xref: /linux/tools/lib/bpf/libbpf.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 #include "bpf_gen_internal.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
64 
65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
66  * compilation if user enables corresponding warning. Disable it explicitly.
67  */
68 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
69 
70 #define __printf(a, b)	__attribute__((format(printf, a, b)))
71 
72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
74 
75 static int __base_pr(enum libbpf_print_level level, const char *format,
76 		     va_list args)
77 {
78 	if (level == LIBBPF_DEBUG)
79 		return 0;
80 
81 	return vfprintf(stderr, format, args);
82 }
83 
84 static libbpf_print_fn_t __libbpf_pr = __base_pr;
85 
86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
87 {
88 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
89 
90 	__libbpf_pr = fn;
91 	return old_print_fn;
92 }
93 
94 __printf(2, 3)
95 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
96 {
97 	va_list args;
98 
99 	if (!__libbpf_pr)
100 		return;
101 
102 	va_start(args, format);
103 	__libbpf_pr(level, format, args);
104 	va_end(args);
105 }
106 
107 static void pr_perm_msg(int err)
108 {
109 	struct rlimit limit;
110 	char buf[100];
111 
112 	if (err != -EPERM || geteuid() != 0)
113 		return;
114 
115 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
116 	if (err)
117 		return;
118 
119 	if (limit.rlim_cur == RLIM_INFINITY)
120 		return;
121 
122 	if (limit.rlim_cur < 1024)
123 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
124 	else if (limit.rlim_cur < 1024*1024)
125 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
126 	else
127 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
128 
129 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
130 		buf);
131 }
132 
133 #define STRERR_BUFSIZE  128
134 
135 /* Copied from tools/perf/util/util.h */
136 #ifndef zfree
137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
138 #endif
139 
140 #ifndef zclose
141 # define zclose(fd) ({			\
142 	int ___err = 0;			\
143 	if ((fd) >= 0)			\
144 		___err = close((fd));	\
145 	fd = -1;			\
146 	___err; })
147 #endif
148 
149 static inline __u64 ptr_to_u64(const void *ptr)
150 {
151 	return (__u64) (unsigned long) ptr;
152 }
153 
154 /* this goes away in libbpf 1.0 */
155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE;
156 
157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
158 {
159 	libbpf_mode = mode;
160 	return 0;
161 }
162 
163 __u32 libbpf_major_version(void)
164 {
165 	return LIBBPF_MAJOR_VERSION;
166 }
167 
168 __u32 libbpf_minor_version(void)
169 {
170 	return LIBBPF_MINOR_VERSION;
171 }
172 
173 const char *libbpf_version_string(void)
174 {
175 #define __S(X) #X
176 #define _S(X) __S(X)
177 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
178 #undef _S
179 #undef __S
180 }
181 
182 enum reloc_type {
183 	RELO_LD64,
184 	RELO_CALL,
185 	RELO_DATA,
186 	RELO_EXTERN_VAR,
187 	RELO_EXTERN_FUNC,
188 	RELO_SUBPROG_ADDR,
189 	RELO_CORE,
190 };
191 
192 struct reloc_desc {
193 	enum reloc_type type;
194 	int insn_idx;
195 	union {
196 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
197 		struct {
198 			int map_idx;
199 			int sym_off;
200 		};
201 	};
202 };
203 
204 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
205 enum sec_def_flags {
206 	SEC_NONE = 0,
207 	/* expected_attach_type is optional, if kernel doesn't support that */
208 	SEC_EXP_ATTACH_OPT = 1,
209 	/* legacy, only used by libbpf_get_type_names() and
210 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
211 	 * This used to be associated with cgroup (and few other) BPF programs
212 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
213 	 * meaningless nowadays, though.
214 	 */
215 	SEC_ATTACHABLE = 2,
216 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
217 	/* attachment target is specified through BTF ID in either kernel or
218 	 * other BPF program's BTF object */
219 	SEC_ATTACH_BTF = 4,
220 	/* BPF program type allows sleeping/blocking in kernel */
221 	SEC_SLEEPABLE = 8,
222 	/* allow non-strict prefix matching */
223 	SEC_SLOPPY_PFX = 16,
224 	/* BPF program support non-linear XDP buffer */
225 	SEC_XDP_FRAGS = 32,
226 	/* deprecated sec definitions not supposed to be used */
227 	SEC_DEPRECATED = 64,
228 };
229 
230 struct bpf_sec_def {
231 	char *sec;
232 	enum bpf_prog_type prog_type;
233 	enum bpf_attach_type expected_attach_type;
234 	long cookie;
235 	int handler_id;
236 
237 	libbpf_prog_setup_fn_t prog_setup_fn;
238 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
239 	libbpf_prog_attach_fn_t prog_attach_fn;
240 };
241 
242 /*
243  * bpf_prog should be a better name but it has been used in
244  * linux/filter.h.
245  */
246 struct bpf_program {
247 	const struct bpf_sec_def *sec_def;
248 	char *sec_name;
249 	size_t sec_idx;
250 	/* this program's instruction offset (in number of instructions)
251 	 * within its containing ELF section
252 	 */
253 	size_t sec_insn_off;
254 	/* number of original instructions in ELF section belonging to this
255 	 * program, not taking into account subprogram instructions possible
256 	 * appended later during relocation
257 	 */
258 	size_t sec_insn_cnt;
259 	/* Offset (in number of instructions) of the start of instruction
260 	 * belonging to this BPF program  within its containing main BPF
261 	 * program. For the entry-point (main) BPF program, this is always
262 	 * zero. For a sub-program, this gets reset before each of main BPF
263 	 * programs are processed and relocated and is used to determined
264 	 * whether sub-program was already appended to the main program, and
265 	 * if yes, at which instruction offset.
266 	 */
267 	size_t sub_insn_off;
268 
269 	char *name;
270 	/* name with / replaced by _; makes recursive pinning
271 	 * in bpf_object__pin_programs easier
272 	 */
273 	char *pin_name;
274 
275 	/* instructions that belong to BPF program; insns[0] is located at
276 	 * sec_insn_off instruction within its ELF section in ELF file, so
277 	 * when mapping ELF file instruction index to the local instruction,
278 	 * one needs to subtract sec_insn_off; and vice versa.
279 	 */
280 	struct bpf_insn *insns;
281 	/* actual number of instruction in this BPF program's image; for
282 	 * entry-point BPF programs this includes the size of main program
283 	 * itself plus all the used sub-programs, appended at the end
284 	 */
285 	size_t insns_cnt;
286 
287 	struct reloc_desc *reloc_desc;
288 	int nr_reloc;
289 
290 	/* BPF verifier log settings */
291 	char *log_buf;
292 	size_t log_size;
293 	__u32 log_level;
294 
295 	struct {
296 		int nr;
297 		int *fds;
298 	} instances;
299 	bpf_program_prep_t preprocessor;
300 
301 	struct bpf_object *obj;
302 	void *priv;
303 	bpf_program_clear_priv_t clear_priv;
304 
305 	bool autoload;
306 	bool mark_btf_static;
307 	enum bpf_prog_type type;
308 	enum bpf_attach_type expected_attach_type;
309 	int prog_ifindex;
310 	__u32 attach_btf_obj_fd;
311 	__u32 attach_btf_id;
312 	__u32 attach_prog_fd;
313 	void *func_info;
314 	__u32 func_info_rec_size;
315 	__u32 func_info_cnt;
316 
317 	void *line_info;
318 	__u32 line_info_rec_size;
319 	__u32 line_info_cnt;
320 	__u32 prog_flags;
321 };
322 
323 struct bpf_struct_ops {
324 	const char *tname;
325 	const struct btf_type *type;
326 	struct bpf_program **progs;
327 	__u32 *kern_func_off;
328 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
329 	void *data;
330 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
331 	 *      btf_vmlinux's format.
332 	 * struct bpf_struct_ops_tcp_congestion_ops {
333 	 *	[... some other kernel fields ...]
334 	 *	struct tcp_congestion_ops data;
335 	 * }
336 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
337 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
338 	 * from "data".
339 	 */
340 	void *kern_vdata;
341 	__u32 type_id;
342 };
343 
344 #define DATA_SEC ".data"
345 #define BSS_SEC ".bss"
346 #define RODATA_SEC ".rodata"
347 #define KCONFIG_SEC ".kconfig"
348 #define KSYMS_SEC ".ksyms"
349 #define STRUCT_OPS_SEC ".struct_ops"
350 
351 enum libbpf_map_type {
352 	LIBBPF_MAP_UNSPEC,
353 	LIBBPF_MAP_DATA,
354 	LIBBPF_MAP_BSS,
355 	LIBBPF_MAP_RODATA,
356 	LIBBPF_MAP_KCONFIG,
357 };
358 
359 struct bpf_map {
360 	struct bpf_object *obj;
361 	char *name;
362 	/* real_name is defined for special internal maps (.rodata*,
363 	 * .data*, .bss, .kconfig) and preserves their original ELF section
364 	 * name. This is important to be be able to find corresponding BTF
365 	 * DATASEC information.
366 	 */
367 	char *real_name;
368 	int fd;
369 	int sec_idx;
370 	size_t sec_offset;
371 	int map_ifindex;
372 	int inner_map_fd;
373 	struct bpf_map_def def;
374 	__u32 numa_node;
375 	__u32 btf_var_idx;
376 	__u32 btf_key_type_id;
377 	__u32 btf_value_type_id;
378 	__u32 btf_vmlinux_value_type_id;
379 	void *priv;
380 	bpf_map_clear_priv_t clear_priv;
381 	enum libbpf_map_type libbpf_type;
382 	void *mmaped;
383 	struct bpf_struct_ops *st_ops;
384 	struct bpf_map *inner_map;
385 	void **init_slots;
386 	int init_slots_sz;
387 	char *pin_path;
388 	bool pinned;
389 	bool reused;
390 	bool autocreate;
391 	__u64 map_extra;
392 };
393 
394 enum extern_type {
395 	EXT_UNKNOWN,
396 	EXT_KCFG,
397 	EXT_KSYM,
398 };
399 
400 enum kcfg_type {
401 	KCFG_UNKNOWN,
402 	KCFG_CHAR,
403 	KCFG_BOOL,
404 	KCFG_INT,
405 	KCFG_TRISTATE,
406 	KCFG_CHAR_ARR,
407 };
408 
409 struct extern_desc {
410 	enum extern_type type;
411 	int sym_idx;
412 	int btf_id;
413 	int sec_btf_id;
414 	const char *name;
415 	bool is_set;
416 	bool is_weak;
417 	union {
418 		struct {
419 			enum kcfg_type type;
420 			int sz;
421 			int align;
422 			int data_off;
423 			bool is_signed;
424 		} kcfg;
425 		struct {
426 			unsigned long long addr;
427 
428 			/* target btf_id of the corresponding kernel var. */
429 			int kernel_btf_obj_fd;
430 			int kernel_btf_id;
431 
432 			/* local btf_id of the ksym extern's type. */
433 			__u32 type_id;
434 			/* BTF fd index to be patched in for insn->off, this is
435 			 * 0 for vmlinux BTF, index in obj->fd_array for module
436 			 * BTF
437 			 */
438 			__s16 btf_fd_idx;
439 		} ksym;
440 	};
441 };
442 
443 static LIST_HEAD(bpf_objects_list);
444 
445 struct module_btf {
446 	struct btf *btf;
447 	char *name;
448 	__u32 id;
449 	int fd;
450 	int fd_array_idx;
451 };
452 
453 enum sec_type {
454 	SEC_UNUSED = 0,
455 	SEC_RELO,
456 	SEC_BSS,
457 	SEC_DATA,
458 	SEC_RODATA,
459 };
460 
461 struct elf_sec_desc {
462 	enum sec_type sec_type;
463 	Elf64_Shdr *shdr;
464 	Elf_Data *data;
465 };
466 
467 struct elf_state {
468 	int fd;
469 	const void *obj_buf;
470 	size_t obj_buf_sz;
471 	Elf *elf;
472 	Elf64_Ehdr *ehdr;
473 	Elf_Data *symbols;
474 	Elf_Data *st_ops_data;
475 	size_t shstrndx; /* section index for section name strings */
476 	size_t strtabidx;
477 	struct elf_sec_desc *secs;
478 	int sec_cnt;
479 	int maps_shndx;
480 	int btf_maps_shndx;
481 	__u32 btf_maps_sec_btf_id;
482 	int text_shndx;
483 	int symbols_shndx;
484 	int st_ops_shndx;
485 };
486 
487 struct usdt_manager;
488 
489 struct bpf_object {
490 	char name[BPF_OBJ_NAME_LEN];
491 	char license[64];
492 	__u32 kern_version;
493 
494 	struct bpf_program *programs;
495 	size_t nr_programs;
496 	struct bpf_map *maps;
497 	size_t nr_maps;
498 	size_t maps_cap;
499 
500 	char *kconfig;
501 	struct extern_desc *externs;
502 	int nr_extern;
503 	int kconfig_map_idx;
504 
505 	bool loaded;
506 	bool has_subcalls;
507 	bool has_rodata;
508 
509 	struct bpf_gen *gen_loader;
510 
511 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
512 	struct elf_state efile;
513 	/*
514 	 * All loaded bpf_object are linked in a list, which is
515 	 * hidden to caller. bpf_objects__<func> handlers deal with
516 	 * all objects.
517 	 */
518 	struct list_head list;
519 
520 	struct btf *btf;
521 	struct btf_ext *btf_ext;
522 
523 	/* Parse and load BTF vmlinux if any of the programs in the object need
524 	 * it at load time.
525 	 */
526 	struct btf *btf_vmlinux;
527 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
528 	 * override for vmlinux BTF.
529 	 */
530 	char *btf_custom_path;
531 	/* vmlinux BTF override for CO-RE relocations */
532 	struct btf *btf_vmlinux_override;
533 	/* Lazily initialized kernel module BTFs */
534 	struct module_btf *btf_modules;
535 	bool btf_modules_loaded;
536 	size_t btf_module_cnt;
537 	size_t btf_module_cap;
538 
539 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
540 	char *log_buf;
541 	size_t log_size;
542 	__u32 log_level;
543 
544 	void *priv;
545 	bpf_object_clear_priv_t clear_priv;
546 
547 	int *fd_array;
548 	size_t fd_array_cap;
549 	size_t fd_array_cnt;
550 
551 	struct usdt_manager *usdt_man;
552 
553 	char path[];
554 };
555 
556 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
557 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
558 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
559 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
560 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
561 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
562 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
563 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
564 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
565 
566 void bpf_program__unload(struct bpf_program *prog)
567 {
568 	int i;
569 
570 	if (!prog)
571 		return;
572 
573 	/*
574 	 * If the object is opened but the program was never loaded,
575 	 * it is possible that prog->instances.nr == -1.
576 	 */
577 	if (prog->instances.nr > 0) {
578 		for (i = 0; i < prog->instances.nr; i++)
579 			zclose(prog->instances.fds[i]);
580 	} else if (prog->instances.nr != -1) {
581 		pr_warn("Internal error: instances.nr is %d\n",
582 			prog->instances.nr);
583 	}
584 
585 	prog->instances.nr = -1;
586 	zfree(&prog->instances.fds);
587 
588 	zfree(&prog->func_info);
589 	zfree(&prog->line_info);
590 }
591 
592 static void bpf_program__exit(struct bpf_program *prog)
593 {
594 	if (!prog)
595 		return;
596 
597 	if (prog->clear_priv)
598 		prog->clear_priv(prog, prog->priv);
599 
600 	prog->priv = NULL;
601 	prog->clear_priv = NULL;
602 
603 	bpf_program__unload(prog);
604 	zfree(&prog->name);
605 	zfree(&prog->sec_name);
606 	zfree(&prog->pin_name);
607 	zfree(&prog->insns);
608 	zfree(&prog->reloc_desc);
609 
610 	prog->nr_reloc = 0;
611 	prog->insns_cnt = 0;
612 	prog->sec_idx = -1;
613 }
614 
615 static char *__bpf_program__pin_name(struct bpf_program *prog)
616 {
617 	char *name, *p;
618 
619 	if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
620 		name = strdup(prog->name);
621 	else
622 		name = strdup(prog->sec_name);
623 
624 	if (!name)
625 		return NULL;
626 
627 	p = name;
628 
629 	while ((p = strchr(p, '/')))
630 		*p = '_';
631 
632 	return name;
633 }
634 
635 static bool insn_is_subprog_call(const struct bpf_insn *insn)
636 {
637 	return BPF_CLASS(insn->code) == BPF_JMP &&
638 	       BPF_OP(insn->code) == BPF_CALL &&
639 	       BPF_SRC(insn->code) == BPF_K &&
640 	       insn->src_reg == BPF_PSEUDO_CALL &&
641 	       insn->dst_reg == 0 &&
642 	       insn->off == 0;
643 }
644 
645 static bool is_call_insn(const struct bpf_insn *insn)
646 {
647 	return insn->code == (BPF_JMP | BPF_CALL);
648 }
649 
650 static bool insn_is_pseudo_func(struct bpf_insn *insn)
651 {
652 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
653 }
654 
655 static int
656 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
657 		      const char *name, size_t sec_idx, const char *sec_name,
658 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
659 {
660 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
661 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
662 			sec_name, name, sec_off, insn_data_sz);
663 		return -EINVAL;
664 	}
665 
666 	memset(prog, 0, sizeof(*prog));
667 	prog->obj = obj;
668 
669 	prog->sec_idx = sec_idx;
670 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
671 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
672 	/* insns_cnt can later be increased by appending used subprograms */
673 	prog->insns_cnt = prog->sec_insn_cnt;
674 
675 	prog->type = BPF_PROG_TYPE_UNSPEC;
676 
677 	/* libbpf's convention for SEC("?abc...") is that it's just like
678 	 * SEC("abc...") but the corresponding bpf_program starts out with
679 	 * autoload set to false.
680 	 */
681 	if (sec_name[0] == '?') {
682 		prog->autoload = false;
683 		/* from now on forget there was ? in section name */
684 		sec_name++;
685 	} else {
686 		prog->autoload = true;
687 	}
688 
689 	prog->instances.fds = NULL;
690 	prog->instances.nr = -1;
691 
692 	/* inherit object's log_level */
693 	prog->log_level = obj->log_level;
694 
695 	prog->sec_name = strdup(sec_name);
696 	if (!prog->sec_name)
697 		goto errout;
698 
699 	prog->name = strdup(name);
700 	if (!prog->name)
701 		goto errout;
702 
703 	prog->pin_name = __bpf_program__pin_name(prog);
704 	if (!prog->pin_name)
705 		goto errout;
706 
707 	prog->insns = malloc(insn_data_sz);
708 	if (!prog->insns)
709 		goto errout;
710 	memcpy(prog->insns, insn_data, insn_data_sz);
711 
712 	return 0;
713 errout:
714 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
715 	bpf_program__exit(prog);
716 	return -ENOMEM;
717 }
718 
719 static int
720 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
721 			 const char *sec_name, int sec_idx)
722 {
723 	Elf_Data *symbols = obj->efile.symbols;
724 	struct bpf_program *prog, *progs;
725 	void *data = sec_data->d_buf;
726 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
727 	int nr_progs, err, i;
728 	const char *name;
729 	Elf64_Sym *sym;
730 
731 	progs = obj->programs;
732 	nr_progs = obj->nr_programs;
733 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
734 	sec_off = 0;
735 
736 	for (i = 0; i < nr_syms; i++) {
737 		sym = elf_sym_by_idx(obj, i);
738 
739 		if (sym->st_shndx != sec_idx)
740 			continue;
741 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
742 			continue;
743 
744 		prog_sz = sym->st_size;
745 		sec_off = sym->st_value;
746 
747 		name = elf_sym_str(obj, sym->st_name);
748 		if (!name) {
749 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
750 				sec_name, sec_off);
751 			return -LIBBPF_ERRNO__FORMAT;
752 		}
753 
754 		if (sec_off + prog_sz > sec_sz) {
755 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
756 				sec_name, sec_off);
757 			return -LIBBPF_ERRNO__FORMAT;
758 		}
759 
760 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
761 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
762 			return -ENOTSUP;
763 		}
764 
765 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
766 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
767 
768 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
769 		if (!progs) {
770 			/*
771 			 * In this case the original obj->programs
772 			 * is still valid, so don't need special treat for
773 			 * bpf_close_object().
774 			 */
775 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
776 				sec_name, name);
777 			return -ENOMEM;
778 		}
779 		obj->programs = progs;
780 
781 		prog = &progs[nr_progs];
782 
783 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
784 					    sec_off, data + sec_off, prog_sz);
785 		if (err)
786 			return err;
787 
788 		/* if function is a global/weak symbol, but has restricted
789 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
790 		 * as static to enable more permissive BPF verification mode
791 		 * with more outside context available to BPF verifier
792 		 */
793 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
794 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
795 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
796 			prog->mark_btf_static = true;
797 
798 		nr_progs++;
799 		obj->nr_programs = nr_progs;
800 	}
801 
802 	return 0;
803 }
804 
805 __u32 get_kernel_version(void)
806 {
807 	/* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
808 	 * but Ubuntu provides /proc/version_signature file, as described at
809 	 * https://ubuntu.com/kernel, with an example contents below, which we
810 	 * can use to get a proper LINUX_VERSION_CODE.
811 	 *
812 	 *   Ubuntu 5.4.0-12.15-generic 5.4.8
813 	 *
814 	 * In the above, 5.4.8 is what kernel is actually expecting, while
815 	 * uname() call will return 5.4.0 in info.release.
816 	 */
817 	const char *ubuntu_kver_file = "/proc/version_signature";
818 	__u32 major, minor, patch;
819 	struct utsname info;
820 
821 	if (access(ubuntu_kver_file, R_OK) == 0) {
822 		FILE *f;
823 
824 		f = fopen(ubuntu_kver_file, "r");
825 		if (f) {
826 			if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
827 				fclose(f);
828 				return KERNEL_VERSION(major, minor, patch);
829 			}
830 			fclose(f);
831 		}
832 		/* something went wrong, fall back to uname() approach */
833 	}
834 
835 	uname(&info);
836 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
837 		return 0;
838 	return KERNEL_VERSION(major, minor, patch);
839 }
840 
841 static const struct btf_member *
842 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
843 {
844 	struct btf_member *m;
845 	int i;
846 
847 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
848 		if (btf_member_bit_offset(t, i) == bit_offset)
849 			return m;
850 	}
851 
852 	return NULL;
853 }
854 
855 static const struct btf_member *
856 find_member_by_name(const struct btf *btf, const struct btf_type *t,
857 		    const char *name)
858 {
859 	struct btf_member *m;
860 	int i;
861 
862 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
863 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
864 			return m;
865 	}
866 
867 	return NULL;
868 }
869 
870 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
871 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
872 				   const char *name, __u32 kind);
873 
874 static int
875 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
876 			   const struct btf_type **type, __u32 *type_id,
877 			   const struct btf_type **vtype, __u32 *vtype_id,
878 			   const struct btf_member **data_member)
879 {
880 	const struct btf_type *kern_type, *kern_vtype;
881 	const struct btf_member *kern_data_member;
882 	__s32 kern_vtype_id, kern_type_id;
883 	__u32 i;
884 
885 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
886 	if (kern_type_id < 0) {
887 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
888 			tname);
889 		return kern_type_id;
890 	}
891 	kern_type = btf__type_by_id(btf, kern_type_id);
892 
893 	/* Find the corresponding "map_value" type that will be used
894 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
895 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
896 	 * btf_vmlinux.
897 	 */
898 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
899 						tname, BTF_KIND_STRUCT);
900 	if (kern_vtype_id < 0) {
901 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
902 			STRUCT_OPS_VALUE_PREFIX, tname);
903 		return kern_vtype_id;
904 	}
905 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
906 
907 	/* Find "struct tcp_congestion_ops" from
908 	 * struct bpf_struct_ops_tcp_congestion_ops {
909 	 *	[ ... ]
910 	 *	struct tcp_congestion_ops data;
911 	 * }
912 	 */
913 	kern_data_member = btf_members(kern_vtype);
914 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
915 		if (kern_data_member->type == kern_type_id)
916 			break;
917 	}
918 	if (i == btf_vlen(kern_vtype)) {
919 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
920 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
921 		return -EINVAL;
922 	}
923 
924 	*type = kern_type;
925 	*type_id = kern_type_id;
926 	*vtype = kern_vtype;
927 	*vtype_id = kern_vtype_id;
928 	*data_member = kern_data_member;
929 
930 	return 0;
931 }
932 
933 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
934 {
935 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
936 }
937 
938 /* Init the map's fields that depend on kern_btf */
939 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
940 					 const struct btf *btf,
941 					 const struct btf *kern_btf)
942 {
943 	const struct btf_member *member, *kern_member, *kern_data_member;
944 	const struct btf_type *type, *kern_type, *kern_vtype;
945 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
946 	struct bpf_struct_ops *st_ops;
947 	void *data, *kern_data;
948 	const char *tname;
949 	int err;
950 
951 	st_ops = map->st_ops;
952 	type = st_ops->type;
953 	tname = st_ops->tname;
954 	err = find_struct_ops_kern_types(kern_btf, tname,
955 					 &kern_type, &kern_type_id,
956 					 &kern_vtype, &kern_vtype_id,
957 					 &kern_data_member);
958 	if (err)
959 		return err;
960 
961 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
962 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
963 
964 	map->def.value_size = kern_vtype->size;
965 	map->btf_vmlinux_value_type_id = kern_vtype_id;
966 
967 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
968 	if (!st_ops->kern_vdata)
969 		return -ENOMEM;
970 
971 	data = st_ops->data;
972 	kern_data_off = kern_data_member->offset / 8;
973 	kern_data = st_ops->kern_vdata + kern_data_off;
974 
975 	member = btf_members(type);
976 	for (i = 0; i < btf_vlen(type); i++, member++) {
977 		const struct btf_type *mtype, *kern_mtype;
978 		__u32 mtype_id, kern_mtype_id;
979 		void *mdata, *kern_mdata;
980 		__s64 msize, kern_msize;
981 		__u32 moff, kern_moff;
982 		__u32 kern_member_idx;
983 		const char *mname;
984 
985 		mname = btf__name_by_offset(btf, member->name_off);
986 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
987 		if (!kern_member) {
988 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
989 				map->name, mname);
990 			return -ENOTSUP;
991 		}
992 
993 		kern_member_idx = kern_member - btf_members(kern_type);
994 		if (btf_member_bitfield_size(type, i) ||
995 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
996 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
997 				map->name, mname);
998 			return -ENOTSUP;
999 		}
1000 
1001 		moff = member->offset / 8;
1002 		kern_moff = kern_member->offset / 8;
1003 
1004 		mdata = data + moff;
1005 		kern_mdata = kern_data + kern_moff;
1006 
1007 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1008 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1009 						    &kern_mtype_id);
1010 		if (BTF_INFO_KIND(mtype->info) !=
1011 		    BTF_INFO_KIND(kern_mtype->info)) {
1012 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1013 				map->name, mname, BTF_INFO_KIND(mtype->info),
1014 				BTF_INFO_KIND(kern_mtype->info));
1015 			return -ENOTSUP;
1016 		}
1017 
1018 		if (btf_is_ptr(mtype)) {
1019 			struct bpf_program *prog;
1020 
1021 			prog = st_ops->progs[i];
1022 			if (!prog)
1023 				continue;
1024 
1025 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1026 							    kern_mtype->type,
1027 							    &kern_mtype_id);
1028 
1029 			/* mtype->type must be a func_proto which was
1030 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1031 			 * so only check kern_mtype for func_proto here.
1032 			 */
1033 			if (!btf_is_func_proto(kern_mtype)) {
1034 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1035 					map->name, mname);
1036 				return -ENOTSUP;
1037 			}
1038 
1039 			prog->attach_btf_id = kern_type_id;
1040 			prog->expected_attach_type = kern_member_idx;
1041 
1042 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1043 
1044 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1045 				 map->name, mname, prog->name, moff,
1046 				 kern_moff);
1047 
1048 			continue;
1049 		}
1050 
1051 		msize = btf__resolve_size(btf, mtype_id);
1052 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1053 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1054 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1055 				map->name, mname, (ssize_t)msize,
1056 				(ssize_t)kern_msize);
1057 			return -ENOTSUP;
1058 		}
1059 
1060 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1061 			 map->name, mname, (unsigned int)msize,
1062 			 moff, kern_moff);
1063 		memcpy(kern_mdata, mdata, msize);
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1070 {
1071 	struct bpf_map *map;
1072 	size_t i;
1073 	int err;
1074 
1075 	for (i = 0; i < obj->nr_maps; i++) {
1076 		map = &obj->maps[i];
1077 
1078 		if (!bpf_map__is_struct_ops(map))
1079 			continue;
1080 
1081 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1082 						    obj->btf_vmlinux);
1083 		if (err)
1084 			return err;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1091 {
1092 	const struct btf_type *type, *datasec;
1093 	const struct btf_var_secinfo *vsi;
1094 	struct bpf_struct_ops *st_ops;
1095 	const char *tname, *var_name;
1096 	__s32 type_id, datasec_id;
1097 	const struct btf *btf;
1098 	struct bpf_map *map;
1099 	__u32 i;
1100 
1101 	if (obj->efile.st_ops_shndx == -1)
1102 		return 0;
1103 
1104 	btf = obj->btf;
1105 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1106 					    BTF_KIND_DATASEC);
1107 	if (datasec_id < 0) {
1108 		pr_warn("struct_ops init: DATASEC %s not found\n",
1109 			STRUCT_OPS_SEC);
1110 		return -EINVAL;
1111 	}
1112 
1113 	datasec = btf__type_by_id(btf, datasec_id);
1114 	vsi = btf_var_secinfos(datasec);
1115 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1116 		type = btf__type_by_id(obj->btf, vsi->type);
1117 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1118 
1119 		type_id = btf__resolve_type(obj->btf, vsi->type);
1120 		if (type_id < 0) {
1121 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1122 				vsi->type, STRUCT_OPS_SEC);
1123 			return -EINVAL;
1124 		}
1125 
1126 		type = btf__type_by_id(obj->btf, type_id);
1127 		tname = btf__name_by_offset(obj->btf, type->name_off);
1128 		if (!tname[0]) {
1129 			pr_warn("struct_ops init: anonymous type is not supported\n");
1130 			return -ENOTSUP;
1131 		}
1132 		if (!btf_is_struct(type)) {
1133 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1134 			return -EINVAL;
1135 		}
1136 
1137 		map = bpf_object__add_map(obj);
1138 		if (IS_ERR(map))
1139 			return PTR_ERR(map);
1140 
1141 		map->sec_idx = obj->efile.st_ops_shndx;
1142 		map->sec_offset = vsi->offset;
1143 		map->name = strdup(var_name);
1144 		if (!map->name)
1145 			return -ENOMEM;
1146 
1147 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1148 		map->def.key_size = sizeof(int);
1149 		map->def.value_size = type->size;
1150 		map->def.max_entries = 1;
1151 
1152 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1153 		if (!map->st_ops)
1154 			return -ENOMEM;
1155 		st_ops = map->st_ops;
1156 		st_ops->data = malloc(type->size);
1157 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1158 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1159 					       sizeof(*st_ops->kern_func_off));
1160 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1161 			return -ENOMEM;
1162 
1163 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1164 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1165 				var_name, STRUCT_OPS_SEC);
1166 			return -EINVAL;
1167 		}
1168 
1169 		memcpy(st_ops->data,
1170 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1171 		       type->size);
1172 		st_ops->tname = tname;
1173 		st_ops->type = type;
1174 		st_ops->type_id = type_id;
1175 
1176 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1177 			 tname, type_id, var_name, vsi->offset);
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 static struct bpf_object *bpf_object__new(const char *path,
1184 					  const void *obj_buf,
1185 					  size_t obj_buf_sz,
1186 					  const char *obj_name)
1187 {
1188 	bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
1189 	struct bpf_object *obj;
1190 	char *end;
1191 
1192 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1193 	if (!obj) {
1194 		pr_warn("alloc memory failed for %s\n", path);
1195 		return ERR_PTR(-ENOMEM);
1196 	}
1197 
1198 	strcpy(obj->path, path);
1199 	if (obj_name) {
1200 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1201 	} else {
1202 		/* Using basename() GNU version which doesn't modify arg. */
1203 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1204 		end = strchr(obj->name, '.');
1205 		if (end)
1206 			*end = 0;
1207 	}
1208 
1209 	obj->efile.fd = -1;
1210 	/*
1211 	 * Caller of this function should also call
1212 	 * bpf_object__elf_finish() after data collection to return
1213 	 * obj_buf to user. If not, we should duplicate the buffer to
1214 	 * avoid user freeing them before elf finish.
