1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 libbpf_mode = mode; 160 return 0; 161 } 162 163 __u32 libbpf_major_version(void) 164 { 165 return LIBBPF_MAJOR_VERSION; 166 } 167 168 __u32 libbpf_minor_version(void) 169 { 170 return LIBBPF_MINOR_VERSION; 171 } 172 173 const char *libbpf_version_string(void) 174 { 175 #define __S(X) #X 176 #define _S(X) __S(X) 177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 178 #undef _S 179 #undef __S 180 } 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN_VAR, 187 RELO_EXTERN_FUNC, 188 RELO_SUBPROG_ADDR, 189 RELO_CORE, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 union { 196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 197 struct { 198 int map_idx; 199 int sym_off; 200 }; 201 }; 202 }; 203 204 struct bpf_sec_def; 205 206 typedef int (*init_fn_t)(struct bpf_program *prog, long cookie); 207 typedef int (*preload_fn_t)(struct bpf_program *prog, struct bpf_prog_load_opts *opts, long cookie); 208 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_program *prog, long cookie); 209 210 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 211 enum sec_def_flags { 212 SEC_NONE = 0, 213 /* expected_attach_type is optional, if kernel doesn't support that */ 214 SEC_EXP_ATTACH_OPT = 1, 215 /* legacy, only used by libbpf_get_type_names() and 216 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 217 * This used to be associated with cgroup (and few other) BPF programs 218 * that were attachable through BPF_PROG_ATTACH command. Pretty 219 * meaningless nowadays, though. 220 */ 221 SEC_ATTACHABLE = 2, 222 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 223 /* attachment target is specified through BTF ID in either kernel or 224 * other BPF program's BTF object */ 225 SEC_ATTACH_BTF = 4, 226 /* BPF program type allows sleeping/blocking in kernel */ 227 SEC_SLEEPABLE = 8, 228 /* allow non-strict prefix matching */ 229 SEC_SLOPPY_PFX = 16, 230 /* BPF program support non-linear XDP buffer */ 231 SEC_XDP_FRAGS = 32, 232 /* deprecated sec definitions not supposed to be used */ 233 SEC_DEPRECATED = 64, 234 }; 235 236 struct bpf_sec_def { 237 const char *sec; 238 enum bpf_prog_type prog_type; 239 enum bpf_attach_type expected_attach_type; 240 long cookie; 241 242 init_fn_t init_fn; 243 preload_fn_t preload_fn; 244 attach_fn_t attach_fn; 245 }; 246 247 /* 248 * bpf_prog should be a better name but it has been used in 249 * linux/filter.h. 250 */ 251 struct bpf_program { 252 const struct bpf_sec_def *sec_def; 253 char *sec_name; 254 size_t sec_idx; 255 /* this program's instruction offset (in number of instructions) 256 * within its containing ELF section 257 */ 258 size_t sec_insn_off; 259 /* number of original instructions in ELF section belonging to this 260 * program, not taking into account subprogram instructions possible 261 * appended later during relocation 262 */ 263 size_t sec_insn_cnt; 264 /* Offset (in number of instructions) of the start of instruction 265 * belonging to this BPF program within its containing main BPF 266 * program. For the entry-point (main) BPF program, this is always 267 * zero. For a sub-program, this gets reset before each of main BPF 268 * programs are processed and relocated and is used to determined 269 * whether sub-program was already appended to the main program, and 270 * if yes, at which instruction offset. 271 */ 272 size_t sub_insn_off; 273 274 char *name; 275 /* name with / replaced by _; makes recursive pinning 276 * in bpf_object__pin_programs easier 277 */ 278 char *pin_name; 279 280 /* instructions that belong to BPF program; insns[0] is located at 281 * sec_insn_off instruction within its ELF section in ELF file, so 282 * when mapping ELF file instruction index to the local instruction, 283 * one needs to subtract sec_insn_off; and vice versa. 284 */ 285 struct bpf_insn *insns; 286 /* actual number of instruction in this BPF program's image; for 287 * entry-point BPF programs this includes the size of main program 288 * itself plus all the used sub-programs, appended at the end 289 */ 290 size_t insns_cnt; 291 292 struct reloc_desc *reloc_desc; 293 int nr_reloc; 294 295 /* BPF verifier log settings */ 296 char *log_buf; 297 size_t log_size; 298 __u32 log_level; 299 300 struct { 301 int nr; 302 int *fds; 303 } instances; 304 bpf_program_prep_t preprocessor; 305 306 struct bpf_object *obj; 307 void *priv; 308 bpf_program_clear_priv_t clear_priv; 309 310 bool load; 311 bool mark_btf_static; 312 enum bpf_prog_type type; 313 enum bpf_attach_type expected_attach_type; 314 int prog_ifindex; 315 __u32 attach_btf_obj_fd; 316 __u32 attach_btf_id; 317 __u32 attach_prog_fd; 318 void *func_info; 319 __u32 func_info_rec_size; 320 __u32 func_info_cnt; 321 322 void *line_info; 323 __u32 line_info_rec_size; 324 __u32 line_info_cnt; 325 __u32 prog_flags; 326 }; 327 328 struct bpf_struct_ops { 329 const char *tname; 330 const struct btf_type *type; 331 struct bpf_program **progs; 332 __u32 *kern_func_off; 333 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 334 void *data; 335 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 336 * btf_vmlinux's format. 337 * struct bpf_struct_ops_tcp_congestion_ops { 338 * [... some other kernel fields ...] 339 * struct tcp_congestion_ops data; 340 * } 341 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 342 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 343 * from "data". 344 */ 345 void *kern_vdata; 346 __u32 type_id; 347 }; 348 349 #define DATA_SEC ".data" 350 #define BSS_SEC ".bss" 351 #define RODATA_SEC ".rodata" 352 #define KCONFIG_SEC ".kconfig" 353 #define KSYMS_SEC ".ksyms" 354 #define STRUCT_OPS_SEC ".struct_ops" 355 356 enum libbpf_map_type { 357 LIBBPF_MAP_UNSPEC, 358 LIBBPF_MAP_DATA, 359 LIBBPF_MAP_BSS, 360 LIBBPF_MAP_RODATA, 361 LIBBPF_MAP_KCONFIG, 362 }; 363 364 struct bpf_map { 365 char *name; 366 /* real_name is defined for special internal maps (.rodata*, 367 * .data*, .bss, .kconfig) and preserves their original ELF section 368 * name. This is important to be be able to find corresponding BTF 369 * DATASEC information. 370 */ 371 char *real_name; 372 int fd; 373 int sec_idx; 374 size_t sec_offset; 375 int map_ifindex; 376 int inner_map_fd; 377 struct bpf_map_def def; 378 __u32 numa_node; 379 __u32 btf_var_idx; 380 __u32 btf_key_type_id; 381 __u32 btf_value_type_id; 382 __u32 btf_vmlinux_value_type_id; 383 void *priv; 384 bpf_map_clear_priv_t clear_priv; 385 enum libbpf_map_type libbpf_type; 386 void *mmaped; 387 struct bpf_struct_ops *st_ops; 388 struct bpf_map *inner_map; 389 void **init_slots; 390 int init_slots_sz; 391 char *pin_path; 392 bool pinned; 393 bool reused; 394 bool skipped; 395 __u64 map_extra; 396 }; 397 398 enum extern_type { 399 EXT_UNKNOWN, 400 EXT_KCFG, 401 EXT_KSYM, 402 }; 403 404 enum kcfg_type { 405 KCFG_UNKNOWN, 406 KCFG_CHAR, 407 KCFG_BOOL, 408 KCFG_INT, 409 KCFG_TRISTATE, 410 KCFG_CHAR_ARR, 411 }; 412 413 struct extern_desc { 414 enum extern_type type; 415 int sym_idx; 416 int btf_id; 417 int sec_btf_id; 418 const char *name; 419 bool is_set; 420 bool is_weak; 421 union { 422 struct { 423 enum kcfg_type type; 424 int sz; 425 int align; 426 int data_off; 427 bool is_signed; 428 } kcfg; 429 struct { 430 unsigned long long addr; 431 432 /* target btf_id of the corresponding kernel var. */ 433 int kernel_btf_obj_fd; 434 int kernel_btf_id; 435 436 /* local btf_id of the ksym extern's type. */ 437 __u32 type_id; 438 /* BTF fd index to be patched in for insn->off, this is 439 * 0 for vmlinux BTF, index in obj->fd_array for module 440 * BTF 441 */ 442 __s16 btf_fd_idx; 443 } ksym; 444 }; 445 }; 446 447 static LIST_HEAD(bpf_objects_list); 448 449 struct module_btf { 450 struct btf *btf; 451 char *name; 452 __u32 id; 453 int fd; 454 int fd_array_idx; 455 }; 456 457 enum sec_type { 458 SEC_UNUSED = 0, 459 SEC_RELO, 460 SEC_BSS, 461 SEC_DATA, 462 SEC_RODATA, 463 }; 464 465 struct elf_sec_desc { 466 enum sec_type sec_type; 467 Elf64_Shdr *shdr; 468 Elf_Data *data; 469 }; 470 471 struct elf_state { 472 int fd; 473 const void *obj_buf; 474 size_t obj_buf_sz; 475 Elf *elf; 476 Elf64_Ehdr *ehdr; 477 Elf_Data *symbols; 478 Elf_Data *st_ops_data; 479 size_t shstrndx; /* section index for section name strings */ 480 size_t strtabidx; 481 struct elf_sec_desc *secs; 482 int sec_cnt; 483 int maps_shndx; 484 int btf_maps_shndx; 485 __u32 btf_maps_sec_btf_id; 486 int text_shndx; 487 int symbols_shndx; 488 int st_ops_shndx; 489 }; 490 491 struct bpf_object { 492 char name[BPF_OBJ_NAME_LEN]; 493 char license[64]; 494 __u32 kern_version; 495 496 struct bpf_program *programs; 497 size_t nr_programs; 498 struct bpf_map *maps; 499 size_t nr_maps; 500 size_t maps_cap; 501 502 char *kconfig; 503 struct extern_desc *externs; 504 int nr_extern; 505 int kconfig_map_idx; 506 507 bool loaded; 508 bool has_subcalls; 509 bool has_rodata; 510 511 struct bpf_gen *gen_loader; 512 513 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 514 struct elf_state efile; 515 /* 516 * All loaded bpf_object are linked in a list, which is 517 * hidden to caller. bpf_objects__<func> handlers deal with 518 * all objects. 519 */ 520 struct list_head list; 521 522 struct btf *btf; 523 struct btf_ext *btf_ext; 524 525 /* Parse and load BTF vmlinux if any of the programs in the object need 526 * it at load time. 527 */ 528 struct btf *btf_vmlinux; 529 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 530 * override for vmlinux BTF. 531 */ 532 char *btf_custom_path; 533 /* vmlinux BTF override for CO-RE relocations */ 534 struct btf *btf_vmlinux_override; 535 /* Lazily initialized kernel module BTFs */ 536 struct module_btf *btf_modules; 537 bool btf_modules_loaded; 538 size_t btf_module_cnt; 539 size_t btf_module_cap; 540 541 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 542 char *log_buf; 543 size_t log_size; 544 __u32 log_level; 545 546 void *priv; 547 bpf_object_clear_priv_t clear_priv; 548 549 int *fd_array; 550 size_t fd_array_cap; 551 size_t fd_array_cnt; 552 553 char path[]; 554 }; 555 556 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 557 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 558 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 559 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 560 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 561 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 562 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 563 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 564 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 565 566 void bpf_program__unload(struct bpf_program *prog) 567 { 568 int i; 569 570 if (!prog) 571 return; 572 573 /* 574 * If the object is opened but the program was never loaded, 575 * it is possible that prog->instances.nr == -1. 576 */ 577 if (prog->instances.nr > 0) { 578 for (i = 0; i < prog->instances.nr; i++) 579 zclose(prog->instances.fds[i]); 580 } else if (prog->instances.nr != -1) { 581 pr_warn("Internal error: instances.nr is %d\n", 582 prog->instances.nr); 583 } 584 585 prog->instances.nr = -1; 586 zfree(&prog->instances.fds); 587 588 zfree(&prog->func_info); 589 zfree(&prog->line_info); 590 } 591 592 static void bpf_program__exit(struct bpf_program *prog) 593 { 594 if (!prog) 595 return; 596 597 if (prog->clear_priv) 598 prog->clear_priv(prog, prog->priv); 599 600 prog->priv = NULL; 601 prog->clear_priv = NULL; 602 603 bpf_program__unload(prog); 604 zfree(&prog->name); 605 zfree(&prog->sec_name); 606 zfree(&prog->pin_name); 607 zfree(&prog->insns); 608 zfree(&prog->reloc_desc); 609 610 prog->nr_reloc = 0; 611 prog->insns_cnt = 0; 612 prog->sec_idx = -1; 613 } 614 615 static char *__bpf_program__pin_name(struct bpf_program *prog) 616 { 617 char *name, *p; 618 619 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 620 name = strdup(prog->name); 621 else 622 name = strdup(prog->sec_name); 623 624 if (!name) 625 return NULL; 626 627 p = name; 628 629 while ((p = strchr(p, '/'))) 630 *p = '_'; 631 632 return name; 633 } 634 635 static bool insn_is_subprog_call(const struct bpf_insn *insn) 636 { 637 return BPF_CLASS(insn->code) == BPF_JMP && 638 BPF_OP(insn->code) == BPF_CALL && 639 BPF_SRC(insn->code) == BPF_K && 640 insn->src_reg == BPF_PSEUDO_CALL && 641 insn->dst_reg == 0 && 642 insn->off == 0; 643 } 644 645 static bool is_call_insn(const struct bpf_insn *insn) 646 { 647 return insn->code == (BPF_JMP | BPF_CALL); 648 } 649 650 static bool insn_is_pseudo_func(struct bpf_insn *insn) 651 { 652 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 653 } 654 655 static int 656 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 657 const char *name, size_t sec_idx, const char *sec_name, 658 size_t sec_off, void *insn_data, size_t insn_data_sz) 659 { 660 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 661 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 662 sec_name, name, sec_off, insn_data_sz); 663 return -EINVAL; 664 } 665 666 memset(prog, 0, sizeof(*prog)); 667 prog->obj = obj; 668 669 prog->sec_idx = sec_idx; 670 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 671 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 672 /* insns_cnt can later be increased by appending used subprograms */ 673 prog->insns_cnt = prog->sec_insn_cnt; 674 675 prog->type = BPF_PROG_TYPE_UNSPEC; 676 prog->load = true; 677 678 prog->instances.fds = NULL; 679 prog->instances.nr = -1; 680 681 /* inherit object's log_level */ 682 prog->log_level = obj->log_level; 683 684 prog->sec_name = strdup(sec_name); 685 if (!prog->sec_name) 686 goto errout; 687 688 prog->name = strdup(name); 689 if (!prog->name) 690 goto errout; 691 692 prog->pin_name = __bpf_program__pin_name(prog); 693 if (!prog->pin_name) 694 goto errout; 695 696 prog->insns = malloc(insn_data_sz); 697 if (!prog->insns) 698 goto errout; 699 memcpy(prog->insns, insn_data, insn_data_sz); 700 701 return 0; 702 errout: 703 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 704 bpf_program__exit(prog); 705 return -ENOMEM; 706 } 707 708 static int 709 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 710 const char *sec_name, int sec_idx) 711 { 712 Elf_Data *symbols = obj->efile.symbols; 713 struct bpf_program *prog, *progs; 714 void *data = sec_data->d_buf; 715 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 716 int nr_progs, err, i; 717 const char *name; 718 Elf64_Sym *sym; 719 720 progs = obj->programs; 721 nr_progs = obj->nr_programs; 722 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 723 sec_off = 0; 724 725 for (i = 0; i < nr_syms; i++) { 726 sym = elf_sym_by_idx(obj, i); 727 728 if (sym->st_shndx != sec_idx) 729 continue; 730 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 731 continue; 732 733 prog_sz = sym->st_size; 734 sec_off = sym->st_value; 735 736 name = elf_sym_str(obj, sym->st_name); 737 if (!name) { 738 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 739 sec_name, sec_off); 740 return -LIBBPF_ERRNO__FORMAT; 741 } 742 743 if (sec_off + prog_sz > sec_sz) { 744 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 745 sec_name, sec_off); 746 return -LIBBPF_ERRNO__FORMAT; 747 } 748 749 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 750 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 751 return -ENOTSUP; 752 } 753 754 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 755 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 756 757 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 758 if (!progs) { 759 /* 760 * In this case the original obj->programs 761 * is still valid, so don't need special treat for 762 * bpf_close_object(). 763 */ 764 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 765 sec_name, name); 766 return -ENOMEM; 767 } 768 obj->programs = progs; 769 770 prog = &progs[nr_progs]; 771 772 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 773 sec_off, data + sec_off, prog_sz); 774 if (err) 775 return err; 776 777 /* if function is a global/weak symbol, but has restricted 778 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 779 * as static to enable more permissive BPF verification mode 780 * with more outside context available to BPF verifier 781 */ 782 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 783 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 784 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 785 prog->mark_btf_static = true; 786 787 nr_progs++; 788 obj->nr_programs = nr_progs; 789 } 790 791 return 0; 792 } 793 794 __u32 get_kernel_version(void) 795 { 796 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 797 * but Ubuntu provides /proc/version_signature file, as described at 798 * https://ubuntu.com/kernel, with an example contents below, which we 799 * can use to get a proper LINUX_VERSION_CODE. 800 * 801 * Ubuntu 5.4.0-12.15-generic 5.4.8 802 * 803 * In the above, 5.4.8 is what kernel is actually expecting, while 804 * uname() call will return 5.4.0 in info.release. 805 */ 806 const char *ubuntu_kver_file = "/proc/version_signature"; 807 __u32 major, minor, patch; 808 struct utsname info; 809 810 if (access(ubuntu_kver_file, R_OK) == 0) { 811 FILE *f; 812 813 f = fopen(ubuntu_kver_file, "r"); 814 if (f) { 815 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 816 fclose(f); 817 return KERNEL_VERSION(major, minor, patch); 818 } 819 fclose(f); 820 } 821 /* something went wrong, fall back to uname() approach */ 822 } 823 824 uname(&info); 825 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 826 return 0; 827 return KERNEL_VERSION(major, minor, patch); 828 } 829 830 static const struct btf_member * 831 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 832 { 833 struct btf_member *m; 834 int i; 835 836 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 837 if (btf_member_bit_offset(t, i) == bit_offset) 838 return m; 839 } 840 841 return NULL; 842 } 843 844 static const struct btf_member * 845 find_member_by_name(const struct btf *btf, const struct btf_type *t, 846 const char *name) 847 { 848 struct btf_member *m; 849 int i; 850 851 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 852 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 853 return m; 854 } 855 856 return NULL; 857 } 858 859 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 860 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 861 const char *name, __u32 kind); 862 863 static int 864 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 865 const struct btf_type **type, __u32 *type_id, 866 const struct btf_type **vtype, __u32 *vtype_id, 867 const struct btf_member **data_member) 868 { 869 const struct btf_type *kern_type, *kern_vtype; 870 const struct btf_member *kern_data_member; 871 __s32 kern_vtype_id, kern_type_id; 872 __u32 i; 873 874 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 875 if (kern_type_id < 0) { 876 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 877 tname); 878 return kern_type_id; 879 } 880 kern_type = btf__type_by_id(btf, kern_type_id); 881 882 /* Find the corresponding "map_value" type that will be used 883 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 884 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 885 * btf_vmlinux. 886 */ 887 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 888 tname, BTF_KIND_STRUCT); 889 if (kern_vtype_id < 0) { 890 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 891 STRUCT_OPS_VALUE_PREFIX, tname); 892 return kern_vtype_id; 893 } 894 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 895 896 /* Find "struct tcp_congestion_ops" from 897 * struct bpf_struct_ops_tcp_congestion_ops { 898 * [ ... ] 899 * struct tcp_congestion_ops data; 900 * } 901 */ 902 kern_data_member = btf_members(kern_vtype); 903 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 904 if (kern_data_member->type == kern_type_id) 905 break; 906 } 907 if (i == btf_vlen(kern_vtype)) { 908 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 909 tname, STRUCT_OPS_VALUE_PREFIX, tname); 910 return -EINVAL; 911 } 912 913 *type = kern_type; 914 *type_id = kern_type_id; 915 *vtype = kern_vtype; 916 *vtype_id = kern_vtype_id; 917 *data_member = kern_data_member; 918 919 return 0; 920 } 921 922 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 923 { 924 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 925 } 926 927 /* Init the map's fields that depend on kern_btf */ 928 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 929 const struct btf *btf, 930 const struct btf *kern_btf) 931 { 932 const struct btf_member *member, *kern_member, *kern_data_member; 933 const struct btf_type *type, *kern_type, *kern_vtype; 934 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 935 struct bpf_struct_ops *st_ops; 936 void *data, *kern_data; 937 const char *tname; 938 int err; 939 940 st_ops = map->st_ops; 941 type = st_ops->type; 942 tname = st_ops->tname; 943 err = find_struct_ops_kern_types(kern_btf, tname, 944 &kern_type, &kern_type_id, 945 &kern_vtype, &kern_vtype_id, 946 &kern_data_member); 947 if (err) 948 return err; 949 950 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 951 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 952 953 map->def.value_size = kern_vtype->size; 954 map->btf_vmlinux_value_type_id = kern_vtype_id; 955 956 st_ops->kern_vdata = calloc(1, kern_vtype->size); 957 if (!st_ops->kern_vdata) 958 return -ENOMEM; 959 960 data = st_ops->data; 961 kern_data_off = kern_data_member->offset / 8; 962 kern_data = st_ops->kern_vdata + kern_data_off; 963 964 member = btf_members(type); 965 for (i = 0; i < btf_vlen(type); i++, member++) { 966 const struct btf_type *mtype, *kern_mtype; 967 __u32 mtype_id, kern_mtype_id; 968 void *mdata, *kern_mdata; 969 __s64 msize, kern_msize; 970 __u32 moff, kern_moff; 971 __u32 kern_member_idx; 972 const char *mname; 973 974 mname = btf__name_by_offset(btf, member->name_off); 975 kern_member = find_member_by_name(kern_btf, kern_type, mname); 976 if (!kern_member) { 977 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 978 map->name, mname); 979 return -ENOTSUP; 980 } 981 982 kern_member_idx = kern_member - btf_members(kern_type); 983 if (btf_member_bitfield_size(type, i) || 984 btf_member_bitfield_size(kern_type, kern_member_idx)) { 985 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 986 map->name, mname); 987 return -ENOTSUP; 988 } 989 990 moff = member->offset / 8; 991 kern_moff = kern_member->offset / 8; 992 993 mdata = data + moff; 994 kern_mdata = kern_data + kern_moff; 995 996 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 997 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 998 &kern_mtype_id); 999 if (BTF_INFO_KIND(mtype->info) != 1000 BTF_INFO_KIND(kern_mtype->info)) { 1001 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1002 map->name, mname, BTF_INFO_KIND(mtype->info), 1003 BTF_INFO_KIND(kern_mtype->info)); 1004 return -ENOTSUP; 1005 } 1006 1007 if (btf_is_ptr(mtype)) { 1008 struct bpf_program *prog; 1009 1010 prog = st_ops->progs[i]; 1011 if (!prog) 1012 continue; 1013 1014 kern_mtype = skip_mods_and_typedefs(kern_btf, 1015 kern_mtype->type, 1016 &kern_mtype_id); 1017 1018 /* mtype->type must be a func_proto which was 1019 * guaranteed in bpf_object__collect_st_ops_relos(), 1020 * so only check kern_mtype for func_proto here. 1021 */ 1022 if (!btf_is_func_proto(kern_mtype)) { 1023 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1024 map->name, mname); 1025 return -ENOTSUP; 1026 } 1027 1028 prog->attach_btf_id = kern_type_id; 1029 prog->expected_attach_type = kern_member_idx; 1030 1031 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1032 1033 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1034 map->name, mname, prog->name, moff, 1035 kern_moff); 1036 1037 continue; 1038 } 1039 1040 msize = btf__resolve_size(btf, mtype_id); 1041 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1042 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1043 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1044 map->name, mname, (ssize_t)msize, 1045 (ssize_t)kern_msize); 1046 return -ENOTSUP; 1047 } 1048 1049 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1050 map->name, mname, (unsigned int)msize, 1051 moff, kern_moff); 1052 memcpy(kern_mdata, mdata, msize); 1053 } 1054 1055 return 0; 1056 } 1057 1058 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1059 { 1060 struct bpf_map *map; 1061 size_t i; 1062 int err; 1063 1064 for (i = 0; i < obj->nr_maps; i++) { 1065 map = &obj->maps[i]; 1066 1067 if (!bpf_map__is_struct_ops(map)) 1068 continue; 1069 1070 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1071 obj->btf_vmlinux); 1072 if (err) 1073 return err; 1074 } 1075 1076 return 0; 1077 } 1078 1079 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1080 { 1081 const struct btf_type *type, *datasec; 1082 const struct btf_var_secinfo *vsi; 1083 struct bpf_struct_ops *st_ops; 1084 const char *tname, *var_name; 1085 __s32 type_id, datasec_id; 1086 const struct btf *btf; 1087 struct bpf_map *map; 1088 __u32 i; 1089 1090 if (obj->efile.st_ops_shndx == -1) 1091 return 0; 1092 1093 btf = obj->btf; 1094 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1095 BTF_KIND_DATASEC); 1096 if (datasec_id < 0) { 1097 pr_warn("struct_ops init: DATASEC %s not found\n", 1098 STRUCT_OPS_SEC); 1099 return -EINVAL; 1100 } 1101 1102 datasec = btf__type_by_id(btf, datasec_id); 1103 vsi = btf_var_secinfos(datasec); 1104 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1105 type = btf__type_by_id(obj->btf, vsi->type); 1106 var_name = btf__name_by_offset(obj->btf, type->name_off); 1107 1108 type_id = btf__resolve_type(obj->btf, vsi->type); 1109 if (type_id < 0) { 1110 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1111 vsi->type, STRUCT_OPS_SEC); 1112 return -EINVAL; 1113 } 1114 1115 type = btf__type_by_id(obj->btf, type_id); 1116 tname = btf__name_by_offset(obj->btf, type->name_off); 1117 if (!tname[0]) { 1118 pr_warn("struct_ops init: anonymous type is not supported\n"); 1119 return -ENOTSUP; 1120 } 1121 if (!btf_is_struct(type)) { 1122 pr_warn("struct_ops init: %s is not a struct\n", tname); 1123 return -EINVAL; 1124 } 1125 1126 map = bpf_object__add_map(obj); 1127 if (IS_ERR(map)) 1128 return PTR_ERR(map); 1129 1130 map->sec_idx = obj->efile.st_ops_shndx; 1131 map->sec_offset = vsi->offset; 1132 map->name = strdup(var_name); 1133 if (!map->name) 1134 return -ENOMEM; 1135 1136 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1137 map->def.key_size = sizeof(int); 1138 map->def.value_size = type->size; 1139 map->def.max_entries = 1; 1140 1141 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1142 if (!map->st_ops) 1143 return -ENOMEM; 1144 st_ops = map->st_ops; 1145 st_ops->data = malloc(type->size); 1146 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1147 st_ops->kern_func_off = malloc(btf_vlen(type) * 1148 sizeof(*st_ops->kern_func_off)); 1149 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1150 return -ENOMEM; 1151 1152 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1153 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1154 var_name, STRUCT_OPS_SEC); 1155 return -EINVAL; 1156 } 1157 1158 memcpy(st_ops->data, 1159 obj->efile.st_ops_data->d_buf + vsi->offset, 1160 type->size); 1161 st_ops->tname = tname; 1162 st_ops->type = type; 1163 st_ops->type_id = type_id; 1164 1165 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1166 tname, type_id, var_name, vsi->offset); 1167 } 1168 1169 return 0; 1170 } 1171 1172 static struct bpf_object *bpf_object__new(const char *path, 1173 const void *obj_buf, 1174 size_t obj_buf_sz, 1175 const char *obj_name) 1176 { 1177 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1178 struct bpf_object *obj; 1179 char *end; 1180 1181 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1182 if (!obj) { 1183 pr_warn("alloc memory failed for %s\n", path); 1184 return ERR_PTR(-ENOMEM); 1185 } 1186 1187 strcpy(obj->path, path); 1188 if (obj_name) { 1189 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1190 } else { 1191 /* Using basename() GNU version which doesn't modify arg. */ 1192 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1193 end = strchr(obj->name, '.'); 1194 if (end) 1195 *end = 0; 1196 } 1197 1198 obj->efile.fd = -1; 1199 /* 1200 * Caller of this function should also call 1201 * bpf_object__elf_finish() after data collection to return 1202 * obj_buf to user. If not, we should duplicate the buffer to 1203 * avoid user freeing them before elf finish. 1204 */ 1205 obj->efile.obj_buf = obj_buf; 1206 obj->efile.obj_buf_sz = obj_buf_sz; 1207 obj->efile.maps_shndx = -1; 1208 obj->efile.btf_maps_shndx = -1; 1209 obj->efile.st_ops_shndx = -1; 1210 obj->kconfig_map_idx = -1; 1211 1212 obj->kern_version = get_kernel_version(); 1213 obj->loaded = false; 1214 1215 INIT_LIST_HEAD(&obj->list); 1216 if (!strict) 1217 list_add(&obj->list, &bpf_objects_list); 1218 return obj; 1219 } 1220 1221 static void bpf_object__elf_finish(struct bpf_object *obj) 1222 { 1223 if (!obj->efile.elf) 1224 return; 1225 1226 if (obj->efile.elf) { 1227 elf_end(obj->efile.elf); 1228 obj->efile.elf = NULL; 1229 } 1230 obj->efile.symbols = NULL; 1231 obj->efile.st_ops_data = NULL; 1232 1233 zfree(&obj->efile.secs); 1234 obj->efile.sec_cnt = 0; 1235 zclose(obj->efile.fd); 1236 obj->efile.obj_buf = NULL; 1237 obj->efile.obj_buf_sz = 0; 1238 } 1239 1240 static int bpf_object__elf_init(struct bpf_object *obj) 1241 { 1242 Elf64_Ehdr *ehdr; 1243 int err = 0; 1244 Elf *elf; 1245 1246 if (obj->efile.elf) { 1247 pr_warn("elf: init internal error\n"); 1248 return -LIBBPF_ERRNO__LIBELF; 1249 } 1250 1251 if (obj->efile.obj_buf_sz > 0) { 1252 /* 1253 * obj_buf should have been validated by 1254 * bpf_object__open_buffer(). 1255 */ 1256 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1257 } else { 1258 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1259 if (obj->efile.fd < 0) { 1260 char errmsg[STRERR_BUFSIZE], *cp; 1261 1262 err = -errno; 1263 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1264 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1265 return err; 1266 } 1267 1268 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1269 } 1270 1271 if (!elf) { 1272 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1273 err = -LIBBPF_ERRNO__LIBELF; 1274 goto errout; 1275 } 1276 1277 obj->efile.elf = elf; 1278 1279 if (elf_kind(elf) != ELF_K_ELF) { 1280 err = -LIBBPF_ERRNO__FORMAT; 1281 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1282 goto errout; 1283 } 1284 1285 if (gelf_getclass(elf) != ELFCLASS64) { 1286 err = -LIBBPF_ERRNO__FORMAT; 1287 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1288 goto errout; 1289 } 1290 1291 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1292 if (!obj->efile.ehdr) { 1293 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1294 err = -LIBBPF_ERRNO__FORMAT; 1295 goto errout; 1296 } 1297 1298 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1299 pr_warn("elf: failed to get section names section index for %s: %s\n", 1300 obj->path, elf_errmsg(-1)); 1301 err = -LIBBPF_ERRNO__FORMAT; 1302 goto errout; 1303 } 1304 1305 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1306 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1307 pr_warn("elf: failed to get section names strings from %s: %s\n", 1308 obj->path, elf_errmsg(-1)); 1309 err = -LIBBPF_ERRNO__FORMAT; 1310 goto errout; 1311 } 1312 1313 /* Old LLVM set e_machine to EM_NONE */ 1314 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1315 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1316 err = -LIBBPF_ERRNO__FORMAT; 1317 goto errout; 1318 } 1319 1320 return 0; 1321 errout: 1322 bpf_object__elf_finish(obj); 1323 return err; 1324 } 1325 1326 static int bpf_object__check_endianness(struct bpf_object *obj) 1327 { 1328 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1329 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1330 return 0; 1331 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1332 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1333 return 0; 1334 #else 1335 # error "Unrecognized __BYTE_ORDER__" 1336 #endif 1337 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1338 return -LIBBPF_ERRNO__ENDIAN; 1339 } 1340 1341 static int 1342 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1343 { 1344 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1345 * go over allowed ELF data section buffer 1346 */ 1347 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1348 pr_debug("license of %s is %s\n", obj->path, obj->license); 1349 return 0; 1350 } 1351 1352 static int 1353 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1354 { 1355 __u32 kver; 1356 1357 if (size != sizeof(kver)) { 1358 pr_warn("invalid kver section in %s\n", obj->path); 1359 return -LIBBPF_ERRNO__FORMAT; 1360 } 1361 memcpy(&kver, data, sizeof(kver)); 1362 obj->kern_version = kver; 1363 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1364 return 0; 1365 } 1366 1367 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1368 { 1369 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1370 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1371 return true; 1372 return false; 1373 } 1374 1375 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1376 { 1377 int ret = -ENOENT; 1378 Elf_Data *data; 1379 Elf_Scn *scn; 1380 1381 *size = 0; 1382 if (!name) 1383 return -EINVAL; 1384 1385 scn = elf_sec_by_name(obj, name); 1386 data = elf_sec_data(obj, scn); 1387 if (data) { 1388 ret = 0; /* found it */ 1389 *size = data->d_size; 1390 } 1391 1392 return *size ? 0 : ret; 1393 } 1394 1395 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1396 { 1397 Elf_Data *symbols = obj->efile.symbols; 1398 const char *sname; 1399 size_t si; 1400 1401 if (!name || !off) 1402 return -EINVAL; 1403 1404 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1405 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1406 1407 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL || 1408 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1409 continue; 1410 1411 sname = elf_sym_str(obj, sym->st_name); 1412 if (!sname) { 1413 pr_warn("failed to get sym name string for var %s\n", name); 1414 return -EIO; 1415 } 1416 if (strcmp(name, sname) == 0) { 1417 *off = sym->st_value; 1418 return 0; 1419 } 1420 } 1421 1422 return -ENOENT; 1423 } 1424 1425 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1426 { 1427 struct bpf_map *new_maps; 1428 size_t new_cap; 1429 int i; 1430 1431 if (obj->nr_maps < obj->maps_cap) 1432 return &obj->maps[obj->nr_maps++]; 1433 1434 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1435 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1436 if (!new_maps) { 1437 pr_warn("alloc maps for object failed\n"); 1438 return ERR_PTR(-ENOMEM); 1439 } 1440 1441 obj->maps_cap = new_cap; 1442 obj->maps = new_maps; 1443 1444 /* zero out new maps */ 1445 memset(obj->maps + obj->nr_maps, 0, 1446 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1447 /* 1448 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1449 * when failure (zclose won't close negative fd)). 1450 */ 1451 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1452 obj->maps[i].fd = -1; 1453 obj->maps[i].inner_map_fd = -1; 1454 } 1455 1456 return &obj->maps[obj->nr_maps++]; 1457 } 1458 1459 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1460 { 1461 long page_sz = sysconf(_SC_PAGE_SIZE); 1462 size_t map_sz; 1463 1464 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1465 map_sz = roundup(map_sz, page_sz); 1466 return map_sz; 1467 } 1468 1469 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1470 { 1471 char map_name[BPF_OBJ_NAME_LEN], *p; 1472 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1473 1474 /* This is one of the more confusing parts of libbpf for various 1475 * reasons, some of which are historical. The original idea for naming 1476 * internal names was to include as much of BPF object name prefix as 1477 * possible, so that it can be distinguished from similar internal 1478 * maps of a different BPF object. 1479 * As an example, let's say we have bpf_object named 'my_object_name' 1480 * and internal map corresponding to '.rodata' ELF section. The final 1481 * map name advertised to user and to the kernel will be 1482 * 'my_objec.rodata', taking first 8 characters of object name and 1483 * entire 7 characters of '.rodata'. 1484 * Somewhat confusingly, if internal map ELF section name is shorter 1485 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1486 * for the suffix, even though we only have 4 actual characters, and 1487 * resulting map will be called 'my_objec.bss', not even using all 15 1488 * characters allowed by the kernel. Oh well, at least the truncated 1489 * object name is somewhat consistent in this case. But if the map 1490 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1491 * (8 chars) and thus will be left with only first 7 characters of the 1492 * object name ('my_obje'). Happy guessing, user, that the final map 1493 * name will be "my_obje.kconfig". 1494 * Now, with libbpf starting to support arbitrarily named .rodata.* 1495 * and .data.* data sections, it's possible that ELF section name is 1496 * longer than allowed 15 chars, so we now need to be careful to take 1497 * only up to 15 first characters of ELF name, taking no BPF object 1498 * name characters at all. So '.rodata.abracadabra' will result in 1499 * '.rodata.abracad' kernel and user-visible name. 1500 * We need to keep this convoluted logic intact for .data, .bss and 1501 * .rodata maps, but for new custom .data.custom and .rodata.custom 1502 * maps we use their ELF names as is, not prepending bpf_object name 1503 * in front. We still need to truncate them to 15 characters for the 1504 * kernel. Full name can be recovered for such maps by using DATASEC 1505 * BTF type associated with such map's value type, though. 1506 */ 1507 if (sfx_len >= BPF_OBJ_NAME_LEN) 1508 sfx_len = BPF_OBJ_NAME_LEN - 1; 1509 1510 /* if there are two or more dots in map name, it's a custom dot map */ 1511 if (strchr(real_name + 1, '.') != NULL) 1512 pfx_len = 0; 1513 else 1514 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1515 1516 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1517 sfx_len, real_name); 1518 1519 /* sanitise map name to characters allowed by kernel */ 1520 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1521 if (!isalnum(*p) && *p != '_' && *p != '.') 