 7214 return bpf_program__pin_instance(prog, path, 0); 7215 } 7216 7217 for (i = 0; i < prog->instances.nr; i++) { 7218 char buf[PATH_MAX]; 7219 int len; 7220 7221 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7222 if (len < 0) { 7223 err = -EINVAL; 7224 goto err_unpin; 7225 } else if (len >= PATH_MAX) { 7226 err = -ENAMETOOLONG; 7227 goto err_unpin; 7228 } 7229 7230 err = bpf_program__pin_instance(prog, buf, i); 7231 if (err) 7232 goto err_unpin; 7233 } 7234 7235 return 0; 7236 7237 err_unpin: 7238 for (i = i - 1; i >= 0; i--) { 7239 char buf[PATH_MAX]; 7240 int len; 7241 7242 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7243 if (len < 0) 7244 continue; 7245 else if (len >= PATH_MAX) 7246 continue; 7247 7248 bpf_program__unpin_instance(prog, buf, i); 7249 } 7250 7251 rmdir(path); 7252 7253 return libbpf_err(err); 7254 } 7255 7256 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7257 { 7258 int i, err; 7259 7260 err = check_path(path); 7261 if (err) 7262 return libbpf_err(err); 7263 7264 if (prog == NULL) { 7265 pr_warn("invalid program pointer\n"); 7266 return libbpf_err(-EINVAL); 7267 } 7268 7269 if (prog->instances.nr <= 0) { 7270 pr_warn("no instances of prog %s to pin\n", prog->name); 7271 return libbpf_err(-EINVAL); 7272 } 7273 7274 if (prog->instances.nr == 1) { 7275 /* don't create subdirs when pinning single instance */ 7276 return bpf_program__unpin_instance(prog, path, 0); 7277 } 7278 7279 for (i = 0; i < prog->instances.nr; i++) { 7280 char buf[PATH_MAX]; 7281 int len; 7282 7283 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7284 if (len < 0) 7285 return libbpf_err(-EINVAL); 7286 else if (len >= PATH_MAX) 7287 return libbpf_err(-ENAMETOOLONG); 7288 7289 err = bpf_program__unpin_instance(prog, buf, i); 7290 if (err) 7291 return err; 7292 } 7293 7294 err = rmdir(path); 7295 if (err) 7296 return libbpf_err(-errno); 7297 7298 return 0; 7299 } 7300 7301 int bpf_map__pin(struct bpf_map *map, const char *path) 7302 { 7303 char *cp, errmsg[STRERR_BUFSIZE]; 7304 int err; 7305 7306 if (map == NULL) { 7307 pr_warn("invalid map pointer\n"); 7308 return libbpf_err(-EINVAL); 7309 } 7310 7311 if (map->pin_path) { 7312 if (path && strcmp(path, map->pin_path)) { 7313 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7314 bpf_map__name(map), map->pin_path, path); 7315 return libbpf_err(-EINVAL); 7316 } else if (map->pinned) { 7317 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7318 bpf_map__name(map), map->pin_path); 7319 return 0; 7320 } 7321 } else { 7322 if (!path) { 7323 pr_warn("missing a path to pin map '%s' at\n", 7324 bpf_map__name(map)); 7325 return libbpf_err(-EINVAL); 7326 } else if (map->pinned) { 7327 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7328 return libbpf_err(-EEXIST); 7329 } 7330 7331 map->pin_path = strdup(path); 7332 if (!map->pin_path) { 7333 err = -errno; 7334 goto out_err; 7335 } 7336 } 7337 7338 err = make_parent_dir(map->pin_path); 7339 if (err) 7340 return libbpf_err(err); 7341 7342 err = check_path(map->pin_path); 7343 if (err) 7344 return libbpf_err(err); 7345 7346 if (bpf_obj_pin(map->fd, map->pin_path)) { 7347 err = -errno; 7348 goto out_err; 7349 } 7350 7351 map->pinned = true; 7352 pr_debug("pinned map '%s'\n", map->pin_path); 7353 7354 return 0; 7355 7356 out_err: 7357 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7358 pr_warn("failed to pin map: %s\n", cp); 7359 return libbpf_err(err); 7360 } 7361 7362 int bpf_map__unpin(struct bpf_map *map, const char *path) 7363 { 7364 int err; 7365 7366 if (map == NULL) { 7367 pr_warn("invalid map pointer\n"); 7368 return libbpf_err(-EINVAL); 7369 } 7370 7371 if (map->pin_path) { 7372 if (path && strcmp(path, map->pin_path)) { 7373 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7374 bpf_map__name(map), map->pin_path, path); 7375 return libbpf_err(-EINVAL); 7376 } 7377 path = map->pin_path; 7378 } else if (!path) { 7379 pr_warn("no path to unpin map '%s' from\n", 7380 bpf_map__name(map)); 7381 return libbpf_err(-EINVAL); 7382 } 7383 7384 err = check_path(path); 7385 if (err) 7386 return libbpf_err(err); 7387 7388 err = unlink(path); 7389 if (err != 0) 7390 return libbpf_err(-errno); 7391 7392 map->pinned = false; 7393 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7394 7395 return 0; 7396 } 7397 7398 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7399 { 7400 char *new = NULL; 7401 7402 if (path) { 7403 new = strdup(path); 7404 if (!new) 7405 return libbpf_err(-errno); 7406 } 7407 7408 free(map->pin_path); 7409 map->pin_path = new; 7410 return 0; 7411 } 7412 7413 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7414 { 7415 return map->pin_path; 7416 } 7417 7418 const char *bpf_map__pin_path(const struct bpf_map *map) 7419 { 7420 return map->pin_path; 7421 } 7422 7423 bool bpf_map__is_pinned(const struct bpf_map *map) 7424 { 7425 return map->pinned; 7426 } 7427 7428 static void sanitize_pin_path(char *s) 7429 { 7430 /* bpffs disallows periods in path names */ 7431 while (*s) { 7432 if (*s == '.') 7433 *s = '_'; 7434 s++; 7435 } 7436 } 7437 7438 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7439 { 7440 struct bpf_map *map; 7441 int err; 7442 7443 if (!obj) 7444 return libbpf_err(-ENOENT); 7445 7446 if (!obj->loaded) { 7447 pr_warn("object not yet loaded; load it first\n"); 7448 return libbpf_err(-ENOENT); 7449 } 7450 7451 bpf_object__for_each_map(map, obj) { 7452 char *pin_path = NULL; 7453 char buf[PATH_MAX]; 7454 7455 if (path) { 7456 int len; 7457 7458 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7459 bpf_map__name(map)); 7460 if (len < 0) { 7461 err = -EINVAL; 7462 goto err_unpin_maps; 7463 } else if (len >= PATH_MAX) { 7464 err = -ENAMETOOLONG; 7465 goto err_unpin_maps; 7466 } 7467 sanitize_pin_path(buf); 7468 pin_path = buf; 7469 } else if (!map->pin_path) { 7470 continue; 7471 } 7472 7473 err = bpf_map__pin(map, pin_path); 7474 if (err) 7475 goto err_unpin_maps; 7476 } 7477 7478 return 0; 7479 7480 err_unpin_maps: 7481 while ((map = bpf_map__prev(map, obj))) { 7482 if (!map->pin_path) 7483 continue; 7484 7485 bpf_map__unpin(map, NULL); 7486 } 7487 7488 return libbpf_err(err); 7489 } 7490 7491 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7492 { 7493 struct bpf_map *map; 7494 int err; 7495 7496 if (!obj) 7497 return libbpf_err(-ENOENT); 7498 7499 bpf_object__for_each_map(map, obj) { 7500 char *pin_path = NULL; 7501 char buf[PATH_MAX]; 7502 7503 if (path) { 7504 int len; 7505 7506 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7507 bpf_map__name(map)); 7508 if (len < 0) 7509 return libbpf_err(-EINVAL); 7510 else if (len >= PATH_MAX) 7511 return libbpf_err(-ENAMETOOLONG); 7512 sanitize_pin_path(buf); 7513 pin_path = buf; 7514 } else if (!map->pin_path) { 7515 continue; 7516 } 7517 7518 err = bpf_map__unpin(map, pin_path); 7519 if (err) 7520 return libbpf_err(err); 7521 } 7522 7523 return 0; 7524 } 7525 7526 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7527 { 7528 struct bpf_program *prog; 7529 int err; 7530 7531 if (!obj) 7532 return libbpf_err(-ENOENT); 7533 7534 if (!obj->loaded) { 7535 pr_warn("object not yet loaded; load it first\n"); 7536 return libbpf_err(-ENOENT); 7537 } 7538 7539 bpf_object__for_each_program(prog, obj) { 7540 char buf[PATH_MAX]; 7541 int len; 7542 7543 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7544 prog->pin_name); 7545 if (len < 0) { 7546 err = -EINVAL; 7547 goto err_unpin_programs; 7548 } else if (len >= PATH_MAX) { 7549 err = -ENAMETOOLONG; 7550 goto err_unpin_programs; 7551 } 7552 7553 err = bpf_program__pin(prog, buf); 7554 if (err) 7555 goto err_unpin_programs; 7556 } 7557 7558 return 0; 7559 7560 err_unpin_programs: 7561 while ((prog = bpf_program__prev(prog, obj))) { 7562 char buf[PATH_MAX]; 7563 int len; 7564 7565 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7566 prog->pin_name); 7567 if (len < 0) 7568 continue; 7569 else if (len >= PATH_MAX) 7570 continue; 7571 7572 bpf_program__unpin(prog, buf); 7573 } 7574 7575 return libbpf_err(err); 7576 } 7577 7578 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 7579 { 7580 struct bpf_program *prog; 7581 int err; 7582 7583 if (!obj) 7584 return libbpf_err(-ENOENT); 7585 7586 bpf_object__for_each_program(prog, obj) { 7587 char buf[PATH_MAX]; 7588 int len; 7589 7590 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7591 prog->pin_name); 7592 if (len < 0) 7593 return libbpf_err(-EINVAL); 7594 else if (len >= PATH_MAX) 7595 return libbpf_err(-ENAMETOOLONG); 7596 7597 err = bpf_program__unpin(prog, buf); 7598 if (err) 7599 return libbpf_err(err); 7600 } 7601 7602 return 0; 7603 } 7604 7605 int bpf_object__pin(struct bpf_object *obj, const char *path) 7606 { 7607 int err; 7608 7609 err = bpf_object__pin_maps(obj, path); 7610 if (err) 7611 return libbpf_err(err); 7612 7613 err = bpf_object__pin_programs(obj, path); 7614 if (err) { 7615 bpf_object__unpin_maps(obj, path); 7616 return libbpf_err(err); 7617 } 7618 7619 return 0; 7620 } 7621 7622 static void bpf_map__destroy(struct bpf_map *map) 7623 { 7624 if (map->clear_priv) 7625 map->clear_priv(map, map->priv); 7626 map->priv = NULL; 7627 map->clear_priv = NULL; 7628 7629 if (map->inner_map) { 7630 bpf_map__destroy(map->inner_map); 7631 zfree(&map->inner_map); 7632 } 7633 7634 zfree(&map->init_slots); 7635 map->init_slots_sz = 0; 7636 7637 if (map->mmaped) { 7638 munmap(map->mmaped, bpf_map_mmap_sz(map)); 7639 map->mmaped = NULL; 7640 } 7641 7642 if (map->st_ops) { 7643 zfree(&map->st_ops->data); 7644 zfree(&map->st_ops->progs); 7645 zfree(&map->st_ops->kern_func_off); 7646 zfree(&map->st_ops); 7647 } 7648 7649 zfree(&map->name); 7650 zfree(&map->pin_path); 7651 7652 if (map->fd >= 0) 7653 zclose(map->fd); 7654 } 7655 7656 void bpf_object__close(struct bpf_object *obj) 7657 { 7658 size_t i; 7659 7660 if (IS_ERR_OR_NULL(obj)) 7661 return; 7662 7663 if (obj->clear_priv) 7664 obj->clear_priv(obj, obj->priv); 7665 7666 bpf_gen__free(obj->gen_loader); 7667 bpf_object__elf_finish(obj); 7668 bpf_object__unload(obj); 7669 btf__free(obj->btf); 7670 btf_ext__free(obj->btf_ext); 7671 7672 for (i = 0; i < obj->nr_maps; i++) 7673 bpf_map__destroy(&obj->maps[i]); 7674 7675 zfree(&obj->btf_custom_path); 7676 zfree(&obj->kconfig); 7677 zfree(&obj->externs); 7678 obj->nr_extern = 0; 7679 7680 zfree(&obj->maps); 7681 obj->nr_maps = 0; 7682 7683 if (obj->programs && obj->nr_programs) { 7684 for (i = 0; i < obj->nr_programs; i++) 7685 bpf_program__exit(&obj->programs[i]); 7686 } 7687 zfree(&obj->programs); 7688 7689 list_del(&obj->list); 7690 free(obj); 7691 } 7692 7693 struct bpf_object * 7694 bpf_object__next(struct bpf_object *prev) 7695 { 7696 struct bpf_object *next; 7697 7698 if (!prev) 7699 next = list_first_entry(&bpf_objects_list, 7700 struct bpf_object, 7701 list); 7702 else 7703 next = list_next_entry(prev, list); 7704 7705 /* Empty list is noticed here so don't need checking on entry. */ 7706 if (&next->list == &bpf_objects_list) 7707 return NULL; 7708 7709 return next; 7710 } 7711 7712 const char *bpf_object__name(const struct bpf_object *obj) 7713 { 7714 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 7715 } 7716 7717 unsigned int bpf_object__kversion(const struct bpf_object *obj) 7718 { 7719 return obj ? obj->kern_version : 0; 7720 } 7721 7722 struct btf *bpf_object__btf(const struct bpf_object *obj) 7723 { 7724 return obj ? obj->btf : NULL; 7725 } 7726 7727 int bpf_object__btf_fd(const struct bpf_object *obj) 7728 { 7729 return obj->btf ? btf__fd(obj->btf) : -1; 7730 } 7731 7732 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 7733 { 7734 if (obj->loaded) 7735 return libbpf_err(-EINVAL); 7736 7737 obj->kern_version = kern_version; 7738 7739 return 0; 7740 } 7741 7742 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 7743 bpf_object_clear_priv_t clear_priv) 7744 { 7745 if (obj->priv && obj->clear_priv) 7746 obj->clear_priv(obj, obj->priv); 7747 7748 obj->priv = priv; 7749 obj->clear_priv = clear_priv; 7750 return 0; 7751 } 7752 7753 void *bpf_object__priv(const struct bpf_object *obj) 7754 { 7755 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 7756 } 7757 7758 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 7759 { 7760 struct bpf_gen *gen; 7761 7762 if (!opts) 7763 return -EFAULT; 7764 if (!OPTS_VALID(opts, gen_loader_opts)) 7765 return -EINVAL; 7766 gen = calloc(sizeof(*gen), 1); 7767 if (!gen) 7768 return -ENOMEM; 7769 gen->opts = opts; 7770 obj->gen_loader = gen; 7771 return 0; 7772 } 7773 7774 static struct bpf_program * 7775 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 7776 bool forward) 7777 { 7778 size_t nr_programs = obj->nr_programs; 7779 ssize_t idx; 7780 7781 if (!nr_programs) 7782 return NULL; 7783 7784 if (!p) 7785 /* Iter from the beginning */ 7786 return forward ? &obj->programs[0] : 7787 &obj->programs[nr_programs - 1]; 7788 7789 if (p->obj != obj) { 7790 pr_warn("error: program handler doesn't match object\n"); 7791 return errno = EINVAL, NULL; 7792 } 7793 7794 idx = (p - obj->programs) + (forward ? 