1215 	 */
1216 	obj->efile.obj_buf = obj_buf;
1217 	obj->efile.obj_buf_sz = obj_buf_sz;
1218 	obj->efile.maps_shndx = -1;
1219 	obj->efile.btf_maps_shndx = -1;
1220 	obj->efile.st_ops_shndx = -1;
1221 	obj->kconfig_map_idx = -1;
1222 
1223 	obj->kern_version = get_kernel_version();
1224 	obj->loaded = false;
1225 
1226 	INIT_LIST_HEAD(&obj->list);
1227 	if (!strict)
1228 		list_add(&obj->list, &bpf_objects_list);
1229 	return obj;
1230 }
1231 
1232 static void bpf_object__elf_finish(struct bpf_object *obj)
1233 {
1234 	if (!obj->efile.elf)
1235 		return;
1236 
1237 	elf_end(obj->efile.elf);
1238 	obj->efile.elf = NULL;
1239 	obj->efile.symbols = NULL;
1240 	obj->efile.st_ops_data = NULL;
1241 
1242 	zfree(&obj->efile.secs);
1243 	obj->efile.sec_cnt = 0;
1244 	zclose(obj->efile.fd);
1245 	obj->efile.obj_buf = NULL;
1246 	obj->efile.obj_buf_sz = 0;
1247 }
1248 
1249 static int bpf_object__elf_init(struct bpf_object *obj)
1250 {
1251 	Elf64_Ehdr *ehdr;
1252 	int err = 0;
1253 	Elf *elf;
1254 
1255 	if (obj->efile.elf) {
1256 		pr_warn("elf: init internal error\n");
1257 		return -LIBBPF_ERRNO__LIBELF;
1258 	}
1259 
1260 	if (obj->efile.obj_buf_sz > 0) {
1261 		/*
1262 		 * obj_buf should have been validated by
1263 		 * bpf_object__open_buffer().
1264 		 */
1265 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1266 	} else {
1267 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1268 		if (obj->efile.fd < 0) {
1269 			char errmsg[STRERR_BUFSIZE], *cp;
1270 
1271 			err = -errno;
1272 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1273 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1274 			return err;
1275 		}
1276 
1277 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1278 	}
1279 
1280 	if (!elf) {
1281 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1282 		err = -LIBBPF_ERRNO__LIBELF;
1283 		goto errout;
1284 	}
1285 
1286 	obj->efile.elf = elf;
1287 
1288 	if (elf_kind(elf) != ELF_K_ELF) {
1289 		err = -LIBBPF_ERRNO__FORMAT;
1290 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1291 		goto errout;
1292 	}
1293 
1294 	if (gelf_getclass(elf) != ELFCLASS64) {
1295 		err = -LIBBPF_ERRNO__FORMAT;
1296 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1297 		goto errout;
1298 	}
1299 
1300 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1301 	if (!obj->efile.ehdr) {
1302 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1303 		err = -LIBBPF_ERRNO__FORMAT;
1304 		goto errout;
1305 	}
1306 
1307 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1308 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1309 			obj->path, elf_errmsg(-1));
1310 		err = -LIBBPF_ERRNO__FORMAT;
1311 		goto errout;
1312 	}
1313 
1314 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1315 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1316 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1317 			obj->path, elf_errmsg(-1));
1318 		err = -LIBBPF_ERRNO__FORMAT;
1319 		goto errout;
1320 	}
1321 
1322 	/* Old LLVM set e_machine to EM_NONE */
1323 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1324 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1325 		err = -LIBBPF_ERRNO__FORMAT;
1326 		goto errout;
1327 	}
1328 
1329 	return 0;
1330 errout:
1331 	bpf_object__elf_finish(obj);
1332 	return err;
1333 }
1334 
1335 static int bpf_object__check_endianness(struct bpf_object *obj)
1336 {
1337 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1338 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1339 		return 0;
1340 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1341 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1342 		return 0;
1343 #else
1344 # error "Unrecognized __BYTE_ORDER__"
1345 #endif
1346 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1347 	return -LIBBPF_ERRNO__ENDIAN;
1348 }
1349 
1350 static int
1351 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1352 {
1353 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1354 	 * go over allowed ELF data section buffer
1355 	 */
1356 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1357 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1358 	return 0;
1359 }
1360 
1361 static int
1362 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1363 {
1364 	__u32 kver;
1365 
1366 	if (size != sizeof(kver)) {
1367 		pr_warn("invalid kver section in %s\n", obj->path);
1368 		return -LIBBPF_ERRNO__FORMAT;
1369 	}
1370 	memcpy(&kver, data, sizeof(kver));
1371 	obj->kern_version = kver;
1372 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1373 	return 0;
1374 }
1375 
1376 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1377 {
1378 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1379 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1380 		return true;
1381 	return false;
1382 }
1383 
1384 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1385 {
1386 	Elf_Data *data;
1387 	Elf_Scn *scn;
1388 
1389 	if (!name)
1390 		return -EINVAL;
1391 
1392 	scn = elf_sec_by_name(obj, name);
1393 	data = elf_sec_data(obj, scn);
1394 	if (data) {
1395 		*size = data->d_size;
1396 		return 0; /* found it */
1397 	}
1398 
1399 	return -ENOENT;
1400 }
1401 
1402 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1403 {
1404 	Elf_Data *symbols = obj->efile.symbols;
1405 	const char *sname;
1406 	size_t si;
1407 
1408 	if (!name || !off)
1409 		return -EINVAL;
1410 
1411 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1412 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1413 
1414 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1415 			continue;
1416 
1417 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1418 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1419 			continue;
1420 
1421 		sname = elf_sym_str(obj, sym->st_name);
1422 		if (!sname) {
1423 			pr_warn("failed to get sym name string for var %s\n", name);
1424 			return -EIO;
1425 		}
1426 		if (strcmp(name, sname) == 0) {
1427 			*off = sym->st_value;
1428 			return 0;
1429 		}
1430 	}
1431 
1432 	return -ENOENT;
1433 }
1434 
1435 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1436 {
1437 	struct bpf_map *map;
1438 	int err;
1439 
1440 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1441 				sizeof(*obj->maps), obj->nr_maps + 1);
1442 	if (err)
1443 		return ERR_PTR(err);
1444 
1445 	map = &obj->maps[obj->nr_maps++];
1446 	map->obj = obj;
1447 	map->fd = -1;
1448 	map->inner_map_fd = -1;
1449 	map->autocreate = true;
1450 
1451 	return map;
1452 }
1453 
1454 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1455 {
1456 	long page_sz = sysconf(_SC_PAGE_SIZE);
1457 	size_t map_sz;
1458 
1459 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1460 	map_sz = roundup(map_sz, page_sz);
1461 	return map_sz;
1462 }
1463 
1464 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1465 {
1466 	char map_name[BPF_OBJ_NAME_LEN], *p;
1467 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1468 
1469 	/* This is one of the more confusing parts of libbpf for various
1470 	 * reasons, some of which are historical. The original idea for naming
1471 	 * internal names was to include as much of BPF object name prefix as
1472 	 * possible, so that it can be distinguished from similar internal
1473 	 * maps of a different BPF object.
1474 	 * As an example, let's say we have bpf_object named 'my_object_name'
1475 	 * and internal map corresponding to '.rodata' ELF section. The final
1476 	 * map name advertised to user and to the kernel will be
1477 	 * 'my_objec.rodata', taking first 8 characters of object name and
1478 	 * entire 7 characters of '.rodata'.
1479 	 * Somewhat confusingly, if internal map ELF section name is shorter
1480 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1481 	 * for the suffix, even though we only have 4 actual characters, and
1482 	 * resulting map will be called 'my_objec.bss', not even using all 15
1483 	 * characters allowed by the kernel. Oh well, at least the truncated
1484 	 * object name is somewhat consistent in this case. But if the map
1485 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1486 	 * (8 chars) and thus will be left with only first 7 characters of the
1487 	 * object name ('my_obje'). Happy guessing, user, that the final map
1488 	 * name will be "my_obje.kconfig".
1489 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1490 	 * and .data.* data sections, it's possible that ELF section name is
1491 	 * longer than allowed 15 chars, so we now need to be careful to take
1492 	 * only up to 15 first characters of ELF name, taking no BPF object
1493 	 * name characters at all. So '.rodata.abracadabra' will result in
1494 	 * '.rodata.abracad' kernel and user-visible name.
1495 	 * We need to keep this convoluted logic intact for .data, .bss and
1496 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1497 	 * maps we use their ELF names as is, not prepending bpf_object name
1498 	 * in front. We still need to truncate them to 15 characters for the
1499 	 * kernel. Full name can be recovered for such maps by using DATASEC
1500 	 * BTF type associated with such map's value type, though.
1501 	 */
1502 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1503 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1504 
1505 	/* if there are two or more dots in map name, it's a custom dot map */
1506 	if (strchr(real_name + 1, '.') != NULL)
1507 		pfx_len = 0;
1508 	else
1509 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1510 
1511 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1512 		 sfx_len, real_name);
1513 
1514 	/* sanitise map name to characters allowed by kernel */
1515 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1516 		if (!isalnum(*p) && *p != '_' && *p != '.')
1517 			*p = '_';
1518 
1519 	return strdup(map_name);
1520 }
1521 
1522 static int
1523 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1524 
1525 static int
1526 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1527 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1528 {
1529 	struct bpf_map_def *def;
1530 	struct bpf_map *map;
1531 	int err;
1532 
1533 	map = bpf_object__add_map(obj);
1534 	if (IS_ERR(map))
1535 		return PTR_ERR(map);
1536 
1537 	map->libbpf_type = type;
1538 	map->sec_idx = sec_idx;
1539 	map->sec_offset = 0;
1540 	map->real_name = strdup(real_name);
1541 	map->name = internal_map_name(obj, real_name);
1542 	if (!map->real_name || !map->name) {
1543 		zfree(&map->real_name);
1544 		zfree(&map->name);
1545 		return -ENOMEM;
1546 	}
1547 
1548 	def = &map->def;
1549 	def->type = BPF_MAP_TYPE_ARRAY;
1550 	def->key_size = sizeof(int);
1551 	def->value_size = data_sz;
1552 	def->max_entries = 1;
1553 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1554 			 ? BPF_F_RDONLY_PROG : 0;
1555 	def->map_flags |= BPF_F_MMAPABLE;
1556 
1557 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1558 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1559 
1560 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1561 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1562 	if (map->mmaped == MAP_FAILED) {
1563 		err = -errno;
1564 		map->mmaped = NULL;
1565 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1566 			map->name, err);
1567 		zfree(&map->real_name);
1568 		zfree(&map->name);
1569 		return err;
1570 	}
1571 
1572 	/* failures are fine because of maps like .rodata.str1.1 */
1573 	(void) bpf_map_find_btf_info(obj, map);
1574 
1575 	if (data)
1576 		memcpy(map->mmaped, data, data_sz);
1577 
1578 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1579 	return 0;
1580 }
1581 
1582 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1583 {
1584 	struct elf_sec_desc *sec_desc;
1585 	const char *sec_name;
1586 	int err = 0, sec_idx;
1587 
1588 	/*
1589 	 * Populate obj->maps with libbpf internal maps.
1590 	 */
1591 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1592 		sec_desc = &obj->efile.secs[sec_idx];
1593 
1594 		switch (sec_desc->sec_type) {
1595 		case SEC_DATA:
1596 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1597 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1598 							    sec_name, sec_idx,
1599 							    sec_desc->data->d_buf,
1600 							    sec_desc->data->d_size);
1601 			break;
1602 		case SEC_RODATA:
1603 			obj->has_rodata = true;
1604 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1605 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1606 							    sec_name, sec_idx,
1607 							    sec_desc->data->d_buf,
1608 							    sec_desc->data->d_size);
1609 			break;
1610 		case SEC_BSS:
1611 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1612 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1613 							    sec_name, sec_idx,
1614 							    NULL,
1615 							    sec_desc->data->d_size);
1616 			break;
1617 		default:
1618 			/* skip */
1619 			break;
1620 		}
1621 		if (err)
1622 			return err;
1623 	}
1624 	return 0;
1625 }
1626 
1627 
1628 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1629 					       const void *name)
1630 {
1631 	int i;
1632 
1633 	for (i = 0; i < obj->nr_extern; i++) {
1634 		if (strcmp(obj->externs[i].name, name) == 0)
1635 			return &obj->externs[i];
1636 	}
1637 	return NULL;
1638 }
1639 
1640 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1641 			      char value)
1642 {
1643 	switch (ext->kcfg.type) {
1644 	case KCFG_BOOL:
1645 		if (value == 'm') {
1646 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1647 				ext->name, value);
1648 			return -EINVAL;
1649 		}
1650 		*(bool *)ext_val = value == 'y' ? true : false;
1651 		break;
1652 	case KCFG_TRISTATE:
1653 		if (value == 'y')
1654 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1655 		else if (value == 'm')
1656 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1657 		else /* value == 'n' */
1658 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1659 		break;
1660 	case KCFG_CHAR:
1661 		*(char *)ext_val = value;
1662 		break;
1663 	case KCFG_UNKNOWN:
1664 	case KCFG_INT:
1665 	case KCFG_CHAR_ARR:
1666 	default:
1667 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1668 			ext->name, value);
1669 		return -EINVAL;
1670 	}
1671 	ext->is_set = true;
1672 	return 0;
1673 }
1674 
1675 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1676 			      const char *value)
1677 {
1678 	size_t len;
1679 
1680 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1681 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1682 		return -EINVAL;
1683 	}
1684 
1685 	len = strlen(value);
1686 	if (value[len - 1] != '"') {
1687 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1688 			ext->name, value);
1689 		return -EINVAL;
1690 	}
1691 
1692 	/* strip quotes */
1693 	len -= 2;
1694 	if (len >= ext->kcfg.sz) {
1695 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1696 			ext->name, value, len, ext->kcfg.sz - 1);
1697 		len = ext->kcfg.sz - 1;
1698 	}
1699 	memcpy(ext_val, value + 1, len);
1700 	ext_val[len] = '\0';
1701 	ext->is_set = true;
1702 	return 0;
1703 }
1704 
1705 static int parse_u64(const char *value, __u64 *res)
1706 {
1707 	char *value_end;
1708 	int err;
1709 
1710 	errno = 0;
1711 	*res = strtoull(value, &value_end, 0);
1712 	if (errno) {
1713 		err = -errno;
1714 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1715 		return err;
1716 	}
1717 	if (*value_end) {
1718 		pr_warn("failed to parse '%s' as integer completely\n", value);
1719 		return -EINVAL;
1720 	}
1721 	return 0;
1722 }
1723 
1724 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1725 {
1726 	int bit_sz = ext->kcfg.sz * 8;
1727 
1728 	if (ext->kcfg.sz == 8)
1729 		return true;
1730 
1731 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1732 	 * bytes size without any loss of information. If the target integer
1733 	 * is signed, we rely on the following limits of integer type of
1734 	 * Y bits and subsequent transformation:
1735 	 *
1736 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1737 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1738 	 *            0 <= X + 2^(Y-1) <  2^Y
1739 	 *
1740 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1741 	 *  zero.
1742 	 */
1743 	if (ext->kcfg.is_signed)
1744 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1745 	else
1746 		return (v >> bit_sz) == 0;
1747 }
1748 
1749 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1750 			      __u64 value)
1751 {
1752 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1753 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1754 			ext->name, (unsigned long long)value);
1755 		return -EINVAL;
1756 	}
1757 	if (!is_kcfg_value_in_range(ext, value)) {
1758 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1759 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1760 		return -ERANGE;
1761 	}
1762 	switch (ext->kcfg.sz) {
1763 		case 1: *(__u8 *)ext_val = value; break;
1764 		case 2: *(__u16 *)ext_val = value; break;
1765 		case 4: *(__u32 *)ext_val = value; break;
1766 		case 8: *(__u64 *)ext_val = value; break;
1767 		default:
1768 			return -EINVAL;
1769 	}
1770 	ext->is_set = true;
1771 	return 0;
1772 }
1773 
1774 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1775 					    char *buf, void *data)
1776 {
1777 	struct extern_desc *ext;
1778 	char *sep, *value;
1779 	int len, err = 0;
1780 	void *ext_val;
1781 	__u64 num;
1782 
1783 	if (!str_has_pfx(buf, "CONFIG_"))
1784 		return 0;
1785 
1786 	sep = strchr(buf, '=');
1787 	if (!sep) {
1788 		pr_warn("failed to parse '%s': no separator\n", buf);
1789 		return -EINVAL;
1790 	}
1791 
1792 	/* Trim ending '\n' */
1793 	len = strlen(buf);
1794 	if (buf[len - 1] == '\n')
1795 		buf[len - 1] = '\0';
1796 	/* Split on '=' and ensure that a value is present. */
1797 	*sep = '\0';
1798 	if (!sep[1]) {
1799 		*sep = '=';
1800 		pr_warn("failed to parse '%s': no value\n", buf);
1801 		return -EINVAL;
1802 	}
1803 
1804 	ext = find_extern_by_name(obj, buf);
1805 	if (!ext || ext->is_set)
1806 		return 0;
1807 
1808 	ext_val = data + ext->kcfg.data_off;
1809 	value = sep + 1;
1810 
1811 	switch (*value) {
1812 	case 'y': case 'n': case 'm':
1813 		err = set_kcfg_value_tri(ext, ext_val, *value);
1814 		break;
1815 	case '"':
1816 		err = set_kcfg_value_str(ext, ext_val, value);
1817 		break;
1818 	default:
1819 		/* assume integer */
1820 		err = parse_u64(value, &num);
1821 		if (err) {
1822 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1823 				ext->name, value);
1824 			return err;
1825 		}
1826 		err = set_kcfg_value_num(ext, ext_val, num);
1827 		break;
1828 	}
1829 	if (err)
1830 		return err;
1831 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1832 	return 0;
1833 }
1834 
1835 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1836 {
1837 	char buf[PATH_MAX];
1838 	struct utsname uts;
1839 	int len, err = 0;
1840 	gzFile file;
1841 
1842 	uname(&uts);
1843 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1844 	if (len < 0)
1845 		return -EINVAL;
1846 	else if (len >= PATH_MAX)
1847 		return -ENAMETOOLONG;
1848 
1849 	/* gzopen also accepts uncompressed files. */
1850 	file = gzopen(buf, "r");
1851 	if (!file)
1852 		file = gzopen("/proc/config.gz", "r");
1853 
1854 	if (!file) {
1855 		pr_warn("failed to open system Kconfig\n");
1856 		return -ENOENT;
1857 	}
1858 
1859 	while (gzgets(file, buf, sizeof(buf))) {
1860 		err = bpf_object__process_kconfig_line(obj, buf, data);
1861 		if (err) {
1862 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1863 				buf, err);
1864 			goto out;
1865 		}
1866 	}
1867 
1868 out:
1869 	gzclose(file);
1870 	return err;
1871 }
1872 
1873 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1874 					const char *config, void *data)
1875 {
1876 	char buf[PATH_MAX];
1877 	int err = 0;
1878 	FILE *file;
1879 
1880 	file = fmemopen((void *)config, strlen(config), "r");
1881 	if (!file) {
1882 		err = -errno;
1883 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1884 		return err;
1885 	}
1886 
1887 	while (fgets(buf, sizeof(buf), file)) {
1888 		err = bpf_object__process_kconfig_line(obj, buf, data);
1889 		if (err) {
1890 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1891 				buf, err);
1892 			break;
1893 		}
1894 	}
1895 
1896 	fclose(file);
1897 	return err;
1898 }
1899 
1900 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1901 {
1902 	struct extern_desc *last_ext = NULL, *ext;
1903 	size_t map_sz;
1904 	int i, err;
1905 
1906 	for (i = 0; i < obj->nr_extern; i++) {
1907 		ext = &obj->externs[i];
1908 		if (ext->type == EXT_KCFG)
1909 			last_ext = ext;
1910 	}
1911 
1912 	if (!last_ext)
1913 		return 0;
1914 
1915 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1916 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1917 					    ".kconfig", obj->efile.symbols_shndx,
1918 					    NULL, map_sz);
1919 	if (err)
1920 		return err;
1921 
1922 	obj->kconfig_map_idx = obj->nr_maps - 1;
1923 
1924 	return 0;
1925 }
1926 
1927 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1928 {
1929 	Elf_Data *symbols = obj->efile.symbols;
1930 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1931 	Elf_Data *data = NULL;
1932 	Elf_Scn *scn;
1933 
1934 	if (obj->efile.maps_shndx < 0)
1935 		return 0;
1936 
1937 	if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) {
1938 		pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n");
1939 		return -EOPNOTSUPP;
1940 	}
1941 
1942 	if (!symbols)
1943 		return -EINVAL;
1944 
1945 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1946 	data = elf_sec_data(obj, scn);
1947 	if (!scn || !data) {
1948 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1949 			obj->path);
1950 		return -EINVAL;
1951 	}
1952 
1953 	/*
1954 	 * Count number of maps. Each map has a name.
1955 	 * Array of maps is not supported: only the first element is
1956 	 * considered.
1957 	 *
1958 	 * TODO: Detect array of map and report error.
1959 	 */
1960 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
1961 	for (i = 0; i < nr_syms; i++) {
1962 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1963 
1964 		if (sym->st_shndx != obj->efile.maps_shndx)
1965 			continue;
1966 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1967 			continue;
1968 		nr_maps++;
1969 	}
1970 	/* Assume equally sized map definitions */
1971 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1972 		 nr_maps, data->d_size, obj->path);
1973 
1974 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1975 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1976 			obj->path);
1977 		return -EINVAL;
1978 	}
1979 	map_def_sz = data->d_size / nr_maps;
1980 
1981 	/* Fill obj->maps using data in "maps" section.  */
1982 	for (i = 0; i < nr_syms; i++) {
1983 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1984 		const char *map_name;
1985 		struct bpf_map_def *def;
1986 		struct bpf_map *map;
1987 
1988 		if (sym->st_shndx != obj->efile.maps_shndx)
1989 			continue;
1990 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1991 			continue;
1992 
1993 		map = bpf_object__add_map(obj);
1994 		if (IS_ERR(map))
1995 			return PTR_ERR(map);
1996 
1997 		map_name = elf_sym_str(obj, sym->st_name);
1998 		if (!map_name) {
1999 			pr_warn("failed to get map #%d name sym string for obj %s\n",
2000 				i, obj->path);
2001 			return -LIBBPF_ERRNO__FORMAT;
2002 		}
2003 
2004 		pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name);
2005 
2006 		if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
2007 			pr_warn("map '%s' (legacy): static maps are not supported\n", map_name);
2008 			return -ENOTSUP;
2009 		}
2010 
2011 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
2012 		map->sec_idx = sym->st_shndx;
2013 		map->sec_offset = sym->st_value;
2014 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
2015 			 map_name, map->sec_idx, map->sec_offset);
2016 		if (sym->st_value + map_def_sz > data->d_size) {
2017 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
2018 				obj->path, map_name);
2019 			return -EINVAL;
2020 		}
2021 
2022 		map->name = strdup(map_name);
2023 		if (!map->name) {
2024 			pr_warn("map '%s': failed to alloc map name\n", map_name);
2025 			return -ENOMEM;
2026 		}
2027 		pr_debug("map %d is \"%s\"\n", i, map->name);
2028 		def = (struct bpf_map_def *)(data->d_buf + sym->st_value);
2029 		/*
2030 		 * If the definition of the map in the object file fits in
2031 		 * bpf_map_def, copy it.  Any extra fields in our version
2032 		 * of bpf_map_def will default to zero as a result of the
2033 		 * calloc above.
2034 		 */
2035 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
2036 			memcpy(&map->def, def, map_def_sz);
2037 		} else {
2038 			/*
2039 			 * Here the map structure being read is bigger than what
2040 			 * we expect, truncate if the excess bits are all zero.
2041 			 * If they are not zero, reject this map as
2042 			 * incompatible.
2043 			 */
2044 			char *b;
2045 
2046 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
2047 			     b < ((char *)def) + map_def_sz; b++) {
2048 				if (*b != 0) {
2049 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
2050 						obj->path, map_name);
2051 					if (strict)
2052 						return -EINVAL;
2053 				}
2054 			}
2055 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
2056 		}
2057 
2058 		/* btf info may not exist but fill it in if it does exist */
2059 		(void) bpf_map_find_btf_info(obj, map);
2060 	}
2061 	return 0;
2062 }
2063 
2064 const struct btf_type *
2065 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2066 {
2067 	const struct btf_type *t = btf__type_by_id(btf, id);
2068 
2069 	if (res_id)
2070 		*res_id = id;
2071 
2072 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2073 		if (res_id)
2074 			*res_id = t->type;
2075 		t = btf__type_by_id(btf, t->type);
2076 	}
2077 
2078 	return t;
2079 }
2080 
2081 static const struct btf_type *
2082 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2083 {
2084 	const struct btf_type *t;
2085 
2086 	t = skip_mods_and_typedefs(btf, id, NULL);
2087 	if (!btf_is_ptr(t))
2088 		return NULL;
2089 
2090 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2091 
2092 	return btf_is_func_proto(t) ? t : NULL;
2093 }
2094 
2095 static const char *__btf_kind_str(__u16 kind)
2096 {
2097 	switch (kind) {
2098 	case BTF_KIND_UNKN: return "void";
2099 	case BTF_KIND_INT: return "int";
2100 	case BTF_KIND_PTR: return "ptr";
2101 	case BTF_KIND_ARRAY: return "array";
2102 	case BTF_KIND_STRUCT: return "struct";
2103 	case BTF_KIND_UNION: return "union";
2104 	case BTF_KIND_ENUM: return "enum";
2105 	case BTF_KIND_FWD: return "fwd";
2106 	case BTF_KIND_TYPEDEF: return "typedef";
2107 	case BTF_KIND_VOLATILE: return "volatile";
2108 	case BTF_KIND_CONST: return "const";
2109 	case BTF_KIND_RESTRICT: return "restrict";
2110 	case BTF_KIND_FUNC: return "func";
2111 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2112 	case BTF_KIND_VAR: return "var";
2113 	case BTF_KIND_DATASEC: return "datasec";
2114 	case BTF_KIND_FLOAT: return "float";
2115 	case BTF_KIND_DECL_TAG: return "decl_tag";
2116 	case BTF_KIND_TYPE_TAG: return "type_tag";
2117 	default: return "unknown";
2118 	}
2119 }
2120 
2121 const char *btf_kind_str(const struct btf_type *t)
2122 {
2123 	return __btf_kind_str(btf_kind(t));
2124 }
2125 
2126 /*
2127  * Fetch integer attribute of BTF map definition. Such attributes are
2128  * represented using a pointer to an array, in which dimensionality of array
2129  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2130  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2131  * type definition, while using only sizeof(void *) space in ELF data section.
