1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define MAX_EVENT_NAME_LEN 64 64 65 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 66 67 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 68 69 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 70 * compilation if user enables corresponding warning. Disable it explicitly. 71 */ 72 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 73 74 #define __printf(a, b) __attribute__((format(printf, a, b))) 75 76 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 77 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 78 static int map_set_def_max_entries(struct bpf_map *map); 79 80 static const char * const attach_type_name[] = { 81 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 82 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 83 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 84 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 85 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 86 [BPF_CGROUP_DEVICE] = "cgroup_device", 87 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 88 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 89 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 90 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 91 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 92 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 93 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 94 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 95 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 96 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 97 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 98 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 99 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 100 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 101 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 102 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 103 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 104 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 105 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 106 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 107 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 108 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 109 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 110 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 111 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 112 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 113 [BPF_LIRC_MODE2] = "lirc_mode2", 114 [BPF_FLOW_DISSECTOR] = "flow_dissector", 115 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 116 [BPF_TRACE_FENTRY] = "trace_fentry", 117 [BPF_TRACE_FEXIT] = "trace_fexit", 118 [BPF_MODIFY_RETURN] = "modify_return", 119 [BPF_LSM_MAC] = "lsm_mac", 120 [BPF_LSM_CGROUP] = "lsm_cgroup", 121 [BPF_SK_LOOKUP] = "sk_lookup", 122 [BPF_TRACE_ITER] = "trace_iter", 123 [BPF_XDP_DEVMAP] = "xdp_devmap", 124 [BPF_XDP_CPUMAP] = "xdp_cpumap", 125 [BPF_XDP] = "xdp", 126 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 127 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 128 [BPF_PERF_EVENT] = "perf_event", 129 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 130 [BPF_STRUCT_OPS] = "struct_ops", 131 [BPF_NETFILTER] = "netfilter", 132 [BPF_TCX_INGRESS] = "tcx_ingress", 133 [BPF_TCX_EGRESS] = "tcx_egress", 134 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 135 [BPF_NETKIT_PRIMARY] = "netkit_primary", 136 [BPF_NETKIT_PEER] = "netkit_peer", 137 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 138 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 139 }; 140 141 static const char * const link_type_name[] = { 142 [BPF_LINK_TYPE_UNSPEC] = "unspec", 143 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 144 [BPF_LINK_TYPE_TRACING] = "tracing", 145 [BPF_LINK_TYPE_CGROUP] = "cgroup", 146 [BPF_LINK_TYPE_ITER] = "iter", 147 [BPF_LINK_TYPE_NETNS] = "netns", 148 [BPF_LINK_TYPE_XDP] = "xdp", 149 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 150 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 151 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 152 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 153 [BPF_LINK_TYPE_TCX] = "tcx", 154 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 155 [BPF_LINK_TYPE_NETKIT] = "netkit", 156 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 157 }; 158 159 static const char * const map_type_name[] = { 160 [BPF_MAP_TYPE_UNSPEC] = "unspec", 161 [BPF_MAP_TYPE_HASH] = "hash", 162 [BPF_MAP_TYPE_ARRAY] = "array", 163 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 164 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 165 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 166 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 167 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 168 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 169 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 170 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 171 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 172 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 173 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 174 [BPF_MAP_TYPE_DEVMAP] = "devmap", 175 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 176 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 177 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 178 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 179 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 180 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 181 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 182 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 183 [BPF_MAP_TYPE_QUEUE] = "queue", 184 [BPF_MAP_TYPE_STACK] = "stack", 185 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 186 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 187 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 188 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 189 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 190 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 191 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 192 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 193 [BPF_MAP_TYPE_ARENA] = "arena", 194 }; 195 196 static const char * const prog_type_name[] = { 197 [BPF_PROG_TYPE_UNSPEC] = "unspec", 198 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 199 [BPF_PROG_TYPE_KPROBE] = "kprobe", 200 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 201 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 202 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 203 [BPF_PROG_TYPE_XDP] = "xdp", 204 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 205 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 206 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 207 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 208 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 209 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 210 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 211 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 212 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 213 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 214 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 215 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 216 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 217 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 218 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 219 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 220 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 221 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 222 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 223 [BPF_PROG_TYPE_TRACING] = "tracing", 224 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 225 [BPF_PROG_TYPE_EXT] = "ext", 226 [BPF_PROG_TYPE_LSM] = "lsm", 227 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 228 [BPF_PROG_TYPE_SYSCALL] = "syscall", 229 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 230 }; 231 232 static int __base_pr(enum libbpf_print_level level, const char *format, 233 va_list args) 234 { 235 const char *env_var = "LIBBPF_LOG_LEVEL"; 236 static enum libbpf_print_level min_level = LIBBPF_INFO; 237 static bool initialized; 238 239 if (!initialized) { 240 char *verbosity; 241 242 initialized = true; 243 verbosity = getenv(env_var); 244 if (verbosity) { 245 if (strcasecmp(verbosity, "warn") == 0) 246 min_level = LIBBPF_WARN; 247 else if (strcasecmp(verbosity, "debug") == 0) 248 min_level = LIBBPF_DEBUG; 249 else if (strcasecmp(verbosity, "info") == 0) 250 min_level = LIBBPF_INFO; 251 else 252 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 253 env_var, verbosity); 254 } 255 } 256 257 /* if too verbose, skip logging */ 258 if (level > min_level) 259 return 0; 260 261 return vfprintf(stderr, format, args); 262 } 263 264 static libbpf_print_fn_t __libbpf_pr = __base_pr; 265 266 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 267 { 268 libbpf_print_fn_t old_print_fn; 269 270 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 271 272 return old_print_fn; 273 } 274 275 __printf(2, 3) 276 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 277 { 278 va_list args; 279 int old_errno; 280 libbpf_print_fn_t print_fn; 281 282 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 283 if (!print_fn) 284 return; 285 286 old_errno = errno; 287 288 va_start(args, format); 289 print_fn(level, format, args); 290 va_end(args); 291 292 errno = old_errno; 293 } 294 295 static void pr_perm_msg(int err) 296 { 297 struct rlimit limit; 298 char buf[100]; 299 300 if (err != -EPERM || geteuid() != 0) 301 return; 302 303 err = getrlimit(RLIMIT_MEMLOCK, &limit); 304 if (err) 305 return; 306 307 if (limit.rlim_cur == RLIM_INFINITY) 308 return; 309 310 if (limit.rlim_cur < 1024) 311 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 312 else if (limit.rlim_cur < 1024*1024) 313 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 314 else 315 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 316 317 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 318 buf); 319 } 320 321 #define STRERR_BUFSIZE 128 322 323 /* Copied from tools/perf/util/util.h */ 324 #ifndef zfree 325 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 326 #endif 327 328 #ifndef zclose 329 # define zclose(fd) ({ \ 330 int ___err = 0; \ 331 if ((fd) >= 0) \ 332 ___err = close((fd)); \ 333 fd = -1; \ 334 ___err; }) 335 #endif 336 337 static inline __u64 ptr_to_u64(const void *ptr) 338 { 339 return (__u64) (unsigned long) ptr; 340 } 341 342 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 343 { 344 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 345 return 0; 346 } 347 348 __u32 libbpf_major_version(void) 349 { 350 return LIBBPF_MAJOR_VERSION; 351 } 352 353 __u32 libbpf_minor_version(void) 354 { 355 return LIBBPF_MINOR_VERSION; 356 } 357 358 const char *libbpf_version_string(void) 359 { 360 #define __S(X) #X 361 #define _S(X) __S(X) 362 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 363 #undef _S 364 #undef __S 365 } 366 367 enum reloc_type { 368 RELO_LD64, 369 RELO_CALL, 370 RELO_DATA, 371 RELO_EXTERN_LD64, 372 RELO_EXTERN_CALL, 373 RELO_SUBPROG_ADDR, 374 RELO_CORE, 375 }; 376 377 struct reloc_desc { 378 enum reloc_type type; 379 int insn_idx; 380 union { 381 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 382 struct { 383 int map_idx; 384 int sym_off; 385 int ext_idx; 386 }; 387 }; 388 }; 389 390 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 391 enum sec_def_flags { 392 SEC_NONE = 0, 393 /* expected_attach_type is optional, if kernel doesn't support that */ 394 SEC_EXP_ATTACH_OPT = 1, 395 /* legacy, only used by libbpf_get_type_names() and 396 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 397 * This used to be associated with cgroup (and few other) BPF programs 398 * that were attachable through BPF_PROG_ATTACH command. Pretty 399 * meaningless nowadays, though. 400 */ 401 SEC_ATTACHABLE = 2, 402 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 403 /* attachment target is specified through BTF ID in either kernel or 404 * other BPF program's BTF object 405 */ 406 SEC_ATTACH_BTF = 4, 407 /* BPF program type allows sleeping/blocking in kernel */ 408 SEC_SLEEPABLE = 8, 409 /* BPF program support non-linear XDP buffer */ 410 SEC_XDP_FRAGS = 16, 411 /* Setup proper attach type for usdt probes. */ 412 SEC_USDT = 32, 413 }; 414 415 struct bpf_sec_def { 416 char *sec; 417 enum bpf_prog_type prog_type; 418 enum bpf_attach_type expected_attach_type; 419 long cookie; 420 int handler_id; 421 422 libbpf_prog_setup_fn_t prog_setup_fn; 423 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 424 libbpf_prog_attach_fn_t prog_attach_fn; 425 }; 426 427 /* 428 * bpf_prog should be a better name but it has been used in 429 * linux/filter.h. 430 */ 431 struct bpf_program { 432 char *name; 433 char *sec_name; 434 size_t sec_idx; 435 const struct bpf_sec_def *sec_def; 436 /* this program's instruction offset (in number of instructions) 437 * within its containing ELF section 438 */ 439 size_t sec_insn_off; 440 /* number of original instructions in ELF section belonging to this 441 * program, not taking into account subprogram instructions possible 442 * appended later during relocation 443 */ 444 size_t sec_insn_cnt; 445 /* Offset (in number of instructions) of the start of instruction 446 * belonging to this BPF program within its containing main BPF 447 * program. For the entry-point (main) BPF program, this is always 448 * zero. For a sub-program, this gets reset before each of main BPF 449 * programs are processed and relocated and is used to determined 450 * whether sub-program was already appended to the main program, and 451 * if yes, at which instruction offset. 452 */ 453 size_t sub_insn_off; 454 455 /* instructions that belong to BPF program; insns[0] is located at 456 * sec_insn_off instruction within its ELF section in ELF file, so 457 * when mapping ELF file instruction index to the local instruction, 458 * one needs to subtract sec_insn_off; and vice versa. 459 */ 460 struct bpf_insn *insns; 461 /* actual number of instruction in this BPF program's image; for 462 * entry-point BPF programs this includes the size of main program 463 * itself plus all the used sub-programs, appended at the end 464 */ 465 size_t insns_cnt; 466 467 struct reloc_desc *reloc_desc; 468 int nr_reloc; 469 470 /* BPF verifier log settings */ 471 char *log_buf; 472 size_t log_size; 473 __u32 log_level; 474 475 struct bpf_object *obj; 476 477 int fd; 478 bool autoload; 479 bool autoattach; 480 bool sym_global; 481 bool mark_btf_static; 482 enum bpf_prog_type type; 483 enum bpf_attach_type expected_attach_type; 484 int exception_cb_idx; 485 486 int prog_ifindex; 487 __u32 attach_btf_obj_fd; 488 __u32 attach_btf_id; 489 __u32 attach_prog_fd; 490 491 void *func_info; 492 __u32 func_info_rec_size; 493 __u32 func_info_cnt; 494 495 void *line_info; 496 __u32 line_info_rec_size; 497 __u32 line_info_cnt; 498 __u32 prog_flags; 499 }; 500 501 struct bpf_struct_ops { 502 struct bpf_program **progs; 503 __u32 *kern_func_off; 504 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 505 void *data; 506 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 507 * btf_vmlinux's format. 508 * struct bpf_struct_ops_tcp_congestion_ops { 509 * [... some other kernel fields ...] 510 * struct tcp_congestion_ops data; 511 * } 512 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 513 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 514 * from "data". 515 */ 516 void *kern_vdata; 517 __u32 type_id; 518 }; 519 520 #define DATA_SEC ".data" 521 #define BSS_SEC ".bss" 522 #define RODATA_SEC ".rodata" 523 #define KCONFIG_SEC ".kconfig" 524 #define KSYMS_SEC ".ksyms" 525 #define STRUCT_OPS_SEC ".struct_ops" 526 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 527 #define ARENA_SEC ".addr_space.1" 528 529 enum libbpf_map_type { 530 LIBBPF_MAP_UNSPEC, 531 LIBBPF_MAP_DATA, 532 LIBBPF_MAP_BSS, 533 LIBBPF_MAP_RODATA, 534 LIBBPF_MAP_KCONFIG, 535 }; 536 537 struct bpf_map_def { 538 unsigned int type; 539 unsigned int key_size; 540 unsigned int value_size; 541 unsigned int max_entries; 542 unsigned int map_flags; 543 }; 544 545 struct bpf_map { 546 struct bpf_object *obj; 547 char *name; 548 /* real_name is defined for special internal maps (.rodata*, 549 * .data*, .bss, .kconfig) and preserves their original ELF section 550 * name. This is important to be able to find corresponding BTF 551 * DATASEC information. 552 */ 553 char *real_name; 554 int fd; 555 int sec_idx; 556 size_t sec_offset; 557 int map_ifindex; 558 int inner_map_fd; 559 struct bpf_map_def def; 560 __u32 numa_node; 561 __u32 btf_var_idx; 562 int mod_btf_fd; 563 __u32 btf_key_type_id; 564 __u32 btf_value_type_id; 565 __u32 btf_vmlinux_value_type_id; 566 enum libbpf_map_type libbpf_type; 567 void *mmaped; 568 struct bpf_struct_ops *st_ops; 569 struct bpf_map *inner_map; 570 void **init_slots; 571 int init_slots_sz; 572 char *pin_path; 573 bool pinned; 574 bool reused; 575 bool autocreate; 576 bool autoattach; 577 __u64 map_extra; 578 }; 579 580 enum extern_type { 581 EXT_UNKNOWN, 582 EXT_KCFG, 583 EXT_KSYM, 584 }; 585 586 enum kcfg_type { 587 KCFG_UNKNOWN, 588 KCFG_CHAR, 589 KCFG_BOOL, 590 KCFG_INT, 591 KCFG_TRISTATE, 592 KCFG_CHAR_ARR, 593 }; 594 595 struct extern_desc { 596 enum extern_type type; 597 int sym_idx; 598 int btf_id; 599 int sec_btf_id; 600 char *name; 601 char *essent_name; 602 bool is_set; 603 bool is_weak; 604 union { 605 struct { 606 enum kcfg_type type; 607 int sz; 608 int align; 609 int data_off; 610 bool is_signed; 611 } kcfg; 612 struct { 613 unsigned long long addr; 614 615 /* target btf_id of the corresponding kernel var. */ 616 int kernel_btf_obj_fd; 617 int kernel_btf_id; 618 619 /* local btf_id of the ksym extern's type. */ 620 __u32 type_id; 621 /* BTF fd index to be patched in for insn->off, this is 622 * 0 for vmlinux BTF, index in obj->fd_array for module 623 * BTF 624 */ 625 __s16 btf_fd_idx; 626 } ksym; 627 }; 628 }; 629 630 struct module_btf { 631 struct btf *btf; 632 char *name; 633 __u32 id; 634 int fd; 635 int fd_array_idx; 636 }; 637 638 enum sec_type { 639 SEC_UNUSED = 0, 640 SEC_RELO, 641 SEC_BSS, 642 SEC_DATA, 643 SEC_RODATA, 644 SEC_ST_OPS, 645 }; 646 647 struct elf_sec_desc { 648 enum sec_type sec_type; 649 Elf64_Shdr *shdr; 650 Elf_Data *data; 651 }; 652 653 struct elf_state { 654 int fd; 655 const void *obj_buf; 656 size_t obj_buf_sz; 657 Elf *elf; 658 Elf64_Ehdr *ehdr; 659 Elf_Data *symbols; 660 Elf_Data *arena_data; 661 size_t shstrndx; /* section index for section name strings */ 662 size_t strtabidx; 663 struct elf_sec_desc *secs; 664 size_t sec_cnt; 665 int btf_maps_shndx; 666 __u32 btf_maps_sec_btf_id; 667 int text_shndx; 668 int symbols_shndx; 669 bool has_st_ops; 670 int arena_data_shndx; 671 }; 672 673 struct usdt_manager; 674 675 enum bpf_object_state { 676 OBJ_OPEN, 677 OBJ_PREPARED, 678 OBJ_LOADED, 679 }; 680 681 struct bpf_object { 682 char name[BPF_OBJ_NAME_LEN]; 683 char license[64]; 684 __u32 kern_version; 685 686 enum bpf_object_state state; 687 struct bpf_program *programs; 688 size_t nr_programs; 689 struct bpf_map *maps; 690 size_t nr_maps; 691 size_t maps_cap; 692 693 char *kconfig; 694 struct extern_desc *externs; 695 int nr_extern; 696 int kconfig_map_idx; 697 698 bool has_subcalls; 699 bool has_rodata; 700 701 struct bpf_gen *gen_loader; 702 703 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 704 struct elf_state efile; 705 706 unsigned char byteorder; 707 708 struct btf *btf; 709 struct btf_ext *btf_ext; 710 711 /* Parse and load BTF vmlinux if any of the programs in the object need 712 * it at load time. 713 */ 714 struct btf *btf_vmlinux; 715 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 716 * override for vmlinux BTF. 717 */ 718 char *btf_custom_path; 719 /* vmlinux BTF override for CO-RE relocations */ 720 struct btf *btf_vmlinux_override; 721 /* Lazily initialized kernel module BTFs */ 722 struct module_btf *btf_modules; 723 bool btf_modules_loaded; 724 size_t btf_module_cnt; 725 size_t btf_module_cap; 726 727 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 728 char *log_buf; 729 size_t log_size; 730 __u32 log_level; 731 732 int *fd_array; 733 size_t fd_array_cap; 734 size_t fd_array_cnt; 735 736 struct usdt_manager *usdt_man; 737 738 int arena_map_idx; 739 void *arena_data; 740 size_t arena_data_sz; 741 742 struct kern_feature_cache *feat_cache; 743 char *token_path; 744 int token_fd; 745 746 char path[]; 747 }; 748 749 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 750 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 751 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 752 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 753 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 754 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 755 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 756 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 757 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 758 759 void bpf_program__unload(struct bpf_program *prog) 760 { 761 if (!prog) 762 return; 763 764 zclose(prog->fd); 765 766 zfree(&prog->func_info); 767 zfree(&prog->line_info); 768 } 769 770 static void bpf_program__exit(struct bpf_program *prog) 771 { 772 if (!prog) 773 return; 774 775 bpf_program__unload(prog); 776 zfree(&prog->name); 777 zfree(&prog->sec_name); 778 zfree(&prog->insns); 779 zfree(&prog->reloc_desc); 780 781 prog->nr_reloc = 0; 782 prog->insns_cnt = 0; 783 prog->sec_idx = -1; 784 } 785 786 static bool insn_is_subprog_call(const struct bpf_insn *insn) 787 { 788 return BPF_CLASS(insn->code) == BPF_JMP && 789 BPF_OP(insn->code) == BPF_CALL && 790 BPF_SRC(insn->code) == BPF_K && 791 insn->src_reg == BPF_PSEUDO_CALL && 792 insn->dst_reg == 0 && 793 insn->off == 0; 794 } 795 796 static bool is_call_insn(const struct bpf_insn *insn) 797 { 798 return insn->code == (BPF_JMP | BPF_CALL); 799 } 800 801 static bool insn_is_pseudo_func(struct bpf_insn *insn) 802 { 803 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 804 } 805 806 static int 807 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 808 const char *name, size_t sec_idx, const char *sec_name, 809 size_t sec_off, void *insn_data, size_t insn_data_sz) 810 { 811 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 812 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 813 sec_name, name, sec_off, insn_data_sz); 814 return -EINVAL; 815 } 816 817 memset(prog, 0, sizeof(*prog)); 818 prog->obj = obj; 819 820 prog->sec_idx = sec_idx; 821 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 822 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 823 /* insns_cnt can later be increased by appending used subprograms */ 824 prog->insns_cnt = prog->sec_insn_cnt; 825 826 prog->type = BPF_PROG_TYPE_UNSPEC; 827 prog->fd = -1; 828 prog->exception_cb_idx = -1; 829 830 /* libbpf's convention for SEC("?abc...") is that it's just like 831 * SEC("abc...") but the corresponding bpf_program starts out with 832 * autoload set to false. 833 */ 834 if (sec_name[0] == '?') { 835 prog->autoload = false; 836 /* from now on forget there was ? in section name */ 837 sec_name++; 838 } else { 839 prog->autoload = true; 840 } 841 842 prog->autoattach = true; 843 844 /* inherit object's log_level */ 845 prog->log_level = obj->log_level; 846 847 prog->sec_name = strdup(sec_name); 848 if (!prog->sec_name) 849 goto errout; 850 851 prog->name = strdup(name); 852 if (!prog->name) 853 goto errout; 854 855 prog->insns = malloc(insn_data_sz); 856 if (!prog->insns) 857 goto errout; 858 memcpy(prog->insns, insn_data, insn_data_sz); 859 860 return 0; 861 errout: 862 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 863 bpf_program__exit(prog); 864 return -ENOMEM; 865 } 866 867 static int 868 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 869 const char *sec_name, int sec_idx) 870 { 871 Elf_Data *symbols = obj->efile.symbols; 872 struct bpf_program *prog, *progs; 873 void *data = sec_data->d_buf; 874 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 875 int nr_progs, err, i; 876 const char *name; 877 Elf64_Sym *sym; 878 879 progs = obj->programs; 880 nr_progs = obj->nr_programs; 881 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 882 883 for (i = 0; i < nr_syms; i++) { 884 sym = elf_sym_by_idx(obj, i); 885 886 if (sym->st_shndx != sec_idx) 887 continue; 888 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 889 continue; 890 891 prog_sz = sym->st_size; 892 sec_off = sym->st_value; 893 894 name = elf_sym_str(obj, sym->st_name); 895 if (!name) { 896 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 897 sec_name, sec_off); 898 return -LIBBPF_ERRNO__FORMAT; 899 } 900 901 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) { 902 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 903 sec_name, sec_off); 904 return -LIBBPF_ERRNO__FORMAT; 905 } 906 907 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 908 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 909 return -ENOTSUP; 910 } 911 912 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 913 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 914 915 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 916 if (!progs) { 917 /* 918 * In this case the original obj->programs 919 * is still valid, so don't need special treat for 920 * bpf_close_object(). 921 */ 922 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 923 sec_name, name); 924 return -ENOMEM; 925 } 926 obj->programs = progs; 927 928 prog = &progs[nr_progs]; 929 930 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 931 sec_off, data + sec_off, prog_sz); 932 if (err) 933 return err; 934 935 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 936 prog->sym_global = true; 937 938 /* if function is a global/weak symbol, but has restricted 939 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 940 * as static to enable more permissive BPF verification mode 941 * with more outside context available to BPF verifier 942 */ 943 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 944 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 945 prog->mark_btf_static = true; 946 947 nr_progs++; 948 obj->nr_programs = nr_progs; 949 } 950 951 return 0; 952 } 953 954 static void bpf_object_bswap_progs(struct bpf_object *obj) 955 { 956 struct bpf_program *prog = obj->programs; 957 struct bpf_insn *insn; 958 int p, i; 959 960 for (p = 0; p < obj->nr_programs; p++, prog++) { 961 insn = prog->insns; 962 for (i = 0; i < prog->insns_cnt; i++, insn++) 963 bpf_insn_bswap(insn); 964 } 965 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 966 } 967 968 static const struct btf_member * 969 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 970 { 971 struct btf_member *m; 972 int i; 973 974 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 975 if (btf_member_bit_offset(t, i) == bit_offset) 976 return m; 977 } 978 979 return NULL; 980 } 981 982 static const struct btf_member * 983 find_member_by_name(const struct btf *btf, const struct btf_type *t, 984 const char *name) 985 { 986 struct btf_member *m; 987 int i; 988 989 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 990 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 991 return m; 992 } 993 994 return NULL; 995 } 996 997 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 998 __u16 kind, struct btf **res_btf, 999 struct module_btf **res_mod_btf); 1000 1001 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 1002 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 1003 const char *name, __u32 kind); 1004 1005 static int 1006 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 1007 struct module_btf **mod_btf, 1008 const struct btf_type **type, __u32 *type_id, 1009 const struct btf_type **vtype, __u32 *vtype_id, 1010 const struct btf_member **data_member) 1011 { 1012 const struct btf_type *kern_type, *kern_vtype; 1013 const struct btf_member *kern_data_member; 1014 struct btf *btf = NULL; 1015 __s32 kern_vtype_id, kern_type_id; 1016 char tname[256]; 1017 __u32 i; 1018 1019 snprintf(tname, sizeof(tname), "%.*s", 1020 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1021 1022 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 1023 &btf, mod_btf); 1024 if (kern_type_id < 0) { 1025 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1026 tname); 1027 return kern_type_id; 1028 } 1029 kern_type = btf__type_by_id(btf, kern_type_id); 1030 1031 /* Find the corresponding "map_value" type that will be used 1032 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1033 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1034 * btf_vmlinux. 1035 */ 1036 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1037 tname, BTF_KIND_STRUCT); 1038 if (kern_vtype_id < 0) { 1039 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1040 STRUCT_OPS_VALUE_PREFIX, tname); 1041 return kern_vtype_id; 1042 } 1043 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1044 1045 /* Find "struct tcp_congestion_ops" from 1046 * struct bpf_struct_ops_tcp_congestion_ops { 1047 * [ ... ] 1048 * struct tcp_congestion_ops data; 1049 * } 1050 */ 1051 kern_data_member = btf_members(kern_vtype); 1052 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1053 if (kern_data_member->type == kern_type_id) 1054 break; 1055 } 1056 if (i == btf_vlen(kern_vtype)) { 1057 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1058 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1059 return -EINVAL; 1060 } 1061 1062 *type = kern_type; 1063 *type_id = kern_type_id; 1064 *vtype = kern_vtype; 1065 *vtype_id = kern_vtype_id; 1066 *data_member = kern_data_member; 1067 1068 return 0; 1069 } 1070 1071 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1072 { 1073 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1074 } 1075 1076 static bool is_valid_st_ops_program(struct bpf_object *obj, 1077 const struct bpf_program *prog) 1078 { 1079 int i; 1080 1081 for (i = 0; i < obj->nr_programs; i++) { 1082 if (&obj->programs[i] == prog) 1083 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1084 } 1085 1086 return false; 1087 } 1088 1089 /* For each struct_ops program P, referenced from some struct_ops map M, 1090 * enable P.autoload if there are Ms for which M.autocreate is true, 1091 * disable P.autoload if for all Ms M.autocreate is false. 1092 * Don't change P.autoload for programs that are not referenced from any maps. 1093 */ 1094 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1095 { 1096 struct bpf_program *prog, *slot_prog; 1097 struct bpf_map *map; 1098 int i, j, k, vlen; 1099 1100 for (i = 0; i < obj->nr_programs; ++i) { 1101 int should_load = false; 1102 int use_cnt = 0; 1103 1104 prog = &obj->programs[i]; 1105 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1106 continue; 1107 1108 for (j = 0; j < obj->nr_maps; ++j) { 1109 const struct btf_type *type; 1110 1111 map = &obj->maps[j]; 1112 if (!bpf_map__is_struct_ops(map)) 1113 continue; 1114 1115 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1116 vlen = btf_vlen(type); 1117 for (k = 0; k < vlen; ++k) { 1118 slot_prog = map->st_ops->progs[k]; 1119 if (prog != slot_prog) 1120 continue; 1121 1122 use_cnt++; 1123 if (map->autocreate) 1124 should_load = true; 1125 } 1126 } 1127 if (use_cnt) 1128 prog->autoload = should_load; 1129 } 1130 1131 return 0; 1132 } 1133 1134 /* Init the map's fields that depend on kern_btf */ 1135 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1136 { 1137 const struct btf_member *member, *kern_member, *kern_data_member; 1138 const struct btf_type *type, *kern_type, *kern_vtype; 1139 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1140 struct bpf_object *obj = map->obj; 1141 const struct btf *btf = obj->btf; 1142 struct bpf_struct_ops *st_ops; 1143 const struct btf *kern_btf; 1144 struct module_btf *mod_btf = NULL; 1145 void *data, *kern_data; 1146 const char *tname; 1147 int err; 1148 1149 st_ops = map->st_ops; 1150 type = btf__type_by_id(btf, st_ops->type_id); 1151 tname = btf__name_by_offset(btf, type->name_off); 1152 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1153 &kern_type, &kern_type_id, 1154 &kern_vtype, &kern_vtype_id, 1155 &kern_data_member); 1156 if (err) 1157 return err; 1158 1159 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1160 1161 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1162 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1163 1164 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1165 map->def.value_size = kern_vtype->size; 1166 map->btf_vmlinux_value_type_id = kern_vtype_id; 1167 1168 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1169 if (!st_ops->kern_vdata) 1170 return -ENOMEM; 1171 1172 data = st_ops->data; 1173 kern_data_off = kern_data_member->offset / 8; 1174 kern_data = st_ops->kern_vdata + kern_data_off; 1175 1176 member = btf_members(type); 1177 for (i = 0; i < btf_vlen(type); i++, member++) { 1178 const struct btf_type *mtype, *kern_mtype; 1179 __u32 mtype_id, kern_mtype_id; 1180 void *mdata, *kern_mdata; 1181 struct bpf_program *prog; 1182 __s64 msize, kern_msize; 1183 __u32 moff, kern_moff; 1184 __u32 kern_member_idx; 1185 const char *mname; 1186 1187 mname = btf__name_by_offset(btf, member->name_off); 1188 moff = member->offset / 8; 1189 mdata = data + moff; 1190 msize = btf__resolve_size(btf, member->type); 1191 if (msize < 0) { 1192 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1193 map->name, mname); 1194 return msize; 1195 } 1196 1197 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1198 if (!kern_member) { 1199 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1200 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1201 map->name, mname); 1202 return -ENOTSUP; 1203 } 1204 1205 if (st_ops->progs[i]) { 1206 /* If we had declaratively set struct_ops callback, we need to 1207 * force its autoload to false, because it doesn't have 1208 * a chance of succeeding from POV of the current struct_ops map. 1209 * If this program is still referenced somewhere else, though, 1210 * then bpf_object_adjust_struct_ops_autoload() will update its 1211 * autoload accordingly. 1212 */ 1213 st_ops->progs[i]->autoload = false; 1214 st_ops->progs[i] = NULL; 1215 } 1216 1217 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1218 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1219 map->name, mname); 1220 continue; 1221 } 1222 1223 kern_member_idx = kern_member - btf_members(kern_type); 1224 if (btf_member_bitfield_size(type, i) || 1225 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1226 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1227 map->name, mname); 1228 return -ENOTSUP; 1229 } 1230 1231 kern_moff = kern_member->offset / 8; 1232 kern_mdata = kern_data + kern_moff; 1233 1234 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1235 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1236 &kern_mtype_id); 1237 if (BTF_INFO_KIND(mtype->info) != 1238 BTF_INFO_KIND(kern_mtype->info)) { 1239 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1240 map->name, mname, BTF_INFO_KIND(mtype->info), 1241 BTF_INFO_KIND(kern_mtype->info)); 1242 return -ENOTSUP; 1243 } 1244 1245 if (btf_is_ptr(mtype)) { 1246 prog = *(void **)mdata; 1247 /* just like for !kern_member case above, reset declaratively 1248 * set (at compile time) program's autload to false, 1249 * if user replaced it with another program or NULL 1250 */ 1251 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1252 st_ops->progs[i]->autoload = false; 1253 1254 /* Update the value from the shadow type */ 1255 st_ops->progs[i] = prog; 1256 if (!prog) 1257 continue; 1258 1259 if (!is_valid_st_ops_program(obj, prog)) { 1260 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1261 map->name, mname); 1262 return -ENOTSUP; 1263 } 1264 1265 kern_mtype = skip_mods_and_typedefs(kern_btf, 1266 kern_mtype->type, 1267 &kern_mtype_id); 1268 1269 /* mtype->type must be a func_proto which was 1270 * guaranteed in bpf_object__collect_st_ops_relos(), 1271 * so only check kern_mtype for func_proto here. 1272 */ 1273 if (!btf_is_func_proto(kern_mtype)) { 1274 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1275 map->name, mname); 1276 return -ENOTSUP; 1277 } 1278 1279 if (mod_btf) 1280 prog->attach_btf_obj_fd = mod_btf->fd; 1281 1282 /* if we haven't yet processed this BPF program, record proper 1283 * attach_btf_id and member_idx 1284 */ 1285 if (!prog->attach_btf_id) { 1286 prog->attach_btf_id = kern_type_id; 1287 prog->expected_attach_type = kern_member_idx; 1288 } 1289 1290 /* struct_ops BPF prog can be re-used between multiple 1291 * .struct_ops & .struct_ops.link as long as it's the 1292 * same struct_ops struct definition and the same 1293 * function pointer field 1294 */ 1295 if (prog->attach_btf_id != kern_type_id) { 1296 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1297 map->name, mname, prog->name, prog->sec_name, prog->type, 1298 prog->attach_btf_id, kern_type_id); 1299 return -EINVAL; 1300 } 1301 if (prog->expected_attach_type != kern_member_idx) { 1302 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1303 map->name, mname, prog->name, prog->sec_name, prog->type, 1304 prog->expected_attach_type, kern_member_idx); 1305 return -EINVAL; 1306 } 1307 1308 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1309 1310 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1311 map->name, mname, prog->name, moff, 1312 kern_moff); 1313 1314 continue; 1315 } 1316 1317 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1318 if (kern_msize < 0 || msize != kern_msize) { 1319 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1320 map->name, mname, (ssize_t)msize, 1321 (ssize_t)kern_msize); 1322 return -ENOTSUP; 1323 } 1324 1325 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1326 map->name, mname, (unsigned int)msize, 1327 moff, kern_moff); 1328 memcpy(kern_mdata, mdata, msize); 1329 } 1330 1331 return 0; 1332 } 1333 1334 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1335 { 1336 struct bpf_map *map; 1337 size_t i; 1338 int err; 1339 1340 for (i = 0; i < obj->nr_maps; i++) { 1341 map = &obj->maps[i]; 1342 1343 if (!bpf_map__is_struct_ops(map)) 1344 continue; 1345 1346 if (!map->autocreate) 1347 continue; 1348 1349 err = bpf_map__init_kern_struct_ops(map); 1350 if (err) 1351 return err; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1358 int shndx, Elf_Data *data) 1359 { 1360 const struct btf_type *type, *datasec; 1361 const struct btf_var_secinfo *vsi; 1362 struct bpf_struct_ops *st_ops; 1363 const char *tname, *var_name; 1364 __s32 type_id, datasec_id; 1365 const struct btf *btf; 1366 struct bpf_map *map; 1367 __u32 i; 1368 1369 if (shndx == -1) 1370 return 0; 1371 1372 btf = obj->btf; 1373 datasec_id = btf__find_by_name_kind(btf, sec_name, 1374 BTF_KIND_DATASEC); 1375 if (datasec_id < 0) { 1376 pr_warn("struct_ops init: DATASEC %s not found\n", 1377 sec_name); 1378 return -EINVAL; 1379 } 1380 1381 datasec = btf__type_by_id(btf, datasec_id); 1382 vsi = btf_var_secinfos(datasec); 1383 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1384 type = btf__type_by_id(obj->btf, vsi->type); 1385 var_name = btf__name_by_offset(obj->btf, type->name_off); 1386 1387 type_id = btf__resolve_type(obj->btf, vsi->type); 1388 if (type_id < 0) { 1389 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1390 vsi->type, sec_name); 1391 return -EINVAL; 1392 } 1393 1394 type = btf__type_by_id(obj->btf, type_id); 1395 tname = btf__name_by_offset(obj->btf, type->name_off); 1396 if (!tname[0]) { 1397 pr_warn("struct_ops init: anonymous type is not supported\n"); 1398 return -ENOTSUP; 1399 } 1400 if (!btf_is_struct(type)) { 1401 pr_warn("struct_ops init: %s is not a struct\n", tname); 1402 return -EINVAL; 1403 } 1404 1405 map = bpf_object__add_map(obj); 1406 if (IS_ERR(map)) 1407 return PTR_ERR(map); 1408 1409 map->sec_idx = shndx; 1410 map->sec_offset = vsi->offset; 1411 map->name = strdup(var_name); 1412 if (!map->name) 1413 return -ENOMEM; 1414 map->btf_value_type_id = type_id; 1415 1416 /* Follow same convention as for programs autoload: 1417 * SEC("?.struct_ops") means map is not created by default. 1418 */ 1419 if (sec_name[0] == '?') { 1420 map->autocreate = false; 1421 /* from now on forget there was ? in section name */ 1422 sec_name++; 1423 } 1424 1425 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1426 map->def.key_size = sizeof(int); 1427 map->def.value_size = type->size; 1428 map->def.max_entries = 1; 1429 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1430 map->autoattach = true; 1431 1432 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1433 if (!map->st_ops) 1434 return -ENOMEM; 1435 st_ops = map->st_ops; 1436 st_ops->data = malloc(type->size); 1437 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1438 st_ops->kern_func_off = malloc(btf_vlen(type) * 1439 sizeof(*st_ops->kern_func_off)); 1440 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1441 return -ENOMEM; 1442 1443 if (vsi->offset + type->size > data->d_size) { 1444 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1445 var_name, sec_name); 1446 return -EINVAL; 1447 } 1448 1449 memcpy(st_ops->data, 1450 data->d_buf + vsi->offset, 1451 type->size); 1452 st_ops->type_id = type_id; 1453 1454 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1455 tname, type_id, var_name, vsi->offset); 1456 } 1457 1458 return 0; 1459 } 1460 1461 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1462 { 1463 const char *sec_name; 1464 int sec_idx, err; 1465 1466 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1467 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1468 1469 if (desc->sec_type != SEC_ST_OPS) 1470 continue; 1471 1472 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1473 if (!sec_name) 1474 return -LIBBPF_ERRNO__FORMAT; 1475 1476 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1477 if (err) 1478 return err; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static struct bpf_object *bpf_object__new(const char *path, 1485 const void *obj_buf, 1486 size_t obj_buf_sz, 1487 const char *obj_name) 1488 { 1489 struct bpf_object *obj; 1490 char *end; 1491 1492 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1493 if (!obj) { 1494 pr_warn("alloc memory failed for %s\n", path); 1495 return ERR_PTR(-ENOMEM); 1496 } 1497 1498 strcpy(obj->path, path); 1499 if (obj_name) { 1500 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1501 } else { 1502 /* Using basename() GNU version which doesn't modify arg. */ 1503 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1504 end = strchr(obj->name, '.'); 1505 if (end) 1506 *end = 0; 1507 } 1508 1509 obj->efile.fd = -1; 1510 /* 1511 * Caller of this function should also call 1512 * bpf_object__elf_finish() after data collection to return 1513 * obj_buf to user. If not, we should duplicate the buffer to 1514 * avoid user freeing them before elf finish. 1515 */ 1516 obj->efile.obj_buf = obj_buf; 1517 obj->efile.obj_buf_sz = obj_buf_sz; 1518 obj->efile.btf_maps_shndx = -1; 1519 obj->kconfig_map_idx = -1; 1520 obj->arena_map_idx = -1; 1521 1522 obj->kern_version = get_kernel_version(); 1523 obj->state = OBJ_OPEN; 1524 1525 return obj; 1526 } 1527 1528 static void bpf_object__elf_finish(struct bpf_object *obj) 1529 { 1530 if (!obj->efile.elf) 1531 return; 1532 1533 elf_end(obj->efile.elf); 1534 obj->efile.elf = NULL; 1535 obj->efile.ehdr = NULL; 1536 obj->efile.symbols = NULL; 1537 obj->efile.arena_data = NULL; 1538 1539 zfree(&obj->efile.secs); 1540 obj->efile.sec_cnt = 0; 1541 zclose(obj->efile.fd); 1542 obj->efile.obj_buf = NULL; 1543 obj->efile.obj_buf_sz = 0; 1544 } 1545 1546 static int bpf_object__elf_init(struct bpf_object *obj) 1547 { 1548 Elf64_Ehdr *ehdr; 1549 int err = 0; 1550 Elf *elf; 1551 1552 if (obj->efile.elf) { 1553 pr_warn("elf: init internal error\n"); 1554 return -LIBBPF_ERRNO__LIBELF; 1555 } 1556 1557 if (obj->efile.obj_buf_sz > 0) { 1558 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1559 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1560 } else { 1561 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1562 if (obj->efile.fd < 0) { 1563 err = -errno; 1564 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1565 return err; 1566 } 1567 1568 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1569 } 1570 1571 if (!elf) { 1572 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1573 err = -LIBBPF_ERRNO__LIBELF; 1574 goto errout; 1575 } 1576 1577 obj->efile.elf = elf; 1578 1579 if (elf_kind(elf) != ELF_K_ELF) { 1580 err = -LIBBPF_ERRNO__FORMAT; 1581 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1582 goto errout; 1583 } 1584 1585 if (gelf_getclass(elf) != ELFCLASS64) { 1586 err = -LIBBPF_ERRNO__FORMAT; 1587 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1588 goto errout; 1589 } 1590 1591 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1592 if (!obj->efile.ehdr) { 1593 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1594 err = -LIBBPF_ERRNO__FORMAT; 1595 goto errout; 1596 } 1597 1598 /* Validate ELF object endianness... */ 1599 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1600 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1601 err = -LIBBPF_ERRNO__ENDIAN; 1602 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1603 goto errout; 1604 } 1605 /* and save after bpf_object_open() frees ELF data */ 1606 obj->byteorder = ehdr->e_ident[EI_DATA]; 1607 1608 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1609 pr_warn("elf: failed to get section names section index for %s: %s\n", 1610 obj->path, elf_errmsg(-1)); 1611 err = -LIBBPF_ERRNO__FORMAT; 1612 goto errout; 1613 } 1614 1615 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1616 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1617 pr_warn("elf: failed to get section names strings from %s: %s\n", 1618 obj->path, elf_errmsg(-1)); 1619 err = -LIBBPF_ERRNO__FORMAT; 1620 goto errout; 1621 } 1622 1623 /* Old LLVM set e_machine to EM_NONE */ 1624 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1625 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1626 err = -LIBBPF_ERRNO__FORMAT; 1627 goto errout; 1628 } 1629 1630 return 0; 1631 errout: 1632 bpf_object__elf_finish(obj); 1633 return err; 1634 } 1635 1636 static bool is_native_endianness(struct bpf_object *obj) 1637 { 1638 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1639 return obj->byteorder == ELFDATA2LSB; 1640 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1641 return obj->byteorder == ELFDATA2MSB; 1642 #else 1643 # error "Unrecognized __BYTE_ORDER__" 1644 #endif 1645 } 1646 1647 static int 1648 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1649 { 1650 if (!data) { 1651 pr_warn("invalid license section in %s\n", obj->path); 1652 return -LIBBPF_ERRNO__FORMAT; 1653 } 1654 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1655 * go over allowed ELF data section buffer 1656 */ 1657 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1658 pr_debug("license of %s is %s\n", obj->path, obj->license); 1659 return 0; 1660 } 1661 1662 static int 1663 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1664 { 1665 __u32 kver; 1666 1667 if (!data || size != sizeof(kver)) { 1668 pr_warn("invalid kver section in %s\n", obj->path); 1669 return -LIBBPF_ERRNO__FORMAT; 1670 } 1671 memcpy(&kver, data, sizeof(kver)); 1672 obj->kern_version = kver; 1673 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1674 return 0; 1675 } 1676 1677 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1678 { 1679 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1680 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1681 return true; 1682 return false; 1683 } 1684 1685 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1686 { 1687 Elf_Data *data; 1688 Elf_Scn *scn; 1689 1690 if (!name) 1691 return -EINVAL; 1692 1693 scn = elf_sec_by_name(obj, name); 1694 data = elf_sec_data(obj, scn); 1695 if (data) { 1696 *size = data->d_size; 1697 return 0; /* found it */ 1698 } 1699 1700 return -ENOENT; 1701 } 1702 1703 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1704 { 1705 Elf_Data *symbols = obj->efile.symbols; 1706 const char *sname; 1707 size_t si; 1708 1709 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1710 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1711 1712 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1713 continue; 1714 1715 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1716 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1717 continue; 1718 1719 sname = elf_sym_str(obj, sym->st_name); 1720 if (!sname) { 1721 pr_warn("failed to get sym name string for var %s\n", name); 1722 return ERR_PTR(-EIO); 1723 } 1724 if (strcmp(name, sname) == 0) 1725 return sym; 1726 } 1727 1728 return ERR_PTR(-ENOENT); 1729 } 1730 1731 #ifndef MFD_CLOEXEC 1732 #define MFD_CLOEXEC 0x0001U 1733 #endif 1734 #ifndef MFD_NOEXEC_SEAL 1735 #define MFD_NOEXEC_SEAL 0x0008U 1736 #endif 1737 1738 static int create_placeholder_fd(void) 1739 { 1740 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL; 1741 const char *name = "libbpf-placeholder-fd"; 1742 int fd; 1743 1744 fd = ensure_good_fd(sys_memfd_create(name, flags)); 1745 if (fd >= 0) 1746 return fd; 1747 else if (errno != EINVAL) 1748 return -errno; 1749 1750 /* Possibly running on kernel without MFD_NOEXEC_SEAL */ 1751 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL)); 1752 if (fd < 0) 1753 return -errno; 1754 return fd; 1755 } 1756 1757 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1758 { 1759 struct bpf_map *map; 1760 int err; 1761 1762 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1763 sizeof(*obj->maps), obj->nr_maps + 1); 1764 if (err) 1765 return ERR_PTR(err); 1766 1767 map = &obj->maps[obj->nr_maps++]; 1768 map->obj = obj; 1769 /* Preallocate map FD without actually creating BPF map just yet. 1770 * These map FD "placeholders" will be reused later without changing 1771 * FD value when map is actually created in the kernel. 1772 * 1773 * This is useful to be able to perform BPF program relocations 1774 * without having to create BPF maps before that step. This allows us 1775 * to finalize and load BTF very late in BPF object's loading phase, 1776 * right before BPF maps have to be created and BPF programs have to 1777 * be loaded. By having these map FD placeholders we can perform all 1778 * the sanitizations, relocations, and any other adjustments before we 1779 * start creating actual BPF kernel objects (BTF, maps, progs). 1780 */ 1781 map->fd = create_placeholder_fd(); 1782 if (map->fd < 0) 1783 return ERR_PTR(map->fd); 1784 map->inner_map_fd = -1; 1785 map->autocreate = true; 1786 1787 return map; 1788 } 1789 1790 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1791 { 1792 const long page_sz = sysconf(_SC_PAGE_SIZE); 1793 size_t map_sz; 1794 1795 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1796 map_sz = roundup(map_sz, page_sz); 1797 return map_sz; 1798 } 1799 1800 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1801 { 1802 const long page_sz = sysconf(_SC_PAGE_SIZE); 1803 1804 switch (map->def.type) { 1805 case BPF_MAP_TYPE_ARRAY: 1806 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1807 case BPF_MAP_TYPE_ARENA: 1808 return page_sz * map->def.max_entries; 1809 default: 1810 return 0; /* not supported */ 1811 } 1812 } 1813 1814 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1815 { 1816 void *mmaped; 1817 1818 if (!map->mmaped) 1819 return -EINVAL; 1820 1821 if (old_sz == new_sz) 1822 return 0; 1823 1824 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1825 if (mmaped == MAP_FAILED) 1826 return -errno; 1827 1828 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1829 munmap(map->mmaped, old_sz); 1830 map->mmaped = mmaped; 1831 return 0; 1832 } 1833 1834 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1835 { 1836 char map_name[BPF_OBJ_NAME_LEN], *p; 1837 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1838 1839 /* This is one of the more confusing parts of libbpf for various 1840 * reasons, some of which are historical. The original idea for naming 1841 * internal names was to include as much of BPF object name prefix as 1842 * possible, so that it can be distinguished from similar internal 1843 * maps of a different BPF object. 