1 : -1); 7795 if (idx >= obj->nr_programs || idx < 0) 7796 return NULL; 7797 return &obj->programs[idx]; 7798 } 7799 7800 struct bpf_program * 7801 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 7802 { 7803 struct bpf_program *prog = prev; 7804 7805 do { 7806 prog = __bpf_program__iter(prog, obj, true); 7807 } while (prog && prog_is_subprog(obj, prog)); 7808 7809 return prog; 7810 } 7811 7812 struct bpf_program * 7813 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 7814 { 7815 struct bpf_program *prog = next; 7816 7817 do { 7818 prog = __bpf_program__iter(prog, obj, false); 7819 } while (prog && prog_is_subprog(obj, prog)); 7820 7821 return prog; 7822 } 7823 7824 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 7825 bpf_program_clear_priv_t clear_priv) 7826 { 7827 if (prog->priv && prog->clear_priv) 7828 prog->clear_priv(prog, prog->priv); 7829 7830 prog->priv = priv; 7831 prog->clear_priv = clear_priv; 7832 return 0; 7833 } 7834 7835 void *bpf_program__priv(const struct bpf_program *prog) 7836 { 7837 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 7838 } 7839 7840 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 7841 { 7842 prog->prog_ifindex = ifindex; 7843 } 7844 7845 const char *bpf_program__name(const struct bpf_program *prog) 7846 { 7847 return prog->name; 7848 } 7849 7850 const char *bpf_program__section_name(const struct bpf_program *prog) 7851 { 7852 return prog->sec_name; 7853 } 7854 7855 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 7856 { 7857 const char *title; 7858 7859 title = prog->sec_name; 7860 if (needs_copy) { 7861 title = strdup(title); 7862 if (!title) { 7863 pr_warn("failed to strdup program title\n"); 7864 return libbpf_err_ptr(-ENOMEM); 7865 } 7866 } 7867 7868 return title; 7869 } 7870 7871 bool bpf_program__autoload(const struct bpf_program *prog) 7872 { 7873 return prog->load; 7874 } 7875 7876 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 7877 { 7878 if (prog->obj->loaded) 7879 return libbpf_err(-EINVAL); 7880 7881 prog->load = autoload; 7882 return 0; 7883 } 7884 7885 int bpf_program__fd(const struct bpf_program *prog) 7886 { 7887 return bpf_program__nth_fd(prog, 0); 7888 } 7889 7890 size_t bpf_program__size(const struct bpf_program *prog) 7891 { 7892 return prog->insns_cnt * BPF_INSN_SZ; 7893 } 7894 7895 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 7896 bpf_program_prep_t prep) 7897 { 7898 int *instances_fds; 7899 7900 if (nr_instances <= 0 || !prep) 7901 return libbpf_err(-EINVAL); 7902 7903 if (prog->instances.nr > 0 || prog->instances.fds) { 7904 pr_warn("Can't set pre-processor after loading\n"); 7905 return libbpf_err(-EINVAL); 7906 } 7907 7908 instances_fds = malloc(sizeof(int) * nr_instances); 7909 if (!instances_fds) { 7910 pr_warn("alloc memory failed for fds\n"); 7911 return libbpf_err(-ENOMEM); 7912 } 7913 7914 /* fill all fd with -1 */ 7915 memset(instances_fds, -1, sizeof(int) * nr_instances); 7916 7917 prog->instances.nr = nr_instances; 7918 prog->instances.fds = instances_fds; 7919 prog->preprocessor = prep; 7920 return 0; 7921 } 7922 7923 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 7924 { 7925 int fd; 7926 7927 if (!prog) 7928 return libbpf_err(-EINVAL); 7929 7930 if (n >= prog->instances.nr || n < 0) { 7931 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 7932 n, prog->name, prog->instances.nr); 7933 return libbpf_err(-EINVAL); 7934 } 7935 7936 fd = prog->instances.fds[n]; 7937 if (fd < 0) { 7938 pr_warn("%dth instance of program '%s' is invalid\n", 7939 n, prog->name); 7940 return libbpf_err(-ENOENT); 7941 } 7942 7943 return fd; 7944 } 7945 7946 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 7947 { 7948 return prog->type; 7949 } 7950 7951 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 7952 { 7953 prog->type = type; 7954 } 7955 7956 static bool bpf_program__is_type(const struct bpf_program *prog, 7957 enum bpf_prog_type type) 7958 { 7959 return prog ? (prog->type == type) : false; 7960 } 7961 7962 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 7963 int bpf_program__set_##NAME(struct bpf_program *prog) \ 7964 { \ 7965 if (!prog) \ 7966 return libbpf_err(-EINVAL); \ 7967 bpf_program__set_type(prog, TYPE); \ 7968 return 0; \ 7969 } \ 7970 \ 7971 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 7972 { \ 7973 return bpf_program__is_type(prog, TYPE); \ 7974 } \ 7975 7976 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 7977 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 7978 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 7979 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 7980 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 7981 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 7982 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 7983 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 7984 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 7985 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 7986 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 7987 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 7988 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 7989 7990 enum bpf_attach_type 7991 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 7992 { 7993 return prog->expected_attach_type; 7994 } 7995 7996 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 7997 enum bpf_attach_type type) 7998 { 7999 prog->expected_attach_type = type; 8000 } 8001 8002 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8003 .sec = sec_pfx, \ 8004 .prog_type = BPF_PROG_TYPE_##ptype, \ 8005 .expected_attach_type = atype, \ 8006 .cookie = (long)(flags), \ 8007 .preload_fn = libbpf_preload_prog, \ 8008 __VA_ARGS__ \ 8009 } 8010 8011 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie); 8012 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie); 8013 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie); 8014 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie); 8015 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie); 8016 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie); 8017 8018 static const struct bpf_sec_def section_defs[] = { 8019 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8020 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8021 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8022 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8023 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8024 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8025 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8026 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8027 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX), 8028 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8029 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8030 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8031 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8032 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8033 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8034 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8035 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8036 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8037 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8038 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8039 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8040 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8041 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8042 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8043 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8044 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8045 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8046 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8047 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8048 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8049 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8050 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8051 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8052 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8053 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8054 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8055 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8056 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8057 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8058 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8059 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8060 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8061 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8062 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8063 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8064 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8065 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8066 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8067 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8068 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8069 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8070 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8071 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8072 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8073 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8074 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8075 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8076 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8077 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8078 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8079 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8080 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8081 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8082 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8083 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8084 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8085 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8086 }; 8087 8088 #define MAX_TYPE_NAME_SIZE 32 8089 8090 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8091 { 8092 const struct bpf_sec_def *sec_def; 8093 enum sec_def_flags sec_flags; 8094 int i, n = ARRAY_SIZE(section_defs), len; 8095 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME; 8096 8097 for (i = 0; i < n; i++) { 8098 sec_def = §ion_defs[i]; 8099 sec_flags = sec_def->cookie; 8100 len = strlen(sec_def->sec); 8101 8102 /* "type/" always has to have proper SEC("type/extras") form */ 8103 if (sec_def->sec[len - 1] == '/') { 8104 if (str_has_pfx(sec_name, sec_def->sec)) 8105 return sec_def; 8106 continue; 8107 } 8108 8109 /* "type+" means it can be either exact SEC("type") or 8110 * well-formed SEC("type/extras") with proper '/' separator 8111 */ 8112 if (sec_def->sec[len - 1] == '+') { 8113 len--; 8114 /* not even a prefix */ 8115 if (strncmp(sec_name, sec_def->sec, len) != 0) 8116 continue; 8117 /* exact match or has '/' separator */ 8118 if (sec_name[len] == '\0' || sec_name[len] == '/') 8119 return sec_def; 8120 continue; 8121 } 8122 8123 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8124 * matches, unless strict section name mode 8125 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8126 * match has to be exact. 8127 */ 8128 if ((sec_flags & SEC_SLOPPY_PFX) && !strict) { 8129 if (str_has_pfx(sec_name, sec_def->sec)) 8130 return sec_def; 8131 continue; 8132 } 8133 8134 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8135 * SEC("syscall")) are exact matches in both modes. 8136 */ 8137 if (strcmp(sec_name, sec_def->sec) == 0) 8138 return sec_def; 8139 } 8140 return NULL; 8141 } 8142 8143 static char *libbpf_get_type_names(bool attach_type) 8144 { 8145 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8146 char *buf; 8147 8148 buf = malloc(len); 8149 if (!buf) 8150 return NULL; 8151 8152 buf[0] = '\0'; 8153 /* Forge string buf with all available names */ 8154 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8155 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8156 8157 if (attach_type) { 8158 if (sec_def->preload_fn != libbpf_preload_prog) 8159 continue; 8160 8161 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8162 continue; 8163 } 8164 8165 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8166 free(buf); 8167 return NULL; 8168 } 8169 strcat(buf, " "); 8170 strcat(buf, section_defs[i].sec); 8171 } 8172 8173 return buf; 8174 } 8175 8176 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8177 enum bpf_attach_type *expected_attach_type) 8178 { 8179 const struct bpf_sec_def *sec_def; 8180 char *type_names; 8181 8182 if (!name) 8183 return libbpf_err(-EINVAL); 8184 8185 sec_def = find_sec_def(name); 8186 if (sec_def) { 8187 *prog_type = sec_def->prog_type; 8188 *expected_attach_type = sec_def->expected_attach_type; 8189 return 0; 8190 } 8191 8192 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8193 type_names = libbpf_get_type_names(false); 8194 if (type_names != NULL) { 8195 pr_debug("supported section(type) names are:%s\n", type_names); 8196 free(type_names); 8197 } 8198 8199 return libbpf_err(-ESRCH); 8200 } 8201 8202 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8203 size_t offset) 8204 { 8205 struct bpf_map *map; 8206 size_t i; 8207 8208 for (i = 0; i < obj->nr_maps; i++) { 8209 map = &obj->maps[i]; 8210 if (!bpf_map__is_struct_ops(map)) 8211 continue; 8212 if (map->sec_offset <= offset && 8213 offset - map->sec_offset < map->def.value_size) 8214 return map; 8215 } 8216 8217 return NULL; 8218 } 8219 8220 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8221 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8222 GElf_Shdr *shdr, Elf_Data *data) 8223 { 8224 const struct btf_member *member; 8225 struct bpf_struct_ops *st_ops; 8226 struct bpf_program *prog; 8227 unsigned int shdr_idx; 8228 const struct btf *btf; 8229 struct bpf_map *map; 8230 Elf_Data *symbols; 8231 unsigned int moff, insn_idx; 