2132  */
2133 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2134 			      const struct btf_member *m, __u32 *res)
2135 {
2136 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2137 	const char *name = btf__name_by_offset(btf, m->name_off);
2138 	const struct btf_array *arr_info;
2139 	const struct btf_type *arr_t;
2140 
2141 	if (!btf_is_ptr(t)) {
2142 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2143 			map_name, name, btf_kind_str(t));
2144 		return false;
2145 	}
2146 
2147 	arr_t = btf__type_by_id(btf, t->type);
2148 	if (!arr_t) {
2149 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2150 			map_name, name, t->type);
2151 		return false;
2152 	}
2153 	if (!btf_is_array(arr_t)) {
2154 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2155 			map_name, name, btf_kind_str(arr_t));
2156 		return false;
2157 	}
2158 	arr_info = btf_array(arr_t);
2159 	*res = arr_info->nelems;
2160 	return true;
2161 }
2162 
2163 static int build_map_pin_path(struct bpf_map *map, const char *path)
2164 {
2165 	char buf[PATH_MAX];
2166 	int len;
2167 
2168 	if (!path)
2169 		path = "/sys/fs/bpf";
2170 
2171 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2172 	if (len < 0)
2173 		return -EINVAL;
2174 	else if (len >= PATH_MAX)
2175 		return -ENAMETOOLONG;
2176 
2177 	return bpf_map__set_pin_path(map, buf);
2178 }
2179 
2180 int parse_btf_map_def(const char *map_name, struct btf *btf,
2181 		      const struct btf_type *def_t, bool strict,
2182 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2183 {
2184 	const struct btf_type *t;
2185 	const struct btf_member *m;
2186 	bool is_inner = inner_def == NULL;
2187 	int vlen, i;
2188 
2189 	vlen = btf_vlen(def_t);
2190 	m = btf_members(def_t);
2191 	for (i = 0; i < vlen; i++, m++) {
2192 		const char *name = btf__name_by_offset(btf, m->name_off);
2193 
2194 		if (!name) {
2195 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2196 			return -EINVAL;
2197 		}
2198 		if (strcmp(name, "type") == 0) {
2199 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2200 				return -EINVAL;
2201 			map_def->parts |= MAP_DEF_MAP_TYPE;
2202 		} else if (strcmp(name, "max_entries") == 0) {
2203 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2204 				return -EINVAL;
2205 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2206 		} else if (strcmp(name, "map_flags") == 0) {
2207 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2208 				return -EINVAL;
2209 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2210 		} else if (strcmp(name, "numa_node") == 0) {
2211 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2212 				return -EINVAL;
2213 			map_def->parts |= MAP_DEF_NUMA_NODE;
2214 		} else if (strcmp(name, "key_size") == 0) {
2215 			__u32 sz;
2216 
2217 			if (!get_map_field_int(map_name, btf, m, &sz))
2218 				return -EINVAL;
2219 			if (map_def->key_size && map_def->key_size != sz) {
2220 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2221 					map_name, map_def->key_size, sz);
2222 				return -EINVAL;
2223 			}
2224 			map_def->key_size = sz;
2225 			map_def->parts |= MAP_DEF_KEY_SIZE;
2226 		} else if (strcmp(name, "key") == 0) {
2227 			__s64 sz;
2228 
2229 			t = btf__type_by_id(btf, m->type);
2230 			if (!t) {
2231 				pr_warn("map '%s': key type [%d] not found.\n",
2232 					map_name, m->type);
2233 				return -EINVAL;
2234 			}
2235 			if (!btf_is_ptr(t)) {
2236 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2237 					map_name, btf_kind_str(t));
2238 				return -EINVAL;
2239 			}
2240 			sz = btf__resolve_size(btf, t->type);
2241 			if (sz < 0) {
2242 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2243 					map_name, t->type, (ssize_t)sz);
2244 				return sz;
2245 			}
2246 			if (map_def->key_size && map_def->key_size != sz) {
2247 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2248 					map_name, map_def->key_size, (ssize_t)sz);
2249 				return -EINVAL;
2250 			}
2251 			map_def->key_size = sz;
2252 			map_def->key_type_id = t->type;
2253 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2254 		} else if (strcmp(name, "value_size") == 0) {
2255 			__u32 sz;
2256 
2257 			if (!get_map_field_int(map_name, btf, m, &sz))
2258 				return -EINVAL;
2259 			if (map_def->value_size && map_def->value_size != sz) {
2260 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2261 					map_name, map_def->value_size, sz);
2262 				return -EINVAL;
2263 			}
2264 			map_def->value_size = sz;
2265 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2266 		} else if (strcmp(name, "value") == 0) {
2267 			__s64 sz;
2268 
2269 			t = btf__type_by_id(btf, m->type);
2270 			if (!t) {
2271 				pr_warn("map '%s': value type [%d] not found.\n",
2272 					map_name, m->type);
2273 				return -EINVAL;
2274 			}
2275 			if (!btf_is_ptr(t)) {
2276 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2277 					map_name, btf_kind_str(t));
2278 				return -EINVAL;
2279 			}
2280 			sz = btf__resolve_size(btf, t->type);
2281 			if (sz < 0) {
2282 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2283 					map_name, t->type, (ssize_t)sz);
2284 				return sz;
2285 			}
2286 			if (map_def->value_size && map_def->value_size != sz) {
2287 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2288 					map_name, map_def->value_size, (ssize_t)sz);
2289 				return -EINVAL;
2290 			}
2291 			map_def->value_size = sz;
2292 			map_def->value_type_id = t->type;
2293 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2294 		}
2295 		else if (strcmp(name, "values") == 0) {
2296 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2297 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2298 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2299 			char inner_map_name[128];
2300 			int err;
2301 
2302 			if (is_inner) {
2303 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2304 					map_name);
2305 				return -ENOTSUP;
2306 			}
2307 			if (i != vlen - 1) {
2308 				pr_warn("map '%s': '%s' member should be last.\n",
2309 					map_name, name);
2310 				return -EINVAL;
2311 			}
2312 			if (!is_map_in_map && !is_prog_array) {
2313 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2314 					map_name);
2315 				return -ENOTSUP;
2316 			}
2317 			if (map_def->value_size && map_def->value_size != 4) {
2318 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2319 					map_name, map_def->value_size);
2320 				return -EINVAL;
2321 			}
2322 			map_def->value_size = 4;
2323 			t = btf__type_by_id(btf, m->type);
2324 			if (!t) {
2325 				pr_warn("map '%s': %s type [%d] not found.\n",
2326 					map_name, desc, m->type);
2327 				return -EINVAL;
2328 			}
2329 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2330 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2331 					map_name, desc);
2332 				return -EINVAL;
2333 			}
2334 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2335 			if (!btf_is_ptr(t)) {
2336 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2337 					map_name, desc, btf_kind_str(t));
2338 				return -EINVAL;
2339 			}
2340 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2341 			if (is_prog_array) {
2342 				if (!btf_is_func_proto(t)) {
2343 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2344 						map_name, btf_kind_str(t));
2345 					return -EINVAL;
2346 				}
2347 				continue;
2348 			}
2349 			if (!btf_is_struct(t)) {
2350 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2351 					map_name, btf_kind_str(t));
2352 				return -EINVAL;
2353 			}
2354 
2355 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2356 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2357 			if (err)
2358 				return err;
2359 
2360 			map_def->parts |= MAP_DEF_INNER_MAP;
2361 		} else if (strcmp(name, "pinning") == 0) {
2362 			__u32 val;
2363 
2364 			if (is_inner) {
2365 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2366 				return -EINVAL;
2367 			}
2368 			if (!get_map_field_int(map_name, btf, m, &val))
2369 				return -EINVAL;
2370 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2371 				pr_warn("map '%s': invalid pinning value %u.\n",
2372 					map_name, val);
2373 				return -EINVAL;
2374 			}
2375 			map_def->pinning = val;
2376 			map_def->parts |= MAP_DEF_PINNING;
2377 		} else if (strcmp(name, "map_extra") == 0) {
2378 			__u32 map_extra;
2379 
2380 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2381 				return -EINVAL;
2382 			map_def->map_extra = map_extra;
2383 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2384 		} else {
2385 			if (strict) {
2386 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2387 				return -ENOTSUP;
2388 			}
2389 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2390 		}
2391 	}
2392 
2393 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2394 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2395 		return -EINVAL;
2396 	}
2397 
2398 	return 0;
2399 }
2400 
2401 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2402 {
2403 	map->def.type = def->map_type;
2404 	map->def.key_size = def->key_size;
2405 	map->def.value_size = def->value_size;
2406 	map->def.max_entries = def->max_entries;
2407 	map->def.map_flags = def->map_flags;
2408 	map->map_extra = def->map_extra;
2409 
2410 	map->numa_node = def->numa_node;
2411 	map->btf_key_type_id = def->key_type_id;
2412 	map->btf_value_type_id = def->value_type_id;
2413 
2414 	if (def->parts & MAP_DEF_MAP_TYPE)
2415 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2416 
2417 	if (def->parts & MAP_DEF_KEY_TYPE)
2418 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2419 			 map->name, def->key_type_id, def->key_size);
2420 	else if (def->parts & MAP_DEF_KEY_SIZE)
2421 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2422 
2423 	if (def->parts & MAP_DEF_VALUE_TYPE)
2424 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2425 			 map->name, def->value_type_id, def->value_size);
2426 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2427 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2428 
2429 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2430 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2431 	if (def->parts & MAP_DEF_MAP_FLAGS)
2432 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2433 	if (def->parts & MAP_DEF_MAP_EXTRA)
2434 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2435 			 (unsigned long long)def->map_extra);
2436 	if (def->parts & MAP_DEF_PINNING)
2437 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2438 	if (def->parts & MAP_DEF_NUMA_NODE)
2439 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2440 
2441 	if (def->parts & MAP_DEF_INNER_MAP)
2442 		pr_debug("map '%s': found inner map definition.\n", map->name);
2443 }
2444 
2445 static const char *btf_var_linkage_str(__u32 linkage)
2446 {
2447 	switch (linkage) {
2448 	case BTF_VAR_STATIC: return "static";
2449 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2450 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2451 	default: return "unknown";
2452 	}
2453 }
2454 
2455 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2456 					 const struct btf_type *sec,
2457 					 int var_idx, int sec_idx,
2458 					 const Elf_Data *data, bool strict,
2459 					 const char *pin_root_path)
2460 {
2461 	struct btf_map_def map_def = {}, inner_def = {};
2462 	const struct btf_type *var, *def;
2463 	const struct btf_var_secinfo *vi;
2464 	const struct btf_var *var_extra;
2465 	const char *map_name;
2466 	struct bpf_map *map;
2467 	int err;
2468 
2469 	vi = btf_var_secinfos(sec) + var_idx;
2470 	var = btf__type_by_id(obj->btf, vi->type);
2471 	var_extra = btf_var(var);
2472 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2473 
2474 	if (map_name == NULL || map_name[0] == '\0') {
2475 		pr_warn("map #%d: empty name.\n", var_idx);
2476 		return -EINVAL;
2477 	}
2478 	if ((__u64)vi->offset + vi->size > data->d_size) {
2479 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2480 		return -EINVAL;
2481 	}
2482 	if (!btf_is_var(var)) {
2483 		pr_warn("map '%s': unexpected var kind %s.\n",
2484 			map_name, btf_kind_str(var));
2485 		return -EINVAL;
2486 	}
2487 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2488 		pr_warn("map '%s': unsupported map linkage %s.\n",
2489 			map_name, btf_var_linkage_str(var_extra->linkage));
2490 		return -EOPNOTSUPP;
2491 	}
2492 
2493 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2494 	if (!btf_is_struct(def)) {
2495 		pr_warn("map '%s': unexpected def kind %s.\n",
2496 			map_name, btf_kind_str(var));
2497 		return -EINVAL;
2498 	}
2499 	if (def->size > vi->size) {
2500 		pr_warn("map '%s': invalid def size.\n", map_name);
2501 		return -EINVAL;
2502 	}
2503 
2504 	map = bpf_object__add_map(obj);
2505 	if (IS_ERR(map))
2506 		return PTR_ERR(map);
2507 	map->name = strdup(map_name);
2508 	if (!map->name) {
2509 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2510 		return -ENOMEM;
2511 	}
2512 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2513 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2514 	map->sec_idx = sec_idx;
2515 	map->sec_offset = vi->offset;
2516 	map->btf_var_idx = var_idx;
2517 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2518 		 map_name, map->sec_idx, map->sec_offset);
2519 
2520 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2521 	if (err)
2522 		return err;
2523 
2524 	fill_map_from_def(map, &map_def);
2525 
2526 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2527 		err = build_map_pin_path(map, pin_root_path);
2528 		if (err) {
2529 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2530 			return err;
2531 		}
2532 	}
2533 
2534 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2535 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2536 		if (!map->inner_map)
2537 			return -ENOMEM;
2538 		map->inner_map->fd = -1;
2539 		map->inner_map->sec_idx = sec_idx;
2540 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2541 		if (!map->inner_map->name)
2542 			return -ENOMEM;
2543 		sprintf(map->inner_map->name, "%s.inner", map_name);
2544 
2545 		fill_map_from_def(map->inner_map, &inner_def);
2546 	}
2547 
2548 	err = bpf_map_find_btf_info(obj, map);
2549 	if (err)
2550 		return err;
2551 
2552 	return 0;
2553 }
2554 
2555 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2556 					  const char *pin_root_path)
2557 {
2558 	const struct btf_type *sec = NULL;
2559 	int nr_types, i, vlen, err;
2560 	const struct btf_type *t;
2561 	const char *name;
2562 	Elf_Data *data;
2563 	Elf_Scn *scn;
2564 
2565 	if (obj->efile.btf_maps_shndx < 0)
2566 		return 0;
2567 
2568 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2569 	data = elf_sec_data(obj, scn);
2570 	if (!scn || !data) {
2571 		pr_warn("elf: failed to get %s map definitions for %s\n",
2572 			MAPS_ELF_SEC, obj->path);
2573 		return -EINVAL;
2574 	}
2575 
2576 	nr_types = btf__type_cnt(obj->btf);
2577 	for (i = 1; i < nr_types; i++) {
2578 		t = btf__type_by_id(obj->btf, i);
2579 		if (!btf_is_datasec(t))
2580 			continue;
2581 		name = btf__name_by_offset(obj->btf, t->name_off);
2582 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2583 			sec = t;
2584 			obj->efile.btf_maps_sec_btf_id = i;
2585 			break;
2586 		}
2587 	}
2588 
2589 	if (!sec) {
2590 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2591 		return -ENOENT;
2592 	}
2593 
2594 	vlen = btf_vlen(sec);
2595 	for (i = 0; i < vlen; i++) {
2596 		err = bpf_object__init_user_btf_map(obj, sec, i,
2597 						    obj->efile.btf_maps_shndx,
2598 						    data, strict,
2599 						    pin_root_path);
2600 		if (err)
2601 			return err;
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 static int bpf_object__init_maps(struct bpf_object *obj,
2608 				 const struct bpf_object_open_opts *opts)
2609 {
2610 	const char *pin_root_path;
2611 	bool strict;
2612 	int err;
2613 
2614 	strict = !OPTS_GET(opts, relaxed_maps, false);
2615 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2616 
2617 	err = bpf_object__init_user_maps(obj, strict);
2618 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2619 	err = err ?: bpf_object__init_global_data_maps(obj);
2620 	err = err ?: bpf_object__init_kconfig_map(obj);
2621 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2622 
2623 	return err;
2624 }
2625 
2626 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2627 {
2628 	Elf64_Shdr *sh;
2629 
2630 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2631 	if (!sh)
2632 		return false;
2633 
2634 	return sh->sh_flags & SHF_EXECINSTR;
2635 }
2636 
2637 static bool btf_needs_sanitization(struct bpf_object *obj)
2638 {
2639 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2640 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2641 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2642 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2643 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2644 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2645 
2646 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2647 	       !has_decl_tag || !has_type_tag;
2648 }
2649 
2650 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2651 {
2652 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2653 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2654 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2655 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2656 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2657 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2658 	struct btf_type *t;
2659 	int i, j, vlen;
2660 
2661 	for (i = 1; i < btf__type_cnt(btf); i++) {
2662 		t = (struct btf_type *)btf__type_by_id(btf, i);
2663 
2664 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2665 			/* replace VAR/DECL_TAG with INT */
2666 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2667 			/*
2668 			 * using size = 1 is the safest choice, 4 will be too
2669 			 * big and cause kernel BTF validation failure if
2670 			 * original variable took less than 4 bytes
2671 			 */
2672 			t->size = 1;
2673 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2674 		} else if (!has_datasec && btf_is_datasec(t)) {
2675 			/* replace DATASEC with STRUCT */
2676 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2677 			struct btf_member *m = btf_members(t);
2678 			struct btf_type *vt;
2679 			char *name;
2680 
2681 			name = (char *)btf__name_by_offset(btf, t->name_off);
2682 			while (*name) {
2683 				if (*name == '.')
2684 					*name = '_';
2685 				name++;
2686 			}
2687 
2688 			vlen = btf_vlen(t);
2689 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2690 			for (j = 0; j < vlen; j++, v++, m++) {
2691 				/* order of field assignments is important */
2692 				m->offset = v->offset * 8;
2693 				m->type = v->type;
2694 				/* preserve variable name as member name */
2695 				vt = (void *)btf__type_by_id(btf, v->type);
2696 				m->name_off = vt->name_off;
2697 			}
2698 		} else if (!has_func && btf_is_func_proto(t)) {
2699 			/* replace FUNC_PROTO with ENUM */
2700 			vlen = btf_vlen(t);
2701 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2702 			t->size = sizeof(__u32); /* kernel enforced */
2703 		} else if (!has_func && btf_is_func(t)) {
2704 			/* replace FUNC with TYPEDEF */
2705 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2706 		} else if (!has_func_global && btf_is_func(t)) {
2707 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2708 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2709 		} else if (!has_float && btf_is_float(t)) {
2710 			/* replace FLOAT with an equally-sized empty STRUCT;
2711 			 * since C compilers do not accept e.g. "float" as a
2712 			 * valid struct name, make it anonymous
2713 			 */
2714 			t->name_off = 0;
2715 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2716 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2717 			/* replace TYPE_TAG with a CONST */
2718 			t->name_off = 0;
2719 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2720 		}
2721 	}
2722 }
2723 
2724 static bool libbpf_needs_btf(const struct bpf_object *obj)
2725 {
2726 	return obj->efile.btf_maps_shndx >= 0 ||
2727 	       obj->efile.st_ops_shndx >= 0 ||
2728 	       obj->nr_extern > 0;
2729 }
2730 
2731 static bool kernel_needs_btf(const struct bpf_object *obj)
2732 {
2733 	return obj->efile.st_ops_shndx >= 0;
2734 }
2735 
2736 static int bpf_object__init_btf(struct bpf_object *obj,
2737 				Elf_Data *btf_data,
2738 				Elf_Data *btf_ext_data)
2739 {
2740 	int err = -ENOENT;
2741 
2742 	if (btf_data) {
2743 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2744 		err = libbpf_get_error(obj->btf);
2745 		if (err) {
2746 			obj->btf = NULL;
2747 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2748 			goto out;
2749 		}
2750 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2751 		btf__set_pointer_size(obj->btf, 8);
2752 	}
2753 	if (btf_ext_data) {
2754 		struct btf_ext_info *ext_segs[3];
2755 		int seg_num, sec_num;
2756 
2757 		if (!obj->btf) {
2758 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2759 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2760 			goto out;
2761 		}
2762 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2763 		err = libbpf_get_error(obj->btf_ext);
2764 		if (err) {
2765 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2766 				BTF_EXT_ELF_SEC, err);
2767 			obj->btf_ext = NULL;
2768 			goto out;
2769 		}
2770 
2771 		/* setup .BTF.ext to ELF section mapping */
2772 		ext_segs[0] = &obj->btf_ext->func_info;
2773 		ext_segs[1] = &obj->btf_ext->line_info;
2774 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2775 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2776 			struct btf_ext_info *seg = ext_segs[seg_num];
2777 			const struct btf_ext_info_sec *sec;
2778 			const char *sec_name;
2779 			Elf_Scn *scn;
2780 
2781 			if (seg->sec_cnt == 0)
2782 				continue;
2783 
2784 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2785 			if (!seg->sec_idxs) {
2786 				err = -ENOMEM;
2787 				goto out;
2788 			}
2789 
2790 			sec_num = 0;
2791 			for_each_btf_ext_sec(seg, sec) {
2792 				/* preventively increment index to avoid doing
2793 				 * this before every continue below
2794 				 */
2795 				sec_num++;
2796 
2797 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2798 				if (str_is_empty(sec_name))
2799 					continue;
2800 				scn = elf_sec_by_name(obj, sec_name);
2801 				if (!scn)
2802 					continue;
2803 
2804 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2805 			}
2806 		}
2807 	}
2808 out:
2809 	if (err && libbpf_needs_btf(obj)) {
2810 		pr_warn("BTF is required, but is missing or corrupted.\n");
2811 		return err;
2812 	}
2813 	return 0;
2814 }
2815 
2816 static int compare_vsi_off(const void *_a, const void *_b)
2817 {
2818 	const struct btf_var_secinfo *a = _a;
2819 	const struct btf_var_secinfo *b = _b;
2820 
2821 	return a->offset - b->offset;
2822 }
2823 
2824 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2825 			     struct btf_type *t)
2826 {
2827 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
2828 	const char *name = btf__name_by_offset(btf, t->name_off);
2829 	const struct btf_type *t_var;
2830 	struct btf_var_secinfo *vsi;
2831 	const struct btf_var *var;
2832 	int ret;
2833 
2834 	if (!name) {
2835 		pr_debug("No name found in string section for DATASEC kind.\n");
2836 		return -ENOENT;
2837 	}
2838 
2839 	/* .extern datasec size and var offsets were set correctly during
2840 	 * extern collection step, so just skip straight to sorting variables
2841 	 */
2842 	if (t->size)
2843 		goto sort_vars;
2844 
2845 	ret = find_elf_sec_sz(obj, name, &size);
2846 	if (ret || !size) {
2847 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2848 		return -ENOENT;
2849 	}
2850 
2851 	t->size = size;
2852 
2853 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2854 		t_var = btf__type_by_id(btf, vsi->type);
2855 		if (!t_var || !btf_is_var(t_var)) {
2856 			pr_debug("Non-VAR type seen in section %s\n", name);
2857 			return -EINVAL;
2858 		}
2859 
2860 		var = btf_var(t_var);
2861 		if (var->linkage == BTF_VAR_STATIC)
2862 			continue;
2863 
2864 		name = btf__name_by_offset(btf, t_var->name_off);
2865 		if (!name) {
2866 			pr_debug("No name found in string section for VAR kind\n");
2867 			return -ENOENT;
2868 		}
2869 
2870 		ret = find_elf_var_offset(obj, name, &off);
2871 		if (ret) {
2872 			pr_debug("No offset found in symbol table for VAR %s\n",
2873 				 name);
2874 			return -ENOENT;
2875 		}
2876 
2877 		vsi->offset = off;
2878 	}
2879 
2880 sort_vars:
2881 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2882 	return 0;
2883 }
2884 
2885 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2886 {
2887 	int err = 0;
2888 	__u32 i, n = btf__type_cnt(btf);
2889 
2890 	for (i = 1; i < n; i++) {
2891 		struct btf_type *t = btf_type_by_id(btf, i);
2892 
2893 		/* Loader needs to fix up some of the things compiler
2894 		 * couldn't get its hands on while emitting BTF. This
2895 		 * is section size and global variable offset. We use
2896 		 * the info from the ELF itself for this purpose.
2897 		 */
2898 		if (btf_is_datasec(t)) {
2899 			err = btf_fixup_datasec(obj, btf, t);
2900 			if (err)
2901 				break;
2902 		}
2903 	}
2904 
2905 	return libbpf_err(err);
2906 }
2907 
2908 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
2909 {
2910 	return btf_finalize_data(obj, btf);
2911 }
2912 
2913 static int bpf_object__finalize_btf(struct bpf_object *obj)
2914 {
2915 	int err;
2916 
2917 	if (!obj->btf)
2918 		return 0;
2919 
2920 	err = btf_finalize_data(obj, obj->btf);
2921 	if (err) {
2922 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2923 		return err;
2924 	}
2925 
2926 	return 0;
2927 }
2928 
2929 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2930 {
2931 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2932 	    prog->type == BPF_PROG_TYPE_LSM)
2933 		return true;
2934 
2935 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2936 	 * also need vmlinux BTF
2937 	 */
2938 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2939 		return true;
2940 
2941 	return false;
2942 }
2943 
2944 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2945 {
2946 	struct bpf_program *prog;
2947 	int i;
2948 
2949 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
2950 	 * is not specified
2951 	 */
2952 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2953 		return true;
2954 
2955 	/* Support for typed ksyms needs kernel BTF */
2956 	for (i = 0; i < obj->nr_extern; i++) {
2957 		const struct extern_desc *ext;
2958 
2959 		ext = &obj->externs[i];
2960 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2961 			return true;
2962 	}
2963 
2964 	bpf_object__for_each_program(prog, obj) {
2965 		if (!prog->autoload)
2966 			continue;
2967 		if (prog_needs_vmlinux_btf(prog))
2968 			return true;
2969 	}
2970 
2971 	return false;
2972 }
2973 
2974 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2975 {
2976 	int err;
2977 
2978 	/* btf_vmlinux could be loaded earlier */
2979 	if (obj->btf_vmlinux || obj->gen_loader)
2980 		return 0;
2981 
2982 	if (!force && !obj_needs_vmlinux_btf(obj))
2983 		return 0;
2984 
2985 	obj->btf_vmlinux = btf__load_vmlinux_btf();
2986 	err = libbpf_get_error(obj->btf_vmlinux);
2987 	if (err) {
2988 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2989 		obj->btf_vmlinux = NULL;
2990 		return err;
2991 	}
2992 	return 0;
2993 }
2994 
2995 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2996 {
2997 	struct btf *kern_btf = obj->btf;
2998 	bool btf_mandatory, sanitize;
2999 	int i, err = 0;
3000 
3001 	if (!obj->btf)
3002 		return 0;
3003 
3004 	if (!kernel_supports(obj, FEAT_BTF)) {
3005 		if (kernel_needs_btf(obj)) {
3006 			err = -EOPNOTSUPP;
3007 			goto report;
3008 		}
3009 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3010 		return 0;
3011 	}
3012 
3013 	/* Even though some subprogs are global/weak, user might prefer more
3014 	 * permissive BPF verification process that BPF verifier performs for
3015 	 * static functions, taking into account more context from the caller
3016 	 * functions. In such case, they need to mark such subprogs with
3017 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3018 	 * corresponding FUNC BTF type to be marked as static and trigger more
3019 	 * involved BPF verification process.
3020 	 */
3021 	for (i = 0; i < obj->nr_programs; i++) {
3022 		struct bpf_program *prog = &obj->programs[i];
3023 		struct btf_type *t;
3024 		const char *name;
3025 		int j, n;
3026 
3027 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3028 			continue;
3029 
3030 		n = btf__type_cnt(obj->btf);
3031 		for (j = 1; j < n; j++) {
3032 			t = btf_type_by_id(obj->btf, j);
3033 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3034 				continue;
3035 
3036 			name = btf__str_by_offset(obj->btf, t->name_off);
3037 			if (strcmp(name, prog->name) != 0)
3038 				continue;
3039 
3040 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3041 			break;
3042 		}
3043 	}
3044 
3045 	sanitize = btf_needs_sanitization(obj);
3046 	if (sanitize) {
3047 		const void *raw_data;
3048 		__u32 sz;
3049 
3050 		/* clone BTF to sanitize a copy and leave the original intact */
3051 		raw_data = btf__raw_data(obj->btf, &sz);
3052 		kern_btf = btf__new(raw_data, sz);
3053 		err = libbpf_get_error(kern_btf);
3054 		if (err)
3055 			return err;
3056 
3057 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3058 		btf__set_pointer_size(obj->btf, 8);
3059 		bpf_object__sanitize_btf(obj, kern_btf);
3060 	}
3061 
3062 	if (obj->gen_loader) {
3063 		__u32 raw_size = 0;
3064 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3065 
3066 		if (!raw_data)
3067 			return -ENOMEM;
3068 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3069 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3070 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3071 		 */
3072 		btf__set_fd(kern_btf, 0);
3073 	} else {
3074 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3075 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3076 					   obj->log_level ? 1 : 0);
3077 	}
3078 	if (sanitize) {
3079 		if (!err) {
3080 			/* move fd to libbpf's BTF */
3081 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3082 			btf__set_fd(kern_btf, -1);
3083 		}
3084 		btf__free(kern_btf);
3085 	}
3086 report:
3087 	if (err) {
3088 		btf_mandatory = kernel_needs_btf(obj);
3089 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3090 			btf_mandatory ? "BTF is mandatory, can't proceed."
3091 				      : "BTF is optional, ignoring.");
3092 		if (!btf_mandatory)
3093 			err = 0;
3094 	}
3095 	return err;
3096 }
3097 
3098 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3099 {
3100 	const char *name;
3101 
3102 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3103 	if (!name) {
3104 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3105 			off, obj->path, elf_errmsg(-1));
3106 		return NULL;
3107 	}
3108 
3109 	return name;
3110 }
3111 
3112 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3113 {
3114 	const char *name;
3115 
3116 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3117 	if (!name) {
3118 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3119 			off, obj->path, elf_errmsg(-1));
3120 		return NULL;
3121 	}
3122 
3123 	return name;
3124 }
3125 
3126 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3127 {
3128 	Elf_Scn *scn;
3129 
3130 	scn = elf_getscn(obj->efile.elf, idx);
3131 	if (!scn) {
3132 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3133 			idx, obj->path, elf_errmsg(-1));
3134 		return NULL;
3135 	}
3136 	return scn;
3137 }
3138 
3139 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3140 {
3141 	Elf_Scn *scn = NULL;
3142 	Elf *elf = obj->efile.elf;
3143 	const char *sec_name;
3144 
3145 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3146 		sec_name = elf_sec_name(obj, scn);
3147 		if (!sec_name)
3148 			return NULL;
3149 
3150 		if (strcmp(sec_name, name) != 0)
3151 			continue;
3152 
3153 		return scn;
3154 	}
3155 	return NULL;
3156 }
3157 
3158 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3159 {
3160 	Elf64_Shdr *shdr;
3161 
3162 	if (!scn)
3163 		return NULL;
3164 
3165 	shdr = elf64_getshdr(scn);
3166 	if (!shdr) {
3167 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3168 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3169 		return NULL;
3170 	}
3171 
3172 	return shdr;
3173 }
3174 
3175 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3176 {
3177 	const char *name;
3178 	Elf64_Shdr *sh;
3179 
3180 	if (!scn)
3181 		return NULL;
3182 
3183 	sh = elf_sec_hdr(obj, scn);
3184 	if (!sh)
3185 		return NULL;
3186 
3187 	name = elf_sec_str(obj, sh->sh_name);
3188 	if (!name) {
3189 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3190 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3191 		return NULL;
3192 	}
3193 
3194 	return name;
3195 }
3196 
3197 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3198 {
3199 	Elf_Data *data;
3200 
3201 	if (!scn)
3202 		return NULL;
3203 
3204 	data = elf_getdata(scn, 0);
3205 	if (!data) {
3206 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3207 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3208 			obj->path, elf_errmsg(-1));
3209 		return NULL;
3210 	}
3211 
3212 	return data;
3213 }
3214 
3215 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3216 {
3217 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3218 		return NULL;
3219 
3220 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3221 }
3222 
3223 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3224 {
3225 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3226 		return NULL;
3227 
3228 	return (Elf64_Rel *)data->d_buf + idx;
3229 }
3230 
3231 static bool is_sec_name_dwarf(const char *name)
3232 {
3233 	/* approximation, but the actual list is too long */
3234 	return str_has_pfx(name, ".debug_");
3235 }
3236 
3237 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3238 {
3239 	/* no special handling of .strtab */
3240 	if (hdr->sh_type == SHT_STRTAB)
3241 		return true;
3242 
3243 	/* ignore .llvm_addrsig section as well */
3244 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3245 		return true;
3246 
3247 	/* no subprograms will lead to an empty .text section, ignore it */
3248 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3249 	    strcmp(name, ".text") == 0)
3250 		return true;
3251 
3252 	/* DWARF sections */
3253 	if (is_sec_name_dwarf(name))
3254 		return true;
3255 
3256 	if (str_has_pfx(name, ".rel")) {
3257 		name += sizeof(".rel") - 1;
3258 		/* DWARF section relocations */
3259 		if (is_sec_name_dwarf(name))
3260 			return true;
3261 
3262 		/* .BTF and .BTF.ext don't need relocations */
3263 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3264 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3265 			return true;
3266 	}
3267 
3268 	return false;
3269 }
3270 
3271 static int cmp_progs(const void *_a, const void *_b)
3272 {
3273 	const struct bpf_program *a = _a;
3274 	const struct bpf_program *b = _b;
3275 
3276 	if (a->sec_idx != b->sec_idx)
3277 		return a->sec_idx < b->sec_idx ? -1 : 1;
3278 
3279 	/* sec_insn_off can't be the same within the section */
3280 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3281 }
3282 
3283 static int bpf_object__elf_collect(struct bpf_object *obj)
3284 {
3285 	struct elf_sec_desc *sec_desc;
3286 	Elf *elf = obj->efile.elf;
3287 	Elf_Data *btf_ext_data = NULL;
3288 	Elf_Data *btf_data = NULL;
3289 	int idx = 0, err = 0;
3290 	const char *name;
3291 	Elf_Data *data;
3292 	Elf_Scn *scn;
3293 	Elf64_Shdr *sh;
3294 
3295 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3296 	 * section. e_shnum does include sec #0, so e_shnum is the necessary
3297 	 * size of an array to keep all the sections.