1522 *p = '_'; 1523 1524 return strdup(map_name); 1525 } 1526 1527 static int 1528 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1529 const char *real_name, int sec_idx, void *data, size_t data_sz) 1530 { 1531 struct bpf_map_def *def; 1532 struct bpf_map *map; 1533 int err; 1534 1535 map = bpf_object__add_map(obj); 1536 if (IS_ERR(map)) 1537 return PTR_ERR(map); 1538 1539 map->libbpf_type = type; 1540 map->sec_idx = sec_idx; 1541 map->sec_offset = 0; 1542 map->real_name = strdup(real_name); 1543 map->name = internal_map_name(obj, real_name); 1544 if (!map->real_name || !map->name) { 1545 zfree(&map->real_name); 1546 zfree(&map->name); 1547 return -ENOMEM; 1548 } 1549 1550 def = &map->def; 1551 def->type = BPF_MAP_TYPE_ARRAY; 1552 def->key_size = sizeof(int); 1553 def->value_size = data_sz; 1554 def->max_entries = 1; 1555 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1556 ? BPF_F_RDONLY_PROG : 0; 1557 def->map_flags |= BPF_F_MMAPABLE; 1558 1559 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1560 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1561 1562 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1563 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1564 if (map->mmaped == MAP_FAILED) { 1565 err = -errno; 1566 map->mmaped = NULL; 1567 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1568 map->name, err); 1569 zfree(&map->real_name); 1570 zfree(&map->name); 1571 return err; 1572 } 1573 1574 if (data) 1575 memcpy(map->mmaped, data, data_sz); 1576 1577 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1578 return 0; 1579 } 1580 1581 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1582 { 1583 struct elf_sec_desc *sec_desc; 1584 const char *sec_name; 1585 int err = 0, sec_idx; 1586 1587 /* 1588 * Populate obj->maps with libbpf internal maps. 1589 */ 1590 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1591 sec_desc = &obj->efile.secs[sec_idx]; 1592 1593 switch (sec_desc->sec_type) { 1594 case SEC_DATA: 1595 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1596 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1597 sec_name, sec_idx, 1598 sec_desc->data->d_buf, 1599 sec_desc->data->d_size); 1600 break; 1601 case SEC_RODATA: 1602 obj->has_rodata = true; 1603 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1604 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1605 sec_name, sec_idx, 1606 sec_desc->data->d_buf, 1607 sec_desc->data->d_size); 1608 break; 1609 case SEC_BSS: 1610 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1611 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1612 sec_name, sec_idx, 1613 NULL, 1614 sec_desc->data->d_size); 1615 break; 1616 default: 1617 /* skip */ 1618 break; 1619 } 1620 if (err) 1621 return err; 1622 } 1623 return 0; 1624 } 1625 1626 1627 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1628 const void *name) 1629 { 1630 int i; 1631 1632 for (i = 0; i < obj->nr_extern; i++) { 1633 if (strcmp(obj->externs[i].name, name) == 0) 1634 return &obj->externs[i]; 1635 } 1636 return NULL; 1637 } 1638 1639 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1640 char value) 1641 { 1642 switch (ext->kcfg.type) { 1643 case KCFG_BOOL: 1644 if (value == 'm') { 1645 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1646 ext->name, value); 1647 return -EINVAL; 1648 } 1649 *(bool *)ext_val = value == 'y' ? true : false; 1650 break; 1651 case KCFG_TRISTATE: 1652 if (value == 'y') 1653 *(enum libbpf_tristate *)ext_val = TRI_YES; 1654 else if (value == 'm') 1655 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1656 else /* value == 'n' */ 1657 *(enum libbpf_tristate *)ext_val = TRI_NO; 1658 break; 1659 case KCFG_CHAR: 1660 *(char *)ext_val = value; 1661 break; 1662 case KCFG_UNKNOWN: 1663 case KCFG_INT: 1664 case KCFG_CHAR_ARR: 1665 default: 1666 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1667 ext->name, value); 1668 return -EINVAL; 1669 } 1670 ext->is_set = true; 1671 return 0; 1672 } 1673 1674 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1675 const char *value) 1676 { 1677 size_t len; 1678 1679 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1680 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1681 return -EINVAL; 1682 } 1683 1684 len = strlen(value); 1685 if (value[len - 1] != '"') { 1686 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1687 ext->name, value); 1688 return -EINVAL; 1689 } 1690 1691 /* strip quotes */ 1692 len -= 2; 1693 if (len >= ext->kcfg.sz) { 1694 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1695 ext->name, value, len, ext->kcfg.sz - 1); 1696 len = ext->kcfg.sz - 1; 1697 } 1698 memcpy(ext_val, value + 1, len); 1699 ext_val[len] = '\0'; 1700 ext->is_set = true; 1701 return 0; 1702 } 1703 1704 static int parse_u64(const char *value, __u64 *res) 1705 { 1706 char *value_end; 1707 int err; 1708 1709 errno = 0; 1710 *res = strtoull(value, &value_end, 0); 1711 if (errno) { 1712 err = -errno; 1713 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1714 return err; 1715 } 1716 if (*value_end) { 1717 pr_warn("failed to parse '%s' as integer completely\n", value); 1718 return -EINVAL; 1719 } 1720 return 0; 1721 } 1722 1723 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1724 { 1725 int bit_sz = ext->kcfg.sz * 8; 1726 1727 if (ext->kcfg.sz == 8) 1728 return true; 1729 1730 /* Validate that value stored in u64 fits in integer of `ext->sz` 1731 * bytes size without any loss of information. If the target integer 1732 * is signed, we rely on the following limits of integer type of 1733 * Y bits and subsequent transformation: 1734 * 1735 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1736 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1737 * 0 <= X + 2^(Y-1) < 2^Y 1738 * 1739 * For unsigned target integer, check that all the (64 - Y) bits are 1740 * zero. 1741 */ 1742 if (ext->kcfg.is_signed) 1743 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1744 else 1745 return (v >> bit_sz) == 0; 1746 } 1747 1748 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1749 __u64 value) 1750 { 1751 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1752 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1753 ext->name, (unsigned long long)value); 1754 return -EINVAL; 1755 } 1756 if (!is_kcfg_value_in_range(ext, value)) { 1757 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1758 ext->name, (unsigned long long)value, ext->kcfg.sz); 1759 return -ERANGE; 1760 } 1761 switch (ext->kcfg.sz) { 1762 case 1: *(__u8 *)ext_val = value; break; 1763 case 2: *(__u16 *)ext_val = value; break; 1764 case 4: *(__u32 *)ext_val = value; break; 1765 case 8: *(__u64 *)ext_val = value; break; 1766 default: 1767 return -EINVAL; 1768 } 1769 ext->is_set = true; 1770 return 0; 1771 } 1772 1773 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1774 char *buf, void *data) 1775 { 1776 struct extern_desc *ext; 1777 char *sep, *value; 1778 int len, err = 0; 1779 void *ext_val; 1780 __u64 num; 1781 1782 if (!str_has_pfx(buf, "CONFIG_")) 1783 return 0; 1784 1785 sep = strchr(buf, '='); 1786 if (!sep) { 1787 pr_warn("failed to parse '%s': no separator\n", buf); 1788 return -EINVAL; 1789 } 1790 1791 /* Trim ending '\n' */ 1792 len = strlen(buf); 1793 if (buf[len - 1] == '\n') 1794 buf[len - 1] = '\0'; 1795 /* Split on '=' and ensure that a value is present. */ 1796 *sep = '\0'; 1797 if (!sep[1]) { 1798 *sep = '='; 1799 pr_warn("failed to parse '%s': no value\n", buf); 1800 return -EINVAL; 1801 } 1802 1803 ext = find_extern_by_name(obj, buf); 1804 if (!ext || ext->is_set) 1805 return 0; 1806 1807 ext_val = data + ext->kcfg.data_off; 1808 value = sep + 1; 1809 1810 switch (*value) { 1811 case 'y': case 'n': case 'm': 1812 err = set_kcfg_value_tri(ext, ext_val, *value); 1813 break; 1814 case '"': 1815 err = set_kcfg_value_str(ext, ext_val, value); 1816 break; 1817 default: 1818 /* assume integer */ 1819 err = parse_u64(value, &num); 1820 if (err) { 1821 pr_warn("extern (kcfg) %s=%s should be integer\n", 1822 ext->name, value); 1823 return err; 1824 } 1825 err = set_kcfg_value_num(ext, ext_val, num); 1826 break; 1827 } 1828 if (err) 1829 return err; 1830 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1831 return 0; 1832 } 1833 1834 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1835 { 1836 char buf[PATH_MAX]; 1837 struct utsname uts; 1838 int len, err = 0; 1839 gzFile file; 1840 1841 uname(&uts); 1842 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1843 if (len < 0) 1844 return -EINVAL; 1845 else if (len >= PATH_MAX) 1846 return -ENAMETOOLONG; 1847 1848 /* gzopen also accepts uncompressed files. */ 1849 file = gzopen(buf, "r"); 1850 if (!file) 1851 file = gzopen("/proc/config.gz", "r"); 1852 1853 if (!file) { 1854 pr_warn("failed to open system Kconfig\n"); 1855 return -ENOENT; 1856 } 1857 1858 while (gzgets(file, buf, sizeof(buf))) { 1859 err = bpf_object__process_kconfig_line(obj, buf, data); 1860 if (err) { 1861 pr_warn("error parsing system Kconfig line '%s': %d\n", 1862 buf, err); 1863 goto out; 1864 } 1865 } 1866 1867 out: 1868 gzclose(file); 1869 return err; 1870 } 1871 1872 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1873 const char *config, void *data) 1874 { 1875 char buf[PATH_MAX]; 1876 int err = 0; 1877 FILE *file; 1878 1879 file = fmemopen((void *)config, strlen(config), "r"); 1880 if (!file) { 1881 err = -errno; 1882 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1883 return err; 1884 } 1885 1886 while (fgets(buf, sizeof(buf), file)) { 1887 err = bpf_object__process_kconfig_line(obj, buf, data); 1888 if (err) { 1889 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1890 buf, err); 1891 break; 1892 } 1893 } 1894 1895 fclose(file); 1896 return err; 1897 } 1898 1899 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1900 { 1901 struct extern_desc *last_ext = NULL, *ext; 1902 size_t map_sz; 1903 int i, err; 1904 1905 for (i = 0; i < obj->nr_extern; i++) { 1906 ext = &obj->externs[i]; 1907 if (ext->type == EXT_KCFG) 1908 last_ext = ext; 1909 } 1910 1911 if (!last_ext) 1912 return 0; 1913 1914 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1915 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1916 ".kconfig", obj->efile.symbols_shndx, 1917 NULL, map_sz); 1918 if (err) 1919 return err; 1920 1921 obj->kconfig_map_idx = obj->nr_maps - 1; 1922 1923 return 0; 1924 } 1925 1926 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1927 { 1928 Elf_Data *symbols = obj->efile.symbols; 1929 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1930 Elf_Data *data = NULL; 1931 Elf_Scn *scn; 1932 1933 if (obj->efile.maps_shndx < 0) 1934 return 0; 1935 1936 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 1937 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 1938 return -EOPNOTSUPP; 1939 } 1940 1941 if (!symbols) 1942 return -EINVAL; 1943 1944 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1945 data = elf_sec_data(obj, scn); 1946 if (!scn || !data) { 1947 pr_warn("elf: failed to get legacy map definitions for %s\n", 1948 obj->path); 1949 return -EINVAL; 1950 } 1951 1952 /* 1953 * Count number of maps. Each map has a name. 1954 * Array of maps is not supported: only the first element is 1955 * considered. 1956 * 1957 * TODO: Detect array of map and report error. 1958 */ 1959 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1960 for (i = 0; i < nr_syms; i++) { 1961 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1962 1963 if (sym->st_shndx != obj->efile.maps_shndx) 1964 continue; 1965 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1966 continue; 1967 nr_maps++; 1968 } 1969 /* Assume equally sized map definitions */ 1970 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1971 nr_maps, data->d_size, obj->path); 1972 1973 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1974 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1975 obj->path); 1976 return -EINVAL; 1977 } 1978 map_def_sz = data->d_size / nr_maps; 1979 1980 /* Fill obj->maps using data in "maps" section. */ 1981 for (i = 0; i < nr_syms; i++) { 1982 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1983 const char *map_name; 1984 struct bpf_map_def *def; 1985 struct bpf_map *map; 1986 1987 if (sym->st_shndx != obj->efile.maps_shndx) 1988 continue; 1989 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1990 continue; 1991 1992 map = bpf_object__add_map(obj); 1993 if (IS_ERR(map)) 1994 return PTR_ERR(map); 1995 1996 map_name = elf_sym_str(obj, sym->st_name); 1997 if (!map_name) { 1998 pr_warn("failed to get map #%d name sym string for obj %s\n", 1999 i, obj->path); 2000 return -LIBBPF_ERRNO__FORMAT; 2001 } 2002 2003 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2004 2005 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2006 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2007 return -ENOTSUP; 2008 } 2009 2010 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2011 map->sec_idx = sym->st_shndx; 2012 map->sec_offset = sym->st_value; 2013 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2014 map_name, map->sec_idx, map->sec_offset); 2015 if (sym->st_value + map_def_sz > data->d_size) { 2016 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2017 obj->path, map_name); 2018 return -EINVAL; 2019 } 2020 2021 map->name = strdup(map_name); 2022 if (!map->name) { 2023 pr_warn("map '%s': failed to alloc map name\n", map_name); 2024 return -ENOMEM; 2025 } 2026 pr_debug("map %d is \"%s\"\n", i, map->name); 2027 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2028 /* 2029 * If the definition of the map in the object file fits in 2030 * bpf_map_def, copy it. Any extra fields in our version 2031 * of bpf_map_def will default to zero as a result of the 2032 * calloc above. 2033 */ 2034 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2035 memcpy(&map->def, def, map_def_sz); 2036 } else { 2037 /* 2038 * Here the map structure being read is bigger than what 2039 * we expect, truncate if the excess bits are all zero. 2040 * If they are not zero, reject this map as 2041 * incompatible. 2042 */ 2043 char *b; 2044 2045 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2046 b < ((char *)def) + map_def_sz; b++) { 2047 if (*b != 0) { 2048 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2049 obj->path, map_name); 2050 if (strict) 2051 return -EINVAL; 2052 } 2053 } 2054 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2055 } 2056 } 2057 return 0; 2058 } 2059 2060 const struct btf_type * 2061 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2062 { 2063 const struct btf_type *t = btf__type_by_id(btf, id); 2064 2065 if (res_id) 2066 *res_id = id; 2067 2068 while (btf_is_mod(t) || btf_is_typedef(t)) { 2069 if (res_id) 2070 *res_id = t->type; 2071 t = btf__type_by_id(btf, t->type); 2072 } 2073 2074 return t; 2075 } 2076 2077 static const struct btf_type * 2078 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2079 { 2080 const struct btf_type *t; 2081 2082 t = skip_mods_and_typedefs(btf, id, NULL); 2083 if (!btf_is_ptr(t)) 2084 return NULL; 2085 2086 t = skip_mods_and_typedefs(btf, t->type, res_id); 2087 2088 return btf_is_func_proto(t) ? t : NULL; 2089 } 2090 2091 static const char *__btf_kind_str(__u16 kind) 2092 { 2093 switch (kind) { 2094 case BTF_KIND_UNKN: return "void"; 2095 case BTF_KIND_INT: return "int"; 2096 case BTF_KIND_PTR: return "ptr"; 2097 case BTF_KIND_ARRAY: return "array"; 2098 case BTF_KIND_STRUCT: return "struct"; 2099 case BTF_KIND_UNION: return "union"; 2100 case BTF_KIND_ENUM: return "enum"; 2101 case BTF_KIND_FWD: return "fwd"; 2102 case BTF_KIND_TYPEDEF: return "typedef"; 2103 case BTF_KIND_VOLATILE: return "volatile"; 2104 case BTF_KIND_CONST: return "const"; 2105 case BTF_KIND_RESTRICT: return "restrict"; 2106 case BTF_KIND_FUNC: return "func"; 2107 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2108 case BTF_KIND_VAR: return "var"; 2109 case BTF_KIND_DATASEC: return "datasec"; 2110 case BTF_KIND_FLOAT: return "float"; 2111 case BTF_KIND_DECL_TAG: return "decl_tag"; 2112 case BTF_KIND_TYPE_TAG: return "type_tag"; 2113 default: return "unknown"; 2114 } 2115 } 2116 2117 const char *btf_kind_str(const struct btf_type *t) 2118 { 2119 return __btf_kind_str(btf_kind(t)); 2120 } 2121 2122 /* 2123 * Fetch integer attribute of BTF map definition. Such attributes are 2124 * represented using a pointer to an array, in which dimensionality of array 2125 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2126 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2127 * type definition, while using only sizeof(void *) space in ELF data section. 2128 */ 2129 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2130 const struct btf_member *m, __u32 *res) 2131 { 2132 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2133 const char *name = btf__name_by_offset(btf, m->name_off); 2134 const struct btf_array *arr_info; 2135 const struct btf_type *arr_t; 2136 2137 if (!btf_is_ptr(t)) { 2138 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2139 map_name, name, btf_kind_str(t)); 2140 return false; 2141 } 2142 2143 arr_t = btf__type_by_id(btf, t->type); 2144 if (!arr_t) { 2145 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2146 map_name, name, t->type); 2147 return false; 2148 } 2149 if (!btf_is_array(arr_t)) { 2150 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2151 map_name, name, btf_kind_str(arr_t)); 2152 return false; 2153 } 2154 arr_info = btf_array(arr_t); 2155 *res = arr_info->nelems; 2156 return true; 2157 } 2158 2159 static int build_map_pin_path(struct bpf_map *map, const char *path) 2160 { 2161 char buf[PATH_MAX]; 2162 int len; 2163 2164 if (!path) 2165 path = "/sys/fs/bpf"; 2166 2167 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2168 if (len < 0) 2169 return -EINVAL; 2170 else if (len >= PATH_MAX) 2171 return -ENAMETOOLONG; 2172 2173 return bpf_map__set_pin_path(map, buf); 2174 } 2175 2176 int parse_btf_map_def(const char *map_name, struct btf *btf, 2177 const struct btf_type *def_t, bool strict, 2178 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2179 { 2180 const struct btf_type *t; 2181 const struct btf_member *m; 2182 bool is_inner = inner_def == NULL; 2183 int vlen, i; 2184 2185 vlen = btf_vlen(def_t); 2186 m = btf_members(def_t); 2187 for (i = 0; i < vlen; i++, m++) { 2188 const char *name = btf__name_by_offset(btf, m->name_off); 2189 2190 if (!name) { 2191 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2192 return -EINVAL; 2193 } 2194 if (strcmp(name, "type") == 0) { 2195 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2196 return -EINVAL; 2197 map_def->parts |= MAP_DEF_MAP_TYPE; 2198 } else if (strcmp(name, "max_entries") == 0) { 2199 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2200 return -EINVAL; 2201 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2202 } else if (strcmp(name, "map_flags") == 0) { 2203 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2204 return -EINVAL; 2205 map_def->parts |= MAP_DEF_MAP_FLAGS; 2206 } else if (strcmp(name, "numa_node") == 0) { 2207 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2208 return -EINVAL; 2209 map_def->parts |= MAP_DEF_NUMA_NODE; 2210 } else if (strcmp(name, "key_size") == 0) { 2211 __u32 sz; 2212 2213 if (!get_map_field_int(map_name, btf, m, &sz)) 2214 return -EINVAL; 2215 if (map_def->key_size && map_def->key_size != sz) { 2216 pr_warn("map '%s': conflicting key size %u != %u.\n", 2217 map_name, map_def->key_size, sz); 2218 return -EINVAL; 2219 } 2220 map_def->key_size = sz; 2221 map_def->parts |= MAP_DEF_KEY_SIZE; 2222 } else if (strcmp(name, "key") == 0) { 2223 __s64 sz; 2224 2225 t = btf__type_by_id(btf, m->type); 2226 if (!t) { 2227 pr_warn("map '%s': key type [%d] not found.\n", 2228 map_name, m->type); 2229 return -EINVAL; 2230 } 2231 if (!btf_is_ptr(t)) { 2232 pr_warn("map '%s': key spec is not PTR: %s.\n", 2233 map_name, btf_kind_str(t)); 2234 return -EINVAL; 2235 } 2236 sz = btf__resolve_size(btf, t->type); 2237 if (sz < 0) { 2238 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2239 map_name, t->type, (ssize_t)sz); 2240 return sz; 2241 } 2242 if (map_def->key_size && map_def->key_size != sz) { 2243 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2244 map_name, map_def->key_size, (ssize_t)sz); 2245 return -EINVAL; 2246 } 2247 map_def->key_size = sz; 2248 map_def->key_type_id = t->type; 2249 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2250 } else if (strcmp(name, "value_size") == 0) { 2251 __u32 sz; 2252 2253 if (!get_map_field_int(map_name, btf, m, &sz)) 2254 return -EINVAL; 2255 if (map_def->value_size && map_def->value_size != sz) { 2256 pr_warn("map '%s': conflicting value size %u != %u.\n", 2257 map_name, map_def->value_size, sz); 2258 return -EINVAL; 2259 } 2260 map_def->value_size = sz; 2261 map_def->parts |= MAP_DEF_VALUE_SIZE; 2262 } else if (strcmp(name, "value") == 0) { 2263 __s64 sz; 2264 2265 t = btf__type_by_id(btf, m->type); 2266 if (!t) { 2267 pr_warn("map '%s': value type [%d] not found.\n", 2268 map_name, m->type); 2269 return -EINVAL; 2270 } 2271 if (!btf_is_ptr(t)) { 2272 pr_warn("map '%s': value spec is not PTR: %s.\n", 2273 map_name, btf_kind_str(t)); 2274 return -EINVAL; 2275 } 2276 sz = btf__resolve_size(btf, t->type); 2277 if (sz < 0) { 2278 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2279 map_name, t->type, (ssize_t)sz); 2280 return sz; 2281 } 2282 if (map_def->value_size && map_def->value_size != sz) { 2283 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2284 map_name, map_def->value_size, (ssize_t)sz); 2285 return -EINVAL; 2286 } 2287 map_def->value_size = sz; 2288 map_def->value_type_id = t->type; 2289 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2290 } 2291 else if (strcmp(name, "values") == 0) { 2292 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2293 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2294 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2295 char inner_map_name[128]; 2296 int err; 2297 2298 if (is_inner) { 2299 pr_warn("map '%s': multi-level inner maps not supported.\n", 2300 map_name); 2301 return -ENOTSUP; 2302 } 2303 if (i != vlen - 1) { 2304 pr_warn("map '%s': '%s' member should be last.\n", 2305 map_name, name); 2306 return -EINVAL; 2307 } 2308 if (!is_map_in_map && !is_prog_array) { 2309 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2310 map_name); 2311 return -ENOTSUP; 2312 } 2313 if (map_def->value_size && map_def->value_size != 4) { 2314 pr_warn("map '%s': conflicting value size %u != 4.\n", 2315 map_name, map_def->value_size); 2316 return -EINVAL; 2317 } 2318 map_def->value_size = 4; 2319 t = btf__type_by_id(btf, m->type); 2320 if (!t) { 2321 pr_warn("map '%s': %s type [%d] not found.\n", 2322 map_name, desc, m->type); 2323 return -EINVAL; 2324 } 2325 if (!btf_is_array(t) || btf_array(t)->nelems) { 2326 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2327 map_name, desc); 2328 return -EINVAL; 2329 } 2330 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2331 if (!btf_is_ptr(t)) { 2332 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2333 map_name, desc, btf_kind_str(t)); 2334 return -EINVAL; 2335 } 2336 t = skip_mods_and_typedefs(btf, t->type, NULL); 2337 if (is_prog_array) { 2338 if (!btf_is_func_proto(t)) { 2339 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2340 map_name, btf_kind_str(t)); 2341 return -EINVAL; 2342 } 2343 continue; 2344 } 2345 if (!btf_is_struct(t)) { 2346 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2347 map_name, btf_kind_str(t)); 2348 return -EINVAL; 2349 } 2350 2351 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2352 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2353 if (err) 2354 return err; 2355 2356 map_def->parts |= MAP_DEF_INNER_MAP; 2357 } else if (strcmp(name, "pinning") == 0) { 2358 __u32 val; 2359 2360 if (is_inner) { 2361 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2362 return -EINVAL; 2363 } 2364 if (!get_map_field_int(map_name, btf, m, &val)) 2365 return -EINVAL; 2366 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2367 pr_warn("map '%s': invalid pinning value %u.\n", 2368 map_name, val); 2369 return -EINVAL; 2370 } 2371 map_def->pinning = val; 2372 map_def->parts |= MAP_DEF_PINNING; 2373 } else if (strcmp(name, "map_extra") == 0) { 2374 __u32 map_extra; 2375 2376 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2377 return -EINVAL; 2378 map_def->map_extra = map_extra; 2379 map_def->parts |= MAP_DEF_MAP_EXTRA; 2380 } else { 2381 if (strict) { 2382 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2383 return -ENOTSUP; 2384 } 2385 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2386 } 2387 } 2388 2389 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2390 pr_warn("map '%s': map type isn't specified.\n", map_name); 2391 return -EINVAL; 2392 } 2393 2394 return 0; 2395 } 2396 2397 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2398 { 2399 map->def.type = def->map_type; 2400 map->def.key_size = def->key_size; 2401 map->def.value_size = def->value_size; 2402 map->def.max_entries = def->max_entries; 2403 map->def.map_flags = def->map_flags; 2404 map->map_extra = def->map_extra; 2405 2406 map->numa_node = def->numa_node; 2407 map->btf_key_type_id = def->key_type_id; 2408 map->btf_value_type_id = def->value_type_id; 2409 2410 if (def->parts & MAP_DEF_MAP_TYPE) 2411 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2412 2413 if (def->parts & MAP_DEF_KEY_TYPE) 2414 pr_debug("map '%s': found key [%u], sz = %u.\n", 2415 map->name, def->key_type_id, def->key_size); 2416 else if (def->parts & MAP_DEF_KEY_SIZE) 2417 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2418 2419 if (def->parts & MAP_DEF_VALUE_TYPE) 2420 pr_debug("map '%s': found value [%u], sz = %u.\n", 2421 map->name, def->value_type_id, def->value_size); 2422 else if (def->parts & MAP_DEF_VALUE_SIZE) 2423 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2424 2425 if (def->parts & MAP_DEF_MAX_ENTRIES) 2426 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2427 if (def->parts & MAP_DEF_MAP_FLAGS) 2428 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2429 if (def->parts & MAP_DEF_MAP_EXTRA) 2430 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2431 (unsigned long long)def->map_extra); 2432 if (def->parts & MAP_DEF_PINNING) 2433 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2434 if (def->parts & MAP_DEF_NUMA_NODE) 2435 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2436 2437 if (def->parts & MAP_DEF_INNER_MAP) 2438 pr_debug("map '%s': found inner map definition.\n", map->name); 2439 } 2440 2441 static const char *btf_var_linkage_str(__u32 linkage) 2442 { 2443 switch (linkage) { 2444 case BTF_VAR_STATIC: return "static"; 2445 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2446 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2447 default: return "unknown"; 2448 } 2449 } 2450 2451 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2452 const struct btf_type *sec, 2453 int var_idx, int sec_idx, 2454 const Elf_Data *data, bool strict, 2455 const char *pin_root_path) 2456 { 2457 struct btf_map_def map_def = {}, inner_def = {}; 2458 const struct btf_type *var, *def; 2459 const struct btf_var_secinfo *vi; 2460 const struct btf_var *var_extra; 2461 const char *map_name; 2462 struct bpf_map *map; 2463 int err; 2464 2465 vi = btf_var_secinfos(sec) + var_idx; 2466 var = btf__type_by_id(obj->btf, vi->type); 2467 var_extra = btf_var(var); 2468 map_name = btf__name_by_offset(obj->btf, var->name_off); 2469 2470 if (map_name == NULL || map_name[0] == '\0') { 2471 pr_warn("map #%d: empty name.\n", var_idx); 2472 return -EINVAL; 2473 } 2474 if ((__u64)vi->offset + vi->size > data->d_size) { 2475 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2476 return -EINVAL; 2477 } 2478 if (!btf_is_var(var)) { 2479 pr_warn("map '%s': unexpected var kind %s.\n", 2480 map_name, btf_kind_str(var)); 2481 return -EINVAL; 2482 } 2483 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2484 pr_warn("map '%s': unsupported map linkage %s.\n", 2485 map_name, btf_var_linkage_str(var_extra->linkage)); 2486 return -EOPNOTSUPP; 2487 } 2488 2489 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2490 if (!btf_is_struct(def)) { 2491 pr_warn("map '%s': unexpected def kind %s.\n", 2492 map_name, btf_kind_str(var)); 2493 return -EINVAL; 2494 } 2495 if (def->size > vi->size) { 2496 pr_warn("map '%s': invalid def size.\n", map_name); 2497 return -EINVAL; 2498 } 2499 2500 map = bpf_object__add_map(obj); 2501 if (IS_ERR(map)) 2502 return PTR_ERR(map); 2503 map->name = strdup(map_name); 2504 if (!map->name) { 2505 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2506 return -ENOMEM; 2507 } 2508 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2509 map->def.type = BPF_MAP_TYPE_UNSPEC; 2510 map->sec_idx = sec_idx; 2511 map->sec_offset = vi->offset; 2512 map->btf_var_idx = var_idx; 2513 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2514 map_name, map->sec_idx, map->sec_offset); 2515 2516 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2517 if (err) 2518 return err; 2519 2520 fill_map_from_def(map, &map_def); 2521 2522 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2523 err = build_map_pin_path(map, pin_root_path); 2524 if (err) { 2525 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2526 return err; 2527 } 2528 } 2529 2530 if (map_def.parts & MAP_DEF_INNER_MAP) { 2531 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2532 if (!map->inner_map) 2533 return -ENOMEM; 2534 map->inner_map->fd = -1; 2535 map->inner_map->sec_idx = sec_idx; 2536 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2537 if (!map->inner_map->name) 2538 return -ENOMEM; 2539 sprintf(map->inner_map->name, "%s.inner", map_name); 2540 2541 fill_map_from_def(map->inner_map, &inner_def); 2542 } 2543 2544 return 0; 2545 } 2546 2547 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2548 const char *pin_root_path) 2549 { 2550 const struct btf_type *sec = NULL; 2551 int nr_types, i, vlen, err; 2552 const struct btf_type *t; 2553 const char *name; 2554 Elf_Data *data; 2555 Elf_Scn *scn; 2556 2557 if (obj->efile.btf_maps_shndx < 0) 2558 return 0; 2559 2560 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2561 data = elf_sec_data(obj, scn); 2562 if (!scn || !data) { 2563 pr_warn("elf: failed to get %s map definitions for %s\n", 2564 MAPS_ELF_SEC, obj->path); 2565 return -EINVAL; 2566 } 2567 2568 nr_types = btf__type_cnt(obj->btf); 2569 for (i = 1; i < nr_types; i++) { 2570 t = btf__type_by_id(obj->btf, i); 2571 if (!btf_is_datasec(t)) 2572 continue; 2573 name = btf__name_by_offset(obj->btf, t->name_off); 2574 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2575 sec = t; 2576 obj->efile.btf_maps_sec_btf_id = i; 2577 break; 2578 } 2579 } 2580 2581 if (!sec) { 2582 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2583 return -ENOENT; 2584 } 2585 2586 vlen = btf_vlen(sec); 2587 for (i = 0; i < vlen; i++) { 2588 err = bpf_object__init_user_btf_map(obj, sec, i, 2589 obj->efile.btf_maps_shndx, 2590 data, strict, 2591 pin_root_path); 2592 if (err) 2593 return err; 2594 } 2595 2596 return 0; 2597 } 2598 2599 static int bpf_object__init_maps(struct bpf_object *obj, 2600 const struct bpf_object_open_opts *opts) 2601 { 2602 const char *pin_root_path; 2603 bool strict; 2604 int err; 2605 2606 strict = !OPTS_GET(opts, relaxed_maps, false); 2607 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2608 2609 err = bpf_object__init_user_maps(obj, strict); 2610 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2611 err = err ?: bpf_object__init_global_data_maps(obj); 2612 err = err ?: bpf_object__init_kconfig_map(obj); 2613 err = err ?: bpf_object__init_struct_ops_maps(obj); 2614 2615 return err; 2616 } 2617 2618 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2619 { 2620 Elf64_Shdr *sh; 2621 2622 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2623 if (!sh) 2624 return false; 2625 2626 return sh->sh_flags & SHF_EXECINSTR; 2627 } 2628 2629 static bool btf_needs_sanitization(struct bpf_object *obj) 2630 { 2631 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2632 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2633 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2634 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2635 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2636 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2637 2638 return !has_func || !has_datasec || !has_func_global || !has_float || 2639 !has_decl_tag || !has_type_tag; 2640 } 2641 2642 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2643 { 2644 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2645 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2646 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2647 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2648 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2649 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2650 struct btf_type *t; 2651 int i, j, vlen; 2652 2653 for (i = 1; i < btf__type_cnt(btf); i++) { 2654 t = (struct btf_type *)btf__type_by_id(btf, i); 2655 2656 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2657 /* replace VAR/DECL_TAG with INT */ 2658 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2659 /* 2660 * using size = 1 is the safest choice, 4 will be too 2661 * big and cause kernel BTF validation failure if 2662 * original variable took less than 4 bytes 2663 */ 2664 t->size = 1; 2665 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2666 } else if (!has_datasec && btf_is_datasec(t)) { 2667 /* replace DATASEC with STRUCT */ 2668 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2669 struct btf_member *m = btf_members(t); 2670 struct btf_type *vt; 2671 char *name; 2672 2673 name = (char *)btf__name_by_offset(btf, t->name_off); 2674 while (*name) { 2675 if (*name == '.') 2676 *name = '_'; 2677 name++; 2678 } 2679 2680 vlen = btf_vlen(t); 2681 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2682 for (j = 0; j < vlen; j++, v++, m++) { 2683 /* order of field assignments is important */ 2684 m->offset = v->offset * 8; 2685 m->type = v->type; 2686 /* preserve variable name as member name */ 2687 vt = (void *)btf__type_by_id(btf, v->type); 2688 m->name_off = vt->name_off; 2689 } 2690 } else if (!has_func && btf_is_func_proto(t)) { 2691 /* replace FUNC_PROTO with ENUM */ 2692 vlen = btf_vlen(t); 2693 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2694 t->size = sizeof(__u32); /* kernel enforced */ 2695 } else if (!has_func && btf_is_func(t)) { 2696 /* replace FUNC with TYPEDEF */ 2697 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2698 } else if (!has_func_global && btf_is_func(t)) { 2699 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2700 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2701 } else if (!has_float && btf_is_float(t)) { 2702 /* replace FLOAT with an equally-sized empty STRUCT; 2703 * since C compilers do not accept e.g. "float" as a 2704 * valid struct name, make it anonymous 2705 */ 2706 t->name_off = 0; 2707 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2708 } else if (!has_type_tag && btf_is_type_tag(t)) { 2709 /* replace TYPE_TAG with a CONST */ 2710 t->name_off = 0; 2711 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2712 } 2713 } 2714 } 2715 2716 static bool libbpf_needs_btf(const struct bpf_object *obj) 2717 { 2718 return obj->efile.btf_maps_shndx >= 0 || 2719 obj->efile.st_ops_shndx >= 0 || 2720 obj->nr_extern > 0; 2721 } 2722 2723 static bool kernel_needs_btf(const struct bpf_object *obj) 2724 { 2725 return obj->efile.st_ops_shndx >= 0; 2726 } 2727 2728 static int bpf_object__init_btf(struct bpf_object *obj, 2729 Elf_Data *btf_data, 2730 Elf_Data *btf_ext_data) 2731 { 2732 int err = -ENOENT; 2733 2734 if (btf_data) { 2735 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2736 err = libbpf_get_error(obj->btf); 2737 if (err) { 2738 obj->btf = NULL; 2739 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2740 goto out; 2741 } 2742 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2743 btf__set_pointer_size(obj->btf, 8); 2744 } 2745 if (btf_ext_data) { 2746 if (!obj->btf) { 2747 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2748 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2749 goto out; 2750 } 2751 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2752 err = libbpf_get_error(obj->btf_ext); 2753 if (err) { 2754 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2755 BTF_EXT_ELF_SEC, err); 2756 obj->btf_ext = NULL; 2757 goto out; 2758 } 2759 } 2760 out: 2761 if (err && libbpf_needs_btf(obj)) { 2762 pr_warn("BTF is required, but is missing or corrupted.\n"); 2763 return err; 2764 } 2765 return 0; 2766 } 2767 2768 static int compare_vsi_off(const void *_a, const void *_b) 2769 { 2770 const struct btf_var_secinfo *a = _a; 2771 const struct btf_var_secinfo *b = _b; 2772 2773 return a->offset - b->offset; 2774 } 2775 2776 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2777 struct btf_type *t) 2778 { 2779 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2780 const char *name = btf__name_by_offset(btf, t->name_off); 2781 const struct btf_type *t_var; 2782 struct btf_var_secinfo *vsi; 2783 const struct btf_var *var; 2784 int ret; 2785 2786 if (!name) { 2787 pr_debug("No name found in string section for DATASEC kind.\n"); 2788 return -ENOENT; 2789 } 2790 2791 /* .extern datasec size and var offsets were set correctly during 2792 * extern collection step, so just skip straight to sorting variables 2793 */ 2794 if (t->size) 2795 goto sort_vars; 2796 2797 ret = find_elf_sec_sz(obj, name, &size); 2798 if (ret || !size || (t->size && t->size != size)) { 2799 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2800 return -ENOENT; 2801 } 2802 2803 t->size = size; 2804 2805 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2806 t_var = btf__type_by_id(btf, vsi->type); 2807 if (!t_var || !btf_is_var(t_var)) { 2808 pr_debug("Non-VAR type seen in section %s\n", name); 2809 return -EINVAL; 2810 } 2811 2812 var = btf_var(t_var); 2813 if (var->linkage == BTF_VAR_STATIC) 2814 continue; 2815 2816 name = btf__name_by_offset(btf, t_var->name_off); 2817 if (!name) { 2818 pr_debug("No name found in string section for VAR kind\n"); 2819 return -ENOENT; 2820 } 2821 2822 ret = find_elf_var_offset(obj, name, &off); 2823 if (ret) { 2824 pr_debug("No offset found in symbol table for VAR %s\n", 2825 name); 2826 return -ENOENT; 2827 } 2828 2829 vsi->offset = off; 2830 } 2831 2832 sort_vars: 2833 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2834 return 0; 2835 } 2836 2837 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2838 { 2839 int err = 0; 2840 __u32 i, n = btf__type_cnt(btf); 2841 2842 for (i = 1; i < n; i++) { 2843 struct btf_type *t = btf_type_by_id(btf, i); 2844 2845 /* Loader needs to fix up some of the things compiler 2846 * couldn't get its hands on while emitting BTF. This 2847 * is section size and global variable offset. We use 2848 * the info from the ELF itself for this purpose. 2849 */ 2850 if (btf_is_datasec(t)) { 2851 err = btf_fixup_datasec(obj, btf, t); 2852 if (err) 2853 break; 2854 } 2855 } 2856 2857 return libbpf_err(err); 2858 } 2859 2860 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2861 { 2862 return btf_finalize_data(obj, btf); 2863 } 2864 2865 static int bpf_object__finalize_btf(struct bpf_object *obj) 2866 { 2867 int err; 2868 2869 if (!obj->btf) 2870 return 0; 2871 2872 err = btf_finalize_data(obj, obj->btf); 2873 if (err) { 2874 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2875 return err; 2876 } 2877 2878 return 0; 2879 } 2880 2881 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2882 { 2883 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2884 prog->type == BPF_PROG_TYPE_LSM) 2885 return true; 2886 2887 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2888 * also need vmlinux BTF 2889 */ 2890 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2891 return true; 2892 2893 return false; 2894 } 2895 2896 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2897 { 2898 struct bpf_program *prog; 2899 int i; 2900 2901 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2902 * is not specified 2903 */ 2904 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2905 return true; 2906 2907 /* Support for typed ksyms needs kernel BTF */ 2908 for (i = 0; i < obj->nr_extern; i++) { 2909 const struct extern_desc *ext; 2910 2911 ext = &obj->externs[i]; 2912 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2913 return true; 2914 } 2915 2916 bpf_object__for_each_program(prog, obj) { 2917 if (!prog->load) 2918 continue; 2919 if (prog_needs_vmlinux_btf(prog)) 2920 return true; 2921 } 2922 2923 return false; 2924 } 2925 2926 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2927 { 2928 int err; 2929 2930 /* btf_vmlinux could be loaded earlier */ 2931 if (obj->btf_vmlinux || obj->gen_loader) 2932 return 0; 2933 2934 if (!force && !obj_needs_vmlinux_btf(obj)) 2935 return 0; 2936 2937 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2938 err = libbpf_get_error(obj->btf_vmlinux); 2939 if (err) { 2940 pr_warn("Error loading vmlinux BTF: %d\n", err); 2941 obj->btf_vmlinux = NULL; 2942 return err; 2943 } 2944 return 0; 2945 } 2946 2947 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2948 { 2949 struct btf *kern_btf = obj->btf; 2950 bool btf_mandatory, sanitize; 2951 int i, err = 0; 2952 2953 if (!obj->btf) 2954 return 0; 2955 2956 if (!kernel_supports(obj, FEAT_BTF)) { 2957 if (kernel_needs_btf(obj)) { 2958 err = -EOPNOTSUPP; 2959 goto report; 2960 } 2961 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2962 return 0; 2963 } 2964 2965 /* Even though some subprogs are global/weak, user might prefer more 2966 * permissive BPF verification process that BPF verifier performs for 2967 * static functions, taking into account more context from the caller 2968 * functions. In such case, they need to mark such subprogs with 2969 * __attribute__((visibility("hidden"))) and libbpf will adjust 2970 * corresponding FUNC BTF type to be marked as static and trigger more 2971 * involved BPF verification process. 2972 */ 2973 for (i = 0; i < obj->nr_programs; i++) { 2974 struct bpf_program *prog = &obj->programs[i]; 2975 struct btf_type *t; 2976 const char *name; 2977 int j, n; 2978 2979 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2980 continue; 2981 2982 n = btf__type_cnt(obj->btf); 2983 for (j = 1; j < n; j++) { 2984 t = btf_type_by_id(obj->btf, j); 2985 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2986 continue; 2987 2988 name = btf__str_by_offset(obj->btf, t->name_off); 2989 if (strcmp(name, prog->name) != 0) 2990 continue; 2991 2992 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2993 break; 2994 } 2995 } 2996 2997 sanitize = btf_needs_sanitization(obj); 2998 if (sanitize) { 2999 const void *raw_data; 3000 __u32 sz; 3001 3002 /* clone BTF to sanitize a copy and leave the original intact */ 3003 raw_data = btf__raw_data(obj->btf, &sz); 3004 kern_btf = btf__new(raw_data, sz); 3005 err = libbpf_get_error(kern_btf); 3006 if (err) 3007 return err; 3008 3009 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3010 btf__set_pointer_size(obj->btf, 8); 3011 bpf_object__sanitize_btf(obj, kern_btf); 3012 } 3013 3014 if (obj->gen_loader) { 3015 __u32 raw_size = 0; 3016 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3017 3018 if (!raw_data) 3019 return -ENOMEM; 3020 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3021 /* Pretend to have valid FD to pass various fd >= 0 checks. 3022 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3023 */ 3024 btf__set_fd(kern_btf, 0); 3025 } else { 3026 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3027 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3028 obj->log_level ? 1 : 0); 3029 } 3030 if (sanitize) { 3031 if (!err) { 3032 /* move fd to libbpf's BTF */ 3033 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3034 btf__set_fd(kern_btf, -1); 3035 } 3036 btf__free(kern_btf); 3037 } 3038 report: 3039 if (err) { 3040 btf_mandatory = kernel_needs_btf(obj); 3041 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3042 btf_mandatory ? "BTF is mandatory, can't proceed." 