1844 * As an example, let's say we have bpf_object named 'my_object_name' 1845 * and internal map corresponding to '.rodata' ELF section. The final 1846 * map name advertised to user and to the kernel will be 1847 * 'my_objec.rodata', taking first 8 characters of object name and 1848 * entire 7 characters of '.rodata'. 1849 * Somewhat confusingly, if internal map ELF section name is shorter 1850 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1851 * for the suffix, even though we only have 4 actual characters, and 1852 * resulting map will be called 'my_objec.bss', not even using all 15 1853 * characters allowed by the kernel. Oh well, at least the truncated 1854 * object name is somewhat consistent in this case. But if the map 1855 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1856 * (8 chars) and thus will be left with only first 7 characters of the 1857 * object name ('my_obje'). Happy guessing, user, that the final map 1858 * name will be "my_obje.kconfig". 1859 * Now, with libbpf starting to support arbitrarily named .rodata.* 1860 * and .data.* data sections, it's possible that ELF section name is 1861 * longer than allowed 15 chars, so we now need to be careful to take 1862 * only up to 15 first characters of ELF name, taking no BPF object 1863 * name characters at all. So '.rodata.abracadabra' will result in 1864 * '.rodata.abracad' kernel and user-visible name. 1865 * We need to keep this convoluted logic intact for .data, .bss and 1866 * .rodata maps, but for new custom .data.custom and .rodata.custom 1867 * maps we use their ELF names as is, not prepending bpf_object name 1868 * in front. We still need to truncate them to 15 characters for the 1869 * kernel. Full name can be recovered for such maps by using DATASEC 1870 * BTF type associated with such map's value type, though. 1871 */ 1872 if (sfx_len >= BPF_OBJ_NAME_LEN) 1873 sfx_len = BPF_OBJ_NAME_LEN - 1; 1874 1875 /* if there are two or more dots in map name, it's a custom dot map */ 1876 if (strchr(real_name + 1, '.') != NULL) 1877 pfx_len = 0; 1878 else 1879 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1880 1881 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1882 sfx_len, real_name); 1883 1884 /* sanities map name to characters allowed by kernel */ 1885 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1886 if (!isalnum(*p) && *p != '_' && *p != '.') 1887 *p = '_'; 1888 1889 return strdup(map_name); 1890 } 1891 1892 static int 1893 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1894 1895 /* Internal BPF map is mmap()'able only if at least one of corresponding 1896 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1897 * variable and it's not marked as __hidden (which turns it into, effectively, 1898 * a STATIC variable). 1899 */ 1900 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1901 { 1902 const struct btf_type *t, *vt; 1903 struct btf_var_secinfo *vsi; 1904 int i, n; 1905 1906 if (!map->btf_value_type_id) 1907 return false; 1908 1909 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1910 if (!btf_is_datasec(t)) 1911 return false; 1912 1913 vsi = btf_var_secinfos(t); 1914 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1915 vt = btf__type_by_id(obj->btf, vsi->type); 1916 if (!btf_is_var(vt)) 1917 continue; 1918 1919 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1920 return true; 1921 } 1922 1923 return false; 1924 } 1925 1926 static int 1927 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1928 const char *real_name, int sec_idx, void *data, size_t data_sz) 1929 { 1930 struct bpf_map_def *def; 1931 struct bpf_map *map; 1932 size_t mmap_sz; 1933 int err; 1934 1935 map = bpf_object__add_map(obj); 1936 if (IS_ERR(map)) 1937 return PTR_ERR(map); 1938 1939 map->libbpf_type = type; 1940 map->sec_idx = sec_idx; 1941 map->sec_offset = 0; 1942 map->real_name = strdup(real_name); 1943 map->name = internal_map_name(obj, real_name); 1944 if (!map->real_name || !map->name) { 1945 zfree(&map->real_name); 1946 zfree(&map->name); 1947 return -ENOMEM; 1948 } 1949 1950 def = &map->def; 1951 def->type = BPF_MAP_TYPE_ARRAY; 1952 def->key_size = sizeof(int); 1953 def->value_size = data_sz; 1954 def->max_entries = 1; 1955 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1956 ? BPF_F_RDONLY_PROG : 0; 1957 1958 /* failures are fine because of maps like .rodata.str1.1 */ 1959 (void) map_fill_btf_type_info(obj, map); 1960 1961 if (map_is_mmapable(obj, map)) 1962 def->map_flags |= BPF_F_MMAPABLE; 1963 1964 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1965 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1966 1967 mmap_sz = bpf_map_mmap_sz(map); 1968 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1969 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1970 if (map->mmaped == MAP_FAILED) { 1971 err = -errno; 1972 map->mmaped = NULL; 1973 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 1974 zfree(&map->real_name); 1975 zfree(&map->name); 1976 return err; 1977 } 1978 1979 if (data) 1980 memcpy(map->mmaped, data, data_sz); 1981 1982 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1983 return 0; 1984 } 1985 1986 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1987 { 1988 struct elf_sec_desc *sec_desc; 1989 const char *sec_name; 1990 int err = 0, sec_idx; 1991 1992 /* 1993 * Populate obj->maps with libbpf internal maps. 1994 */ 1995 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1996 sec_desc = &obj->efile.secs[sec_idx]; 1997 1998 /* Skip recognized sections with size 0. */ 1999 if (!sec_desc->data || sec_desc->data->d_size == 0) 2000 continue; 2001 2002 switch (sec_desc->sec_type) { 2003 case SEC_DATA: 2004 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2005 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 2006 sec_name, sec_idx, 2007 sec_desc->data->d_buf, 2008 sec_desc->data->d_size); 2009 break; 2010 case SEC_RODATA: 2011 obj->has_rodata = true; 2012 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2013 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2014 sec_name, sec_idx, 2015 sec_desc->data->d_buf, 2016 sec_desc->data->d_size); 2017 break; 2018 case SEC_BSS: 2019 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2020 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2021 sec_name, sec_idx, 2022 NULL, 2023 sec_desc->data->d_size); 2024 break; 2025 default: 2026 /* skip */ 2027 break; 2028 } 2029 if (err) 2030 return err; 2031 } 2032 return 0; 2033 } 2034 2035 2036 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2037 const void *name) 2038 { 2039 int i; 2040 2041 for (i = 0; i < obj->nr_extern; i++) { 2042 if (strcmp(obj->externs[i].name, name) == 0) 2043 return &obj->externs[i]; 2044 } 2045 return NULL; 2046 } 2047 2048 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2049 const void *name, int len) 2050 { 2051 const char *ext_name; 2052 int i; 2053 2054 for (i = 0; i < obj->nr_extern; i++) { 2055 ext_name = obj->externs[i].name; 2056 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2057 return &obj->externs[i]; 2058 } 2059 return NULL; 2060 } 2061 2062 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2063 char value) 2064 { 2065 switch (ext->kcfg.type) { 2066 case KCFG_BOOL: 2067 if (value == 'm') { 2068 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2069 ext->name, value); 2070 return -EINVAL; 2071 } 2072 *(bool *)ext_val = value == 'y' ? true : false; 2073 break; 2074 case KCFG_TRISTATE: 2075 if (value == 'y') 2076 *(enum libbpf_tristate *)ext_val = TRI_YES; 2077 else if (value == 'm') 2078 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2079 else /* value == 'n' */ 2080 *(enum libbpf_tristate *)ext_val = TRI_NO; 2081 break; 2082 case KCFG_CHAR: 2083 *(char *)ext_val = value; 2084 break; 2085 case KCFG_UNKNOWN: 2086 case KCFG_INT: 2087 case KCFG_CHAR_ARR: 2088 default: 2089 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2090 ext->name, value); 2091 return -EINVAL; 2092 } 2093 ext->is_set = true; 2094 return 0; 2095 } 2096 2097 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2098 const char *value) 2099 { 2100 size_t len; 2101 2102 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2103 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2104 ext->name, value); 2105 return -EINVAL; 2106 } 2107 2108 len = strlen(value); 2109 if (len < 2 || value[len - 1] != '"') { 2110 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2111 ext->name, value); 2112 return -EINVAL; 2113 } 2114 2115 /* strip quotes */ 2116 len -= 2; 2117 if (len >= ext->kcfg.sz) { 2118 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2119 ext->name, value, len, ext->kcfg.sz - 1); 2120 len = ext->kcfg.sz - 1; 2121 } 2122 memcpy(ext_val, value + 1, len); 2123 ext_val[len] = '\0'; 2124 ext->is_set = true; 2125 return 0; 2126 } 2127 2128 static int parse_u64(const char *value, __u64 *res) 2129 { 2130 char *value_end; 2131 int err; 2132 2133 errno = 0; 2134 *res = strtoull(value, &value_end, 0); 2135 if (errno) { 2136 err = -errno; 2137 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2138 return err; 2139 } 2140 if (*value_end) { 2141 pr_warn("failed to parse '%s' as integer completely\n", value); 2142 return -EINVAL; 2143 } 2144 return 0; 2145 } 2146 2147 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2148 { 2149 int bit_sz = ext->kcfg.sz * 8; 2150 2151 if (ext->kcfg.sz == 8) 2152 return true; 2153 2154 /* Validate that value stored in u64 fits in integer of `ext->sz` 2155 * bytes size without any loss of information. If the target integer 2156 * is signed, we rely on the following limits of integer type of 2157 * Y bits and subsequent transformation: 2158 * 2159 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2160 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2161 * 0 <= X + 2^(Y-1) < 2^Y 2162 * 2163 * For unsigned target integer, check that all the (64 - Y) bits are 2164 * zero. 2165 */ 2166 if (ext->kcfg.is_signed) 2167 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2168 else 2169 return (v >> bit_sz) == 0; 2170 } 2171 2172 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2173 __u64 value) 2174 { 2175 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2176 ext->kcfg.type != KCFG_BOOL) { 2177 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2178 ext->name, (unsigned long long)value); 2179 return -EINVAL; 2180 } 2181 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2182 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2183 ext->name, (unsigned long long)value); 2184 return -EINVAL; 2185 2186 } 2187 if (!is_kcfg_value_in_range(ext, value)) { 2188 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2189 ext->name, (unsigned long long)value, ext->kcfg.sz); 2190 return -ERANGE; 2191 } 2192 switch (ext->kcfg.sz) { 2193 case 1: 2194 *(__u8 *)ext_val = value; 2195 break; 2196 case 2: 2197 *(__u16 *)ext_val = value; 2198 break; 2199 case 4: 2200 *(__u32 *)ext_val = value; 2201 break; 2202 case 8: 2203 *(__u64 *)ext_val = value; 2204 break; 2205 default: 2206 return -EINVAL; 2207 } 2208 ext->is_set = true; 2209 return 0; 2210 } 2211 2212 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2213 char *buf, void *data) 2214 { 2215 struct extern_desc *ext; 2216 char *sep, *value; 2217 int len, err = 0; 2218 void *ext_val; 2219 __u64 num; 2220 2221 if (!str_has_pfx(buf, "CONFIG_")) 2222 return 0; 2223 2224 sep = strchr(buf, '='); 2225 if (!sep) { 2226 pr_warn("failed to parse '%s': no separator\n", buf); 2227 return -EINVAL; 2228 } 2229 2230 /* Trim ending '\n' */ 2231 len = strlen(buf); 2232 if (buf[len - 1] == '\n') 2233 buf[len - 1] = '\0'; 2234 /* Split on '=' and ensure that a value is present. */ 2235 *sep = '\0'; 2236 if (!sep[1]) { 2237 *sep = '='; 2238 pr_warn("failed to parse '%s': no value\n", buf); 2239 return -EINVAL; 2240 } 2241 2242 ext = find_extern_by_name(obj, buf); 2243 if (!ext || ext->is_set) 2244 return 0; 2245 2246 ext_val = data + ext->kcfg.data_off; 2247 value = sep + 1; 2248 2249 switch (*value) { 2250 case 'y': case 'n': case 'm': 2251 err = set_kcfg_value_tri(ext, ext_val, *value); 2252 break; 2253 case '"': 2254 err = set_kcfg_value_str(ext, ext_val, value); 2255 break; 2256 default: 2257 /* assume integer */ 2258 err = parse_u64(value, &num); 2259 if (err) { 2260 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2261 return err; 2262 } 2263 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2264 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2265 return -EINVAL; 2266 } 2267 err = set_kcfg_value_num(ext, ext_val, num); 2268 break; 2269 } 2270 if (err) 2271 return err; 2272 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2273 return 0; 2274 } 2275 2276 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2277 { 2278 char buf[PATH_MAX]; 2279 struct utsname uts; 2280 int len, err = 0; 2281 gzFile file; 2282 2283 uname(&uts); 2284 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2285 if (len < 0) 2286 return -EINVAL; 2287 else if (len >= PATH_MAX) 2288 return -ENAMETOOLONG; 2289 2290 /* gzopen also accepts uncompressed files. */ 2291 file = gzopen(buf, "re"); 2292 if (!file) 2293 file = gzopen("/proc/config.gz", "re"); 2294 2295 if (!file) { 2296 pr_warn("failed to open system Kconfig\n"); 2297 return -ENOENT; 2298 } 2299 2300 while (gzgets(file, buf, sizeof(buf))) { 2301 err = bpf_object__process_kconfig_line(obj, buf, data); 2302 if (err) { 2303 pr_warn("error parsing system Kconfig line '%s': %s\n", 2304 buf, errstr(err)); 2305 goto out; 2306 } 2307 } 2308 2309 out: 2310 gzclose(file); 2311 return err; 2312 } 2313 2314 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2315 const char *config, void *data) 2316 { 2317 char buf[PATH_MAX]; 2318 int err = 0; 2319 FILE *file; 2320 2321 file = fmemopen((void *)config, strlen(config), "r"); 2322 if (!file) { 2323 err = -errno; 2324 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2325 return err; 2326 } 2327 2328 while (fgets(buf, sizeof(buf), file)) { 2329 err = bpf_object__process_kconfig_line(obj, buf, data); 2330 if (err) { 2331 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2332 buf, errstr(err)); 2333 break; 2334 } 2335 } 2336 2337 fclose(file); 2338 return err; 2339 } 2340 2341 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2342 { 2343 struct extern_desc *last_ext = NULL, *ext; 2344 size_t map_sz; 2345 int i, err; 2346 2347 for (i = 0; i < obj->nr_extern; i++) { 2348 ext = &obj->externs[i]; 2349 if (ext->type == EXT_KCFG) 2350 last_ext = ext; 2351 } 2352 2353 if (!last_ext) 2354 return 0; 2355 2356 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2357 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2358 ".kconfig", obj->efile.symbols_shndx, 2359 NULL, map_sz); 2360 if (err) 2361 return err; 2362 2363 obj->kconfig_map_idx = obj->nr_maps - 1; 2364 2365 return 0; 2366 } 2367 2368 const struct btf_type * 2369 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2370 { 2371 const struct btf_type *t = btf__type_by_id(btf, id); 2372 2373 if (res_id) 2374 *res_id = id; 2375 2376 while (btf_is_mod(t) || btf_is_typedef(t)) { 2377 if (res_id) 2378 *res_id = t->type; 2379 t = btf__type_by_id(btf, t->type); 2380 } 2381 2382 return t; 2383 } 2384 2385 static const struct btf_type * 2386 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2387 { 2388 const struct btf_type *t; 2389 2390 t = skip_mods_and_typedefs(btf, id, NULL); 2391 if (!btf_is_ptr(t)) 2392 return NULL; 2393 2394 t = skip_mods_and_typedefs(btf, t->type, res_id); 2395 2396 return btf_is_func_proto(t) ? t : NULL; 2397 } 2398 2399 static const char *__btf_kind_str(__u16 kind) 2400 { 2401 switch (kind) { 2402 case BTF_KIND_UNKN: return "void"; 2403 case BTF_KIND_INT: return "int"; 2404 case BTF_KIND_PTR: return "ptr"; 2405 case BTF_KIND_ARRAY: return "array"; 2406 case BTF_KIND_STRUCT: return "struct"; 2407 case BTF_KIND_UNION: return "union"; 2408 case BTF_KIND_ENUM: return "enum"; 2409 case BTF_KIND_FWD: return "fwd"; 2410 case BTF_KIND_TYPEDEF: return "typedef"; 2411 case BTF_KIND_VOLATILE: return "volatile"; 2412 case BTF_KIND_CONST: return "const"; 2413 case BTF_KIND_RESTRICT: return "restrict"; 2414 case BTF_KIND_FUNC: return "func"; 2415 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2416 case BTF_KIND_VAR: return "var"; 2417 case BTF_KIND_DATASEC: return "datasec"; 2418 case BTF_KIND_FLOAT: return "float"; 2419 case BTF_KIND_DECL_TAG: return "decl_tag"; 2420 case BTF_KIND_TYPE_TAG: return "type_tag"; 2421 case BTF_KIND_ENUM64: return "enum64"; 2422 default: return "unknown"; 2423 } 2424 } 2425 2426 const char *btf_kind_str(const struct btf_type *t) 2427 { 2428 return __btf_kind_str(btf_kind(t)); 2429 } 2430 2431 /* 2432 * Fetch integer attribute of BTF map definition. Such attributes are 2433 * represented using a pointer to an array, in which dimensionality of array 2434 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2435 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2436 * type definition, while using only sizeof(void *) space in ELF data section. 2437 */ 2438 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2439 const struct btf_member *m, __u32 *res) 2440 { 2441 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2442 const char *name = btf__name_by_offset(btf, m->name_off); 2443 const struct btf_array *arr_info; 2444 const struct btf_type *arr_t; 2445 2446 if (!btf_is_ptr(t)) { 2447 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2448 map_name, name, btf_kind_str(t)); 2449 return false; 2450 } 2451 2452 arr_t = btf__type_by_id(btf, t->type); 2453 if (!arr_t) { 2454 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2455 map_name, name, t->type); 2456 return false; 2457 } 2458 if (!btf_is_array(arr_t)) { 2459 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2460 map_name, name, btf_kind_str(arr_t)); 2461 return false; 2462 } 2463 arr_info = btf_array(arr_t); 2464 *res = arr_info->nelems; 2465 return true; 2466 } 2467 2468 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2469 const struct btf_member *m, __u64 *res) 2470 { 2471 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2472 const char *name = btf__name_by_offset(btf, m->name_off); 2473 2474 if (btf_is_ptr(t)) { 2475 __u32 res32; 2476 bool ret; 2477 2478 ret = get_map_field_int(map_name, btf, m, &res32); 2479 if (ret) 2480 *res = (__u64)res32; 2481 return ret; 2482 } 2483 2484 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2485 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2486 map_name, name, btf_kind_str(t)); 2487 return false; 2488 } 2489 2490 if (btf_vlen(t) != 1) { 2491 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2492 map_name, name); 2493 return false; 2494 } 2495 2496 if (btf_is_enum(t)) { 2497 const struct btf_enum *e = btf_enum(t); 2498 2499 *res = e->val; 2500 } else { 2501 const struct btf_enum64 *e = btf_enum64(t); 2502 2503 *res = btf_enum64_value(e); 2504 } 2505 return true; 2506 } 2507 2508 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2509 { 2510 int len; 2511 2512 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2513 if (len < 0) 2514 return -EINVAL; 2515 if (len >= buf_sz) 2516 return -ENAMETOOLONG; 2517 2518 return 0; 2519 } 2520 2521 static int build_map_pin_path(struct bpf_map *map, const char *path) 2522 { 2523 char buf[PATH_MAX]; 2524 int err; 2525 2526 if (!path) 2527 path = BPF_FS_DEFAULT_PATH; 2528 2529 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2530 if (err) 2531 return err; 2532 2533 return bpf_map__set_pin_path(map, buf); 2534 } 2535 2536 /* should match definition in bpf_helpers.h */ 2537 enum libbpf_pin_type { 2538 LIBBPF_PIN_NONE, 2539 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2540 LIBBPF_PIN_BY_NAME, 2541 }; 2542 2543 int parse_btf_map_def(const char *map_name, struct btf *btf, 2544 const struct btf_type *def_t, bool strict, 2545 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2546 { 2547 const struct btf_type *t; 2548 const struct btf_member *m; 2549 bool is_inner = inner_def == NULL; 2550 int vlen, i; 2551 2552 vlen = btf_vlen(def_t); 2553 m = btf_members(def_t); 2554 for (i = 0; i < vlen; i++, m++) { 2555 const char *name = btf__name_by_offset(btf, m->name_off); 2556 2557 if (!name) { 2558 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2559 return -EINVAL; 2560 } 2561 if (strcmp(name, "type") == 0) { 2562 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2563 return -EINVAL; 2564 map_def->parts |= MAP_DEF_MAP_TYPE; 2565 } else if (strcmp(name, "max_entries") == 0) { 2566 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2567 return -EINVAL; 2568 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2569 } else if (strcmp(name, "map_flags") == 0) { 2570 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2571 return -EINVAL; 2572 map_def->parts |= MAP_DEF_MAP_FLAGS; 2573 } else if (strcmp(name, "numa_node") == 0) { 2574 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2575 return -EINVAL; 2576 map_def->parts |= MAP_DEF_NUMA_NODE; 2577 } else if (strcmp(name, "key_size") == 0) { 2578 __u32 sz; 2579 2580 if (!get_map_field_int(map_name, btf, m, &sz)) 2581 return -EINVAL; 2582 if (map_def->key_size && map_def->key_size != sz) { 2583 pr_warn("map '%s': conflicting key size %u != %u.\n", 2584 map_name, map_def->key_size, sz); 2585 return -EINVAL; 2586 } 2587 map_def->key_size = sz; 2588 map_def->parts |= MAP_DEF_KEY_SIZE; 2589 } else if (strcmp(name, "key") == 0) { 2590 __s64 sz; 2591 2592 t = btf__type_by_id(btf, m->type); 2593 if (!t) { 2594 pr_warn("map '%s': key type [%d] not found.\n", 2595 map_name, m->type); 2596 return -EINVAL; 2597 } 2598 if (!btf_is_ptr(t)) { 2599 pr_warn("map '%s': key spec is not PTR: %s.\n", 2600 map_name, btf_kind_str(t)); 2601 return -EINVAL; 2602 } 2603 sz = btf__resolve_size(btf, t->type); 2604 if (sz < 0) { 2605 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2606 map_name, t->type, (ssize_t)sz); 2607 return sz; 2608 } 2609 if (map_def->key_size && map_def->key_size != sz) { 2610 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2611 map_name, map_def->key_size, (ssize_t)sz); 2612 return -EINVAL; 2613 } 2614 map_def->key_size = sz; 2615 map_def->key_type_id = t->type; 2616 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2617 } else if (strcmp(name, "value_size") == 0) { 2618 __u32 sz; 2619 2620 if (!get_map_field_int(map_name, btf, m, &sz)) 2621 return -EINVAL; 2622 if (map_def->value_size && map_def->value_size != sz) { 2623 pr_warn("map '%s': conflicting value size %u != %u.\n", 2624 map_name, map_def->value_size, sz); 2625 return -EINVAL; 2626 } 2627 map_def->value_size = sz; 2628 map_def->parts |= MAP_DEF_VALUE_SIZE; 2629 } else if (strcmp(name, "value") == 0) { 2630 __s64 sz; 2631 2632 t = btf__type_by_id(btf, m->type); 2633 if (!t) { 2634 pr_warn("map '%s': value type [%d] not found.\n", 2635 map_name, m->type); 2636 return -EINVAL; 2637 } 2638 if (!btf_is_ptr(t)) { 2639 pr_warn("map '%s': value spec is not PTR: %s.\n", 2640 map_name, btf_kind_str(t)); 2641 return -EINVAL; 2642 } 2643 sz = btf__resolve_size(btf, t->type); 2644 if (sz < 0) { 2645 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2646 map_name, t->type, (ssize_t)sz); 2647 return sz; 2648 } 2649 if (map_def->value_size && map_def->value_size != sz) { 2650 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2651 map_name, map_def->value_size, (ssize_t)sz); 2652 return -EINVAL; 2653 } 2654 map_def->value_size = sz; 2655 map_def->value_type_id = t->type; 2656 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2657 } 2658 else if (strcmp(name, "values") == 0) { 2659 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2660 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2661 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2662 char inner_map_name[128]; 2663 int err; 2664 2665 if (is_inner) { 2666 pr_warn("map '%s': multi-level inner maps not supported.\n", 2667 map_name); 2668 return -ENOTSUP; 2669 } 2670 if (i != vlen - 1) { 2671 pr_warn("map '%s': '%s' member should be last.\n", 2672 map_name, name); 2673 return -EINVAL; 2674 } 2675 if (!is_map_in_map && !is_prog_array) { 2676 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2677 map_name); 2678 return -ENOTSUP; 2679 } 2680 if (map_def->value_size && map_def->value_size != 4) { 2681 pr_warn("map '%s': conflicting value size %u != 4.\n", 2682 map_name, map_def->value_size); 2683 return -EINVAL; 2684 } 2685 map_def->value_size = 4; 2686 t = btf__type_by_id(btf, m->type); 2687 if (!t) { 2688 pr_warn("map '%s': %s type [%d] not found.\n", 2689 map_name, desc, m->type); 2690 return -EINVAL; 2691 } 2692 if (!btf_is_array(t) || btf_array(t)->nelems) { 2693 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2694 map_name, desc); 2695 return -EINVAL; 2696 } 2697 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2698 if (!btf_is_ptr(t)) { 2699 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2700 map_name, desc, btf_kind_str(t)); 2701 return -EINVAL; 2702 } 2703 t = skip_mods_and_typedefs(btf, t->type, NULL); 2704 if (is_prog_array) { 2705 if (!btf_is_func_proto(t)) { 2706 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2707 map_name, btf_kind_str(t)); 2708 return -EINVAL; 2709 } 2710 continue; 2711 } 2712 if (!btf_is_struct(t)) { 2713 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2714 map_name, btf_kind_str(t)); 2715 return -EINVAL; 2716 } 2717 2718 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2719 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2720 if (err) 2721 return err; 2722 2723 map_def->parts |= MAP_DEF_INNER_MAP; 2724 } else if (strcmp(name, "pinning") == 0) { 2725 __u32 val; 2726 2727 if (is_inner) { 2728 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2729 return -EINVAL; 2730 } 2731 if (!get_map_field_int(map_name, btf, m, &val)) 2732 return -EINVAL; 2733 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2734 pr_warn("map '%s': invalid pinning value %u.\n", 2735 map_name, val); 2736 return -EINVAL; 2737 } 2738 map_def->pinning = val; 2739 map_def->parts |= MAP_DEF_PINNING; 2740 } else if (strcmp(name, "map_extra") == 0) { 2741 __u64 map_extra; 2742 2743 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2744 return -EINVAL; 2745 map_def->map_extra = map_extra; 2746 map_def->parts |= MAP_DEF_MAP_EXTRA; 2747 } else { 2748 if (strict) { 2749 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2750 return -ENOTSUP; 2751 } 2752 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2753 } 2754 } 2755 2756 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2757 pr_warn("map '%s': map type isn't specified.\n", map_name); 2758 return -EINVAL; 2759 } 2760 2761 return 0; 2762 } 2763 2764 static size_t adjust_ringbuf_sz(size_t sz) 2765 { 2766 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2767 __u32 mul; 2768 2769 /* if user forgot to set any size, make sure they see error */ 2770 if (sz == 0) 2771 return 0; 2772 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2773 * a power-of-2 multiple of kernel's page size. If user diligently 2774 * satisified these conditions, pass the size through. 2775 */ 2776 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2777 return sz; 2778 2779 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2780 * user-set size to satisfy both user size request and kernel 2781 * requirements and substitute correct max_entries for map creation. 2782 */ 2783 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2784 if (mul * page_sz > sz) 2785 return mul * page_sz; 2786 } 2787 2788 /* if it's impossible to satisfy the conditions (i.e., user size is 2789 * very close to UINT_MAX but is not a power-of-2 multiple of 2790 * page_size) then just return original size and let kernel reject it 2791 */ 2792 return sz; 2793 } 2794 2795 static bool map_is_ringbuf(const struct bpf_map *map) 2796 { 2797 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2798 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2799 } 2800 2801 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2802 { 2803 map->def.type = def->map_type; 2804 map->def.key_size = def->key_size; 2805 map->def.value_size = def->value_size; 2806 map->def.max_entries = def->max_entries; 2807 map->def.map_flags = def->map_flags; 2808 map->map_extra = def->map_extra; 2809 2810 map->numa_node = def->numa_node; 2811 map->btf_key_type_id = def->key_type_id; 2812 map->btf_value_type_id = def->value_type_id; 2813 2814 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2815 if (map_is_ringbuf(map)) 2816 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2817 2818 if (def->parts & MAP_DEF_MAP_TYPE) 2819 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2820 2821 if (def->parts & MAP_DEF_KEY_TYPE) 2822 pr_debug("map '%s': found key [%u], sz = %u.\n", 2823 map->name, def->key_type_id, def->key_size); 2824 else if (def->parts & MAP_DEF_KEY_SIZE) 2825 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2826 2827 if (def->parts & MAP_DEF_VALUE_TYPE) 2828 pr_debug("map '%s': found value [%u], sz = %u.\n", 2829 map->name, def->value_type_id, def->value_size); 2830 else if (def->parts & MAP_DEF_VALUE_SIZE) 2831 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2832 2833 if (def->parts & MAP_DEF_MAX_ENTRIES) 2834 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2835 if (def->parts & MAP_DEF_MAP_FLAGS) 2836 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2837 if (def->parts & MAP_DEF_MAP_EXTRA) 2838 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2839 (unsigned long long)def->map_extra); 2840 if (def->parts & MAP_DEF_PINNING) 2841 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2842 if (def->parts & MAP_DEF_NUMA_NODE) 2843 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2844 2845 if (def->parts & MAP_DEF_INNER_MAP) 2846 pr_debug("map '%s': found inner map definition.\n", map->name); 2847 } 2848 2849 static const char *btf_var_linkage_str(__u32 linkage) 2850 { 2851 switch (linkage) { 2852 case BTF_VAR_STATIC: return "static"; 2853 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2854 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2855 default: return "unknown"; 2856 } 2857 } 2858 2859 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2860 const struct btf_type *sec, 2861 int var_idx, int sec_idx, 2862 const Elf_Data *data, bool strict, 2863 const char *pin_root_path) 2864 { 2865 struct btf_map_def map_def = {}, inner_def = {}; 2866 const struct btf_type *var, *def; 2867 const struct btf_var_secinfo *vi; 2868 const struct btf_var *var_extra; 2869 const char *map_name; 2870 struct bpf_map *map; 2871 int err; 2872 2873 vi = btf_var_secinfos(sec) + var_idx; 2874 var = btf__type_by_id(obj->btf, vi->type); 2875 var_extra = btf_var(var); 2876 map_name = btf__name_by_offset(obj->btf, var->name_off); 2877 2878 if (map_name == NULL || map_name[0] == '\0') { 2879 pr_warn("map #%d: empty name.\n", var_idx); 2880 return -EINVAL; 2881 } 2882 if ((__u64)vi->offset + vi->size > data->d_size) { 2883 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2884 return -EINVAL; 2885 } 2886 if (!btf_is_var(var)) { 2887 pr_warn("map '%s': unexpected var kind %s.\n", 2888 map_name, btf_kind_str(var)); 2889 return -EINVAL; 2890 } 2891 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2892 pr_warn("map '%s': unsupported map linkage %s.\n", 2893 map_name, btf_var_linkage_str(var_extra->linkage)); 2894 return -EOPNOTSUPP; 2895 } 2896 2897 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2898 if (!btf_is_struct(def)) { 2899 pr_warn("map '%s': unexpected def kind %s.\n", 2900 map_name, btf_kind_str(var)); 2901 return -EINVAL; 2902 } 2903 if (def->size > vi->size) { 2904 pr_warn("map '%s': invalid def size.\n", map_name); 2905 return -EINVAL; 2906 } 2907 2908 map = bpf_object__add_map(obj); 2909 if (IS_ERR(map)) 2910 return PTR_ERR(map); 2911 map->name = strdup(map_name); 2912 if (!map->name) { 2913 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2914 return -ENOMEM; 2915 } 2916 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2917 map->def.type = BPF_MAP_TYPE_UNSPEC; 2918 map->sec_idx = sec_idx; 2919 map->sec_offset = vi->offset; 2920 map->btf_var_idx = var_idx; 2921 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2922 map_name, map->sec_idx, map->sec_offset); 2923 2924 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2925 if (err) 2926 return err; 2927 2928 fill_map_from_def(map, &map_def); 2929 2930 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2931 err = build_map_pin_path(map, pin_root_path); 2932 if (err) { 2933 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2934 return err; 2935 } 2936 } 2937 2938 if (map_def.parts & MAP_DEF_INNER_MAP) { 2939 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2940 if (!map->inner_map) 2941 return -ENOMEM; 2942 map->inner_map->fd = create_placeholder_fd(); 2943 if (map->inner_map->fd < 0) 2944 return map->inner_map->fd; 2945 map->inner_map->sec_idx = sec_idx; 2946 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2947 if (!map->inner_map->name) 2948 return -ENOMEM; 2949 sprintf(map->inner_map->name, "%s.inner", map_name); 2950 2951 fill_map_from_def(map->inner_map, &inner_def); 2952 } 2953 2954 err = map_fill_btf_type_info(obj, map); 2955 if (err) 2956 return err; 2957 2958 return 0; 2959 } 2960 2961 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2962 const char *sec_name, int sec_idx, 2963 void *data, size_t data_sz) 2964 { 2965 const long page_sz = sysconf(_SC_PAGE_SIZE); 2966 size_t mmap_sz; 2967 2968 mmap_sz = bpf_map_mmap_sz(map); 2969 if (roundup(data_sz, page_sz) > mmap_sz) { 2970 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2971 sec_name, mmap_sz, data_sz); 2972 return -E2BIG; 2973 } 2974 2975 obj->arena_data = malloc(data_sz); 2976 if (!obj->arena_data) 2977 return -ENOMEM; 2978 memcpy(obj->arena_data, data, data_sz); 2979 obj->arena_data_sz = data_sz; 2980 2981 /* make bpf_map__init_value() work for ARENA maps */ 2982 map->mmaped = obj->arena_data; 2983 2984 return 0; 2985 } 2986 2987 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2988 const char *pin_root_path) 2989 { 2990 const struct btf_type *sec = NULL; 2991 int nr_types, i, vlen, err; 2992 const struct btf_type *t; 2993 const char *name; 2994 Elf_Data *data; 2995 Elf_Scn *scn; 2996 2997 if (obj->efile.btf_maps_shndx < 0) 2998 return 0; 2999 3000 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 3001 data = elf_sec_data(obj, scn); 3002 if (!scn || !data) { 3003 pr_warn("elf: failed to get %s map definitions for %s\n", 3004 MAPS_ELF_SEC, obj->path); 3005 return -EINVAL; 3006 } 3007 3008 nr_types = btf__type_cnt(obj->btf); 3009 for (i = 1; i < nr_types; i++) { 3010 t = btf__type_by_id(obj->btf, i); 3011 if (!btf_is_datasec(t)) 3012 continue; 3013 name = btf__name_by_offset(obj->btf, t->name_off); 3014 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3015 sec = t; 3016 obj->efile.btf_maps_sec_btf_id = i; 3017 break; 3018 } 3019 } 3020 3021 if (!sec) { 3022 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3023 return -ENOENT; 3024 } 3025 3026 vlen = btf_vlen(sec); 3027 for (i = 0; i < vlen; i++) { 3028 err = bpf_object__init_user_btf_map(obj, sec, i, 3029 obj->efile.btf_maps_shndx, 3030 data, strict, 3031 pin_root_path); 3032 if (err) 3033 return err; 3034 } 3035 3036 for (i = 0; i < obj->nr_maps; i++) { 3037 struct bpf_map *map = &obj->maps[i]; 3038 3039 if (map->def.type != BPF_MAP_TYPE_ARENA) 3040 continue; 3041 3042 if (obj->arena_map_idx >= 0) { 3043 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3044 map->name, obj->maps[obj->arena_map_idx].name); 3045 return -EINVAL; 3046 } 3047 obj->arena_map_idx = i; 3048 3049 if (obj->efile.arena_data) { 3050 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3051 obj->efile.arena_data->d_buf, 3052 obj->efile.arena_data->d_size); 3053 if (err) 3054 return err; 3055 } 3056 } 3057 if (obj->efile.arena_data && obj->arena_map_idx < 0) { 3058 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3059 ARENA_SEC); 3060 return -ENOENT; 3061 } 3062 3063 return 0; 3064 } 3065 3066 static int bpf_object__init_maps(struct bpf_object *obj, 3067 const struct bpf_object_open_opts *opts) 3068 { 3069 const char *pin_root_path; 3070 bool strict; 3071 int err = 0; 3072 3073 strict = !OPTS_GET(opts, relaxed_maps, false); 3074 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3075 3076 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3077 err = err ?: bpf_object__init_global_data_maps(obj); 3078 err = err ?: bpf_object__init_kconfig_map(obj); 3079 err = err ?: bpf_object_init_struct_ops(obj); 3080 3081 return err; 3082 } 3083 3084 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3085 { 3086 Elf64_Shdr *sh; 3087 3088 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3089 if (!sh) 3090 return false; 3091 3092 return sh->sh_flags & SHF_EXECINSTR; 3093 } 3094 3095 static bool starts_with_qmark(const char *s) 3096 { 3097 return s && s[0] == '?'; 3098 } 3099 3100 static bool btf_needs_sanitization(struct bpf_object *obj) 3101 { 3102 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3103 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3104 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3105 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3106 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3107 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3108 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3109 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3110 3111 return !has_func || !has_datasec || !has_func_global || !has_float || 3112 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3113 } 3114 3115 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3116 { 3117 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3118 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3119 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3120 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3121 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3122 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3123 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3124 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3125 int enum64_placeholder_id = 0; 3126 struct btf_type *t; 3127 int i, j, vlen; 3128 3129 for (i = 1; i < btf__type_cnt(btf); i++) { 3130 t = (struct btf_type *)btf__type_by_id(btf, i); 3131 3132 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3133 /* replace VAR/DECL_TAG with INT */ 3134 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3135 /* 3136 * using size = 1 is the safest choice, 4 will be too 3137 * big and cause kernel BTF validation failure if 3138 * original variable took less than 4 bytes 3139 */ 3140 t->size = 1; 3141 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3142 } else if (!has_datasec && btf_is_datasec(t)) { 3143 /* replace DATASEC with STRUCT */ 3144 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3145 struct btf_member *m = btf_members(t); 3146 struct btf_type *vt; 3147 char *name; 3148 3149 name = (char *)btf__name_by_offset(btf, t->name_off); 3150 while (*name) { 3151 if (*name == '.' || *name == '?') 3152 *name = '_'; 3153 name++; 3154 } 3155 3156 vlen = btf_vlen(t); 3157 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3158 for (j = 0; j < vlen; j++, v++, m++) { 3159 /* order of field assignments is important */ 3160 m->offset = v->offset * 8; 3161 m->type = v->type; 3162 /* preserve variable name as member name */ 3163 vt = (void *)btf__type_by_id(btf, v->type); 3164 m->name_off = vt->name_off; 3165 } 3166 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3167 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3168 /* replace '?' prefix with '_' for DATASEC names */ 3169 char *name; 3170 3171 name = (char *)btf__name_by_offset(btf, t->name_off); 3172 if (name[0] == '?') 3173 name[0] = '_'; 3174 } else if (!has_func && btf_is_func_proto(t)) { 3175 /* replace FUNC_PROTO with ENUM */ 3176 vlen = btf_vlen(t); 3177 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3178 t->size = sizeof(__u32); /* kernel enforced */ 3179 } else if (!has_func && btf_is_func(t)) { 3180 /* replace FUNC with TYPEDEF */ 3181 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3182 } else if (!has_func_global && btf_is_func(t)) { 3183 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3184 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3185 } else if (!has_float && btf_is_float(t)) { 3186 /* replace FLOAT with an equally-sized empty STRUCT; 3187 * since C compilers do not accept e.g. "float" as a 3188 * valid struct name, make it anonymous 3189 */ 3190 t->name_off = 0; 3191 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3192 } else if (!has_type_tag && btf_is_type_tag(t)) { 3193 /* replace TYPE_TAG with a CONST */ 3194 t->name_off = 0; 3195 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3196 } else if (!has_enum64 && btf_is_enum(t)) { 3197 /* clear the kflag */ 3198 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3199 } else if (!has_enum64 && btf_is_enum64(t)) { 3200 /* replace ENUM64 with a union */ 3201 struct btf_member *m; 3202 3203 if (enum64_placeholder_id == 0) { 3204 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3205 if (enum64_placeholder_id < 0) 3206 return enum64_placeholder_id; 3207 3208 t = (struct btf_type *)btf__type_by_id(btf, i); 3209 } 3210 3211 m = btf_members(t); 3212 vlen = btf_vlen(t); 3213 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3214 for (j = 0; j < vlen; j++, m++) { 3215 m->type = enum64_placeholder_id; 3216 m->offset = 0; 3217 } 3218 } 3219 } 3220 3221 return 0; 3222 } 3223 3224 static bool libbpf_needs_btf(const struct bpf_object *obj) 3225 { 3226 return obj->efile.btf_maps_shndx >= 0 || 3227 obj->efile.has_st_ops || 3228 obj->nr_extern > 0; 3229 } 3230 3231 static bool kernel_needs_btf(const struct bpf_object *obj) 3232 { 3233 return obj->efile.has_st_ops; 3234 } 3235 3236 static int bpf_object__init_btf(struct bpf_object *obj, 3237 Elf_Data *btf_data, 3238 Elf_Data *btf_ext_data) 3239 { 3240 int err = -ENOENT; 3241 3242 if (btf_data) { 3243 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3244 err = libbpf_get_error(obj->btf); 3245 if (err) { 3246 obj->btf = NULL; 3247 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3248 goto out; 3249 } 3250 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3251 btf__set_pointer_size(obj->btf, 8); 3252 } 3253 if (btf_ext_data) { 3254 struct btf_ext_info *ext_segs[3]; 3255 int seg_num, sec_num; 3256 3257 if (!obj->btf) { 3258 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3259 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3260 goto out; 3261 } 3262 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3263 err = libbpf_get_error(obj->btf_ext); 3264 if (err) { 3265 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3266 BTF_EXT_ELF_SEC, errstr(err)); 3267 obj->btf_ext = NULL; 3268 goto out; 3269 } 3270 3271 /* setup .BTF.ext to ELF section mapping */ 3272 ext_segs[0] = &obj->btf_ext->func_info; 3273 ext_segs[1] = &obj->btf_ext->line_info; 3274 ext_segs[2] = &obj->btf_ext->core_relo_info; 3275 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3276 struct btf_ext_info *seg = ext_segs[seg_num]; 3277 const struct btf_ext_info_sec *sec; 3278 const char *sec_name; 3279 Elf_Scn *scn; 3280 3281 if (seg->sec_cnt == 0) 3282 continue; 3283 3284 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3285 if (!seg->sec_idxs) { 3286 err = -ENOMEM; 3287 goto out; 3288 } 3289 3290 sec_num = 0; 3291 for_each_btf_ext_sec(seg, sec) { 3292 /* preventively increment index to avoid doing 3293 * this before every continue below 3294 */ 3295 sec_num++; 3296 3297 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3298 if (str_is_empty(sec_name)) 3299 continue; 3300 scn = elf_sec_by_name(obj, sec_name); 3301 if (!scn) 3302 continue; 3303 3304 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3305 } 3306 } 3307 } 3308 out: 3309 if (err && libbpf_needs_btf(obj)) { 3310 pr_warn("BTF is required, but is missing or corrupted.\n"); 3311 return err; 3312 } 3313 return 0; 3314 } 3315 3316 static int compare_vsi_off(const void *_a, const void *_b) 3317 { 3318 const struct btf_var_secinfo *a = _a; 3319 const struct btf_var_secinfo *b = _b; 3320 3321 return a->offset - b->offset; 3322 } 3323 3324 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3325 struct btf_type *t) 3326 { 3327 __u32 size = 0, i, vars = btf_vlen(t); 3328 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3329 struct btf_var_secinfo *vsi; 3330 bool fixup_offsets = false; 3331 int err; 3332 3333 if (!sec_name) { 3334 pr_debug("No name found in string section for DATASEC kind.\n"); 3335 return -ENOENT; 3336 } 3337 3338 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3339 * variable offsets set at the previous step. Further, not every 3340 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3341 * all fixups altogether for such sections and go straight to sorting 3342 * VARs within their DATASEC. 3343 */ 3344 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3345 goto sort_vars; 3346 3347 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3348 * fix this up. But BPF static linker already fixes this up and fills 3349 * all the sizes and offsets during static linking. So this step has 3350 * to be optional. But the STV_HIDDEN handling is non-optional for any 3351 * non-extern DATASEC, so the variable fixup loop below handles both 3352 * functions at the same time, paying the cost of BTF VAR <-> ELF 3353 * symbol matching just once. 3354 */ 3355 if (t->size == 0) { 3356 err = find_elf_sec_sz(obj, sec_name, &size); 3357 if (err || !size) { 3358 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3359 sec_name, size, errstr(err)); 3360 return -ENOENT; 3361 } 3362 3363 t->size = size; 3364 fixup_offsets = true; 3365 } 3366 3367 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3368 const struct btf_type *t_var; 3369 struct btf_var *var; 3370 const char *var_name; 3371 Elf64_Sym *sym; 3372 3373 t_var = btf__type_by_id(btf, vsi->type); 3374 if (!t_var || !btf_is_var(t_var)) { 3375 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3376 return -EINVAL; 3377 } 3378 3379 var = btf_var(t_var); 3380 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3381 continue; 3382 3383 var_name = btf__name_by_offset(btf, t_var->name_off); 3384 if (!var_name) { 3385 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3386 sec_name, i); 3387 return -ENOENT; 3388 } 3389 3390 sym = find_elf_var_sym(obj, var_name); 3391 if (IS_ERR(sym)) { 3392 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3393 sec_name, var_name); 3394 return -ENOENT; 3395 } 3396 3397 if (fixup_offsets) 3398 vsi->offset = sym->st_value; 3399 3400 /* if variable is a global/weak symbol, but has restricted 3401 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3402 * as static. This follows similar logic for functions (BPF 3403 * subprogs) and influences libbpf's further decisions about 3404 * whether to make global data BPF array maps as 3405 * BPF_F_MMAPABLE. 3406 */ 3407 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3408 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3409 var->linkage = BTF_VAR_STATIC; 3410 } 3411 3412 sort_vars: 3413 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3414 return 0; 3415 } 3416 3417 static int bpf_object_fixup_btf(struct bpf_object *obj) 3418 { 3419 int i, n, err = 0; 3420 3421 if (!obj->btf) 3422 return 0; 3423 3424 n = btf__type_cnt(obj->btf); 3425 for (i = 1; i < n; i++) { 3426 struct btf_type *t = btf_type_by_id(obj->btf, i); 3427 3428 /* Loader needs to fix up some of the things compiler 3429 * couldn't get its hands on while emitting BTF. This 3430 * is section size and global variable offset. We use 3431 * the info from the ELF itself for this purpose. 3432 */ 3433 if (btf_is_datasec(t)) { 3434 err = btf_fixup_datasec(obj, obj->btf, t); 3435 if (err) 3436 return err; 3437 } 3438 } 3439 3440 return 0; 3441 } 3442 3443 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3444 { 3445 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3446 prog->type == BPF_PROG_TYPE_LSM) 3447 return true; 3448 3449 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3450 * also need vmlinux BTF 3451 */ 3452 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3453 return true; 3454 3455 return false; 3456 } 3457 3458 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3459 { 3460 return bpf_map__is_struct_ops(map); 3461 } 3462 3463 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3464 { 3465 struct bpf_program *prog; 3466 struct bpf_map *map; 3467 int i; 3468 3469 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3470 * is not specified 3471 */ 3472 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3473 return true; 3474 3475 /* Support for typed ksyms needs kernel BTF */ 3476 for (i = 0; i < obj->nr_extern; i++) { 3477 const struct extern_desc *ext; 3478 3479 ext = &obj->externs[i]; 3480 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3481 return true; 3482 } 3483 3484 bpf_object__for_each_program(prog, obj) { 3485 if (!prog->autoload) 3486 continue; 3487 if (prog_needs_vmlinux_btf(prog)) 3488 return true; 3489 } 3490 3491 bpf_object__for_each_map(map, obj) { 3492 if (map_needs_vmlinux_btf(map)) 3493 return true; 3494 } 3495 3496 return false; 3497 } 3498 3499 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3500 { 3501 int err; 3502 3503 /* btf_vmlinux could be loaded earlier */ 3504 if (obj->btf_vmlinux || obj->gen_loader) 3505 return 0; 3506 3507 if (!force && !obj_needs_vmlinux_btf(obj)) 3508 return 0; 3509 3510 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3511 err = libbpf_get_error(obj->btf_vmlinux); 3512 if (err) { 3513 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3514 obj->btf_vmlinux = NULL; 3515 return err; 3516 } 3517 return 0; 3518 } 3519 3520 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3521 { 3522 struct btf *kern_btf = obj->btf; 3523 bool btf_mandatory, sanitize; 3524 int i, err = 0; 3525 3526 if (!obj->btf) 3527 return 0; 3528 3529 if (!kernel_supports(obj, FEAT_BTF)) { 3530 if (kernel_needs_btf(obj)) { 3531 err = -EOPNOTSUPP; 3532 goto report; 3533 } 3534 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3535 return 0; 3536 } 3537 3538 /* Even though some subprogs are global/weak, user might prefer more 3539 * permissive BPF verification process that BPF verifier performs for 3540 * static functions, taking into account more context from the caller 3541 * functions. In such case, they need to mark such subprogs with 3542 * __attribute__((visibility("hidden"))) and libbpf will adjust 3543 * corresponding FUNC BTF type to be marked as static and trigger more 3544 * involved BPF verification process. 