3298 	 */
3299 	obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3300 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3301 	if (!obj->efile.secs)
3302 		return -ENOMEM;
3303 
3304 	/* a bunch of ELF parsing functionality depends on processing symbols,
3305 	 * so do the first pass and find the symbol table
3306 	 */
3307 	scn = NULL;
3308 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3309 		sh = elf_sec_hdr(obj, scn);
3310 		if (!sh)
3311 			return -LIBBPF_ERRNO__FORMAT;
3312 
3313 		if (sh->sh_type == SHT_SYMTAB) {
3314 			if (obj->efile.symbols) {
3315 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3316 				return -LIBBPF_ERRNO__FORMAT;
3317 			}
3318 
3319 			data = elf_sec_data(obj, scn);
3320 			if (!data)
3321 				return -LIBBPF_ERRNO__FORMAT;
3322 
3323 			idx = elf_ndxscn(scn);
3324 
3325 			obj->efile.symbols = data;
3326 			obj->efile.symbols_shndx = idx;
3327 			obj->efile.strtabidx = sh->sh_link;
3328 		}
3329 	}
3330 
3331 	if (!obj->efile.symbols) {
3332 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3333 			obj->path);
3334 		return -ENOENT;
3335 	}
3336 
3337 	scn = NULL;
3338 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3339 		idx = elf_ndxscn(scn);
3340 		sec_desc = &obj->efile.secs[idx];
3341 
3342 		sh = elf_sec_hdr(obj, scn);
3343 		if (!sh)
3344 			return -LIBBPF_ERRNO__FORMAT;
3345 
3346 		name = elf_sec_str(obj, sh->sh_name);
3347 		if (!name)
3348 			return -LIBBPF_ERRNO__FORMAT;
3349 
3350 		if (ignore_elf_section(sh, name))
3351 			continue;
3352 
3353 		data = elf_sec_data(obj, scn);
3354 		if (!data)
3355 			return -LIBBPF_ERRNO__FORMAT;
3356 
3357 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3358 			 idx, name, (unsigned long)data->d_size,
3359 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3360 			 (int)sh->sh_type);
3361 
3362 		if (strcmp(name, "license") == 0) {
3363 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3364 			if (err)
3365 				return err;
3366 		} else if (strcmp(name, "version") == 0) {
3367 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3368 			if (err)
3369 				return err;
3370 		} else if (strcmp(name, "maps") == 0) {
3371 			obj->efile.maps_shndx = idx;
3372 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3373 			obj->efile.btf_maps_shndx = idx;
3374 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3375 			if (sh->sh_type != SHT_PROGBITS)
3376 				return -LIBBPF_ERRNO__FORMAT;
3377 			btf_data = data;
3378 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3379 			if (sh->sh_type != SHT_PROGBITS)
3380 				return -LIBBPF_ERRNO__FORMAT;
3381 			btf_ext_data = data;
3382 		} else if (sh->sh_type == SHT_SYMTAB) {
3383 			/* already processed during the first pass above */
3384 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3385 			if (sh->sh_flags & SHF_EXECINSTR) {
3386 				if (strcmp(name, ".text") == 0)
3387 					obj->efile.text_shndx = idx;
3388 				err = bpf_object__add_programs(obj, data, name, idx);
3389 				if (err)
3390 					return err;
3391 			} else if (strcmp(name, DATA_SEC) == 0 ||
3392 				   str_has_pfx(name, DATA_SEC ".")) {
3393 				sec_desc->sec_type = SEC_DATA;
3394 				sec_desc->shdr = sh;
3395 				sec_desc->data = data;
3396 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3397 				   str_has_pfx(name, RODATA_SEC ".")) {
3398 				sec_desc->sec_type = SEC_RODATA;
3399 				sec_desc->shdr = sh;
3400 				sec_desc->data = data;
3401 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3402 				obj->efile.st_ops_data = data;
3403 				obj->efile.st_ops_shndx = idx;
3404 			} else {
3405 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3406 					idx, name);
3407 			}
3408 		} else if (sh->sh_type == SHT_REL) {
3409 			int targ_sec_idx = sh->sh_info; /* points to other section */
3410 
3411 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3412 			    targ_sec_idx >= obj->efile.sec_cnt)
3413 				return -LIBBPF_ERRNO__FORMAT;
3414 
3415 			/* Only do relo for section with exec instructions */
3416 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3417 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3418 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3419 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3420 					idx, name, targ_sec_idx,
3421 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3422 				continue;
3423 			}
3424 
3425 			sec_desc->sec_type = SEC_RELO;
3426 			sec_desc->shdr = sh;
3427 			sec_desc->data = data;
3428 		} else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3429 			sec_desc->sec_type = SEC_BSS;
3430 			sec_desc->shdr = sh;
3431 			sec_desc->data = data;
3432 		} else {
3433 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3434 				(size_t)sh->sh_size);
3435 		}
3436 	}
3437 
3438 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3439 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3440 		return -LIBBPF_ERRNO__FORMAT;
3441 	}
3442 
3443 	/* sort BPF programs by section name and in-section instruction offset
3444 	 * for faster search */
3445 	if (obj->nr_programs)
3446 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3447 
3448 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3449 }
3450 
3451 static bool sym_is_extern(const Elf64_Sym *sym)
3452 {
3453 	int bind = ELF64_ST_BIND(sym->st_info);
3454 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3455 	return sym->st_shndx == SHN_UNDEF &&
3456 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3457 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3458 }
3459 
3460 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3461 {
3462 	int bind = ELF64_ST_BIND(sym->st_info);
3463 	int type = ELF64_ST_TYPE(sym->st_info);
3464 
3465 	/* in .text section */
3466 	if (sym->st_shndx != text_shndx)
3467 		return false;
3468 
3469 	/* local function */
3470 	if (bind == STB_LOCAL && type == STT_SECTION)
3471 		return true;
3472 
3473 	/* global function */
3474 	return bind == STB_GLOBAL && type == STT_FUNC;
3475 }
3476 
3477 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3478 {
3479 	const struct btf_type *t;
3480 	const char *tname;
3481 	int i, n;
3482 
3483 	if (!btf)
3484 		return -ESRCH;
3485 
3486 	n = btf__type_cnt(btf);
3487 	for (i = 1; i < n; i++) {
3488 		t = btf__type_by_id(btf, i);
3489 
3490 		if (!btf_is_var(t) && !btf_is_func(t))
3491 			continue;
3492 
3493 		tname = btf__name_by_offset(btf, t->name_off);
3494 		if (strcmp(tname, ext_name))
3495 			continue;
3496 
3497 		if (btf_is_var(t) &&
3498 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3499 			return -EINVAL;
3500 
3501 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3502 			return -EINVAL;
3503 
3504 		return i;
3505 	}
3506 
3507 	return -ENOENT;
3508 }
3509 
3510 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3511 	const struct btf_var_secinfo *vs;
3512 	const struct btf_type *t;
3513 	int i, j, n;
3514 
3515 	if (!btf)
3516 		return -ESRCH;
3517 
3518 	n = btf__type_cnt(btf);
3519 	for (i = 1; i < n; i++) {
3520 		t = btf__type_by_id(btf, i);
3521 
3522 		if (!btf_is_datasec(t))
3523 			continue;
3524 
3525 		vs = btf_var_secinfos(t);
3526 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3527 			if (vs->type == ext_btf_id)
3528 				return i;
3529 		}
3530 	}
3531 
3532 	return -ENOENT;
3533 }
3534 
3535 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3536 				     bool *is_signed)
3537 {
3538 	const struct btf_type *t;
3539 	const char *name;
3540 
3541 	t = skip_mods_and_typedefs(btf, id, NULL);
3542 	name = btf__name_by_offset(btf, t->name_off);
3543 
3544 	if (is_signed)
3545 		*is_signed = false;
3546 	switch (btf_kind(t)) {
3547 	case BTF_KIND_INT: {
3548 		int enc = btf_int_encoding(t);
3549 
3550 		if (enc & BTF_INT_BOOL)
3551 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3552 		if (is_signed)
3553 			*is_signed = enc & BTF_INT_SIGNED;
3554 		if (t->size == 1)
3555 			return KCFG_CHAR;
3556 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3557 			return KCFG_UNKNOWN;
3558 		return KCFG_INT;
3559 	}
3560 	case BTF_KIND_ENUM:
3561 		if (t->size != 4)
3562 			return KCFG_UNKNOWN;
3563 		if (strcmp(name, "libbpf_tristate"))
3564 			return KCFG_UNKNOWN;
3565 		return KCFG_TRISTATE;
3566 	case BTF_KIND_ARRAY:
3567 		if (btf_array(t)->nelems == 0)
3568 			return KCFG_UNKNOWN;
3569 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3570 			return KCFG_UNKNOWN;
3571 		return KCFG_CHAR_ARR;
3572 	default:
3573 		return KCFG_UNKNOWN;
3574 	}
3575 }
3576 
3577 static int cmp_externs(const void *_a, const void *_b)
3578 {
3579 	const struct extern_desc *a = _a;
3580 	const struct extern_desc *b = _b;
3581 
3582 	if (a->type != b->type)
3583 		return a->type < b->type ? -1 : 1;
3584 
3585 	if (a->type == EXT_KCFG) {
3586 		/* descending order by alignment requirements */
3587 		if (a->kcfg.align != b->kcfg.align)
3588 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3589 		/* ascending order by size, within same alignment class */
3590 		if (a->kcfg.sz != b->kcfg.sz)
3591 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3592 	}
3593 
3594 	/* resolve ties by name */
3595 	return strcmp(a->name, b->name);
3596 }
3597 
3598 static int find_int_btf_id(const struct btf *btf)
3599 {
3600 	const struct btf_type *t;
3601 	int i, n;
3602 
3603 	n = btf__type_cnt(btf);
3604 	for (i = 1; i < n; i++) {
3605 		t = btf__type_by_id(btf, i);
3606 
3607 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3608 			return i;
3609 	}
3610 
3611 	return 0;
3612 }
3613 
3614 static int add_dummy_ksym_var(struct btf *btf)
3615 {
3616 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3617 	const struct btf_var_secinfo *vs;
3618 	const struct btf_type *sec;
3619 
3620 	if (!btf)
3621 		return 0;
3622 
3623 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3624 					    BTF_KIND_DATASEC);
3625 	if (sec_btf_id < 0)
3626 		return 0;
3627 
3628 	sec = btf__type_by_id(btf, sec_btf_id);
3629 	vs = btf_var_secinfos(sec);
3630 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3631 		const struct btf_type *vt;
3632 
3633 		vt = btf__type_by_id(btf, vs->type);
3634 		if (btf_is_func(vt))
3635 			break;
3636 	}
3637 
3638 	/* No func in ksyms sec.  No need to add dummy var. */
3639 	if (i == btf_vlen(sec))
3640 		return 0;
3641 
3642 	int_btf_id = find_int_btf_id(btf);
3643 	dummy_var_btf_id = btf__add_var(btf,
3644 					"dummy_ksym",
3645 					BTF_VAR_GLOBAL_ALLOCATED,
3646 					int_btf_id);
3647 	if (dummy_var_btf_id < 0)
3648 		pr_warn("cannot create a dummy_ksym var\n");
3649 
3650 	return dummy_var_btf_id;
3651 }
3652 
3653 static int bpf_object__collect_externs(struct bpf_object *obj)
3654 {
3655 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3656 	const struct btf_type *t;
3657 	struct extern_desc *ext;
3658 	int i, n, off, dummy_var_btf_id;
3659 	const char *ext_name, *sec_name;
3660 	Elf_Scn *scn;
3661 	Elf64_Shdr *sh;
3662 
3663 	if (!obj->efile.symbols)
3664 		return 0;
3665 
3666 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3667 	sh = elf_sec_hdr(obj, scn);
3668 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3669 		return -LIBBPF_ERRNO__FORMAT;
3670 
3671 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3672 	if (dummy_var_btf_id < 0)
3673 		return dummy_var_btf_id;
3674 
3675 	n = sh->sh_size / sh->sh_entsize;
3676 	pr_debug("looking for externs among %d symbols...\n", n);
3677 
3678 	for (i = 0; i < n; i++) {
3679 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3680 
3681 		if (!sym)
3682 			return -LIBBPF_ERRNO__FORMAT;
3683 		if (!sym_is_extern(sym))
3684 			continue;
3685 		ext_name = elf_sym_str(obj, sym->st_name);
3686 		if (!ext_name || !ext_name[0])
3687 			continue;
3688 
3689 		ext = obj->externs;
3690 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3691 		if (!ext)
3692 			return -ENOMEM;
3693 		obj->externs = ext;
3694 		ext = &ext[obj->nr_extern];
3695 		memset(ext, 0, sizeof(*ext));
3696 		obj->nr_extern++;
3697 
3698 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3699 		if (ext->btf_id <= 0) {
3700 			pr_warn("failed to find BTF for extern '%s': %d\n",
3701 				ext_name, ext->btf_id);
3702 			return ext->btf_id;
3703 		}
3704 		t = btf__type_by_id(obj->btf, ext->btf_id);
3705 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3706 		ext->sym_idx = i;
3707 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3708 
3709 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3710 		if (ext->sec_btf_id <= 0) {
3711 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3712 				ext_name, ext->btf_id, ext->sec_btf_id);
3713 			return ext->sec_btf_id;
3714 		}
3715 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3716 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3717 
3718 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3719 			if (btf_is_func(t)) {
3720 				pr_warn("extern function %s is unsupported under %s section\n",
3721 					ext->name, KCONFIG_SEC);
3722 				return -ENOTSUP;
3723 			}
3724 			kcfg_sec = sec;
3725 			ext->type = EXT_KCFG;
3726 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3727 			if (ext->kcfg.sz <= 0) {
3728 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3729 					ext_name, ext->kcfg.sz);
3730 				return ext->kcfg.sz;
3731 			}
3732 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3733 			if (ext->kcfg.align <= 0) {
3734 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3735 					ext_name, ext->kcfg.align);
3736 				return -EINVAL;
3737 			}
3738 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3739 						        &ext->kcfg.is_signed);
3740 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3741 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3742 				return -ENOTSUP;
3743 			}
3744 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3745 			ksym_sec = sec;
3746 			ext->type = EXT_KSYM;
3747 			skip_mods_and_typedefs(obj->btf, t->type,
3748 					       &ext->ksym.type_id);
3749 		} else {
3750 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3751 			return -ENOTSUP;
3752 		}
3753 	}
3754 	pr_debug("collected %d externs total\n", obj->nr_extern);
3755 
3756 	if (!obj->nr_extern)
3757 		return 0;
3758 
3759 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3760 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3761 
3762 	/* for .ksyms section, we need to turn all externs into allocated
3763 	 * variables in BTF to pass kernel verification; we do this by
3764 	 * pretending that each extern is a 8-byte variable
3765 	 */
3766 	if (ksym_sec) {
3767 		/* find existing 4-byte integer type in BTF to use for fake
3768 		 * extern variables in DATASEC
3769 		 */
3770 		int int_btf_id = find_int_btf_id(obj->btf);
3771 		/* For extern function, a dummy_var added earlier
3772 		 * will be used to replace the vs->type and
3773 		 * its name string will be used to refill
3774 		 * the missing param's name.
3775 		 */
3776 		const struct btf_type *dummy_var;
3777 
3778 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3779 		for (i = 0; i < obj->nr_extern; i++) {
3780 			ext = &obj->externs[i];
3781 			if (ext->type != EXT_KSYM)
3782 				continue;
3783 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3784 				 i, ext->sym_idx, ext->name);
3785 		}
3786 
3787 		sec = ksym_sec;
3788 		n = btf_vlen(sec);
3789 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3790 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3791 			struct btf_type *vt;
3792 
3793 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3794 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3795 			ext = find_extern_by_name(obj, ext_name);
3796 			if (!ext) {
3797 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3798 					btf_kind_str(vt), ext_name);
3799 				return -ESRCH;
3800 			}
3801 			if (btf_is_func(vt)) {
3802 				const struct btf_type *func_proto;
3803 				struct btf_param *param;
3804 				int j;
3805 
3806 				func_proto = btf__type_by_id(obj->btf,
3807 							     vt->type);
3808 				param = btf_params(func_proto);
3809 				/* Reuse the dummy_var string if the
3810 				 * func proto does not have param name.
3811 				 */
3812 				for (j = 0; j < btf_vlen(func_proto); j++)
3813 					if (param[j].type && !param[j].name_off)
3814 						param[j].name_off =
3815 							dummy_var->name_off;
3816 				vs->type = dummy_var_btf_id;
3817 				vt->info &= ~0xffff;
3818 				vt->info |= BTF_FUNC_GLOBAL;
3819 			} else {
3820 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3821 				vt->type = int_btf_id;
3822 			}
3823 			vs->offset = off;
3824 			vs->size = sizeof(int);
3825 		}
3826 		sec->size = off;
3827 	}
3828 
3829 	if (kcfg_sec) {
3830 		sec = kcfg_sec;
3831 		/* for kcfg externs calculate their offsets within a .kconfig map */
3832 		off = 0;
3833 		for (i = 0; i < obj->nr_extern; i++) {
3834 			ext = &obj->externs[i];
3835 			if (ext->type != EXT_KCFG)
3836 				continue;
3837 
3838 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3839 			off = ext->kcfg.data_off + ext->kcfg.sz;
3840 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3841 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3842 		}
3843 		sec->size = off;
3844 		n = btf_vlen(sec);
3845 		for (i = 0; i < n; i++) {
3846 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3847 
3848 			t = btf__type_by_id(obj->btf, vs->type);
3849 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3850 			ext = find_extern_by_name(obj, ext_name);
3851 			if (!ext) {
3852 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3853 					ext_name);
3854 				return -ESRCH;
3855 			}
3856 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3857 			vs->offset = ext->kcfg.data_off;
3858 		}
3859 	}
3860 	return 0;
3861 }
3862 
3863 struct bpf_program *
3864 bpf_object__find_program_by_title(const struct bpf_object *obj,
3865 				  const char *title)
3866 {
3867 	struct bpf_program *pos;
3868 
3869 	bpf_object__for_each_program(pos, obj) {
3870 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3871 			return pos;
3872 	}
3873 	return errno = ENOENT, NULL;
3874 }
3875 
3876 static bool prog_is_subprog(const struct bpf_object *obj,
3877 			    const struct bpf_program *prog)
3878 {
3879 	/* For legacy reasons, libbpf supports an entry-point BPF programs
3880 	 * without SEC() attribute, i.e., those in the .text section. But if
3881 	 * there are 2 or more such programs in the .text section, they all
3882 	 * must be subprograms called from entry-point BPF programs in
3883 	 * designated SEC()'tions, otherwise there is no way to distinguish
3884 	 * which of those programs should be loaded vs which are a subprogram.
3885 	 * Similarly, if there is a function/program in .text and at least one
3886 	 * other BPF program with custom SEC() attribute, then we just assume
3887 	 * .text programs are subprograms (even if they are not called from
3888 	 * other programs), because libbpf never explicitly supported mixing
3889 	 * SEC()-designated BPF programs and .text entry-point BPF programs.
3890 	 *
3891 	 * In libbpf 1.0 strict mode, we always consider .text
3892 	 * programs to be subprograms.
3893 	 */
3894 
3895 	if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
3896 		return prog->sec_idx == obj->efile.text_shndx;
3897 
3898 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3899 }
3900 
3901 struct bpf_program *
3902 bpf_object__find_program_by_name(const struct bpf_object *obj,
3903 				 const char *name)
3904 {
3905 	struct bpf_program *prog;
3906 
3907 	bpf_object__for_each_program(prog, obj) {
3908 		if (prog_is_subprog(obj, prog))
3909 			continue;
3910 		if (!strcmp(prog->name, name))
3911 			return prog;
3912 	}
3913 	return errno = ENOENT, NULL;
3914 }
3915 
3916 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3917 				      int shndx)
3918 {
3919 	switch (obj->efile.secs[shndx].sec_type) {
3920 	case SEC_BSS:
3921 	case SEC_DATA:
3922 	case SEC_RODATA:
3923 		return true;
3924 	default:
3925 		return false;
3926 	}
3927 }
3928 
3929 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3930 				      int shndx)
3931 {
3932 	return shndx == obj->efile.maps_shndx ||
3933 	       shndx == obj->efile.btf_maps_shndx;
3934 }
3935 
3936 static enum libbpf_map_type
3937 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3938 {
3939 	if (shndx == obj->efile.symbols_shndx)
3940 		return LIBBPF_MAP_KCONFIG;
3941 
3942 	switch (obj->efile.secs[shndx].sec_type) {
3943 	case SEC_BSS:
3944 		return LIBBPF_MAP_BSS;
3945 	case SEC_DATA:
3946 		return LIBBPF_MAP_DATA;
3947 	case SEC_RODATA:
3948 		return LIBBPF_MAP_RODATA;
3949 	default:
3950 		return LIBBPF_MAP_UNSPEC;
3951 	}
3952 }
3953 
3954 static int bpf_program__record_reloc(struct bpf_program *prog,
3955 				     struct reloc_desc *reloc_desc,
3956 				     __u32 insn_idx, const char *sym_name,
3957 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
3958 {
3959 	struct bpf_insn *insn = &prog->insns[insn_idx];
3960 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3961 	struct bpf_object *obj = prog->obj;
3962 	__u32 shdr_idx = sym->st_shndx;
3963 	enum libbpf_map_type type;
3964 	const char *sym_sec_name;
3965 	struct bpf_map *map;
3966 
3967 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3968 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3969 			prog->name, sym_name, insn_idx, insn->code);
3970 		return -LIBBPF_ERRNO__RELOC;
3971 	}
3972 
3973 	if (sym_is_extern(sym)) {
3974 		int sym_idx = ELF64_R_SYM(rel->r_info);
3975 		int i, n = obj->nr_extern;
3976 		struct extern_desc *ext;
3977 
3978 		for (i = 0; i < n; i++) {
3979 			ext = &obj->externs[i];
3980 			if (ext->sym_idx == sym_idx)
3981 				break;
3982 		}
3983 		if (i >= n) {
3984 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3985 				prog->name, sym_name, sym_idx);
3986 			return -LIBBPF_ERRNO__RELOC;
3987 		}
3988 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3989 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3990 		if (insn->code == (BPF_JMP | BPF_CALL))
3991 			reloc_desc->type = RELO_EXTERN_FUNC;
3992 		else
3993 			reloc_desc->type = RELO_EXTERN_VAR;
3994 		reloc_desc->insn_idx = insn_idx;
3995 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3996 		return 0;
3997 	}
3998 
3999 	/* sub-program call relocation */
4000 	if (is_call_insn(insn)) {
4001 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4002 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4003 			return -LIBBPF_ERRNO__RELOC;
4004 		}
4005 		/* text_shndx can be 0, if no default "main" program exists */
4006 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4007 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4008 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4009 				prog->name, sym_name, sym_sec_name);
4010 			return -LIBBPF_ERRNO__RELOC;
4011 		}
4012 		if (sym->st_value % BPF_INSN_SZ) {
4013 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4014 				prog->name, sym_name, (size_t)sym->st_value);
4015 			return -LIBBPF_ERRNO__RELOC;
4016 		}
4017 		reloc_desc->type = RELO_CALL;
4018 		reloc_desc->insn_idx = insn_idx;
4019 		reloc_desc->sym_off = sym->st_value;
4020 		return 0;
4021 	}
4022 
4023 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4024 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4025 			prog->name, sym_name, shdr_idx);
4026 		return -LIBBPF_ERRNO__RELOC;
4027 	}
4028 
4029 	/* loading subprog addresses */
4030 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4031 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4032 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4033 		 */
4034 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4035 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4036 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4037 			return -LIBBPF_ERRNO__RELOC;
4038 		}
4039 
4040 		reloc_desc->type = RELO_SUBPROG_ADDR;
4041 		reloc_desc->insn_idx = insn_idx;
4042 		reloc_desc->sym_off = sym->st_value;
4043 		return 0;
4044 	}
4045 
4046 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4047 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4048 
4049 	/* generic map reference relocation */
4050 	if (type == LIBBPF_MAP_UNSPEC) {
4051 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4052 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4053 				prog->name, sym_name, sym_sec_name);
4054 			return -LIBBPF_ERRNO__RELOC;
4055 		}
4056 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4057 			map = &obj->maps[map_idx];
4058 			if (map->libbpf_type != type ||
4059 			    map->sec_idx != sym->st_shndx ||
4060 			    map->sec_offset != sym->st_value)
4061 				continue;
4062 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4063 				 prog->name, map_idx, map->name, map->sec_idx,
4064 				 map->sec_offset, insn_idx);
4065 			break;
4066 		}
4067 		if (map_idx >= nr_maps) {
4068 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4069 				prog->name, sym_sec_name, (size_t)sym->st_value);
4070 			return -LIBBPF_ERRNO__RELOC;
4071 		}
4072 		reloc_desc->type = RELO_LD64;
4073 		reloc_desc->insn_idx = insn_idx;
4074 		reloc_desc->map_idx = map_idx;
4075 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4076 		return 0;
4077 	}
4078 
4079 	/* global data map relocation */
4080 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4081 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4082 			prog->name, sym_sec_name);
4083 		return -LIBBPF_ERRNO__RELOC;
4084 	}
4085 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4086 		map = &obj->maps[map_idx];
4087 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4088 			continue;
4089 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4090 			 prog->name, map_idx, map->name, map->sec_idx,
4091 			 map->sec_offset, insn_idx);
4092 		break;
4093 	}
4094 	if (map_idx >= nr_maps) {
4095 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4096 			prog->name, sym_sec_name);
4097 		return -LIBBPF_ERRNO__RELOC;
4098 	}
4099 
4100 	reloc_desc->type = RELO_DATA;
4101 	reloc_desc->insn_idx = insn_idx;
4102 	reloc_desc->map_idx = map_idx;
4103 	reloc_desc->sym_off = sym->st_value;
4104 	return 0;
4105 }
4106 
4107 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4108 {
4109 	return insn_idx >= prog->sec_insn_off &&
4110 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4111 }
4112 
4113 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4114 						 size_t sec_idx, size_t insn_idx)
4115 {
4116 	int l = 0, r = obj->nr_programs - 1, m;
4117 	struct bpf_program *prog;
4118 
4119 	while (l < r) {
4120 		m = l + (r - l + 1) / 2;
4121 		prog = &obj->programs[m];
4122 
4123 		if (prog->sec_idx < sec_idx ||
4124 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4125 			l = m;
4126 		else
4127 			r = m - 1;
4128 	}
4129 	/* matching program could be at index l, but it still might be the
4130 	 * wrong one, so we need to double check conditions for the last time
4131 	 */
4132 	prog = &obj->programs[l];
4133 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4134 		return prog;
4135 	return NULL;
4136 }
4137 
4138 static int
4139 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4140 {
4141 	const char *relo_sec_name, *sec_name;
4142 	size_t sec_idx = shdr->sh_info, sym_idx;
4143 	struct bpf_program *prog;
4144 	struct reloc_desc *relos;
4145 	int err, i, nrels;
4146 	const char *sym_name;
4147 	__u32 insn_idx;
4148 	Elf_Scn *scn;
4149 	Elf_Data *scn_data;
4150 	Elf64_Sym *sym;
4151 	Elf64_Rel *rel;
4152 
4153 	if (sec_idx >= obj->efile.sec_cnt)
4154 		return -EINVAL;
4155 
4156 	scn = elf_sec_by_idx(obj, sec_idx);
4157 	scn_data = elf_sec_data(obj, scn);
4158 
4159 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4160 	sec_name = elf_sec_name(obj, scn);
4161 	if (!relo_sec_name || !sec_name)
4162 		return -EINVAL;
4163 
4164 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4165 		 relo_sec_name, sec_idx, sec_name);
4166 	nrels = shdr->sh_size / shdr->sh_entsize;
4167 
4168 	for (i = 0; i < nrels; i++) {
4169 		rel = elf_rel_by_idx(data, i);
4170 		if (!rel) {
4171 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4172 			return -LIBBPF_ERRNO__FORMAT;
4173 		}
4174 
4175 		sym_idx = ELF64_R_SYM(rel->r_info);
4176 		sym = elf_sym_by_idx(obj, sym_idx);
4177 		if (!sym) {
4178 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4179 				relo_sec_name, sym_idx, i);
4180 			return -LIBBPF_ERRNO__FORMAT;
4181 		}
4182 
4183 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4184 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4185 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4186 			return -LIBBPF_ERRNO__FORMAT;
4187 		}
4188 
4189 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4190 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4191 				relo_sec_name, (size_t)rel->r_offset, i);
4192 			return -LIBBPF_ERRNO__FORMAT;
4193 		}
4194 
4195 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4196 		/* relocations against static functions are recorded as
4197 		 * relocations against the section that contains a function;
4198 		 * in such case, symbol will be STT_SECTION and sym.st_name
4199 		 * will point to empty string (0), so fetch section name
4200 		 * instead
4201 		 */
4202 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4203 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4204 		else
4205 			sym_name = elf_sym_str(obj, sym->st_name);
4206 		sym_name = sym_name ?: "<?";
4207 
4208 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4209 			 relo_sec_name, i, insn_idx, sym_name);
4210 
4211 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4212 		if (!prog) {
4213 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4214 				relo_sec_name, i, sec_name, insn_idx);
4215 			continue;
4216 		}
4217 
4218 		relos = libbpf_reallocarray(prog->reloc_desc,
4219 					    prog->nr_reloc + 1, sizeof(*relos));
4220 		if (!relos)
4221 			return -ENOMEM;
4222 		prog->reloc_desc = relos;
4223 
4224 		/* adjust insn_idx to local BPF program frame of reference */
4225 		insn_idx -= prog->sec_insn_off;
4226 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4227 						insn_idx, sym_name, sym, rel);
4228 		if (err)
4229 			return err;
4230 
4231 		prog->nr_reloc++;
4232 	}
4233 	return 0;
4234 }
4235 
4236 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4237 {
4238 	struct bpf_map_def *def = &map->def;
4239 	__u32 key_type_id = 0, value_type_id = 0;
4240 	int ret;
4241 
4242 	if (!obj->btf)
4243 		return -ENOENT;
4244 
4245 	/* if it's BTF-defined map, we don't need to search for type IDs.
4246 	 * For struct_ops map, it does not need btf_key_type_id and
4247 	 * btf_value_type_id.
4248 	 */
4249 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
4250 	    bpf_map__is_struct_ops(map))
4251 		return 0;
4252 
4253 	if (!bpf_map__is_internal(map)) {
4254 		pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n");
4255 #pragma GCC diagnostic push
4256 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
4257 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
4258 					   def->value_size, &key_type_id,
4259 					   &value_type_id);
4260 #pragma GCC diagnostic pop
4261 	} else {
4262 		/*
4263 		 * LLVM annotates global data differently in BTF, that is,
4264 		 * only as '.data', '.bss' or '.rodata'.
4265 		 */
4266 		ret = btf__find_by_name(obj->btf, map->real_name);
4267 	}
4268 	if (ret < 0)
4269 		return ret;
4270 
4271 	map->btf_key_type_id = key_type_id;
4272 	map->btf_value_type_id = bpf_map__is_internal(map) ?