8232 const char *name; 8233 __u32 member_idx; 8234 GElf_Sym sym; 8235 GElf_Rel rel; 8236 int i, nrels; 8237 8238 symbols = obj->efile.symbols; 8239 btf = obj->btf; 8240 nrels = shdr->sh_size / shdr->sh_entsize; 8241 for (i = 0; i < nrels; i++) { 8242 if (!gelf_getrel(data, i, &rel)) { 8243 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8244 return -LIBBPF_ERRNO__FORMAT; 8245 } 8246 8247 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8248 pr_warn("struct_ops reloc: symbol %zx not found\n", 8249 (size_t)GELF_R_SYM(rel.r_info)); 8250 return -LIBBPF_ERRNO__FORMAT; 8251 } 8252 8253 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8254 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8255 if (!map) { 8256 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8257 (size_t)rel.r_offset); 8258 return -EINVAL; 8259 } 8260 8261 moff = rel.r_offset - map->sec_offset; 8262 shdr_idx = sym.st_shndx; 8263 st_ops = map->st_ops; 8264 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8265 map->name, 8266 (long long)(rel.r_info >> 32), 8267 (long long)sym.st_value, 8268 shdr_idx, (size_t)rel.r_offset, 8269 map->sec_offset, sym.st_name, name); 8270 8271 if (shdr_idx >= SHN_LORESERVE) { 8272 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8273 map->name, (size_t)rel.r_offset, shdr_idx); 8274 return -LIBBPF_ERRNO__RELOC; 8275 } 8276 if (sym.st_value % BPF_INSN_SZ) { 8277 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8278 map->name, (unsigned long long)sym.st_value); 8279 return -LIBBPF_ERRNO__FORMAT; 8280 } 8281 insn_idx = sym.st_value / BPF_INSN_SZ; 8282 8283 member = find_member_by_offset(st_ops->type, moff * 8); 8284 if (!member) { 8285 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8286 map->name, moff); 8287 return -EINVAL; 8288 } 8289 member_idx = member - btf_members(st_ops->type); 8290 name = btf__name_by_offset(btf, member->name_off); 8291 8292 if (!resolve_func_ptr(btf, member->type, NULL)) { 8293 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8294 map->name, name); 8295 return -EINVAL; 8296 } 8297 8298 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8299 if (!prog) { 8300 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8301 map->name, shdr_idx, name); 8302 return -EINVAL; 8303 } 8304 8305 /* prevent the use of BPF prog with invalid type */ 8306 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8307 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8308 map->name, prog->name); 8309 return -EINVAL; 8310 } 8311 8312 /* if we haven't yet processed this BPF program, record proper 8313 * attach_btf_id and member_idx 8314 */ 8315 if (!prog->attach_btf_id) { 8316 prog->attach_btf_id = st_ops->type_id; 8317 prog->expected_attach_type = member_idx; 8318 } 8319 8320 /* struct_ops BPF prog can be re-used between multiple 8321 * .struct_ops as long as it's the same struct_ops struct 8322 * definition and the same function pointer field 8323 */ 8324 if (prog->attach_btf_id != st_ops->type_id || 8325 prog->expected_attach_type != member_idx) { 8326 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8327 map->name, prog->name, prog->sec_name, prog->type, 8328 prog->attach_btf_id, prog->expected_attach_type, name); 8329 return -EINVAL; 8330 } 8331 8332 st_ops->progs[member_idx] = prog; 8333 } 8334 8335 return 0; 8336 } 8337 8338 #define BTF_TRACE_PREFIX "btf_trace_" 8339 #define BTF_LSM_PREFIX "bpf_lsm_" 8340 #define BTF_ITER_PREFIX "bpf_iter_" 8341 #define BTF_MAX_NAME_SIZE 128 8342 8343 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8344 const char **prefix, int *kind) 8345 { 8346 switch (attach_type) { 8347 case BPF_TRACE_RAW_TP: 8348 *prefix = BTF_TRACE_PREFIX; 8349 *kind = BTF_KIND_TYPEDEF; 8350 break; 8351 case BPF_LSM_MAC: 8352 *prefix = BTF_LSM_PREFIX; 8353 *kind = BTF_KIND_FUNC; 8354 break; 8355 case BPF_TRACE_ITER: 8356 *prefix = BTF_ITER_PREFIX; 8357 *kind = BTF_KIND_FUNC; 8358 break; 8359 default: 8360 *prefix = ""; 8361 *kind = BTF_KIND_FUNC; 8362 } 8363 } 8364 8365 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8366 const char *name, __u32 kind) 8367 { 8368 char btf_type_name[BTF_MAX_NAME_SIZE]; 8369 int ret; 8370 8371 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8372 "%s%s", prefix, name); 8373 /* snprintf returns the number of characters written excluding the 8374 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8375 * indicates truncation. 8376 */ 8377 if (ret < 0 || ret >= sizeof(btf_type_name)) 8378 return -ENAMETOOLONG; 8379 return btf__find_by_name_kind(btf, btf_type_name, kind); 8380 } 8381 8382 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8383 enum bpf_attach_type attach_type) 8384 { 8385 const char *prefix; 8386 int kind; 8387 8388 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8389 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8390 } 8391 8392 int libbpf_find_vmlinux_btf_id(const char *name, 8393 enum bpf_attach_type attach_type) 8394 { 8395 struct btf *btf; 8396 int err; 8397 8398 btf = btf__load_vmlinux_btf(); 8399 err = libbpf_get_error(btf); 8400 if (err) { 8401 pr_warn("vmlinux BTF is not found\n"); 8402 return libbpf_err(err); 8403 } 8404 8405 err = find_attach_btf_id(btf, name, attach_type); 8406 if (err <= 0) 8407 pr_warn("%s is not found in vmlinux BTF\n", name); 8408 8409 btf__free(btf); 8410 return libbpf_err(err); 8411 } 8412 8413 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8414 { 8415 struct bpf_prog_info_linear *info_linear; 8416 struct bpf_prog_info *info; 8417 struct btf *btf; 8418 int err; 8419 8420 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8421 err = libbpf_get_error(info_linear); 8422 if (err) { 8423 pr_warn("failed get_prog_info_linear for FD %d\n", 8424 attach_prog_fd); 8425 return err; 8426 } 8427 8428 err = -EINVAL; 8429 info = &info_linear->info; 8430 if (!info->btf_id) { 8431 pr_warn("The target program doesn't have BTF\n"); 8432 goto out; 8433 } 8434 btf = btf__load_from_kernel_by_id(info->btf_id); 8435 if (libbpf_get_error(btf)) { 8436 pr_warn("Failed to get BTF of the program\n"); 8437 goto out; 8438 } 8439 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8440 btf__free(btf); 8441 if (err <= 0) { 8442 pr_warn("%s is not found in prog's BTF\n", name); 8443 goto out; 8444 } 8445 out: 8446 free(info_linear); 8447 return err; 8448 } 8449 8450 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 8451 enum bpf_attach_type attach_type, 8452 int *btf_obj_fd, int *btf_type_id) 8453 { 8454 int ret, i; 8455 8456 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 8457 if (ret > 0) { 8458 *btf_obj_fd = 0; /* vmlinux BTF */ 8459 *btf_type_id = ret; 8460 return 0; 8461 } 8462 if (ret != -ENOENT) 8463 return ret; 8464 8465 ret = load_module_btfs(obj); 8466 if (ret) 8467 return ret; 8468 8469 for (i = 0; i < obj->btf_module_cnt; i++) { 8470 const struct module_btf *mod = &obj->btf_modules[i]; 8471 8472 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 8473 if (ret > 0) { 8474 *btf_obj_fd = mod->fd; 8475 *btf_type_id = ret; 8476 return 0; 8477 } 8478 if (ret == -ENOENT) 8479 continue; 8480 8481 return ret; 8482 } 8483 8484 return -ESRCH; 8485 } 8486 8487 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 8488 int *btf_obj_fd, int *btf_type_id) 8489 { 8490 enum bpf_attach_type attach_type = prog->expected_attach_type; 8491 __u32 attach_prog_fd = prog->attach_prog_fd; 8492 int err = 0; 8493 8494 /* BPF program's BTF ID */ 8495 if (attach_prog_fd) { 8496 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 8497 if (err < 0) { 8498 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 8499 attach_prog_fd, attach_name, err); 8500 return err; 8501 } 8502 *btf_obj_fd = 0; 8503 *btf_type_id = err; 8504 return 0; 8505 } 8506 8507 /* kernel/module BTF ID */ 8508 if (prog->obj->gen_loader) { 8509 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 8510 *btf_obj_fd = 0; 8511 *btf_type_id = 1; 8512 } else { 8513 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 8514 } 8515 if (err) { 8516 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 8517 return err; 8518 } 8519 return 0; 8520 } 8521 8522 int libbpf_attach_type_by_name(const char *name, 8523 enum bpf_attach_type *attach_type) 8524 { 8525 char *type_names; 8526 const struct bpf_sec_def *sec_def; 8527 8528 if (!name) 8529 return libbpf_err(-EINVAL); 8530 8531 sec_def = find_sec_def(name); 8532 if (!sec_def) { 8533 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 8534 type_names = libbpf_get_type_names(true); 8535 if (type_names != NULL) { 8536 pr_debug("attachable section(type) names are:%s\n", type_names); 8537 free(type_names); 8538 } 8539 8540 return libbpf_err(-EINVAL); 8541 } 8542 8543 if (sec_def->preload_fn != libbpf_preload_prog) 8544 return libbpf_err(-EINVAL); 8545 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8546 return libbpf_err(-EINVAL); 8547 8548 *attach_type = sec_def->expected_attach_type; 8549 return 0; 8550 } 8551 8552 int bpf_map__fd(const struct bpf_map *map) 8553 { 8554 return map ? map->fd : libbpf_err(-EINVAL); 8555 } 8556 8557 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 8558 { 8559 return map ? &map->def : libbpf_err_ptr(-EINVAL); 8560 } 8561 8562 const char *bpf_map__name(const struct bpf_map *map) 8563 { 8564 return map ? map->name : NULL; 8565 } 8566 8567 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 8568 { 8569 return map->def.type; 8570 } 8571 8572 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 8573 { 8574 if (map->fd >= 0) 8575 return libbpf_err(-EBUSY); 8576 map->def.type = type; 8577 return 0; 8578 } 8579 8580 __u32 bpf_map__map_flags(const struct bpf_map *map) 8581 { 8582 return map->def.map_flags; 8583 } 8584 8585 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 8586 { 8587 if (map->fd >= 0) 8588 return libbpf_err(-EBUSY); 8589 map->def.map_flags = flags; 8590 return 0; 8591 } 8592 8593 __u32 bpf_map__numa_node(const struct bpf_map *map) 8594 { 8595 return map->numa_node; 8596 } 8597 8598 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 8599 { 8600 if (map->fd >= 0) 8601 return libbpf_err(-EBUSY); 8602 map->numa_node = numa_node; 8603 return 0; 8604 } 8605 8606 __u32 bpf_map__key_size(const struct bpf_map *map) 8607 { 8608 return map->def.key_size; 8609 } 8610 8611 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 8612 { 8613 if (map->fd >= 0) 8614 return libbpf_err(-EBUSY); 8615 map->def.key_size = size; 8616 return 0; 8617 } 8618 8619 __u32 bpf_map__value_size(const struct bpf_map *map) 8620 { 8621 return map->def.value_size; 8622 } 8623 8624 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 8625 { 8626 if (map->fd >= 0) 8627 return libbpf_err(-EBUSY); 8628 map->def.value_size = size; 8629 return 0; 8630 } 8631 8632 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 8633 { 8634 return map ? map->btf_key_type_id : 0; 8635 } 8636 8637 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 8638 { 8639 return map ? map->btf_value_type_id : 0; 8640 } 8641 8642 int bpf_map__set_priv(struct bpf_map *map, void *priv, 8643 bpf_map_clear_priv_t clear_priv) 8644 { 8645 if (!map) 8646 return libbpf_err(-EINVAL); 8647 8648 if (map->priv) { 8649 if (map->clear_priv) 8650 map->clear_priv(map, map->priv); 8651 } 8652 8653 map->priv = priv; 8654 map->clear_priv = clear_priv; 8655 return 0; 8656 } 8657 8658 void *bpf_map__priv(const struct bpf_map *map) 8659 { 8660 return map ? map->priv : libbpf_err_ptr(-EINVAL); 8661 } 8662 8663 int bpf_map__set_initial_value(struct bpf_map *map, 8664 const void *data, size_t size) 8665 { 8666 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 8667 size != map->def.value_size || map->fd >= 0) 8668 return libbpf_err(-EINVAL); 8669 8670 memcpy(map->mmaped, data, size); 8671 return 0; 8672 } 8673 8674 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 8675 { 8676 if (!map->mmaped) 8677 return NULL; 8678 *psize = map->def.value_size; 8679 return map->mmaped; 8680 } 8681 8682 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 8683 { 8684 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 8685 } 8686 8687 bool bpf_map__is_internal(const struct bpf_map *map) 8688 { 8689 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 8690 } 8691 8692 __u32 bpf_map__ifindex(const struct bpf_map *map) 8693 { 8694 return map->map_ifindex; 8695 } 8696 8697 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 8698 { 8699 if (map->fd >= 0) 8700 return libbpf_err(-EBUSY); 8701 map->map_ifindex = ifindex; 8702 return 0; 8703 } 8704 8705 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 8706 { 8707 if (!bpf_map_type__is_map_in_map(map->def.type)) { 8708 pr_warn("error: unsupported map type\n"); 8709 return libbpf_err(-EINVAL); 8710 } 8711 if (map->inner_map_fd != -1) { 8712 pr_warn("error: inner_map_fd already specified\n"); 8713 return libbpf_err(-EINVAL); 8714 } 8715 zfree(&map->inner_map); 8716 map->inner_map_fd = fd; 8717 return 0; 8718 } 8719 8720 static struct bpf_map * 8721 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 8722 { 8723 ssize_t idx; 8724 struct bpf_map *s, *e; 8725 8726 if (!obj || !obj->maps) 8727 return errno = EINVAL, NULL; 8728 8729 s = obj->maps; 8730 e = obj->maps + obj->nr_maps; 8731 8732 if ((m < s) || (m >= e)) { 8733 pr_warn("error in %s: map handler doesn't belong to object\n", 8734 __func__); 8735 return errno = EINVAL, NULL; 8736 } 8737 8738 idx = (m - obj->maps) + i; 8739 if (idx >= obj->nr_maps || idx < 0) 8740 return NULL; 8741 return &obj->maps[idx]; 8742 } 8743 8744 struct bpf_map * 8745 