3545 */ 3546 for (i = 0; i < obj->nr_programs; i++) { 3547 struct bpf_program *prog = &obj->programs[i]; 3548 struct btf_type *t; 3549 const char *name; 3550 int j, n; 3551 3552 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3553 continue; 3554 3555 n = btf__type_cnt(obj->btf); 3556 for (j = 1; j < n; j++) { 3557 t = btf_type_by_id(obj->btf, j); 3558 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3559 continue; 3560 3561 name = btf__str_by_offset(obj->btf, t->name_off); 3562 if (strcmp(name, prog->name) != 0) 3563 continue; 3564 3565 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3566 break; 3567 } 3568 } 3569 3570 sanitize = btf_needs_sanitization(obj); 3571 if (sanitize) { 3572 const void *raw_data; 3573 __u32 sz; 3574 3575 /* clone BTF to sanitize a copy and leave the original intact */ 3576 raw_data = btf__raw_data(obj->btf, &sz); 3577 kern_btf = btf__new(raw_data, sz); 3578 err = libbpf_get_error(kern_btf); 3579 if (err) 3580 return err; 3581 3582 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3583 btf__set_pointer_size(obj->btf, 8); 3584 err = bpf_object__sanitize_btf(obj, kern_btf); 3585 if (err) 3586 return err; 3587 } 3588 3589 if (obj->gen_loader) { 3590 __u32 raw_size = 0; 3591 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3592 3593 if (!raw_data) 3594 return -ENOMEM; 3595 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3596 /* Pretend to have valid FD to pass various fd >= 0 checks. 3597 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3598 */ 3599 btf__set_fd(kern_btf, 0); 3600 } else { 3601 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3602 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3603 obj->log_level ? 1 : 0, obj->token_fd); 3604 } 3605 if (sanitize) { 3606 if (!err) { 3607 /* move fd to libbpf's BTF */ 3608 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3609 btf__set_fd(kern_btf, -1); 3610 } 3611 btf__free(kern_btf); 3612 } 3613 report: 3614 if (err) { 3615 btf_mandatory = kernel_needs_btf(obj); 3616 if (btf_mandatory) { 3617 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3618 errstr(err)); 3619 } else { 3620 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3621 errstr(err)); 3622 err = 0; 3623 } 3624 } 3625 return err; 3626 } 3627 3628 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3629 { 3630 const char *name; 3631 3632 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3633 if (!name) { 3634 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3635 off, obj->path, elf_errmsg(-1)); 3636 return NULL; 3637 } 3638 3639 return name; 3640 } 3641 3642 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3643 { 3644 const char *name; 3645 3646 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3647 if (!name) { 3648 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3649 off, obj->path, elf_errmsg(-1)); 3650 return NULL; 3651 } 3652 3653 return name; 3654 } 3655 3656 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3657 { 3658 Elf_Scn *scn; 3659 3660 scn = elf_getscn(obj->efile.elf, idx); 3661 if (!scn) { 3662 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3663 idx, obj->path, elf_errmsg(-1)); 3664 return NULL; 3665 } 3666 return scn; 3667 } 3668 3669 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3670 { 3671 Elf_Scn *scn = NULL; 3672 Elf *elf = obj->efile.elf; 3673 const char *sec_name; 3674 3675 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3676 sec_name = elf_sec_name(obj, scn); 3677 if (!sec_name) 3678 return NULL; 3679 3680 if (strcmp(sec_name, name) != 0) 3681 continue; 3682 3683 return scn; 3684 } 3685 return NULL; 3686 } 3687 3688 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3689 { 3690 Elf64_Shdr *shdr; 3691 3692 if (!scn) 3693 return NULL; 3694 3695 shdr = elf64_getshdr(scn); 3696 if (!shdr) { 3697 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3698 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3699 return NULL; 3700 } 3701 3702 return shdr; 3703 } 3704 3705 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3706 { 3707 const char *name; 3708 Elf64_Shdr *sh; 3709 3710 if (!scn) 3711 return NULL; 3712 3713 sh = elf_sec_hdr(obj, scn); 3714 if (!sh) 3715 return NULL; 3716 3717 name = elf_sec_str(obj, sh->sh_name); 3718 if (!name) { 3719 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3720 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3721 return NULL; 3722 } 3723 3724 return name; 3725 } 3726 3727 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3728 { 3729 Elf_Data *data; 3730 3731 if (!scn) 3732 return NULL; 3733 3734 data = elf_getdata(scn, 0); 3735 if (!data) { 3736 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3737 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3738 obj->path, elf_errmsg(-1)); 3739 return NULL; 3740 } 3741 3742 return data; 3743 } 3744 3745 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3746 { 3747 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3748 return NULL; 3749 3750 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3751 } 3752 3753 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3754 { 3755 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3756 return NULL; 3757 3758 return (Elf64_Rel *)data->d_buf + idx; 3759 } 3760 3761 static bool is_sec_name_dwarf(const char *name) 3762 { 3763 /* approximation, but the actual list is too long */ 3764 return str_has_pfx(name, ".debug_"); 3765 } 3766 3767 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3768 { 3769 /* no special handling of .strtab */ 3770 if (hdr->sh_type == SHT_STRTAB) 3771 return true; 3772 3773 /* ignore .llvm_addrsig section as well */ 3774 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3775 return true; 3776 3777 /* no subprograms will lead to an empty .text section, ignore it */ 3778 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3779 strcmp(name, ".text") == 0) 3780 return true; 3781 3782 /* DWARF sections */ 3783 if (is_sec_name_dwarf(name)) 3784 return true; 3785 3786 if (str_has_pfx(name, ".rel")) { 3787 name += sizeof(".rel") - 1; 3788 /* DWARF section relocations */ 3789 if (is_sec_name_dwarf(name)) 3790 return true; 3791 3792 /* .BTF and .BTF.ext don't need relocations */ 3793 if (strcmp(name, BTF_ELF_SEC) == 0 || 3794 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3795 return true; 3796 } 3797 3798 return false; 3799 } 3800 3801 static int cmp_progs(const void *_a, const void *_b) 3802 { 3803 const struct bpf_program *a = _a; 3804 const struct bpf_program *b = _b; 3805 3806 if (a->sec_idx != b->sec_idx) 3807 return a->sec_idx < b->sec_idx ? -1 : 1; 3808 3809 /* sec_insn_off can't be the same within the section */ 3810 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3811 } 3812 3813 static int bpf_object__elf_collect(struct bpf_object *obj) 3814 { 3815 struct elf_sec_desc *sec_desc; 3816 Elf *elf = obj->efile.elf; 3817 Elf_Data *btf_ext_data = NULL; 3818 Elf_Data *btf_data = NULL; 3819 int idx = 0, err = 0; 3820 const char *name; 3821 Elf_Data *data; 3822 Elf_Scn *scn; 3823 Elf64_Shdr *sh; 3824 3825 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3826 * section. Since section count retrieved by elf_getshdrnum() does 3827 * include sec #0, it is already the necessary size of an array to keep 3828 * all the sections. 3829 */ 3830 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3831 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3832 obj->path, elf_errmsg(-1)); 3833 return -LIBBPF_ERRNO__FORMAT; 3834 } 3835 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3836 if (!obj->efile.secs) 3837 return -ENOMEM; 3838 3839 /* a bunch of ELF parsing functionality depends on processing symbols, 3840 * so do the first pass and find the symbol table 3841 */ 3842 scn = NULL; 3843 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3844 sh = elf_sec_hdr(obj, scn); 3845 if (!sh) 3846 return -LIBBPF_ERRNO__FORMAT; 3847 3848 if (sh->sh_type == SHT_SYMTAB) { 3849 if (obj->efile.symbols) { 3850 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3851 return -LIBBPF_ERRNO__FORMAT; 3852 } 3853 3854 data = elf_sec_data(obj, scn); 3855 if (!data) 3856 return -LIBBPF_ERRNO__FORMAT; 3857 3858 idx = elf_ndxscn(scn); 3859 3860 obj->efile.symbols = data; 3861 obj->efile.symbols_shndx = idx; 3862 obj->efile.strtabidx = sh->sh_link; 3863 } 3864 } 3865 3866 if (!obj->efile.symbols) { 3867 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3868 obj->path); 3869 return -ENOENT; 3870 } 3871 3872 scn = NULL; 3873 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3874 idx = elf_ndxscn(scn); 3875 sec_desc = &obj->efile.secs[idx]; 3876 3877 sh = elf_sec_hdr(obj, scn); 3878 if (!sh) 3879 return -LIBBPF_ERRNO__FORMAT; 3880 3881 name = elf_sec_str(obj, sh->sh_name); 3882 if (!name) 3883 return -LIBBPF_ERRNO__FORMAT; 3884 3885 if (ignore_elf_section(sh, name)) 3886 continue; 3887 3888 data = elf_sec_data(obj, scn); 3889 if (!data) 3890 return -LIBBPF_ERRNO__FORMAT; 3891 3892 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3893 idx, name, (unsigned long)data->d_size, 3894 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3895 (int)sh->sh_type); 3896 3897 if (strcmp(name, "license") == 0) { 3898 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3899 if (err) 3900 return err; 3901 } else if (strcmp(name, "version") == 0) { 3902 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3903 if (err) 3904 return err; 3905 } else if (strcmp(name, "maps") == 0) { 3906 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3907 return -ENOTSUP; 3908 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3909 obj->efile.btf_maps_shndx = idx; 3910 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3911 if (sh->sh_type != SHT_PROGBITS) 3912 return -LIBBPF_ERRNO__FORMAT; 3913 btf_data = data; 3914 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3915 if (sh->sh_type != SHT_PROGBITS) 3916 return -LIBBPF_ERRNO__FORMAT; 3917 btf_ext_data = data; 3918 } else if (sh->sh_type == SHT_SYMTAB) { 3919 /* already processed during the first pass above */ 3920 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3921 if (sh->sh_flags & SHF_EXECINSTR) { 3922 if (strcmp(name, ".text") == 0) 3923 obj->efile.text_shndx = idx; 3924 err = bpf_object__add_programs(obj, data, name, idx); 3925 if (err) 3926 return err; 3927 } else if (strcmp(name, DATA_SEC) == 0 || 3928 str_has_pfx(name, DATA_SEC ".")) { 3929 sec_desc->sec_type = SEC_DATA; 3930 sec_desc->shdr = sh; 3931 sec_desc->data = data; 3932 } else if (strcmp(name, RODATA_SEC) == 0 || 3933 str_has_pfx(name, RODATA_SEC ".")) { 3934 sec_desc->sec_type = SEC_RODATA; 3935 sec_desc->shdr = sh; 3936 sec_desc->data = data; 3937 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3938 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3939 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3940 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3941 sec_desc->sec_type = SEC_ST_OPS; 3942 sec_desc->shdr = sh; 3943 sec_desc->data = data; 3944 obj->efile.has_st_ops = true; 3945 } else if (strcmp(name, ARENA_SEC) == 0) { 3946 obj->efile.arena_data = data; 3947 obj->efile.arena_data_shndx = idx; 3948 } else { 3949 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3950 idx, name); 3951 } 3952 } else if (sh->sh_type == SHT_REL) { 3953 int targ_sec_idx = sh->sh_info; /* points to other section */ 3954 3955 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3956 targ_sec_idx >= obj->efile.sec_cnt) 3957 return -LIBBPF_ERRNO__FORMAT; 3958 3959 /* Only do relo for section with exec instructions */ 3960 if (!section_have_execinstr(obj, targ_sec_idx) && 3961 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3962 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3963 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3964 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3965 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3966 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3967 idx, name, targ_sec_idx, 3968 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3969 continue; 3970 } 3971 3972 sec_desc->sec_type = SEC_RELO; 3973 sec_desc->shdr = sh; 3974 sec_desc->data = data; 3975 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3976 str_has_pfx(name, BSS_SEC "."))) { 3977 sec_desc->sec_type = SEC_BSS; 3978 sec_desc->shdr = sh; 3979 sec_desc->data = data; 3980 } else { 3981 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3982 (size_t)sh->sh_size); 3983 } 3984 } 3985 3986 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3987 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3988 return -LIBBPF_ERRNO__FORMAT; 3989 } 3990 3991 /* change BPF program insns to native endianness for introspection */ 3992 if (!is_native_endianness(obj)) 3993 bpf_object_bswap_progs(obj); 3994 3995 /* sort BPF programs by section name and in-section instruction offset 3996 * for faster search 3997 */ 3998 if (obj->nr_programs) 3999 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 4000 4001 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 4002 } 4003 4004 static bool sym_is_extern(const Elf64_Sym *sym) 4005 { 4006 int bind = ELF64_ST_BIND(sym->st_info); 4007 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 4008 return sym->st_shndx == SHN_UNDEF && 4009 (bind == STB_GLOBAL || bind == STB_WEAK) && 4010 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4011 } 4012 4013 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4014 { 4015 int bind = ELF64_ST_BIND(sym->st_info); 4016 int type = ELF64_ST_TYPE(sym->st_info); 4017 4018 /* in .text section */ 4019 if (sym->st_shndx != text_shndx) 4020 return false; 4021 4022 /* local function */ 4023 if (bind == STB_LOCAL && type == STT_SECTION) 4024 return true; 4025 4026 /* global function */ 4027 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4028 } 4029 4030 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4031 { 4032 const struct btf_type *t; 4033 const char *tname; 4034 int i, n; 4035 4036 if (!btf) 4037 return -ESRCH; 4038 4039 n = btf__type_cnt(btf); 4040 for (i = 1; i < n; i++) { 4041 t = btf__type_by_id(btf, i); 4042 4043 if (!btf_is_var(t) && !btf_is_func(t)) 4044 continue; 4045 4046 tname = btf__name_by_offset(btf, t->name_off); 4047 if (strcmp(tname, ext_name)) 4048 continue; 4049 4050 if (btf_is_var(t) && 4051 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4052 return -EINVAL; 4053 4054 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4055 return -EINVAL; 4056 4057 return i; 4058 } 4059 4060 return -ENOENT; 4061 } 4062 4063 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4064 const struct btf_var_secinfo *vs; 4065 const struct btf_type *t; 4066 int i, j, n; 4067 4068 if (!btf) 4069 return -ESRCH; 4070 4071 n = btf__type_cnt(btf); 4072 for (i = 1; i < n; i++) { 4073 t = btf__type_by_id(btf, i); 4074 4075 if (!btf_is_datasec(t)) 4076 continue; 4077 4078 vs = btf_var_secinfos(t); 4079 for (j = 0; j < btf_vlen(t); j++, vs++) { 4080 if (vs->type == ext_btf_id) 4081 return i; 4082 } 4083 } 4084 4085 return -ENOENT; 4086 } 4087 4088 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4089 bool *is_signed) 4090 { 4091 const struct btf_type *t; 4092 const char *name; 4093 4094 t = skip_mods_and_typedefs(btf, id, NULL); 4095 name = btf__name_by_offset(btf, t->name_off); 4096 4097 if (is_signed) 4098 *is_signed = false; 4099 switch (btf_kind(t)) { 4100 case BTF_KIND_INT: { 4101 int enc = btf_int_encoding(t); 4102 4103 if (enc & BTF_INT_BOOL) 4104 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4105 if (is_signed) 4106 *is_signed = enc & BTF_INT_SIGNED; 4107 if (t->size == 1) 4108 return KCFG_CHAR; 4109 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4110 return KCFG_UNKNOWN; 4111 return KCFG_INT; 4112 } 4113 case BTF_KIND_ENUM: 4114 if (t->size != 4) 4115 return KCFG_UNKNOWN; 4116 if (strcmp(name, "libbpf_tristate")) 4117 return KCFG_UNKNOWN; 4118 return KCFG_TRISTATE; 4119 case BTF_KIND_ENUM64: 4120 if (strcmp(name, "libbpf_tristate")) 4121 return KCFG_UNKNOWN; 4122 return KCFG_TRISTATE; 4123 case BTF_KIND_ARRAY: 4124 if (btf_array(t)->nelems == 0) 4125 return KCFG_UNKNOWN; 4126 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4127 return KCFG_UNKNOWN; 4128 return KCFG_CHAR_ARR; 4129 default: 4130 return KCFG_UNKNOWN; 4131 } 4132 } 4133 4134 static int cmp_externs(const void *_a, const void *_b) 4135 { 4136 const struct extern_desc *a = _a; 4137 const struct extern_desc *b = _b; 4138 4139 if (a->type != b->type) 4140 return a->type < b->type ? -1 : 1; 4141 4142 if (a->type == EXT_KCFG) { 4143 /* descending order by alignment requirements */ 4144 if (a->kcfg.align != b->kcfg.align) 4145 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4146 /* ascending order by size, within same alignment class */ 4147 if (a->kcfg.sz != b->kcfg.sz) 4148 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4149 } 4150 4151 /* resolve ties by name */ 4152 return strcmp(a->name, b->name); 4153 } 4154 4155 static int find_int_btf_id(const struct btf *btf) 4156 { 4157 const struct btf_type *t; 4158 int i, n; 4159 4160 n = btf__type_cnt(btf); 4161 for (i = 1; i < n; i++) { 4162 t = btf__type_by_id(btf, i); 4163 4164 if (btf_is_int(t) && btf_int_bits(t) == 32) 4165 return i; 4166 } 4167 4168 return 0; 4169 } 4170 4171 static int add_dummy_ksym_var(struct btf *btf) 4172 { 4173 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4174 const struct btf_var_secinfo *vs; 4175 const struct btf_type *sec; 4176 4177 if (!btf) 4178 return 0; 4179 4180 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4181 BTF_KIND_DATASEC); 4182 if (sec_btf_id < 0) 4183 return 0; 4184 4185 sec = btf__type_by_id(btf, sec_btf_id); 4186 vs = btf_var_secinfos(sec); 4187 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4188 const struct btf_type *vt; 4189 4190 vt = btf__type_by_id(btf, vs->type); 4191 if (btf_is_func(vt)) 4192 break; 4193 } 4194 4195 /* No func in ksyms sec. No need to add dummy var. */ 4196 if (i == btf_vlen(sec)) 4197 return 0; 4198 4199 int_btf_id = find_int_btf_id(btf); 4200 dummy_var_btf_id = btf__add_var(btf, 4201 "dummy_ksym", 4202 BTF_VAR_GLOBAL_ALLOCATED, 4203 int_btf_id); 4204 if (dummy_var_btf_id < 0) 4205 pr_warn("cannot create a dummy_ksym var\n"); 4206 4207 return dummy_var_btf_id; 4208 } 4209 4210 static int bpf_object__collect_externs(struct bpf_object *obj) 4211 { 4212 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4213 const struct btf_type *t; 4214 struct extern_desc *ext; 4215 int i, n, off, dummy_var_btf_id; 4216 const char *ext_name, *sec_name; 4217 size_t ext_essent_len; 4218 Elf_Scn *scn; 4219 Elf64_Shdr *sh; 4220 4221 if (!obj->efile.symbols) 4222 return 0; 4223 4224 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4225 sh = elf_sec_hdr(obj, scn); 4226 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4227 return -LIBBPF_ERRNO__FORMAT; 4228 4229 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4230 if (dummy_var_btf_id < 0) 4231 return dummy_var_btf_id; 4232 4233 n = sh->sh_size / sh->sh_entsize; 4234 pr_debug("looking for externs among %d symbols...\n", n); 4235 4236 for (i = 0; i < n; i++) { 4237 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4238 4239 if (!sym) 4240 return -LIBBPF_ERRNO__FORMAT; 4241 if (!sym_is_extern(sym)) 4242 continue; 4243 ext_name = elf_sym_str(obj, sym->st_name); 4244 if (!ext_name || !ext_name[0]) 4245 continue; 4246 4247 ext = obj->externs; 4248 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4249 if (!ext) 4250 return -ENOMEM; 4251 obj->externs = ext; 4252 ext = &ext[obj->nr_extern]; 4253 memset(ext, 0, sizeof(*ext)); 4254 obj->nr_extern++; 4255 4256 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4257 if (ext->btf_id <= 0) { 4258 pr_warn("failed to find BTF for extern '%s': %d\n", 4259 ext_name, ext->btf_id); 4260 return ext->btf_id; 4261 } 4262 t = btf__type_by_id(obj->btf, ext->btf_id); 4263 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off)); 4264 if (!ext->name) 4265 return -ENOMEM; 4266 ext->sym_idx = i; 4267 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4268 4269 ext_essent_len = bpf_core_essential_name_len(ext->name); 4270 ext->essent_name = NULL; 4271 if (ext_essent_len != strlen(ext->name)) { 4272 ext->essent_name = strndup(ext->name, ext_essent_len); 4273 if (!ext->essent_name) 4274 return -ENOMEM; 4275 } 4276 4277 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4278 if (ext->sec_btf_id <= 0) { 4279 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4280 ext_name, ext->btf_id, ext->sec_btf_id); 4281 return ext->sec_btf_id; 4282 } 4283 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4284 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4285 4286 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4287 if (btf_is_func(t)) { 4288 pr_warn("extern function %s is unsupported under %s section\n", 4289 ext->name, KCONFIG_SEC); 4290 return -ENOTSUP; 4291 } 4292 kcfg_sec = sec; 4293 ext->type = EXT_KCFG; 4294 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4295 if (ext->kcfg.sz <= 0) { 4296 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4297 ext_name, ext->kcfg.sz); 4298 return ext->kcfg.sz; 4299 } 4300 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4301 if (ext->kcfg.align <= 0) { 4302 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4303 ext_name, ext->kcfg.align); 4304 return -EINVAL; 4305 } 4306 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4307 &ext->kcfg.is_signed); 4308 if (ext->kcfg.type == KCFG_UNKNOWN) { 4309 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4310 return -ENOTSUP; 4311 } 4312 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4313 ksym_sec = sec; 4314 ext->type = EXT_KSYM; 4315 skip_mods_and_typedefs(obj->btf, t->type, 4316 &ext->ksym.type_id); 4317 } else { 4318 pr_warn("unrecognized extern section '%s'\n", sec_name); 4319 return -ENOTSUP; 4320 } 4321 } 4322 pr_debug("collected %d externs total\n", obj->nr_extern); 4323 4324 if (!obj->nr_extern) 4325 return 0; 4326 4327 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4328 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4329 4330 /* for .ksyms section, we need to turn all externs into allocated 4331 * variables in BTF to pass kernel verification; we do this by 4332 * pretending that each extern is a 8-byte variable 4333 */ 4334 if (ksym_sec) { 4335 /* find existing 4-byte integer type in BTF to use for fake 4336 * extern variables in DATASEC 4337 */ 4338 int int_btf_id = find_int_btf_id(obj->btf); 4339 /* For extern function, a dummy_var added earlier 4340 * will be used to replace the vs->type and 4341 * its name string will be used to refill 4342 * the missing param's name. 4343 */ 4344 const struct btf_type *dummy_var; 4345 4346 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4347 for (i = 0; i < obj->nr_extern; i++) { 4348 ext = &obj->externs[i]; 4349 if (ext->type != EXT_KSYM) 4350 continue; 4351 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4352 i, ext->sym_idx, ext->name); 4353 } 4354 4355 sec = ksym_sec; 4356 n = btf_vlen(sec); 4357 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4358 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4359 struct btf_type *vt; 4360 4361 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4362 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4363 ext = find_extern_by_name(obj, ext_name); 4364 if (!ext) { 4365 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4366 btf_kind_str(vt), ext_name); 4367 return -ESRCH; 4368 } 4369 if (btf_is_func(vt)) { 4370 const struct btf_type *func_proto; 4371 struct btf_param *param; 4372 int j; 4373 4374 func_proto = btf__type_by_id(obj->btf, 4375 vt->type); 4376 param = btf_params(func_proto); 4377 /* Reuse the dummy_var string if the 4378 * func proto does not have param name. 4379 */ 4380 for (j = 0; j < btf_vlen(func_proto); j++) 4381 if (param[j].type && !param[j].name_off) 4382 param[j].name_off = 4383 dummy_var->name_off; 4384 vs->type = dummy_var_btf_id; 4385 vt->info &= ~0xffff; 4386 vt->info |= BTF_FUNC_GLOBAL; 4387 } else { 4388 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4389 vt->type = int_btf_id; 4390 } 4391 vs->offset = off; 4392 vs->size = sizeof(int); 4393 } 4394 sec->size = off; 4395 } 4396 4397 if (kcfg_sec) { 4398 sec = kcfg_sec; 4399 /* for kcfg externs calculate their offsets within a .kconfig map */ 4400 off = 0; 4401 for (i = 0; i < obj->nr_extern; i++) { 4402 ext = &obj->externs[i]; 4403 if (ext->type != EXT_KCFG) 4404 continue; 4405 4406 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4407 off = ext->kcfg.data_off + ext->kcfg.sz; 4408 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4409 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4410 } 4411 sec->size = off; 4412 n = btf_vlen(sec); 4413 for (i = 0; i < n; i++) { 4414 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4415 4416 t = btf__type_by_id(obj->btf, vs->type); 4417 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4418 ext = find_extern_by_name(obj, ext_name); 4419 if (!ext) { 4420 pr_warn("failed to find extern definition for BTF var '%s'\n", 4421 ext_name); 4422 return -ESRCH; 4423 } 4424 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4425 vs->offset = ext->kcfg.data_off; 4426 } 4427 } 4428 return 0; 4429 } 4430 4431 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4432 { 4433 return prog->sec_idx == obj->efile.text_shndx; 4434 } 4435 4436 struct bpf_program * 4437 bpf_object__find_program_by_name(const struct bpf_object *obj, 4438 const char *name) 4439 { 4440 struct bpf_program *prog; 4441 4442 bpf_object__for_each_program(prog, obj) { 4443 if (prog_is_subprog(obj, prog)) 4444 continue; 4445 if (!strcmp(prog->name, name)) 4446 return prog; 4447 } 4448 return errno = ENOENT, NULL; 4449 } 4450 4451 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4452 int shndx) 4453 { 4454 switch (obj->efile.secs[shndx].sec_type) { 4455 case SEC_BSS: 4456 case SEC_DATA: 4457 case SEC_RODATA: 4458 return true; 4459 default: 4460 return false; 4461 } 4462 } 4463 4464 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4465 int shndx) 4466 { 4467 return shndx == obj->efile.btf_maps_shndx; 4468 } 4469 4470 static enum libbpf_map_type 4471 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4472 { 4473 if (shndx == obj->efile.symbols_shndx) 4474 return LIBBPF_MAP_KCONFIG; 4475 4476 switch (obj->efile.secs[shndx].sec_type) { 4477 case SEC_BSS: 4478 return LIBBPF_MAP_BSS; 4479 case SEC_DATA: 4480 return LIBBPF_MAP_DATA; 4481 case SEC_RODATA: 4482 return LIBBPF_MAP_RODATA; 4483 default: 4484 return LIBBPF_MAP_UNSPEC; 4485 } 4486 } 4487 4488 static int bpf_program__record_reloc(struct bpf_program *prog, 4489 struct reloc_desc *reloc_desc, 4490 __u32 insn_idx, const char *sym_name, 4491 const Elf64_Sym *sym, const Elf64_Rel *rel) 4492 { 4493 struct bpf_insn *insn = &prog->insns[insn_idx]; 4494 size_t map_idx, nr_maps = prog->obj->nr_maps; 4495 struct bpf_object *obj = prog->obj; 4496 __u32 shdr_idx = sym->st_shndx; 4497 enum libbpf_map_type type; 4498 const char *sym_sec_name; 4499 struct bpf_map *map; 4500 4501 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4502 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4503 prog->name, sym_name, insn_idx, insn->code); 4504 return -LIBBPF_ERRNO__RELOC; 4505 } 4506 4507 if (sym_is_extern(sym)) { 4508 int sym_idx = ELF64_R_SYM(rel->r_info); 4509 int i, n = obj->nr_extern; 4510 struct extern_desc *ext; 4511 4512 for (i = 0; i < n; i++) { 4513 ext = &obj->externs[i]; 4514 if (ext->sym_idx == sym_idx) 4515 break; 4516 } 4517 if (i >= n) { 4518 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4519 prog->name, sym_name, sym_idx); 4520 return -LIBBPF_ERRNO__RELOC; 4521 } 4522 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4523 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4524 if (insn->code == (BPF_JMP | BPF_CALL)) 4525 reloc_desc->type = RELO_EXTERN_CALL; 4526 else 4527 reloc_desc->type = RELO_EXTERN_LD64; 4528 reloc_desc->insn_idx = insn_idx; 4529 reloc_desc->ext_idx = i; 4530 return 0; 4531 } 4532 4533 /* sub-program call relocation */ 4534 if (is_call_insn(insn)) { 4535 if (insn->src_reg != BPF_PSEUDO_CALL) { 4536 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4537 return -LIBBPF_ERRNO__RELOC; 4538 } 4539 /* text_shndx can be 0, if no default "main" program exists */ 4540 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4541 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4542 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4543 prog->name, sym_name, sym_sec_name); 4544 return -LIBBPF_ERRNO__RELOC; 4545 } 4546 if (sym->st_value % BPF_INSN_SZ) { 4547 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4548 prog->name, sym_name, (size_t)sym->st_value); 4549 return -LIBBPF_ERRNO__RELOC; 4550 } 4551 reloc_desc->type = RELO_CALL; 4552 reloc_desc->insn_idx = insn_idx; 4553 reloc_desc->sym_off = sym->st_value; 4554 return 0; 4555 } 4556 4557 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4558 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4559 prog->name, sym_name, shdr_idx); 4560 return -LIBBPF_ERRNO__RELOC; 4561 } 4562 4563 /* loading subprog addresses */ 4564 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4565 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4566 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4567 */ 4568 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4569 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4570 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4571 return -LIBBPF_ERRNO__RELOC; 4572 } 4573 4574 reloc_desc->type = RELO_SUBPROG_ADDR; 4575 reloc_desc->insn_idx = insn_idx; 4576 reloc_desc->sym_off = sym->st_value; 4577 return 0; 4578 } 4579 4580 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4581 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4582 4583 /* arena data relocation */ 4584 if (shdr_idx == obj->efile.arena_data_shndx) { 4585 if (obj->arena_map_idx < 0) { 4586 pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n", 4587 prog->name, insn_idx); 4588 return -LIBBPF_ERRNO__RELOC; 4589 } 4590 reloc_desc->type = RELO_DATA; 4591 reloc_desc->insn_idx = insn_idx; 4592 reloc_desc->map_idx = obj->arena_map_idx; 4593 reloc_desc->sym_off = sym->st_value; 4594 4595 map = &obj->maps[obj->arena_map_idx]; 4596 pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n", 4597 prog->name, obj->arena_map_idx, map->name, map->sec_idx, 4598 map->sec_offset, insn_idx); 4599 return 0; 4600 } 4601 4602 /* generic map reference relocation */ 4603 if (type == LIBBPF_MAP_UNSPEC) { 4604 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4605 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4606 prog->name, sym_name, sym_sec_name); 4607 return -LIBBPF_ERRNO__RELOC; 4608 } 4609 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4610 map = &obj->maps[map_idx]; 4611 if (map->libbpf_type != type || 4612 map->sec_idx != sym->st_shndx || 4613 map->sec_offset != sym->st_value) 4614 continue; 4615 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4616 prog->name, map_idx, map->name, map->sec_idx, 4617 map->sec_offset, insn_idx); 4618 break; 4619 } 4620 if (map_idx >= nr_maps) { 4621 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4622 prog->name, sym_sec_name, (size_t)sym->st_value); 4623 return -LIBBPF_ERRNO__RELOC; 4624 } 4625 reloc_desc->type = RELO_LD64; 4626 reloc_desc->insn_idx = insn_idx; 4627 reloc_desc->map_idx = map_idx; 4628 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4629 return 0; 4630 } 4631 4632 /* global data map relocation */ 4633 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4634 pr_warn("prog '%s': bad data relo against section '%s'\n", 4635 prog->name, sym_sec_name); 4636 return -LIBBPF_ERRNO__RELOC; 4637 } 4638 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4639 map = &obj->maps[map_idx]; 4640 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4641 continue; 4642 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4643 prog->name, map_idx, map->name, map->sec_idx, 4644 map->sec_offset, insn_idx); 4645 break; 4646 } 4647 if (map_idx >= nr_maps) { 4648 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4649 prog->name, sym_sec_name); 4650 return -LIBBPF_ERRNO__RELOC; 4651 } 4652 4653 reloc_desc->type = RELO_DATA; 4654 reloc_desc->insn_idx = insn_idx; 4655 reloc_desc->map_idx = map_idx; 4656 reloc_desc->sym_off = sym->st_value; 4657 return 0; 4658 } 4659 4660 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4661 { 4662 return insn_idx >= prog->sec_insn_off && 4663 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4664 } 4665 4666 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4667 size_t sec_idx, size_t insn_idx) 4668 { 4669 int l = 0, r = obj->nr_programs - 1, m; 4670 struct bpf_program *prog; 4671 4672 if (!obj->nr_programs) 4673 return NULL; 4674 4675 while (l < r) { 4676 m = l + (r - l + 1) / 2; 4677 prog = &obj->programs[m]; 4678 4679 if (prog->sec_idx < sec_idx || 4680 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4681 l = m; 4682 else 4683 r = m - 1; 4684 } 4685 /* matching program could be at index l, but it still might be the 4686 * wrong one, so we need to double check conditions for the last time 4687 */ 4688 prog = &obj->programs[l]; 4689 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4690 return prog; 4691 return NULL; 4692 } 4693 4694 static int 4695 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4696 { 4697 const char *relo_sec_name, *sec_name; 4698 size_t sec_idx = shdr->sh_info, sym_idx; 4699 struct bpf_program *prog; 4700 struct reloc_desc *relos; 4701 int err, i, nrels; 4702 const char *sym_name; 4703 __u32 insn_idx; 4704 Elf_Scn *scn; 4705 Elf_Data *scn_data; 4706 Elf64_Sym *sym; 4707 Elf64_Rel *rel; 4708 4709 if (sec_idx >= obj->efile.sec_cnt) 4710 return -EINVAL; 4711 4712 scn = elf_sec_by_idx(obj, sec_idx); 4713 scn_data = elf_sec_data(obj, scn); 4714 if (!scn_data) 4715 return -LIBBPF_ERRNO__FORMAT; 4716 4717 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4718 sec_name = elf_sec_name(obj, scn); 4719 if (!relo_sec_name || !sec_name) 4720 return -EINVAL; 4721 4722 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4723 relo_sec_name, sec_idx, sec_name); 4724 nrels = shdr->sh_size / shdr->sh_entsize; 4725 4726 for (i = 0; i < nrels; i++) { 4727 rel = elf_rel_by_idx(data, i); 4728 if (!rel) { 4729 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4730 return -LIBBPF_ERRNO__FORMAT; 4731 } 4732 4733 sym_idx = ELF64_R_SYM(rel->r_info); 4734 sym = elf_sym_by_idx(obj, sym_idx); 4735 if (!sym) { 4736 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4737 relo_sec_name, sym_idx, i); 4738 return -LIBBPF_ERRNO__FORMAT; 4739 } 4740 4741 if (sym->st_shndx >= obj->efile.sec_cnt) { 4742 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4743 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4744 return -LIBBPF_ERRNO__FORMAT; 4745 } 4746 4747 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4748 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4749 relo_sec_name, (size_t)rel->r_offset, i); 4750 return -LIBBPF_ERRNO__FORMAT; 4751 } 4752 4753 insn_idx = rel->r_offset / BPF_INSN_SZ; 4754 /* relocations against static functions are recorded as 4755 * relocations against the section that contains a function; 4756 * in such case, symbol will be STT_SECTION and sym.st_name 4757 * will point to empty string (0), so fetch section name 4758 * instead 4759 */ 4760 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4761 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4762 else 4763 sym_name = elf_sym_str(obj, sym->st_name); 4764 sym_name = sym_name ?: "<?"; 4765 4766 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4767 relo_sec_name, i, insn_idx, sym_name); 4768 4769 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4770 if (!prog) { 4771 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4772 relo_sec_name, i, sec_name, insn_idx); 4773 continue; 4774 } 4775 4776 relos = libbpf_reallocarray(prog->reloc_desc, 4777 prog->nr_reloc + 1, sizeof(*relos)); 4778 if (!relos) 4779 return -ENOMEM; 4780 prog->reloc_desc = relos; 4781 4782 /* adjust insn_idx to local BPF program frame of reference */ 4783 insn_idx -= prog->sec_insn_off; 4784 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4785 insn_idx, sym_name, sym, rel); 4786 if (err) 4787 return err; 4788 4789 prog->nr_reloc++; 4790 } 4791 return 0; 4792 } 4793 4794 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4795 { 4796 int id; 4797 4798 if (!obj->btf) 4799 return -ENOENT; 4800 4801 /* if it's BTF-defined map, we don't need to search for type IDs. 4802 * For struct_ops map, it does not need btf_key_type_id and 4803 * btf_value_type_id. 4804 */ 4805 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4806 return 0; 4807 4808 /* 4809 * LLVM annotates global data differently in BTF, that is, 4810 * only as '.data', '.bss' or '.rodata'. 4811 */ 4812 if (!bpf_map__is_internal(map)) 4813 return -ENOENT; 4814 4815 id = btf__find_by_name(obj->btf, map->real_name); 4816 if (id < 0) 4817 return id; 4818 4819 map->btf_key_type_id = 0; 4820 map->btf_value_type_id = id; 4821 return 0; 4822 } 4823 4824 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4825 { 4826 char file[PATH_MAX], buff[4096]; 4827 FILE *fp; 4828 __u32 val; 4829 int err; 4830 4831 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4832 memset(info, 0, sizeof(*info)); 4833 4834 fp = fopen(file, "re"); 4835 if (!fp) { 4836 err = -errno; 4837 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4838 errstr(err)); 4839 return err; 4840 } 4841 4842 while (fgets(buff, sizeof(buff), fp)) { 4843 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4844 info->type = val; 4845 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4846 info->key_size = val; 4847 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4848 info->value_size = val; 4849 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4850 info->max_entries = val; 4851 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4852 info->map_flags = val; 4853 } 4854 4855 fclose(fp); 4856 4857 return 0; 4858 } 4859 4860 static bool map_is_created(const struct bpf_map *map) 4861 { 4862 return map->obj->state >= OBJ_PREPARED || map->reused; 4863 } 4864 4865 bool bpf_map__autocreate(const struct bpf_map *map) 4866 { 4867 return map->autocreate; 4868 } 4869 4870 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4871 { 4872 if (map_is_created(map)) 4873 return libbpf_err(-EBUSY); 4874 4875 map->autocreate = autocreate; 4876 return 0; 4877 } 4878 4879 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4880 { 4881 if (!bpf_map__is_struct_ops(map)) 4882 return libbpf_err(-EINVAL); 4883 4884 map->autoattach = autoattach; 4885 return 0; 4886 } 4887 4888 bool bpf_map__autoattach(const struct bpf_map *map) 4889 { 4890 return map->autoattach; 4891 } 4892 4893 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4894 { 4895 struct bpf_map_info info; 4896 __u32 len = sizeof(info), name_len; 4897 int new_fd, err; 4898 char *new_name; 4899 4900 memset(&info, 0, len); 4901 err = bpf_map_get_info_by_fd(fd, &info, &len); 4902 if (err && errno == EINVAL) 4903 err = bpf_get_map_info_from_fdinfo(fd, &info); 4904 if (err) 4905 return libbpf_err(err); 4906 4907 name_len = strlen(info.name); 4908 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4909 new_name = strdup(map->name); 4910 else 4911 new_name = strdup(info.name); 4912 4913 if (!new_name) 4914 return libbpf_err(-errno); 4915 4916 /* 4917 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4918 * This is similar to what we do in ensure_good_fd(), but without 4919 * closing original FD. 4920 */ 4921 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4922 if (new_fd < 0) { 4923 err = -errno; 4924 goto err_free_new_name; 4925 } 4926 4927 err = reuse_fd(map->fd, new_fd); 4928 if (err) 4929 goto err_free_new_name; 4930 4931 free(map->name); 4932 4933 map->name = new_name; 4934 map->def.type = info.type; 4935 map->def.key_size = info.key_size; 4936 map->def.value_size = info.value_size; 4937 map->def.max_entries = info.max_entries; 4938 map->def.map_flags = info.map_flags; 4939 map->btf_key_type_id = info.btf_key_type_id; 4940 map->btf_value_type_id = info.btf_value_type_id; 4941 map->reused = true; 4942 map->map_extra = info.map_extra; 4943 4944 return 0; 4945 4946 err_free_new_name: 4947 free(new_name); 4948 return libbpf_err(err); 4949 } 4950 4951 __u32 bpf_map__max_entries(const struct bpf_map *map) 4952 { 4953 return map->def.max_entries; 4954 } 4955 4956 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4957 { 4958 if (!bpf_map_type__is_map_in_map(map->def.type)) 4959 return errno = EINVAL, NULL; 4960 4961 return map->inner_map; 4962 } 4963 4964 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4965 { 4966 if (map_is_created(map)) 4967 return libbpf_err(-EBUSY); 4968 4969 map->def.max_entries = max_entries; 4970 4971 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4972 if (map_is_ringbuf(map)) 4973 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4974 4975 return 0; 4976 } 4977 4978 static int bpf_object_prepare_token(struct bpf_object *obj) 4979 { 4980 const char *bpffs_path; 4981 int bpffs_fd = -1, token_fd, err; 4982 bool mandatory; 4983 enum libbpf_print_level level; 4984 4985 /* token is explicitly prevented */ 4986 if (obj->token_path && obj->token_path[0] == '\0') { 4987 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4988 return 0; 4989 } 4990 4991 mandatory = obj->token_path != NULL; 4992 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4993 4994 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4995 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4996 if (bpffs_fd < 0) { 4997 err = -errno; 4998 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 4999 obj->name, errstr(err), bpffs_path, 5000 mandatory ? "" : ", skipping optional step..."); 5001 return mandatory ? err : 0; 5002 } 5003 5004 token_fd = bpf_token_create(bpffs_fd, 0); 5005 close(bpffs_fd); 5006 if (token_fd < 0) { 5007 if (!mandatory && token_fd == -ENOENT) { 5008 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 5009 obj->name, bpffs_path); 5010 return 0; 5011 } 5012 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 5013 obj->name, token_fd, bpffs_path, 5014 mandatory ? "" : ", skipping optional step..."); 5015 return mandatory ? token_fd : 0; 5016 } 5017 5018 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 5019 if (!obj->feat_cache) { 5020 close(token_fd); 5021 return -ENOMEM; 5022 } 5023 5024 obj->token_fd = token_fd; 5025 obj->feat_cache->token_fd = token_fd; 5026 5027 return 0; 5028 } 5029 5030 static int 5031 bpf_object__probe_loading(struct bpf_object *obj) 5032 { 5033 struct bpf_insn insns[] = { 5034 BPF_MOV64_IMM(BPF_REG_0, 0), 5035 BPF_EXIT_INSN(), 5036 }; 5037 int ret, insn_cnt = ARRAY_SIZE(insns); 5038 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5039 .token_fd = obj->token_fd, 5040 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5041 ); 5042 5043 if (obj->gen_loader) 5044 return 0; 5045 5046 ret = bump_rlimit_memlock(); 5047 if (ret) 5048 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5049 errstr(ret)); 5050 5051 /* make sure basic loading works */ 5052 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5053 if (ret < 0) 5054 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5055 if (ret < 0) { 5056 ret = errno; 5057 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5058 __func__, errstr(ret)); 5059 return -ret; 5060 } 5061 close(ret); 5062 5063 return 0; 5064 } 5065 5066 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5067 { 5068 if (obj->gen_loader) 5069 /* To generate loader program assume the latest kernel 5070 * to avoid doing extra prog_load, map_create syscalls. 5071 */ 5072 return true; 5073 5074 if (obj->token_fd) 5075 return feat_supported(obj->feat_cache, feat_id); 5076 5077 return feat_supported(NULL, feat_id); 5078 } 5079 5080 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5081 { 5082 struct bpf_map_info map_info; 5083 __u32 map_info_len = sizeof(map_info); 5084 int err; 5085 5086 memset(&map_info, 0, map_info_len); 5087 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5088 if (err && errno == EINVAL) 5089 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5090 if (err) { 5091 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5092 errstr(err)); 5093 return false; 5094 } 5095 5096 /* 5097 * bpf_get_map_info_by_fd() for DEVMAP will always return flags with 5098 * BPF_F_RDONLY_PROG set, but it generally is not set at map creation time. 5099 * Thus, ignore the BPF_F_RDONLY_PROG flag in the flags returned from 5100 * bpf_get_map_info_by_fd() when checking for compatibility with an 5101 * existing DEVMAP. 5102 */ 5103 if (map->def.type == BPF_MAP_TYPE_DEVMAP || map->def.type == BPF_MAP_TYPE_DEVMAP_HASH) 5104 map_info.map_flags &= ~BPF_F_RDONLY_PROG; 5105 5106 return (map_info.type == map->def.type && 5107 map_info.key_size == map->def.key_size && 5108 map_info.value_size == map->def.value_size && 5109 map_info.max_entries == map->def.max_entries && 5110 map_info.map_flags == map->def.map_flags && 5111 map_info.map_extra == map->map_extra); 5112 } 5113 5114 static int 5115 bpf_object__reuse_map(struct bpf_map *map) 5116 { 5117 int err, pin_fd; 5118 5119 pin_fd = bpf_obj_get(map->pin_path); 5120 if (pin_fd < 0) { 5121 err = -errno; 5122 if (err == -ENOENT) { 5123 pr_debug("found no pinned map to reuse at '%s'\n", 5124 map->pin_path); 5125 return 0; 5126 } 5127 5128 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5129 map->pin_path, errstr(err)); 5130 return err; 5131 } 5132 5133 if (!map_is_reuse_compat(map, pin_fd)) { 5134 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5135 map->pin_path); 5136 close(pin_fd); 5137 return -EINVAL; 5138 } 5139 5140 err = bpf_map__reuse_fd(map, pin_fd); 5141 close(pin_fd); 5142 if (err) 5143 return err; 5144 5145 map->pinned = true; 5146 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5147 5148 return 0; 5149 } 5150 5151 static int 5152 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5153 { 5154 enum libbpf_map_type map_type = map->libbpf_type; 5155 int err, zero = 0; 5156 size_t mmap_sz; 5157 5158 if (obj->gen_loader) { 5159 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5160 map->mmaped, map->def.value_size); 5161 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5162 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5163 return 0; 5164 } 5165 5166 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5167 if (err) { 5168 err = -errno; 5169 pr_warn("map '%s': failed to set initial contents: %s\n", 5170 bpf_map__name(map), errstr(err)); 5171 return err; 5172 } 5173 5174 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5175 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5176 err = bpf_map_freeze(map->fd); 5177 if (err) { 5178 err = -errno; 5179 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5180 bpf_map__name(map), errstr(err)); 5181 return err; 5182 } 5183 } 5184 5185 /* Remap anonymous mmap()-ed "map initialization image" as 5186 * a BPF map-backed mmap()-ed memory, but preserving the same 5187 * memory address. This will cause kernel to change process' 5188 * page table to point to a different piece of kernel memory, 5189 * but from userspace point of view memory address (and its 5190 * contents, being identical at this point) will stay the 5191 * same. This mapping will be released by bpf_object__close() 5192 * as per normal clean up procedure. 5193 */ 5194 mmap_sz = bpf_map_mmap_sz(map); 5195 if (map->def.map_flags & BPF_F_MMAPABLE) { 5196 void *mmaped; 5197 int prot; 5198 5199 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5200 prot = PROT_READ; 5201 else 5202 prot = PROT_READ | PROT_WRITE; 5203 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5204 if (mmaped == MAP_FAILED) { 5205 err = -errno; 5206 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5207 bpf_map__name(map), errstr(err)); 5208 return err; 5209 } 5210 map->mmaped = mmaped; 5211 } else if (map->mmaped) { 5212 munmap(map->mmaped, mmap_sz); 5213 map->mmaped = NULL; 5214 } 5215 5216 return 0; 5217 } 5218 5219 static void bpf_map__destroy(struct bpf_map *map); 5220 5221 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5222 { 5223 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5224 struct bpf_map_def *def = &map->def; 5225 const char *map_name = NULL; 5226 int err = 0, map_fd; 5227 5228 if (kernel_supports(obj, FEAT_PROG_NAME)) 5229 map_name = map->name; 5230 create_attr.map_ifindex = map->map_ifindex; 5231 create_attr.map_flags = def->map_flags; 5232 create_attr.numa_node = map->numa_node; 5233 create_attr.map_extra = map->map_extra; 5234 create_attr.token_fd = obj->token_fd; 5235 if (obj->token_fd) 5236 create_attr.map_flags |= BPF_F_TOKEN_FD; 5237 5238 if (bpf_map__is_struct_ops(map)) { 5239 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5240 if (map->mod_btf_fd >= 0) { 5241 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5242 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5243 } 5244 } 5245 5246 if (obj->btf && btf__fd(obj->btf) >= 0) { 5247 create_attr.btf_fd = btf__fd(obj->btf); 5248 create_attr.btf_key_type_id = map->btf_key_type_id; 5249 create_attr.btf_value_type_id = map->btf_value_type_id; 5250 } 5251 5252 if (bpf_map_type__is_map_in_map(def->type)) { 5253 if (map->inner_map) { 5254 err = map_set_def_max_entries(map->inner_map); 5255 if (err) 5256 return err; 5257 err = bpf_object__create_map(obj, map->inner_map, true); 5258 if (err) { 5259 pr_warn("map '%s': failed to create inner map: %s\n", 5260 map->name, errstr(err)); 5261 return err; 5262 } 5263 map->inner_map_fd = map->inner_map->fd; 5264 } 5265 if (map->inner_map_fd >= 0) 5266 create_attr.inner_map_fd = map->inner_map_fd; 5267 } 5268 5269 switch (def->type) { 5270 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5271 case BPF_MAP_TYPE_CGROUP_ARRAY: 5272 case BPF_MAP_TYPE_STACK_TRACE: 5273 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5274 case BPF_MAP_TYPE_HASH_OF_MAPS: 5275 case BPF_MAP_TYPE_DEVMAP: 5276 case BPF_MAP_TYPE_DEVMAP_HASH: 5277 case BPF_MAP_TYPE_CPUMAP: 5278 case BPF_MAP_TYPE_XSKMAP: 5279 case BPF_MAP_TYPE_SOCKMAP: 5280 case BPF_MAP_TYPE_SOCKHASH: 5281 case BPF_MAP_TYPE_QUEUE: 5282 case BPF_MAP_TYPE_STACK: 5283 case BPF_MAP_TYPE_ARENA: 5284 create_attr.btf_fd = 0; 5285 create_attr.btf_key_type_id = 0; 5286 create_attr.btf_value_type_id = 0; 5287 map->btf_key_type_id = 0; 5288 map->btf_value_type_id = 0; 5289 break; 5290 case BPF_MAP_TYPE_STRUCT_OPS: 5291 create_attr.btf_value_type_id = 0; 5292 break; 5293 default: 5294 break; 5295 } 5296 5297 if (obj->gen_loader) { 5298 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5299 def->key_size, def->value_size, def->max_entries, 5300 &create_attr, is_inner ? -1 : map - obj->maps); 5301 /* We keep pretenting we have valid FD to pass various fd >= 0 5302 * checks by just keeping original placeholder FDs in place. 5303 * See bpf_object__add_map() comment. 5304 * This placeholder fd will not be used with any syscall and 5305 * will be reset to -1 eventually. 5306 */ 5307 map_fd = map->fd; 5308 } else { 5309 map_fd = bpf_map_create(def->type, map_name, 5310 def->key_size, def->value_size, 5311 def->max_entries, &create_attr); 5312 } 5313 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5314 err = -errno; 5315 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5316 map->name, errstr(err)); 5317 create_attr.btf_fd = 0; 5318 create_attr.btf_key_type_id = 0; 5319 create_attr.btf_value_type_id = 0; 5320 map->btf_key_type_id = 0; 5321 map->btf_value_type_id = 0; 5322 map_fd = bpf_map_create(def->type, map_name, 5323 def->key_size, def->value_size, 5324 def->max_entries, &create_attr); 5325 } 5326 5327 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5328 if (obj->gen_loader) 5329 map->inner_map->fd = -1; 5330 bpf_map__destroy(map->inner_map); 5331 zfree(&map->inner_map); 5332 } 5333 5334 if (map_fd < 0) 5335 return map_fd; 5336 5337 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5338 if (map->fd == map_fd) 5339 return 0; 5340 5341 /* Keep placeholder FD value but now point it to the BPF map object. 5342 * This way everything that relied on this map's FD (e.g., relocated 5343 * ldimm64 instructions) will stay valid and won't need adjustments. 