xref: /linux/tools/lib/bpf/libbpf.c (revision 60684c2bd35064043360e6f716d1b7c20e967b7d)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48 
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 
57 #ifndef BPF_FS_MAGIC
58 #define BPF_FS_MAGIC		0xcafe4a11
59 #endif
60 
61 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
62 
63 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
64  * compilation if user enables corresponding warning. Disable it explicitly.
65  */
66 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
67 
68 #define __printf(a, b)	__attribute__((format(printf, a, b)))
69 
70 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
71 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
72 
73 static const char * const attach_type_name[] = {
74 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
75 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
76 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
77 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
78 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
79 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
80 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
81 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
82 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
83 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
84 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
85 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
86 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
87 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
88 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
89 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
90 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
91 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
92 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
93 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
94 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
95 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
96 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
97 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
98 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
99 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
100 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
101 	[BPF_LIRC_MODE2]		= "lirc_mode2",
102 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
103 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
104 	[BPF_TRACE_FENTRY]		= "trace_fentry",
105 	[BPF_TRACE_FEXIT]		= "trace_fexit",
106 	[BPF_MODIFY_RETURN]		= "modify_return",
107 	[BPF_LSM_MAC]			= "lsm_mac",
108 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
109 	[BPF_SK_LOOKUP]			= "sk_lookup",
110 	[BPF_TRACE_ITER]		= "trace_iter",
111 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
112 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
113 	[BPF_XDP]			= "xdp",
114 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
115 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
116 	[BPF_PERF_EVENT]		= "perf_event",
117 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
118 };
119 
120 static const char * const link_type_name[] = {
121 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
122 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
123 	[BPF_LINK_TYPE_TRACING]			= "tracing",
124 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
125 	[BPF_LINK_TYPE_ITER]			= "iter",
126 	[BPF_LINK_TYPE_NETNS]			= "netns",
127 	[BPF_LINK_TYPE_XDP]			= "xdp",
128 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
129 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
130 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
131 };
132 
133 static const char * const map_type_name[] = {
134 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
135 	[BPF_MAP_TYPE_HASH]			= "hash",
136 	[BPF_MAP_TYPE_ARRAY]			= "array",
137 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
138 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
139 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
140 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
141 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
142 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
143 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
144 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
145 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
146 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
147 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
148 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
149 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
150 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
151 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
152 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
153 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
154 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
155 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
156 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
157 	[BPF_MAP_TYPE_QUEUE]			= "queue",
158 	[BPF_MAP_TYPE_STACK]			= "stack",
159 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
160 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
161 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
162 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
163 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
164 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
165 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
166 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
167 };
168 
169 static const char * const prog_type_name[] = {
170 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
171 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
172 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
173 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
174 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
175 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
176 	[BPF_PROG_TYPE_XDP]			= "xdp",
177 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
178 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
179 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
180 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
181 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
182 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
183 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
184 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
185 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
186 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
187 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
188 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
189 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
190 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
191 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
192 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
193 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
194 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
195 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
196 	[BPF_PROG_TYPE_TRACING]			= "tracing",
197 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
198 	[BPF_PROG_TYPE_EXT]			= "ext",
199 	[BPF_PROG_TYPE_LSM]			= "lsm",
200 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
201 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
202 };
203 
204 static int __base_pr(enum libbpf_print_level level, const char *format,
205 		     va_list args)
206 {
207 	if (level == LIBBPF_DEBUG)
208 		return 0;
209 
210 	return vfprintf(stderr, format, args);
211 }
212 
213 static libbpf_print_fn_t __libbpf_pr = __base_pr;
214 
215 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
216 {
217 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
218 
219 	__libbpf_pr = fn;
220 	return old_print_fn;
221 }
222 
223 __printf(2, 3)
224 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
225 {
226 	va_list args;
227 	int old_errno;
228 
229 	if (!__libbpf_pr)
230 		return;
231 
232 	old_errno = errno;
233 
234 	va_start(args, format);
235 	__libbpf_pr(level, format, args);
236 	va_end(args);
237 
238 	errno = old_errno;
239 }
240 
241 static void pr_perm_msg(int err)
242 {
243 	struct rlimit limit;
244 	char buf[100];
245 
246 	if (err != -EPERM || geteuid() != 0)
247 		return;
248 
249 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
250 	if (err)
251 		return;
252 
253 	if (limit.rlim_cur == RLIM_INFINITY)
254 		return;
255 
256 	if (limit.rlim_cur < 1024)
257 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
258 	else if (limit.rlim_cur < 1024*1024)
259 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
260 	else
261 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
262 
263 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
264 		buf);
265 }
266 
267 #define STRERR_BUFSIZE  128
268 
269 /* Copied from tools/perf/util/util.h */
270 #ifndef zfree
271 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
272 #endif
273 
274 #ifndef zclose
275 # define zclose(fd) ({			\
276 	int ___err = 0;			\
277 	if ((fd) >= 0)			\
278 		___err = close((fd));	\
279 	fd = -1;			\
280 	___err; })
281 #endif
282 
283 static inline __u64 ptr_to_u64(const void *ptr)
284 {
285 	return (__u64) (unsigned long) ptr;
286 }
287 
288 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
289 {
290 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
291 	return 0;
292 }
293 
294 __u32 libbpf_major_version(void)
295 {
296 	return LIBBPF_MAJOR_VERSION;
297 }
298 
299 __u32 libbpf_minor_version(void)
300 {
301 	return LIBBPF_MINOR_VERSION;
302 }
303 
304 const char *libbpf_version_string(void)
305 {
306 #define __S(X) #X
307 #define _S(X) __S(X)
308 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
309 #undef _S
310 #undef __S
311 }
312 
313 enum reloc_type {
314 	RELO_LD64,
315 	RELO_CALL,
316 	RELO_DATA,
317 	RELO_EXTERN_VAR,
318 	RELO_EXTERN_FUNC,
319 	RELO_SUBPROG_ADDR,
320 	RELO_CORE,
321 };
322 
323 struct reloc_desc {
324 	enum reloc_type type;
325 	int insn_idx;
326 	union {
327 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
328 		struct {
329 			int map_idx;
330 			int sym_off;
331 		};
332 	};
333 };
334 
335 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
336 enum sec_def_flags {
337 	SEC_NONE = 0,
338 	/* expected_attach_type is optional, if kernel doesn't support that */
339 	SEC_EXP_ATTACH_OPT = 1,
340 	/* legacy, only used by libbpf_get_type_names() and
341 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
342 	 * This used to be associated with cgroup (and few other) BPF programs
343 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
344 	 * meaningless nowadays, though.
345 	 */
346 	SEC_ATTACHABLE = 2,
347 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
348 	/* attachment target is specified through BTF ID in either kernel or
349 	 * other BPF program's BTF object
350 	 */
351 	SEC_ATTACH_BTF = 4,
352 	/* BPF program type allows sleeping/blocking in kernel */
353 	SEC_SLEEPABLE = 8,
354 	/* BPF program support non-linear XDP buffer */
355 	SEC_XDP_FRAGS = 16,
356 };
357 
358 struct bpf_sec_def {
359 	char *sec;
360 	enum bpf_prog_type prog_type;
361 	enum bpf_attach_type expected_attach_type;
362 	long cookie;
363 	int handler_id;
364 
365 	libbpf_prog_setup_fn_t prog_setup_fn;
366 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
367 	libbpf_prog_attach_fn_t prog_attach_fn;
368 };
369 
370 /*
371  * bpf_prog should be a better name but it has been used in
372  * linux/filter.h.
373  */
374 struct bpf_program {
375 	char *name;
376 	char *sec_name;
377 	size_t sec_idx;
378 	const struct bpf_sec_def *sec_def;
379 	/* this program's instruction offset (in number of instructions)
380 	 * within its containing ELF section
381 	 */
382 	size_t sec_insn_off;
383 	/* number of original instructions in ELF section belonging to this
384 	 * program, not taking into account subprogram instructions possible
385 	 * appended later during relocation
386 	 */
387 	size_t sec_insn_cnt;
388 	/* Offset (in number of instructions) of the start of instruction
389 	 * belonging to this BPF program  within its containing main BPF
390 	 * program. For the entry-point (main) BPF program, this is always
391 	 * zero. For a sub-program, this gets reset before each of main BPF
392 	 * programs are processed and relocated and is used to determined
393 	 * whether sub-program was already appended to the main program, and
394 	 * if yes, at which instruction offset.
395 	 */
396 	size_t sub_insn_off;
397 
398 	/* instructions that belong to BPF program; insns[0] is located at
399 	 * sec_insn_off instruction within its ELF section in ELF file, so
400 	 * when mapping ELF file instruction index to the local instruction,
401 	 * one needs to subtract sec_insn_off; and vice versa.
402 	 */
403 	struct bpf_insn *insns;
404 	/* actual number of instruction in this BPF program's image; for
405 	 * entry-point BPF programs this includes the size of main program
406 	 * itself plus all the used sub-programs, appended at the end
407 	 */
408 	size_t insns_cnt;
409 
410 	struct reloc_desc *reloc_desc;
411 	int nr_reloc;
412 
413 	/* BPF verifier log settings */
414 	char *log_buf;
415 	size_t log_size;
416 	__u32 log_level;
417 
418 	struct bpf_object *obj;
419 
420 	int fd;
421 	bool autoload;
422 	bool autoattach;
423 	bool mark_btf_static;
424 	enum bpf_prog_type type;
425 	enum bpf_attach_type expected_attach_type;
426 
427 	int prog_ifindex;
428 	__u32 attach_btf_obj_fd;
429 	__u32 attach_btf_id;
430 	__u32 attach_prog_fd;
431 
432 	void *func_info;
433 	__u32 func_info_rec_size;
434 	__u32 func_info_cnt;
435 
436 	void *line_info;
437 	__u32 line_info_rec_size;
438 	__u32 line_info_cnt;
439 	__u32 prog_flags;
440 };
441 
442 struct bpf_struct_ops {
443 	const char *tname;
444 	const struct btf_type *type;
445 	struct bpf_program **progs;
446 	__u32 *kern_func_off;
447 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
448 	void *data;
449 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
450 	 *      btf_vmlinux's format.
451 	 * struct bpf_struct_ops_tcp_congestion_ops {
452 	 *	[... some other kernel fields ...]
453 	 *	struct tcp_congestion_ops data;
454 	 * }
455 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
456 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
457 	 * from "data".
458 	 */
459 	void *kern_vdata;
460 	__u32 type_id;
461 };
462 
463 #define DATA_SEC ".data"
464 #define BSS_SEC ".bss"
465 #define RODATA_SEC ".rodata"
466 #define KCONFIG_SEC ".kconfig"
467 #define KSYMS_SEC ".ksyms"
468 #define STRUCT_OPS_SEC ".struct_ops"
469 
470 enum libbpf_map_type {
471 	LIBBPF_MAP_UNSPEC,
472 	LIBBPF_MAP_DATA,
473 	LIBBPF_MAP_BSS,
474 	LIBBPF_MAP_RODATA,
475 	LIBBPF_MAP_KCONFIG,
476 };
477 
478 struct bpf_map_def {
479 	unsigned int type;
480 	unsigned int key_size;
481 	unsigned int value_size;
482 	unsigned int max_entries;
483 	unsigned int map_flags;
484 };
485 
486 struct bpf_map {
487 	struct bpf_object *obj;
488 	char *name;
489 	/* real_name is defined for special internal maps (.rodata*,
490 	 * .data*, .bss, .kconfig) and preserves their original ELF section
491 	 * name. This is important to be able to find corresponding BTF
492 	 * DATASEC information.
493 	 */
494 	char *real_name;
495 	int fd;
496 	int sec_idx;
497 	size_t sec_offset;
498 	int map_ifindex;
499 	int inner_map_fd;
500 	struct bpf_map_def def;
501 	__u32 numa_node;
502 	__u32 btf_var_idx;
503 	__u32 btf_key_type_id;
504 	__u32 btf_value_type_id;
505 	__u32 btf_vmlinux_value_type_id;
506 	enum libbpf_map_type libbpf_type;
507 	void *mmaped;
508 	struct bpf_struct_ops *st_ops;
509 	struct bpf_map *inner_map;
510 	void **init_slots;
511 	int init_slots_sz;
512 	char *pin_path;
513 	bool pinned;
514 	bool reused;
515 	bool autocreate;
516 	__u64 map_extra;
517 };
518 
519 enum extern_type {
520 	EXT_UNKNOWN,
521 	EXT_KCFG,
522 	EXT_KSYM,
523 };
524 
525 enum kcfg_type {
526 	KCFG_UNKNOWN,
527 	KCFG_CHAR,
528 	KCFG_BOOL,
529 	KCFG_INT,
530 	KCFG_TRISTATE,
531 	KCFG_CHAR_ARR,
532 };
533 
534 struct extern_desc {
535 	enum extern_type type;
536 	int sym_idx;
537 	int btf_id;
538 	int sec_btf_id;
539 	const char *name;
540 	bool is_set;
541 	bool is_weak;
542 	union {
543 		struct {
544 			enum kcfg_type type;
545 			int sz;
546 			int align;
547 			int data_off;
548 			bool is_signed;
549 		} kcfg;
550 		struct {
551 			unsigned long long addr;
552 
553 			/* target btf_id of the corresponding kernel var. */
554 			int kernel_btf_obj_fd;
555 			int kernel_btf_id;
556 
557 			/* local btf_id of the ksym extern's type. */
558 			__u32 type_id;
559 			/* BTF fd index to be patched in for insn->off, this is
560 			 * 0 for vmlinux BTF, index in obj->fd_array for module
561 			 * BTF
562 			 */
563 			__s16 btf_fd_idx;
564 		} ksym;
565 	};
566 };
567 
568 struct module_btf {
569 	struct btf *btf;
570 	char *name;
571 	__u32 id;
572 	int fd;
573 	int fd_array_idx;
574 };
575 
576 enum sec_type {
577 	SEC_UNUSED = 0,
578 	SEC_RELO,
579 	SEC_BSS,
580 	SEC_DATA,
581 	SEC_RODATA,
582 };
583 
584 struct elf_sec_desc {
585 	enum sec_type sec_type;
586 	Elf64_Shdr *shdr;
587 	Elf_Data *data;
588 };
589 
590 struct elf_state {
591 	int fd;
592 	const void *obj_buf;
593 	size_t obj_buf_sz;
594 	Elf *elf;
595 	Elf64_Ehdr *ehdr;
596 	Elf_Data *symbols;
597 	Elf_Data *st_ops_data;
598 	size_t shstrndx; /* section index for section name strings */
599 	size_t strtabidx;
600 	struct elf_sec_desc *secs;
601 	size_t sec_cnt;
602 	int btf_maps_shndx;
603 	__u32 btf_maps_sec_btf_id;
604 	int text_shndx;
605 	int symbols_shndx;
606 	int st_ops_shndx;
607 };
608 
609 struct usdt_manager;
610 
611 struct bpf_object {
612 	char name[BPF_OBJ_NAME_LEN];
613 	char license[64];
614 	__u32 kern_version;
615 
616 	struct bpf_program *programs;
617 	size_t nr_programs;
618 	struct bpf_map *maps;
619 	size_t nr_maps;
620 	size_t maps_cap;
621 
622 	char *kconfig;
623 	struct extern_desc *externs;
624 	int nr_extern;
625 	int kconfig_map_idx;
626 
627 	bool loaded;
628 	bool has_subcalls;
629 	bool has_rodata;
630 
631 	struct bpf_gen *gen_loader;
632 
633 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
634 	struct elf_state efile;
635 
636 	struct btf *btf;
637 	struct btf_ext *btf_ext;
638 
639 	/* Parse and load BTF vmlinux if any of the programs in the object need
640 	 * it at load time.
641 	 */
642 	struct btf *btf_vmlinux;
643 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
644 	 * override for vmlinux BTF.
645 	 */
646 	char *btf_custom_path;
647 	/* vmlinux BTF override for CO-RE relocations */
648 	struct btf *btf_vmlinux_override;
649 	/* Lazily initialized kernel module BTFs */
650 	struct module_btf *btf_modules;
651 	bool btf_modules_loaded;
652 	size_t btf_module_cnt;
653 	size_t btf_module_cap;
654 
655 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
656 	char *log_buf;
657 	size_t log_size;
658 	__u32 log_level;
659 
660 	int *fd_array;
661 	size_t fd_array_cap;
662 	size_t fd_array_cnt;
663 
664 	struct usdt_manager *usdt_man;
665 
666 	char path[];
667 };
668 
669 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
670 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
671 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
672 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
673 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
674 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
675 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
676 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
677 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
678 
679 void bpf_program__unload(struct bpf_program *prog)
680 {
681 	if (!prog)
682 		return;
683 
684 	zclose(prog->fd);
685 
686 	zfree(&prog->func_info);
687 	zfree(&prog->line_info);
688 }
689 
690 static void bpf_program__exit(struct bpf_program *prog)
691 {
692 	if (!prog)
693 		return;
694 
695 	bpf_program__unload(prog);
696 	zfree(&prog->name);
697 	zfree(&prog->sec_name);
698 	zfree(&prog->insns);
699 	zfree(&prog->reloc_desc);
700 
701 	prog->nr_reloc = 0;
702 	prog->insns_cnt = 0;
703 	prog->sec_idx = -1;
704 }
705 
706 static bool insn_is_subprog_call(const struct bpf_insn *insn)
707 {
708 	return BPF_CLASS(insn->code) == BPF_JMP &&
709 	       BPF_OP(insn->code) == BPF_CALL &&
710 	       BPF_SRC(insn->code) == BPF_K &&
711 	       insn->src_reg == BPF_PSEUDO_CALL &&
712 	       insn->dst_reg == 0 &&
713 	       insn->off == 0;
714 }
715 
716 static bool is_call_insn(const struct bpf_insn *insn)
717 {
718 	return insn->code == (BPF_JMP | BPF_CALL);
719 }
720 
721 static bool insn_is_pseudo_func(struct bpf_insn *insn)
722 {
723 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
724 }
725 
726 static int
727 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
728 		      const char *name, size_t sec_idx, const char *sec_name,
729 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
730 {
731 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
732 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
733 			sec_name, name, sec_off, insn_data_sz);
734 		return -EINVAL;
735 	}
736 
737 	memset(prog, 0, sizeof(*prog));
738 	prog->obj = obj;
739 
740 	prog->sec_idx = sec_idx;
741 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
742 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
743 	/* insns_cnt can later be increased by appending used subprograms */
744 	prog->insns_cnt = prog->sec_insn_cnt;
745 
746 	prog->type = BPF_PROG_TYPE_UNSPEC;
747 	prog->fd = -1;
748 
749 	/* libbpf's convention for SEC("?abc...") is that it's just like
750 	 * SEC("abc...") but the corresponding bpf_program starts out with
751 	 * autoload set to false.
752 	 */
753 	if (sec_name[0] == '?') {
754 		prog->autoload = false;
755 		/* from now on forget there was ? in section name */
756 		sec_name++;
757 	} else {
758 		prog->autoload = true;
759 	}
760 
761 	prog->autoattach = true;
762 
763 	/* inherit object's log_level */
764 	prog->log_level = obj->log_level;
765 
766 	prog->sec_name = strdup(sec_name);
767 	if (!prog->sec_name)
768 		goto errout;
769 
770 	prog->name = strdup(name);
771 	if (!prog->name)
772 		goto errout;
773 
774 	prog->insns = malloc(insn_data_sz);
775 	if (!prog->insns)
776 		goto errout;
777 	memcpy(prog->insns, insn_data, insn_data_sz);
778 
779 	return 0;
780 errout:
781 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
782 	bpf_program__exit(prog);
783 	return -ENOMEM;
784 }
785 
786 static int
787 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
788 			 const char *sec_name, int sec_idx)
789 {
790 	Elf_Data *symbols = obj->efile.symbols;
791 	struct bpf_program *prog, *progs;
792 	void *data = sec_data->d_buf;
793 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
794 	int nr_progs, err, i;
795 	const char *name;
796 	Elf64_Sym *sym;
797 
798 	progs = obj->programs;
799 	nr_progs = obj->nr_programs;
800 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
801 	sec_off = 0;
802 
803 	for (i = 0; i < nr_syms; i++) {
804 		sym = elf_sym_by_idx(obj, i);
805 
806 		if (sym->st_shndx != sec_idx)
807 			continue;
808 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
809 			continue;
810 
811 		prog_sz = sym->st_size;
812 		sec_off = sym->st_value;
813 
814 		name = elf_sym_str(obj, sym->st_name);
815 		if (!name) {
816 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
817 				sec_name, sec_off);
818 			return -LIBBPF_ERRNO__FORMAT;
819 		}
820 
821 		if (sec_off + prog_sz > sec_sz) {
822 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
823 				sec_name, sec_off);
824 			return -LIBBPF_ERRNO__FORMAT;
825 		}
826 
827 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
828 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
829 			return -ENOTSUP;
830 		}
831 
832 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
833 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
834 
835 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
836 		if (!progs) {
837 			/*
838 			 * In this case the original obj->programs
839 			 * is still valid, so don't need special treat for
840 			 * bpf_close_object().
841 			 */
842 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
843 				sec_name, name);
844 			return -ENOMEM;
845 		}
846 		obj->programs = progs;
847 
848 		prog = &progs[nr_progs];
849 
850 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
851 					    sec_off, data + sec_off, prog_sz);
852 		if (err)
853 			return err;
854 
855 		/* if function is a global/weak symbol, but has restricted
856 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
857 		 * as static to enable more permissive BPF verification mode
858 		 * with more outside context available to BPF verifier
859 		 */
860 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
861 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
862 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
863 			prog->mark_btf_static = true;
864 
865 		nr_progs++;
866 		obj->nr_programs = nr_progs;
867 	}
868 
869 	return 0;
870 }
871 
872 static const struct btf_member *
873 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
874 {
875 	struct btf_member *m;
876 	int i;
877 
878 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
879 		if (btf_member_bit_offset(t, i) == bit_offset)
880 			return m;
881 	}
882 
883 	return NULL;
884 }
885 
886 static const struct btf_member *
887 find_member_by_name(const struct btf *btf, const struct btf_type *t,
888 		    const char *name)
889 {
890 	struct btf_member *m;
891 	int i;
892 
893 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
894 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
895 			return m;
896 	}
897 
898 	return NULL;
899 }
900 
901 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
902 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
903 				   const char *name, __u32 kind);
904 
905 static int
906 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
907 			   const struct btf_type **type, __u32 *type_id,
908 			   const struct btf_type **vtype, __u32 *vtype_id,
909 			   const struct btf_member **data_member)
910 {
911 	const struct btf_type *kern_type, *kern_vtype;
912 	const struct btf_member *kern_data_member;
913 	__s32 kern_vtype_id, kern_type_id;
914 	__u32 i;
915 
916 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
917 	if (kern_type_id < 0) {
918 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
919 			tname);
920 		return kern_type_id;
921 	}
922 	kern_type = btf__type_by_id(btf, kern_type_id);
923 
924 	/* Find the corresponding "map_value" type that will be used
925 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
926 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
927 	 * btf_vmlinux.
928 	 */
929 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
930 						tname, BTF_KIND_STRUCT);
931 	if (kern_vtype_id < 0) {
932 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
933 			STRUCT_OPS_VALUE_PREFIX, tname);
934 		return kern_vtype_id;
935 	}
936 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
937 
938 	/* Find "struct tcp_congestion_ops" from
939 	 * struct bpf_struct_ops_tcp_congestion_ops {
940 	 *	[ ... ]
941 	 *	struct tcp_congestion_ops data;
942 	 * }
943 	 */
944 	kern_data_member = btf_members(kern_vtype);
945 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
946 		if (kern_data_member->type == kern_type_id)
947 			break;
948 	}
949 	if (i == btf_vlen(kern_vtype)) {
950 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
951 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
952 		return -EINVAL;
953 	}
954 
955 	*type = kern_type;
956 	*type_id = kern_type_id;
957 	*vtype = kern_vtype;
958 	*vtype_id = kern_vtype_id;
959 	*data_member = kern_data_member;
960 
961 	return 0;
962 }
963 
964 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
965 {
966 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
967 }
968 
969 /* Init the map's fields that depend on kern_btf */
970 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
971 					 const struct btf *btf,
972 					 const struct btf *kern_btf)
973 {
974 	const struct btf_member *member, *kern_member, *kern_data_member;
975 	const struct btf_type *type, *kern_type, *kern_vtype;
976 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
977 	struct bpf_struct_ops *st_ops;
978 	void *data, *kern_data;
979 	const char *tname;
980 	int err;
981 
982 	st_ops = map->st_ops;
983 	type = st_ops->type;
984 	tname = st_ops->tname;
985 	err = find_struct_ops_kern_types(kern_btf, tname,
986 					 &kern_type, &kern_type_id,
987 					 &kern_vtype, &kern_vtype_id,
988 					 &kern_data_member);
989 	if (err)
990 		return err;
991 
992 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
993 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
994 
995 	map->def.value_size = kern_vtype->size;
996 	map->btf_vmlinux_value_type_id = kern_vtype_id;
997 
998 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
999 	if (!st_ops->kern_vdata)
1000 		return -ENOMEM;
1001 
1002 	data = st_ops->data;
1003 	kern_data_off = kern_data_member->offset / 8;
1004 	kern_data = st_ops->kern_vdata + kern_data_off;
1005 
1006 	member = btf_members(type);
1007 	for (i = 0; i < btf_vlen(type); i++, member++) {
1008 		const struct btf_type *mtype, *kern_mtype;
1009 		__u32 mtype_id, kern_mtype_id;
1010 		void *mdata, *kern_mdata;
1011 		__s64 msize, kern_msize;
1012 		__u32 moff, kern_moff;
1013 		__u32 kern_member_idx;
1014 		const char *mname;
1015 
1016 		mname = btf__name_by_offset(btf, member->name_off);
1017 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1018 		if (!kern_member) {
1019 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1020 				map->name, mname);
1021 			return -ENOTSUP;
1022 		}
1023 
1024 		kern_member_idx = kern_member - btf_members(kern_type);
1025 		if (btf_member_bitfield_size(type, i) ||
1026 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1027 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1028 				map->name, mname);
1029 			return -ENOTSUP;
1030 		}
1031 
1032 		moff = member->offset / 8;
1033 		kern_moff = kern_member->offset / 8;
1034 
1035 		mdata = data + moff;
1036 		kern_mdata = kern_data + kern_moff;
1037 
1038 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1039 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1040 						    &kern_mtype_id);
1041 		if (BTF_INFO_KIND(mtype->info) !=
1042 		    BTF_INFO_KIND(kern_mtype->info)) {
1043 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1044 				map->name, mname, BTF_INFO_KIND(mtype->info),
1045 				BTF_INFO_KIND(kern_mtype->info));
1046 			return -ENOTSUP;
1047 		}
1048 
1049 		if (btf_is_ptr(mtype)) {
1050 			struct bpf_program *prog;
1051 
1052 			prog = st_ops->progs[i];
1053 			if (!prog)
1054 				continue;
1055 
1056 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1057 							    kern_mtype->type,
1058 							    &kern_mtype_id);
1059 
1060 			/* mtype->type must be a func_proto which was
1061 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1062 			 * so only check kern_mtype for func_proto here.
1063 			 */
1064 			if (!btf_is_func_proto(kern_mtype)) {
1065 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1066 					map->name, mname);
1067 				return -ENOTSUP;
1068 			}
1069 
1070 			prog->attach_btf_id = kern_type_id;
1071 			prog->expected_attach_type = kern_member_idx;
1072 
1073 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1074 
1075 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1076 				 map->name, mname, prog->name, moff,
1077 				 kern_moff);
1078 
1079 			continue;
1080 		}
1081 
1082 		msize = btf__resolve_size(btf, mtype_id);
1083 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1084 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1085 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1086 				map->name, mname, (ssize_t)msize,
1087 				(ssize_t)kern_msize);
1088 			return -ENOTSUP;
1089 		}
1090 
1091 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1092 			 map->name, mname, (unsigned int)msize,
1093 			 moff, kern_moff);
1094 		memcpy(kern_mdata, mdata, msize);
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1101 {
1102 	struct bpf_map *map;
1103 	size_t i;
1104 	int err;
1105 
1106 	for (i = 0; i < obj->nr_maps; i++) {
1107 		map = &obj->maps[i];
1108 
1109 		if (!bpf_map__is_struct_ops(map))
1110 			continue;
1111 
1112 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1113 						    obj->btf_vmlinux);
1114 		if (err)
1115 			return err;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1122 {
1123 	const struct btf_type *type, *datasec;
1124 	const struct btf_var_secinfo *vsi;
1125 	struct bpf_struct_ops *st_ops;
1126 	const char *tname, *var_name;
1127 	__s32 type_id, datasec_id;
1128 	const struct btf *btf;
1129 	struct bpf_map *map;
1130 	__u32 i;
1131 
1132 	if (obj->efile.st_ops_shndx == -1)
1133 		return 0;
1134 
1135 	btf = obj->btf;
1136 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1137 					    BTF_KIND_DATASEC);
1138 	if (datasec_id < 0) {
1139 		pr_warn("struct_ops init: DATASEC %s not found\n",
1140 			STRUCT_OPS_SEC);
1141 		return -EINVAL;
1142 	}
1143 
1144 	datasec = btf__type_by_id(btf, datasec_id);
1145 	vsi = btf_var_secinfos(datasec);
1146 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1147 		type = btf__type_by_id(obj->btf, vsi->type);
1148 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1149 
1150 		type_id = btf__resolve_type(obj->btf, vsi->type);
1151 		if (type_id < 0) {
1152 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1153 				vsi->type, STRUCT_OPS_SEC);
1154 			return -EINVAL;
1155 		}
1156 
1157 		type = btf__type_by_id(obj->btf, type_id);
1158 		tname = btf__name_by_offset(obj->btf, type->name_off);
1159 		if (!tname[0]) {
1160 			pr_warn("struct_ops init: anonymous type is not supported\n");
1161 			return -ENOTSUP;
1162 		}
1163 		if (!btf_is_struct(type)) {
1164 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1165 			return -EINVAL;
1166 		}
1167 
1168 		map = bpf_object__add_map(obj);
1169 		if (IS_ERR(map))
1170 			return PTR_ERR(map);
1171 
1172 		map->sec_idx = obj->efile.st_ops_shndx;
1173 		map->sec_offset = vsi->offset;
1174 		map->name = strdup(var_name);
1175 		if (!map->name)
1176 			return -ENOMEM;
1177 
1178 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1179 		map->def.key_size = sizeof(int);
1180 		map->def.value_size = type->size;
1181 		map->def.max_entries = 1;
1182 
1183 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1184 		if (!map->st_ops)
1185 			return -ENOMEM;
1186 		st_ops = map->st_ops;
1187 		st_ops->data = malloc(type->size);
1188 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1189 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1190 					       sizeof(*st_ops->kern_func_off));
1191 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1192 			return -ENOMEM;
1193 
1194 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1195 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1196 				var_name, STRUCT_OPS_SEC);
1197 			return -EINVAL;
1198 		}
1199 
1200 		memcpy(st_ops->data,
1201 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1202 		       type->size);
1203 		st_ops->tname = tname;
1204 		st_ops->type = type;
1205 		st_ops->type_id = type_id;
1206 
1207 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1208 			 tname, type_id, var_name, vsi->offset);
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 static struct bpf_object *bpf_object__new(const char *path,
1215 					  const void *obj_buf,
1216 					  size_t obj_buf_sz,
1217 					  const char *obj_name)
1218 {
1219 	struct bpf_object *obj;
1220 	char *end;
1221 
1222 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1223 	if (!obj) {
1224 		pr_warn("alloc memory failed for %s\n", path);
1225 		return ERR_PTR(-ENOMEM);
1226 	}
1227 
1228 	strcpy(obj->path, path);
1229 	if (obj_name) {
1230 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1231 	} else {
1232 		/* Using basename() GNU version which doesn't modify arg. */
1233 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1234 		end = strchr(obj->name, '.');
1235 		if (end)
1236 			*end = 0;
1237 	}
1238 
1239 	obj->efile.fd = -1;
1240 	/*
1241 	 * Caller of this function should also call
1242 	 * bpf_object__elf_finish() after data collection to return
1243 	 * obj_buf to user. If not, we should duplicate the buffer to
1244 	 * avoid user freeing them before elf finish.
1245 	 */
1246 	obj->efile.obj_buf = obj_buf;
1247 	obj->efile.obj_buf_sz = obj_buf_sz;
1248 	obj->efile.btf_maps_shndx = -1;
1249 	obj->efile.st_ops_shndx = -1;
1250 	obj->kconfig_map_idx = -1;
1251 
1252 	obj->kern_version = get_kernel_version();
1253 	obj->loaded = false;
1254 
1255 	return obj;
1256 }
1257 
1258 static void bpf_object__elf_finish(struct bpf_object *obj)
1259 {
1260 	if (!obj->efile.elf)
1261 		return;
1262 
1263 	elf_end(obj->efile.elf);
1264 	obj->efile.elf = NULL;
1265 	obj->efile.symbols = NULL;
1266 	obj->efile.st_ops_data = NULL;
1267 
1268 	zfree(&obj->efile.secs);
1269 	obj->efile.sec_cnt = 0;
1270 	zclose(obj->efile.fd);
1271 	obj->efile.obj_buf = NULL;
1272 	obj->efile.obj_buf_sz = 0;
1273 }
1274 
1275 static int bpf_object__elf_init(struct bpf_object *obj)
1276 {
1277 	Elf64_Ehdr *ehdr;
1278 	int err = 0;
1279 	Elf *elf;
1280 
1281 	if (obj->efile.elf) {
1282 		pr_warn("elf: init internal error\n");
1283 		return -LIBBPF_ERRNO__LIBELF;
1284 	}
1285 
1286 	if (obj->efile.obj_buf_sz > 0) {
1287 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1288 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1289 	} else {
1290 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1291 		if (obj->efile.fd < 0) {
1292 			char errmsg[STRERR_BUFSIZE], *cp;
1293 
1294 			err = -errno;
1295 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1296 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1297 			return err;
1298 		}
1299 
1300 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1301 	}
1302 
1303 	if (!elf) {
1304 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1305 		err = -LIBBPF_ERRNO__LIBELF;
1306 		goto errout;
1307 	}
1308 
1309 	obj->efile.elf = elf;
1310 
1311 	if (elf_kind(elf) != ELF_K_ELF) {
1312 		err = -LIBBPF_ERRNO__FORMAT;
1313 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1314 		goto errout;
1315 	}
1316 
1317 	if (gelf_getclass(elf) != ELFCLASS64) {
1318 		err = -LIBBPF_ERRNO__FORMAT;
1319 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1320 		goto errout;
1321 	}
1322 
1323 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1324 	if (!obj->efile.ehdr) {
1325 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1326 		err = -LIBBPF_ERRNO__FORMAT;
1327 		goto errout;
1328 	}
1329 
1330 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1331 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1332 			obj->path, elf_errmsg(-1));
1333 		err = -LIBBPF_ERRNO__FORMAT;
1334 		goto errout;
1335 	}
1336 
1337 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1338 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1339 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1340 			obj->path, elf_errmsg(-1));
1341 		err = -LIBBPF_ERRNO__FORMAT;
1342 		goto errout;
1343 	}
1344 
1345 	/* Old LLVM set e_machine to EM_NONE */
1346 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1347 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1348 		err = -LIBBPF_ERRNO__FORMAT;
1349 		goto errout;
1350 	}
1351 
1352 	return 0;
1353 errout:
1354 	bpf_object__elf_finish(obj);
1355 	return err;
1356 }
1357 
1358 static int bpf_object__check_endianness(struct bpf_object *obj)
1359 {
1360 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1361 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1362 		return 0;
1363 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1364 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1365 		return 0;
1366 #else
1367 # error "Unrecognized __BYTE_ORDER__"
1368 #endif
1369 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1370 	return -LIBBPF_ERRNO__ENDIAN;
1371 }
1372 
1373 static int
1374 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1375 {
1376 	if (!data) {
1377 		pr_warn("invalid license section in %s\n", obj->path);
1378 		return -LIBBPF_ERRNO__FORMAT;
1379 	}
1380 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1381 	 * go over allowed ELF data section buffer
1382 	 */
1383 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1384 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1385 	return 0;
1386 }
1387 
1388 static int
1389 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1390 {
1391 	__u32 kver;
1392 
1393 	if (!data || size != sizeof(kver)) {
1394 		pr_warn("invalid kver section in %s\n", obj->path);
1395 		return -LIBBPF_ERRNO__FORMAT;
1396 	}
1397 	memcpy(&kver, data, sizeof(kver));
1398 	obj->kern_version = kver;
1399 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1400 	return 0;
1401 }
1402 
1403 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1404 {
1405 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1406 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1407 		return true;
1408 	return false;
1409 }
1410 
1411 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1412 {
1413 	Elf_Data *data;
1414 	Elf_Scn *scn;
1415 
1416 	if (!name)
1417 		return -EINVAL;
1418 
1419 	scn = elf_sec_by_name(obj, name);
1420 	data = elf_sec_data(obj, scn);
1421 	if (data) {
1422 		*size = data->d_size;
1423 		return 0; /* found it */
1424 	}
1425 
1426 	return -ENOENT;
1427 }
1428 
1429 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1430 {
1431 	Elf_Data *symbols = obj->efile.symbols;
1432 	const char *sname;
1433 	size_t si;
1434 
1435 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1436 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1437 
1438 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1439 			continue;
1440 
1441 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1442 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1443 			continue;
1444 
1445 		sname = elf_sym_str(obj, sym->st_name);
1446 		if (!sname) {
1447 			pr_warn("failed to get sym name string for var %s\n", name);
1448 			return ERR_PTR(-EIO);
1449 		}
1450 		if (strcmp(name, sname) == 0)
1451 			return sym;
1452 	}
1453 
1454 	return ERR_PTR(-ENOENT);
1455 }
1456 
1457 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1458 {
1459 	struct bpf_map *map;
1460 	int err;
1461 
1462 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1463 				sizeof(*obj->maps), obj->nr_maps + 1);
1464 	if (err)
1465 		return ERR_PTR(err);
1466 
1467 	map = &obj->maps[obj->nr_maps++];
1468 	map->obj = obj;
1469 	map->fd = -1;
1470 	map->inner_map_fd = -1;
1471 	map->autocreate = true;
1472 
1473 	return map;
1474 }
1475 
1476 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1477 {
1478 	long page_sz = sysconf(_SC_PAGE_SIZE);
1479 	size_t map_sz;
1480 
1481 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1482 	map_sz = roundup(map_sz, page_sz);
1483 	return map_sz;
1484 }
1485 
1486 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1487 {
1488 	char map_name[BPF_OBJ_NAME_LEN], *p;
1489 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1490 
1491 	/* This is one of the more confusing parts of libbpf for various
1492 	 * reasons, some of which are historical. The original idea for naming
1493 	 * internal names was to include as much of BPF object name prefix as
1494 	 * possible, so that it can be distinguished from similar internal
1495 	 * maps of a different BPF object.
1496 	 * As an example, let's say we have bpf_object named 'my_object_name'
1497 	 * and internal map corresponding to '.rodata' ELF section. The final
1498 	 * map name advertised to user and to the kernel will be
1499 	 * 'my_objec.rodata', taking first 8 characters of object name and
1500 	 * entire 7 characters of '.rodata'.
1501 	 * Somewhat confusingly, if internal map ELF section name is shorter
1502 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1503 	 * for the suffix, even though we only have 4 actual characters, and
1504 	 * resulting map will be called 'my_objec.bss', not even using all 15
1505 	 * characters allowed by the kernel. Oh well, at least the truncated
1506 	 * object name is somewhat consistent in this case. But if the map
1507 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1508 	 * (8 chars) and thus will be left with only first 7 characters of the
1509 	 * object name ('my_obje'). Happy guessing, user, that the final map
1510 	 * name will be "my_obje.kconfig".
1511 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1512 	 * and .data.* data sections, it's possible that ELF section name is
1513 	 * longer than allowed 15 chars, so we now need to be careful to take
1514 	 * only up to 15 first characters of ELF name, taking no BPF object
1515 	 * name characters at all. So '.rodata.abracadabra' will result in
1516 	 * '.rodata.abracad' kernel and user-visible name.
1517 	 * We need to keep this convoluted logic intact for .data, .bss and
1518 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1519 	 * maps we use their ELF names as is, not prepending bpf_object name
1520 	 * in front. We still need to truncate them to 15 characters for the
1521 	 * kernel. Full name can be recovered for such maps by using DATASEC
1522 	 * BTF type associated with such map's value type, though.
1523 	 */
1524 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1525 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1526 
1527 	/* if there are two or more dots in map name, it's a custom dot map */
1528 	if (strchr(real_name + 1, '.') != NULL)
1529 		pfx_len = 0;
1530 	else
1531 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1532 
1533 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1534 		 sfx_len, real_name);
1535 
1536 	/* sanitise map name to characters allowed by kernel */
1537 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1538 		if (!isalnum(*p) && *p != '_' && *p != '.')
1539 			*p = '_';
1540 
1541 	return strdup(map_name);
1542 }
1543 
1544 static int
1545 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1546 
1547 /* Internal BPF map is mmap()'able only if at least one of corresponding
1548  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1549  * variable and it's not marked as __hidden (which turns it into, effectively,
1550  * a STATIC variable).
1551  */
1552 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1553 {
1554 	const struct btf_type *t, *vt;
1555 	struct btf_var_secinfo *vsi;
1556 	int i, n;
1557 
1558 	if (!map->btf_value_type_id)
1559 		return false;
1560 
1561 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1562 	if (!btf_is_datasec(t))
1563 		return false;
1564 
1565 	vsi = btf_var_secinfos(t);
1566 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1567 		vt = btf__type_by_id(obj->btf, vsi->type);
1568 		if (!btf_is_var(vt))
1569 			continue;
1570 
1571 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1572 			return true;
1573 	}
1574 
1575 	return false;
1576 }
1577 
1578 static int
1579 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1580 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1581 {
1582 	struct bpf_map_def *def;
1583 	struct bpf_map *map;
1584 	int err;
1585 
1586 	map = bpf_object__add_map(obj);
1587 	if (IS_ERR(map))
1588 		return PTR_ERR(map);
1589 
1590 	map->libbpf_type = type;
1591 	map->sec_idx = sec_idx;
1592 	map->sec_offset = 0;
1593 	map->real_name = strdup(real_name);
1594 	map->name = internal_map_name(obj, real_name);
1595 	if (!map->real_name || !map->name) {
1596 		zfree(&map->real_name);
1597 		zfree(&map->name);
1598 		return -ENOMEM;
1599 	}
1600 
1601 	def = &map->def;
1602 	def->type = BPF_MAP_TYPE_ARRAY;
1603 	def->key_size = sizeof(int);
1604 	def->value_size = data_sz;
1605 	def->max_entries = 1;
1606 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1607 			 ? BPF_F_RDONLY_PROG : 0;
1608 
1609 	/* failures are fine because of maps like .rodata.str1.1 */
1610 	(void) map_fill_btf_type_info(obj, map);
1611 
1612 	if (map_is_mmapable(obj, map))
1613 		def->map_flags |= BPF_F_MMAPABLE;
1614 
1615 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1616 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1617 
1618 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1619 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1620 	if (map->mmaped == MAP_FAILED) {
1621 		err = -errno;
1622 		map->mmaped = NULL;
1623 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1624 			map->name, err);
1625 		zfree(&map->real_name);
1626 		zfree(&map->name);
1627 		return err;
1628 	}
1629 
1630 	if (data)
1631 		memcpy(map->mmaped, data, data_sz);
1632 
1633 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1634 	return 0;
1635 }
1636 
1637 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1638 {
1639 	struct elf_sec_desc *sec_desc;
1640 	const char *sec_name;
1641 	int err = 0, sec_idx;
1642 
1643 	/*
1644 	 * Populate obj->maps with libbpf internal maps.