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 8746 { 8747 if (prev == NULL) 8748 return obj->maps; 8749 8750 return __bpf_map__iter(prev, obj, 1); 8751 } 8752 8753 struct bpf_map * 8754 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 8755 { 8756 if (next == NULL) { 8757 if (!obj->nr_maps) 8758 return NULL; 8759 return obj->maps + obj->nr_maps - 1; 8760 } 8761 8762 return __bpf_map__iter(next, obj, -1); 8763 } 8764 8765 struct bpf_map * 8766 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 8767 { 8768 struct bpf_map *pos; 8769 8770 bpf_object__for_each_map(pos, obj) { 8771 if (pos->name && !strcmp(pos->name, name)) 8772 return pos; 8773 } 8774 return errno = ENOENT, NULL; 8775 } 8776 8777 int 8778 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 8779 { 8780 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 8781 } 8782 8783 struct bpf_map * 8784 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 8785 { 8786 return libbpf_err_ptr(-ENOTSUP); 8787 } 8788 8789 long libbpf_get_error(const void *ptr) 8790 { 8791 if (!IS_ERR_OR_NULL(ptr)) 8792 return 0; 8793 8794 if (IS_ERR(ptr)) 8795 errno = -PTR_ERR(ptr); 8796 8797 /* If ptr == NULL, then errno should be already set by the failing 8798 * API, because libbpf never returns NULL on success and it now always 8799 * sets errno on error. So no extra errno handling for ptr == NULL 8800 * case. 8801 */ 8802 return -errno; 8803 } 8804 8805 int bpf_prog_load(const char *file, enum bpf_prog_type type, 8806 struct bpf_object **pobj, int *prog_fd) 8807 { 8808 struct bpf_prog_load_attr attr; 8809 8810 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 8811 attr.file = file; 8812 attr.prog_type = type; 8813 attr.expected_attach_type = 0; 8814 8815 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 8816 } 8817 8818 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 8819 struct bpf_object **pobj, int *prog_fd) 8820 { 8821 struct bpf_object_open_attr open_attr = {}; 8822 struct bpf_program *prog, *first_prog = NULL; 8823 struct bpf_object *obj; 8824 struct bpf_map *map; 8825 int err; 8826 8827 if (!attr) 8828 return libbpf_err(-EINVAL); 8829 if (!attr->file) 8830 return libbpf_err(-EINVAL); 8831 8832 open_attr.file = attr->file; 8833 open_attr.prog_type = attr->prog_type; 8834 8835 obj = bpf_object__open_xattr(&open_attr); 8836 err = libbpf_get_error(obj); 8837 if (err) 8838 return libbpf_err(-ENOENT); 8839 8840 bpf_object__for_each_program(prog, obj) { 8841 enum bpf_attach_type attach_type = attr->expected_attach_type; 8842 /* 8843 * to preserve backwards compatibility, bpf_prog_load treats 8844 * attr->prog_type, if specified, as an override to whatever 8845 * bpf_object__open guessed 8846 */ 8847 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 8848 bpf_program__set_type(prog, attr->prog_type); 8849 bpf_program__set_expected_attach_type(prog, 8850 attach_type); 8851 } 8852 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 8853 /* 8854 * we haven't guessed from section name and user 8855 * didn't provide a fallback type, too bad... 8856 */ 8857 bpf_object__close(obj); 8858 return libbpf_err(-EINVAL); 8859 } 8860 8861 prog->prog_ifindex = attr->ifindex; 8862 prog->log_level = attr->log_level; 8863 prog->prog_flags |= attr->prog_flags; 8864 if (!first_prog) 8865 first_prog = prog; 8866 } 8867 8868 bpf_object__for_each_map(map, obj) { 8869 if (!bpf_map__is_offload_neutral(map)) 8870 map->map_ifindex = attr->ifindex; 8871 } 8872 8873 if (!first_prog) { 8874 pr_warn("object file doesn't contain bpf program\n"); 8875 bpf_object__close(obj); 8876 return libbpf_err(-ENOENT); 8877 } 8878 8879 err = bpf_object__load(obj); 8880 if (err) { 8881 bpf_object__close(obj); 8882 return libbpf_err(err); 8883 } 8884 8885 *pobj = obj; 8886 *prog_fd = bpf_program__fd(first_prog); 8887 return 0; 8888 } 8889 8890 struct bpf_link { 8891 int (*detach)(struct bpf_link *link); 8892 void (*dealloc)(struct bpf_link *link); 8893 char *pin_path; /* NULL, if not pinned */ 8894 int fd; /* hook FD, -1 if not applicable */ 8895 bool disconnected; 8896 }; 8897 8898 /* Replace link's underlying BPF program with the new one */ 8899 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 8900 { 8901 int ret; 8902 8903 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 8904 return libbpf_err_errno(ret); 8905 } 8906 8907 /* Release "ownership" of underlying BPF resource (typically, BPF program 8908 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 8909 * link, when destructed through bpf_link__destroy() call won't attempt to 8910 * detach/unregisted that BPF resource. This is useful in situations where, 8911 * say, attached BPF program has to outlive userspace program that attached it 8912 * in the system. Depending on type of BPF program, though, there might be 8913 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 8914 * exit of userspace program doesn't trigger automatic detachment and clean up 8915 * inside the kernel. 8916 */ 8917 void bpf_link__disconnect(struct bpf_link *link) 8918 { 8919 link->disconnected = true; 8920 } 8921 8922 int bpf_link__destroy(struct bpf_link *link) 8923 { 8924 int err = 0; 8925 8926 if (IS_ERR_OR_NULL(link)) 8927 return 0; 8928 8929 if (!link->disconnected && link->detach) 8930 err = link->detach(link); 8931 if (link->pin_path) 8932 free(link->pin_path); 8933 if (link->dealloc) 8934 link->dealloc(link); 8935 else 8936 free(link); 8937 8938 return libbpf_err(err); 8939 } 8940 8941 int bpf_link__fd(const struct bpf_link *link) 8942 { 8943 return link->fd; 8944 } 8945 8946 const char *bpf_link__pin_path(const struct bpf_link *link) 8947 { 8948 return link->pin_path; 8949 } 8950 8951 static int bpf_link__detach_fd(struct bpf_link *link) 8952 { 8953 return libbpf_err_errno(close(link->fd)); 8954 } 8955 8956 struct bpf_link *bpf_link__open(const char *path) 8957 { 8958 struct bpf_link *link; 8959 int fd; 8960 8961 fd = bpf_obj_get(path); 8962 if (fd < 0) { 8963 fd = -errno; 8964 pr_warn("failed to open link at %s: %d\n", path, fd); 8965 return libbpf_err_ptr(fd); 8966 } 8967 8968 link = calloc(1, sizeof(*link)); 8969 if (!link) { 8970 close(fd); 8971 return libbpf_err_ptr(-ENOMEM); 8972 } 8973 link->detach = &bpf_link__detach_fd; 8974 link->fd = fd; 8975 8976 link->pin_path = strdup(path); 8977 if (!link->pin_path) { 8978 bpf_link__destroy(link); 8979 return libbpf_err_ptr(-ENOMEM); 8980 } 8981 8982 return link; 8983 } 8984 8985 int bpf_link__detach(struct bpf_link *link) 8986 { 8987 return bpf_link_detach(link->fd) ? -errno : 0; 8988 } 8989 8990 int bpf_link__pin(struct bpf_link *link, const char *path) 8991 { 8992 int err; 8993 8994 if (link->pin_path) 8995 return libbpf_err(-EBUSY); 8996 err = make_parent_dir(path); 8997 if (err) 8998 return libbpf_err(err); 8999 err = check_path(path); 9000 if (err) 9001 return libbpf_err(err); 9002 9003 link->pin_path = strdup(path); 9004 if (!link->pin_path) 9005 return libbpf_err(-ENOMEM); 9006 9007 if (bpf_obj_pin(link->fd, link->pin_path)) { 9008 err = -errno; 9009 zfree(&link->pin_path); 9010 return libbpf_err(err); 9011 } 9012 9013 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9014 return 0; 9015 } 9016 9017 int bpf_link__unpin(struct bpf_link *link) 9018 { 9019 int err; 9020 9021 if (!link->pin_path) 9022 return libbpf_err(-EINVAL); 9023 9024 err = unlink(link->pin_path); 9025 if (err != 0) 9026 return -errno; 9027 9028 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9029 zfree(&link->pin_path); 9030 return 0; 9031 } 9032 9033 struct bpf_link_perf { 9034 struct bpf_link link; 9035 int perf_event_fd; 9036 /* legacy kprobe support: keep track of probe identifier and type */ 9037 char *legacy_probe_name; 9038 bool legacy_is_kprobe; 9039 bool legacy_is_retprobe; 9040 }; 9041 9042 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9043 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9044 9045 static int bpf_link_perf_detach(struct bpf_link *link) 9046 { 9047 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9048 int err = 0; 9049 9050 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9051 err = -errno; 9052 9053 if (perf_link->perf_event_fd != link->fd) 9054 close(perf_link->perf_event_fd); 9055 close(link->fd); 9056 9057 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9058 if (perf_link->legacy_probe_name) { 9059 if (perf_link->legacy_is_kprobe) { 9060 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9061 perf_link->legacy_is_retprobe); 9062 } else { 9063 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9064 perf_link->legacy_is_retprobe); 9065 } 9066 } 9067 9068 return err; 9069 } 9070 9071 static void bpf_link_perf_dealloc(struct bpf_link *link) 9072 { 9073 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9074 9075 free(perf_link->legacy_probe_name); 9076 free(perf_link); 9077 } 9078 9079 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9080 const struct bpf_perf_event_opts *opts) 9081 { 9082 char errmsg[STRERR_BUFSIZE]; 9083 struct bpf_link_perf *link; 9084 int prog_fd, link_fd = -1, err; 9085 9086 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9087 return libbpf_err_ptr(-EINVAL); 9088 9089 if (pfd < 0) { 9090 pr_warn("prog '%s': invalid perf event FD %d\n", 9091 prog->name, pfd); 9092 return libbpf_err_ptr(-EINVAL); 9093 } 9094 prog_fd = bpf_program__fd(prog); 9095 if (prog_fd < 0) { 9096 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9097 prog->name); 9098 return libbpf_err_ptr(-EINVAL); 9099 } 9100 9101 link = calloc(1, sizeof(*link)); 9102 if (!link) 9103 return libbpf_err_ptr(-ENOMEM); 9104 link->link.detach = &bpf_link_perf_detach; 9105 link->link.dealloc = &bpf_link_perf_dealloc; 9106 link->perf_event_fd = pfd; 9107 9108 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9109 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9110 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9111 9112 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9113 if (link_fd < 0) { 9114 err = -errno; 9115 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9116 prog->name, pfd, 9117 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9118 goto err_out; 9119 } 9120 link->link.fd = link_fd; 9121 } else { 9122 if (OPTS_GET(opts, bpf_cookie, 0)) { 9123 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9124 err = -EOPNOTSUPP; 9125 goto err_out; 9126 } 9127 9128 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9129 err = -errno; 9130 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9131 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9132 if (err == -EPROTO) 9133 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9134 prog->name, pfd); 9135 goto err_out; 9136 } 9137 link->link.fd = pfd; 9138 } 9139 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9140 err = -errno; 9141 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9142 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9143 goto err_out; 9144 } 9145 9146 return &link->link; 9147 err_out: 9148 if (link_fd >= 0) 9149 close(link_fd); 9150 free(link); 9151 return libbpf_err_ptr(err); 9152 } 9153 9154 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9155 { 9156 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9157 } 9158 9159 /* 9160 * this function is expected to parse integer in the range of [0, 2^31-1] from 9161 * given file using scanf format string fmt. If actual parsed value is 9162 * negative, the result might be indistinguishable from error 9163 */ 9164 static int parse_uint_from_file(const char *file, const char *fmt) 9165 { 9166 char buf[STRERR_BUFSIZE]; 9167 int err, ret; 9168 FILE *f; 9169 9170 f = fopen(file, "r"); 9171 if (!f) { 9172 err = -errno; 9173 pr_debug("failed to open '%s': %s\n", file, 9174 libbpf_strerror_r(err, buf, sizeof(buf))); 9175 return err; 9176 } 9177 err = fscanf(f, fmt, &ret); 9178 if (err != 1) { 9179 err = err == EOF ? -EIO : -errno; 9180 pr_debug("failed to parse '%s': %s\n", file, 9181 libbpf_strerror_r(err, buf, sizeof(buf))); 9182 fclose(f); 9183 return err; 9184 } 9185 fclose(f); 9186 return ret; 9187 } 9188 9189 static int determine_kprobe_perf_type(void) 9190 { 9191 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9192 9193 return parse_uint_from_file(file, "%d\n"); 9194 } 9195 9196 static int determine_uprobe_perf_type(void) 9197 { 9198 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9199 9200 return parse_uint_from_file(file, "%d\n"); 9201 } 9202 9203 static int determine_kprobe_retprobe_bit(void) 9204 { 9205 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9206 9207 return parse_uint_from_file(file, "config:%d\n"); 9208 } 9209 9210 static int determine_uprobe_retprobe_bit(void) 9211 { 9212 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9213 9214 return parse_uint_from_file(file, "config:%d\n"); 9215 } 9216 9217 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9218 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9219 9220 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9221 uint64_t offset, int pid, size_t ref_ctr_off) 9222 { 9223 struct perf_event_attr attr = {}; 9224 char errmsg[STRERR_BUFSIZE]; 9225 int type, pfd, err; 9226 9227 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9228 return -EINVAL; 9229 9230 type = uprobe ? determine_uprobe_perf_type() 9231 : determine_kprobe_perf_type(); 9232 if (type < 0) { 9233 pr_warn("failed to determine %s perf type: %s\n", 9234 uprobe ? "uprobe" : "kprobe", 9235 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9236 return type; 9237 } 9238 if (retprobe) { 9239 int bit = uprobe ? determine_uprobe_retprobe_bit() 9240 : determine_kprobe_retprobe_bit(); 9241 9242 if (bit < 0) { 9243 pr_warn("failed to determine %s retprobe bit: %s\n", 9244 uprobe ? "uprobe" : "kprobe", 9245 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9246 return bit; 9247 } 9248 attr.config |= 1 << bit; 9249 } 9250 attr.size = sizeof(attr); 9251 attr.type = type; 9252 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9253 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9254 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9255 9256 /* pid filter is meaningful only for uprobes */ 9257 pfd = syscall(__NR_perf_event_open, &attr, 9258 pid < 0 ? -1 : pid /* pid */, 9259 pid == -1 ? 