5344 * map->fd stays valid but now point to what map_fd points to. 5345 */ 5346 return reuse_fd(map->fd, map_fd); 5347 } 5348 5349 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5350 { 5351 const struct bpf_map *targ_map; 5352 unsigned int i; 5353 int fd, err = 0; 5354 5355 for (i = 0; i < map->init_slots_sz; i++) { 5356 if (!map->init_slots[i]) 5357 continue; 5358 5359 targ_map = map->init_slots[i]; 5360 fd = targ_map->fd; 5361 5362 if (obj->gen_loader) { 5363 bpf_gen__populate_outer_map(obj->gen_loader, 5364 map - obj->maps, i, 5365 targ_map - obj->maps); 5366 } else { 5367 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5368 } 5369 if (err) { 5370 err = -errno; 5371 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5372 map->name, i, targ_map->name, fd, errstr(err)); 5373 return err; 5374 } 5375 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5376 map->name, i, targ_map->name, fd); 5377 } 5378 5379 zfree(&map->init_slots); 5380 map->init_slots_sz = 0; 5381 5382 return 0; 5383 } 5384 5385 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5386 { 5387 const struct bpf_program *targ_prog; 5388 unsigned int i; 5389 int fd, err; 5390 5391 if (obj->gen_loader) 5392 return -ENOTSUP; 5393 5394 for (i = 0; i < map->init_slots_sz; i++) { 5395 if (!map->init_slots[i]) 5396 continue; 5397 5398 targ_prog = map->init_slots[i]; 5399 fd = bpf_program__fd(targ_prog); 5400 5401 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5402 if (err) { 5403 err = -errno; 5404 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5405 map->name, i, targ_prog->name, fd, errstr(err)); 5406 return err; 5407 } 5408 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5409 map->name, i, targ_prog->name, fd); 5410 } 5411 5412 zfree(&map->init_slots); 5413 map->init_slots_sz = 0; 5414 5415 return 0; 5416 } 5417 5418 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5419 { 5420 struct bpf_map *map; 5421 int i, err; 5422 5423 for (i = 0; i < obj->nr_maps; i++) { 5424 map = &obj->maps[i]; 5425 5426 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5427 continue; 5428 5429 err = init_prog_array_slots(obj, map); 5430 if (err < 0) 5431 return err; 5432 } 5433 return 0; 5434 } 5435 5436 static int map_set_def_max_entries(struct bpf_map *map) 5437 { 5438 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5439 int nr_cpus; 5440 5441 nr_cpus = libbpf_num_possible_cpus(); 5442 if (nr_cpus < 0) { 5443 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5444 map->name, nr_cpus); 5445 return nr_cpus; 5446 } 5447 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5448 map->def.max_entries = nr_cpus; 5449 } 5450 5451 return 0; 5452 } 5453 5454 static int 5455 bpf_object__create_maps(struct bpf_object *obj) 5456 { 5457 struct bpf_map *map; 5458 unsigned int i, j; 5459 int err; 5460 bool retried; 5461 5462 for (i = 0; i < obj->nr_maps; i++) { 5463 map = &obj->maps[i]; 5464 5465 /* To support old kernels, we skip creating global data maps 5466 * (.rodata, .data, .kconfig, etc); later on, during program 5467 * loading, if we detect that at least one of the to-be-loaded 5468 * programs is referencing any global data map, we'll error 5469 * out with program name and relocation index logged. 5470 * This approach allows to accommodate Clang emitting 5471 * unnecessary .rodata.str1.1 sections for string literals, 5472 * but also it allows to have CO-RE applications that use 5473 * global variables in some of BPF programs, but not others. 5474 * If those global variable-using programs are not loaded at 5475 * runtime due to bpf_program__set_autoload(prog, false), 5476 * bpf_object loading will succeed just fine even on old 5477 * kernels. 5478 */ 5479 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5480 map->autocreate = false; 5481 5482 if (!map->autocreate) { 5483 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5484 continue; 5485 } 5486 5487 err = map_set_def_max_entries(map); 5488 if (err) 5489 goto err_out; 5490 5491 retried = false; 5492 retry: 5493 if (map->pin_path) { 5494 err = bpf_object__reuse_map(map); 5495 if (err) { 5496 pr_warn("map '%s': error reusing pinned map\n", 5497 map->name); 5498 goto err_out; 5499 } 5500 if (retried && map->fd < 0) { 5501 pr_warn("map '%s': cannot find pinned map\n", 5502 map->name); 5503 err = -ENOENT; 5504 goto err_out; 5505 } 5506 } 5507 5508 if (map->reused) { 5509 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5510 map->name, map->fd); 5511 } else { 5512 err = bpf_object__create_map(obj, map, false); 5513 if (err) 5514 goto err_out; 5515 5516 pr_debug("map '%s': created successfully, fd=%d\n", 5517 map->name, map->fd); 5518 5519 if (bpf_map__is_internal(map)) { 5520 err = bpf_object__populate_internal_map(obj, map); 5521 if (err < 0) 5522 goto err_out; 5523 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5524 map->mmaped = mmap((void *)(long)map->map_extra, 5525 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5526 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5527 map->fd, 0); 5528 if (map->mmaped == MAP_FAILED) { 5529 err = -errno; 5530 map->mmaped = NULL; 5531 pr_warn("map '%s': failed to mmap arena: %s\n", 5532 map->name, errstr(err)); 5533 return err; 5534 } 5535 if (obj->arena_data) { 5536 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5537 zfree(&obj->arena_data); 5538 } 5539 } 5540 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5541 err = init_map_in_map_slots(obj, map); 5542 if (err < 0) 5543 goto err_out; 5544 } 5545 } 5546 5547 if (map->pin_path && !map->pinned) { 5548 err = bpf_map__pin(map, NULL); 5549 if (err) { 5550 if (!retried && err == -EEXIST) { 5551 retried = true; 5552 goto retry; 5553 } 5554 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5555 map->name, map->pin_path, errstr(err)); 5556 goto err_out; 5557 } 5558 } 5559 } 5560 5561 return 0; 5562 5563 err_out: 5564 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5565 pr_perm_msg(err); 5566 for (j = 0; j < i; j++) 5567 zclose(obj->maps[j].fd); 5568 return err; 5569 } 5570 5571 static bool bpf_core_is_flavor_sep(const char *s) 5572 { 5573 /* check X___Y name pattern, where X and Y are not underscores */ 5574 return s[0] != '_' && /* X */ 5575 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5576 s[4] != '_'; /* Y */ 5577 } 5578 5579 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5580 * before last triple underscore. Struct name part after last triple 5581 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5582 */ 5583 size_t bpf_core_essential_name_len(const char *name) 5584 { 5585 size_t n = strlen(name); 5586 int i; 5587 5588 for (i = n - 5; i >= 0; i--) { 5589 if (bpf_core_is_flavor_sep(name + i)) 5590 return i + 1; 5591 } 5592 return n; 5593 } 5594 5595 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5596 { 5597 if (!cands) 5598 return; 5599 5600 free(cands->cands); 5601 free(cands); 5602 } 5603 5604 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5605 size_t local_essent_len, 5606 const struct btf *targ_btf, 5607 const char *targ_btf_name, 5608 int targ_start_id, 5609 struct bpf_core_cand_list *cands) 5610 { 5611 struct bpf_core_cand *new_cands, *cand; 5612 const struct btf_type *t, *local_t; 5613 const char *targ_name, *local_name; 5614 size_t targ_essent_len; 5615 int n, i; 5616 5617 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5618 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5619 5620 n = btf__type_cnt(targ_btf); 5621 for (i = targ_start_id; i < n; i++) { 5622 t = btf__type_by_id(targ_btf, i); 5623 if (!btf_kind_core_compat(t, local_t)) 5624 continue; 5625 5626 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5627 if (str_is_empty(targ_name)) 5628 continue; 5629 5630 targ_essent_len = bpf_core_essential_name_len(targ_name); 5631 if (targ_essent_len != local_essent_len) 5632 continue; 5633 5634 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5635 continue; 5636 5637 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5638 local_cand->id, btf_kind_str(local_t), 5639 local_name, i, btf_kind_str(t), targ_name, 5640 targ_btf_name); 5641 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5642 sizeof(*cands->cands)); 5643 if (!new_cands) 5644 return -ENOMEM; 5645 5646 cand = &new_cands[cands->len]; 5647 cand->btf = targ_btf; 5648 cand->id = i; 5649 5650 cands->cands = new_cands; 5651 cands->len++; 5652 } 5653 return 0; 5654 } 5655 5656 static int load_module_btfs(struct bpf_object *obj) 5657 { 5658 struct bpf_btf_info info; 5659 struct module_btf *mod_btf; 5660 struct btf *btf; 5661 char name[64]; 5662 __u32 id = 0, len; 5663 int err, fd; 5664 5665 if (obj->btf_modules_loaded) 5666 return 0; 5667 5668 if (obj->gen_loader) 5669 return 0; 5670 5671 /* don't do this again, even if we find no module BTFs */ 5672 obj->btf_modules_loaded = true; 5673 5674 /* kernel too old to support module BTFs */ 5675 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5676 return 0; 5677 5678 while (true) { 5679 err = bpf_btf_get_next_id(id, &id); 5680 if (err && errno == ENOENT) 5681 return 0; 5682 if (err && errno == EPERM) { 5683 pr_debug("skipping module BTFs loading, missing privileges\n"); 5684 return 0; 5685 } 5686 if (err) { 5687 err = -errno; 5688 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5689 return err; 5690 } 5691 5692 fd = bpf_btf_get_fd_by_id(id); 5693 if (fd < 0) { 5694 if (errno == ENOENT) 5695 continue; /* expected race: BTF was unloaded */ 5696 err = -errno; 5697 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5698 return err; 5699 } 5700 5701 len = sizeof(info); 5702 memset(&info, 0, sizeof(info)); 5703 info.name = ptr_to_u64(name); 5704 info.name_len = sizeof(name); 5705 5706 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5707 if (err) { 5708 err = -errno; 5709 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5710 goto err_out; 5711 } 5712 5713 /* ignore non-module BTFs */ 5714 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5715 close(fd); 5716 continue; 5717 } 5718 5719 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5720 err = libbpf_get_error(btf); 5721 if (err) { 5722 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5723 name, id, errstr(err)); 5724 goto err_out; 5725 } 5726 5727 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5728 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5729 if (err) 5730 goto err_out; 5731 5732 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5733 5734 mod_btf->btf = btf; 5735 mod_btf->id = id; 5736 mod_btf->fd = fd; 5737 mod_btf->name = strdup(name); 5738 if (!mod_btf->name) { 5739 err = -ENOMEM; 5740 goto err_out; 5741 } 5742 continue; 5743 5744 err_out: 5745 close(fd); 5746 return err; 5747 } 5748 5749 return 0; 5750 } 5751 5752 static struct bpf_core_cand_list * 5753 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5754 { 5755 struct bpf_core_cand local_cand = {}; 5756 struct bpf_core_cand_list *cands; 5757 const struct btf *main_btf; 5758 const struct btf_type *local_t; 5759 const char *local_name; 5760 size_t local_essent_len; 5761 int err, i; 5762 5763 local_cand.btf = local_btf; 5764 local_cand.id = local_type_id; 5765 local_t = btf__type_by_id(local_btf, local_type_id); 5766 if (!local_t) 5767 return ERR_PTR(-EINVAL); 5768 5769 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5770 if (str_is_empty(local_name)) 5771 return ERR_PTR(-EINVAL); 5772 local_essent_len = bpf_core_essential_name_len(local_name); 5773 5774 cands = calloc(1, sizeof(*cands)); 5775 if (!cands) 5776 return ERR_PTR(-ENOMEM); 5777 5778 /* Attempt to find target candidates in vmlinux BTF first */ 5779 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5780 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5781 if (err) 5782 goto err_out; 5783 5784 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5785 if (cands->len) 5786 return cands; 5787 5788 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5789 if (obj->btf_vmlinux_override) 5790 return cands; 5791 5792 /* now look through module BTFs, trying to still find candidates */ 5793 err = load_module_btfs(obj); 5794 if (err) 5795 goto err_out; 5796 5797 for (i = 0; i < obj->btf_module_cnt; i++) { 5798 err = bpf_core_add_cands(&local_cand, local_essent_len, 5799 obj->btf_modules[i].btf, 5800 obj->btf_modules[i].name, 5801 btf__type_cnt(obj->btf_vmlinux), 5802 cands); 5803 if (err) 5804 goto err_out; 5805 } 5806 5807 return cands; 5808 err_out: 5809 bpf_core_free_cands(cands); 5810 return ERR_PTR(err); 5811 } 5812 5813 /* Check local and target types for compatibility. This check is used for 5814 * type-based CO-RE relocations and follow slightly different rules than 5815 * field-based relocations. This function assumes that root types were already 5816 * checked for name match. Beyond that initial root-level name check, names 5817 * are completely ignored. Compatibility rules are as follows: 5818 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5819 * kind should match for local and target types (i.e., STRUCT is not 5820 * compatible with UNION); 5821 * - for ENUMs, the size is ignored; 5822 * - for INT, size and signedness are ignored; 5823 * - for ARRAY, dimensionality is ignored, element types are checked for 5824 * compatibility recursively; 5825 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5826 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5827 * - FUNC_PROTOs are compatible if they have compatible signature: same 5828 * number of input args and compatible return and argument types. 5829 * These rules are not set in stone and probably will be adjusted as we get 5830 * more experience with using BPF CO-RE relocations. 5831 */ 5832 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5833 const struct btf *targ_btf, __u32 targ_id) 5834 { 5835 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5836 } 5837 5838 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5839 const struct btf *targ_btf, __u32 targ_id) 5840 { 5841 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5842 } 5843 5844 static size_t bpf_core_hash_fn(const long key, void *ctx) 5845 { 5846 return key; 5847 } 5848 5849 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5850 { 5851 return k1 == k2; 5852 } 5853 5854 static int record_relo_core(struct bpf_program *prog, 5855 const struct bpf_core_relo *core_relo, int insn_idx) 5856 { 5857 struct reloc_desc *relos, *relo; 5858 5859 relos = libbpf_reallocarray(prog->reloc_desc, 5860 prog->nr_reloc + 1, sizeof(*relos)); 5861 if (!relos) 5862 return -ENOMEM; 5863 relo = &relos[prog->nr_reloc]; 5864 relo->type = RELO_CORE; 5865 relo->insn_idx = insn_idx; 5866 relo->core_relo = core_relo; 5867 prog->reloc_desc = relos; 5868 prog->nr_reloc++; 5869 return 0; 5870 } 5871 5872 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5873 { 5874 struct reloc_desc *relo; 5875 int i; 5876 5877 for (i = 0; i < prog->nr_reloc; i++) { 5878 relo = &prog->reloc_desc[i]; 5879 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5880 continue; 5881 5882 return relo->core_relo; 5883 } 5884 5885 return NULL; 5886 } 5887 5888 static int bpf_core_resolve_relo(struct bpf_program *prog, 5889 const struct bpf_core_relo *relo, 5890 int relo_idx, 5891 const struct btf *local_btf, 5892 struct hashmap *cand_cache, 5893 struct bpf_core_relo_res *targ_res) 5894 { 5895 struct bpf_core_spec specs_scratch[3] = {}; 5896 struct bpf_core_cand_list *cands = NULL; 5897 const char *prog_name = prog->name; 5898 const struct btf_type *local_type; 5899 const char *local_name; 5900 __u32 local_id = relo->type_id; 5901 int err; 5902 5903 local_type = btf__type_by_id(local_btf, local_id); 5904 if (!local_type) 5905 return -EINVAL; 5906 5907 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5908 if (!local_name) 5909 return -EINVAL; 5910 5911 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5912 !hashmap__find(cand_cache, local_id, &cands)) { 5913 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5914 if (IS_ERR(cands)) { 5915 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5916 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5917 local_name, PTR_ERR(cands)); 5918 return PTR_ERR(cands); 5919 } 5920 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5921 if (err) { 5922 bpf_core_free_cands(cands); 5923 return err; 5924 } 5925 } 5926 5927 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5928 targ_res); 5929 } 5930 5931 static int 5932 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5933 { 5934 const struct btf_ext_info_sec *sec; 5935 struct bpf_core_relo_res targ_res; 5936 const struct bpf_core_relo *rec; 5937 const struct btf_ext_info *seg; 5938 struct hashmap_entry *entry; 5939 struct hashmap *cand_cache = NULL; 5940 struct bpf_program *prog; 5941 struct bpf_insn *insn; 5942 const char *sec_name; 5943 int i, err = 0, insn_idx, sec_idx, sec_num; 5944 5945 if (obj->btf_ext->core_relo_info.len == 0) 5946 return 0; 5947 5948 if (targ_btf_path) { 5949 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5950 err = libbpf_get_error(obj->btf_vmlinux_override); 5951 if (err) { 5952 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 5953 return err; 5954 } 5955 } 5956 5957 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5958 if (IS_ERR(cand_cache)) { 5959 err = PTR_ERR(cand_cache); 5960 goto out; 5961 } 5962 5963 seg = &obj->btf_ext->core_relo_info; 5964 sec_num = 0; 5965 for_each_btf_ext_sec(seg, sec) { 5966 sec_idx = seg->sec_idxs[sec_num]; 5967 sec_num++; 5968 5969 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5970 if (str_is_empty(sec_name)) { 5971 err = -EINVAL; 5972 goto out; 5973 } 5974 5975 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5976 5977 for_each_btf_ext_rec(seg, sec, i, rec) { 5978 if (rec->insn_off % BPF_INSN_SZ) 5979 return -EINVAL; 5980 insn_idx = rec->insn_off / BPF_INSN_SZ; 5981 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5982 if (!prog) { 5983 /* When __weak subprog is "overridden" by another instance 5984 * of the subprog from a different object file, linker still 5985 * appends all the .BTF.ext info that used to belong to that 5986 * eliminated subprogram. 5987 * This is similar to what x86-64 linker does for relocations. 5988 * So just ignore such relocations just like we ignore 5989 * subprog instructions when discovering subprograms. 5990 */ 5991 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5992 sec_name, i, insn_idx); 5993 continue; 5994 } 5995 /* no need to apply CO-RE relocation if the program is 5996 * not going to be loaded 5997 */ 5998 if (!prog->autoload) 5999 continue; 6000 6001 /* adjust insn_idx from section frame of reference to the local 6002 * program's frame of reference; (sub-)program code is not yet 6003 * relocated, so it's enough to just subtract in-section offset 6004 */ 6005 insn_idx = insn_idx - prog->sec_insn_off; 6006 if (insn_idx >= prog->insns_cnt) 6007 return -EINVAL; 6008 insn = &prog->insns[insn_idx]; 6009 6010 err = record_relo_core(prog, rec, insn_idx); 6011 if (err) { 6012 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 6013 prog->name, i, errstr(err)); 6014 goto out; 6015 } 6016 6017 if (prog->obj->gen_loader) 6018 continue; 6019 6020 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 6021 if (err) { 6022 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 6023 prog->name, i, errstr(err)); 6024 goto out; 6025 } 6026 6027 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 6028 if (err) { 6029 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 6030 prog->name, i, insn_idx, errstr(err)); 6031 goto out; 6032 } 6033 } 6034 } 6035 6036 out: 6037 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6038 btf__free(obj->btf_vmlinux_override); 6039 obj->btf_vmlinux_override = NULL; 6040 6041 if (!IS_ERR_OR_NULL(cand_cache)) { 6042 hashmap__for_each_entry(cand_cache, entry, i) { 6043 bpf_core_free_cands(entry->pvalue); 6044 } 6045 hashmap__free(cand_cache); 6046 } 6047 return err; 6048 } 6049 6050 /* base map load ldimm64 special constant, used also for log fixup logic */ 6051 #define POISON_LDIMM64_MAP_BASE 2001000000 6052 #define POISON_LDIMM64_MAP_PFX "200100" 6053 6054 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6055 int insn_idx, struct bpf_insn *insn, 6056 int map_idx, const struct bpf_map *map) 6057 { 6058 int i; 6059 6060 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6061 prog->name, relo_idx, insn_idx, map_idx, map->name); 6062 6063 /* we turn single ldimm64 into two identical invalid calls */ 6064 for (i = 0; i < 2; i++) { 6065 insn->code = BPF_JMP | BPF_CALL; 6066 insn->dst_reg = 0; 6067 insn->src_reg = 0; 6068 insn->off = 0; 6069 /* if this instruction is reachable (not a dead code), 6070 * verifier will complain with something like: 6071 * invalid func unknown#2001000123 6072 * where lower 123 is map index into obj->maps[] array 6073 */ 6074 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6075 6076 insn++; 6077 } 6078 } 6079 6080 /* unresolved kfunc call special constant, used also for log fixup logic */ 6081 #define POISON_CALL_KFUNC_BASE 2002000000 6082 #define POISON_CALL_KFUNC_PFX "2002" 6083 6084 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6085 int insn_idx, struct bpf_insn *insn, 6086 int ext_idx, const struct extern_desc *ext) 6087 { 6088 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6089 prog->name, relo_idx, insn_idx, ext->name); 6090 6091 /* we turn kfunc call into invalid helper call with identifiable constant */ 6092 insn->code = BPF_JMP | BPF_CALL; 6093 insn->dst_reg = 0; 6094 insn->src_reg = 0; 6095 insn->off = 0; 6096 /* if this instruction is reachable (not a dead code), 6097 * verifier will complain with something like: 6098 * invalid func unknown#2001000123 6099 * where lower 123 is extern index into obj->externs[] array 6100 */ 6101 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6102 } 6103 6104 /* Relocate data references within program code: 6105 * - map references; 6106 * - global variable references; 6107 * - extern references. 6108 */ 6109 static int 6110 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6111 { 6112 int i; 6113 6114 for (i = 0; i < prog->nr_reloc; i++) { 6115 struct reloc_desc *relo = &prog->reloc_desc[i]; 6116 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6117 const struct bpf_map *map; 6118 struct extern_desc *ext; 6119 6120 switch (relo->type) { 6121 case RELO_LD64: 6122 map = &obj->maps[relo->map_idx]; 6123 if (obj->gen_loader) { 6124 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6125 insn[0].imm = relo->map_idx; 6126 } else if (map->autocreate) { 6127 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6128 insn[0].imm = map->fd; 6129 } else { 6130 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6131 relo->map_idx, map); 6132 } 6133 break; 6134 case RELO_DATA: 6135 map = &obj->maps[relo->map_idx]; 6136 insn[1].imm = insn[0].imm + relo->sym_off; 6137 if (obj->gen_loader) { 6138 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6139 insn[0].imm = relo->map_idx; 6140 } else if (map->autocreate) { 6141 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6142 insn[0].imm = map->fd; 6143 } else { 6144 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6145 relo->map_idx, map); 6146 } 6147 break; 6148 case RELO_EXTERN_LD64: 6149 ext = &obj->externs[relo->ext_idx]; 6150 if (ext->type == EXT_KCFG) { 6151 if (obj->gen_loader) { 6152 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6153 insn[0].imm = obj->kconfig_map_idx; 6154 } else { 6155 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6156 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6157 } 6158 insn[1].imm = ext->kcfg.data_off; 6159 } else /* EXT_KSYM */ { 6160 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6161 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6162 insn[0].imm = ext->ksym.kernel_btf_id; 6163 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6164 } else { /* typeless ksyms or unresolved typed ksyms */ 6165 insn[0].imm = (__u32)ext->ksym.addr; 6166 insn[1].imm = ext->ksym.addr >> 32; 6167 } 6168 } 6169 break; 6170 case RELO_EXTERN_CALL: 6171 ext = &obj->externs[relo->ext_idx]; 6172 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6173 if (ext->is_set) { 6174 insn[0].imm = ext->ksym.kernel_btf_id; 6175 insn[0].off = ext->ksym.btf_fd_idx; 6176 } else { /* unresolved weak kfunc call */ 6177 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6178 relo->ext_idx, ext); 6179 } 6180 break; 6181 case RELO_SUBPROG_ADDR: 6182 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6183 pr_warn("prog '%s': relo #%d: bad insn\n", 6184 prog->name, i); 6185 return -EINVAL; 6186 } 6187 /* handled already */ 6188 break; 6189 case RELO_CALL: 6190 /* handled already */ 6191 break; 6192 case RELO_CORE: 6193 /* will be handled by bpf_program_record_relos() */ 6194 break; 6195 default: 6196 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6197 prog->name, i, relo->type); 6198 return -EINVAL; 6199 } 6200 } 6201 6202 return 0; 6203 } 6204 6205 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6206 const struct bpf_program *prog, 6207 const struct btf_ext_info *ext_info, 6208 void **prog_info, __u32 *prog_rec_cnt, 6209 __u32 *prog_rec_sz) 6210 { 6211 void *copy_start = NULL, *copy_end = NULL; 6212 void *rec, *rec_end, *new_prog_info; 6213 const struct btf_ext_info_sec *sec; 6214 size_t old_sz, new_sz; 6215 int i, sec_num, sec_idx, off_adj; 6216 6217 sec_num = 0; 6218 for_each_btf_ext_sec(ext_info, sec) { 6219 sec_idx = ext_info->sec_idxs[sec_num]; 6220 sec_num++; 6221 if (prog->sec_idx != sec_idx) 6222 continue; 6223 6224 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6225 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6226 6227 if (insn_off < prog->sec_insn_off) 6228 continue; 6229 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6230 break; 6231 6232 if (!copy_start) 6233 copy_start = rec; 6234 copy_end = rec + ext_info->rec_size; 6235 } 6236 6237 if (!copy_start) 6238 return -ENOENT; 6239 6240 /* append func/line info of a given (sub-)program to the main 6241 * program func/line info 6242 */ 6243 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6244 new_sz = old_sz + (copy_end - copy_start); 6245 new_prog_info = realloc(*prog_info, new_sz); 6246 if (!new_prog_info) 6247 return -ENOMEM; 6248 *prog_info = new_prog_info; 6249 *prog_rec_cnt = new_sz / ext_info->rec_size; 6250 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6251 6252 /* Kernel instruction offsets are in units of 8-byte 6253 * instructions, while .BTF.ext instruction offsets generated 6254 * by Clang are in units of bytes. So convert Clang offsets 6255 * into kernel offsets and adjust offset according to program 6256 * relocated position. 6257 */ 6258 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6259 rec = new_prog_info + old_sz; 6260 rec_end = new_prog_info + new_sz; 6261 for (; rec < rec_end; rec += ext_info->rec_size) { 6262 __u32 *insn_off = rec; 6263 6264 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6265 } 6266 *prog_rec_sz = ext_info->rec_size; 6267 return 0; 6268 } 6269 6270 return -ENOENT; 6271 } 6272 6273 static int 6274 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6275 struct bpf_program *main_prog, 6276 const struct bpf_program *prog) 6277 { 6278 int err; 6279 6280 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6281 * support func/line info 6282 */ 6283 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6284 return 0; 6285 6286 /* only attempt func info relocation if main program's func_info 6287 * relocation was successful 6288 */ 6289 if (main_prog != prog && !main_prog->func_info) 6290 goto line_info; 6291 6292 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6293 &main_prog->func_info, 6294 &main_prog->func_info_cnt, 6295 &main_prog->func_info_rec_size); 6296 if (err) { 6297 if (err != -ENOENT) { 6298 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6299 prog->name, errstr(err)); 6300 return err; 6301 } 6302 if (main_prog->func_info) { 6303 /* 6304 * Some info has already been found but has problem 6305 * in the last btf_ext reloc. Must have to error out. 6306 */ 6307 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6308 return err; 6309 } 6310 /* Have problem loading the very first info. Ignore the rest. */ 6311 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6312 prog->name); 6313 } 6314 6315 line_info: 6316 /* don't relocate line info if main program's relocation failed */ 6317 if (main_prog != prog && !main_prog->line_info) 6318 return 0; 6319 6320 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6321 &main_prog->line_info, 6322 &main_prog->line_info_cnt, 6323 &main_prog->line_info_rec_size); 6324 if (err) { 6325 if (err != -ENOENT) { 6326 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6327 prog->name, errstr(err)); 6328 return err; 6329 } 6330 if (main_prog->line_info) { 6331 /* 6332 * Some info has already been found but has problem 6333 * in the last btf_ext reloc. Must have to error out. 6334 */ 6335 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6336 return err; 6337 } 6338 /* Have problem loading the very first info. Ignore the rest. */ 6339 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6340 prog->name); 6341 } 6342 return 0; 6343 } 6344 6345 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6346 { 6347 size_t insn_idx = *(const size_t *)key; 6348 const struct reloc_desc *relo = elem; 6349 6350 if (insn_idx == relo->insn_idx) 6351 return 0; 6352 return insn_idx < relo->insn_idx ? -1 : 1; 6353 } 6354 6355 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6356 { 6357 if (!prog->nr_reloc) 6358 return NULL; 6359 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6360 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6361 } 6362 6363 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6364 { 6365 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6366 struct reloc_desc *relos; 6367 int i; 6368 6369 if (main_prog == subprog) 6370 return 0; 6371 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6372 /* if new count is zero, reallocarray can return a valid NULL result; 6373 * in this case the previous pointer will be freed, so we *have to* 6374 * reassign old pointer to the new value (even if it's NULL) 6375 */ 6376 if (!relos && new_cnt) 6377 return -ENOMEM; 6378 if (subprog->nr_reloc) 6379 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6380 sizeof(*relos) * subprog->nr_reloc); 6381 6382 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6383 relos[i].insn_idx += subprog->sub_insn_off; 6384 /* After insn_idx adjustment the 'relos' array is still sorted 6385 * by insn_idx and doesn't break bsearch. 6386 */ 6387 main_prog->reloc_desc = relos; 6388 main_prog->nr_reloc = new_cnt; 6389 return 0; 6390 } 6391 6392 static int 6393 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6394 struct bpf_program *subprog) 6395 { 6396 struct bpf_insn *insns; 6397 size_t new_cnt; 6398 int err; 6399 6400 subprog->sub_insn_off = main_prog->insns_cnt; 6401 6402 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6403 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6404 if (!insns) { 6405 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6406 return -ENOMEM; 6407 } 6408 main_prog->insns = insns; 6409 main_prog->insns_cnt = new_cnt; 6410 6411 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6412 subprog->insns_cnt * sizeof(*insns)); 6413 6414 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6415 main_prog->name, subprog->insns_cnt, subprog->name); 6416 6417 /* The subprog insns are now appended. Append its relos too. */ 6418 err = append_subprog_relos(main_prog, subprog); 6419 if (err) 6420 return err; 6421 return 0; 6422 } 6423 6424 static int 6425 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6426 struct bpf_program *prog) 6427 { 6428 size_t sub_insn_idx, insn_idx; 6429 struct bpf_program *subprog; 6430 struct reloc_desc *relo; 6431 struct bpf_insn *insn; 6432 int err; 6433 6434 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6435 if (err) 6436 return err; 6437 6438 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6439 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6440 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6441 continue; 6442 6443 relo = find_prog_insn_relo(prog, insn_idx); 6444 if (relo && relo->type == RELO_EXTERN_CALL) 6445 /* kfunc relocations will be handled later 6446 * in bpf_object__relocate_data() 6447 */ 6448 continue; 6449 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6450 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6451 prog->name, insn_idx, relo->type); 6452 return -LIBBPF_ERRNO__RELOC; 6453 } 6454 if (relo) { 6455 /* sub-program instruction index is a combination of 6456 * an offset of a symbol pointed to by relocation and 6457 * call instruction's imm field; for global functions, 6458 * call always has imm = -1, but for static functions 6459 * relocation is against STT_SECTION and insn->imm 6460 * points to a start of a static function 6461 * 6462 * for subprog addr relocation, the relo->sym_off + insn->imm is 6463 * the byte offset in the corresponding section. 6464 */ 6465 if (relo->type == RELO_CALL) 6466 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6467 else 6468 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6469 } else if (insn_is_pseudo_func(insn)) { 6470 /* 6471 * RELO_SUBPROG_ADDR relo is always emitted even if both 6472 * functions are in the same section, so it shouldn't reach here. 6473 */ 6474 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6475 prog->name, insn_idx); 6476 return -LIBBPF_ERRNO__RELOC; 6477 } else { 6478 /* if subprogram call is to a static function within 6479 * the same ELF section, there won't be any relocation 6480 * emitted, but it also means there is no additional 6481 * offset necessary, insns->imm is relative to 6482 * instruction's original position within the section 6483 */ 6484 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6485 } 6486 6487 /* we enforce that sub-programs should be in .text section */ 6488 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6489 if (!subprog) { 6490 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6491 prog->name); 6492 return -LIBBPF_ERRNO__RELOC; 6493 } 6494 6495 /* if it's the first call instruction calling into this 6496 * subprogram (meaning this subprog hasn't been processed 6497 * yet) within the context of current main program: 6498 * - append it at the end of main program's instructions blog; 6499 * - process is recursively, while current program is put on hold; 6500 * - if that subprogram calls some other not yet processes 6501 * subprogram, same thing will happen recursively until 6502 * there are no more unprocesses subprograms left to append 6503 * and relocate. 6504 */ 6505 if (subprog->sub_insn_off == 0) { 6506 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6507 if (err) 6508 return err; 6509 err = bpf_object__reloc_code(obj, main_prog, subprog); 6510 if (err) 6511 return err; 6512 } 6513 6514 /* main_prog->insns memory could have been re-allocated, so 6515 * calculate pointer again 6516 */ 6517 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6518 /* calculate correct instruction position within current main 6519 * prog; each main prog can have a different set of 6520 * subprograms appended (potentially in different order as 6521 * well), so position of any subprog can be different for 6522 * different main programs 6523 */ 6524 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6525 6526 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6527 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6528 } 6529 6530 return 0; 6531 } 6532 6533 /* 6534 * Relocate sub-program calls. 6535 * 6536 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6537 * main prog) is processed separately. For each subprog (non-entry functions, 6538 * that can be called from either entry progs or other subprogs) gets their 6539 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6540 * hasn't been yet appended and relocated within current main prog. Once its 6541 * relocated, sub_insn_off will point at the position within current main prog 6542 * where given subprog was appended. This will further be used to relocate all 6543 * the call instructions jumping into this subprog. 6544 * 6545 * We start with main program and process all call instructions. If the call 6546 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6547 * is zero), subprog instructions are appended at the end of main program's 6548 * instruction array. Then main program is "put on hold" while we recursively 6549 * process newly appended subprogram. If that subprogram calls into another 6550 * subprogram that hasn't been appended, new subprogram is appended again to 6551 * the *main* prog's instructions (subprog's instructions are always left 6552 * untouched, as they need to be in unmodified state for subsequent main progs 6553 * and subprog instructions are always sent only as part of a main prog) and 6554 * the process continues recursively. Once all the subprogs called from a main 6555 * prog or any of its subprogs are appended (and relocated), all their 6556 * positions within finalized instructions array are known, so it's easy to 6557 * rewrite call instructions with correct relative offsets, corresponding to 6558 * desired target subprog. 6559 * 6560 * Its important to realize that some subprogs might not be called from some 6561 * main prog and any of its called/used subprogs. Those will keep their 6562 * subprog->sub_insn_off as zero at all times and won't be appended to current 6563 * main prog and won't be relocated within the context of current main prog. 6564 * They might still be used from other main progs later. 6565 * 6566 * Visually this process can be shown as below. Suppose we have two main 6567 * programs mainA and mainB and BPF object contains three subprogs: subA, 6568 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6569 * subC both call subB: 6570 * 6571 * +--------+ +-------+ 6572 * | v v | 6573 * +--+---+ +--+-+-+ +---+--+ 6574 * | subA | | subB | | subC | 6575 * +--+---+ +------+ +---+--+ 6576 * ^ ^ 6577 * | | 6578 * +---+-------+ +------+----+ 6579 * | mainA | | mainB | 6580 * +-----------+ +-----------+ 6581 * 6582 * We'll start relocating mainA, will find subA, append it and start 6583 * processing sub A recursively: 6584 * 6585 * +-----------+------+ 6586 * | mainA | subA | 6587 * +-----------+------+ 6588 * 6589 * At this point we notice that subB is used from subA, so we append it and 6590 * relocate (there are no further subcalls from subB): 6591 * 6592 * +-----------+------+------+ 6593 * | mainA | subA | subB | 6594 * +-----------+------+------+ 6595 * 6596 * At this point, we relocate subA calls, then go one level up and finish with 6597 * relocatin mainA calls. mainA is done. 6598 * 6599 * For mainB process is similar but results in different order. We start with 6600 * mainB and skip subA and subB, as mainB never calls them (at least 6601 * directly), but we see subC is needed, so we append and start processing it: 6602 * 6603 * +-----------+------+ 6604 * | mainB | subC | 6605 * +-----------+------+ 6606 * Now we see subC needs subB, so we go back to it, append and relocate it: 6607 * 6608 * +-----------+------+------+ 6609 * | mainB | subC | subB | 6610 * +-----------+------+------+ 6611 * 6612 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6613 */ 6614 static int 6615 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6616 { 6617 struct bpf_program *subprog; 6618 int i, err; 6619 6620 /* mark all subprogs as not relocated (yet) within the context of 6621 * current main program 6622 */ 6623 for (i = 0; i < obj->nr_programs; i++) { 6624 subprog = &obj->programs[i]; 6625 if (!prog_is_subprog(obj, subprog)) 6626 continue; 6627 6628 subprog->sub_insn_off = 0; 6629 } 6630 6631 err = bpf_object__reloc_code(obj, prog, prog); 6632 if (err) 6633 return err; 6634 6635 return 0; 6636 } 6637 6638 static void 6639 bpf_object__free_relocs(struct bpf_object *obj) 6640 { 6641 struct bpf_program *prog; 6642 int i; 6643 6644 /* free up relocation descriptors */ 6645 for (i = 0; i < obj->nr_programs; i++) { 6646 prog = &obj->programs[i]; 6647 zfree(&prog->reloc_desc); 6648 prog->nr_reloc = 0; 6649 } 6650 } 6651 6652 static int cmp_relocs(const void *_a, const void *_b) 6653 { 6654 const struct reloc_desc *a = _a; 6655 const struct reloc_desc *b = _b; 6656 6657 if (a->insn_idx != b->insn_idx) 6658 return a->insn_idx < b->insn_idx ? -1 : 1; 6659 6660 /* no two relocations should have the same insn_idx, but ... */ 6661 if (a->type != b->type) 6662 return a->type < b->type ? -1 : 1; 6663 6664 return 0; 6665 } 6666 6667 static void bpf_object__sort_relos(struct bpf_object *obj) 6668 { 6669 int i; 6670 6671 for (i = 0; i < obj->nr_programs; i++) { 6672 struct bpf_program *p = &obj->programs[i]; 6673 6674 if (!p->nr_reloc) 6675 continue; 6676 6677 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6678 } 6679 } 6680 6681 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6682 { 6683 const char *str = "exception_callback:"; 6684 size_t pfx_len = strlen(str); 6685 int i, j, n; 6686 6687 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6688 return 0; 6689 6690 n = btf__type_cnt(obj->btf); 6691 for (i = 1; i < n; i++) { 6692 const char *name; 6693 struct btf_type *t; 6694 6695 t = btf_type_by_id(obj->btf, i); 6696 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6697 continue; 6698 6699 name = btf__str_by_offset(obj->btf, t->name_off); 6700 if (strncmp(name, str, pfx_len) != 0) 6701 continue; 6702 6703 t = btf_type_by_id(obj->btf, t->type); 6704 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6705 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6706 prog->name); 6707 return -EINVAL; 6708 } 6709 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6710 continue; 6711 /* Multiple callbacks are specified for the same prog, 6712 * the verifier will eventually return an error for this 6713 * case, hence simply skip appending a subprog. 6714 */ 6715 if (prog->exception_cb_idx >= 0) { 6716 prog->exception_cb_idx = -1; 6717 break; 6718 } 6719 6720 name += pfx_len; 6721 if (str_is_empty(name)) { 6722 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6723 prog->name); 6724 return -EINVAL; 6725 } 6726 6727 for (j = 0; j < obj->nr_programs; j++) { 6728 struct bpf_program *subprog = &obj->programs[j]; 6729 6730 if (!prog_is_subprog(obj, subprog)) 6731 continue; 6732 if (strcmp(name, subprog->name) != 0) 6733 continue; 6734 /* Enforce non-hidden, as from verifier point of 6735 * view it expects global functions, whereas the 6736 * mark_btf_static fixes up linkage as static. 6737 */ 6738 if (!subprog->sym_global || subprog->mark_btf_static) { 6739 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6740 prog->name, subprog->name); 6741 return -EINVAL; 6742 } 6743 /* Let's see if we already saw a static exception callback with the same name */ 6744 if (prog->exception_cb_idx >= 0) { 6745 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6746 prog->name, subprog->name); 6747 return -EINVAL; 6748 } 6749 prog->exception_cb_idx = j; 6750 break; 6751 } 6752 6753 if (prog->exception_cb_idx >= 0) 6754 continue; 6755 6756 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6757 return -ENOENT; 6758 } 6759 6760 return 0; 6761 } 6762 6763 static struct { 6764 enum bpf_prog_type prog_type; 6765 const char *ctx_name; 6766 } global_ctx_map[] = { 6767 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6768 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6769 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6770 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6771 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6772 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6773 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6774 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6775 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6776 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6777 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6778 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6779 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6780 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6781 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6782 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6783 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6784 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6785 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6786 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6787 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6788 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6789 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6790 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6791 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6792 /* all other program types don't have "named" context structs */ 6793 }; 6794 6795 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6796 * for below __builtin_types_compatible_p() checks; 6797 * with this approach we don't need any extra arch-specific #ifdef guards 6798 */ 6799 struct pt_regs; 6800 struct user_pt_regs; 6801 struct user_regs_struct; 6802 6803 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6804 const char *subprog_name, int arg_idx, 6805 int arg_type_id, const char *ctx_name) 6806 { 6807 const struct btf_type *t; 6808 const char *tname; 6809 6810 /* check if existing parameter already matches verifier expectations */ 6811 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6812 if (!btf_is_ptr(t)) 6813 goto out_warn; 6814 6815 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6816 * and perf_event programs, so check this case early on and forget 6817 * about it for subsequent checks 6818 */ 6819 while (btf_is_mod(t)) 6820 t = btf__type_by_id(btf, t->type); 6821 if (btf_is_typedef(t) && 6822 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6823 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6824 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6825 return false; /* canonical type for kprobe/perf_event */ 6826 } 6827 6828 /* now we can ignore typedefs moving forward */ 6829 t = skip_mods_and_typedefs(btf, t->type, NULL); 6830 6831 /* if it's `void *`, definitely fix up BTF info */ 6832 if (btf_is_void(t)) 6833 return true; 6834 6835 /* if it's already proper canonical type, no need to fix up */ 6836 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6837 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6838 return false; 6839 6840 /* special cases */ 6841 switch (prog->type) { 6842 case BPF_PROG_TYPE_KPROBE: 6843 /* `struct pt_regs *` is expected, but we need to fix up */ 6844 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6845 return true; 6846 break; 6847 case BPF_PROG_TYPE_PERF_EVENT: 6848 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6849 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6850 return true; 6851 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6852 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6853 return true; 6854 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6855 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6856 return true; 6857 break; 6858 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6859 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6860 /* allow u64* as ctx */ 6861 if (btf_is_int(t) && t->size == 8) 6862 return true; 6863 break; 6864 default: 6865 break; 6866 } 6867 6868 out_warn: 6869 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6870 prog->name, subprog_name, arg_idx, ctx_name); 6871 return false; 6872 } 6873 6874 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6875 { 6876 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6877 int i, err, arg_cnt, fn_name_off, linkage; 6878 struct btf_type *fn_t, *fn_proto_t, *t; 6879 struct btf_param *p; 6880 6881 /* caller already validated FUNC -> FUNC_PROTO validity */ 6882 fn_t = btf_type_by_id(btf, orig_fn_id); 6883 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6884 6885 /* Note that each btf__add_xxx() operation invalidates 6886 * all btf_type and string pointers, so we need to be 6887 * very careful when cloning BTF types. BTF type 6888 * pointers have to be always refetched. And to avoid 6889 * problems with invalidated string pointers, we 6890 * add empty strings initially, then just fix up 6891 * name_off offsets in place. Offsets are stable for 6892 * existing strings, so that works out. 6893 */ 6894 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6895 linkage = btf_func_linkage(fn_t); 6896 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6897 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6898 arg_cnt = btf_vlen(fn_proto_t); 6899 6900 /* clone FUNC_PROTO and its params */ 6901 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6902 if (fn_proto_id < 0) 6903 return -EINVAL; 6904 6905 for (i = 0; i < arg_cnt; i++) { 6906 int name_off; 6907 6908 /* copy original parameter data */ 6909 t = btf_type_by_id(btf, orig_proto_id); 6910 p = &btf_params(t)[i]; 6911 name_off = p->name_off; 6912 6913 err = btf__add_func_param(btf, "", p->type); 6914 if (err) 6915 return err; 6916 6917 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6918 p = &btf_params(fn_proto_t)[i]; 6919 p->name_off = name_off; /* use remembered str offset */ 6920 } 6921 6922 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6923 * entry program's name as a placeholder, which we replace immediately 6924 * with original name_off 6925 */ 6926 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6927 if (fn_id < 0) 6928 return -EINVAL; 6929 6930 fn_t = btf_type_by_id(btf, fn_id); 6931 fn_t->name_off = fn_name_off; /* reuse original string */ 6932 6933 return fn_id; 6934 } 6935 6936 /* Check if main program or global subprog's function prototype has `arg:ctx` 6937 * argument tags, and, if necessary, substitute correct type to match what BPF 6938 * verifier would expect, taking into account specific program type. This 6939 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6940 * have a native support for it in the verifier, making user's life much 6941 * easier. 