1645 	 */
1646 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1647 		sec_desc = &obj->efile.secs[sec_idx];
1648 
1649 		/* Skip recognized sections with size 0. */
1650 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1651 			continue;
1652 
1653 		switch (sec_desc->sec_type) {
1654 		case SEC_DATA:
1655 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1656 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1657 							    sec_name, sec_idx,
1658 							    sec_desc->data->d_buf,
1659 							    sec_desc->data->d_size);
1660 			break;
1661 		case SEC_RODATA:
1662 			obj->has_rodata = true;
1663 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1664 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1665 							    sec_name, sec_idx,
1666 							    sec_desc->data->d_buf,
1667 							    sec_desc->data->d_size);
1668 			break;
1669 		case SEC_BSS:
1670 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1671 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1672 							    sec_name, sec_idx,
1673 							    NULL,
1674 							    sec_desc->data->d_size);
1675 			break;
1676 		default:
1677 			/* skip */
1678 			break;
1679 		}
1680 		if (err)
1681 			return err;
1682 	}
1683 	return 0;
1684 }
1685 
1686 
1687 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1688 					       const void *name)
1689 {
1690 	int i;
1691 
1692 	for (i = 0; i < obj->nr_extern; i++) {
1693 		if (strcmp(obj->externs[i].name, name) == 0)
1694 			return &obj->externs[i];
1695 	}
1696 	return NULL;
1697 }
1698 
1699 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1700 			      char value)
1701 {
1702 	switch (ext->kcfg.type) {
1703 	case KCFG_BOOL:
1704 		if (value == 'm') {
1705 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1706 				ext->name, value);
1707 			return -EINVAL;
1708 		}
1709 		*(bool *)ext_val = value == 'y' ? true : false;
1710 		break;
1711 	case KCFG_TRISTATE:
1712 		if (value == 'y')
1713 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1714 		else if (value == 'm')
1715 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1716 		else /* value == 'n' */
1717 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1718 		break;
1719 	case KCFG_CHAR:
1720 		*(char *)ext_val = value;
1721 		break;
1722 	case KCFG_UNKNOWN:
1723 	case KCFG_INT:
1724 	case KCFG_CHAR_ARR:
1725 	default:
1726 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1727 			ext->name, value);
1728 		return -EINVAL;
1729 	}
1730 	ext->is_set = true;
1731 	return 0;
1732 }
1733 
1734 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1735 			      const char *value)
1736 {
1737 	size_t len;
1738 
1739 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1740 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1741 			ext->name, value);
1742 		return -EINVAL;
1743 	}
1744 
1745 	len = strlen(value);
1746 	if (value[len - 1] != '"') {
1747 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1748 			ext->name, value);
1749 		return -EINVAL;
1750 	}
1751 
1752 	/* strip quotes */
1753 	len -= 2;
1754 	if (len >= ext->kcfg.sz) {
1755 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1756 			ext->name, value, len, ext->kcfg.sz - 1);
1757 		len = ext->kcfg.sz - 1;
1758 	}
1759 	memcpy(ext_val, value + 1, len);
1760 	ext_val[len] = '\0';
1761 	ext->is_set = true;
1762 	return 0;
1763 }
1764 
1765 static int parse_u64(const char *value, __u64 *res)
1766 {
1767 	char *value_end;
1768 	int err;
1769 
1770 	errno = 0;
1771 	*res = strtoull(value, &value_end, 0);
1772 	if (errno) {
1773 		err = -errno;
1774 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1775 		return err;
1776 	}
1777 	if (*value_end) {
1778 		pr_warn("failed to parse '%s' as integer completely\n", value);
1779 		return -EINVAL;
1780 	}
1781 	return 0;
1782 }
1783 
1784 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1785 {
1786 	int bit_sz = ext->kcfg.sz * 8;
1787 
1788 	if (ext->kcfg.sz == 8)
1789 		return true;
1790 
1791 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1792 	 * bytes size without any loss of information. If the target integer
1793 	 * is signed, we rely on the following limits of integer type of
1794 	 * Y bits and subsequent transformation:
1795 	 *
1796 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1797 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1798 	 *            0 <= X + 2^(Y-1) <  2^Y
1799 	 *
1800 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1801 	 *  zero.
1802 	 */
1803 	if (ext->kcfg.is_signed)
1804 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1805 	else
1806 		return (v >> bit_sz) == 0;
1807 }
1808 
1809 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1810 			      __u64 value)
1811 {
1812 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1813 	    ext->kcfg.type != KCFG_BOOL) {
1814 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1815 			ext->name, (unsigned long long)value);
1816 		return -EINVAL;
1817 	}
1818 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1819 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1820 			ext->name, (unsigned long long)value);
1821 		return -EINVAL;
1822 
1823 	}
1824 	if (!is_kcfg_value_in_range(ext, value)) {
1825 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1826 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1827 		return -ERANGE;
1828 	}
1829 	switch (ext->kcfg.sz) {
1830 	case 1:
1831 		*(__u8 *)ext_val = value;
1832 		break;
1833 	case 2:
1834 		*(__u16 *)ext_val = value;
1835 		break;
1836 	case 4:
1837 		*(__u32 *)ext_val = value;
1838 		break;
1839 	case 8:
1840 		*(__u64 *)ext_val = value;
1841 		break;
1842 	default:
1843 		return -EINVAL;
1844 	}
1845 	ext->is_set = true;
1846 	return 0;
1847 }
1848 
1849 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1850 					    char *buf, void *data)
1851 {
1852 	struct extern_desc *ext;
1853 	char *sep, *value;
1854 	int len, err = 0;
1855 	void *ext_val;
1856 	__u64 num;
1857 
1858 	if (!str_has_pfx(buf, "CONFIG_"))
1859 		return 0;
1860 
1861 	sep = strchr(buf, '=');
1862 	if (!sep) {
1863 		pr_warn("failed to parse '%s': no separator\n", buf);
1864 		return -EINVAL;
1865 	}
1866 
1867 	/* Trim ending '\n' */
1868 	len = strlen(buf);
1869 	if (buf[len - 1] == '\n')
1870 		buf[len - 1] = '\0';
1871 	/* Split on '=' and ensure that a value is present. */
1872 	*sep = '\0';
1873 	if (!sep[1]) {
1874 		*sep = '=';
1875 		pr_warn("failed to parse '%s': no value\n", buf);
1876 		return -EINVAL;
1877 	}
1878 
1879 	ext = find_extern_by_name(obj, buf);
1880 	if (!ext || ext->is_set)
1881 		return 0;
1882 
1883 	ext_val = data + ext->kcfg.data_off;
1884 	value = sep + 1;
1885 
1886 	switch (*value) {
1887 	case 'y': case 'n': case 'm':
1888 		err = set_kcfg_value_tri(ext, ext_val, *value);
1889 		break;
1890 	case '"':
1891 		err = set_kcfg_value_str(ext, ext_val, value);
1892 		break;
1893 	default:
1894 		/* assume integer */
1895 		err = parse_u64(value, &num);
1896 		if (err) {
1897 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1898 			return err;
1899 		}
1900 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1901 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1902 			return -EINVAL;
1903 		}
1904 		err = set_kcfg_value_num(ext, ext_val, num);
1905 		break;
1906 	}
1907 	if (err)
1908 		return err;
1909 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1910 	return 0;
1911 }
1912 
1913 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1914 {
1915 	char buf[PATH_MAX];
1916 	struct utsname uts;
1917 	int len, err = 0;
1918 	gzFile file;
1919 
1920 	uname(&uts);
1921 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1922 	if (len < 0)
1923 		return -EINVAL;
1924 	else if (len >= PATH_MAX)
1925 		return -ENAMETOOLONG;
1926 
1927 	/* gzopen also accepts uncompressed files. */
1928 	file = gzopen(buf, "r");
1929 	if (!file)
1930 		file = gzopen("/proc/config.gz", "r");
1931 
1932 	if (!file) {
1933 		pr_warn("failed to open system Kconfig\n");
1934 		return -ENOENT;
1935 	}
1936 
1937 	while (gzgets(file, buf, sizeof(buf))) {
1938 		err = bpf_object__process_kconfig_line(obj, buf, data);
1939 		if (err) {
1940 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1941 				buf, err);
1942 			goto out;
1943 		}
1944 	}
1945 
1946 out:
1947 	gzclose(file);
1948 	return err;
1949 }
1950 
1951 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1952 					const char *config, void *data)
1953 {
1954 	char buf[PATH_MAX];
1955 	int err = 0;
1956 	FILE *file;
1957 
1958 	file = fmemopen((void *)config, strlen(config), "r");
1959 	if (!file) {
1960 		err = -errno;
1961 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1962 		return err;
1963 	}
1964 
1965 	while (fgets(buf, sizeof(buf), file)) {
1966 		err = bpf_object__process_kconfig_line(obj, buf, data);
1967 		if (err) {
1968 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1969 				buf, err);
1970 			break;
1971 		}
1972 	}
1973 
1974 	fclose(file);
1975 	return err;
1976 }
1977 
1978 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1979 {
1980 	struct extern_desc *last_ext = NULL, *ext;
1981 	size_t map_sz;
1982 	int i, err;
1983 
1984 	for (i = 0; i < obj->nr_extern; i++) {
1985 		ext = &obj->externs[i];
1986 		if (ext->type == EXT_KCFG)
1987 			last_ext = ext;
1988 	}
1989 
1990 	if (!last_ext)
1991 		return 0;
1992 
1993 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1994 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1995 					    ".kconfig", obj->efile.symbols_shndx,
1996 					    NULL, map_sz);
1997 	if (err)
1998 		return err;
1999 
2000 	obj->kconfig_map_idx = obj->nr_maps - 1;
2001 
2002 	return 0;
2003 }
2004 
2005 const struct btf_type *
2006 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2007 {
2008 	const struct btf_type *t = btf__type_by_id(btf, id);
2009 
2010 	if (res_id)
2011 		*res_id = id;
2012 
2013 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2014 		if (res_id)
2015 			*res_id = t->type;
2016 		t = btf__type_by_id(btf, t->type);
2017 	}
2018 
2019 	return t;
2020 }
2021 
2022 static const struct btf_type *
2023 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2024 {
2025 	const struct btf_type *t;
2026 
2027 	t = skip_mods_and_typedefs(btf, id, NULL);
2028 	if (!btf_is_ptr(t))
2029 		return NULL;
2030 
2031 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2032 
2033 	return btf_is_func_proto(t) ? t : NULL;
2034 }
2035 
2036 static const char *__btf_kind_str(__u16 kind)
2037 {
2038 	switch (kind) {
2039 	case BTF_KIND_UNKN: return "void";
2040 	case BTF_KIND_INT: return "int";
2041 	case BTF_KIND_PTR: return "ptr";
2042 	case BTF_KIND_ARRAY: return "array";
2043 	case BTF_KIND_STRUCT: return "struct";
2044 	case BTF_KIND_UNION: return "union";
2045 	case BTF_KIND_ENUM: return "enum";
2046 	case BTF_KIND_FWD: return "fwd";
2047 	case BTF_KIND_TYPEDEF: return "typedef";
2048 	case BTF_KIND_VOLATILE: return "volatile";
2049 	case BTF_KIND_CONST: return "const";
2050 	case BTF_KIND_RESTRICT: return "restrict";
2051 	case BTF_KIND_FUNC: return "func";
2052 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2053 	case BTF_KIND_VAR: return "var";
2054 	case BTF_KIND_DATASEC: return "datasec";
2055 	case BTF_KIND_FLOAT: return "float";
2056 	case BTF_KIND_DECL_TAG: return "decl_tag";
2057 	case BTF_KIND_TYPE_TAG: return "type_tag";
2058 	case BTF_KIND_ENUM64: return "enum64";
2059 	default: return "unknown";
2060 	}
2061 }
2062 
2063 const char *btf_kind_str(const struct btf_type *t)
2064 {
2065 	return __btf_kind_str(btf_kind(t));
2066 }
2067 
2068 /*
2069  * Fetch integer attribute of BTF map definition. Such attributes are
2070  * represented using a pointer to an array, in which dimensionality of array
2071  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2072  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2073  * type definition, while using only sizeof(void *) space in ELF data section.
2074  */
2075 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2076 			      const struct btf_member *m, __u32 *res)
2077 {
2078 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2079 	const char *name = btf__name_by_offset(btf, m->name_off);
2080 	const struct btf_array *arr_info;
2081 	const struct btf_type *arr_t;
2082 
2083 	if (!btf_is_ptr(t)) {
2084 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2085 			map_name, name, btf_kind_str(t));
2086 		return false;
2087 	}
2088 
2089 	arr_t = btf__type_by_id(btf, t->type);
2090 	if (!arr_t) {
2091 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2092 			map_name, name, t->type);
2093 		return false;
2094 	}
2095 	if (!btf_is_array(arr_t)) {
2096 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2097 			map_name, name, btf_kind_str(arr_t));
2098 		return false;
2099 	}
2100 	arr_info = btf_array(arr_t);
2101 	*res = arr_info->nelems;
2102 	return true;
2103 }
2104 
2105 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2106 {
2107 	int len;
2108 
2109 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2110 	if (len < 0)
2111 		return -EINVAL;
2112 	if (len >= buf_sz)
2113 		return -ENAMETOOLONG;
2114 
2115 	return 0;
2116 }
2117 
2118 static int build_map_pin_path(struct bpf_map *map, const char *path)
2119 {
2120 	char buf[PATH_MAX];
2121 	int err;
2122 
2123 	if (!path)
2124 		path = "/sys/fs/bpf";
2125 
2126 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2127 	if (err)
2128 		return err;
2129 
2130 	return bpf_map__set_pin_path(map, buf);
2131 }
2132 
2133 /* should match definition in bpf_helpers.h */
2134 enum libbpf_pin_type {
2135 	LIBBPF_PIN_NONE,
2136 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2137 	LIBBPF_PIN_BY_NAME,
2138 };
2139 
2140 int parse_btf_map_def(const char *map_name, struct btf *btf,
2141 		      const struct btf_type *def_t, bool strict,
2142 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2143 {
2144 	const struct btf_type *t;
2145 	const struct btf_member *m;
2146 	bool is_inner = inner_def == NULL;
2147 	int vlen, i;
2148 
2149 	vlen = btf_vlen(def_t);
2150 	m = btf_members(def_t);
2151 	for (i = 0; i < vlen; i++, m++) {
2152 		const char *name = btf__name_by_offset(btf, m->name_off);
2153 
2154 		if (!name) {
2155 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2156 			return -EINVAL;
2157 		}
2158 		if (strcmp(name, "type") == 0) {
2159 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2160 				return -EINVAL;
2161 			map_def->parts |= MAP_DEF_MAP_TYPE;
2162 		} else if (strcmp(name, "max_entries") == 0) {
2163 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2164 				return -EINVAL;
2165 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2166 		} else if (strcmp(name, "map_flags") == 0) {
2167 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2168 				return -EINVAL;
2169 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2170 		} else if (strcmp(name, "numa_node") == 0) {
2171 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2172 				return -EINVAL;
2173 			map_def->parts |= MAP_DEF_NUMA_NODE;
2174 		} else if (strcmp(name, "key_size") == 0) {
2175 			__u32 sz;
2176 
2177 			if (!get_map_field_int(map_name, btf, m, &sz))
2178 				return -EINVAL;
2179 			if (map_def->key_size && map_def->key_size != sz) {
2180 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2181 					map_name, map_def->key_size, sz);
2182 				return -EINVAL;
2183 			}
2184 			map_def->key_size = sz;
2185 			map_def->parts |= MAP_DEF_KEY_SIZE;
2186 		} else if (strcmp(name, "key") == 0) {
2187 			__s64 sz;
2188 
2189 			t = btf__type_by_id(btf, m->type);
2190 			if (!t) {
2191 				pr_warn("map '%s': key type [%d] not found.\n",
2192 					map_name, m->type);
2193 				return -EINVAL;
2194 			}
2195 			if (!btf_is_ptr(t)) {
2196 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2197 					map_name, btf_kind_str(t));
2198 				return -EINVAL;
2199 			}
2200 			sz = btf__resolve_size(btf, t->type);
2201 			if (sz < 0) {
2202 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2203 					map_name, t->type, (ssize_t)sz);
2204 				return sz;
2205 			}
2206 			if (map_def->key_size && map_def->key_size != sz) {
2207 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2208 					map_name, map_def->key_size, (ssize_t)sz);
2209 				return -EINVAL;
2210 			}
2211 			map_def->key_size = sz;
2212 			map_def->key_type_id = t->type;
2213 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2214 		} else if (strcmp(name, "value_size") == 0) {
2215 			__u32 sz;
2216 
2217 			if (!get_map_field_int(map_name, btf, m, &sz))
2218 				return -EINVAL;
2219 			if (map_def->value_size && map_def->value_size != sz) {
2220 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2221 					map_name, map_def->value_size, sz);
2222 				return -EINVAL;
2223 			}
2224 			map_def->value_size = sz;
2225 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2226 		} else if (strcmp(name, "value") == 0) {
2227 			__s64 sz;
2228 
2229 			t = btf__type_by_id(btf, m->type);
2230 			if (!t) {
2231 				pr_warn("map '%s': value type [%d] not found.\n",
2232 					map_name, m->type);
2233 				return -EINVAL;
2234 			}
2235 			if (!btf_is_ptr(t)) {
2236 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2237 					map_name, btf_kind_str(t));
2238 				return -EINVAL;
2239 			}
2240 			sz = btf__resolve_size(btf, t->type);
2241 			if (sz < 0) {
2242 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2243 					map_name, t->type, (ssize_t)sz);
2244 				return sz;
2245 			}
2246 			if (map_def->value_size && map_def->value_size != sz) {
2247 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2248 					map_name, map_def->value_size, (ssize_t)sz);
2249 				return -EINVAL;
2250 			}
2251 			map_def->value_size = sz;
2252 			map_def->value_type_id = t->type;
2253 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2254 		}
2255 		else if (strcmp(name, "values") == 0) {
2256 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2257 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2258 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2259 			char inner_map_name[128];
2260 			int err;
2261 
2262 			if (is_inner) {
2263 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2264 					map_name);
2265 				return -ENOTSUP;
2266 			}
2267 			if (i != vlen - 1) {
2268 				pr_warn("map '%s': '%s' member should be last.\n",
2269 					map_name, name);
2270 				return -EINVAL;
2271 			}
2272 			if (!is_map_in_map && !is_prog_array) {
2273 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2274 					map_name);
2275 				return -ENOTSUP;
2276 			}
2277 			if (map_def->value_size && map_def->value_size != 4) {
2278 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2279 					map_name, map_def->value_size);
2280 				return -EINVAL;
2281 			}
2282 			map_def->value_size = 4;
2283 			t = btf__type_by_id(btf, m->type);
2284 			if (!t) {
2285 				pr_warn("map '%s': %s type [%d] not found.\n",
2286 					map_name, desc, m->type);
2287 				return -EINVAL;
2288 			}
2289 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2290 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2291 					map_name, desc);
2292 				return -EINVAL;
2293 			}
2294 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2295 			if (!btf_is_ptr(t)) {
2296 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2297 					map_name, desc, btf_kind_str(t));
2298 				return -EINVAL;
2299 			}
2300 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2301 			if (is_prog_array) {
2302 				if (!btf_is_func_proto(t)) {
2303 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2304 						map_name, btf_kind_str(t));
2305 					return -EINVAL;
2306 				}
2307 				continue;
2308 			}
2309 			if (!btf_is_struct(t)) {
2310 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2311 					map_name, btf_kind_str(t));
2312 				return -EINVAL;
2313 			}
2314 
2315 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2316 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2317 			if (err)
2318 				return err;
2319 
2320 			map_def->parts |= MAP_DEF_INNER_MAP;
2321 		} else if (strcmp(name, "pinning") == 0) {
2322 			__u32 val;
2323 
2324 			if (is_inner) {
2325 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2326 				return -EINVAL;
2327 			}
2328 			if (!get_map_field_int(map_name, btf, m, &val))
2329 				return -EINVAL;
2330 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2331 				pr_warn("map '%s': invalid pinning value %u.\n",
2332 					map_name, val);
2333 				return -EINVAL;
2334 			}
2335 			map_def->pinning = val;
2336 			map_def->parts |= MAP_DEF_PINNING;
2337 		} else if (strcmp(name, "map_extra") == 0) {
2338 			__u32 map_extra;
2339 
2340 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2341 				return -EINVAL;
2342 			map_def->map_extra = map_extra;
2343 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2344 		} else {
2345 			if (strict) {
2346 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2347 				return -ENOTSUP;
2348 			}
2349 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2350 		}
2351 	}
2352 
2353 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2354 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2355 		return -EINVAL;
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 static size_t adjust_ringbuf_sz(size_t sz)
2362 {
2363 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2364 	__u32 mul;
2365 
2366 	/* if user forgot to set any size, make sure they see error */
2367 	if (sz == 0)
2368 		return 0;
2369 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2370 	 * a power-of-2 multiple of kernel's page size. If user diligently
2371 	 * satisified these conditions, pass the size through.
2372 	 */
2373 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2374 		return sz;
2375 
2376 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2377 	 * user-set size to satisfy both user size request and kernel
2378 	 * requirements and substitute correct max_entries for map creation.
2379 	 */
2380 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2381 		if (mul * page_sz > sz)
2382 			return mul * page_sz;
2383 	}
2384 
2385 	/* if it's impossible to satisfy the conditions (i.e., user size is
2386 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2387 	 * page_size) then just return original size and let kernel reject it
2388 	 */
2389 	return sz;
2390 }
2391 
2392 static bool map_is_ringbuf(const struct bpf_map *map)
2393 {
2394 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2395 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2396 }
2397 
2398 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2399 {
2400 	map->def.type = def->map_type;
2401 	map->def.key_size = def->key_size;
2402 	map->def.value_size = def->value_size;
2403 	map->def.max_entries = def->max_entries;
2404 	map->def.map_flags = def->map_flags;
2405 	map->map_extra = def->map_extra;
2406 
2407 	map->numa_node = def->numa_node;
2408 	map->btf_key_type_id = def->key_type_id;
2409 	map->btf_value_type_id = def->value_type_id;
2410 
2411 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2412 	if (map_is_ringbuf(map))
2413 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2414 
2415 	if (def->parts & MAP_DEF_MAP_TYPE)
2416 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2417 
2418 	if (def->parts & MAP_DEF_KEY_TYPE)
2419 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2420 			 map->name, def->key_type_id, def->key_size);
2421 	else if (def->parts & MAP_DEF_KEY_SIZE)
2422 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2423 
2424 	if (def->parts & MAP_DEF_VALUE_TYPE)
2425 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2426 			 map->name, def->value_type_id, def->value_size);
2427 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2428 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2429 
2430 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2431 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2432 	if (def->parts & MAP_DEF_MAP_FLAGS)
2433 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2434 	if (def->parts & MAP_DEF_MAP_EXTRA)
2435 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2436 			 (unsigned long long)def->map_extra);
2437 	if (def->parts & MAP_DEF_PINNING)
2438 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2439 	if (def->parts & MAP_DEF_NUMA_NODE)
2440 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2441 
2442 	if (def->parts & MAP_DEF_INNER_MAP)
2443 		pr_debug("map '%s': found inner map definition.\n", map->name);
2444 }
2445 
2446 static const char *btf_var_linkage_str(__u32 linkage)
2447 {
2448 	switch (linkage) {
2449 	case BTF_VAR_STATIC: return "static";
2450 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2451 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2452 	default: return "unknown";
2453 	}
2454 }
2455 
2456 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2457 					 const struct btf_type *sec,
2458 					 int var_idx, int sec_idx,
2459 					 const Elf_Data *data, bool strict,
2460 					 const char *pin_root_path)
2461 {
2462 	struct btf_map_def map_def = {}, inner_def = {};
2463 	const struct btf_type *var, *def;
2464 	const struct btf_var_secinfo *vi;
2465 	const struct btf_var *var_extra;
2466 	const char *map_name;
2467 	struct bpf_map *map;
2468 	int err;
2469 
2470 	vi = btf_var_secinfos(sec) + var_idx;
2471 	var = btf__type_by_id(obj->btf, vi->type);
2472 	var_extra = btf_var(var);
2473 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2474 
2475 	if (map_name == NULL || map_name[0] == '\0') {
2476 		pr_warn("map #%d: empty name.\n", var_idx);
2477 		return -EINVAL;
2478 	}
2479 	if ((__u64)vi->offset + vi->size > data->d_size) {
2480 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2481 		return -EINVAL;
2482 	}
2483 	if (!btf_is_var(var)) {
2484 		pr_warn("map '%s': unexpected var kind %s.\n",
2485 			map_name, btf_kind_str(var));
2486 		return -EINVAL;
2487 	}
2488 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2489 		pr_warn("map '%s': unsupported map linkage %s.\n",
2490 			map_name, btf_var_linkage_str(var_extra->linkage));
2491 		return -EOPNOTSUPP;
2492 	}
2493 
2494 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2495 	if (!btf_is_struct(def)) {
2496 		pr_warn("map '%s': unexpected def kind %s.\n",
2497 			map_name, btf_kind_str(var));
2498 		return -EINVAL;
2499 	}
2500 	if (def->size > vi->size) {
2501 		pr_warn("map '%s': invalid def size.\n", map_name);
2502 		return -EINVAL;
2503 	}
2504 
2505 	map = bpf_object__add_map(obj);
2506 	if (IS_ERR(map))
2507 		return PTR_ERR(map);
2508 	map->name = strdup(map_name);
2509 	if (!map->name) {
2510 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2511 		return -ENOMEM;
2512 	}
2513 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2514 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2515 	map->sec_idx = sec_idx;
2516 	map->sec_offset = vi->offset;
2517 	map->btf_var_idx = var_idx;
2518 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2519 		 map_name, map->sec_idx, map->sec_offset);
2520 
2521 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2522 	if (err)
2523 		return err;
2524 
2525 	fill_map_from_def(map, &map_def);
2526 
2527 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2528 		err = build_map_pin_path(map, pin_root_path);
2529 		if (err) {
2530 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2531 			return err;
2532 		}
2533 	}
2534 
2535 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2536 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2537 		if (!map->inner_map)
2538 			return -ENOMEM;
2539 		map->inner_map->fd = -1;
2540 		map->inner_map->sec_idx = sec_idx;
2541 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2542 		if (!map->inner_map->name)
2543 			return -ENOMEM;
2544 		sprintf(map->inner_map->name, "%s.inner", map_name);
2545 
2546 		fill_map_from_def(map->inner_map, &inner_def);
2547 	}
2548 
2549 	err = map_fill_btf_type_info(obj, map);
2550 	if (err)
2551 		return err;
2552 
2553 	return 0;
2554 }
2555 
2556 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2557 					  const char *pin_root_path)
2558 {
2559 	const struct btf_type *sec = NULL;
2560 	int nr_types, i, vlen, err;
2561 	const struct btf_type *t;
2562 	const char *name;
2563 	Elf_Data *data;
2564 	Elf_Scn *scn;
2565 
2566 	if (obj->efile.btf_maps_shndx < 0)
2567 		return 0;
2568 
2569 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2570 	data = elf_sec_data(obj, scn);
2571 	if (!scn || !data) {
2572 		pr_warn("elf: failed to get %s map definitions for %s\n",
2573 			MAPS_ELF_SEC, obj->path);
2574 		return -EINVAL;
2575 	}
2576 
2577 	nr_types = btf__type_cnt(obj->btf);
2578 	for (i = 1; i < nr_types; i++) {
2579 		t = btf__type_by_id(obj->btf, i);
2580 		if (!btf_is_datasec(t))
2581 			continue;
2582 		name = btf__name_by_offset(obj->btf, t->name_off);
2583 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2584 			sec = t;
2585 			obj->efile.btf_maps_sec_btf_id = i;
2586 			break;
2587 		}
2588 	}
2589 
2590 	if (!sec) {
2591 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2592 		return -ENOENT;
2593 	}
2594 
2595 	vlen = btf_vlen(sec);
2596 	for (i = 0; i < vlen; i++) {
2597 		err = bpf_object__init_user_btf_map(obj, sec, i,
2598 						    obj->efile.btf_maps_shndx,
2599 						    data, strict,
2600 						    pin_root_path);
2601 		if (err)
2602 			return err;
2603 	}
2604 
2605 	return 0;
2606 }
2607 
2608 static int bpf_object__init_maps(struct bpf_object *obj,
2609 				 const struct bpf_object_open_opts *opts)
2610 {
2611 	const char *pin_root_path;
2612 	bool strict;
2613 	int err = 0;
2614 
2615 	strict = !OPTS_GET(opts, relaxed_maps, false);
2616 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2617 
2618 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2619 	err = err ?: bpf_object__init_global_data_maps(obj);
2620 	err = err ?: bpf_object__init_kconfig_map(obj);
2621 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2622 
2623 	return err;
2624 }
2625 
2626 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2627 {
2628 	Elf64_Shdr *sh;
2629 
2630 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2631 	if (!sh)
2632 		return false;
2633 
2634 	return sh->sh_flags & SHF_EXECINSTR;
2635 }
2636 
2637 static bool btf_needs_sanitization(struct bpf_object *obj)
2638 {
2639 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2640 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2641 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2642 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2643 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2644 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2645 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2646 
2647 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2648 	       !has_decl_tag || !has_type_tag || !has_enum64;
2649 }
2650 
2651 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2652 {
2653 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2654 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2655 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2656 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2657 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2658 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2659 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2660 	int enum64_placeholder_id = 0;
2661 	struct btf_type *t;
2662 	int i, j, vlen;
2663 
2664 	for (i = 1; i < btf__type_cnt(btf); i++) {
2665 		t = (struct btf_type *)btf__type_by_id(btf, i);
2666 
2667 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2668 			/* replace VAR/DECL_TAG with INT */
2669 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2670 			/*
2671 			 * using size = 1 is the safest choice, 4 will be too
2672 			 * big and cause kernel BTF validation failure if
2673 			 * original variable took less than 4 bytes
2674 			 */
2675 			t->size = 1;
2676 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2677 		} else if (!has_datasec && btf_is_datasec(t)) {
2678 			/* replace DATASEC with STRUCT */
2679 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2680 			struct btf_member *m = btf_members(t);
2681 			struct btf_type *vt;
2682 			char *name;
2683 
2684 			name = (char *)btf__name_by_offset(btf, t->name_off);
2685 			while (*name) {
2686 				if (*name == '.')
2687 					*name = '_';
2688 				name++;
2689 			}
2690 
2691 			vlen = btf_vlen(t);
2692 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2693 			for (j = 0; j < vlen; j++, v++, m++) {
2694 				/* order of field assignments is important */
2695 				m->offset = v->offset * 8;
2696 				m->type = v->type;
2697 				/* preserve variable name as member name */
2698 				vt = (void *)btf__type_by_id(btf, v->type);
2699 				m->name_off = vt->name_off;
2700 			}
2701 		} else if (!has_func && btf_is_func_proto(t)) {
2702 			/* replace FUNC_PROTO with ENUM */
2703 			vlen = btf_vlen(t);
2704 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2705 			t->size = sizeof(__u32); /* kernel enforced */
2706 		} else if (!has_func && btf_is_func(t)) {
2707 			/* replace FUNC with TYPEDEF */
2708 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2709 		} else if (!has_func_global && btf_is_func(t)) {
2710 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2711 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2712 		} else if (!has_float && btf_is_float(t)) {
2713 			/* replace FLOAT with an equally-sized empty STRUCT;
2714 			 * since C compilers do not accept e.g. "float" as a
2715 			 * valid struct name, make it anonymous
2716 			 */
2717 			t->name_off = 0;
2718 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2719 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2720 			/* replace TYPE_TAG with a CONST */
2721 			t->name_off = 0;
2722 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2723 		} else if (!has_enum64 && btf_is_enum(t)) {
2724 			/* clear the kflag */
2725 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2726 		} else if (!has_enum64 && btf_is_enum64(t)) {
2727 			/* replace ENUM64 with a union */
2728 			struct btf_member *m;
2729 
2730 			if (enum64_placeholder_id == 0) {
2731 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2732 				if (enum64_placeholder_id < 0)
2733 					return enum64_placeholder_id;
2734 
2735 				t = (struct btf_type *)btf__type_by_id(btf, i);
2736 			}
2737 
2738 			m = btf_members(t);
2739 			vlen = btf_vlen(t);
2740 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2741 			for (j = 0; j < vlen; j++, m++) {
2742 				m->type = enum64_placeholder_id;
2743 				m->offset = 0;
2744 			}
2745 		}
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 static bool libbpf_needs_btf(const struct bpf_object *obj)
2752 {
2753 	return obj->efile.btf_maps_shndx >= 0 ||
2754 	       obj->efile.st_ops_shndx >= 0 ||
2755 	       obj->nr_extern > 0;
2756 }
2757 
2758 static bool kernel_needs_btf(const struct bpf_object *obj)
2759 {
2760 	return obj->efile.st_ops_shndx >= 0;
2761 }
2762 
2763 static int bpf_object__init_btf(struct bpf_object *obj,
2764 				Elf_Data *btf_data,
2765 				Elf_Data *btf_ext_data)
2766 {
2767 	int err = -ENOENT;
2768 
2769 	if (btf_data) {
2770 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2771 		err = libbpf_get_error(obj->btf);
2772 		if (err) {
2773 			obj->btf = NULL;
2774 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2775 			goto out;
2776 		}
2777 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2778 		btf__set_pointer_size(obj->btf, 8);
2779 	}
2780 	if (btf_ext_data) {
2781 		struct btf_ext_info *ext_segs[3];
2782 		int seg_num, sec_num;
2783 
2784 		if (!obj->btf) {
2785 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2786 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2787 			goto out;
2788 		}
2789 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2790 		err = libbpf_get_error(obj->btf_ext);
2791 		if (err) {
2792 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2793 				BTF_EXT_ELF_SEC, err);
2794 			obj->btf_ext = NULL;
2795 			goto out;
2796 		}
2797 
2798 		/* setup .BTF.ext to ELF section mapping */
2799 		ext_segs[0] = &obj->btf_ext->func_info;
2800 		ext_segs[1] = &obj->btf_ext->line_info;
2801 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2802 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2803 			struct btf_ext_info *seg = ext_segs[seg_num];
2804 			const struct btf_ext_info_sec *sec;
2805 			const char *sec_name;
2806 			Elf_Scn *scn;
2807 
2808 			if (seg->sec_cnt == 0)
2809 				continue;
2810 
2811 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2812 			if (!seg->sec_idxs) {
2813 				err = -ENOMEM;
2814 				goto out;
2815 			}
2816 
2817 			sec_num = 0;
2818 			for_each_btf_ext_sec(seg, sec) {
2819 				/* preventively increment index to avoid doing
2820 				 * this before every continue below
2821 				 */
2822 				sec_num++;
2823 
2824 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2825 				if (str_is_empty(sec_name))
2826 					continue;
2827 				scn = elf_sec_by_name(obj, sec_name);
2828 				if (!scn)
2829 					continue;
2830 
2831 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2832 			}
2833 		}
2834 	}
2835 out:
2836 	if (err && libbpf_needs_btf(obj)) {
2837 		pr_warn("BTF is required, but is missing or corrupted.\n");
2838 		return err;
2839 	}
2840 	return 0;
2841 }
2842 
2843 static int compare_vsi_off(const void *_a, const void *_b)
2844 {
2845 	const struct btf_var_secinfo *a = _a;
2846 	const struct btf_var_secinfo *b = _b;
2847 
2848 	return a->offset - b->offset;
2849 }
2850 
2851 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2852 			     struct btf_type *t)
2853 {
2854 	__u32 size = 0, i, vars = btf_vlen(t);
2855 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2856 	struct btf_var_secinfo *vsi;
2857 	bool fixup_offsets = false;
2858 	int err;
2859 
2860 	if (!sec_name) {
2861 		pr_debug("No name found in string section for DATASEC kind.\n");
2862 		return -ENOENT;
2863 	}
2864 
2865 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2866 	 * variable offsets set at the previous step. Further, not every
2867 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2868 	 * all fixups altogether for such sections and go straight to sorting
2869 	 * VARs within their DATASEC.
2870 	 */
2871 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2872 		goto sort_vars;
2873 
2874 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2875 	 * fix this up. But BPF static linker already fixes this up and fills
2876 	 * all the sizes and offsets during static linking. So this step has
2877 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2878 	 * non-extern DATASEC, so the variable fixup loop below handles both
2879 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2880 	 * symbol matching just once.
2881 	 */
2882 	if (t->size == 0) {
2883 		err = find_elf_sec_sz(obj, sec_name, &size);
2884 		if (err || !size) {
2885 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2886 				 sec_name, size, err);
2887 			return -ENOENT;
2888 		}
2889 
2890 		t->size = size;
2891 		fixup_offsets = true;
2892 	}
2893 
2894 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2895 		const struct btf_type *t_var;
2896 		struct btf_var *var;
2897 		const char *var_name;
2898 		Elf64_Sym *sym;
2899 
2900 		t_var = btf__type_by_id(btf, vsi->type);
2901 		if (!t_var || !btf_is_var(t_var)) {
2902 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2903 			return -EINVAL;
2904 		}
2905 
2906 		var = btf_var(t_var);
2907 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2908 			continue;
2909 
2910 		var_name = btf__name_by_offset(btf, t_var->name_off);
2911 		if (!var_name) {
2912 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2913 				 sec_name, i);
2914 			return -ENOENT;
2915 		}
2916 
2917 		sym = find_elf_var_sym(obj, var_name);
2918 		if (IS_ERR(sym)) {
2919 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2920 				 sec_name, var_name);
2921 			return -ENOENT;
2922 		}
2923 
2924 		if (fixup_offsets)
2925 			vsi->offset = sym->st_value;
2926 
2927 		/* if variable is a global/weak symbol, but has restricted
2928 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2929 		 * as static. This follows similar logic for functions (BPF
2930 		 * subprogs) and influences libbpf's further decisions about
2931 		 * whether to make global data BPF array maps as
2932 		 * BPF_F_MMAPABLE.
2933 		 */
2934 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2935 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2936 			var->linkage = BTF_VAR_STATIC;
2937 	}
2938 
2939 sort_vars:
2940 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2941 	return 0;
2942 }
2943 
2944 static int bpf_object_fixup_btf(struct bpf_object *obj)
2945 {
2946 	int i, n, err = 0;
2947 
2948 	if (!obj->btf)
2949 		return 0;
2950 
2951 	n = btf__type_cnt(obj->btf);
2952 	for (i = 1; i < n; i++) {
2953 		struct btf_type *t = btf_type_by_id(obj->btf, i);
2954 
2955 		/* Loader needs to fix up some of the things compiler
2956 		 * couldn't get its hands on while emitting BTF. This
2957 		 * is section size and global variable offset. We use
2958 		 * the info from the ELF itself for this purpose.
2959 		 */
2960 		if (btf_is_datasec(t)) {
2961 			err = btf_fixup_datasec(obj, obj->btf, t);
2962 			if (err)
2963 				return err;
2964 		}
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2971 {
2972 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2973 	    prog->type == BPF_PROG_TYPE_LSM)
2974 		return true;
2975 
2976 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2977 	 * also need vmlinux BTF
2978 	 */
2979 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2980 		return true;
2981 
2982 	return false;
2983 }
2984 
2985 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2986 {
2987 	struct bpf_program *prog;
2988 	int i;
2989 
2990 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
2991 	 * is not specified
2992 	 */
2993 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2994 		return true;
2995 
2996 	/* Support for typed ksyms needs kernel BTF */
2997 	for (i = 0; i < obj->nr_extern; i++) {
2998 		const struct extern_desc *ext;
2999 
3000 		ext = &obj->externs[i];
3001 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3002 			return true;
3003 	}
3004 
3005 	bpf_object__for_each_program(prog, obj) {
3006 		if (!prog->autoload)
3007 			continue;
3008 		if (prog_needs_vmlinux_btf(prog))
3009 			return true;
3010 	}
3011 
3012 	return false;
3013 }
3014 
3015 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3016 {
3017 	int err;
3018 
3019 	/* btf_vmlinux could be loaded earlier */
3020 	if (obj->btf_vmlinux || obj->gen_loader)
3021 		return 0;
3022 
3023 	if (!force && !obj_needs_vmlinux_btf(obj))
3024 		return 0;
3025 
3026 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3027 	err = libbpf_get_error(obj->btf_vmlinux);
3028 	if (err) {
3029 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3030 		obj->btf_vmlinux = NULL;
3031 		return err;
3032 	}
3033 	return 0;
3034 }
3035 
3036 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3037 {
3038 	struct btf *kern_btf = obj->btf;
3039 	bool btf_mandatory, sanitize;
3040 	int i, err = 0;
3041 
3042 	if (!obj->btf)
3043 		return 0;
3044 
3045 	if (!kernel_supports(obj, FEAT_BTF)) {
3046 		if (kernel_needs_btf(obj)) {
3047 			err = -EOPNOTSUPP;
3048 			goto report;
3049 		}
3050 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3051 		return 0;
3052 	}
3053 
3054 	/* Even though some subprogs are global/weak, user might prefer more
3055 	 * permissive BPF verification process that BPF verifier performs for
3056 	 * static functions, taking into account more context from the caller
3057 	 * functions. In such case, they need to mark such subprogs with
3058 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3059 	 * corresponding FUNC BTF type to be marked as static and trigger more
3060 	 * involved BPF verification process.
3061 	 */
3062 	for (i = 0; i < obj->nr_programs; i++) {
3063 		struct bpf_program *prog = &obj->programs[i];
3064 		struct btf_type *t;
3065 		const char *name;
3066 		int j, n;
3067 
3068 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3069 			continue;
3070 
3071 		n = btf__type_cnt(obj->btf);
3072 		for (j = 1; j < n; j++) {
3073 			t = btf_type_by_id(obj->btf, j);
3074 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3075 				continue;
3076 
3077 			name = btf__str_by_offset(obj->btf, t->name_off);
3078 			if (strcmp(name, prog->name) != 0)
3079 				continue;
3080 
3081 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3082 			break;
3083 		}
3084 	}
3085 
3086 	sanitize = btf_needs_sanitization(obj);
3087 	if (sanitize) {
3088 		const void *raw_data;
3089 		__u32 sz;
3090 
3091 		/* clone BTF to sanitize a copy and leave the original intact */
3092 		raw_data = btf__raw_data(obj->btf, &sz);
3093 		kern_btf = btf__new(raw_data, sz);
3094 		err = libbpf_get_error(kern_btf);
3095 		if (err)
3096 			return err;
3097 
3098 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3099 		btf__set_pointer_size(obj->btf, 8);
3100 		err = bpf_object__sanitize_btf(obj, kern_btf);
3101 		if (err)
3102 			return err;
3103 	}
3104 
3105 	if (obj->gen_loader) {
3106 		__u32 raw_size = 0;
3107 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3108 
3109 		if (!raw_data)
3110 			return -ENOMEM;
3111 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3112 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3113 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3114 		 */
3115 		btf__set_fd(kern_btf, 0);
3116 	} else {
3117 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3118 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3119 					   obj->log_level ? 1 : 0);
3120 	}
3121 	if (sanitize) {
3122 		if (!err) {
3123 			/* move fd to libbpf's BTF */
3124 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3125 			btf__set_fd(kern_btf, -1);
3126 		}
3127 		btf__free(kern_btf);
3128 	}
3129 report:
3130 	if (err) {
3131 		btf_mandatory = kernel_needs_btf(obj);
3132 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3133 			btf_mandatory ? "BTF is mandatory, can't proceed."