3043 : "BTF is optional, ignoring."); 3044 if (!btf_mandatory) 3045 err = 0; 3046 } 3047 return err; 3048 } 3049 3050 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3051 { 3052 const char *name; 3053 3054 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3055 if (!name) { 3056 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3057 off, obj->path, elf_errmsg(-1)); 3058 return NULL; 3059 } 3060 3061 return name; 3062 } 3063 3064 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3065 { 3066 const char *name; 3067 3068 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3069 if (!name) { 3070 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3071 off, obj->path, elf_errmsg(-1)); 3072 return NULL; 3073 } 3074 3075 return name; 3076 } 3077 3078 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3079 { 3080 Elf_Scn *scn; 3081 3082 scn = elf_getscn(obj->efile.elf, idx); 3083 if (!scn) { 3084 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3085 idx, obj->path, elf_errmsg(-1)); 3086 return NULL; 3087 } 3088 return scn; 3089 } 3090 3091 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3092 { 3093 Elf_Scn *scn = NULL; 3094 Elf *elf = obj->efile.elf; 3095 const char *sec_name; 3096 3097 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3098 sec_name = elf_sec_name(obj, scn); 3099 if (!sec_name) 3100 return NULL; 3101 3102 if (strcmp(sec_name, name) != 0) 3103 continue; 3104 3105 return scn; 3106 } 3107 return NULL; 3108 } 3109 3110 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3111 { 3112 Elf64_Shdr *shdr; 3113 3114 if (!scn) 3115 return NULL; 3116 3117 shdr = elf64_getshdr(scn); 3118 if (!shdr) { 3119 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3120 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3121 return NULL; 3122 } 3123 3124 return shdr; 3125 } 3126 3127 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3128 { 3129 const char *name; 3130 Elf64_Shdr *sh; 3131 3132 if (!scn) 3133 return NULL; 3134 3135 sh = elf_sec_hdr(obj, scn); 3136 if (!sh) 3137 return NULL; 3138 3139 name = elf_sec_str(obj, sh->sh_name); 3140 if (!name) { 3141 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3142 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3143 return NULL; 3144 } 3145 3146 return name; 3147 } 3148 3149 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3150 { 3151 Elf_Data *data; 3152 3153 if (!scn) 3154 return NULL; 3155 3156 data = elf_getdata(scn, 0); 3157 if (!data) { 3158 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3159 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3160 obj->path, elf_errmsg(-1)); 3161 return NULL; 3162 } 3163 3164 return data; 3165 } 3166 3167 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3168 { 3169 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3170 return NULL; 3171 3172 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3173 } 3174 3175 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3176 { 3177 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3178 return NULL; 3179 3180 return (Elf64_Rel *)data->d_buf + idx; 3181 } 3182 3183 static bool is_sec_name_dwarf(const char *name) 3184 { 3185 /* approximation, but the actual list is too long */ 3186 return str_has_pfx(name, ".debug_"); 3187 } 3188 3189 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3190 { 3191 /* no special handling of .strtab */ 3192 if (hdr->sh_type == SHT_STRTAB) 3193 return true; 3194 3195 /* ignore .llvm_addrsig section as well */ 3196 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3197 return true; 3198 3199 /* no subprograms will lead to an empty .text section, ignore it */ 3200 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3201 strcmp(name, ".text") == 0) 3202 return true; 3203 3204 /* DWARF sections */ 3205 if (is_sec_name_dwarf(name)) 3206 return true; 3207 3208 if (str_has_pfx(name, ".rel")) { 3209 name += sizeof(".rel") - 1; 3210 /* DWARF section relocations */ 3211 if (is_sec_name_dwarf(name)) 3212 return true; 3213 3214 /* .BTF and .BTF.ext don't need relocations */ 3215 if (strcmp(name, BTF_ELF_SEC) == 0 || 3216 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3217 return true; 3218 } 3219 3220 return false; 3221 } 3222 3223 static int cmp_progs(const void *_a, const void *_b) 3224 { 3225 const struct bpf_program *a = _a; 3226 const struct bpf_program *b = _b; 3227 3228 if (a->sec_idx != b->sec_idx) 3229 return a->sec_idx < b->sec_idx ? -1 : 1; 3230 3231 /* sec_insn_off can't be the same within the section */ 3232 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3233 } 3234 3235 static int bpf_object__elf_collect(struct bpf_object *obj) 3236 { 3237 struct elf_sec_desc *sec_desc; 3238 Elf *elf = obj->efile.elf; 3239 Elf_Data *btf_ext_data = NULL; 3240 Elf_Data *btf_data = NULL; 3241 int idx = 0, err = 0; 3242 const char *name; 3243 Elf_Data *data; 3244 Elf_Scn *scn; 3245 Elf64_Shdr *sh; 3246 3247 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3248 * section. e_shnum does include sec #0, so e_shnum is the necessary 3249 * size of an array to keep all the sections. 3250 */ 3251 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3252 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3253 if (!obj->efile.secs) 3254 return -ENOMEM; 3255 3256 /* a bunch of ELF parsing functionality depends on processing symbols, 3257 * so do the first pass and find the symbol table 3258 */ 3259 scn = NULL; 3260 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3261 sh = elf_sec_hdr(obj, scn); 3262 if (!sh) 3263 return -LIBBPF_ERRNO__FORMAT; 3264 3265 if (sh->sh_type == SHT_SYMTAB) { 3266 if (obj->efile.symbols) { 3267 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3268 return -LIBBPF_ERRNO__FORMAT; 3269 } 3270 3271 data = elf_sec_data(obj, scn); 3272 if (!data) 3273 return -LIBBPF_ERRNO__FORMAT; 3274 3275 idx = elf_ndxscn(scn); 3276 3277 obj->efile.symbols = data; 3278 obj->efile.symbols_shndx = idx; 3279 obj->efile.strtabidx = sh->sh_link; 3280 } 3281 } 3282 3283 if (!obj->efile.symbols) { 3284 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3285 obj->path); 3286 return -ENOENT; 3287 } 3288 3289 scn = NULL; 3290 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3291 idx = elf_ndxscn(scn); 3292 sec_desc = &obj->efile.secs[idx]; 3293 3294 sh = elf_sec_hdr(obj, scn); 3295 if (!sh) 3296 return -LIBBPF_ERRNO__FORMAT; 3297 3298 name = elf_sec_str(obj, sh->sh_name); 3299 if (!name) 3300 return -LIBBPF_ERRNO__FORMAT; 3301 3302 if (ignore_elf_section(sh, name)) 3303 continue; 3304 3305 data = elf_sec_data(obj, scn); 3306 if (!data) 3307 return -LIBBPF_ERRNO__FORMAT; 3308 3309 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3310 idx, name, (unsigned long)data->d_size, 3311 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3312 (int)sh->sh_type); 3313 3314 if (strcmp(name, "license") == 0) { 3315 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3316 if (err) 3317 return err; 3318 } else if (strcmp(name, "version") == 0) { 3319 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3320 if (err) 3321 return err; 3322 } else if (strcmp(name, "maps") == 0) { 3323 obj->efile.maps_shndx = idx; 3324 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3325 obj->efile.btf_maps_shndx = idx; 3326 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3327 if (sh->sh_type != SHT_PROGBITS) 3328 return -LIBBPF_ERRNO__FORMAT; 3329 btf_data = data; 3330 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3331 if (sh->sh_type != SHT_PROGBITS) 3332 return -LIBBPF_ERRNO__FORMAT; 3333 btf_ext_data = data; 3334 } else if (sh->sh_type == SHT_SYMTAB) { 3335 /* already processed during the first pass above */ 3336 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3337 if (sh->sh_flags & SHF_EXECINSTR) { 3338 if (strcmp(name, ".text") == 0) 3339 obj->efile.text_shndx = idx; 3340 err = bpf_object__add_programs(obj, data, name, idx); 3341 if (err) 3342 return err; 3343 } else if (strcmp(name, DATA_SEC) == 0 || 3344 str_has_pfx(name, DATA_SEC ".")) { 3345 sec_desc->sec_type = SEC_DATA; 3346 sec_desc->shdr = sh; 3347 sec_desc->data = data; 3348 } else if (strcmp(name, RODATA_SEC) == 0 || 3349 str_has_pfx(name, RODATA_SEC ".")) { 3350 sec_desc->sec_type = SEC_RODATA; 3351 sec_desc->shdr = sh; 3352 sec_desc->data = data; 3353 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3354 obj->efile.st_ops_data = data; 3355 obj->efile.st_ops_shndx = idx; 3356 } else { 3357 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3358 idx, name); 3359 } 3360 } else if (sh->sh_type == SHT_REL) { 3361 int targ_sec_idx = sh->sh_info; /* points to other section */ 3362 3363 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3364 targ_sec_idx >= obj->efile.sec_cnt) 3365 return -LIBBPF_ERRNO__FORMAT; 3366 3367 /* Only do relo for section with exec instructions */ 3368 if (!section_have_execinstr(obj, targ_sec_idx) && 3369 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3370 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3371 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3372 idx, name, targ_sec_idx, 3373 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3374 continue; 3375 } 3376 3377 sec_desc->sec_type = SEC_RELO; 3378 sec_desc->shdr = sh; 3379 sec_desc->data = data; 3380 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3381 sec_desc->sec_type = SEC_BSS; 3382 sec_desc->shdr = sh; 3383 sec_desc->data = data; 3384 } else { 3385 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3386 (size_t)sh->sh_size); 3387 } 3388 } 3389 3390 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3391 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3392 return -LIBBPF_ERRNO__FORMAT; 3393 } 3394 3395 /* sort BPF programs by section name and in-section instruction offset 3396 * for faster search */ 3397 if (obj->nr_programs) 3398 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3399 3400 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3401 } 3402 3403 static bool sym_is_extern(const Elf64_Sym *sym) 3404 { 3405 int bind = ELF64_ST_BIND(sym->st_info); 3406 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3407 return sym->st_shndx == SHN_UNDEF && 3408 (bind == STB_GLOBAL || bind == STB_WEAK) && 3409 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3410 } 3411 3412 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3413 { 3414 int bind = ELF64_ST_BIND(sym->st_info); 3415 int type = ELF64_ST_TYPE(sym->st_info); 3416 3417 /* in .text section */ 3418 if (sym->st_shndx != text_shndx) 3419 return false; 3420 3421 /* local function */ 3422 if (bind == STB_LOCAL && type == STT_SECTION) 3423 return true; 3424 3425 /* global function */ 3426 return bind == STB_GLOBAL && type == STT_FUNC; 3427 } 3428 3429 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3430 { 3431 const struct btf_type *t; 3432 const char *tname; 3433 int i, n; 3434 3435 if (!btf) 3436 return -ESRCH; 3437 3438 n = btf__type_cnt(btf); 3439 for (i = 1; i < n; i++) { 3440 t = btf__type_by_id(btf, i); 3441 3442 if (!btf_is_var(t) && !btf_is_func(t)) 3443 continue; 3444 3445 tname = btf__name_by_offset(btf, t->name_off); 3446 if (strcmp(tname, ext_name)) 3447 continue; 3448 3449 if (btf_is_var(t) && 3450 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3451 return -EINVAL; 3452 3453 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3454 return -EINVAL; 3455 3456 return i; 3457 } 3458 3459 return -ENOENT; 3460 } 3461 3462 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3463 const struct btf_var_secinfo *vs; 3464 const struct btf_type *t; 3465 int i, j, n; 3466 3467 if (!btf) 3468 return -ESRCH; 3469 3470 n = btf__type_cnt(btf); 3471 for (i = 1; i < n; i++) { 3472 t = btf__type_by_id(btf, i); 3473 3474 if (!btf_is_datasec(t)) 3475 continue; 3476 3477 vs = btf_var_secinfos(t); 3478 for (j = 0; j < btf_vlen(t); j++, vs++) { 3479 if (vs->type == ext_btf_id) 3480 return i; 3481 } 3482 } 3483 3484 return -ENOENT; 3485 } 3486 3487 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3488 bool *is_signed) 3489 { 3490 const struct btf_type *t; 3491 const char *name; 3492 3493 t = skip_mods_and_typedefs(btf, id, NULL); 3494 name = btf__name_by_offset(btf, t->name_off); 3495 3496 if (is_signed) 3497 *is_signed = false; 3498 switch (btf_kind(t)) { 3499 case BTF_KIND_INT: { 3500 int enc = btf_int_encoding(t); 3501 3502 if (enc & BTF_INT_BOOL) 3503 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3504 if (is_signed) 3505 *is_signed = enc & BTF_INT_SIGNED; 3506 if (t->size == 1) 3507 return KCFG_CHAR; 3508 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3509 return KCFG_UNKNOWN; 3510 return KCFG_INT; 3511 } 3512 case BTF_KIND_ENUM: 3513 if (t->size != 4) 3514 return KCFG_UNKNOWN; 3515 if (strcmp(name, "libbpf_tristate")) 3516 return KCFG_UNKNOWN; 3517 return KCFG_TRISTATE; 3518 case BTF_KIND_ARRAY: 3519 if (btf_array(t)->nelems == 0) 3520 return KCFG_UNKNOWN; 3521 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3522 return KCFG_UNKNOWN; 3523 return KCFG_CHAR_ARR; 3524 default: 3525 return KCFG_UNKNOWN; 3526 } 3527 } 3528 3529 static int cmp_externs(const void *_a, const void *_b) 3530 { 3531 const struct extern_desc *a = _a; 3532 const struct extern_desc *b = _b; 3533 3534 if (a->type != b->type) 3535 return a->type < b->type ? -1 : 1; 3536 3537 if (a->type == EXT_KCFG) { 3538 /* descending order by alignment requirements */ 3539 if (a->kcfg.align != b->kcfg.align) 3540 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3541 /* ascending order by size, within same alignment class */ 3542 if (a->kcfg.sz != b->kcfg.sz) 3543 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3544 } 3545 3546 /* resolve ties by name */ 3547 return strcmp(a->name, b->name); 3548 } 3549 3550 static int find_int_btf_id(const struct btf *btf) 3551 { 3552 const struct btf_type *t; 3553 int i, n; 3554 3555 n = btf__type_cnt(btf); 3556 for (i = 1; i < n; i++) { 3557 t = btf__type_by_id(btf, i); 3558 3559 if (btf_is_int(t) && btf_int_bits(t) == 32) 3560 return i; 3561 } 3562 3563 return 0; 3564 } 3565 3566 static int add_dummy_ksym_var(struct btf *btf) 3567 { 3568 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3569 const struct btf_var_secinfo *vs; 3570 const struct btf_type *sec; 3571 3572 if (!btf) 3573 return 0; 3574 3575 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3576 BTF_KIND_DATASEC); 3577 if (sec_btf_id < 0) 3578 return 0; 3579 3580 sec = btf__type_by_id(btf, sec_btf_id); 3581 vs = btf_var_secinfos(sec); 3582 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3583 const struct btf_type *vt; 3584 3585 vt = btf__type_by_id(btf, vs->type); 3586 if (btf_is_func(vt)) 3587 break; 3588 } 3589 3590 /* No func in ksyms sec. No need to add dummy var. */ 3591 if (i == btf_vlen(sec)) 3592 return 0; 3593 3594 int_btf_id = find_int_btf_id(btf); 3595 dummy_var_btf_id = btf__add_var(btf, 3596 "dummy_ksym", 3597 BTF_VAR_GLOBAL_ALLOCATED, 3598 int_btf_id); 3599 if (dummy_var_btf_id < 0) 3600 pr_warn("cannot create a dummy_ksym var\n"); 3601 3602 return dummy_var_btf_id; 3603 } 3604 3605 static int bpf_object__collect_externs(struct bpf_object *obj) 3606 { 3607 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3608 const struct btf_type *t; 3609 struct extern_desc *ext; 3610 int i, n, off, dummy_var_btf_id; 3611 const char *ext_name, *sec_name; 3612 Elf_Scn *scn; 3613 Elf64_Shdr *sh; 3614 3615 if (!obj->efile.symbols) 3616 return 0; 3617 3618 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3619 sh = elf_sec_hdr(obj, scn); 3620 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3621 return -LIBBPF_ERRNO__FORMAT; 3622 3623 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3624 if (dummy_var_btf_id < 0) 3625 return dummy_var_btf_id; 3626 3627 n = sh->sh_size / sh->sh_entsize; 3628 pr_debug("looking for externs among %d symbols...\n", n); 3629 3630 for (i = 0; i < n; i++) { 3631 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3632 3633 if (!sym) 3634 return -LIBBPF_ERRNO__FORMAT; 3635 if (!sym_is_extern(sym)) 3636 continue; 3637 ext_name = elf_sym_str(obj, sym->st_name); 3638 if (!ext_name || !ext_name[0]) 3639 continue; 3640 3641 ext = obj->externs; 3642 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3643 if (!ext) 3644 return -ENOMEM; 3645 obj->externs = ext; 3646 ext = &ext[obj->nr_extern]; 3647 memset(ext, 0, sizeof(*ext)); 3648 obj->nr_extern++; 3649 3650 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3651 if (ext->btf_id <= 0) { 3652 pr_warn("failed to find BTF for extern '%s': %d\n", 3653 ext_name, ext->btf_id); 3654 return ext->btf_id; 3655 } 3656 t = btf__type_by_id(obj->btf, ext->btf_id); 3657 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3658 ext->sym_idx = i; 3659 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3660 3661 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3662 if (ext->sec_btf_id <= 0) { 3663 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3664 ext_name, ext->btf_id, ext->sec_btf_id); 3665 return ext->sec_btf_id; 3666 } 3667 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3668 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3669 3670 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3671 if (btf_is_func(t)) { 3672 pr_warn("extern function %s is unsupported under %s section\n", 3673 ext->name, KCONFIG_SEC); 3674 return -ENOTSUP; 3675 } 3676 kcfg_sec = sec; 3677 ext->type = EXT_KCFG; 3678 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3679 if (ext->kcfg.sz <= 0) { 3680 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3681 ext_name, ext->kcfg.sz); 3682 return ext->kcfg.sz; 3683 } 3684 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3685 if (ext->kcfg.align <= 0) { 3686 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3687 ext_name, ext->kcfg.align); 3688 return -EINVAL; 3689 } 3690 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3691 &ext->kcfg.is_signed); 3692 if (ext->kcfg.type == KCFG_UNKNOWN) { 3693 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3694 return -ENOTSUP; 3695 } 3696 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3697 ksym_sec = sec; 3698 ext->type = EXT_KSYM; 3699 skip_mods_and_typedefs(obj->btf, t->type, 3700 &ext->ksym.type_id); 3701 } else { 3702 pr_warn("unrecognized extern section '%s'\n", sec_name); 3703 return -ENOTSUP; 3704 } 3705 } 3706 pr_debug("collected %d externs total\n", obj->nr_extern); 3707 3708 if (!obj->nr_extern) 3709 return 0; 3710 3711 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3712 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3713 3714 /* for .ksyms section, we need to turn all externs into allocated 3715 * variables in BTF to pass kernel verification; we do this by 3716 * pretending that each extern is a 8-byte variable 3717 */ 3718 if (ksym_sec) { 3719 /* find existing 4-byte integer type in BTF to use for fake 3720 * extern variables in DATASEC 3721 */ 3722 int int_btf_id = find_int_btf_id(obj->btf); 3723 /* For extern function, a dummy_var added earlier 3724 * will be used to replace the vs->type and 3725 * its name string will be used to refill 3726 * the missing param's name. 3727 */ 3728 const struct btf_type *dummy_var; 3729 3730 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3731 for (i = 0; i < obj->nr_extern; i++) { 3732 ext = &obj->externs[i]; 3733 if (ext->type != EXT_KSYM) 3734 continue; 3735 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3736 i, ext->sym_idx, ext->name); 3737 } 3738 3739 sec = ksym_sec; 3740 n = btf_vlen(sec); 3741 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3742 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3743 struct btf_type *vt; 3744 3745 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3746 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3747 ext = find_extern_by_name(obj, ext_name); 3748 if (!ext) { 3749 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3750 btf_kind_str(vt), ext_name); 3751 return -ESRCH; 3752 } 3753 if (btf_is_func(vt)) { 3754 const struct btf_type *func_proto; 3755 struct btf_param *param; 3756 int j; 3757 3758 func_proto = btf__type_by_id(obj->btf, 3759 vt->type); 3760 param = btf_params(func_proto); 3761 /* Reuse the dummy_var string if the 3762 * func proto does not have param name. 3763 */ 3764 for (j = 0; j < btf_vlen(func_proto); j++) 3765 if (param[j].type && !param[j].name_off) 3766 param[j].name_off = 3767 dummy_var->name_off; 3768 vs->type = dummy_var_btf_id; 3769 vt->info &= ~0xffff; 3770 vt->info |= BTF_FUNC_GLOBAL; 3771 } else { 3772 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3773 vt->type = int_btf_id; 3774 } 3775 vs->offset = off; 3776 vs->size = sizeof(int); 3777 } 3778 sec->size = off; 3779 } 3780 3781 if (kcfg_sec) { 3782 sec = kcfg_sec; 3783 /* for kcfg externs calculate their offsets within a .kconfig map */ 3784 off = 0; 3785 for (i = 0; i < obj->nr_extern; i++) { 3786 ext = &obj->externs[i]; 3787 if (ext->type != EXT_KCFG) 3788 continue; 3789 3790 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3791 off = ext->kcfg.data_off + ext->kcfg.sz; 3792 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3793 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3794 } 3795 sec->size = off; 3796 n = btf_vlen(sec); 3797 for (i = 0; i < n; i++) { 3798 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3799 3800 t = btf__type_by_id(obj->btf, vs->type); 3801 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3802 ext = find_extern_by_name(obj, ext_name); 3803 if (!ext) { 3804 pr_warn("failed to find extern definition for BTF var '%s'\n", 3805 ext_name); 3806 return -ESRCH; 3807 } 3808 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3809 vs->offset = ext->kcfg.data_off; 3810 } 3811 } 3812 return 0; 3813 } 3814 3815 struct bpf_program * 3816 bpf_object__find_program_by_title(const struct bpf_object *obj, 3817 const char *title) 3818 { 3819 struct bpf_program *pos; 3820 3821 bpf_object__for_each_program(pos, obj) { 3822 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3823 return pos; 3824 } 3825 return errno = ENOENT, NULL; 3826 } 3827 3828 static bool prog_is_subprog(const struct bpf_object *obj, 3829 const struct bpf_program *prog) 3830 { 3831 /* For legacy reasons, libbpf supports an entry-point BPF programs 3832 * without SEC() attribute, i.e., those in the .text section. But if 3833 * there are 2 or more such programs in the .text section, they all 3834 * must be subprograms called from entry-point BPF programs in 3835 * designated SEC()'tions, otherwise there is no way to distinguish 3836 * which of those programs should be loaded vs which are a subprogram. 3837 * Similarly, if there is a function/program in .text and at least one 3838 * other BPF program with custom SEC() attribute, then we just assume 3839 * .text programs are subprograms (even if they are not called from 3840 * other programs), because libbpf never explicitly supported mixing 3841 * SEC()-designated BPF programs and .text entry-point BPF programs. 3842 */ 3843 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3844 } 3845 3846 struct bpf_program * 3847 bpf_object__find_program_by_name(const struct bpf_object *obj, 3848 const char *name) 3849 { 3850 struct bpf_program *prog; 3851 3852 bpf_object__for_each_program(prog, obj) { 3853 if (prog_is_subprog(obj, prog)) 3854 continue; 3855 if (!strcmp(prog->name, name)) 3856 return prog; 3857 } 3858 return errno = ENOENT, NULL; 3859 } 3860 3861 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3862 int shndx) 3863 { 3864 switch (obj->efile.secs[shndx].sec_type) { 3865 case SEC_BSS: 3866 case SEC_DATA: 3867 case SEC_RODATA: 3868 return true; 3869 default: 3870 return false; 3871 } 3872 } 3873 3874 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3875 int shndx) 3876 { 3877 return shndx == obj->efile.maps_shndx || 3878 shndx == obj->efile.btf_maps_shndx; 3879 } 3880 3881 static enum libbpf_map_type 3882 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3883 { 3884 if (shndx == obj->efile.symbols_shndx) 3885 return LIBBPF_MAP_KCONFIG; 3886 3887 switch (obj->efile.secs[shndx].sec_type) { 3888 case SEC_BSS: 3889 return LIBBPF_MAP_BSS; 3890 case SEC_DATA: 3891 return LIBBPF_MAP_DATA; 3892 case SEC_RODATA: 3893 return LIBBPF_MAP_RODATA; 3894 default: 3895 return LIBBPF_MAP_UNSPEC; 3896 } 3897 } 3898 3899 static int bpf_program__record_reloc(struct bpf_program *prog, 3900 struct reloc_desc *reloc_desc, 3901 __u32 insn_idx, const char *sym_name, 3902 const Elf64_Sym *sym, const Elf64_Rel *rel) 3903 { 3904 struct bpf_insn *insn = &prog->insns[insn_idx]; 3905 size_t map_idx, nr_maps = prog->obj->nr_maps; 3906 struct bpf_object *obj = prog->obj; 3907 __u32 shdr_idx = sym->st_shndx; 3908 enum libbpf_map_type type; 3909 const char *sym_sec_name; 3910 struct bpf_map *map; 3911 3912 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3913 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3914 prog->name, sym_name, insn_idx, insn->code); 3915 return -LIBBPF_ERRNO__RELOC; 3916 } 3917 3918 if (sym_is_extern(sym)) { 3919 int sym_idx = ELF64_R_SYM(rel->r_info); 3920 int i, n = obj->nr_extern; 3921 struct extern_desc *ext; 3922 3923 for (i = 0; i < n; i++) { 3924 ext = &obj->externs[i]; 3925 if (ext->sym_idx == sym_idx) 3926 break; 3927 } 3928 if (i >= n) { 3929 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3930 prog->name, sym_name, sym_idx); 3931 return -LIBBPF_ERRNO__RELOC; 3932 } 3933 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3934 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3935 if (insn->code == (BPF_JMP | BPF_CALL)) 3936 reloc_desc->type = RELO_EXTERN_FUNC; 3937 else 3938 reloc_desc->type = RELO_EXTERN_VAR; 3939 reloc_desc->insn_idx = insn_idx; 3940 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3941 return 0; 3942 } 3943 3944 /* sub-program call relocation */ 3945 if (is_call_insn(insn)) { 3946 if (insn->src_reg != BPF_PSEUDO_CALL) { 3947 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3948 return -LIBBPF_ERRNO__RELOC; 3949 } 3950 /* text_shndx can be 0, if no default "main" program exists */ 3951 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3952 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3953 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3954 prog->name, sym_name, sym_sec_name); 3955 return -LIBBPF_ERRNO__RELOC; 3956 } 3957 if (sym->st_value % BPF_INSN_SZ) { 3958 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3959 prog->name, sym_name, (size_t)sym->st_value); 3960 return -LIBBPF_ERRNO__RELOC; 3961 } 3962 reloc_desc->type = RELO_CALL; 3963 reloc_desc->insn_idx = insn_idx; 3964 reloc_desc->sym_off = sym->st_value; 3965 return 0; 3966 } 3967 3968 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3969 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3970 prog->name, sym_name, shdr_idx); 3971 return -LIBBPF_ERRNO__RELOC; 3972 } 3973 3974 /* loading subprog addresses */ 3975 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3976 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3977 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3978 */ 3979 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3980 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3981 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3982 return -LIBBPF_ERRNO__RELOC; 3983 } 3984 3985 reloc_desc->type = RELO_SUBPROG_ADDR; 3986 reloc_desc->insn_idx = insn_idx; 3987 reloc_desc->sym_off = sym->st_value; 3988 return 0; 3989 } 3990 3991 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3992 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3993 3994 /* generic map reference relocation */ 3995 if (type == LIBBPF_MAP_UNSPEC) { 3996 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3997 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3998 prog->name, sym_name, sym_sec_name); 3999 return -LIBBPF_ERRNO__RELOC; 4000 } 4001 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4002 map = &obj->maps[map_idx]; 4003 if (map->libbpf_type != type || 4004 map->sec_idx != sym->st_shndx || 4005 map->sec_offset != sym->st_value) 4006 continue; 4007 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4008 prog->name, map_idx, map->name, map->sec_idx, 4009 map->sec_offset, insn_idx); 4010 break; 4011 } 4012 if (map_idx >= nr_maps) { 4013 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4014 prog->name, sym_sec_name, (size_t)sym->st_value); 4015 return -LIBBPF_ERRNO__RELOC; 4016 } 4017 reloc_desc->type = RELO_LD64; 4018 reloc_desc->insn_idx = insn_idx; 4019 reloc_desc->map_idx = map_idx; 4020 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4021 return 0; 4022 } 4023 4024 /* global data map relocation */ 4025 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4026 pr_warn("prog '%s': bad data relo against section '%s'\n", 4027 prog->name, sym_sec_name); 4028 return -LIBBPF_ERRNO__RELOC; 4029 } 4030 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4031 map = &obj->maps[map_idx]; 4032 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4033 continue; 4034 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4035 prog->name, map_idx, map->name, map->sec_idx, 4036 map->sec_offset, insn_idx); 4037 break; 4038 } 4039 if (map_idx >= nr_maps) { 4040 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4041 prog->name, sym_sec_name); 4042 return -LIBBPF_ERRNO__RELOC; 4043 } 4044 4045 reloc_desc->type = RELO_DATA; 4046 reloc_desc->insn_idx = insn_idx; 4047 reloc_desc->map_idx = map_idx; 4048 reloc_desc->sym_off = sym->st_value; 4049 return 0; 4050 } 4051 4052 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4053 { 4054 return insn_idx >= prog->sec_insn_off && 4055 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4056 } 4057 4058 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4059 size_t sec_idx, size_t insn_idx) 4060 { 4061 int l = 0, r = obj->nr_programs - 1, m; 4062 struct bpf_program *prog; 4063 4064 while (l < r) { 4065 m = l + (r - l + 1) / 2; 4066 prog = &obj->programs[m]; 4067 4068 if (prog->sec_idx < sec_idx || 4069 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4070 l = m; 4071 else 4072 r = m - 1; 4073 } 4074 /* matching program could be at index l, but it still might be the 4075 * wrong one, so we need to double check conditions for the last time 4076 */ 4077 prog = &obj->programs[l]; 4078 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4079 return prog; 4080 return NULL; 4081 } 4082 4083 static int 4084 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4085 { 4086 const char *relo_sec_name, *sec_name; 4087 size_t sec_idx = shdr->sh_info, sym_idx; 4088 struct bpf_program *prog; 4089 struct reloc_desc *relos; 4090 int err, i, nrels; 4091 const char *sym_name; 4092 __u32 insn_idx; 4093 Elf_Scn *scn; 4094 Elf_Data *scn_data; 4095 Elf64_Sym *sym; 4096 Elf64_Rel *rel; 4097 4098 if (sec_idx >= obj->efile.sec_cnt) 4099 return -EINVAL; 4100 4101 scn = elf_sec_by_idx(obj, sec_idx); 4102 scn_data = elf_sec_data(obj, scn); 4103 4104 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4105 sec_name = elf_sec_name(obj, scn); 4106 if (!relo_sec_name || !sec_name) 4107 return -EINVAL; 4108 4109 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4110 relo_sec_name, sec_idx, sec_name); 4111 nrels = shdr->sh_size / shdr->sh_entsize; 4112 4113 for (i = 0; i < nrels; i++) { 4114 rel = elf_rel_by_idx(data, i); 4115 if (!rel) { 4116 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4117 return -LIBBPF_ERRNO__FORMAT; 4118 } 4119 4120 sym_idx = ELF64_R_SYM(rel->r_info); 4121 sym = elf_sym_by_idx(obj, sym_idx); 4122 if (!sym) { 4123 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4124 relo_sec_name, sym_idx, i); 4125 return -LIBBPF_ERRNO__FORMAT; 4126 } 4127 4128 if (sym->st_shndx >= obj->efile.sec_cnt) { 4129 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4130 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4131 return -LIBBPF_ERRNO__FORMAT; 4132 } 4133 4134 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4135 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4136 relo_sec_name, (size_t)rel->r_offset, i); 4137 return -LIBBPF_ERRNO__FORMAT; 4138 } 4139 4140 insn_idx = rel->r_offset / BPF_INSN_SZ; 4141 /* relocations against static functions are recorded as 4142 * relocations against the section that contains a function; 4143 * in such case, symbol will be STT_SECTION and sym.st_name 4144 * will point to empty string (0), so fetch section name 4145 * instead 4146 */ 4147 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4148 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4149 else 4150 sym_name = elf_sym_str(obj, sym->st_name); 4151 sym_name = sym_name ?: "<?"; 4152 4153 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4154 relo_sec_name, i, insn_idx, sym_name); 4155 4156 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4157 if (!prog) { 4158 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4159 relo_sec_name, i, sec_name, insn_idx); 4160 continue; 4161 } 4162 4163 relos = libbpf_reallocarray(prog->reloc_desc, 4164 prog->nr_reloc + 1, sizeof(*relos)); 4165 if (!relos) 4166 return -ENOMEM; 4167 prog->reloc_desc = relos; 4168 4169 /* adjust insn_idx to local BPF program frame of reference */ 4170 insn_idx -= prog->sec_insn_off; 4171 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4172 insn_idx, sym_name, sym, rel); 4173 if (err) 4174 return err; 4175 4176 prog->nr_reloc++; 4177 } 4178 return 0; 4179 } 4180 4181 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4182 { 4183 struct bpf_map_def *def = &map->def; 4184 __u32 key_type_id = 0, value_type_id = 0; 4185 int ret; 4186 4187 /* if it's BTF-defined map, we don't need to search for type IDs. 4188 * For struct_ops map, it does not need btf_key_type_id and 4189 * btf_value_type_id. 4190 */ 4191 if (map->sec_idx == obj->efile.btf_maps_shndx || 4192 bpf_map__is_struct_ops(map)) 4193 return 0; 4194 4195 if (!bpf_map__is_internal(map)) { 4196 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4197 #pragma GCC diagnostic push 4198 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4199 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4200 def->value_size, &key_type_id, 4201 &value_type_id); 4202 #pragma GCC diagnostic pop 4203 } else { 4204 /* 4205 * LLVM annotates global data differently in BTF, that is, 4206 * only as '.data', '.bss' or '.rodata'. 4207 */ 4208 ret = btf__find_by_name(obj->btf, map->real_name); 4209 } 4210 if (ret < 0) 4211 return ret; 4212 4213 map->btf_key_type_id = key_type_id; 4214 map->btf_value_type_id = bpf_map__is_internal(map) ? 4215 ret : value_type_id; 4216 return 0; 4217 } 4218 4219 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4220 { 4221 char file[PATH_MAX], buff[4096]; 4222 FILE *fp; 4223 __u32 val; 4224 int err; 4225 4226 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4227 memset(info, 0, sizeof(*info)); 4228 4229 fp = fopen(file, "r"); 4230 if (!fp) { 4231 err = -errno; 4232 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4233 err); 4234 return err; 4235 } 4236 4237 while (fgets(buff, sizeof(buff), fp)) { 4238 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4239 info->type = val; 4240 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4241 info->key_size = val; 4242 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4243 info->value_size = val; 4244 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4245 info->max_entries = val; 4246 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4247 info->map_flags = val; 4248 } 4249 4250 fclose(fp); 4251 4252 return 0; 4253 } 4254 4255 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4256 { 4257 struct bpf_map_info info = {}; 4258 __u32 len = sizeof(info); 4259 int new_fd, err; 4260 char *new_name; 4261 4262 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4263 if (err && errno == EINVAL) 4264 err = bpf_get_map_info_from_fdinfo(fd, &info); 4265 if (err) 4266 return libbpf_err(err); 4267 4268 new_name = strdup(info.name); 4269 if (!new_name) 4270 return libbpf_err(-errno); 4271 4272 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4273 if (new_fd < 0) { 4274 err = -errno; 4275 goto err_free_new_name; 4276 } 4277 4278 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4279 if (new_fd < 0) { 4280 err = -errno; 4281 goto err_close_new_fd; 4282 } 4283 4284 err = zclose(map->fd); 4285 if (err) { 4286 err = -errno; 4287 goto err_close_new_fd; 4288 } 4289 free(map->name); 4290 4291 map->fd = new_fd; 4292 map->name = new_name; 4293 map->def.type = info.type; 4294 map->def.key_size = info.key_size; 4295 map->def.value_size = info.value_size; 4296 map->def.max_entries = info.max_entries; 4297 map->def.map_flags = info.map_flags; 4298 map->btf_key_type_id = info.btf_key_type_id; 4299 map->btf_value_type_id = info.btf_value_type_id; 4300 map->reused = true; 4301 map->map_extra = info.map_extra; 4302 4303 return 0; 4304 4305 err_close_new_fd: 4306 close(new_fd); 4307 err_free_new_name: 4308 free(new_name); 4309 return libbpf_err(err); 4310 } 4311 4312 __u32 bpf_map__max_entries(const struct bpf_map *map) 4313 { 4314 return map->def.max_entries; 4315 } 4316 4317 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4318 { 4319 if (!bpf_map_type__is_map_in_map(map->def.type)) 4320 return errno = EINVAL, NULL; 4321 4322 return map->inner_map; 4323 } 4324 4325 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4326 { 4327 if (map->fd >= 0) 4328 return libbpf_err(-EBUSY); 4329 map->def.max_entries = max_entries; 4330 return 0; 4331 } 4332 4333 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4334 { 4335 if (!map || !max_entries) 4336 return libbpf_err(-EINVAL); 4337 4338 return bpf_map__set_max_entries(map, max_entries); 4339 } 4340 4341 static int 4342 bpf_object__probe_loading(struct bpf_object *obj) 4343 { 4344 char *cp, errmsg[STRERR_BUFSIZE]; 4345 struct bpf_insn insns[] = { 4346 BPF_MOV64_IMM(BPF_REG_0, 0), 4347 BPF_EXIT_INSN(), 4348 }; 4349 int ret, insn_cnt = ARRAY_SIZE(insns); 4350 4351 if (obj->gen_loader) 4352 return 0; 4353 4354 ret = bump_rlimit_memlock(); 4355 if (ret) 4356 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4357 4358 /* make sure basic loading works */ 4359 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4360 if (ret < 0) 4361 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4362 if (ret < 0) { 4363 ret = errno; 4364 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4365 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4366 "program. Make sure your kernel supports BPF " 4367 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4368 "set to big enough value.