6942 */ 6943 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6944 { 6945 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6946 struct bpf_func_info_min *func_rec; 6947 struct btf_type *fn_t, *fn_proto_t; 6948 struct btf *btf = obj->btf; 6949 const struct btf_type *t; 6950 struct btf_param *p; 6951 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6952 int i, n, arg_idx, arg_cnt, err, rec_idx; 6953 int *orig_ids; 6954 6955 /* no .BTF.ext, no problem */ 6956 if (!obj->btf_ext || !prog->func_info) 6957 return 0; 6958 6959 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6960 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6961 return 0; 6962 6963 /* some BPF program types just don't have named context structs, so 6964 * this fallback mechanism doesn't work for them 6965 */ 6966 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6967 if (global_ctx_map[i].prog_type != prog->type) 6968 continue; 6969 ctx_name = global_ctx_map[i].ctx_name; 6970 break; 6971 } 6972 if (!ctx_name) 6973 return 0; 6974 6975 /* remember original func BTF IDs to detect if we already cloned them */ 6976 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6977 if (!orig_ids) 6978 return -ENOMEM; 6979 for (i = 0; i < prog->func_info_cnt; i++) { 6980 func_rec = prog->func_info + prog->func_info_rec_size * i; 6981 orig_ids[i] = func_rec->type_id; 6982 } 6983 6984 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6985 * of our subprogs; if yes and subprog is global and needs adjustment, 6986 * clone and adjust FUNC -> FUNC_PROTO combo 6987 */ 6988 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6989 /* only DECL_TAG with "arg:ctx" value are interesting */ 6990 t = btf__type_by_id(btf, i); 6991 if (!btf_is_decl_tag(t)) 6992 continue; 6993 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6994 continue; 6995 6996 /* only global funcs need adjustment, if at all */ 6997 orig_fn_id = t->type; 6998 fn_t = btf_type_by_id(btf, orig_fn_id); 6999 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 7000 continue; 7001 7002 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 7003 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7004 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 7005 continue; 7006 7007 /* find corresponding func_info record */ 7008 func_rec = NULL; 7009 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 7010 if (orig_ids[rec_idx] == t->type) { 7011 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 7012 break; 7013 } 7014 } 7015 /* current main program doesn't call into this subprog */ 7016 if (!func_rec) 7017 continue; 7018 7019 /* some more sanity checking of DECL_TAG */ 7020 arg_cnt = btf_vlen(fn_proto_t); 7021 arg_idx = btf_decl_tag(t)->component_idx; 7022 if (arg_idx < 0 || arg_idx >= arg_cnt) 7023 continue; 7024 7025 /* check if we should fix up argument type */ 7026 p = &btf_params(fn_proto_t)[arg_idx]; 7027 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 7028 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 7029 continue; 7030 7031 /* clone fn/fn_proto, unless we already did it for another arg */ 7032 if (func_rec->type_id == orig_fn_id) { 7033 int fn_id; 7034 7035 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7036 if (fn_id < 0) { 7037 err = fn_id; 7038 goto err_out; 7039 } 7040 7041 /* point func_info record to a cloned FUNC type */ 7042 func_rec->type_id = fn_id; 7043 } 7044 7045 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7046 * we do it just once per main BPF program, as all global 7047 * funcs share the same program type, so need only PTR -> 7048 * STRUCT type chain 7049 */ 7050 if (ptr_id == 0) { 7051 struct_id = btf__add_struct(btf, ctx_name, 0); 7052 ptr_id = btf__add_ptr(btf, struct_id); 7053 if (ptr_id < 0 || struct_id < 0) { 7054 err = -EINVAL; 7055 goto err_out; 7056 } 7057 } 7058 7059 /* for completeness, clone DECL_TAG and point it to cloned param */ 7060 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7061 if (tag_id < 0) { 7062 err = -EINVAL; 7063 goto err_out; 7064 } 7065 7066 /* all the BTF manipulations invalidated pointers, refetch them */ 7067 fn_t = btf_type_by_id(btf, func_rec->type_id); 7068 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7069 7070 /* fix up type ID pointed to by param */ 7071 p = &btf_params(fn_proto_t)[arg_idx]; 7072 p->type = ptr_id; 7073 } 7074 7075 free(orig_ids); 7076 return 0; 7077 err_out: 7078 free(orig_ids); 7079 return err; 7080 } 7081 7082 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7083 { 7084 struct bpf_program *prog; 7085 size_t i, j; 7086 int err; 7087 7088 if (obj->btf_ext) { 7089 err = bpf_object__relocate_core(obj, targ_btf_path); 7090 if (err) { 7091 pr_warn("failed to perform CO-RE relocations: %s\n", 7092 errstr(err)); 7093 return err; 7094 } 7095 bpf_object__sort_relos(obj); 7096 } 7097 7098 /* Before relocating calls pre-process relocations and mark 7099 * few ld_imm64 instructions that points to subprogs. 7100 * Otherwise bpf_object__reloc_code() later would have to consider 7101 * all ld_imm64 insns as relocation candidates. That would 7102 * reduce relocation speed, since amount of find_prog_insn_relo() 7103 * would increase and most of them will fail to find a relo. 7104 */ 7105 for (i = 0; i < obj->nr_programs; i++) { 7106 prog = &obj->programs[i]; 7107 for (j = 0; j < prog->nr_reloc; j++) { 7108 struct reloc_desc *relo = &prog->reloc_desc[j]; 7109 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7110 7111 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7112 if (relo->type == RELO_SUBPROG_ADDR) 7113 insn[0].src_reg = BPF_PSEUDO_FUNC; 7114 } 7115 } 7116 7117 /* relocate subprogram calls and append used subprograms to main 7118 * programs; each copy of subprogram code needs to be relocated 7119 * differently for each main program, because its code location might 7120 * have changed. 7121 * Append subprog relos to main programs to allow data relos to be 7122 * processed after text is completely relocated. 7123 */ 7124 for (i = 0; i < obj->nr_programs; i++) { 7125 prog = &obj->programs[i]; 7126 /* sub-program's sub-calls are relocated within the context of 7127 * its main program only 7128 */ 7129 if (prog_is_subprog(obj, prog)) 7130 continue; 7131 if (!prog->autoload) 7132 continue; 7133 7134 err = bpf_object__relocate_calls(obj, prog); 7135 if (err) { 7136 pr_warn("prog '%s': failed to relocate calls: %s\n", 7137 prog->name, errstr(err)); 7138 return err; 7139 } 7140 7141 err = bpf_prog_assign_exc_cb(obj, prog); 7142 if (err) 7143 return err; 7144 /* Now, also append exception callback if it has not been done already. */ 7145 if (prog->exception_cb_idx >= 0) { 7146 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7147 7148 /* Calling exception callback directly is disallowed, which the 7149 * verifier will reject later. In case it was processed already, 7150 * we can skip this step, otherwise for all other valid cases we 7151 * have to append exception callback now. 7152 */ 7153 if (subprog->sub_insn_off == 0) { 7154 err = bpf_object__append_subprog_code(obj, prog, subprog); 7155 if (err) 7156 return err; 7157 err = bpf_object__reloc_code(obj, prog, subprog); 7158 if (err) 7159 return err; 7160 } 7161 } 7162 } 7163 for (i = 0; i < obj->nr_programs; i++) { 7164 prog = &obj->programs[i]; 7165 if (prog_is_subprog(obj, prog)) 7166 continue; 7167 if (!prog->autoload) 7168 continue; 7169 7170 /* Process data relos for main programs */ 7171 err = bpf_object__relocate_data(obj, prog); 7172 if (err) { 7173 pr_warn("prog '%s': failed to relocate data references: %s\n", 7174 prog->name, errstr(err)); 7175 return err; 7176 } 7177 7178 /* Fix up .BTF.ext information, if necessary */ 7179 err = bpf_program_fixup_func_info(obj, prog); 7180 if (err) { 7181 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7182 prog->name, errstr(err)); 7183 return err; 7184 } 7185 } 7186 7187 return 0; 7188 } 7189 7190 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7191 Elf64_Shdr *shdr, Elf_Data *data); 7192 7193 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7194 Elf64_Shdr *shdr, Elf_Data *data) 7195 { 7196 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7197 int i, j, nrels, new_sz; 7198 const struct btf_var_secinfo *vi = NULL; 7199 const struct btf_type *sec, *var, *def; 7200 struct bpf_map *map = NULL, *targ_map = NULL; 7201 struct bpf_program *targ_prog = NULL; 7202 bool is_prog_array, is_map_in_map; 7203 const struct btf_member *member; 7204 const char *name, *mname, *type; 7205 unsigned int moff; 7206 Elf64_Sym *sym; 7207 Elf64_Rel *rel; 7208 void *tmp; 7209 7210 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7211 return -EINVAL; 7212 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7213 if (!sec) 7214 return -EINVAL; 7215 7216 nrels = shdr->sh_size / shdr->sh_entsize; 7217 for (i = 0; i < nrels; i++) { 7218 rel = elf_rel_by_idx(data, i); 7219 if (!rel) { 7220 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7221 return -LIBBPF_ERRNO__FORMAT; 7222 } 7223 7224 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7225 if (!sym) { 7226 pr_warn(".maps relo #%d: symbol %zx not found\n", 7227 i, (size_t)ELF64_R_SYM(rel->r_info)); 7228 return -LIBBPF_ERRNO__FORMAT; 7229 } 7230 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7231 7232 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7233 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7234 (size_t)rel->r_offset, sym->st_name, name); 7235 7236 for (j = 0; j < obj->nr_maps; j++) { 7237 map = &obj->maps[j]; 7238 if (map->sec_idx != obj->efile.btf_maps_shndx) 7239 continue; 7240 7241 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7242 if (vi->offset <= rel->r_offset && 7243 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7244 break; 7245 } 7246 if (j == obj->nr_maps) { 7247 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7248 i, name, (size_t)rel->r_offset); 7249 return -EINVAL; 7250 } 7251 7252 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7253 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7254 type = is_map_in_map ? "map" : "prog"; 7255 if (is_map_in_map) { 7256 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7257 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7258 i, name); 7259 return -LIBBPF_ERRNO__RELOC; 7260 } 7261 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7262 map->def.key_size != sizeof(int)) { 7263 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7264 i, map->name, sizeof(int)); 7265 return -EINVAL; 7266 } 7267 targ_map = bpf_object__find_map_by_name(obj, name); 7268 if (!targ_map) { 7269 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7270 i, name); 7271 return -ESRCH; 7272 } 7273 } else if (is_prog_array) { 7274 targ_prog = bpf_object__find_program_by_name(obj, name); 7275 if (!targ_prog) { 7276 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7277 i, name); 7278 return -ESRCH; 7279 } 7280 if (targ_prog->sec_idx != sym->st_shndx || 7281 targ_prog->sec_insn_off * 8 != sym->st_value || 7282 prog_is_subprog(obj, targ_prog)) { 7283 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7284 i, name); 7285 return -LIBBPF_ERRNO__RELOC; 7286 } 7287 } else { 7288 return -EINVAL; 7289 } 7290 7291 var = btf__type_by_id(obj->btf, vi->type); 7292 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7293 if (btf_vlen(def) == 0) 7294 return -EINVAL; 7295 member = btf_members(def) + btf_vlen(def) - 1; 7296 mname = btf__name_by_offset(obj->btf, member->name_off); 7297 if (strcmp(mname, "values")) 7298 return -EINVAL; 7299 7300 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7301 if (rel->r_offset - vi->offset < moff) 7302 return -EINVAL; 7303 7304 moff = rel->r_offset - vi->offset - moff; 7305 /* here we use BPF pointer size, which is always 64 bit, as we 7306 * are parsing ELF that was built for BPF target 7307 */ 7308 if (moff % bpf_ptr_sz) 7309 return -EINVAL; 7310 moff /= bpf_ptr_sz; 7311 if (moff >= map->init_slots_sz) { 7312 new_sz = moff + 1; 7313 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7314 if (!tmp) 7315 return -ENOMEM; 7316 map->init_slots = tmp; 7317 memset(map->init_slots + map->init_slots_sz, 0, 7318 (new_sz - map->init_slots_sz) * host_ptr_sz); 7319 map->init_slots_sz = new_sz; 7320 } 7321 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7322 7323 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7324 i, map->name, moff, type, name); 7325 } 7326 7327 return 0; 7328 } 7329 7330 static int bpf_object__collect_relos(struct bpf_object *obj) 7331 { 7332 int i, err; 7333 7334 for (i = 0; i < obj->efile.sec_cnt; i++) { 7335 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7336 Elf64_Shdr *shdr; 7337 Elf_Data *data; 7338 int idx; 7339 7340 if (sec_desc->sec_type != SEC_RELO) 7341 continue; 7342 7343 shdr = sec_desc->shdr; 7344 data = sec_desc->data; 7345 idx = shdr->sh_info; 7346 7347 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7348 pr_warn("internal error at %d\n", __LINE__); 7349 return -LIBBPF_ERRNO__INTERNAL; 7350 } 7351 7352 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7353 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7354 else if (idx == obj->efile.btf_maps_shndx) 7355 err = bpf_object__collect_map_relos(obj, shdr, data); 7356 else 7357 err = bpf_object__collect_prog_relos(obj, shdr, data); 7358 if (err) 7359 return err; 7360 } 7361 7362 bpf_object__sort_relos(obj); 7363 return 0; 7364 } 7365 7366 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7367 { 7368 if (BPF_CLASS(insn->code) == BPF_JMP && 7369 BPF_OP(insn->code) == BPF_CALL && 7370 BPF_SRC(insn->code) == BPF_K && 7371 insn->src_reg == 0 && 7372 insn->dst_reg == 0) { 7373 *func_id = insn->imm; 7374 return true; 7375 } 7376 return false; 7377 } 7378 7379 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7380 { 7381 struct bpf_insn *insn = prog->insns; 7382 enum bpf_func_id func_id; 7383 int i; 7384 7385 if (obj->gen_loader) 7386 return 0; 7387 7388 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7389 if (!insn_is_helper_call(insn, &func_id)) 7390 continue; 7391 7392 /* on kernels that don't yet support 7393 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7394 * to bpf_probe_read() which works well for old kernels 7395 */ 7396 switch (func_id) { 7397 case BPF_FUNC_probe_read_kernel: 7398 case BPF_FUNC_probe_read_user: 7399 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7400 insn->imm = BPF_FUNC_probe_read; 7401 break; 7402 case BPF_FUNC_probe_read_kernel_str: 7403 case BPF_FUNC_probe_read_user_str: 7404 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7405 insn->imm = BPF_FUNC_probe_read_str; 7406 break; 7407 default: 7408 break; 7409 } 7410 } 7411 return 0; 7412 } 7413 7414 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7415 int *btf_obj_fd, int *btf_type_id); 7416 7417 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7418 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7419 struct bpf_prog_load_opts *opts, long cookie) 7420 { 7421 enum sec_def_flags def = cookie; 7422 7423 /* old kernels might not support specifying expected_attach_type */ 7424 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7425 opts->expected_attach_type = 0; 7426 7427 if (def & SEC_SLEEPABLE) 7428 opts->prog_flags |= BPF_F_SLEEPABLE; 7429 7430 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7431 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7432 7433 /* special check for usdt to use uprobe_multi link */ 7434 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7435 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7436 * in prog, and expected_attach_type we set in kernel is from opts, so we 7437 * update both. 7438 */ 7439 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7440 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7441 } 7442 7443 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7444 int btf_obj_fd = 0, btf_type_id = 0, err; 7445 const char *attach_name; 7446 7447 attach_name = strchr(prog->sec_name, '/'); 7448 if (!attach_name) { 7449 /* if BPF program is annotated with just SEC("fentry") 7450 * (or similar) without declaratively specifying 7451 * target, then it is expected that target will be 7452 * specified with bpf_program__set_attach_target() at 7453 * runtime before BPF object load step. If not, then 7454 * there is nothing to load into the kernel as BPF 7455 * verifier won't be able to validate BPF program 7456 * correctness anyways. 7457 */ 7458 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7459 prog->name); 7460 return -EINVAL; 7461 } 7462 attach_name++; /* skip over / */ 7463 7464 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7465 if (err) 7466 return err; 7467 7468 /* cache resolved BTF FD and BTF type ID in the prog */ 7469 prog->attach_btf_obj_fd = btf_obj_fd; 7470 prog->attach_btf_id = btf_type_id; 7471 7472 /* but by now libbpf common logic is not utilizing 7473 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7474 * this callback is called after opts were populated by 7475 * libbpf, so this callback has to update opts explicitly here 7476 */ 7477 opts->attach_btf_obj_fd = btf_obj_fd; 7478 opts->attach_btf_id = btf_type_id; 7479 } 7480 return 0; 7481 } 7482 7483 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7484 7485 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7486 struct bpf_insn *insns, int insns_cnt, 7487 const char *license, __u32 kern_version, int *prog_fd) 7488 { 7489 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7490 const char *prog_name = NULL; 7491 size_t log_buf_size = 0; 7492 char *log_buf = NULL, *tmp; 7493 bool own_log_buf = true; 7494 __u32 log_level = prog->log_level; 7495 int ret, err; 7496 7497 /* Be more helpful by rejecting programs that can't be validated early 7498 * with more meaningful and actionable error message. 7499 */ 7500 switch (prog->type) { 7501 case BPF_PROG_TYPE_UNSPEC: 7502 /* 7503 * The program type must be set. Most likely we couldn't find a proper 7504 * section definition at load time, and thus we didn't infer the type. 7505 */ 7506 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7507 prog->name, prog->sec_name); 7508 return -EINVAL; 7509 case BPF_PROG_TYPE_STRUCT_OPS: 7510 if (prog->attach_btf_id == 0) { 7511 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7512 prog->name); 7513 return -EINVAL; 7514 } 7515 break; 7516 default: 7517 break; 7518 } 7519 7520 if (!insns || !insns_cnt) 7521 return -EINVAL; 7522 7523 if (kernel_supports(obj, FEAT_PROG_NAME)) 7524 prog_name = prog->name; 7525 load_attr.attach_prog_fd = prog->attach_prog_fd; 7526 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7527 load_attr.attach_btf_id = prog->attach_btf_id; 7528 load_attr.kern_version = kern_version; 7529 load_attr.prog_ifindex = prog->prog_ifindex; 7530 load_attr.expected_attach_type = prog->expected_attach_type; 7531 7532 /* specify func_info/line_info only if kernel supports them */ 7533 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7534 load_attr.prog_btf_fd = btf__fd(obj->btf); 7535 load_attr.func_info = prog->func_info; 7536 load_attr.func_info_rec_size = prog->func_info_rec_size; 7537 load_attr.func_info_cnt = prog->func_info_cnt; 7538 load_attr.line_info = prog->line_info; 7539 load_attr.line_info_rec_size = prog->line_info_rec_size; 7540 load_attr.line_info_cnt = prog->line_info_cnt; 7541 } 7542 load_attr.log_level = log_level; 7543 load_attr.prog_flags = prog->prog_flags; 7544 load_attr.fd_array = obj->fd_array; 7545 7546 load_attr.token_fd = obj->token_fd; 7547 if (obj->token_fd) 7548 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7549 7550 /* adjust load_attr if sec_def provides custom preload callback */ 7551 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7552 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7553 if (err < 0) { 7554 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7555 prog->name, errstr(err)); 7556 return err; 7557 } 7558 insns = prog->insns; 7559 insns_cnt = prog->insns_cnt; 7560 } 7561 7562 if (obj->gen_loader) { 7563 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7564 license, insns, insns_cnt, &load_attr, 7565 prog - obj->programs); 7566 *prog_fd = -1; 7567 return 0; 7568 } 7569 7570 retry_load: 7571 /* if log_level is zero, we don't request logs initially even if 7572 * custom log_buf is specified; if the program load fails, then we'll 7573 * bump log_level to 1 and use either custom log_buf or we'll allocate 7574 * our own and retry the load to get details on what failed 7575 */ 7576 if (log_level) { 7577 if (prog->log_buf) { 7578 log_buf = prog->log_buf; 7579 log_buf_size = prog->log_size; 7580 own_log_buf = false; 7581 } else if (obj->log_buf) { 7582 log_buf = obj->log_buf; 7583 log_buf_size = obj->log_size; 7584 own_log_buf = false; 7585 } else { 7586 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7587 tmp = realloc(log_buf, log_buf_size); 7588 if (!tmp) { 7589 ret = -ENOMEM; 7590 goto out; 7591 } 7592 log_buf = tmp; 7593 log_buf[0] = '\0'; 7594 own_log_buf = true; 7595 } 7596 } 7597 7598 load_attr.log_buf = log_buf; 7599 load_attr.log_size = log_buf_size; 7600 load_attr.log_level = log_level; 7601 7602 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7603 if (ret >= 0) { 7604 if (log_level && own_log_buf) { 7605 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7606 prog->name, log_buf); 7607 } 7608 7609 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7610 struct bpf_map *map; 7611 int i; 7612 7613 for (i = 0; i < obj->nr_maps; i++) { 7614 map = &prog->obj->maps[i]; 7615 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7616 continue; 7617 7618 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7619 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7620 prog->name, map->real_name, errstr(errno)); 7621 /* Don't fail hard if can't bind rodata. */ 7622 } 7623 } 7624 } 7625 7626 *prog_fd = ret; 7627 ret = 0; 7628 goto out; 7629 } 7630 7631 if (log_level == 0) { 7632 log_level = 1; 7633 goto retry_load; 7634 } 7635 /* On ENOSPC, increase log buffer size and retry, unless custom 7636 * log_buf is specified. 7637 * Be careful to not overflow u32, though. Kernel's log buf size limit 7638 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7639 * multiply by 2 unless we are sure we'll fit within 32 bits. 7640 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7641 */ 7642 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7643 goto retry_load; 7644 7645 ret = -errno; 7646 7647 /* post-process verifier log to improve error descriptions */ 7648 fixup_verifier_log(prog, log_buf, log_buf_size); 7649 7650 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7651 pr_perm_msg(ret); 7652 7653 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7654 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7655 prog->name, log_buf); 7656 } 7657 7658 out: 7659 if (own_log_buf) 7660 free(log_buf); 7661 return ret; 7662 } 7663 7664 static char *find_prev_line(char *buf, char *cur) 7665 { 7666 char *p; 7667 7668 if (cur == buf) /* end of a log buf */ 7669 return NULL; 7670 7671 p = cur - 1; 7672 while (p - 1 >= buf && *(p - 1) != '\n') 7673 p--; 7674 7675 return p; 7676 } 7677 7678 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7679 char *orig, size_t orig_sz, const char *patch) 7680 { 7681 /* size of the remaining log content to the right from the to-be-replaced part */ 7682 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7683 size_t patch_sz = strlen(patch); 7684 7685 if (patch_sz != orig_sz) { 7686 /* If patch line(s) are longer than original piece of verifier log, 7687 * shift log contents by (patch_sz - orig_sz) bytes to the right 7688 * starting from after to-be-replaced part of the log. 7689 * 7690 * If patch line(s) are shorter than original piece of verifier log, 7691 * shift log contents by (orig_sz - patch_sz) bytes to the left 7692 * starting from after to-be-replaced part of the log 7693 * 7694 * We need to be careful about not overflowing available 7695 * buf_sz capacity. If that's the case, we'll truncate the end 7696 * of the original log, as necessary. 7697 */ 7698 if (patch_sz > orig_sz) { 7699 if (orig + patch_sz >= buf + buf_sz) { 7700 /* patch is big enough to cover remaining space completely */ 7701 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7702 rem_sz = 0; 7703 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7704 /* patch causes part of remaining log to be truncated */ 7705 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7706 } 7707 } 7708 /* shift remaining log to the right by calculated amount */ 7709 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7710 } 7711 7712 memcpy(orig, patch, patch_sz); 7713 } 7714 7715 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7716 char *buf, size_t buf_sz, size_t log_sz, 7717 char *line1, char *line2, char *line3) 7718 { 7719 /* Expected log for failed and not properly guarded CO-RE relocation: 7720 * line1 -> 123: (85) call unknown#195896080 7721 * line2 -> invalid func unknown#195896080 7722 * line3 -> <anything else or end of buffer> 7723 * 7724 * "123" is the index of the instruction that was poisoned. We extract 7725 * instruction index to find corresponding CO-RE relocation and 7726 * replace this part of the log with more relevant information about 7727 * failed CO-RE relocation. 7728 */ 7729 const struct bpf_core_relo *relo; 7730 struct bpf_core_spec spec; 7731 char patch[512], spec_buf[256]; 7732 int insn_idx, err, spec_len; 7733 7734 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7735 return; 7736 7737 relo = find_relo_core(prog, insn_idx); 7738 if (!relo) 7739 return; 7740 7741 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7742 if (err) 7743 return; 7744 7745 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7746 snprintf(patch, sizeof(patch), 7747 "%d: <invalid CO-RE relocation>\n" 7748 "failed to resolve CO-RE relocation %s%s\n", 7749 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7750 7751 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7752 } 7753 7754 static void fixup_log_missing_map_load(struct bpf_program *prog, 7755 char *buf, size_t buf_sz, size_t log_sz, 7756 char *line1, char *line2, char *line3) 7757 { 7758 /* Expected log for failed and not properly guarded map reference: 7759 * line1 -> 123: (85) call unknown#2001000345 7760 * line2 -> invalid func unknown#2001000345 7761 * line3 -> <anything else or end of buffer> 7762 * 7763 * "123" is the index of the instruction that was poisoned. 7764 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7765 */ 7766 struct bpf_object *obj = prog->obj; 7767 const struct bpf_map *map; 7768 int insn_idx, map_idx; 7769 char patch[128]; 7770 7771 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7772 return; 7773 7774 map_idx -= POISON_LDIMM64_MAP_BASE; 7775 if (map_idx < 0 || map_idx >= obj->nr_maps) 7776 return; 7777 map = &obj->maps[map_idx]; 7778 7779 snprintf(patch, sizeof(patch), 7780 "%d: <invalid BPF map reference>\n" 7781 "BPF map '%s' is referenced but wasn't created\n", 7782 insn_idx, map->name); 7783 7784 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7785 } 7786 7787 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7788 char *buf, size_t buf_sz, size_t log_sz, 7789 char *line1, char *line2, char *line3) 7790 { 7791 /* Expected log for failed and not properly guarded kfunc call: 7792 * line1 -> 123: (85) call unknown#2002000345 7793 * line2 -> invalid func unknown#2002000345 7794 * line3 -> <anything else or end of buffer> 7795 * 7796 * "123" is the index of the instruction that was poisoned. 7797 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7798 */ 7799 struct bpf_object *obj = prog->obj; 7800 const struct extern_desc *ext; 7801 int insn_idx, ext_idx; 7802 char patch[128]; 7803 7804 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7805 return; 7806 7807 ext_idx -= POISON_CALL_KFUNC_BASE; 7808 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7809 return; 7810 ext = &obj->externs[ext_idx]; 7811 7812 snprintf(patch, sizeof(patch), 7813 "%d: <invalid kfunc call>\n" 7814 "kfunc '%s' is referenced but wasn't resolved\n", 7815 insn_idx, ext->name); 7816 7817 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7818 } 7819 7820 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7821 { 7822 /* look for familiar error patterns in last N lines of the log */ 7823 const size_t max_last_line_cnt = 10; 7824 char *prev_line, *cur_line, *next_line; 7825 size_t log_sz; 7826 int i; 7827 7828 if (!buf) 7829 return; 7830 7831 log_sz = strlen(buf) + 1; 7832 next_line = buf + log_sz - 1; 7833 7834 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7835 cur_line = find_prev_line(buf, next_line); 7836 if (!cur_line) 7837 return; 7838 7839 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7840 prev_line = find_prev_line(buf, cur_line); 7841 if (!prev_line) 7842 continue; 7843 7844 /* failed CO-RE relocation case */ 7845 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7846 prev_line, cur_line, next_line); 7847 return; 7848 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7849 prev_line = find_prev_line(buf, cur_line); 7850 if (!prev_line) 7851 continue; 7852 7853 /* reference to uncreated BPF map */ 7854 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7855 prev_line, cur_line, next_line); 7856 return; 7857 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7858 prev_line = find_prev_line(buf, cur_line); 7859 if (!prev_line) 7860 continue; 7861 7862 /* reference to unresolved kfunc */ 7863 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7864 prev_line, cur_line, next_line); 7865 return; 7866 } 7867 } 7868 } 7869 7870 static int bpf_program_record_relos(struct bpf_program *prog) 7871 { 7872 struct bpf_object *obj = prog->obj; 7873 int i; 7874 7875 for (i = 0; i < prog->nr_reloc; i++) { 7876 struct reloc_desc *relo = &prog->reloc_desc[i]; 7877 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7878 int kind; 7879 7880 switch (relo->type) { 7881 case RELO_EXTERN_LD64: 7882 if (ext->type != EXT_KSYM) 7883 continue; 7884 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7885 BTF_KIND_VAR : BTF_KIND_FUNC; 7886 bpf_gen__record_extern(obj->gen_loader, ext->name, 7887 ext->is_weak, !ext->ksym.type_id, 7888 true, kind, relo->insn_idx); 7889 break; 7890 case RELO_EXTERN_CALL: 7891 bpf_gen__record_extern(obj->gen_loader, ext->name, 7892 ext->is_weak, false, false, BTF_KIND_FUNC, 7893 relo->insn_idx); 7894 break; 7895 case RELO_CORE: { 7896 struct bpf_core_relo cr = { 7897 .insn_off = relo->insn_idx * 8, 7898 .type_id = relo->core_relo->type_id, 7899 .access_str_off = relo->core_relo->access_str_off, 7900 .kind = relo->core_relo->kind, 7901 }; 7902 7903 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7904 break; 7905 } 7906 default: 7907 continue; 7908 } 7909 } 7910 return 0; 7911 } 7912 7913 static int 7914 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7915 { 7916 struct bpf_program *prog; 7917 size_t i; 7918 int err; 7919 7920 for (i = 0; i < obj->nr_programs; i++) { 7921 prog = &obj->programs[i]; 7922 if (prog_is_subprog(obj, prog)) 7923 continue; 7924 if (!prog->autoload) { 7925 pr_debug("prog '%s': skipped loading\n", prog->name); 7926 continue; 7927 } 7928 prog->log_level |= log_level; 7929 7930 if (obj->gen_loader) 7931 bpf_program_record_relos(prog); 7932 7933 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7934 obj->license, obj->kern_version, &prog->fd); 7935 if (err) { 7936 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 7937 return err; 7938 } 7939 } 7940 7941 bpf_object__free_relocs(obj); 7942 return 0; 7943 } 7944 7945 static int bpf_object_prepare_progs(struct bpf_object *obj) 7946 { 7947 struct bpf_program *prog; 7948 size_t i; 7949 int err; 7950 7951 for (i = 0; i < obj->nr_programs; i++) { 7952 prog = &obj->programs[i]; 7953 err = bpf_object__sanitize_prog(obj, prog); 7954 if (err) 7955 return err; 7956 } 7957 return 0; 7958 } 7959 7960 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7961 7962 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7963 { 7964 struct bpf_program *prog; 7965 int err; 7966 7967 bpf_object__for_each_program(prog, obj) { 7968 prog->sec_def = find_sec_def(prog->sec_name); 7969 if (!prog->sec_def) { 7970 /* couldn't guess, but user might manually specify */ 7971 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7972 prog->name, prog->sec_name); 7973 continue; 7974 } 7975 7976 prog->type = prog->sec_def->prog_type; 7977 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7978 7979 /* sec_def can have custom callback which should be called 7980 * after bpf_program is initialized to adjust its properties 7981 */ 7982 if (prog->sec_def->prog_setup_fn) { 7983 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7984 if (err < 0) { 7985 pr_warn("prog '%s': failed to initialize: %s\n", 7986 prog->name, errstr(err)); 7987 return err; 7988 } 7989 } 7990 } 7991 7992 return 0; 7993 } 7994 7995 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7996 const char *obj_name, 7997 const struct bpf_object_open_opts *opts) 7998 { 7999 const char *kconfig, *btf_tmp_path, *token_path; 8000 struct bpf_object *obj; 8001 int err; 8002 char *log_buf; 8003 size_t log_size; 8004 __u32 log_level; 8005 8006 if (obj_buf && !obj_name) 8007 return ERR_PTR(-EINVAL); 8008 8009 if (elf_version(EV_CURRENT) == EV_NONE) { 8010 pr_warn("failed to init libelf for %s\n", 8011 path ? : "(mem buf)"); 8012 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 8013 } 8014 8015 if (!OPTS_VALID(opts, bpf_object_open_opts)) 8016 return ERR_PTR(-EINVAL); 8017 8018 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 8019 if (obj_buf) { 8020 path = obj_name; 8021 pr_debug("loading object '%s' from buffer\n", obj_name); 8022 } else { 8023 pr_debug("loading object from %s\n", path); 8024 } 8025 8026 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 8027 log_size = OPTS_GET(opts, kernel_log_size, 0); 8028 log_level = OPTS_GET(opts, kernel_log_level, 0); 8029 if (log_size > UINT_MAX) 8030 return ERR_PTR(-EINVAL); 8031 if (log_size && !log_buf) 8032 return ERR_PTR(-EINVAL); 8033 8034 token_path = OPTS_GET(opts, bpf_token_path, NULL); 8035 /* if user didn't specify bpf_token_path explicitly, check if 8036 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 8037 * option 8038 */ 8039 if (!token_path) 8040 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 8041 if (token_path && strlen(token_path) >= PATH_MAX) 8042 return ERR_PTR(-ENAMETOOLONG); 8043 8044 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8045 if (IS_ERR(obj)) 8046 return obj; 8047 8048 obj->log_buf = log_buf; 8049 obj->log_size = log_size; 8050 obj->log_level = log_level; 8051 8052 if (token_path) { 8053 obj->token_path = strdup(token_path); 8054 if (!obj->token_path) { 8055 err = -ENOMEM; 8056 goto out; 8057 } 8058 } 8059 8060 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8061 if (btf_tmp_path) { 8062 if (strlen(btf_tmp_path) >= PATH_MAX) { 8063 err = -ENAMETOOLONG; 8064 goto out; 8065 } 8066 obj->btf_custom_path = strdup(btf_tmp_path); 8067 if (!obj->btf_custom_path) { 8068 err = -ENOMEM; 8069 goto out; 8070 } 8071 } 8072 8073 kconfig = OPTS_GET(opts, kconfig, NULL); 8074 if (kconfig) { 8075 obj->kconfig = strdup(kconfig); 8076 if (!obj->kconfig) { 8077 err = -ENOMEM; 8078 goto out; 8079 } 8080 } 8081 8082 err = bpf_object__elf_init(obj); 8083 err = err ? : bpf_object__elf_collect(obj); 8084 err = err ? : bpf_object__collect_externs(obj); 8085 err = err ? : bpf_object_fixup_btf(obj); 8086 err = err ? : bpf_object__init_maps(obj, opts); 8087 err = err ? : bpf_object_init_progs(obj, opts); 8088 err = err ? : bpf_object__collect_relos(obj); 8089 if (err) 8090 goto out; 8091 8092 bpf_object__elf_finish(obj); 8093 8094 return obj; 8095 out: 8096 bpf_object__close(obj); 8097 return ERR_PTR(err); 8098 } 8099 8100 struct bpf_object * 8101 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8102 { 8103 if (!path) 8104 return libbpf_err_ptr(-EINVAL); 8105 8106 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8107 } 8108 8109 struct bpf_object *bpf_object__open(const char *path) 8110 { 8111 return bpf_object__open_file(path, NULL); 8112 } 8113 8114 struct bpf_object * 8115 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8116 const struct bpf_object_open_opts *opts) 8117 { 8118 char tmp_name[64]; 8119 8120 if (!obj_buf || obj_buf_sz == 0) 8121 return libbpf_err_ptr(-EINVAL); 8122 8123 /* create a (quite useless) default "name" for this memory buffer object */ 8124 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8125 8126 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8127 } 8128 8129 static int bpf_object_unload(struct bpf_object *obj) 8130 { 8131 size_t i; 8132 8133 if (!obj) 8134 return libbpf_err(-EINVAL); 8135 8136 for (i = 0; i < obj->nr_maps; i++) { 8137 zclose(obj->maps[i].fd); 8138 if (obj->maps[i].st_ops) 8139 zfree(&obj->maps[i].st_ops->kern_vdata); 8140 } 8141 8142 for (i = 0; i < obj->nr_programs; i++) 8143 bpf_program__unload(&obj->programs[i]); 8144 8145 return 0; 8146 } 8147 8148 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8149 { 8150 struct bpf_map *m; 8151 8152 bpf_object__for_each_map(m, obj) { 8153 if (!bpf_map__is_internal(m)) 8154 continue; 8155 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8156 m->def.map_flags &= ~BPF_F_MMAPABLE; 8157 } 8158 8159 return 0; 8160 } 8161 8162 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8163 const char *sym_name, void *ctx); 8164 8165 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8166 { 8167 char sym_type, sym_name[500]; 8168 unsigned long long sym_addr; 8169 int ret, err = 0; 8170 FILE *f; 8171 8172 f = fopen("/proc/kallsyms", "re"); 8173 if (!f) { 8174 err = -errno; 8175 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8176 return err; 8177 } 8178 8179 while (true) { 8180 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8181 &sym_addr, &sym_type, sym_name); 8182 if (ret == EOF && feof(f)) 8183 break; 8184 if (ret != 3) { 8185 pr_warn("failed to read kallsyms entry: %d\n", ret); 8186 err = -EINVAL; 8187 break; 8188 } 8189 8190 err = cb(sym_addr, sym_type, sym_name, ctx); 8191 if (err) 8192 break; 8193 } 8194 8195 fclose(f); 8196 return err; 8197 } 8198 8199 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8200 const char *sym_name, void *ctx) 8201 { 8202 struct bpf_object *obj = ctx; 8203 const struct btf_type *t; 8204 struct extern_desc *ext; 8205 char *res; 8206 8207 res = strstr(sym_name, ".llvm."); 8208 if (sym_type == 'd' && res) 8209 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8210 else 8211 ext = find_extern_by_name(obj, sym_name); 8212 if (!ext || ext->type != EXT_KSYM) 8213 return 0; 8214 8215 t = btf__type_by_id(obj->btf, ext->btf_id); 8216 if (!btf_is_var(t)) 8217 return 0; 8218 8219 if (ext->is_set && ext->ksym.addr != sym_addr) { 8220 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8221 sym_name, ext->ksym.addr, sym_addr); 8222 return -EINVAL; 8223 } 8224 if (!ext->is_set) { 8225 ext->is_set = true; 8226 ext->ksym.addr = sym_addr; 8227 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8228 } 8229 return 0; 8230 } 8231 8232 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8233 { 8234 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8235 } 8236 8237 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8238 __u16 kind, struct btf **res_btf, 8239 struct module_btf **res_mod_btf) 8240 { 8241 struct module_btf *mod_btf; 8242 struct btf *btf; 8243 int i, id, err; 8244 8245 btf = obj->btf_vmlinux; 8246 mod_btf = NULL; 8247 id = btf__find_by_name_kind(btf, ksym_name, kind); 8248 8249 if (id == -ENOENT) { 8250 err = load_module_btfs(obj); 8251 if (err) 8252 return err; 8253 8254 for (i = 0; i < obj->btf_module_cnt; i++) { 8255 /* we assume module_btf's BTF FD is always >0 */ 8256 mod_btf = &obj->btf_modules[i]; 8257 btf = mod_btf->btf; 8258 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8259 if (id != -ENOENT) 8260 break; 8261 } 8262 } 8263 if (id <= 0) 8264 return -ESRCH; 8265 8266 *res_btf = btf; 8267 *res_mod_btf = mod_btf; 8268 return id; 8269 } 8270 8271 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8272 struct extern_desc *ext) 8273 { 8274 const struct btf_type *targ_var, *targ_type; 8275 __u32 targ_type_id, local_type_id; 8276 struct module_btf *mod_btf = NULL; 8277 const char *targ_var_name; 8278 struct btf *btf = NULL; 8279 int id, err; 8280 8281 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8282 if (id < 0) { 8283 if (id == -ESRCH && ext->is_weak) 8284 return 0; 8285 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8286 ext->name); 8287 return id; 8288 } 8289 8290 /* find local type_id */ 8291 local_type_id = ext->ksym.type_id; 8292 8293 /* find target type_id */ 8294 targ_var = btf__type_by_id(btf, id); 8295 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8296 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8297 8298 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8299 btf, targ_type_id); 8300 if (err <= 0) { 8301 const struct btf_type *local_type; 8302 const char *targ_name, *local_name; 8303 8304 local_type = btf__type_by_id(obj->btf, local_type_id); 8305 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8306 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8307 8308 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8309 ext->name, local_type_id, 8310 btf_kind_str(local_type), local_name, targ_type_id, 8311 btf_kind_str(targ_type), targ_name); 8312 return -EINVAL; 8313 } 8314 8315 ext->is_set = true; 8316 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8317 ext->ksym.kernel_btf_id = id; 8318 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8319 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8320 8321 return 0; 8322 } 8323 8324 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8325 struct extern_desc *ext) 8326 { 8327 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8328 struct module_btf *mod_btf = NULL; 8329 const struct btf_type *kern_func; 8330 struct btf *kern_btf = NULL; 8331 int ret; 8332 8333 local_func_proto_id = ext->ksym.type_id; 8334 8335 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8336 &mod_btf); 8337 if (kfunc_id < 0) { 8338 if (kfunc_id == -ESRCH && ext->is_weak) 8339 return 0; 8340 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8341 ext->name); 8342 return kfunc_id; 8343 } 8344 8345 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8346 kfunc_proto_id = kern_func->type; 8347 8348 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8349 kern_btf, kfunc_proto_id); 8350 if (ret <= 0) { 8351 if (ext->is_weak) 8352 return 0; 8353 8354 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8355 ext->name, local_func_proto_id, 8356 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8357 return -EINVAL; 8358 } 8359 8360 /* set index for module BTF fd in fd_array, if unset */ 8361 if (mod_btf && !mod_btf->fd_array_idx) { 8362 /* insn->off is s16 */ 8363 if (obj->fd_array_cnt == INT16_MAX) { 8364 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8365 ext->name, mod_btf->fd_array_idx); 8366 return -E2BIG; 8367 } 8368 /* Cannot use index 0 for module BTF fd */ 8369 if (!obj->fd_array_cnt) 8370 obj->fd_array_cnt = 1; 8371 8372 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8373 obj->fd_array_cnt + 1); 8374 if (ret) 8375 return ret; 8376 mod_btf->fd_array_idx = obj->fd_array_cnt; 8377 /* we assume module BTF FD is always >0 */ 8378 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8379 } 8380 8381 ext->is_set = true; 8382 ext->ksym.kernel_btf_id = kfunc_id; 8383 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8384 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8385 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8386 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8387 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8388 */ 8389 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8390 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8391 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8392 8393 return 0; 8394 } 8395 8396 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8397 { 8398 const struct btf_type *t; 8399 struct extern_desc *ext; 8400 int i, err; 8401 8402 for (i = 0; i < obj->nr_extern; i++) { 8403 ext = &obj->externs[i]; 8404 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8405 continue; 8406 8407 if (obj->gen_loader) { 8408 ext->is_set = true; 8409 ext->ksym.kernel_btf_obj_fd = 0; 8410 ext->ksym.kernel_btf_id = 0; 8411 continue; 8412 } 8413 t = btf__type_by_id(obj->btf, ext->btf_id); 8414 if (btf_is_var(t)) 8415 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8416 else 8417 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8418 if (err) 8419 return err; 8420 } 8421 return 0; 8422 } 8423 8424 static int bpf_object__resolve_externs(struct bpf_object *obj, 8425 const char *extra_kconfig) 8426 { 8427 bool need_config = false, need_kallsyms = false; 8428 bool need_vmlinux_btf = false; 8429 struct extern_desc *ext; 8430 void *kcfg_data = NULL; 8431 int err, i; 8432 8433 if (obj->nr_extern == 0) 8434 return 0; 8435 8436 if (obj->kconfig_map_idx >= 0) 8437 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8438 8439 for (i = 0; i < obj->nr_extern; i++) { 8440 ext = &obj->externs[i]; 8441 8442 if (ext->type == EXT_KSYM) { 8443 if (ext->ksym.type_id) 8444 need_vmlinux_btf = true; 8445 else 8446 need_kallsyms = true; 8447 continue; 8448 } else if (ext->type == EXT_KCFG) { 8449 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8450 __u64 value = 0; 8451 8452 /* Kconfig externs need actual /proc/config.gz */ 8453 if (str_has_pfx(ext->name, "CONFIG_")) { 8454 need_config = true; 8455 continue; 8456 } 8457 8458 /* Virtual kcfg externs are customly handled by libbpf */ 8459 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8460 value = get_kernel_version(); 8461 if (!value) { 8462 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8463 return -EINVAL; 8464 } 8465 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8466 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8467 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8468 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8469 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8470 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8471 * __kconfig externs, where LINUX_ ones are virtual and filled out 8472 * customly by libbpf (their values don't come from Kconfig). 8473 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8474 * __weak, it defaults to zero value, just like for CONFIG_xxx 8475 * externs. 8476 */ 8477 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8478 return -EINVAL; 8479 } 8480 8481 err = set_kcfg_value_num(ext, ext_ptr, value); 8482 if (err) 8483 return err; 8484 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8485 ext->name, (long long)value); 8486 } else { 8487 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8488 return -EINVAL; 8489 } 8490 } 8491 if (need_config && extra_kconfig) { 8492 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8493 if (err) 8494 return -EINVAL; 8495 need_config = false; 8496 for (i = 0; i < obj->nr_extern; i++) { 8497 ext = &obj->externs[i]; 8498 if (ext->type == EXT_KCFG && !ext->is_set) { 8499 need_config = true; 8500 break; 8501 } 8502 } 8503 } 8504 if (need_config) { 8505 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8506 if (err) 8507 return -EINVAL; 8508 } 8509 if (need_kallsyms) { 8510 err = bpf_object__read_kallsyms_file(obj); 8511 if (err) 8512 return -EINVAL; 8513 } 8514 if (need_vmlinux_btf) { 8515 err = bpf_object__resolve_ksyms_btf_id(obj); 8516 if (err) 8517 return -EINVAL; 8518 } 8519 for (i = 0; i < obj->nr_extern; i++) { 8520 ext = &obj->externs[i]; 8521 8522 if (!ext->is_set && !ext->is_weak) { 8523 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8524 return -ESRCH; 8525 } else if (!ext->is_set) { 8526 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8527 ext->name); 8528 } 8529 } 8530 8531 return 0; 8532 } 8533 8534 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8535 { 8536 const struct btf_type *type; 8537 struct bpf_struct_ops *st_ops; 8538 __u32 i; 8539 8540 st_ops = map->st_ops; 8541 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8542 for (i = 0; i < btf_vlen(type); i++) { 8543 struct bpf_program *prog = st_ops->progs[i]; 8544 void *kern_data; 8545 int prog_fd; 8546 8547 if (!prog) 8548 continue; 8549 8550 prog_fd = bpf_program__fd(prog); 8551 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8552 *(unsigned long *)kern_data = prog_fd; 8553 } 8554 } 8555 8556 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8557 { 8558 struct bpf_map *map; 8559 int i; 8560 8561 for (i = 0; i < obj->nr_maps; i++) { 8562 map = &obj->maps[i]; 8563 8564 if (!bpf_map__is_struct_ops(map)) 8565 continue; 8566 8567 if (!map->autocreate) 8568 continue; 8569 8570 bpf_map_prepare_vdata(map); 8571 } 8572 8573 return 0; 8574 } 8575 8576 static void bpf_object_unpin(struct bpf_object *obj) 8577 { 8578 int i; 8579 8580 /* unpin any maps that were auto-pinned during load */ 8581 for (i = 0; i < obj->nr_maps; i++) 8582 if (obj->maps[i].pinned && !obj->maps[i].reused) 8583 bpf_map__unpin(&obj->maps[i], NULL); 8584 } 8585 8586 static void bpf_object_post_load_cleanup(struct bpf_object *obj) 8587 { 8588 int i; 8589 8590 /* clean up fd_array */ 8591 zfree(&obj->fd_array); 8592 8593 /* clean up module BTFs */ 8594 for (i = 0; i < obj->btf_module_cnt; i++) { 8595 close(obj->btf_modules[i].fd); 8596 btf__free(obj->btf_modules[i].btf); 8597 free(obj->btf_modules[i].name); 8598 } 8599 obj->btf_module_cnt = 0; 8600 zfree(&obj->btf_modules); 8601 8602 /* clean up vmlinux BTF */ 8603 btf__free(obj->btf_vmlinux); 8604 obj->btf_vmlinux = NULL; 8605 } 8606 8607 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path) 8608 { 8609 int err; 8610 8611 if (obj->state >= OBJ_PREPARED) { 8612 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name); 8613 return -EINVAL; 8614 } 8615 8616 err = bpf_object_prepare_token(obj); 8617 err = err ? : bpf_object__probe_loading(obj); 8618 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8619 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8620 err = err ? : bpf_object__sanitize_maps(obj); 8621 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8622 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8623 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8624 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8625 err = err ? : bpf_object__create_maps(obj); 8626 err = err ? : bpf_object_prepare_progs(obj); 8627 8628 if (err) { 8629 bpf_object_unpin(obj); 8630 bpf_object_unload(obj); 8631 obj->state = OBJ_LOADED; 8632 return err; 8633 } 8634 8635 obj->state = OBJ_PREPARED; 8636 return 0; 8637 } 8638 8639 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8640 { 8641 int err; 8642 8643 if (!obj) 8644 return libbpf_err(-EINVAL); 8645 8646 if (obj->state >= OBJ_LOADED) { 8647 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8648 return libbpf_err(-EINVAL); 8649 } 8650 8651 /* Disallow kernel loading programs of non-native endianness but 8652 * permit cross-endian creation of "light skeleton". 