3134 				      : "BTF is optional, ignoring.");
3135 		if (!btf_mandatory)
3136 			err = 0;
3137 	}
3138 	return err;
3139 }
3140 
3141 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3142 {
3143 	const char *name;
3144 
3145 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3146 	if (!name) {
3147 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3148 			off, obj->path, elf_errmsg(-1));
3149 		return NULL;
3150 	}
3151 
3152 	return name;
3153 }
3154 
3155 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3156 {
3157 	const char *name;
3158 
3159 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3160 	if (!name) {
3161 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3162 			off, obj->path, elf_errmsg(-1));
3163 		return NULL;
3164 	}
3165 
3166 	return name;
3167 }
3168 
3169 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3170 {
3171 	Elf_Scn *scn;
3172 
3173 	scn = elf_getscn(obj->efile.elf, idx);
3174 	if (!scn) {
3175 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3176 			idx, obj->path, elf_errmsg(-1));
3177 		return NULL;
3178 	}
3179 	return scn;
3180 }
3181 
3182 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3183 {
3184 	Elf_Scn *scn = NULL;
3185 	Elf *elf = obj->efile.elf;
3186 	const char *sec_name;
3187 
3188 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3189 		sec_name = elf_sec_name(obj, scn);
3190 		if (!sec_name)
3191 			return NULL;
3192 
3193 		if (strcmp(sec_name, name) != 0)
3194 			continue;
3195 
3196 		return scn;
3197 	}
3198 	return NULL;
3199 }
3200 
3201 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3202 {
3203 	Elf64_Shdr *shdr;
3204 
3205 	if (!scn)
3206 		return NULL;
3207 
3208 	shdr = elf64_getshdr(scn);
3209 	if (!shdr) {
3210 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3211 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3212 		return NULL;
3213 	}
3214 
3215 	return shdr;
3216 }
3217 
3218 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3219 {
3220 	const char *name;
3221 	Elf64_Shdr *sh;
3222 
3223 	if (!scn)
3224 		return NULL;
3225 
3226 	sh = elf_sec_hdr(obj, scn);
3227 	if (!sh)
3228 		return NULL;
3229 
3230 	name = elf_sec_str(obj, sh->sh_name);
3231 	if (!name) {
3232 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3233 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3234 		return NULL;
3235 	}
3236 
3237 	return name;
3238 }
3239 
3240 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3241 {
3242 	Elf_Data *data;
3243 
3244 	if (!scn)
3245 		return NULL;
3246 
3247 	data = elf_getdata(scn, 0);
3248 	if (!data) {
3249 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3250 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3251 			obj->path, elf_errmsg(-1));
3252 		return NULL;
3253 	}
3254 
3255 	return data;
3256 }
3257 
3258 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3259 {
3260 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3261 		return NULL;
3262 
3263 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3264 }
3265 
3266 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3267 {
3268 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3269 		return NULL;
3270 
3271 	return (Elf64_Rel *)data->d_buf + idx;
3272 }
3273 
3274 static bool is_sec_name_dwarf(const char *name)
3275 {
3276 	/* approximation, but the actual list is too long */
3277 	return str_has_pfx(name, ".debug_");
3278 }
3279 
3280 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3281 {
3282 	/* no special handling of .strtab */
3283 	if (hdr->sh_type == SHT_STRTAB)
3284 		return true;
3285 
3286 	/* ignore .llvm_addrsig section as well */
3287 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3288 		return true;
3289 
3290 	/* no subprograms will lead to an empty .text section, ignore it */
3291 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3292 	    strcmp(name, ".text") == 0)
3293 		return true;
3294 
3295 	/* DWARF sections */
3296 	if (is_sec_name_dwarf(name))
3297 		return true;
3298 
3299 	if (str_has_pfx(name, ".rel")) {
3300 		name += sizeof(".rel") - 1;
3301 		/* DWARF section relocations */
3302 		if (is_sec_name_dwarf(name))
3303 			return true;
3304 
3305 		/* .BTF and .BTF.ext don't need relocations */
3306 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3307 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3308 			return true;
3309 	}
3310 
3311 	return false;
3312 }
3313 
3314 static int cmp_progs(const void *_a, const void *_b)
3315 {
3316 	const struct bpf_program *a = _a;
3317 	const struct bpf_program *b = _b;
3318 
3319 	if (a->sec_idx != b->sec_idx)
3320 		return a->sec_idx < b->sec_idx ? -1 : 1;
3321 
3322 	/* sec_insn_off can't be the same within the section */
3323 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3324 }
3325 
3326 static int bpf_object__elf_collect(struct bpf_object *obj)
3327 {
3328 	struct elf_sec_desc *sec_desc;
3329 	Elf *elf = obj->efile.elf;
3330 	Elf_Data *btf_ext_data = NULL;
3331 	Elf_Data *btf_data = NULL;
3332 	int idx = 0, err = 0;
3333 	const char *name;
3334 	Elf_Data *data;
3335 	Elf_Scn *scn;
3336 	Elf64_Shdr *sh;
3337 
3338 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3339 	 * section. Since section count retrieved by elf_getshdrnum() does
3340 	 * include sec #0, it is already the necessary size of an array to keep
3341 	 * all the sections.
3342 	 */
3343 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3344 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3345 			obj->path, elf_errmsg(-1));
3346 		return -LIBBPF_ERRNO__FORMAT;
3347 	}
3348 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3349 	if (!obj->efile.secs)
3350 		return -ENOMEM;
3351 
3352 	/* a bunch of ELF parsing functionality depends on processing symbols,
3353 	 * so do the first pass and find the symbol table
3354 	 */
3355 	scn = NULL;
3356 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3357 		sh = elf_sec_hdr(obj, scn);
3358 		if (!sh)
3359 			return -LIBBPF_ERRNO__FORMAT;
3360 
3361 		if (sh->sh_type == SHT_SYMTAB) {
3362 			if (obj->efile.symbols) {
3363 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3364 				return -LIBBPF_ERRNO__FORMAT;
3365 			}
3366 
3367 			data = elf_sec_data(obj, scn);
3368 			if (!data)
3369 				return -LIBBPF_ERRNO__FORMAT;
3370 
3371 			idx = elf_ndxscn(scn);
3372 
3373 			obj->efile.symbols = data;
3374 			obj->efile.symbols_shndx = idx;
3375 			obj->efile.strtabidx = sh->sh_link;
3376 		}
3377 	}
3378 
3379 	if (!obj->efile.symbols) {
3380 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3381 			obj->path);
3382 		return -ENOENT;
3383 	}
3384 
3385 	scn = NULL;
3386 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3387 		idx = elf_ndxscn(scn);
3388 		sec_desc = &obj->efile.secs[idx];
3389 
3390 		sh = elf_sec_hdr(obj, scn);
3391 		if (!sh)
3392 			return -LIBBPF_ERRNO__FORMAT;
3393 
3394 		name = elf_sec_str(obj, sh->sh_name);
3395 		if (!name)
3396 			return -LIBBPF_ERRNO__FORMAT;
3397 
3398 		if (ignore_elf_section(sh, name))
3399 			continue;
3400 
3401 		data = elf_sec_data(obj, scn);
3402 		if (!data)
3403 			return -LIBBPF_ERRNO__FORMAT;
3404 
3405 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3406 			 idx, name, (unsigned long)data->d_size,
3407 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3408 			 (int)sh->sh_type);
3409 
3410 		if (strcmp(name, "license") == 0) {
3411 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3412 			if (err)
3413 				return err;
3414 		} else if (strcmp(name, "version") == 0) {
3415 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3416 			if (err)
3417 				return err;
3418 		} else if (strcmp(name, "maps") == 0) {
3419 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3420 			return -ENOTSUP;
3421 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3422 			obj->efile.btf_maps_shndx = idx;
3423 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3424 			if (sh->sh_type != SHT_PROGBITS)
3425 				return -LIBBPF_ERRNO__FORMAT;
3426 			btf_data = data;
3427 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3428 			if (sh->sh_type != SHT_PROGBITS)
3429 				return -LIBBPF_ERRNO__FORMAT;
3430 			btf_ext_data = data;
3431 		} else if (sh->sh_type == SHT_SYMTAB) {
3432 			/* already processed during the first pass above */
3433 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3434 			if (sh->sh_flags & SHF_EXECINSTR) {
3435 				if (strcmp(name, ".text") == 0)
3436 					obj->efile.text_shndx = idx;
3437 				err = bpf_object__add_programs(obj, data, name, idx);
3438 				if (err)
3439 					return err;
3440 			} else if (strcmp(name, DATA_SEC) == 0 ||
3441 				   str_has_pfx(name, DATA_SEC ".")) {
3442 				sec_desc->sec_type = SEC_DATA;
3443 				sec_desc->shdr = sh;
3444 				sec_desc->data = data;
3445 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3446 				   str_has_pfx(name, RODATA_SEC ".")) {
3447 				sec_desc->sec_type = SEC_RODATA;
3448 				sec_desc->shdr = sh;
3449 				sec_desc->data = data;
3450 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3451 				obj->efile.st_ops_data = data;
3452 				obj->efile.st_ops_shndx = idx;
3453 			} else {
3454 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3455 					idx, name);
3456 			}
3457 		} else if (sh->sh_type == SHT_REL) {
3458 			int targ_sec_idx = sh->sh_info; /* points to other section */
3459 
3460 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3461 			    targ_sec_idx >= obj->efile.sec_cnt)
3462 				return -LIBBPF_ERRNO__FORMAT;
3463 
3464 			/* Only do relo for section with exec instructions */
3465 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3466 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3467 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3468 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3469 					idx, name, targ_sec_idx,
3470 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3471 				continue;
3472 			}
3473 
3474 			sec_desc->sec_type = SEC_RELO;
3475 			sec_desc->shdr = sh;
3476 			sec_desc->data = data;
3477 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3478 							 str_has_pfx(name, BSS_SEC "."))) {
3479 			sec_desc->sec_type = SEC_BSS;
3480 			sec_desc->shdr = sh;
3481 			sec_desc->data = data;
3482 		} else {
3483 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3484 				(size_t)sh->sh_size);
3485 		}
3486 	}
3487 
3488 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3489 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3490 		return -LIBBPF_ERRNO__FORMAT;
3491 	}
3492 
3493 	/* sort BPF programs by section name and in-section instruction offset
3494 	 * for faster search
3495 	 */
3496 	if (obj->nr_programs)
3497 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3498 
3499 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3500 }
3501 
3502 static bool sym_is_extern(const Elf64_Sym *sym)
3503 {
3504 	int bind = ELF64_ST_BIND(sym->st_info);
3505 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3506 	return sym->st_shndx == SHN_UNDEF &&
3507 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3508 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3509 }
3510 
3511 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3512 {
3513 	int bind = ELF64_ST_BIND(sym->st_info);
3514 	int type = ELF64_ST_TYPE(sym->st_info);
3515 
3516 	/* in .text section */
3517 	if (sym->st_shndx != text_shndx)
3518 		return false;
3519 
3520 	/* local function */
3521 	if (bind == STB_LOCAL && type == STT_SECTION)
3522 		return true;
3523 
3524 	/* global function */
3525 	return bind == STB_GLOBAL && type == STT_FUNC;
3526 }
3527 
3528 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3529 {
3530 	const struct btf_type *t;
3531 	const char *tname;
3532 	int i, n;
3533 
3534 	if (!btf)
3535 		return -ESRCH;
3536 
3537 	n = btf__type_cnt(btf);
3538 	for (i = 1; i < n; i++) {
3539 		t = btf__type_by_id(btf, i);
3540 
3541 		if (!btf_is_var(t) && !btf_is_func(t))
3542 			continue;
3543 
3544 		tname = btf__name_by_offset(btf, t->name_off);
3545 		if (strcmp(tname, ext_name))
3546 			continue;
3547 
3548 		if (btf_is_var(t) &&
3549 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3550 			return -EINVAL;
3551 
3552 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3553 			return -EINVAL;
3554 
3555 		return i;
3556 	}
3557 
3558 	return -ENOENT;
3559 }
3560 
3561 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3562 	const struct btf_var_secinfo *vs;
3563 	const struct btf_type *t;
3564 	int i, j, n;
3565 
3566 	if (!btf)
3567 		return -ESRCH;
3568 
3569 	n = btf__type_cnt(btf);
3570 	for (i = 1; i < n; i++) {
3571 		t = btf__type_by_id(btf, i);
3572 
3573 		if (!btf_is_datasec(t))
3574 			continue;
3575 
3576 		vs = btf_var_secinfos(t);
3577 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3578 			if (vs->type == ext_btf_id)
3579 				return i;
3580 		}
3581 	}
3582 
3583 	return -ENOENT;
3584 }
3585 
3586 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3587 				     bool *is_signed)
3588 {
3589 	const struct btf_type *t;
3590 	const char *name;
3591 
3592 	t = skip_mods_and_typedefs(btf, id, NULL);
3593 	name = btf__name_by_offset(btf, t->name_off);
3594 
3595 	if (is_signed)
3596 		*is_signed = false;
3597 	switch (btf_kind(t)) {
3598 	case BTF_KIND_INT: {
3599 		int enc = btf_int_encoding(t);
3600 
3601 		if (enc & BTF_INT_BOOL)
3602 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3603 		if (is_signed)
3604 			*is_signed = enc & BTF_INT_SIGNED;
3605 		if (t->size == 1)
3606 			return KCFG_CHAR;
3607 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3608 			return KCFG_UNKNOWN;
3609 		return KCFG_INT;
3610 	}
3611 	case BTF_KIND_ENUM:
3612 		if (t->size != 4)
3613 			return KCFG_UNKNOWN;
3614 		if (strcmp(name, "libbpf_tristate"))
3615 			return KCFG_UNKNOWN;
3616 		return KCFG_TRISTATE;
3617 	case BTF_KIND_ENUM64:
3618 		if (strcmp(name, "libbpf_tristate"))
3619 			return KCFG_UNKNOWN;
3620 		return KCFG_TRISTATE;
3621 	case BTF_KIND_ARRAY:
3622 		if (btf_array(t)->nelems == 0)
3623 			return KCFG_UNKNOWN;
3624 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3625 			return KCFG_UNKNOWN;
3626 		return KCFG_CHAR_ARR;
3627 	default:
3628 		return KCFG_UNKNOWN;
3629 	}
3630 }
3631 
3632 static int cmp_externs(const void *_a, const void *_b)
3633 {
3634 	const struct extern_desc *a = _a;
3635 	const struct extern_desc *b = _b;
3636 
3637 	if (a->type != b->type)
3638 		return a->type < b->type ? -1 : 1;
3639 
3640 	if (a->type == EXT_KCFG) {
3641 		/* descending order by alignment requirements */
3642 		if (a->kcfg.align != b->kcfg.align)
3643 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3644 		/* ascending order by size, within same alignment class */
3645 		if (a->kcfg.sz != b->kcfg.sz)
3646 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3647 	}
3648 
3649 	/* resolve ties by name */
3650 	return strcmp(a->name, b->name);
3651 }
3652 
3653 static int find_int_btf_id(const struct btf *btf)
3654 {
3655 	const struct btf_type *t;
3656 	int i, n;
3657 
3658 	n = btf__type_cnt(btf);
3659 	for (i = 1; i < n; i++) {
3660 		t = btf__type_by_id(btf, i);
3661 
3662 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3663 			return i;
3664 	}
3665 
3666 	return 0;
3667 }
3668 
3669 static int add_dummy_ksym_var(struct btf *btf)
3670 {
3671 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3672 	const struct btf_var_secinfo *vs;
3673 	const struct btf_type *sec;
3674 
3675 	if (!btf)
3676 		return 0;
3677 
3678 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3679 					    BTF_KIND_DATASEC);
3680 	if (sec_btf_id < 0)
3681 		return 0;
3682 
3683 	sec = btf__type_by_id(btf, sec_btf_id);
3684 	vs = btf_var_secinfos(sec);
3685 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3686 		const struct btf_type *vt;
3687 
3688 		vt = btf__type_by_id(btf, vs->type);
3689 		if (btf_is_func(vt))
3690 			break;
3691 	}
3692 
3693 	/* No func in ksyms sec.  No need to add dummy var. */
3694 	if (i == btf_vlen(sec))
3695 		return 0;
3696 
3697 	int_btf_id = find_int_btf_id(btf);
3698 	dummy_var_btf_id = btf__add_var(btf,
3699 					"dummy_ksym",
3700 					BTF_VAR_GLOBAL_ALLOCATED,
3701 					int_btf_id);
3702 	if (dummy_var_btf_id < 0)
3703 		pr_warn("cannot create a dummy_ksym var\n");
3704 
3705 	return dummy_var_btf_id;
3706 }
3707 
3708 static int bpf_object__collect_externs(struct bpf_object *obj)
3709 {
3710 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3711 	const struct btf_type *t;
3712 	struct extern_desc *ext;
3713 	int i, n, off, dummy_var_btf_id;
3714 	const char *ext_name, *sec_name;
3715 	Elf_Scn *scn;
3716 	Elf64_Shdr *sh;
3717 
3718 	if (!obj->efile.symbols)
3719 		return 0;
3720 
3721 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3722 	sh = elf_sec_hdr(obj, scn);
3723 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3724 		return -LIBBPF_ERRNO__FORMAT;
3725 
3726 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3727 	if (dummy_var_btf_id < 0)
3728 		return dummy_var_btf_id;
3729 
3730 	n = sh->sh_size / sh->sh_entsize;
3731 	pr_debug("looking for externs among %d symbols...\n", n);
3732 
3733 	for (i = 0; i < n; i++) {
3734 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3735 
3736 		if (!sym)
3737 			return -LIBBPF_ERRNO__FORMAT;
3738 		if (!sym_is_extern(sym))
3739 			continue;
3740 		ext_name = elf_sym_str(obj, sym->st_name);
3741 		if (!ext_name || !ext_name[0])
3742 			continue;
3743 
3744 		ext = obj->externs;
3745 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3746 		if (!ext)
3747 			return -ENOMEM;
3748 		obj->externs = ext;
3749 		ext = &ext[obj->nr_extern];
3750 		memset(ext, 0, sizeof(*ext));
3751 		obj->nr_extern++;
3752 
3753 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3754 		if (ext->btf_id <= 0) {
3755 			pr_warn("failed to find BTF for extern '%s': %d\n",
3756 				ext_name, ext->btf_id);
3757 			return ext->btf_id;
3758 		}
3759 		t = btf__type_by_id(obj->btf, ext->btf_id);
3760 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3761 		ext->sym_idx = i;
3762 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3763 
3764 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3765 		if (ext->sec_btf_id <= 0) {
3766 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3767 				ext_name, ext->btf_id, ext->sec_btf_id);
3768 			return ext->sec_btf_id;
3769 		}
3770 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3771 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3772 
3773 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3774 			if (btf_is_func(t)) {
3775 				pr_warn("extern function %s is unsupported under %s section\n",
3776 					ext->name, KCONFIG_SEC);
3777 				return -ENOTSUP;
3778 			}
3779 			kcfg_sec = sec;
3780 			ext->type = EXT_KCFG;
3781 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3782 			if (ext->kcfg.sz <= 0) {
3783 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3784 					ext_name, ext->kcfg.sz);
3785 				return ext->kcfg.sz;
3786 			}
3787 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3788 			if (ext->kcfg.align <= 0) {
3789 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3790 					ext_name, ext->kcfg.align);
3791 				return -EINVAL;
3792 			}
3793 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3794 							&ext->kcfg.is_signed);
3795 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3796 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3797 				return -ENOTSUP;
3798 			}
3799 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3800 			ksym_sec = sec;
3801 			ext->type = EXT_KSYM;
3802 			skip_mods_and_typedefs(obj->btf, t->type,
3803 					       &ext->ksym.type_id);
3804 		} else {
3805 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3806 			return -ENOTSUP;
3807 		}
3808 	}
3809 	pr_debug("collected %d externs total\n", obj->nr_extern);
3810 
3811 	if (!obj->nr_extern)
3812 		return 0;
3813 
3814 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3815 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3816 
3817 	/* for .ksyms section, we need to turn all externs into allocated
3818 	 * variables in BTF to pass kernel verification; we do this by
3819 	 * pretending that each extern is a 8-byte variable
3820 	 */
3821 	if (ksym_sec) {
3822 		/* find existing 4-byte integer type in BTF to use for fake
3823 		 * extern variables in DATASEC
3824 		 */
3825 		int int_btf_id = find_int_btf_id(obj->btf);
3826 		/* For extern function, a dummy_var added earlier
3827 		 * will be used to replace the vs->type and
3828 		 * its name string will be used to refill
3829 		 * the missing param's name.
3830 		 */
3831 		const struct btf_type *dummy_var;
3832 
3833 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3834 		for (i = 0; i < obj->nr_extern; i++) {
3835 			ext = &obj->externs[i];
3836 			if (ext->type != EXT_KSYM)
3837 				continue;
3838 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3839 				 i, ext->sym_idx, ext->name);
3840 		}
3841 
3842 		sec = ksym_sec;
3843 		n = btf_vlen(sec);
3844 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3845 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3846 			struct btf_type *vt;
3847 
3848 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3849 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3850 			ext = find_extern_by_name(obj, ext_name);
3851 			if (!ext) {
3852 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3853 					btf_kind_str(vt), ext_name);
3854 				return -ESRCH;
3855 			}
3856 			if (btf_is_func(vt)) {
3857 				const struct btf_type *func_proto;
3858 				struct btf_param *param;
3859 				int j;
3860 
3861 				func_proto = btf__type_by_id(obj->btf,
3862 							     vt->type);
3863 				param = btf_params(func_proto);
3864 				/* Reuse the dummy_var string if the
3865 				 * func proto does not have param name.
3866 				 */
3867 				for (j = 0; j < btf_vlen(func_proto); j++)
3868 					if (param[j].type && !param[j].name_off)
3869 						param[j].name_off =
3870 							dummy_var->name_off;
3871 				vs->type = dummy_var_btf_id;
3872 				vt->info &= ~0xffff;
3873 				vt->info |= BTF_FUNC_GLOBAL;
3874 			} else {
3875 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3876 				vt->type = int_btf_id;
3877 			}
3878 			vs->offset = off;
3879 			vs->size = sizeof(int);
3880 		}
3881 		sec->size = off;
3882 	}
3883 
3884 	if (kcfg_sec) {
3885 		sec = kcfg_sec;
3886 		/* for kcfg externs calculate their offsets within a .kconfig map */
3887 		off = 0;
3888 		for (i = 0; i < obj->nr_extern; i++) {
3889 			ext = &obj->externs[i];
3890 			if (ext->type != EXT_KCFG)
3891 				continue;
3892 
3893 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3894 			off = ext->kcfg.data_off + ext->kcfg.sz;
3895 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3896 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3897 		}
3898 		sec->size = off;
3899 		n = btf_vlen(sec);
3900 		for (i = 0; i < n; i++) {
3901 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3902 
3903 			t = btf__type_by_id(obj->btf, vs->type);
3904 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3905 			ext = find_extern_by_name(obj, ext_name);
3906 			if (!ext) {
3907 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3908 					ext_name);
3909 				return -ESRCH;
3910 			}
3911 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3912 			vs->offset = ext->kcfg.data_off;
3913 		}
3914 	}
3915 	return 0;
3916 }
3917 
3918 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3919 {
3920 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3921 }
3922 
3923 struct bpf_program *
3924 bpf_object__find_program_by_name(const struct bpf_object *obj,
3925 				 const char *name)
3926 {
3927 	struct bpf_program *prog;
3928 
3929 	bpf_object__for_each_program(prog, obj) {
3930 		if (prog_is_subprog(obj, prog))
3931 			continue;
3932 		if (!strcmp(prog->name, name))
3933 			return prog;
3934 	}
3935 	return errno = ENOENT, NULL;
3936 }
3937 
3938 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3939 				      int shndx)
3940 {
3941 	switch (obj->efile.secs[shndx].sec_type) {
3942 	case SEC_BSS:
3943 	case SEC_DATA:
3944 	case SEC_RODATA:
3945 		return true;
3946 	default:
3947 		return false;
3948 	}
3949 }
3950 
3951 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3952 				      int shndx)
3953 {
3954 	return shndx == obj->efile.btf_maps_shndx;
3955 }
3956 
3957 static enum libbpf_map_type
3958 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3959 {
3960 	if (shndx == obj->efile.symbols_shndx)
3961 		return LIBBPF_MAP_KCONFIG;
3962 
3963 	switch (obj->efile.secs[shndx].sec_type) {
3964 	case SEC_BSS:
3965 		return LIBBPF_MAP_BSS;
3966 	case SEC_DATA:
3967 		return LIBBPF_MAP_DATA;
3968 	case SEC_RODATA:
3969 		return LIBBPF_MAP_RODATA;
3970 	default:
3971 		return LIBBPF_MAP_UNSPEC;
3972 	}
3973 }
3974 
3975 static int bpf_program__record_reloc(struct bpf_program *prog,
3976 				     struct reloc_desc *reloc_desc,
3977 				     __u32 insn_idx, const char *sym_name,
3978 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
3979 {
3980 	struct bpf_insn *insn = &prog->insns[insn_idx];
3981 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3982 	struct bpf_object *obj = prog->obj;
3983 	__u32 shdr_idx = sym->st_shndx;
3984 	enum libbpf_map_type type;
3985 	const char *sym_sec_name;
3986 	struct bpf_map *map;
3987 
3988 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3989 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3990 			prog->name, sym_name, insn_idx, insn->code);
3991 		return -LIBBPF_ERRNO__RELOC;
3992 	}
3993 
3994 	if (sym_is_extern(sym)) {
3995 		int sym_idx = ELF64_R_SYM(rel->r_info);
3996 		int i, n = obj->nr_extern;
3997 		struct extern_desc *ext;
3998 
3999 		for (i = 0; i < n; i++) {
4000 			ext = &obj->externs[i];
4001 			if (ext->sym_idx == sym_idx)
4002 				break;
4003 		}
4004 		if (i >= n) {
4005 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4006 				prog->name, sym_name, sym_idx);
4007 			return -LIBBPF_ERRNO__RELOC;
4008 		}
4009 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4010 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4011 		if (insn->code == (BPF_JMP | BPF_CALL))
4012 			reloc_desc->type = RELO_EXTERN_FUNC;
4013 		else
4014 			reloc_desc->type = RELO_EXTERN_VAR;
4015 		reloc_desc->insn_idx = insn_idx;
4016 		reloc_desc->sym_off = i; /* sym_off stores extern index */
4017 		return 0;
4018 	}
4019 
4020 	/* sub-program call relocation */
4021 	if (is_call_insn(insn)) {
4022 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4023 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4024 			return -LIBBPF_ERRNO__RELOC;
4025 		}
4026 		/* text_shndx can be 0, if no default "main" program exists */
4027 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4028 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4029 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4030 				prog->name, sym_name, sym_sec_name);
4031 			return -LIBBPF_ERRNO__RELOC;
4032 		}
4033 		if (sym->st_value % BPF_INSN_SZ) {
4034 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4035 				prog->name, sym_name, (size_t)sym->st_value);
4036 			return -LIBBPF_ERRNO__RELOC;
4037 		}
4038 		reloc_desc->type = RELO_CALL;
4039 		reloc_desc->insn_idx = insn_idx;
4040 		reloc_desc->sym_off = sym->st_value;
4041 		return 0;
4042 	}
4043 
4044 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4045 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4046 			prog->name, sym_name, shdr_idx);
4047 		return -LIBBPF_ERRNO__RELOC;
4048 	}
4049 
4050 	/* loading subprog addresses */
4051 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4052 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4053 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4054 		 */
4055 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4056 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4057 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4058 			return -LIBBPF_ERRNO__RELOC;
4059 		}
4060 
4061 		reloc_desc->type = RELO_SUBPROG_ADDR;
4062 		reloc_desc->insn_idx = insn_idx;
4063 		reloc_desc->sym_off = sym->st_value;
4064 		return 0;
4065 	}
4066 
4067 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4068 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4069 
4070 	/* generic map reference relocation */
4071 	if (type == LIBBPF_MAP_UNSPEC) {
4072 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4073 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4074 				prog->name, sym_name, sym_sec_name);
4075 			return -LIBBPF_ERRNO__RELOC;
4076 		}
4077 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4078 			map = &obj->maps[map_idx];
4079 			if (map->libbpf_type != type ||
4080 			    map->sec_idx != sym->st_shndx ||
4081 			    map->sec_offset != sym->st_value)
4082 				continue;
4083 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4084 				 prog->name, map_idx, map->name, map->sec_idx,
4085 				 map->sec_offset, insn_idx);
4086 			break;
4087 		}
4088 		if (map_idx >= nr_maps) {
4089 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4090 				prog->name, sym_sec_name, (size_t)sym->st_value);
4091 			return -LIBBPF_ERRNO__RELOC;
4092 		}
4093 		reloc_desc->type = RELO_LD64;
4094 		reloc_desc->insn_idx = insn_idx;
4095 		reloc_desc->map_idx = map_idx;
4096 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4097 		return 0;
4098 	}
4099 
4100 	/* global data map relocation */
4101 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4102 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4103 			prog->name, sym_sec_name);
4104 		return -LIBBPF_ERRNO__RELOC;
4105 	}
4106 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4107 		map = &obj->maps[map_idx];
4108 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4109 			continue;
4110 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4111 			 prog->name, map_idx, map->name, map->sec_idx,
4112 			 map->sec_offset, insn_idx);
4113 		break;
4114 	}
4115 	if (map_idx >= nr_maps) {
4116 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4117 			prog->name, sym_sec_name);
4118 		return -LIBBPF_ERRNO__RELOC;
4119 	}
4120 
4121 	reloc_desc->type = RELO_DATA;
4122 	reloc_desc->insn_idx = insn_idx;
4123 	reloc_desc->map_idx = map_idx;
4124 	reloc_desc->sym_off = sym->st_value;
4125 	return 0;
4126 }
4127 
4128 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4129 {
4130 	return insn_idx >= prog->sec_insn_off &&
4131 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4132 }
4133 
4134 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4135 						 size_t sec_idx, size_t insn_idx)
4136 {
4137 	int l = 0, r = obj->nr_programs - 1, m;
4138 	struct bpf_program *prog;
4139 
4140 	if (!obj->nr_programs)
4141 		return NULL;
4142 
4143 	while (l < r) {
4144 		m = l + (r - l + 1) / 2;
4145 		prog = &obj->programs[m];
4146 
4147 		if (prog->sec_idx < sec_idx ||
4148 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4149 			l = m;
4150 		else
4151 			r = m - 1;
4152 	}
4153 	/* matching program could be at index l, but it still might be the
4154 	 * wrong one, so we need to double check conditions for the last time
4155 	 */
4156 	prog = &obj->programs[l];
4157 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4158 		return prog;
4159 	return NULL;
4160 }
4161 
4162 static int
4163 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4164 {
4165 	const char *relo_sec_name, *sec_name;
4166 	size_t sec_idx = shdr->sh_info, sym_idx;
4167 	struct bpf_program *prog;
4168 	struct reloc_desc *relos;
4169 	int err, i, nrels;
4170 	const char *sym_name;
4171 	__u32 insn_idx;
4172 	Elf_Scn *scn;
4173 	Elf_Data *scn_data;
4174 	Elf64_Sym *sym;
4175 	Elf64_Rel *rel;
4176 
4177 	if (sec_idx >= obj->efile.sec_cnt)
4178 		return -EINVAL;
4179 
4180 	scn = elf_sec_by_idx(obj, sec_idx);
4181 	scn_data = elf_sec_data(obj, scn);
4182 
4183 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4184 	sec_name = elf_sec_name(obj, scn);
4185 	if (!relo_sec_name || !sec_name)
4186 		return -EINVAL;
4187 
4188 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4189 		 relo_sec_name, sec_idx, sec_name);
4190 	nrels = shdr->sh_size / shdr->sh_entsize;
4191 
4192 	for (i = 0; i < nrels; i++) {
4193 		rel = elf_rel_by_idx(data, i);
4194 		if (!rel) {
4195 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4196 			return -LIBBPF_ERRNO__FORMAT;
4197 		}
4198 
4199 		sym_idx = ELF64_R_SYM(rel->r_info);
4200 		sym = elf_sym_by_idx(obj, sym_idx);
4201 		if (!sym) {
4202 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4203 				relo_sec_name, sym_idx, i);
4204 			return -LIBBPF_ERRNO__FORMAT;
4205 		}
4206 
4207 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4208 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4209 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4210 			return -LIBBPF_ERRNO__FORMAT;
4211 		}
4212 
4213 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4214 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4215 				relo_sec_name, (size_t)rel->r_offset, i);
4216 			return -LIBBPF_ERRNO__FORMAT;
4217 		}
4218 
4219 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4220 		/* relocations against static functions are recorded as
4221 		 * relocations against the section that contains a function;
4222 		 * in such case, symbol will be STT_SECTION and sym.st_name
4223 		 * will point to empty string (0), so fetch section name
4224 		 * instead
4225 		 */
4226 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4227 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4228 		else
4229 			sym_name = elf_sym_str(obj, sym->st_name);
4230 		sym_name = sym_name ?: "<?";
4231 
4232 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4233 			 relo_sec_name, i, insn_idx, sym_name);
4234 
4235 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4236 		if (!prog) {
4237 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4238 				relo_sec_name, i, sec_name, insn_idx);
4239 			continue;
4240 		}
4241 
4242 		relos = libbpf_reallocarray(prog->reloc_desc,
4243 					    prog->nr_reloc + 1, sizeof(*relos));
4244 		if (!relos)
4245 			return -ENOMEM;
4246 		prog->reloc_desc = relos;
4247 
4248 		/* adjust insn_idx to local BPF program frame of reference */
4249 		insn_idx -= prog->sec_insn_off;
4250 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4251 						insn_idx, sym_name, sym, rel);
4252 		if (err)
4253 			return err;
4254 
4255 		prog->nr_reloc++;
4256 	}
4257 	return 0;
4258 }
4259 
4260 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4261 {
4262 	int id;
4263 
4264 	if (!obj->btf)
4265 		return -ENOENT;
4266 
4267 	/* if it's BTF-defined map, we don't need to search for type IDs.
4268 	 * For struct_ops map, it does not need btf_key_type_id and
4269 	 * btf_value_type_id.
4270 	 */
4271 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4272 		return 0;
4273 
4274 	/*
4275 	 * LLVM annotates global data differently in BTF, that is,
4276 	 * only as '.data', '.bss' or '.rodata'.
4277 	 */
4278 	if (!bpf_map__is_internal(map))
4279 		return -ENOENT;
4280 
4281 	id = btf__find_by_name(obj->btf, map->real_name);
4282 	if (id < 0)
4283 		return id;
4284 
4285 	map->btf_key_type_id = 0;
4286 	map->btf_value_type_id = id;
4287 	return 0;
4288 }
4289 
4290 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4291 {
4292 	char file[PATH_MAX], buff[4096];
4293 	FILE *fp;
4294 	__u32 val;
4295 	int err;
4296 
4297 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4298 	memset(info, 0, sizeof(*info));
4299 
4300 	fp = fopen(file, "r");
4301 	if (!fp) {
4302 		err = -errno;
4303 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4304 			err);
4305 		return err;
4306 	}
4307 
4308 	while (fgets(buff, sizeof(buff), fp)) {
4309 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4310 			info->type = val;
4311 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4312 			info->key_size = val;
4313 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4314 			info->value_size = val;
4315 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4316 			info->max_entries = val;
4317 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4318 			info->map_flags = val;
4319 	}
4320 
4321 	fclose(fp);
4322 
4323 	return 0;
4324 }
4325 
4326 bool bpf_map__autocreate(const struct bpf_map *map)
4327 {
4328 	return map->autocreate;
4329 }
4330 
4331 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4332 {
4333 	if (map->obj->loaded)
4334 		return libbpf_err(-EBUSY);
4335 
4336 	map->autocreate = autocreate;
4337 	return 0;
4338 }
4339 
4340 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4341 {
4342 	struct bpf_map_info info;
4343 	__u32 len = sizeof(info), name_len;
4344 	int new_fd, err;
4345 	char *new_name;
4346 
4347 	memset(&info, 0, len);
4348 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4349 	if (err && errno == EINVAL)
4350 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4351 	if (err)
4352 		return libbpf_err(err);
4353 
4354 	name_len = strlen(info.name);
4355 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4356 		new_name = strdup(map->name);
4357 	else
4358 		new_name = strdup(info.name);
4359 
4360 	if (!new_name)
4361 		return libbpf_err(-errno);
4362 
4363 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
4364 	if (new_fd < 0) {
4365 		err = -errno;
4366 		goto err_free_new_name;
4367 	}
4368 
4369 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
4370 	if (new_fd < 0) {
4371 		err = -errno;
4372 		goto err_close_new_fd;
4373 	}
4374 
4375 	err = zclose(map->fd);
4376 	if (err) {
4377 		err = -errno;
4378 		goto err_close_new_fd;
4379 	}
4380 	free(map->name);
4381 
4382 	map->fd = new_fd;
4383 	map->name = new_name;
4384 	map->def.type = info.type;
4385 	map->def.key_size = info.key_size;
4386 	map->def.value_size = info.value_size;
4387 	map->def.max_entries = info.max_entries;
4388 	map->def.map_flags = info.map_flags;
4389 	map->btf_key_type_id = info.btf_key_type_id;
4390 	map->btf_value_type_id = info.btf_value_type_id;
4391 	map->reused = true;
4392 	map->map_extra = info.map_extra;
4393 
4394 	return 0;
4395 
4396 err_close_new_fd:
4397 	close(new_fd);
4398 err_free_new_name:
4399 	free(new_name);
4400 	return libbpf_err(err);
4401 }
4402 
4403 __u32 bpf_map__max_entries(const struct bpf_map *map)
4404 {
4405 	return map->def.max_entries;
4406 }
4407 
4408 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4409 {
4410 	if (!bpf_map_type__is_map_in_map(map->def.type))
4411 		return errno = EINVAL, NULL;
4412 
4413 	return map->inner_map;
4414 }
4415 
4416 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4417 {
4418 	if (map->obj->loaded)
4419 		return libbpf_err(-EBUSY);
4420 
4421 	map->def.max_entries = max_entries;
4422 
4423 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4424 	if (map_is_ringbuf(map))
4425 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4426 
4427 	return 0;
4428 }
4429 
4430 static int
4431 bpf_object__probe_loading(struct bpf_object *obj)
4432 {
4433 	char *cp, errmsg[STRERR_BUFSIZE];
4434 	struct bpf_insn insns[] = {
4435 		BPF_MOV64_IMM(BPF_REG_0, 0),
4436 		BPF_EXIT_INSN(),
4437 	};
4438 	int ret, insn_cnt = ARRAY_SIZE(insns);
4439 
4440 	if (obj->gen_loader)
4441 		return 0;
4442 
4443 	ret = bump_rlimit_memlock();
4444 	if (ret)
4445 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4446 
4447 	/* make sure basic loading works */
4448 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4449 	if (ret < 0)
4450 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4451 	if (ret < 0) {
4452 		ret = errno;
4453 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4454 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4455 			"program. Make sure your kernel supports BPF "
4456 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4457 			"set to big enough value.\n", __func__, cp, ret);
4458 		return -ret;
4459 	}
4460 	close(ret);
4461 
4462 	return 0;
4463 }
4464 
4465 static int probe_fd(int fd)
4466 {
4467 	if (fd >= 0)
4468 		close(fd);
4469 	return fd >= 0;
4470 }
4471 
4472 static int probe_kern_prog_name(void)
4473 {
4474 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4475 	struct bpf_insn insns[] = {
4476 		BPF_MOV64_IMM(BPF_REG_0, 0),
4477 		BPF_EXIT_INSN(),
4478 	};
4479 	union bpf_attr attr;
4480 	int ret;
4481 
4482 	memset(&attr, 0, attr_sz);
4483 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4484 	attr.license = ptr_to_u64("GPL");
4485 	attr.insns = ptr_to_u64(insns);
4486 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4487 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4488 
4489 	/* make sure loading with name works */
4490 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4491 	return probe_fd(ret);
4492 }
4493 
4494 static int probe_kern_global_data(void)
4495 {
4496 	char *cp, errmsg[STRERR_BUFSIZE];
4497 	struct bpf_insn insns[] = {
4498 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4499 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4500 		BPF_MOV64_IMM(BPF_REG_0, 0),
4501 		BPF_EXIT_INSN(),
4502 	};
4503 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4504 
4505 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4506 	if (map < 0) {
4507 		ret = -errno;
4508 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4509 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4510 			__func__, cp, -ret);
4511 		return ret;
4512 	}
4513 
4514 	insns[0].imm = map;
4515 
4516 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4517 	close(map);
4518 	return probe_fd(ret);
4519 }
4520 
4521 static int probe_kern_btf(void)
4522 {
4523 	static const char strs[] = "\0int";
4524 	__u32 types[] = {
4525 		/* int */
4526 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4527 	};
4528 
4529 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4530 					     strs, sizeof(strs)));
4531 }
4532 
4533 static int probe_kern_btf_func(void)
4534 {
4535 	static const char strs[] = "\0int\0x\0a";
4536 	/* void x(int a) {} */
4537 	__u32 types[] = {
4538 		/* int */
4539 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4540 		/* FUNC_PROTO */                                /* [2] */
4541 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4542 		BTF_PARAM_ENC(7, 1),
4543 		/* FUNC x */                                    /* [3] */
4544 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4545 	};
4546 
4547 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4548 					     strs, sizeof(strs)));
4549 }
4550 
4551 static int probe_kern_btf_func_global(void)
4552 {
4553 	static const char strs[] = "\0int\0x\0a";
4554 	/* static void x(int a) {} */
4555 	__u32 types[] = {
4556 		/* int */
4557 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4558 		/* FUNC_PROTO */                                /* [2] */
4559 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4560 		BTF_PARAM_ENC(7, 1),
4561 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4562 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4563 	};
4564 
4565 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4566 					     strs, sizeof(strs)));
4567 }
4568 
4569 static int probe_kern_btf_datasec(void)
4570 {
4571 	static const char strs[] = "\0x\0.data";
4572 	/* static int a; */
4573 	__u32 types[] = {
4574 		/* int */
4575 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4576 		/* VAR x */                                     /* [2] */
4577 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4578 		BTF_VAR_STATIC,
4579 		/* DATASEC val */                               /* [3] */
4580 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4581 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4582 	};
4583 
4584 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4585 					     strs, sizeof(strs)));
4586 }
4587 
4588 static int probe_kern_btf_float(void)
4589 {
4590 	static const char strs[] = "\0float";
4591 	__u32 types[] = {
4592 		/* float */
4593 		BTF_TYPE_FLOAT_ENC(1, 4),
4594 	};
4595 
4596 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4597 					     strs, sizeof(strs)));
4598 }
4599 
4600 static int probe_kern_btf_decl_tag(void)
4601 {
4602 	static const char strs[] = "\0tag";
4603 	__u32 types[] = {
4604 		/* int */
4605 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4606 		/* VAR x */                                     /* [2] */
4607 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4608 		BTF_VAR_STATIC,
4609 		/* attr */
4610 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4611 	};
4612 
4613 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4614 					     strs, sizeof(strs)));
4615 }
4616 
4617 static int probe_kern_btf_type_tag(void)
4618 {
4619 	static const char strs[] = "\0tag";
4620 	__u32 types[] = {
4621 		/* int */
4622 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4623 		/* attr */
4624 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4625 		/* ptr */
4626 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4627 	};
4628 
4629 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4630 					     strs, sizeof(strs)));
4631 }
4632 
4633 static int probe_kern_array_mmap(void)
4634 {
4635 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4636 	int fd;
4637 
4638 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4639 	return probe_fd(fd);
4640 }
4641 
4642 static int probe_kern_exp_attach_type(void)
4643 {
4644 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4645 	struct bpf_insn insns[] = {
4646 		BPF_MOV64_IMM(BPF_REG_0, 0),
4647 		BPF_EXIT_INSN(),
4648 	};
4649 	int fd, insn_cnt = ARRAY_SIZE(insns);
4650 
4651 	/* use any valid combination of program type and (optional)
4652 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4653 	 * to see if kernel supports expected_attach_type field for
4654 	 * BPF_PROG_LOAD command
4655 	 */
4656 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4657 	return probe_fd(fd);
4658 }
4659 
4660 static int probe_kern_probe_read_kernel(void)
4661 {
4662 	struct bpf_insn insns[] = {
4663 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4664 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4665 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4666 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4667 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4668 		BPF_EXIT_INSN(),
4669 	};
4670 	int fd, insn_cnt = ARRAY_SIZE(insns);
4671 
4672 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4673 	return probe_fd(fd);
4674 }
4675 
4676 static int probe_prog_bind_map(void)
4677 {
4678 	char *cp, errmsg[STRERR_BUFSIZE];
4679 	struct bpf_insn insns[] = {
4680 		BPF_MOV64_IMM(BPF_REG_0, 0),
4681 		BPF_EXIT_INSN(),
4682 	};
4683 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4684 
4685 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4686 	if (map < 0) {
4687 		ret = -errno;
4688 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4689 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4690 			__func__, cp, -ret);
4691 		return ret;
4692 	}
4693 
4694 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4695 	if (prog < 0) {
4696 		close(map);
4697 		return 0;
4698 	}
4699 
4700 	ret = bpf_prog_bind_map(prog, map, NULL);
4701 
4702 	close(map);
4703 	close(prog);
4704 
4705 	return ret >= 0;
4706 }
4707 
4708 static int probe_module_btf(void)
4709 {
4710 	static const char strs[] = "\0int";
4711 	__u32 types[] = {
4712 		/* int */
4713 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4714 	};
4715 	struct bpf_btf_info info;
4716 	__u32 len = sizeof(info);
4717 	char name[16];
4718 	int fd, err;
4719 
4720 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4721 	if (fd < 0)
4722 		return 0; /* BTF not supported at all */
4723 
4724 	memset(&info, 0, sizeof(info));
4725 	info.name = ptr_to_u64(name);
4726 	info.name_len = sizeof(name);
4727 
4728 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4729 	 * kernel's module BTF support coincides with support for
4730 	 * name/name_len fields in struct bpf_btf_info.