0 : -1 /* cpu */, 9260 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9261 if (pfd < 0) { 9262 err = -errno; 9263 pr_warn("%s perf_event_open() failed: %s\n", 9264 uprobe ? "uprobe" : "kprobe", 9265 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9266 return err; 9267 } 9268 return pfd; 9269 } 9270 9271 static int append_to_file(const char *file, const char *fmt, ...) 9272 { 9273 int fd, n, err = 0; 9274 va_list ap; 9275 9276 fd = open(file, O_WRONLY | O_APPEND, 0); 9277 if (fd < 0) 9278 return -errno; 9279 9280 va_start(ap, fmt); 9281 n = vdprintf(fd, fmt, ap); 9282 va_end(ap); 9283 9284 if (n < 0) 9285 err = -errno; 9286 9287 close(fd); 9288 return err; 9289 } 9290 9291 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9292 const char *kfunc_name, size_t offset) 9293 { 9294 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), kfunc_name, offset); 9295 } 9296 9297 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9298 const char *kfunc_name, size_t offset) 9299 { 9300 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9301 9302 return append_to_file(file, "%c:%s/%s %s+0x%zx", 9303 retprobe ? 'r' : 'p', 9304 retprobe ? "kretprobes" : "kprobes", 9305 probe_name, kfunc_name, offset); 9306 } 9307 9308 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9309 { 9310 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9311 9312 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 9313 } 9314 9315 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9316 { 9317 char file[256]; 9318 9319 snprintf(file, sizeof(file), 9320 "/sys/kernel/debug/tracing/events/%s/%s/id", 9321 retprobe ? "kretprobes" : "kprobes", probe_name); 9322 9323 return parse_uint_from_file(file, "%d\n"); 9324 } 9325 9326 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9327 const char *kfunc_name, size_t offset, int pid) 9328 { 9329 struct perf_event_attr attr = {}; 9330 char errmsg[STRERR_BUFSIZE]; 9331 int type, pfd, err; 9332 9333 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9334 if (err < 0) { 9335 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9336 kfunc_name, offset, 9337 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9338 return err; 9339 } 9340 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9341 if (type < 0) { 9342 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9343 kfunc_name, offset, 9344 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9345 return type; 9346 } 9347 attr.size = sizeof(attr); 9348 attr.config = type; 9349 attr.type = PERF_TYPE_TRACEPOINT; 9350 9351 pfd = syscall(__NR_perf_event_open, &attr, 9352 pid < 0 ? -1 : pid, /* pid */ 9353 pid == -1 ? 0 : -1, /* cpu */ 9354 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9355 if (pfd < 0) { 9356 err = -errno; 9357 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 9358 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9359 return err; 9360 } 9361 return pfd; 9362 } 9363 9364 struct bpf_link * 9365 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 9366 const char *func_name, 9367 const struct bpf_kprobe_opts *opts) 9368 { 9369 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 9370 char errmsg[STRERR_BUFSIZE]; 9371 char *legacy_probe = NULL; 9372 struct bpf_link *link; 9373 size_t offset; 9374 bool retprobe, legacy; 9375 int pfd, err; 9376 9377 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 9378 return libbpf_err_ptr(-EINVAL); 9379 9380 retprobe = OPTS_GET(opts, retprobe, false); 9381 offset = OPTS_GET(opts, offset, 0); 9382 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 9383 9384 legacy = determine_kprobe_perf_type() < 0; 9385 if (!legacy) { 9386 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 9387 func_name, offset, 9388 -1 /* pid */, 0 /* ref_ctr_off */); 9389 } else { 9390 char probe_name[256]; 9391 9392 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 9393 func_name, offset); 9394 9395 legacy_probe = strdup(func_name); 9396 if (!legacy_probe) 9397 return libbpf_err_ptr(-ENOMEM); 9398 9399 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 9400 offset, -1 /* pid */); 9401 } 9402 if (pfd < 0) { 9403 err = -errno; 9404 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 9405 prog->name, retprobe ? "kretprobe" : "kprobe", 9406 func_name, offset, 9407 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9408 goto err_out; 9409 } 9410 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 9411 err = libbpf_get_error(link); 9412 if (err) { 9413 close(pfd); 9414 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 9415 prog->name, retprobe ? "kretprobe" : "kprobe", 9416 func_name, offset, 9417 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9418 goto err_out; 9419 } 9420 if (legacy) { 9421 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9422 9423 perf_link->legacy_probe_name = legacy_probe; 9424 perf_link->legacy_is_kprobe = true; 9425 perf_link->legacy_is_retprobe = retprobe; 9426 } 9427 9428 return link; 9429 err_out: 9430 free(legacy_probe); 9431 return libbpf_err_ptr(err); 9432 } 9433 9434 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 9435 bool retprobe, 9436 const char *func_name) 9437 { 9438 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 9439 .retprobe = retprobe, 9440 ); 9441 9442 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 9443 } 9444 9445 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie) 9446 { 9447 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 9448 unsigned long offset = 0; 9449 struct bpf_link *link; 9450 const char *func_name; 9451 char *func; 9452 int n, err; 9453 9454 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 9455 if (opts.retprobe) 9456 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 9457 else 9458 func_name = prog->sec_name + sizeof("kprobe/") - 1; 9459 9460 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 9461 if (n < 1) { 9462 err = -EINVAL; 9463 pr_warn("kprobe name is invalid: %s\n", func_name); 9464 return libbpf_err_ptr(err); 9465 } 9466 if (opts.retprobe && offset != 0) { 9467 free(func); 9468 err = -EINVAL; 9469 pr_warn("kretprobes do not support offset specification\n"); 9470 return libbpf_err_ptr(err); 9471 } 9472 9473 opts.offset = offset; 9474 link = bpf_program__attach_kprobe_opts(prog, func, &opts); 9475 free(func); 9476 return link; 9477 } 9478 9479 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 9480 const char *binary_path, uint64_t offset) 9481 { 9482 int i; 9483 9484 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 9485 9486 /* sanitize binary_path in the probe name */ 9487 for (i = 0; buf[i]; i++) { 9488 if (!isalnum(buf[i])) 9489 buf[i] = '_'; 9490 } 9491 } 9492 9493 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 9494 const char *binary_path, size_t offset) 9495 { 9496 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 9497 9498 return append_to_file(file, "%c:%s/%s %s:0x%zx", 9499 retprobe ? 'r' : 'p', 9500 retprobe ? "uretprobes" : "uprobes", 9501 probe_name, binary_path, offset); 9502 } 9503 9504 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 9505 { 9506 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 9507 9508 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 9509 } 9510 9511 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9512 { 9513 char file[512]; 9514 9515 snprintf(file, sizeof(file), 9516 "/sys/kernel/debug/tracing/events/%s/%s/id", 9517 retprobe ? "uretprobes" : "uprobes", probe_name); 9518 9519 return parse_uint_from_file(file, "%d\n"); 9520 } 9521 9522 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 9523 const char *binary_path, size_t offset, int pid) 9524 { 9525 struct perf_event_attr attr; 9526 int type, pfd, err; 9527 9528 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 9529 if (err < 0) { 9530 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 9531 binary_path, (size_t)offset, err); 9532 return err; 9533 } 9534 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 9535 if (type < 0) { 9536 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 9537 binary_path, offset, err); 9538 return type; 9539 } 9540 9541 memset(&attr, 0, sizeof(attr)); 9542 attr.size = sizeof(attr); 9543 attr.config = type; 9544 attr.type = PERF_TYPE_TRACEPOINT; 9545 9546 pfd = syscall(__NR_perf_event_open, &attr, 9547 pid < 0 ? -1 : pid, /* pid */ 9548 pid == -1 ? 0 : -1, /* cpu */ 9549 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9550 if (pfd < 0) { 9551 err = -errno; 9552 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 9553 return err; 9554 } 9555 return pfd; 9556 } 9557 9558 LIBBPF_API struct bpf_link * 9559 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 9560 const char *binary_path, size_t func_offset, 9561 const struct bpf_uprobe_opts *opts) 9562 { 9563 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 9564 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 9565 struct bpf_link *link; 9566 size_t ref_ctr_off; 9567 int pfd, err; 9568 bool retprobe, legacy; 9569 9570 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 9571 return libbpf_err_ptr(-EINVAL); 9572 9573 retprobe = OPTS_GET(opts, retprobe, false); 9574 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 9575 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 9576 9577 legacy = determine_uprobe_perf_type() < 0; 9578 if (!legacy) { 9579 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 9580 func_offset, pid, ref_ctr_off); 9581 } else { 9582 char probe_name[512]; 9583 9584 if (ref_ctr_off) 9585 return libbpf_err_ptr(-EINVAL); 9586 9587 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 9588 binary_path, func_offset); 9589 9590 legacy_probe = strdup(probe_name); 9591 if (!legacy_probe) 9592 return libbpf_err_ptr(-ENOMEM); 9593 9594 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 9595 binary_path, func_offset, pid); 9596 } 9597 if (pfd < 0) { 9598 err = -errno; 9599 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9600 prog->name, retprobe ? "uretprobe" : "uprobe", 9601 binary_path, func_offset, 9602 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9603 goto err_out; 9604 } 9605 9606 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 9607 err = libbpf_get_error(link); 9608 if (err) { 9609 close(pfd); 9610 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9611 prog->name, retprobe ? "uretprobe" : "uprobe", 9612 binary_path, func_offset, 9613 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9614 goto err_out; 9615 } 9616 if (legacy) { 9617 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9618 9619 perf_link->legacy_probe_name = legacy_probe; 9620 perf_link->legacy_is_kprobe = false; 9621 perf_link->legacy_is_retprobe = retprobe; 9622 } 9623 return link; 9624 err_out: 9625 free(legacy_probe); 9626 return libbpf_err_ptr(err); 9627 9628 } 9629 9630 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 9631 bool retprobe, pid_t pid, 9632 const char *binary_path, 9633 size_t func_offset) 9634 { 9635 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 9636 9637 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 9638 } 9639 9640 static int determine_tracepoint_id(const char *tp_category, 9641 const char *tp_name) 9642 { 9643 char file[PATH_MAX]; 9644 int ret; 9645 9646 ret = snprintf(file, sizeof(file), 9647 "/sys/kernel/debug/tracing/events/%s/%s/id", 9648 tp_category, tp_name); 9649 if (ret < 0) 9650 return -errno; 9651 if (ret >= sizeof(file)) { 9652 pr_debug("tracepoint %s/%s path is too long\n", 9653 tp_category, tp_name); 9654 return -E2BIG; 9655 } 9656 return parse_uint_from_file(file, "%d\n"); 9657 } 9658 9659 static int perf_event_open_tracepoint(const char *tp_category, 9660 const char *tp_name) 9661 { 9662 struct perf_event_attr attr = {}; 9663 char errmsg[STRERR_BUFSIZE]; 9664 int tp_id, pfd, err; 9665 9666 tp_id = determine_tracepoint_id(tp_category, tp_name); 9667 if (tp_id < 0) { 9668 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9669 tp_category, tp_name, 9670 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9671 return tp_id; 9672 } 9673 9674 attr.type = PERF_TYPE_TRACEPOINT; 9675 attr.size = sizeof(attr); 9676 attr.config = tp_id; 9677 9678 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9679 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9680 if (pfd < 0) { 9681 err = -errno; 9682 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9683 tp_category, tp_name, 9684 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9685 return err; 9686 } 9687 return pfd; 9688 } 9689 9690 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 9691 const char *tp_category, 9692 const char *tp_name, 9693 const struct bpf_tracepoint_opts *opts) 9694 { 9695 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 9696 char errmsg[STRERR_BUFSIZE]; 9697 struct bpf_link *link; 9698 int pfd, err; 9699 9700 