4273 				 ret : value_type_id;
4274 	return 0;
4275 }
4276 
4277 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4278 {
4279 	char file[PATH_MAX], buff[4096];
4280 	FILE *fp;
4281 	__u32 val;
4282 	int err;
4283 
4284 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4285 	memset(info, 0, sizeof(*info));
4286 
4287 	fp = fopen(file, "r");
4288 	if (!fp) {
4289 		err = -errno;
4290 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4291 			err);
4292 		return err;
4293 	}
4294 
4295 	while (fgets(buff, sizeof(buff), fp)) {
4296 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4297 			info->type = val;
4298 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4299 			info->key_size = val;
4300 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4301 			info->value_size = val;
4302 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4303 			info->max_entries = val;
4304 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4305 			info->map_flags = val;
4306 	}
4307 
4308 	fclose(fp);
4309 
4310 	return 0;
4311 }
4312 
4313 bool bpf_map__autocreate(const struct bpf_map *map)
4314 {
4315 	return map->autocreate;
4316 }
4317 
4318 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4319 {
4320 	if (map->obj->loaded)
4321 		return libbpf_err(-EBUSY);
4322 
4323 	map->autocreate = autocreate;
4324 	return 0;
4325 }
4326 
4327 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4328 {
4329 	struct bpf_map_info info = {};
4330 	__u32 len = sizeof(info);
4331 	int new_fd, err;
4332 	char *new_name;
4333 
4334 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4335 	if (err && errno == EINVAL)
4336 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4337 	if (err)
4338 		return libbpf_err(err);
4339 
4340 	new_name = strdup(info.name);
4341 	if (!new_name)
4342 		return libbpf_err(-errno);
4343 
4344 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
4345 	if (new_fd < 0) {
4346 		err = -errno;
4347 		goto err_free_new_name;
4348 	}
4349 
4350 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
4351 	if (new_fd < 0) {
4352 		err = -errno;
4353 		goto err_close_new_fd;
4354 	}
4355 
4356 	err = zclose(map->fd);
4357 	if (err) {
4358 		err = -errno;
4359 		goto err_close_new_fd;
4360 	}
4361 	free(map->name);
4362 
4363 	map->fd = new_fd;
4364 	map->name = new_name;
4365 	map->def.type = info.type;
4366 	map->def.key_size = info.key_size;
4367 	map->def.value_size = info.value_size;
4368 	map->def.max_entries = info.max_entries;
4369 	map->def.map_flags = info.map_flags;
4370 	map->btf_key_type_id = info.btf_key_type_id;
4371 	map->btf_value_type_id = info.btf_value_type_id;
4372 	map->reused = true;
4373 	map->map_extra = info.map_extra;
4374 
4375 	return 0;
4376 
4377 err_close_new_fd:
4378 	close(new_fd);
4379 err_free_new_name:
4380 	free(new_name);
4381 	return libbpf_err(err);
4382 }
4383 
4384 __u32 bpf_map__max_entries(const struct bpf_map *map)
4385 {
4386 	return map->def.max_entries;
4387 }
4388 
4389 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4390 {
4391 	if (!bpf_map_type__is_map_in_map(map->def.type))
4392 		return errno = EINVAL, NULL;
4393 
4394 	return map->inner_map;
4395 }
4396 
4397 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4398 {
4399 	if (map->fd >= 0)
4400 		return libbpf_err(-EBUSY);
4401 	map->def.max_entries = max_entries;
4402 	return 0;
4403 }
4404 
4405 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
4406 {
4407 	if (!map || !max_entries)
4408 		return libbpf_err(-EINVAL);
4409 
4410 	return bpf_map__set_max_entries(map, max_entries);
4411 }
4412 
4413 static int
4414 bpf_object__probe_loading(struct bpf_object *obj)
4415 {
4416 	char *cp, errmsg[STRERR_BUFSIZE];
4417 	struct bpf_insn insns[] = {
4418 		BPF_MOV64_IMM(BPF_REG_0, 0),
4419 		BPF_EXIT_INSN(),
4420 	};
4421 	int ret, insn_cnt = ARRAY_SIZE(insns);
4422 
4423 	if (obj->gen_loader)
4424 		return 0;
4425 
4426 	ret = bump_rlimit_memlock();
4427 	if (ret)
4428 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4429 
4430 	/* make sure basic loading works */
4431 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4432 	if (ret < 0)
4433 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4434 	if (ret < 0) {
4435 		ret = errno;
4436 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4437 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4438 			"program. Make sure your kernel supports BPF "
4439 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4440 			"set to big enough value.\n", __func__, cp, ret);
4441 		return -ret;
4442 	}
4443 	close(ret);
4444 
4445 	return 0;
4446 }
4447 
4448 static int probe_fd(int fd)
4449 {
4450 	if (fd >= 0)
4451 		close(fd);
4452 	return fd >= 0;
4453 }
4454 
4455 static int probe_kern_prog_name(void)
4456 {
4457 	struct bpf_insn insns[] = {
4458 		BPF_MOV64_IMM(BPF_REG_0, 0),
4459 		BPF_EXIT_INSN(),
4460 	};
4461 	int ret, insn_cnt = ARRAY_SIZE(insns);
4462 
4463 	/* make sure loading with name works */
4464 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL);
4465 	return probe_fd(ret);
4466 }
4467 
4468 static int probe_kern_global_data(void)
4469 {
4470 	char *cp, errmsg[STRERR_BUFSIZE];
4471 	struct bpf_insn insns[] = {
4472 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4473 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4474 		BPF_MOV64_IMM(BPF_REG_0, 0),
4475 		BPF_EXIT_INSN(),
4476 	};
4477 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4478 
4479 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4480 	if (map < 0) {
4481 		ret = -errno;
4482 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4483 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4484 			__func__, cp, -ret);
4485 		return ret;
4486 	}
4487 
4488 	insns[0].imm = map;
4489 
4490 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4491 	close(map);
4492 	return probe_fd(ret);
4493 }
4494 
4495 static int probe_kern_btf(void)
4496 {
4497 	static const char strs[] = "\0int";
4498 	__u32 types[] = {
4499 		/* int */
4500 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4501 	};
4502 
4503 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4504 					     strs, sizeof(strs)));
4505 }
4506 
4507 static int probe_kern_btf_func(void)
4508 {
4509 	static const char strs[] = "\0int\0x\0a";
4510 	/* void x(int a) {} */
4511 	__u32 types[] = {
4512 		/* int */
4513 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4514 		/* FUNC_PROTO */                                /* [2] */
4515 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4516 		BTF_PARAM_ENC(7, 1),
4517 		/* FUNC x */                                    /* [3] */
4518 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4519 	};
4520 
4521 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4522 					     strs, sizeof(strs)));
4523 }
4524 
4525 static int probe_kern_btf_func_global(void)
4526 {
4527 	static const char strs[] = "\0int\0x\0a";
4528 	/* static void x(int a) {} */
4529 	__u32 types[] = {
4530 		/* int */
4531 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4532 		/* FUNC_PROTO */                                /* [2] */
4533 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4534 		BTF_PARAM_ENC(7, 1),
4535 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4536 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4537 	};
4538 
4539 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4540 					     strs, sizeof(strs)));
4541 }
4542 
4543 static int probe_kern_btf_datasec(void)
4544 {
4545 	static const char strs[] = "\0x\0.data";
4546 	/* static int a; */
4547 	__u32 types[] = {
4548 		/* int */
4549 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4550 		/* VAR x */                                     /* [2] */
4551 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4552 		BTF_VAR_STATIC,
4553 		/* DATASEC val */                               /* [3] */
4554 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4555 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4556 	};
4557 
4558 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4559 					     strs, sizeof(strs)));
4560 }
4561 
4562 static int probe_kern_btf_float(void)
4563 {
4564 	static const char strs[] = "\0float";
4565 	__u32 types[] = {
4566 		/* float */
4567 		BTF_TYPE_FLOAT_ENC(1, 4),
4568 	};
4569 
4570 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4571 					     strs, sizeof(strs)));
4572 }
4573 
4574 static int probe_kern_btf_decl_tag(void)
4575 {
4576 	static const char strs[] = "\0tag";
4577 	__u32 types[] = {
4578 		/* int */
4579 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4580 		/* VAR x */                                     /* [2] */
4581 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4582 		BTF_VAR_STATIC,
4583 		/* attr */
4584 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4585 	};
4586 
4587 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4588 					     strs, sizeof(strs)));
4589 }
4590 
4591 static int probe_kern_btf_type_tag(void)
4592 {
4593 	static const char strs[] = "\0tag";
4594 	__u32 types[] = {
4595 		/* int */
4596 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4597 		/* attr */
4598 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4599 		/* ptr */
4600 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4601 	};
4602 
4603 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4604 					     strs, sizeof(strs)));
4605 }
4606 
4607 static int probe_kern_array_mmap(void)
4608 {
4609 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4610 	int fd;
4611 
4612 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts);
4613 	return probe_fd(fd);
4614 }
4615 
4616 static int probe_kern_exp_attach_type(void)
4617 {
4618 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4619 	struct bpf_insn insns[] = {
4620 		BPF_MOV64_IMM(BPF_REG_0, 0),
4621 		BPF_EXIT_INSN(),
4622 	};
4623 	int fd, insn_cnt = ARRAY_SIZE(insns);
4624 
4625 	/* use any valid combination of program type and (optional)
4626 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4627 	 * to see if kernel supports expected_attach_type field for
4628 	 * BPF_PROG_LOAD command
4629 	 */
4630 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4631 	return probe_fd(fd);
4632 }
4633 
4634 static int probe_kern_probe_read_kernel(void)
4635 {
4636 	struct bpf_insn insns[] = {
4637 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4638 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4639 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4640 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4641 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4642 		BPF_EXIT_INSN(),
4643 	};
4644 	int fd, insn_cnt = ARRAY_SIZE(insns);
4645 
4646 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4647 	return probe_fd(fd);
4648 }
4649 
4650 static int probe_prog_bind_map(void)
4651 {
4652 	char *cp, errmsg[STRERR_BUFSIZE];
4653 	struct bpf_insn insns[] = {
4654 		BPF_MOV64_IMM(BPF_REG_0, 0),
4655 		BPF_EXIT_INSN(),
4656 	};
4657 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4658 
4659 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4660 	if (map < 0) {
4661 		ret = -errno;
4662 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4663 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4664 			__func__, cp, -ret);
4665 		return ret;
4666 	}
4667 
4668 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4669 	if (prog < 0) {
4670 		close(map);
4671 		return 0;
4672 	}
4673 
4674 	ret = bpf_prog_bind_map(prog, map, NULL);
4675 
4676 	close(map);
4677 	close(prog);
4678 
4679 	return ret >= 0;
4680 }
4681 
4682 static int probe_module_btf(void)
4683 {
4684 	static const char strs[] = "\0int";
4685 	__u32 types[] = {
4686 		/* int */
4687 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4688 	};
4689 	struct bpf_btf_info info;
4690 	__u32 len = sizeof(info);
4691 	char name[16];
4692 	int fd, err;
4693 
4694 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4695 	if (fd < 0)
4696 		return 0; /* BTF not supported at all */
4697 
4698 	memset(&info, 0, sizeof(info));
4699 	info.name = ptr_to_u64(name);
4700 	info.name_len = sizeof(name);
4701 
4702 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4703 	 * kernel's module BTF support coincides with support for
4704 	 * name/name_len fields in struct bpf_btf_info.
4705 	 */
4706 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4707 	close(fd);
4708 	return !err;
4709 }
4710 
4711 static int probe_perf_link(void)
4712 {
4713 	struct bpf_insn insns[] = {
4714 		BPF_MOV64_IMM(BPF_REG_0, 0),
4715 		BPF_EXIT_INSN(),
4716 	};
4717 	int prog_fd, link_fd, err;
4718 
4719 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4720 				insns, ARRAY_SIZE(insns), NULL);
4721 	if (prog_fd < 0)
4722 		return -errno;
4723 
4724 	/* use invalid perf_event FD to get EBADF, if link is supported;
4725 	 * otherwise EINVAL should be returned
4726 	 */
4727 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4728 	err = -errno; /* close() can clobber errno */
4729 
4730 	if (link_fd >= 0)
4731 		close(link_fd);
4732 	close(prog_fd);
4733 
4734 	return link_fd < 0 && err == -EBADF;
4735 }
4736 
4737 static int probe_kern_bpf_cookie(void)
4738 {
4739 	struct bpf_insn insns[] = {
4740 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4741 		BPF_EXIT_INSN(),
4742 	};
4743 	int ret, insn_cnt = ARRAY_SIZE(insns);
4744 
4745 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4746 	return probe_fd(ret);
4747 }
4748 
4749 enum kern_feature_result {
4750 	FEAT_UNKNOWN = 0,
4751 	FEAT_SUPPORTED = 1,
4752 	FEAT_MISSING = 2,
4753 };
4754 
4755 typedef int (*feature_probe_fn)(void);
4756 
4757 static struct kern_feature_desc {
4758 	const char *desc;
4759 	feature_probe_fn probe;
4760 	enum kern_feature_result res;
4761 } feature_probes[__FEAT_CNT] = {
4762 	[FEAT_PROG_NAME] = {
4763 		"BPF program name", probe_kern_prog_name,
4764 	},
4765 	[FEAT_GLOBAL_DATA] = {
4766 		"global variables", probe_kern_global_data,
4767 	},
4768 	[FEAT_BTF] = {
4769 		"minimal BTF", probe_kern_btf,
4770 	},
4771 	[FEAT_BTF_FUNC] = {
4772 		"BTF functions", probe_kern_btf_func,
4773 	},
4774 	[FEAT_BTF_GLOBAL_FUNC] = {
4775 		"BTF global function", probe_kern_btf_func_global,
4776 	},
4777 	[FEAT_BTF_DATASEC] = {
4778 		"BTF data section and variable", probe_kern_btf_datasec,
4779 	},
4780 	[FEAT_ARRAY_MMAP] = {
4781 		"ARRAY map mmap()", probe_kern_array_mmap,
4782 	},
4783 	[FEAT_EXP_ATTACH_TYPE] = {
4784 		"BPF_PROG_LOAD expected_attach_type attribute",
4785 		probe_kern_exp_attach_type,
4786 	},
4787 	[FEAT_PROBE_READ_KERN] = {
4788 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4789 	},
4790 	[FEAT_PROG_BIND_MAP] = {
4791 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4792 	},
4793 	[FEAT_MODULE_BTF] = {
4794 		"module BTF support", probe_module_btf,
4795 	},
4796 	[FEAT_BTF_FLOAT] = {
4797 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4798 	},
4799 	[FEAT_PERF_LINK] = {
4800 		"BPF perf link support", probe_perf_link,
4801 	},
4802 	[FEAT_BTF_DECL_TAG] = {
4803 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4804 	},
4805 	[FEAT_BTF_TYPE_TAG] = {
4806 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4807 	},
4808 	[FEAT_MEMCG_ACCOUNT] = {
4809 		"memcg-based memory accounting", probe_memcg_account,
4810 	},
4811 	[FEAT_BPF_COOKIE] = {
4812 		"BPF cookie support", probe_kern_bpf_cookie,
4813 	},
4814 };
4815 
4816 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4817 {
4818 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4819 	int ret;
4820 
4821 	if (obj && obj->gen_loader)
4822 		/* To generate loader program assume the latest kernel
4823 		 * to avoid doing extra prog_load, map_create syscalls.
4824 		 */
4825 		return true;
4826 
4827 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4828 		ret = feat->probe();
4829 		if (ret > 0) {
4830 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4831 		} else if (ret == 0) {
4832 			WRITE_ONCE(feat->res, FEAT_MISSING);
4833 		} else {
4834 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4835 			WRITE_ONCE(feat->res, FEAT_MISSING);
4836 		}
4837 	}
4838 
4839 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4840 }
4841 
4842 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4843 {
4844 	struct bpf_map_info map_info = {};
4845 	char msg[STRERR_BUFSIZE];
4846 	__u32 map_info_len;
4847 	int err;
4848 
4849 	map_info_len = sizeof(map_info);
4850 
4851 	err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4852 	if (err && errno == EINVAL)
4853 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4854 	if (err) {
4855 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4856 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4857 		return false;
4858 	}
4859 
4860 	return (map_info.type == map->def.type &&
4861 		map_info.key_size == map->def.key_size &&
4862 		map_info.value_size == map->def.value_size &&
4863 		map_info.max_entries == map->def.max_entries &&
4864 		map_info.map_flags == map->def.map_flags &&
4865 		map_info.map_extra == map->map_extra);
4866 }
4867 
4868 static int
4869 bpf_object__reuse_map(struct bpf_map *map)
4870 {
4871 	char *cp, errmsg[STRERR_BUFSIZE];
4872 	int err, pin_fd;
4873 
4874 	pin_fd = bpf_obj_get(map->pin_path);
4875 	if (pin_fd < 0) {
4876 		err = -errno;
4877 		if (err == -ENOENT) {
4878 			pr_debug("found no pinned map to reuse at '%s'\n",
4879 				 map->pin_path);
4880 			return 0;
4881 		}
4882 
4883 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4884 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4885 			map->pin_path, cp);
4886 		return err;
4887 	}
4888 
4889 	if (!map_is_reuse_compat(map, pin_fd)) {
4890 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4891 			map->pin_path);
4892 		close(pin_fd);
4893 		return -EINVAL;
4894 	}
4895 
4896 	err = bpf_map__reuse_fd(map, pin_fd);
4897 	close(pin_fd);
4898 	if (err) {
4899 		return err;
4900 	}
4901 	map->pinned = true;
4902 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4903 
4904 	return 0;
4905 }
4906 
4907 static int
4908 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4909 {
4910 	enum libbpf_map_type map_type = map->libbpf_type;
4911 	char *cp, errmsg[STRERR_BUFSIZE];
4912 	int err, zero = 0;
4913 
4914 	if (obj->gen_loader) {
4915 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4916 					 map->mmaped, map->def.value_size);
4917 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4918 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4919 		return 0;
4920 	}
4921 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4922 	if (err) {
4923 		err = -errno;
4924 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4925 		pr_warn("Error setting initial map(%s) contents: %s\n",
4926 			map->name, cp);
4927 		return err;
4928 	}
4929 
4930 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4931 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4932 		err = bpf_map_freeze(map->fd);
4933 		if (err) {
4934 			err = -errno;
4935 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4936 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4937 				map->name, cp);
4938 			return err;
4939 		}
4940 	}
4941 	return 0;
4942 }
4943 
4944 static void bpf_map__destroy(struct bpf_map *map);
4945 
4946 static bool is_pow_of_2(size_t x)
4947 {
4948 	return x && (x & (x - 1));
4949 }
4950 
4951 static size_t adjust_ringbuf_sz(size_t sz)
4952 {
4953 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
4954 	__u32 mul;
4955 
4956 	/* if user forgot to set any size, make sure they see error */
4957 	if (sz == 0)
4958 		return 0;
4959 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
4960 	 * a power-of-2 multiple of kernel's page size. If user diligently
4961 	 * satisified these conditions, pass the size through.
4962 	 */
4963 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
4964 		return sz;
4965 
4966 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
4967 	 * user-set size to satisfy both user size request and kernel
4968 	 * requirements and substitute correct max_entries for map creation.
4969 	 */
4970 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
4971 		if (mul * page_sz > sz)
4972 			return mul * page_sz;
4973 	}
4974 
4975 	/* if it's impossible to satisfy the conditions (i.e., user size is
4976 	 * very close to UINT_MAX but is not a power-of-2 multiple of
4977 	 * page_size) then just return original size and let kernel reject it
4978 	 */
4979 	return sz;
4980 }
4981 
4982 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4983 {
4984 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4985 	struct bpf_map_def *def = &map->def;
4986 	const char *map_name = NULL;
4987 	int err = 0;
4988 
4989 	if (kernel_supports(obj, FEAT_PROG_NAME))
4990 		map_name = map->name;
4991 	create_attr.map_ifindex = map->map_ifindex;
4992 	create_attr.map_flags = def->map_flags;
4993 	create_attr.numa_node = map->numa_node;
4994 	create_attr.map_extra = map->map_extra;
4995 
4996 	if (bpf_map__is_struct_ops(map))
4997 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4998 
4999 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5000 		create_attr.btf_fd = btf__fd(obj->btf);
5001 		create_attr.btf_key_type_id = map->btf_key_type_id;
5002 		create_attr.btf_value_type_id = map->btf_value_type_id;
5003 	}
5004 
5005 	if (bpf_map_type__is_map_in_map(def->type)) {
5006 		if (map->inner_map) {
5007 			err = bpf_object__create_map(obj, map->inner_map, true);
5008 			if (err) {
5009 				pr_warn("map '%s': failed to create inner map: %d\n",
5010 					map->name, err);
5011 				return err;
5012 			}
5013 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5014 		}
5015 		if (map->inner_map_fd >= 0)
5016 			create_attr.inner_map_fd = map->inner_map_fd;
5017 	}
5018 
5019 	switch (def->type) {
5020 	case BPF_MAP_TYPE_RINGBUF:
5021 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
5022 		/* fallthrough */
5023 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5024 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5025 	case BPF_MAP_TYPE_STACK_TRACE:
5026 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5027 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5028 	case BPF_MAP_TYPE_DEVMAP:
5029 	case BPF_MAP_TYPE_DEVMAP_HASH:
5030 	case BPF_MAP_TYPE_CPUMAP:
5031 	case BPF_MAP_TYPE_XSKMAP:
5032 	case BPF_MAP_TYPE_SOCKMAP:
5033 	case BPF_MAP_TYPE_SOCKHASH:
5034 	case BPF_MAP_TYPE_QUEUE:
5035 	case BPF_MAP_TYPE_STACK:
5036 		create_attr.btf_fd = 0;
5037 		create_attr.btf_key_type_id = 0;
5038 		create_attr.btf_value_type_id = 0;
5039 		map->btf_key_type_id = 0;
5040 		map->btf_value_type_id = 0;
5041 	default:
5042 		break;
5043 	}
5044 
5045 	if (obj->gen_loader) {
5046 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5047 				    def->key_size, def->value_size, def->max_entries,
5048 				    &create_attr, is_inner ? -1 : map - obj->maps);
5049 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5050 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5051 		 */
5052 		map->fd = 0;
5053 	} else {
5054 		map->fd = bpf_map_create(def->type, map_name,
5055 					 def->key_size, def->value_size,
5056 					 def->max_entries, &create_attr);
5057 	}
5058 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5059 			    create_attr.btf_value_type_id)) {
5060 		char *cp, errmsg[STRERR_BUFSIZE];
5061 
5062 		err = -errno;
5063 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5064 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5065 			map->name, cp, err);
5066 		create_attr.btf_fd = 0;
5067 		create_attr.btf_key_type_id = 0;
5068 		create_attr.btf_value_type_id = 0;
5069 		map->btf_key_type_id = 0;
5070 		map->btf_value_type_id = 0;
5071 		map->fd = bpf_map_create(def->type, map_name,
5072 					 def->key_size, def->value_size,
5073 					 def->max_entries, &create_attr);
5074 	}
5075 
5076 	err = map->fd < 0 ? -errno : 0;
5077 
5078 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5079 		if (obj->gen_loader)
5080 			map->inner_map->fd = -1;
5081 		bpf_map__destroy(map->inner_map);
5082 		zfree(&map->inner_map);
5083 	}
5084 
5085 	return err;
5086 }
5087 
5088 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5089 {
5090 	const struct bpf_map *targ_map;
5091 	unsigned int i;
5092 	int fd, err = 0;
5093 
5094 	for (i = 0; i < map->init_slots_sz; i++) {
5095 		if (!map->init_slots[i])
5096 			continue;
5097 
5098 		targ_map = map->init_slots[i];
5099 		fd = bpf_map__fd(targ_map);
5100 
5101 		if (obj->gen_loader) {
5102 			bpf_gen__populate_outer_map(obj->gen_loader,
5103 						    map - obj->maps, i,
5104 						    targ_map - obj->maps);
5105 		} else {
5106 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5107 		}
5108 		if (err) {
5109 			err = -errno;
5110 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5111 				map->name, i, targ_map->name, fd, err);
5112 			return err;
5113 		}
5114 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5115 			 map->name, i, targ_map->name, fd);
5116 	}
5117 
5118 	zfree(&map->init_slots);
5119 	map->init_slots_sz = 0;
5120 
5121 	return 0;
5122 }
5123 
5124 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5125 {
5126 	const struct bpf_program *targ_prog;
5127 	unsigned int i;
5128 	int fd, err;
5129 
5130 	if (obj->gen_loader)
5131 		return -ENOTSUP;
5132 
5133 	for (i = 0; i < map->init_slots_sz; i++) {
5134 		if (!map->init_slots[i])
5135 			continue;
5136 
5137 		targ_prog = map->init_slots[i];
5138 		fd = bpf_program__fd(targ_prog);
5139 
5140 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5141 		if (err) {
5142 			err = -errno;
5143 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5144 				map->name, i, targ_prog->name, fd, err);
5145 			return err;
5146 		}
5147 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5148 			 map->name, i, targ_prog->name, fd);
5149 	}
5150 
5151 	zfree(&map->init_slots);
5152 	map->init_slots_sz = 0;
5153 
5154 	return 0;
5155 }
5156 
5157 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5158 {
5159 	struct bpf_map *map;
5160 	int i, err;
5161 
5162 	for (i = 0; i < obj->nr_maps; i++) {
5163 		map = &obj->maps[i];
5164 
5165 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5166 			continue;
5167 
5168 		err = init_prog_array_slots(obj, map);
5169 		if (err < 0) {
5170 			zclose(map->fd);
5171 			return err;
5172 		}
5173 	}
5174 	return 0;
5175 }
5176 
5177 static int map_set_def_max_entries(struct bpf_map *map)
5178 {
5179 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5180 		int nr_cpus;
5181 
5182 		nr_cpus = libbpf_num_possible_cpus();
5183 		if (nr_cpus < 0) {
5184 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5185 				map->name, nr_cpus);
5186 			return nr_cpus;
5187 		}
5188 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5189 		map->def.max_entries = nr_cpus;
5190 	}
5191 
5192 	return 0;
5193 }
5194 
5195 static int
5196 bpf_object__create_maps(struct bpf_object *obj)
5197 {
5198 	struct bpf_map *map;
5199 	char *cp, errmsg[STRERR_BUFSIZE];
5200 	unsigned int i, j;
5201 	int err;
5202 	bool retried;
5203 
5204 	for (i = 0; i < obj->nr_maps; i++) {
5205 		map = &obj->maps[i];
5206 
5207 		/* To support old kernels, we skip creating global data maps
5208 		 * (.rodata, .data, .kconfig, etc); later on, during program
5209 		 * loading, if we detect that at least one of the to-be-loaded
5210 		 * programs is referencing any global data map, we'll error
5211 		 * out with program name and relocation index logged.
5212 		 * This approach allows to accommodate Clang emitting
5213 		 * unnecessary .rodata.str1.1 sections for string literals,
5214 		 * but also it allows to have CO-RE applications that use
5215 		 * global variables in some of BPF programs, but not others.
5216 		 * If those global variable-using programs are not loaded at
5217 		 * runtime due to bpf_program__set_autoload(prog, false),
5218 		 * bpf_object loading will succeed just fine even on old
5219 		 * kernels.
5220 		 */
5221 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5222 			map->autocreate = false;
5223 
5224 		if (!map->autocreate) {
5225 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5226 			continue;
5227 		}
5228 
5229 		err = map_set_def_max_entries(map);
5230 		if (err)
5231 			goto err_out;
5232 
5233 		retried = false;
5234 retry:
5235 		if (map->pin_path) {
5236 			err = bpf_object__reuse_map(map);
5237 			if (err) {
5238 				pr_warn("map '%s': error reusing pinned map\n",
5239 					map->name);
5240 				goto err_out;
5241 			}
5242 			if (retried && map->fd < 0) {
5243 				pr_warn("map '%s': cannot find pinned map\n",
5244 					map->name);
5245 				err = -ENOENT;
5246 				goto err_out;
5247 			}
5248 		}
5249 
5250 		if (map->fd >= 0) {
5251 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5252 				 map->name, map->fd);
5253 		} else {
5254 			err = bpf_object__create_map(obj, map, false);
5255 			if (err)
5256 				goto err_out;
5257 
5258 			pr_debug("map '%s': created successfully, fd=%d\n",
5259 				 map->name, map->fd);
5260 
5261 			if (bpf_map__is_internal(map)) {
5262 				err = bpf_object__populate_internal_map(obj, map);
5263 				if (err < 0) {
5264 					zclose(map->fd);
5265 					goto err_out;
5266 				}
5267 			}
5268 
5269 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5270 				err = init_map_in_map_slots(obj, map);
5271 				if (err < 0) {
5272 					zclose(map->fd);
5273 					goto err_out;
5274 				}
5275 			}
5276 		}
5277 
5278 		if (map->pin_path && !map->pinned) {
5279 			err = bpf_map__pin(map, NULL);
5280 			if (err) {
5281 				zclose(map->fd);
5282 				if (!retried && err == -EEXIST) {
5283 					retried = true;
5284 					goto retry;
5285 				}
5286 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5287 					map->name, map->pin_path, err);
5288 				goto err_out;
5289 			}
5290 		}
5291 	}
5292 
5293 	return 0;
5294 
5295 err_out:
5296 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5297 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5298 	pr_perm_msg(err);
5299 	for (j = 0; j < i; j++)
5300 		zclose(obj->maps[j].fd);
5301 	return err;
5302 }
5303 
5304 static bool bpf_core_is_flavor_sep(const char *s)
5305 {
5306 	/* check X___Y name pattern, where X and Y are not underscores */
5307 	return s[0] != '_' &&				      /* X */
5308 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5309 	       s[4] != '_';				      /* Y */
5310 }
5311 
5312 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5313  * before last triple underscore. Struct name part after last triple
5314  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5315  */
5316 size_t bpf_core_essential_name_len(const char *name)
5317 {
5318 	size_t n = strlen(name);
5319 	int i;
5320 
5321 	for (i = n - 5; i >= 0; i--) {
5322 		if (bpf_core_is_flavor_sep(name + i))
5323 			return i + 1;
5324 	}
5325 	return n;
5326 }
5327 
5328 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5329 {
5330 	if (!cands)
5331 		return;
5332 
5333 	free(cands->cands);
5334 	free(cands);
5335 }
5336 
5337 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5338 		       size_t local_essent_len,
5339 		       const struct btf *targ_btf,
5340 		       const char *targ_btf_name,
5341 		       int targ_start_id,
5342 		       struct bpf_core_cand_list *cands)
5343 {
5344 	struct bpf_core_cand *new_cands, *cand;
5345 	const struct btf_type *t, *local_t;
5346 	const char *targ_name, *local_name;
5347 	size_t targ_essent_len;
5348 	int n, i;
5349 
5350 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5351 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5352 
5353 	n = btf__type_cnt(targ_btf);
5354 	for (i = targ_start_id; i < n; i++) {
5355 		t = btf__type_by_id(targ_btf, i);
5356 		if (btf_kind(t) != btf_kind(local_t))
5357 			continue;
5358 
5359 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5360 		if (str_is_empty(targ_name))
5361 			continue;
5362 
5363 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5364 		if (targ_essent_len != local_essent_len)
5365 			continue;
5366 
5367 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5368 			continue;
5369 
5370 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5371 			 local_cand->id, btf_kind_str(local_t),
5372 			 local_name, i, btf_kind_str(t), targ_name,
5373 			 targ_btf_name);
5374 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5375 					      sizeof(*cands->cands));
5376 		if (!new_cands)
5377 			return -ENOMEM;
5378 
5379 		cand = &new_cands[cands->len];
5380 		cand->btf = targ_btf;
5381 		cand->id = i;
5382 
5383 		cands->cands = new_cands;
5384 		cands->len++;
5385 	}
5386 	return 0;
5387 }
5388 
5389 static int load_module_btfs(struct bpf_object *obj)
5390 {
5391 	struct bpf_btf_info info;
5392 	struct module_btf *mod_btf;
5393 	struct btf *btf;
5394 	char name[64];
5395 	__u32 id = 0, len;
5396 	int err, fd;
5397 
5398 	if (obj->btf_modules_loaded)
5399 		return 0;
5400 
5401 	if (obj->gen_loader)
5402 		return 0;
5403 
5404 	/* don't do this again, even if we find no module BTFs */
5405 	obj->btf_modules_loaded = true;
5406 
5407 	/* kernel too old to support module BTFs */
5408 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5409 		return 0;
5410 
5411 	while (true) {
5412 		err = bpf_btf_get_next_id(id, &id);
5413 		if (err && errno == ENOENT)
5414 			return 0;
5415 		if (err) {
5416 			err = -errno;
5417 			pr_warn("failed to iterate BTF objects: %d\n", err);
5418 			return err;
5419 		}
5420 
5421 		fd = bpf_btf_get_fd_by_id(id);
5422 		if (fd < 0) {
5423 			if (errno == ENOENT)
5424 				continue; /* expected race: BTF was unloaded */
5425 			err = -errno;
5426 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5427 			return err;
5428 		}
5429 
5430 		len = sizeof(info);
5431 		memset(&info, 0, sizeof(info));
5432 		info.name = ptr_to_u64(name);
5433 		info.name_len = sizeof(name);
5434 
5435 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
5436 		if (err) {
5437 			err = -errno;
5438 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5439 			goto err_out;
5440 		}
5441 
5442 		/* ignore non-module BTFs */
5443 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5444 			close(fd);
5445 			continue;
5446 		}
5447 
5448 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5449 		err = libbpf_get_error(btf);
5450 		if (err) {
5451 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5452 				name, id, err);
5453 			goto err_out;
5454 		}
5455 
5456 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5457 				        sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5458 		if (err)
5459 			goto err_out;
5460 
5461 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5462 
5463 		mod_btf->btf = btf;
5464 		mod_btf->id = id;
5465 		mod_btf->fd = fd;
5466 		mod_btf->name = strdup(name);
5467 		if (!mod_btf->name) {
5468 			err = -ENOMEM;
5469 			goto err_out;
5470 		}
5471 		continue;
5472 
5473 err_out:
5474 		close(fd);
5475 		return err;
5476 	}
5477 
5478 	return 0;
5479 }
5480 
5481 static struct bpf_core_cand_list *
5482 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5483 {
5484 	struct bpf_core_cand local_cand = {};
5485 	struct bpf_core_cand_list *cands;
5486 	const struct btf *main_btf;
5487 	const struct btf_type *local_t;
5488 	const char *local_name;
5489 	size_t local_essent_len;
5490 	int err, i;
5491 
5492 	local_cand.btf = local_btf;
5493 	local_cand.id = local_type_id;
5494 	local_t = btf__type_by_id(local_btf, local_type_id);
5495 	if (!local_t)
5496 		return ERR_PTR(-EINVAL);
5497 
5498 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5499 	if (str_is_empty(local_name))
5500 		return ERR_PTR(-EINVAL);
5501 	local_essent_len = bpf_core_essential_name_len(local_name);
5502 
5503 	cands = calloc(1, sizeof(*cands));
5504 	if (!cands)
5505 		return ERR_PTR(-ENOMEM);
5506 
5507 	/* Attempt to find target candidates in vmlinux BTF first */
5508 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5509 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5510 	if (err)
5511 		goto err_out;
5512 
5513 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5514 	if (cands->len)
5515 		return cands;
5516 
5517 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5518 	if (obj->btf_vmlinux_override)
5519 		return cands;
5520 
5521 	/* now look through module BTFs, trying to still find candidates */
5522 	err = load_module_btfs(obj);
5523 	if (err)
5524 		goto err_out;
5525 
5526 	for (i = 0; i < obj->btf_module_cnt; i++) {
5527 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5528 					 obj->btf_modules[i].btf,
5529 					 obj->btf_modules[i].name,
5530 					 btf__type_cnt(obj->btf_vmlinux),
5531 					 cands);
5532 		if (err)
5533 			goto err_out;
5534 	}
5535 
5536 	return cands;
5537 err_out:
5538 	bpf_core_free_cands(cands);
5539 	return ERR_PTR(err);
5540 }
5541 
5542 /* Check local and target types for compatibility. This check is used for
5543  * type-based CO-RE relocations and follow slightly different rules than
5544  * field-based relocations. This function assumes that root types were already
5545  * checked for name match. Beyond that initial root-level name check, names
5546  * are completely ignored. Compatibility rules are as follows:
5547  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5548  *     kind should match for local and target types (i.e., STRUCT is not
5549  *     compatible with UNION);
5550  *   - for ENUMs, the size is ignored;
5551  *   - for INT, size and signedness are ignored;
5552  *   - for ARRAY, dimensionality is ignored, element types are checked for
5553  *     compatibility recursively;
5554  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5555  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5556  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5557  *     number of input args and compatible return and argument types.