4731 	 */
4732 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
4733 	close(fd);
4734 	return !err;
4735 }
4736 
4737 static int probe_perf_link(void)
4738 {
4739 	struct bpf_insn insns[] = {
4740 		BPF_MOV64_IMM(BPF_REG_0, 0),
4741 		BPF_EXIT_INSN(),
4742 	};
4743 	int prog_fd, link_fd, err;
4744 
4745 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4746 				insns, ARRAY_SIZE(insns), NULL);
4747 	if (prog_fd < 0)
4748 		return -errno;
4749 
4750 	/* use invalid perf_event FD to get EBADF, if link is supported;
4751 	 * otherwise EINVAL should be returned
4752 	 */
4753 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4754 	err = -errno; /* close() can clobber errno */
4755 
4756 	if (link_fd >= 0)
4757 		close(link_fd);
4758 	close(prog_fd);
4759 
4760 	return link_fd < 0 && err == -EBADF;
4761 }
4762 
4763 static int probe_kern_bpf_cookie(void)
4764 {
4765 	struct bpf_insn insns[] = {
4766 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4767 		BPF_EXIT_INSN(),
4768 	};
4769 	int ret, insn_cnt = ARRAY_SIZE(insns);
4770 
4771 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4772 	return probe_fd(ret);
4773 }
4774 
4775 static int probe_kern_btf_enum64(void)
4776 {
4777 	static const char strs[] = "\0enum64";
4778 	__u32 types[] = {
4779 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4780 	};
4781 
4782 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4783 					     strs, sizeof(strs)));
4784 }
4785 
4786 static int probe_kern_syscall_wrapper(void);
4787 
4788 enum kern_feature_result {
4789 	FEAT_UNKNOWN = 0,
4790 	FEAT_SUPPORTED = 1,
4791 	FEAT_MISSING = 2,
4792 };
4793 
4794 typedef int (*feature_probe_fn)(void);
4795 
4796 static struct kern_feature_desc {
4797 	const char *desc;
4798 	feature_probe_fn probe;
4799 	enum kern_feature_result res;
4800 } feature_probes[__FEAT_CNT] = {
4801 	[FEAT_PROG_NAME] = {
4802 		"BPF program name", probe_kern_prog_name,
4803 	},
4804 	[FEAT_GLOBAL_DATA] = {
4805 		"global variables", probe_kern_global_data,
4806 	},
4807 	[FEAT_BTF] = {
4808 		"minimal BTF", probe_kern_btf,
4809 	},
4810 	[FEAT_BTF_FUNC] = {
4811 		"BTF functions", probe_kern_btf_func,
4812 	},
4813 	[FEAT_BTF_GLOBAL_FUNC] = {
4814 		"BTF global function", probe_kern_btf_func_global,
4815 	},
4816 	[FEAT_BTF_DATASEC] = {
4817 		"BTF data section and variable", probe_kern_btf_datasec,
4818 	},
4819 	[FEAT_ARRAY_MMAP] = {
4820 		"ARRAY map mmap()", probe_kern_array_mmap,
4821 	},
4822 	[FEAT_EXP_ATTACH_TYPE] = {
4823 		"BPF_PROG_LOAD expected_attach_type attribute",
4824 		probe_kern_exp_attach_type,
4825 	},
4826 	[FEAT_PROBE_READ_KERN] = {
4827 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4828 	},
4829 	[FEAT_PROG_BIND_MAP] = {
4830 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4831 	},
4832 	[FEAT_MODULE_BTF] = {
4833 		"module BTF support", probe_module_btf,
4834 	},
4835 	[FEAT_BTF_FLOAT] = {
4836 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4837 	},
4838 	[FEAT_PERF_LINK] = {
4839 		"BPF perf link support", probe_perf_link,
4840 	},
4841 	[FEAT_BTF_DECL_TAG] = {
4842 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4843 	},
4844 	[FEAT_BTF_TYPE_TAG] = {
4845 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4846 	},
4847 	[FEAT_MEMCG_ACCOUNT] = {
4848 		"memcg-based memory accounting", probe_memcg_account,
4849 	},
4850 	[FEAT_BPF_COOKIE] = {
4851 		"BPF cookie support", probe_kern_bpf_cookie,
4852 	},
4853 	[FEAT_BTF_ENUM64] = {
4854 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4855 	},
4856 	[FEAT_SYSCALL_WRAPPER] = {
4857 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4858 	},
4859 };
4860 
4861 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4862 {
4863 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4864 	int ret;
4865 
4866 	if (obj && obj->gen_loader)
4867 		/* To generate loader program assume the latest kernel
4868 		 * to avoid doing extra prog_load, map_create syscalls.
4869 		 */
4870 		return true;
4871 
4872 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4873 		ret = feat->probe();
4874 		if (ret > 0) {
4875 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4876 		} else if (ret == 0) {
4877 			WRITE_ONCE(feat->res, FEAT_MISSING);
4878 		} else {
4879 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4880 			WRITE_ONCE(feat->res, FEAT_MISSING);
4881 		}
4882 	}
4883 
4884 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4885 }
4886 
4887 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4888 {
4889 	struct bpf_map_info map_info;
4890 	char msg[STRERR_BUFSIZE];
4891 	__u32 map_info_len = sizeof(map_info);
4892 	int err;
4893 
4894 	memset(&map_info, 0, map_info_len);
4895 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
4896 	if (err && errno == EINVAL)
4897 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4898 	if (err) {
4899 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4900 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4901 		return false;
4902 	}
4903 
4904 	return (map_info.type == map->def.type &&
4905 		map_info.key_size == map->def.key_size &&
4906 		map_info.value_size == map->def.value_size &&
4907 		map_info.max_entries == map->def.max_entries &&
4908 		map_info.map_flags == map->def.map_flags &&
4909 		map_info.map_extra == map->map_extra);
4910 }
4911 
4912 static int
4913 bpf_object__reuse_map(struct bpf_map *map)
4914 {
4915 	char *cp, errmsg[STRERR_BUFSIZE];
4916 	int err, pin_fd;
4917 
4918 	pin_fd = bpf_obj_get(map->pin_path);
4919 	if (pin_fd < 0) {
4920 		err = -errno;
4921 		if (err == -ENOENT) {
4922 			pr_debug("found no pinned map to reuse at '%s'\n",
4923 				 map->pin_path);
4924 			return 0;
4925 		}
4926 
4927 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4928 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4929 			map->pin_path, cp);
4930 		return err;
4931 	}
4932 
4933 	if (!map_is_reuse_compat(map, pin_fd)) {
4934 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4935 			map->pin_path);
4936 		close(pin_fd);
4937 		return -EINVAL;
4938 	}
4939 
4940 	err = bpf_map__reuse_fd(map, pin_fd);
4941 	close(pin_fd);
4942 	if (err)
4943 		return err;
4944 
4945 	map->pinned = true;
4946 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4947 
4948 	return 0;
4949 }
4950 
4951 static int
4952 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4953 {
4954 	enum libbpf_map_type map_type = map->libbpf_type;
4955 	char *cp, errmsg[STRERR_BUFSIZE];
4956 	int err, zero = 0;
4957 
4958 	if (obj->gen_loader) {
4959 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4960 					 map->mmaped, map->def.value_size);
4961 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4962 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4963 		return 0;
4964 	}
4965 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4966 	if (err) {
4967 		err = -errno;
4968 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4969 		pr_warn("Error setting initial map(%s) contents: %s\n",
4970 			map->name, cp);
4971 		return err;
4972 	}
4973 
4974 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4975 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4976 		err = bpf_map_freeze(map->fd);
4977 		if (err) {
4978 			err = -errno;
4979 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4980 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4981 				map->name, cp);
4982 			return err;
4983 		}
4984 	}
4985 	return 0;
4986 }
4987 
4988 static void bpf_map__destroy(struct bpf_map *map);
4989 
4990 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4991 {
4992 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4993 	struct bpf_map_def *def = &map->def;
4994 	const char *map_name = NULL;
4995 	int err = 0;
4996 
4997 	if (kernel_supports(obj, FEAT_PROG_NAME))
4998 		map_name = map->name;
4999 	create_attr.map_ifindex = map->map_ifindex;
5000 	create_attr.map_flags = def->map_flags;
5001 	create_attr.numa_node = map->numa_node;
5002 	create_attr.map_extra = map->map_extra;
5003 
5004 	if (bpf_map__is_struct_ops(map))
5005 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5006 
5007 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5008 		create_attr.btf_fd = btf__fd(obj->btf);
5009 		create_attr.btf_key_type_id = map->btf_key_type_id;
5010 		create_attr.btf_value_type_id = map->btf_value_type_id;
5011 	}
5012 
5013 	if (bpf_map_type__is_map_in_map(def->type)) {
5014 		if (map->inner_map) {
5015 			err = bpf_object__create_map(obj, map->inner_map, true);
5016 			if (err) {
5017 				pr_warn("map '%s': failed to create inner map: %d\n",
5018 					map->name, err);
5019 				return err;
5020 			}
5021 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5022 		}
5023 		if (map->inner_map_fd >= 0)
5024 			create_attr.inner_map_fd = map->inner_map_fd;
5025 	}
5026 
5027 	switch (def->type) {
5028 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5029 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5030 	case BPF_MAP_TYPE_STACK_TRACE:
5031 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5032 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5033 	case BPF_MAP_TYPE_DEVMAP:
5034 	case BPF_MAP_TYPE_DEVMAP_HASH:
5035 	case BPF_MAP_TYPE_CPUMAP:
5036 	case BPF_MAP_TYPE_XSKMAP:
5037 	case BPF_MAP_TYPE_SOCKMAP:
5038 	case BPF_MAP_TYPE_SOCKHASH:
5039 	case BPF_MAP_TYPE_QUEUE:
5040 	case BPF_MAP_TYPE_STACK:
5041 		create_attr.btf_fd = 0;
5042 		create_attr.btf_key_type_id = 0;
5043 		create_attr.btf_value_type_id = 0;
5044 		map->btf_key_type_id = 0;
5045 		map->btf_value_type_id = 0;
5046 	default:
5047 		break;
5048 	}
5049 
5050 	if (obj->gen_loader) {
5051 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5052 				    def->key_size, def->value_size, def->max_entries,
5053 				    &create_attr, is_inner ? -1 : map - obj->maps);
5054 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5055 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5056 		 */
5057 		map->fd = 0;
5058 	} else {
5059 		map->fd = bpf_map_create(def->type, map_name,
5060 					 def->key_size, def->value_size,
5061 					 def->max_entries, &create_attr);
5062 	}
5063 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5064 			    create_attr.btf_value_type_id)) {
5065 		char *cp, errmsg[STRERR_BUFSIZE];
5066 
5067 		err = -errno;
5068 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5069 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5070 			map->name, cp, err);
5071 		create_attr.btf_fd = 0;
5072 		create_attr.btf_key_type_id = 0;
5073 		create_attr.btf_value_type_id = 0;
5074 		map->btf_key_type_id = 0;
5075 		map->btf_value_type_id = 0;
5076 		map->fd = bpf_map_create(def->type, map_name,
5077 					 def->key_size, def->value_size,
5078 					 def->max_entries, &create_attr);
5079 	}
5080 
5081 	err = map->fd < 0 ? -errno : 0;
5082 
5083 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5084 		if (obj->gen_loader)
5085 			map->inner_map->fd = -1;
5086 		bpf_map__destroy(map->inner_map);
5087 		zfree(&map->inner_map);
5088 	}
5089 
5090 	return err;
5091 }
5092 
5093 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5094 {
5095 	const struct bpf_map *targ_map;
5096 	unsigned int i;
5097 	int fd, err = 0;
5098 
5099 	for (i = 0; i < map->init_slots_sz; i++) {
5100 		if (!map->init_slots[i])
5101 			continue;
5102 
5103 		targ_map = map->init_slots[i];
5104 		fd = bpf_map__fd(targ_map);
5105 
5106 		if (obj->gen_loader) {
5107 			bpf_gen__populate_outer_map(obj->gen_loader,
5108 						    map - obj->maps, i,
5109 						    targ_map - obj->maps);
5110 		} else {
5111 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5112 		}
5113 		if (err) {
5114 			err = -errno;
5115 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5116 				map->name, i, targ_map->name, fd, err);
5117 			return err;
5118 		}
5119 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5120 			 map->name, i, targ_map->name, fd);
5121 	}
5122 
5123 	zfree(&map->init_slots);
5124 	map->init_slots_sz = 0;
5125 
5126 	return 0;
5127 }
5128 
5129 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5130 {
5131 	const struct bpf_program *targ_prog;
5132 	unsigned int i;
5133 	int fd, err;
5134 
5135 	if (obj->gen_loader)
5136 		return -ENOTSUP;
5137 
5138 	for (i = 0; i < map->init_slots_sz; i++) {
5139 		if (!map->init_slots[i])
5140 			continue;
5141 
5142 		targ_prog = map->init_slots[i];
5143 		fd = bpf_program__fd(targ_prog);
5144 
5145 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5146 		if (err) {
5147 			err = -errno;
5148 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5149 				map->name, i, targ_prog->name, fd, err);
5150 			return err;
5151 		}
5152 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5153 			 map->name, i, targ_prog->name, fd);
5154 	}
5155 
5156 	zfree(&map->init_slots);
5157 	map->init_slots_sz = 0;
5158 
5159 	return 0;
5160 }
5161 
5162 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5163 {
5164 	struct bpf_map *map;
5165 	int i, err;
5166 
5167 	for (i = 0; i < obj->nr_maps; i++) {
5168 		map = &obj->maps[i];
5169 
5170 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5171 			continue;
5172 
5173 		err = init_prog_array_slots(obj, map);
5174 		if (err < 0) {
5175 			zclose(map->fd);
5176 			return err;
5177 		}
5178 	}
5179 	return 0;
5180 }
5181 
5182 static int map_set_def_max_entries(struct bpf_map *map)
5183 {
5184 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5185 		int nr_cpus;
5186 
5187 		nr_cpus = libbpf_num_possible_cpus();
5188 		if (nr_cpus < 0) {
5189 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5190 				map->name, nr_cpus);
5191 			return nr_cpus;
5192 		}
5193 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5194 		map->def.max_entries = nr_cpus;
5195 	}
5196 
5197 	return 0;
5198 }
5199 
5200 static int
5201 bpf_object__create_maps(struct bpf_object *obj)
5202 {
5203 	struct bpf_map *map;
5204 	char *cp, errmsg[STRERR_BUFSIZE];
5205 	unsigned int i, j;
5206 	int err;
5207 	bool retried;
5208 
5209 	for (i = 0; i < obj->nr_maps; i++) {
5210 		map = &obj->maps[i];
5211 
5212 		/* To support old kernels, we skip creating global data maps
5213 		 * (.rodata, .data, .kconfig, etc); later on, during program
5214 		 * loading, if we detect that at least one of the to-be-loaded
5215 		 * programs is referencing any global data map, we'll error
5216 		 * out with program name and relocation index logged.
5217 		 * This approach allows to accommodate Clang emitting
5218 		 * unnecessary .rodata.str1.1 sections for string literals,
5219 		 * but also it allows to have CO-RE applications that use
5220 		 * global variables in some of BPF programs, but not others.
5221 		 * If those global variable-using programs are not loaded at
5222 		 * runtime due to bpf_program__set_autoload(prog, false),
5223 		 * bpf_object loading will succeed just fine even on old
5224 		 * kernels.
5225 		 */
5226 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5227 			map->autocreate = false;
5228 
5229 		if (!map->autocreate) {
5230 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5231 			continue;
5232 		}
5233 
5234 		err = map_set_def_max_entries(map);
5235 		if (err)
5236 			goto err_out;
5237 
5238 		retried = false;
5239 retry:
5240 		if (map->pin_path) {
5241 			err = bpf_object__reuse_map(map);
5242 			if (err) {
5243 				pr_warn("map '%s': error reusing pinned map\n",
5244 					map->name);
5245 				goto err_out;
5246 			}
5247 			if (retried && map->fd < 0) {
5248 				pr_warn("map '%s': cannot find pinned map\n",
5249 					map->name);
5250 				err = -ENOENT;
5251 				goto err_out;
5252 			}
5253 		}
5254 
5255 		if (map->fd >= 0) {
5256 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5257 				 map->name, map->fd);
5258 		} else {
5259 			err = bpf_object__create_map(obj, map, false);
5260 			if (err)
5261 				goto err_out;
5262 
5263 			pr_debug("map '%s': created successfully, fd=%d\n",
5264 				 map->name, map->fd);
5265 
5266 			if (bpf_map__is_internal(map)) {
5267 				err = bpf_object__populate_internal_map(obj, map);
5268 				if (err < 0) {
5269 					zclose(map->fd);
5270 					goto err_out;
5271 				}
5272 			}
5273 
5274 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5275 				err = init_map_in_map_slots(obj, map);
5276 				if (err < 0) {
5277 					zclose(map->fd);
5278 					goto err_out;
5279 				}
5280 			}
5281 		}
5282 
5283 		if (map->pin_path && !map->pinned) {
5284 			err = bpf_map__pin(map, NULL);
5285 			if (err) {
5286 				zclose(map->fd);
5287 				if (!retried && err == -EEXIST) {
5288 					retried = true;
5289 					goto retry;
5290 				}
5291 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5292 					map->name, map->pin_path, err);
5293 				goto err_out;
5294 			}
5295 		}
5296 	}
5297 
5298 	return 0;
5299 
5300 err_out:
5301 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5302 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5303 	pr_perm_msg(err);
5304 	for (j = 0; j < i; j++)
5305 		zclose(obj->maps[j].fd);
5306 	return err;
5307 }
5308 
5309 static bool bpf_core_is_flavor_sep(const char *s)
5310 {
5311 	/* check X___Y name pattern, where X and Y are not underscores */
5312 	return s[0] != '_' &&				      /* X */
5313 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5314 	       s[4] != '_';				      /* Y */
5315 }
5316 
5317 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5318  * before last triple underscore. Struct name part after last triple
5319  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5320  */
5321 size_t bpf_core_essential_name_len(const char *name)
5322 {
5323 	size_t n = strlen(name);
5324 	int i;
5325 
5326 	for (i = n - 5; i >= 0; i--) {
5327 		if (bpf_core_is_flavor_sep(name + i))
5328 			return i + 1;
5329 	}
5330 	return n;
5331 }
5332 
5333 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5334 {
5335 	if (!cands)
5336 		return;
5337 
5338 	free(cands->cands);
5339 	free(cands);
5340 }
5341 
5342 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5343 		       size_t local_essent_len,
5344 		       const struct btf *targ_btf,
5345 		       const char *targ_btf_name,
5346 		       int targ_start_id,
5347 		       struct bpf_core_cand_list *cands)
5348 {
5349 	struct bpf_core_cand *new_cands, *cand;
5350 	const struct btf_type *t, *local_t;
5351 	const char *targ_name, *local_name;
5352 	size_t targ_essent_len;
5353 	int n, i;
5354 
5355 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5356 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5357 
5358 	n = btf__type_cnt(targ_btf);
5359 	for (i = targ_start_id; i < n; i++) {
5360 		t = btf__type_by_id(targ_btf, i);
5361 		if (!btf_kind_core_compat(t, local_t))
5362 			continue;
5363 
5364 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5365 		if (str_is_empty(targ_name))
5366 			continue;
5367 
5368 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5369 		if (targ_essent_len != local_essent_len)
5370 			continue;
5371 
5372 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5373 			continue;
5374 
5375 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5376 			 local_cand->id, btf_kind_str(local_t),
5377 			 local_name, i, btf_kind_str(t), targ_name,
5378 			 targ_btf_name);
5379 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5380 					      sizeof(*cands->cands));
5381 		if (!new_cands)
5382 			return -ENOMEM;
5383 
5384 		cand = &new_cands[cands->len];
5385 		cand->btf = targ_btf;
5386 		cand->id = i;
5387 
5388 		cands->cands = new_cands;
5389 		cands->len++;
5390 	}
5391 	return 0;
5392 }
5393 
5394 static int load_module_btfs(struct bpf_object *obj)
5395 {
5396 	struct bpf_btf_info info;
5397 	struct module_btf *mod_btf;
5398 	struct btf *btf;
5399 	char name[64];
5400 	__u32 id = 0, len;
5401 	int err, fd;
5402 
5403 	if (obj->btf_modules_loaded)
5404 		return 0;
5405 
5406 	if (obj->gen_loader)
5407 		return 0;
5408 
5409 	/* don't do this again, even if we find no module BTFs */
5410 	obj->btf_modules_loaded = true;
5411 
5412 	/* kernel too old to support module BTFs */
5413 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5414 		return 0;
5415 
5416 	while (true) {
5417 		err = bpf_btf_get_next_id(id, &id);
5418 		if (err && errno == ENOENT)
5419 			return 0;
5420 		if (err) {
5421 			err = -errno;
5422 			pr_warn("failed to iterate BTF objects: %d\n", err);
5423 			return err;
5424 		}
5425 
5426 		fd = bpf_btf_get_fd_by_id(id);
5427 		if (fd < 0) {
5428 			if (errno == ENOENT)
5429 				continue; /* expected race: BTF was unloaded */
5430 			err = -errno;
5431 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5432 			return err;
5433 		}
5434 
5435 		len = sizeof(info);
5436 		memset(&info, 0, sizeof(info));
5437 		info.name = ptr_to_u64(name);
5438 		info.name_len = sizeof(name);
5439 
5440 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5441 		if (err) {
5442 			err = -errno;
5443 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5444 			goto err_out;
5445 		}
5446 
5447 		/* ignore non-module BTFs */
5448 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5449 			close(fd);
5450 			continue;
5451 		}
5452 
5453 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5454 		err = libbpf_get_error(btf);
5455 		if (err) {
5456 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5457 				name, id, err);
5458 			goto err_out;
5459 		}
5460 
5461 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5462 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5463 		if (err)
5464 			goto err_out;
5465 
5466 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5467 
5468 		mod_btf->btf = btf;
5469 		mod_btf->id = id;
5470 		mod_btf->fd = fd;
5471 		mod_btf->name = strdup(name);
5472 		if (!mod_btf->name) {
5473 			err = -ENOMEM;
5474 			goto err_out;
5475 		}
5476 		continue;
5477 
5478 err_out:
5479 		close(fd);
5480 		return err;
5481 	}
5482 
5483 	return 0;
5484 }
5485 
5486 static struct bpf_core_cand_list *
5487 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5488 {
5489 	struct bpf_core_cand local_cand = {};
5490 	struct bpf_core_cand_list *cands;
5491 	const struct btf *main_btf;
5492 	const struct btf_type *local_t;
5493 	const char *local_name;
5494 	size_t local_essent_len;
5495 	int err, i;
5496 
5497 	local_cand.btf = local_btf;
5498 	local_cand.id = local_type_id;
5499 	local_t = btf__type_by_id(local_btf, local_type_id);
5500 	if (!local_t)
5501 		return ERR_PTR(-EINVAL);
5502 
5503 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5504 	if (str_is_empty(local_name))
5505 		return ERR_PTR(-EINVAL);
5506 	local_essent_len = bpf_core_essential_name_len(local_name);
5507 
5508 	cands = calloc(1, sizeof(*cands));
5509 	if (!cands)
5510 		return ERR_PTR(-ENOMEM);
5511 
5512 	/* Attempt to find target candidates in vmlinux BTF first */
5513 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5514 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5515 	if (err)
5516 		goto err_out;
5517 
5518 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5519 	if (cands->len)
5520 		return cands;
5521 
5522 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5523 	if (obj->btf_vmlinux_override)
5524 		return cands;
5525 
5526 	/* now look through module BTFs, trying to still find candidates */
5527 	err = load_module_btfs(obj);
5528 	if (err)
5529 		goto err_out;
5530 
5531 	for (i = 0; i < obj->btf_module_cnt; i++) {
5532 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5533 					 obj->btf_modules[i].btf,
5534 					 obj->btf_modules[i].name,
5535 					 btf__type_cnt(obj->btf_vmlinux),
5536 					 cands);
5537 		if (err)
5538 			goto err_out;
5539 	}
5540 
5541 	return cands;
5542 err_out:
5543 	bpf_core_free_cands(cands);
5544 	return ERR_PTR(err);
5545 }
5546 
5547 /* Check local and target types for compatibility. This check is used for
5548  * type-based CO-RE relocations and follow slightly different rules than
5549  * field-based relocations. This function assumes that root types were already
5550  * checked for name match. Beyond that initial root-level name check, names
5551  * are completely ignored. Compatibility rules are as follows:
5552  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5553  *     kind should match for local and target types (i.e., STRUCT is not
5554  *     compatible with UNION);
5555  *   - for ENUMs, the size is ignored;
5556  *   - for INT, size and signedness are ignored;
5557  *   - for ARRAY, dimensionality is ignored, element types are checked for
5558  *     compatibility recursively;
5559  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5560  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5561  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5562  *     number of input args and compatible return and argument types.
5563  * These rules are not set in stone and probably will be adjusted as we get
5564  * more experience with using BPF CO-RE relocations.
5565  */
5566 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5567 			      const struct btf *targ_btf, __u32 targ_id)
5568 {
5569 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5570 }
5571 
5572 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5573 			 const struct btf *targ_btf, __u32 targ_id)
5574 {
5575 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5576 }
5577 
5578 static size_t bpf_core_hash_fn(const long key, void *ctx)
5579 {
5580 	return key;
5581 }
5582 
5583 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5584 {
5585 	return k1 == k2;
5586 }
5587 
5588 static int record_relo_core(struct bpf_program *prog,
5589 			    const struct bpf_core_relo *core_relo, int insn_idx)
5590 {
5591 	struct reloc_desc *relos, *relo;
5592 
5593 	relos = libbpf_reallocarray(prog->reloc_desc,
5594 				    prog->nr_reloc + 1, sizeof(*relos));
5595 	if (!relos)
5596 		return -ENOMEM;
5597 	relo = &relos[prog->nr_reloc];
5598 	relo->type = RELO_CORE;
5599 	relo->insn_idx = insn_idx;
5600 	relo->core_relo = core_relo;
5601 	prog->reloc_desc = relos;
5602 	prog->nr_reloc++;
5603 	return 0;
5604 }
5605 
5606 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5607 {
5608 	struct reloc_desc *relo;
5609 	int i;
5610 
5611 	for (i = 0; i < prog->nr_reloc; i++) {
5612 		relo = &prog->reloc_desc[i];
5613 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5614 			continue;
5615 
5616 		return relo->core_relo;
5617 	}
5618 
5619 	return NULL;
5620 }
5621 
5622 static int bpf_core_resolve_relo(struct bpf_program *prog,
5623 				 const struct bpf_core_relo *relo,
5624 				 int relo_idx,
5625 				 const struct btf *local_btf,
5626 				 struct hashmap *cand_cache,
5627 				 struct bpf_core_relo_res *targ_res)
5628 {
5629 	struct bpf_core_spec specs_scratch[3] = {};
5630 	struct bpf_core_cand_list *cands = NULL;
5631 	const char *prog_name = prog->name;
5632 	const struct btf_type *local_type;
5633 	const char *local_name;
5634 	__u32 local_id = relo->type_id;
5635 	int err;
5636 
5637 	local_type = btf__type_by_id(local_btf, local_id);
5638 	if (!local_type)
5639 		return -EINVAL;
5640 
5641 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5642 	if (!local_name)
5643 		return -EINVAL;
5644 
5645 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5646 	    !hashmap__find(cand_cache, local_id, &cands)) {
5647 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5648 		if (IS_ERR(cands)) {
5649 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5650 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5651 				local_name, PTR_ERR(cands));
5652 			return PTR_ERR(cands);
5653 		}
5654 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5655 		if (err) {
5656 			bpf_core_free_cands(cands);
5657 			return err;
5658 		}
5659 	}
5660 
5661 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5662 				       targ_res);
5663 }
5664 
5665 static int
5666 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5667 {
5668 	const struct btf_ext_info_sec *sec;
5669 	struct bpf_core_relo_res targ_res;
5670 	const struct bpf_core_relo *rec;
5671 	const struct btf_ext_info *seg;
5672 	struct hashmap_entry *entry;
5673 	struct hashmap *cand_cache = NULL;
5674 	struct bpf_program *prog;
5675 	struct bpf_insn *insn;
5676 	const char *sec_name;
5677 	int i, err = 0, insn_idx, sec_idx, sec_num;
5678 
5679 	if (obj->btf_ext->core_relo_info.len == 0)
5680 		return 0;
5681 
5682 	if (targ_btf_path) {
5683 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5684 		err = libbpf_get_error(obj->btf_vmlinux_override);
5685 		if (err) {
5686 			pr_warn("failed to parse target BTF: %d\n", err);
5687 			return err;
5688 		}
5689 	}
5690 
5691 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5692 	if (IS_ERR(cand_cache)) {
5693 		err = PTR_ERR(cand_cache);
5694 		goto out;
5695 	}
5696 
5697 	seg = &obj->btf_ext->core_relo_info;
5698 	sec_num = 0;
5699 	for_each_btf_ext_sec(seg, sec) {
5700 		sec_idx = seg->sec_idxs[sec_num];
5701 		sec_num++;
5702 
5703 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5704 		if (str_is_empty(sec_name)) {
5705 			err = -EINVAL;
5706 			goto out;
5707 		}
5708 
5709 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5710 
5711 		for_each_btf_ext_rec(seg, sec, i, rec) {
5712 			if (rec->insn_off % BPF_INSN_SZ)
5713 				return -EINVAL;
5714 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5715 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5716 			if (!prog) {
5717 				/* When __weak subprog is "overridden" by another instance
5718 				 * of the subprog from a different object file, linker still
5719 				 * appends all the .BTF.ext info that used to belong to that
5720 				 * eliminated subprogram.
5721 				 * This is similar to what x86-64 linker does for relocations.
5722 				 * So just ignore such relocations just like we ignore
5723 				 * subprog instructions when discovering subprograms.
5724 				 */
5725 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5726 					 sec_name, i, insn_idx);
5727 				continue;
5728 			}
5729 			/* no need to apply CO-RE relocation if the program is
5730 			 * not going to be loaded
5731 			 */
5732 			if (!prog->autoload)
5733 				continue;
5734 
5735 			/* adjust insn_idx from section frame of reference to the local
5736 			 * program's frame of reference; (sub-)program code is not yet
5737 			 * relocated, so it's enough to just subtract in-section offset
5738 			 */
5739 			insn_idx = insn_idx - prog->sec_insn_off;
5740 			if (insn_idx >= prog->insns_cnt)
5741 				return -EINVAL;
5742 			insn = &prog->insns[insn_idx];
5743 
5744 			err = record_relo_core(prog, rec, insn_idx);
5745 			if (err) {
5746 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5747 					prog->name, i, err);
5748 				goto out;
5749 			}
5750 
5751 			if (prog->obj->gen_loader)
5752 				continue;
5753 
5754 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5755 			if (err) {
5756 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5757 					prog->name, i, err);
5758 				goto out;
5759 			}
5760 
5761 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5762 			if (err) {
5763 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5764 					prog->name, i, insn_idx, err);
5765 				goto out;
5766 			}
5767 		}
5768 	}
5769 
5770 out:
5771 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5772 	btf__free(obj->btf_vmlinux_override);
5773 	obj->btf_vmlinux_override = NULL;
5774 
5775 	if (!IS_ERR_OR_NULL(cand_cache)) {
5776 		hashmap__for_each_entry(cand_cache, entry, i) {
5777 			bpf_core_free_cands(entry->pvalue);
5778 		}
5779 		hashmap__free(cand_cache);
5780 	}
5781 	return err;
5782 }
5783 
5784 /* base map load ldimm64 special constant, used also for log fixup logic */
5785 #define MAP_LDIMM64_POISON_BASE 2001000000
5786 #define MAP_LDIMM64_POISON_PFX "200100"
5787 
5788 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5789 			       int insn_idx, struct bpf_insn *insn,
5790 			       int map_idx, const struct bpf_map *map)
5791 {
5792 	int i;
5793 
5794 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5795 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5796 
5797 	/* we turn single ldimm64 into two identical invalid calls */
5798 	for (i = 0; i < 2; i++) {
5799 		insn->code = BPF_JMP | BPF_CALL;
5800 		insn->dst_reg = 0;
5801 		insn->src_reg = 0;
5802 		insn->off = 0;
5803 		/* if this instruction is reachable (not a dead code),
5804 		 * verifier will complain with something like:
5805 		 * invalid func unknown#2001000123
5806 		 * where lower 123 is map index into obj->maps[] array
5807 		 */
5808 		insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5809 
5810 		insn++;
5811 	}
5812 }
5813 
5814 /* Relocate data references within program code:
5815  *  - map references;
5816  *  - global variable references;
5817  *  - extern references.
5818  */
5819 static int
5820 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5821 {
5822 	int i;
5823 
5824 	for (i = 0; i < prog->nr_reloc; i++) {
5825 		struct reloc_desc *relo = &prog->reloc_desc[i];
5826 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5827 		const struct bpf_map *map;
5828 		struct extern_desc *ext;
5829 
5830 		switch (relo->type) {
5831 		case RELO_LD64:
5832 			map = &obj->maps[relo->map_idx];
5833 			if (obj->gen_loader) {
5834 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5835 				insn[0].imm = relo->map_idx;
5836 			} else if (map->autocreate) {
5837 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5838 				insn[0].imm = map->fd;
5839 			} else {
5840 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5841 						   relo->map_idx, map);
5842 			}
5843 			break;
5844 		case RELO_DATA:
5845 			map = &obj->maps[relo->map_idx];
5846 			insn[1].imm = insn[0].imm + relo->sym_off;
5847 			if (obj->gen_loader) {
5848 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5849 				insn[0].imm = relo->map_idx;
5850 			} else if (map->autocreate) {
5851 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5852 				insn[0].imm = map->fd;
5853 			} else {
5854 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5855 						   relo->map_idx, map);
5856 			}
5857 			break;
5858 		case RELO_EXTERN_VAR:
5859 			ext = &obj->externs[relo->sym_off];
5860 			if (ext->type == EXT_KCFG) {
5861 				if (obj->gen_loader) {
5862 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5863 					insn[0].imm = obj->kconfig_map_idx;
5864 				} else {
5865 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5866 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5867 				}
5868 				insn[1].imm = ext->kcfg.data_off;
5869 			} else /* EXT_KSYM */ {
5870 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5871 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5872 					insn[0].imm = ext->ksym.kernel_btf_id;
5873 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5874 				} else { /* typeless ksyms or unresolved typed ksyms */
5875 					insn[0].imm = (__u32)ext->ksym.addr;
5876 					insn[1].imm = ext->ksym.addr >> 32;
5877 				}
5878 			}
5879 			break;
5880 		case RELO_EXTERN_FUNC:
5881 			ext = &obj->externs[relo->sym_off];
5882 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5883 			if (ext->is_set) {
5884 				insn[0].imm = ext->ksym.kernel_btf_id;
5885 				insn[0].off = ext->ksym.btf_fd_idx;
5886 			} else { /* unresolved weak kfunc */
5887 				insn[0].imm = 0;
5888 				insn[0].off = 0;
5889 			}
5890 			break;
5891 		case RELO_SUBPROG_ADDR:
5892 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5893 				pr_warn("prog '%s': relo #%d: bad insn\n",
5894 					prog->name, i);
5895 				return -EINVAL;
5896 			}
5897 			/* handled already */
5898 			break;
5899 		case RELO_CALL:
5900 			/* handled already */
5901 			break;
5902 		case RELO_CORE:
5903 			/* will be handled by bpf_program_record_relos() */
5904 			break;
5905 		default:
5906 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5907 				prog->name, i, relo->type);
5908 			return -EINVAL;
5909 		}
5910 	}
5911 
5912 	return 0;
5913 }
5914 
5915 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5916 				    const struct bpf_program *prog,
5917 				    const struct btf_ext_info *ext_info,
5918 				    void **prog_info, __u32 *prog_rec_cnt,
5919 				    __u32 *prog_rec_sz)
5920 {
5921 	void *copy_start = NULL, *copy_end = NULL;
5922 	void *rec, *rec_end, *new_prog_info;
5923 	const struct btf_ext_info_sec *sec;
5924 	size_t old_sz, new_sz;
5925 	int i, sec_num, sec_idx, off_adj;
5926 
5927 	sec_num = 0;
5928 	for_each_btf_ext_sec(ext_info, sec) {
5929 		sec_idx = ext_info->sec_idxs[sec_num];
5930 		sec_num++;
5931 		if (prog->sec_idx != sec_idx)
5932 			continue;
5933 
5934 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5935 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5936 
5937 			if (insn_off < prog->sec_insn_off)
5938 				continue;
5939 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5940 				break;
5941 
5942 			if (!copy_start)
5943 				copy_start = rec;
5944 			copy_end = rec + ext_info->rec_size;
5945 		}
5946 
5947 		if (!copy_start)
5948 			return -ENOENT;
5949 
5950 		/* append func/line info of a given (sub-)program to the main
5951 		 * program func/line info
5952 		 */
5953 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5954 		new_sz = old_sz + (copy_end - copy_start);
5955 		new_prog_info = realloc(*prog_info, new_sz);
5956 		if (!new_prog_info)
5957 			return -ENOMEM;
5958 		*prog_info = new_prog_info;
5959 		*prog_rec_cnt = new_sz / ext_info->rec_size;
5960 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5961 
5962 		/* Kernel instruction offsets are in units of 8-byte
5963 		 * instructions, while .BTF.ext instruction offsets generated
5964 		 * by Clang are in units of bytes. So convert Clang offsets
5965 		 * into kernel offsets and adjust offset according to program
5966 		 * relocated position.
5967 		 */
5968 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
5969 		rec = new_prog_info + old_sz;
5970 		rec_end = new_prog_info + new_sz;
5971 		for (; rec < rec_end; rec += ext_info->rec_size) {
5972 			__u32 *insn_off = rec;
5973 
5974 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5975 		}
5976 		*prog_rec_sz = ext_info->rec_size;
5977 		return 0;
5978 	}
5979 
5980 	return -ENOENT;
5981 }
5982 
5983 static int
5984 reloc_prog_func_and_line_info(const struct bpf_object *obj,
5985 			      struct bpf_program *main_prog,
5986 			      const struct bpf_program *prog)
5987 {
5988 	int err;
5989 
5990 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5991 	 * supprot func/line info
5992 	 */
5993 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5994 		return 0;
5995 
5996 	/* only attempt func info relocation if main program's func_info
5997 	 * relocation was successful
5998 	 */
5999 	if (main_prog != prog && !main_prog->func_info)
6000 		goto line_info;
6001 
6002 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6003 				       &main_prog->func_info,
6004 				       &main_prog->func_info_cnt,
6005 				       &main_prog->func_info_rec_size);
6006 	if (err) {
6007 		if (err != -ENOENT) {
6008 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6009 				prog->name, err);
6010 			return err;
6011 		}
6012 		if (main_prog->func_info) {
6013 			/*
6014 			 * Some info has already been found but has problem
6015 			 * in the last btf_ext reloc. Must have to error out.
6016 			 */
6017 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6018 			return err;
6019 		}
6020 		/* Have problem loading the very first info. Ignore the rest. */
6021 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6022 			prog->name);
6023 	}
6024 
6025 line_info:
6026 	/* don't relocate line info if main program's relocation failed */
6027 	if (main_prog != prog && !main_prog->line_info)
6028 		return 0;
6029 
6030 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6031 				       &main_prog->line_info,
6032 				       &main_prog->line_info_cnt,
6033 				       &main_prog->line_info_rec_size);
6034 	if (err) {
6035 		if (err != -ENOENT) {
6036 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6037 				prog->name, err);
6038 			return err;
6039 		}
6040 		if (main_prog->line_info) {
6041 			/*
6042 			 * Some info has already been found but has problem
6043 			 * in the last btf_ext reloc. Must have to error out.
6044 			 */
6045 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6046 			return err;
6047 		}
6048 		/* Have problem loading the very first info. Ignore the rest. */
6049 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6050 			prog->name);
6051 	}
6052 	return 0;
6053 }
6054 
6055 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6056 {
6057 	size_t insn_idx = *(const size_t *)key;
6058 	const struct reloc_desc *relo = elem;
6059 
6060 	if (insn_idx == relo->insn_idx)
6061 		return 0;
6062 	return insn_idx < relo->insn_idx ? -1 : 1;
6063 }
6064 
6065 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6066 {
6067 	if (!prog->nr_reloc)
6068 		return NULL;
6069 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6070 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6071 }
6072 
6073 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6074 {
6075 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6076 	struct reloc_desc *relos;
6077 	int i;
6078 
6079 	if (main_prog == subprog)
6080 		return 0;
6081 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6082 	if (!relos)
6083 		return -ENOMEM;
6084 	if (subprog->nr_reloc)
6085 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6086 		       sizeof(*relos) * subprog->nr_reloc);
6087 
6088 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6089 		relos[i].insn_idx += subprog->sub_insn_off;
6090 	/* After insn_idx adjustment the 'relos' array is still sorted
6091 	 * by insn_idx and doesn't break bsearch.
6092 	 */
6093 	main_prog->reloc_desc = relos;
6094 	main_prog->nr_reloc = new_cnt;
6095 	return 0;
6096 }
6097 
6098 static int
6099 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6100 		       struct bpf_program *prog)
6101 {
6102 	size_t sub_insn_idx, insn_idx, new_cnt;
6103 	struct bpf_program *subprog;
6104 	struct bpf_insn *insns, *insn;
6105 	struct reloc_desc *relo;
6106 	int err;
6107 
6108 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6109 	if (err)
6110 		return err;
6111 
6112 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6113 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6114 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6115 			continue;
6116 
6117 		relo = find_prog_insn_relo(prog, insn_idx);
6118 		if (relo && relo->type == RELO_EXTERN_FUNC)
6119 			/* kfunc relocations will be handled later
6120 			 * in bpf_object__relocate_data()
6121 			 */
6122 			continue;
6123 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6124 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6125 				prog->name, insn_idx, relo->type);
6126 			return -LIBBPF_ERRNO__RELOC;
6127 		}
6128 		if (relo) {
6129 			/* sub-program instruction index is a combination of
6130 			 * an offset of a symbol pointed to by relocation and
6131 			 * call instruction's imm field; for global functions,
6132 			 * call always has imm = -1, but for static functions
6133 			 * relocation is against STT_SECTION and insn->imm
6134 			 * points to a start of a static function
6135 			 *
6136 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6137 			 * the byte offset in the corresponding section.
6138 			 */
6139 			if (relo->type == RELO_CALL)
6140 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6141 			else
6142 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6143 		} else if (insn_is_pseudo_func(insn)) {
6144 			/*
6145 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6146 			 * functions are in the same section, so it shouldn't reach here.
6147 			 */
6148 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6149 				prog->name, insn_idx);
6150 			return -LIBBPF_ERRNO__RELOC;
6151 		} else {
6152 			/* if subprogram call is to a static function within
6153 			 * the same ELF section, there won't be any relocation
6154 			 * emitted, but it also means there is no additional
6155 			 * offset necessary, insns->imm is relative to
6156 			 * instruction's original position within the section
6157 			 */
6158 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6159 		}
6160 
6161 		/* we enforce that sub-programs should be in .text section */
6162 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6163 		if (!subprog) {
6164 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6165 				prog->name);
6166 			return -LIBBPF_ERRNO__RELOC;
6167 		}
6168 
6169 		/* if it's the first call instruction calling into this
6170 		 * subprogram (meaning this subprog hasn't been processed
6171 		 * yet) within the context of current main program:
6172 		 *   - append it at the end of main program's instructions blog;
6173 		 *   - process is recursively, while current program is put on hold;
6174 		 *   - if that subprogram calls some other not yet processes
6175 		 *   subprogram, same thing will happen recursively until
6176 		 *   there are no more unprocesses subprograms left to append
6177 		 *   and relocate.
6178 		 */
6179 		if (subprog->sub_insn_off == 0) {
6180 			subprog->sub_insn_off = main_prog->insns_cnt;
6181 
6182 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6183 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6184 			if (!insns) {
6185 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6186 				return -ENOMEM;
6187 			}
6188 			main_prog->insns = insns;
6189 			main_prog->insns_cnt = new_cnt;
6190 
6191 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6192 			       subprog->insns_cnt * sizeof(*insns));
6193 
6194 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6195 				 main_prog->name, subprog->insns_cnt, subprog->name);
6196 
6197 			/* The subprog insns are now appended. Append its relos too. */
6198 			err = append_subprog_relos(main_prog, subprog);
6199 			if (err)
6200 				return err;
6201 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6202 			if (err)
6203 				return err;
6204 		}
6205 
6206 		/* main_prog->insns memory could have been re-allocated, so
6207 		 * calculate pointer again
6208 		 */
6209 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6210 		/* calculate correct instruction position within current main
6211 		 * prog; each main prog can have a different set of
6212 		 * subprograms appended (potentially in different order as
6213 		 * well), so position of any subprog can be different for
6214 		 * different main programs
6215 		 */
6216 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6217 
6218 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6219 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6220 	}
6221 
6222 	return 0;
6223 }
6224 
6225 /*
6226  * Relocate sub-program calls.