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 9701 return libbpf_err_ptr(-EINVAL); 9702 9703 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 9704 9705 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9706 if (pfd < 0) { 9707 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9708 prog->name, tp_category, tp_name, 9709 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9710 return libbpf_err_ptr(pfd); 9711 } 9712 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 9713 err = libbpf_get_error(link); 9714 if (err) { 9715 close(pfd); 9716 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9717 prog->name, tp_category, tp_name, 9718 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9719 return libbpf_err_ptr(err); 9720 } 9721 return link; 9722 } 9723 9724 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 9725 const char *tp_category, 9726 const char *tp_name) 9727 { 9728 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 9729 } 9730 9731 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie) 9732 { 9733 char *sec_name, *tp_cat, *tp_name; 9734 struct bpf_link *link; 9735 9736 sec_name = strdup(prog->sec_name); 9737 if (!sec_name) 9738 return libbpf_err_ptr(-ENOMEM); 9739 9740 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 9741 if (str_has_pfx(prog->sec_name, "tp/")) 9742 tp_cat = sec_name + sizeof("tp/") - 1; 9743 else 9744 tp_cat = sec_name + sizeof("tracepoint/") - 1; 9745 tp_name = strchr(tp_cat, '/'); 9746 if (!tp_name) { 9747 free(sec_name); 9748 return libbpf_err_ptr(-EINVAL); 9749 } 9750 *tp_name = '\0'; 9751 tp_name++; 9752 9753 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9754 free(sec_name); 9755 return link; 9756 } 9757 9758 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 9759 const char *tp_name) 9760 { 9761 char errmsg[STRERR_BUFSIZE]; 9762 struct bpf_link *link; 9763 int prog_fd, pfd; 9764 9765 prog_fd = bpf_program__fd(prog); 9766 if (prog_fd < 0) { 9767 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9768 return libbpf_err_ptr(-EINVAL); 9769 } 9770 9771 link = calloc(1, sizeof(*link)); 9772 if (!link) 9773 return libbpf_err_ptr(-ENOMEM); 9774 link->detach = &bpf_link__detach_fd; 9775 9776 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9777 if (pfd < 0) { 9778 pfd = -errno; 9779 free(link); 9780 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9781 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9782 return libbpf_err_ptr(pfd); 9783 } 9784 link->fd = pfd; 9785 return link; 9786 } 9787 9788 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie) 9789 { 9790 const char *tp_name; 9791 9792 if (str_has_pfx(prog->sec_name, "raw_tp/")) 9793 tp_name = prog->sec_name + sizeof("raw_tp/") - 1; 9794 else 9795 tp_name = prog->sec_name + sizeof("raw_tracepoint/") - 1; 9796 9797 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9798 } 9799 9800 /* Common logic for all BPF program types that attach to a btf_id */ 9801 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 9802 { 9803 char errmsg[STRERR_BUFSIZE]; 9804 struct bpf_link *link; 9805 int prog_fd, pfd; 9806 9807 prog_fd = bpf_program__fd(prog); 9808 if (prog_fd < 0) { 9809 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9810 return libbpf_err_ptr(-EINVAL); 9811 } 9812 9813 link = calloc(1, sizeof(*link)); 9814 if (!link) 9815 return libbpf_err_ptr(-ENOMEM); 9816 link->detach = &bpf_link__detach_fd; 9817 9818 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9819 if (pfd < 0) { 9820 pfd = -errno; 9821 free(link); 9822 pr_warn("prog '%s': failed to attach: %s\n", 9823 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9824 return libbpf_err_ptr(pfd); 9825 } 9826 link->fd = pfd; 9827 return (struct bpf_link *)link; 9828 } 9829 9830 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 9831 { 9832 return bpf_program__attach_btf_id(prog); 9833 } 9834 9835 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 9836 { 9837 return bpf_program__attach_btf_id(prog); 9838 } 9839 9840 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie) 9841 { 9842 return bpf_program__attach_trace(prog); 9843 } 9844 9845 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie) 9846 { 9847 return bpf_program__attach_lsm(prog); 9848 } 9849 9850 static struct bpf_link * 9851 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 9852 const char *target_name) 9853 { 9854 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 9855 .target_btf_id = btf_id); 9856 enum bpf_attach_type attach_type; 9857 char errmsg[STRERR_BUFSIZE]; 9858 struct bpf_link *link; 9859 int prog_fd, link_fd; 9860 9861 prog_fd = bpf_program__fd(prog); 9862 if (prog_fd < 0) { 9863 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9864 return libbpf_err_ptr(-EINVAL); 9865 } 9866 9867 link = calloc(1, sizeof(*link)); 9868 if (!link) 9869 return libbpf_err_ptr(-ENOMEM); 9870 link->detach = &bpf_link__detach_fd; 9871 9872 attach_type = bpf_program__get_expected_attach_type(prog); 9873 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 9874 if (link_fd < 0) { 9875 link_fd = -errno; 9876 free(link); 9877 pr_warn("prog '%s': failed to attach to %s: %s\n", 9878 prog->name, target_name, 9879 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9880 return libbpf_err_ptr(link_fd); 9881 } 9882 link->fd = link_fd; 9883 return link; 9884 } 9885 9886 struct bpf_link * 9887 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 9888 { 9889 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 9890 } 9891 9892 struct bpf_link * 9893 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 9894 { 9895 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 9896 } 9897 9898 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 9899 { 9900 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 9901 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 9902 } 9903 9904 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 9905 int target_fd, 9906 const char *attach_func_name) 9907 { 9908 int btf_id; 9909 9910 if (!!target_fd != !!attach_func_name) { 9911 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 9912 prog->name); 9913 return libbpf_err_ptr(-EINVAL); 9914 } 9915 9916 if (prog->type != BPF_PROG_TYPE_EXT) { 9917 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 9918 prog->name); 9919 return libbpf_err_ptr(-EINVAL); 9920 } 9921 9922 if (target_fd) { 9923 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 9924 if (btf_id < 0) 9925 return libbpf_err_ptr(btf_id); 9926 9927 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 9928 } else { 9929 /* no target, so use raw_tracepoint_open for compatibility 9930 * with old kernels 9931 */ 9932 return bpf_program__attach_trace(prog); 9933 } 9934 } 9935 9936 struct bpf_link * 9937 bpf_program__attach_iter(const struct bpf_program *prog, 9938 const struct bpf_iter_attach_opts *opts) 9939 { 9940 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 9941 char errmsg[STRERR_BUFSIZE]; 9942 struct bpf_link *link; 9943 int prog_fd, link_fd; 9944 __u32 target_fd = 0; 9945 9946 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 9947 return libbpf_err_ptr(-EINVAL); 9948 9949 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 9950 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 9951 9952 prog_fd = bpf_program__fd(prog); 9953 if (prog_fd < 0) { 9954 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9955 return libbpf_err_ptr(-EINVAL); 9956 } 9957 9958 link = calloc(1, sizeof(*link)); 9959 if (!link) 9960 return libbpf_err_ptr(-ENOMEM); 9961 link->detach = &bpf_link__detach_fd; 9962 9963 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 9964 &link_create_opts); 9965 if (link_fd < 0) { 9966 link_fd = -errno; 9967 free(link); 9968 pr_warn("prog '%s': failed to attach to iterator: %s\n", 9969 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9970 return libbpf_err_ptr(link_fd); 9971 } 9972 link->fd = link_fd; 9973 return link; 9974 } 9975 9976 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie) 9977 { 9978 return bpf_program__attach_iter(prog, NULL); 9979 } 9980 9981 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 9982 { 9983 if (!prog->sec_def || !prog->sec_def->attach_fn) 9984 return libbpf_err_ptr(-ESRCH); 9985 9986 return prog->sec_def->attach_fn(prog, prog->sec_def->cookie); 9987 } 9988 9989 static int bpf_link__detach_struct_ops(struct bpf_link *link) 9990 { 9991 __u32 zero = 0; 9992 9993 if (bpf_map_delete_elem(link->fd, &zero)) 9994 return -errno; 9995 9996 return 0; 9997 } 9998 9999 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10000 { 10001 struct bpf_struct_ops *st_ops; 10002 struct bpf_link *link; 10003 __u32 i, zero = 0; 10004 int err; 10005 10006 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10007 return libbpf_err_ptr(-EINVAL); 10008 10009 link = calloc(1, sizeof(*link)); 10010 if (!link) 10011 return libbpf_err_ptr(-EINVAL); 10012 10013 st_ops = map->st_ops; 10014 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10015 struct bpf_program *prog = st_ops->progs[i]; 10016 void *kern_data; 10017 int prog_fd; 10018 10019 if (!prog) 10020 continue; 10021 10022 prog_fd = bpf_program__fd(prog); 10023 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10024 *(unsigned long *)kern_data = prog_fd; 10025 } 10026 10027 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10028 if (err) { 10029 err = -errno; 10030 free(link); 10031 return libbpf_err_ptr(err); 10032 } 10033 10034 link->detach = bpf_link__detach_struct_ops; 10035 link->fd = map->fd; 10036 10037 return link; 10038 } 10039 10040 enum bpf_perf_event_ret 10041 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10042 void **copy_mem, size_t *copy_size, 10043 bpf_perf_event_print_t fn, void *private_data) 10044 { 10045 struct perf_event_mmap_page *header = mmap_mem; 10046 __u64 data_head = ring_buffer_read_head(header); 10047 __u64 data_tail = header->data_tail; 10048 void *base = ((__u8 *)header) + page_size; 10049 int ret = LIBBPF_PERF_EVENT_CONT; 10050 struct perf_event_header *ehdr; 10051 size_t ehdr_size; 10052 10053 while (data_head != data_tail) { 10054 ehdr = base + (data_tail & (mmap_size - 1)); 10055 ehdr_size = ehdr->size; 10056 10057 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10058 void *copy_start = ehdr; 10059 size_t len_first = base + mmap_size - copy_start; 10060 size_t len_secnd = ehdr_size - len_first; 10061 10062 if (*copy_size < ehdr_size) { 10063 free(*copy_mem); 10064 *copy_mem = malloc(ehdr_size); 10065 if (!*copy_mem) { 10066 *copy_size = 0; 10067 ret = LIBBPF_PERF_EVENT_ERROR; 10068 break; 10069 } 10070 *copy_size = ehdr_size; 10071 } 10072 10073 memcpy(*copy_mem, copy_start, len_first); 10074 memcpy(*copy_mem + len_first, base, len_secnd); 10075 ehdr = *copy_mem; 10076 } 10077 10078 ret = fn(ehdr, private_data); 10079 data_tail += ehdr_size; 10080 if (ret != LIBBPF_PERF_EVENT_CONT) 10081 break; 10082 } 10083 10084 ring_buffer_write_tail(header, data_tail); 10085 return libbpf_err(ret); 10086 } 10087 10088 struct perf_buffer; 10089 10090 struct perf_buffer_params { 10091 struct perf_event_attr *attr; 10092 /* if event_cb is specified, it takes precendence */ 10093 perf_buffer_event_fn event_cb; 10094 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10095 perf_buffer_sample_fn sample_cb; 10096 perf_buffer_lost_fn lost_cb; 10097 void *ctx; 10098 int cpu_cnt; 10099 int *cpus; 10100 int *map_keys; 10101 }; 10102 10103 struct perf_cpu_buf { 10104 struct perf_buffer *pb; 10105 void *base; /* mmap()'ed memory */ 10106 void *buf; /* for reconstructing segmented data */ 10107 size_t buf_size; 10108 int fd; 10109 int cpu; 10110 int map_key; 10111 }; 10112 10113 struct perf_buffer { 10114 perf_buffer_event_fn event_cb; 10115 perf_buffer_sample_fn sample_cb; 10116 perf_buffer_lost_fn lost_cb; 10117 void *ctx; /* passed into callbacks */ 10118 10119 size_t page_size; 10120 size_t mmap_size; 10121 struct perf_cpu_buf **cpu_bufs; 10122 struct epoll_event *events; 10123 int cpu_cnt; /* number of allocated CPU buffers */ 10124 int epoll_fd; /* perf event FD */ 10125 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10126 }; 10127 10128 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10129 struct perf_cpu_buf *cpu_buf) 10130 { 10131 if (!cpu_buf) 10132 return; 10133 if (cpu_buf->base && 10134 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10135 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10136 if (cpu_buf->fd >= 0) { 10137 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10138 close(cpu_buf->fd); 10139 } 10140 free(cpu_buf->buf); 10141 free(cpu_buf); 10142 } 10143 10144 void perf_buffer__free(struct perf_buffer *pb) 10145 { 10146 int i; 10147 10148 if (IS_ERR_OR_NULL(pb)) 10149 return; 10150 if (pb->cpu_bufs) { 10151 for (i = 0; i < pb->cpu_cnt; i++) { 10152 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10153 10154 if (!cpu_buf) 10155 continue; 10156 10157 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10158 perf_buffer__free_cpu_buf(pb, cpu_buf); 10159 } 10160 free(pb->cpu_bufs); 10161 } 10162 if (pb->epoll_fd >= 0) 10163 close(pb->epoll_fd); 10164 free(pb->events); 10165 free(pb); 10166 } 10167 10168 static struct perf_cpu_buf * 10169 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10170 int cpu, int map_key) 10171 { 10172 struct perf_cpu_buf *cpu_buf; 10173 char msg[STRERR_BUFSIZE]; 10174 int err; 10175 10176 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10177 if (!cpu_buf) 10178 return ERR_PTR(-ENOMEM); 10179 10180 cpu_buf->pb = pb; 10181 