\n", __func__, cp, ret); 4369 return -ret; 4370 } 4371 close(ret); 4372 4373 return 0; 4374 } 4375 4376 static int probe_fd(int fd) 4377 { 4378 if (fd >= 0) 4379 close(fd); 4380 return fd >= 0; 4381 } 4382 4383 static int probe_kern_prog_name(void) 4384 { 4385 struct bpf_insn insns[] = { 4386 BPF_MOV64_IMM(BPF_REG_0, 0), 4387 BPF_EXIT_INSN(), 4388 }; 4389 int ret, insn_cnt = ARRAY_SIZE(insns); 4390 4391 /* make sure loading with name works */ 4392 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4393 return probe_fd(ret); 4394 } 4395 4396 static int probe_kern_global_data(void) 4397 { 4398 char *cp, errmsg[STRERR_BUFSIZE]; 4399 struct bpf_insn insns[] = { 4400 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4401 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4402 BPF_MOV64_IMM(BPF_REG_0, 0), 4403 BPF_EXIT_INSN(), 4404 }; 4405 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4406 4407 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4408 if (map < 0) { 4409 ret = -errno; 4410 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4411 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4412 __func__, cp, -ret); 4413 return ret; 4414 } 4415 4416 insns[0].imm = map; 4417 4418 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4419 close(map); 4420 return probe_fd(ret); 4421 } 4422 4423 static int probe_kern_btf(void) 4424 { 4425 static const char strs[] = "\0int"; 4426 __u32 types[] = { 4427 /* int */ 4428 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4429 }; 4430 4431 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4432 strs, sizeof(strs))); 4433 } 4434 4435 static int probe_kern_btf_func(void) 4436 { 4437 static const char strs[] = "\0int\0x\0a"; 4438 /* void x(int a) {} */ 4439 __u32 types[] = { 4440 /* int */ 4441 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4442 /* FUNC_PROTO */ /* [2] */ 4443 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4444 BTF_PARAM_ENC(7, 1), 4445 /* FUNC x */ /* [3] */ 4446 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4447 }; 4448 4449 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4450 strs, sizeof(strs))); 4451 } 4452 4453 static int probe_kern_btf_func_global(void) 4454 { 4455 static const char strs[] = "\0int\0x\0a"; 4456 /* static void x(int a) {} */ 4457 __u32 types[] = { 4458 /* int */ 4459 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4460 /* FUNC_PROTO */ /* [2] */ 4461 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4462 BTF_PARAM_ENC(7, 1), 4463 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4464 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4465 }; 4466 4467 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4468 strs, sizeof(strs))); 4469 } 4470 4471 static int probe_kern_btf_datasec(void) 4472 { 4473 static const char strs[] = "\0x\0.data"; 4474 /* static int a; */ 4475 __u32 types[] = { 4476 /* int */ 4477 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4478 /* VAR x */ /* [2] */ 4479 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4480 BTF_VAR_STATIC, 4481 /* DATASEC val */ /* [3] */ 4482 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4483 BTF_VAR_SECINFO_ENC(2, 0, 4), 4484 }; 4485 4486 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4487 strs, sizeof(strs))); 4488 } 4489 4490 static int probe_kern_btf_float(void) 4491 { 4492 static const char strs[] = "\0float"; 4493 __u32 types[] = { 4494 /* float */ 4495 BTF_TYPE_FLOAT_ENC(1, 4), 4496 }; 4497 4498 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4499 strs, sizeof(strs))); 4500 } 4501 4502 static int probe_kern_btf_decl_tag(void) 4503 { 4504 static const char strs[] = "\0tag"; 4505 __u32 types[] = { 4506 /* int */ 4507 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4508 /* VAR x */ /* [2] */ 4509 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4510 BTF_VAR_STATIC, 4511 /* attr */ 4512 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4513 }; 4514 4515 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4516 strs, sizeof(strs))); 4517 } 4518 4519 static int probe_kern_btf_type_tag(void) 4520 { 4521 static const char strs[] = "\0tag"; 4522 __u32 types[] = { 4523 /* int */ 4524 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4525 /* attr */ 4526 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4527 /* ptr */ 4528 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4529 }; 4530 4531 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4532 strs, sizeof(strs))); 4533 } 4534 4535 static int probe_kern_array_mmap(void) 4536 { 4537 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4538 int fd; 4539 4540 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4541 return probe_fd(fd); 4542 } 4543 4544 static int probe_kern_exp_attach_type(void) 4545 { 4546 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4547 struct bpf_insn insns[] = { 4548 BPF_MOV64_IMM(BPF_REG_0, 0), 4549 BPF_EXIT_INSN(), 4550 }; 4551 int fd, insn_cnt = ARRAY_SIZE(insns); 4552 4553 /* use any valid combination of program type and (optional) 4554 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4555 * to see if kernel supports expected_attach_type field for 4556 * BPF_PROG_LOAD command 4557 */ 4558 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4559 return probe_fd(fd); 4560 } 4561 4562 static int probe_kern_probe_read_kernel(void) 4563 { 4564 struct bpf_insn insns[] = { 4565 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4566 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4567 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4568 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4569 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4570 BPF_EXIT_INSN(), 4571 }; 4572 int fd, insn_cnt = ARRAY_SIZE(insns); 4573 4574 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4575 return probe_fd(fd); 4576 } 4577 4578 static int probe_prog_bind_map(void) 4579 { 4580 char *cp, errmsg[STRERR_BUFSIZE]; 4581 struct bpf_insn insns[] = { 4582 BPF_MOV64_IMM(BPF_REG_0, 0), 4583 BPF_EXIT_INSN(), 4584 }; 4585 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4586 4587 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4588 if (map < 0) { 4589 ret = -errno; 4590 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4591 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4592 __func__, cp, -ret); 4593 return ret; 4594 } 4595 4596 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4597 if (prog < 0) { 4598 close(map); 4599 return 0; 4600 } 4601 4602 ret = bpf_prog_bind_map(prog, map, NULL); 4603 4604 close(map); 4605 close(prog); 4606 4607 return ret >= 0; 4608 } 4609 4610 static int probe_module_btf(void) 4611 { 4612 static const char strs[] = "\0int"; 4613 __u32 types[] = { 4614 /* int */ 4615 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4616 }; 4617 struct bpf_btf_info info; 4618 __u32 len = sizeof(info); 4619 char name[16]; 4620 int fd, err; 4621 4622 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4623 if (fd < 0) 4624 return 0; /* BTF not supported at all */ 4625 4626 memset(&info, 0, sizeof(info)); 4627 info.name = ptr_to_u64(name); 4628 info.name_len = sizeof(name); 4629 4630 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4631 * kernel's module BTF support coincides with support for 4632 * name/name_len fields in struct bpf_btf_info. 4633 */ 4634 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4635 close(fd); 4636 return !err; 4637 } 4638 4639 static int probe_perf_link(void) 4640 { 4641 struct bpf_insn insns[] = { 4642 BPF_MOV64_IMM(BPF_REG_0, 0), 4643 BPF_EXIT_INSN(), 4644 }; 4645 int prog_fd, link_fd, err; 4646 4647 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4648 insns, ARRAY_SIZE(insns), NULL); 4649 if (prog_fd < 0) 4650 return -errno; 4651 4652 /* use invalid perf_event FD to get EBADF, if link is supported; 4653 * otherwise EINVAL should be returned 4654 */ 4655 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4656 err = -errno; /* close() can clobber errno */ 4657 4658 if (link_fd >= 0) 4659 close(link_fd); 4660 close(prog_fd); 4661 4662 return link_fd < 0 && err == -EBADF; 4663 } 4664 4665 enum kern_feature_result { 4666 FEAT_UNKNOWN = 0, 4667 FEAT_SUPPORTED = 1, 4668 FEAT_MISSING = 2, 4669 }; 4670 4671 typedef int (*feature_probe_fn)(void); 4672 4673 static struct kern_feature_desc { 4674 const char *desc; 4675 feature_probe_fn probe; 4676 enum kern_feature_result res; 4677 } feature_probes[__FEAT_CNT] = { 4678 [FEAT_PROG_NAME] = { 4679 "BPF program name", probe_kern_prog_name, 4680 }, 4681 [FEAT_GLOBAL_DATA] = { 4682 "global variables", probe_kern_global_data, 4683 }, 4684 [FEAT_BTF] = { 4685 "minimal BTF", probe_kern_btf, 4686 }, 4687 [FEAT_BTF_FUNC] = { 4688 "BTF functions", probe_kern_btf_func, 4689 }, 4690 [FEAT_BTF_GLOBAL_FUNC] = { 4691 "BTF global function", probe_kern_btf_func_global, 4692 }, 4693 [FEAT_BTF_DATASEC] = { 4694 "BTF data section and variable", probe_kern_btf_datasec, 4695 }, 4696 [FEAT_ARRAY_MMAP] = { 4697 "ARRAY map mmap()", probe_kern_array_mmap, 4698 }, 4699 [FEAT_EXP_ATTACH_TYPE] = { 4700 "BPF_PROG_LOAD expected_attach_type attribute", 4701 probe_kern_exp_attach_type, 4702 }, 4703 [FEAT_PROBE_READ_KERN] = { 4704 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4705 }, 4706 [FEAT_PROG_BIND_MAP] = { 4707 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4708 }, 4709 [FEAT_MODULE_BTF] = { 4710 "module BTF support", probe_module_btf, 4711 }, 4712 [FEAT_BTF_FLOAT] = { 4713 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4714 }, 4715 [FEAT_PERF_LINK] = { 4716 "BPF perf link support", probe_perf_link, 4717 }, 4718 [FEAT_BTF_DECL_TAG] = { 4719 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4720 }, 4721 [FEAT_BTF_TYPE_TAG] = { 4722 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4723 }, 4724 [FEAT_MEMCG_ACCOUNT] = { 4725 "memcg-based memory accounting", probe_memcg_account, 4726 }, 4727 }; 4728 4729 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4730 { 4731 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4732 int ret; 4733 4734 if (obj && obj->gen_loader) 4735 /* To generate loader program assume the latest kernel 4736 * to avoid doing extra prog_load, map_create syscalls. 4737 */ 4738 return true; 4739 4740 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4741 ret = feat->probe(); 4742 if (ret > 0) { 4743 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4744 } else if (ret == 0) { 4745 WRITE_ONCE(feat->res, FEAT_MISSING); 4746 } else { 4747 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4748 WRITE_ONCE(feat->res, FEAT_MISSING); 4749 } 4750 } 4751 4752 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4753 } 4754 4755 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4756 { 4757 struct bpf_map_info map_info = {}; 4758 char msg[STRERR_BUFSIZE]; 4759 __u32 map_info_len; 4760 int err; 4761 4762 map_info_len = sizeof(map_info); 4763 4764 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4765 if (err && errno == EINVAL) 4766 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4767 if (err) { 4768 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4769 libbpf_strerror_r(errno, msg, sizeof(msg))); 4770 return false; 4771 } 4772 4773 return (map_info.type == map->def.type && 4774 map_info.key_size == map->def.key_size && 4775 map_info.value_size == map->def.value_size && 4776 map_info.max_entries == map->def.max_entries && 4777 map_info.map_flags == map->def.map_flags && 4778 map_info.map_extra == map->map_extra); 4779 } 4780 4781 static int 4782 bpf_object__reuse_map(struct bpf_map *map) 4783 { 4784 char *cp, errmsg[STRERR_BUFSIZE]; 4785 int err, pin_fd; 4786 4787 pin_fd = bpf_obj_get(map->pin_path); 4788 if (pin_fd < 0) { 4789 err = -errno; 4790 if (err == -ENOENT) { 4791 pr_debug("found no pinned map to reuse at '%s'\n", 4792 map->pin_path); 4793 return 0; 4794 } 4795 4796 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4797 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4798 map->pin_path, cp); 4799 return err; 4800 } 4801 4802 if (!map_is_reuse_compat(map, pin_fd)) { 4803 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4804 map->pin_path); 4805 close(pin_fd); 4806 return -EINVAL; 4807 } 4808 4809 err = bpf_map__reuse_fd(map, pin_fd); 4810 if (err) { 4811 close(pin_fd); 4812 return err; 4813 } 4814 map->pinned = true; 4815 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4816 4817 return 0; 4818 } 4819 4820 static int 4821 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4822 { 4823 enum libbpf_map_type map_type = map->libbpf_type; 4824 char *cp, errmsg[STRERR_BUFSIZE]; 4825 int err, zero = 0; 4826 4827 if (obj->gen_loader) { 4828 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4829 map->mmaped, map->def.value_size); 4830 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4831 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4832 return 0; 4833 } 4834 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4835 if (err) { 4836 err = -errno; 4837 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4838 pr_warn("Error setting initial map(%s) contents: %s\n", 4839 map->name, cp); 4840 return err; 4841 } 4842 4843 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4844 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4845 err = bpf_map_freeze(map->fd); 4846 if (err) { 4847 err = -errno; 4848 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4849 pr_warn("Error freezing map(%s) as read-only: %s\n", 4850 map->name, cp); 4851 return err; 4852 } 4853 } 4854 return 0; 4855 } 4856 4857 static void bpf_map__destroy(struct bpf_map *map); 4858 4859 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4860 { 4861 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4862 struct bpf_map_def *def = &map->def; 4863 const char *map_name = NULL; 4864 __u32 max_entries; 4865 int err = 0; 4866 4867 if (kernel_supports(obj, FEAT_PROG_NAME)) 4868 map_name = map->name; 4869 create_attr.map_ifindex = map->map_ifindex; 4870 create_attr.map_flags = def->map_flags; 4871 create_attr.numa_node = map->numa_node; 4872 create_attr.map_extra = map->map_extra; 4873 4874 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4875 int nr_cpus; 4876 4877 nr_cpus = libbpf_num_possible_cpus(); 4878 if (nr_cpus < 0) { 4879 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4880 map->name, nr_cpus); 4881 return nr_cpus; 4882 } 4883 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4884 max_entries = nr_cpus; 4885 } else { 4886 max_entries = def->max_entries; 4887 } 4888 4889 if (bpf_map__is_struct_ops(map)) 4890 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4891 4892 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4893 create_attr.btf_fd = btf__fd(obj->btf); 4894 create_attr.btf_key_type_id = map->btf_key_type_id; 4895 create_attr.btf_value_type_id = map->btf_value_type_id; 4896 } 4897 4898 if (bpf_map_type__is_map_in_map(def->type)) { 4899 if (map->inner_map) { 4900 err = bpf_object__create_map(obj, map->inner_map, true); 4901 if (err) { 4902 pr_warn("map '%s': failed to create inner map: %d\n", 4903 map->name, err); 4904 return err; 4905 } 4906 map->inner_map_fd = bpf_map__fd(map->inner_map); 4907 } 4908 if (map->inner_map_fd >= 0) 4909 create_attr.inner_map_fd = map->inner_map_fd; 4910 } 4911 4912 switch (def->type) { 4913 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4914 case BPF_MAP_TYPE_CGROUP_ARRAY: 4915 case BPF_MAP_TYPE_STACK_TRACE: 4916 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4917 case BPF_MAP_TYPE_HASH_OF_MAPS: 4918 case BPF_MAP_TYPE_DEVMAP: 4919 case BPF_MAP_TYPE_DEVMAP_HASH: 4920 case BPF_MAP_TYPE_CPUMAP: 4921 case BPF_MAP_TYPE_XSKMAP: 4922 case BPF_MAP_TYPE_SOCKMAP: 4923 case BPF_MAP_TYPE_SOCKHASH: 4924 case BPF_MAP_TYPE_QUEUE: 4925 case BPF_MAP_TYPE_STACK: 4926 case BPF_MAP_TYPE_RINGBUF: 4927 create_attr.btf_fd = 0; 4928 create_attr.btf_key_type_id = 0; 4929 create_attr.btf_value_type_id = 0; 4930 map->btf_key_type_id = 0; 4931 map->btf_value_type_id = 0; 4932 default: 4933 break; 4934 } 4935 4936 if (obj->gen_loader) { 4937 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4938 def->key_size, def->value_size, max_entries, 4939 &create_attr, is_inner ? -1 : map - obj->maps); 4940 /* Pretend to have valid FD to pass various fd >= 0 checks. 4941 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4942 */ 4943 map->fd = 0; 4944 } else { 4945 map->fd = bpf_map_create(def->type, map_name, 4946 def->key_size, def->value_size, 4947 max_entries, &create_attr); 4948 } 4949 if (map->fd < 0 && (create_attr.btf_key_type_id || 4950 create_attr.btf_value_type_id)) { 4951 char *cp, errmsg[STRERR_BUFSIZE]; 4952 4953 err = -errno; 4954 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4955 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4956 map->name, cp, err); 4957 create_attr.btf_fd = 0; 4958 create_attr.btf_key_type_id = 0; 4959 create_attr.btf_value_type_id = 0; 4960 map->btf_key_type_id = 0; 4961 map->btf_value_type_id = 0; 4962 map->fd = bpf_map_create(def->type, map_name, 4963 def->key_size, def->value_size, 4964 max_entries, &create_attr); 4965 } 4966 4967 err = map->fd < 0 ? -errno : 0; 4968 4969 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4970 if (obj->gen_loader) 4971 map->inner_map->fd = -1; 4972 bpf_map__destroy(map->inner_map); 4973 zfree(&map->inner_map); 4974 } 4975 4976 return err; 4977 } 4978 4979 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 4980 { 4981 const struct bpf_map *targ_map; 4982 unsigned int i; 4983 int fd, err = 0; 4984 4985 for (i = 0; i < map->init_slots_sz; i++) { 4986 if (!map->init_slots[i]) 4987 continue; 4988 4989 targ_map = map->init_slots[i]; 4990 fd = bpf_map__fd(targ_map); 4991 4992 if (obj->gen_loader) { 4993 bpf_gen__populate_outer_map(obj->gen_loader, 4994 map - obj->maps, i, 4995 targ_map - obj->maps); 4996 } else { 4997 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4998 } 4999 if (err) { 5000 err = -errno; 5001 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5002 map->name, i, targ_map->name, fd, err); 5003 return err; 5004 } 5005 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5006 map->name, i, targ_map->name, fd); 5007 } 5008 5009 zfree(&map->init_slots); 5010 map->init_slots_sz = 0; 5011 5012 return 0; 5013 } 5014 5015 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5016 { 5017 const struct bpf_program *targ_prog; 5018 unsigned int i; 5019 int fd, err; 5020 5021 if (obj->gen_loader) 5022 return -ENOTSUP; 5023 5024 for (i = 0; i < map->init_slots_sz; i++) { 5025 if (!map->init_slots[i]) 5026 continue; 5027 5028 targ_prog = map->init_slots[i]; 5029 fd = bpf_program__fd(targ_prog); 5030 5031 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5032 if (err) { 5033 err = -errno; 5034 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5035 map->name, i, targ_prog->name, fd, err); 5036 return err; 5037 } 5038 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5039 map->name, i, targ_prog->name, fd); 5040 } 5041 5042 zfree(&map->init_slots); 5043 map->init_slots_sz = 0; 5044 5045 return 0; 5046 } 5047 5048 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5049 { 5050 struct bpf_map *map; 5051 int i, err; 5052 5053 for (i = 0; i < obj->nr_maps; i++) { 5054 map = &obj->maps[i]; 5055 5056 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5057 continue; 5058 5059 err = init_prog_array_slots(obj, map); 5060 if (err < 0) { 5061 zclose(map->fd); 5062 return err; 5063 } 5064 } 5065 return 0; 5066 } 5067 5068 static int 5069 bpf_object__create_maps(struct bpf_object *obj) 5070 { 5071 struct bpf_map *map; 5072 char *cp, errmsg[STRERR_BUFSIZE]; 5073 unsigned int i, j; 5074 int err; 5075 bool retried; 5076 5077 for (i = 0; i < obj->nr_maps; i++) { 5078 map = &obj->maps[i]; 5079 5080 /* To support old kernels, we skip creating global data maps 5081 * (.rodata, .data, .kconfig, etc); later on, during program 5082 * loading, if we detect that at least one of the to-be-loaded 5083 * programs is referencing any global data map, we'll error 5084 * out with program name and relocation index logged. 5085 * This approach allows to accommodate Clang emitting 5086 * unnecessary .rodata.str1.1 sections for string literals, 5087 * but also it allows to have CO-RE applications that use 5088 * global variables in some of BPF programs, but not others. 5089 * If those global variable-using programs are not loaded at 5090 * runtime due to bpf_program__set_autoload(prog, false), 5091 * bpf_object loading will succeed just fine even on old 5092 * kernels. 5093 */ 5094 if (bpf_map__is_internal(map) && 5095 !kernel_supports(obj, FEAT_GLOBAL_DATA)) { 5096 map->skipped = true; 5097 continue; 5098 } 5099 5100 retried = false; 5101 retry: 5102 if (map->pin_path) { 5103 err = bpf_object__reuse_map(map); 5104 if (err) { 5105 pr_warn("map '%s': error reusing pinned map\n", 5106 map->name); 5107 goto err_out; 5108 } 5109 if (retried && map->fd < 0) { 5110 pr_warn("map '%s': cannot find pinned map\n", 5111 map->name); 5112 err = -ENOENT; 5113 goto err_out; 5114 } 5115 } 5116 5117 if (map->fd >= 0) { 5118 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5119 map->name, map->fd); 5120 } else { 5121 err = bpf_object__create_map(obj, map, false); 5122 if (err) 5123 goto err_out; 5124 5125 pr_debug("map '%s': created successfully, fd=%d\n", 5126 map->name, map->fd); 5127 5128 if (bpf_map__is_internal(map)) { 5129 err = bpf_object__populate_internal_map(obj, map); 5130 if (err < 0) { 5131 zclose(map->fd); 5132 goto err_out; 5133 } 5134 } 5135 5136 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5137 err = init_map_in_map_slots(obj, map); 5138 if (err < 0) { 5139 zclose(map->fd); 5140 goto err_out; 5141 } 5142 } 5143 } 5144 5145 if (map->pin_path && !map->pinned) { 5146 err = bpf_map__pin(map, NULL); 5147 if (err) { 5148 zclose(map->fd); 5149 if (!retried && err == -EEXIST) { 5150 retried = true; 5151 goto retry; 5152 } 5153 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5154 map->name, map->pin_path, err); 5155 goto err_out; 5156 } 5157 } 5158 } 5159 5160 return 0; 5161 5162 err_out: 5163 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5164 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5165 pr_perm_msg(err); 5166 for (j = 0; j < i; j++) 5167 zclose(obj->maps[j].fd); 5168 return err; 5169 } 5170 5171 static bool bpf_core_is_flavor_sep(const char *s) 5172 { 5173 /* check X___Y name pattern, where X and Y are not underscores */ 5174 return s[0] != '_' && /* X */ 5175 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5176 s[4] != '_'; /* Y */ 5177 } 5178 5179 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5180 * before last triple underscore. Struct name part after last triple 5181 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5182 */ 5183 size_t bpf_core_essential_name_len(const char *name) 5184 { 5185 size_t n = strlen(name); 5186 int i; 5187 5188 for (i = n - 5; i >= 0; i--) { 5189 if (bpf_core_is_flavor_sep(name + i)) 5190 return i + 1; 5191 } 5192 return n; 5193 } 5194 5195 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5196 { 5197 if (!cands) 5198 return; 5199 5200 free(cands->cands); 5201 free(cands); 5202 } 5203 5204 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5205 size_t local_essent_len, 5206 const struct btf *targ_btf, 5207 const char *targ_btf_name, 5208 int targ_start_id, 5209 struct bpf_core_cand_list *cands) 5210 { 5211 struct bpf_core_cand *new_cands, *cand; 5212 const struct btf_type *t, *local_t; 5213 const char *targ_name, *local_name; 5214 size_t targ_essent_len; 5215 int n, i; 5216 5217 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5218 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5219 5220 n = btf__type_cnt(targ_btf); 5221 for (i = targ_start_id; i < n; i++) { 5222 t = btf__type_by_id(targ_btf, i); 5223 if (btf_kind(t) != btf_kind(local_t)) 5224 continue; 5225 5226 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5227 if (str_is_empty(targ_name)) 5228 continue; 5229 5230 targ_essent_len = bpf_core_essential_name_len(targ_name); 5231 if (targ_essent_len != local_essent_len) 5232 continue; 5233 5234 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5235 continue; 5236 5237 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5238 local_cand->id, btf_kind_str(local_t), 5239 local_name, i, btf_kind_str(t), targ_name, 5240 targ_btf_name); 5241 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5242 sizeof(*cands->cands)); 5243 if (!new_cands) 5244 return -ENOMEM; 5245 5246 cand = &new_cands[cands->len]; 5247 cand->btf = targ_btf; 5248 cand->id = i; 5249 5250 cands->cands = new_cands; 5251 cands->len++; 5252 } 5253 return 0; 5254 } 5255 5256 static int load_module_btfs(struct bpf_object *obj) 5257 { 5258 struct bpf_btf_info info; 5259 struct module_btf *mod_btf; 5260 struct btf *btf; 5261 char name[64]; 5262 __u32 id = 0, len; 5263 int err, fd; 5264 5265 if (obj->btf_modules_loaded) 5266 return 0; 5267 5268 if (obj->gen_loader) 5269 return 0; 5270 5271 /* don't do this again, even if we find no module BTFs */ 5272 obj->btf_modules_loaded = true; 5273 5274 /* kernel too old to support module BTFs */ 5275 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5276 return 0; 5277 5278 while (true) { 5279 err = bpf_btf_get_next_id(id, &id); 5280 if (err && errno == ENOENT) 5281 return 0; 5282 if (err) { 5283 err = -errno; 5284 pr_warn("failed to iterate BTF objects: %d\n", err); 5285 return err; 5286 } 5287 5288 fd = bpf_btf_get_fd_by_id(id); 5289 if (fd < 0) { 5290 if (errno == ENOENT) 5291 continue; /* expected race: BTF was unloaded */ 5292 err = -errno; 5293 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5294 return err; 5295 } 5296 5297 len = sizeof(info); 5298 memset(&info, 0, sizeof(info)); 5299 info.name = ptr_to_u64(name); 5300 info.name_len = sizeof(name); 5301 5302 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5303 if (err) { 5304 err = -errno; 5305 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5306 goto err_out; 5307 } 5308 5309 /* ignore non-module BTFs */ 5310 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5311 close(fd); 5312 continue; 5313 } 5314 5315 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5316 err = libbpf_get_error(btf); 5317 if (err) { 5318 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5319 name, id, err); 5320 goto err_out; 5321 } 5322 5323 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5324 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5325 if (err) 5326 goto err_out; 5327 5328 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5329 5330 mod_btf->btf = btf; 5331 mod_btf->id = id; 5332 mod_btf->fd = fd; 5333 mod_btf->name = strdup(name); 5334 if (!mod_btf->name) { 5335 err = -ENOMEM; 5336 goto err_out; 5337 } 5338 continue; 5339 5340 err_out: 5341 close(fd); 5342 return err; 5343 } 5344 5345 return 0; 5346 } 5347 5348 static struct bpf_core_cand_list * 5349 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5350 { 5351 struct bpf_core_cand local_cand = {}; 5352 struct bpf_core_cand_list *cands; 5353 const struct btf *main_btf; 5354 const struct btf_type *local_t; 5355 const char *local_name; 5356 size_t local_essent_len; 5357 int err, i; 5358 5359 local_cand.btf = local_btf; 5360 local_cand.id = local_type_id; 5361 local_t = btf__type_by_id(local_btf, local_type_id); 5362 if (!local_t) 5363 return ERR_PTR(-EINVAL); 5364 5365 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5366 if (str_is_empty(local_name)) 5367 return ERR_PTR(-EINVAL); 5368 local_essent_len = bpf_core_essential_name_len(local_name); 5369 5370 cands = calloc(1, sizeof(*cands)); 5371 if (!cands) 5372 return ERR_PTR(-ENOMEM); 5373 5374 /* Attempt to find target candidates in vmlinux BTF first */ 5375 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5376 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5377 if (err) 5378 goto err_out; 5379 5380 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5381 if (cands->len) 5382 return cands; 5383 5384 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5385 if (obj->btf_vmlinux_override) 5386 return cands; 5387 5388 /* now look through module BTFs, trying to still find candidates */ 5389 err = load_module_btfs(obj); 5390 if (err) 5391 goto err_out; 5392 5393 for (i = 0; i < obj->btf_module_cnt; i++) { 5394 err = bpf_core_add_cands(&local_cand, local_essent_len, 5395 obj->btf_modules[i].btf, 5396 obj->btf_modules[i].name, 5397 btf__type_cnt(obj->btf_vmlinux), 5398 cands); 5399 if (err) 5400 goto err_out; 5401 } 5402 5403 return cands; 5404 err_out: 5405 bpf_core_free_cands(cands); 5406 return ERR_PTR(err); 5407 } 5408 5409 /* Check local and target types for compatibility. This check is used for 5410 * type-based CO-RE relocations and follow slightly different rules than 5411 * field-based relocations. This function assumes that root types were already 5412 * checked for name match. Beyond that initial root-level name check, names 5413 * are completely ignored. Compatibility rules are as follows: 5414 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5415 * kind should match for local and target types (i.e., STRUCT is not 5416 * compatible with UNION); 5417 * - for ENUMs, the size is ignored; 5418 * - for INT, size and signedness are ignored; 5419 * - for ARRAY, dimensionality is ignored, element types are checked for 5420 * compatibility recursively; 5421 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5422 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5423 * - FUNC_PROTOs are compatible if they have compatible signature: same 5424 * number of input args and compatible return and argument types. 5425 * These rules are not set in stone and probably will be adjusted as we get 5426 * more experience with using BPF CO-RE relocations. 5427 */ 5428 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5429 const struct btf *targ_btf, __u32 targ_id) 5430 { 5431 const struct btf_type *local_type, *targ_type; 5432 int depth = 32; /* max recursion depth */ 5433 5434 /* caller made sure that names match (ignoring flavor suffix) */ 5435 local_type = btf__type_by_id(local_btf, local_id); 5436 targ_type = btf__type_by_id(targ_btf, targ_id); 5437 if (btf_kind(local_type) != btf_kind(targ_type)) 5438 return 0; 5439 5440 recur: 5441 depth--; 5442 if (depth < 0) 5443 return -EINVAL; 5444 5445 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5446 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5447 if (!local_type || !targ_type) 5448 return -EINVAL; 5449 5450 if (btf_kind(local_type) != btf_kind(targ_type)) 5451 return 0; 5452 5453 switch (btf_kind(local_type)) { 5454 case BTF_KIND_UNKN: 5455 case BTF_KIND_STRUCT: 5456 case BTF_KIND_UNION: 5457 case BTF_KIND_ENUM: 5458 case BTF_KIND_FWD: 5459 return 1; 5460 case BTF_KIND_INT: 5461 /* just reject deprecated bitfield-like integers; all other 5462 * integers are by default compatible between each other 5463 */ 5464 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5465 case BTF_KIND_PTR: 5466 local_id = local_type->type; 5467 targ_id = targ_type->type; 5468 goto recur; 5469 case BTF_KIND_ARRAY: 5470 local_id = btf_array(local_type)->type; 5471 targ_id = btf_array(targ_type)->type; 5472 goto recur; 5473 case BTF_KIND_FUNC_PROTO: { 5474 struct btf_param *local_p = btf_params(local_type); 5475 struct btf_param *targ_p = btf_params(targ_type); 5476 __u16 local_vlen = btf_vlen(local_type); 5477 __u16 targ_vlen = btf_vlen(targ_type); 5478 int i, err; 5479 5480 if (local_vlen != targ_vlen) 5481 return 0; 5482 5483 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5484 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5485 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5486 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5487 if (err <= 0) 5488 return err; 5489 } 5490 5491 /* tail recurse for return type check */ 5492 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5493 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5494 goto recur; 5495 } 5496 default: 5497 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5498 btf_kind_str(local_type), local_id, targ_id); 5499 return 0; 5500 } 5501 } 5502 5503 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5504 { 5505 return (size_t)key; 5506 } 5507 5508 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5509 { 5510 return k1 == k2; 5511 } 5512 5513 static void *u32_as_hash_key(__u32 x) 5514 { 5515 return (void *)(uintptr_t)x; 5516 } 5517 5518 static int record_relo_core(struct bpf_program *prog, 5519 const struct bpf_core_relo *core_relo, int insn_idx) 5520 { 5521 struct reloc_desc *relos, *relo; 5522 5523 relos = libbpf_reallocarray(prog->reloc_desc, 5524 prog->nr_reloc + 1, sizeof(*relos)); 5525 if (!relos) 5526 return -ENOMEM; 5527 relo = &relos[prog->nr_reloc]; 5528 relo->type = RELO_CORE; 5529 relo->insn_idx = insn_idx; 5530 relo->core_relo = core_relo; 5531 prog->reloc_desc = relos; 5532 prog->nr_reloc++; 5533 return 0; 5534 } 5535 5536 static int bpf_core_resolve_relo(struct bpf_program *prog, 5537 const struct bpf_core_relo *relo, 5538 int relo_idx, 5539 const struct btf *local_btf, 5540 struct hashmap *cand_cache, 5541 struct bpf_core_relo_res *targ_res) 5542 { 5543 struct bpf_core_spec specs_scratch[3] = {}; 5544 const void *type_key = u32_as_hash_key(relo->type_id); 5545 struct bpf_core_cand_list *cands = NULL; 5546 const char *prog_name = prog->name; 5547 const struct btf_type *local_type; 5548 const char *local_name; 5549 __u32 local_id = relo->type_id; 5550 int err; 5551 5552 local_type = btf__type_by_id(local_btf, local_id); 5553 if (!local_type) 5554 return -EINVAL; 5555 5556 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5557 if (!local_name) 5558 return -EINVAL; 5559 5560 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5561 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5562 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5563 if (IS_ERR(cands)) { 5564 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5565 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5566 local_name, PTR_ERR(cands)); 5567 return PTR_ERR(cands); 5568 } 5569 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5570 if (err) { 5571 bpf_core_free_cands(cands); 5572 return err; 5573 } 5574 } 5575 5576 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5577 targ_res); 5578 } 5579 5580 static int 5581 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5582 { 5583 const struct btf_ext_info_sec *sec; 5584 struct bpf_core_relo_res targ_res; 5585 const struct bpf_core_relo *rec; 5586 const struct btf_ext_info *seg; 5587 struct hashmap_entry *entry; 5588 struct hashmap *cand_cache = NULL; 5589 struct bpf_program *prog; 5590 struct bpf_insn *insn; 5591 const char *sec_name; 5592 int i, err = 0, insn_idx, sec_idx; 5593 5594 if (obj->btf_ext->core_relo_info.len == 0) 5595 return 0; 5596 5597 if (targ_btf_path) { 5598 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5599 err = libbpf_get_error(obj->btf_vmlinux_override); 5600 if (err) { 5601 pr_warn("failed to parse target BTF: %d\n", err); 5602 return err; 5603 } 5604 } 5605 5606 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5607 if (IS_ERR(cand_cache)) { 5608 err = PTR_ERR(cand_cache); 5609 goto out; 5610 } 5611 5612 seg = &obj->btf_ext->core_relo_info; 5613 for_each_btf_ext_sec(seg, sec) { 5614 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5615 if (str_is_empty(sec_name)) { 5616 err = -EINVAL; 5617 goto out; 5618 } 5619 /* bpf_object's ELF is gone by now so it's not easy to find 5620 * section index by section name, but we can find *any* 5621 * bpf_program within desired section name and use it's 5622 * prog->sec_idx to do a proper search by section index and 5623 * instruction offset 5624 */ 5625 prog = NULL; 5626 for (i = 0; i < obj->nr_programs; i++) { 5627 prog = &obj->programs[i]; 5628 if (strcmp(prog->sec_name, sec_name) == 0) 5629 break; 5630 } 5631 if (!prog) { 5632 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5633 return -ENOENT; 5634 } 5635 sec_idx = prog->sec_idx; 5636 5637 pr_debug("sec '%s': found %d CO-RE relocations\n", 5638 sec_name, sec->num_info); 5639 5640 for_each_btf_ext_rec(seg, sec, i, rec) { 5641 if (rec->insn_off % BPF_INSN_SZ) 5642 return -EINVAL; 5643 insn_idx = rec->insn_off / BPF_INSN_SZ; 5644 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5645 if (!prog) { 5646 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5647 sec_name, insn_idx, i); 5648 err = -EINVAL; 5649 goto out; 5650 } 5651 /* no need to apply CO-RE relocation if the program is 5652 * not going to be loaded 5653 */ 5654 if (!prog->load) 5655 continue; 5656 5657 /* adjust insn_idx from section frame of reference to the local 5658 * program's frame of reference; (sub-)program code is not yet 5659 * relocated, so it's enough to just subtract in-section offset 5660 */ 5661 insn_idx = insn_idx - prog->sec_insn_off; 5662 if (insn_idx >= prog->insns_cnt) 5663 return -EINVAL; 5664 insn = &prog->insns[insn_idx]; 5665 5666 if (prog->obj->gen_loader) { 5667 err = record_relo_core(prog, rec, insn_idx); 5668 if (err) { 5669 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5670 prog->name, i, err); 5671 goto out; 5672 } 5673 continue; 5674 } 5675 5676 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5677 if (err) { 5678 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5679 prog->name, i, err); 5680 goto out; 5681 } 5682 5683 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5684 if (err) { 5685 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5686 prog->name, i, insn_idx, err); 5687 goto out; 5688 } 5689 } 5690 } 5691 5692 out: 5693 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5694 btf__free(obj->btf_vmlinux_override); 5695 obj->btf_vmlinux_override = NULL; 5696 5697 if (!IS_ERR_OR_NULL(cand_cache)) { 5698 hashmap__for_each_entry(cand_cache, entry, i) { 5699 bpf_core_free_cands(entry->value); 5700 } 5701 hashmap__free(cand_cache); 5702 } 5703 return err; 5704 } 5705 5706 /* Relocate data references within program code: 5707 * - map references; 5708 * - global variable references; 5709 * - extern references. 5710 */ 5711 static int 5712 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5713 { 5714 int i; 5715 5716 for (i = 0; i < prog->nr_reloc; i++) { 5717 struct reloc_desc *relo = &prog->reloc_desc[i]; 5718 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5719 struct extern_desc *ext; 5720 5721 switch (relo->type) { 5722 case RELO_LD64: 5723 if (obj->gen_loader) { 5724 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5725 insn[0].imm = relo->map_idx; 5726 } else { 5727 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5728 insn[0].imm = obj->maps[relo->map_idx].fd; 5729 } 5730 break; 5731 case RELO_DATA: 5732 insn[1].imm = insn[0].imm + relo->sym_off; 5733 if (obj->gen_loader) { 5734 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5735 insn[0].imm = relo->map_idx; 5736 } else { 5737 const struct bpf_map *map = &obj->maps[relo->map_idx]; 5738 5739 if (map->skipped) { 5740 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n", 5741 prog->name, i); 5742 return -ENOTSUP; 5743 } 5744 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5745 insn[0].imm = obj->maps[relo->map_idx].fd; 5746 } 5747 break; 5748 case RELO_EXTERN_VAR: 5749 ext = &obj->externs[relo->sym_off]; 5750 if (ext->type == EXT_KCFG) { 5751 if (obj->gen_loader) { 5752 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5753 insn[0].imm = obj->kconfig_map_idx; 5754 } else { 5755 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5756 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5757 } 5758 insn[1].imm = ext->kcfg.data_off; 5759 } else /* EXT_KSYM */ { 5760 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5761 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5762 insn[0].imm = ext->ksym.kernel_btf_id; 5763 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5764 } else { /* typeless ksyms or unresolved typed ksyms */ 5765 insn[0].imm = (__u32)ext->ksym.addr; 5766 insn[1].imm = ext->ksym.addr >> 32; 5767 } 5768 } 5769 break; 5770 case RELO_EXTERN_FUNC: 5771 ext = &obj->externs[relo->sym_off]; 5772 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5773 if (ext->is_set) { 5774 insn[0].imm = ext->ksym.kernel_btf_id; 5775 insn[0].off = ext->ksym.btf_fd_idx; 5776 } else { /* unresolved weak kfunc */ 5777 insn[0].imm = 0; 5778 insn[0].off = 0; 5779 } 5780 break; 5781 case RELO_SUBPROG_ADDR: 5782 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5783 pr_warn("prog '%s': relo #%d: bad insn\n", 5784 prog->name, i); 5785 return -EINVAL; 5786 } 5787 /* handled already */ 5788 break; 5789 case RELO_CALL: 5790 /* handled already */ 5791 break; 5792 case RELO_CORE: 5793 /* will be handled by bpf_program_record_relos() */ 5794 break; 5795 default: 5796 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5797 prog->name, i, relo->type); 5798 return -EINVAL; 5799 } 5800 } 5801 5802 return 0; 5803 } 5804 5805 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5806 const struct bpf_program *prog, 5807 const struct btf_ext_info *ext_info, 5808 void **prog_info, __u32 *prog_rec_cnt, 5809 __u32 *prog_rec_sz) 5810 { 5811 void *copy_start = NULL, *copy_end = NULL; 5812 void *rec, *rec_end, *new_prog_info; 5813 const struct btf_ext_info_sec *sec; 5814 size_t old_sz, new_sz; 5815 const char *sec_name; 5816 int i, off_adj; 5817 5818 for_each_btf_ext_sec(ext_info, sec) { 5819 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5820 if (!sec_name) 5821 return -EINVAL; 5822 if (strcmp(sec_name, prog->sec_name) != 0) 5823 continue; 5824 5825 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5826 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5827 5828 if (insn_off < prog->sec_insn_off) 5829 continue; 5830 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5831 break; 5832 5833 if (!copy_start) 5834 copy_start = rec; 5835 copy_end = rec + ext_info->rec_size; 5836 } 5837 5838 if (!copy_start) 5839 return -ENOENT; 5840 5841 /* append func/line info of a given (sub-)program to the main 5842 * program func/line info 5843 */ 5844 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5845 new_sz = old_sz + (copy_end - copy_start); 5846 new_prog_info = realloc(*prog_info, new_sz); 5847 if (!new_prog_info) 5848 return -ENOMEM; 5849 *prog_info = new_prog_info; 5850 *prog_rec_cnt = new_sz / ext_info->rec_size; 5851 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5852 5853 /* Kernel instruction offsets are in units of 8-byte 5854 * instructions, while .BTF.ext instruction offsets generated 5855 * by Clang are in units of bytes. So convert Clang offsets 5856 * into kernel offsets and adjust offset according to program 5857 * relocated position. 5858 */ 5859 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5860 rec = new_prog_info + old_sz; 5861 rec_end = new_prog_info + new_sz; 5862 for (; rec < rec_end; rec += ext_info->rec_size) { 5863 __u32 *insn_off = rec; 5864 5865 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5866 } 5867 *prog_rec_sz = ext_info->rec_size; 5868 return 0; 5869 } 5870 5871 return -ENOENT; 5872 } 5873 5874 static int 5875 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5876 struct bpf_program *main_prog, 5877 const struct bpf_program *prog) 5878 { 5879 int err; 5880 5881 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5882 * supprot func/line info 5883 */ 5884 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5885 return 0; 5886 5887 /* only attempt func info relocation if main program's func_info 5888 * relocation was successful 5889 */ 5890 if (main_prog != prog && !main_prog->func_info) 5891 goto line_info; 5892 5893 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5894 &main_prog->func_info, 5895 &main_prog->func_info_cnt, 5896 &main_prog->func_info_rec_size); 5897 if (err) { 5898 if (err != -ENOENT) { 5899 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5900 prog->name, err); 5901 return err; 5902 } 5903 if (main_prog->func_info) { 5904 /* 5905 * Some info has already been found but has problem 5906 * in the last btf_ext reloc. Must have to error out. 5907 */ 5908 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5909 return err; 5910 } 5911 /* Have problem loading the very first info. Ignore the rest. */ 5912 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5913 prog->name); 5914 } 5915 5916 line_info: 5917 /* don't relocate line info if main program's relocation failed */ 5918 if (main_prog != prog && !main_prog->line_info) 5919 return 0; 5920 5921 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5922 &main_prog->line_info, 5923 &main_prog->line_info_cnt, 5924 &main_prog->line_info_rec_size); 5925 if (err) { 5926 if (err != -ENOENT) { 5927 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5928 prog->name, err); 5929 return err; 5930 } 5931 if (main_prog->line_info) { 5932 /* 5933 * Some info has already been found but has problem 5934 * in the last btf_ext reloc. Must have to error out. 5935 */ 5936 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5937 return err; 5938 } 5939 /* Have problem loading the very first info. Ignore the rest. */ 5940 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5941 prog->name); 5942 } 5943 return 0; 5944 } 5945 5946 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5947 { 5948 size_t insn_idx = *(const size_t *)key; 5949 const struct reloc_desc *relo = elem; 5950 5951 if (insn_idx == relo->insn_idx) 5952 return 0; 5953 return insn_idx < relo->insn_idx ? -1 : 1; 5954 } 5955 5956 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5957 { 5958 if (!prog->nr_reloc) 5959 return NULL; 5960 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5961 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5962 } 5963 5964 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5965 { 5966 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5967 struct reloc_desc *relos; 5968 int i; 5969 5970 if (main_prog == subprog) 5971 return 0; 5972 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5973 if (!relos) 5974 return -ENOMEM; 5975 if (subprog->nr_reloc) 5976 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5977 sizeof(*relos) * subprog->nr_reloc); 5978 5979 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5980 relos[i].insn_idx += subprog->sub_insn_off; 5981 /* After insn_idx adjustment the 'relos' array is still sorted 5982 * by insn_idx and doesn't break bsearch. 