6227  *
6228  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6229  * main prog) is processed separately. For each subprog (non-entry functions,
6230  * that can be called from either entry progs or other subprogs) gets their
6231  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6232  * hasn't been yet appended and relocated within current main prog. Once its
6233  * relocated, sub_insn_off will point at the position within current main prog
6234  * where given subprog was appended. This will further be used to relocate all
6235  * the call instructions jumping into this subprog.
6236  *
6237  * We start with main program and process all call instructions. If the call
6238  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6239  * is zero), subprog instructions are appended at the end of main program's
6240  * instruction array. Then main program is "put on hold" while we recursively
6241  * process newly appended subprogram. If that subprogram calls into another
6242  * subprogram that hasn't been appended, new subprogram is appended again to
6243  * the *main* prog's instructions (subprog's instructions are always left
6244  * untouched, as they need to be in unmodified state for subsequent main progs
6245  * and subprog instructions are always sent only as part of a main prog) and
6246  * the process continues recursively. Once all the subprogs called from a main
6247  * prog or any of its subprogs are appended (and relocated), all their
6248  * positions within finalized instructions array are known, so it's easy to
6249  * rewrite call instructions with correct relative offsets, corresponding to
6250  * desired target subprog.
6251  *
6252  * Its important to realize that some subprogs might not be called from some
6253  * main prog and any of its called/used subprogs. Those will keep their
6254  * subprog->sub_insn_off as zero at all times and won't be appended to current
6255  * main prog and won't be relocated within the context of current main prog.
6256  * They might still be used from other main progs later.
6257  *
6258  * Visually this process can be shown as below. Suppose we have two main
6259  * programs mainA and mainB and BPF object contains three subprogs: subA,
6260  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6261  * subC both call subB:
6262  *
6263  *        +--------+ +-------+
6264  *        |        v v       |
6265  *     +--+---+ +--+-+-+ +---+--+
6266  *     | subA | | subB | | subC |
6267  *     +--+---+ +------+ +---+--+
6268  *        ^                  ^
6269  *        |                  |
6270  *    +---+-------+   +------+----+
6271  *    |   mainA   |   |   mainB   |
6272  *    +-----------+   +-----------+
6273  *
6274  * We'll start relocating mainA, will find subA, append it and start
6275  * processing sub A recursively:
6276  *
6277  *    +-----------+------+
6278  *    |   mainA   | subA |
6279  *    +-----------+------+
6280  *
6281  * At this point we notice that subB is used from subA, so we append it and
6282  * relocate (there are no further subcalls from subB):
6283  *
6284  *    +-----------+------+------+
6285  *    |   mainA   | subA | subB |
6286  *    +-----------+------+------+
6287  *
6288  * At this point, we relocate subA calls, then go one level up and finish with
6289  * relocatin mainA calls. mainA is done.
6290  *
6291  * For mainB process is similar but results in different order. We start with
6292  * mainB and skip subA and subB, as mainB never calls them (at least
6293  * directly), but we see subC is needed, so we append and start processing it:
6294  *
6295  *    +-----------+------+
6296  *    |   mainB   | subC |
6297  *    +-----------+------+
6298  * Now we see subC needs subB, so we go back to it, append and relocate it:
6299  *
6300  *    +-----------+------+------+
6301  *    |   mainB   | subC | subB |
6302  *    +-----------+------+------+
6303  *
6304  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6305  */
6306 static int
6307 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6308 {
6309 	struct bpf_program *subprog;
6310 	int i, err;
6311 
6312 	/* mark all subprogs as not relocated (yet) within the context of
6313 	 * current main program
6314 	 */
6315 	for (i = 0; i < obj->nr_programs; i++) {
6316 		subprog = &obj->programs[i];
6317 		if (!prog_is_subprog(obj, subprog))
6318 			continue;
6319 
6320 		subprog->sub_insn_off = 0;
6321 	}
6322 
6323 	err = bpf_object__reloc_code(obj, prog, prog);
6324 	if (err)
6325 		return err;
6326 
6327 	return 0;
6328 }
6329 
6330 static void
6331 bpf_object__free_relocs(struct bpf_object *obj)
6332 {
6333 	struct bpf_program *prog;
6334 	int i;
6335 
6336 	/* free up relocation descriptors */
6337 	for (i = 0; i < obj->nr_programs; i++) {
6338 		prog = &obj->programs[i];
6339 		zfree(&prog->reloc_desc);
6340 		prog->nr_reloc = 0;
6341 	}
6342 }
6343 
6344 static int cmp_relocs(const void *_a, const void *_b)
6345 {
6346 	const struct reloc_desc *a = _a;
6347 	const struct reloc_desc *b = _b;
6348 
6349 	if (a->insn_idx != b->insn_idx)
6350 		return a->insn_idx < b->insn_idx ? -1 : 1;
6351 
6352 	/* no two relocations should have the same insn_idx, but ... */
6353 	if (a->type != b->type)
6354 		return a->type < b->type ? -1 : 1;
6355 
6356 	return 0;
6357 }
6358 
6359 static void bpf_object__sort_relos(struct bpf_object *obj)
6360 {
6361 	int i;
6362 
6363 	for (i = 0; i < obj->nr_programs; i++) {
6364 		struct bpf_program *p = &obj->programs[i];
6365 
6366 		if (!p->nr_reloc)
6367 			continue;
6368 
6369 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6370 	}
6371 }
6372 
6373 static int
6374 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6375 {
6376 	struct bpf_program *prog;
6377 	size_t i, j;
6378 	int err;
6379 
6380 	if (obj->btf_ext) {
6381 		err = bpf_object__relocate_core(obj, targ_btf_path);
6382 		if (err) {
6383 			pr_warn("failed to perform CO-RE relocations: %d\n",
6384 				err);
6385 			return err;
6386 		}
6387 		bpf_object__sort_relos(obj);
6388 	}
6389 
6390 	/* Before relocating calls pre-process relocations and mark
6391 	 * few ld_imm64 instructions that points to subprogs.
6392 	 * Otherwise bpf_object__reloc_code() later would have to consider
6393 	 * all ld_imm64 insns as relocation candidates. That would
6394 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6395 	 * would increase and most of them will fail to find a relo.
6396 	 */
6397 	for (i = 0; i < obj->nr_programs; i++) {
6398 		prog = &obj->programs[i];
6399 		for (j = 0; j < prog->nr_reloc; j++) {
6400 			struct reloc_desc *relo = &prog->reloc_desc[j];
6401 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6402 
6403 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6404 			if (relo->type == RELO_SUBPROG_ADDR)
6405 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6406 		}
6407 	}
6408 
6409 	/* relocate subprogram calls and append used subprograms to main
6410 	 * programs; each copy of subprogram code needs to be relocated
6411 	 * differently for each main program, because its code location might
6412 	 * have changed.
6413 	 * Append subprog relos to main programs to allow data relos to be
6414 	 * processed after text is completely relocated.
6415 	 */
6416 	for (i = 0; i < obj->nr_programs; i++) {
6417 		prog = &obj->programs[i];
6418 		/* sub-program's sub-calls are relocated within the context of
6419 		 * its main program only
6420 		 */
6421 		if (prog_is_subprog(obj, prog))
6422 			continue;
6423 		if (!prog->autoload)
6424 			continue;
6425 
6426 		err = bpf_object__relocate_calls(obj, prog);
6427 		if (err) {
6428 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6429 				prog->name, err);
6430 			return err;
6431 		}
6432 	}
6433 	/* Process data relos for main programs */
6434 	for (i = 0; i < obj->nr_programs; i++) {
6435 		prog = &obj->programs[i];
6436 		if (prog_is_subprog(obj, prog))
6437 			continue;
6438 		if (!prog->autoload)
6439 			continue;
6440 		err = bpf_object__relocate_data(obj, prog);
6441 		if (err) {
6442 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6443 				prog->name, err);
6444 			return err;
6445 		}
6446 	}
6447 
6448 	return 0;
6449 }
6450 
6451 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6452 					    Elf64_Shdr *shdr, Elf_Data *data);
6453 
6454 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6455 					 Elf64_Shdr *shdr, Elf_Data *data)
6456 {
6457 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6458 	int i, j, nrels, new_sz;
6459 	const struct btf_var_secinfo *vi = NULL;
6460 	const struct btf_type *sec, *var, *def;
6461 	struct bpf_map *map = NULL, *targ_map = NULL;
6462 	struct bpf_program *targ_prog = NULL;
6463 	bool is_prog_array, is_map_in_map;
6464 	const struct btf_member *member;
6465 	const char *name, *mname, *type;
6466 	unsigned int moff;
6467 	Elf64_Sym *sym;
6468 	Elf64_Rel *rel;
6469 	void *tmp;
6470 
6471 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6472 		return -EINVAL;
6473 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6474 	if (!sec)
6475 		return -EINVAL;
6476 
6477 	nrels = shdr->sh_size / shdr->sh_entsize;
6478 	for (i = 0; i < nrels; i++) {
6479 		rel = elf_rel_by_idx(data, i);
6480 		if (!rel) {
6481 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6482 			return -LIBBPF_ERRNO__FORMAT;
6483 		}
6484 
6485 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6486 		if (!sym) {
6487 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6488 				i, (size_t)ELF64_R_SYM(rel->r_info));
6489 			return -LIBBPF_ERRNO__FORMAT;
6490 		}
6491 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6492 
6493 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6494 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6495 			 (size_t)rel->r_offset, sym->st_name, name);
6496 
6497 		for (j = 0; j < obj->nr_maps; j++) {
6498 			map = &obj->maps[j];
6499 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6500 				continue;
6501 
6502 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6503 			if (vi->offset <= rel->r_offset &&
6504 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6505 				break;
6506 		}
6507 		if (j == obj->nr_maps) {
6508 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6509 				i, name, (size_t)rel->r_offset);
6510 			return -EINVAL;
6511 		}
6512 
6513 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6514 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6515 		type = is_map_in_map ? "map" : "prog";
6516 		if (is_map_in_map) {
6517 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6518 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6519 					i, name);
6520 				return -LIBBPF_ERRNO__RELOC;
6521 			}
6522 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6523 			    map->def.key_size != sizeof(int)) {
6524 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6525 					i, map->name, sizeof(int));
6526 				return -EINVAL;
6527 			}
6528 			targ_map = bpf_object__find_map_by_name(obj, name);
6529 			if (!targ_map) {
6530 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6531 					i, name);
6532 				return -ESRCH;
6533 			}
6534 		} else if (is_prog_array) {
6535 			targ_prog = bpf_object__find_program_by_name(obj, name);
6536 			if (!targ_prog) {
6537 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6538 					i, name);
6539 				return -ESRCH;
6540 			}
6541 			if (targ_prog->sec_idx != sym->st_shndx ||
6542 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6543 			    prog_is_subprog(obj, targ_prog)) {
6544 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6545 					i, name);
6546 				return -LIBBPF_ERRNO__RELOC;
6547 			}
6548 		} else {
6549 			return -EINVAL;
6550 		}
6551 
6552 		var = btf__type_by_id(obj->btf, vi->type);
6553 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6554 		if (btf_vlen(def) == 0)
6555 			return -EINVAL;
6556 		member = btf_members(def) + btf_vlen(def) - 1;
6557 		mname = btf__name_by_offset(obj->btf, member->name_off);
6558 		if (strcmp(mname, "values"))
6559 			return -EINVAL;
6560 
6561 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6562 		if (rel->r_offset - vi->offset < moff)
6563 			return -EINVAL;
6564 
6565 		moff = rel->r_offset - vi->offset - moff;
6566 		/* here we use BPF pointer size, which is always 64 bit, as we
6567 		 * are parsing ELF that was built for BPF target
6568 		 */
6569 		if (moff % bpf_ptr_sz)
6570 			return -EINVAL;
6571 		moff /= bpf_ptr_sz;
6572 		if (moff >= map->init_slots_sz) {
6573 			new_sz = moff + 1;
6574 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6575 			if (!tmp)
6576 				return -ENOMEM;
6577 			map->init_slots = tmp;
6578 			memset(map->init_slots + map->init_slots_sz, 0,
6579 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6580 			map->init_slots_sz = new_sz;
6581 		}
6582 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6583 
6584 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6585 			 i, map->name, moff, type, name);
6586 	}
6587 
6588 	return 0;
6589 }
6590 
6591 static int bpf_object__collect_relos(struct bpf_object *obj)
6592 {
6593 	int i, err;
6594 
6595 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6596 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6597 		Elf64_Shdr *shdr;
6598 		Elf_Data *data;
6599 		int idx;
6600 
6601 		if (sec_desc->sec_type != SEC_RELO)
6602 			continue;
6603 
6604 		shdr = sec_desc->shdr;
6605 		data = sec_desc->data;
6606 		idx = shdr->sh_info;
6607 
6608 		if (shdr->sh_type != SHT_REL) {
6609 			pr_warn("internal error at %d\n", __LINE__);
6610 			return -LIBBPF_ERRNO__INTERNAL;
6611 		}
6612 
6613 		if (idx == obj->efile.st_ops_shndx)
6614 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6615 		else if (idx == obj->efile.btf_maps_shndx)
6616 			err = bpf_object__collect_map_relos(obj, shdr, data);
6617 		else
6618 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6619 		if (err)
6620 			return err;
6621 	}
6622 
6623 	bpf_object__sort_relos(obj);
6624 	return 0;
6625 }
6626 
6627 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6628 {
6629 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6630 	    BPF_OP(insn->code) == BPF_CALL &&
6631 	    BPF_SRC(insn->code) == BPF_K &&
6632 	    insn->src_reg == 0 &&
6633 	    insn->dst_reg == 0) {
6634 		    *func_id = insn->imm;
6635 		    return true;
6636 	}
6637 	return false;
6638 }
6639 
6640 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6641 {
6642 	struct bpf_insn *insn = prog->insns;
6643 	enum bpf_func_id func_id;
6644 	int i;
6645 
6646 	if (obj->gen_loader)
6647 		return 0;
6648 
6649 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6650 		if (!insn_is_helper_call(insn, &func_id))
6651 			continue;
6652 
6653 		/* on kernels that don't yet support
6654 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6655 		 * to bpf_probe_read() which works well for old kernels
6656 		 */
6657 		switch (func_id) {
6658 		case BPF_FUNC_probe_read_kernel:
6659 		case BPF_FUNC_probe_read_user:
6660 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6661 				insn->imm = BPF_FUNC_probe_read;
6662 			break;
6663 		case BPF_FUNC_probe_read_kernel_str:
6664 		case BPF_FUNC_probe_read_user_str:
6665 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6666 				insn->imm = BPF_FUNC_probe_read_str;
6667 			break;
6668 		default:
6669 			break;
6670 		}
6671 	}
6672 	return 0;
6673 }
6674 
6675 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6676 				     int *btf_obj_fd, int *btf_type_id);
6677 
6678 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6679 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6680 				    struct bpf_prog_load_opts *opts, long cookie)
6681 {
6682 	enum sec_def_flags def = cookie;
6683 
6684 	/* old kernels might not support specifying expected_attach_type */
6685 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6686 		opts->expected_attach_type = 0;
6687 
6688 	if (def & SEC_SLEEPABLE)
6689 		opts->prog_flags |= BPF_F_SLEEPABLE;
6690 
6691 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6692 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6693 
6694 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6695 		int btf_obj_fd = 0, btf_type_id = 0, err;
6696 		const char *attach_name;
6697 
6698 		attach_name = strchr(prog->sec_name, '/');
6699 		if (!attach_name) {
6700 			/* if BPF program is annotated with just SEC("fentry")
6701 			 * (or similar) without declaratively specifying
6702 			 * target, then it is expected that target will be
6703 			 * specified with bpf_program__set_attach_target() at
6704 			 * runtime before BPF object load step. If not, then
6705 			 * there is nothing to load into the kernel as BPF
6706 			 * verifier won't be able to validate BPF program
6707 			 * correctness anyways.
6708 			 */
6709 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6710 				prog->name);
6711 			return -EINVAL;
6712 		}
6713 		attach_name++; /* skip over / */
6714 
6715 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6716 		if (err)
6717 			return err;
6718 
6719 		/* cache resolved BTF FD and BTF type ID in the prog */
6720 		prog->attach_btf_obj_fd = btf_obj_fd;
6721 		prog->attach_btf_id = btf_type_id;
6722 
6723 		/* but by now libbpf common logic is not utilizing
6724 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6725 		 * this callback is called after opts were populated by
6726 		 * libbpf, so this callback has to update opts explicitly here
6727 		 */
6728 		opts->attach_btf_obj_fd = btf_obj_fd;
6729 		opts->attach_btf_id = btf_type_id;
6730 	}
6731 	return 0;
6732 }
6733 
6734 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6735 
6736 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6737 				struct bpf_insn *insns, int insns_cnt,
6738 				const char *license, __u32 kern_version, int *prog_fd)
6739 {
6740 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6741 	const char *prog_name = NULL;
6742 	char *cp, errmsg[STRERR_BUFSIZE];
6743 	size_t log_buf_size = 0;
6744 	char *log_buf = NULL, *tmp;
6745 	int btf_fd, ret, err;
6746 	bool own_log_buf = true;
6747 	__u32 log_level = prog->log_level;
6748 
6749 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6750 		/*
6751 		 * The program type must be set.  Most likely we couldn't find a proper
6752 		 * section definition at load time, and thus we didn't infer the type.
6753 		 */
6754 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6755 			prog->name, prog->sec_name);
6756 		return -EINVAL;
6757 	}
6758 
6759 	if (!insns || !insns_cnt)
6760 		return -EINVAL;
6761 
6762 	load_attr.expected_attach_type = prog->expected_attach_type;
6763 	if (kernel_supports(obj, FEAT_PROG_NAME))
6764 		prog_name = prog->name;
6765 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6766 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6767 	load_attr.attach_btf_id = prog->attach_btf_id;
6768 	load_attr.kern_version = kern_version;
6769 	load_attr.prog_ifindex = prog->prog_ifindex;
6770 
6771 	/* specify func_info/line_info only if kernel supports them */
6772 	btf_fd = bpf_object__btf_fd(obj);
6773 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6774 		load_attr.prog_btf_fd = btf_fd;
6775 		load_attr.func_info = prog->func_info;
6776 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6777 		load_attr.func_info_cnt = prog->func_info_cnt;
6778 		load_attr.line_info = prog->line_info;
6779 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6780 		load_attr.line_info_cnt = prog->line_info_cnt;
6781 	}
6782 	load_attr.log_level = log_level;
6783 	load_attr.prog_flags = prog->prog_flags;
6784 	load_attr.fd_array = obj->fd_array;
6785 
6786 	/* adjust load_attr if sec_def provides custom preload callback */
6787 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6788 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6789 		if (err < 0) {
6790 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6791 				prog->name, err);
6792 			return err;
6793 		}
6794 		insns = prog->insns;
6795 		insns_cnt = prog->insns_cnt;
6796 	}
6797 
6798 	if (obj->gen_loader) {
6799 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6800 				   license, insns, insns_cnt, &load_attr,
6801 				   prog - obj->programs);
6802 		*prog_fd = -1;
6803 		return 0;
6804 	}
6805 
6806 retry_load:
6807 	/* if log_level is zero, we don't request logs initially even if
6808 	 * custom log_buf is specified; if the program load fails, then we'll
6809 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6810 	 * our own and retry the load to get details on what failed
6811 	 */
6812 	if (log_level) {
6813 		if (prog->log_buf) {
6814 			log_buf = prog->log_buf;
6815 			log_buf_size = prog->log_size;
6816 			own_log_buf = false;
6817 		} else if (obj->log_buf) {
6818 			log_buf = obj->log_buf;
6819 			log_buf_size = obj->log_size;
6820 			own_log_buf = false;
6821 		} else {
6822 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6823 			tmp = realloc(log_buf, log_buf_size);
6824 			if (!tmp) {
6825 				ret = -ENOMEM;
6826 				goto out;
6827 			}
6828 			log_buf = tmp;
6829 			log_buf[0] = '\0';
6830 			own_log_buf = true;
6831 		}
6832 	}
6833 
6834 	load_attr.log_buf = log_buf;
6835 	load_attr.log_size = log_buf_size;
6836 	load_attr.log_level = log_level;
6837 
6838 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6839 	if (ret >= 0) {
6840 		if (log_level && own_log_buf) {
6841 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6842 				 prog->name, log_buf);
6843 		}
6844 
6845 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6846 			struct bpf_map *map;
6847 			int i;
6848 
6849 			for (i = 0; i < obj->nr_maps; i++) {
6850 				map = &prog->obj->maps[i];
6851 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6852 					continue;
6853 
6854 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6855 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6856 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
6857 						prog->name, map->real_name, cp);
6858 					/* Don't fail hard if can't bind rodata. */
6859 				}
6860 			}
6861 		}
6862 
6863 		*prog_fd = ret;
6864 		ret = 0;
6865 		goto out;
6866 	}
6867 
6868 	if (log_level == 0) {
6869 		log_level = 1;
6870 		goto retry_load;
6871 	}
6872 	/* On ENOSPC, increase log buffer size and retry, unless custom
6873 	 * log_buf is specified.
6874 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
6875 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6876 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
6877 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6878 	 */
6879 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6880 		goto retry_load;
6881 
6882 	ret = -errno;
6883 
6884 	/* post-process verifier log to improve error descriptions */
6885 	fixup_verifier_log(prog, log_buf, log_buf_size);
6886 
6887 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6888 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6889 	pr_perm_msg(ret);
6890 
6891 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
6892 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6893 			prog->name, log_buf);
6894 	}
6895 
6896 out:
6897 	if (own_log_buf)
6898 		free(log_buf);
6899 	return ret;
6900 }
6901 
6902 static char *find_prev_line(char *buf, char *cur)
6903 {
6904 	char *p;
6905 
6906 	if (cur == buf) /* end of a log buf */
6907 		return NULL;
6908 
6909 	p = cur - 1;
6910 	while (p - 1 >= buf && *(p - 1) != '\n')
6911 		p--;
6912 
6913 	return p;
6914 }
6915 
6916 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6917 		      char *orig, size_t orig_sz, const char *patch)
6918 {
6919 	/* size of the remaining log content to the right from the to-be-replaced part */
6920 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6921 	size_t patch_sz = strlen(patch);
6922 
6923 	if (patch_sz != orig_sz) {
6924 		/* If patch line(s) are longer than original piece of verifier log,
6925 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
6926 		 * starting from after to-be-replaced part of the log.
6927 		 *
6928 		 * If patch line(s) are shorter than original piece of verifier log,
6929 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
6930 		 * starting from after to-be-replaced part of the log
6931 		 *
6932 		 * We need to be careful about not overflowing available
6933 		 * buf_sz capacity. If that's the case, we'll truncate the end
6934 		 * of the original log, as necessary.
6935 		 */
6936 		if (patch_sz > orig_sz) {
6937 			if (orig + patch_sz >= buf + buf_sz) {
6938 				/* patch is big enough to cover remaining space completely */
6939 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6940 				rem_sz = 0;
6941 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
6942 				/* patch causes part of remaining log to be truncated */
6943 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6944 			}
6945 		}
6946 		/* shift remaining log to the right by calculated amount */
6947 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6948 	}
6949 
6950 	memcpy(orig, patch, patch_sz);
6951 }
6952 
6953 static void fixup_log_failed_core_relo(struct bpf_program *prog,
6954 				       char *buf, size_t buf_sz, size_t log_sz,
6955 				       char *line1, char *line2, char *line3)
6956 {
6957 	/* Expected log for failed and not properly guarded CO-RE relocation:
6958 	 * line1 -> 123: (85) call unknown#195896080
6959 	 * line2 -> invalid func unknown#195896080
6960 	 * line3 -> <anything else or end of buffer>
6961 	 *
6962 	 * "123" is the index of the instruction that was poisoned. We extract
6963 	 * instruction index to find corresponding CO-RE relocation and
6964 	 * replace this part of the log with more relevant information about
6965 	 * failed CO-RE relocation.
6966 	 */
6967 	const struct bpf_core_relo *relo;
6968 	struct bpf_core_spec spec;
6969 	char patch[512], spec_buf[256];
6970 	int insn_idx, err, spec_len;
6971 
6972 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
6973 		return;
6974 
6975 	relo = find_relo_core(prog, insn_idx);
6976 	if (!relo)
6977 		return;
6978 
6979 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
6980 	if (err)
6981 		return;
6982 
6983 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
6984 	snprintf(patch, sizeof(patch),
6985 		 "%d: <invalid CO-RE relocation>\n"
6986 		 "failed to resolve CO-RE relocation %s%s\n",
6987 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
6988 
6989 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6990 }
6991 
6992 static void fixup_log_missing_map_load(struct bpf_program *prog,
6993 				       char *buf, size_t buf_sz, size_t log_sz,
6994 				       char *line1, char *line2, char *line3)
6995 {
6996 	/* Expected log for failed and not properly guarded CO-RE relocation:
6997 	 * line1 -> 123: (85) call unknown#2001000345
6998 	 * line2 -> invalid func unknown#2001000345
6999 	 * line3 -> <anything else or end of buffer>
7000 	 *
7001 	 * "123" is the index of the instruction that was poisoned.
7002 	 * "345" in "2001000345" are map index in obj->maps to fetch map name.
7003 	 */
7004 	struct bpf_object *obj = prog->obj;
7005 	const struct bpf_map *map;
7006 	int insn_idx, map_idx;
7007 	char patch[128];
7008 
7009 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7010 		return;
7011 
7012 	map_idx -= MAP_LDIMM64_POISON_BASE;
7013 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7014 		return;
7015 	map = &obj->maps[map_idx];
7016 
7017 	snprintf(patch, sizeof(patch),
7018 		 "%d: <invalid BPF map reference>\n"
7019 		 "BPF map '%s' is referenced but wasn't created\n",
7020 		 insn_idx, map->name);
7021 
7022 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7023 }
7024 
7025 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7026 {
7027 	/* look for familiar error patterns in last N lines of the log */
7028 	const size_t max_last_line_cnt = 10;
7029 	char *prev_line, *cur_line, *next_line;
7030 	size_t log_sz;
7031 	int i;
7032 
7033 	if (!buf)
7034 		return;
7035 
7036 	log_sz = strlen(buf) + 1;
7037 	next_line = buf + log_sz - 1;
7038 
7039 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7040 		cur_line = find_prev_line(buf, next_line);
7041 		if (!cur_line)
7042 			return;
7043 
7044 		/* failed CO-RE relocation case */
7045 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7046 			prev_line = find_prev_line(buf, cur_line);
7047 			if (!prev_line)
7048 				continue;
7049 
7050 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7051 						   prev_line, cur_line, next_line);
7052 			return;
7053 		} else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
7054 			prev_line = find_prev_line(buf, cur_line);
7055 			if (!prev_line)
7056 				continue;
7057 
7058 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7059 						   prev_line, cur_line, next_line);
7060 			return;
7061 		}
7062 	}
7063 }
7064 
7065 static int bpf_program_record_relos(struct bpf_program *prog)
7066 {
7067 	struct bpf_object *obj = prog->obj;
7068 	int i;
7069 
7070 	for (i = 0; i < prog->nr_reloc; i++) {
7071 		struct reloc_desc *relo = &prog->reloc_desc[i];
7072 		struct extern_desc *ext = &obj->externs[relo->sym_off];
7073 
7074 		switch (relo->type) {
7075 		case RELO_EXTERN_VAR:
7076 			if (ext->type != EXT_KSYM)
7077 				continue;
7078 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7079 					       ext->is_weak, !ext->ksym.type_id,
7080 					       BTF_KIND_VAR, relo->insn_idx);
7081 			break;
7082 		case RELO_EXTERN_FUNC:
7083 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7084 					       ext->is_weak, false, BTF_KIND_FUNC,
7085 					       relo->insn_idx);
7086 			break;
7087 		case RELO_CORE: {
7088 			struct bpf_core_relo cr = {
7089 				.insn_off = relo->insn_idx * 8,
7090 				.type_id = relo->core_relo->type_id,
7091 				.access_str_off = relo->core_relo->access_str_off,
7092 				.kind = relo->core_relo->kind,
7093 			};
7094 
7095 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7096 			break;
7097 		}
7098 		default:
7099 			continue;
7100 		}
7101 	}
7102 	return 0;
7103 }
7104 
7105 static int
7106 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7107 {
7108 	struct bpf_program *prog;
7109 	size_t i;
7110 	int err;
7111 
7112 	for (i = 0; i < obj->nr_programs; i++) {
7113 		prog = &obj->programs[i];
7114 		err = bpf_object__sanitize_prog(obj, prog);
7115 		if (err)
7116 			return err;
7117 	}
7118 
7119 	for (i = 0; i < obj->nr_programs; i++) {
7120 		prog = &obj->programs[i];
7121 		if (prog_is_subprog(obj, prog))
7122 			continue;
7123 		if (!prog->autoload) {
7124 			pr_debug("prog '%s': skipped loading\n", prog->name);
7125 			continue;
7126 		}
7127 		prog->log_level |= log_level;
7128 
7129 		if (obj->gen_loader)
7130 			bpf_program_record_relos(prog);
7131 
7132 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7133 					   obj->license, obj->kern_version, &prog->fd);
7134 		if (err) {
7135 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7136 			return err;
7137 		}
7138 	}
7139 
7140 	bpf_object__free_relocs(obj);
7141 	return 0;
7142 }
7143 
7144 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7145 
7146 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7147 {
7148 	struct bpf_program *prog;
7149 	int err;
7150 
7151 	bpf_object__for_each_program(prog, obj) {
7152 		prog->sec_def = find_sec_def(prog->sec_name);
7153 		if (!prog->sec_def) {
7154 			/* couldn't guess, but user might manually specify */
7155 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7156 				prog->name, prog->sec_name);
7157 			continue;
7158 		}
7159 
7160 		prog->type = prog->sec_def->prog_type;
7161 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7162 
7163 		/* sec_def can have custom callback which should be called
7164 		 * after bpf_program is initialized to adjust its properties
7165 		 */
7166 		if (prog->sec_def->prog_setup_fn) {
7167 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7168 			if (err < 0) {
7169 				pr_warn("prog '%s': failed to initialize: %d\n",
7170 					prog->name, err);
7171 				return err;
7172 			}
7173 		}
7174 	}
7175 
7176 	return 0;
7177 }
7178 
7179 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7180 					  const struct bpf_object_open_opts *opts)
7181 {
7182 	const char *obj_name, *kconfig, *btf_tmp_path;
7183 	struct bpf_object *obj;
7184 	char tmp_name[64];
7185 	int err;
7186 	char *log_buf;
7187 	size_t log_size;
7188 	__u32 log_level;
7189 
7190 	if (elf_version(EV_CURRENT) == EV_NONE) {
7191 		pr_warn("failed to init libelf for %s\n",
7192 			path ? : "(mem buf)");
7193 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7194 	}
7195 
7196 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7197 		return ERR_PTR(-EINVAL);
7198 
7199 	obj_name = OPTS_GET(opts, object_name, NULL);
7200 	if (obj_buf) {
7201 		if (!obj_name) {
7202 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7203 				 (unsigned long)obj_buf,
7204 				 (unsigned long)obj_buf_sz);
7205 			obj_name = tmp_name;
7206 		}
7207 		path = obj_name;
7208 		pr_debug("loading object '%s' from buffer\n", obj_name);
7209 	}
7210 
7211 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7212 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7213 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7214 	if (log_size > UINT_MAX)
7215 		return ERR_PTR(-EINVAL);
7216 	if (log_size && !log_buf)
7217 		return ERR_PTR(-EINVAL);
7218 
7219 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7220 	if (IS_ERR(obj))
7221 		return obj;
7222 
7223 	obj->log_buf = log_buf;
7224 	obj->log_size = log_size;
7225 	obj->log_level = log_level;
7226 
7227 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7228 	if (btf_tmp_path) {
7229 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7230 			err = -ENAMETOOLONG;
7231 			goto out;
7232 		}
7233 		obj->btf_custom_path = strdup(btf_tmp_path);
7234 		if (!obj->btf_custom_path) {
7235 			err = -ENOMEM;
7236 			goto out;
7237 		}
7238 	}
7239 
7240 	kconfig = OPTS_GET(opts, kconfig, NULL);
7241 	if (kconfig) {
7242 		obj->kconfig = strdup(kconfig);
7243 		if (!obj->kconfig) {
7244 			err = -ENOMEM;
7245 			goto out;
7246 		}
7247 	}
7248 
7249 	err = bpf_object__elf_init(obj);
7250 	err = err ? : bpf_object__check_endianness(obj);
7251 	err = err ? : bpf_object__elf_collect(obj);
7252 	err = err ? : bpf_object__collect_externs(obj);
7253 	err = err ? : bpf_object_fixup_btf(obj);
7254 	err = err ? : bpf_object__init_maps(obj, opts);
7255 	err = err ? : bpf_object_init_progs(obj, opts);
7256 	err = err ? : bpf_object__collect_relos(obj);
7257 	if (err)
7258 		goto out;
7259 
7260 	bpf_object__elf_finish(obj);
7261 
7262 	return obj;
7263 out:
7264 	bpf_object__close(obj);
7265 	return ERR_PTR(err);
7266 }
7267 
7268 struct bpf_object *
7269 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7270 {
7271 	if (!path)
7272 		return libbpf_err_ptr(-EINVAL);
7273 
7274 	pr_debug("loading %s\n", path);
7275 
7276 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7277 }
7278 
7279 struct bpf_object *bpf_object__open(const char *path)
7280 {
7281 	return bpf_object__open_file(path, NULL);
7282 }
7283 
7284 struct bpf_object *
7285 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7286 		     const struct bpf_object_open_opts *opts)
7287 {
7288 	if (!obj_buf || obj_buf_sz == 0)
7289 		return libbpf_err_ptr(-EINVAL);
7290 
7291 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7292 }
7293 
7294 static int bpf_object_unload(struct bpf_object *obj)
7295 {
7296 	size_t i;
7297 
7298 	if (!obj)
7299 		return libbpf_err(-EINVAL);
7300 
7301 	for (i = 0; i < obj->nr_maps; i++) {
7302 		zclose(obj->maps[i].fd);
7303 		if (obj->maps[i].st_ops)
7304 			zfree(&obj->maps[i].st_ops->kern_vdata);
7305 	}
7306 
7307 	for (i = 0; i < obj->nr_programs; i++)
7308 		bpf_program__unload(&obj->programs[i]);
7309 
7310 	return 0;
7311 }
7312 
7313 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7314 {
7315 	struct bpf_map *m;
7316 
7317 	bpf_object__for_each_map(m, obj) {
7318 		if (!bpf_map__is_internal(m))
7319 			continue;
7320 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7321 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7322 	}
7323 
7324 	return 0;
7325 }
7326 
7327 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7328 {
7329 	char sym_type, sym_name[500];
7330 	unsigned long long sym_addr;
7331 	int ret, err = 0;
7332 	FILE *f;
7333 
7334 	f = fopen("/proc/kallsyms", "r");
7335 	if (!f) {
7336 		err = -errno;
7337 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7338 		return err;
7339 	}
7340 
7341 	while (true) {
7342 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7343 			     &sym_addr, &sym_type, sym_name);
7344 		if (ret == EOF && feof(f))
7345 			break;
7346 		if (ret != 3) {
7347 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7348 			err = -EINVAL;
7349 			break;
7350 		}
7351 
7352 		err = cb(sym_addr, sym_type, sym_name, ctx);
7353 		if (err)
7354 			break;
7355 	}
7356 
7357 	fclose(f);
7358 	return err;
7359 }
7360 
7361 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7362 		       const char *sym_name, void *ctx)
7363 {
7364 	struct bpf_object *obj = ctx;
7365 	const struct btf_type *t;
7366 	struct extern_desc *ext;
7367 
7368 	ext = find_extern_by_name(obj, sym_name);
7369 	if (!ext || ext->type != EXT_KSYM)
7370 		return 0;
7371 
7372 	t = btf__type_by_id(obj->btf, ext->btf_id);
7373 	if (!btf_is_var(t))
7374 		return 0;
7375 
7376 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7377 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7378 			sym_name, ext->ksym.addr, sym_addr);
7379 		return -EINVAL;
7380 	}
7381 	if (!ext->is_set) {
7382 		ext->is_set = true;
7383 		ext->ksym.addr = sym_addr;
7384 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7385 	}
7386 	return 0;
7387 }
7388 
7389 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7390 {
7391 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7392 }
7393 
7394 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7395 			    __u16 kind, struct btf **res_btf,
7396 			    struct module_btf **res_mod_btf)
7397 {
7398 	struct module_btf *mod_btf;
7399 	struct btf *btf;
7400 	int i, id, err;
7401 
7402 	btf = obj->btf_vmlinux;
7403 	mod_btf = NULL;
7404 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7405 
7406 	if (id == -ENOENT) {
7407 		err = load_module_btfs(obj);
7408 		if (err)
7409 			return err;
7410 
7411 		for (i = 0; i < obj->btf_module_cnt; i++) {
7412 			/* we assume module_btf's BTF FD is always >0 */
7413 			mod_btf = &obj->btf_modules[i];
7414 			btf = mod_btf->btf;
7415 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7416 			if (id != -ENOENT)
7417 				break;
7418 		}
7419 	}
7420 	if (id <= 0)
7421 		return -ESRCH;
7422 
7423 	*res_btf = btf;
7424 	*res_mod_btf = mod_btf;
7425 	return id;
7426 }
7427 
7428 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7429 					       struct extern_desc *ext)
7430 {
7431 	const struct btf_type *targ_var, *targ_type;
7432 	__u32 targ_type_id, local_type_id;
7433 	struct module_btf *mod_btf = NULL;
7434 	const char *targ_var_name;
7435 	struct btf *btf = NULL;
7436 	int id, err;
7437 
7438 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7439 	if (id < 0) {
7440 		if (id == -ESRCH && ext->is_weak)
7441 			return 0;
7442 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7443 			ext->name);
7444 		return id;
7445 	}
7446 
7447 	/* find local type_id */
7448 	local_type_id = ext->ksym.type_id;
7449 
7450 	/* find target type_id */
7451 	targ_var = btf__type_by_id(btf, id);
7452 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7453 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7454 
7455 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7456 					btf, targ_type_id);
7457 	if (err <= 0) {
7458 		const struct btf_type *local_type;
7459 		const char *targ_name, *local_name;
7460 
7461 		local_type = btf__type_by_id(obj->btf, local_type_id);
7462 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7463 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7464 
7465 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7466 			ext->name, local_type_id,
7467 			btf_kind_str(local_type), local_name, targ_type_id,
7468 			btf_kind_str(targ_type), targ_name);
7469 		return -EINVAL;
7470 	}
7471 
7472 	ext->is_set = true;
7473 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7474 	ext->ksym.kernel_btf_id = id;
7475 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7476 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7477 
7478 	return 0;
7479 }
7480 
7481 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7482 						struct extern_desc *ext)
7483 {
7484 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7485 	struct module_btf *mod_btf = NULL;
7486 	const struct btf_type *kern_func;
7487 	struct btf *kern_btf = NULL;
7488 	int ret;
7489 
7490 	local_func_proto_id = ext->ksym.type_id;
7491 
7492 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7493 	if (kfunc_id < 0) {
7494 		if (kfunc_id == -ESRCH && ext->is_weak)
7495 			return 0;
7496 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7497 			ext->name);
7498 		return kfunc_id;
7499 	}
7500 
7501 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7502 	kfunc_proto_id = kern_func->type;
7503 
7504 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7505 					kern_btf, kfunc_proto_id);
7506 	if (ret <= 0) {
7507 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7508 			ext->name, local_func_proto_id, kfunc_proto_id);
7509 		return -EINVAL;
7510 	}
7511 
7512 	/* set index for module BTF fd in fd_array, if unset */
7513 	if (mod_btf && !mod_btf->fd_array_idx) {
7514 		/* insn->off is s16 */
7515 		if (obj->fd_array_cnt == INT16_MAX) {
7516 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7517 				ext->name, mod_btf->fd_array_idx);
7518 			return -E2BIG;
7519 		}
7520 		/* Cannot use index 0 for module BTF fd */
7521 		if (!obj->fd_array_cnt)
7522 			obj->fd_array_cnt = 1;
7523 
7524 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7525 					obj->fd_array_cnt + 1);
7526 		if (ret)
7527 			return ret;
7528 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7529 		/* we assume module BTF FD is always >0 */
7530 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7531 	}
7532 
7533 	ext->is_set = true;
7534 	ext->ksym.kernel_btf_id = kfunc_id;
7535 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7536 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7537 		 ext->name, kfunc_id);
7538 
7539 	return 0;
7540 }
7541 
7542 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7543 {
7544 	const struct btf_type *t;
7545 	struct extern_desc *ext;
7546 	int i, err;
7547 
7548 	for (i = 0; i < obj->nr_extern; i++) {
7549 		ext = &obj->externs[i];
7550 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7551 			continue;
7552 
7553 		if (obj->gen_loader) {
7554 			ext->is_set = true;
7555 			ext->ksym.kernel_btf_obj_fd = 0;
7556 			ext->ksym.kernel_btf_id = 0;
7557 			continue;
7558 		}
7559 		t = btf__type_by_id(obj->btf, ext->btf_id);
7560 		if (btf_is_var(t))
7561 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7562 		else
7563 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7564 		if (err)
7565 			return err;
7566 	}
7567 	return 0;
7568 }
7569 
7570 static int bpf_object__resolve_externs(struct bpf_object *obj,
7571 				       const char *extra_kconfig)
7572 {
7573 	bool need_config = false, need_kallsyms = false;
7574 	bool need_vmlinux_btf = false;
7575 	struct extern_desc *ext;
7576 	void *kcfg_data = NULL;
7577 	int err, i;
7578 
7579 	if (obj->nr_extern == 0)
7580 		return 0;
7581 
7582 	if (obj->kconfig_map_idx >= 0)
7583 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7584 
7585 	for (i = 0; i < obj->nr_extern; i++) {
7586 		ext = &obj->externs[i];
7587 
7588 		if (ext->type == EXT_KSYM) {
7589 			if (ext->ksym.type_id)
7590 				need_vmlinux_btf = true;
7591 			else
7592 				need_kallsyms = true;
7593 			continue;
7594 		} else if (ext->type == EXT_KCFG) {
7595 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7596 			__u64 value = 0;
7597 
7598 			/* Kconfig externs need actual /proc/config.gz */
7599 			if (str_has_pfx(ext->name, "CONFIG_")) {
7600 				need_config = true;
7601 				continue;
7602 			}
7603 
7604 			/* Virtual kcfg externs are customly handled by libbpf */
7605 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7606 				value = get_kernel_version();
7607 				if (!value) {
7608 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7609 					return -EINVAL;
7610 				}
7611 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7612 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7613 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7614 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7615 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7616 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7617 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7618 				 * customly by libbpf (their values don't come from Kconfig).
7619 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7620 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7621 				 * externs.