cpu_buf->cpu = cpu; 10182 cpu_buf->map_key = map_key; 10183 10184 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10185 -1, PERF_FLAG_FD_CLOEXEC); 10186 if (cpu_buf->fd < 0) { 10187 err = -errno; 10188 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10189 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10190 goto error; 10191 } 10192 10193 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10194 PROT_READ | PROT_WRITE, MAP_SHARED, 10195 cpu_buf->fd, 0); 10196 if (cpu_buf->base == MAP_FAILED) { 10197 cpu_buf->base = NULL; 10198 err = -errno; 10199 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10200 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10201 goto error; 10202 } 10203 10204 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10205 err = -errno; 10206 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10207 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10208 goto error; 10209 } 10210 10211 return cpu_buf; 10212 10213 error: 10214 perf_buffer__free_cpu_buf(pb, cpu_buf); 10215 return (struct perf_cpu_buf *)ERR_PTR(err); 10216 } 10217 10218 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10219 struct perf_buffer_params *p); 10220 10221 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10222 const struct perf_buffer_opts *opts) 10223 { 10224 struct perf_buffer_params p = {}; 10225 struct perf_event_attr attr = { 0, }; 10226 10227 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10228 attr.type = PERF_TYPE_SOFTWARE; 10229 attr.sample_type = PERF_SAMPLE_RAW; 10230 attr.sample_period = 1; 10231 attr.wakeup_events = 1; 10232 10233 p.attr = &attr; 10234 p.sample_cb = opts ? opts->sample_cb : NULL; 10235 p.lost_cb = opts ? opts->lost_cb : NULL; 10236 p.ctx = opts ? opts->ctx : NULL; 10237 10238 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10239 } 10240 10241 struct perf_buffer * 10242 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10243 const struct perf_buffer_raw_opts *opts) 10244 { 10245 struct perf_buffer_params p = {}; 10246 10247 p.attr = opts->attr; 10248 p.event_cb = opts->event_cb; 10249 p.ctx = opts->ctx; 10250 p.cpu_cnt = opts->cpu_cnt; 10251 p.cpus = opts->cpus; 10252 p.map_keys = opts->map_keys; 10253 10254 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10255 } 10256 10257 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10258 struct perf_buffer_params *p) 10259 { 10260 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10261 struct bpf_map_info map; 10262 char msg[STRERR_BUFSIZE]; 10263 struct perf_buffer *pb; 10264 bool *online = NULL; 10265 __u32 map_info_len; 10266 int err, i, j, n; 10267 10268 if (page_cnt & (page_cnt - 1)) { 10269 pr_warn("page count should be power of two, but is %zu\n", 10270 page_cnt); 10271 return ERR_PTR(-EINVAL); 10272 } 10273 10274 /* best-effort sanity checks */ 10275 memset(&map, 0, sizeof(map)); 10276 map_info_len = sizeof(map); 10277 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10278 if (err) { 10279 err = -errno; 10280 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10281 * -EBADFD, -EFAULT, or -E2BIG on real error 10282 */ 10283 if (err != -EINVAL) { 10284 pr_warn("failed to get map info for map FD %d: %s\n", 10285 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10286 return ERR_PTR(err); 10287 } 10288 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10289 map_fd); 10290 } else { 10291 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10292 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10293 map.name); 10294 return ERR_PTR(-EINVAL); 10295 } 10296 } 10297 10298 pb = calloc(1, sizeof(*pb)); 10299 if (!pb) 10300 return ERR_PTR(-ENOMEM); 10301 10302 pb->event_cb = p->event_cb; 10303 pb->sample_cb = p->sample_cb; 10304 pb->lost_cb = p->lost_cb; 10305 pb->ctx = p->ctx; 10306 10307 pb->page_size = getpagesize(); 10308 pb->mmap_size = pb->page_size * page_cnt; 10309 pb->map_fd = map_fd; 10310 10311 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10312 if (pb->epoll_fd < 0) { 10313 err = -errno; 10314 pr_warn("failed to create epoll instance: %s\n", 10315 libbpf_strerror_r(err, msg, sizeof(msg))); 10316 goto error; 10317 } 10318 10319 if (p->cpu_cnt > 0) { 10320 pb->cpu_cnt = p->cpu_cnt; 10321 } else { 10322 pb->cpu_cnt = libbpf_num_possible_cpus(); 10323 if (pb->cpu_cnt < 0) { 10324 err = pb->cpu_cnt; 10325 goto error; 10326 } 10327 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10328 pb->cpu_cnt = map.max_entries; 10329 } 10330 10331 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10332 if (!pb->events) { 10333 err = -ENOMEM; 10334 pr_warn("failed to allocate events: out of memory\n"); 10335 goto error; 10336 } 10337 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10338 if (!pb->cpu_bufs) { 10339 err = -ENOMEM; 10340 pr_warn("failed to allocate buffers: out of memory\n"); 10341 goto error; 10342 } 10343 10344 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10345 if (err) { 10346 pr_warn("failed to get online CPU mask: %d\n", err); 10347 goto error; 10348 } 10349 10350 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10351 struct perf_cpu_buf *cpu_buf; 10352 int cpu, map_key; 10353 10354 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10355 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10356 10357 /* in case user didn't explicitly requested particular CPUs to 10358 * be attached to, skip offline/not present CPUs 10359 */ 10360 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10361 continue; 10362 10363 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10364 if (IS_ERR(cpu_buf)) { 10365 err = PTR_ERR(cpu_buf); 10366 goto error; 10367 } 10368 10369 pb->cpu_bufs[j] = cpu_buf; 10370 10371 err = bpf_map_update_elem(pb->map_fd, &map_key, 10372 &cpu_buf->fd, 0); 10373 if (err) { 10374 err = -errno; 10375 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10376 cpu, map_key, cpu_buf->fd, 10377 libbpf_strerror_r(err, msg, sizeof(msg))); 10378 goto error; 10379 } 10380 10381 pb->events[j].events = EPOLLIN; 10382 pb->events[j].data.ptr = cpu_buf; 10383 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10384 &pb->events[j]) < 0) { 10385 err = -errno; 10386 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10387 cpu, cpu_buf->fd, 10388 libbpf_strerror_r(err, msg, sizeof(msg))); 10389 goto error; 10390 } 10391 j++; 10392 } 10393 pb->cpu_cnt = j; 10394 free(online); 10395 10396 return pb; 10397 10398 error: 10399 free(online); 10400 if (pb) 10401 perf_buffer__free(pb); 10402 return ERR_PTR(err); 10403 } 10404 10405 struct perf_sample_raw { 10406 struct perf_event_header header; 10407 uint32_t size; 10408 char data[]; 10409 }; 10410 10411 struct perf_sample_lost { 10412 struct perf_event_header header; 10413 uint64_t id; 10414 uint64_t lost; 10415 uint64_t sample_id; 10416 }; 10417 10418 static enum bpf_perf_event_ret 10419 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10420 { 10421 struct perf_cpu_buf *cpu_buf = ctx; 10422 struct perf_buffer *pb = cpu_buf->pb; 10423 void *data = e; 10424 10425 /* user wants full control over parsing perf event */ 10426 if (pb->event_cb) 10427 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10428 10429 switch (e->type) { 10430 case PERF_RECORD_SAMPLE: { 10431 struct perf_sample_raw *s = data; 10432 10433 if (pb->sample_cb) 10434 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10435 break; 10436 } 10437 case PERF_RECORD_LOST: { 10438 struct perf_sample_lost *s = data; 10439 10440 if (pb->lost_cb) 10441 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10442 break; 10443 } 10444 default: 10445 pr_warn("unknown perf sample type %d\n", e->type); 10446 return LIBBPF_PERF_EVENT_ERROR; 10447 } 10448 return LIBBPF_PERF_EVENT_CONT; 10449 } 10450 10451 static int perf_buffer__process_records(struct perf_buffer *pb, 10452 struct perf_cpu_buf *cpu_buf) 10453 { 10454 enum bpf_perf_event_ret ret; 10455 10456 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10457 pb->page_size, &cpu_buf->buf, 10458 &cpu_buf->buf_size, 10459 perf_buffer__process_record, cpu_buf); 10460 if (ret != LIBBPF_PERF_EVENT_CONT) 10461 return ret; 10462 return 0; 10463 } 10464 10465 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10466 { 10467 return pb->epoll_fd; 10468 } 10469 10470 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10471 { 10472 int i, cnt, err; 10473 10474 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10475 if (cnt < 0) 10476 return -errno; 10477 10478 for (i = 0; i < cnt; i++) { 10479 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10480 10481 err = perf_buffer__process_records(pb, cpu_buf); 10482 if (err) { 10483 pr_warn("error while processing records: %d\n", err); 10484 return libbpf_err(err); 10485 } 10486 } 10487 return cnt; 10488 } 10489 10490 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10491 * manager. 10492 */ 10493 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10494 { 10495 return pb->cpu_cnt; 10496 } 10497 10498 /* 10499 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10500 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10501 * select()/poll()/epoll() Linux syscalls. 10502 */ 10503 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10504 { 10505 struct perf_cpu_buf *cpu_buf; 10506 10507 if (buf_idx >= pb->cpu_cnt) 10508 return libbpf_err(-EINVAL); 10509 10510 cpu_buf = pb->cpu_bufs[buf_idx]; 10511 if (!cpu_buf) 10512 return libbpf_err(-ENOENT); 10513 10514 return cpu_buf->fd; 10515 } 10516 10517 /* 10518 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10519 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10520 * consume, do nothing and return success. 10521 * Returns: 10522 * - 0 on success; 10523 * - <0 on failure. 10524 */ 10525 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10526 { 10527 struct perf_cpu_buf *cpu_buf; 10528 10529 if (buf_idx >= pb->cpu_cnt) 10530 return libbpf_err(-EINVAL); 10531 10532 cpu_buf = pb->cpu_bufs[buf_idx]; 10533 if (!cpu_buf) 10534 return libbpf_err(-ENOENT); 10535 10536 return perf_buffer__process_records(pb, cpu_buf); 10537 } 10538 10539 int perf_buffer__consume(struct perf_buffer *pb) 10540 { 10541 int i, err; 10542 10543 for (i = 0; i < pb->cpu_cnt; i++) { 10544 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10545 10546 if (!cpu_buf) 10547 continue; 10548 10549 err = perf_buffer__process_records(pb, cpu_buf); 10550 if (err) { 10551 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10552 return libbpf_err(err); 10553 } 10554 } 10555 return 0; 10556 } 10557 10558 struct bpf_prog_info_array_desc { 10559 int array_offset; /* e.g. offset of jited_prog_insns */ 10560 int count_offset; /* e.g. offset of jited_prog_len */ 10561 int size_offset; /* > 0: offset of rec size, 10562 * < 0: fix size of -size_offset 10563 */ 10564 }; 10565 10566 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10567 [BPF_PROG_INFO_JITED_INSNS] = { 10568 offsetof(struct bpf_prog_info, jited_prog_insns), 10569 offsetof(struct bpf_prog_info, jited_prog_len), 10570 -1, 10571 }, 10572 [BPF_PROG_INFO_XLATED_INSNS] = { 10573 offsetof(struct bpf_prog_info, xlated_prog_insns), 10574 offsetof(struct bpf_prog_info, xlated_prog_len), 10575 -1, 10576 }, 10577 [BPF_PROG_INFO_MAP_IDS] = { 10578 offsetof(struct bpf_prog_info, map_ids), 10579 offsetof(struct bpf_prog_info, nr_map_ids), 10580 -(int)sizeof(__u32), 10581 }, 10582 [BPF_PROG_INFO_JITED_KSYMS] = { 10583 offsetof(struct bpf_prog_info, jited_ksyms), 10584 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10585 -(int)sizeof(__u64), 10586 }, 10587 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10588 offsetof(struct bpf_prog_info, jited_func_lens), 10589 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10590 -(int)sizeof(__u32), 10591 }, 10592 [BPF_PROG_INFO_FUNC_INFO] = { 10593 offsetof(struct bpf_prog_info, func_info), 10594 offsetof(struct bpf_prog_info, nr_func_info), 10595 offsetof(struct bpf_prog_info, func_info_rec_size), 10596 }, 10597 [BPF_PROG_INFO_LINE_INFO] = { 10598 offsetof(struct bpf_prog_info, line_info), 10599 offsetof(struct bpf_prog_info, nr_line_info), 10600 offsetof(struct bpf_prog_info, line_info_rec_size), 10601 }, 10602 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10603 offsetof(struct bpf_prog_info, jited_line_info), 10604 offsetof(struct bpf_prog_info, nr_jited_line_info), 10605 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10606 }, 10607 [BPF_PROG_INFO_PROG_TAGS] = { 10608 offsetof(struct bpf_prog_info, prog_tags), 10609 offsetof(struct bpf_prog_info, nr_prog_tags), 10610 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10611 }, 10612 10613 }; 10614 10615 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10616 int offset) 10617 { 10618 __u32 *array = (__u32 *)info; 10619 10620 if (offset >= 0) 10621 return array[offset / sizeof(__u32)]; 10622 return -(int)offset; 10623 } 10624 10625 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10626 int offset) 10627 { 10628 __u64 *array = (__u64 *)info; 10629 10630 if (offset >= 0) 10631 return array[offset / sizeof(__u64)]; 10632 return -(int)offset; 10633 } 10634 10635 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10636 __u32 val) 10637 { 10638 __u32 *array = (__u32 *)info; 10639 10640 if (offset >= 0) 10641 array[offset / sizeof(__u32)] = val; 10642 } 10643 10644 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10645 __u64 val) 10646 { 10647 __u64 *array = (__u64 *)info; 10648 10649 if (offset >= 0) 10650 array[offset / sizeof(__u64)] = val; 10651 } 10652 10653 struct