8653 */ 8654 if (obj->gen_loader) { 8655 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8656 } else if (!is_native_endianness(obj)) { 8657 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8658 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8659 } 8660 8661 if (obj->state < OBJ_PREPARED) { 8662 err = bpf_object_prepare(obj, target_btf_path); 8663 if (err) 8664 return libbpf_err(err); 8665 } 8666 err = bpf_object__load_progs(obj, extra_log_level); 8667 err = err ? : bpf_object_init_prog_arrays(obj); 8668 err = err ? : bpf_object_prepare_struct_ops(obj); 8669 8670 if (obj->gen_loader) { 8671 /* reset FDs */ 8672 if (obj->btf) 8673 btf__set_fd(obj->btf, -1); 8674 if (!err) 8675 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8676 } 8677 8678 bpf_object_post_load_cleanup(obj); 8679 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */ 8680 8681 if (err) { 8682 bpf_object_unpin(obj); 8683 bpf_object_unload(obj); 8684 pr_warn("failed to load object '%s'\n", obj->path); 8685 return libbpf_err(err); 8686 } 8687 8688 return 0; 8689 } 8690 8691 int bpf_object__prepare(struct bpf_object *obj) 8692 { 8693 return libbpf_err(bpf_object_prepare(obj, NULL)); 8694 } 8695 8696 int bpf_object__load(struct bpf_object *obj) 8697 { 8698 return bpf_object_load(obj, 0, NULL); 8699 } 8700 8701 static int make_parent_dir(const char *path) 8702 { 8703 char *dname, *dir; 8704 int err = 0; 8705 8706 dname = strdup(path); 8707 if (dname == NULL) 8708 return -ENOMEM; 8709 8710 dir = dirname(dname); 8711 if (mkdir(dir, 0700) && errno != EEXIST) 8712 err = -errno; 8713 8714 free(dname); 8715 if (err) { 8716 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8717 } 8718 return err; 8719 } 8720 8721 static int check_path(const char *path) 8722 { 8723 struct statfs st_fs; 8724 char *dname, *dir; 8725 int err = 0; 8726 8727 if (path == NULL) 8728 return -EINVAL; 8729 8730 dname = strdup(path); 8731 if (dname == NULL) 8732 return -ENOMEM; 8733 8734 dir = dirname(dname); 8735 if (statfs(dir, &st_fs)) { 8736 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 8737 err = -errno; 8738 } 8739 free(dname); 8740 8741 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8742 pr_warn("specified path %s is not on BPF FS\n", path); 8743 err = -EINVAL; 8744 } 8745 8746 return err; 8747 } 8748 8749 int bpf_program__pin(struct bpf_program *prog, const char *path) 8750 { 8751 int err; 8752 8753 if (prog->fd < 0) { 8754 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8755 return libbpf_err(-EINVAL); 8756 } 8757 8758 err = make_parent_dir(path); 8759 if (err) 8760 return libbpf_err(err); 8761 8762 err = check_path(path); 8763 if (err) 8764 return libbpf_err(err); 8765 8766 if (bpf_obj_pin(prog->fd, path)) { 8767 err = -errno; 8768 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 8769 return libbpf_err(err); 8770 } 8771 8772 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8773 return 0; 8774 } 8775 8776 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8777 { 8778 int err; 8779 8780 if (prog->fd < 0) { 8781 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8782 return libbpf_err(-EINVAL); 8783 } 8784 8785 err = check_path(path); 8786 if (err) 8787 return libbpf_err(err); 8788 8789 err = unlink(path); 8790 if (err) 8791 return libbpf_err(-errno); 8792 8793 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8794 return 0; 8795 } 8796 8797 int bpf_map__pin(struct bpf_map *map, const char *path) 8798 { 8799 int err; 8800 8801 if (map == NULL) { 8802 pr_warn("invalid map pointer\n"); 8803 return libbpf_err(-EINVAL); 8804 } 8805 8806 if (map->fd < 0) { 8807 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8808 return libbpf_err(-EINVAL); 8809 } 8810 8811 if (map->pin_path) { 8812 if (path && strcmp(path, map->pin_path)) { 8813 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8814 bpf_map__name(map), map->pin_path, path); 8815 return libbpf_err(-EINVAL); 8816 } else if (map->pinned) { 8817 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8818 bpf_map__name(map), map->pin_path); 8819 return 0; 8820 } 8821 } else { 8822 if (!path) { 8823 pr_warn("missing a path to pin map '%s' at\n", 8824 bpf_map__name(map)); 8825 return libbpf_err(-EINVAL); 8826 } else if (map->pinned) { 8827 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8828 return libbpf_err(-EEXIST); 8829 } 8830 8831 map->pin_path = strdup(path); 8832 if (!map->pin_path) { 8833 err = -errno; 8834 goto out_err; 8835 } 8836 } 8837 8838 err = make_parent_dir(map->pin_path); 8839 if (err) 8840 return libbpf_err(err); 8841 8842 err = check_path(map->pin_path); 8843 if (err) 8844 return libbpf_err(err); 8845 8846 if (bpf_obj_pin(map->fd, map->pin_path)) { 8847 err = -errno; 8848 goto out_err; 8849 } 8850 8851 map->pinned = true; 8852 pr_debug("pinned map '%s'\n", map->pin_path); 8853 8854 return 0; 8855 8856 out_err: 8857 pr_warn("failed to pin map: %s\n", errstr(err)); 8858 return libbpf_err(err); 8859 } 8860 8861 int bpf_map__unpin(struct bpf_map *map, const char *path) 8862 { 8863 int err; 8864 8865 if (map == NULL) { 8866 pr_warn("invalid map pointer\n"); 8867 return libbpf_err(-EINVAL); 8868 } 8869 8870 if (map->pin_path) { 8871 if (path && strcmp(path, map->pin_path)) { 8872 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8873 bpf_map__name(map), map->pin_path, path); 8874 return libbpf_err(-EINVAL); 8875 } 8876 path = map->pin_path; 8877 } else if (!path) { 8878 pr_warn("no path to unpin map '%s' from\n", 8879 bpf_map__name(map)); 8880 return libbpf_err(-EINVAL); 8881 } 8882 8883 err = check_path(path); 8884 if (err) 8885 return libbpf_err(err); 8886 8887 err = unlink(path); 8888 if (err != 0) 8889 return libbpf_err(-errno); 8890 8891 map->pinned = false; 8892 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8893 8894 return 0; 8895 } 8896 8897 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8898 { 8899 char *new = NULL; 8900 8901 if (path) { 8902 new = strdup(path); 8903 if (!new) 8904 return libbpf_err(-errno); 8905 } 8906 8907 free(map->pin_path); 8908 map->pin_path = new; 8909 return 0; 8910 } 8911 8912 __alias(bpf_map__pin_path) 8913 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8914 8915 const char *bpf_map__pin_path(const struct bpf_map *map) 8916 { 8917 return map->pin_path; 8918 } 8919 8920 bool bpf_map__is_pinned(const struct bpf_map *map) 8921 { 8922 return map->pinned; 8923 } 8924 8925 static void sanitize_pin_path(char *s) 8926 { 8927 /* bpffs disallows periods in path names */ 8928 while (*s) { 8929 if (*s == '.') 8930 *s = '_'; 8931 s++; 8932 } 8933 } 8934 8935 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8936 { 8937 struct bpf_map *map; 8938 int err; 8939 8940 if (!obj) 8941 return libbpf_err(-ENOENT); 8942 8943 if (obj->state < OBJ_PREPARED) { 8944 pr_warn("object not yet loaded; load it first\n"); 8945 return libbpf_err(-ENOENT); 8946 } 8947 8948 bpf_object__for_each_map(map, obj) { 8949 char *pin_path = NULL; 8950 char buf[PATH_MAX]; 8951 8952 if (!map->autocreate) 8953 continue; 8954 8955 if (path) { 8956 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8957 if (err) 8958 goto err_unpin_maps; 8959 sanitize_pin_path(buf); 8960 pin_path = buf; 8961 } else if (!map->pin_path) { 8962 continue; 8963 } 8964 8965 err = bpf_map__pin(map, pin_path); 8966 if (err) 8967 goto err_unpin_maps; 8968 } 8969 8970 return 0; 8971 8972 err_unpin_maps: 8973 while ((map = bpf_object__prev_map(obj, map))) { 8974 if (!map->pin_path) 8975 continue; 8976 8977 bpf_map__unpin(map, NULL); 8978 } 8979 8980 return libbpf_err(err); 8981 } 8982 8983 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8984 { 8985 struct bpf_map *map; 8986 int err; 8987 8988 if (!obj) 8989 return libbpf_err(-ENOENT); 8990 8991 bpf_object__for_each_map(map, obj) { 8992 char *pin_path = NULL; 8993 char buf[PATH_MAX]; 8994 8995 if (path) { 8996 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8997 if (err) 8998 return libbpf_err(err); 8999 sanitize_pin_path(buf); 9000 pin_path = buf; 9001 } else if (!map->pin_path) { 9002 continue; 9003 } 9004 9005 err = bpf_map__unpin(map, pin_path); 9006 if (err) 9007 return libbpf_err(err); 9008 } 9009 9010 return 0; 9011 } 9012 9013 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 9014 { 9015 struct bpf_program *prog; 9016 char buf[PATH_MAX]; 9017 int err; 9018 9019 if (!obj) 9020 return libbpf_err(-ENOENT); 9021 9022 if (obj->state < OBJ_LOADED) { 9023 pr_warn("object not yet loaded; load it first\n"); 9024 return libbpf_err(-ENOENT); 9025 } 9026 9027 bpf_object__for_each_program(prog, obj) { 9028 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9029 if (err) 9030 goto err_unpin_programs; 9031 9032 err = bpf_program__pin(prog, buf); 9033 if (err) 9034 goto err_unpin_programs; 9035 } 9036 9037 return 0; 9038 9039 err_unpin_programs: 9040 while ((prog = bpf_object__prev_program(obj, prog))) { 9041 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 9042 continue; 9043 9044 bpf_program__unpin(prog, buf); 9045 } 9046 9047 return libbpf_err(err); 9048 } 9049 9050 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 9051 { 9052 struct bpf_program *prog; 9053 int err; 9054 9055 if (!obj) 9056 return libbpf_err(-ENOENT); 9057 9058 bpf_object__for_each_program(prog, obj) { 9059 char buf[PATH_MAX]; 9060 9061 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9062 if (err) 9063 return libbpf_err(err); 9064 9065 err = bpf_program__unpin(prog, buf); 9066 if (err) 9067 return libbpf_err(err); 9068 } 9069 9070 return 0; 9071 } 9072 9073 int bpf_object__pin(struct bpf_object *obj, const char *path) 9074 { 9075 int err; 9076 9077 err = bpf_object__pin_maps(obj, path); 9078 if (err) 9079 return libbpf_err(err); 9080 9081 err = bpf_object__pin_programs(obj, path); 9082 if (err) { 9083 bpf_object__unpin_maps(obj, path); 9084 return libbpf_err(err); 9085 } 9086 9087 return 0; 9088 } 9089 9090 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9091 { 9092 int err; 9093 9094 err = bpf_object__unpin_programs(obj, path); 9095 if (err) 9096 return libbpf_err(err); 9097 9098 err = bpf_object__unpin_maps(obj, path); 9099 if (err) 9100 return libbpf_err(err); 9101 9102 return 0; 9103 } 9104 9105 static void bpf_map__destroy(struct bpf_map *map) 9106 { 9107 if (map->inner_map) { 9108 bpf_map__destroy(map->inner_map); 9109 zfree(&map->inner_map); 9110 } 9111 9112 zfree(&map->init_slots); 9113 map->init_slots_sz = 0; 9114 9115 if (map->mmaped && map->mmaped != map->obj->arena_data) 9116 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9117 map->mmaped = NULL; 9118 9119 if (map->st_ops) { 9120 zfree(&map->st_ops->data); 9121 zfree(&map->st_ops->progs); 9122 zfree(&map->st_ops->kern_func_off); 9123 zfree(&map->st_ops); 9124 } 9125 9126 zfree(&map->name); 9127 zfree(&map->real_name); 9128 zfree(&map->pin_path); 9129 9130 if (map->fd >= 0) 9131 zclose(map->fd); 9132 } 9133 9134 void bpf_object__close(struct bpf_object *obj) 9135 { 9136 size_t i; 9137 9138 if (IS_ERR_OR_NULL(obj)) 9139 return; 9140 9141 /* 9142 * if user called bpf_object__prepare() without ever getting to 9143 * bpf_object__load(), we need to clean up stuff that is normally 9144 * cleaned up at the end of loading step 9145 */ 9146 bpf_object_post_load_cleanup(obj); 9147 9148 usdt_manager_free(obj->usdt_man); 9149 obj->usdt_man = NULL; 9150 9151 bpf_gen__free(obj->gen_loader); 9152 bpf_object__elf_finish(obj); 9153 bpf_object_unload(obj); 9154 btf__free(obj->btf); 9155 btf__free(obj->btf_vmlinux); 9156 btf_ext__free(obj->btf_ext); 9157 9158 for (i = 0; i < obj->nr_maps; i++) 9159 bpf_map__destroy(&obj->maps[i]); 9160 9161 zfree(&obj->btf_custom_path); 9162 zfree(&obj->kconfig); 9163 9164 for (i = 0; i < obj->nr_extern; i++) { 9165 zfree(&obj->externs[i].name); 9166 zfree(&obj->externs[i].essent_name); 9167 } 9168 9169 zfree(&obj->externs); 9170 obj->nr_extern = 0; 9171 9172 zfree(&obj->maps); 9173 obj->nr_maps = 0; 9174 9175 if (obj->programs && obj->nr_programs) { 9176 for (i = 0; i < obj->nr_programs; i++) 9177 bpf_program__exit(&obj->programs[i]); 9178 } 9179 zfree(&obj->programs); 9180 9181 zfree(&obj->feat_cache); 9182 zfree(&obj->token_path); 9183 if (obj->token_fd > 0) 9184 close(obj->token_fd); 9185 9186 zfree(&obj->arena_data); 9187 9188 free(obj); 9189 } 9190 9191 const char *bpf_object__name(const struct bpf_object *obj) 9192 { 9193 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9194 } 9195 9196 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9197 { 9198 return obj ? obj->kern_version : 0; 9199 } 9200 9201 int bpf_object__token_fd(const struct bpf_object *obj) 9202 { 9203 return obj->token_fd ?: -1; 9204 } 9205 9206 struct btf *bpf_object__btf(const struct bpf_object *obj) 9207 { 9208 return obj ? obj->btf : NULL; 9209 } 9210 9211 int bpf_object__btf_fd(const struct bpf_object *obj) 9212 { 9213 return obj->btf ? btf__fd(obj->btf) : -1; 9214 } 9215 9216 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9217 { 9218 if (obj->state >= OBJ_LOADED) 9219 return libbpf_err(-EINVAL); 9220 9221 obj->kern_version = kern_version; 9222 9223 return 0; 9224 } 9225 9226 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9227 { 9228 struct bpf_gen *gen; 9229 9230 if (!opts) 9231 return libbpf_err(-EFAULT); 9232 if (!OPTS_VALID(opts, gen_loader_opts)) 9233 return libbpf_err(-EINVAL); 9234 gen = calloc(1, sizeof(*gen)); 9235 if (!gen) 9236 return libbpf_err(-ENOMEM); 9237 gen->opts = opts; 9238 gen->swapped_endian = !is_native_endianness(obj); 9239 obj->gen_loader = gen; 9240 return 0; 9241 } 9242 9243 static struct bpf_program * 9244 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9245 bool forward) 9246 { 9247 size_t nr_programs = obj->nr_programs; 9248 ssize_t idx; 9249 9250 if (!nr_programs) 9251 return NULL; 9252 9253 if (!p) 9254 /* Iter from the beginning */ 9255 return forward ? &obj->programs[0] : 9256 &obj->programs[nr_programs - 1]; 9257 9258 if (p->obj != obj) { 9259 pr_warn("error: program handler doesn't match object\n"); 9260 return errno = EINVAL, NULL; 9261 } 9262 9263 idx = (p - obj->programs) + (forward ? 1 : -1); 9264 if (idx >= obj->nr_programs || idx < 0) 9265 return NULL; 9266 return &obj->programs[idx]; 9267 } 9268 9269 struct bpf_program * 9270 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9271 { 9272 struct bpf_program *prog = prev; 9273 9274 do { 9275 prog = __bpf_program__iter(prog, obj, true); 9276 } while (prog && prog_is_subprog(obj, prog)); 9277 9278 return prog; 9279 } 9280 9281 struct bpf_program * 9282 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9283 { 9284 struct bpf_program *prog = next; 9285 9286 do { 9287 prog = __bpf_program__iter(prog, obj, false); 9288 } while (prog && prog_is_subprog(obj, prog)); 9289 9290 return prog; 9291 } 9292 9293 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9294 { 9295 prog->prog_ifindex = ifindex; 9296 } 9297 9298 const char *bpf_program__name(const struct bpf_program *prog) 9299 { 9300 return prog->name; 9301 } 9302 9303 const char *bpf_program__section_name(const struct bpf_program *prog) 9304 { 9305 return prog->sec_name; 9306 } 9307 9308 bool bpf_program__autoload(const struct bpf_program *prog) 9309 { 9310 return prog->autoload; 9311 } 9312 9313 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9314 { 9315 if (prog->obj->state >= OBJ_LOADED) 9316 return libbpf_err(-EINVAL); 9317 9318 prog->autoload = autoload; 9319 return 0; 9320 } 9321 9322 bool bpf_program__autoattach(const struct bpf_program *prog) 9323 { 9324 return prog->autoattach; 9325 } 9326 9327 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9328 { 9329 prog->autoattach = autoattach; 9330 } 9331 9332 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9333 { 9334 return prog->insns; 9335 } 9336 9337 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9338 { 9339 return prog->insns_cnt; 9340 } 9341 9342 int bpf_program__set_insns(struct bpf_program *prog, 9343 struct bpf_insn *new_insns, size_t new_insn_cnt) 9344 { 9345 struct bpf_insn *insns; 9346 9347 if (prog->obj->state >= OBJ_LOADED) 9348 return libbpf_err(-EBUSY); 9349 9350 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9351 /* NULL is a valid return from reallocarray if the new count is zero */ 9352 if (!insns && new_insn_cnt) { 9353 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9354 return libbpf_err(-ENOMEM); 9355 } 9356 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9357 9358 prog->insns = insns; 9359 prog->insns_cnt = new_insn_cnt; 9360 return 0; 9361 } 9362 9363 int bpf_program__fd(const struct bpf_program *prog) 9364 { 9365 if (!prog) 9366 return libbpf_err(-EINVAL); 9367 9368 if (prog->fd < 0) 9369 return libbpf_err(-ENOENT); 9370 9371 return prog->fd; 9372 } 9373 9374 __alias(bpf_program__type) 9375 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9376 9377 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9378 { 9379 return prog->type; 9380 } 9381 9382 static size_t custom_sec_def_cnt; 9383 static struct bpf_sec_def *custom_sec_defs; 9384 static struct bpf_sec_def custom_fallback_def; 9385 static bool has_custom_fallback_def; 9386 static int last_custom_sec_def_handler_id; 9387 9388 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9389 { 9390 if (prog->obj->state >= OBJ_LOADED) 9391 return libbpf_err(-EBUSY); 9392 9393 /* if type is not changed, do nothing */ 9394 if (prog->type == type) 9395 return 0; 9396 9397 prog->type = type; 9398 9399 /* If a program type was changed, we need to reset associated SEC() 9400 * handler, as it will be invalid now. The only exception is a generic 9401 * fallback handler, which by definition is program type-agnostic and 9402 * is a catch-all custom handler, optionally set by the application, 9403 * so should be able to handle any type of BPF program. 9404 */ 9405 if (prog->sec_def != &custom_fallback_def) 9406 prog->sec_def = NULL; 9407 return 0; 9408 } 9409 9410 __alias(bpf_program__expected_attach_type) 9411 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9412 9413 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9414 { 9415 return prog->expected_attach_type; 9416 } 9417 9418 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9419 enum bpf_attach_type type) 9420 { 9421 if (prog->obj->state >= OBJ_LOADED) 9422 return libbpf_err(-EBUSY); 9423 9424 prog->expected_attach_type = type; 9425 return 0; 9426 } 9427 9428 __u32 bpf_program__flags(const struct bpf_program *prog) 9429 { 9430 return prog->prog_flags; 9431 } 9432 9433 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9434 { 9435 if (prog->obj->state >= OBJ_LOADED) 9436 return libbpf_err(-EBUSY); 9437 9438 prog->prog_flags = flags; 9439 return 0; 9440 } 9441 9442 __u32 bpf_program__log_level(const struct bpf_program *prog) 9443 { 9444 return prog->log_level; 9445 } 9446 9447 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9448 { 9449 if (prog->obj->state >= OBJ_LOADED) 9450 return libbpf_err(-EBUSY); 9451 9452 prog->log_level = log_level; 9453 return 0; 9454 } 9455 9456 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9457 { 9458 *log_size = prog->log_size; 9459 return prog->log_buf; 9460 } 9461 9462 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9463 { 9464 if (log_size && !log_buf) 9465 return libbpf_err(-EINVAL); 9466 if (prog->log_size > UINT_MAX) 9467 return libbpf_err(-EINVAL); 9468 if (prog->obj->state >= OBJ_LOADED) 9469 return libbpf_err(-EBUSY); 9470 9471 prog->log_buf = log_buf; 9472 prog->log_size = log_size; 9473 return 0; 9474 } 9475 9476 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog) 9477 { 9478 if (prog->func_info_rec_size != sizeof(struct bpf_func_info)) 9479 return libbpf_err_ptr(-EOPNOTSUPP); 9480 return prog->func_info; 9481 } 9482 9483 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog) 9484 { 9485 return prog->func_info_cnt; 9486 } 9487 9488 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog) 9489 { 9490 if (prog->line_info_rec_size != sizeof(struct bpf_line_info)) 9491 return libbpf_err_ptr(-EOPNOTSUPP); 9492 return prog->line_info; 9493 } 9494 9495 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog) 9496 { 9497 return prog->line_info_cnt; 9498 } 9499 9500 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9501 .sec = (char *)sec_pfx, \ 9502 .prog_type = BPF_PROG_TYPE_##ptype, \ 9503 .expected_attach_type = atype, \ 9504 .cookie = (long)(flags), \ 9505 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9506 __VA_ARGS__ \ 9507 } 9508 9509 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9510 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9511 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9512 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9513 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9514 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9515 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9516 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9517 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9518 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9519 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9520 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9521 9522 static const struct bpf_sec_def section_defs[] = { 9523 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9524 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9525 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9526 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9527 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9528 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9529 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9530 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9531 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9532 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9533 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9534 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9535 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9536 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9537 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9538 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9539 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9540 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9541 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9542 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9543 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9544 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9545 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9546 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9547 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9548 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9549 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9550 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9551 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9552 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9553 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9554 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9555 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9556 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9557 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9558 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9559 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9560 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9561 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9562 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9563 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9564 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9565 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9566 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9567 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9568 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9569 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9570 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9571 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9572 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9573 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9574 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9575 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9576 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9577 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9578 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9579 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9580 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9581 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9582 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9583 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9584 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9585 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9586 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9587 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9588 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9589 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9590 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9591 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9592 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9593 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9594 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9595 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9596 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9597 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9598 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9599 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9600 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9601 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9602 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9603 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9604 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9605 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9606 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9607 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9608 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9609 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9610 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9611 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9612 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9613 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9614 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9615 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9616 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9617 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9618 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9619 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9620 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9621 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9622 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9623 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9624 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9625 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9626 }; 9627 9628 int libbpf_register_prog_handler(const char *sec, 9629 enum bpf_prog_type prog_type, 9630 enum bpf_attach_type exp_attach_type, 9631 const struct libbpf_prog_handler_opts *opts) 9632 { 9633 struct bpf_sec_def *sec_def; 9634 9635 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9636 return libbpf_err(-EINVAL); 9637 9638 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9639 return libbpf_err(-E2BIG); 9640 9641 if (sec) { 9642 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9643 sizeof(*sec_def)); 9644 if (!sec_def) 9645 return libbpf_err(-ENOMEM); 9646 9647 custom_sec_defs = sec_def; 9648 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9649 } else { 9650 if (has_custom_fallback_def) 9651 return libbpf_err(-EBUSY); 9652 9653 sec_def = &custom_fallback_def; 9654 } 9655 9656 sec_def->sec = sec ? strdup(sec) : NULL; 9657 if (sec && !sec_def->sec) 9658 return libbpf_err(-ENOMEM); 9659 9660 sec_def->prog_type = prog_type; 9661 sec_def->expected_attach_type = exp_attach_type; 9662 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9663 9664 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9665 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9666 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9667 9668 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9669 9670 if (sec) 9671 custom_sec_def_cnt++; 9672 else 9673 has_custom_fallback_def = true; 9674 9675 return sec_def->handler_id; 9676 } 9677 9678 int libbpf_unregister_prog_handler(int handler_id) 9679 { 9680 struct bpf_sec_def *sec_defs; 9681 int i; 9682 9683 if (handler_id <= 0) 9684 return libbpf_err(-EINVAL); 9685 9686 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9687 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9688 has_custom_fallback_def = false; 9689 return 0; 9690 } 9691 9692 for (i = 0; i < custom_sec_def_cnt; i++) { 9693 if (custom_sec_defs[i].handler_id == handler_id) 9694 break; 9695 } 9696 9697 if (i == custom_sec_def_cnt) 9698 return libbpf_err(-ENOENT); 9699 9700 free(custom_sec_defs[i].sec); 9701 for (i = i + 1; i < custom_sec_def_cnt; i++) 9702 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9703 custom_sec_def_cnt--; 9704 9705 /* try to shrink the array, but it's ok if we couldn't */ 9706 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9707 /* if new count is zero, reallocarray can return a valid NULL result; 9708 * in this case the previous pointer will be freed, so we *have to* 9709 * reassign old pointer to the new value (even if it's NULL) 9710 */ 9711 if (sec_defs || custom_sec_def_cnt == 0) 9712 custom_sec_defs = sec_defs; 9713 9714 return 0; 9715 } 9716 9717 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9718 { 9719 size_t len = strlen(sec_def->sec); 9720 9721 /* "type/" always has to have proper SEC("type/extras") form */ 9722 if (sec_def->sec[len - 1] == '/') { 9723 if (str_has_pfx(sec_name, sec_def->sec)) 9724 return true; 9725 return false; 9726 } 9727 9728 /* "type+" means it can be either exact SEC("type") or 9729 * well-formed SEC("type/extras") with proper '/' separator 9730 */ 9731 if (sec_def->sec[len - 1] == '+') { 9732 len--; 9733 /* not even a prefix */ 9734 if (strncmp(sec_name, sec_def->sec, len) != 0) 9735 return false; 9736 /* exact match or has '/' separator */ 9737 if (sec_name[len] == '\0' || sec_name[len] == '/') 9738 return true; 9739 return false; 9740 } 9741 9742 return strcmp(sec_name, sec_def->sec) == 0; 9743 } 9744 9745 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9746 { 9747 const struct bpf_sec_def *sec_def; 9748 int i, n; 9749 9750 n = custom_sec_def_cnt; 9751 for (i = 0; i < n; i++) { 9752 sec_def = &custom_sec_defs[i]; 9753 if (sec_def_matches(sec_def, sec_name)) 9754 return sec_def; 9755 } 9756 9757 n = ARRAY_SIZE(section_defs); 9758 for (i = 0; i < n; i++) { 9759 sec_def = §ion_defs[i]; 9760 if (sec_def_matches(sec_def, sec_name)) 9761 return sec_def; 9762 } 9763 9764 if (has_custom_fallback_def) 9765 return &custom_fallback_def; 9766 9767 return NULL; 9768 } 9769 9770 #define MAX_TYPE_NAME_SIZE 32 9771 9772 static char *libbpf_get_type_names(bool attach_type) 9773 { 9774 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9775 char *buf; 9776 9777 buf = malloc(len); 9778 if (!buf) 9779 return NULL; 9780 9781 buf[0] = '\0'; 9782 /* Forge string buf with all available names */ 9783 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9784 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9785 9786 if (attach_type) { 9787 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9788 continue; 9789 9790 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9791 continue; 9792 } 9793 9794 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9795 free(buf); 9796 return NULL; 9797 } 9798 strcat(buf, " "); 9799 strcat(buf, section_defs[i].sec); 9800 } 9801 9802 return buf; 9803 } 9804 9805 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9806 enum bpf_attach_type *expected_attach_type) 9807 { 9808 const struct bpf_sec_def *sec_def; 9809 char *type_names; 9810 9811 if (!name) 9812 return libbpf_err(-EINVAL); 9813 9814 sec_def = find_sec_def(name); 9815 if (sec_def) { 9816 *prog_type = sec_def->prog_type; 9817 *expected_attach_type = sec_def->expected_attach_type; 9818 return 0; 9819 } 9820 9821 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9822 type_names = libbpf_get_type_names(false); 9823 if (type_names != NULL) { 9824 pr_debug("supported section(type) names are:%s\n", type_names); 9825 free(type_names); 9826 } 9827 9828 return libbpf_err(-ESRCH); 9829 } 9830 9831 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9832 { 9833 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9834 return NULL; 9835 9836 return attach_type_name[t]; 9837 } 9838 9839 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9840 { 9841 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9842 return NULL; 9843 9844 return link_type_name[t]; 9845 } 9846 9847 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9848 { 9849 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9850 return NULL; 9851 9852 return map_type_name[t]; 9853 } 9854 9855 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9856 { 9857 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9858 return NULL; 9859 9860 return prog_type_name[t]; 9861 } 9862 9863 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9864 int sec_idx, 9865 size_t offset) 9866 { 9867 struct bpf_map *map; 9868 size_t i; 9869 9870 for (i = 0; i < obj->nr_maps; i++) { 9871 map = &obj->maps[i]; 9872 if (!bpf_map__is_struct_ops(map)) 9873 continue; 9874 if (map->sec_idx == sec_idx && 9875 map->sec_offset <= offset && 9876 offset - map->sec_offset < map->def.value_size) 9877 return map; 9878 } 9879 9880 return NULL; 9881 } 9882 9883 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9884 * st_ops->data for shadow type. 9885 */ 9886 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9887 Elf64_Shdr *shdr, Elf_Data *data) 9888 { 9889 const struct btf_type *type; 9890 const struct btf_member *member; 9891 struct bpf_struct_ops *st_ops; 9892 struct bpf_program *prog; 9893 unsigned int shdr_idx; 9894 const struct btf *btf; 9895 struct bpf_map *map; 9896 unsigned int moff, insn_idx; 9897 const char *name; 9898 __u32 member_idx; 9899 Elf64_Sym *sym; 9900 Elf64_Rel *rel; 9901 int i, nrels; 9902 9903 btf = obj->btf; 9904 nrels = shdr->sh_size / shdr->sh_entsize; 9905 for (i = 0; i < nrels; i++) { 9906 rel = elf_rel_by_idx(data, i); 9907 if (!rel) { 9908 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9909 return -LIBBPF_ERRNO__FORMAT; 9910 } 9911 9912 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9913 if (!sym) { 9914 pr_warn("struct_ops reloc: symbol %zx not found\n", 9915 (size_t)ELF64_R_SYM(rel->r_info)); 9916 return -LIBBPF_ERRNO__FORMAT; 9917 } 9918 9919 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9920 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9921 if (!map) { 9922 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9923 (size_t)rel->r_offset); 9924 return -EINVAL; 9925 } 9926 9927 moff = rel->r_offset - map->sec_offset; 9928 shdr_idx = sym->st_shndx; 9929 st_ops = map->st_ops; 9930 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9931 map->name, 9932 (long long)(rel->r_info >> 32), 9933 (long long)sym->st_value, 9934 shdr_idx, (size_t)rel->r_offset, 9935 map->sec_offset, sym->st_name, name); 9936 9937 if (shdr_idx >= SHN_LORESERVE) { 9938 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9939 map->name, (size_t)rel->r_offset, shdr_idx); 9940 return -LIBBPF_ERRNO__RELOC; 9941 } 9942 if (sym->st_value % BPF_INSN_SZ) { 9943 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9944 map->name, (unsigned long long)sym->st_value); 9945 return -LIBBPF_ERRNO__FORMAT; 9946 } 9947 insn_idx = sym->st_value / BPF_INSN_SZ; 9948 9949 type = btf__type_by_id(btf, st_ops->type_id); 9950 member = find_member_by_offset(type, moff * 8); 9951 if (!member) { 9952 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9953 map->name, moff); 9954 return -EINVAL; 9955 } 9956 member_idx = member - btf_members(type); 9957 name = btf__name_by_offset(btf, member->name_off); 9958 9959 if (!resolve_func_ptr(btf, member->type, NULL)) { 9960 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9961 map->name, name); 9962 return -EINVAL; 9963 } 9964 9965 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9966 if (!prog) { 9967 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9968 map->name, shdr_idx, name); 9969 return -EINVAL; 9970 } 9971 9972 /* prevent the use of BPF prog with invalid type */ 9973 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9974 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9975 map->name, prog->name); 9976 return -EINVAL; 9977 } 9978 9979 st_ops->progs[member_idx] = prog; 9980 9981 /* st_ops->data will be exposed to users, being returned by 9982 * bpf_map__initial_value() as a pointer to the shadow 9983 * type. All function pointers in the original struct type 9984 * should be converted to a pointer to struct bpf_program 9985 * in the shadow type. 9986 */ 9987 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9988 } 9989 9990 return 0; 9991 } 9992 9993 #define BTF_TRACE_PREFIX "btf_trace_" 9994 #define BTF_LSM_PREFIX "bpf_lsm_" 9995 #define BTF_ITER_PREFIX "bpf_iter_" 9996 #define BTF_MAX_NAME_SIZE 128 9997 9998 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9999 const char **prefix, int *kind) 10000 { 10001 switch (attach_type) { 10002 case BPF_TRACE_RAW_TP: 10003 *prefix = BTF_TRACE_PREFIX; 10004 *kind = BTF_KIND_TYPEDEF; 10005 break; 10006 case BPF_LSM_MAC: 10007 case BPF_LSM_CGROUP: 10008 *prefix = BTF_LSM_PREFIX; 10009 *kind = BTF_KIND_FUNC; 10010 break; 10011 case BPF_TRACE_ITER: 10012 *prefix = BTF_ITER_PREFIX; 10013 *kind = BTF_KIND_FUNC; 10014 break; 10015 default: 10016 *prefix = ""; 10017 *kind = BTF_KIND_FUNC; 10018 } 10019 } 10020 10021 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 10022 const char *name, __u32 kind) 10023 { 10024 char btf_type_name[BTF_MAX_NAME_SIZE]; 10025 int ret; 10026 10027 ret = snprintf(btf_type_name, sizeof(btf_type_name), 10028 "%s%s", prefix, name); 10029 /* snprintf returns the number of characters written excluding the 10030 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 10031 * indicates truncation. 10032 */ 10033 if (ret < 0 || ret >= sizeof(btf_type_name)) 10034 return -ENAMETOOLONG; 10035 return btf__find_by_name_kind(btf, btf_type_name, kind); 10036 } 10037 10038 static inline int find_attach_btf_id(struct btf *btf, const char *name, 10039 enum bpf_attach_type attach_type) 10040 { 10041 const char *prefix; 10042 int kind; 10043 10044 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 10045 return find_btf_by_prefix_kind(btf, prefix, name, kind); 10046 } 10047 10048 int libbpf_find_vmlinux_btf_id(const char *name, 10049 enum bpf_attach_type attach_type) 10050 { 10051 struct btf *btf; 10052 int err; 10053 10054 btf = btf__load_vmlinux_btf(); 10055 err = libbpf_get_error(btf); 10056 if (err) { 10057 pr_warn("vmlinux BTF is not found\n"); 10058 return libbpf_err(err); 10059 } 10060 10061 err = find_attach_btf_id(btf, name, attach_type); 10062 if (err <= 0) 10063 pr_warn("%s is not found in vmlinux BTF\n", name); 10064 10065 btf__free(btf); 10066 return libbpf_err(err); 10067 } 10068 10069 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd) 10070 { 10071 struct bpf_prog_info info; 10072 __u32 info_len = sizeof(info); 10073 struct btf *btf; 10074 int err; 10075 10076 memset(&info, 0, info_len); 10077 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 10078 if (err) { 10079 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 10080 attach_prog_fd, errstr(err)); 10081 return err; 10082 } 10083 10084 err = -EINVAL; 10085 if (!info.btf_id) { 10086 pr_warn("The target program doesn't have BTF\n"); 10087 goto out; 10088 } 10089 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd); 10090 err = libbpf_get_error(btf); 10091 if (err) { 10092 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 10093 goto out; 10094 } 10095 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 10096 btf__free(btf); 10097 if (err <= 0) { 10098 pr_warn("%s is not found in prog's BTF\n", name); 10099 goto out; 10100 } 10101 out: 10102 return err; 10103 } 10104 10105 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 10106 enum bpf_attach_type attach_type, 10107 int *btf_obj_fd, int *btf_type_id) 10108 { 10109 int ret, i, mod_len = 0; 10110 const char *fn_name, *mod_name = NULL; 10111 10112 fn_name = strchr(attach_name, ':'); 10113 if (fn_name) { 10114 mod_name = attach_name; 10115 mod_len = fn_name - mod_name; 10116 fn_name++; 10117 } 10118 10119 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10120 ret = find_attach_btf_id(obj->btf_vmlinux, 10121 mod_name ? fn_name : attach_name, 10122 attach_type); 10123 if (ret > 0) { 10124 *btf_obj_fd = 0; /* vmlinux BTF */ 10125 *btf_type_id = ret; 10126 return 0; 10127 } 10128 if (ret != -ENOENT) 10129 return ret; 10130 } 10131 10132 ret = load_module_btfs(obj); 10133 if (ret) 10134 return ret; 10135 10136 for (i = 0; i < obj->btf_module_cnt; i++) { 10137 const struct module_btf *mod = &obj->btf_modules[i]; 10138 10139 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10140 continue; 10141 10142 ret = find_attach_btf_id(mod->btf, 10143 mod_name ? fn_name : attach_name, 10144 attach_type); 10145 if (ret > 0) { 10146 *btf_obj_fd = mod->fd; 10147 *btf_type_id = ret; 10148 return 0; 10149 } 10150 if (ret == -ENOENT) 10151 continue; 10152 10153 return ret; 10154 } 10155 10156 return -ESRCH; 10157 } 10158 10159 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10160 int *btf_obj_fd, int *btf_type_id) 10161 { 10162 enum bpf_attach_type attach_type = prog->expected_attach_type; 10163 __u32 attach_prog_fd = prog->attach_prog_fd; 10164 int err = 0; 10165 10166 /* BPF program's BTF ID */ 10167 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10168 if (!attach_prog_fd) { 10169 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10170 return -EINVAL; 10171 } 10172 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd); 10173 if (err < 0) { 10174 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10175 prog->name, attach_prog_fd, attach_name, errstr(err)); 10176 return err; 10177 } 10178 *btf_obj_fd = 0; 10179 *btf_type_id = err; 10180 return 0; 10181 } 10182 10183 /* kernel/module BTF ID */ 10184 if (prog->obj->gen_loader) { 10185 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10186 *btf_obj_fd = 0; 10187 *btf_type_id = 1; 10188 } else { 10189 err = find_kernel_btf_id(prog->obj, attach_name, 10190 attach_type, btf_obj_fd, 10191 btf_type_id); 10192 } 10193 if (err) { 10194 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10195 prog->name, attach_name, errstr(err)); 10196 return err; 10197 } 10198 return 0; 10199 } 10200 10201 int libbpf_attach_type_by_name(const char *name, 10202 enum bpf_attach_type *attach_type) 10203 { 10204 char *type_names; 10205 const struct bpf_sec_def *sec_def; 10206 10207 if (!name) 10208 return libbpf_err(-EINVAL); 10209 10210 sec_def = find_sec_def(name); 10211 if (!sec_def) { 10212 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10213 type_names = libbpf_get_type_names(true); 10214 if (type_names != NULL) { 10215 pr_debug("attachable section(type) names are:%s\n", type_names); 10216 free(type_names); 10217 } 10218 10219 return libbpf_err(-EINVAL); 10220 } 10221 10222 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10223 return libbpf_err(-EINVAL); 10224 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10225 return libbpf_err(-EINVAL); 10226 10227 *attach_type = sec_def->expected_attach_type; 10228 return 0; 10229 } 10230 10231 int bpf_map__fd(const struct bpf_map *map) 10232 { 10233 if (!map) 10234 return libbpf_err(-EINVAL); 10235 if (!map_is_created(map)) 10236 return -1; 10237 return map->fd; 10238 } 10239 10240 static bool map_uses_real_name(const struct bpf_map *map) 10241 { 10242 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10243 * their user-visible name differs from kernel-visible name. Users see 10244 * such map's corresponding ELF section name as a map name. 10245 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10246 * maps to know which name has to be returned to the user. 10247 */ 10248 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10249 return true; 10250 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10251 return true; 10252 return false; 10253 } 10254 10255 const char *bpf_map__name(const struct bpf_map *map) 10256 { 10257 if (!map) 10258 return NULL; 10259 10260 if (map_uses_real_name(map)) 10261 return map->real_name; 10262 10263 return map->name; 10264 } 10265 10266 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10267 { 10268 return map->def.type; 10269 } 10270 10271 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10272 { 10273 if (map_is_created(map)) 10274 return libbpf_err(-EBUSY); 10275 map->def.type = type; 10276 return 0; 10277 } 10278 10279 __u32 bpf_map__map_flags(const struct bpf_map *map) 10280 { 10281 return map->def.map_flags; 10282 } 10283 10284 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10285 { 10286 if (map_is_created(map)) 10287 return libbpf_err(-EBUSY); 10288 map->def.map_flags = flags; 10289 return 0; 10290 } 10291 10292 __u64 bpf_map__map_extra(const struct bpf_map *map) 10293 { 10294 return map->map_extra; 10295 } 10296 10297 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10298 { 10299 if (map_is_created(map)) 10300 return libbpf_err(-EBUSY); 10301 map->map_extra = map_extra; 10302 return 0; 10303 } 10304 10305 __u32 bpf_map__numa_node(const struct bpf_map *map) 10306 { 10307 return map->numa_node; 10308 } 10309 10310 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10311 { 10312 if (map_is_created(map)) 10313 return libbpf_err(-EBUSY); 10314 map->numa_node = numa_node; 10315 return 0; 10316 } 10317 10318 __u32 bpf_map__key_size(const struct bpf_map *map) 10319 { 10320 return map->def.key_size; 10321 } 10322 10323 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10324 { 10325 if (map_is_created(map)) 10326 return libbpf_err(-EBUSY); 10327 map->def.key_size = size; 10328 return 0; 10329 } 10330 10331 __u32 bpf_map__value_size(const struct bpf_map *map) 10332 { 10333 return map->def.value_size; 10334 } 10335 10336 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10337 { 10338 struct btf *btf; 10339 struct btf_type *datasec_type, *var_type; 10340 struct btf_var_secinfo *var; 10341 const struct btf_type *array_type; 10342 const struct btf_array *array; 10343 int vlen, element_sz, new_array_id; 10344 __u32 nr_elements; 10345 10346 /* check btf existence */ 10347 btf = bpf_object__btf(map->obj); 10348 if (!btf) 10349 return -ENOENT; 10350 10351 /* verify map is datasec */ 10352 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10353 if (!btf_is_datasec(datasec_type)) { 10354 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10355 bpf_map__name(map)); 10356 return -EINVAL; 10357 } 10358 10359 /* verify datasec has at least one var */ 10360 vlen = btf_vlen(datasec_type); 10361 if (vlen == 0) { 10362 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10363 bpf_map__name(map)); 10364 return -EINVAL; 10365 } 10366 10367 /* verify last var in the datasec is an array */ 10368 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10369 var_type = btf_type_by_id(btf, var->type); 10370 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10371 if (!btf_is_array(array_type)) { 10372 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10373 bpf_map__name(map)); 10374 return -EINVAL; 10375 } 10376 10377 /* verify request size aligns with array */ 10378 array = btf_array(array_type); 10379 element_sz = btf__resolve_size(btf, array->type); 10380 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10381 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10382 bpf_map__name(map), element_sz, size); 10383 return -EINVAL; 10384 } 10385 10386 /* create a new array based on the existing array, but with new length */ 10387 nr_elements = (size - var->offset) / element_sz; 10388 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10389 if (new_array_id < 0) 10390 return new_array_id; 10391 10392 /* adding a new btf type invalidates existing pointers to btf objects, 10393 * so refresh pointers before proceeding 10394 */ 10395 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10396 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10397 var_type = btf_type_by_id(btf, var->type); 10398 10399 /* finally update btf info */ 10400 datasec_type->size = size; 10401 var->size = size - var->offset; 10402 var_type->type = new_array_id; 10403 10404 return 0; 10405 } 10406 10407 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10408 { 10409 if (map_is_created(map)) 10410 return libbpf_err(-EBUSY); 10411 10412 if (map->mmaped) { 10413 size_t mmap_old_sz, mmap_new_sz; 10414 int err; 10415 10416 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10417 return libbpf_err(-EOPNOTSUPP); 10418 10419 mmap_old_sz = bpf_map_mmap_sz(map); 10420 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10421 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10422 if (err) { 10423 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10424 bpf_map__name(map), errstr(err)); 10425 return libbpf_err(err); 10426 } 10427 err = map_btf_datasec_resize(map, size); 10428 if (err && err != -ENOENT) { 10429 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10430 bpf_map__name(map), errstr(err)); 10431 map->btf_value_type_id = 0; 10432 map->btf_key_type_id = 0; 10433 } 10434 } 10435 10436 map->def.value_size = size; 10437 return 0; 10438 } 10439 10440 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10441 { 10442 return map ? map->btf_key_type_id : 0; 10443 } 10444 10445 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10446 { 10447 return map ? map->btf_value_type_id : 0; 10448 } 10449 10450 int bpf_map__set_initial_value(struct bpf_map *map, 10451 const void *data, size_t size) 10452 { 10453 size_t actual_sz; 10454 10455 if (map_is_created(map)) 10456 return libbpf_err(-EBUSY); 10457 10458 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10459 return libbpf_err(-EINVAL); 10460 10461 if (map->def.type == BPF_MAP_TYPE_ARENA) 10462 actual_sz = map->obj->arena_data_sz; 10463 else 10464 actual_sz = map->def.value_size; 10465 if (size != actual_sz) 10466 return libbpf_err(-EINVAL); 10467 10468 memcpy(map->mmaped, data, size); 10469 return 0; 10470 } 10471 10472 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10473 { 10474 if (bpf_map__is_struct_ops(map)) { 10475 if (psize) 10476 *psize = map->def.value_size; 10477 return map->st_ops->data; 10478 } 10479 10480 if (!map->mmaped) 10481 return NULL; 10482 10483 if (map->def.type == BPF_MAP_TYPE_ARENA) 10484 *psize = map->obj->arena_data_sz; 10485 else 10486 *psize = map->def.value_size; 10487 10488 return map->mmaped; 10489 } 10490 10491 bool bpf_map__is_internal(const struct bpf_map *map) 10492 { 10493 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10494 } 10495 10496 __u32 bpf_map__ifindex(const struct bpf_map *map) 10497 { 10498 return map->map_ifindex; 10499 } 10500 10501 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10502 { 10503 if (map_is_created(map)) 10504 return libbpf_err(-EBUSY); 10505 map->map_ifindex = ifindex; 10506 return 0; 10507 } 10508 10509 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10510 { 10511 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10512 pr_warn("error: unsupported map type\n"); 10513 return libbpf_err(-EINVAL); 10514 } 10515 if (map->inner_map_fd != -1) { 10516 pr_warn("error: inner_map_fd already specified\n"); 10517 return libbpf_err(-EINVAL); 10518 } 10519 if (map->inner_map) { 10520 bpf_map__destroy(map->inner_map); 10521 zfree(&map->inner_map); 10522 } 10523 map->inner_map_fd = fd; 10524 return 0; 10525 } 10526 10527 static struct bpf_map * 10528 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10529 { 10530 ssize_t idx; 10531 struct bpf_map *s, *e; 10532 10533 if (!obj || !obj->maps) 10534 return errno = EINVAL, NULL; 10535 10536 s = obj->maps; 10537 e = obj->maps + obj->nr_maps; 10538 10539 if ((m < s) || (m >= e)) { 10540 pr_warn("error in %s: map handler doesn't belong to object\n", 10541 __func__); 10542 return errno = EINVAL, NULL; 10543 } 10544 10545 idx = (m - obj->maps) + i; 10546 if (idx >= obj->nr_maps || idx < 0) 10547 return NULL; 10548 return &obj->maps[idx]; 10549 } 10550 10551 struct bpf_map * 10552 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10553 { 10554 if (prev == NULL && obj != NULL) 10555 return obj->maps; 10556 10557 return __bpf_map__iter(prev, obj, 1); 10558 } 10559 10560 struct bpf_map * 10561 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10562 { 10563 if (next == NULL && obj != NULL) { 10564 if (!obj->nr_maps) 10565 return NULL; 10566 return obj->maps + obj->nr_maps - 1; 10567 } 10568 10569 return __bpf_map__iter(next, obj, -1); 10570 } 10571 10572 struct bpf_map * 10573 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10574 { 10575 struct bpf_map *pos; 10576 10577 bpf_object__for_each_map(pos, obj) { 10578 /* if it's a special internal map name (which always starts 10579 * with dot) then check if that special name matches the 10580 * real map name (ELF section name) 10581 */ 10582 if (name[0] == '.') { 10583 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10584 return pos; 10585 continue; 10586 } 10587 /* otherwise map name has to be an exact match */ 10588 if (map_uses_real_name(pos)) { 10589 if (strcmp(pos->real_name, name) == 0) 10590 return pos; 10591 continue; 10592 } 10593 if (strcmp(pos->name, name) == 0) 10594 return pos; 10595 } 10596 return errno = ENOENT, NULL; 10597 } 10598 10599 int 10600 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10601 { 10602 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10603 } 10604 10605 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10606 size_t value_sz, bool check_value_sz) 10607 { 10608 if (!map_is_created(map)) /* map is not yet created */ 10609 return -ENOENT; 10610 10611 if (map->def.key_size != key_sz) { 10612 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10613 map->name, key_sz, map->def.key_size); 10614 return -EINVAL; 10615 } 10616 10617 if (map->fd < 0) { 10618 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10619 return -EINVAL; 10620 } 10621 10622 if (!check_value_sz) 10623 return 0; 10624 10625 switch (map->def.type) { 10626 case BPF_MAP_TYPE_PERCPU_ARRAY: 10627 case BPF_MAP_TYPE_PERCPU_HASH: 10628 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10629 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10630 int num_cpu = libbpf_num_possible_cpus(); 10631 size_t elem_sz = roundup(map->def.value_size, 8); 10632 10633 if (value_sz != num_cpu * elem_sz) { 10634 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10635 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10636 return -EINVAL; 10637 } 10638 break; 10639 } 10640 default: 10641 if (map->def.value_size != value_sz) { 10642 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10643 map->name, value_sz, map->def.value_size); 10644 return -EINVAL; 10645 } 10646 break; 10647 } 10648 return 0; 10649 } 10650 10651 int bpf_map__lookup_elem(const struct bpf_map *map, 10652 const void *key, size_t key_sz, 10653 void *value, size_t value_sz, __u64 flags) 10654 { 10655 int err; 10656 10657 err = validate_map_op(map, key_sz, value_sz, true); 10658 if (err) 10659 return libbpf_err(err); 10660 10661 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10662 } 10663 10664 int bpf_map__update_elem(const struct bpf_map *map, 10665 const void *key, size_t key_sz, 10666 const void *value, size_t value_sz, __u64 flags) 10667 { 10668 int err; 10669 10670 err = validate_map_op(map, key_sz, value_sz, true); 10671 if (err) 10672 return libbpf_err(err); 10673 10674 return bpf_map_update_elem(map->fd, key, value, flags); 10675 } 10676 10677 int bpf_map__delete_elem(const struct bpf_map *map, 10678 const void *key, size_t key_sz, __u64 flags) 10679 { 10680 int err; 10681 10682 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10683 if (err) 10684 return libbpf_err(err); 10685 10686 return bpf_map_delete_elem_flags(map->fd, key, flags); 10687 } 10688 10689 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10690 const void *key, size_t key_sz, 10691 void *value, size_t value_sz, __u64 flags) 10692 { 10693 int err; 10694 10695 err = validate_map_op(map, key_sz, value_sz, true); 10696 if (err) 10697 return libbpf_err(err); 10698 10699 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10700 } 10701 10702 int bpf_map__get_next_key(const struct bpf_map *map, 10703 const void *cur_key, void *next_key, size_t key_sz) 10704 { 10705 int err; 10706 10707 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10708 if (err) 10709 return libbpf_err(err); 10710 10711 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10712 } 10713 10714 long libbpf_get_error(const void *ptr) 10715 { 10716 if (!IS_ERR_OR_NULL(ptr)) 10717 return 0; 10718 10719 if (IS_ERR(ptr)) 10720 errno = -PTR_ERR(ptr); 10721 10722 /* If ptr == NULL, then errno should be already set by the failing 10723 * API, because libbpf never returns NULL on success and it now always 10724 * sets errno on error. So no extra errno handling for ptr == NULL 10725 * case. 10726 */ 10727 return -errno; 10728 } 10729 10730 /* Replace link's underlying BPF program with the new one */ 10731 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10732 { 10733 int ret; 10734 int prog_fd = bpf_program__fd(prog); 10735 10736 if (prog_fd < 0) { 10737 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10738 prog->name); 10739 return libbpf_err(-EINVAL); 10740 } 10741 10742 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10743 return libbpf_err_errno(ret); 10744 } 10745 10746 /* Release "ownership" of underlying BPF resource (typically, BPF program 10747 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10748 * link, when destructed through bpf_link__destroy() call won't attempt to 10749 * detach/unregisted that BPF resource. This is useful in situations where, 10750 * say, attached BPF program has to outlive userspace program that attached it 10751 * in the system. Depending on type of BPF program, though, there might be 10752 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10753 * exit of userspace program doesn't trigger automatic detachment and clean up 10754 * inside the kernel. 