7622 				 */
7623 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7624 				return -EINVAL;
7625 			}
7626 
7627 			err = set_kcfg_value_num(ext, ext_ptr, value);
7628 			if (err)
7629 				return err;
7630 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7631 				 ext->name, (long long)value);
7632 		} else {
7633 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7634 			return -EINVAL;
7635 		}
7636 	}
7637 	if (need_config && extra_kconfig) {
7638 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7639 		if (err)
7640 			return -EINVAL;
7641 		need_config = false;
7642 		for (i = 0; i < obj->nr_extern; i++) {
7643 			ext = &obj->externs[i];
7644 			if (ext->type == EXT_KCFG && !ext->is_set) {
7645 				need_config = true;
7646 				break;
7647 			}
7648 		}
7649 	}
7650 	if (need_config) {
7651 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7652 		if (err)
7653 			return -EINVAL;
7654 	}
7655 	if (need_kallsyms) {
7656 		err = bpf_object__read_kallsyms_file(obj);
7657 		if (err)
7658 			return -EINVAL;
7659 	}
7660 	if (need_vmlinux_btf) {
7661 		err = bpf_object__resolve_ksyms_btf_id(obj);
7662 		if (err)
7663 			return -EINVAL;
7664 	}
7665 	for (i = 0; i < obj->nr_extern; i++) {
7666 		ext = &obj->externs[i];
7667 
7668 		if (!ext->is_set && !ext->is_weak) {
7669 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7670 			return -ESRCH;
7671 		} else if (!ext->is_set) {
7672 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7673 				 ext->name);
7674 		}
7675 	}
7676 
7677 	return 0;
7678 }
7679 
7680 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7681 {
7682 	int err, i;
7683 
7684 	if (!obj)
7685 		return libbpf_err(-EINVAL);
7686 
7687 	if (obj->loaded) {
7688 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7689 		return libbpf_err(-EINVAL);
7690 	}
7691 
7692 	if (obj->gen_loader)
7693 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7694 
7695 	err = bpf_object__probe_loading(obj);
7696 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7697 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7698 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7699 	err = err ? : bpf_object__sanitize_maps(obj);
7700 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7701 	err = err ? : bpf_object__create_maps(obj);
7702 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7703 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7704 	err = err ? : bpf_object_init_prog_arrays(obj);
7705 
7706 	if (obj->gen_loader) {
7707 		/* reset FDs */
7708 		if (obj->btf)
7709 			btf__set_fd(obj->btf, -1);
7710 		for (i = 0; i < obj->nr_maps; i++)
7711 			obj->maps[i].fd = -1;
7712 		if (!err)
7713 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7714 	}
7715 
7716 	/* clean up fd_array */
7717 	zfree(&obj->fd_array);
7718 
7719 	/* clean up module BTFs */
7720 	for (i = 0; i < obj->btf_module_cnt; i++) {
7721 		close(obj->btf_modules[i].fd);
7722 		btf__free(obj->btf_modules[i].btf);
7723 		free(obj->btf_modules[i].name);
7724 	}
7725 	free(obj->btf_modules);
7726 
7727 	/* clean up vmlinux BTF */
7728 	btf__free(obj->btf_vmlinux);
7729 	obj->btf_vmlinux = NULL;
7730 
7731 	obj->loaded = true; /* doesn't matter if successfully or not */
7732 
7733 	if (err)
7734 		goto out;
7735 
7736 	return 0;
7737 out:
7738 	/* unpin any maps that were auto-pinned during load */
7739 	for (i = 0; i < obj->nr_maps; i++)
7740 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7741 			bpf_map__unpin(&obj->maps[i], NULL);
7742 
7743 	bpf_object_unload(obj);
7744 	pr_warn("failed to load object '%s'\n", obj->path);
7745 	return libbpf_err(err);
7746 }
7747 
7748 int bpf_object__load(struct bpf_object *obj)
7749 {
7750 	return bpf_object_load(obj, 0, NULL);
7751 }
7752 
7753 static int make_parent_dir(const char *path)
7754 {
7755 	char *cp, errmsg[STRERR_BUFSIZE];
7756 	char *dname, *dir;
7757 	int err = 0;
7758 
7759 	dname = strdup(path);
7760 	if (dname == NULL)
7761 		return -ENOMEM;
7762 
7763 	dir = dirname(dname);
7764 	if (mkdir(dir, 0700) && errno != EEXIST)
7765 		err = -errno;
7766 
7767 	free(dname);
7768 	if (err) {
7769 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7770 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7771 	}
7772 	return err;
7773 }
7774 
7775 static int check_path(const char *path)
7776 {
7777 	char *cp, errmsg[STRERR_BUFSIZE];
7778 	struct statfs st_fs;
7779 	char *dname, *dir;
7780 	int err = 0;
7781 
7782 	if (path == NULL)
7783 		return -EINVAL;
7784 
7785 	dname = strdup(path);
7786 	if (dname == NULL)
7787 		return -ENOMEM;
7788 
7789 	dir = dirname(dname);
7790 	if (statfs(dir, &st_fs)) {
7791 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7792 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7793 		err = -errno;
7794 	}
7795 	free(dname);
7796 
7797 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7798 		pr_warn("specified path %s is not on BPF FS\n", path);
7799 		err = -EINVAL;
7800 	}
7801 
7802 	return err;
7803 }
7804 
7805 int bpf_program__pin(struct bpf_program *prog, const char *path)
7806 {
7807 	char *cp, errmsg[STRERR_BUFSIZE];
7808 	int err;
7809 
7810 	if (prog->fd < 0) {
7811 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7812 		return libbpf_err(-EINVAL);
7813 	}
7814 
7815 	err = make_parent_dir(path);
7816 	if (err)
7817 		return libbpf_err(err);
7818 
7819 	err = check_path(path);
7820 	if (err)
7821 		return libbpf_err(err);
7822 
7823 	if (bpf_obj_pin(prog->fd, path)) {
7824 		err = -errno;
7825 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7826 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7827 		return libbpf_err(err);
7828 	}
7829 
7830 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7831 	return 0;
7832 }
7833 
7834 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7835 {
7836 	int err;
7837 
7838 	if (prog->fd < 0) {
7839 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7840 		return libbpf_err(-EINVAL);
7841 	}
7842 
7843 	err = check_path(path);
7844 	if (err)
7845 		return libbpf_err(err);
7846 
7847 	err = unlink(path);
7848 	if (err)
7849 		return libbpf_err(-errno);
7850 
7851 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7852 	return 0;
7853 }
7854 
7855 int bpf_map__pin(struct bpf_map *map, const char *path)
7856 {
7857 	char *cp, errmsg[STRERR_BUFSIZE];
7858 	int err;
7859 
7860 	if (map == NULL) {
7861 		pr_warn("invalid map pointer\n");
7862 		return libbpf_err(-EINVAL);
7863 	}
7864 
7865 	if (map->pin_path) {
7866 		if (path && strcmp(path, map->pin_path)) {
7867 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7868 				bpf_map__name(map), map->pin_path, path);
7869 			return libbpf_err(-EINVAL);
7870 		} else if (map->pinned) {
7871 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7872 				 bpf_map__name(map), map->pin_path);
7873 			return 0;
7874 		}
7875 	} else {
7876 		if (!path) {
7877 			pr_warn("missing a path to pin map '%s' at\n",
7878 				bpf_map__name(map));
7879 			return libbpf_err(-EINVAL);
7880 		} else if (map->pinned) {
7881 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7882 			return libbpf_err(-EEXIST);
7883 		}
7884 
7885 		map->pin_path = strdup(path);
7886 		if (!map->pin_path) {
7887 			err = -errno;
7888 			goto out_err;
7889 		}
7890 	}
7891 
7892 	err = make_parent_dir(map->pin_path);
7893 	if (err)
7894 		return libbpf_err(err);
7895 
7896 	err = check_path(map->pin_path);
7897 	if (err)
7898 		return libbpf_err(err);
7899 
7900 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7901 		err = -errno;
7902 		goto out_err;
7903 	}
7904 
7905 	map->pinned = true;
7906 	pr_debug("pinned map '%s'\n", map->pin_path);
7907 
7908 	return 0;
7909 
7910 out_err:
7911 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7912 	pr_warn("failed to pin map: %s\n", cp);
7913 	return libbpf_err(err);
7914 }
7915 
7916 int bpf_map__unpin(struct bpf_map *map, const char *path)
7917 {
7918 	int err;
7919 
7920 	if (map == NULL) {
7921 		pr_warn("invalid map pointer\n");
7922 		return libbpf_err(-EINVAL);
7923 	}
7924 
7925 	if (map->pin_path) {
7926 		if (path && strcmp(path, map->pin_path)) {
7927 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7928 				bpf_map__name(map), map->pin_path, path);
7929 			return libbpf_err(-EINVAL);
7930 		}
7931 		path = map->pin_path;
7932 	} else if (!path) {
7933 		pr_warn("no path to unpin map '%s' from\n",
7934 			bpf_map__name(map));
7935 		return libbpf_err(-EINVAL);
7936 	}
7937 
7938 	err = check_path(path);
7939 	if (err)
7940 		return libbpf_err(err);
7941 
7942 	err = unlink(path);
7943 	if (err != 0)
7944 		return libbpf_err(-errno);
7945 
7946 	map->pinned = false;
7947 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7948 
7949 	return 0;
7950 }
7951 
7952 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7953 {
7954 	char *new = NULL;
7955 
7956 	if (path) {
7957 		new = strdup(path);
7958 		if (!new)
7959 			return libbpf_err(-errno);
7960 	}
7961 
7962 	free(map->pin_path);
7963 	map->pin_path = new;
7964 	return 0;
7965 }
7966 
7967 __alias(bpf_map__pin_path)
7968 const char *bpf_map__get_pin_path(const struct bpf_map *map);
7969 
7970 const char *bpf_map__pin_path(const struct bpf_map *map)
7971 {
7972 	return map->pin_path;
7973 }
7974 
7975 bool bpf_map__is_pinned(const struct bpf_map *map)
7976 {
7977 	return map->pinned;
7978 }
7979 
7980 static void sanitize_pin_path(char *s)
7981 {
7982 	/* bpffs disallows periods in path names */
7983 	while (*s) {
7984 		if (*s == '.')
7985 			*s = '_';
7986 		s++;
7987 	}
7988 }
7989 
7990 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7991 {
7992 	struct bpf_map *map;
7993 	int err;
7994 
7995 	if (!obj)
7996 		return libbpf_err(-ENOENT);
7997 
7998 	if (!obj->loaded) {
7999 		pr_warn("object not yet loaded; load it first\n");
8000 		return libbpf_err(-ENOENT);
8001 	}
8002 
8003 	bpf_object__for_each_map(map, obj) {
8004 		char *pin_path = NULL;
8005 		char buf[PATH_MAX];
8006 
8007 		if (!map->autocreate)
8008 			continue;
8009 
8010 		if (path) {
8011 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8012 			if (err)
8013 				goto err_unpin_maps;
8014 			sanitize_pin_path(buf);
8015 			pin_path = buf;
8016 		} else if (!map->pin_path) {
8017 			continue;
8018 		}
8019 
8020 		err = bpf_map__pin(map, pin_path);
8021 		if (err)
8022 			goto err_unpin_maps;
8023 	}
8024 
8025 	return 0;
8026 
8027 err_unpin_maps:
8028 	while ((map = bpf_object__prev_map(obj, map))) {
8029 		if (!map->pin_path)
8030 			continue;
8031 
8032 		bpf_map__unpin(map, NULL);
8033 	}
8034 
8035 	return libbpf_err(err);
8036 }
8037 
8038 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8039 {
8040 	struct bpf_map *map;
8041 	int err;
8042 
8043 	if (!obj)
8044 		return libbpf_err(-ENOENT);
8045 
8046 	bpf_object__for_each_map(map, obj) {
8047 		char *pin_path = NULL;
8048 		char buf[PATH_MAX];
8049 
8050 		if (path) {
8051 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8052 			if (err)
8053 				return libbpf_err(err);
8054 			sanitize_pin_path(buf);
8055 			pin_path = buf;
8056 		} else if (!map->pin_path) {
8057 			continue;
8058 		}
8059 
8060 		err = bpf_map__unpin(map, pin_path);
8061 		if (err)
8062 			return libbpf_err(err);
8063 	}
8064 
8065 	return 0;
8066 }
8067 
8068 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8069 {
8070 	struct bpf_program *prog;
8071 	char buf[PATH_MAX];
8072 	int err;
8073 
8074 	if (!obj)
8075 		return libbpf_err(-ENOENT);
8076 
8077 	if (!obj->loaded) {
8078 		pr_warn("object not yet loaded; load it first\n");
8079 		return libbpf_err(-ENOENT);
8080 	}
8081 
8082 	bpf_object__for_each_program(prog, obj) {
8083 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8084 		if (err)
8085 			goto err_unpin_programs;
8086 
8087 		err = bpf_program__pin(prog, buf);
8088 		if (err)
8089 			goto err_unpin_programs;
8090 	}
8091 
8092 	return 0;
8093 
8094 err_unpin_programs:
8095 	while ((prog = bpf_object__prev_program(obj, prog))) {
8096 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8097 			continue;
8098 
8099 		bpf_program__unpin(prog, buf);
8100 	}
8101 
8102 	return libbpf_err(err);
8103 }
8104 
8105 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8106 {
8107 	struct bpf_program *prog;
8108 	int err;
8109 
8110 	if (!obj)
8111 		return libbpf_err(-ENOENT);
8112 
8113 	bpf_object__for_each_program(prog, obj) {
8114 		char buf[PATH_MAX];
8115 
8116 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8117 		if (err)
8118 			return libbpf_err(err);
8119 
8120 		err = bpf_program__unpin(prog, buf);
8121 		if (err)
8122 			return libbpf_err(err);
8123 	}
8124 
8125 	return 0;
8126 }
8127 
8128 int bpf_object__pin(struct bpf_object *obj, const char *path)
8129 {
8130 	int err;
8131 
8132 	err = bpf_object__pin_maps(obj, path);
8133 	if (err)
8134 		return libbpf_err(err);
8135 
8136 	err = bpf_object__pin_programs(obj, path);
8137 	if (err) {
8138 		bpf_object__unpin_maps(obj, path);
8139 		return libbpf_err(err);
8140 	}
8141 
8142 	return 0;
8143 }
8144 
8145 static void bpf_map__destroy(struct bpf_map *map)
8146 {
8147 	if (map->inner_map) {
8148 		bpf_map__destroy(map->inner_map);
8149 		zfree(&map->inner_map);
8150 	}
8151 
8152 	zfree(&map->init_slots);
8153 	map->init_slots_sz = 0;
8154 
8155 	if (map->mmaped) {
8156 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8157 		map->mmaped = NULL;
8158 	}
8159 
8160 	if (map->st_ops) {
8161 		zfree(&map->st_ops->data);
8162 		zfree(&map->st_ops->progs);
8163 		zfree(&map->st_ops->kern_func_off);
8164 		zfree(&map->st_ops);
8165 	}
8166 
8167 	zfree(&map->name);
8168 	zfree(&map->real_name);
8169 	zfree(&map->pin_path);
8170 
8171 	if (map->fd >= 0)
8172 		zclose(map->fd);
8173 }
8174 
8175 void bpf_object__close(struct bpf_object *obj)
8176 {
8177 	size_t i;
8178 
8179 	if (IS_ERR_OR_NULL(obj))
8180 		return;
8181 
8182 	usdt_manager_free(obj->usdt_man);
8183 	obj->usdt_man = NULL;
8184 
8185 	bpf_gen__free(obj->gen_loader);
8186 	bpf_object__elf_finish(obj);
8187 	bpf_object_unload(obj);
8188 	btf__free(obj->btf);
8189 	btf_ext__free(obj->btf_ext);
8190 
8191 	for (i = 0; i < obj->nr_maps; i++)
8192 		bpf_map__destroy(&obj->maps[i]);
8193 
8194 	zfree(&obj->btf_custom_path);
8195 	zfree(&obj->kconfig);
8196 	zfree(&obj->externs);
8197 	obj->nr_extern = 0;
8198 
8199 	zfree(&obj->maps);
8200 	obj->nr_maps = 0;
8201 
8202 	if (obj->programs && obj->nr_programs) {
8203 		for (i = 0; i < obj->nr_programs; i++)
8204 			bpf_program__exit(&obj->programs[i]);
8205 	}
8206 	zfree(&obj->programs);
8207 
8208 	free(obj);
8209 }
8210 
8211 const char *bpf_object__name(const struct bpf_object *obj)
8212 {
8213 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8214 }
8215 
8216 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8217 {
8218 	return obj ? obj->kern_version : 0;
8219 }
8220 
8221 struct btf *bpf_object__btf(const struct bpf_object *obj)
8222 {
8223 	return obj ? obj->btf : NULL;
8224 }
8225 
8226 int bpf_object__btf_fd(const struct bpf_object *obj)
8227 {
8228 	return obj->btf ? btf__fd(obj->btf) : -1;
8229 }
8230 
8231 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8232 {
8233 	if (obj->loaded)
8234 		return libbpf_err(-EINVAL);
8235 
8236 	obj->kern_version = kern_version;
8237 
8238 	return 0;
8239 }
8240 
8241 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8242 {
8243 	struct bpf_gen *gen;
8244 
8245 	if (!opts)
8246 		return -EFAULT;
8247 	if (!OPTS_VALID(opts, gen_loader_opts))
8248 		return -EINVAL;
8249 	gen = calloc(sizeof(*gen), 1);
8250 	if (!gen)
8251 		return -ENOMEM;
8252 	gen->opts = opts;
8253 	obj->gen_loader = gen;
8254 	return 0;
8255 }
8256 
8257 static struct bpf_program *
8258 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8259 		    bool forward)
8260 {
8261 	size_t nr_programs = obj->nr_programs;
8262 	ssize_t idx;
8263 
8264 	if (!nr_programs)
8265 		return NULL;
8266 
8267 	if (!p)
8268 		/* Iter from the beginning */
8269 		return forward ? &obj->programs[0] :
8270 			&obj->programs[nr_programs - 1];
8271 
8272 	if (p->obj != obj) {
8273 		pr_warn("error: program handler doesn't match object\n");
8274 		return errno = EINVAL, NULL;
8275 	}
8276 
8277 	idx = (p - obj->programs) + (forward ? 1 : -1);
8278 	if (idx >= obj->nr_programs || idx < 0)
8279 		return NULL;
8280 	return &obj->programs[idx];
8281 }
8282 
8283 struct bpf_program *
8284 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8285 {
8286 	struct bpf_program *prog = prev;
8287 
8288 	do {
8289 		prog = __bpf_program__iter(prog, obj, true);
8290 	} while (prog && prog_is_subprog(obj, prog));
8291 
8292 	return prog;
8293 }
8294 
8295 struct bpf_program *
8296 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8297 {
8298 	struct bpf_program *prog = next;
8299 
8300 	do {
8301 		prog = __bpf_program__iter(prog, obj, false);
8302 	} while (prog && prog_is_subprog(obj, prog));
8303 
8304 	return prog;
8305 }
8306 
8307 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8308 {
8309 	prog->prog_ifindex = ifindex;
8310 }
8311 
8312 const char *bpf_program__name(const struct bpf_program *prog)
8313 {
8314 	return prog->name;
8315 }
8316 
8317 const char *bpf_program__section_name(const struct bpf_program *prog)
8318 {
8319 	return prog->sec_name;
8320 }
8321 
8322 bool bpf_program__autoload(const struct bpf_program *prog)
8323 {
8324 	return prog->autoload;
8325 }
8326 
8327 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8328 {
8329 	if (prog->obj->loaded)
8330 		return libbpf_err(-EINVAL);
8331 
8332 	prog->autoload = autoload;
8333 	return 0;
8334 }
8335 
8336 bool bpf_program__autoattach(const struct bpf_program *prog)
8337 {
8338 	return prog->autoattach;
8339 }
8340 
8341 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8342 {
8343 	prog->autoattach = autoattach;
8344 }
8345 
8346 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8347 {
8348 	return prog->insns;
8349 }
8350 
8351 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8352 {
8353 	return prog->insns_cnt;
8354 }
8355 
8356 int bpf_program__set_insns(struct bpf_program *prog,
8357 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8358 {
8359 	struct bpf_insn *insns;
8360 
8361 	if (prog->obj->loaded)
8362 		return -EBUSY;
8363 
8364 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8365 	if (!insns) {
8366 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8367 		return -ENOMEM;
8368 	}
8369 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8370 
8371 	prog->insns = insns;
8372 	prog->insns_cnt = new_insn_cnt;
8373 	return 0;
8374 }
8375 
8376 int bpf_program__fd(const struct bpf_program *prog)
8377 {
8378 	if (!prog)
8379 		return libbpf_err(-EINVAL);
8380 
8381 	if (prog->fd < 0)
8382 		return libbpf_err(-ENOENT);
8383 
8384 	return prog->fd;
8385 }
8386 
8387 __alias(bpf_program__type)
8388 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8389 
8390 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8391 {
8392 	return prog->type;
8393 }
8394 
8395 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8396 {
8397 	if (prog->obj->loaded)
8398 		return libbpf_err(-EBUSY);
8399 
8400 	prog->type = type;
8401 	return 0;
8402 }
8403 
8404 __alias(bpf_program__expected_attach_type)
8405 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8406 
8407 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8408 {
8409 	return prog->expected_attach_type;
8410 }
8411 
8412 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8413 					   enum bpf_attach_type type)
8414 {
8415 	if (prog->obj->loaded)
8416 		return libbpf_err(-EBUSY);
8417 
8418 	prog->expected_attach_type = type;
8419 	return 0;
8420 }
8421 
8422 __u32 bpf_program__flags(const struct bpf_program *prog)
8423 {
8424 	return prog->prog_flags;
8425 }
8426 
8427 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8428 {
8429 	if (prog->obj->loaded)
8430 		return libbpf_err(-EBUSY);
8431 
8432 	prog->prog_flags = flags;
8433 	return 0;
8434 }
8435 
8436 __u32 bpf_program__log_level(const struct bpf_program *prog)
8437 {
8438 	return prog->log_level;
8439 }
8440 
8441 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8442 {
8443 	if (prog->obj->loaded)
8444 		return libbpf_err(-EBUSY);
8445 
8446 	prog->log_level = log_level;
8447 	return 0;
8448 }
8449 
8450 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8451 {
8452 	*log_size = prog->log_size;
8453 	return prog->log_buf;
8454 }
8455 
8456 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8457 {
8458 	if (log_size && !log_buf)
8459 		return -EINVAL;
8460 	if (prog->log_size > UINT_MAX)
8461 		return -EINVAL;
8462 	if (prog->obj->loaded)
8463 		return -EBUSY;
8464 
8465 	prog->log_buf = log_buf;
8466 	prog->log_size = log_size;
8467 	return 0;
8468 }
8469 
8470 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8471 	.sec = (char *)sec_pfx,						    \
8472 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8473 	.expected_attach_type = atype,					    \
8474 	.cookie = (long)(flags),					    \
8475 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8476 	__VA_ARGS__							    \
8477 }
8478 
8479 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8480 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8481 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8482 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8483 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8484 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8485 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8486 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8487 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8488 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8489 
8490 static const struct bpf_sec_def section_defs[] = {
8491 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8492 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8493 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8494 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8495 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8496 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8497 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8498 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8499 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8500 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8501 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8502 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8503 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8504 	SEC_DEF("usdt+",		KPROBE,	0, SEC_NONE, attach_usdt),
8505 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
8506 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE),
8507 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE),
8508 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8509 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8510 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8511 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8512 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8513 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8514 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8515 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8516 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8517 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8518 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8519 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8520 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8521 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8522 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8523 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8524 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8525 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8526 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8527 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8528 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8529 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8530 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8531 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8532 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8533 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8534 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8535 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8536 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8537 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8538 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8539 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8540 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8541 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8542 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8543 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8544 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8545 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8546 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8547 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8548 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8549 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8550 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8551 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8552 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8553 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8554 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8555 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8556 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8557 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8558 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8559 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8560 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8561 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8562 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8563 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8564 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8565 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8566 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8567 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8568 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8569 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8570 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8571 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
8572 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8573 };
8574 
8575 static size_t custom_sec_def_cnt;
8576 static struct bpf_sec_def *custom_sec_defs;
8577 static struct bpf_sec_def custom_fallback_def;
8578 static bool has_custom_fallback_def;
8579 
8580 static int last_custom_sec_def_handler_id;
8581 
8582 int libbpf_register_prog_handler(const char *sec,
8583 				 enum bpf_prog_type prog_type,
8584 				 enum bpf_attach_type exp_attach_type,
8585 				 const struct libbpf_prog_handler_opts *opts)
8586 {
8587 	struct bpf_sec_def *sec_def;
8588 
8589 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8590 		return libbpf_err(-EINVAL);
8591 
8592 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8593 		return libbpf_err(-E2BIG);
8594 
8595 	if (sec) {
8596 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8597 					      sizeof(*sec_def));
8598 		if (!sec_def)
8599 			return libbpf_err(-ENOMEM);
8600 
8601 		custom_sec_defs = sec_def;
8602 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8603 	} else {
8604 		if (has_custom_fallback_def)
8605 			return libbpf_err(-EBUSY);
8606 
8607 		sec_def = &custom_fallback_def;
8608 	}
8609 
8610 	sec_def->sec = sec ? strdup(sec) : NULL;
8611 	if (sec && !sec_def->sec)
8612 		return libbpf_err(-ENOMEM);
8613 
8614 	sec_def->prog_type = prog_type;
8615 	sec_def->expected_attach_type = exp_attach_type;
8616 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8617 
8618 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8619 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8620 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8621 
8622 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8623 
8624 	if (sec)
8625 		custom_sec_def_cnt++;
8626 	else
8627 		has_custom_fallback_def = true;
8628 
8629 	return sec_def->handler_id;
8630 }
8631 
8632 int libbpf_unregister_prog_handler(int handler_id)
8633 {
8634 	struct bpf_sec_def *sec_defs;
8635 	int i;
8636 
8637 	if (handler_id <= 0)
8638 		return libbpf_err(-EINVAL);
8639 
8640 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8641 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8642 		has_custom_fallback_def = false;
8643 		return 0;
8644 	}
8645 
8646 	for (i = 0; i < custom_sec_def_cnt; i++) {
8647 		if (custom_sec_defs[i].handler_id == handler_id)
8648 			break;
8649 	}
8650 
8651 	if (i == custom_sec_def_cnt)
8652 		return libbpf_err(-ENOENT);
8653 
8654 	free(custom_sec_defs[i].sec);
8655 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8656 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8657 	custom_sec_def_cnt--;
8658 
8659 	/* try to shrink the array, but it's ok if we couldn't */
8660 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8661 	if (sec_defs)
8662 		custom_sec_defs = sec_defs;
8663 
8664 	return 0;
8665 }
8666 
8667 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8668 {
8669 	size_t len = strlen(sec_def->sec);
8670 
8671 	/* "type/" always has to have proper SEC("type/extras") form */
8672 	if (sec_def->sec[len - 1] == '/') {
8673 		if (str_has_pfx(sec_name, sec_def->sec))
8674 			return true;
8675 		return false;
8676 	}
8677 
8678 	/* "type+" means it can be either exact SEC("type") or
8679 	 * well-formed SEC("type/extras") with proper '/' separator
8680 	 */
8681 	if (sec_def->sec[len - 1] == '+') {
8682 		len--;
8683 		/* not even a prefix */
8684 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8685 			return false;
8686 		/* exact match or has '/' separator */
8687 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8688 			return true;
8689 		return false;
8690 	}
8691 
8692 	return strcmp(sec_name, sec_def->sec) == 0;
8693 }
8694 
8695 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8696 {
8697 	const struct bpf_sec_def *sec_def;
8698 	int i, n;
8699 
8700 	n = custom_sec_def_cnt;
8701 	for (i = 0; i < n; i++) {
8702 		sec_def = &custom_sec_defs[i];
8703 		if (sec_def_matches(sec_def, sec_name))
8704 			return sec_def;
8705 	}
8706 
8707 	n = ARRAY_SIZE(section_defs);
8708 	for (i = 0; i < n; i++) {
8709 		sec_def = &section_defs[i];
8710 		if (sec_def_matches(sec_def, sec_name))
8711 			return sec_def;
8712 	}
8713 
8714 	if (has_custom_fallback_def)
8715 		return &custom_fallback_def;
8716 
8717 	return NULL;
8718 }
8719 
8720 #define MAX_TYPE_NAME_SIZE 32
8721 
8722 static char *libbpf_get_type_names(bool attach_type)
8723 {
8724 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8725 	char *buf;
8726 
8727 	buf = malloc(len);
8728 	if (!buf)
8729 		return NULL;
8730 
8731 	buf[0] = '\0';
8732 	/* Forge string buf with all available names */
8733 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8734 		const struct bpf_sec_def *sec_def = &section_defs[i];
8735 
8736 		if (attach_type) {
8737 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8738 				continue;
8739 
8740 			if (!(sec_def->cookie & SEC_ATTACHABLE))
8741 				continue;
8742 		}
8743 
8744 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8745 			free(buf);
8746 			return NULL;
8747 		}
8748 		strcat(buf, " ");
8749 		strcat(buf, section_defs[i].sec);
8750 	}
8751 
8752 	return buf;
8753 }
8754 
8755 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8756 			     enum bpf_attach_type *expected_attach_type)
8757 {
8758 	const struct bpf_sec_def *sec_def;
8759 	char *type_names;
8760 
8761 	if (!name)
8762 		return libbpf_err(-EINVAL);
8763 
8764 	sec_def = find_sec_def(name);
8765 	if (sec_def) {
8766 		*prog_type = sec_def->prog_type;
8767 		*expected_attach_type = sec_def->expected_attach_type;
8768 		return 0;
8769 	}
8770 
8771 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8772 	type_names = libbpf_get_type_names(false);
8773 	if (type_names != NULL) {
8774 		pr_debug("supported section(type) names are:%s\n", type_names);
8775 		free(type_names);
8776 	}
8777 
8778 	return libbpf_err(-ESRCH);
8779 }
8780 
8781 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8782 {
8783 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8784 		return NULL;
8785 
8786 	return attach_type_name[t];
8787 }
8788 
8789 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8790 {
8791 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8792 		return NULL;
8793 
8794 	return link_type_name[t];
8795 }
8796 
8797 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8798 {
8799 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8800 		return NULL;
8801 
8802 	return map_type_name[t];
8803 }
8804 
8805 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8806 {
8807 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8808 		return NULL;
8809 
8810 	return prog_type_name[t];
8811 }
8812 
8813 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8814 						     size_t offset)
8815 {
8816 	struct bpf_map *map;
8817 	size_t i;
8818 
8819 	for (i = 0; i < obj->nr_maps; i++) {
8820 		map = &obj->maps[i];
8821 		if (!bpf_map__is_struct_ops(map))
8822 			continue;
8823 		if (map->sec_offset <= offset &&
8824 		    offset - map->sec_offset < map->def.value_size)
8825 			return map;
8826 	}
8827 
8828 	return NULL;
8829 }
8830 
8831 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8832 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8833 					    Elf64_Shdr *shdr, Elf_Data *data)
8834 {
8835 	const struct btf_member *member;
8836 	struct bpf_struct_ops *st_ops;
8837 	struct bpf_program *prog;
8838 	unsigned int shdr_idx;
8839 	const struct btf *btf;
8840 	struct bpf_map *map;
8841 	unsigned int moff, insn_idx;
8842 	const char *name;
8843 	__u32 member_idx;
8844 	Elf64_Sym *sym;
8845 	Elf64_Rel *rel;
8846 	int i, nrels;
8847 
8848 	btf = obj->btf;
8849 	nrels = shdr->sh_size / shdr->sh_entsize;
8850 	for (i = 0; i < nrels; i++) {
8851 		rel = elf_rel_by_idx(data, i);
8852 		if (!rel) {
8853 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8854 			return -LIBBPF_ERRNO__FORMAT;
8855 		}
8856 
8857 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8858 		if (!sym) {
8859 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8860 				(size_t)ELF64_R_SYM(rel->r_info));
8861 			return -LIBBPF_ERRNO__FORMAT;
8862 		}
8863 
8864 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8865 		map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8866 		if (!map) {
8867 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8868 				(size_t)rel->r_offset);
8869 			return -EINVAL;
8870 		}
8871 
8872 		moff = rel->r_offset - map->sec_offset;
8873 		shdr_idx = sym->st_shndx;
8874 		st_ops = map->st_ops;
8875 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8876 			 map->name,
8877 			 (long long)(rel->r_info >> 32),
8878 			 (long long)sym->st_value,
8879 			 shdr_idx, (size_t)rel->r_offset,
8880 			 map->sec_offset, sym->st_name, name);
8881 
8882 		if (shdr_idx >= SHN_LORESERVE) {
8883 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8884 				map->name, (size_t)rel->r_offset, shdr_idx);
8885 			return -LIBBPF_ERRNO__RELOC;
8886 		}
8887 		if (sym->st_value % BPF_INSN_SZ) {
8888 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8889 				map->name, (unsigned long long)sym->st_value);
8890 			return -LIBBPF_ERRNO__FORMAT;
8891 		}
8892 		insn_idx = sym->st_value / BPF_INSN_SZ;
8893 
8894 		member = find_member_by_offset(st_ops->type, moff * 8);
8895 		if (!member) {
8896 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8897 				map->name, moff);
8898 			return -EINVAL;
8899 		}
8900 		member_idx = member - btf_members(st_ops->type);
8901 		name = btf__name_by_offset(btf, member->name_off);
8902 
8903 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8904 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8905 				map->name, name);
8906 			return -EINVAL;
8907 		}
8908 
8909 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8910 		if (!prog) {
8911 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8912 				map->name, shdr_idx, name);
8913 			return -EINVAL;
8914 		}
8915 
8916 		/* prevent the use of BPF prog with invalid type */
8917 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8918 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8919 				map->name, prog->name);
8920 			return -EINVAL;
8921 		}
8922 
8923 		/* if we haven't yet processed this BPF program, record proper
8924 		 * attach_btf_id and member_idx
8925 		 */
8926 		if (!prog->attach_btf_id) {
8927 			prog->attach_btf_id = st_ops->type_id;
8928 			prog->expected_attach_type = member_idx;
8929 		}
8930 
8931 		/* struct_ops BPF prog can be re-used between multiple
8932 		 * .struct_ops as long as it's the same struct_ops struct
8933 		 * definition and the same function pointer field
8934 		 */
8935 		if (prog->attach_btf_id != st_ops->type_id ||
8936 		    prog->expected_attach_type != member_idx) {
8937 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8938 				map->name, prog->name, prog->sec_name, prog->type,
8939 				prog->attach_btf_id, prog->expected_attach_type, name);
8940 			return -EINVAL;
8941 		}
8942 
8943 		st_ops->progs[member_idx] = prog;
8944 	}
8945 
8946 	return 0;
8947 }
8948 
8949 #define BTF_TRACE_PREFIX "btf_trace_"
8950 #define BTF_LSM_PREFIX "bpf_lsm_"
8951 #define BTF_ITER_PREFIX "bpf_iter_"
8952 #define BTF_MAX_NAME_SIZE 128
8953 
8954 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8955 				const char **prefix, int *kind)
8956 {
8957 	switch (attach_type) {
8958 	case BPF_TRACE_RAW_TP:
8959 		*prefix = BTF_TRACE_PREFIX;
8960 		*kind = BTF_KIND_TYPEDEF;
8961 		break;
8962 	case BPF_LSM_MAC:
8963 	case BPF_LSM_CGROUP:
8964 		*prefix = BTF_LSM_PREFIX;
8965 		*kind = BTF_KIND_FUNC;
8966 		break;
8967 	case BPF_TRACE_ITER:
8968 		*prefix = BTF_ITER_PREFIX;
8969 		*kind = BTF_KIND_FUNC;
8970 		break;
8971 	default:
8972 		*prefix = "";
8973 		*kind = BTF_KIND_FUNC;
8974 	}
8975 }
8976 
8977 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8978 				   const char *name, __u32 kind)
8979 {
8980 	char btf_type_name[BTF_MAX_NAME_SIZE];
8981 	int ret;
8982 
8983 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8984 		       "%s%s", prefix, name);
8985 	/* snprintf returns the number of characters written excluding the
8986 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8987 	 * indicates truncation.
8988 	 */
8989 	if (ret < 0 || ret >= sizeof(btf_type_name))
8990 		return -ENAMETOOLONG;
8991 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8992 }
8993 
8994 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8995 				     enum bpf_attach_type attach_type)
8996 {
8997 	const char *prefix;
8998 	int kind;
8999 
9000 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9001 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9002 }
9003 
9004 int libbpf_find_vmlinux_btf_id(const char *name,
9005 			       enum bpf_attach_type attach_type)
9006 {
9007 	struct btf *btf;
9008 	int err;
9009 
9010 	btf = btf__load_vmlinux_btf();
9011 	err = libbpf_get_error(btf);
9012 	if (err) {
9013 		pr_warn("vmlinux BTF is not found\n");
9014 		return libbpf_err(err);
9015 	}
9016 
9017 	err = find_attach_btf_id(btf, name, attach_type);
9018 	if (err <= 0)
9019 		pr_warn("%s is not found in vmlinux BTF\n", name);
9020 
9021 	btf__free(btf);
9022 	return libbpf_err(err);
9023 }
9024 
9025 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9026 {
9027 	struct bpf_prog_info info;
9028 	__u32 info_len = sizeof(info);
9029 	struct btf *btf;
9030 	int err;
9031 
9032 	memset(&info, 0, info_len);
9033 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9034 	if (err) {
9035 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9036 			attach_prog_fd, err);
9037 		return err;
9038 	}
9039 
9040 	err = -EINVAL;
9041 	if (!info.btf_id) {
9042 		pr_warn("The target program doesn't have BTF\n");
9043 		goto out;
9044 	}
9045 	btf = btf__load_from_kernel_by_id(info.btf_id);
9046 	err = libbpf_get_error(btf);
9047 	if (err) {
9048 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9049 		goto out;
9050 	}
9051 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9052 	btf__free(btf);
9053 	if (err <= 0) {
9054 		pr_warn("%s is not found in prog's BTF\n", name);
9055 		goto out;
9056 	}
9057 out:
9058 	return err;
9059 }
9060 
9061 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9062 			      enum bpf_attach_type attach_type,
9063 			      int *btf_obj_fd, int *btf_type_id)
9064 {
9065 	int ret, i;
9066 
9067 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9068 	if (ret > 0) {
9069 		*btf_obj_fd = 0; /* vmlinux BTF */
9070 		*btf_type_id = ret;
9071 		return 0;
9072 	}
9073 	if (ret != -ENOENT)
9074 		return ret;
9075 
9076 	ret = load_module_btfs(obj);
9077 	if (ret)
9078 		return ret;
9079 
9080 	for (i = 0; i < obj->btf_module_cnt; i++) {
9081 		const struct module_btf *mod = &obj->btf_modules[i];
9082 
9083 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9084 		if (ret > 0) {
9085 			*btf_obj_fd = mod->fd;
9086 			*btf_type_id = ret;
9087 			return 0;
9088 		}
9089 		if (ret == -ENOENT)
9090 			continue;
9091 
9092 		return ret;
9093 	}
9094 
9095 	return -ESRCH;
9096 }
9097 
9098 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9099 				     int *btf_obj_fd, int *btf_type_id)
9100 {
9101 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9102 	__u32 attach_prog_fd = prog->attach_prog_fd;
9103 	int err = 0;
9104 
9105 	/* BPF program's BTF ID */
9106 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9107 		if (!attach_prog_fd) {
9108 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9109 			return -EINVAL;
9110 		}
9111 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9112 		if (err < 0) {
9113 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9114 				 prog->name, attach_prog_fd, attach_name, err);
9115 			return err;
9116 		}
9117 		*btf_obj_fd = 0;
9118 		*btf_type_id = err;
9119 		return 0;
9120 	}
9121 
9122 	/* kernel/module BTF ID */
9123 	if (prog->obj->gen_loader) {
9124 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9125 		*btf_obj_fd = 0;
9126 		*btf_type_id = 1;
9127 	} else {
9128 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9129 	}
9130 	if (err) {
9131 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9132 			prog->name, attach_name, err);
9133 		return err;
9134 	}
9135 	return 0;
9136 }
9137 
9138 int libbpf_attach_type_by_name(const char *name,
9139 			       enum bpf_attach_type *attach_type)
9140 {
9141 	char *type_names;
9142 	const struct bpf_sec_def *sec_def;
9143 
9144 	if (!name)
9145 		return libbpf_err(-EINVAL);
9146 
9147 	sec_def = find_sec_def(name);
9148 	if (!sec_def) {
9149 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9150 		type_names = libbpf_get_type_names(true);
9151 		if (type_names != NULL) {
9152 			pr_debug("attachable section(type) names are:%s\n", type_names);
9153 			free(type_names);
9154 		}
9155 
9156 		return libbpf_err(-EINVAL);
9157 	}
9158 
9159 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9160 		return libbpf_err(-EINVAL);
9161 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9162 		return libbpf_err(-EINVAL);
9163 
9164 	*attach_type = sec_def->expected_attach_type;
9165 	return 0;
9166 }
9167 
9168 int bpf_map__fd(const struct bpf_map *map)
9169 {
9170 	return map ? map->fd : libbpf_err(-EINVAL);
9171 }
9172 
9173 static bool map_uses_real_name(const struct bpf_map *map)
9174 {
9175 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9176 	 * their user-visible name differs from kernel-visible name. Users see
9177 	 * such map's corresponding ELF section name as a map name.
9178 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9179 	 * maps to know which name has to be returned to the user.
9180 	 */
9181 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9182 		return true;
9183 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9184 		return true;
9185 	return false;
9186 }
9187 
9188 const char *bpf_map__name(const struct bpf_map *map)
9189 {
9190 	if (!map)
9191 		return NULL;
9192 
9193 	if (map_uses_real_name(map))
9194 		return map->real_name;
9195 
9196 	return map->name;
9197 }
9198 
9199 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9200 {
9201 	return map->def.type;
9202 }
9203 
9204 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9205 {
9206 	if (map->fd >= 0)
9207 		return libbpf_err(-EBUSY);
9208 	map->def.type = type;
9209 	return 0;
9210 }
9211 
9212 __u32 bpf_map__map_flags(const struct bpf_map *map)
9213 {
9214 	return map->def.map_flags;
9215 }
9216 
9217 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9218 {
9219 	if (map->fd >= 0)
9220 		return libbpf_err(-EBUSY);
9221 	map->def.map_flags = flags;
9222 	return 0;
9223 }
9224 
9225 __u64 bpf_map__map_extra(const struct bpf_map *map)
9226 {
9227 	return map->map_extra;
9228 }
9229 
9230 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9231 {
9232 	if (map->fd >= 0)
9233 		return libbpf_err(-EBUSY);
9234 	map->map_extra = map_extra;
9235 	return 0;
9236 }
9237 
9238 __u32 bpf_map__numa_node(const struct bpf_map *map)
9239 {
9240 	return map->numa_node;
9241 }
9242 
9243 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9244 {
9245 	if (map->fd >= 0)
9246 		return libbpf_err(-EBUSY);
9247 	map->numa_node = numa_node;
9248 	return 0;
9249 }
9250 
9251 __u32 bpf_map__key_size(const struct bpf_map *map)
9252 {
9253 	return map->def.key_size;
9254 }
9255 
9256 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9257 {
9258 	if (map->fd >= 0)
9259 		return libbpf_err(-EBUSY);
9260 	map->def.key_size = size;
9261 	return 0;
9262 }
9263 
9264 __u32 bpf_map__value_size(const struct bpf_map *map)
9265 {
9266 	return map->def.value_size;
9267 }
9268 
9269 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9270 {
9271 	if (map->fd >= 0)
9272 		return libbpf_err(-EBUSY);
9273 	map->def.value_size = size;
9274 	return 0;
9275 }
9276 
9277 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9278 {
9279 	return map ? map->btf_key_type_id : 0;
9280 }
9281 
9282 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9283 {
9284 	return map ? map->btf_value_type_id : 0;
9285 }
9286 
9287 int bpf_map__set_initial_value(struct bpf_map *map,
9288 			       const void *data, size_t size)
9289 {
9290 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9291 	    size != map->def.value_size || map->fd >= 0)
9292 		return libbpf_err(-EINVAL);
9293 
9294 	memcpy(map->mmaped, data, size);
9295 	return 0;
9296 }
9297 
9298 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9299 {
9300 	if (!map->mmaped)
9301 		return NULL;
9302 	*psize = map->def.value_size;
9303 	return map->mmaped;
9304 }
9305 
9306 bool bpf_map__is_internal(const struct bpf_map *map)
9307 {
9308 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9309 }
9310 
9311 __u32 bpf_map__ifindex(const struct bpf_map *map)
9312 {
9313 	return map->map_ifindex;
9314 }
9315 
9316 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9317 {
9318 	if (map->fd >= 0)
9319 		return libbpf_err(-EBUSY);
9320 	map->map_ifindex = ifindex;
9321 	return 0;
9322 }
9323 
9324 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9325 {
9326 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9327 		pr_warn("error: unsupported map type\n");
9328 		return libbpf_err(-EINVAL);
9329 	}
9330 	if (map->inner_map_fd != -1) {
9331 		pr_warn("error: inner_map_fd already specified\n");
9332 		return libbpf_err(-EINVAL);
9333 	}
9334 	if (map->inner_map) {
9335 		bpf_map__destroy(map->inner_map);
9336 		zfree(&map->inner_map);
9337 	}
9338 	map->inner_map_fd = fd;
9339 	return 0;
9340 }
9341 
9342 static struct bpf_map *
9343 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9344 {
9345 	ssize_t idx;
9346 	struct bpf_map *s, *e;
9347 
9348 	if (!obj || !obj->maps)
9349 		return errno = EINVAL, NULL;
9350 
9351 	s = obj->maps;
9352 	e = obj->maps + obj->nr_maps;
9353 
9354 	if ((m < s) || (m >= e)) {
9355 		pr_warn("error in %s: map handler doesn't belong to object\n",
9356 			 __func__);
9357 		return errno = EINVAL, NULL;
9358 	}
9359 
9360 	idx = (m - obj->maps) + i;
9361 	if (idx >= obj->nr_maps || idx < 0)
9362 		return NULL;
9363 	return &obj->maps[idx];
9364 }
9365 
9366 struct bpf_map *
9367 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9368 {
9369 	if (prev == NULL)
9370 		return obj->maps;
9371 
9372 	return __bpf_map__iter(prev, obj, 1);
9373 }
9374 
9375 struct bpf_map *
9376 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9377 {
9378 	if (next == NULL) {
9379 		if (!obj->nr_maps)
9380 			return NULL;
9381 		return obj->maps + obj->nr_maps - 1;
9382 	}
9383 
9384 	return __bpf_map__iter(next, obj, -1);
9385 }
9386 
9387 struct bpf_map *
9388 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9389 {
9390 	struct bpf_map *pos;
9391 
9392 	bpf_object__for_each_map(pos, obj) {
9393 		/* if it's a special internal map name (which always starts
9394 		 * with dot) then check if that special name matches the
9395 		 * real map name (ELF section name)
9396 		 */
9397 		if (name[0] == '.') {
9398 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9399 				return pos;
9400 			continue;
9401 		}
9402 		/* otherwise map name has to be an exact match */
9403 		if (map_uses_real_name(pos)) {
9404 			if (strcmp(pos->real_name, name) == 0)
9405 				return pos;
9406 			continue;
9407 		}
9408 		if (strcmp(pos->name, name) == 0)
9409 			return pos;
9410 	}
9411 	return errno = ENOENT, NULL;
9412 }
9413 
9414 int
9415 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9416 {
9417 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9418 }
9419 
9420 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9421 			   size_t value_sz, bool check_value_sz)
9422 {
9423 	if (map->fd <= 0)
9424 		return -ENOENT;
9425 
9426 	if (map->def.key_size != key_sz) {
9427 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9428 			map->name, key_sz, map->def.key_size);
9429 		return -EINVAL;
9430 	}
9431 
9432 	if (!check_value_sz)
9433 		return 0;
9434 
9435 	switch (map->def.type) {
9436 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9437 	case BPF_MAP_TYPE_PERCPU_HASH:
9438 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9439 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9440 		int num_cpu = libbpf_num_possible_cpus();
9441 		size_t elem_sz = roundup(map->def.value_size, 8);
9442 
9443 		if (value_sz != num_cpu * elem_sz) {
9444 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9445 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9446 			return -EINVAL;
9447 		}
9448 		break;
9449 	}
9450 	default:
9451 		if (map->def.value_size != value_sz) {
9452 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9453 				map->name, value_sz, map->def.value_size);
9454 			return -EINVAL;
9455 		}
9456 		break;
9457 	}
9458 	return 0;
9459 }
9460 
9461 int bpf_map__lookup_elem(const struct bpf_map *map,
9462 			 const void *key, size_t key_sz,
9463 			 void *value, size_t value_sz, __u64 flags)
9464 {
9465 	int err;
9466 
9467 	err = validate_map_op(map, key_sz, value_sz, true);
9468 	if (err)
9469 		return libbpf_err(err);
9470 
9471 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9472 }
9473 
9474 int bpf_map__update_elem(const struct bpf_map *map,
9475 			 const void *key, size_t key_sz,
9476 			 const void *value, size_t value_sz, __u64 flags)
9477 {
9478 	int err;
9479 
9480 	err = validate_map_op(map, key_sz, value_sz, true);
9481 	if (err)
9482 		return libbpf_err(err);
9483 
9484 	return bpf_map_update_elem(map->fd, key, value, flags);
9485 }
9486 
9487 int bpf_map__delete_elem(const struct bpf_map *map,
9488 			 const void *key, size_t key_sz, __u64 flags)
9489 {
9490 	int err;
9491 
9492 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9493 	if (err)
9494 		return libbpf_err(err);
9495 
9496 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9497 }
9498 
9499 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9500 				    const void *key, size_t key_sz,
9501 				    void *value, size_t value_sz, __u64 flags)
9502 {
9503 	int err;
9504 
9505 	err = validate_map_op(map, key_sz, value_sz, true);
9506 	if (err)
9507 		return libbpf_err(err);
9508 
9509 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9510 }
9511 
9512 int bpf_map__get_next_key(const struct bpf_map *map,
9513 			  const void *cur_key, void *next_key, size_t key_sz)
9514 {
9515 	int err;
9516 
9517 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9518 	if (err)
9519 		return libbpf_err(err);
9520 
9521 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9522 }
9523 
9524 long libbpf_get_error(const void *ptr)
9525 {
9526 	if (!IS_ERR_OR_NULL(ptr))
9527 		return 0;
9528 
9529 	if (IS_ERR(ptr))
9530 		errno = -PTR_ERR(ptr);
9531 
9532 	/* If ptr == NULL, then errno should be already set by the failing
9533 	 * API, because libbpf never returns NULL on success and it now always
9534 	 * sets errno on error. So no extra errno handling for ptr == NULL
9535 	 * case.