5983 */ 5984 main_prog->reloc_desc = relos; 5985 main_prog->nr_reloc = new_cnt; 5986 return 0; 5987 } 5988 5989 static int 5990 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5991 struct bpf_program *prog) 5992 { 5993 size_t sub_insn_idx, insn_idx, new_cnt; 5994 struct bpf_program *subprog; 5995 struct bpf_insn *insns, *insn; 5996 struct reloc_desc *relo; 5997 int err; 5998 5999 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6000 if (err) 6001 return err; 6002 6003 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6004 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6005 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6006 continue; 6007 6008 relo = find_prog_insn_relo(prog, insn_idx); 6009 if (relo && relo->type == RELO_EXTERN_FUNC) 6010 /* kfunc relocations will be handled later 6011 * in bpf_object__relocate_data() 6012 */ 6013 continue; 6014 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6015 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6016 prog->name, insn_idx, relo->type); 6017 return -LIBBPF_ERRNO__RELOC; 6018 } 6019 if (relo) { 6020 /* sub-program instruction index is a combination of 6021 * an offset of a symbol pointed to by relocation and 6022 * call instruction's imm field; for global functions, 6023 * call always has imm = -1, but for static functions 6024 * relocation is against STT_SECTION and insn->imm 6025 * points to a start of a static function 6026 * 6027 * for subprog addr relocation, the relo->sym_off + insn->imm is 6028 * the byte offset in the corresponding section. 6029 */ 6030 if (relo->type == RELO_CALL) 6031 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6032 else 6033 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6034 } else if (insn_is_pseudo_func(insn)) { 6035 /* 6036 * RELO_SUBPROG_ADDR relo is always emitted even if both 6037 * functions are in the same section, so it shouldn't reach here. 6038 */ 6039 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6040 prog->name, insn_idx); 6041 return -LIBBPF_ERRNO__RELOC; 6042 } else { 6043 /* if subprogram call is to a static function within 6044 * the same ELF section, there won't be any relocation 6045 * emitted, but it also means there is no additional 6046 * offset necessary, insns->imm is relative to 6047 * instruction's original position within the section 6048 */ 6049 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6050 } 6051 6052 /* we enforce that sub-programs should be in .text section */ 6053 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6054 if (!subprog) { 6055 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6056 prog->name); 6057 return -LIBBPF_ERRNO__RELOC; 6058 } 6059 6060 /* if it's the first call instruction calling into this 6061 * subprogram (meaning this subprog hasn't been processed 6062 * yet) within the context of current main program: 6063 * - append it at the end of main program's instructions blog; 6064 * - process is recursively, while current program is put on hold; 6065 * - if that subprogram calls some other not yet processes 6066 * subprogram, same thing will happen recursively until 6067 * there are no more unprocesses subprograms left to append 6068 * and relocate. 6069 */ 6070 if (subprog->sub_insn_off == 0) { 6071 subprog->sub_insn_off = main_prog->insns_cnt; 6072 6073 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6074 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6075 if (!insns) { 6076 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6077 return -ENOMEM; 6078 } 6079 main_prog->insns = insns; 6080 main_prog->insns_cnt = new_cnt; 6081 6082 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6083 subprog->insns_cnt * sizeof(*insns)); 6084 6085 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6086 main_prog->name, subprog->insns_cnt, subprog->name); 6087 6088 /* The subprog insns are now appended. Append its relos too. */ 6089 err = append_subprog_relos(main_prog, subprog); 6090 if (err) 6091 return err; 6092 err = bpf_object__reloc_code(obj, main_prog, subprog); 6093 if (err) 6094 return err; 6095 } 6096 6097 /* main_prog->insns memory could have been re-allocated, so 6098 * calculate pointer again 6099 */ 6100 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6101 /* calculate correct instruction position within current main 6102 * prog; each main prog can have a different set of 6103 * subprograms appended (potentially in different order as 6104 * well), so position of any subprog can be different for 6105 * different main programs */ 6106 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6107 6108 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6109 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6110 } 6111 6112 return 0; 6113 } 6114 6115 /* 6116 * Relocate sub-program calls. 6117 * 6118 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6119 * main prog) is processed separately. For each subprog (non-entry functions, 6120 * that can be called from either entry progs or other subprogs) gets their 6121 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6122 * hasn't been yet appended and relocated within current main prog. Once its 6123 * relocated, sub_insn_off will point at the position within current main prog 6124 * where given subprog was appended. This will further be used to relocate all 6125 * the call instructions jumping into this subprog. 6126 * 6127 * We start with main program and process all call instructions. If the call 6128 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6129 * is zero), subprog instructions are appended at the end of main program's 6130 * instruction array. Then main program is "put on hold" while we recursively 6131 * process newly appended subprogram. If that subprogram calls into another 6132 * subprogram that hasn't been appended, new subprogram is appended again to 6133 * the *main* prog's instructions (subprog's instructions are always left 6134 * untouched, as they need to be in unmodified state for subsequent main progs 6135 * and subprog instructions are always sent only as part of a main prog) and 6136 * the process continues recursively. Once all the subprogs called from a main 6137 * prog or any of its subprogs are appended (and relocated), all their 6138 * positions within finalized instructions array are known, so it's easy to 6139 * rewrite call instructions with correct relative offsets, corresponding to 6140 * desired target subprog. 6141 * 6142 * Its important to realize that some subprogs might not be called from some 6143 * main prog and any of its called/used subprogs. Those will keep their 6144 * subprog->sub_insn_off as zero at all times and won't be appended to current 6145 * main prog and won't be relocated within the context of current main prog. 6146 * They might still be used from other main progs later. 6147 * 6148 * Visually this process can be shown as below. Suppose we have two main 6149 * programs mainA and mainB and BPF object contains three subprogs: subA, 6150 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6151 * subC both call subB: 6152 * 6153 * +--------+ +-------+ 6154 * | v v | 6155 * +--+---+ +--+-+-+ +---+--+ 6156 * | subA | | subB | | subC | 6157 * +--+---+ +------+ +---+--+ 6158 * ^ ^ 6159 * | | 6160 * +---+-------+ +------+----+ 6161 * | mainA | | mainB | 6162 * +-----------+ +-----------+ 6163 * 6164 * We'll start relocating mainA, will find subA, append it and start 6165 * processing sub A recursively: 6166 * 6167 * +-----------+------+ 6168 * | mainA | subA | 6169 * +-----------+------+ 6170 * 6171 * At this point we notice that subB is used from subA, so we append it and 6172 * relocate (there are no further subcalls from subB): 6173 * 6174 * +-----------+------+------+ 6175 * | mainA | subA | subB | 6176 * +-----------+------+------+ 6177 * 6178 * At this point, we relocate subA calls, then go one level up and finish with 6179 * relocatin mainA calls. mainA is done. 6180 * 6181 * For mainB process is similar but results in different order. We start with 6182 * mainB and skip subA and subB, as mainB never calls them (at least 6183 * directly), but we see subC is needed, so we append and start processing it: 6184 * 6185 * +-----------+------+ 6186 * | mainB | subC | 6187 * +-----------+------+ 6188 * Now we see subC needs subB, so we go back to it, append and relocate it: 6189 * 6190 * +-----------+------+------+ 6191 * | mainB | subC | subB | 6192 * +-----------+------+------+ 6193 * 6194 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6195 */ 6196 static int 6197 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6198 { 6199 struct bpf_program *subprog; 6200 int i, err; 6201 6202 /* mark all subprogs as not relocated (yet) within the context of 6203 * current main program 6204 */ 6205 for (i = 0; i < obj->nr_programs; i++) { 6206 subprog = &obj->programs[i]; 6207 if (!prog_is_subprog(obj, subprog)) 6208 continue; 6209 6210 subprog->sub_insn_off = 0; 6211 } 6212 6213 err = bpf_object__reloc_code(obj, prog, prog); 6214 if (err) 6215 return err; 6216 6217 6218 return 0; 6219 } 6220 6221 static void 6222 bpf_object__free_relocs(struct bpf_object *obj) 6223 { 6224 struct bpf_program *prog; 6225 int i; 6226 6227 /* free up relocation descriptors */ 6228 for (i = 0; i < obj->nr_programs; i++) { 6229 prog = &obj->programs[i]; 6230 zfree(&prog->reloc_desc); 6231 prog->nr_reloc = 0; 6232 } 6233 } 6234 6235 static int cmp_relocs(const void *_a, const void *_b) 6236 { 6237 const struct reloc_desc *a = _a; 6238 const struct reloc_desc *b = _b; 6239 6240 if (a->insn_idx != b->insn_idx) 6241 return a->insn_idx < b->insn_idx ? -1 : 1; 6242 6243 /* no two relocations should have the same insn_idx, but ... */ 6244 if (a->type != b->type) 6245 return a->type < b->type ? -1 : 1; 6246 6247 return 0; 6248 } 6249 6250 static void bpf_object__sort_relos(struct bpf_object *obj) 6251 { 6252 int i; 6253 6254 for (i = 0; i < obj->nr_programs; i++) { 6255 struct bpf_program *p = &obj->programs[i]; 6256 6257 if (!p->nr_reloc) 6258 continue; 6259 6260 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6261 } 6262 } 6263 6264 static int 6265 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6266 { 6267 struct bpf_program *prog; 6268 size_t i, j; 6269 int err; 6270 6271 if (obj->btf_ext) { 6272 err = bpf_object__relocate_core(obj, targ_btf_path); 6273 if (err) { 6274 pr_warn("failed to perform CO-RE relocations: %d\n", 6275 err); 6276 return err; 6277 } 6278 if (obj->gen_loader) 6279 bpf_object__sort_relos(obj); 6280 } 6281 6282 /* Before relocating calls pre-process relocations and mark 6283 * few ld_imm64 instructions that points to subprogs. 6284 * Otherwise bpf_object__reloc_code() later would have to consider 6285 * all ld_imm64 insns as relocation candidates. That would 6286 * reduce relocation speed, since amount of find_prog_insn_relo() 6287 * would increase and most of them will fail to find a relo. 6288 */ 6289 for (i = 0; i < obj->nr_programs; i++) { 6290 prog = &obj->programs[i]; 6291 for (j = 0; j < prog->nr_reloc; j++) { 6292 struct reloc_desc *relo = &prog->reloc_desc[j]; 6293 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6294 6295 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6296 if (relo->type == RELO_SUBPROG_ADDR) 6297 insn[0].src_reg = BPF_PSEUDO_FUNC; 6298 } 6299 } 6300 6301 /* relocate subprogram calls and append used subprograms to main 6302 * programs; each copy of subprogram code needs to be relocated 6303 * differently for each main program, because its code location might 6304 * have changed. 6305 * Append subprog relos to main programs to allow data relos to be 6306 * processed after text is completely relocated. 6307 */ 6308 for (i = 0; i < obj->nr_programs; i++) { 6309 prog = &obj->programs[i]; 6310 /* sub-program's sub-calls are relocated within the context of 6311 * its main program only 6312 */ 6313 if (prog_is_subprog(obj, prog)) 6314 continue; 6315 if (!prog->load) 6316 continue; 6317 6318 err = bpf_object__relocate_calls(obj, prog); 6319 if (err) { 6320 pr_warn("prog '%s': failed to relocate calls: %d\n", 6321 prog->name, err); 6322 return err; 6323 } 6324 } 6325 /* Process data relos for main programs */ 6326 for (i = 0; i < obj->nr_programs; i++) { 6327 prog = &obj->programs[i]; 6328 if (prog_is_subprog(obj, prog)) 6329 continue; 6330 if (!prog->load) 6331 continue; 6332 err = bpf_object__relocate_data(obj, prog); 6333 if (err) { 6334 pr_warn("prog '%s': failed to relocate data references: %d\n", 6335 prog->name, err); 6336 return err; 6337 } 6338 } 6339 if (!obj->gen_loader) 6340 bpf_object__free_relocs(obj); 6341 return 0; 6342 } 6343 6344 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6345 Elf64_Shdr *shdr, Elf_Data *data); 6346 6347 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6348 Elf64_Shdr *shdr, Elf_Data *data) 6349 { 6350 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6351 int i, j, nrels, new_sz; 6352 const struct btf_var_secinfo *vi = NULL; 6353 const struct btf_type *sec, *var, *def; 6354 struct bpf_map *map = NULL, *targ_map = NULL; 6355 struct bpf_program *targ_prog = NULL; 6356 bool is_prog_array, is_map_in_map; 6357 const struct btf_member *member; 6358 const char *name, *mname, *type; 6359 unsigned int moff; 6360 Elf64_Sym *sym; 6361 Elf64_Rel *rel; 6362 void *tmp; 6363 6364 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6365 return -EINVAL; 6366 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6367 if (!sec) 6368 return -EINVAL; 6369 6370 nrels = shdr->sh_size / shdr->sh_entsize; 6371 for (i = 0; i < nrels; i++) { 6372 rel = elf_rel_by_idx(data, i); 6373 if (!rel) { 6374 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6375 return -LIBBPF_ERRNO__FORMAT; 6376 } 6377 6378 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6379 if (!sym) { 6380 pr_warn(".maps relo #%d: symbol %zx not found\n", 6381 i, (size_t)ELF64_R_SYM(rel->r_info)); 6382 return -LIBBPF_ERRNO__FORMAT; 6383 } 6384 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6385 6386 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6387 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6388 (size_t)rel->r_offset, sym->st_name, name); 6389 6390 for (j = 0; j < obj->nr_maps; j++) { 6391 map = &obj->maps[j]; 6392 if (map->sec_idx != obj->efile.btf_maps_shndx) 6393 continue; 6394 6395 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6396 if (vi->offset <= rel->r_offset && 6397 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6398 break; 6399 } 6400 if (j == obj->nr_maps) { 6401 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6402 i, name, (size_t)rel->r_offset); 6403 return -EINVAL; 6404 } 6405 6406 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6407 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6408 type = is_map_in_map ? "map" : "prog"; 6409 if (is_map_in_map) { 6410 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6411 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6412 i, name); 6413 return -LIBBPF_ERRNO__RELOC; 6414 } 6415 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6416 map->def.key_size != sizeof(int)) { 6417 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6418 i, map->name, sizeof(int)); 6419 return -EINVAL; 6420 } 6421 targ_map = bpf_object__find_map_by_name(obj, name); 6422 if (!targ_map) { 6423 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6424 i, name); 6425 return -ESRCH; 6426 } 6427 } else if (is_prog_array) { 6428 targ_prog = bpf_object__find_program_by_name(obj, name); 6429 if (!targ_prog) { 6430 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6431 i, name); 6432 return -ESRCH; 6433 } 6434 if (targ_prog->sec_idx != sym->st_shndx || 6435 targ_prog->sec_insn_off * 8 != sym->st_value || 6436 prog_is_subprog(obj, targ_prog)) { 6437 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6438 i, name); 6439 return -LIBBPF_ERRNO__RELOC; 6440 } 6441 } else { 6442 return -EINVAL; 6443 } 6444 6445 var = btf__type_by_id(obj->btf, vi->type); 6446 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6447 if (btf_vlen(def) == 0) 6448 return -EINVAL; 6449 member = btf_members(def) + btf_vlen(def) - 1; 6450 mname = btf__name_by_offset(obj->btf, member->name_off); 6451 if (strcmp(mname, "values")) 6452 return -EINVAL; 6453 6454 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6455 if (rel->r_offset - vi->offset < moff) 6456 return -EINVAL; 6457 6458 moff = rel->r_offset - vi->offset - moff; 6459 /* here we use BPF pointer size, which is always 64 bit, as we 6460 * are parsing ELF that was built for BPF target 6461 */ 6462 if (moff % bpf_ptr_sz) 6463 return -EINVAL; 6464 moff /= bpf_ptr_sz; 6465 if (moff >= map->init_slots_sz) { 6466 new_sz = moff + 1; 6467 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6468 if (!tmp) 6469 return -ENOMEM; 6470 map->init_slots = tmp; 6471 memset(map->init_slots + map->init_slots_sz, 0, 6472 (new_sz - map->init_slots_sz) * host_ptr_sz); 6473 map->init_slots_sz = new_sz; 6474 } 6475 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6476 6477 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6478 i, map->name, moff, type, name); 6479 } 6480 6481 return 0; 6482 } 6483 6484 static int bpf_object__collect_relos(struct bpf_object *obj) 6485 { 6486 int i, err; 6487 6488 for (i = 0; i < obj->efile.sec_cnt; i++) { 6489 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6490 Elf64_Shdr *shdr; 6491 Elf_Data *data; 6492 int idx; 6493 6494 if (sec_desc->sec_type != SEC_RELO) 6495 continue; 6496 6497 shdr = sec_desc->shdr; 6498 data = sec_desc->data; 6499 idx = shdr->sh_info; 6500 6501 if (shdr->sh_type != SHT_REL) { 6502 pr_warn("internal error at %d\n", __LINE__); 6503 return -LIBBPF_ERRNO__INTERNAL; 6504 } 6505 6506 if (idx == obj->efile.st_ops_shndx) 6507 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6508 else if (idx == obj->efile.btf_maps_shndx) 6509 err = bpf_object__collect_map_relos(obj, shdr, data); 6510 else 6511 err = bpf_object__collect_prog_relos(obj, shdr, data); 6512 if (err) 6513 return err; 6514 } 6515 6516 bpf_object__sort_relos(obj); 6517 return 0; 6518 } 6519 6520 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6521 { 6522 if (BPF_CLASS(insn->code) == BPF_JMP && 6523 BPF_OP(insn->code) == BPF_CALL && 6524 BPF_SRC(insn->code) == BPF_K && 6525 insn->src_reg == 0 && 6526 insn->dst_reg == 0) { 6527 *func_id = insn->imm; 6528 return true; 6529 } 6530 return false; 6531 } 6532 6533 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6534 { 6535 struct bpf_insn *insn = prog->insns; 6536 enum bpf_func_id func_id; 6537 int i; 6538 6539 if (obj->gen_loader) 6540 return 0; 6541 6542 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6543 if (!insn_is_helper_call(insn, &func_id)) 6544 continue; 6545 6546 /* on kernels that don't yet support 6547 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6548 * to bpf_probe_read() which works well for old kernels 6549 */ 6550 switch (func_id) { 6551 case BPF_FUNC_probe_read_kernel: 6552 case BPF_FUNC_probe_read_user: 6553 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6554 insn->imm = BPF_FUNC_probe_read; 6555 break; 6556 case BPF_FUNC_probe_read_kernel_str: 6557 case BPF_FUNC_probe_read_user_str: 6558 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6559 insn->imm = BPF_FUNC_probe_read_str; 6560 break; 6561 default: 6562 break; 6563 } 6564 } 6565 return 0; 6566 } 6567 6568 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6569 int *btf_obj_fd, int *btf_type_id); 6570 6571 /* this is called as prog->sec_def->preload_fn for libbpf-supported sec_defs */ 6572 static int libbpf_preload_prog(struct bpf_program *prog, 6573 struct bpf_prog_load_opts *opts, long cookie) 6574 { 6575 enum sec_def_flags def = cookie; 6576 6577 /* old kernels might not support specifying expected_attach_type */ 6578 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6579 opts->expected_attach_type = 0; 6580 6581 if (def & SEC_SLEEPABLE) 6582 opts->prog_flags |= BPF_F_SLEEPABLE; 6583 6584 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6585 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6586 6587 if (def & SEC_DEPRECATED) 6588 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6589 prog->sec_name); 6590 6591 if ((prog->type == BPF_PROG_TYPE_TRACING || 6592 prog->type == BPF_PROG_TYPE_LSM || 6593 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6594 int btf_obj_fd = 0, btf_type_id = 0, err; 6595 const char *attach_name; 6596 6597 attach_name = strchr(prog->sec_name, '/') + 1; 6598 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6599 if (err) 6600 return err; 6601 6602 /* cache resolved BTF FD and BTF type ID in the prog */ 6603 prog->attach_btf_obj_fd = btf_obj_fd; 6604 prog->attach_btf_id = btf_type_id; 6605 6606 /* but by now libbpf common logic is not utilizing 6607 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6608 * this callback is called after opts were populated by 6609 * libbpf, so this callback has to update opts explicitly here 6610 */ 6611 opts->attach_btf_obj_fd = btf_obj_fd; 6612 opts->attach_btf_id = btf_type_id; 6613 } 6614 return 0; 6615 } 6616 6617 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6618 struct bpf_insn *insns, int insns_cnt, 6619 const char *license, __u32 kern_version, 6620 int *prog_fd) 6621 { 6622 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6623 const char *prog_name = NULL; 6624 char *cp, errmsg[STRERR_BUFSIZE]; 6625 size_t log_buf_size = 0; 6626 char *log_buf = NULL, *tmp; 6627 int btf_fd, ret, err; 6628 bool own_log_buf = true; 6629 __u32 log_level = prog->log_level; 6630 6631 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6632 /* 6633 * The program type must be set. Most likely we couldn't find a proper 6634 * section definition at load time, and thus we didn't infer the type. 6635 */ 6636 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6637 prog->name, prog->sec_name); 6638 return -EINVAL; 6639 } 6640 6641 if (!insns || !insns_cnt) 6642 return -EINVAL; 6643 6644 load_attr.expected_attach_type = prog->expected_attach_type; 6645 if (kernel_supports(obj, FEAT_PROG_NAME)) 6646 prog_name = prog->name; 6647 load_attr.attach_prog_fd = prog->attach_prog_fd; 6648 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6649 load_attr.attach_btf_id = prog->attach_btf_id; 6650 load_attr.kern_version = kern_version; 6651 load_attr.prog_ifindex = prog->prog_ifindex; 6652 6653 /* specify func_info/line_info only if kernel supports them */ 6654 btf_fd = bpf_object__btf_fd(obj); 6655 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6656 load_attr.prog_btf_fd = btf_fd; 6657 load_attr.func_info = prog->func_info; 6658 load_attr.func_info_rec_size = prog->func_info_rec_size; 6659 load_attr.func_info_cnt = prog->func_info_cnt; 6660 load_attr.line_info = prog->line_info; 6661 load_attr.line_info_rec_size = prog->line_info_rec_size; 6662 load_attr.line_info_cnt = prog->line_info_cnt; 6663 } 6664 load_attr.log_level = log_level; 6665 load_attr.prog_flags = prog->prog_flags; 6666 load_attr.fd_array = obj->fd_array; 6667 6668 /* adjust load_attr if sec_def provides custom preload callback */ 6669 if (prog->sec_def && prog->sec_def->preload_fn) { 6670 err = prog->sec_def->preload_fn(prog, &load_attr, prog->sec_def->cookie); 6671 if (err < 0) { 6672 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6673 prog->name, err); 6674 return err; 6675 } 6676 } 6677 6678 if (obj->gen_loader) { 6679 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6680 license, insns, insns_cnt, &load_attr, 6681 prog - obj->programs); 6682 *prog_fd = -1; 6683 return 0; 6684 } 6685 6686 retry_load: 6687 /* if log_level is zero, we don't request logs initiallly even if 6688 * custom log_buf is specified; if the program load fails, then we'll 6689 * bump log_level to 1 and use either custom log_buf or we'll allocate 6690 * our own and retry the load to get details on what failed 6691 */ 6692 if (log_level) { 6693 if (prog->log_buf) { 6694 log_buf = prog->log_buf; 6695 log_buf_size = prog->log_size; 6696 own_log_buf = false; 6697 } else if (obj->log_buf) { 6698 log_buf = obj->log_buf; 6699 log_buf_size = obj->log_size; 6700 own_log_buf = false; 6701 } else { 6702 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6703 tmp = realloc(log_buf, log_buf_size); 6704 if (!tmp) { 6705 ret = -ENOMEM; 6706 goto out; 6707 } 6708 log_buf = tmp; 6709 log_buf[0] = '\0'; 6710 own_log_buf = true; 6711 } 6712 } 6713 6714 load_attr.log_buf = log_buf; 6715 load_attr.log_size = log_buf_size; 6716 load_attr.log_level = log_level; 6717 6718 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6719 if (ret >= 0) { 6720 if (log_level && own_log_buf) { 6721 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6722 prog->name, log_buf); 6723 } 6724 6725 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6726 struct bpf_map *map; 6727 int i; 6728 6729 for (i = 0; i < obj->nr_maps; i++) { 6730 map = &prog->obj->maps[i]; 6731 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6732 continue; 6733 6734 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6735 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6736 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6737 prog->name, map->real_name, cp); 6738 /* Don't fail hard if can't bind rodata. */ 6739 } 6740 } 6741 } 6742 6743 *prog_fd = ret; 6744 ret = 0; 6745 goto out; 6746 } 6747 6748 if (log_level == 0) { 6749 log_level = 1; 6750 goto retry_load; 6751 } 6752 /* On ENOSPC, increase log buffer size and retry, unless custom 6753 * log_buf is specified. 6754 * Be careful to not overflow u32, though. Kernel's log buf size limit 6755 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6756 * multiply by 2 unless we are sure we'll fit within 32 bits. 6757 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6758 */ 6759 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6760 goto retry_load; 6761 6762 ret = -errno; 6763 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6764 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6765 pr_perm_msg(ret); 6766 6767 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6768 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6769 prog->name, log_buf); 6770 } 6771 if (insns_cnt >= BPF_MAXINSNS) { 6772 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n", 6773 prog->name, insns_cnt, BPF_MAXINSNS); 6774 } 6775 6776 out: 6777 if (own_log_buf) 6778 free(log_buf); 6779 return ret; 6780 } 6781 6782 static int bpf_program_record_relos(struct bpf_program *prog) 6783 { 6784 struct bpf_object *obj = prog->obj; 6785 int i; 6786 6787 for (i = 0; i < prog->nr_reloc; i++) { 6788 struct reloc_desc *relo = &prog->reloc_desc[i]; 6789 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6790 6791 switch (relo->type) { 6792 case RELO_EXTERN_VAR: 6793 if (ext->type != EXT_KSYM) 6794 continue; 6795 bpf_gen__record_extern(obj->gen_loader, ext->name, 6796 ext->is_weak, !ext->ksym.type_id, 6797 BTF_KIND_VAR, relo->insn_idx); 6798 break; 6799 case RELO_EXTERN_FUNC: 6800 bpf_gen__record_extern(obj->gen_loader, ext->name, 6801 ext->is_weak, false, BTF_KIND_FUNC, 6802 relo->insn_idx); 6803 break; 6804 case RELO_CORE: { 6805 struct bpf_core_relo cr = { 6806 .insn_off = relo->insn_idx * 8, 6807 .type_id = relo->core_relo->type_id, 6808 .access_str_off = relo->core_relo->access_str_off, 6809 .kind = relo->core_relo->kind, 6810 }; 6811 6812 bpf_gen__record_relo_core(obj->gen_loader, &cr); 6813 break; 6814 } 6815 default: 6816 continue; 6817 } 6818 } 6819 return 0; 6820 } 6821 6822 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6823 const char *license, __u32 kern_ver) 6824 { 6825 int err = 0, fd, i; 6826 6827 if (obj->loaded) { 6828 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6829 return libbpf_err(-EINVAL); 6830 } 6831 6832 if (prog->instances.nr < 0 || !prog->instances.fds) { 6833 if (prog->preprocessor) { 6834 pr_warn("Internal error: can't load program '%s'\n", 6835 prog->name); 6836 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6837 } 6838 6839 prog->instances.fds = malloc(sizeof(int)); 6840 if (!prog->instances.fds) { 6841 pr_warn("Not enough memory for BPF fds\n"); 6842 return libbpf_err(-ENOMEM); 6843 } 6844 prog->instances.nr = 1; 6845 prog->instances.fds[0] = -1; 6846 } 6847 6848 if (!prog->preprocessor) { 6849 if (prog->instances.nr != 1) { 6850 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6851 prog->name, prog->instances.nr); 6852 } 6853 if (obj->gen_loader) 6854 bpf_program_record_relos(prog); 6855 err = bpf_object_load_prog_instance(obj, prog, 6856 prog->insns, prog->insns_cnt, 6857 license, kern_ver, &fd); 6858 if (!err) 6859 prog->instances.fds[0] = fd; 6860 goto out; 6861 } 6862 6863 for (i = 0; i < prog->instances.nr; i++) { 6864 struct bpf_prog_prep_result result; 6865 bpf_program_prep_t preprocessor = prog->preprocessor; 6866 6867 memset(&result, 0, sizeof(result)); 6868 err = preprocessor(prog, i, prog->insns, 6869 prog->insns_cnt, &result); 6870 if (err) { 6871 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6872 i, prog->name); 6873 goto out; 6874 } 6875 6876 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6877 pr_debug("Skip loading the %dth instance of program '%s'\n", 6878 i, prog->name); 6879 prog->instances.fds[i] = -1; 6880 if (result.pfd) 6881 *result.pfd = -1; 6882 continue; 6883 } 6884 6885 err = bpf_object_load_prog_instance(obj, prog, 6886 result.new_insn_ptr, result.new_insn_cnt, 6887 license, kern_ver, &fd); 6888 if (err) { 6889 pr_warn("Loading the %dth instance of program '%s' failed\n", 6890 i, prog->name); 6891 goto out; 6892 } 6893 6894 if (result.pfd) 6895 *result.pfd = fd; 6896 prog->instances.fds[i] = fd; 6897 } 6898 out: 6899 if (err) 6900 pr_warn("failed to load program '%s'\n", prog->name); 6901 return libbpf_err(err); 6902 } 6903 6904 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 6905 { 6906 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 6907 } 6908 6909 static int 6910 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6911 { 6912 struct bpf_program *prog; 6913 size_t i; 6914 int err; 6915 6916 for (i = 0; i < obj->nr_programs; i++) { 6917 prog = &obj->programs[i]; 6918 err = bpf_object__sanitize_prog(obj, prog); 6919 if (err) 6920 return err; 6921 } 6922 6923 for (i = 0; i < obj->nr_programs; i++) { 6924 prog = &obj->programs[i]; 6925 if (prog_is_subprog(obj, prog)) 6926 continue; 6927 if (!prog->load) { 6928 pr_debug("prog '%s': skipped loading\n", prog->name); 6929 continue; 6930 } 6931 prog->log_level |= log_level; 6932 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 6933 if (err) 6934 return err; 6935 } 6936 if (obj->gen_loader) 6937 bpf_object__free_relocs(obj); 6938 return 0; 6939 } 6940 6941 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6942 6943 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6944 { 6945 struct bpf_program *prog; 6946 int err; 6947 6948 bpf_object__for_each_program(prog, obj) { 6949 prog->sec_def = find_sec_def(prog->sec_name); 6950 if (!prog->sec_def) { 6951 /* couldn't guess, but user might manually specify */ 6952 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6953 prog->name, prog->sec_name); 6954 continue; 6955 } 6956 6957 bpf_program__set_type(prog, prog->sec_def->prog_type); 6958 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6959 6960 #pragma GCC diagnostic push 6961 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6962 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6963 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6964 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6965 #pragma GCC diagnostic pop 6966 6967 /* sec_def can have custom callback which should be called 6968 * after bpf_program is initialized to adjust its properties 6969 */ 6970 if (prog->sec_def->init_fn) { 6971 err = prog->sec_def->init_fn(prog, prog->sec_def->cookie); 6972 if (err < 0) { 6973 pr_warn("prog '%s': failed to initialize: %d\n", 6974 prog->name, err); 6975 return err; 6976 } 6977 } 6978 } 6979 6980 return 0; 6981 } 6982 6983 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6984 const struct bpf_object_open_opts *opts) 6985 { 6986 const char *obj_name, *kconfig, *btf_tmp_path; 6987 struct bpf_object *obj; 6988 char tmp_name[64]; 6989 int err; 6990 char *log_buf; 6991 size_t log_size; 6992 __u32 log_level; 6993 6994 if (elf_version(EV_CURRENT) == EV_NONE) { 6995 pr_warn("failed to init libelf for %s\n", 6996 path ? : "(mem buf)"); 6997 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6998 } 6999 7000 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7001 return ERR_PTR(-EINVAL); 7002 7003 obj_name = OPTS_GET(opts, object_name, NULL); 7004 if (obj_buf) { 7005 if (!obj_name) { 7006 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7007 (unsigned long)obj_buf, 7008 (unsigned long)obj_buf_sz); 7009 obj_name = tmp_name; 7010 } 7011 path = obj_name; 7012 pr_debug("loading object '%s' from buffer\n", obj_name); 7013 } 7014 7015 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7016 log_size = OPTS_GET(opts, kernel_log_size, 0); 7017 log_level = OPTS_GET(opts, kernel_log_level, 0); 7018 if (log_size > UINT_MAX) 7019 return ERR_PTR(-EINVAL); 7020 if (log_size && !log_buf) 7021 return ERR_PTR(-EINVAL); 7022 7023 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7024 if (IS_ERR(obj)) 7025 return obj; 7026 7027 obj->log_buf = log_buf; 7028 obj->log_size = log_size; 7029 obj->log_level = log_level; 7030 7031 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7032 if (btf_tmp_path) { 7033 if (strlen(btf_tmp_path) >= PATH_MAX) { 7034 err = -ENAMETOOLONG; 7035 goto out; 7036 } 7037 obj->btf_custom_path = strdup(btf_tmp_path); 7038 if (!obj->btf_custom_path) { 7039 err = -ENOMEM; 7040 goto out; 7041 } 7042 } 7043 7044 kconfig = OPTS_GET(opts, kconfig, NULL); 7045 if (kconfig) { 7046 obj->kconfig = strdup(kconfig); 7047 if (!obj->kconfig) { 7048 err = -ENOMEM; 7049 goto out; 7050 } 7051 } 7052 7053 err = bpf_object__elf_init(obj); 7054 err = err ? : bpf_object__check_endianness(obj); 7055 err = err ? : bpf_object__elf_collect(obj); 7056 err = err ? : bpf_object__collect_externs(obj); 7057 err = err ? : bpf_object__finalize_btf(obj); 7058 err = err ? : bpf_object__init_maps(obj, opts); 7059 err = err ? : bpf_object_init_progs(obj, opts); 7060 err = err ? : bpf_object__collect_relos(obj); 7061 if (err) 7062 goto out; 7063 7064 bpf_object__elf_finish(obj); 7065 7066 return obj; 7067 out: 7068 bpf_object__close(obj); 7069 return ERR_PTR(err); 7070 } 7071 7072 static struct bpf_object * 7073 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7074 { 7075 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7076 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7077 ); 7078 7079 /* param validation */ 7080 if (!attr->file) 7081 return NULL; 7082 7083 pr_debug("loading %s\n", attr->file); 7084 return bpf_object_open(attr->file, NULL, 0, &opts); 7085 } 7086 7087 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7088 { 7089 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7090 } 7091 7092 struct bpf_object *bpf_object__open(const char *path) 7093 { 7094 struct bpf_object_open_attr attr = { 7095 .file = path, 7096 .prog_type = BPF_PROG_TYPE_UNSPEC, 7097 }; 7098 7099 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7100 } 7101 7102 struct bpf_object * 7103 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7104 { 7105 if (!path) 7106 return libbpf_err_ptr(-EINVAL); 7107 7108 pr_debug("loading %s\n", path); 7109 7110 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7111 } 7112 7113 struct bpf_object * 7114 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7115 const struct bpf_object_open_opts *opts) 7116 { 7117 if (!obj_buf || obj_buf_sz == 0) 7118 return libbpf_err_ptr(-EINVAL); 7119 7120 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7121 } 7122 7123 struct bpf_object * 7124 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7125 const char *name) 7126 { 7127 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7128 .object_name = name, 7129 /* wrong default, but backwards-compatible */ 7130 .relaxed_maps = true, 7131 ); 7132 7133 /* returning NULL is wrong, but backwards-compatible */ 7134 if (!obj_buf || obj_buf_sz == 0) 7135 return errno = EINVAL, NULL; 7136 7137 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7138 } 7139 7140 static int bpf_object_unload(struct bpf_object *obj) 7141 { 7142 size_t i; 7143 7144 if (!obj) 7145 return libbpf_err(-EINVAL); 7146 7147 for (i = 0; i < obj->nr_maps; i++) { 7148 zclose(obj->maps[i].fd); 7149 if (obj->maps[i].st_ops) 7150 zfree(&obj->maps[i].st_ops->kern_vdata); 7151 } 7152 7153 for (i = 0; i < obj->nr_programs; i++) 7154 bpf_program__unload(&obj->programs[i]); 7155 7156 return 0; 7157 } 7158 7159 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7160 7161 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7162 { 7163 struct bpf_map *m; 7164 7165 bpf_object__for_each_map(m, obj) { 7166 if (!bpf_map__is_internal(m)) 7167 continue; 7168 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7169 m->def.map_flags ^= BPF_F_MMAPABLE; 7170 } 7171 7172 return 0; 7173 } 7174 7175 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7176 { 7177 char sym_type, sym_name[500]; 7178 unsigned long long sym_addr; 7179 const struct btf_type *t; 7180 struct extern_desc *ext; 7181 int ret, err = 0; 7182 FILE *f; 7183 7184 f = fopen("/proc/kallsyms", "r"); 7185 if (!f) { 7186 err = -errno; 7187 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7188 return err; 7189 } 7190 7191 while (true) { 7192 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7193 &sym_addr, &sym_type, sym_name); 7194 if (ret == EOF && feof(f)) 7195 break; 7196 if (ret != 3) { 7197 pr_warn("failed to read kallsyms entry: %d\n", ret); 7198 err = -EINVAL; 7199 goto out; 7200 } 7201 7202 ext = find_extern_by_name(obj, sym_name); 7203 if (!ext || ext->type != EXT_KSYM) 7204 continue; 7205 7206 t = btf__type_by_id(obj->btf, ext->btf_id); 7207 if (!btf_is_var(t)) 7208 continue; 7209 7210 if (ext->is_set && ext->ksym.addr != sym_addr) { 7211 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7212 sym_name, ext->ksym.addr, sym_addr); 7213 err = -EINVAL; 7214 goto out; 7215 } 7216 if (!ext->is_set) { 7217 ext->is_set = true; 7218 ext->ksym.addr = sym_addr; 7219 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7220 } 7221 } 7222 7223 out: 7224 fclose(f); 7225 return err; 7226 } 7227 7228 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7229 __u16 kind, struct btf **res_btf, 7230 struct module_btf **res_mod_btf) 7231 { 7232 struct module_btf *mod_btf; 7233 struct btf *btf; 7234 int i, id, err; 7235 7236 btf = obj->btf_vmlinux; 7237 mod_btf = NULL; 7238 id = btf__find_by_name_kind(btf, ksym_name, kind); 7239 7240 if (id == -ENOENT) { 7241 err = load_module_btfs(obj); 7242 if (err) 7243 return err; 7244 7245 for (i = 0; i < obj->btf_module_cnt; i++) { 7246 /* we assume module_btf's BTF FD is always >0 */ 7247 mod_btf = &obj->btf_modules[i]; 7248 btf = mod_btf->btf; 7249 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7250 if (id != -ENOENT) 7251 break; 7252 } 7253 } 7254 if (id <= 0) 7255 return -ESRCH; 7256 7257 *res_btf = btf; 7258 *res_mod_btf = mod_btf; 7259 return id; 7260 } 7261 7262 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7263 struct extern_desc *ext) 7264 { 7265 const struct btf_type *targ_var, *targ_type; 7266 __u32 targ_type_id, local_type_id; 7267 struct module_btf *mod_btf = NULL; 7268 const char *targ_var_name; 7269 struct btf *btf = NULL; 7270 int id, err; 7271 7272 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7273 if (id < 0) { 7274 if (id == -ESRCH && ext->is_weak) 7275 return 0; 7276 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7277 ext->name); 7278 return id; 7279 } 7280 7281 /* find local type_id */ 7282 local_type_id = ext->ksym.type_id; 7283 7284 /* find target type_id */ 7285 targ_var = btf__type_by_id(btf, id); 7286 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7287 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7288 7289 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7290 btf, targ_type_id); 7291 if (err <= 0) { 7292 const struct btf_type *local_type; 7293 const char *targ_name, *local_name; 7294 7295 local_type = btf__type_by_id(obj->btf, local_type_id); 7296 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7297 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7298 7299 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7300 ext->name, local_type_id, 7301 btf_kind_str(local_type), local_name, targ_type_id, 7302 btf_kind_str(targ_type), targ_name); 7303 return -EINVAL; 7304 } 7305 7306 ext->is_set = true; 7307 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7308 ext->ksym.kernel_btf_id = id; 7309 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7310 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7311 7312 return 0; 7313 } 7314 7315 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7316 struct extern_desc *ext) 7317 { 7318 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7319 struct module_btf *mod_btf = NULL; 7320 const struct btf_type *kern_func; 7321 struct btf *kern_btf = NULL; 7322 int ret; 7323 7324 local_func_proto_id = ext->ksym.type_id; 7325 7326 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7327 if (kfunc_id < 0) { 7328 if (kfunc_id == -ESRCH && ext->is_weak) 7329 return 0; 7330 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7331 ext->name); 7332 return kfunc_id; 7333 } 7334 7335 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7336 kfunc_proto_id = kern_func->type; 7337 7338 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7339 kern_btf, kfunc_proto_id); 7340 if (ret <= 0) { 7341 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7342 ext->name, local_func_proto_id, kfunc_proto_id); 7343 return -EINVAL; 7344 } 7345 7346 /* set index for module BTF fd in fd_array, if unset */ 7347 if (mod_btf && !mod_btf->fd_array_idx) { 7348 /* insn->off is s16 */ 7349 if (obj->fd_array_cnt == INT16_MAX) { 7350 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7351 ext->name, mod_btf->fd_array_idx); 7352 return -E2BIG; 7353 } 7354 /* Cannot use index 0 for module BTF fd */ 7355 if (!obj->fd_array_cnt) 7356 obj->fd_array_cnt = 1; 7357 7358 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7359 obj->fd_array_cnt + 1); 7360 if (ret) 7361 return ret; 7362 mod_btf->fd_array_idx = obj->fd_array_cnt; 7363 /* we assume module BTF FD is always >0 */ 7364 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7365 } 7366 7367 ext->is_set = true; 7368 ext->ksym.kernel_btf_id = kfunc_id; 7369 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7370 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7371 ext->name, kfunc_id); 7372 7373 return 0; 7374 } 7375 7376 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7377 { 7378 const struct btf_type *t; 7379 struct extern_desc *ext; 7380 int i, err; 7381 7382 for (i = 0; i < obj->nr_extern; i++) { 7383 ext = &obj->externs[i]; 7384 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7385 continue; 7386 7387 if (obj->gen_loader) { 7388 ext->is_set = true; 7389 ext->ksym.kernel_btf_obj_fd = 0; 7390 ext->ksym.kernel_btf_id = 0; 7391 continue; 7392 } 7393 t = btf__type_by_id(obj->btf, ext->btf_id); 7394 if (btf_is_var(t)) 7395 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7396 else 7397 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7398 if (err) 7399 return err; 7400 } 7401 return 0; 7402 } 7403 7404 static int bpf_object__resolve_externs(struct bpf_object *obj, 7405 const char *extra_kconfig) 7406 { 7407 bool need_config = false, need_kallsyms = false; 7408 bool need_vmlinux_btf = false; 7409 struct extern_desc *ext; 7410 void *kcfg_data = NULL; 7411 int err, i; 7412 7413 if (obj->nr_extern == 0) 7414 return 0; 7415 7416 if (obj->kconfig_map_idx >= 0) 7417 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7418 7419 for (i = 0; i < obj->nr_extern; i++) { 7420 ext = &obj->externs[i]; 7421 7422 if (ext->type == EXT_KCFG && 7423 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7424 void *ext_val = kcfg_data + ext->kcfg.data_off; 7425 __u32 kver = get_kernel_version(); 7426 7427 if (!kver) { 7428 pr_warn("failed to get kernel version\n"); 7429 return -EINVAL; 7430 } 7431 err = set_kcfg_value_num(ext, ext_val, kver); 7432 if (err) 7433 return err; 7434 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7435 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7436 need_config = true; 7437 } else if (ext->type == EXT_KSYM) { 7438 if (ext->ksym.type_id) 7439 need_vmlinux_btf = true; 7440 else 7441 need_kallsyms = true; 7442 } else { 7443 pr_warn("unrecognized extern '%s'\n", ext->name); 7444 return -EINVAL; 7445 } 7446 } 7447 if (need_config && extra_kconfig) { 7448 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7449 if (err) 7450 return -EINVAL; 7451 need_config = false; 7452 for (i = 0; i < obj->nr_extern; i++) { 7453 ext = &obj->externs[i]; 7454 if (ext->type == EXT_KCFG && !ext->is_set) { 7455 need_config = true; 7456 break; 7457 } 7458 } 7459 } 7460 if (need_config) { 7461 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7462 if (err) 7463 return -EINVAL; 7464 } 7465 if (need_kallsyms) { 7466 err = bpf_object__read_kallsyms_file(obj); 7467 if (err) 7468 return -EINVAL; 7469 } 7470 if (need_vmlinux_btf) { 7471 err = bpf_object__resolve_ksyms_btf_id(obj); 7472 if (err) 7473 return -EINVAL; 7474 } 7475 for (i = 0; i < obj->nr_extern; i++) { 7476 ext = &obj->externs[i]; 7477 7478 if (!ext->is_set && !ext->is_weak) { 7479 pr_warn("extern %s (strong) not resolved\n", ext->name); 7480 return -ESRCH; 7481 } else if (!ext->is_set) { 7482 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7483 ext->name); 7484 } 7485 } 7486 7487 return 0; 7488 } 7489 7490 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7491 { 7492 int err, i; 7493 7494 if (!obj) 7495 return libbpf_err(-EINVAL); 7496 7497 if (obj->loaded) { 7498 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7499 return libbpf_err(-EINVAL); 7500 } 7501 7502 if (obj->gen_loader) 7503 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7504 7505 err = bpf_object__probe_loading(obj); 7506 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7507 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7508 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7509 err = err ? : bpf_object__sanitize_maps(obj); 7510 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7511 err = err ? : bpf_object__create_maps(obj); 7512 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7513 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7514 err = err ? : bpf_object_init_prog_arrays(obj); 7515 7516 if (obj->gen_loader) { 7517 /* reset FDs */ 7518 if (obj->btf) 7519 btf__set_fd(obj->btf, -1); 7520 for (i = 0; i < obj->nr_maps; i++) 7521 obj->maps[i].fd = -1; 7522 if (!err) 7523 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7524 } 7525 7526 /* clean up fd_array */ 7527 zfree(&obj->fd_array); 7528 7529 /* clean up module BTFs */ 7530 for (i = 0; i < obj->btf_module_cnt; i++) { 7531 close(obj->btf_modules[i].fd); 7532 btf__free(obj->btf_modules[i].btf); 7533 free(obj->btf_modules[i].name); 7534 } 7535 free(obj->btf_modules); 7536 7537 /* clean up vmlinux BTF */ 7538 btf__free(obj->btf_vmlinux); 7539 obj->btf_vmlinux = NULL; 7540 7541 obj->loaded = true; /* doesn't matter if successfully or not */ 7542 7543 if (err) 7544 goto out; 7545 7546 return 0; 7547 out: 7548 /* unpin any maps that were auto-pinned during load */ 7549 for (i = 0; i < obj->nr_maps; i++) 7550 if (obj->maps[i].pinned && !obj->maps[i].reused) 7551 bpf_map__unpin(&obj->maps[i], NULL); 7552 7553 bpf_object_unload(obj); 7554 pr_warn("failed to load object '%s'\n", obj->path); 7555 return libbpf_err(err); 7556 } 7557 7558 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7559 { 7560 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7561 } 7562 7563 int bpf_object__load(struct bpf_object *obj) 7564 { 7565 return bpf_object_load(obj, 0, NULL); 7566 } 7567 7568 static int make_parent_dir(const char *path) 7569 { 7570 char *cp, errmsg[STRERR_BUFSIZE]; 7571 char *dname, *dir; 7572 int err = 0; 7573 7574 dname = strdup(path); 7575 if (dname == NULL) 7576 return -ENOMEM; 7577 7578 dir = dirname(dname); 7579 if (mkdir(dir, 0700) && errno != EEXIST) 7580 err = -errno; 7581 7582 free(dname); 7583 if (err) { 7584 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7585 pr_warn("failed to mkdir %s: %s\n", path, cp); 7586 } 7587 return err; 7588 } 7589 7590 static int check_path(const char *path) 7591 { 7592 char *cp, errmsg[STRERR_BUFSIZE]; 7593 struct statfs st_fs; 7594 char *dname, *dir; 7595 int err = 0; 7596 7597 if (path == NULL) 7598 return -EINVAL; 7599 7600 dname = strdup(path); 7601 if (dname == NULL) 7602 return -ENOMEM; 7603 7604 dir = dirname(dname); 7605 if (statfs(dir, &st_fs)) { 7606 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7607 pr_warn("failed to statfs %s: %s\n", dir, cp); 7608 err = -errno; 7609 } 7610 free(dname); 7611 7612 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7613 pr_warn("specified path %s is not on BPF FS\n", path); 7614 err = -EINVAL; 7615 } 7616 7617 return err; 7618 } 7619 7620 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7621 { 7622 char *cp, errmsg[STRERR_BUFSIZE]; 7623 int err; 7624 7625 err = make_parent_dir(path); 7626 if (err) 7627 return libbpf_err(err); 7628 7629 err = check_path(path); 7630 if (err) 7631 return libbpf_err(err); 7632 7633 if (prog == NULL) { 7634 pr_warn("invalid program pointer\n"); 7635 return libbpf_err(-EINVAL); 7636 } 7637 7638 if (instance < 0 || instance >= prog->instances.nr) { 7639 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7640 instance, prog->name, prog->instances.nr); 7641 return libbpf_err(-EINVAL); 7642 } 7643 7644 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7645 err = -errno; 7646 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7647 pr_warn("failed to pin program: %s\n", cp); 7648 return libbpf_err(err); 7649 } 7650 pr_debug("pinned program '%s'\n", path); 7651 7652 return 0; 7653 } 7654 7655 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7656 { 7657 int err; 7658 7659 err = check_path(path); 7660 if (err) 7661 return libbpf_err(err); 7662 7663 if (prog == NULL) { 7664 pr_warn("invalid program pointer\n"); 7665 return libbpf_err(-EINVAL); 7666 } 7667 7668 if (instance < 0 || instance >= prog->instances.nr) { 7669 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7670 instance, prog->name, prog->instances.nr); 7671 return libbpf_err(-EINVAL); 7672 } 7673 7674 err = unlink(path); 7675 if (err != 0) 7676 return libbpf_err(-errno); 7677 7678 pr_debug("unpinned program '%s'\n", path); 7679 7680 return 0; 7681 } 7682 7683 __attribute__((alias("bpf_program_pin_instance"))) 7684 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7685 7686 __attribute__((alias("bpf_program_unpin_instance"))) 7687 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7688 7689 int bpf_program__pin(struct bpf_program *prog, const char *path) 7690 { 7691 int i, err; 7692 7693 err = make_parent_dir(path); 7694 if (err) 7695 return libbpf_err(err); 7696 7697 err = check_path(path); 7698 if (err) 7699 return libbpf_err(err); 7700 7701 if (prog == NULL) { 7702 pr_warn("invalid program pointer\n"); 7703 return libbpf_err(-EINVAL); 7704 } 7705 7706 if (prog->instances.nr <= 0) { 7707 pr_warn("no instances of prog %s to pin\n", prog->name); 7708 return libbpf_err(-EINVAL); 7709 } 7710 7711 if (prog->instances.nr == 1) { 7712 /* don't create subdirs when pinning single instance */ 7713 return bpf_program_pin_instance(prog, path, 0); 7714 } 7715 7716 for (i = 0; i < prog->instances.nr; i++) { 7717 char buf[PATH_MAX]; 7718 int len; 7719 7720 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7721 if (len < 0) { 7722 err = -EINVAL; 7723 goto err_unpin; 7724 } else if (len >= PATH_MAX) { 7725 err = -ENAMETOOLONG; 7726 goto err_unpin; 7727 } 7728 7729 err = bpf_program_pin_instance(prog, buf, i); 7730 if (err) 7731 goto err_unpin; 7732 } 7733 7734 return 0; 7735 7736 err_unpin: 7737 for (i = i - 1; i >= 0; i--) { 7738 char buf[PATH_MAX]; 7739 int len; 7740 7741 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7742 if (len < 0) 7743 continue; 7744 else if (len >= PATH_MAX) 7745 continue; 7746 7747 bpf_program_unpin_instance(prog, buf, i); 7748 } 7749 7750 rmdir(path); 7751 7752 return libbpf_err(err); 7753 } 7754 7755 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7756 { 7757 int i, err; 7758 7759 err = check_path(path); 7760 if (err) 7761 return libbpf_err(err); 7762 7763 if (prog == NULL) { 7764 pr_warn("invalid program pointer\n"); 7765 return libbpf_err(-EINVAL); 7766 } 7767 7768 if (prog->instances.nr <= 0) { 7769 pr_warn("no instances of prog %s to pin\n", prog->name); 7770 return libbpf_err(-EINVAL); 7771 } 7772 7773 if (prog->instances.nr == 1) { 7774 /* don't create subdirs when pinning single instance */ 7775 return bpf_program_unpin_instance(prog, path, 0); 7776 } 7777 7778 for (i = 0; i < prog->instances.nr; i++) { 7779 char buf[PATH_MAX]; 7780 int len; 7781 7782 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7783 if (len < 0) 7784 return libbpf_err(-EINVAL); 7785 else if (len >= PATH_MAX) 7786 return libbpf_err(-ENAMETOOLONG); 7787 7788 err = bpf_program_unpin_instance(prog, buf, i); 7789 if (err) 7790 return err; 7791 } 7792 7793 err = rmdir(path); 7794 if (err) 7795 return libbpf_err(-errno); 7796 7797 return 0; 7798 } 7799 7800 int bpf_map__pin(struct bpf_map *map, const char *path) 7801 { 7802 char *cp, errmsg[STRERR_BUFSIZE]; 7803 int err; 7804 7805 if (map == NULL) { 7806 pr_warn("invalid map pointer\n"); 7807 return libbpf_err(-EINVAL); 7808 } 7809 7810 if (map->pin_path) { 7811 if (path && strcmp(path, map->pin_path)) { 7812 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7813 bpf_map__name(map), map->pin_path, path); 7814 return libbpf_err(-EINVAL); 7815 } else if (map->pinned) { 7816 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7817 bpf_map__name(map), map->pin_path); 7818 return 0; 7819 } 7820 } else { 7821 if (!path) { 7822 pr_warn("missing a path to pin map '%s' at\n", 7823 bpf_map__name(map)); 7824 return libbpf_err(-EINVAL); 7825 } else if (map->pinned) { 7826 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7827 return libbpf_err(-EEXIST); 7828 } 7829 7830 map->pin_path = strdup(path); 7831 if (!map->pin_path) { 7832 err = -errno; 7833 goto out_err; 7834 } 7835 } 7836 7837 err = make_parent_dir(map->pin_path); 7838 if (err) 7839 return libbpf_err(err); 7840 7841 err = check_path(map->pin_path); 7842 if (err) 7843 return libbpf_err(err); 7844 7845 if (bpf_obj_pin(map->fd, map->pin_path)) { 7846 err = -errno; 7847 goto out_err; 7848 } 7849 7850 map->pinned = true; 7851 pr_debug("pinned map '%s'\n", map->pin_path); 7852 7853 return 0; 7854 7855 out_err: 7856 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7857 pr_warn("failed to pin map: %s\n", cp); 7858 return libbpf_err(err); 7859 } 7860 7861 int bpf_map__unpin(struct bpf_map *map, const char *path) 7862 { 7863 int err; 7864 7865 if (map == NULL) { 7866 pr_warn("invalid map pointer\n"); 7867 return libbpf_err(-EINVAL); 7868 } 7869 7870 if (map->pin_path) { 7871 if (path && strcmp(path, map->pin_path)) { 7872 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7873 bpf_map__name(map), map->pin_path, path); 7874 return libbpf_err(-EINVAL); 7875 } 7876 path = map->pin_path; 7877 } else if (!path) { 7878 pr_warn("no path to unpin map '%s' from\n", 7879 bpf_map__name(map)); 7880 return libbpf_err(-EINVAL); 7881 } 7882 7883 err = check_path(path); 7884 if (err) 7885 return libbpf_err(err); 7886 7887 err = unlink(path); 7888 if (err != 0) 7889 return libbpf_err(-errno); 7890 7891 map->pinned = false; 7892 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7893 7894 return 0; 7895 } 7896 7897 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7898 { 7899 char *new = NULL; 7900 7901 if (path) { 7902 new = strdup(path); 7903 if (!new) 7904 return libbpf_err(-errno); 7905 } 7906 7907 free(map->pin_path); 7908 map->pin_path = new; 7909 return 0; 7910 } 7911 7912 __alias(bpf_map__pin_path) 7913 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7914 7915 const char *bpf_map__pin_path(const struct bpf_map *map) 7916 { 7917 return map->pin_path; 7918 } 7919 7920 bool bpf_map__is_pinned(const struct bpf_map *map) 7921 { 7922 return map->pinned; 7923 } 7924 7925 static void sanitize_pin_path(char *s) 7926 { 7927 /* bpffs disallows periods in path names */ 7928 while (*s) { 7929 if (*s == '.') 7930 *s = '_'; 7931 s++; 7932 } 7933 } 7934 7935 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7936 { 7937 struct bpf_map *map; 7938 int err; 7939 7940 if (!obj) 7941 return libbpf_err(-ENOENT); 7942 7943 if (!obj->loaded) { 7944 pr_warn("object not yet loaded; load it first\n"); 7945 return libbpf_err(-ENOENT); 7946 } 7947 7948 bpf_object__for_each_map(map, obj) { 7949 char *pin_path = NULL; 7950 char buf[PATH_MAX]; 7951 7952 if (map->skipped) 7953 continue; 7954 7955 if (path) { 7956 int len; 7957 7958 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7959 bpf_map__name(map)); 7960 if (len < 0) { 7961 err = -EINVAL; 7962 goto err_unpin_maps; 7963 } else if (len >= PATH_MAX) { 7964 err = -ENAMETOOLONG; 7965 goto err_unpin_maps; 7966 } 7967 sanitize_pin_path(buf); 7968 pin_path = buf; 7969 } else if (!map->pin_path) { 7970 continue; 7971 } 7972 7973 err = bpf_map__pin(map, pin_path); 7974 if (err) 7975 goto err_unpin_maps; 7976 } 7977 7978 return 0; 7979 7980 err_unpin_maps: 7981 while ((map = bpf_object__prev_map(obj, map))) { 7982 if (!map->pin_path) 7983 continue; 7984 7985 bpf_map__unpin(map, NULL); 7986 } 7987 7988 return libbpf_err(err); 7989 } 7990 7991 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7992 { 7993 struct bpf_map *map; 7994 int err; 7995 7996 if (!obj) 7997 return libbpf_err(-ENOENT); 7998 7999 bpf_object__for_each_map(map, obj) { 8000 char *pin_path = NULL; 8001 char buf[PATH_MAX]; 8002 8003 if (path) { 8004 int len; 8005 8006 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8007 bpf_map__name(map)); 8008 if (len < 0) 8009 return libbpf_err(-EINVAL); 8010 else if (len >= PATH_MAX) 8011 return libbpf_err(-ENAMETOOLONG); 8012 sanitize_pin_path(buf); 8013 pin_path = buf; 8014 } else if (!map->pin_path) { 8015 continue; 8016 } 8017 8018 err = bpf_map__unpin(map, pin_path); 8019 if (err) 8020 return libbpf_err(err); 8021 } 8022 8023 return 0; 8024 } 8025 8026 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8027 { 8028 struct bpf_program *prog; 8029 int err; 8030 8031 if (!obj) 8032 return libbpf_err(-ENOENT); 8033 8034 if (!obj->loaded) { 8035 pr_warn("object not yet loaded; load it first\n"); 8036 return libbpf_err(-ENOENT); 8037 } 8038 8039 bpf_object__for_each_program(prog, obj) { 8040 char buf[PATH_MAX]; 8041 int len; 8042 8043 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8044 prog->pin_name); 8045 if (len < 0) { 8046 err = -EINVAL; 8047 goto err_unpin_programs; 8048 } else if (len >= PATH_MAX) { 8049 err = -ENAMETOOLONG; 8050 goto err_unpin_programs; 8051 } 8052 8053 err = bpf_program__pin(prog, buf); 8054 if (err) 8055 goto err_unpin_programs; 8056 } 8057 8058 return 0; 8059 8060 err_unpin_programs: 8061 while ((prog = bpf_object__prev_program(obj, prog))) { 8062 char buf[PATH_MAX]; 8063 int len; 8064 8065 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8066 prog->pin_name); 8067 if (len < 0) 8068 continue; 8069 else if (len >= PATH_MAX) 8070 continue; 8071 8072 bpf_program__unpin(prog, buf); 8073 } 8074 8075 return libbpf_err(err); 8076 } 8077 8078 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8079 { 8080 struct bpf_program *prog; 8081 int err; 8082 8083 if (!obj) 8084 return libbpf_err(-ENOENT); 8085 8086 bpf_object__for_each_program(prog, obj) { 8087 char buf[PATH_MAX]; 8088 int len; 8089 8090 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8091 prog->pin_name); 8092 if (len < 0) 8093 return libbpf_err(-EINVAL); 8094 else if (len >= PATH_MAX) 8095 return libbpf_err(-ENAMETOOLONG); 8096 8097 err = bpf_program__unpin(prog, buf); 8098 if (err) 8099 return libbpf_err(err); 8100 } 8101 8102 return 0; 8103 } 8104 8105 int bpf_object__pin(struct bpf_object *obj, const char *path) 8106 { 8107 int err; 8108 8109 err = bpf_object__pin_maps(obj, path); 8110 if (err) 8111 return libbpf_err(err); 8112 8113 err = bpf_object__pin_programs(obj, path); 8114 if (err) { 8115 bpf_object__unpin_maps(obj, path); 8116 return libbpf_err(err); 8117 } 8118 8119 return 0; 8120 } 8121 8122 static void bpf_map__destroy(struct bpf_map *map) 8123 { 8124 if (map->clear_priv) 8125 map->clear_priv(map, map->priv); 8126 map->priv = NULL; 8127 map->clear_priv = NULL; 8128 8129 if (map->inner_map) { 8130 bpf_map__destroy(map->inner_map); 8131 zfree(&map->inner_map); 8132 } 8133 8134 zfree(&map->init_slots); 8135 map->init_slots_sz = 0; 8136 8137 if (map->mmaped) { 8138 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8139 map->mmaped = NULL; 8140 } 8141 8142 if (map->st_ops) { 8143 zfree(&map->st_ops->data); 8144 zfree(&map->st_ops->progs); 8145 zfree(&map->st_ops->kern_func_off); 8146 zfree(&map->st_ops); 8147 } 8148 8149 zfree(&map->name); 8150 zfree(&map->real_name); 8151 zfree(&map->pin_path); 8152 8153 if (map->fd >= 0) 8154 zclose(map->fd); 8155 } 8156 8157 void bpf_object__close(struct bpf_object *obj) 8158 { 8159 size_t i; 8160 8161 if (IS_ERR_OR_NULL(obj)) 8162 return; 8163 8164 if (obj->clear_priv) 8165 obj->clear_priv(obj, obj->priv); 8166 8167 bpf_gen__free(obj->gen_loader); 8168 bpf_object__elf_finish(obj); 8169 bpf_object_unload(obj); 8170 btf__free(obj->btf); 8171 btf_ext__free(obj->btf_ext); 8172 8173 for (i = 0; i < obj->nr_maps; i++) 8174 bpf_map__destroy(&obj->maps[i]); 8175 8176 zfree(&obj->btf_custom_path); 8177 zfree(&obj->kconfig); 8178 zfree(&obj->externs); 8179 obj->nr_extern = 0; 8180 8181 zfree(&obj->maps); 8182 obj->nr_maps = 0; 8183 8184 if (obj->programs && obj->nr_programs) { 8185 for (i = 0; i < obj->nr_programs; i++) 8186 bpf_program__exit(&obj->programs[i]); 8187 } 8188 zfree(&obj->programs); 8189 8190 list_del(&obj->list); 8191 free(obj); 8192 } 8193 8194 struct bpf_object * 8195 bpf_object__next(struct bpf_object *prev) 8196 { 8197 struct bpf_object *next; 8198 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8199 8200 if (strict) 8201 return NULL; 8202 8203 if (!prev) 8204 next = list_first_entry(&bpf_objects_list, 8205 struct bpf_object, 8206 list); 8207 else 8208 next = list_next_entry(prev, list); 8209 8210 /* Empty list is noticed here so don't need checking on entry. */ 8211 if (&next->list == &bpf_objects_list) 8212 return NULL; 8213 8214 return next; 8215 } 8216 8217 const char *bpf_object__name(const struct bpf_object *obj) 8218 { 8219 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8220 } 8221 8222 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8223 { 8224 return obj ? obj->kern_version : 0; 8225 } 8226 8227 struct btf *bpf_object__btf(const struct bpf_object *obj) 8228 { 8229 return obj ? obj->btf : NULL; 8230 } 8231 8232 int bpf_object__btf_fd(const struct bpf_object *obj) 8233 { 8234 return obj->btf ? btf__fd(obj->btf) : -1; 8235 } 8236 8237 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8238 { 8239 if (obj->loaded) 8240 return libbpf_err(-EINVAL); 8241 8242 obj->kern_version = kern_version; 8243 8244 return 0; 8245 } 8246 8247 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8248 bpf_object_clear_priv_t clear_priv) 8249 { 8250 if (obj->priv && obj->clear_priv) 8251 obj->clear_priv(obj, obj->priv); 8252 8253 obj->priv = priv; 8254 obj->clear_priv = clear_priv; 8255 return 0; 8256 } 8257 8258 void *bpf_object__priv(const struct bpf_object *obj) 8259 { 8260 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8261 } 8262 8263 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8264 { 8265 struct bpf_gen *gen; 8266 8267 if (!opts) 8268 return -EFAULT; 8269 if (!OPTS_VALID(opts, gen_loader_opts)) 8270 return -EINVAL; 8271 gen = calloc(sizeof(*gen), 1); 8272 if (!gen) 8273 return -ENOMEM; 8274 gen->opts = opts; 8275 obj->gen_loader = gen; 8276 return 0; 8277 } 8278 8279 static struct bpf_program * 8280 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8281 bool forward) 8282 { 8283 size_t nr_programs = obj->nr_programs; 8284 ssize_t idx; 8285 8286 if (!nr_programs) 8287 return NULL; 8288 8289 if (!p) 8290 /* Iter from the beginning */ 8291 return forward ? &obj->programs[0] : 8292 &obj->programs[nr_programs - 1]; 8293 8294 if (p->obj != obj) { 8295 pr_warn("error: program handler doesn't match object\n"); 8296 return errno = EINVAL, NULL; 8297 } 8298 8299 idx = (p - obj->programs) + (forward ? 1 : -1); 8300 if (idx >= obj->nr_programs || idx < 0) 8301 return NULL; 8302 return &obj->programs[idx]; 8303 } 8304 8305 struct bpf_program * 8306 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8307 { 8308 return bpf_object__next_program(obj, prev); 8309 } 8310 8311 struct bpf_program * 8312 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8313 { 8314 struct bpf_program *prog = prev; 8315 8316 do { 8317 prog = __bpf_program__iter(prog, obj, true); 8318 } while (prog && prog_is_subprog(obj, prog)); 8319 8320 return prog; 8321 } 8322 8323 struct bpf_program * 8324 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8325 { 8326 return bpf_object__prev_program(obj, next); 8327 } 8328 8329 struct bpf_program * 8330 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8331 { 8332 struct bpf_program *prog = next; 8333 8334 do { 8335 prog = __bpf_program__iter(prog, obj, false); 8336 } while (prog && prog_is_subprog(obj, prog)); 8337 8338 return prog; 8339 } 8340 8341 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8342 bpf_program_clear_priv_t clear_priv) 8343 { 8344 if (prog->priv && prog->clear_priv) 8345 prog->clear_priv(prog, prog->priv); 8346 8347 prog->priv = priv; 8348 prog->clear_priv = clear_priv; 8349 return 0; 8350 } 8351 8352 void *bpf_program__priv(const struct bpf_program *prog) 8353 { 8354 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8355 } 8356 8357 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8358 { 8359 prog->prog_ifindex = ifindex; 8360 } 8361 8362 const char *bpf_program__name(const struct bpf_program *prog) 8363 { 8364 return prog->name; 8365 } 8366 8367 const char *bpf_program__section_name(const struct bpf_program *prog) 8368 { 8369 return prog->sec_name; 8370 } 8371 8372 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8373 { 8374 const char *title; 8375 8376 title = prog->sec_name; 8377 if (needs_copy) { 8378 title = strdup(title); 8379 if (!title) { 8380 pr_warn("failed to strdup program title\n"); 8381 return libbpf_err_ptr(-ENOMEM); 8382 } 8383 } 8384 8385 return title; 8386 } 8387 8388 bool bpf_program__autoload(const struct bpf_program *prog) 8389 { 8390 return prog->load; 8391 } 8392 8393 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8394 { 8395 if (prog->obj->loaded) 8396 return libbpf_err(-EINVAL); 8397 8398 prog->load = autoload; 8399 return 0; 8400 } 8401 8402 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8403 8404 int bpf_program__fd(const struct bpf_program *prog) 8405 { 8406 return bpf_program_nth_fd(prog, 0); 8407 } 8408 8409 size_t bpf_program__size(const struct bpf_program *prog) 8410 { 8411 return prog->insns_cnt * BPF_INSN_SZ; 8412 } 8413 8414 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8415 { 8416 return prog->insns; 8417 } 8418 8419 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8420 { 8421 return prog->insns_cnt; 8422 } 8423 8424 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8425 bpf_program_prep_t prep) 8426 { 8427 int *instances_fds; 8428 8429 if (nr_instances <= 0 || !prep) 8430 return libbpf_err(-EINVAL); 8431 8432 if (prog->instances.nr > 0 || prog->instances.fds) { 8433 pr_warn("Can't set pre-processor after loading\n"); 8434 return libbpf_err(-EINVAL); 8435 } 8436 8437 instances_fds = malloc(sizeof(int) * nr_instances); 8438 if (!instances_fds) { 8439 pr_warn("alloc memory failed for fds\n"); 8440 return libbpf_err(-ENOMEM); 8441 } 8442 8443 /* fill all fd with -1 */ 8444 memset(instances_fds, -1, sizeof(int) * nr_instances); 8445 8446 prog->instances.nr = nr_instances; 8447 prog->instances.fds = instances_fds; 8448 prog->preprocessor = prep; 8449 return 0; 8450 } 8451 8452 __attribute__((alias("bpf_program_nth_fd"))) 8453 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8454 8455 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8456 { 8457 int fd; 8458 8459 if (!prog) 8460 return libbpf_err(-EINVAL); 8461 8462 if (n >= prog->instances.nr || n < 0) { 8463 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8464 n, prog->name, prog->instances.nr); 8465 return libbpf_err(-EINVAL); 8466 } 8467 8468 fd = prog->instances.fds[n]; 8469 if (fd < 0) { 8470 pr_warn("%dth instance of program '%s' is invalid\n", 8471 n, prog->name); 8472 return libbpf_err(-ENOENT); 8473 } 8474 8475 return fd; 8476 } 8477 8478 __alias(bpf_program__type) 8479 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8480 8481 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8482 { 8483 return prog->type; 8484 } 8485 8486 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8487 { 8488 prog->type = type; 8489 } 8490 8491 static bool bpf_program__is_type(const struct bpf_program *prog, 8492 enum bpf_prog_type type) 8493 { 8494 return prog ? (prog->type == type) : false; 8495 } 8496 8497 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8498 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8499 { \ 8500 if (!prog) \ 8501 return libbpf_err(-EINVAL); \ 8502 bpf_program__set_type(prog, TYPE); \ 8503 return 0; \ 8504 } \ 8505 \ 8506 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8507 { \ 8508 return bpf_program__is_type(prog, TYPE); \ 8509 } \ 8510 8511 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8512 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8513 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8514 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8515 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8516 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8517 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8518 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8519 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8520 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8521 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8522 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8523 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8524 8525 __alias(bpf_program__expected_attach_type) 8526 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8527 8528 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8529 { 8530 return prog->expected_attach_type; 8531 } 8532 8533 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8534 enum bpf_attach_type type) 8535 { 8536 prog->expected_attach_type = type; 8537 } 8538 8539 __u32 bpf_program__flags(const struct bpf_program *prog) 8540 { 8541 return prog->prog_flags; 8542 } 8543 8544 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8545 { 8546 if (prog->obj->loaded) 8547 return libbpf_err(-EBUSY); 8548 8549 prog->prog_flags = flags; 8550 return 0; 8551 } 8552 8553 __u32 bpf_program__log_level(const struct bpf_program *prog) 8554 { 8555 return prog->log_level; 8556 } 8557 8558 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8559 { 8560 if (prog->obj->loaded) 8561 return libbpf_err(-EBUSY); 8562 8563 prog->log_level = log_level; 8564 return 0; 8565 } 8566 8567 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8568 { 8569 *log_size = prog->log_size; 8570 return prog->log_buf; 8571 } 8572 8573 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8574 { 8575 if (log_size && !log_buf) 8576 return -EINVAL; 8577 if (prog->log_size > UINT_MAX) 8578 return -EINVAL; 8579 if (prog->obj->loaded) 8580 return -EBUSY; 8581 8582 prog->log_buf = log_buf; 8583 prog->log_size = log_size; 8584 return 0; 8585 } 8586 8587 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8588 .sec = sec_pfx, \ 8589 .prog_type = BPF_PROG_TYPE_##ptype, \ 8590 .expected_attach_type = atype, \ 8591 .cookie = (long)(flags), \ 8592 .preload_fn = libbpf_preload_prog, \ 8593 __VA_ARGS__ \ 8594 } 8595 8596 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie); 8597 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie); 8598 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie); 8599 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie); 8600 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie); 8601 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie); 8602 8603 static const struct bpf_sec_def section_defs[] = { 8604 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8605 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8606 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8607 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8608 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8609 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8610 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8611 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8612 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 8613 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8614 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8615 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8616 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8617 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8618 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8619 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8620 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8621 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8622 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8623 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8624 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8625 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8626 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8627 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8628 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8629 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8630 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8631 SEC_DEF("iter.s/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8632 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8633 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8634 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8635 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8636 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8637 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8638 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8639 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8640 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8641 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8642 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8643 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8644 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8645 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8646 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8647 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8648 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8649 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8650 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8651 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8652 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8653 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8654 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8655 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8656 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8657 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8658 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8659 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8660 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8661 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8662 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8663 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8664 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8665 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8666 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8667 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8668 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8669 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8670 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8671 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8672 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8673 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8674 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8675 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8676 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8677 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8678 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8679 }; 8680 8681 #define MAX_TYPE_NAME_SIZE 32 8682 8683 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8684 { 8685 const struct bpf_sec_def *sec_def; 8686 enum sec_def_flags sec_flags; 8687 int i, n = ARRAY_SIZE(section_defs), len; 8688 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME; 8689 8690 for (i = 0; i < n; i++) { 8691 sec_def = §ion_defs[i]; 8692 sec_flags = sec_def->cookie; 8693 len = strlen(sec_def->sec); 8694 8695 /* "type/" always has to have proper SEC("type/extras") form */ 8696 if (sec_def->sec[len - 1] == '/') { 8697 if (str_has_pfx(sec_name, sec_def->sec)) 8698 return sec_def; 8699 continue; 8700 } 8701 8702 /* "type+" means it can be either exact SEC("type") or 8703 * well-formed SEC("type/extras") with proper '/' separator 8704 */ 8705 if (sec_def->sec[len - 1] == '+') { 8706 len--; 8707 /* not even a prefix */ 8708 if (strncmp(sec_name, sec_def->sec, len) != 0) 8709 continue; 8710 /* exact match or has '/' separator */ 8711 if (sec_name[len] == '\0' || sec_name[len] == '/') 8712 return sec_def; 8713 continue; 8714 } 8715 8716 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8717 * matches, unless strict section name mode 8718 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8719 * match has to be exact. 8720 */ 8721 if ((sec_flags & SEC_SLOPPY_PFX) && !strict) { 8722 if (str_has_pfx(sec_name, sec_def->sec)) 8723 return sec_def; 8724 continue; 8725 } 8726 8727 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8728 * SEC("syscall")) are exact matches in both modes. 8729 */ 8730 if (strcmp(sec_name, sec_def->sec) == 0) 8731 return sec_def; 8732 } 8733 return NULL; 8734 } 8735 8736 static char *libbpf_get_type_names(bool attach_type) 8737 { 8738 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8739 char *buf; 8740 8741 buf = malloc(len); 8742 if (!buf) 8743 return NULL; 8744 8745 buf[0] = '\0'; 8746 /* Forge string buf with all available names */ 8747 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8748 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8749 8750 if (attach_type) { 8751 if (sec_def->preload_fn != libbpf_preload_prog) 8752 continue; 8753 8754 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8755 continue; 8756 } 8757 8758 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8759 free(buf); 8760 return NULL; 8761 } 8762 strcat(buf, " "); 8763 strcat(buf, section_defs[i].sec); 8764 } 8765 8766 return buf; 8767 } 8768 8769 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8770 enum bpf_attach_type *expected_attach_type) 8771 { 8772 const struct bpf_sec_def *sec_def; 8773 char *type_names; 8774 8775 if (!name) 8776 return libbpf_err(-EINVAL); 8777 8778 sec_def = find_sec_def(name); 8779 if (sec_def) { 8780 *prog_type = sec_def->prog_type; 8781 *expected_attach_type = sec_def->expected_attach_type; 8782 return 0; 8783 } 8784 8785 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8786 type_names = libbpf_get_type_names(false); 8787 if (type_names != NULL) { 8788 pr_debug("supported section(type) names are:%s\n", type_names); 8789 free(type_names); 8790 } 8791 8792 return libbpf_err(-ESRCH); 8793 } 8794 8795 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8796 size_t offset) 8797 { 8798 struct bpf_map *map; 8799 size_t i; 8800 8801 for (i = 0; i < obj->nr_maps; i++) { 8802 map = &obj->maps[i]; 8803 if (!bpf_map__is_struct_ops(map)) 8804 continue; 8805 if (map->sec_offset <= offset && 8806 offset - map->sec_offset < map->def.value_size) 8807 return map; 8808 } 8809 8810 return NULL; 8811 } 8812 8813 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8814 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8815 Elf64_Shdr *shdr, Elf_Data *data) 8816 { 8817 const struct btf_member *member; 8818 struct bpf_struct_ops *st_ops; 8819 struct bpf_program *prog; 8820 unsigned int shdr_idx; 8821 const struct btf *btf; 8822 struct bpf_map *map; 8823 unsigned int moff, insn_idx; 8824 const char *name; 8825 __u32 member_idx; 8826 Elf64_Sym *sym; 8827 Elf64_Rel *rel; 8828 int i, nrels; 8829 8830 btf = obj->btf; 8831 nrels = shdr->sh_size / shdr->sh_entsize; 8832 for (i = 0; i < nrels; i++) { 8833 rel = elf_rel_by_idx(data, i); 8834 if (!rel) { 8835 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8836 return -LIBBPF_ERRNO__FORMAT; 8837 } 8838 8839 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8840 if (!sym) { 8841 pr_warn("struct_ops reloc: symbol %zx not found\n", 8842 (size_t)ELF64_R_SYM(rel->r_info)); 8843 return -LIBBPF_ERRNO__FORMAT; 8844 } 8845 8846 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8847 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8848 if (!map) { 8849 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8850 (size_t)rel->r_offset); 8851 return -EINVAL; 8852 } 8853 8854 moff = rel->r_offset - map->sec_offset; 8855 shdr_idx = sym->st_shndx; 8856 st_ops = map->st_ops; 8857 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8858 map->name, 8859 (long long)(rel->r_info >> 32), 8860 (long long)sym->st_value, 8861 shdr_idx, (size_t)rel->r_offset, 8862 map->sec_offset, sym->st_name, name); 8863 8864 if (shdr_idx >= SHN_LORESERVE) { 8865 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8866 map->name, (size_t)rel->r_offset, shdr_idx); 8867 return -LIBBPF_ERRNO__RELOC; 8868 } 8869 if (sym->st_value % BPF_INSN_SZ) { 8870 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8871 map->name, (unsigned long long)sym->st_value); 8872 return -LIBBPF_ERRNO__FORMAT; 8873 } 8874 insn_idx = sym->st_value / BPF_INSN_SZ; 8875 8876 member = find_member_by_offset(st_ops->type, moff * 8); 8877 if (!member) { 8878 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8879 map->name, moff); 8880 return -EINVAL; 8881 } 8882 member_idx = member - btf_members(st_ops->type); 8883 name = btf__name_by_offset(btf, member->name_off); 8884 8885 if (!resolve_func_ptr(btf, member->type, NULL)) { 8886 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8887 map->name, name); 8888 return -EINVAL; 8889 } 8890 8891 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8892 if (!prog) { 8893 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8894 map->name, shdr_idx, name); 8895 return -EINVAL; 8896 } 8897 8898 /* prevent the use of BPF prog with invalid type */ 8899 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8900 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8901 map->name, prog->name); 8902 return -EINVAL; 8903 } 8904 8905 /* if we haven't yet processed this BPF program, record proper 8906 * attach_btf_id and member_idx 8907 */ 8908 if (!prog->attach_btf_id) { 8909 prog->attach_btf_id = st_ops->type_id; 8910 prog->expected_attach_type = member_idx; 8911 } 8912 8913 /* struct_ops BPF prog can be re-used between multiple 8914 * .struct_ops as long as it's the same struct_ops struct 8915 * definition and the same function pointer field 8916 */ 8917 if (prog->attach_btf_id != st_ops->type_id || 8918 prog->expected_attach_type != member_idx) { 8919 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8920 map->name, prog->name, prog->sec_name, prog->type, 8921 prog->attach_btf_id, prog->expected_attach_type, name); 8922 return -EINVAL; 8923 } 8924 8925 st_ops->progs[member_idx] = prog; 8926 } 8927 8928 return 0; 8929 } 8930 8931 #define BTF_TRACE_PREFIX "btf_trace_" 8932 #define BTF_LSM_PREFIX "bpf_lsm_" 8933 #define BTF_ITER_PREFIX "bpf_iter_" 8934 #define BTF_MAX_NAME_SIZE 128 8935 8936 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8937 const char **prefix, int *kind) 8938 { 8939 switch (attach_type) { 8940 case BPF_TRACE_RAW_TP: 8941 *prefix = BTF_TRACE_PREFIX; 8942 *kind = BTF_KIND_TYPEDEF; 8943 break; 8944 case BPF_LSM_MAC: 8945 *prefix = BTF_LSM_PREFIX; 8946 *kind = BTF_KIND_FUNC; 8947 break; 8948 case BPF_TRACE_ITER: 8949 *prefix = BTF_ITER_PREFIX; 8950 *kind = BTF_KIND_FUNC; 8951 break; 8952 default: 8953 *prefix = ""; 8954 *kind = BTF_KIND_FUNC; 8955 } 8956 } 8957 8958 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8959 const char *name, __u32 kind) 8960 { 8961 char btf_type_name[BTF_MAX_NAME_SIZE]; 8962 int ret; 8963 8964 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8965 "%s%s", prefix, name); 8966 /* snprintf returns the number of characters written excluding the 8967 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8968 * indicates truncation. 