5558  * These rules are not set in stone and probably will be adjusted as we get
5559  * more experience with using BPF CO-RE relocations.
5560  */
5561 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5562 			      const struct btf *targ_btf, __u32 targ_id)
5563 {
5564 	const struct btf_type *local_type, *targ_type;
5565 	int depth = 32; /* max recursion depth */
5566 
5567 	/* caller made sure that names match (ignoring flavor suffix) */
5568 	local_type = btf__type_by_id(local_btf, local_id);
5569 	targ_type = btf__type_by_id(targ_btf, targ_id);
5570 	if (btf_kind(local_type) != btf_kind(targ_type))
5571 		return 0;
5572 
5573 recur:
5574 	depth--;
5575 	if (depth < 0)
5576 		return -EINVAL;
5577 
5578 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5579 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5580 	if (!local_type || !targ_type)
5581 		return -EINVAL;
5582 
5583 	if (btf_kind(local_type) != btf_kind(targ_type))
5584 		return 0;
5585 
5586 	switch (btf_kind(local_type)) {
5587 	case BTF_KIND_UNKN:
5588 	case BTF_KIND_STRUCT:
5589 	case BTF_KIND_UNION:
5590 	case BTF_KIND_ENUM:
5591 	case BTF_KIND_FWD:
5592 		return 1;
5593 	case BTF_KIND_INT:
5594 		/* just reject deprecated bitfield-like integers; all other
5595 		 * integers are by default compatible between each other
5596 		 */
5597 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5598 	case BTF_KIND_PTR:
5599 		local_id = local_type->type;
5600 		targ_id = targ_type->type;
5601 		goto recur;
5602 	case BTF_KIND_ARRAY:
5603 		local_id = btf_array(local_type)->type;
5604 		targ_id = btf_array(targ_type)->type;
5605 		goto recur;
5606 	case BTF_KIND_FUNC_PROTO: {
5607 		struct btf_param *local_p = btf_params(local_type);
5608 		struct btf_param *targ_p = btf_params(targ_type);
5609 		__u16 local_vlen = btf_vlen(local_type);
5610 		__u16 targ_vlen = btf_vlen(targ_type);
5611 		int i, err;
5612 
5613 		if (local_vlen != targ_vlen)
5614 			return 0;
5615 
5616 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5617 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5618 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5619 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5620 			if (err <= 0)
5621 				return err;
5622 		}
5623 
5624 		/* tail recurse for return type check */
5625 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5626 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5627 		goto recur;
5628 	}
5629 	default:
5630 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5631 			btf_kind_str(local_type), local_id, targ_id);
5632 		return 0;
5633 	}
5634 }
5635 
5636 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5637 {
5638 	return (size_t)key;
5639 }
5640 
5641 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5642 {
5643 	return k1 == k2;
5644 }
5645 
5646 static void *u32_as_hash_key(__u32 x)
5647 {
5648 	return (void *)(uintptr_t)x;
5649 }
5650 
5651 static int record_relo_core(struct bpf_program *prog,
5652 			    const struct bpf_core_relo *core_relo, int insn_idx)
5653 {
5654 	struct reloc_desc *relos, *relo;
5655 
5656 	relos = libbpf_reallocarray(prog->reloc_desc,
5657 				    prog->nr_reloc + 1, sizeof(*relos));
5658 	if (!relos)
5659 		return -ENOMEM;
5660 	relo = &relos[prog->nr_reloc];
5661 	relo->type = RELO_CORE;
5662 	relo->insn_idx = insn_idx;
5663 	relo->core_relo = core_relo;
5664 	prog->reloc_desc = relos;
5665 	prog->nr_reloc++;
5666 	return 0;
5667 }
5668 
5669 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5670 {
5671 	struct reloc_desc *relo;
5672 	int i;
5673 
5674 	for (i = 0; i < prog->nr_reloc; i++) {
5675 		relo = &prog->reloc_desc[i];
5676 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5677 			continue;
5678 
5679 		return relo->core_relo;
5680 	}
5681 
5682 	return NULL;
5683 }
5684 
5685 static int bpf_core_resolve_relo(struct bpf_program *prog,
5686 				 const struct bpf_core_relo *relo,
5687 				 int relo_idx,
5688 				 const struct btf *local_btf,
5689 				 struct hashmap *cand_cache,
5690 				 struct bpf_core_relo_res *targ_res)
5691 {
5692 	struct bpf_core_spec specs_scratch[3] = {};
5693 	const void *type_key = u32_as_hash_key(relo->type_id);
5694 	struct bpf_core_cand_list *cands = NULL;
5695 	const char *prog_name = prog->name;
5696 	const struct btf_type *local_type;
5697 	const char *local_name;
5698 	__u32 local_id = relo->type_id;
5699 	int err;
5700 
5701 	local_type = btf__type_by_id(local_btf, local_id);
5702 	if (!local_type)
5703 		return -EINVAL;
5704 
5705 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5706 	if (!local_name)
5707 		return -EINVAL;
5708 
5709 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5710 	    !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5711 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5712 		if (IS_ERR(cands)) {
5713 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5714 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5715 				local_name, PTR_ERR(cands));
5716 			return PTR_ERR(cands);
5717 		}
5718 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5719 		if (err) {
5720 			bpf_core_free_cands(cands);
5721 			return err;
5722 		}
5723 	}
5724 
5725 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5726 				       targ_res);
5727 }
5728 
5729 static int
5730 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5731 {
5732 	const struct btf_ext_info_sec *sec;
5733 	struct bpf_core_relo_res targ_res;
5734 	const struct bpf_core_relo *rec;
5735 	const struct btf_ext_info *seg;
5736 	struct hashmap_entry *entry;
5737 	struct hashmap *cand_cache = NULL;
5738 	struct bpf_program *prog;
5739 	struct bpf_insn *insn;
5740 	const char *sec_name;
5741 	int i, err = 0, insn_idx, sec_idx, sec_num;
5742 
5743 	if (obj->btf_ext->core_relo_info.len == 0)
5744 		return 0;
5745 
5746 	if (targ_btf_path) {
5747 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5748 		err = libbpf_get_error(obj->btf_vmlinux_override);
5749 		if (err) {
5750 			pr_warn("failed to parse target BTF: %d\n", err);
5751 			return err;
5752 		}
5753 	}
5754 
5755 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5756 	if (IS_ERR(cand_cache)) {
5757 		err = PTR_ERR(cand_cache);
5758 		goto out;
5759 	}
5760 
5761 	seg = &obj->btf_ext->core_relo_info;
5762 	sec_num = 0;
5763 	for_each_btf_ext_sec(seg, sec) {
5764 		sec_idx = seg->sec_idxs[sec_num];
5765 		sec_num++;
5766 
5767 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5768 		if (str_is_empty(sec_name)) {
5769 			err = -EINVAL;
5770 			goto out;
5771 		}
5772 
5773 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5774 
5775 		for_each_btf_ext_rec(seg, sec, i, rec) {
5776 			if (rec->insn_off % BPF_INSN_SZ)
5777 				return -EINVAL;
5778 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5779 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5780 			if (!prog) {
5781 				/* When __weak subprog is "overridden" by another instance
5782 				 * of the subprog from a different object file, linker still
5783 				 * appends all the .BTF.ext info that used to belong to that
5784 				 * eliminated subprogram.
5785 				 * This is similar to what x86-64 linker does for relocations.
5786 				 * So just ignore such relocations just like we ignore
5787 				 * subprog instructions when discovering subprograms.
5788 				 */
5789 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5790 					 sec_name, i, insn_idx);
5791 				continue;
5792 			}
5793 			/* no need to apply CO-RE relocation if the program is
5794 			 * not going to be loaded
5795 			 */
5796 			if (!prog->autoload)
5797 				continue;
5798 
5799 			/* adjust insn_idx from section frame of reference to the local
5800 			 * program's frame of reference; (sub-)program code is not yet
5801 			 * relocated, so it's enough to just subtract in-section offset
5802 			 */
5803 			insn_idx = insn_idx - prog->sec_insn_off;
5804 			if (insn_idx >= prog->insns_cnt)
5805 				return -EINVAL;
5806 			insn = &prog->insns[insn_idx];
5807 
5808 			err = record_relo_core(prog, rec, insn_idx);
5809 			if (err) {
5810 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5811 					prog->name, i, err);
5812 				goto out;
5813 			}
5814 
5815 			if (prog->obj->gen_loader)
5816 				continue;
5817 
5818 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5819 			if (err) {
5820 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5821 					prog->name, i, err);
5822 				goto out;
5823 			}
5824 
5825 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5826 			if (err) {
5827 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5828 					prog->name, i, insn_idx, err);
5829 				goto out;
5830 			}
5831 		}
5832 	}
5833 
5834 out:
5835 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5836 	btf__free(obj->btf_vmlinux_override);
5837 	obj->btf_vmlinux_override = NULL;
5838 
5839 	if (!IS_ERR_OR_NULL(cand_cache)) {
5840 		hashmap__for_each_entry(cand_cache, entry, i) {
5841 			bpf_core_free_cands(entry->value);
5842 		}
5843 		hashmap__free(cand_cache);
5844 	}
5845 	return err;
5846 }
5847 
5848 /* base map load ldimm64 special constant, used also for log fixup logic */
5849 #define MAP_LDIMM64_POISON_BASE 2001000000
5850 #define MAP_LDIMM64_POISON_PFX "200100"
5851 
5852 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5853 			       int insn_idx, struct bpf_insn *insn,
5854 			       int map_idx, const struct bpf_map *map)
5855 {
5856 	int i;
5857 
5858 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5859 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5860 
5861 	/* we turn single ldimm64 into two identical invalid calls */
5862 	for (i = 0; i < 2; i++) {
5863 		insn->code = BPF_JMP | BPF_CALL;
5864 		insn->dst_reg = 0;
5865 		insn->src_reg = 0;
5866 		insn->off = 0;
5867 		/* if this instruction is reachable (not a dead code),
5868 		 * verifier will complain with something like:
5869 		 * invalid func unknown#2001000123
5870 		 * where lower 123 is map index into obj->maps[] array
5871 		 */
5872 		insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5873 
5874 		insn++;
5875 	}
5876 }
5877 
5878 /* Relocate data references within program code:
5879  *  - map references;
5880  *  - global variable references;
5881  *  - extern references.
5882  */
5883 static int
5884 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5885 {
5886 	int i;
5887 
5888 	for (i = 0; i < prog->nr_reloc; i++) {
5889 		struct reloc_desc *relo = &prog->reloc_desc[i];
5890 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5891 		const struct bpf_map *map;
5892 		struct extern_desc *ext;
5893 
5894 		switch (relo->type) {
5895 		case RELO_LD64:
5896 			map = &obj->maps[relo->map_idx];
5897 			if (obj->gen_loader) {
5898 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5899 				insn[0].imm = relo->map_idx;
5900 			} else if (map->autocreate) {
5901 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5902 				insn[0].imm = map->fd;
5903 			} else {
5904 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5905 						   relo->map_idx, map);
5906 			}
5907 			break;
5908 		case RELO_DATA:
5909 			map = &obj->maps[relo->map_idx];
5910 			insn[1].imm = insn[0].imm + relo->sym_off;
5911 			if (obj->gen_loader) {
5912 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5913 				insn[0].imm = relo->map_idx;
5914 			} else if (map->autocreate) {
5915 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5916 				insn[0].imm = map->fd;
5917 			} else {
5918 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5919 						   relo->map_idx, map);
5920 			}
5921 			break;
5922 		case RELO_EXTERN_VAR:
5923 			ext = &obj->externs[relo->sym_off];
5924 			if (ext->type == EXT_KCFG) {
5925 				if (obj->gen_loader) {
5926 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5927 					insn[0].imm = obj->kconfig_map_idx;
5928 				} else {
5929 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5930 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5931 				}
5932 				insn[1].imm = ext->kcfg.data_off;
5933 			} else /* EXT_KSYM */ {
5934 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5935 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5936 					insn[0].imm = ext->ksym.kernel_btf_id;
5937 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5938 				} else { /* typeless ksyms or unresolved typed ksyms */
5939 					insn[0].imm = (__u32)ext->ksym.addr;
5940 					insn[1].imm = ext->ksym.addr >> 32;
5941 				}
5942 			}
5943 			break;
5944 		case RELO_EXTERN_FUNC:
5945 			ext = &obj->externs[relo->sym_off];
5946 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5947 			if (ext->is_set) {
5948 				insn[0].imm = ext->ksym.kernel_btf_id;
5949 				insn[0].off = ext->ksym.btf_fd_idx;
5950 			} else { /* unresolved weak kfunc */
5951 				insn[0].imm = 0;
5952 				insn[0].off = 0;
5953 			}
5954 			break;
5955 		case RELO_SUBPROG_ADDR:
5956 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5957 				pr_warn("prog '%s': relo #%d: bad insn\n",
5958 					prog->name, i);
5959 				return -EINVAL;
5960 			}
5961 			/* handled already */
5962 			break;
5963 		case RELO_CALL:
5964 			/* handled already */
5965 			break;
5966 		case RELO_CORE:
5967 			/* will be handled by bpf_program_record_relos() */
5968 			break;
5969 		default:
5970 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5971 				prog->name, i, relo->type);
5972 			return -EINVAL;
5973 		}
5974 	}
5975 
5976 	return 0;
5977 }
5978 
5979 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5980 				    const struct bpf_program *prog,
5981 				    const struct btf_ext_info *ext_info,
5982 				    void **prog_info, __u32 *prog_rec_cnt,
5983 				    __u32 *prog_rec_sz)
5984 {
5985 	void *copy_start = NULL, *copy_end = NULL;
5986 	void *rec, *rec_end, *new_prog_info;
5987 	const struct btf_ext_info_sec *sec;
5988 	size_t old_sz, new_sz;
5989 	int i, sec_num, sec_idx, off_adj;
5990 
5991 	sec_num = 0;
5992 	for_each_btf_ext_sec(ext_info, sec) {
5993 		sec_idx = ext_info->sec_idxs[sec_num];
5994 		sec_num++;
5995 		if (prog->sec_idx != sec_idx)
5996 			continue;
5997 
5998 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
5999 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6000 
6001 			if (insn_off < prog->sec_insn_off)
6002 				continue;
6003 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6004 				break;
6005 
6006 			if (!copy_start)
6007 				copy_start = rec;
6008 			copy_end = rec + ext_info->rec_size;
6009 		}
6010 
6011 		if (!copy_start)
6012 			return -ENOENT;
6013 
6014 		/* append func/line info of a given (sub-)program to the main
6015 		 * program func/line info
6016 		 */
6017 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6018 		new_sz = old_sz + (copy_end - copy_start);
6019 		new_prog_info = realloc(*prog_info, new_sz);
6020 		if (!new_prog_info)
6021 			return -ENOMEM;
6022 		*prog_info = new_prog_info;
6023 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6024 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6025 
6026 		/* Kernel instruction offsets are in units of 8-byte
6027 		 * instructions, while .BTF.ext instruction offsets generated
6028 		 * by Clang are in units of bytes. So convert Clang offsets
6029 		 * into kernel offsets and adjust offset according to program
6030 		 * relocated position.
6031 		 */
6032 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6033 		rec = new_prog_info + old_sz;
6034 		rec_end = new_prog_info + new_sz;
6035 		for (; rec < rec_end; rec += ext_info->rec_size) {
6036 			__u32 *insn_off = rec;
6037 
6038 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6039 		}
6040 		*prog_rec_sz = ext_info->rec_size;
6041 		return 0;
6042 	}
6043 
6044 	return -ENOENT;
6045 }
6046 
6047 static int
6048 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6049 			      struct bpf_program *main_prog,
6050 			      const struct bpf_program *prog)
6051 {
6052 	int err;
6053 
6054 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6055 	 * supprot func/line info
6056 	 */
6057 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6058 		return 0;
6059 
6060 	/* only attempt func info relocation if main program's func_info
6061 	 * relocation was successful
6062 	 */
6063 	if (main_prog != prog && !main_prog->func_info)
6064 		goto line_info;
6065 
6066 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6067 				       &main_prog->func_info,
6068 				       &main_prog->func_info_cnt,
6069 				       &main_prog->func_info_rec_size);
6070 	if (err) {
6071 		if (err != -ENOENT) {
6072 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6073 				prog->name, err);
6074 			return err;
6075 		}
6076 		if (main_prog->func_info) {
6077 			/*
6078 			 * Some info has already been found but has problem
6079 			 * in the last btf_ext reloc. Must have to error out.
6080 			 */
6081 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6082 			return err;
6083 		}
6084 		/* Have problem loading the very first info. Ignore the rest. */
6085 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6086 			prog->name);
6087 	}
6088 
6089 line_info:
6090 	/* don't relocate line info if main program's relocation failed */
6091 	if (main_prog != prog && !main_prog->line_info)
6092 		return 0;
6093 
6094 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6095 				       &main_prog->line_info,
6096 				       &main_prog->line_info_cnt,
6097 				       &main_prog->line_info_rec_size);
6098 	if (err) {
6099 		if (err != -ENOENT) {
6100 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6101 				prog->name, err);
6102 			return err;
6103 		}
6104 		if (main_prog->line_info) {
6105 			/*
6106 			 * Some info has already been found but has problem
6107 			 * in the last btf_ext reloc. Must have to error out.
6108 			 */
6109 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6110 			return err;
6111 		}
6112 		/* Have problem loading the very first info. Ignore the rest. */
6113 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6114 			prog->name);
6115 	}
6116 	return 0;
6117 }
6118 
6119 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6120 {
6121 	size_t insn_idx = *(const size_t *)key;
6122 	const struct reloc_desc *relo = elem;
6123 
6124 	if (insn_idx == relo->insn_idx)
6125 		return 0;
6126 	return insn_idx < relo->insn_idx ? -1 : 1;
6127 }
6128 
6129 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6130 {
6131 	if (!prog->nr_reloc)
6132 		return NULL;
6133 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6134 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6135 }
6136 
6137 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6138 {
6139 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6140 	struct reloc_desc *relos;
6141 	int i;
6142 
6143 	if (main_prog == subprog)
6144 		return 0;
6145 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6146 	if (!relos)
6147 		return -ENOMEM;
6148 	if (subprog->nr_reloc)
6149 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6150 		       sizeof(*relos) * subprog->nr_reloc);
6151 
6152 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6153 		relos[i].insn_idx += subprog->sub_insn_off;
6154 	/* After insn_idx adjustment the 'relos' array is still sorted
6155 	 * by insn_idx and doesn't break bsearch.
6156 	 */
6157 	main_prog->reloc_desc = relos;
6158 	main_prog->nr_reloc = new_cnt;
6159 	return 0;
6160 }
6161 
6162 static int
6163 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6164 		       struct bpf_program *prog)
6165 {
6166 	size_t sub_insn_idx, insn_idx, new_cnt;
6167 	struct bpf_program *subprog;
6168 	struct bpf_insn *insns, *insn;
6169 	struct reloc_desc *relo;
6170 	int err;
6171 
6172 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6173 	if (err)
6174 		return err;
6175 
6176 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6177 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6178 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6179 			continue;
6180 
6181 		relo = find_prog_insn_relo(prog, insn_idx);
6182 		if (relo && relo->type == RELO_EXTERN_FUNC)
6183 			/* kfunc relocations will be handled later
6184 			 * in bpf_object__relocate_data()
6185 			 */
6186 			continue;
6187 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6188 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6189 				prog->name, insn_idx, relo->type);
6190 			return -LIBBPF_ERRNO__RELOC;
6191 		}
6192 		if (relo) {
6193 			/* sub-program instruction index is a combination of
6194 			 * an offset of a symbol pointed to by relocation and
6195 			 * call instruction's imm field; for global functions,
6196 			 * call always has imm = -1, but for static functions
6197 			 * relocation is against STT_SECTION and insn->imm
6198 			 * points to a start of a static function
6199 			 *
6200 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6201 			 * the byte offset in the corresponding section.
6202 			 */
6203 			if (relo->type == RELO_CALL)
6204 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6205 			else
6206 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6207 		} else if (insn_is_pseudo_func(insn)) {
6208 			/*
6209 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6210 			 * functions are in the same section, so it shouldn't reach here.
6211 			 */
6212 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6213 				prog->name, insn_idx);
6214 			return -LIBBPF_ERRNO__RELOC;
6215 		} else {
6216 			/* if subprogram call is to a static function within
6217 			 * the same ELF section, there won't be any relocation
6218 			 * emitted, but it also means there is no additional
6219 			 * offset necessary, insns->imm is relative to
6220 			 * instruction's original position within the section
6221 			 */
6222 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6223 		}
6224 
6225 		/* we enforce that sub-programs should be in .text section */
6226 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6227 		if (!subprog) {
6228 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6229 				prog->name);
6230 			return -LIBBPF_ERRNO__RELOC;
6231 		}
6232 
6233 		/* if it's the first call instruction calling into this
6234 		 * subprogram (meaning this subprog hasn't been processed
6235 		 * yet) within the context of current main program:
6236 		 *   - append it at the end of main program's instructions blog;
6237 		 *   - process is recursively, while current program is put on hold;
6238 		 *   - if that subprogram calls some other not yet processes
6239 		 *   subprogram, same thing will happen recursively until
6240 		 *   there are no more unprocesses subprograms left to append
6241 		 *   and relocate.
6242 		 */
6243 		if (subprog->sub_insn_off == 0) {
6244 			subprog->sub_insn_off = main_prog->insns_cnt;
6245 
6246 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6247 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6248 			if (!insns) {
6249 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6250 				return -ENOMEM;
6251 			}
6252 			main_prog->insns = insns;
6253 			main_prog->insns_cnt = new_cnt;
6254 
6255 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6256 			       subprog->insns_cnt * sizeof(*insns));
6257 
6258 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6259 				 main_prog->name, subprog->insns_cnt, subprog->name);
6260 
6261 			/* The subprog insns are now appended. Append its relos too. */
6262 			err = append_subprog_relos(main_prog, subprog);
6263 			if (err)
6264 				return err;
6265 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6266 			if (err)
6267 				return err;
6268 		}
6269 
6270 		/* main_prog->insns memory could have been re-allocated, so
6271 		 * calculate pointer again
6272 		 */
6273 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6274 		/* calculate correct instruction position within current main
6275 		 * prog; each main prog can have a different set of
6276 		 * subprograms appended (potentially in different order as
6277 		 * well), so position of any subprog can be different for
6278 		 * different main programs */
6279 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6280 
6281 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6282 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6283 	}
6284 
6285 	return 0;
6286 }
6287 
6288 /*
6289  * Relocate sub-program calls.
6290  *
6291  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6292  * main prog) is processed separately. For each subprog (non-entry functions,
6293  * that can be called from either entry progs or other subprogs) gets their
6294  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6295  * hasn't been yet appended and relocated within current main prog. Once its
6296  * relocated, sub_insn_off will point at the position within current main prog
6297  * where given subprog was appended. This will further be used to relocate all
6298  * the call instructions jumping into this subprog.
6299  *
6300  * We start with main program and process all call instructions. If the call
6301  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6302  * is zero), subprog instructions are appended at the end of main program's
6303  * instruction array. Then main program is "put on hold" while we recursively
6304  * process newly appended subprogram. If that subprogram calls into another
6305  * subprogram that hasn't been appended, new subprogram is appended again to
6306  * the *main* prog's instructions (subprog's instructions are always left
6307  * untouched, as they need to be in unmodified state for subsequent main progs
6308  * and subprog instructions are always sent only as part of a main prog) and
6309  * the process continues recursively. Once all the subprogs called from a main
6310  * prog or any of its subprogs are appended (and relocated), all their
6311  * positions within finalized instructions array are known, so it's easy to
6312  * rewrite call instructions with correct relative offsets, corresponding to
6313  * desired target subprog.
6314  *
6315  * Its important to realize that some subprogs might not be called from some
6316  * main prog and any of its called/used subprogs. Those will keep their
6317  * subprog->sub_insn_off as zero at all times and won't be appended to current
6318  * main prog and won't be relocated within the context of current main prog.
6319  * They might still be used from other main progs later.
6320  *
6321  * Visually this process can be shown as below. Suppose we have two main
6322  * programs mainA and mainB and BPF object contains three subprogs: subA,
6323  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6324  * subC both call subB:
6325  *
6326  *        +--------+ +-------+
6327  *        |        v v       |
6328  *     +--+---+ +--+-+-+ +---+--+
6329  *     | subA | | subB | | subC |
6330  *     +--+---+ +------+ +---+--+
6331  *        ^                  ^
6332  *        |                  |
6333  *    +---+-------+   +------+----+
6334  *    |   mainA   |   |   mainB   |
6335  *    +-----------+   +-----------+
6336  *
6337  * We'll start relocating mainA, will find subA, append it and start
6338  * processing sub A recursively:
6339  *
6340  *    +-----------+------+
6341  *    |   mainA   | subA |
6342  *    +-----------+------+
6343  *
6344  * At this point we notice that subB is used from subA, so we append it and
6345  * relocate (there are no further subcalls from subB):
6346  *
6347  *    +-----------+------+------+
6348  *    |   mainA   | subA | subB |
6349  *    +-----------+------+------+
6350  *
6351  * At this point, we relocate subA calls, then go one level up and finish with
6352  * relocatin mainA calls. mainA is done.
6353  *
6354  * For mainB process is similar but results in different order. We start with
6355  * mainB and skip subA and subB, as mainB never calls them (at least
6356  * directly), but we see subC is needed, so we append and start processing it:
6357  *
6358  *    +-----------+------+
6359  *    |   mainB   | subC |
6360  *    +-----------+------+
6361  * Now we see subC needs subB, so we go back to it, append and relocate it:
6362  *
6363  *    +-----------+------+------+
6364  *    |   mainB   | subC | subB |
6365  *    +-----------+------+------+
6366  *
6367  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6368  */
6369 static int
6370 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6371 {
6372 	struct bpf_program *subprog;
6373 	int i, err;
6374 
6375 	/* mark all subprogs as not relocated (yet) within the context of
6376 	 * current main program
6377 	 */
6378 	for (i = 0; i < obj->nr_programs; i++) {
6379 		subprog = &obj->programs[i];
6380 		if (!prog_is_subprog(obj, subprog))
6381 			continue;
6382 
6383 		subprog->sub_insn_off = 0;
6384 	}
6385 
6386 	err = bpf_object__reloc_code(obj, prog, prog);
6387 	if (err)
6388 		return err;
6389 
6390 	return 0;
6391 }
6392 
6393 static void
6394 bpf_object__free_relocs(struct bpf_object *obj)
6395 {
6396 	struct bpf_program *prog;
6397 	int i;
6398 
6399 	/* free up relocation descriptors */
6400 	for (i = 0; i < obj->nr_programs; i++) {
6401 		prog = &obj->programs[i];
6402 		zfree(&prog->reloc_desc);
6403 		prog->nr_reloc = 0;
6404 	}
6405 }
6406 
6407 static int cmp_relocs(const void *_a, const void *_b)
6408 {
6409 	const struct reloc_desc *a = _a;
6410 	const struct reloc_desc *b = _b;
6411 
6412 	if (a->insn_idx != b->insn_idx)
6413 		return a->insn_idx < b->insn_idx ? -1 : 1;
6414 
6415 	/* no two relocations should have the same insn_idx, but ... */
6416 	if (a->type != b->type)
6417 		return a->type < b->type ? -1 : 1;
6418 
6419 	return 0;
6420 }
6421 
6422 static void bpf_object__sort_relos(struct bpf_object *obj)
6423 {
6424 	int i;
6425 
6426 	for (i = 0; i < obj->nr_programs; i++) {
6427 		struct bpf_program *p = &obj->programs[i];
6428 
6429 		if (!p->nr_reloc)
6430 			continue;
6431 
6432 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6433 	}
6434 }
6435 
6436 static int
6437 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6438 {
6439 	struct bpf_program *prog;
6440 	size_t i, j;
6441 	int err;
6442 
6443 	if (obj->btf_ext) {
6444 		err = bpf_object__relocate_core(obj, targ_btf_path);
6445 		if (err) {
6446 			pr_warn("failed to perform CO-RE relocations: %d\n",
6447 				err);
6448 			return err;
6449 		}
6450 		bpf_object__sort_relos(obj);
6451 	}
6452 
6453 	/* Before relocating calls pre-process relocations and mark
6454 	 * few ld_imm64 instructions that points to subprogs.