9536 	 */
9537 	return -errno;
9538 }
9539 
9540 /* Replace link's underlying BPF program with the new one */
9541 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9542 {
9543 	int ret;
9544 
9545 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9546 	return libbpf_err_errno(ret);
9547 }
9548 
9549 /* Release "ownership" of underlying BPF resource (typically, BPF program
9550  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9551  * link, when destructed through bpf_link__destroy() call won't attempt to
9552  * detach/unregisted that BPF resource. This is useful in situations where,
9553  * say, attached BPF program has to outlive userspace program that attached it
9554  * in the system. Depending on type of BPF program, though, there might be
9555  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9556  * exit of userspace program doesn't trigger automatic detachment and clean up
9557  * inside the kernel.
9558  */
9559 void bpf_link__disconnect(struct bpf_link *link)
9560 {
9561 	link->disconnected = true;
9562 }
9563 
9564 int bpf_link__destroy(struct bpf_link *link)
9565 {
9566 	int err = 0;
9567 
9568 	if (IS_ERR_OR_NULL(link))
9569 		return 0;
9570 
9571 	if (!link->disconnected && link->detach)
9572 		err = link->detach(link);
9573 	if (link->pin_path)
9574 		free(link->pin_path);
9575 	if (link->dealloc)
9576 		link->dealloc(link);
9577 	else
9578 		free(link);
9579 
9580 	return libbpf_err(err);
9581 }
9582 
9583 int bpf_link__fd(const struct bpf_link *link)
9584 {
9585 	return link->fd;
9586 }
9587 
9588 const char *bpf_link__pin_path(const struct bpf_link *link)
9589 {
9590 	return link->pin_path;
9591 }
9592 
9593 static int bpf_link__detach_fd(struct bpf_link *link)
9594 {
9595 	return libbpf_err_errno(close(link->fd));
9596 }
9597 
9598 struct bpf_link *bpf_link__open(const char *path)
9599 {
9600 	struct bpf_link *link;
9601 	int fd;
9602 
9603 	fd = bpf_obj_get(path);
9604 	if (fd < 0) {
9605 		fd = -errno;
9606 		pr_warn("failed to open link at %s: %d\n", path, fd);
9607 		return libbpf_err_ptr(fd);
9608 	}
9609 
9610 	link = calloc(1, sizeof(*link));
9611 	if (!link) {
9612 		close(fd);
9613 		return libbpf_err_ptr(-ENOMEM);
9614 	}
9615 	link->detach = &bpf_link__detach_fd;
9616 	link->fd = fd;
9617 
9618 	link->pin_path = strdup(path);
9619 	if (!link->pin_path) {
9620 		bpf_link__destroy(link);
9621 		return libbpf_err_ptr(-ENOMEM);
9622 	}
9623 
9624 	return link;
9625 }
9626 
9627 int bpf_link__detach(struct bpf_link *link)
9628 {
9629 	return bpf_link_detach(link->fd) ? -errno : 0;
9630 }
9631 
9632 int bpf_link__pin(struct bpf_link *link, const char *path)
9633 {
9634 	int err;
9635 
9636 	if (link->pin_path)
9637 		return libbpf_err(-EBUSY);
9638 	err = make_parent_dir(path);
9639 	if (err)
9640 		return libbpf_err(err);
9641 	err = check_path(path);
9642 	if (err)
9643 		return libbpf_err(err);
9644 
9645 	link->pin_path = strdup(path);
9646 	if (!link->pin_path)
9647 		return libbpf_err(-ENOMEM);
9648 
9649 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9650 		err = -errno;
9651 		zfree(&link->pin_path);
9652 		return libbpf_err(err);
9653 	}
9654 
9655 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9656 	return 0;
9657 }
9658 
9659 int bpf_link__unpin(struct bpf_link *link)
9660 {
9661 	int err;
9662 
9663 	if (!link->pin_path)
9664 		return libbpf_err(-EINVAL);
9665 
9666 	err = unlink(link->pin_path);
9667 	if (err != 0)
9668 		return -errno;
9669 
9670 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9671 	zfree(&link->pin_path);
9672 	return 0;
9673 }
9674 
9675 struct bpf_link_perf {
9676 	struct bpf_link link;
9677 	int perf_event_fd;
9678 	/* legacy kprobe support: keep track of probe identifier and type */
9679 	char *legacy_probe_name;
9680 	bool legacy_is_kprobe;
9681 	bool legacy_is_retprobe;
9682 };
9683 
9684 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9685 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9686 
9687 static int bpf_link_perf_detach(struct bpf_link *link)
9688 {
9689 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9690 	int err = 0;
9691 
9692 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9693 		err = -errno;
9694 
9695 	if (perf_link->perf_event_fd != link->fd)
9696 		close(perf_link->perf_event_fd);
9697 	close(link->fd);
9698 
9699 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9700 	if (perf_link->legacy_probe_name) {
9701 		if (perf_link->legacy_is_kprobe) {
9702 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9703 							 perf_link->legacy_is_retprobe);
9704 		} else {
9705 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9706 							 perf_link->legacy_is_retprobe);
9707 		}
9708 	}
9709 
9710 	return err;
9711 }
9712 
9713 static void bpf_link_perf_dealloc(struct bpf_link *link)
9714 {
9715 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9716 
9717 	free(perf_link->legacy_probe_name);
9718 	free(perf_link);
9719 }
9720 
9721 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9722 						     const struct bpf_perf_event_opts *opts)
9723 {
9724 	char errmsg[STRERR_BUFSIZE];
9725 	struct bpf_link_perf *link;
9726 	int prog_fd, link_fd = -1, err;
9727 
9728 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
9729 		return libbpf_err_ptr(-EINVAL);
9730 
9731 	if (pfd < 0) {
9732 		pr_warn("prog '%s': invalid perf event FD %d\n",
9733 			prog->name, pfd);
9734 		return libbpf_err_ptr(-EINVAL);
9735 	}
9736 	prog_fd = bpf_program__fd(prog);
9737 	if (prog_fd < 0) {
9738 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9739 			prog->name);
9740 		return libbpf_err_ptr(-EINVAL);
9741 	}
9742 
9743 	link = calloc(1, sizeof(*link));
9744 	if (!link)
9745 		return libbpf_err_ptr(-ENOMEM);
9746 	link->link.detach = &bpf_link_perf_detach;
9747 	link->link.dealloc = &bpf_link_perf_dealloc;
9748 	link->perf_event_fd = pfd;
9749 
9750 	if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9751 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9752 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9753 
9754 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9755 		if (link_fd < 0) {
9756 			err = -errno;
9757 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9758 				prog->name, pfd,
9759 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9760 			goto err_out;
9761 		}
9762 		link->link.fd = link_fd;
9763 	} else {
9764 		if (OPTS_GET(opts, bpf_cookie, 0)) {
9765 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
9766 			err = -EOPNOTSUPP;
9767 			goto err_out;
9768 		}
9769 
9770 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9771 			err = -errno;
9772 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9773 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9774 			if (err == -EPROTO)
9775 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9776 					prog->name, pfd);
9777 			goto err_out;
9778 		}
9779 		link->link.fd = pfd;
9780 	}
9781 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9782 		err = -errno;
9783 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9784 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9785 		goto err_out;
9786 	}
9787 
9788 	return &link->link;
9789 err_out:
9790 	if (link_fd >= 0)
9791 		close(link_fd);
9792 	free(link);
9793 	return libbpf_err_ptr(err);
9794 }
9795 
9796 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9797 {
9798 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9799 }
9800 
9801 /*
9802  * this function is expected to parse integer in the range of [0, 2^31-1] from
9803  * given file using scanf format string fmt. If actual parsed value is
9804  * negative, the result might be indistinguishable from error
9805  */
9806 static int parse_uint_from_file(const char *file, const char *fmt)
9807 {
9808 	char buf[STRERR_BUFSIZE];
9809 	int err, ret;
9810 	FILE *f;
9811 
9812 	f = fopen(file, "r");
9813 	if (!f) {
9814 		err = -errno;
9815 		pr_debug("failed to open '%s': %s\n", file,
9816 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9817 		return err;
9818 	}
9819 	err = fscanf(f, fmt, &ret);
9820 	if (err != 1) {
9821 		err = err == EOF ? -EIO : -errno;
9822 		pr_debug("failed to parse '%s': %s\n", file,
9823 			libbpf_strerror_r(err, buf, sizeof(buf)));
9824 		fclose(f);
9825 		return err;
9826 	}
9827 	fclose(f);
9828 	return ret;
9829 }
9830 
9831 static int determine_kprobe_perf_type(void)
9832 {
9833 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9834 
9835 	return parse_uint_from_file(file, "%d\n");
9836 }
9837 
9838 static int determine_uprobe_perf_type(void)
9839 {
9840 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9841 
9842 	return parse_uint_from_file(file, "%d\n");
9843 }
9844 
9845 static int determine_kprobe_retprobe_bit(void)
9846 {
9847 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9848 
9849 	return parse_uint_from_file(file, "config:%d\n");
9850 }
9851 
9852 static int determine_uprobe_retprobe_bit(void)
9853 {
9854 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9855 
9856 	return parse_uint_from_file(file, "config:%d\n");
9857 }
9858 
9859 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9860 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9861 
9862 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9863 				 uint64_t offset, int pid, size_t ref_ctr_off)
9864 {
9865 	const size_t attr_sz = sizeof(struct perf_event_attr);
9866 	struct perf_event_attr attr;
9867 	char errmsg[STRERR_BUFSIZE];
9868 	int type, pfd;
9869 
9870 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9871 		return -EINVAL;
9872 
9873 	memset(&attr, 0, attr_sz);
9874 
9875 	type = uprobe ? determine_uprobe_perf_type()
9876 		      : determine_kprobe_perf_type();
9877 	if (type < 0) {
9878 		pr_warn("failed to determine %s perf type: %s\n",
9879 			uprobe ? "uprobe" : "kprobe",
9880 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9881 		return type;
9882 	}
9883 	if (retprobe) {
9884 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9885 				 : determine_kprobe_retprobe_bit();
9886 
9887 		if (bit < 0) {
9888 			pr_warn("failed to determine %s retprobe bit: %s\n",
9889 				uprobe ? "uprobe" : "kprobe",
9890 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9891 			return bit;
9892 		}
9893 		attr.config |= 1 << bit;
9894 	}
9895 	attr.size = attr_sz;
9896 	attr.type = type;
9897 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9898 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9899 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9900 
9901 	/* pid filter is meaningful only for uprobes */
9902 	pfd = syscall(__NR_perf_event_open, &attr,
9903 		      pid < 0 ? -1 : pid /* pid */,
9904 		      pid == -1 ? 0 : -1 /* cpu */,
9905 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9906 	return pfd >= 0 ? pfd : -errno;
9907 }
9908 
9909 static int append_to_file(const char *file, const char *fmt, ...)
9910 {
9911 	int fd, n, err = 0;
9912 	va_list ap;
9913 
9914 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9915 	if (fd < 0)
9916 		return -errno;
9917 
9918 	va_start(ap, fmt);
9919 	n = vdprintf(fd, fmt, ap);
9920 	va_end(ap);
9921 
9922 	if (n < 0)
9923 		err = -errno;
9924 
9925 	close(fd);
9926 	return err;
9927 }
9928 
9929 #define DEBUGFS "/sys/kernel/debug/tracing"
9930 #define TRACEFS "/sys/kernel/tracing"
9931 
9932 static bool use_debugfs(void)
9933 {
9934 	static int has_debugfs = -1;
9935 
9936 	if (has_debugfs < 0)
9937 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
9938 
9939 	return has_debugfs == 1;
9940 }
9941 
9942 static const char *tracefs_path(void)
9943 {
9944 	return use_debugfs() ? DEBUGFS : TRACEFS;
9945 }
9946 
9947 static const char *tracefs_kprobe_events(void)
9948 {
9949 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
9950 }
9951 
9952 static const char *tracefs_uprobe_events(void)
9953 {
9954 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
9955 }
9956 
9957 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9958 					 const char *kfunc_name, size_t offset)
9959 {
9960 	static int index = 0;
9961 	int i;
9962 
9963 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9964 		 __sync_fetch_and_add(&index, 1));
9965 
9966 	/* sanitize binary_path in the probe name */
9967 	for (i = 0; buf[i]; i++) {
9968 		if (!isalnum(buf[i]))
9969 			buf[i] = '_';
9970 	}
9971 }
9972 
9973 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9974 				   const char *kfunc_name, size_t offset)
9975 {
9976 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
9977 			      retprobe ? 'r' : 'p',
9978 			      retprobe ? "kretprobes" : "kprobes",
9979 			      probe_name, kfunc_name, offset);
9980 }
9981 
9982 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9983 {
9984 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
9985 			      retprobe ? "kretprobes" : "kprobes", probe_name);
9986 }
9987 
9988 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9989 {
9990 	char file[256];
9991 
9992 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
9993 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
9994 
9995 	return parse_uint_from_file(file, "%d\n");
9996 }
9997 
9998 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9999 					 const char *kfunc_name, size_t offset, int pid)
10000 {
10001 	const size_t attr_sz = sizeof(struct perf_event_attr);
10002 	struct perf_event_attr attr;
10003 	char errmsg[STRERR_BUFSIZE];
10004 	int type, pfd, err;
10005 
10006 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10007 	if (err < 0) {
10008 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10009 			kfunc_name, offset,
10010 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10011 		return err;
10012 	}
10013 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10014 	if (type < 0) {
10015 		err = type;
10016 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10017 			kfunc_name, offset,
10018 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10019 		goto err_clean_legacy;
10020 	}
10021 
10022 	memset(&attr, 0, attr_sz);
10023 	attr.size = attr_sz;
10024 	attr.config = type;
10025 	attr.type = PERF_TYPE_TRACEPOINT;
10026 
10027 	pfd = syscall(__NR_perf_event_open, &attr,
10028 		      pid < 0 ? -1 : pid, /* pid */
10029 		      pid == -1 ? 0 : -1, /* cpu */
10030 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10031 	if (pfd < 0) {
10032 		err = -errno;
10033 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10034 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10035 		goto err_clean_legacy;
10036 	}
10037 	return pfd;
10038 
10039 err_clean_legacy:
10040 	/* Clear the newly added legacy kprobe_event */
10041 	remove_kprobe_event_legacy(probe_name, retprobe);
10042 	return err;
10043 }
10044 
10045 static const char *arch_specific_syscall_pfx(void)
10046 {
10047 #if defined(__x86_64__)
10048 	return "x64";
10049 #elif defined(__i386__)
10050 	return "ia32";
10051 #elif defined(__s390x__)
10052 	return "s390x";
10053 #elif defined(__s390__)
10054 	return "s390";
10055 #elif defined(__arm__)
10056 	return "arm";
10057 #elif defined(__aarch64__)
10058 	return "arm64";
10059 #elif defined(__mips__)
10060 	return "mips";
10061 #elif defined(__riscv)
10062 	return "riscv";
10063 #elif defined(__powerpc__)
10064 	return "powerpc";
10065 #elif defined(__powerpc64__)
10066 	return "powerpc64";
10067 #else
10068 	return NULL;
10069 #endif
10070 }
10071 
10072 static int probe_kern_syscall_wrapper(void)
10073 {
10074 	char syscall_name[64];
10075 	const char *ksys_pfx;
10076 
10077 	ksys_pfx = arch_specific_syscall_pfx();
10078 	if (!ksys_pfx)
10079 		return 0;
10080 
10081 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10082 
10083 	if (determine_kprobe_perf_type() >= 0) {
10084 		int pfd;
10085 
10086 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10087 		if (pfd >= 0)
10088 			close(pfd);
10089 
10090 		return pfd >= 0 ? 1 : 0;
10091 	} else { /* legacy mode */
10092 		char probe_name[128];
10093 
10094 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10095 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10096 			return 0;
10097 
10098 		(void)remove_kprobe_event_legacy(probe_name, false);
10099 		return 1;
10100 	}
10101 }
10102 
10103 struct bpf_link *
10104 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10105 				const char *func_name,
10106 				const struct bpf_kprobe_opts *opts)
10107 {
10108 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10109 	char errmsg[STRERR_BUFSIZE];
10110 	char *legacy_probe = NULL;
10111 	struct bpf_link *link;
10112 	size_t offset;
10113 	bool retprobe, legacy;
10114 	int pfd, err;
10115 
10116 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10117 		return libbpf_err_ptr(-EINVAL);
10118 
10119 	retprobe = OPTS_GET(opts, retprobe, false);
10120 	offset = OPTS_GET(opts, offset, 0);
10121 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10122 
10123 	legacy = determine_kprobe_perf_type() < 0;
10124 	if (!legacy) {
10125 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10126 					    func_name, offset,
10127 					    -1 /* pid */, 0 /* ref_ctr_off */);
10128 	} else {
10129 		char probe_name[256];
10130 
10131 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10132 					     func_name, offset);
10133 
10134 		legacy_probe = strdup(probe_name);
10135 		if (!legacy_probe)
10136 			return libbpf_err_ptr(-ENOMEM);
10137 
10138 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10139 						    offset, -1 /* pid */);
10140 	}
10141 	if (pfd < 0) {
10142 		err = -errno;
10143 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10144 			prog->name, retprobe ? "kretprobe" : "kprobe",
10145 			func_name, offset,
10146 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10147 		goto err_out;
10148 	}
10149 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10150 	err = libbpf_get_error(link);
10151 	if (err) {
10152 		close(pfd);
10153 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10154 			prog->name, retprobe ? "kretprobe" : "kprobe",
10155 			func_name, offset,
10156 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10157 		goto err_clean_legacy;
10158 	}
10159 	if (legacy) {
10160 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10161 
10162 		perf_link->legacy_probe_name = legacy_probe;
10163 		perf_link->legacy_is_kprobe = true;
10164 		perf_link->legacy_is_retprobe = retprobe;
10165 	}
10166 
10167 	return link;
10168 
10169 err_clean_legacy:
10170 	if (legacy)
10171 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10172 err_out:
10173 	free(legacy_probe);
10174 	return libbpf_err_ptr(err);
10175 }
10176 
10177 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10178 					    bool retprobe,
10179 					    const char *func_name)
10180 {
10181 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10182 		.retprobe = retprobe,
10183 	);
10184 
10185 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10186 }
10187 
10188 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10189 					      const char *syscall_name,
10190 					      const struct bpf_ksyscall_opts *opts)
10191 {
10192 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10193 	char func_name[128];
10194 
10195 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10196 		return libbpf_err_ptr(-EINVAL);
10197 
10198 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10199 		/* arch_specific_syscall_pfx() should never return NULL here
10200 		 * because it is guarded by kernel_supports(). However, since
10201 		 * compiler does not know that we have an explicit conditional
10202 		 * as well.
10203 		 */
10204 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10205 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10206 	} else {
10207 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10208 	}
10209 
10210 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10211 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10212 
10213 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10214 }
10215 
10216 /* Adapted from perf/util/string.c */
10217 static bool glob_match(const char *str, const char *pat)
10218 {
10219 	while (*str && *pat && *pat != '*') {
10220 		if (*pat == '?') {      /* Matches any single character */
10221 			str++;
10222 			pat++;
10223 			continue;
10224 		}
10225 		if (*str != *pat)
10226 			return false;
10227 		str++;
10228 		pat++;
10229 	}
10230 	/* Check wild card */
10231 	if (*pat == '*') {
10232 		while (*pat == '*')
10233 			pat++;
10234 		if (!*pat) /* Tail wild card matches all */
10235 			return true;
10236 		while (*str)
10237 			if (glob_match(str++, pat))
10238 				return true;
10239 	}
10240 	return !*str && !*pat;
10241 }
10242 
10243 struct kprobe_multi_resolve {
10244 	const char *pattern;
10245 	unsigned long *addrs;
10246 	size_t cap;
10247 	size_t cnt;
10248 };
10249 
10250 static int
10251 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10252 			const char *sym_name, void *ctx)
10253 {
10254 	struct kprobe_multi_resolve *res = ctx;
10255 	int err;
10256 
10257 	if (!glob_match(sym_name, res->pattern))
10258 		return 0;
10259 
10260 	err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10261 				res->cnt + 1);
10262 	if (err)
10263 		return err;
10264 
10265 	res->addrs[res->cnt++] = (unsigned long) sym_addr;
10266 	return 0;
10267 }
10268 
10269 struct bpf_link *
10270 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10271 				      const char *pattern,
10272 				      const struct bpf_kprobe_multi_opts *opts)
10273 {
10274 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10275 	struct kprobe_multi_resolve res = {
10276 		.pattern = pattern,
10277 	};
10278 	struct bpf_link *link = NULL;
10279 	char errmsg[STRERR_BUFSIZE];
10280 	const unsigned long *addrs;
10281 	int err, link_fd, prog_fd;
10282 	const __u64 *cookies;
10283 	const char **syms;
10284 	bool retprobe;
10285 	size_t cnt;
10286 
10287 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10288 		return libbpf_err_ptr(-EINVAL);
10289 
10290 	syms    = OPTS_GET(opts, syms, false);
10291 	addrs   = OPTS_GET(opts, addrs, false);
10292 	cnt     = OPTS_GET(opts, cnt, false);
10293 	cookies = OPTS_GET(opts, cookies, false);
10294 
10295 	if (!pattern && !addrs && !syms)
10296 		return libbpf_err_ptr(-EINVAL);
10297 	if (pattern && (addrs || syms || cookies || cnt))
10298 		return libbpf_err_ptr(-EINVAL);
10299 	if (!pattern && !cnt)
10300 		return libbpf_err_ptr(-EINVAL);
10301 	if (addrs && syms)
10302 		return libbpf_err_ptr(-EINVAL);
10303 
10304 	if (pattern) {
10305 		err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10306 		if (err)
10307 			goto error;
10308 		if (!res.cnt) {
10309 			err = -ENOENT;
10310 			goto error;
10311 		}
10312 		addrs = res.addrs;
10313 		cnt = res.cnt;
10314 	}
10315 
10316 	retprobe = OPTS_GET(opts, retprobe, false);
10317 
10318 	lopts.kprobe_multi.syms = syms;
10319 	lopts.kprobe_multi.addrs = addrs;
10320 	lopts.kprobe_multi.cookies = cookies;
10321 	lopts.kprobe_multi.cnt = cnt;
10322 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10323 
10324 	link = calloc(1, sizeof(*link));
10325 	if (!link) {
10326 		err = -ENOMEM;
10327 		goto error;
10328 	}
10329 	link->detach = &bpf_link__detach_fd;
10330 
10331 	prog_fd = bpf_program__fd(prog);
10332 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10333 	if (link_fd < 0) {
10334 		err = -errno;
10335 		pr_warn("prog '%s': failed to attach: %s\n",
10336 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10337 		goto error;
10338 	}
10339 	link->fd = link_fd;
10340 	free(res.addrs);
10341 	return link;
10342 
10343 error:
10344 	free(link);
10345 	free(res.addrs);
10346 	return libbpf_err_ptr(err);
10347 }
10348 
10349 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10350 {
10351 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10352 	unsigned long offset = 0;
10353 	const char *func_name;
10354 	char *func;
10355 	int n;
10356 
10357 	*link = NULL;
10358 
10359 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10360 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10361 		return 0;
10362 
10363 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10364 	if (opts.retprobe)
10365 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10366 	else
10367 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10368 
10369 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10370 	if (n < 1) {
10371 		pr_warn("kprobe name is invalid: %s\n", func_name);
10372 		return -EINVAL;
10373 	}
10374 	if (opts.retprobe && offset != 0) {
10375 		free(func);
10376 		pr_warn("kretprobes do not support offset specification\n");
10377 		return -EINVAL;
10378 	}
10379 
10380 	opts.offset = offset;
10381 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10382 	free(func);
10383 	return libbpf_get_error(*link);
10384 }
10385 
10386 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10387 {
10388 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10389 	const char *syscall_name;
10390 
10391 	*link = NULL;
10392 
10393 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10394 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10395 		return 0;
10396 
10397 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10398 	if (opts.retprobe)
10399 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10400 	else
10401 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10402 
10403 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10404 	return *link ? 0 : -errno;
10405 }
10406 
10407 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10408 {
10409 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10410 	const char *spec;
10411 	char *pattern;
10412 	int n;
10413 
10414 	*link = NULL;
10415 
10416 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10417 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10418 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10419 		return 0;
10420 
10421 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10422 	if (opts.retprobe)
10423 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10424 	else
10425 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10426 
10427 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10428 	if (n < 1) {
10429 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10430 		return -EINVAL;
10431 	}
10432 
10433 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10434 	free(pattern);
10435 	return libbpf_get_error(*link);
10436 }
10437 
10438 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10439 					 const char *binary_path, uint64_t offset)
10440 {
10441 	int i;
10442 
10443 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10444 
10445 	/* sanitize binary_path in the probe name */
10446 	for (i = 0; buf[i]; i++) {
10447 		if (!isalnum(buf[i]))
10448 			buf[i] = '_';
10449 	}
10450 }
10451 
10452 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10453 					  const char *binary_path, size_t offset)
10454 {
10455 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10456 			      retprobe ? 'r' : 'p',
10457 			      retprobe ? "uretprobes" : "uprobes",
10458 			      probe_name, binary_path, offset);
10459 }
10460 
10461 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10462 {
10463 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10464 			      retprobe ? "uretprobes" : "uprobes", probe_name);
10465 }
10466 
10467 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10468 {
10469 	char file[512];
10470 
10471 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10472 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10473 
10474 	return parse_uint_from_file(file, "%d\n");
10475 }
10476 
10477 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10478 					 const char *binary_path, size_t offset, int pid)
10479 {
10480 	const size_t attr_sz = sizeof(struct perf_event_attr);
10481 	struct perf_event_attr attr;
10482 	int type, pfd, err;
10483 
10484 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10485 	if (err < 0) {
10486 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10487 			binary_path, (size_t)offset, err);
10488 		return err;
10489 	}
10490 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10491 	if (type < 0) {
10492 		err = type;
10493 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10494 			binary_path, offset, err);
10495 		goto err_clean_legacy;
10496 	}
10497 
10498 	memset(&attr, 0, attr_sz);
10499 	attr.size = attr_sz;
10500 	attr.config = type;
10501 	attr.type = PERF_TYPE_TRACEPOINT;
10502 
10503 	pfd = syscall(__NR_perf_event_open, &attr,
10504 		      pid < 0 ? -1 : pid, /* pid */
10505 		      pid == -1 ? 0 : -1, /* cpu */
10506 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10507 	if (pfd < 0) {
10508 		err = -errno;
10509 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10510 		goto err_clean_legacy;
10511 	}
10512 	return pfd;
10513 
10514 err_clean_legacy:
10515 	/* Clear the newly added legacy uprobe_event */
10516 	remove_uprobe_event_legacy(probe_name, retprobe);
10517 	return err;
10518 }
10519 
10520 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10521 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10522 {
10523 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
10524 		GElf_Shdr sh;
10525 
10526 		if (!gelf_getshdr(scn, &sh))
10527 			continue;
10528 		if (sh.sh_type == sh_type)
10529 			return scn;
10530 	}
10531 	return NULL;
10532 }
10533 
10534 /* Find offset of function name in object specified by path.  "name" matches
10535  * symbol name or name@@LIB for library functions.
10536  */
10537 static long elf_find_func_offset(const char *binary_path, const char *name)
10538 {
10539 	int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10540 	bool is_shared_lib, is_name_qualified;
10541 	char errmsg[STRERR_BUFSIZE];
10542 	long ret = -ENOENT;
10543 	size_t name_len;
10544 	GElf_Ehdr ehdr;
10545 	Elf *elf;
10546 
10547 	fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10548 	if (fd < 0) {
10549 		ret = -errno;
10550 		pr_warn("failed to open %s: %s\n", binary_path,
10551 			libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10552 		return ret;
10553 	}
10554 	elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10555 	if (!elf) {
10556 		pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10557 		close(fd);
10558 		return -LIBBPF_ERRNO__FORMAT;
10559 	}
10560 	if (!gelf_getehdr(elf, &ehdr)) {
10561 		pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10562 		ret = -LIBBPF_ERRNO__FORMAT;
10563 		goto out;
10564 	}
10565 	/* for shared lib case, we do not need to calculate relative offset */
10566 	is_shared_lib = ehdr.e_type == ET_DYN;
10567 
10568 	name_len = strlen(name);
10569 	/* Does name specify "@@LIB"? */
10570 	is_name_qualified = strstr(name, "@@") != NULL;
10571 
10572 	/* Search SHT_DYNSYM, SHT_SYMTAB for symbol.  This search order is used because if
10573 	 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10574 	 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10575 	 * reported as a warning/error.
10576 	 */
10577 	for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10578 		size_t nr_syms, strtabidx, idx;
10579 		Elf_Data *symbols = NULL;
10580 		Elf_Scn *scn = NULL;
10581 		int last_bind = -1;
10582 		const char *sname;
10583 		GElf_Shdr sh;
10584 
10585 		scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10586 		if (!scn) {
10587 			pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10588 				 binary_path);
10589 			continue;
10590 		}
10591 		if (!gelf_getshdr(scn, &sh))
10592 			continue;
10593 		strtabidx = sh.sh_link;
10594 		symbols = elf_getdata(scn, 0);
10595 		if (!symbols) {
10596 			pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10597 				binary_path, elf_errmsg(-1));
10598 			ret = -LIBBPF_ERRNO__FORMAT;
10599 			goto out;
10600 		}
10601 		nr_syms = symbols->d_size / sh.sh_entsize;
10602 
10603 		for (idx = 0; idx < nr_syms; idx++) {
10604 			int curr_bind;
10605 			GElf_Sym sym;
10606 			Elf_Scn *sym_scn;
10607 			GElf_Shdr sym_sh;
10608 
10609 			if (!gelf_getsym(symbols, idx, &sym))
10610 				continue;
10611 
10612 			if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10613 				continue;
10614 
10615 			sname = elf_strptr(elf, strtabidx, sym.st_name);
10616 			if (!sname)
10617 				continue;
10618 
10619 			curr_bind = GELF_ST_BIND(sym.st_info);
10620 
10621 			/* User can specify func, func@@LIB or func@@LIB_VERSION. */
10622 			if (strncmp(sname, name, name_len) != 0)
10623 				continue;
10624 			/* ...but we don't want a search for "foo" to match 'foo2" also, so any
10625 			 * additional characters in sname should be of the form "@@LIB".
10626 			 */
10627 			if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10628 				continue;
10629 
10630 			if (ret >= 0) {
10631 				/* handle multiple matches */
10632 				if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10633 					/* Only accept one non-weak bind. */
10634 					pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10635 						sname, name, binary_path);
10636 					ret = -LIBBPF_ERRNO__FORMAT;
10637 					goto out;
10638 				} else if (curr_bind == STB_WEAK) {
10639 					/* already have a non-weak bind, and
10640 					 * this is a weak bind, so ignore.
10641 					 */
10642 					continue;
10643 				}
10644 			}
10645 
10646 			/* Transform symbol's virtual address (absolute for
10647 			 * binaries and relative for shared libs) into file
10648 			 * offset, which is what kernel is expecting for
10649 			 * uprobe/uretprobe attachment.
10650 			 * See Documentation/trace/uprobetracer.rst for more
10651 			 * details.
10652 			 * This is done by looking up symbol's containing
10653 			 * section's header and using it's virtual address
10654 			 * (sh_addr) and corresponding file offset (sh_offset)
10655 			 * to transform sym.st_value (virtual address) into
10656 			 * desired final file offset.
10657 			 */
10658 			sym_scn = elf_getscn(elf, sym.st_shndx);
10659 			if (!sym_scn)
10660 				continue;
10661 			if (!gelf_getshdr(sym_scn, &sym_sh))
10662 				continue;
10663 
10664 			ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10665 			last_bind = curr_bind;
10666 		}
10667 		if (ret > 0)
10668 			break;
10669 	}
10670 
10671 	if (ret > 0) {
10672 		pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10673 			 ret);
10674 	} else {
10675 		if (ret == 0) {
10676 			pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10677 				is_shared_lib ? "should not be 0 in a shared library" :
10678 						"try using shared library path instead");
10679 			ret = -ENOENT;
10680 		} else {
10681 			pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10682 		}
10683 	}
10684 out:
10685 	elf_end(elf);
10686 	close(fd);
10687 	return ret;
10688 }
10689 
10690 static const char *arch_specific_lib_paths(void)
10691 {
10692 	/*
10693 	 * Based on https://packages.debian.org/sid/libc6.
10694 	 *
10695 	 * Assume that the traced program is built for the same architecture
10696 	 * as libbpf, which should cover the vast majority of cases.
10697 	 */
10698 #if defined(__x86_64__)
10699 	return "/lib/x86_64-linux-gnu";
10700 #elif defined(__i386__)
10701 	return "/lib/i386-linux-gnu";
10702 #elif defined(__s390x__)
10703 	return "/lib/s390x-linux-gnu";
10704 #elif defined(__s390__)
10705 	return "/lib/s390-linux-gnu";
10706 #elif defined(__arm__) && defined(__SOFTFP__)
10707 	return "/lib/arm-linux-gnueabi";
10708 #elif defined(__arm__) && !defined(__SOFTFP__)
10709 	return "/lib/arm-linux-gnueabihf";
10710 #elif defined(__aarch64__)
10711 	return "/lib/aarch64-linux-gnu";
10712 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10713 	return "/lib/mips64el-linux-gnuabi64";
10714 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10715 	return "/lib/mipsel-linux-gnu";
10716 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10717 	return "/lib/powerpc64le-linux-gnu";
10718 #elif defined(__sparc__) && defined(__arch64__)
10719 	return "/lib/sparc64-linux-gnu";
10720 #elif defined(__riscv) && __riscv_xlen == 64
10721 	return "/lib/riscv64-linux-gnu";
10722 #else
10723 	return NULL;
10724 #endif
10725 }
10726 
10727 /* Get full path to program/shared library. */
10728 static int resolve_full_path(const char *file, char *result, size_t result_sz)
10729 {
10730 	const char *search_paths[3] = {};
10731 	int i, perm;
10732 
10733 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10734 		search_paths[0] = getenv("LD_LIBRARY_PATH");
10735 		search_paths[1] = "/usr/lib64:/usr/lib";
10736 		search_paths[2] = arch_specific_lib_paths();
10737 		perm = R_OK;
10738 	} else {
10739 		search_paths[0] = getenv("PATH");
10740 		search_paths[1] = "/usr/bin:/usr/sbin";
10741 		perm = R_OK | X_OK;
10742 	}
10743 
10744 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10745 		const char *s;
10746 
10747 		if (!search_paths[i])
10748 			continue;
10749 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10750 			char *next_path;
10751 			int seg_len;
10752 
10753 			if (s[0] == ':')
10754 				s++;
10755 			next_path = strchr(s, ':');
10756 			seg_len = next_path ? next_path - s : strlen(s);
10757 			if (!seg_len)
10758 				continue;
10759 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10760 			/* ensure it has required permissions */
10761 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
10762 				continue;
10763 			pr_debug("resolved '%s' to '%s'\n", file, result);
10764 			return 0;
10765 		}
10766 	}
10767 	return -ENOENT;
10768 }
10769 
10770 LIBBPF_API struct bpf_link *
10771 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10772 				const char *binary_path, size_t func_offset,
10773 				const struct bpf_uprobe_opts *opts)
10774 {
10775 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10776 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10777 	char full_binary_path[PATH_MAX];
10778 	struct bpf_link *link;
10779 	size_t ref_ctr_off;
10780 	int pfd, err;
10781 	bool retprobe, legacy;
10782 	const char *func_name;
10783 
10784 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10785 		return libbpf_err_ptr(-EINVAL);
10786 
10787 	retprobe = OPTS_GET(opts, retprobe, false);
10788 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10789 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10790 
10791 	if (!binary_path)
10792 		return libbpf_err_ptr(-EINVAL);
10793 
10794 	if (!strchr(binary_path, '/')) {
10795 		err = resolve_full_path(binary_path, full_binary_path,
10796 					sizeof(full_binary_path));
10797 		if (err) {
10798 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10799 				prog->name, binary_path, err);
10800 			return libbpf_err_ptr(err);
10801 		}
10802 		binary_path = full_binary_path;
10803 	}
10804 	func_name = OPTS_GET(opts, func_name, NULL);
10805 	if (func_name) {
10806 		long sym_off;
10807 
10808 		sym_off = elf_find_func_offset(binary_path, func_name);
10809 		if (sym_off < 0)
10810 			return libbpf_err_ptr(sym_off);
10811 		func_offset += sym_off;
10812 	}
10813 
10814 	legacy = determine_uprobe_perf_type() < 0;
10815 	if (!legacy) {
10816 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10817 					    func_offset, pid, ref_ctr_off);
10818 	} else {
10819 		char probe_name[PATH_MAX + 64];
10820 
10821 		if (ref_ctr_off)
10822 			return libbpf_err_ptr(-EINVAL);
10823 
10824 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10825 					     binary_path, func_offset);
10826 
10827 		legacy_probe = strdup(probe_name);
10828 		if (!legacy_probe)
10829 			return libbpf_err_ptr(-ENOMEM);
10830 
10831 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10832 						    binary_path, func_offset, pid);
10833 	}
10834 	if (pfd < 0) {
10835 		err = -errno;
10836 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10837 			prog->name, retprobe ? "uretprobe" : "uprobe",
10838 			binary_path, func_offset,
10839 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10840 		goto err_out;
10841 	}
10842 
10843 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10844 	err = libbpf_get_error(link);
10845 	if (err) {
10846 		close(pfd);
10847 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10848 			prog->name, retprobe ? "uretprobe" : "uprobe",
10849 			binary_path, func_offset,
10850 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10851 		goto err_clean_legacy;
10852 	}
10853 	if (legacy) {
10854 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10855 
10856 		perf_link->legacy_probe_name = legacy_probe;
10857 		perf_link->legacy_is_kprobe = false;
10858 		perf_link->legacy_is_retprobe = retprobe;
10859 	}
10860 	return link;
10861 
10862 err_clean_legacy:
10863 	if (legacy)
10864 		remove_uprobe_event_legacy(legacy_probe, retprobe);
10865 err_out:
10866 	free(legacy_probe);
10867 	return libbpf_err_ptr(err);
10868 }
10869 
10870 /* Format of u[ret]probe section definition supporting auto-attach:
10871  * u[ret]probe/binary:function[+offset]
10872  *
10873  * binary can be an absolute/relative path or a filename; the latter is resolved to a
10874  * full binary path via bpf_program__attach_uprobe_opts.
10875  *
10876  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10877  * specified (and auto-attach is not possible) or the above format is specified for
10878  * auto-attach.
10879  */
10880 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10881 {
10882 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10883 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10884 	int n, ret = -EINVAL;
10885 	long offset = 0;
10886 
10887 	*link = NULL;
10888 
10889 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10890 		   &probe_type, &binary_path, &func_name, &offset);
10891 	switch (n) {
10892 	case 1:
10893 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10894 		ret = 0;
10895 		break;
10896 	case 2:
10897 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10898 			prog->name, prog->sec_name);
10899 		break;
10900 	case 3:
10901 	case 4:
10902 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10903 				strcmp(probe_type, "uretprobe.s") == 0;
10904 		if (opts.retprobe && offset != 0) {
10905 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
10906 				prog->name);
10907 			break;
10908 		}
10909 		opts.func_name = func_name;
10910 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10911 		ret = libbpf_get_error(*link);
10912 		break;
10913 	default:
10914 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10915 			prog->sec_name);
10916 		break;
10917 	}
10918 	free(probe_type);
10919 	free(binary_path);
10920 	free(func_name);
10921 
10922 	return ret;
10923 }
10924 
10925 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10926 					    bool retprobe, pid_t pid,
10927 					    const char *binary_path,
10928 					    size_t func_offset)
10929 {
10930 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10931 
10932 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10933 }
10934 
10935 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10936 					  pid_t pid, const char *binary_path,
10937 					  const char *usdt_provider, const char *usdt_name,
10938 					  const struct bpf_usdt_opts *opts)
10939 {
10940 	char resolved_path[512];
10941 	struct bpf_object *obj = prog->obj;
10942 	struct bpf_link *link;
10943 	__u64 usdt_cookie;
10944 	int err;
10945 
10946 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
10947 		return libbpf_err_ptr(-EINVAL);
10948 
10949 	if (bpf_program__fd(prog) < 0) {
10950 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10951 			prog->name);
10952 		return libbpf_err_ptr(-EINVAL);
10953 	}
10954 
10955 	if (!binary_path)
10956 		return libbpf_err_ptr(-EINVAL);
10957 
10958 	if (!strchr(binary_path, '/')) {
10959 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10960 		if (err) {
10961 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10962 				prog->name, binary_path, err);
10963 			return libbpf_err_ptr(err);
10964 		}
10965 		binary_path = resolved_path;
10966 	}
10967 
10968 	/* USDT manager is instantiated lazily on first USDT attach. It will
10969 	 * be destroyed together with BPF object in bpf_object__close().