bpf_prog_info_linear * 10654 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10655 { 10656 struct bpf_prog_info_linear *info_linear; 10657 struct bpf_prog_info info = {}; 10658 __u32 info_len = sizeof(info); 10659 __u32 data_len = 0; 10660 int i, err; 10661 void *ptr; 10662 10663 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10664 return libbpf_err_ptr(-EINVAL); 10665 10666 /* step 1: get array dimensions */ 10667 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10668 if (err) { 10669 pr_debug("can't get prog info: %s", strerror(errno)); 10670 return libbpf_err_ptr(-EFAULT); 10671 } 10672 10673 /* step 2: calculate total size of all arrays */ 10674 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10675 bool include_array = (arrays & (1UL << i)) > 0; 10676 struct bpf_prog_info_array_desc *desc; 10677 __u32 count, size; 10678 10679 desc = bpf_prog_info_array_desc + i; 10680 10681 /* kernel is too old to support this field */ 10682 if (info_len < desc->array_offset + sizeof(__u32) || 10683 info_len < desc->count_offset + sizeof(__u32) || 10684 (desc->size_offset > 0 && info_len < desc->size_offset)) 10685 include_array = false; 10686 10687 if (!include_array) { 10688 arrays &= ~(1UL << i); /* clear the bit */ 10689 continue; 10690 } 10691 10692 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10693 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10694 10695 data_len += count * size; 10696 } 10697 10698 /* step 3: allocate continuous memory */ 10699 data_len = roundup(data_len, sizeof(__u64)); 10700 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10701 if (!info_linear) 10702 return libbpf_err_ptr(-ENOMEM); 10703 10704 /* step 4: fill data to info_linear->info */ 10705 info_linear->arrays = arrays; 10706 memset(&info_linear->info, 0, sizeof(info)); 10707 ptr = info_linear->data; 10708 10709 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10710 struct bpf_prog_info_array_desc *desc; 10711 __u32 count, size; 10712 10713 if ((arrays & (1UL << i)) == 0) 10714 continue; 10715 10716 desc = bpf_prog_info_array_desc + i; 10717 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10718 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10719 bpf_prog_info_set_offset_u32(&info_linear->info, 10720 desc->count_offset, count); 10721 bpf_prog_info_set_offset_u32(&info_linear->info, 10722 desc->size_offset, size); 10723 bpf_prog_info_set_offset_u64(&info_linear->info, 10724 desc->array_offset, 10725 ptr_to_u64(ptr)); 10726 ptr += count * size; 10727 } 10728 10729 /* step 5: call syscall again to get required arrays */ 10730 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10731 if (err) { 10732 pr_debug("can't get prog info: %s", strerror(errno)); 10733 free(info_linear); 10734 return libbpf_err_ptr(-EFAULT); 10735 } 10736 10737 /* step 6: verify the data */ 10738 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10739 struct bpf_prog_info_array_desc *desc; 10740 __u32 v1, v2; 10741 10742 if ((arrays & (1UL << i)) == 0) 10743 continue; 10744 10745 desc = bpf_prog_info_array_desc + i; 10746 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10747 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10748 desc->count_offset); 10749 if (v1 != v2) 10750 pr_warn("%s: mismatch in element count\n", __func__); 10751 10752 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10753 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10754 desc->size_offset); 10755 if (v1 != v2) 10756 pr_warn("%s: mismatch in rec size\n", __func__); 10757 } 10758 10759 /* step 7: update info_len and data_len */ 10760 info_linear->info_len = sizeof(struct bpf_prog_info); 10761 info_linear->data_len = data_len; 10762 10763 return info_linear; 10764 } 10765 10766 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10767 { 10768 int i; 10769 10770 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10771 struct bpf_prog_info_array_desc *desc; 10772 __u64 addr, offs; 10773 10774 if ((info_linear->arrays & (1UL << i)) == 0) 10775 continue; 10776 10777 desc = bpf_prog_info_array_desc + i; 10778 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10779 desc->array_offset); 10780 offs = addr - ptr_to_u64(info_linear->data); 10781 bpf_prog_info_set_offset_u64(&info_linear->info, 10782 desc->array_offset, offs); 10783 } 10784 } 10785 10786 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10787 { 10788 int i; 10789 10790 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10791 struct bpf_prog_info_array_desc *desc; 10792 __u64 addr, offs; 10793 10794 if ((info_linear->arrays & (1UL << i)) == 0) 10795 continue; 10796 10797 desc = bpf_prog_info_array_desc + i; 10798 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10799 desc->array_offset); 10800 addr = offs + ptr_to_u64(info_linear->data); 10801 bpf_prog_info_set_offset_u64(&info_linear->info, 10802 desc->array_offset, addr); 10803 } 10804 } 10805 10806 int bpf_program__set_attach_target(struct bpf_program *prog, 10807 int attach_prog_fd, 10808 const char *attach_func_name) 10809 { 10810 int btf_obj_fd = 0, btf_id = 0, err; 10811 10812 if (!prog || attach_prog_fd < 0) 10813 return libbpf_err(-EINVAL); 10814 10815 if (prog->obj->loaded) 10816 return libbpf_err(-EINVAL); 10817 10818 if (attach_prog_fd && !attach_func_name) { 10819 /* remember attach_prog_fd and let bpf_program__load() find 10820 * BTF ID during the program load 10821 */ 10822 prog->attach_prog_fd = attach_prog_fd; 10823 return 0; 10824 } 10825 10826 if (attach_prog_fd) { 10827 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10828 attach_prog_fd); 10829 if (btf_id < 0) 10830 return libbpf_err(btf_id); 10831 } else { 10832 if (!attach_func_name) 10833 return libbpf_err(-EINVAL); 10834 10835 /* load btf_vmlinux, if not yet */ 10836 err = bpf_object__load_vmlinux_btf(prog->obj, true); 10837 if (err) 10838 return libbpf_err(err); 10839 err = find_kernel_btf_id(prog->obj, attach_func_name, 10840 prog->expected_attach_type, 10841 &btf_obj_fd, &btf_id); 10842 if (err) 10843 return libbpf_err(err); 10844 } 10845 10846 prog->attach_btf_id = btf_id; 10847 prog->attach_btf_obj_fd = btf_obj_fd; 10848 prog->attach_prog_fd = attach_prog_fd; 10849 return 0; 10850 } 10851 10852 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 10853 { 10854 int err = 0, n, len, start, end = -1; 10855 bool *tmp; 10856 10857 *mask = NULL; 10858 *mask_sz = 0; 10859 10860 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 10861 while (*s) { 10862 if (*s == ',' || *s == '\n') { 10863 s++; 10864 continue; 10865 } 10866 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 10867 if (n <= 0 || n > 2) { 10868 pr_warn("Failed to get CPU range %s: %d\n", s, n); 10869 err = -EINVAL; 10870 goto cleanup; 10871 } else if (n == 1) { 10872 end = start; 10873 } 10874 if (start < 0 || start > end) { 10875 pr_warn("Invalid CPU range [%d,%d] in %s\n", 10876 start, end, s); 10877 err = -EINVAL; 10878 goto cleanup; 10879 } 10880 tmp = realloc(*mask, end + 1); 10881 if (!tmp) { 10882 err = -ENOMEM; 10883 goto cleanup; 10884 } 10885 *mask = tmp; 10886 memset(tmp + *mask_sz, 0, start - *mask_sz); 10887 memset(tmp + start, 1, end - start + 1); 10888 *mask_sz = end + 1; 10889 s += len; 10890 } 10891 if (!*mask_sz) { 10892 pr_warn("Empty CPU range\n"); 10893 return -EINVAL; 10894 } 10895 return 0; 10896 cleanup: 10897 free(*mask); 10898 *mask = NULL; 10899 return err; 10900 } 10901 10902 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 10903 { 10904 int fd, err = 0, len; 10905 char buf[128]; 10906 10907 fd = open(fcpu, O_RDONLY); 10908 if (fd < 0) { 10909 err = -errno; 10910 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 10911 return err; 10912 } 10913 len = read(fd, buf, sizeof(buf)); 10914 close(fd); 10915 if (len <= 0) { 10916 err = len ? -errno : -EINVAL; 10917 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 10918 return err; 10919 } 10920 if (len >= sizeof(buf)) { 10921 pr_warn("CPU mask is too big in file %s\n", fcpu); 10922 return -E2BIG; 10923 } 10924 buf[len] = '\0'; 10925 10926 return parse_cpu_mask_str(buf, mask, mask_sz); 10927 } 10928 10929 int libbpf_num_possible_cpus(void) 10930 { 10931 static const char *fcpu = "/sys/devices/system/cpu/possible"; 10932 static int cpus; 10933 int err, n, i, tmp_cpus; 10934 bool *mask; 10935 10936 tmp_cpus = READ_ONCE(cpus); 10937 if (tmp_cpus > 0) 10938 return tmp_cpus; 10939 10940 err = parse_cpu_mask_file(fcpu, &mask, &n); 10941 if (err) 10942 return libbpf_err(err); 10943 10944 tmp_cpus = 0; 10945 for (i = 0; i < n; i++) { 10946 if (mask[i]) 10947 tmp_cpus++; 10948 } 10949 free(mask); 10950 10951 WRITE_ONCE(cpus, tmp_cpus); 10952 return tmp_cpus; 10953 } 10954 10955 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 10956 const struct bpf_object_open_opts *opts) 10957 { 10958 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 10959 .object_name = s->name, 10960 ); 10961 struct bpf_object *obj; 10962 int i, err; 10963 10964 /* Attempt to preserve opts->object_name, unless overriden by user 10965 * explicitly. Overwriting object name for skeletons is discouraged, 10966 * as it breaks global data maps, because they contain object name 10967 * prefix as their own map name prefix. When skeleton is generated, 10968 * bpftool is making an assumption that this name will stay the same. 10969 */ 10970 if (opts) { 10971 memcpy(&skel_opts, opts, sizeof(*opts)); 10972 if (!opts->object_name) 10973 skel_opts.object_name = s->name; 10974 } 10975 10976 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 10977 err = libbpf_get_error(obj); 10978 if (err) { 10979 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 10980 s->name, err); 10981 return libbpf_err(err); 10982 } 10983 10984 *s->obj = obj; 10985 10986 for (i = 0; i < s->map_cnt; i++) { 10987 struct bpf_map **map = s->maps[i].map; 10988 const char *name = s->maps[i].name; 10989 void **mmaped = s->maps[i].mmaped; 10990 10991 *map = bpf_object__find_map_by_name(obj, name); 10992 if (!*map) { 10993 pr_warn("failed to find skeleton map '%s'\n", name); 10994 return libbpf_err(-ESRCH); 10995 } 10996 10997 /* externs shouldn't be pre-setup from user code */ 10998 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 10999 *mmaped = (*map)->mmaped; 11000 } 11001 11002 for (i = 0; i < s->prog_cnt; i++) { 11003 struct bpf_program **prog = s->progs[i].prog; 11004 const char *name = s->progs[i].name; 11005 11006 *prog = bpf_object__find_program_by_name(obj, name); 11007 if (!*prog) { 11008 pr_warn("failed to find skeleton program '%s'\n", name); 11009 return libbpf_err(-ESRCH); 11010 } 11011 } 11012 11013 return 0; 11014 } 11015 11016 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11017 { 11018 int i, err; 11019 11020 err = bpf_object__load(*s->obj); 11021 if (err) { 11022 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11023 return libbpf_err(err); 11024 } 11025 11026 for (i = 0; i < s->map_cnt; i++) { 11027 struct bpf_map *map = *s->maps[i].map; 11028 size_t mmap_sz = bpf_map_mmap_sz(map); 11029 int prot, map_fd = bpf_map__fd(map); 11030 void **mmaped = s->maps[i].mmaped; 11031 11032 if (!mmaped) 11033 continue; 11034 11035 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11036 *mmaped = NULL; 11037 continue; 11038 } 11039 11040 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11041 prot = PROT_READ; 11042 else 11043 prot = PROT_READ | PROT_WRITE; 11044 11045 /* Remap anonymous mmap()-ed "map initialization image" as 11046 * a BPF map-backed mmap()-ed memory, but preserving the same 11047 * memory address. This will cause kernel to change process' 11048 * page table to point to a different piece of kernel memory, 11049 * but from userspace point of view memory address (and its 11050 * contents, being identical at this point) will stay the 11051 * same. This mapping will be released by bpf_object__close() 11052 * as per normal clean up procedure, so we don't need to worry 11053 * about it from skeleton's clean up perspective. 11054 */ 11055 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11056 MAP_SHARED | MAP_FIXED, map_fd, 0); 11057 if (*mmaped == MAP_FAILED) { 11058 err = -errno; 11059 *mmaped = NULL; 11060 pr_warn("failed to re-mmap() map '%s': %d\n", 11061 bpf_map__name(map), err); 11062 return libbpf_err(err); 11063 } 11064 } 11065 11066 return 0; 11067 } 11068 11069 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11070 { 11071 int i, err; 11072 11073 for (i = 0; i < s->prog_cnt; i++) { 11074 struct bpf_program *prog = *s->progs[i].prog; 11075 struct bpf_link **link = s->progs[i].link; 11076 11077 if (!prog->load) 11078 continue; 11079 11080 /* auto-attaching not supported for this program */ 11081 if (!prog->sec_def || !prog->sec_def->attach_fn) 11082 continue; 11083 11084 *link = bpf_program__attach(prog); 11085 err = libbpf_get_error(*link); 11086 if (err) { 11087 pr_warn("failed to auto-attach program '%s': %d\n", 11088 bpf_program__name(prog), err); 11089 return libbpf_err(err); 11090 } 11091 } 11092 11093 return 0; 11094 } 11095 11096 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11097 { 11098 int i; 11099 11100 for (i = 0; i < s->prog_cnt; i++) { 11101 struct bpf_link **link = s->progs[i].link; 11102 11103 bpf_link__destroy(*link); 11104 *link = NULL; 11105 } 11106 } 11107 11108 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11109 { 11110 if (s->progs) 11111 bpf_object__detach_skeleton(s); 11112 if (s->obj) 11113 bpf_object__close(*s->obj); 11114 free(s->maps); 11115 free(s->progs); 11116 free(s); 11117 } 11118