6455 	 * Otherwise bpf_object__reloc_code() later would have to consider
6456 	 * all ld_imm64 insns as relocation candidates. That would
6457 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6458 	 * would increase and most of them will fail to find a relo.
6459 	 */
6460 	for (i = 0; i < obj->nr_programs; i++) {
6461 		prog = &obj->programs[i];
6462 		for (j = 0; j < prog->nr_reloc; j++) {
6463 			struct reloc_desc *relo = &prog->reloc_desc[j];
6464 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6465 
6466 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6467 			if (relo->type == RELO_SUBPROG_ADDR)
6468 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6469 		}
6470 	}
6471 
6472 	/* relocate subprogram calls and append used subprograms to main
6473 	 * programs; each copy of subprogram code needs to be relocated
6474 	 * differently for each main program, because its code location might
6475 	 * have changed.
6476 	 * Append subprog relos to main programs to allow data relos to be
6477 	 * processed after text is completely relocated.
6478 	 */
6479 	for (i = 0; i < obj->nr_programs; i++) {
6480 		prog = &obj->programs[i];
6481 		/* sub-program's sub-calls are relocated within the context of
6482 		 * its main program only
6483 		 */
6484 		if (prog_is_subprog(obj, prog))
6485 			continue;
6486 		if (!prog->autoload)
6487 			continue;
6488 
6489 		err = bpf_object__relocate_calls(obj, prog);
6490 		if (err) {
6491 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6492 				prog->name, err);
6493 			return err;
6494 		}
6495 	}
6496 	/* Process data relos for main programs */
6497 	for (i = 0; i < obj->nr_programs; i++) {
6498 		prog = &obj->programs[i];
6499 		if (prog_is_subprog(obj, prog))
6500 			continue;
6501 		if (!prog->autoload)
6502 			continue;
6503 		err = bpf_object__relocate_data(obj, prog);
6504 		if (err) {
6505 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6506 				prog->name, err);
6507 			return err;
6508 		}
6509 	}
6510 
6511 	return 0;
6512 }
6513 
6514 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6515 					    Elf64_Shdr *shdr, Elf_Data *data);
6516 
6517 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6518 					 Elf64_Shdr *shdr, Elf_Data *data)
6519 {
6520 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6521 	int i, j, nrels, new_sz;
6522 	const struct btf_var_secinfo *vi = NULL;
6523 	const struct btf_type *sec, *var, *def;
6524 	struct bpf_map *map = NULL, *targ_map = NULL;
6525 	struct bpf_program *targ_prog = NULL;
6526 	bool is_prog_array, is_map_in_map;
6527 	const struct btf_member *member;
6528 	const char *name, *mname, *type;
6529 	unsigned int moff;
6530 	Elf64_Sym *sym;
6531 	Elf64_Rel *rel;
6532 	void *tmp;
6533 
6534 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6535 		return -EINVAL;
6536 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6537 	if (!sec)
6538 		return -EINVAL;
6539 
6540 	nrels = shdr->sh_size / shdr->sh_entsize;
6541 	for (i = 0; i < nrels; i++) {
6542 		rel = elf_rel_by_idx(data, i);
6543 		if (!rel) {
6544 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6545 			return -LIBBPF_ERRNO__FORMAT;
6546 		}
6547 
6548 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6549 		if (!sym) {
6550 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6551 				i, (size_t)ELF64_R_SYM(rel->r_info));
6552 			return -LIBBPF_ERRNO__FORMAT;
6553 		}
6554 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6555 
6556 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6557 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6558 			 (size_t)rel->r_offset, sym->st_name, name);
6559 
6560 		for (j = 0; j < obj->nr_maps; j++) {
6561 			map = &obj->maps[j];
6562 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6563 				continue;
6564 
6565 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6566 			if (vi->offset <= rel->r_offset &&
6567 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6568 				break;
6569 		}
6570 		if (j == obj->nr_maps) {
6571 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6572 				i, name, (size_t)rel->r_offset);
6573 			return -EINVAL;
6574 		}
6575 
6576 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6577 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6578 		type = is_map_in_map ? "map" : "prog";
6579 		if (is_map_in_map) {
6580 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6581 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6582 					i, name);
6583 				return -LIBBPF_ERRNO__RELOC;
6584 			}
6585 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6586 			    map->def.key_size != sizeof(int)) {
6587 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6588 					i, map->name, sizeof(int));
6589 				return -EINVAL;
6590 			}
6591 			targ_map = bpf_object__find_map_by_name(obj, name);
6592 			if (!targ_map) {
6593 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6594 					i, name);
6595 				return -ESRCH;
6596 			}
6597 		} else if (is_prog_array) {
6598 			targ_prog = bpf_object__find_program_by_name(obj, name);
6599 			if (!targ_prog) {
6600 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6601 					i, name);
6602 				return -ESRCH;
6603 			}
6604 			if (targ_prog->sec_idx != sym->st_shndx ||
6605 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6606 			    prog_is_subprog(obj, targ_prog)) {
6607 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6608 					i, name);
6609 				return -LIBBPF_ERRNO__RELOC;
6610 			}
6611 		} else {
6612 			return -EINVAL;
6613 		}
6614 
6615 		var = btf__type_by_id(obj->btf, vi->type);
6616 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6617 		if (btf_vlen(def) == 0)
6618 			return -EINVAL;
6619 		member = btf_members(def) + btf_vlen(def) - 1;
6620 		mname = btf__name_by_offset(obj->btf, member->name_off);
6621 		if (strcmp(mname, "values"))
6622 			return -EINVAL;
6623 
6624 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6625 		if (rel->r_offset - vi->offset < moff)
6626 			return -EINVAL;
6627 
6628 		moff = rel->r_offset - vi->offset - moff;
6629 		/* here we use BPF pointer size, which is always 64 bit, as we
6630 		 * are parsing ELF that was built for BPF target
6631 		 */
6632 		if (moff % bpf_ptr_sz)
6633 			return -EINVAL;
6634 		moff /= bpf_ptr_sz;
6635 		if (moff >= map->init_slots_sz) {
6636 			new_sz = moff + 1;
6637 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6638 			if (!tmp)
6639 				return -ENOMEM;
6640 			map->init_slots = tmp;
6641 			memset(map->init_slots + map->init_slots_sz, 0,
6642 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6643 			map->init_slots_sz = new_sz;
6644 		}
6645 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6646 
6647 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6648 			 i, map->name, moff, type, name);
6649 	}
6650 
6651 	return 0;
6652 }
6653 
6654 static int bpf_object__collect_relos(struct bpf_object *obj)
6655 {
6656 	int i, err;
6657 
6658 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6659 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6660 		Elf64_Shdr *shdr;
6661 		Elf_Data *data;
6662 		int idx;
6663 
6664 		if (sec_desc->sec_type != SEC_RELO)
6665 			continue;
6666 
6667 		shdr = sec_desc->shdr;
6668 		data = sec_desc->data;
6669 		idx = shdr->sh_info;
6670 
6671 		if (shdr->sh_type != SHT_REL) {
6672 			pr_warn("internal error at %d\n", __LINE__);
6673 			return -LIBBPF_ERRNO__INTERNAL;
6674 		}
6675 
6676 		if (idx == obj->efile.st_ops_shndx)
6677 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6678 		else if (idx == obj->efile.btf_maps_shndx)
6679 			err = bpf_object__collect_map_relos(obj, shdr, data);
6680 		else
6681 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6682 		if (err)
6683 			return err;
6684 	}
6685 
6686 	bpf_object__sort_relos(obj);
6687 	return 0;
6688 }
6689 
6690 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6691 {
6692 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6693 	    BPF_OP(insn->code) == BPF_CALL &&
6694 	    BPF_SRC(insn->code) == BPF_K &&
6695 	    insn->src_reg == 0 &&
6696 	    insn->dst_reg == 0) {
6697 		    *func_id = insn->imm;
6698 		    return true;
6699 	}
6700 	return false;
6701 }
6702 
6703 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6704 {
6705 	struct bpf_insn *insn = prog->insns;
6706 	enum bpf_func_id func_id;
6707 	int i;
6708 
6709 	if (obj->gen_loader)
6710 		return 0;
6711 
6712 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6713 		if (!insn_is_helper_call(insn, &func_id))
6714 			continue;
6715 
6716 		/* on kernels that don't yet support
6717 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6718 		 * to bpf_probe_read() which works well for old kernels
6719 		 */
6720 		switch (func_id) {
6721 		case BPF_FUNC_probe_read_kernel:
6722 		case BPF_FUNC_probe_read_user:
6723 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6724 				insn->imm = BPF_FUNC_probe_read;
6725 			break;
6726 		case BPF_FUNC_probe_read_kernel_str:
6727 		case BPF_FUNC_probe_read_user_str:
6728 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6729 				insn->imm = BPF_FUNC_probe_read_str;
6730 			break;
6731 		default:
6732 			break;
6733 		}
6734 	}
6735 	return 0;
6736 }
6737 
6738 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6739 				     int *btf_obj_fd, int *btf_type_id);
6740 
6741 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6742 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6743 				    struct bpf_prog_load_opts *opts, long cookie)
6744 {
6745 	enum sec_def_flags def = cookie;
6746 
6747 	/* old kernels might not support specifying expected_attach_type */
6748 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6749 		opts->expected_attach_type = 0;
6750 
6751 	if (def & SEC_SLEEPABLE)
6752 		opts->prog_flags |= BPF_F_SLEEPABLE;
6753 
6754 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6755 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6756 
6757 	if (def & SEC_DEPRECATED) {
6758 		pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n",
6759 			prog->sec_name);
6760 	}
6761 
6762 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6763 		int btf_obj_fd = 0, btf_type_id = 0, err;
6764 		const char *attach_name;
6765 
6766 		attach_name = strchr(prog->sec_name, '/');
6767 		if (!attach_name) {
6768 			/* if BPF program is annotated with just SEC("fentry")
6769 			 * (or similar) without declaratively specifying
6770 			 * target, then it is expected that target will be
6771 			 * specified with bpf_program__set_attach_target() at
6772 			 * runtime before BPF object load step. If not, then
6773 			 * there is nothing to load into the kernel as BPF
6774 			 * verifier won't be able to validate BPF program
6775 			 * correctness anyways.
6776 			 */
6777 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6778 				prog->name);
6779 			return -EINVAL;
6780 		}
6781 		attach_name++; /* skip over / */
6782 
6783 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6784 		if (err)
6785 			return err;
6786 
6787 		/* cache resolved BTF FD and BTF type ID in the prog */
6788 		prog->attach_btf_obj_fd = btf_obj_fd;
6789 		prog->attach_btf_id = btf_type_id;
6790 
6791 		/* but by now libbpf common logic is not utilizing
6792 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6793 		 * this callback is called after opts were populated by
6794 		 * libbpf, so this callback has to update opts explicitly here
6795 		 */
6796 		opts->attach_btf_obj_fd = btf_obj_fd;
6797 		opts->attach_btf_id = btf_type_id;
6798 	}
6799 	return 0;
6800 }
6801 
6802 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6803 
6804 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog,
6805 					 struct bpf_insn *insns, int insns_cnt,
6806 					 const char *license, __u32 kern_version,
6807 					 int *prog_fd)
6808 {
6809 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6810 	const char *prog_name = NULL;
6811 	char *cp, errmsg[STRERR_BUFSIZE];
6812 	size_t log_buf_size = 0;
6813 	char *log_buf = NULL, *tmp;
6814 	int btf_fd, ret, err;
6815 	bool own_log_buf = true;
6816 	__u32 log_level = prog->log_level;
6817 
6818 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6819 		/*
6820 		 * The program type must be set.  Most likely we couldn't find a proper
6821 		 * section definition at load time, and thus we didn't infer the type.
6822 		 */
6823 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6824 			prog->name, prog->sec_name);
6825 		return -EINVAL;
6826 	}
6827 
6828 	if (!insns || !insns_cnt)
6829 		return -EINVAL;
6830 
6831 	load_attr.expected_attach_type = prog->expected_attach_type;
6832 	if (kernel_supports(obj, FEAT_PROG_NAME))
6833 		prog_name = prog->name;
6834 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6835 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6836 	load_attr.attach_btf_id = prog->attach_btf_id;
6837 	load_attr.kern_version = kern_version;
6838 	load_attr.prog_ifindex = prog->prog_ifindex;
6839 
6840 	/* specify func_info/line_info only if kernel supports them */
6841 	btf_fd = bpf_object__btf_fd(obj);
6842 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6843 		load_attr.prog_btf_fd = btf_fd;
6844 		load_attr.func_info = prog->func_info;
6845 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6846 		load_attr.func_info_cnt = prog->func_info_cnt;
6847 		load_attr.line_info = prog->line_info;
6848 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6849 		load_attr.line_info_cnt = prog->line_info_cnt;
6850 	}
6851 	load_attr.log_level = log_level;
6852 	load_attr.prog_flags = prog->prog_flags;
6853 	load_attr.fd_array = obj->fd_array;
6854 
6855 	/* adjust load_attr if sec_def provides custom preload callback */
6856 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6857 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6858 		if (err < 0) {
6859 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6860 				prog->name, err);
6861 			return err;
6862 		}
6863 		insns = prog->insns;
6864 		insns_cnt = prog->insns_cnt;
6865 	}
6866 
6867 	if (obj->gen_loader) {
6868 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6869 				   license, insns, insns_cnt, &load_attr,
6870 				   prog - obj->programs);
6871 		*prog_fd = -1;
6872 		return 0;
6873 	}
6874 
6875 retry_load:
6876 	/* if log_level is zero, we don't request logs initially even if
6877 	 * custom log_buf is specified; if the program load fails, then we'll
6878 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6879 	 * our own and retry the load to get details on what failed
6880 	 */
6881 	if (log_level) {
6882 		if (prog->log_buf) {
6883 			log_buf = prog->log_buf;
6884 			log_buf_size = prog->log_size;
6885 			own_log_buf = false;
6886 		} else if (obj->log_buf) {
6887 			log_buf = obj->log_buf;
6888 			log_buf_size = obj->log_size;
6889 			own_log_buf = false;
6890 		} else {
6891 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6892 			tmp = realloc(log_buf, log_buf_size);
6893 			if (!tmp) {
6894 				ret = -ENOMEM;
6895 				goto out;
6896 			}
6897 			log_buf = tmp;
6898 			log_buf[0] = '\0';
6899 			own_log_buf = true;
6900 		}
6901 	}
6902 
6903 	load_attr.log_buf = log_buf;
6904 	load_attr.log_size = log_buf_size;
6905 	load_attr.log_level = log_level;
6906 
6907 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6908 	if (ret >= 0) {
6909 		if (log_level && own_log_buf) {
6910 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6911 				 prog->name, log_buf);
6912 		}
6913 
6914 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6915 			struct bpf_map *map;
6916 			int i;
6917 
6918 			for (i = 0; i < obj->nr_maps; i++) {
6919 				map = &prog->obj->maps[i];
6920 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6921 					continue;
6922 
6923 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6924 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6925 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
6926 						prog->name, map->real_name, cp);
6927 					/* Don't fail hard if can't bind rodata. */
6928 				}
6929 			}
6930 		}
6931 
6932 		*prog_fd = ret;
6933 		ret = 0;
6934 		goto out;
6935 	}
6936 
6937 	if (log_level == 0) {
6938 		log_level = 1;
6939 		goto retry_load;
6940 	}
6941 	/* On ENOSPC, increase log buffer size and retry, unless custom
6942 	 * log_buf is specified.
6943 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
6944 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6945 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
6946 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6947 	 */
6948 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6949 		goto retry_load;
6950 
6951 	ret = -errno;
6952 
6953 	/* post-process verifier log to improve error descriptions */
6954 	fixup_verifier_log(prog, log_buf, log_buf_size);
6955 
6956 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6957 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6958 	pr_perm_msg(ret);
6959 
6960 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
6961 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6962 			prog->name, log_buf);
6963 	}
6964 
6965 out:
6966 	if (own_log_buf)
6967 		free(log_buf);
6968 	return ret;
6969 }
6970 
6971 static char *find_prev_line(char *buf, char *cur)
6972 {
6973 	char *p;
6974 
6975 	if (cur == buf) /* end of a log buf */
6976 		return NULL;
6977 
6978 	p = cur - 1;
6979 	while (p - 1 >= buf && *(p - 1) != '\n')
6980 		p--;
6981 
6982 	return p;
6983 }
6984 
6985 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6986 		      char *orig, size_t orig_sz, const char *patch)
6987 {
6988 	/* size of the remaining log content to the right from the to-be-replaced part */
6989 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6990 	size_t patch_sz = strlen(patch);
6991 
6992 	if (patch_sz != orig_sz) {
6993 		/* If patch line(s) are longer than original piece of verifier log,
6994 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
6995 		 * starting from after to-be-replaced part of the log.
6996 		 *
6997 		 * If patch line(s) are shorter than original piece of verifier log,
6998 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
6999 		 * starting from after to-be-replaced part of the log
7000 		 *
7001 		 * We need to be careful about not overflowing available
7002 		 * buf_sz capacity. If that's the case, we'll truncate the end
7003 		 * of the original log, as necessary.
7004 		 */
7005 		if (patch_sz > orig_sz) {
7006 			if (orig + patch_sz >= buf + buf_sz) {
7007 				/* patch is big enough to cover remaining space completely */
7008 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7009 				rem_sz = 0;
7010 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7011 				/* patch causes part of remaining log to be truncated */
7012 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7013 			}
7014 		}
7015 		/* shift remaining log to the right by calculated amount */
7016 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7017 	}
7018 
7019 	memcpy(orig, patch, patch_sz);
7020 }
7021 
7022 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7023 				       char *buf, size_t buf_sz, size_t log_sz,
7024 				       char *line1, char *line2, char *line3)
7025 {
7026 	/* Expected log for failed and not properly guarded CO-RE relocation:
7027 	 * line1 -> 123: (85) call unknown#195896080
7028 	 * line2 -> invalid func unknown#195896080
7029 	 * line3 -> <anything else or end of buffer>
7030 	 *
7031 	 * "123" is the index of the instruction that was poisoned. We extract
7032 	 * instruction index to find corresponding CO-RE relocation and
7033 	 * replace this part of the log with more relevant information about
7034 	 * failed CO-RE relocation.
7035 	 */
7036 	const struct bpf_core_relo *relo;
7037 	struct bpf_core_spec spec;
7038 	char patch[512], spec_buf[256];
7039 	int insn_idx, err, spec_len;
7040 
7041 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7042 		return;
7043 
7044 	relo = find_relo_core(prog, insn_idx);
7045 	if (!relo)
7046 		return;
7047 
7048 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7049 	if (err)
7050 		return;
7051 
7052 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7053 	snprintf(patch, sizeof(patch),
7054 		 "%d: <invalid CO-RE relocation>\n"
7055 		 "failed to resolve CO-RE relocation %s%s\n",
7056 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7057 
7058 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7059 }
7060 
7061 static void fixup_log_missing_map_load(struct bpf_program *prog,
7062 				       char *buf, size_t buf_sz, size_t log_sz,
7063 				       char *line1, char *line2, char *line3)
7064 {
7065 	/* Expected log for failed and not properly guarded CO-RE relocation:
7066 	 * line1 -> 123: (85) call unknown#2001000345
7067 	 * line2 -> invalid func unknown#2001000345
7068 	 * line3 -> <anything else or end of buffer>
7069 	 *
7070 	 * "123" is the index of the instruction that was poisoned.
7071 	 * "345" in "2001000345" are map index in obj->maps to fetch map name.
7072 	 */
7073 	struct bpf_object *obj = prog->obj;
7074 	const struct bpf_map *map;
7075 	int insn_idx, map_idx;
7076 	char patch[128];
7077 
7078 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7079 		return;
7080 
7081 	map_idx -= MAP_LDIMM64_POISON_BASE;
7082 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7083 		return;
7084 	map = &obj->maps[map_idx];
7085 
7086 	snprintf(patch, sizeof(patch),
7087 		 "%d: <invalid BPF map reference>\n"
7088 		 "BPF map '%s' is referenced but wasn't created\n",
7089 		 insn_idx, map->name);
7090 
7091 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7092 }
7093 
7094 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7095 {
7096 	/* look for familiar error patterns in last N lines of the log */
7097 	const size_t max_last_line_cnt = 10;
7098 	char *prev_line, *cur_line, *next_line;
7099 	size_t log_sz;
7100 	int i;
7101 
7102 	if (!buf)
7103 		return;
7104 
7105 	log_sz = strlen(buf) + 1;
7106 	next_line = buf + log_sz - 1;
7107 
7108 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7109 		cur_line = find_prev_line(buf, next_line);
7110 		if (!cur_line)
7111 			return;
7112 
7113 		/* failed CO-RE relocation case */
7114 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7115 			prev_line = find_prev_line(buf, cur_line);
7116 			if (!prev_line)
7117 				continue;
7118 
7119 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7120 						   prev_line, cur_line, next_line);
7121 			return;
7122 		} else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
7123 			prev_line = find_prev_line(buf, cur_line);
7124 			if (!prev_line)
7125 				continue;
7126 
7127 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7128 						   prev_line, cur_line, next_line);
7129 			return;
7130 		}
7131 	}
7132 }
7133 
7134 static int bpf_program_record_relos(struct bpf_program *prog)
7135 {
7136 	struct bpf_object *obj = prog->obj;
7137 	int i;
7138 
7139 	for (i = 0; i < prog->nr_reloc; i++) {
7140 		struct reloc_desc *relo = &prog->reloc_desc[i];
7141 		struct extern_desc *ext = &obj->externs[relo->sym_off];
7142 
7143 		switch (relo->type) {
7144 		case RELO_EXTERN_VAR:
7145 			if (ext->type != EXT_KSYM)
7146 				continue;
7147 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7148 					       ext->is_weak, !ext->ksym.type_id,
7149 					       BTF_KIND_VAR, relo->insn_idx);
7150 			break;
7151 		case RELO_EXTERN_FUNC:
7152 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7153 					       ext->is_weak, false, BTF_KIND_FUNC,
7154 					       relo->insn_idx);
7155 			break;
7156 		case RELO_CORE: {
7157 			struct bpf_core_relo cr = {
7158 				.insn_off = relo->insn_idx * 8,
7159 				.type_id = relo->core_relo->type_id,
7160 				.access_str_off = relo->core_relo->access_str_off,
7161 				.kind = relo->core_relo->kind,
7162 			};
7163 
7164 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7165 			break;
7166 		}
7167 		default:
7168 			continue;
7169 		}
7170 	}
7171 	return 0;
7172 }
7173 
7174 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7175 				const char *license, __u32 kern_ver)
7176 {
7177 	int err = 0, fd, i;
7178 
7179 	if (obj->loaded) {
7180 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
7181 		return libbpf_err(-EINVAL);
7182 	}
7183 
7184 	if (prog->instances.nr < 0 || !prog->instances.fds) {
7185 		if (prog->preprocessor) {
7186 			pr_warn("Internal error: can't load program '%s'\n",
7187 				prog->name);
7188 			return libbpf_err(-LIBBPF_ERRNO__INTERNAL);
7189 		}
7190 
7191 		prog->instances.fds = malloc(sizeof(int));
7192 		if (!prog->instances.fds) {
7193 			pr_warn("Not enough memory for BPF fds\n");
7194 			return libbpf_err(-ENOMEM);
7195 		}
7196 		prog->instances.nr = 1;
7197 		prog->instances.fds[0] = -1;
7198 	}
7199 
7200 	if (!prog->preprocessor) {
7201 		if (prog->instances.nr != 1) {
7202 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
7203 				prog->name, prog->instances.nr);
7204 		}
7205 		if (obj->gen_loader)
7206 			bpf_program_record_relos(prog);
7207 		err = bpf_object_load_prog_instance(obj, prog,
7208 						    prog->insns, prog->insns_cnt,
7209 						    license, kern_ver, &fd);
7210 		if (!err)
7211 			prog->instances.fds[0] = fd;
7212 		goto out;
7213 	}
7214 
7215 	for (i = 0; i < prog->instances.nr; i++) {
7216 		struct bpf_prog_prep_result result;
7217 		bpf_program_prep_t preprocessor = prog->preprocessor;
7218 
7219 		memset(&result, 0, sizeof(result));
7220 		err = preprocessor(prog, i, prog->insns,
7221 				   prog->insns_cnt, &result);
7222 		if (err) {
7223 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
7224 				i, prog->name);
7225 			goto out;
7226 		}
7227 
7228 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
7229 			pr_debug("Skip loading the %dth instance of program '%s'\n",
7230 				 i, prog->name);
7231 			prog->instances.fds[i] = -1;
7232 			if (result.pfd)
7233 				*result.pfd = -1;
7234 			continue;
7235 		}
7236 
7237 		err = bpf_object_load_prog_instance(obj, prog,
7238 						    result.new_insn_ptr, result.new_insn_cnt,
7239 						    license, kern_ver, &fd);
7240 		if (err) {
7241 			pr_warn("Loading the %dth instance of program '%s' failed\n",
7242 				i, prog->name);
7243 			goto out;
7244 		}
7245 
7246 		if (result.pfd)
7247 			*result.pfd = fd;
7248 		prog->instances.fds[i] = fd;
7249 	}
7250 out:
7251 	if (err)
7252 		pr_warn("failed to load program '%s'\n", prog->name);
7253 	return libbpf_err(err);
7254 }
7255 
7256 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver)
7257 {
7258 	return bpf_object_load_prog(prog->obj, prog, license, kern_ver);
7259 }
7260 
7261 static int
7262 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7263 {
7264 	struct bpf_program *prog;
7265 	size_t i;
7266 	int err;
7267 
7268 	for (i = 0; i < obj->nr_programs; i++) {
7269 		prog = &obj->programs[i];
7270 		err = bpf_object__sanitize_prog(obj, prog);
7271 		if (err)
7272 			return err;
7273 	}
7274 
7275 	for (i = 0; i < obj->nr_programs; i++) {
7276 		prog = &obj->programs[i];
7277 		if (prog_is_subprog(obj, prog))
7278 			continue;
7279 		if (!prog->autoload) {
7280 			pr_debug("prog '%s': skipped loading\n", prog->name);
7281 			continue;
7282 		}
7283 		prog->log_level |= log_level;
7284 		err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version);
7285 		if (err)
7286 			return err;
7287 	}
7288 
7289 	bpf_object__free_relocs(obj);
7290 	return 0;
7291 }
7292 
7293 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7294 
7295 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7296 {
7297 	struct bpf_program *prog;
7298 	int err;
7299 
7300 	bpf_object__for_each_program(prog, obj) {
7301 		prog->sec_def = find_sec_def(prog->sec_name);
7302 		if (!prog->sec_def) {
7303 			/* couldn't guess, but user might manually specify */
7304 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7305 				prog->name, prog->sec_name);
7306 			continue;
7307 		}
7308 
7309 		prog->type = prog->sec_def->prog_type;
7310 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7311 
7312 #pragma GCC diagnostic push
7313 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
7314 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7315 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7316 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7317 #pragma GCC diagnostic pop
7318 
7319 		/* sec_def can have custom callback which should be called
7320 		 * after bpf_program is initialized to adjust its properties
7321 		 */
7322 		if (prog->sec_def->prog_setup_fn) {
7323 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7324 			if (err < 0) {
7325 				pr_warn("prog '%s': failed to initialize: %d\n",
7326 					prog->name, err);
7327 				return err;
7328 			}
7329 		}
7330 	}
7331 
7332 	return 0;
7333 }
7334 
7335 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7336 					  const struct bpf_object_open_opts *opts)
7337 {
7338 	const char *obj_name, *kconfig, *btf_tmp_path;
7339 	struct bpf_object *obj;
7340 	char tmp_name[64];
7341 	int err;
7342 	char *log_buf;
7343 	size_t log_size;
7344 	__u32 log_level;
7345 
7346 	if (elf_version(EV_CURRENT) == EV_NONE) {
7347 		pr_warn("failed to init libelf for %s\n",
7348 			path ? : "(mem buf)");
7349 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7350 	}
7351 
7352 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7353 		return ERR_PTR(-EINVAL);
7354 
7355 	obj_name = OPTS_GET(opts, object_name, NULL);
7356 	if (obj_buf) {
7357 		if (!obj_name) {
7358 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7359 				 (unsigned long)obj_buf,
7360 				 (unsigned long)obj_buf_sz);
7361 			obj_name = tmp_name;
7362 		}
7363 		path = obj_name;
7364 		pr_debug("loading object '%s' from buffer\n", obj_name);
7365 	}
7366 
7367 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7368 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7369 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7370 	if (log_size > UINT_MAX)
7371 		return ERR_PTR(-EINVAL);
7372 	if (log_size && !log_buf)
7373 		return ERR_PTR(-EINVAL);
7374 
7375 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7376 	if (IS_ERR(obj))
7377 		return obj;
7378 
7379 	obj->log_buf = log_buf;
7380 	obj->log_size = log_size;
7381 	obj->log_level = log_level;
7382 
7383 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7384 	if (btf_tmp_path) {
7385 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7386 			err = -ENAMETOOLONG;
7387 			goto out;
7388 		}
7389 		obj->btf_custom_path = strdup(btf_tmp_path);
7390 		if (!obj->btf_custom_path) {
7391 			err = -ENOMEM;
7392 			goto out;
7393 		}
7394 	}
7395 
7396 	kconfig = OPTS_GET(opts, kconfig, NULL);
7397 	if (kconfig) {
7398 		obj->kconfig = strdup(kconfig);
7399 		if (!obj->kconfig) {
7400 			err = -ENOMEM;
7401 			goto out;
7402 		}
7403 	}
7404 
7405 	err = bpf_object__elf_init(obj);
7406 	err = err ? : bpf_object__check_endianness(obj);