10755 */ 10756 void bpf_link__disconnect(struct bpf_link *link) 10757 { 10758 link->disconnected = true; 10759 } 10760 10761 int bpf_link__destroy(struct bpf_link *link) 10762 { 10763 int err = 0; 10764 10765 if (IS_ERR_OR_NULL(link)) 10766 return 0; 10767 10768 if (!link->disconnected && link->detach) 10769 err = link->detach(link); 10770 if (link->pin_path) 10771 free(link->pin_path); 10772 if (link->dealloc) 10773 link->dealloc(link); 10774 else 10775 free(link); 10776 10777 return libbpf_err(err); 10778 } 10779 10780 int bpf_link__fd(const struct bpf_link *link) 10781 { 10782 return link->fd; 10783 } 10784 10785 const char *bpf_link__pin_path(const struct bpf_link *link) 10786 { 10787 return link->pin_path; 10788 } 10789 10790 static int bpf_link__detach_fd(struct bpf_link *link) 10791 { 10792 return libbpf_err_errno(close(link->fd)); 10793 } 10794 10795 struct bpf_link *bpf_link__open(const char *path) 10796 { 10797 struct bpf_link *link; 10798 int fd; 10799 10800 fd = bpf_obj_get(path); 10801 if (fd < 0) { 10802 fd = -errno; 10803 pr_warn("failed to open link at %s: %d\n", path, fd); 10804 return libbpf_err_ptr(fd); 10805 } 10806 10807 link = calloc(1, sizeof(*link)); 10808 if (!link) { 10809 close(fd); 10810 return libbpf_err_ptr(-ENOMEM); 10811 } 10812 link->detach = &bpf_link__detach_fd; 10813 link->fd = fd; 10814 10815 link->pin_path = strdup(path); 10816 if (!link->pin_path) { 10817 bpf_link__destroy(link); 10818 return libbpf_err_ptr(-ENOMEM); 10819 } 10820 10821 return link; 10822 } 10823 10824 int bpf_link__detach(struct bpf_link *link) 10825 { 10826 return bpf_link_detach(link->fd) ? -errno : 0; 10827 } 10828 10829 int bpf_link__pin(struct bpf_link *link, const char *path) 10830 { 10831 int err; 10832 10833 if (link->pin_path) 10834 return libbpf_err(-EBUSY); 10835 err = make_parent_dir(path); 10836 if (err) 10837 return libbpf_err(err); 10838 err = check_path(path); 10839 if (err) 10840 return libbpf_err(err); 10841 10842 link->pin_path = strdup(path); 10843 if (!link->pin_path) 10844 return libbpf_err(-ENOMEM); 10845 10846 if (bpf_obj_pin(link->fd, link->pin_path)) { 10847 err = -errno; 10848 zfree(&link->pin_path); 10849 return libbpf_err(err); 10850 } 10851 10852 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10853 return 0; 10854 } 10855 10856 int bpf_link__unpin(struct bpf_link *link) 10857 { 10858 int err; 10859 10860 if (!link->pin_path) 10861 return libbpf_err(-EINVAL); 10862 10863 err = unlink(link->pin_path); 10864 if (err != 0) 10865 return -errno; 10866 10867 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10868 zfree(&link->pin_path); 10869 return 0; 10870 } 10871 10872 struct bpf_link_perf { 10873 struct bpf_link link; 10874 int perf_event_fd; 10875 /* legacy kprobe support: keep track of probe identifier and type */ 10876 char *legacy_probe_name; 10877 bool legacy_is_kprobe; 10878 bool legacy_is_retprobe; 10879 }; 10880 10881 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10882 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10883 10884 static int bpf_link_perf_detach(struct bpf_link *link) 10885 { 10886 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10887 int err = 0; 10888 10889 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10890 err = -errno; 10891 10892 if (perf_link->perf_event_fd != link->fd) 10893 close(perf_link->perf_event_fd); 10894 close(link->fd); 10895 10896 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10897 if (perf_link->legacy_probe_name) { 10898 if (perf_link->legacy_is_kprobe) { 10899 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10900 perf_link->legacy_is_retprobe); 10901 } else { 10902 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10903 perf_link->legacy_is_retprobe); 10904 } 10905 } 10906 10907 return err; 10908 } 10909 10910 static void bpf_link_perf_dealloc(struct bpf_link *link) 10911 { 10912 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10913 10914 free(perf_link->legacy_probe_name); 10915 free(perf_link); 10916 } 10917 10918 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10919 const struct bpf_perf_event_opts *opts) 10920 { 10921 struct bpf_link_perf *link; 10922 int prog_fd, link_fd = -1, err; 10923 bool force_ioctl_attach; 10924 10925 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10926 return libbpf_err_ptr(-EINVAL); 10927 10928 if (pfd < 0) { 10929 pr_warn("prog '%s': invalid perf event FD %d\n", 10930 prog->name, pfd); 10931 return libbpf_err_ptr(-EINVAL); 10932 } 10933 prog_fd = bpf_program__fd(prog); 10934 if (prog_fd < 0) { 10935 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10936 prog->name); 10937 return libbpf_err_ptr(-EINVAL); 10938 } 10939 10940 link = calloc(1, sizeof(*link)); 10941 if (!link) 10942 return libbpf_err_ptr(-ENOMEM); 10943 link->link.detach = &bpf_link_perf_detach; 10944 link->link.dealloc = &bpf_link_perf_dealloc; 10945 link->perf_event_fd = pfd; 10946 10947 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10948 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10949 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10950 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10951 10952 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10953 if (link_fd < 0) { 10954 err = -errno; 10955 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 10956 prog->name, pfd, errstr(err)); 10957 goto err_out; 10958 } 10959 link->link.fd = link_fd; 10960 } else { 10961 if (OPTS_GET(opts, bpf_cookie, 0)) { 10962 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10963 err = -EOPNOTSUPP; 10964 goto err_out; 10965 } 10966 10967 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10968 err = -errno; 10969 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10970 prog->name, pfd, errstr(err)); 10971 if (err == -EPROTO) 10972 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10973 prog->name, pfd); 10974 goto err_out; 10975 } 10976 link->link.fd = pfd; 10977 } 10978 10979 if (!OPTS_GET(opts, dont_enable, false)) { 10980 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10981 err = -errno; 10982 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10983 prog->name, pfd, errstr(err)); 10984 goto err_out; 10985 } 10986 } 10987 10988 return &link->link; 10989 err_out: 10990 if (link_fd >= 0) 10991 close(link_fd); 10992 free(link); 10993 return libbpf_err_ptr(err); 10994 } 10995 10996 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10997 { 10998 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10999 } 11000 11001 /* 11002 * this function is expected to parse integer in the range of [0, 2^31-1] from 11003 * given file using scanf format string fmt. If actual parsed value is 11004 * negative, the result might be indistinguishable from error 11005 */ 11006 static int parse_uint_from_file(const char *file, const char *fmt) 11007 { 11008 int err, ret; 11009 FILE *f; 11010 11011 f = fopen(file, "re"); 11012 if (!f) { 11013 err = -errno; 11014 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 11015 return err; 11016 } 11017 err = fscanf(f, fmt, &ret); 11018 if (err != 1) { 11019 err = err == EOF ? -EIO : -errno; 11020 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 11021 fclose(f); 11022 return err; 11023 } 11024 fclose(f); 11025 return ret; 11026 } 11027 11028 static int determine_kprobe_perf_type(void) 11029 { 11030 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 11031 11032 return parse_uint_from_file(file, "%d\n"); 11033 } 11034 11035 static int determine_uprobe_perf_type(void) 11036 { 11037 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 11038 11039 return parse_uint_from_file(file, "%d\n"); 11040 } 11041 11042 static int determine_kprobe_retprobe_bit(void) 11043 { 11044 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 11045 11046 return parse_uint_from_file(file, "config:%d\n"); 11047 } 11048 11049 static int determine_uprobe_retprobe_bit(void) 11050 { 11051 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 11052 11053 return parse_uint_from_file(file, "config:%d\n"); 11054 } 11055 11056 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 11057 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 11058 11059 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 11060 uint64_t offset, int pid, size_t ref_ctr_off) 11061 { 11062 const size_t attr_sz = sizeof(struct perf_event_attr); 11063 struct perf_event_attr attr; 11064 int type, pfd; 11065 11066 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 11067 return -EINVAL; 11068 11069 memset(&attr, 0, attr_sz); 11070 11071 type = uprobe ? determine_uprobe_perf_type() 11072 : determine_kprobe_perf_type(); 11073 if (type < 0) { 11074 pr_warn("failed to determine %s perf type: %s\n", 11075 uprobe ? "uprobe" : "kprobe", 11076 errstr(type)); 11077 return type; 11078 } 11079 if (retprobe) { 11080 int bit = uprobe ? determine_uprobe_retprobe_bit() 11081 : determine_kprobe_retprobe_bit(); 11082 11083 if (bit < 0) { 11084 pr_warn("failed to determine %s retprobe bit: %s\n", 11085 uprobe ? "uprobe" : "kprobe", 11086 errstr(bit)); 11087 return bit; 11088 } 11089 attr.config |= 1 << bit; 11090 } 11091 attr.size = attr_sz; 11092 attr.type = type; 11093 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11094 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 11095 attr.config2 = offset; /* kprobe_addr or probe_offset */ 11096 11097 /* pid filter is meaningful only for uprobes */ 11098 pfd = syscall(__NR_perf_event_open, &attr, 11099 pid < 0 ? -1 : pid /* pid */, 11100 pid == -1 ? 0 : -1 /* cpu */, 11101 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11102 return pfd >= 0 ? pfd : -errno; 11103 } 11104 11105 static int append_to_file(const char *file, const char *fmt, ...) 11106 { 11107 int fd, n, err = 0; 11108 va_list ap; 11109 char buf[1024]; 11110 11111 va_start(ap, fmt); 11112 n = vsnprintf(buf, sizeof(buf), fmt, ap); 11113 va_end(ap); 11114 11115 if (n < 0 || n >= sizeof(buf)) 11116 return -EINVAL; 11117 11118 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 11119 if (fd < 0) 11120 return -errno; 11121 11122 if (write(fd, buf, n) < 0) 11123 err = -errno; 11124 11125 close(fd); 11126 return err; 11127 } 11128 11129 #define DEBUGFS "/sys/kernel/debug/tracing" 11130 #define TRACEFS "/sys/kernel/tracing" 11131 11132 static bool use_debugfs(void) 11133 { 11134 static int has_debugfs = -1; 11135 11136 if (has_debugfs < 0) 11137 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11138 11139 return has_debugfs == 1; 11140 } 11141 11142 static const char *tracefs_path(void) 11143 { 11144 return use_debugfs() ? DEBUGFS : TRACEFS; 11145 } 11146 11147 static const char *tracefs_kprobe_events(void) 11148 { 11149 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11150 } 11151 11152 static const char *tracefs_uprobe_events(void) 11153 { 11154 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11155 } 11156 11157 static const char *tracefs_available_filter_functions(void) 11158 { 11159 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11160 : TRACEFS"/available_filter_functions"; 11161 } 11162 11163 static const char *tracefs_available_filter_functions_addrs(void) 11164 { 11165 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11166 : TRACEFS"/available_filter_functions_addrs"; 11167 } 11168 11169 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz, 11170 const char *name, size_t offset) 11171 { 11172 static int index = 0; 11173 int i; 11174 11175 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(), 11176 __sync_fetch_and_add(&index, 1), name, offset); 11177 11178 /* sanitize name in the probe name */ 11179 for (i = 0; buf[i]; i++) { 11180 if (!isalnum(buf[i])) 11181 buf[i] = '_'; 11182 } 11183 } 11184 11185 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11186 const char *kfunc_name, size_t offset) 11187 { 11188 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11189 retprobe ? 'r' : 'p', 11190 retprobe ? "kretprobes" : "kprobes", 11191 probe_name, kfunc_name, offset); 11192 } 11193 11194 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11195 { 11196 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11197 retprobe ? "kretprobes" : "kprobes", probe_name); 11198 } 11199 11200 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11201 { 11202 char file[256]; 11203 11204 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11205 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11206 11207 return parse_uint_from_file(file, "%d\n"); 11208 } 11209 11210 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11211 const char *kfunc_name, size_t offset, int pid) 11212 { 11213 const size_t attr_sz = sizeof(struct perf_event_attr); 11214 struct perf_event_attr attr; 11215 int type, pfd, err; 11216 11217 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11218 if (err < 0) { 11219 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11220 kfunc_name, offset, 11221 errstr(err)); 11222 return err; 11223 } 11224 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11225 if (type < 0) { 11226 err = type; 11227 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11228 kfunc_name, offset, 11229 errstr(err)); 11230 goto err_clean_legacy; 11231 } 11232 11233 memset(&attr, 0, attr_sz); 11234 attr.size = attr_sz; 11235 attr.config = type; 11236 attr.type = PERF_TYPE_TRACEPOINT; 11237 11238 pfd = syscall(__NR_perf_event_open, &attr, 11239 pid < 0 ? -1 : pid, /* pid */ 11240 pid == -1 ? 0 : -1, /* cpu */ 11241 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11242 if (pfd < 0) { 11243 err = -errno; 11244 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11245 errstr(err)); 11246 goto err_clean_legacy; 11247 } 11248 return pfd; 11249 11250 err_clean_legacy: 11251 /* Clear the newly added legacy kprobe_event */ 11252 remove_kprobe_event_legacy(probe_name, retprobe); 11253 return err; 11254 } 11255 11256 static const char *arch_specific_syscall_pfx(void) 11257 { 11258 #if defined(__x86_64__) 11259 return "x64"; 11260 #elif defined(__i386__) 11261 return "ia32"; 11262 #elif defined(__s390x__) 11263 return "s390x"; 11264 #elif defined(__s390__) 11265 return "s390"; 11266 #elif defined(__arm__) 11267 return "arm"; 11268 #elif defined(__aarch64__) 11269 return "arm64"; 11270 #elif defined(__mips__) 11271 return "mips"; 11272 #elif defined(__riscv) 11273 return "riscv"; 11274 #elif defined(__powerpc__) 11275 return "powerpc"; 11276 #elif defined(__powerpc64__) 11277 return "powerpc64"; 11278 #else 11279 return NULL; 11280 #endif 11281 } 11282 11283 int probe_kern_syscall_wrapper(int token_fd) 11284 { 11285 char syscall_name[64]; 11286 const char *ksys_pfx; 11287 11288 ksys_pfx = arch_specific_syscall_pfx(); 11289 if (!ksys_pfx) 11290 return 0; 11291 11292 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11293 11294 if (determine_kprobe_perf_type() >= 0) { 11295 int pfd; 11296 11297 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11298 if (pfd >= 0) 11299 close(pfd); 11300 11301 return pfd >= 0 ? 1 : 0; 11302 } else { /* legacy mode */ 11303 char probe_name[MAX_EVENT_NAME_LEN]; 11304 11305 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11306 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11307 return 0; 11308 11309 (void)remove_kprobe_event_legacy(probe_name, false); 11310 return 1; 11311 } 11312 } 11313 11314 struct bpf_link * 11315 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11316 const char *func_name, 11317 const struct bpf_kprobe_opts *opts) 11318 { 11319 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11320 enum probe_attach_mode attach_mode; 11321 char *legacy_probe = NULL; 11322 struct bpf_link *link; 11323 size_t offset; 11324 bool retprobe, legacy; 11325 int pfd, err; 11326 11327 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11328 return libbpf_err_ptr(-EINVAL); 11329 11330 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11331 retprobe = OPTS_GET(opts, retprobe, false); 11332 offset = OPTS_GET(opts, offset, 0); 11333 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11334 11335 legacy = determine_kprobe_perf_type() < 0; 11336 switch (attach_mode) { 11337 case PROBE_ATTACH_MODE_LEGACY: 11338 legacy = true; 11339 pe_opts.force_ioctl_attach = true; 11340 break; 11341 case PROBE_ATTACH_MODE_PERF: 11342 if (legacy) 11343 return libbpf_err_ptr(-ENOTSUP); 11344 pe_opts.force_ioctl_attach = true; 11345 break; 11346 case PROBE_ATTACH_MODE_LINK: 11347 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11348 return libbpf_err_ptr(-ENOTSUP); 11349 break; 11350 case PROBE_ATTACH_MODE_DEFAULT: 11351 break; 11352 default: 11353 return libbpf_err_ptr(-EINVAL); 11354 } 11355 11356 if (!legacy) { 11357 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11358 func_name, offset, 11359 -1 /* pid */, 0 /* ref_ctr_off */); 11360 } else { 11361 char probe_name[MAX_EVENT_NAME_LEN]; 11362 11363 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 11364 func_name, offset); 11365 11366 legacy_probe = strdup(probe_name); 11367 if (!legacy_probe) 11368 return libbpf_err_ptr(-ENOMEM); 11369 11370 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11371 offset, -1 /* pid */); 11372 } 11373 if (pfd < 0) { 11374 err = -errno; 11375 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11376 prog->name, retprobe ? "kretprobe" : "kprobe", 11377 func_name, offset, 11378 errstr(err)); 11379 goto err_out; 11380 } 11381 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11382 err = libbpf_get_error(link); 11383 if (err) { 11384 close(pfd); 11385 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11386 prog->name, retprobe ? "kretprobe" : "kprobe", 11387 func_name, offset, 11388 errstr(err)); 11389 goto err_clean_legacy; 11390 } 11391 if (legacy) { 11392 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11393 11394 perf_link->legacy_probe_name = legacy_probe; 11395 perf_link->legacy_is_kprobe = true; 11396 perf_link->legacy_is_retprobe = retprobe; 11397 } 11398 11399 return link; 11400 11401 err_clean_legacy: 11402 if (legacy) 11403 remove_kprobe_event_legacy(legacy_probe, retprobe); 11404 err_out: 11405 free(legacy_probe); 11406 return libbpf_err_ptr(err); 11407 } 11408 11409 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11410 bool retprobe, 11411 const char *func_name) 11412 { 11413 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11414 .retprobe = retprobe, 11415 ); 11416 11417 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11418 } 11419 11420 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11421 const char *syscall_name, 11422 const struct bpf_ksyscall_opts *opts) 11423 { 11424 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11425 char func_name[128]; 11426 11427 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11428 return libbpf_err_ptr(-EINVAL); 11429 11430 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11431 /* arch_specific_syscall_pfx() should never return NULL here 11432 * because it is guarded by kernel_supports(). However, since 11433 * compiler does not know that we have an explicit conditional 11434 * as well. 11435 */ 11436 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11437 arch_specific_syscall_pfx() ? : "", syscall_name); 11438 } else { 11439 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11440 } 11441 11442 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11443 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11444 11445 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11446 } 11447 11448 /* Adapted from perf/util/string.c */ 11449 bool glob_match(const char *str, const char *pat) 11450 { 11451 while (*str && *pat && *pat != '*') { 11452 if (*pat == '?') { /* Matches any single character */ 11453 str++; 11454 pat++; 11455 continue; 11456 } 11457 if (*str != *pat) 11458 return false; 11459 str++; 11460 pat++; 11461 } 11462 /* Check wild card */ 11463 if (*pat == '*') { 11464 while (*pat == '*') 11465 pat++; 11466 if (!*pat) /* Tail wild card matches all */ 11467 return true; 11468 while (*str) 11469 if (glob_match(str++, pat)) 11470 return true; 11471 } 11472 return !*str && !*pat; 11473 } 11474 11475 struct kprobe_multi_resolve { 11476 const char *pattern; 11477 unsigned long *addrs; 11478 size_t cap; 11479 size_t cnt; 11480 }; 11481 11482 struct avail_kallsyms_data { 11483 char **syms; 11484 size_t cnt; 11485 struct kprobe_multi_resolve *res; 11486 }; 11487 11488 static int avail_func_cmp(const void *a, const void *b) 11489 { 11490 return strcmp(*(const char **)a, *(const char **)b); 11491 } 11492 11493 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11494 const char *sym_name, void *ctx) 11495 { 11496 struct avail_kallsyms_data *data = ctx; 11497 struct kprobe_multi_resolve *res = data->res; 11498 int err; 11499 11500 if (!glob_match(sym_name, res->pattern)) 11501 return 0; 11502 11503 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) { 11504 /* Some versions of kernel strip out .llvm.<hash> suffix from 11505 * function names reported in available_filter_functions, but 11506 * don't do so for kallsyms. While this is clearly a kernel 11507 * bug (fixed by [0]) we try to accommodate that in libbpf to 11508 * make multi-kprobe usability a bit better: if no match is 11509 * found, we will strip .llvm. suffix and try one more time. 11510 * 11511 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG") 11512 */ 11513 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx; 11514 11515 if (!(sym_sfx = strstr(sym_name, ".llvm."))) 11516 return 0; 11517 11518 /* psym_trim vs sym_trim dance is done to avoid pointer vs array 11519 * coercion differences and get proper `const char **` pointer 11520 * which avail_func_cmp() expects 11521 */ 11522 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name); 11523 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11524 return 0; 11525 } 11526 11527 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11528 if (err) 11529 return err; 11530 11531 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11532 return 0; 11533 } 11534 11535 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11536 { 11537 const char *available_functions_file = tracefs_available_filter_functions(); 11538 struct avail_kallsyms_data data; 11539 char sym_name[500]; 11540 FILE *f; 11541 int err = 0, ret, i; 11542 char **syms = NULL; 11543 size_t cap = 0, cnt = 0; 11544 11545 f = fopen(available_functions_file, "re"); 11546 if (!f) { 11547 err = -errno; 11548 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11549 return err; 11550 } 11551 11552 while (true) { 11553 char *name; 11554 11555 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11556 if (ret == EOF && feof(f)) 11557 break; 11558 11559 if (ret != 1) { 11560 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11561 err = -EINVAL; 11562 goto cleanup; 11563 } 11564 11565 if (!glob_match(sym_name, res->pattern)) 11566 continue; 11567 11568 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11569 if (err) 11570 goto cleanup; 11571 11572 name = strdup(sym_name); 11573 if (!name) { 11574 err = -errno; 11575 goto cleanup; 11576 } 11577 11578 syms[cnt++] = name; 11579 } 11580 11581 /* no entries found, bail out */ 11582 if (cnt == 0) { 11583 err = -ENOENT; 11584 goto cleanup; 11585 } 11586 11587 /* sort available functions */ 11588 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11589 11590 data.syms = syms; 11591 data.res = res; 11592 data.cnt = cnt; 11593 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11594 11595 if (res->cnt == 0) 11596 err = -ENOENT; 11597 11598 cleanup: 11599 for (i = 0; i < cnt; i++) 11600 free((char *)syms[i]); 11601 free(syms); 11602 11603 fclose(f); 11604 return err; 11605 } 11606 11607 static bool has_available_filter_functions_addrs(void) 11608 { 11609 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11610 } 11611 11612 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11613 { 11614 const char *available_path = tracefs_available_filter_functions_addrs(); 11615 char sym_name[500]; 11616 FILE *f; 11617 int ret, err = 0; 11618 unsigned long long sym_addr; 11619 11620 f = fopen(available_path, "re"); 11621 if (!f) { 11622 err = -errno; 11623 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11624 return err; 11625 } 11626 11627 while (true) { 11628 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11629 if (ret == EOF && feof(f)) 11630 break; 11631 11632 if (ret != 2) { 11633 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11634 ret); 11635 err = -EINVAL; 11636 goto cleanup; 11637 } 11638 11639 if (!glob_match(sym_name, res->pattern)) 11640 continue; 11641 11642 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11643 sizeof(*res->addrs), res->cnt + 1); 11644 if (err) 11645 goto cleanup; 11646 11647 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11648 } 11649 11650 if (res->cnt == 0) 11651 err = -ENOENT; 11652 11653 cleanup: 11654 fclose(f); 11655 return err; 11656 } 11657 11658 struct bpf_link * 11659 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11660 const char *pattern, 11661 const struct bpf_kprobe_multi_opts *opts) 11662 { 11663 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11664 struct kprobe_multi_resolve res = { 11665 .pattern = pattern, 11666 }; 11667 enum bpf_attach_type attach_type; 11668 struct bpf_link *link = NULL; 11669 const unsigned long *addrs; 11670 int err, link_fd, prog_fd; 11671 bool retprobe, session, unique_match; 11672 const __u64 *cookies; 11673 const char **syms; 11674 size_t cnt; 11675 11676 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11677 return libbpf_err_ptr(-EINVAL); 11678 11679 prog_fd = bpf_program__fd(prog); 11680 if (prog_fd < 0) { 11681 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11682 prog->name); 11683 return libbpf_err_ptr(-EINVAL); 11684 } 11685 11686 syms = OPTS_GET(opts, syms, false); 11687 addrs = OPTS_GET(opts, addrs, false); 11688 cnt = OPTS_GET(opts, cnt, false); 11689 cookies = OPTS_GET(opts, cookies, false); 11690 unique_match = OPTS_GET(opts, unique_match, false); 11691 11692 if (!pattern && !addrs && !syms) 11693 return libbpf_err_ptr(-EINVAL); 11694 if (pattern && (addrs || syms || cookies || cnt)) 11695 return libbpf_err_ptr(-EINVAL); 11696 if (!pattern && !cnt) 11697 return libbpf_err_ptr(-EINVAL); 11698 if (!pattern && unique_match) 11699 return libbpf_err_ptr(-EINVAL); 11700 if (addrs && syms) 11701 return libbpf_err_ptr(-EINVAL); 11702 11703 if (pattern) { 11704 if (has_available_filter_functions_addrs()) 11705 err = libbpf_available_kprobes_parse(&res); 11706 else 11707 err = libbpf_available_kallsyms_parse(&res); 11708 if (err) 11709 goto error; 11710 11711 if (unique_match && res.cnt != 1) { 11712 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n", 11713 prog->name, pattern, res.cnt); 11714 err = -EINVAL; 11715 goto error; 11716 } 11717 11718 addrs = res.addrs; 11719 cnt = res.cnt; 11720 } 11721 11722 retprobe = OPTS_GET(opts, retprobe, false); 11723 session = OPTS_GET(opts, session, false); 11724 11725 if (retprobe && session) 11726 return libbpf_err_ptr(-EINVAL); 11727 11728 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11729 11730 lopts.kprobe_multi.syms = syms; 11731 lopts.kprobe_multi.addrs = addrs; 11732 lopts.kprobe_multi.cookies = cookies; 11733 lopts.kprobe_multi.cnt = cnt; 11734 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11735 11736 link = calloc(1, sizeof(*link)); 11737 if (!link) { 11738 err = -ENOMEM; 11739 goto error; 11740 } 11741 link->detach = &bpf_link__detach_fd; 11742 11743 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11744 if (link_fd < 0) { 11745 err = -errno; 11746 pr_warn("prog '%s': failed to attach: %s\n", 11747 prog->name, errstr(err)); 11748 goto error; 11749 } 11750 link->fd = link_fd; 11751 free(res.addrs); 11752 return link; 11753 11754 error: 11755 free(link); 11756 free(res.addrs); 11757 return libbpf_err_ptr(err); 11758 } 11759 11760 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11761 { 11762 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11763 unsigned long offset = 0; 11764 const char *func_name; 11765 char *func; 11766 int n; 11767 11768 *link = NULL; 11769 11770 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11771 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11772 return 0; 11773 11774 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11775 if (opts.retprobe) 11776 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11777 else 11778 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11779 11780 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11781 if (n < 1) { 11782 pr_warn("kprobe name is invalid: %s\n", func_name); 11783 return -EINVAL; 11784 } 11785 if (opts.retprobe && offset != 0) { 11786 free(func); 11787 pr_warn("kretprobes do not support offset specification\n"); 11788 return -EINVAL; 11789 } 11790 11791 opts.offset = offset; 11792 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11793 free(func); 11794 return libbpf_get_error(*link); 11795 } 11796 11797 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11798 { 11799 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11800 const char *syscall_name; 11801 11802 *link = NULL; 11803 11804 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11805 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11806 return 0; 11807 11808 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11809 if (opts.retprobe) 11810 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11811 else 11812 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11813 11814 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11815 return *link ? 0 : -errno; 11816 } 11817 11818 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11819 { 11820 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11821 const char *spec; 11822 char *pattern; 11823 int n; 11824 11825 *link = NULL; 11826 11827 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11828 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11829 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11830 return 0; 11831 11832 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11833 if (opts.retprobe) 11834 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11835 else 11836 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11837 11838 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11839 if (n < 1) { 11840 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11841 return -EINVAL; 11842 } 11843 11844 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11845 free(pattern); 11846 return libbpf_get_error(*link); 11847 } 11848 11849 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11850 struct bpf_link **link) 11851 { 11852 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11853 const char *spec; 11854 char *pattern; 11855 int n; 11856 11857 *link = NULL; 11858 11859 /* no auto-attach for SEC("kprobe.session") */ 11860 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11861 return 0; 11862 11863 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11864 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11865 if (n < 1) { 11866 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11867 return -EINVAL; 11868 } 11869 11870 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11871 free(pattern); 11872 return *link ? 0 : -errno; 11873 } 11874 11875 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11876 { 11877 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11878 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11879 int n, ret = -EINVAL; 11880 11881 *link = NULL; 11882 11883 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11884 &probe_type, &binary_path, &func_name); 11885 switch (n) { 11886 case 1: 11887 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11888 ret = 0; 11889 break; 11890 case 3: 11891 opts.session = str_has_pfx(probe_type, "uprobe.session"); 11892 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11893 11894 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11895 ret = libbpf_get_error(*link); 11896 break; 11897 default: 11898 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11899 prog->sec_name); 11900 break; 11901 } 11902 free(probe_type); 11903 free(binary_path); 11904 free(func_name); 11905 return ret; 11906 } 11907 11908 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11909 const char *binary_path, size_t offset) 11910 { 11911 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11912 retprobe ? 'r' : 'p', 11913 retprobe ? "uretprobes" : "uprobes", 11914 probe_name, binary_path, offset); 11915 } 11916 11917 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11918 { 11919 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11920 retprobe ? "uretprobes" : "uprobes", probe_name); 11921 } 11922 11923 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11924 { 11925 char file[512]; 11926 11927 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11928 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11929 11930 return parse_uint_from_file(file, "%d\n"); 11931 } 11932 11933 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11934 const char *binary_path, size_t offset, int pid) 11935 { 11936 const size_t attr_sz = sizeof(struct perf_event_attr); 11937 struct perf_event_attr attr; 11938 int type, pfd, err; 11939 11940 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11941 if (err < 0) { 11942 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 11943 binary_path, (size_t)offset, errstr(err)); 11944 return err; 11945 } 11946 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11947 if (type < 0) { 11948 err = type; 11949 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 11950 binary_path, offset, errstr(err)); 11951 goto err_clean_legacy; 11952 } 11953 11954 memset(&attr, 0, attr_sz); 11955 attr.size = attr_sz; 11956 attr.config = type; 11957 attr.type = PERF_TYPE_TRACEPOINT; 11958 11959 pfd = syscall(__NR_perf_event_open, &attr, 11960 pid < 0 ? -1 : pid, /* pid */ 11961 pid == -1 ? 0 : -1, /* cpu */ 11962 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11963 if (pfd < 0) { 11964 err = -errno; 11965 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 11966 goto err_clean_legacy; 11967 } 11968 return pfd; 11969 11970 err_clean_legacy: 11971 /* Clear the newly added legacy uprobe_event */ 11972 remove_uprobe_event_legacy(probe_name, retprobe); 11973 return err; 11974 } 11975 11976 /* Find offset of function name in archive specified by path. Currently 11977 * supported are .zip files that do not compress their contents, as used on 11978 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11979 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11980 * library functions. 11981 * 11982 * An overview of the APK format specifically provided here: 11983 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11984 */ 11985 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11986 const char *func_name) 11987 { 11988 struct zip_archive *archive; 11989 struct zip_entry entry; 11990 long ret; 11991 Elf *elf; 11992 11993 archive = zip_archive_open(archive_path); 11994 if (IS_ERR(archive)) { 11995 ret = PTR_ERR(archive); 11996 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11997 return ret; 11998 } 11999 12000 ret = zip_archive_find_entry(archive, file_name, &entry); 12001 if (ret) { 12002 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 12003 archive_path, ret); 12004 goto out; 12005 } 12006 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 12007 (unsigned long)entry.data_offset); 12008 12009 if (entry.compression) { 12010 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 12011 archive_path); 12012 ret = -LIBBPF_ERRNO__FORMAT; 12013 goto out; 12014 } 12015 12016 elf = elf_memory((void *)entry.data, entry.data_length); 12017 if (!elf) { 12018 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 12019 elf_errmsg(-1)); 12020 ret = -LIBBPF_ERRNO__LIBELF; 12021 goto out; 12022 } 12023 12024 ret = elf_find_func_offset(elf, file_name, func_name); 12025 if (ret > 0) { 12026 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 12027 func_name, file_name, archive_path, entry.data_offset, ret, 12028 ret + entry.data_offset); 12029 ret += entry.data_offset; 12030 } 12031 elf_end(elf); 12032 12033 out: 12034 zip_archive_close(archive); 12035 return ret; 12036 } 12037 12038 static const char *arch_specific_lib_paths(void) 12039 { 12040 /* 12041 * Based on https://packages.debian.org/sid/libc6. 12042 * 12043 * Assume that the traced program is built for the same architecture 12044 * as libbpf, which should cover the vast majority of cases. 12045 */ 12046 #if defined(__x86_64__) 12047 return "/lib/x86_64-linux-gnu"; 12048 #elif defined(__i386__) 12049 return "/lib/i386-linux-gnu"; 12050 #elif defined(__s390x__) 12051 return "/lib/s390x-linux-gnu"; 12052 #elif defined(__s390__) 12053 return "/lib/s390-linux-gnu"; 12054 #elif defined(__arm__) && defined(__SOFTFP__) 12055 return "/lib/arm-linux-gnueabi"; 12056 #elif defined(__arm__) && !defined(__SOFTFP__) 12057 return "/lib/arm-linux-gnueabihf"; 12058 #elif defined(__aarch64__) 12059 return "/lib/aarch64-linux-gnu"; 12060 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 12061 return "/lib/mips64el-linux-gnuabi64"; 12062 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 12063 return "/lib/mipsel-linux-gnu"; 12064 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 12065 return "/lib/powerpc64le-linux-gnu"; 12066 #elif defined(__sparc__) && defined(__arch64__) 12067 return "/lib/sparc64-linux-gnu"; 12068 #elif defined(__riscv) && __riscv_xlen == 64 12069 return "/lib/riscv64-linux-gnu"; 12070 #else 12071 return NULL; 12072 #endif 12073 } 12074 12075 /* Get full path to program/shared library. */ 12076 static int resolve_full_path(const char *file, char *result, size_t result_sz) 12077 { 12078 const char *search_paths[3] = {}; 12079 int i, perm; 12080 12081 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 12082 search_paths[0] = getenv("LD_LIBRARY_PATH"); 12083 search_paths[1] = "/usr/lib64:/usr/lib"; 12084 search_paths[2] = arch_specific_lib_paths(); 12085 perm = R_OK; 12086 } else { 12087 search_paths[0] = getenv("PATH"); 12088 search_paths[1] = "/usr/bin:/usr/sbin"; 12089 perm = R_OK | X_OK; 12090 } 12091 12092 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 12093 const char *s; 12094 12095 if (!search_paths[i]) 12096 continue; 12097 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 12098 char *next_path; 12099 int seg_len; 12100 12101 if (s[0] == ':') 12102 s++; 12103 next_path = strchr(s, ':'); 12104 seg_len = next_path ? next_path - s : strlen(s); 12105 if (!seg_len) 12106 continue; 12107 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 12108 /* ensure it has required permissions */ 12109 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 12110 continue; 12111 pr_debug("resolved '%s' to '%s'\n", file, result); 12112 return 0; 12113 } 12114 } 12115 return -ENOENT; 12116 } 12117 12118 struct bpf_link * 12119 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 12120 pid_t pid, 12121 const char *path, 12122 const char *func_pattern, 12123 const struct bpf_uprobe_multi_opts *opts) 12124 { 12125 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 12126 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12127 unsigned long *resolved_offsets = NULL; 12128 enum bpf_attach_type attach_type; 12129 int err = 0, link_fd, prog_fd; 12130 struct bpf_link *link = NULL; 12131 char full_path[PATH_MAX]; 12132 bool retprobe, session; 12133 const __u64 *cookies; 12134 const char **syms; 12135 size_t cnt; 12136 12137 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 12138 return libbpf_err_ptr(-EINVAL); 12139 12140 prog_fd = bpf_program__fd(prog); 12141 if (prog_fd < 0) { 12142 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12143 prog->name); 12144 return libbpf_err_ptr(-EINVAL); 12145 } 12146 12147 syms = OPTS_GET(opts, syms, NULL); 12148 offsets = OPTS_GET(opts, offsets, NULL); 12149 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12150 cookies = OPTS_GET(opts, cookies, NULL); 12151 cnt = OPTS_GET(opts, cnt, 0); 12152 retprobe = OPTS_GET(opts, retprobe, false); 12153 session = OPTS_GET(opts, session, false); 12154 12155 /* 12156 * User can specify 2 mutually exclusive set of inputs: 12157 * 12158 * 1) use only path/func_pattern/pid arguments 12159 * 12160 * 2) use path/pid with allowed combinations of: 12161 * syms/offsets/ref_ctr_offsets/cookies/cnt 12162 * 12163 * - syms and offsets are mutually exclusive 12164 * - ref_ctr_offsets and cookies are optional 12165 * 12166 * Any other usage results in error. 12167 */ 12168 12169 if (!path) 12170 return libbpf_err_ptr(-EINVAL); 12171 if (!func_pattern && cnt == 0) 12172 return libbpf_err_ptr(-EINVAL); 12173 12174 if (func_pattern) { 12175 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12176 return libbpf_err_ptr(-EINVAL); 12177 } else { 12178 if (!!syms == !!offsets) 12179 return libbpf_err_ptr(-EINVAL); 12180 } 12181 12182 if (retprobe && session) 12183 return libbpf_err_ptr(-EINVAL); 12184 12185 if (func_pattern) { 12186 if (!strchr(path, '/')) { 12187 err = resolve_full_path(path, full_path, sizeof(full_path)); 12188 if (err) { 12189 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12190 prog->name, path, errstr(err)); 12191 return libbpf_err_ptr(err); 12192 } 12193 path = full_path; 12194 } 12195 12196 err = elf_resolve_pattern_offsets(path, func_pattern, 12197 &resolved_offsets, &cnt); 12198 if (err < 0) 12199 return libbpf_err_ptr(err); 12200 offsets = resolved_offsets; 12201 } else if (syms) { 12202 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12203 if (err < 0) 12204 return libbpf_err_ptr(err); 12205 offsets = resolved_offsets; 12206 } 12207 12208 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12209 12210 lopts.uprobe_multi.path = path; 12211 lopts.uprobe_multi.offsets = offsets; 12212 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12213 lopts.uprobe_multi.cookies = cookies; 12214 lopts.uprobe_multi.cnt = cnt; 12215 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12216 12217 if (pid == 0) 12218 pid = getpid(); 12219 if (pid > 0) 12220 lopts.uprobe_multi.pid = pid; 12221 12222 link = calloc(1, sizeof(*link)); 12223 if (!link) { 12224 err = -ENOMEM; 12225 goto error; 12226 } 12227 link->detach = &bpf_link__detach_fd; 12228 12229 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12230 if (link_fd < 0) { 12231 err = -errno; 12232 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12233 prog->name, errstr(err)); 12234 goto error; 12235 } 12236 link->fd = link_fd; 12237 free(resolved_offsets); 12238 return link; 12239 12240 error: 12241 free(resolved_offsets); 12242 free(link); 12243 return libbpf_err_ptr(err); 12244 } 12245 12246 LIBBPF_API struct bpf_link * 12247 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12248 const char *binary_path, size_t func_offset, 12249 const struct bpf_uprobe_opts *opts) 12250 { 12251 const char *archive_path = NULL, *archive_sep = NULL; 12252 char *legacy_probe = NULL; 12253 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12254 enum probe_attach_mode attach_mode; 12255 char full_path[PATH_MAX]; 12256 struct bpf_link *link; 12257 size_t ref_ctr_off; 12258 int pfd, err; 12259 bool retprobe, legacy; 12260 const char *func_name; 12261 12262 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12263 return libbpf_err_ptr(-EINVAL); 12264 12265 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12266 retprobe = OPTS_GET(opts, retprobe, false); 12267 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12268 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12269 12270 if (!binary_path) 12271 return libbpf_err_ptr(-EINVAL); 12272 12273 /* Check if "binary_path" refers to an archive. */ 12274 archive_sep = strstr(binary_path, "!/"); 12275 if (archive_sep) { 12276 full_path[0] = '\0'; 12277 libbpf_strlcpy(full_path, binary_path, 12278 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12279 archive_path = full_path; 12280 binary_path = archive_sep + 2; 12281 } else if (!strchr(binary_path, '/')) { 12282 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12283 if (err) { 12284 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12285 prog->name, binary_path, errstr(err)); 12286 return libbpf_err_ptr(err); 12287 } 12288 binary_path = full_path; 12289 } 12290 func_name = OPTS_GET(opts, func_name, NULL); 12291 if (func_name) { 12292 long sym_off; 12293 12294 if (archive_path) { 12295 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12296 func_name); 12297 binary_path = archive_path; 12298 } else { 12299 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12300 } 12301 if (sym_off < 0) 12302 return libbpf_err_ptr(sym_off); 12303 func_offset += sym_off; 12304 } 12305 12306 legacy = determine_uprobe_perf_type() < 0; 12307 switch (attach_mode) { 12308 case PROBE_ATTACH_MODE_LEGACY: 12309 legacy = true; 12310 pe_opts.force_ioctl_attach = true; 12311 break; 12312 case PROBE_ATTACH_MODE_PERF: 12313 if (legacy) 12314 return libbpf_err_ptr(-ENOTSUP); 12315 pe_opts.force_ioctl_attach = true; 12316 break; 12317 case PROBE_ATTACH_MODE_LINK: 12318 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12319 return libbpf_err_ptr(-ENOTSUP); 12320 break; 12321 case PROBE_ATTACH_MODE_DEFAULT: 12322 break; 12323 default: 12324 return libbpf_err_ptr(-EINVAL); 12325 } 12326 12327 if (!legacy) { 12328 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12329 func_offset, pid, ref_ctr_off); 12330 } else { 12331 char probe_name[MAX_EVENT_NAME_LEN]; 12332 12333 if (ref_ctr_off) 12334 return libbpf_err_ptr(-EINVAL); 12335 12336 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 12337 strrchr(binary_path, '/') ? : binary_path, 12338 func_offset); 12339 12340 legacy_probe = strdup(probe_name); 12341 if (!legacy_probe) 12342 return libbpf_err_ptr(-ENOMEM); 12343 12344 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12345 binary_path, func_offset, pid); 12346 } 12347 if (pfd < 0) { 12348 err = -errno; 12349 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12350 prog->name, retprobe ? "uretprobe" : "uprobe", 12351 binary_path, func_offset, 12352 errstr(err)); 12353 goto err_out; 12354 } 12355 12356 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12357 err = libbpf_get_error(link); 12358 if (err) { 12359 close(pfd); 12360 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12361 prog->name, retprobe ? "uretprobe" : "uprobe", 12362 binary_path, func_offset, 12363 errstr(err)); 12364 goto err_clean_legacy; 12365 } 12366 if (legacy) { 12367 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12368 12369 perf_link->legacy_probe_name = legacy_probe; 12370 perf_link->legacy_is_kprobe = false; 12371 perf_link->legacy_is_retprobe = retprobe; 12372 } 12373 return link; 12374 12375 err_clean_legacy: 12376 if (legacy) 12377 remove_uprobe_event_legacy(legacy_probe, retprobe); 12378 err_out: 12379 free(legacy_probe); 12380 return libbpf_err_ptr(err); 12381 } 12382 12383 /* Format of u[ret]probe section definition supporting auto-attach: 12384 * u[ret]probe/binary:function[+offset] 12385 * 12386 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12387 * full binary path via bpf_program__attach_uprobe_opts. 12388 * 12389 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12390 * specified (and auto-attach is not possible) or the above format is specified for 12391 * auto-attach. 