8969 */ 8970 if (ret < 0 || ret >= sizeof(btf_type_name)) 8971 return -ENAMETOOLONG; 8972 return btf__find_by_name_kind(btf, btf_type_name, kind); 8973 } 8974 8975 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8976 enum bpf_attach_type attach_type) 8977 { 8978 const char *prefix; 8979 int kind; 8980 8981 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8982 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8983 } 8984 8985 int libbpf_find_vmlinux_btf_id(const char *name, 8986 enum bpf_attach_type attach_type) 8987 { 8988 struct btf *btf; 8989 int err; 8990 8991 btf = btf__load_vmlinux_btf(); 8992 err = libbpf_get_error(btf); 8993 if (err) { 8994 pr_warn("vmlinux BTF is not found\n"); 8995 return libbpf_err(err); 8996 } 8997 8998 err = find_attach_btf_id(btf, name, attach_type); 8999 if (err <= 0) 9000 pr_warn("%s is not found in vmlinux BTF\n", name); 9001 9002 btf__free(btf); 9003 return libbpf_err(err); 9004 } 9005 9006 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9007 { 9008 struct bpf_prog_info info = {}; 9009 __u32 info_len = sizeof(info); 9010 struct btf *btf; 9011 int err; 9012 9013 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9014 if (err) { 9015 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9016 attach_prog_fd, err); 9017 return err; 9018 } 9019 9020 err = -EINVAL; 9021 if (!info.btf_id) { 9022 pr_warn("The target program doesn't have BTF\n"); 9023 goto out; 9024 } 9025 btf = btf__load_from_kernel_by_id(info.btf_id); 9026 err = libbpf_get_error(btf); 9027 if (err) { 9028 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9029 goto out; 9030 } 9031 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9032 btf__free(btf); 9033 if (err <= 0) { 9034 pr_warn("%s is not found in prog's BTF\n", name); 9035 goto out; 9036 } 9037 out: 9038 return err; 9039 } 9040 9041 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9042 enum bpf_attach_type attach_type, 9043 int *btf_obj_fd, int *btf_type_id) 9044 { 9045 int ret, i; 9046 9047 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9048 if (ret > 0) { 9049 *btf_obj_fd = 0; /* vmlinux BTF */ 9050 *btf_type_id = ret; 9051 return 0; 9052 } 9053 if (ret != -ENOENT) 9054 return ret; 9055 9056 ret = load_module_btfs(obj); 9057 if (ret) 9058 return ret; 9059 9060 for (i = 0; i < obj->btf_module_cnt; i++) { 9061 const struct module_btf *mod = &obj->btf_modules[i]; 9062 9063 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9064 if (ret > 0) { 9065 *btf_obj_fd = mod->fd; 9066 *btf_type_id = ret; 9067 return 0; 9068 } 9069 if (ret == -ENOENT) 9070 continue; 9071 9072 return ret; 9073 } 9074 9075 return -ESRCH; 9076 } 9077 9078 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9079 int *btf_obj_fd, int *btf_type_id) 9080 { 9081 enum bpf_attach_type attach_type = prog->expected_attach_type; 9082 __u32 attach_prog_fd = prog->attach_prog_fd; 9083 int err = 0; 9084 9085 /* BPF program's BTF ID */ 9086 if (attach_prog_fd) { 9087 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9088 if (err < 0) { 9089 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9090 attach_prog_fd, attach_name, err); 9091 return err; 9092 } 9093 *btf_obj_fd = 0; 9094 *btf_type_id = err; 9095 return 0; 9096 } 9097 9098 /* kernel/module BTF ID */ 9099 if (prog->obj->gen_loader) { 9100 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9101 *btf_obj_fd = 0; 9102 *btf_type_id = 1; 9103 } else { 9104 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9105 } 9106 if (err) { 9107 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9108 return err; 9109 } 9110 return 0; 9111 } 9112 9113 int libbpf_attach_type_by_name(const char *name, 9114 enum bpf_attach_type *attach_type) 9115 { 9116 char *type_names; 9117 const struct bpf_sec_def *sec_def; 9118 9119 if (!name) 9120 return libbpf_err(-EINVAL); 9121 9122 sec_def = find_sec_def(name); 9123 if (!sec_def) { 9124 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9125 type_names = libbpf_get_type_names(true); 9126 if (type_names != NULL) { 9127 pr_debug("attachable section(type) names are:%s\n", type_names); 9128 free(type_names); 9129 } 9130 9131 return libbpf_err(-EINVAL); 9132 } 9133 9134 if (sec_def->preload_fn != libbpf_preload_prog) 9135 return libbpf_err(-EINVAL); 9136 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9137 return libbpf_err(-EINVAL); 9138 9139 *attach_type = sec_def->expected_attach_type; 9140 return 0; 9141 } 9142 9143 int bpf_map__fd(const struct bpf_map *map) 9144 { 9145 return map ? map->fd : libbpf_err(-EINVAL); 9146 } 9147 9148 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9149 { 9150 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9151 } 9152 9153 static bool map_uses_real_name(const struct bpf_map *map) 9154 { 9155 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9156 * their user-visible name differs from kernel-visible name. Users see 9157 * such map's corresponding ELF section name as a map name. 9158 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9159 * maps to know which name has to be returned to the user. 9160 */ 9161 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9162 return true; 9163 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9164 return true; 9165 return false; 9166 } 9167 9168 const char *bpf_map__name(const struct bpf_map *map) 9169 { 9170 if (!map) 9171 return NULL; 9172 9173 if (map_uses_real_name(map)) 9174 return map->real_name; 9175 9176 return map->name; 9177 } 9178 9179 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9180 { 9181 return map->def.type; 9182 } 9183 9184 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9185 { 9186 if (map->fd >= 0) 9187 return libbpf_err(-EBUSY); 9188 map->def.type = type; 9189 return 0; 9190 } 9191 9192 __u32 bpf_map__map_flags(const struct bpf_map *map) 9193 { 9194 return map->def.map_flags; 9195 } 9196 9197 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9198 { 9199 if (map->fd >= 0) 9200 return libbpf_err(-EBUSY); 9201 map->def.map_flags = flags; 9202 return 0; 9203 } 9204 9205 __u64 bpf_map__map_extra(const struct bpf_map *map) 9206 { 9207 return map->map_extra; 9208 } 9209 9210 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9211 { 9212 if (map->fd >= 0) 9213 return libbpf_err(-EBUSY); 9214 map->map_extra = map_extra; 9215 return 0; 9216 } 9217 9218 __u32 bpf_map__numa_node(const struct bpf_map *map) 9219 { 9220 return map->numa_node; 9221 } 9222 9223 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9224 { 9225 if (map->fd >= 0) 9226 return libbpf_err(-EBUSY); 9227 map->numa_node = numa_node; 9228 return 0; 9229 } 9230 9231 __u32 bpf_map__key_size(const struct bpf_map *map) 9232 { 9233 return map->def.key_size; 9234 } 9235 9236 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9237 { 9238 if (map->fd >= 0) 9239 return libbpf_err(-EBUSY); 9240 map->def.key_size = size; 9241 return 0; 9242 } 9243 9244 __u32 bpf_map__value_size(const struct bpf_map *map) 9245 { 9246 return map->def.value_size; 9247 } 9248 9249 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9250 { 9251 if (map->fd >= 0) 9252 return libbpf_err(-EBUSY); 9253 map->def.value_size = size; 9254 return 0; 9255 } 9256 9257 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9258 { 9259 return map ? map->btf_key_type_id : 0; 9260 } 9261 9262 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9263 { 9264 return map ? map->btf_value_type_id : 0; 9265 } 9266 9267 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9268 bpf_map_clear_priv_t clear_priv) 9269 { 9270 if (!map) 9271 return libbpf_err(-EINVAL); 9272 9273 if (map->priv) { 9274 if (map->clear_priv) 9275 map->clear_priv(map, map->priv); 9276 } 9277 9278 map->priv = priv; 9279 map->clear_priv = clear_priv; 9280 return 0; 9281 } 9282 9283 void *bpf_map__priv(const struct bpf_map *map) 9284 { 9285 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9286 } 9287 9288 int bpf_map__set_initial_value(struct bpf_map *map, 9289 const void *data, size_t size) 9290 { 9291 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9292 size != map->def.value_size || map->fd >= 0) 9293 return libbpf_err(-EINVAL); 9294 9295 memcpy(map->mmaped, data, size); 9296 return 0; 9297 } 9298 9299 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9300 { 9301 if (!map->mmaped) 9302 return NULL; 9303 *psize = map->def.value_size; 9304 return map->mmaped; 9305 } 9306 9307 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9308 { 9309 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9310 } 9311 9312 bool bpf_map__is_internal(const struct bpf_map *map) 9313 { 9314 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9315 } 9316 9317 __u32 bpf_map__ifindex(const struct bpf_map *map) 9318 { 9319 return map->map_ifindex; 9320 } 9321 9322 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9323 { 9324 if (map->fd >= 0) 9325 return libbpf_err(-EBUSY); 9326 map->map_ifindex = ifindex; 9327 return 0; 9328 } 9329 9330 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9331 { 9332 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9333 pr_warn("error: unsupported map type\n"); 9334 return libbpf_err(-EINVAL); 9335 } 9336 if (map->inner_map_fd != -1) { 9337 pr_warn("error: inner_map_fd already specified\n"); 9338 return libbpf_err(-EINVAL); 9339 } 9340 if (map->inner_map) { 9341 bpf_map__destroy(map->inner_map); 9342 zfree(&map->inner_map); 9343 } 9344 map->inner_map_fd = fd; 9345 return 0; 9346 } 9347 9348 static struct bpf_map * 9349 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9350 { 9351 ssize_t idx; 9352 struct bpf_map *s, *e; 9353 9354 if (!obj || !obj->maps) 9355 return errno = EINVAL, NULL; 9356 9357 s = obj->maps; 9358 e = obj->maps + obj->nr_maps; 9359 9360 if ((m < s) || (m >= e)) { 9361 pr_warn("error in %s: map handler doesn't belong to object\n", 9362 __func__); 9363 return errno = EINVAL, NULL; 9364 } 9365 9366 idx = (m - obj->maps) + i; 9367 if (idx >= obj->nr_maps || idx < 0) 9368 return NULL; 9369 return &obj->maps[idx]; 9370 } 9371 9372 struct bpf_map * 9373 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9374 { 9375 return bpf_object__next_map(obj, prev); 9376 } 9377 9378 struct bpf_map * 9379 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9380 { 9381 if (prev == NULL) 9382 return obj->maps; 9383 9384 return __bpf_map__iter(prev, obj, 1); 9385 } 9386 9387 struct bpf_map * 9388 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9389 { 9390 return bpf_object__prev_map(obj, next); 9391 } 9392 9393 struct bpf_map * 9394 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9395 { 9396 if (next == NULL) { 9397 if (!obj->nr_maps) 9398 return NULL; 9399 return obj->maps + obj->nr_maps - 1; 9400 } 9401 9402 return __bpf_map__iter(next, obj, -1); 9403 } 9404 9405 struct bpf_map * 9406 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9407 { 9408 struct bpf_map *pos; 9409 9410 bpf_object__for_each_map(pos, obj) { 9411 /* if it's a special internal map name (which always starts 9412 * with dot) then check if that special name matches the 9413 * real map name (ELF section name) 9414 */ 9415 if (name[0] == '.') { 9416 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9417 return pos; 9418 continue; 9419 } 9420 /* otherwise map name has to be an exact match */ 9421 if (map_uses_real_name(pos)) { 9422 if (strcmp(pos->real_name, name) == 0) 9423 return pos; 9424 continue; 9425 } 9426 if (strcmp(pos->name, name) == 0) 9427 return pos; 9428 } 9429 return errno = ENOENT, NULL; 9430 } 9431 9432 int 9433 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9434 { 9435 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9436 } 9437 9438 struct bpf_map * 9439 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9440 { 9441 return libbpf_err_ptr(-ENOTSUP); 9442 } 9443 9444 long libbpf_get_error(const void *ptr) 9445 { 9446 if (!IS_ERR_OR_NULL(ptr)) 9447 return 0; 9448 9449 if (IS_ERR(ptr)) 9450 errno = -PTR_ERR(ptr); 9451 9452 /* If ptr == NULL, then errno should be already set by the failing 9453 * API, because libbpf never returns NULL on success and it now always 9454 * sets errno on error. So no extra errno handling for ptr == NULL 9455 * case. 9456 */ 9457 return -errno; 9458 } 9459 9460 __attribute__((alias("bpf_prog_load_xattr2"))) 9461 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9462 struct bpf_object **pobj, int *prog_fd); 9463 9464 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9465 struct bpf_object **pobj, int *prog_fd) 9466 { 9467 struct bpf_object_open_attr open_attr = {}; 9468 struct bpf_program *prog, *first_prog = NULL; 9469 struct bpf_object *obj; 9470 struct bpf_map *map; 9471 int err; 9472 9473 if (!attr) 9474 return libbpf_err(-EINVAL); 9475 if (!attr->file) 9476 return libbpf_err(-EINVAL); 9477 9478 open_attr.file = attr->file; 9479 open_attr.prog_type = attr->prog_type; 9480 9481 obj = __bpf_object__open_xattr(&open_attr, 0); 9482 err = libbpf_get_error(obj); 9483 if (err) 9484 return libbpf_err(-ENOENT); 9485 9486 bpf_object__for_each_program(prog, obj) { 9487 enum bpf_attach_type attach_type = attr->expected_attach_type; 9488 /* 9489 * to preserve backwards compatibility, bpf_prog_load treats 9490 * attr->prog_type, if specified, as an override to whatever 9491 * bpf_object__open guessed 9492 */ 9493 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9494 bpf_program__set_type(prog, attr->prog_type); 9495 bpf_program__set_expected_attach_type(prog, 9496 attach_type); 9497 } 9498 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 9499 /* 9500 * we haven't guessed from section name and user 9501 * didn't provide a fallback type, too bad... 9502 */ 9503 bpf_object__close(obj); 9504 return libbpf_err(-EINVAL); 9505 } 9506 9507 prog->prog_ifindex = attr->ifindex; 9508 prog->log_level = attr->log_level; 9509 prog->prog_flags |= attr->prog_flags; 9510 if (!first_prog) 9511 first_prog = prog; 9512 } 9513 9514 bpf_object__for_each_map(map, obj) { 9515 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9516 map->map_ifindex = attr->ifindex; 9517 } 9518 9519 if (!first_prog) { 9520 pr_warn("object file doesn't contain bpf program\n"); 9521 bpf_object__close(obj); 9522 return libbpf_err(-ENOENT); 9523 } 9524 9525 err = bpf_object__load(obj); 9526 if (err) { 9527 bpf_object__close(obj); 9528 return libbpf_err(err); 9529 } 9530 9531 *pobj = obj; 9532 *prog_fd = bpf_program__fd(first_prog); 9533 return 0; 9534 } 9535 9536 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9537 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9538 struct bpf_object **pobj, int *prog_fd) 9539 { 9540 struct bpf_prog_load_attr attr; 9541 9542 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9543 attr.file = file; 9544 attr.prog_type = type; 9545 attr.expected_attach_type = 0; 9546 9547 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9548 } 9549 9550 struct bpf_link { 9551 int (*detach)(struct bpf_link *link); 9552 void (*dealloc)(struct bpf_link *link); 9553 char *pin_path; /* NULL, if not pinned */ 9554 int fd; /* hook FD, -1 if not applicable */ 9555 bool disconnected; 9556 }; 9557 9558 /* Replace link's underlying BPF program with the new one */ 9559 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9560 { 9561 int ret; 9562 9563 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9564 return libbpf_err_errno(ret); 9565 } 9566 9567 /* Release "ownership" of underlying BPF resource (typically, BPF program 9568 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9569 * link, when destructed through bpf_link__destroy() call won't attempt to 9570 * detach/unregisted that BPF resource. This is useful in situations where, 9571 * say, attached BPF program has to outlive userspace program that attached it 9572 * in the system. Depending on type of BPF program, though, there might be 9573 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9574 * exit of userspace program doesn't trigger automatic detachment and clean up 9575 * inside the kernel. 9576 */ 9577 void bpf_link__disconnect(struct bpf_link *link) 9578 { 9579 link->disconnected = true; 9580 } 9581 9582 int bpf_link__destroy(struct bpf_link *link) 9583 { 9584 int err = 0; 9585 9586 if (IS_ERR_OR_NULL(link)) 9587 return 0; 9588 9589 if (!link->disconnected && link->detach) 9590 err = link->detach(link); 9591 if (link->pin_path) 9592 free(link->pin_path); 9593 if (link->dealloc) 9594 link->dealloc(link); 9595 else 9596 free(link); 9597 9598 return libbpf_err(err); 9599 } 9600 9601 int bpf_link__fd(const struct bpf_link *link) 9602 { 9603 return link->fd; 9604 } 9605 9606 const char *bpf_link__pin_path(const struct bpf_link *link) 9607 { 9608 return link->pin_path; 9609 } 9610 9611 static int bpf_link__detach_fd(struct bpf_link *link) 9612 { 9613 return libbpf_err_errno(close(link->fd)); 9614 } 9615 9616 struct bpf_link *bpf_link__open(const char *path) 9617 { 9618 struct bpf_link *link; 9619 int fd; 9620 9621 fd = bpf_obj_get(path); 9622 if (fd < 0) { 9623 fd = -errno; 9624 pr_warn("failed to open link at %s: %d\n", path, fd); 9625 return libbpf_err_ptr(fd); 9626 } 9627 9628 link = calloc(1, sizeof(*link)); 9629 if (!link) { 9630 close(fd); 9631 return libbpf_err_ptr(-ENOMEM); 9632 } 9633 link->detach = &bpf_link__detach_fd; 9634 link->fd = fd; 9635 9636 link->pin_path = strdup(path); 9637 if (!link->pin_path) { 9638 bpf_link__destroy(link); 9639 return libbpf_err_ptr(-ENOMEM); 9640 } 9641 9642 return link; 9643 } 9644 9645 int bpf_link__detach(struct bpf_link *link) 9646 { 9647 return bpf_link_detach(link->fd) ? -errno : 0; 9648 } 9649 9650 int bpf_link__pin(struct bpf_link *link, const char *path) 9651 { 9652 int err; 9653 9654 if (link->pin_path) 9655 return libbpf_err(-EBUSY); 9656 err = make_parent_dir(path); 9657 if (err) 9658 return libbpf_err(err); 9659 err = check_path(path); 9660 if (err) 9661 return libbpf_err(err); 9662 9663 link->pin_path = strdup(path); 9664 if (!link->pin_path) 9665 return libbpf_err(-ENOMEM); 9666 9667 if (bpf_obj_pin(link->fd, link->pin_path)) { 9668 err = -errno; 9669 zfree(&link->pin_path); 9670 return libbpf_err(err); 9671 } 9672 9673 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9674 return 0; 9675 } 9676 9677 int bpf_link__unpin(struct bpf_link *link) 9678 { 9679 int err; 9680 9681 if (!link->pin_path) 9682 return libbpf_err(-EINVAL); 9683 9684 err = unlink(link->pin_path); 9685 if (err != 0) 9686 return -errno; 9687 9688 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9689 zfree(&link->pin_path); 9690 return 0; 9691 } 9692 9693 struct bpf_link_perf { 9694 struct bpf_link link; 9695 int perf_event_fd; 9696 /* legacy kprobe support: keep track of probe identifier and type */ 9697 char *legacy_probe_name; 9698 bool legacy_is_kprobe; 9699 bool legacy_is_retprobe; 9700 }; 9701 9702 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9703 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9704 9705 static int bpf_link_perf_detach(struct bpf_link *link) 9706 { 9707 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9708 int err = 0; 9709 9710 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9711 err = -errno; 9712 9713 if (perf_link->perf_event_fd != link->fd) 9714 close(perf_link->perf_event_fd); 9715 close(link->fd); 9716 9717 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9718 if (perf_link->legacy_probe_name) { 9719 if (perf_link->legacy_is_kprobe) { 9720 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9721 perf_link->legacy_is_retprobe); 9722 } else { 9723 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9724 perf_link->legacy_is_retprobe); 9725 } 9726 } 9727 9728 return err; 9729 } 9730 9731 static void bpf_link_perf_dealloc(struct bpf_link *link) 9732 { 9733 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9734 9735 free(perf_link->legacy_probe_name); 9736 free(perf_link); 9737 } 9738 9739 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9740 const struct bpf_perf_event_opts *opts) 9741 { 9742 char errmsg[STRERR_BUFSIZE]; 9743 struct bpf_link_perf *link; 9744 int prog_fd, link_fd = -1, err; 9745 9746 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9747 return libbpf_err_ptr(-EINVAL); 9748 9749 if (pfd < 0) { 9750 pr_warn("prog '%s': invalid perf event FD %d\n", 9751 prog->name, pfd); 9752 return libbpf_err_ptr(-EINVAL); 9753 } 9754 prog_fd = bpf_program__fd(prog); 9755 if (prog_fd < 0) { 9756 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9757 prog->name); 9758 return libbpf_err_ptr(-EINVAL); 9759 } 9760 9761 link = calloc(1, sizeof(*link)); 9762 if (!link) 9763 return libbpf_err_ptr(-ENOMEM); 9764 link->link.detach = &bpf_link_perf_detach; 9765 link->link.dealloc = &bpf_link_perf_dealloc; 9766 link->perf_event_fd = pfd; 9767 9768 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9769 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9770 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9771 9772 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9773 if (link_fd < 0) { 9774 err = -errno; 9775 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9776 prog->name, pfd, 9777 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9778 goto err_out; 9779 } 9780 link->link.fd = link_fd; 9781 } else { 9782 if (OPTS_GET(opts, bpf_cookie, 0)) { 9783 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9784 err = -EOPNOTSUPP; 9785 goto err_out; 9786 } 9787 9788 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9789 err = -errno; 9790 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9791 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9792 if (err == -EPROTO) 9793 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9794 prog->name, pfd); 9795 goto err_out; 9796 } 9797 link->link.fd = pfd; 9798 } 9799 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9800 err = -errno; 9801 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9802 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9803 goto err_out; 9804 } 9805 9806 return &link->link; 9807 err_out: 9808 if (link_fd >= 0) 9809 close(link_fd); 9810 free(link); 9811 return libbpf_err_ptr(err); 9812 } 9813 9814 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9815 { 9816 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9817 } 9818 9819 /* 9820 * this function is expected to parse integer in the range of [0, 2^31-1] from 9821 * given file using scanf format string fmt. If actual parsed value is 9822 * negative, the result might be indistinguishable from error 9823 */ 9824 static int parse_uint_from_file(const char *file, const char *fmt) 9825 { 9826 char buf[STRERR_BUFSIZE]; 9827 int err, ret; 9828 FILE *f; 9829 9830 f = fopen(file, "r"); 9831 if (!f) { 9832 err = -errno; 9833 pr_debug("failed to open '%s': %s\n", file, 9834 libbpf_strerror_r(err, buf, sizeof(buf))); 9835 return err; 9836 } 9837 err = fscanf(f, fmt, &ret); 9838 if (err != 1) { 9839 err = err == EOF ? -EIO : -errno; 9840 pr_debug("failed to parse '%s': %s\n", file, 9841 libbpf_strerror_r(err, buf, sizeof(buf))); 9842 fclose(f); 9843 return err; 9844 } 9845 fclose(f); 9846 return ret; 9847 } 9848 9849 static int determine_kprobe_perf_type(void) 9850 { 9851 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9852 9853 return parse_uint_from_file(file, "%d\n"); 9854 } 9855 9856 static int determine_uprobe_perf_type(void) 9857 { 9858 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9859 9860 return parse_uint_from_file(file, "%d\n"); 9861 } 9862 9863 static int determine_kprobe_retprobe_bit(void) 9864 { 9865 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9866 9867 return parse_uint_from_file(file, "config:%d\n"); 9868 } 9869 9870 static int determine_uprobe_retprobe_bit(void) 9871 { 9872 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9873 9874 return parse_uint_from_file(file, "config:%d\n"); 9875 } 9876 9877 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9878 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9879 9880 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9881 uint64_t offset, int pid, size_t ref_ctr_off) 9882 { 9883 struct perf_event_attr attr = {}; 9884 char errmsg[STRERR_BUFSIZE]; 9885 int type, pfd, err; 9886 9887 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9888 return -EINVAL; 9889 9890 type = uprobe ? determine_uprobe_perf_type() 9891 : determine_kprobe_perf_type(); 9892 if (type < 0) { 9893 pr_warn("failed to determine %s perf type: %s\n", 9894 uprobe ? "uprobe" : "kprobe", 9895 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9896 return type; 9897 } 9898 if (retprobe) { 9899 int bit = uprobe ? determine_uprobe_retprobe_bit() 9900 : determine_kprobe_retprobe_bit(); 9901 9902 if (bit < 0) { 9903 pr_warn("failed to determine %s retprobe bit: %s\n", 9904 uprobe ? "uprobe" : "kprobe", 9905 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9906 return bit; 9907 } 9908 attr.config |= 1 << bit; 9909 } 9910 attr.size = sizeof(attr); 9911 attr.type = type; 9912 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9913 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9914 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9915 9916 /* pid filter is meaningful only for uprobes */ 9917 pfd = syscall(__NR_perf_event_open, &attr, 9918 pid < 0 ? -1 : pid /* pid */, 9919 pid == -1 ? 0 : -1 /* cpu */, 9920 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9921 if (pfd < 0) { 9922 err = -errno; 9923 pr_warn("%s perf_event_open() failed: %s\n", 9924 uprobe ? "uprobe" : "kprobe", 9925 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9926 return err; 9927 } 9928 return pfd; 9929 } 9930 9931 static int append_to_file(const char *file, const char *fmt, ...) 9932 { 9933 int fd, n, err = 0; 9934 va_list ap; 9935 9936 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9937 if (fd < 0) 9938 return -errno; 9939 9940 va_start(ap, fmt); 9941 n = vdprintf(fd, fmt, ap); 9942 va_end(ap); 9943 9944 if (n < 0) 9945 err = -errno; 9946 9947 close(fd); 9948 return err; 9949 } 9950 9951 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9952 const char *kfunc_name, size_t offset) 9953 { 9954 static int index = 0; 9955 9956 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9957 __sync_fetch_and_add(&index, 1)); 9958 } 9959 9960 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9961 const char *kfunc_name, size_t offset) 9962 { 9963 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9964 9965 return append_to_file(file, "%c:%s/%s %s+0x%zx", 9966 retprobe ? 'r' : 'p', 9967 retprobe ? "kretprobes" : "kprobes", 9968 probe_name, kfunc_name, offset); 9969 } 9970 9971 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9972 { 9973 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9974 9975 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 9976 } 9977 9978 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9979 { 9980 char file[256]; 9981 9982 snprintf(file, sizeof(file), 9983 "/sys/kernel/debug/tracing/events/%s/%s/id", 9984 retprobe ? "kretprobes" : "kprobes", probe_name); 9985 9986 return parse_uint_from_file(file, "%d\n"); 9987 } 9988 9989 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9990 const char *kfunc_name, size_t offset, int pid) 9991 { 9992 struct perf_event_attr attr = {}; 9993 char errmsg[STRERR_BUFSIZE]; 9994 int type, pfd, err; 9995 9996 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9997 if (err < 0) { 9998 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9999 kfunc_name, offset, 10000 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10001 return err; 10002 } 10003 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10004 if (type < 0) { 10005 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10006 kfunc_name, offset, 10007 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10008 return type; 10009 } 10010 attr.size = sizeof(attr); 10011 attr.config = type; 10012 attr.type = PERF_TYPE_TRACEPOINT; 10013 10014 pfd = syscall(__NR_perf_event_open, &attr, 10015 pid < 0 ? -1 : pid, /* pid */ 10016 pid == -1 ? 0 : -1, /* cpu */ 10017 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10018 if (pfd < 0) { 10019 err = -errno; 10020 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10021 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10022 return err; 10023 } 10024 return pfd; 10025 } 10026 10027 struct bpf_link * 10028 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10029 const char *func_name, 10030 const struct bpf_kprobe_opts *opts) 10031 { 10032 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10033 char errmsg[STRERR_BUFSIZE]; 10034 char *legacy_probe = NULL; 10035 struct bpf_link *link; 10036 size_t offset; 10037 bool retprobe, legacy; 10038 int pfd, err; 10039 10040 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10041 return libbpf_err_ptr(-EINVAL); 10042 10043 retprobe = OPTS_GET(opts, retprobe, false); 10044 offset = OPTS_GET(opts, offset, 0); 10045 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10046 10047 legacy = determine_kprobe_perf_type() < 0; 10048 if (!legacy) { 10049 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10050 func_name, offset, 10051 -1 /* pid */, 0 /* ref_ctr_off */); 10052 } else { 10053 char probe_name[256]; 10054 10055 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10056 func_name, offset); 10057 10058 legacy_probe = strdup(probe_name); 10059 if (!legacy_probe) 10060 return libbpf_err_ptr(-ENOMEM); 10061 10062 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10063 offset, -1 /* pid */); 10064 } 10065 if (pfd < 0) { 10066 err = -errno; 10067 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10068 prog->name, retprobe ? "kretprobe" : "kprobe", 10069 func_name, offset, 10070 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10071 goto err_out; 10072 } 10073 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10074 err = libbpf_get_error(link); 10075 if (err) { 10076 close(pfd); 10077 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10078 prog->name, retprobe ? "kretprobe" : "kprobe", 10079 func_name, offset, 10080 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10081 goto err_out; 10082 } 10083 if (legacy) { 10084 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10085 10086 perf_link->legacy_probe_name = legacy_probe; 10087 perf_link->legacy_is_kprobe = true; 10088 perf_link->legacy_is_retprobe = retprobe; 10089 } 10090 10091 return link; 10092 err_out: 10093 free(legacy_probe); 10094 return libbpf_err_ptr(err); 10095 } 10096 10097 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10098 bool retprobe, 10099 const char *func_name) 10100 { 10101 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10102 .retprobe = retprobe, 10103 ); 10104 10105 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10106 } 10107 10108 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie) 10109 { 10110 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10111 unsigned long offset = 0; 10112 struct bpf_link *link; 10113 const char *func_name; 10114 char *func; 10115 int n, err; 10116 10117 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10118 if (opts.retprobe) 10119 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10120 else 10121 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10122 10123 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10124 if (n < 1) { 10125 err = -EINVAL; 10126 pr_warn("kprobe name is invalid: %s\n", func_name); 10127 return libbpf_err_ptr(err); 10128 } 10129 if (opts.retprobe && offset != 0) { 10130 free(func); 10131 err = -EINVAL; 10132 pr_warn("kretprobes do not support offset specification\n"); 10133 return libbpf_err_ptr(err); 10134 } 10135 10136 opts.offset = offset; 10137 link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10138 free(func); 10139 return link; 10140 } 10141 10142 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10143 const char *binary_path, uint64_t offset) 10144 { 10145 int i; 10146 10147 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10148 10149 /* sanitize binary_path in the probe name */ 10150 for (i = 0; buf[i]; i++) { 10151 if (!isalnum(buf[i])) 10152 buf[i] = '_'; 10153 } 10154 } 10155 10156 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10157 const char *binary_path, size_t offset) 10158 { 10159 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10160 10161 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10162 retprobe ? 'r' : 'p', 10163 retprobe ? "uretprobes" : "uprobes", 10164 probe_name, binary_path, offset); 10165 } 10166 10167 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10168 { 10169 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10170 10171 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10172 } 10173 10174 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10175 { 10176 char file[512]; 10177 10178 snprintf(file, sizeof(file), 10179 "/sys/kernel/debug/tracing/events/%s/%s/id", 10180 retprobe ? "uretprobes" : "uprobes", probe_name); 10181 10182 return parse_uint_from_file(file, "%d\n"); 10183 } 10184 10185 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10186 const char *binary_path, size_t offset, int pid) 10187 { 10188 struct perf_event_attr attr; 10189 int type, pfd, err; 10190 10191 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10192 if (err < 0) { 10193 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10194 binary_path, (size_t)offset, err); 10195 return err; 10196 } 10197 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10198 if (type < 0) { 10199 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10200 binary_path, offset, err); 10201 return type; 10202 } 10203 10204 memset(&attr, 0, sizeof(attr)); 10205 attr.size = sizeof(attr); 10206 attr.config = type; 10207 attr.type = PERF_TYPE_TRACEPOINT; 10208 10209 pfd = syscall(__NR_perf_event_open, &attr, 10210 pid < 0 ? -1 : pid, /* pid */ 10211 pid == -1 ? 