10970 	 */
10971 	if (IS_ERR(obj->usdt_man))
10972 		return libbpf_ptr(obj->usdt_man);
10973 	if (!obj->usdt_man) {
10974 		obj->usdt_man = usdt_manager_new(obj);
10975 		if (IS_ERR(obj->usdt_man))
10976 			return libbpf_ptr(obj->usdt_man);
10977 	}
10978 
10979 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
10980 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
10981 					usdt_provider, usdt_name, usdt_cookie);
10982 	err = libbpf_get_error(link);
10983 	if (err)
10984 		return libbpf_err_ptr(err);
10985 	return link;
10986 }
10987 
10988 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10989 {
10990 	char *path = NULL, *provider = NULL, *name = NULL;
10991 	const char *sec_name;
10992 	int n, err;
10993 
10994 	sec_name = bpf_program__section_name(prog);
10995 	if (strcmp(sec_name, "usdt") == 0) {
10996 		/* no auto-attach for just SEC("usdt") */
10997 		*link = NULL;
10998 		return 0;
10999 	}
11000 
11001 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11002 	if (n != 3) {
11003 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11004 			sec_name);
11005 		err = -EINVAL;
11006 	} else {
11007 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11008 						 provider, name, NULL);
11009 		err = libbpf_get_error(*link);
11010 	}
11011 	free(path);
11012 	free(provider);
11013 	free(name);
11014 	return err;
11015 }
11016 
11017 static int determine_tracepoint_id(const char *tp_category,
11018 				   const char *tp_name)
11019 {
11020 	char file[PATH_MAX];
11021 	int ret;
11022 
11023 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11024 		       tracefs_path(), tp_category, tp_name);
11025 	if (ret < 0)
11026 		return -errno;
11027 	if (ret >= sizeof(file)) {
11028 		pr_debug("tracepoint %s/%s path is too long\n",
11029 			 tp_category, tp_name);
11030 		return -E2BIG;
11031 	}
11032 	return parse_uint_from_file(file, "%d\n");
11033 }
11034 
11035 static int perf_event_open_tracepoint(const char *tp_category,
11036 				      const char *tp_name)
11037 {
11038 	const size_t attr_sz = sizeof(struct perf_event_attr);
11039 	struct perf_event_attr attr;
11040 	char errmsg[STRERR_BUFSIZE];
11041 	int tp_id, pfd, err;
11042 
11043 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11044 	if (tp_id < 0) {
11045 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11046 			tp_category, tp_name,
11047 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11048 		return tp_id;
11049 	}
11050 
11051 	memset(&attr, 0, attr_sz);
11052 	attr.type = PERF_TYPE_TRACEPOINT;
11053 	attr.size = attr_sz;
11054 	attr.config = tp_id;
11055 
11056 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11057 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11058 	if (pfd < 0) {
11059 		err = -errno;
11060 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11061 			tp_category, tp_name,
11062 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11063 		return err;
11064 	}
11065 	return pfd;
11066 }
11067 
11068 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11069 						     const char *tp_category,
11070 						     const char *tp_name,
11071 						     const struct bpf_tracepoint_opts *opts)
11072 {
11073 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11074 	char errmsg[STRERR_BUFSIZE];
11075 	struct bpf_link *link;
11076 	int pfd, err;
11077 
11078 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11079 		return libbpf_err_ptr(-EINVAL);
11080 
11081 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11082 
11083 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11084 	if (pfd < 0) {
11085 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11086 			prog->name, tp_category, tp_name,
11087 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11088 		return libbpf_err_ptr(pfd);
11089 	}
11090 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11091 	err = libbpf_get_error(link);
11092 	if (err) {
11093 		close(pfd);
11094 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11095 			prog->name, tp_category, tp_name,
11096 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11097 		return libbpf_err_ptr(err);
11098 	}
11099 	return link;
11100 }
11101 
11102 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11103 						const char *tp_category,
11104 						const char *tp_name)
11105 {
11106 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11107 }
11108 
11109 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11110 {
11111 	char *sec_name, *tp_cat, *tp_name;
11112 
11113 	*link = NULL;
11114 
11115 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11116 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11117 		return 0;
11118 
11119 	sec_name = strdup(prog->sec_name);
11120 	if (!sec_name)
11121 		return -ENOMEM;
11122 
11123 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11124 	if (str_has_pfx(prog->sec_name, "tp/"))
11125 		tp_cat = sec_name + sizeof("tp/") - 1;
11126 	else
11127 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11128 	tp_name = strchr(tp_cat, '/');
11129 	if (!tp_name) {
11130 		free(sec_name);
11131 		return -EINVAL;
11132 	}
11133 	*tp_name = '\0';
11134 	tp_name++;
11135 
11136 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11137 	free(sec_name);
11138 	return libbpf_get_error(*link);
11139 }
11140 
11141 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11142 						    const char *tp_name)
11143 {
11144 	char errmsg[STRERR_BUFSIZE];
11145 	struct bpf_link *link;
11146 	int prog_fd, pfd;
11147 
11148 	prog_fd = bpf_program__fd(prog);
11149 	if (prog_fd < 0) {
11150 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11151 		return libbpf_err_ptr(-EINVAL);
11152 	}
11153 
11154 	link = calloc(1, sizeof(*link));
11155 	if (!link)
11156 		return libbpf_err_ptr(-ENOMEM);
11157 	link->detach = &bpf_link__detach_fd;
11158 
11159 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11160 	if (pfd < 0) {
11161 		pfd = -errno;
11162 		free(link);
11163 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11164 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11165 		return libbpf_err_ptr(pfd);
11166 	}
11167 	link->fd = pfd;
11168 	return link;
11169 }
11170 
11171 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11172 {
11173 	static const char *const prefixes[] = {
11174 		"raw_tp",
11175 		"raw_tracepoint",
11176 		"raw_tp.w",
11177 		"raw_tracepoint.w",
11178 	};
11179 	size_t i;
11180 	const char *tp_name = NULL;
11181 
11182 	*link = NULL;
11183 
11184 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11185 		size_t pfx_len;
11186 
11187 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11188 			continue;
11189 
11190 		pfx_len = strlen(prefixes[i]);
11191 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11192 		if (prog->sec_name[pfx_len] == '\0')
11193 			return 0;
11194 
11195 		if (prog->sec_name[pfx_len] != '/')
11196 			continue;
11197 
11198 		tp_name = prog->sec_name + pfx_len + 1;
11199 		break;
11200 	}
11201 
11202 	if (!tp_name) {
11203 		pr_warn("prog '%s': invalid section name '%s'\n",
11204 			prog->name, prog->sec_name);
11205 		return -EINVAL;
11206 	}
11207 
11208 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11209 	return libbpf_get_error(*link);
11210 }
11211 
11212 /* Common logic for all BPF program types that attach to a btf_id */
11213 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11214 						   const struct bpf_trace_opts *opts)
11215 {
11216 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11217 	char errmsg[STRERR_BUFSIZE];
11218 	struct bpf_link *link;
11219 	int prog_fd, pfd;
11220 
11221 	if (!OPTS_VALID(opts, bpf_trace_opts))
11222 		return libbpf_err_ptr(-EINVAL);
11223 
11224 	prog_fd = bpf_program__fd(prog);
11225 	if (prog_fd < 0) {
11226 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11227 		return libbpf_err_ptr(-EINVAL);
11228 	}
11229 
11230 	link = calloc(1, sizeof(*link));
11231 	if (!link)
11232 		return libbpf_err_ptr(-ENOMEM);
11233 	link->detach = &bpf_link__detach_fd;
11234 
11235 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11236 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11237 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11238 	if (pfd < 0) {
11239 		pfd = -errno;
11240 		free(link);
11241 		pr_warn("prog '%s': failed to attach: %s\n",
11242 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11243 		return libbpf_err_ptr(pfd);
11244 	}
11245 	link->fd = pfd;
11246 	return link;
11247 }
11248 
11249 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11250 {
11251 	return bpf_program__attach_btf_id(prog, NULL);
11252 }
11253 
11254 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11255 						const struct bpf_trace_opts *opts)
11256 {
11257 	return bpf_program__attach_btf_id(prog, opts);
11258 }
11259 
11260 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11261 {
11262 	return bpf_program__attach_btf_id(prog, NULL);
11263 }
11264 
11265 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11266 {
11267 	*link = bpf_program__attach_trace(prog);
11268 	return libbpf_get_error(*link);
11269 }
11270 
11271 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11272 {
11273 	*link = bpf_program__attach_lsm(prog);
11274 	return libbpf_get_error(*link);
11275 }
11276 
11277 static struct bpf_link *
11278 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11279 		       const char *target_name)
11280 {
11281 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11282 			    .target_btf_id = btf_id);
11283 	enum bpf_attach_type attach_type;
11284 	char errmsg[STRERR_BUFSIZE];
11285 	struct bpf_link *link;
11286 	int prog_fd, link_fd;
11287 
11288 	prog_fd = bpf_program__fd(prog);
11289 	if (prog_fd < 0) {
11290 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11291 		return libbpf_err_ptr(-EINVAL);
11292 	}
11293 
11294 	link = calloc(1, sizeof(*link));
11295 	if (!link)
11296 		return libbpf_err_ptr(-ENOMEM);
11297 	link->detach = &bpf_link__detach_fd;
11298 
11299 	attach_type = bpf_program__expected_attach_type(prog);
11300 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11301 	if (link_fd < 0) {
11302 		link_fd = -errno;
11303 		free(link);
11304 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11305 			prog->name, target_name,
11306 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11307 		return libbpf_err_ptr(link_fd);
11308 	}
11309 	link->fd = link_fd;
11310 	return link;
11311 }
11312 
11313 struct bpf_link *
11314 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11315 {
11316 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11317 }
11318 
11319 struct bpf_link *
11320 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11321 {
11322 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11323 }
11324 
11325 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11326 {
11327 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11328 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11329 }
11330 
11331 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11332 					      int target_fd,
11333 					      const char *attach_func_name)
11334 {
11335 	int btf_id;
11336 
11337 	if (!!target_fd != !!attach_func_name) {
11338 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11339 			prog->name);
11340 		return libbpf_err_ptr(-EINVAL);
11341 	}
11342 
11343 	if (prog->type != BPF_PROG_TYPE_EXT) {
11344 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11345 			prog->name);
11346 		return libbpf_err_ptr(-EINVAL);
11347 	}
11348 
11349 	if (target_fd) {
11350 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11351 		if (btf_id < 0)
11352 			return libbpf_err_ptr(btf_id);
11353 
11354 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11355 	} else {
11356 		/* no target, so use raw_tracepoint_open for compatibility
11357 		 * with old kernels
11358 		 */
11359 		return bpf_program__attach_trace(prog);
11360 	}
11361 }
11362 
11363 struct bpf_link *
11364 bpf_program__attach_iter(const struct bpf_program *prog,
11365 			 const struct bpf_iter_attach_opts *opts)
11366 {
11367 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11368 	char errmsg[STRERR_BUFSIZE];
11369 	struct bpf_link *link;
11370 	int prog_fd, link_fd;
11371 	__u32 target_fd = 0;
11372 
11373 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11374 		return libbpf_err_ptr(-EINVAL);
11375 
11376 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11377 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11378 
11379 	prog_fd = bpf_program__fd(prog);
11380 	if (prog_fd < 0) {
11381 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11382 		return libbpf_err_ptr(-EINVAL);
11383 	}
11384 
11385 	link = calloc(1, sizeof(*link));
11386 	if (!link)
11387 		return libbpf_err_ptr(-ENOMEM);
11388 	link->detach = &bpf_link__detach_fd;
11389 
11390 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11391 				  &link_create_opts);
11392 	if (link_fd < 0) {
11393 		link_fd = -errno;
11394 		free(link);
11395 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
11396 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11397 		return libbpf_err_ptr(link_fd);
11398 	}
11399 	link->fd = link_fd;
11400 	return link;
11401 }
11402 
11403 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11404 {
11405 	*link = bpf_program__attach_iter(prog, NULL);
11406 	return libbpf_get_error(*link);
11407 }
11408 
11409 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11410 {
11411 	struct bpf_link *link = NULL;
11412 	int err;
11413 
11414 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11415 		return libbpf_err_ptr(-EOPNOTSUPP);
11416 
11417 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11418 	if (err)
11419 		return libbpf_err_ptr(err);
11420 
11421 	/* When calling bpf_program__attach() explicitly, auto-attach support
11422 	 * is expected to work, so NULL returned link is considered an error.
11423 	 * This is different for skeleton's attach, see comment in
11424 	 * bpf_object__attach_skeleton().
11425 	 */
11426 	if (!link)
11427 		return libbpf_err_ptr(-EOPNOTSUPP);
11428 
11429 	return link;
11430 }
11431 
11432 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11433 {
11434 	__u32 zero = 0;
11435 
11436 	if (bpf_map_delete_elem(link->fd, &zero))
11437 		return -errno;
11438 
11439 	return 0;
11440 }
11441 
11442 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11443 {
11444 	struct bpf_struct_ops *st_ops;
11445 	struct bpf_link *link;
11446 	__u32 i, zero = 0;
11447 	int err;
11448 
11449 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11450 		return libbpf_err_ptr(-EINVAL);
11451 
11452 	link = calloc(1, sizeof(*link));
11453 	if (!link)
11454 		return libbpf_err_ptr(-EINVAL);
11455 
11456 	st_ops = map->st_ops;
11457 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
11458 		struct bpf_program *prog = st_ops->progs[i];
11459 		void *kern_data;
11460 		int prog_fd;
11461 
11462 		if (!prog)
11463 			continue;
11464 
11465 		prog_fd = bpf_program__fd(prog);
11466 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11467 		*(unsigned long *)kern_data = prog_fd;
11468 	}
11469 
11470 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11471 	if (err) {
11472 		err = -errno;
11473 		free(link);
11474 		return libbpf_err_ptr(err);
11475 	}
11476 
11477 	link->detach = bpf_link__detach_struct_ops;
11478 	link->fd = map->fd;
11479 
11480 	return link;
11481 }
11482 
11483 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11484 							  void *private_data);
11485 
11486 static enum bpf_perf_event_ret
11487 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11488 		       void **copy_mem, size_t *copy_size,
11489 		       bpf_perf_event_print_t fn, void *private_data)
11490 {
11491 	struct perf_event_mmap_page *header = mmap_mem;
11492 	__u64 data_head = ring_buffer_read_head(header);
11493 	__u64 data_tail = header->data_tail;
11494 	void *base = ((__u8 *)header) + page_size;
11495 	int ret = LIBBPF_PERF_EVENT_CONT;
11496 	struct perf_event_header *ehdr;
11497 	size_t ehdr_size;
11498 
11499 	while (data_head != data_tail) {
11500 		ehdr = base + (data_tail & (mmap_size - 1));
11501 		ehdr_size = ehdr->size;
11502 
11503 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11504 			void *copy_start = ehdr;
11505 			size_t len_first = base + mmap_size - copy_start;
11506 			size_t len_secnd = ehdr_size - len_first;
11507 
11508 			if (*copy_size < ehdr_size) {
11509 				free(*copy_mem);
11510 				*copy_mem = malloc(ehdr_size);
11511 				if (!*copy_mem) {
11512 					*copy_size = 0;
11513 					ret = LIBBPF_PERF_EVENT_ERROR;
11514 					break;
11515 				}
11516 				*copy_size = ehdr_size;
11517 			}
11518 
11519 			memcpy(*copy_mem, copy_start, len_first);
11520 			memcpy(*copy_mem + len_first, base, len_secnd);
11521 			ehdr = *copy_mem;
11522 		}
11523 
11524 		ret = fn(ehdr, private_data);
11525 		data_tail += ehdr_size;
11526 		if (ret != LIBBPF_PERF_EVENT_CONT)
11527 			break;
11528 	}
11529 
11530 	ring_buffer_write_tail(header, data_tail);
11531 	return libbpf_err(ret);
11532 }
11533 
11534 struct perf_buffer;
11535 
11536 struct perf_buffer_params {
11537 	struct perf_event_attr *attr;
11538 	/* if event_cb is specified, it takes precendence */
11539 	perf_buffer_event_fn event_cb;
11540 	/* sample_cb and lost_cb are higher-level common-case callbacks */
11541 	perf_buffer_sample_fn sample_cb;
11542 	perf_buffer_lost_fn lost_cb;
11543 	void *ctx;
11544 	int cpu_cnt;
11545 	int *cpus;
11546 	int *map_keys;
11547 };
11548 
11549 struct perf_cpu_buf {
11550 	struct perf_buffer *pb;
11551 	void *base; /* mmap()'ed memory */
11552 	void *buf; /* for reconstructing segmented data */
11553 	size_t buf_size;
11554 	int fd;
11555 	int cpu;
11556 	int map_key;
11557 };
11558 
11559 struct perf_buffer {
11560 	perf_buffer_event_fn event_cb;
11561 	perf_buffer_sample_fn sample_cb;
11562 	perf_buffer_lost_fn lost_cb;
11563 	void *ctx; /* passed into callbacks */
11564 
11565 	size_t page_size;
11566 	size_t mmap_size;
11567 	struct perf_cpu_buf **cpu_bufs;
11568 	struct epoll_event *events;
11569 	int cpu_cnt; /* number of allocated CPU buffers */
11570 	int epoll_fd; /* perf event FD */
11571 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11572 };
11573 
11574 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11575 				      struct perf_cpu_buf *cpu_buf)
11576 {
11577 	if (!cpu_buf)
11578 		return;
11579 	if (cpu_buf->base &&
11580 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11581 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11582 	if (cpu_buf->fd >= 0) {
11583 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11584 		close(cpu_buf->fd);
11585 	}
11586 	free(cpu_buf->buf);
11587 	free(cpu_buf);
11588 }
11589 
11590 void perf_buffer__free(struct perf_buffer *pb)
11591 {
11592 	int i;
11593 
11594 	if (IS_ERR_OR_NULL(pb))
11595 		return;
11596 	if (pb->cpu_bufs) {
11597 		for (i = 0; i < pb->cpu_cnt; i++) {
11598 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11599 
11600 			if (!cpu_buf)
11601 				continue;
11602 
11603 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11604 			perf_buffer__free_cpu_buf(pb, cpu_buf);
11605 		}
11606 		free(pb->cpu_bufs);
11607 	}
11608 	if (pb->epoll_fd >= 0)
11609 		close(pb->epoll_fd);
11610 	free(pb->events);
11611 	free(pb);
11612 }
11613 
11614 static struct perf_cpu_buf *
11615 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11616 			  int cpu, int map_key)
11617 {
11618 	struct perf_cpu_buf *cpu_buf;
11619 	char msg[STRERR_BUFSIZE];
11620 	int err;
11621 
11622 	cpu_buf = calloc(1, sizeof(*cpu_buf));
11623 	if (!cpu_buf)
11624 		return ERR_PTR(-ENOMEM);
11625 
11626 	cpu_buf->pb = pb;
11627 	cpu_buf->cpu = cpu;
11628 	cpu_buf->map_key = map_key;
11629 
11630 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11631 			      -1, PERF_FLAG_FD_CLOEXEC);
11632 	if (cpu_buf->fd < 0) {
11633 		err = -errno;
11634 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11635 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11636 		goto error;
11637 	}
11638 
11639 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11640 			     PROT_READ | PROT_WRITE, MAP_SHARED,
11641 			     cpu_buf->fd, 0);
11642 	if (cpu_buf->base == MAP_FAILED) {
11643 		cpu_buf->base = NULL;
11644 		err = -errno;
11645 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11646 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11647 		goto error;
11648 	}
11649 
11650 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11651 		err = -errno;
11652 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11653 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11654 		goto error;
11655 	}
11656 
11657 	return cpu_buf;
11658 
11659 error:
11660 	perf_buffer__free_cpu_buf(pb, cpu_buf);
11661 	return (struct perf_cpu_buf *)ERR_PTR(err);
11662 }
11663 
11664 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11665 					      struct perf_buffer_params *p);
11666 
11667 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11668 				     perf_buffer_sample_fn sample_cb,
11669 				     perf_buffer_lost_fn lost_cb,
11670 				     void *ctx,
11671 				     const struct perf_buffer_opts *opts)
11672 {
11673 	const size_t attr_sz = sizeof(struct perf_event_attr);
11674 	struct perf_buffer_params p = {};
11675 	struct perf_event_attr attr;
11676 	__u32 sample_period;
11677 
11678 	if (!OPTS_VALID(opts, perf_buffer_opts))
11679 		return libbpf_err_ptr(-EINVAL);
11680 
11681 	sample_period = OPTS_GET(opts, sample_period, 1);
11682 	if (!sample_period)
11683 		sample_period = 1;
11684 
11685 	memset(&attr, 0, attr_sz);
11686 	attr.size = attr_sz;
11687 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11688 	attr.type = PERF_TYPE_SOFTWARE;
11689 	attr.sample_type = PERF_SAMPLE_RAW;
11690 	attr.sample_period = sample_period;
11691 	attr.wakeup_events = sample_period;
11692 
11693 	p.attr = &attr;
11694 	p.sample_cb = sample_cb;
11695 	p.lost_cb = lost_cb;
11696 	p.ctx = ctx;
11697 
11698 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11699 }
11700 
11701 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11702 					 struct perf_event_attr *attr,
11703 					 perf_buffer_event_fn event_cb, void *ctx,
11704 					 const struct perf_buffer_raw_opts *opts)
11705 {
11706 	struct perf_buffer_params p = {};
11707 
11708 	if (!attr)
11709 		return libbpf_err_ptr(-EINVAL);
11710 
11711 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11712 		return libbpf_err_ptr(-EINVAL);
11713 
11714 	p.attr = attr;
11715 	p.event_cb = event_cb;
11716 	p.ctx = ctx;
11717 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11718 	p.cpus = OPTS_GET(opts, cpus, NULL);
11719 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
11720 
11721 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11722 }
11723 
11724 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11725 					      struct perf_buffer_params *p)
11726 {
11727 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
11728 	struct bpf_map_info map;
11729 	char msg[STRERR_BUFSIZE];
11730 	struct perf_buffer *pb;
11731 	bool *online = NULL;
11732 	__u32 map_info_len;
11733 	int err, i, j, n;
11734 
11735 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11736 		pr_warn("page count should be power of two, but is %zu\n",
11737 			page_cnt);
11738 		return ERR_PTR(-EINVAL);
11739 	}
11740 
11741 	/* best-effort sanity checks */
11742 	memset(&map, 0, sizeof(map));
11743 	map_info_len = sizeof(map);
11744 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
11745 	if (err) {
11746 		err = -errno;
11747 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11748 		 * -EBADFD, -EFAULT, or -E2BIG on real error
11749 		 */
11750 		if (err != -EINVAL) {
11751 			pr_warn("failed to get map info for map FD %d: %s\n",
11752 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11753 			return ERR_PTR(err);
11754 		}
11755 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11756 			 map_fd);
11757 	} else {
11758 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11759 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11760 				map.name);
11761 			return ERR_PTR(-EINVAL);
11762 		}
11763 	}
11764 
11765 	pb = calloc(1, sizeof(*pb));
11766 	if (!pb)
11767 		return ERR_PTR(-ENOMEM);
11768 
11769 	pb->event_cb = p->event_cb;
11770 	pb->sample_cb = p->sample_cb;
11771 	pb->lost_cb = p->lost_cb;
11772 	pb->ctx = p->ctx;
11773 
11774 	pb->page_size = getpagesize();
11775 	pb->mmap_size = pb->page_size * page_cnt;
11776 	pb->map_fd = map_fd;
11777 
11778 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11779 	if (pb->epoll_fd < 0) {
11780 		err = -errno;
11781 		pr_warn("failed to create epoll instance: %s\n",
11782 			libbpf_strerror_r(err, msg, sizeof(msg)));
11783 		goto error;
11784 	}
11785 
11786 	if (p->cpu_cnt > 0) {
11787 		pb->cpu_cnt = p->cpu_cnt;
11788 	} else {
11789 		pb->cpu_cnt = libbpf_num_possible_cpus();
11790 		if (pb->cpu_cnt < 0) {
11791 			err = pb->cpu_cnt;
11792 			goto error;
11793 		}
11794 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
11795 			pb->cpu_cnt = map.max_entries;
11796 	}
11797 
11798 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11799 	if (!pb->events) {
11800 		err = -ENOMEM;
11801 		pr_warn("failed to allocate events: out of memory\n");
11802 		goto error;
11803 	}
11804 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11805 	if (!pb->cpu_bufs) {
11806 		err = -ENOMEM;
11807 		pr_warn("failed to allocate buffers: out of memory\n");
11808 		goto error;
11809 	}
11810 
11811 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11812 	if (err) {
11813 		pr_warn("failed to get online CPU mask: %d\n", err);
11814 		goto error;
11815 	}
11816 
11817 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11818 		struct perf_cpu_buf *cpu_buf;
11819 		int cpu, map_key;
11820 
11821 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11822 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11823 
11824 		/* in case user didn't explicitly requested particular CPUs to
11825 		 * be attached to, skip offline/not present CPUs
11826 		 */
11827 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11828 			continue;
11829 
11830 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11831 		if (IS_ERR(cpu_buf)) {
11832 			err = PTR_ERR(cpu_buf);
11833 			goto error;
11834 		}
11835 
11836 		pb->cpu_bufs[j] = cpu_buf;
11837 
11838 		err = bpf_map_update_elem(pb->map_fd, &map_key,
11839 					  &cpu_buf->fd, 0);
11840 		if (err) {
11841 			err = -errno;
11842 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11843 				cpu, map_key, cpu_buf->fd,
11844 				libbpf_strerror_r(err, msg, sizeof(msg)));
11845 			goto error;
11846 		}
11847 
11848 		pb->events[j].events = EPOLLIN;
11849 		pb->events[j].data.ptr = cpu_buf;
11850 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11851 			      &pb->events[j]) < 0) {
11852 			err = -errno;
11853 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11854 				cpu, cpu_buf->fd,
11855 				libbpf_strerror_r(err, msg, sizeof(msg)));
11856 			goto error;
11857 		}
11858 		j++;
11859 	}
11860 	pb->cpu_cnt = j;
11861 	free(online);
11862 
11863 	return pb;
11864 
11865 error:
11866 	free(online);
11867 	if (pb)
11868 		perf_buffer__free(pb);
11869 	return ERR_PTR(err);
11870 }
11871 
11872 struct perf_sample_raw {
11873 	struct perf_event_header header;
11874 	uint32_t size;
11875 	char data[];
11876 };
11877 
11878 struct perf_sample_lost {
11879 	struct perf_event_header header;
11880 	uint64_t id;
11881 	uint64_t lost;
11882 	uint64_t sample_id;
11883 };
11884 
11885 static enum bpf_perf_event_ret
11886 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11887 {
11888 	struct perf_cpu_buf *cpu_buf = ctx;
11889 	struct perf_buffer *pb = cpu_buf->pb;
11890 	void *data = e;
11891 
11892 	/* user wants full control over parsing perf event */
11893 	if (pb->event_cb)
11894 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11895 
11896 	switch (e->type) {
11897 	case PERF_RECORD_SAMPLE: {
11898 		struct perf_sample_raw *s = data;
11899 
11900 		if (pb->sample_cb)
11901 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11902 		break;
11903 	}
11904 	case PERF_RECORD_LOST: {
11905 		struct perf_sample_lost *s = data;
11906 
11907 		if (pb->lost_cb)
11908 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11909 		break;
11910 	}
11911 	default:
11912 		pr_warn("unknown perf sample type %d\n", e->type);
11913 		return LIBBPF_PERF_EVENT_ERROR;
11914 	}
11915 	return LIBBPF_PERF_EVENT_CONT;
11916 }
11917 
11918 static int perf_buffer__process_records(struct perf_buffer *pb,
11919 					struct perf_cpu_buf *cpu_buf)
11920 {
11921 	enum bpf_perf_event_ret ret;
11922 
11923 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11924 				     pb->page_size, &cpu_buf->buf,
11925 				     &cpu_buf->buf_size,
11926 				     perf_buffer__process_record, cpu_buf);
11927 	if (ret != LIBBPF_PERF_EVENT_CONT)
11928 		return ret;
11929 	return 0;
11930 }
11931 
11932 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11933 {
11934 	return pb->epoll_fd;
11935 }
11936 
11937 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11938 {
11939 	int i, cnt, err;
11940 
11941 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11942 	if (cnt < 0)
11943 		return -errno;
11944 
11945 	for (i = 0; i < cnt; i++) {
11946 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11947 
11948 		err = perf_buffer__process_records(pb, cpu_buf);
11949 		if (err) {
11950 			pr_warn("error while processing records: %d\n", err);
11951 			return libbpf_err(err);
11952 		}
11953 	}
11954 	return cnt;
11955 }
11956 
11957 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11958  * manager.
11959  */
11960 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11961 {
11962 	return pb->cpu_cnt;
11963 }
11964 
11965 /*
11966  * Return perf_event FD of a ring buffer in *buf_idx* slot of
11967  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11968  * select()/poll()/epoll() Linux syscalls.
11969  */
11970 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11971 {
11972 	struct perf_cpu_buf *cpu_buf;
11973 
11974 	if (buf_idx >= pb->cpu_cnt)
11975 		return libbpf_err(-EINVAL);
11976 
11977 	cpu_buf = pb->cpu_bufs[buf_idx];
11978 	if (!cpu_buf)
11979 		return libbpf_err(-ENOENT);
11980 
11981 	return cpu_buf->fd;
11982 }
11983 
11984 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
11985 {
11986 	struct perf_cpu_buf *cpu_buf;
11987 
11988 	if (buf_idx >= pb->cpu_cnt)
11989 		return libbpf_err(-EINVAL);
11990 
11991 	cpu_buf = pb->cpu_bufs[buf_idx];
11992 	if (!cpu_buf)
11993 		return libbpf_err(-ENOENT);
11994 
11995 	*buf = cpu_buf->base;
11996 	*buf_size = pb->mmap_size;
11997 	return 0;
11998 }
11999 
12000 /*
12001  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12002  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12003  * consume, do nothing and return success.
12004  * Returns:
12005  *   - 0 on success;
12006  *   - <0 on failure.
12007  */
12008 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12009 {
12010 	struct perf_cpu_buf *cpu_buf;
12011 
12012 	if (buf_idx >= pb->cpu_cnt)
12013 		return libbpf_err(-EINVAL);
12014 
12015 	cpu_buf = pb->cpu_bufs[buf_idx];
12016 	if (!cpu_buf)
12017 		return libbpf_err(-ENOENT);
12018 
12019 	return perf_buffer__process_records(pb, cpu_buf);
12020 }
12021 
12022 int perf_buffer__consume(struct perf_buffer *pb)
12023 {
12024 	int i, err;
12025 
12026 	for (i = 0; i < pb->cpu_cnt; i++) {
12027 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12028 
12029 		if (!cpu_buf)
12030 			continue;
12031 
12032 		err = perf_buffer__process_records(pb, cpu_buf);
12033 		if (err) {
12034 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12035 			return libbpf_err(err);
12036 		}
12037 	}
12038 	return 0;
12039 }
12040 
12041 int bpf_program__set_attach_target(struct bpf_program *prog,
12042 				   int attach_prog_fd,
12043 				   const char *attach_func_name)
12044 {
12045 	int btf_obj_fd = 0, btf_id = 0, err;
12046 
12047 	if (!prog || attach_prog_fd < 0)
12048 		return libbpf_err(-EINVAL);
12049 
12050 	if (prog->obj->loaded)
12051 		return libbpf_err(-EINVAL);
12052 
12053 	if (attach_prog_fd && !attach_func_name) {
12054 		/* remember attach_prog_fd and let bpf_program__load() find
12055 		 * BTF ID during the program load
12056 		 */
12057 		prog->attach_prog_fd = attach_prog_fd;
12058 		return 0;
12059 	}
12060 
12061 	if (attach_prog_fd) {
12062 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12063 						 attach_prog_fd);
12064 		if (btf_id < 0)
12065 			return libbpf_err(btf_id);
12066 	} else {
12067 		if (!attach_func_name)
12068 			return libbpf_err(-EINVAL);
12069 
12070 		/* load btf_vmlinux, if not yet */
12071 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
12072 		if (err)
12073 			return libbpf_err(err);
12074 		err = find_kernel_btf_id(prog->obj, attach_func_name,
12075 					 prog->expected_attach_type,
12076 					 &btf_obj_fd, &btf_id);
12077 		if (err)
12078 			return libbpf_err(err);
12079 	}
12080 
12081 	prog->attach_btf_id = btf_id;
12082 	prog->attach_btf_obj_fd = btf_obj_fd;
12083 	prog->attach_prog_fd = attach_prog_fd;
12084 	return 0;
12085 }
12086 
12087 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12088 {
12089 	int err = 0, n, len, start, end = -1;
12090 	bool *tmp;
12091 
12092 	*mask = NULL;
12093 	*mask_sz = 0;
12094 
12095 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12096 	while (*s) {
12097 		if (*s == ',' || *s == '\n') {
12098 			s++;
12099 			continue;
12100 		}
12101 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12102 		if (n <= 0 || n > 2) {
12103 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12104 			err = -EINVAL;
12105 			goto cleanup;
12106 		} else if (n == 1) {
12107 			end = start;
12108 		}
12109 		if (start < 0 || start > end) {
12110 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12111 				start, end, s);
12112 			err = -EINVAL;
12113 			goto cleanup;
12114 		}
12115 		tmp = realloc(*mask, end + 1);
12116 		if (!tmp) {
12117 			err = -ENOMEM;
12118 			goto cleanup;
12119 		}
12120 		*mask = tmp;
12121 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12122 		memset(tmp + start, 1, end - start + 1);
12123 		*mask_sz = end + 1;
12124 		s += len;
12125 	}
12126 	if (!*mask_sz) {
12127 		pr_warn("Empty CPU range\n");
12128 		return -EINVAL;
12129 	}
12130 	return 0;
12131 cleanup:
12132 	free(*mask);
12133 	*mask = NULL;
12134 	return err;
12135 }
12136 
12137 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12138 {
12139 	int fd, err = 0, len;
12140 	char buf[128];
12141 
12142 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12143 	if (fd < 0) {
12144 		err = -errno;
12145 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12146 		return err;
12147 	}
12148 	len = read(fd, buf, sizeof(buf));
12149 	close(fd);
12150 	if (len <= 0) {
12151 		err = len ? -errno : -EINVAL;
12152 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12153 		return err;
12154 	}
12155 	if (len >= sizeof(buf)) {
12156 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12157 		return -E2BIG;
12158 	}
12159 	buf[len] = '\0';
12160 
12161 	return parse_cpu_mask_str(buf, mask, mask_sz);
12162 }
12163 
12164 int libbpf_num_possible_cpus(void)
12165 {
12166 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12167 	static int cpus;
12168 	int err, n, i, tmp_cpus;
12169 	bool *mask;
12170 
12171 	tmp_cpus = READ_ONCE(cpus);
12172 	if (tmp_cpus > 0)
12173 		return tmp_cpus;
12174 
12175 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12176 	if (err)
12177 		return libbpf_err(err);
12178 
12179 	tmp_cpus = 0;
12180 	for (i = 0; i < n; i++) {
12181 		if (mask[i])
12182 			tmp_cpus++;
12183 	}
12184 	free(mask);
12185 
12186 	WRITE_ONCE(cpus, tmp_cpus);
12187 	return tmp_cpus;
12188 }
12189 
12190 static int populate_skeleton_maps(const struct bpf_object *obj,
12191 				  struct bpf_map_skeleton *maps,
12192 				  size_t map_cnt)
12193 {
12194 	int i;
12195 
12196 	for (i = 0; i < map_cnt; i++) {
12197 		struct bpf_map **map = maps[i].map;
12198 		const char *name = maps[i].name;
12199 		void **mmaped = maps[i].mmaped;
12200 
12201 		*map = bpf_object__find_map_by_name(obj, name);
12202 		if (!*map) {
12203 			pr_warn("failed to find skeleton map '%s'\n", name);
12204 			return -ESRCH;
12205 		}
12206 
12207 		/* externs shouldn't be pre-setup from user code */
12208 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12209 			*mmaped = (*map)->mmaped;
12210 	}
12211 	return 0;
12212 }
12213 
12214 static int populate_skeleton_progs(const struct bpf_object *obj,
12215 				   struct bpf_prog_skeleton *progs,
12216 				   size_t prog_cnt)
12217 {
12218 	int i;
12219 
12220 	for (i = 0; i < prog_cnt; i++) {
12221 		struct bpf_program **prog = progs[i].prog;
12222 		const char *name = progs[i].name;
12223 
12224 		*prog = bpf_object__find_program_by_name(obj, name);
12225 		if (!*prog) {
12226 			pr_warn("failed to find skeleton program '%s'\n", name);
12227 			return -ESRCH;
12228 		}
12229 	}
12230 	return 0;
12231 }
12232 
12233 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12234 			      const struct bpf_object_open_opts *opts)
12235 {
12236 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12237 		.object_name = s->name,
12238 	);
12239 	struct bpf_object *obj;
12240 	int err;
12241 
12242 	/* Attempt to preserve opts->object_name, unless overriden by user
12243 	 * explicitly. Overwriting object name for skeletons is discouraged,
12244 	 * as it breaks global data maps, because they contain object name
12245 	 * prefix as their own map name prefix. When skeleton is generated,
12246 	 * bpftool is making an assumption that this name will stay the same.
12247 	 */
12248 	if (opts) {
12249 		memcpy(&skel_opts, opts, sizeof(*opts));
12250 		if (!opts->object_name)
12251 			skel_opts.object_name = s->name;
12252 	}
12253 
12254 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12255 	err = libbpf_get_error(obj);
12256 	if (err) {
12257 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12258 			s->name, err);
12259 		return libbpf_err(err);
12260 	}
12261 
12262 	*s->obj = obj;
12263 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12264 	if (err) {
12265 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12266 		return libbpf_err(err);
12267 	}
12268 
12269 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12270 	if (err) {
12271 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12272 		return libbpf_err(err);
12273 	}
12274 
12275 	return 0;
12276 }
12277 
12278 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12279 {
12280 	int err, len, var_idx, i;
12281 	const char *var_name;
12282 	const struct bpf_map *map;
12283 	struct btf *btf;
12284 	__u32 map_type_id;
12285 	const struct btf_type *map_type, *var_type;
12286 	const struct bpf_var_skeleton *var_skel;
12287 	struct btf_var_secinfo *var;
12288 
12289 	if (!s->obj)
12290 		return libbpf_err(-EINVAL);
12291 
12292 	btf = bpf_object__btf(s->obj);
12293 	if (!btf) {
12294 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
12295 			bpf_object__name(s->obj));
12296 		return libbpf_err(-errno);
12297 	}
12298 
12299 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12300 	if (err) {
12301 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12302 		return libbpf_err(err);
12303 	}
12304 
12305 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12306 	if (err) {
12307 		pr_warn("failed to populate subskeleton maps: %d\n", err);
12308 		return libbpf_err(err);
12309 	}
12310 
12311 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12312 		var_skel = &s->vars[var_idx];
12313 		map = *var_skel->map;
12314 		map_type_id = bpf_map__btf_value_type_id(map);
12315 		map_type = btf__type_by_id(btf, map_type_id);
12316 
12317 		if (!btf_is_datasec(map_type)) {
12318 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
12319 				bpf_map__name(map),
12320 				__btf_kind_str(btf_kind(map_type)));
12321 			return libbpf_err(-EINVAL);
12322 		}
12323 
12324 		len = btf_vlen(map_type);
12325 		var = btf_var_secinfos(map_type);
12326 		for (i = 0; i < len; i++, var++) {
12327 			var_type = btf__type_by_id(btf, var->type);
12328 			var_name = btf__name_by_offset(btf, var_type->name_off);
12329 			if (strcmp(var_name, var_skel->name) == 0) {
12330 				*var_skel->addr = map->mmaped + var->offset;
12331 				break;
12332 			}
12333 		}
12334 	}
12335 	return 0;
12336 }
12337 
12338 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12339 {
12340 	if (!s)
12341 		return;
12342 	free(s->maps);
12343 	free(s->progs);
12344 	free(s->vars);
12345 	free(s);
12346 }
12347 
12348 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12349 {
12350 	int i, err;
12351 
12352 	err = bpf_object__load(*s->obj);
12353 	if (err) {
12354 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12355 		return libbpf_err(err);
12356 	}
12357 
12358 	for (i = 0; i < s->map_cnt; i++) {
12359 		struct bpf_map *map = *s->maps[i].map;
12360 		size_t mmap_sz = bpf_map_mmap_sz(map);
12361 		int prot, map_fd = bpf_map__fd(map);
12362 		void **mmaped = s->maps[i].mmaped;
12363 
12364 		if (!mmaped)
12365 			continue;
12366 
12367 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12368 			*mmaped = NULL;
12369 			continue;
12370 		}
12371 
12372 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
12373 			prot = PROT_READ;
12374 		else
12375 			prot = PROT_READ | PROT_WRITE;
12376 
12377 		/* Remap anonymous mmap()-ed "map initialization image" as
12378 		 * a BPF map-backed mmap()-ed memory, but preserving the same
12379 		 * memory address. This will cause kernel to change process'
12380 		 * page table to point to a different piece of kernel memory,
12381 		 * but from userspace point of view memory address (and its
12382 		 * contents, being identical at this point) will stay the
12383 		 * same. This mapping will be released by bpf_object__close()
12384 		 * as per normal clean up procedure, so we don't need to worry
12385 		 * about it from skeleton's clean up perspective.
12386 		 */
12387 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
12388 				MAP_SHARED | MAP_FIXED, map_fd, 0);
12389 		if (*mmaped == MAP_FAILED) {
12390 			err = -errno;
12391 			*mmaped = NULL;
12392 			pr_warn("failed to re-mmap() map '%s': %d\n",
12393 				 bpf_map__name(map), err);
12394 			return libbpf_err(err);
12395 		}
12396 	}
12397 
12398 	return 0;
12399 }
12400 
12401 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12402 {
12403 	int i, err;
12404 
12405 	for (i = 0; i < s->prog_cnt; i++) {
12406 		struct bpf_program *prog = *s->progs[i].prog;
12407 		struct bpf_link **link = s->progs[i].link;
12408 
12409 		if (!prog->autoload || !prog->autoattach)
12410 			continue;
12411 
12412 		/* auto-attaching not supported for this program */
12413 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12414 			continue;
12415 
12416 		/* if user already set the link manually, don't attempt auto-attach */
12417 		if (*link)
12418 			continue;
12419 
12420 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12421 		if (err) {
12422 			pr_warn("prog '%s': failed to auto-attach: %d\n",
12423 				bpf_program__name(prog), err);
12424 			return libbpf_err(err);
12425 		}
12426 
12427 		/* It's possible that for some SEC() definitions auto-attach
12428 		 * is supported in some cases (e.g., if definition completely
12429 		 * specifies target information), but is not in other cases.
12430 		 * SEC("uprobe") is one such case. If user specified target
12431 		 * binary and function name, such BPF program can be
12432 		 * auto-attached. But if not, it shouldn't trigger skeleton's
12433 		 * attach to fail. It should just be skipped.
12434 		 * attach_fn signals such case with returning 0 (no error) and
12435 		 * setting link to NULL.
12436 		 */
12437 	}
12438 
12439 	return 0;
12440 }
12441 
12442 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12443 {
12444 	int i;
12445 
12446 	for (i = 0; i < s->prog_cnt; i++) {
12447 		struct bpf_link **link = s->progs[i].link;
12448 
12449 		bpf_link__destroy(*link);
12450 		*link = NULL;
12451 	}
12452 }
12453 
12454 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12455 {
12456 	if (!s)
12457 		return;
12458 
12459 	if (s->progs)
12460 		bpf_object__detach_skeleton(s);
12461 	if (s->obj)
12462 		bpf_object__close(*s->obj);
12463 	free(s->maps);
12464 	free(s->progs);
12465 	free(s);
12466 }
12467