12392 */ 12393 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12394 { 12395 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12396 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12397 int n, c, ret = -EINVAL; 12398 long offset = 0; 12399 12400 *link = NULL; 12401 12402 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12403 &probe_type, &binary_path, &func_name); 12404 switch (n) { 12405 case 1: 12406 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12407 ret = 0; 12408 break; 12409 case 2: 12410 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12411 prog->name, prog->sec_name); 12412 break; 12413 case 3: 12414 /* check if user specifies `+offset`, if yes, this should be 12415 * the last part of the string, make sure sscanf read to EOL 12416 */ 12417 func_off = strrchr(func_name, '+'); 12418 if (func_off) { 12419 n = sscanf(func_off, "+%li%n", &offset, &c); 12420 if (n == 1 && *(func_off + c) == '\0') 12421 func_off[0] = '\0'; 12422 else 12423 offset = 0; 12424 } 12425 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12426 strcmp(probe_type, "uretprobe.s") == 0; 12427 if (opts.retprobe && offset != 0) { 12428 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12429 prog->name); 12430 break; 12431 } 12432 opts.func_name = func_name; 12433 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12434 ret = libbpf_get_error(*link); 12435 break; 12436 default: 12437 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12438 prog->sec_name); 12439 break; 12440 } 12441 free(probe_type); 12442 free(binary_path); 12443 free(func_name); 12444 12445 return ret; 12446 } 12447 12448 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12449 bool retprobe, pid_t pid, 12450 const char *binary_path, 12451 size_t func_offset) 12452 { 12453 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12454 12455 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12456 } 12457 12458 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12459 pid_t pid, const char *binary_path, 12460 const char *usdt_provider, const char *usdt_name, 12461 const struct bpf_usdt_opts *opts) 12462 { 12463 char resolved_path[512]; 12464 struct bpf_object *obj = prog->obj; 12465 struct bpf_link *link; 12466 __u64 usdt_cookie; 12467 int err; 12468 12469 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12470 return libbpf_err_ptr(-EINVAL); 12471 12472 if (bpf_program__fd(prog) < 0) { 12473 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12474 prog->name); 12475 return libbpf_err_ptr(-EINVAL); 12476 } 12477 12478 if (!binary_path) 12479 return libbpf_err_ptr(-EINVAL); 12480 12481 if (!strchr(binary_path, '/')) { 12482 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12483 if (err) { 12484 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12485 prog->name, binary_path, errstr(err)); 12486 return libbpf_err_ptr(err); 12487 } 12488 binary_path = resolved_path; 12489 } 12490 12491 /* USDT manager is instantiated lazily on first USDT attach. It will 12492 * be destroyed together with BPF object in bpf_object__close(). 12493 */ 12494 if (IS_ERR(obj->usdt_man)) 12495 return libbpf_ptr(obj->usdt_man); 12496 if (!obj->usdt_man) { 12497 obj->usdt_man = usdt_manager_new(obj); 12498 if (IS_ERR(obj->usdt_man)) 12499 return libbpf_ptr(obj->usdt_man); 12500 } 12501 12502 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12503 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12504 usdt_provider, usdt_name, usdt_cookie); 12505 err = libbpf_get_error(link); 12506 if (err) 12507 return libbpf_err_ptr(err); 12508 return link; 12509 } 12510 12511 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12512 { 12513 char *path = NULL, *provider = NULL, *name = NULL; 12514 const char *sec_name; 12515 int n, err; 12516 12517 sec_name = bpf_program__section_name(prog); 12518 if (strcmp(sec_name, "usdt") == 0) { 12519 /* no auto-attach for just SEC("usdt") */ 12520 *link = NULL; 12521 return 0; 12522 } 12523 12524 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12525 if (n != 3) { 12526 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12527 sec_name); 12528 err = -EINVAL; 12529 } else { 12530 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12531 provider, name, NULL); 12532 err = libbpf_get_error(*link); 12533 } 12534 free(path); 12535 free(provider); 12536 free(name); 12537 return err; 12538 } 12539 12540 static int determine_tracepoint_id(const char *tp_category, 12541 const char *tp_name) 12542 { 12543 char file[PATH_MAX]; 12544 int ret; 12545 12546 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12547 tracefs_path(), tp_category, tp_name); 12548 if (ret < 0) 12549 return -errno; 12550 if (ret >= sizeof(file)) { 12551 pr_debug("tracepoint %s/%s path is too long\n", 12552 tp_category, tp_name); 12553 return -E2BIG; 12554 } 12555 return parse_uint_from_file(file, "%d\n"); 12556 } 12557 12558 static int perf_event_open_tracepoint(const char *tp_category, 12559 const char *tp_name) 12560 { 12561 const size_t attr_sz = sizeof(struct perf_event_attr); 12562 struct perf_event_attr attr; 12563 int tp_id, pfd, err; 12564 12565 tp_id = determine_tracepoint_id(tp_category, tp_name); 12566 if (tp_id < 0) { 12567 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12568 tp_category, tp_name, 12569 errstr(tp_id)); 12570 return tp_id; 12571 } 12572 12573 memset(&attr, 0, attr_sz); 12574 attr.type = PERF_TYPE_TRACEPOINT; 12575 attr.size = attr_sz; 12576 attr.config = tp_id; 12577 12578 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12579 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12580 if (pfd < 0) { 12581 err = -errno; 12582 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12583 tp_category, tp_name, 12584 errstr(err)); 12585 return err; 12586 } 12587 return pfd; 12588 } 12589 12590 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12591 const char *tp_category, 12592 const char *tp_name, 12593 const struct bpf_tracepoint_opts *opts) 12594 { 12595 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12596 struct bpf_link *link; 12597 int pfd, err; 12598 12599 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12600 return libbpf_err_ptr(-EINVAL); 12601 12602 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12603 12604 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12605 if (pfd < 0) { 12606 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12607 prog->name, tp_category, tp_name, 12608 errstr(pfd)); 12609 return libbpf_err_ptr(pfd); 12610 } 12611 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12612 err = libbpf_get_error(link); 12613 if (err) { 12614 close(pfd); 12615 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12616 prog->name, tp_category, tp_name, 12617 errstr(err)); 12618 return libbpf_err_ptr(err); 12619 } 12620 return link; 12621 } 12622 12623 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12624 const char *tp_category, 12625 const char *tp_name) 12626 { 12627 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12628 } 12629 12630 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12631 { 12632 char *sec_name, *tp_cat, *tp_name; 12633 12634 *link = NULL; 12635 12636 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12637 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12638 return 0; 12639 12640 sec_name = strdup(prog->sec_name); 12641 if (!sec_name) 12642 return -ENOMEM; 12643 12644 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12645 if (str_has_pfx(prog->sec_name, "tp/")) 12646 tp_cat = sec_name + sizeof("tp/") - 1; 12647 else 12648 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12649 tp_name = strchr(tp_cat, '/'); 12650 if (!tp_name) { 12651 free(sec_name); 12652 return -EINVAL; 12653 } 12654 *tp_name = '\0'; 12655 tp_name++; 12656 12657 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12658 free(sec_name); 12659 return libbpf_get_error(*link); 12660 } 12661 12662 struct bpf_link * 12663 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12664 const char *tp_name, 12665 struct bpf_raw_tracepoint_opts *opts) 12666 { 12667 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12668 struct bpf_link *link; 12669 int prog_fd, pfd; 12670 12671 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12672 return libbpf_err_ptr(-EINVAL); 12673 12674 prog_fd = bpf_program__fd(prog); 12675 if (prog_fd < 0) { 12676 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12677 return libbpf_err_ptr(-EINVAL); 12678 } 12679 12680 link = calloc(1, sizeof(*link)); 12681 if (!link) 12682 return libbpf_err_ptr(-ENOMEM); 12683 link->detach = &bpf_link__detach_fd; 12684 12685 raw_opts.tp_name = tp_name; 12686 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12687 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12688 if (pfd < 0) { 12689 pfd = -errno; 12690 free(link); 12691 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12692 prog->name, tp_name, errstr(pfd)); 12693 return libbpf_err_ptr(pfd); 12694 } 12695 link->fd = pfd; 12696 return link; 12697 } 12698 12699 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12700 const char *tp_name) 12701 { 12702 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12703 } 12704 12705 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12706 { 12707 static const char *const prefixes[] = { 12708 "raw_tp", 12709 "raw_tracepoint", 12710 "raw_tp.w", 12711 "raw_tracepoint.w", 12712 }; 12713 size_t i; 12714 const char *tp_name = NULL; 12715 12716 *link = NULL; 12717 12718 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12719 size_t pfx_len; 12720 12721 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12722 continue; 12723 12724 pfx_len = strlen(prefixes[i]); 12725 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12726 if (prog->sec_name[pfx_len] == '\0') 12727 return 0; 12728 12729 if (prog->sec_name[pfx_len] != '/') 12730 continue; 12731 12732 tp_name = prog->sec_name + pfx_len + 1; 12733 break; 12734 } 12735 12736 if (!tp_name) { 12737 pr_warn("prog '%s': invalid section name '%s'\n", 12738 prog->name, prog->sec_name); 12739 return -EINVAL; 12740 } 12741 12742 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12743 return libbpf_get_error(*link); 12744 } 12745 12746 /* Common logic for all BPF program types that attach to a btf_id */ 12747 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12748 const struct bpf_trace_opts *opts) 12749 { 12750 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12751 struct bpf_link *link; 12752 int prog_fd, pfd; 12753 12754 if (!OPTS_VALID(opts, bpf_trace_opts)) 12755 return libbpf_err_ptr(-EINVAL); 12756 12757 prog_fd = bpf_program__fd(prog); 12758 if (prog_fd < 0) { 12759 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12760 return libbpf_err_ptr(-EINVAL); 12761 } 12762 12763 link = calloc(1, sizeof(*link)); 12764 if (!link) 12765 return libbpf_err_ptr(-ENOMEM); 12766 link->detach = &bpf_link__detach_fd; 12767 12768 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12769 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12770 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12771 if (pfd < 0) { 12772 pfd = -errno; 12773 free(link); 12774 pr_warn("prog '%s': failed to attach: %s\n", 12775 prog->name, errstr(pfd)); 12776 return libbpf_err_ptr(pfd); 12777 } 12778 link->fd = pfd; 12779 return link; 12780 } 12781 12782 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12783 { 12784 return bpf_program__attach_btf_id(prog, NULL); 12785 } 12786 12787 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12788 const struct bpf_trace_opts *opts) 12789 { 12790 return bpf_program__attach_btf_id(prog, opts); 12791 } 12792 12793 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12794 { 12795 return bpf_program__attach_btf_id(prog, NULL); 12796 } 12797 12798 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12799 { 12800 *link = bpf_program__attach_trace(prog); 12801 return libbpf_get_error(*link); 12802 } 12803 12804 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12805 { 12806 *link = bpf_program__attach_lsm(prog); 12807 return libbpf_get_error(*link); 12808 } 12809 12810 static struct bpf_link * 12811 bpf_program_attach_fd(const struct bpf_program *prog, 12812 int target_fd, const char *target_name, 12813 const struct bpf_link_create_opts *opts) 12814 { 12815 enum bpf_attach_type attach_type; 12816 struct bpf_link *link; 12817 int prog_fd, link_fd; 12818 12819 prog_fd = bpf_program__fd(prog); 12820 if (prog_fd < 0) { 12821 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12822 return libbpf_err_ptr(-EINVAL); 12823 } 12824 12825 link = calloc(1, sizeof(*link)); 12826 if (!link) 12827 return libbpf_err_ptr(-ENOMEM); 12828 link->detach = &bpf_link__detach_fd; 12829 12830 attach_type = bpf_program__expected_attach_type(prog); 12831 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12832 if (link_fd < 0) { 12833 link_fd = -errno; 12834 free(link); 12835 pr_warn("prog '%s': failed to attach to %s: %s\n", 12836 prog->name, target_name, 12837 errstr(link_fd)); 12838 return libbpf_err_ptr(link_fd); 12839 } 12840 link->fd = link_fd; 12841 return link; 12842 } 12843 12844 struct bpf_link * 12845 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12846 { 12847 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12848 } 12849 12850 struct bpf_link * 12851 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12852 { 12853 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12854 } 12855 12856 struct bpf_link * 12857 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12858 { 12859 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12860 } 12861 12862 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12863 { 12864 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12865 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12866 } 12867 12868 struct bpf_link * 12869 bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd, 12870 const struct bpf_cgroup_opts *opts) 12871 { 12872 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12873 __u32 relative_id; 12874 int relative_fd; 12875 12876 if (!OPTS_VALID(opts, bpf_cgroup_opts)) 12877 return libbpf_err_ptr(-EINVAL); 12878 12879 relative_id = OPTS_GET(opts, relative_id, 0); 12880 relative_fd = OPTS_GET(opts, relative_fd, 0); 12881 12882 if (relative_fd && relative_id) { 12883 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12884 prog->name); 12885 return libbpf_err_ptr(-EINVAL); 12886 } 12887 12888 link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0); 12889 link_create_opts.cgroup.relative_fd = relative_fd; 12890 link_create_opts.cgroup.relative_id = relative_id; 12891 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12892 12893 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts); 12894 } 12895 12896 struct bpf_link * 12897 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12898 const struct bpf_tcx_opts *opts) 12899 { 12900 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12901 __u32 relative_id; 12902 int relative_fd; 12903 12904 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12905 return libbpf_err_ptr(-EINVAL); 12906 12907 relative_id = OPTS_GET(opts, relative_id, 0); 12908 relative_fd = OPTS_GET(opts, relative_fd, 0); 12909 12910 /* validate we don't have unexpected combinations of non-zero fields */ 12911 if (!ifindex) { 12912 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12913 prog->name); 12914 return libbpf_err_ptr(-EINVAL); 12915 } 12916 if (relative_fd && relative_id) { 12917 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12918 prog->name); 12919 return libbpf_err_ptr(-EINVAL); 12920 } 12921 12922 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12923 link_create_opts.tcx.relative_fd = relative_fd; 12924 link_create_opts.tcx.relative_id = relative_id; 12925 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12926 12927 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12928 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12929 } 12930 12931 struct bpf_link * 12932 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12933 const struct bpf_netkit_opts *opts) 12934 { 12935 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12936 __u32 relative_id; 12937 int relative_fd; 12938 12939 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12940 return libbpf_err_ptr(-EINVAL); 12941 12942 relative_id = OPTS_GET(opts, relative_id, 0); 12943 relative_fd = OPTS_GET(opts, relative_fd, 0); 12944 12945 /* validate we don't have unexpected combinations of non-zero fields */ 12946 if (!ifindex) { 12947 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12948 prog->name); 12949 return libbpf_err_ptr(-EINVAL); 12950 } 12951 if (relative_fd && relative_id) { 12952 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12953 prog->name); 12954 return libbpf_err_ptr(-EINVAL); 12955 } 12956 12957 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12958 link_create_opts.netkit.relative_fd = relative_fd; 12959 link_create_opts.netkit.relative_id = relative_id; 12960 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12961 12962 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12963 } 12964 12965 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12966 int target_fd, 12967 const char *attach_func_name) 12968 { 12969 int btf_id; 12970 12971 if (!!target_fd != !!attach_func_name) { 12972 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12973 prog->name); 12974 return libbpf_err_ptr(-EINVAL); 12975 } 12976 12977 if (prog->type != BPF_PROG_TYPE_EXT) { 12978 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 12979 prog->name); 12980 return libbpf_err_ptr(-EINVAL); 12981 } 12982 12983 if (target_fd) { 12984 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12985 12986 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd); 12987 if (btf_id < 0) 12988 return libbpf_err_ptr(btf_id); 12989 12990 target_opts.target_btf_id = btf_id; 12991 12992 return bpf_program_attach_fd(prog, target_fd, "freplace", 12993 &target_opts); 12994 } else { 12995 /* no target, so use raw_tracepoint_open for compatibility 12996 * with old kernels 12997 */ 12998 return bpf_program__attach_trace(prog); 12999 } 13000 } 13001 13002 struct bpf_link * 13003 bpf_program__attach_iter(const struct bpf_program *prog, 13004 const struct bpf_iter_attach_opts *opts) 13005 { 13006 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 13007 struct bpf_link *link; 13008 int prog_fd, link_fd; 13009 __u32 target_fd = 0; 13010 13011 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 13012 return libbpf_err_ptr(-EINVAL); 13013 13014 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 13015 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 13016 13017 prog_fd = bpf_program__fd(prog); 13018 if (prog_fd < 0) { 13019 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13020 return libbpf_err_ptr(-EINVAL); 13021 } 13022 13023 link = calloc(1, sizeof(*link)); 13024 if (!link) 13025 return libbpf_err_ptr(-ENOMEM); 13026 link->detach = &bpf_link__detach_fd; 13027 13028 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 13029 &link_create_opts); 13030 if (link_fd < 0) { 13031 link_fd = -errno; 13032 free(link); 13033 pr_warn("prog '%s': failed to attach to iterator: %s\n", 13034 prog->name, errstr(link_fd)); 13035 return libbpf_err_ptr(link_fd); 13036 } 13037 link->fd = link_fd; 13038 return link; 13039 } 13040 13041 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 13042 { 13043 *link = bpf_program__attach_iter(prog, NULL); 13044 return libbpf_get_error(*link); 13045 } 13046 13047 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 13048 const struct bpf_netfilter_opts *opts) 13049 { 13050 LIBBPF_OPTS(bpf_link_create_opts, lopts); 13051 struct bpf_link *link; 13052 int prog_fd, link_fd; 13053 13054 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 13055 return libbpf_err_ptr(-EINVAL); 13056 13057 prog_fd = bpf_program__fd(prog); 13058 if (prog_fd < 0) { 13059 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13060 return libbpf_err_ptr(-EINVAL); 13061 } 13062 13063 link = calloc(1, sizeof(*link)); 13064 if (!link) 13065 return libbpf_err_ptr(-ENOMEM); 13066 13067 link->detach = &bpf_link__detach_fd; 13068 13069 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 13070 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 13071 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 13072 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 13073 13074 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 13075 if (link_fd < 0) { 13076 link_fd = -errno; 13077 free(link); 13078 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 13079 prog->name, errstr(link_fd)); 13080 return libbpf_err_ptr(link_fd); 13081 } 13082 link->fd = link_fd; 13083 13084 return link; 13085 } 13086 13087 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 13088 { 13089 struct bpf_link *link = NULL; 13090 int err; 13091 13092 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13093 return libbpf_err_ptr(-EOPNOTSUPP); 13094 13095 if (bpf_program__fd(prog) < 0) { 13096 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 13097 prog->name); 13098 return libbpf_err_ptr(-EINVAL); 13099 } 13100 13101 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 13102 if (err) 13103 return libbpf_err_ptr(err); 13104 13105 /* When calling bpf_program__attach() explicitly, auto-attach support 13106 * is expected to work, so NULL returned link is considered an error. 13107 * This is different for skeleton's attach, see comment in 13108 * bpf_object__attach_skeleton(). 13109 */ 13110 if (!link) 13111 return libbpf_err_ptr(-EOPNOTSUPP); 13112 13113 return link; 13114 } 13115 13116 struct bpf_link_struct_ops { 13117 struct bpf_link link; 13118 int map_fd; 13119 }; 13120 13121 static int bpf_link__detach_struct_ops(struct bpf_link *link) 13122 { 13123 struct bpf_link_struct_ops *st_link; 13124 __u32 zero = 0; 13125 13126 st_link = container_of(link, struct bpf_link_struct_ops, link); 13127 13128 if (st_link->map_fd < 0) 13129 /* w/o a real link */ 13130 return bpf_map_delete_elem(link->fd, &zero); 13131 13132 return close(link->fd); 13133 } 13134 13135 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 13136 { 13137 struct bpf_link_struct_ops *link; 13138 __u32 zero = 0; 13139 int err, fd; 13140 13141 if (!bpf_map__is_struct_ops(map)) { 13142 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 13143 return libbpf_err_ptr(-EINVAL); 13144 } 13145 13146 if (map->fd < 0) { 13147 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 13148 return libbpf_err_ptr(-EINVAL); 13149 } 13150 13151 link = calloc(1, sizeof(*link)); 13152 if (!link) 13153 return libbpf_err_ptr(-EINVAL); 13154 13155 /* kern_vdata should be prepared during the loading phase. */ 13156 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13157 /* It can be EBUSY if the map has been used to create or 13158 * update a link before. We don't allow updating the value of 13159 * a struct_ops once it is set. That ensures that the value 13160 * never changed. So, it is safe to skip EBUSY. 13161 */ 13162 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 13163 free(link); 13164 return libbpf_err_ptr(err); 13165 } 13166 13167 link->link.detach = bpf_link__detach_struct_ops; 13168 13169 if (!(map->def.map_flags & BPF_F_LINK)) { 13170 /* w/o a real link */ 13171 link->link.fd = map->fd; 13172 link->map_fd = -1; 13173 return &link->link; 13174 } 13175 13176 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13177 if (fd < 0) { 13178 free(link); 13179 return libbpf_err_ptr(fd); 13180 } 13181 13182 link->link.fd = fd; 13183 link->map_fd = map->fd; 13184 13185 return &link->link; 13186 } 13187 13188 /* 13189 * Swap the back struct_ops of a link with a new struct_ops map. 13190 */ 13191 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13192 { 13193 struct bpf_link_struct_ops *st_ops_link; 13194 __u32 zero = 0; 13195 int err; 13196 13197 if (!bpf_map__is_struct_ops(map)) 13198 return libbpf_err(-EINVAL); 13199 13200 if (map->fd < 0) { 13201 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13202 return libbpf_err(-EINVAL); 13203 } 13204 13205 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13206 /* Ensure the type of a link is correct */ 13207 if (st_ops_link->map_fd < 0) 13208 return libbpf_err(-EINVAL); 13209 13210 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13211 /* It can be EBUSY if the map has been used to create or 13212 * update a link before. We don't allow updating the value of 13213 * a struct_ops once it is set. That ensures that the value 13214 * never changed. So, it is safe to skip EBUSY. 13215 */ 13216 if (err && err != -EBUSY) 13217 return err; 13218 13219 err = bpf_link_update(link->fd, map->fd, NULL); 13220 if (err < 0) 13221 return err; 13222 13223 st_ops_link->map_fd = map->fd; 13224 13225 return 0; 13226 } 13227 13228 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13229 void *private_data); 13230 13231 static enum bpf_perf_event_ret 13232 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13233 void **copy_mem, size_t *copy_size, 13234 bpf_perf_event_print_t fn, void *private_data) 13235 { 13236 struct perf_event_mmap_page *header = mmap_mem; 13237 __u64 data_head = ring_buffer_read_head(header); 13238 __u64 data_tail = header->data_tail; 13239 void *base = ((__u8 *)header) + page_size; 13240 int ret = LIBBPF_PERF_EVENT_CONT; 13241 struct perf_event_header *ehdr; 13242 size_t ehdr_size; 13243 13244 while (data_head != data_tail) { 13245 ehdr = base + (data_tail & (mmap_size - 1)); 13246 ehdr_size = ehdr->size; 13247 13248 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13249 void *copy_start = ehdr; 13250 size_t len_first = base + mmap_size - copy_start; 13251 size_t len_secnd = ehdr_size - len_first; 13252 13253 if (*copy_size < ehdr_size) { 13254 free(*copy_mem); 13255 *copy_mem = malloc(ehdr_size); 13256 if (!*copy_mem) { 13257 *copy_size = 0; 13258 ret = LIBBPF_PERF_EVENT_ERROR; 13259 break; 13260 } 13261 *copy_size = ehdr_size; 13262 } 13263 13264 memcpy(*copy_mem, copy_start, len_first); 13265 memcpy(*copy_mem + len_first, base, len_secnd); 13266 ehdr = *copy_mem; 13267 } 13268 13269 ret = fn(ehdr, private_data); 13270 data_tail += ehdr_size; 13271 if (ret != LIBBPF_PERF_EVENT_CONT) 13272 break; 13273 } 13274 13275 ring_buffer_write_tail(header, data_tail); 13276 return libbpf_err(ret); 13277 } 13278 13279 struct perf_buffer; 13280 13281 struct perf_buffer_params { 13282 struct perf_event_attr *attr; 13283 /* if event_cb is specified, it takes precendence */ 13284 perf_buffer_event_fn event_cb; 13285 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13286 perf_buffer_sample_fn sample_cb; 13287 perf_buffer_lost_fn lost_cb; 13288 void *ctx; 13289 int cpu_cnt; 13290 int *cpus; 13291 int *map_keys; 13292 }; 13293 13294 struct perf_cpu_buf { 13295 struct perf_buffer *pb; 13296 void *base; /* mmap()'ed memory */ 13297 void *buf; /* for reconstructing segmented data */ 13298 size_t buf_size; 13299 int fd; 13300 int cpu; 13301 int map_key; 13302 }; 13303 13304 struct perf_buffer { 13305 perf_buffer_event_fn event_cb; 13306 perf_buffer_sample_fn sample_cb; 13307 perf_buffer_lost_fn lost_cb; 13308 void *ctx; /* passed into callbacks */ 13309 13310 size_t page_size; 13311 size_t mmap_size; 13312 struct perf_cpu_buf **cpu_bufs; 13313 struct epoll_event *events; 13314 int cpu_cnt; /* number of allocated CPU buffers */ 13315 int epoll_fd; /* perf event FD */ 13316 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13317 }; 13318 13319 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13320 struct perf_cpu_buf *cpu_buf) 13321 { 13322 if (!cpu_buf) 13323 return; 13324 if (cpu_buf->base && 13325 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13326 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13327 if (cpu_buf->fd >= 0) { 13328 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13329 close(cpu_buf->fd); 13330 } 13331 free(cpu_buf->buf); 13332 free(cpu_buf); 13333 } 13334 13335 void perf_buffer__free(struct perf_buffer *pb) 13336 { 13337 int i; 13338 13339 if (IS_ERR_OR_NULL(pb)) 13340 return; 13341 if (pb->cpu_bufs) { 13342 for (i = 0; i < pb->cpu_cnt; i++) { 13343 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13344 13345 if (!cpu_buf) 13346 continue; 13347 13348 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13349 perf_buffer__free_cpu_buf(pb, cpu_buf); 13350 } 13351 free(pb->cpu_bufs); 13352 } 13353 if (pb->epoll_fd >= 0) 13354 close(pb->epoll_fd); 13355 free(pb->events); 13356 free(pb); 13357 } 13358 13359 static struct perf_cpu_buf * 13360 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13361 int cpu, int map_key) 13362 { 13363 struct perf_cpu_buf *cpu_buf; 13364 int err; 13365 13366 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13367 if (!cpu_buf) 13368 return ERR_PTR(-ENOMEM); 13369 13370 cpu_buf->pb = pb; 13371 cpu_buf->cpu = cpu; 13372 cpu_buf->map_key = map_key; 13373 13374 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13375 -1, PERF_FLAG_FD_CLOEXEC); 13376 if (cpu_buf->fd < 0) { 13377 err = -errno; 13378 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13379 cpu, errstr(err)); 13380 goto error; 13381 } 13382 13383 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13384 PROT_READ | PROT_WRITE, MAP_SHARED, 13385 cpu_buf->fd, 0); 13386 if (cpu_buf->base == MAP_FAILED) { 13387 cpu_buf->base = NULL; 13388 err = -errno; 13389 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13390 cpu, errstr(err)); 13391 goto error; 13392 } 13393 13394 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13395 err = -errno; 13396 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13397 cpu, errstr(err)); 13398 goto error; 13399 } 13400 13401 return cpu_buf; 13402 13403 error: 13404 perf_buffer__free_cpu_buf(pb, cpu_buf); 13405 return (struct perf_cpu_buf *)ERR_PTR(err); 13406 } 13407 13408 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13409 struct perf_buffer_params *p); 13410 13411 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13412 perf_buffer_sample_fn sample_cb, 13413 perf_buffer_lost_fn lost_cb, 13414 void *ctx, 13415 const struct perf_buffer_opts *opts) 13416 { 13417 const size_t attr_sz = sizeof(struct perf_event_attr); 13418 struct perf_buffer_params p = {}; 13419 struct perf_event_attr attr; 13420 __u32 sample_period; 13421 13422 if (!OPTS_VALID(opts, perf_buffer_opts)) 13423 return libbpf_err_ptr(-EINVAL); 13424 13425 sample_period = OPTS_GET(opts, sample_period, 1); 13426 if (!sample_period) 13427 sample_period = 1; 13428 13429 memset(&attr, 0, attr_sz); 13430 attr.size = attr_sz; 13431 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13432 attr.type = PERF_TYPE_SOFTWARE; 13433 attr.sample_type = PERF_SAMPLE_RAW; 13434 attr.wakeup_events = sample_period; 13435 13436 p.attr = &attr; 13437 p.sample_cb = sample_cb; 13438 p.lost_cb = lost_cb; 13439 p.ctx = ctx; 13440 13441 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13442 } 13443 13444 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13445 struct perf_event_attr *attr, 13446 perf_buffer_event_fn event_cb, void *ctx, 13447 const struct perf_buffer_raw_opts *opts) 13448 { 13449 struct perf_buffer_params p = {}; 13450 13451 if (!attr) 13452 return libbpf_err_ptr(-EINVAL); 13453 13454 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13455 return libbpf_err_ptr(-EINVAL); 13456 13457 p.attr = attr; 13458 p.event_cb = event_cb; 13459 p.ctx = ctx; 13460 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13461 p.cpus = OPTS_GET(opts, cpus, NULL); 13462 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13463 13464 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13465 } 13466 13467 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13468 struct perf_buffer_params *p) 13469 { 13470 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13471 struct bpf_map_info map; 13472 struct perf_buffer *pb; 13473 bool *online = NULL; 13474 __u32 map_info_len; 13475 int err, i, j, n; 13476 13477 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13478 pr_warn("page count should be power of two, but is %zu\n", 13479 page_cnt); 13480 return ERR_PTR(-EINVAL); 13481 } 13482 13483 /* best-effort sanity checks */ 13484 memset(&map, 0, sizeof(map)); 13485 map_info_len = sizeof(map); 13486 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13487 if (err) { 13488 err = -errno; 13489 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13490 * -EBADFD, -EFAULT, or -E2BIG on real error 13491 */ 13492 if (err != -EINVAL) { 13493 pr_warn("failed to get map info for map FD %d: %s\n", 13494 map_fd, errstr(err)); 13495 return ERR_PTR(err); 13496 } 13497 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13498 map_fd); 13499 } else { 13500 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13501 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13502 map.name); 13503 return ERR_PTR(-EINVAL); 13504 } 13505 } 13506 13507 pb = calloc(1, sizeof(*pb)); 13508 if (!pb) 13509 return ERR_PTR(-ENOMEM); 13510 13511 pb->event_cb = p->event_cb; 13512 pb->sample_cb = p->sample_cb; 13513 pb->lost_cb = p->lost_cb; 13514 pb->ctx = p->ctx; 13515 13516 pb->page_size = getpagesize(); 13517 pb->mmap_size = pb->page_size * page_cnt; 13518 pb->map_fd = map_fd; 13519 13520 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13521 if (pb->epoll_fd < 0) { 13522 err = -errno; 13523 pr_warn("failed to create epoll instance: %s\n", 13524 errstr(err)); 13525 goto error; 13526 } 13527 13528 if (p->cpu_cnt > 0) { 13529 pb->cpu_cnt = p->cpu_cnt; 13530 } else { 13531 pb->cpu_cnt = libbpf_num_possible_cpus(); 13532 if (pb->cpu_cnt < 0) { 13533 err = pb->cpu_cnt; 13534 goto error; 13535 } 13536 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13537 pb->cpu_cnt = map.max_entries; 13538 } 13539 13540 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13541 if (!pb->events) { 13542 err = -ENOMEM; 13543 pr_warn("failed to allocate events: out of memory\n"); 13544 goto error; 13545 } 13546 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13547 if (!pb->cpu_bufs) { 13548 err = -ENOMEM; 13549 pr_warn("failed to allocate buffers: out of memory\n"); 13550 goto error; 13551 } 13552 13553 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13554 if (err) { 13555 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13556 goto error; 13557 } 13558 13559 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13560 struct perf_cpu_buf *cpu_buf; 13561 int cpu, map_key; 13562 13563 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13564 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13565 13566 /* in case user didn't explicitly requested particular CPUs to 13567 * be attached to, skip offline/not present CPUs 13568 */ 13569 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13570 continue; 13571 13572 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13573 if (IS_ERR(cpu_buf)) { 13574 err = PTR_ERR(cpu_buf); 13575 goto error; 13576 } 13577 13578 pb->cpu_bufs[j] = cpu_buf; 13579 13580 err = bpf_map_update_elem(pb->map_fd, &map_key, 13581 &cpu_buf->fd, 0); 13582 if (err) { 13583 err = -errno; 13584 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13585 cpu, map_key, cpu_buf->fd, 13586 errstr(err)); 13587 goto error; 13588 } 13589 13590 pb->events[j].events = EPOLLIN; 13591 pb->events[j].data.ptr = cpu_buf; 13592 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13593 &pb->events[j]) < 0) { 13594 err = -errno; 13595 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13596 cpu, cpu_buf->fd, 13597 errstr(err)); 13598 goto error; 13599 } 13600 j++; 13601 } 13602 pb->cpu_cnt = j; 13603 free(online); 13604 13605 return pb; 13606 13607 error: 13608 free(online); 13609 if (pb) 13610 perf_buffer__free(pb); 13611 return ERR_PTR(err); 13612 } 13613 13614 struct perf_sample_raw { 13615 struct perf_event_header header; 13616 uint32_t size; 13617 char data[]; 13618 }; 13619 13620 struct perf_sample_lost { 13621 struct perf_event_header header; 13622 uint64_t id; 13623 uint64_t lost; 13624 uint64_t sample_id; 13625 }; 13626 13627 static enum bpf_perf_event_ret 13628 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13629 { 13630 struct perf_cpu_buf *cpu_buf = ctx; 13631 struct perf_buffer *pb = cpu_buf->pb; 13632 void *data = e; 13633 13634 /* user wants full control over parsing perf event */ 13635 if (pb->event_cb) 13636 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13637 13638 switch (e->type) { 13639 case PERF_RECORD_SAMPLE: { 13640 struct perf_sample_raw *s = data; 13641 13642 if (pb->sample_cb) 13643 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13644 break; 13645 } 13646 case PERF_RECORD_LOST: { 13647 struct perf_sample_lost *s = data; 13648 13649 if (pb->lost_cb) 13650 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13651 break; 13652 } 13653 default: 13654 pr_warn("unknown perf sample type %d\n", e->type); 13655 return LIBBPF_PERF_EVENT_ERROR; 13656 } 13657 return LIBBPF_PERF_EVENT_CONT; 13658 } 13659 13660 static int perf_buffer__process_records(struct perf_buffer *pb, 13661 struct perf_cpu_buf *cpu_buf) 13662 { 13663 enum bpf_perf_event_ret ret; 13664 13665 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13666 pb->page_size, &cpu_buf->buf, 13667 &cpu_buf->buf_size, 13668 perf_buffer__process_record, cpu_buf); 13669 if (ret != LIBBPF_PERF_EVENT_CONT) 13670 return ret; 13671 return 0; 13672 } 13673 13674 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13675 { 13676 return pb->epoll_fd; 13677 } 13678 13679 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13680 { 13681 int i, cnt, err; 13682 13683 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13684 if (cnt < 0) 13685 return -errno; 13686 13687 for (i = 0; i < cnt; i++) { 13688 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13689 13690 err = perf_buffer__process_records(pb, cpu_buf); 13691 if (err) { 13692 pr_warn("error while processing records: %s\n", errstr(err)); 13693 return libbpf_err(err); 13694 } 13695 } 13696 return cnt; 13697 } 13698 13699 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13700 * manager. 13701 */ 13702 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13703 { 13704 return pb->cpu_cnt; 13705 } 13706 13707 /* 13708 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13709 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13710 * select()/poll()/epoll() Linux syscalls. 13711 */ 13712 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13713 { 13714 struct perf_cpu_buf *cpu_buf; 13715 13716 if (buf_idx >= pb->cpu_cnt) 13717 return libbpf_err(-EINVAL); 13718 13719 cpu_buf = pb->cpu_bufs[buf_idx]; 13720 if (!cpu_buf) 13721 return libbpf_err(-ENOENT); 13722 13723 return cpu_buf->fd; 13724 } 13725 13726 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13727 { 13728 struct perf_cpu_buf *cpu_buf; 13729 13730 if (buf_idx >= pb->cpu_cnt) 13731 return libbpf_err(-EINVAL); 13732 13733 cpu_buf = pb->cpu_bufs[buf_idx]; 13734 if (!cpu_buf) 13735 return libbpf_err(-ENOENT); 13736 13737 *buf = cpu_buf->base; 13738 *buf_size = pb->mmap_size; 13739 return 0; 13740 } 13741 13742 /* 13743 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13744 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13745 * consume, do nothing and return success. 13746 * Returns: 13747 * - 0 on success; 13748 * - <0 on failure. 13749 */ 13750 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13751 { 13752 struct perf_cpu_buf *cpu_buf; 13753 13754 if (buf_idx >= pb->cpu_cnt) 13755 return libbpf_err(-EINVAL); 13756 13757 cpu_buf = pb->cpu_bufs[buf_idx]; 13758 if (!cpu_buf) 13759 return libbpf_err(-ENOENT); 13760 13761 return perf_buffer__process_records(pb, cpu_buf); 13762 } 13763 13764 int perf_buffer__consume(struct perf_buffer *pb) 13765 { 13766 int i, err; 13767 13768 for (i = 0; i < pb->cpu_cnt; i++) { 13769 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13770 13771 if (!cpu_buf) 13772 continue; 13773 13774 err = perf_buffer__process_records(pb, cpu_buf); 13775 if (err) { 13776 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 13777 i, errstr(err)); 13778 return libbpf_err(err); 13779 } 13780 } 13781 return 0; 13782 } 13783 13784 int bpf_program__set_attach_target(struct bpf_program *prog, 13785 int attach_prog_fd, 13786 const char *attach_func_name) 13787 { 13788 int btf_obj_fd = 0, btf_id = 0, err; 13789 13790 if (!prog || attach_prog_fd < 0) 13791 return libbpf_err(-EINVAL); 13792 13793 if (prog->obj->state >= OBJ_LOADED) 13794 return libbpf_err(-EINVAL); 13795 13796 if (attach_prog_fd && !attach_func_name) { 13797 /* remember attach_prog_fd and let bpf_program__load() find 13798 * BTF ID during the program load 13799 */ 13800 prog->attach_prog_fd = attach_prog_fd; 13801 return 0; 13802 } 13803 13804 if (attach_prog_fd) { 13805 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13806 attach_prog_fd, prog->obj->token_fd); 13807 if (btf_id < 0) 13808 return libbpf_err(btf_id); 13809 } else { 13810 if (!attach_func_name) 13811 return libbpf_err(-EINVAL); 13812 13813 /* load btf_vmlinux, if not yet */ 13814 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13815 if (err) 13816 return libbpf_err(err); 13817 err = find_kernel_btf_id(prog->obj, attach_func_name, 13818 prog->expected_attach_type, 13819 &btf_obj_fd, &btf_id); 13820 if (err) 13821 return libbpf_err(err); 13822 } 13823 13824 prog->attach_btf_id = btf_id; 13825 prog->attach_btf_obj_fd = btf_obj_fd; 13826 prog->attach_prog_fd = attach_prog_fd; 13827 return 0; 13828 } 13829 13830 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13831 { 13832 int err = 0, n, len, start, end = -1; 13833 bool *tmp; 13834 13835 *mask = NULL; 13836 *mask_sz = 0; 13837 13838 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13839 while (*s) { 13840 if (*s == ',' || *s == '\n') { 13841 s++; 13842 continue; 13843 } 13844 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13845 if (n <= 0 || n > 2) { 13846 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13847 err = -EINVAL; 13848 goto cleanup; 13849 } else if (n == 1) { 13850 end = start; 13851 } 13852 if (start < 0 || start > end) { 13853 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13854 start, end, s); 13855 err = -EINVAL; 13856 goto cleanup; 13857 } 13858 tmp = realloc(*mask, end + 1); 13859 if (!tmp) { 13860 err = -ENOMEM; 13861 goto cleanup; 13862 } 13863 *mask = tmp; 13864 memset(tmp + *mask_sz, 0, start - *mask_sz); 13865 memset(tmp + start, 1, end - start + 1); 13866 *mask_sz = end + 1; 13867 s += len; 13868 } 13869 if (!*mask_sz) { 13870 pr_warn("Empty CPU range\n"); 13871 return -EINVAL; 13872 } 13873 return 0; 13874 cleanup: 13875 free(*mask); 13876 *mask = NULL; 13877 return err; 13878 } 13879 13880 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13881 { 13882 int fd, err = 0, len; 13883 char buf[128]; 13884 13885 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13886 if (fd < 0) { 13887 err = -errno; 13888 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 13889 return err; 13890 } 13891 len = read(fd, buf, sizeof(buf)); 13892 close(fd); 13893 if (len <= 0) { 13894 err = len ? -errno : -EINVAL; 13895 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 13896 return err; 13897 } 13898 if (len >= sizeof(buf)) { 13899 pr_warn("CPU mask is too big in file %s\n", fcpu); 13900 return -E2BIG; 13901 } 13902 buf[len] = '\0'; 13903 13904 return parse_cpu_mask_str(buf, mask, mask_sz); 13905 } 13906 13907 int libbpf_num_possible_cpus(void) 13908 { 13909 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13910 static int cpus; 13911 int err, n, i, tmp_cpus; 13912 bool *mask; 13913 13914 tmp_cpus = READ_ONCE(cpus); 13915 if (tmp_cpus > 0) 13916 return tmp_cpus; 13917 13918 err = parse_cpu_mask_file(fcpu, &mask, &n); 13919 if (err) 13920 return libbpf_err(err); 13921 13922 tmp_cpus = 0; 13923 for (i = 0; i < n; i++) { 13924 if (mask[i]) 13925 tmp_cpus++; 13926 } 13927 free(mask); 13928 13929 WRITE_ONCE(cpus, tmp_cpus); 13930 return tmp_cpus; 13931 } 13932 13933 static int populate_skeleton_maps(const struct bpf_object *obj, 13934 struct bpf_map_skeleton *maps, 13935 size_t map_cnt, size_t map_skel_sz) 13936 { 13937 int i; 13938 13939 for (i = 0; i < map_cnt; i++) { 13940 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 13941 struct bpf_map **map = map_skel->map; 13942 const char *name = map_skel->name; 13943 void **mmaped = map_skel->mmaped; 13944 13945 *map = bpf_object__find_map_by_name(obj, name); 13946 if (!*map) { 13947 pr_warn("failed to find skeleton map '%s'\n", name); 13948 return -ESRCH; 13949 } 13950 13951 /* externs shouldn't be pre-setup from user code */ 13952 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13953 *mmaped = (*map)->mmaped; 13954 } 13955 return 0; 13956 } 13957 13958 static int populate_skeleton_progs(const struct bpf_object *obj, 13959 struct bpf_prog_skeleton *progs, 13960 size_t prog_cnt, size_t prog_skel_sz) 13961 { 13962 int i; 13963 13964 for (i = 0; i < prog_cnt; i++) { 13965 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 13966 struct bpf_program **prog = prog_skel->prog; 13967 const char *name = prog_skel->name; 13968 13969 *prog = bpf_object__find_program_by_name(obj, name); 13970 if (!*prog) { 13971 pr_warn("failed to find skeleton program '%s'\n", name); 13972 return -ESRCH; 13973 } 13974 } 13975 return 0; 13976 } 13977 13978 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13979 const struct bpf_object_open_opts *opts) 13980 { 13981 struct bpf_object *obj; 13982 int err; 13983 13984 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 13985 if (IS_ERR(obj)) { 13986 err = PTR_ERR(obj); 13987 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 13988 s->name, errstr(err)); 13989 return libbpf_err(err); 13990 } 13991 13992 *s->obj = obj; 13993 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 13994 if (err) { 13995 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 13996 return libbpf_err(err); 13997 } 13998 13999 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 14000 if (err) { 14001 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 14002 return libbpf_err(err); 14003 } 14004 14005 return 0; 14006 } 14007 14008 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 14009 { 14010 int err, len, var_idx, i; 14011 const char *var_name; 14012 const struct bpf_map *map; 14013 struct btf *btf; 14014 __u32 map_type_id; 14015 const struct btf_type *map_type, *var_type; 14016 const struct bpf_var_skeleton *var_skel; 14017 struct btf_var_secinfo *var; 14018 14019 if (!s->obj) 14020 return libbpf_err(-EINVAL); 14021 14022 btf = bpf_object__btf(s->obj); 14023 if (!btf) { 14024 pr_warn("subskeletons require BTF at runtime (object %s)\n", 14025 bpf_object__name(s->obj)); 14026 return libbpf_err(-errno); 14027 } 14028 14029 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 14030 if (err) { 14031 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14032 return libbpf_err(err); 14033 } 14034 14035 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 14036 if (err) { 14037 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14038 return libbpf_err(err); 14039 } 14040 14041 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 14042 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 14043 map = *var_skel->map; 14044 map_type_id = bpf_map__btf_value_type_id(map); 14045 map_type = btf__type_by_id(btf, map_type_id); 14046 14047 if (!btf_is_datasec(map_type)) { 14048 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 14049 bpf_map__name(map), 14050 __btf_kind_str(btf_kind(map_type))); 14051 return libbpf_err(-EINVAL); 14052 } 14053 14054 len = btf_vlen(map_type); 14055 var = btf_var_secinfos(map_type); 14056 for (i = 0; i < len; i++, var++) { 14057 var_type = btf__type_by_id(btf, var->type); 14058 var_name = btf__name_by_offset(btf, var_type->name_off); 14059 if (strcmp(var_name, var_skel->name) == 0) { 14060 *var_skel->addr = map->mmaped + var->offset; 14061 break; 14062 } 14063 } 14064 } 14065 return 0; 14066 } 14067 14068 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 14069 { 14070 if (!s) 14071 return; 14072 free(s->maps); 14073 free(s->progs); 14074 free(s->vars); 14075 free(s); 14076 } 14077 14078 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 14079 { 14080 int i, err; 14081 14082 err = bpf_object__load(*s->obj); 14083 if (err) { 14084 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 14085 return libbpf_err(err); 14086 } 14087 14088 for (i = 0; i < s->map_cnt; i++) { 14089 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14090 struct bpf_map *map = *map_skel->map; 14091 14092 if (!map_skel->mmaped) 14093 continue; 14094 14095 *map_skel->mmaped = map->mmaped; 14096 } 14097 14098 return 0; 14099 } 14100 14101 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 14102 { 14103 int i, err; 14104 14105 for (i = 0; i < s->prog_cnt; i++) { 14106 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14107 struct bpf_program *prog = *prog_skel->prog; 14108 struct bpf_link **link = prog_skel->link; 14109 14110 if (!prog->autoload || !prog->autoattach) 14111 continue; 14112 14113 /* auto-attaching not supported for this program */ 14114 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 14115 continue; 14116 14117 /* if user already set the link manually, don't attempt auto-attach */ 14118 if (*link) 14119 continue; 14120 14121 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 14122 if (err) { 14123 pr_warn("prog '%s': failed to auto-attach: %s\n", 14124 bpf_program__name(prog), errstr(err)); 14125 return libbpf_err(err); 14126 } 14127 14128 /* It's possible that for some SEC() definitions auto-attach 14129 * is supported in some cases (e.g., if definition completely 14130 * specifies target information), but is not in other cases. 14131 * SEC("uprobe") is one such case. If user specified target 14132 * binary and function name, such BPF program can be 14133 * auto-attached. But if not, it shouldn't trigger skeleton's 14134 * attach to fail. It should just be skipped. 14135 * attach_fn signals such case with returning 0 (no error) and 14136 * setting link to NULL. 14137 */ 14138 } 14139 14140 14141 for (i = 0; i < s->map_cnt; i++) { 14142 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14143 struct bpf_map *map = *map_skel->map; 14144 struct bpf_link **link; 14145 14146 if (!map->autocreate || !map->autoattach) 14147 continue; 14148 14149 /* only struct_ops maps can be attached */ 14150 if (!bpf_map__is_struct_ops(map)) 14151 continue; 14152 14153 /* skeleton is created with earlier version of bpftool, notify user */ 14154 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14155 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14156 bpf_map__name(map)); 14157 continue; 14158 } 14159 14160 link = map_skel->link; 14161 if (!link) { 14162 pr_warn("map '%s': BPF map skeleton link is uninitialized\n", 14163 bpf_map__name(map)); 14164 continue; 14165 } 14166 14167 if (*link) 14168 continue; 14169 14170 *link = bpf_map__attach_struct_ops(map); 14171 if (!*link) { 14172 err = -errno; 14173 pr_warn("map '%s': failed to auto-attach: %s\n", 14174 bpf_map__name(map), errstr(err)); 14175 return libbpf_err(err); 14176 } 14177 } 14178 14179 return 0; 14180 } 14181 14182 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14183 { 14184 int i; 14185 14186 for (i = 0; i < s->prog_cnt; i++) { 14187 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14188 struct bpf_link **link = prog_skel->link; 14189 14190 bpf_link__destroy(*link); 14191 *link = NULL; 14192 } 14193 14194 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14195 return; 14196 14197 for (i = 0; i < s->map_cnt; i++) { 14198 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14199 struct bpf_link **link = map_skel->link; 14200 14201 if (link) { 14202 bpf_link__destroy(*link); 14203 *link = NULL; 14204 } 14205 } 14206 } 14207 14208 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14209 { 14210 if (!s) 14211 return; 14212 14213 bpf_object__detach_skeleton(s); 14214 if (s->obj) 14215 bpf_object__close(*s->obj); 14216 free(s->maps); 14217 free(s->progs); 14218 free(s); 14219 } 14220