0 : -1, /* cpu */ 10212 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10213 if (pfd < 0) { 10214 err = -errno; 10215 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10216 return err; 10217 } 10218 return pfd; 10219 } 10220 10221 LIBBPF_API struct bpf_link * 10222 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10223 const char *binary_path, size_t func_offset, 10224 const struct bpf_uprobe_opts *opts) 10225 { 10226 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10227 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10228 struct bpf_link *link; 10229 size_t ref_ctr_off; 10230 int pfd, err; 10231 bool retprobe, legacy; 10232 10233 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10234 return libbpf_err_ptr(-EINVAL); 10235 10236 retprobe = OPTS_GET(opts, retprobe, false); 10237 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10238 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10239 10240 legacy = determine_uprobe_perf_type() < 0; 10241 if (!legacy) { 10242 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10243 func_offset, pid, ref_ctr_off); 10244 } else { 10245 char probe_name[512]; 10246 10247 if (ref_ctr_off) 10248 return libbpf_err_ptr(-EINVAL); 10249 10250 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10251 binary_path, func_offset); 10252 10253 legacy_probe = strdup(probe_name); 10254 if (!legacy_probe) 10255 return libbpf_err_ptr(-ENOMEM); 10256 10257 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10258 binary_path, func_offset, pid); 10259 } 10260 if (pfd < 0) { 10261 err = -errno; 10262 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10263 prog->name, retprobe ? "uretprobe" : "uprobe", 10264 binary_path, func_offset, 10265 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10266 goto err_out; 10267 } 10268 10269 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10270 err = libbpf_get_error(link); 10271 if (err) { 10272 close(pfd); 10273 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10274 prog->name, retprobe ? "uretprobe" : "uprobe", 10275 binary_path, func_offset, 10276 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10277 goto err_out; 10278 } 10279 if (legacy) { 10280 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10281 10282 perf_link->legacy_probe_name = legacy_probe; 10283 perf_link->legacy_is_kprobe = false; 10284 perf_link->legacy_is_retprobe = retprobe; 10285 } 10286 return link; 10287 err_out: 10288 free(legacy_probe); 10289 return libbpf_err_ptr(err); 10290 10291 } 10292 10293 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10294 bool retprobe, pid_t pid, 10295 const char *binary_path, 10296 size_t func_offset) 10297 { 10298 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10299 10300 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10301 } 10302 10303 static int determine_tracepoint_id(const char *tp_category, 10304 const char *tp_name) 10305 { 10306 char file[PATH_MAX]; 10307 int ret; 10308 10309 ret = snprintf(file, sizeof(file), 10310 "/sys/kernel/debug/tracing/events/%s/%s/id", 10311 tp_category, tp_name); 10312 if (ret < 0) 10313 return -errno; 10314 if (ret >= sizeof(file)) { 10315 pr_debug("tracepoint %s/%s path is too long\n", 10316 tp_category, tp_name); 10317 return -E2BIG; 10318 } 10319 return parse_uint_from_file(file, "%d\n"); 10320 } 10321 10322 static int perf_event_open_tracepoint(const char *tp_category, 10323 const char *tp_name) 10324 { 10325 struct perf_event_attr attr = {}; 10326 char errmsg[STRERR_BUFSIZE]; 10327 int tp_id, pfd, err; 10328 10329 tp_id = determine_tracepoint_id(tp_category, tp_name); 10330 if (tp_id < 0) { 10331 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10332 tp_category, tp_name, 10333 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10334 return tp_id; 10335 } 10336 10337 attr.type = PERF_TYPE_TRACEPOINT; 10338 attr.size = sizeof(attr); 10339 attr.config = tp_id; 10340 10341 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10342 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10343 if (pfd < 0) { 10344 err = -errno; 10345 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10346 tp_category, tp_name, 10347 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10348 return err; 10349 } 10350 return pfd; 10351 } 10352 10353 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10354 const char *tp_category, 10355 const char *tp_name, 10356 const struct bpf_tracepoint_opts *opts) 10357 { 10358 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10359 char errmsg[STRERR_BUFSIZE]; 10360 struct bpf_link *link; 10361 int pfd, err; 10362 10363 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10364 return libbpf_err_ptr(-EINVAL); 10365 10366 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10367 10368 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10369 if (pfd < 0) { 10370 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10371 prog->name, tp_category, tp_name, 10372 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10373 return libbpf_err_ptr(pfd); 10374 } 10375 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10376 err = libbpf_get_error(link); 10377 if (err) { 10378 close(pfd); 10379 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10380 prog->name, tp_category, tp_name, 10381 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10382 return libbpf_err_ptr(err); 10383 } 10384 return link; 10385 } 10386 10387 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10388 const char *tp_category, 10389 const char *tp_name) 10390 { 10391 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10392 } 10393 10394 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie) 10395 { 10396 char *sec_name, *tp_cat, *tp_name; 10397 struct bpf_link *link; 10398 10399 sec_name = strdup(prog->sec_name); 10400 if (!sec_name) 10401 return libbpf_err_ptr(-ENOMEM); 10402 10403 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10404 if (str_has_pfx(prog->sec_name, "tp/")) 10405 tp_cat = sec_name + sizeof("tp/") - 1; 10406 else 10407 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10408 tp_name = strchr(tp_cat, '/'); 10409 if (!tp_name) { 10410 free(sec_name); 10411 return libbpf_err_ptr(-EINVAL); 10412 } 10413 *tp_name = '\0'; 10414 tp_name++; 10415 10416 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10417 free(sec_name); 10418 return link; 10419 } 10420 10421 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10422 const char *tp_name) 10423 { 10424 char errmsg[STRERR_BUFSIZE]; 10425 struct bpf_link *link; 10426 int prog_fd, pfd; 10427 10428 prog_fd = bpf_program__fd(prog); 10429 if (prog_fd < 0) { 10430 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10431 return libbpf_err_ptr(-EINVAL); 10432 } 10433 10434 link = calloc(1, sizeof(*link)); 10435 if (!link) 10436 return libbpf_err_ptr(-ENOMEM); 10437 link->detach = &bpf_link__detach_fd; 10438 10439 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10440 if (pfd < 0) { 10441 pfd = -errno; 10442 free(link); 10443 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10444 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10445 return libbpf_err_ptr(pfd); 10446 } 10447 link->fd = pfd; 10448 return link; 10449 } 10450 10451 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie) 10452 { 10453 static const char *const prefixes[] = { 10454 "raw_tp/", 10455 "raw_tracepoint/", 10456 "raw_tp.w/", 10457 "raw_tracepoint.w/", 10458 }; 10459 size_t i; 10460 const char *tp_name = NULL; 10461 10462 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10463 if (str_has_pfx(prog->sec_name, prefixes[i])) { 10464 tp_name = prog->sec_name + strlen(prefixes[i]); 10465 break; 10466 } 10467 } 10468 if (!tp_name) { 10469 pr_warn("prog '%s': invalid section name '%s'\n", 10470 prog->name, prog->sec_name); 10471 return libbpf_err_ptr(-EINVAL); 10472 } 10473 10474 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10475 } 10476 10477 /* Common logic for all BPF program types that attach to a btf_id */ 10478 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 10479 { 10480 char errmsg[STRERR_BUFSIZE]; 10481 struct bpf_link *link; 10482 int prog_fd, pfd; 10483 10484 prog_fd = bpf_program__fd(prog); 10485 if (prog_fd < 0) { 10486 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10487 return libbpf_err_ptr(-EINVAL); 10488 } 10489 10490 link = calloc(1, sizeof(*link)); 10491 if (!link) 10492 return libbpf_err_ptr(-ENOMEM); 10493 link->detach = &bpf_link__detach_fd; 10494 10495 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10496 if (pfd < 0) { 10497 pfd = -errno; 10498 free(link); 10499 pr_warn("prog '%s': failed to attach: %s\n", 10500 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10501 return libbpf_err_ptr(pfd); 10502 } 10503 link->fd = pfd; 10504 return (struct bpf_link *)link; 10505 } 10506 10507 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 10508 { 10509 return bpf_program__attach_btf_id(prog); 10510 } 10511 10512 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 10513 { 10514 return bpf_program__attach_btf_id(prog); 10515 } 10516 10517 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie) 10518 { 10519 return bpf_program__attach_trace(prog); 10520 } 10521 10522 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie) 10523 { 10524 return bpf_program__attach_lsm(prog); 10525 } 10526 10527 static struct bpf_link * 10528 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 10529 const char *target_name) 10530 { 10531 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10532 .target_btf_id = btf_id); 10533 enum bpf_attach_type attach_type; 10534 char errmsg[STRERR_BUFSIZE]; 10535 struct bpf_link *link; 10536 int prog_fd, link_fd; 10537 10538 prog_fd = bpf_program__fd(prog); 10539 if (prog_fd < 0) { 10540 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10541 return libbpf_err_ptr(-EINVAL); 10542 } 10543 10544 link = calloc(1, sizeof(*link)); 10545 if (!link) 10546 return libbpf_err_ptr(-ENOMEM); 10547 link->detach = &bpf_link__detach_fd; 10548 10549 attach_type = bpf_program__expected_attach_type(prog); 10550 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10551 if (link_fd < 0) { 10552 link_fd = -errno; 10553 free(link); 10554 pr_warn("prog '%s': failed to attach to %s: %s\n", 10555 prog->name, target_name, 10556 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10557 return libbpf_err_ptr(link_fd); 10558 } 10559 link->fd = link_fd; 10560 return link; 10561 } 10562 10563 struct bpf_link * 10564 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 10565 { 10566 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10567 } 10568 10569 struct bpf_link * 10570 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 10571 { 10572 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10573 } 10574 10575 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 10576 { 10577 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10578 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10579 } 10580 10581 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 10582 int target_fd, 10583 const char *attach_func_name) 10584 { 10585 int btf_id; 10586 10587 if (!!target_fd != !!attach_func_name) { 10588 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10589 prog->name); 10590 return libbpf_err_ptr(-EINVAL); 10591 } 10592 10593 if (prog->type != BPF_PROG_TYPE_EXT) { 10594 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10595 prog->name); 10596 return libbpf_err_ptr(-EINVAL); 10597 } 10598 10599 if (target_fd) { 10600 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10601 if (btf_id < 0) 10602 return libbpf_err_ptr(btf_id); 10603 10604 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10605 } else { 10606 /* no target, so use raw_tracepoint_open for compatibility 10607 * with old kernels 10608 */ 10609 return bpf_program__attach_trace(prog); 10610 } 10611 } 10612 10613 struct bpf_link * 10614 bpf_program__attach_iter(const struct bpf_program *prog, 10615 const struct bpf_iter_attach_opts *opts) 10616 { 10617 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10618 char errmsg[STRERR_BUFSIZE]; 10619 struct bpf_link *link; 10620 int prog_fd, link_fd; 10621 __u32 target_fd = 0; 10622 10623 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10624 return libbpf_err_ptr(-EINVAL); 10625 10626 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10627 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10628 10629 prog_fd = bpf_program__fd(prog); 10630 if (prog_fd < 0) { 10631 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10632 return libbpf_err_ptr(-EINVAL); 10633 } 10634 10635 link = calloc(1, sizeof(*link)); 10636 if (!link) 10637 return libbpf_err_ptr(-ENOMEM); 10638 link->detach = &bpf_link__detach_fd; 10639 10640 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10641 &link_create_opts); 10642 if (link_fd < 0) { 10643 link_fd = -errno; 10644 free(link); 10645 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10646 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10647 return libbpf_err_ptr(link_fd); 10648 } 10649 link->fd = link_fd; 10650 return link; 10651 } 10652 10653 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie) 10654 { 10655 return bpf_program__attach_iter(prog, NULL); 10656 } 10657 10658 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 10659 { 10660 if (!prog->sec_def || !prog->sec_def->attach_fn) 10661 return libbpf_err_ptr(-ESRCH); 10662 10663 return prog->sec_def->attach_fn(prog, prog->sec_def->cookie); 10664 } 10665 10666 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10667 { 10668 __u32 zero = 0; 10669 10670 if (bpf_map_delete_elem(link->fd, &zero)) 10671 return -errno; 10672 10673 return 0; 10674 } 10675 10676 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10677 { 10678 struct bpf_struct_ops *st_ops; 10679 struct bpf_link *link; 10680 __u32 i, zero = 0; 10681 int err; 10682 10683 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10684 return libbpf_err_ptr(-EINVAL); 10685 10686 link = calloc(1, sizeof(*link)); 10687 if (!link) 10688 return libbpf_err_ptr(-EINVAL); 10689 10690 st_ops = map->st_ops; 10691 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10692 struct bpf_program *prog = st_ops->progs[i]; 10693 void *kern_data; 10694 int prog_fd; 10695 10696 if (!prog) 10697 continue; 10698 10699 prog_fd = bpf_program__fd(prog); 10700 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10701 *(unsigned long *)kern_data = prog_fd; 10702 } 10703 10704 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10705 if (err) { 10706 err = -errno; 10707 free(link); 10708 return libbpf_err_ptr(err); 10709 } 10710 10711 link->detach = bpf_link__detach_struct_ops; 10712 link->fd = map->fd; 10713 10714 return link; 10715 } 10716 10717 static enum bpf_perf_event_ret 10718 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10719 void **copy_mem, size_t *copy_size, 10720 bpf_perf_event_print_t fn, void *private_data) 10721 { 10722 struct perf_event_mmap_page *header = mmap_mem; 10723 __u64 data_head = ring_buffer_read_head(header); 10724 __u64 data_tail = header->data_tail; 10725 void *base = ((__u8 *)header) + page_size; 10726 int ret = LIBBPF_PERF_EVENT_CONT; 10727 struct perf_event_header *ehdr; 10728 size_t ehdr_size; 10729 10730 while (data_head != data_tail) { 10731 ehdr = base + (data_tail & (mmap_size - 1)); 10732 ehdr_size = ehdr->size; 10733 10734 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10735 void *copy_start = ehdr; 10736 size_t len_first = base + mmap_size - copy_start; 10737 size_t len_secnd = ehdr_size - len_first; 10738 10739 if (*copy_size < ehdr_size) { 10740 free(*copy_mem); 10741 *copy_mem = malloc(ehdr_size); 10742 if (!*copy_mem) { 10743 *copy_size = 0; 10744 ret = LIBBPF_PERF_EVENT_ERROR; 10745 break; 10746 } 10747 *copy_size = ehdr_size; 10748 } 10749 10750 memcpy(*copy_mem, copy_start, len_first); 10751 memcpy(*copy_mem + len_first, base, len_secnd); 10752 ehdr = *copy_mem; 10753 } 10754 10755 ret = fn(ehdr, private_data); 10756 data_tail += ehdr_size; 10757 if (ret != LIBBPF_PERF_EVENT_CONT) 10758 break; 10759 } 10760 10761 ring_buffer_write_tail(header, data_tail); 10762 return libbpf_err(ret); 10763 } 10764 10765 __attribute__((alias("perf_event_read_simple"))) 10766 enum bpf_perf_event_ret 10767 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10768 void **copy_mem, size_t *copy_size, 10769 bpf_perf_event_print_t fn, void *private_data); 10770 10771 struct perf_buffer; 10772 10773 struct perf_buffer_params { 10774 struct perf_event_attr *attr; 10775 /* if event_cb is specified, it takes precendence */ 10776 perf_buffer_event_fn event_cb; 10777 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10778 perf_buffer_sample_fn sample_cb; 10779 perf_buffer_lost_fn lost_cb; 10780 void *ctx; 10781 int cpu_cnt; 10782 int *cpus; 10783 int *map_keys; 10784 }; 10785 10786 struct perf_cpu_buf { 10787 struct perf_buffer *pb; 10788 void *base; /* mmap()'ed memory */ 10789 void *buf; /* for reconstructing segmented data */ 10790 size_t buf_size; 10791 int fd; 10792 int cpu; 10793 int map_key; 10794 }; 10795 10796 struct perf_buffer { 10797 perf_buffer_event_fn event_cb; 10798 perf_buffer_sample_fn sample_cb; 10799 perf_buffer_lost_fn lost_cb; 10800 void *ctx; /* passed into callbacks */ 10801 10802 size_t page_size; 10803 size_t mmap_size; 10804 struct perf_cpu_buf **cpu_bufs; 10805 struct epoll_event *events; 10806 int cpu_cnt; /* number of allocated CPU buffers */ 10807 int epoll_fd; /* perf event FD */ 10808 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10809 }; 10810 10811 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10812 struct perf_cpu_buf *cpu_buf) 10813 { 10814 if (!cpu_buf) 10815 return; 10816 if (cpu_buf->base && 10817 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10818 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10819 if (cpu_buf->fd >= 0) { 10820 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10821 close(cpu_buf->fd); 10822 } 10823 free(cpu_buf->buf); 10824 free(cpu_buf); 10825 } 10826 10827 void perf_buffer__free(struct perf_buffer *pb) 10828 { 10829 int i; 10830 10831 if (IS_ERR_OR_NULL(pb)) 10832 return; 10833 if (pb->cpu_bufs) { 10834 for (i = 0; i < pb->cpu_cnt; i++) { 10835 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10836 10837 if (!cpu_buf) 10838 continue; 10839 10840 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10841 perf_buffer__free_cpu_buf(pb, cpu_buf); 10842 } 10843 free(pb->cpu_bufs); 10844 } 10845 if (pb->epoll_fd >= 0) 10846 close(pb->epoll_fd); 10847 free(pb->events); 10848 free(pb); 10849 } 10850 10851 static struct perf_cpu_buf * 10852 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10853 int cpu, int map_key) 10854 { 10855 struct perf_cpu_buf *cpu_buf; 10856 char msg[STRERR_BUFSIZE]; 10857 int err; 10858 10859 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10860 if (!cpu_buf) 10861 return ERR_PTR(-ENOMEM); 10862 10863 cpu_buf->pb = pb; 10864 cpu_buf->cpu = cpu; 10865 cpu_buf->map_key = map_key; 10866 10867 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10868 -1, PERF_FLAG_FD_CLOEXEC); 10869 if (cpu_buf->fd < 0) { 10870 err = -errno; 10871 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10872 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10873 goto error; 10874 } 10875 10876 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10877 PROT_READ | PROT_WRITE, MAP_SHARED, 10878 cpu_buf->fd, 0); 10879 if (cpu_buf->base == MAP_FAILED) { 10880 cpu_buf->base = NULL; 10881 err = -errno; 10882 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10883 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10884 goto error; 10885 } 10886 10887 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10888 err = -errno; 10889 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10890 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10891 goto error; 10892 } 10893 10894 return cpu_buf; 10895 10896 error: 10897 perf_buffer__free_cpu_buf(pb, cpu_buf); 10898 return (struct perf_cpu_buf *)ERR_PTR(err); 10899 } 10900 10901 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10902 struct perf_buffer_params *p); 10903 10904 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 10905 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 10906 perf_buffer_sample_fn sample_cb, 10907 perf_buffer_lost_fn lost_cb, 10908 void *ctx, 10909 const struct perf_buffer_opts *opts) 10910 { 10911 struct perf_buffer_params p = {}; 10912 struct perf_event_attr attr = {}; 10913 10914 if (!OPTS_VALID(opts, perf_buffer_opts)) 10915 return libbpf_err_ptr(-EINVAL); 10916 10917 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10918 attr.type = PERF_TYPE_SOFTWARE; 10919 attr.sample_type = PERF_SAMPLE_RAW; 10920 attr.sample_period = 1; 10921 attr.wakeup_events = 1; 10922 10923 p.attr = &attr; 10924 p.sample_cb = sample_cb; 10925 p.lost_cb = lost_cb; 10926 p.ctx = ctx; 10927 10928 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10929 } 10930 10931 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 10932 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 10933 const struct perf_buffer_opts *opts) 10934 { 10935 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 10936 opts ? opts->sample_cb : NULL, 10937 opts ? opts->lost_cb : NULL, 10938 opts ? opts->ctx : NULL, 10939 NULL); 10940 } 10941 10942 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 10943 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 10944 struct perf_event_attr *attr, 10945 perf_buffer_event_fn event_cb, void *ctx, 10946 const struct perf_buffer_raw_opts *opts) 10947 { 10948 struct perf_buffer_params p = {}; 10949 10950 if (page_cnt == 0 || !attr) 10951 return libbpf_err_ptr(-EINVAL); 10952 10953 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 10954 return libbpf_err_ptr(-EINVAL); 10955 10956 p.attr = attr; 10957 p.event_cb = event_cb; 10958 p.ctx = ctx; 10959 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 10960 p.cpus = OPTS_GET(opts, cpus, NULL); 10961 p.map_keys = OPTS_GET(opts, map_keys, NULL); 10962 10963 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10964 } 10965 10966 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 10967 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 10968 const struct perf_buffer_raw_opts *opts) 10969 { 10970 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 10971 .cpu_cnt = opts->cpu_cnt, 10972 .cpus = opts->cpus, 10973 .map_keys = opts->map_keys, 10974 ); 10975 10976 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 10977 opts->event_cb, opts->ctx, &inner_opts); 10978 } 10979 10980 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10981 struct perf_buffer_params *p) 10982 { 10983 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10984 struct bpf_map_info map; 10985 char msg[STRERR_BUFSIZE]; 10986 struct perf_buffer *pb; 10987 bool *online = NULL; 10988 __u32 map_info_len; 10989 int err, i, j, n; 10990 10991 if (page_cnt & (page_cnt - 1)) { 10992 pr_warn("page count should be power of two, but is %zu\n", 10993 page_cnt); 10994 return ERR_PTR(-EINVAL); 10995 } 10996 10997 /* best-effort sanity checks */ 10998 memset(&map, 0, sizeof(map)); 10999 map_info_len = sizeof(map); 11000 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11001 if (err) { 11002 err = -errno; 11003 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11004 * -EBADFD, -EFAULT, or -E2BIG on real error 11005 */ 11006 if (err != -EINVAL) { 11007 pr_warn("failed to get map info for map FD %d: %s\n", 11008 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11009 return ERR_PTR(err); 11010 } 11011 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11012 map_fd); 11013 } else { 11014 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11015 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11016 map.name); 11017 return ERR_PTR(-EINVAL); 11018 } 11019 } 11020 11021 pb = calloc(1, sizeof(*pb)); 11022 if (!pb) 11023 return ERR_PTR(-ENOMEM); 11024 11025 pb->event_cb = p->event_cb; 11026 pb->sample_cb = p->sample_cb; 11027 pb->lost_cb = p->lost_cb; 11028 pb->ctx = p->ctx; 11029 11030 pb->page_size = getpagesize(); 11031 pb->mmap_size = pb->page_size * page_cnt; 11032 pb->map_fd = map_fd; 11033 11034 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11035 if (pb->epoll_fd < 0) { 11036 err = -errno; 11037 pr_warn("failed to create epoll instance: %s\n", 11038 libbpf_strerror_r(err, msg, sizeof(msg))); 11039 goto error; 11040 } 11041 11042 if (p->cpu_cnt > 0) { 11043 pb->cpu_cnt = p->cpu_cnt; 11044 } else { 11045 pb->cpu_cnt = libbpf_num_possible_cpus(); 11046 if (pb->cpu_cnt < 0) { 11047 err = pb->cpu_cnt; 11048 goto error; 11049 } 11050 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11051 pb->cpu_cnt = map.max_entries; 11052 } 11053 11054 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11055 if (!pb->events) { 11056 err = -ENOMEM; 11057 pr_warn("failed to allocate events: out of memory\n"); 11058 goto error; 11059 } 11060 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11061 if (!pb->cpu_bufs) { 11062 err = -ENOMEM; 11063 pr_warn("failed to allocate buffers: out of memory\n"); 11064 goto error; 11065 } 11066 11067 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11068 if (err) { 11069 pr_warn("failed to get online CPU mask: %d\n", err); 11070 goto error; 11071 } 11072 11073 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11074 struct perf_cpu_buf *cpu_buf; 11075 int cpu, map_key; 11076 11077 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11078 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11079 11080 /* in case user didn't explicitly requested particular CPUs to 11081 * be attached to, skip offline/not present CPUs 11082 */ 11083 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11084 continue; 11085 11086 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11087 if (IS_ERR(cpu_buf)) { 11088 err = PTR_ERR(cpu_buf); 11089 goto error; 11090 } 11091 11092 pb->cpu_bufs[j] = cpu_buf; 11093 11094 err = bpf_map_update_elem(pb->map_fd, &map_key, 11095 &cpu_buf->fd, 0); 11096 if (err) { 11097 err = -errno; 11098 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11099 cpu, map_key, cpu_buf->fd, 11100 libbpf_strerror_r(err, msg, sizeof(msg))); 11101 goto error; 11102 } 11103 11104 pb->events[j].events = EPOLLIN; 11105 pb->events[j].data.ptr = cpu_buf; 11106 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11107 &pb->events[j]) < 0) { 11108 err = -errno; 11109 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11110 cpu, cpu_buf->fd, 11111 libbpf_strerror_r(err, msg, sizeof(msg))); 11112 goto error; 11113 } 11114 j++; 11115 } 11116 pb->cpu_cnt = j; 11117 free(online); 11118 11119 return pb; 11120 11121 error: 11122 free(online); 11123 if (pb) 11124 perf_buffer__free(pb); 11125 return ERR_PTR(err); 11126 } 11127 11128 struct perf_sample_raw { 11129 struct perf_event_header header; 11130 uint32_t size; 11131 char data[]; 11132 }; 11133 11134 struct perf_sample_lost { 11135 struct perf_event_header header; 11136 uint64_t id; 11137 uint64_t lost; 11138 uint64_t sample_id; 11139 }; 11140 11141 static enum bpf_perf_event_ret 11142 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11143 { 11144 struct perf_cpu_buf *cpu_buf = ctx; 11145 struct perf_buffer *pb = cpu_buf->pb; 11146 void *data = e; 11147 11148 /* user wants full control over parsing perf event */ 11149 if (pb->event_cb) 11150 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11151 11152 switch (e->type) { 11153 case PERF_RECORD_SAMPLE: { 11154 struct perf_sample_raw *s = data; 11155 11156 if (pb->sample_cb) 11157 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11158 break; 11159 } 11160 case PERF_RECORD_LOST: { 11161 struct perf_sample_lost *s = data; 11162 11163 if (pb->lost_cb) 11164 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11165 break; 11166 } 11167 default: 11168 pr_warn("unknown perf sample type %d\n", e->type); 11169 return LIBBPF_PERF_EVENT_ERROR; 11170 } 11171 return LIBBPF_PERF_EVENT_CONT; 11172 } 11173 11174 static int perf_buffer__process_records(struct perf_buffer *pb, 11175 struct perf_cpu_buf *cpu_buf) 11176 { 11177 enum bpf_perf_event_ret ret; 11178 11179 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11180 pb->page_size, &cpu_buf->buf, 11181 &cpu_buf->buf_size, 11182 perf_buffer__process_record, cpu_buf); 11183 if (ret != LIBBPF_PERF_EVENT_CONT) 11184 return ret; 11185 return 0; 11186 } 11187 11188 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11189 { 11190 return pb->epoll_fd; 11191 } 11192 11193 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11194 { 11195 int i, cnt, err; 11196 11197 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11198 if (cnt < 0) 11199 return -errno; 11200 11201 for (i = 0; i < cnt; i++) { 11202 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11203 11204 err = perf_buffer__process_records(pb, cpu_buf); 11205 if (err) { 11206 pr_warn("error while processing records: %d\n", err); 11207 return libbpf_err(err); 11208 } 11209 } 11210 return cnt; 11211 } 11212 11213 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11214 * manager. 11215 */ 11216 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11217 { 11218 return pb->cpu_cnt; 11219 } 11220 11221 /* 11222 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11223 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11224 * select()/poll()/epoll() Linux syscalls. 11225 */ 11226 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11227 { 11228 struct perf_cpu_buf *cpu_buf; 11229 11230 if (buf_idx >= pb->cpu_cnt) 11231 return libbpf_err(-EINVAL); 11232 11233 cpu_buf = pb->cpu_bufs[buf_idx]; 11234 if (!cpu_buf) 11235 return libbpf_err(-ENOENT); 11236 11237 return cpu_buf->fd; 11238 } 11239 11240 /* 11241 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11242 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11243 * consume, do nothing and return success. 11244 * Returns: 11245 * - 0 on success; 11246 * - <0 on failure. 11247 */ 11248 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11249 { 11250 struct perf_cpu_buf *cpu_buf; 11251 11252 if (buf_idx >= pb->cpu_cnt) 11253 return libbpf_err(-EINVAL); 11254 11255 cpu_buf = pb->cpu_bufs[buf_idx]; 11256 if (!cpu_buf) 11257 return libbpf_err(-ENOENT); 11258 11259 return perf_buffer__process_records(pb, cpu_buf); 11260 } 11261 11262 int perf_buffer__consume(struct perf_buffer *pb) 11263 { 11264 int i, err; 11265 11266 for (i = 0; i < pb->cpu_cnt; i++) { 11267 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11268 11269 if (!cpu_buf) 11270 continue; 11271 11272 err = perf_buffer__process_records(pb, cpu_buf); 11273 if (err) { 11274 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11275 return libbpf_err(err); 11276 } 11277 } 11278 return 0; 11279 } 11280 11281 struct bpf_prog_info_array_desc { 11282 int array_offset; /* e.g. offset of jited_prog_insns */ 11283 int count_offset; /* e.g. offset of jited_prog_len */ 11284 int size_offset; /* > 0: offset of rec size, 11285 * < 0: fix size of -size_offset 11286 */ 11287 }; 11288 11289 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 11290 [BPF_PROG_INFO_JITED_INSNS] = { 11291 offsetof(struct bpf_prog_info, jited_prog_insns), 11292 offsetof(struct bpf_prog_info, jited_prog_len), 11293 -1, 11294 }, 11295 [BPF_PROG_INFO_XLATED_INSNS] = { 11296 offsetof(struct bpf_prog_info, xlated_prog_insns), 11297 offsetof(struct bpf_prog_info, xlated_prog_len), 11298 -1, 11299 }, 11300 [BPF_PROG_INFO_MAP_IDS] = { 11301 offsetof(struct bpf_prog_info, map_ids), 11302 offsetof(struct bpf_prog_info, nr_map_ids), 11303 -(int)sizeof(__u32), 11304 }, 11305 [BPF_PROG_INFO_JITED_KSYMS] = { 11306 offsetof(struct bpf_prog_info, jited_ksyms), 11307 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11308 -(int)sizeof(__u64), 11309 }, 11310 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11311 offsetof(struct bpf_prog_info, jited_func_lens), 11312 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11313 -(int)sizeof(__u32), 11314 }, 11315 [BPF_PROG_INFO_FUNC_INFO] = { 11316 offsetof(struct bpf_prog_info, func_info), 11317 offsetof(struct bpf_prog_info, nr_func_info), 11318 offsetof(struct bpf_prog_info, func_info_rec_size), 11319 }, 11320 [BPF_PROG_INFO_LINE_INFO] = { 11321 offsetof(struct bpf_prog_info, line_info), 11322 offsetof(struct bpf_prog_info, nr_line_info), 11323 offsetof(struct bpf_prog_info, line_info_rec_size), 11324 }, 11325 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11326 offsetof(struct bpf_prog_info, jited_line_info), 11327 offsetof(struct bpf_prog_info, nr_jited_line_info), 11328 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11329 }, 11330 [BPF_PROG_INFO_PROG_TAGS] = { 11331 offsetof(struct bpf_prog_info, prog_tags), 11332 offsetof(struct bpf_prog_info, nr_prog_tags), 11333 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11334 }, 11335 11336 }; 11337 11338 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11339 int offset) 11340 { 11341 __u32 *array = (__u32 *)info; 11342 11343 if (offset >= 0) 11344 return array[offset / sizeof(__u32)]; 11345 return -(int)offset; 11346 } 11347 11348 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11349 int offset) 11350 { 11351 __u64 *array = (__u64 *)info; 11352 11353 if (offset >= 0) 11354 return array[offset / sizeof(__u64)]; 11355 return -(int)offset; 11356 } 11357 11358 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11359 __u32 val) 11360 { 11361 __u32 *array = (__u32 *)info; 11362 11363 if (offset >= 0) 11364 array[offset / sizeof(__u32)] = val; 11365 } 11366 11367 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11368 __u64 val) 11369 { 11370 __u64 *array = (__u64 *)info; 11371 11372 if (offset >= 0) 11373 array[offset / sizeof(__u64)] = val; 11374 } 11375 11376 struct bpf_prog_info_linear * 11377 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11378 { 11379 struct bpf_prog_info_linear *info_linear; 11380 struct bpf_prog_info info = {}; 11381 __u32 info_len = sizeof(info); 11382 __u32 data_len = 0; 11383 int i, err; 11384 void *ptr; 11385 11386 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11387 return libbpf_err_ptr(-EINVAL); 11388 11389 /* step 1: get array dimensions */ 11390 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11391 if (err) { 11392 pr_debug("can't get prog info: %s", strerror(errno)); 11393 return libbpf_err_ptr(-EFAULT); 11394 } 11395 11396 /* step 2: calculate total size of all arrays */ 11397 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11398 bool include_array = (arrays & (1UL << i)) > 0; 11399 struct bpf_prog_info_array_desc *desc; 11400 __u32 count, size; 11401 11402 desc = bpf_prog_info_array_desc + i; 11403 11404 /* kernel is too old to support this field */ 11405 if (info_len < desc->array_offset + sizeof(__u32) || 11406 info_len < desc->count_offset + sizeof(__u32) || 11407 (desc->size_offset > 0 && info_len < desc->size_offset)) 11408 include_array = false; 11409 11410 if (!include_array) { 11411 arrays &= ~(1UL << i); /* clear the bit */ 11412 continue; 11413 } 11414 11415 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11416 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11417 11418 data_len += count * size; 11419 } 11420 11421 /* step 3: allocate continuous memory */ 11422 data_len = roundup(data_len, sizeof(__u64)); 11423 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11424 if (!info_linear) 11425 return libbpf_err_ptr(-ENOMEM); 11426 11427 /* step 4: fill data to info_linear->info */ 11428 info_linear->arrays = arrays; 11429 memset(&info_linear->info, 0, sizeof(info)); 11430 ptr = info_linear->data; 11431 11432 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11433 struct bpf_prog_info_array_desc *desc; 11434 __u32 count, size; 11435 11436 if ((arrays & (1UL << i)) == 0) 11437 continue; 11438 11439 desc = bpf_prog_info_array_desc + i; 11440 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11441 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11442 bpf_prog_info_set_offset_u32(&info_linear->info, 11443 desc->count_offset, count); 11444 bpf_prog_info_set_offset_u32(&info_linear->info, 11445 desc->size_offset, size); 11446 bpf_prog_info_set_offset_u64(&info_linear->info, 11447 desc->array_offset, 11448 ptr_to_u64(ptr)); 11449 ptr += count * size; 11450 } 11451 11452 /* step 5: call syscall again to get required arrays */ 11453 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11454 if (err) { 11455 pr_debug("can't get prog info: %s", strerror(errno)); 11456 free(info_linear); 11457 return libbpf_err_ptr(-EFAULT); 11458 } 11459 11460 /* step 6: verify the data */ 11461 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11462 struct bpf_prog_info_array_desc *desc; 11463 __u32 v1, v2; 11464 11465 if ((arrays & (1UL << i)) == 0) 11466 continue; 11467 11468 desc = bpf_prog_info_array_desc + i; 11469 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11470 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11471 desc->count_offset); 11472 if (v1 != v2) 11473 pr_warn("%s: mismatch in element count\n", __func__); 11474 11475 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11476 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11477 desc->size_offset); 11478 if (v1 != v2) 11479 pr_warn("%s: mismatch in rec size\n", __func__); 11480 } 11481 11482 /* step 7: update info_len and data_len */ 11483 info_linear->info_len = sizeof(struct bpf_prog_info); 11484 info_linear->data_len = data_len; 11485 11486 return info_linear; 11487 } 11488 11489 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11490 { 11491 int i; 11492 11493 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11494 struct bpf_prog_info_array_desc *desc; 11495 __u64 addr, offs; 11496 11497 if ((info_linear->arrays & (1UL << i)) == 0) 11498 continue; 11499 11500 desc = bpf_prog_info_array_desc + i; 11501 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11502 desc->array_offset); 11503 offs = addr - ptr_to_u64(info_linear->data); 11504 bpf_prog_info_set_offset_u64(&info_linear->info, 11505 desc->array_offset, offs); 11506 } 11507 } 11508 11509 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11510 { 11511 int i; 11512 11513 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11514 struct bpf_prog_info_array_desc *desc; 11515 __u64 addr, offs; 11516 11517 if ((info_linear->arrays & (1UL << i)) == 0) 11518 continue; 11519 11520 desc = bpf_prog_info_array_desc + i; 11521 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11522 desc->array_offset); 11523 addr = offs + ptr_to_u64(info_linear->data); 11524 bpf_prog_info_set_offset_u64(&info_linear->info, 11525 desc->array_offset, addr); 11526 } 11527 } 11528 11529 int bpf_program__set_attach_target(struct bpf_program *prog, 11530 int attach_prog_fd, 11531 const char *attach_func_name) 11532 { 11533 int btf_obj_fd = 0, btf_id = 0, err; 11534 11535 if (!prog || attach_prog_fd < 0) 11536 return libbpf_err(-EINVAL); 11537 11538 if (prog->obj->loaded) 11539 return libbpf_err(-EINVAL); 11540 11541 if (attach_prog_fd && !attach_func_name) { 11542 /* remember attach_prog_fd and let bpf_program__load() find 11543 * BTF ID during the program load 11544 */ 11545 prog->attach_prog_fd = attach_prog_fd; 11546 return 0; 11547 } 11548 11549 if (attach_prog_fd) { 11550 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11551 attach_prog_fd); 11552 if (btf_id < 0) 11553 return libbpf_err(btf_id); 11554 } else { 11555 if (!attach_func_name) 11556 return libbpf_err(-EINVAL); 11557 11558 /* load btf_vmlinux, if not yet */ 11559 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11560 if (err) 11561 return libbpf_err(err); 11562 err = find_kernel_btf_id(prog->obj, attach_func_name, 11563 prog->expected_attach_type, 11564 &btf_obj_fd, &btf_id); 11565 if (err) 11566 return libbpf_err(err); 11567 } 11568 11569 prog->attach_btf_id = btf_id; 11570 prog->attach_btf_obj_fd = btf_obj_fd; 11571 prog->attach_prog_fd = attach_prog_fd; 11572 return 0; 11573 } 11574 11575 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11576 { 11577 int err = 0, n, len, start, end = -1; 11578 bool *tmp; 11579 11580 *mask = NULL; 11581 *mask_sz = 0; 11582 11583 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11584 while (*s) { 11585 if (*s == ',' || *s == '\n') { 11586 s++; 11587 continue; 11588 } 11589 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11590 if (n <= 0 || n > 2) { 11591 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11592 err = -EINVAL; 11593 goto cleanup; 11594 } else if (n == 1) { 11595 end = start; 11596 } 11597 if (start < 0 || start > end) { 11598 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11599 start, end, s); 11600 err = -EINVAL; 11601 goto cleanup; 11602 } 11603 tmp = realloc(*mask, end + 1); 11604 if (!tmp) { 11605 err = -ENOMEM; 11606 goto cleanup; 11607 } 11608 *mask = tmp; 11609 memset(tmp + *mask_sz, 0, start - *mask_sz); 11610 memset(tmp + start, 1, end - start + 1); 11611 *mask_sz = end + 1; 11612 s += len; 11613 } 11614 if (!*mask_sz) { 11615 pr_warn("Empty CPU range\n"); 11616 return -EINVAL; 11617 } 11618 return 0; 11619 cleanup: 11620 free(*mask); 11621 *mask = NULL; 11622 return err; 11623 } 11624 11625 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11626 { 11627 int fd, err = 0, len; 11628 char buf[128]; 11629 11630 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11631 if (fd < 0) { 11632 err = -errno; 11633 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11634 return err; 11635 } 11636 len = read(fd, buf, sizeof(buf)); 11637 close(fd); 11638 if (len <= 0) { 11639 err = len ? -errno : -EINVAL; 11640 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11641 return err; 11642 } 11643 if (len >= sizeof(buf)) { 11644 pr_warn("CPU mask is too big in file %s\n", fcpu); 11645 return -E2BIG; 11646 } 11647 buf[len] = '\0'; 11648 11649 return parse_cpu_mask_str(buf, mask, mask_sz); 11650 } 11651 11652 int libbpf_num_possible_cpus(void) 11653 { 11654 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11655 static int cpus; 11656 int err, n, i, tmp_cpus; 11657 bool *mask; 11658 11659 tmp_cpus = READ_ONCE(cpus); 11660 if (tmp_cpus > 0) 11661 return tmp_cpus; 11662 11663 err = parse_cpu_mask_file(fcpu, &mask, &n); 11664 if (err) 11665 return libbpf_err(err); 11666 11667 tmp_cpus = 0; 11668 for (i = 0; i < n; i++) { 11669 if (mask[i]) 11670 tmp_cpus++; 11671 } 11672 free(mask); 11673 11674 WRITE_ONCE(cpus, tmp_cpus); 11675 return tmp_cpus; 11676 } 11677 11678 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11679 const struct bpf_object_open_opts *opts) 11680 { 11681 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11682 .object_name = s->name, 11683 ); 11684 struct bpf_object *obj; 11685 int i, err; 11686 11687 /* Attempt to preserve opts->object_name, unless overriden by user 11688 * explicitly. Overwriting object name for skeletons is discouraged, 11689 * as it breaks global data maps, because they contain object name 11690 * prefix as their own map name prefix. When skeleton is generated, 11691 * bpftool is making an assumption that this name will stay the same. 11692 */ 11693 if (opts) { 11694 memcpy(&skel_opts, opts, sizeof(*opts)); 11695 if (!opts->object_name) 11696 skel_opts.object_name = s->name; 11697 } 11698 11699 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11700 err = libbpf_get_error(obj); 11701 if (err) { 11702 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 11703 s->name, err); 11704 return libbpf_err(err); 11705 } 11706 11707 *s->obj = obj; 11708 11709 for (i = 0; i < s->map_cnt; i++) { 11710 struct bpf_map **map = s->maps[i].map; 11711 const char *name = s->maps[i].name; 11712 void **mmaped = s->maps[i].mmaped; 11713 11714 *map = bpf_object__find_map_by_name(obj, name); 11715 if (!*map) { 11716 pr_warn("failed to find skeleton map '%s'\n", name); 11717 return libbpf_err(-ESRCH); 11718 } 11719 11720 /* externs shouldn't be pre-setup from user code */ 11721 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11722 *mmaped = (*map)->mmaped; 11723 } 11724 11725 for (i = 0; i < s->prog_cnt; i++) { 11726 struct bpf_program **prog = s->progs[i].prog; 11727 const char *name = s->progs[i].name; 11728 11729 *prog = bpf_object__find_program_by_name(obj, name); 11730 if (!*prog) { 11731 pr_warn("failed to find skeleton program '%s'\n", name); 11732 return libbpf_err(-ESRCH); 11733 } 11734 } 11735 11736 return 0; 11737 } 11738 11739 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11740 { 11741 int i, err; 11742 11743 err = bpf_object__load(*s->obj); 11744 if (err) { 11745 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11746 return libbpf_err(err); 11747 } 11748 11749 for (i = 0; i < s->map_cnt; i++) { 11750 struct bpf_map *map = *s->maps[i].map; 11751 size_t mmap_sz = bpf_map_mmap_sz(map); 11752 int prot, map_fd = bpf_map__fd(map); 11753 void **mmaped = s->maps[i].mmaped; 11754 11755 if (!mmaped) 11756 continue; 11757 11758 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11759 *mmaped = NULL; 11760 continue; 11761 } 11762 11763 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11764 prot = PROT_READ; 11765 else 11766 prot = PROT_READ | PROT_WRITE; 11767 11768 /* Remap anonymous mmap()-ed "map initialization image" as 11769 * a BPF map-backed mmap()-ed memory, but preserving the same 11770 * memory address. This will cause kernel to change process' 11771 * page table to point to a different piece of kernel memory, 11772 * but from userspace point of view memory address (and its 11773 * contents, being identical at this point) will stay the 11774 * same. This mapping will be released by bpf_object__close() 11775 * as per normal clean up procedure, so we don't need to worry 11776 * about it from skeleton's clean up perspective. 11777 */ 11778 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11779 MAP_SHARED | MAP_FIXED, map_fd, 0); 11780 if (*mmaped == MAP_FAILED) { 11781 err = -errno; 11782 *mmaped = NULL; 11783 pr_warn("failed to re-mmap() map '%s': %d\n", 11784 bpf_map__name(map), err); 11785 return libbpf_err(err); 11786 } 11787 } 11788 11789 return 0; 11790 } 11791 11792 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11793 { 11794 int i, err; 11795 11796 for (i = 0; i < s->prog_cnt; i++) { 11797 struct bpf_program *prog = *s->progs[i].prog; 11798 struct bpf_link **link = s->progs[i].link; 11799 11800 if (!prog->load) 11801 continue; 11802 11803 /* auto-attaching not supported for this program */ 11804 if (!prog->sec_def || !prog->sec_def->attach_fn) 11805 continue; 11806 11807 *link = bpf_program__attach(prog); 11808 err = libbpf_get_error(*link); 11809 if (err) { 11810 pr_warn("failed to auto-attach program '%s': %d\n", 11811 bpf_program__name(prog), err); 11812 return libbpf_err(err); 11813 } 11814 } 11815 11816 return 0; 11817 } 11818 11819 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11820 { 11821 int i; 11822 11823 for (i = 0; i < s->prog_cnt; i++) { 11824 struct bpf_link **link = s->progs[i].link; 11825 11826 bpf_link__destroy(*link); 11827 *link = NULL; 11828 } 11829 } 11830 11831 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11832 { 11833 if (!s) 11834 return; 11835 11836 if (s->progs) 11837 bpf_object__detach_skeleton(s); 11838 if (s->obj) 11839 bpf_object__close(*s->obj); 11840 free(s->maps); 11841 free(s->progs); 11842 free(s); 11843 } 11844