7407 	err = err ? : bpf_object__elf_collect(obj);
7408 	err = err ? : bpf_object__collect_externs(obj);
7409 	err = err ? : bpf_object__finalize_btf(obj);
7410 	err = err ? : bpf_object__init_maps(obj, opts);
7411 	err = err ? : bpf_object_init_progs(obj, opts);
7412 	err = err ? : bpf_object__collect_relos(obj);
7413 	if (err)
7414 		goto out;
7415 
7416 	bpf_object__elf_finish(obj);
7417 
7418 	return obj;
7419 out:
7420 	bpf_object__close(obj);
7421 	return ERR_PTR(err);
7422 }
7423 
7424 static struct bpf_object *
7425 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7426 {
7427 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7428 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
7429 	);
7430 
7431 	/* param validation */
7432 	if (!attr->file)
7433 		return NULL;
7434 
7435 	pr_debug("loading %s\n", attr->file);
7436 	return bpf_object_open(attr->file, NULL, 0, &opts);
7437 }
7438 
7439 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7440 {
7441 	return libbpf_ptr(__bpf_object__open_xattr(attr, 0));
7442 }
7443 
7444 struct bpf_object *bpf_object__open(const char *path)
7445 {
7446 	struct bpf_object_open_attr attr = {
7447 		.file		= path,
7448 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
7449 	};
7450 
7451 	return libbpf_ptr(__bpf_object__open_xattr(&attr, 0));
7452 }
7453 
7454 struct bpf_object *
7455 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7456 {
7457 	if (!path)
7458 		return libbpf_err_ptr(-EINVAL);
7459 
7460 	pr_debug("loading %s\n", path);
7461 
7462 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7463 }
7464 
7465 struct bpf_object *
7466 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7467 		     const struct bpf_object_open_opts *opts)
7468 {
7469 	if (!obj_buf || obj_buf_sz == 0)
7470 		return libbpf_err_ptr(-EINVAL);
7471 
7472 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7473 }
7474 
7475 struct bpf_object *
7476 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7477 			const char *name)
7478 {
7479 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7480 		.object_name = name,
7481 		/* wrong default, but backwards-compatible */
7482 		.relaxed_maps = true,
7483 	);
7484 
7485 	/* returning NULL is wrong, but backwards-compatible */
7486 	if (!obj_buf || obj_buf_sz == 0)
7487 		return errno = EINVAL, NULL;
7488 
7489 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts));
7490 }
7491 
7492 static int bpf_object_unload(struct bpf_object *obj)
7493 {
7494 	size_t i;
7495 
7496 	if (!obj)
7497 		return libbpf_err(-EINVAL);
7498 
7499 	for (i = 0; i < obj->nr_maps; i++) {
7500 		zclose(obj->maps[i].fd);
7501 		if (obj->maps[i].st_ops)
7502 			zfree(&obj->maps[i].st_ops->kern_vdata);
7503 	}
7504 
7505 	for (i = 0; i < obj->nr_programs; i++)
7506 		bpf_program__unload(&obj->programs[i]);
7507 
7508 	return 0;
7509 }
7510 
7511 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload")));
7512 
7513 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7514 {
7515 	struct bpf_map *m;
7516 
7517 	bpf_object__for_each_map(m, obj) {
7518 		if (!bpf_map__is_internal(m))
7519 			continue;
7520 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7521 			m->def.map_flags ^= BPF_F_MMAPABLE;
7522 	}
7523 
7524 	return 0;
7525 }
7526 
7527 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7528 {
7529 	char sym_type, sym_name[500];
7530 	unsigned long long sym_addr;
7531 	int ret, err = 0;
7532 	FILE *f;
7533 
7534 	f = fopen("/proc/kallsyms", "r");
7535 	if (!f) {
7536 		err = -errno;
7537 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7538 		return err;
7539 	}
7540 
7541 	while (true) {
7542 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7543 			     &sym_addr, &sym_type, sym_name);
7544 		if (ret == EOF && feof(f))
7545 			break;
7546 		if (ret != 3) {
7547 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7548 			err = -EINVAL;
7549 			break;
7550 		}
7551 
7552 		err = cb(sym_addr, sym_type, sym_name, ctx);
7553 		if (err)
7554 			break;
7555 	}
7556 
7557 	fclose(f);
7558 	return err;
7559 }
7560 
7561 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7562 		       const char *sym_name, void *ctx)
7563 {
7564 	struct bpf_object *obj = ctx;
7565 	const struct btf_type *t;
7566 	struct extern_desc *ext;
7567 
7568 	ext = find_extern_by_name(obj, sym_name);
7569 	if (!ext || ext->type != EXT_KSYM)
7570 		return 0;
7571 
7572 	t = btf__type_by_id(obj->btf, ext->btf_id);
7573 	if (!btf_is_var(t))
7574 		return 0;
7575 
7576 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7577 		pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7578 			sym_name, ext->ksym.addr, sym_addr);
7579 		return -EINVAL;
7580 	}
7581 	if (!ext->is_set) {
7582 		ext->is_set = true;
7583 		ext->ksym.addr = sym_addr;
7584 		pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7585 	}
7586 	return 0;
7587 }
7588 
7589 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7590 {
7591 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7592 }
7593 
7594 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7595 			    __u16 kind, struct btf **res_btf,
7596 			    struct module_btf **res_mod_btf)
7597 {
7598 	struct module_btf *mod_btf;
7599 	struct btf *btf;
7600 	int i, id, err;
7601 
7602 	btf = obj->btf_vmlinux;
7603 	mod_btf = NULL;
7604 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7605 
7606 	if (id == -ENOENT) {
7607 		err = load_module_btfs(obj);
7608 		if (err)
7609 			return err;
7610 
7611 		for (i = 0; i < obj->btf_module_cnt; i++) {
7612 			/* we assume module_btf's BTF FD is always >0 */
7613 			mod_btf = &obj->btf_modules[i];
7614 			btf = mod_btf->btf;
7615 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7616 			if (id != -ENOENT)
7617 				break;
7618 		}
7619 	}
7620 	if (id <= 0)
7621 		return -ESRCH;
7622 
7623 	*res_btf = btf;
7624 	*res_mod_btf = mod_btf;
7625 	return id;
7626 }
7627 
7628 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7629 					       struct extern_desc *ext)
7630 {
7631 	const struct btf_type *targ_var, *targ_type;
7632 	__u32 targ_type_id, local_type_id;
7633 	struct module_btf *mod_btf = NULL;
7634 	const char *targ_var_name;
7635 	struct btf *btf = NULL;
7636 	int id, err;
7637 
7638 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7639 	if (id < 0) {
7640 		if (id == -ESRCH && ext->is_weak)
7641 			return 0;
7642 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7643 			ext->name);
7644 		return id;
7645 	}
7646 
7647 	/* find local type_id */
7648 	local_type_id = ext->ksym.type_id;
7649 
7650 	/* find target type_id */
7651 	targ_var = btf__type_by_id(btf, id);
7652 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7653 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7654 
7655 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7656 					btf, targ_type_id);
7657 	if (err <= 0) {
7658 		const struct btf_type *local_type;
7659 		const char *targ_name, *local_name;
7660 
7661 		local_type = btf__type_by_id(obj->btf, local_type_id);
7662 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7663 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7664 
7665 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7666 			ext->name, local_type_id,
7667 			btf_kind_str(local_type), local_name, targ_type_id,
7668 			btf_kind_str(targ_type), targ_name);
7669 		return -EINVAL;
7670 	}
7671 
7672 	ext->is_set = true;
7673 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7674 	ext->ksym.kernel_btf_id = id;
7675 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7676 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7677 
7678 	return 0;
7679 }
7680 
7681 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7682 						struct extern_desc *ext)
7683 {
7684 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7685 	struct module_btf *mod_btf = NULL;
7686 	const struct btf_type *kern_func;
7687 	struct btf *kern_btf = NULL;
7688 	int ret;
7689 
7690 	local_func_proto_id = ext->ksym.type_id;
7691 
7692 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7693 	if (kfunc_id < 0) {
7694 		if (kfunc_id == -ESRCH && ext->is_weak)
7695 			return 0;
7696 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7697 			ext->name);
7698 		return kfunc_id;
7699 	}
7700 
7701 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7702 	kfunc_proto_id = kern_func->type;
7703 
7704 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7705 					kern_btf, kfunc_proto_id);
7706 	if (ret <= 0) {
7707 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7708 			ext->name, local_func_proto_id, kfunc_proto_id);
7709 		return -EINVAL;
7710 	}
7711 
7712 	/* set index for module BTF fd in fd_array, if unset */
7713 	if (mod_btf && !mod_btf->fd_array_idx) {
7714 		/* insn->off is s16 */
7715 		if (obj->fd_array_cnt == INT16_MAX) {
7716 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7717 				ext->name, mod_btf->fd_array_idx);
7718 			return -E2BIG;
7719 		}
7720 		/* Cannot use index 0 for module BTF fd */
7721 		if (!obj->fd_array_cnt)
7722 			obj->fd_array_cnt = 1;
7723 
7724 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7725 					obj->fd_array_cnt + 1);
7726 		if (ret)
7727 			return ret;
7728 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7729 		/* we assume module BTF FD is always >0 */
7730 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7731 	}
7732 
7733 	ext->is_set = true;
7734 	ext->ksym.kernel_btf_id = kfunc_id;
7735 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7736 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7737 		 ext->name, kfunc_id);
7738 
7739 	return 0;
7740 }
7741 
7742 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7743 {
7744 	const struct btf_type *t;
7745 	struct extern_desc *ext;
7746 	int i, err;
7747 
7748 	for (i = 0; i < obj->nr_extern; i++) {
7749 		ext = &obj->externs[i];
7750 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7751 			continue;
7752 
7753 		if (obj->gen_loader) {
7754 			ext->is_set = true;
7755 			ext->ksym.kernel_btf_obj_fd = 0;
7756 			ext->ksym.kernel_btf_id = 0;
7757 			continue;
7758 		}
7759 		t = btf__type_by_id(obj->btf, ext->btf_id);
7760 		if (btf_is_var(t))
7761 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7762 		else
7763 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7764 		if (err)
7765 			return err;
7766 	}
7767 	return 0;
7768 }
7769 
7770 static int bpf_object__resolve_externs(struct bpf_object *obj,
7771 				       const char *extra_kconfig)
7772 {
7773 	bool need_config = false, need_kallsyms = false;
7774 	bool need_vmlinux_btf = false;
7775 	struct extern_desc *ext;
7776 	void *kcfg_data = NULL;
7777 	int err, i;
7778 
7779 	if (obj->nr_extern == 0)
7780 		return 0;
7781 
7782 	if (obj->kconfig_map_idx >= 0)
7783 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7784 
7785 	for (i = 0; i < obj->nr_extern; i++) {
7786 		ext = &obj->externs[i];
7787 
7788 		if (ext->type == EXT_KCFG &&
7789 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7790 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7791 			__u32 kver = get_kernel_version();
7792 
7793 			if (!kver) {
7794 				pr_warn("failed to get kernel version\n");
7795 				return -EINVAL;
7796 			}
7797 			err = set_kcfg_value_num(ext, ext_val, kver);
7798 			if (err)
7799 				return err;
7800 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7801 		} else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) {
7802 			need_config = true;
7803 		} else if (ext->type == EXT_KSYM) {
7804 			if (ext->ksym.type_id)
7805 				need_vmlinux_btf = true;
7806 			else
7807 				need_kallsyms = true;
7808 		} else {
7809 			pr_warn("unrecognized extern '%s'\n", ext->name);
7810 			return -EINVAL;
7811 		}
7812 	}
7813 	if (need_config && extra_kconfig) {
7814 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7815 		if (err)
7816 			return -EINVAL;
7817 		need_config = false;
7818 		for (i = 0; i < obj->nr_extern; i++) {
7819 			ext = &obj->externs[i];
7820 			if (ext->type == EXT_KCFG && !ext->is_set) {
7821 				need_config = true;
7822 				break;
7823 			}
7824 		}
7825 	}
7826 	if (need_config) {
7827 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7828 		if (err)
7829 			return -EINVAL;
7830 	}
7831 	if (need_kallsyms) {
7832 		err = bpf_object__read_kallsyms_file(obj);
7833 		if (err)
7834 			return -EINVAL;
7835 	}
7836 	if (need_vmlinux_btf) {
7837 		err = bpf_object__resolve_ksyms_btf_id(obj);
7838 		if (err)
7839 			return -EINVAL;
7840 	}
7841 	for (i = 0; i < obj->nr_extern; i++) {
7842 		ext = &obj->externs[i];
7843 
7844 		if (!ext->is_set && !ext->is_weak) {
7845 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7846 			return -ESRCH;
7847 		} else if (!ext->is_set) {
7848 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7849 				 ext->name);
7850 		}
7851 	}
7852 
7853 	return 0;
7854 }
7855 
7856 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7857 {
7858 	int err, i;
7859 
7860 	if (!obj)
7861 		return libbpf_err(-EINVAL);
7862 
7863 	if (obj->loaded) {
7864 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7865 		return libbpf_err(-EINVAL);
7866 	}
7867 
7868 	if (obj->gen_loader)
7869 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7870 
7871 	err = bpf_object__probe_loading(obj);
7872 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7873 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7874 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7875 	err = err ? : bpf_object__sanitize_maps(obj);
7876 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7877 	err = err ? : bpf_object__create_maps(obj);
7878 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7879 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7880 	err = err ? : bpf_object_init_prog_arrays(obj);
7881 
7882 	if (obj->gen_loader) {
7883 		/* reset FDs */
7884 		if (obj->btf)
7885 			btf__set_fd(obj->btf, -1);
7886 		for (i = 0; i < obj->nr_maps; i++)
7887 			obj->maps[i].fd = -1;
7888 		if (!err)
7889 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7890 	}
7891 
7892 	/* clean up fd_array */
7893 	zfree(&obj->fd_array);
7894 
7895 	/* clean up module BTFs */
7896 	for (i = 0; i < obj->btf_module_cnt; i++) {
7897 		close(obj->btf_modules[i].fd);
7898 		btf__free(obj->btf_modules[i].btf);
7899 		free(obj->btf_modules[i].name);
7900 	}
7901 	free(obj->btf_modules);
7902 
7903 	/* clean up vmlinux BTF */
7904 	btf__free(obj->btf_vmlinux);
7905 	obj->btf_vmlinux = NULL;
7906 
7907 	obj->loaded = true; /* doesn't matter if successfully or not */
7908 
7909 	if (err)
7910 		goto out;
7911 
7912 	return 0;
7913 out:
7914 	/* unpin any maps that were auto-pinned during load */
7915 	for (i = 0; i < obj->nr_maps; i++)
7916 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7917 			bpf_map__unpin(&obj->maps[i], NULL);
7918 
7919 	bpf_object_unload(obj);
7920 	pr_warn("failed to load object '%s'\n", obj->path);
7921 	return libbpf_err(err);
7922 }
7923 
7924 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7925 {
7926 	return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path);
7927 }
7928 
7929 int bpf_object__load(struct bpf_object *obj)
7930 {
7931 	return bpf_object_load(obj, 0, NULL);
7932 }
7933 
7934 static int make_parent_dir(const char *path)
7935 {
7936 	char *cp, errmsg[STRERR_BUFSIZE];
7937 	char *dname, *dir;
7938 	int err = 0;
7939 
7940 	dname = strdup(path);
7941 	if (dname == NULL)
7942 		return -ENOMEM;
7943 
7944 	dir = dirname(dname);
7945 	if (mkdir(dir, 0700) && errno != EEXIST)
7946 		err = -errno;
7947 
7948 	free(dname);
7949 	if (err) {
7950 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7951 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7952 	}
7953 	return err;
7954 }
7955 
7956 static int check_path(const char *path)
7957 {
7958 	char *cp, errmsg[STRERR_BUFSIZE];
7959 	struct statfs st_fs;
7960 	char *dname, *dir;
7961 	int err = 0;
7962 
7963 	if (path == NULL)
7964 		return -EINVAL;
7965 
7966 	dname = strdup(path);
7967 	if (dname == NULL)
7968 		return -ENOMEM;
7969 
7970 	dir = dirname(dname);
7971 	if (statfs(dir, &st_fs)) {
7972 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7973 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7974 		err = -errno;
7975 	}
7976 	free(dname);
7977 
7978 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7979 		pr_warn("specified path %s is not on BPF FS\n", path);
7980 		err = -EINVAL;
7981 	}
7982 
7983 	return err;
7984 }
7985 
7986 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance)
7987 {
7988 	char *cp, errmsg[STRERR_BUFSIZE];
7989 	int err;
7990 
7991 	err = make_parent_dir(path);
7992 	if (err)
7993 		return libbpf_err(err);
7994 
7995 	err = check_path(path);
7996 	if (err)
7997 		return libbpf_err(err);
7998 
7999 	if (prog == NULL) {
8000 		pr_warn("invalid program pointer\n");
8001 		return libbpf_err(-EINVAL);
8002 	}
8003 
8004 	if (instance < 0 || instance >= prog->instances.nr) {
8005 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
8006 			instance, prog->name, prog->instances.nr);
8007 		return libbpf_err(-EINVAL);
8008 	}
8009 
8010 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
8011 		err = -errno;
8012 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8013 		pr_warn("failed to pin program: %s\n", cp);
8014 		return libbpf_err(err);
8015 	}
8016 	pr_debug("pinned program '%s'\n", path);
8017 
8018 	return 0;
8019 }
8020 
8021 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance)
8022 {
8023 	int err;
8024 
8025 	err = check_path(path);
8026 	if (err)
8027 		return libbpf_err(err);
8028 
8029 	if (prog == NULL) {
8030 		pr_warn("invalid program pointer\n");
8031 		return libbpf_err(-EINVAL);
8032 	}
8033 
8034 	if (instance < 0 || instance >= prog->instances.nr) {
8035 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
8036 			instance, prog->name, prog->instances.nr);
8037 		return libbpf_err(-EINVAL);
8038 	}
8039 
8040 	err = unlink(path);
8041 	if (err != 0)
8042 		return libbpf_err(-errno);
8043 
8044 	pr_debug("unpinned program '%s'\n", path);
8045 
8046 	return 0;
8047 }
8048 
8049 __attribute__((alias("bpf_program_pin_instance")))
8050 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance);
8051 
8052 __attribute__((alias("bpf_program_unpin_instance")))
8053 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance);
8054 
8055 int bpf_program__pin(struct bpf_program *prog, const char *path)
8056 {
8057 	int i, err;
8058 
8059 	err = make_parent_dir(path);
8060 	if (err)
8061 		return libbpf_err(err);
8062 
8063 	err = check_path(path);
8064 	if (err)
8065 		return libbpf_err(err);
8066 
8067 	if (prog == NULL) {
8068 		pr_warn("invalid program pointer\n");
8069 		return libbpf_err(-EINVAL);
8070 	}
8071 
8072 	if (prog->instances.nr <= 0) {
8073 		pr_warn("no instances of prog %s to pin\n", prog->name);
8074 		return libbpf_err(-EINVAL);
8075 	}
8076 
8077 	if (prog->instances.nr == 1) {
8078 		/* don't create subdirs when pinning single instance */
8079 		return bpf_program_pin_instance(prog, path, 0);
8080 	}
8081 
8082 	for (i = 0; i < prog->instances.nr; i++) {
8083 		char buf[PATH_MAX];
8084 		int len;
8085 
8086 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8087 		if (len < 0) {
8088 			err = -EINVAL;
8089 			goto err_unpin;
8090 		} else if (len >= PATH_MAX) {
8091 			err = -ENAMETOOLONG;
8092 			goto err_unpin;
8093 		}
8094 
8095 		err = bpf_program_pin_instance(prog, buf, i);
8096 		if (err)
8097 			goto err_unpin;
8098 	}
8099 
8100 	return 0;
8101 
8102 err_unpin:
8103 	for (i = i - 1; i >= 0; i--) {
8104 		char buf[PATH_MAX];
8105 		int len;
8106 
8107 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8108 		if (len < 0)
8109 			continue;
8110 		else if (len >= PATH_MAX)
8111 			continue;
8112 
8113 		bpf_program_unpin_instance(prog, buf, i);
8114 	}
8115 
8116 	rmdir(path);
8117 
8118 	return libbpf_err(err);
8119 }
8120 
8121 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8122 {
8123 	int i, err;
8124 
8125 	err = check_path(path);
8126 	if (err)
8127 		return libbpf_err(err);
8128 
8129 	if (prog == NULL) {
8130 		pr_warn("invalid program pointer\n");
8131 		return libbpf_err(-EINVAL);
8132 	}
8133 
8134 	if (prog->instances.nr <= 0) {
8135 		pr_warn("no instances of prog %s to pin\n", prog->name);
8136 		return libbpf_err(-EINVAL);
8137 	}
8138 
8139 	if (prog->instances.nr == 1) {
8140 		/* don't create subdirs when pinning single instance */
8141 		return bpf_program_unpin_instance(prog, path, 0);
8142 	}
8143 
8144 	for (i = 0; i < prog->instances.nr; i++) {
8145 		char buf[PATH_MAX];
8146 		int len;
8147 
8148 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8149 		if (len < 0)
8150 			return libbpf_err(-EINVAL);
8151 		else if (len >= PATH_MAX)
8152 			return libbpf_err(-ENAMETOOLONG);
8153 
8154 		err = bpf_program_unpin_instance(prog, buf, i);
8155 		if (err)
8156 			return err;
8157 	}
8158 
8159 	err = rmdir(path);
8160 	if (err)
8161 		return libbpf_err(-errno);
8162 
8163 	return 0;
8164 }
8165 
8166 int bpf_map__pin(struct bpf_map *map, const char *path)
8167 {
8168 	char *cp, errmsg[STRERR_BUFSIZE];
8169 	int err;
8170 
8171 	if (map == NULL) {
8172 		pr_warn("invalid map pointer\n");
8173 		return libbpf_err(-EINVAL);
8174 	}
8175 
8176 	if (map->pin_path) {
8177 		if (path && strcmp(path, map->pin_path)) {
8178 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8179 				bpf_map__name(map), map->pin_path, path);
8180 			return libbpf_err(-EINVAL);
8181 		} else if (map->pinned) {
8182 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8183 				 bpf_map__name(map), map->pin_path);
8184 			return 0;
8185 		}
8186 	} else {
8187 		if (!path) {
8188 			pr_warn("missing a path to pin map '%s' at\n",
8189 				bpf_map__name(map));
8190 			return libbpf_err(-EINVAL);
8191 		} else if (map->pinned) {
8192 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8193 			return libbpf_err(-EEXIST);
8194 		}
8195 
8196 		map->pin_path = strdup(path);
8197 		if (!map->pin_path) {
8198 			err = -errno;
8199 			goto out_err;
8200 		}
8201 	}
8202 
8203 	err = make_parent_dir(map->pin_path);
8204 	if (err)
8205 		return libbpf_err(err);
8206 
8207 	err = check_path(map->pin_path);
8208 	if (err)
8209 		return libbpf_err(err);
8210 
8211 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8212 		err = -errno;
8213 		goto out_err;
8214 	}
8215 
8216 	map->pinned = true;
8217 	pr_debug("pinned map '%s'\n", map->pin_path);
8218 
8219 	return 0;
8220 
8221 out_err:
8222 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8223 	pr_warn("failed to pin map: %s\n", cp);
8224 	return libbpf_err(err);
8225 }
8226 
8227 int bpf_map__unpin(struct bpf_map *map, const char *path)
8228 {
8229 	int err;
8230 
8231 	if (map == NULL) {
8232 		pr_warn("invalid map pointer\n");
8233 		return libbpf_err(-EINVAL);
8234 	}
8235 
8236 	if (map->pin_path) {
8237 		if (path && strcmp(path, map->pin_path)) {
8238 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8239 				bpf_map__name(map), map->pin_path, path);
8240 			return libbpf_err(-EINVAL);
8241 		}
8242 		path = map->pin_path;
8243 	} else if (!path) {
8244 		pr_warn("no path to unpin map '%s' from\n",
8245 			bpf_map__name(map));
8246 		return libbpf_err(-EINVAL);
8247 	}
8248 
8249 	err = check_path(path);
8250 	if (err)
8251 		return libbpf_err(err);
8252 
8253 	err = unlink(path);
8254 	if (err != 0)
8255 		return libbpf_err(-errno);
8256 
8257 	map->pinned = false;
8258 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8259 
8260 	return 0;
8261 }
8262 
8263 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8264 {
8265 	char *new = NULL;
8266 
8267 	if (path) {
8268 		new = strdup(path);
8269 		if (!new)
8270 			return libbpf_err(-errno);
8271 	}
8272 
8273 	free(map->pin_path);
8274 	map->pin_path = new;
8275 	return 0;
8276 }
8277 
8278 __alias(bpf_map__pin_path)
8279 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8280 
8281 const char *bpf_map__pin_path(const struct bpf_map *map)
8282 {
8283 	return map->pin_path;
8284 }
8285 
8286 bool bpf_map__is_pinned(const struct bpf_map *map)
8287 {
8288 	return map->pinned;
8289 }
8290 
8291 static void sanitize_pin_path(char *s)
8292 {
8293 	/* bpffs disallows periods in path names */
8294 	while (*s) {
8295 		if (*s == '.')
8296 			*s = '_';
8297 		s++;
8298 	}
8299 }
8300 
8301 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8302 {
8303 	struct bpf_map *map;
8304 	int err;
8305 
8306 	if (!obj)
8307 		return libbpf_err(-ENOENT);
8308 
8309 	if (!obj->loaded) {
8310 		pr_warn("object not yet loaded; load it first\n");
8311 		return libbpf_err(-ENOENT);
8312 	}
8313 
8314 	bpf_object__for_each_map(map, obj) {
8315 		char *pin_path = NULL;
8316 		char buf[PATH_MAX];
8317 
8318 		if (!map->autocreate)
8319 			continue;
8320 
8321 		if (path) {
8322 			int len;
8323 
8324 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
8325 				       bpf_map__name(map));
8326 			if (len < 0) {
8327 				err = -EINVAL;
8328 				goto err_unpin_maps;
8329 			} else if (len >= PATH_MAX) {
8330 				err = -ENAMETOOLONG;
8331 				goto err_unpin_maps;
8332 			}
8333 			sanitize_pin_path(buf);
8334 			pin_path = buf;
8335 		} else if (!map->pin_path) {
8336 			continue;
8337 		}
8338 
8339 		err = bpf_map__pin(map, pin_path);
8340 		if (err)
8341 			goto err_unpin_maps;
8342 	}
8343 
8344 	return 0;
8345 
8346 err_unpin_maps:
8347 	while ((map = bpf_object__prev_map(obj, map))) {
8348 		if (!map->pin_path)
8349 			continue;
8350 
8351 		bpf_map__unpin(map, NULL);
8352 	}
8353 
8354 	return libbpf_err(err);
8355 }
8356 
8357 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8358 {
8359 	struct bpf_map *map;
8360 	int err;
8361 
8362 	if (!obj)
8363 		return libbpf_err(-ENOENT);
8364 
8365 	bpf_object__for_each_map(map, obj) {
8366 		char *pin_path = NULL;
8367 		char buf[PATH_MAX];
8368 
8369 		if (path) {
8370 			int len;
8371 
8372 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
8373 				       bpf_map__name(map));
8374 			if (len < 0)
8375 				return libbpf_err(-EINVAL);
8376 			else if (len >= PATH_MAX)
8377 				return libbpf_err(-ENAMETOOLONG);
8378 			sanitize_pin_path(buf);
8379 			pin_path = buf;
8380 		} else if (!map->pin_path) {
8381 			continue;
8382 		}
8383 
8384 		err = bpf_map__unpin(map, pin_path);
8385 		if (err)
8386 			return libbpf_err(err);
8387 	}
8388 
8389 	return 0;
8390 }
8391 
8392 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8393 {
8394 	struct bpf_program *prog;
8395 	int err;
8396 
8397 	if (!obj)
8398 		return libbpf_err(-ENOENT);
8399 
8400 	if (!obj->loaded) {
8401 		pr_warn("object not yet loaded; load it first\n");
8402 		return libbpf_err(-ENOENT);
8403 	}
8404 
8405 	bpf_object__for_each_program(prog, obj) {
8406 		char buf[PATH_MAX];
8407 		int len;
8408 
8409 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8410 			       prog->pin_name);
8411 		if (len < 0) {
8412 			err = -EINVAL;
8413 			goto err_unpin_programs;
8414 		} else if (len >= PATH_MAX) {
8415 			err = -ENAMETOOLONG;
8416 			goto err_unpin_programs;
8417 		}
8418 
8419 		err = bpf_program__pin(prog, buf);
8420 		if (err)
8421 			goto err_unpin_programs;
8422 	}
8423 
8424 	return 0;
8425 
8426 err_unpin_programs:
8427 	while ((prog = bpf_object__prev_program(obj, prog))) {
8428 		char buf[PATH_MAX];
8429 		int len;
8430 
8431 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8432 			       prog->pin_name);
8433 		if (len < 0)
8434 			continue;
8435 		else if (len >= PATH_MAX)
8436 			continue;
8437 
8438 		bpf_program__unpin(prog, buf);
8439 	}
8440 
8441 	return libbpf_err(err);
8442 }
8443 
8444 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8445 {
8446 	struct bpf_program *prog;
8447 	int err;
8448 
8449 	if (!obj)
8450 		return libbpf_err(-ENOENT);
8451 
8452 	bpf_object__for_each_program(prog, obj) {
8453 		char buf[PATH_MAX];
8454 		int len;
8455 
8456 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8457 			       prog->pin_name);
8458 		if (len < 0)
8459 			return libbpf_err(-EINVAL);
8460 		else if (len >= PATH_MAX)
8461 			return libbpf_err(-ENAMETOOLONG);
8462 
8463 		err = bpf_program__unpin(prog, buf);
8464 		if (err)
8465 			return libbpf_err(err);
8466 	}
8467 
8468 	return 0;
8469 }
8470 
8471 int bpf_object__pin(struct bpf_object *obj, const char *path)
8472 {
8473 	int err;
8474 
8475 	err = bpf_object__pin_maps(obj, path);
8476 	if (err)
8477 		return libbpf_err(err);
8478 
8479 	err = bpf_object__pin_programs(obj, path);
8480 	if (err) {
8481 		bpf_object__unpin_maps(obj, path);
8482 		return libbpf_err(err);
8483 	}
8484 
8485 	return 0;
8486 }
8487 
8488 static void bpf_map__destroy(struct bpf_map *map)
8489 {
8490 	if (map->clear_priv)
8491 		map->clear_priv(map, map->priv);
8492 	map->priv = NULL;
8493 	map->clear_priv = NULL;
8494 
8495 	if (map->inner_map) {
8496 		bpf_map__destroy(map->inner_map);
8497 		zfree(&map->inner_map);
8498 	}
8499 
8500 	zfree(&map->init_slots);
8501 	map->init_slots_sz = 0;
8502 
8503 	if (map->mmaped) {
8504 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8505 		map->mmaped = NULL;
8506 	}
8507 
8508 	if (map->st_ops) {
8509 		zfree(&map->st_ops->data);
8510 		zfree(&map->st_ops->progs);
8511 		zfree(&map->st_ops->kern_func_off);
8512 		zfree(&map->st_ops);
8513 	}
8514 
8515 	zfree(&map->name);
8516 	zfree(&map->real_name);
8517 	zfree(&map->pin_path);
8518 
8519 	if (map->fd >= 0)
8520 		zclose(map->fd);
8521 }
8522 
8523 void bpf_object__close(struct bpf_object *obj)
8524 {
8525 	size_t i;
8526 
8527 	if (IS_ERR_OR_NULL(obj))
8528 		return;
8529 
8530 	if (obj->clear_priv)
8531 		obj->clear_priv(obj, obj->priv);
8532 
8533 	usdt_manager_free(obj->usdt_man);
8534 	obj->usdt_man = NULL;
8535 
8536 	bpf_gen__free(obj->gen_loader);
8537 	bpf_object__elf_finish(obj);
8538 	bpf_object_unload(obj);
8539 	btf__free(obj->btf);
8540 	btf_ext__free(obj->btf_ext);
8541 
8542 	for (i = 0; i < obj->nr_maps; i++)
8543 		bpf_map__destroy(&obj->maps[i]);
8544 
8545 	zfree(&obj->btf_custom_path);
8546 	zfree(&obj->kconfig);
8547 	zfree(&obj->externs);
8548 	obj->nr_extern = 0;
8549 
8550 	zfree(&obj->maps);
8551 	obj->nr_maps = 0;
8552 
8553 	if (obj->programs && obj->nr_programs) {
8554 		for (i = 0; i < obj->nr_programs; i++)
8555 			bpf_program__exit(&obj->programs[i]);
8556 	}
8557 	zfree(&obj->programs);
8558 
8559 	list_del(&obj->list);
8560 	free(obj);
8561 }
8562 
8563 struct bpf_object *
8564 bpf_object__next(struct bpf_object *prev)
8565 {
8566 	struct bpf_object *next;
8567 	bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
8568 
8569 	if (strict)
8570 		return NULL;
8571 
8572 	if (!prev)
8573 		next = list_first_entry(&bpf_objects_list,
8574 					struct bpf_object,
8575 					list);
8576 	else
8577 		next = list_next_entry(prev, list);
8578 
8579 	/* Empty list is noticed here so don't need checking on entry. */
8580 	if (&next->list == &bpf_objects_list)
8581 		return NULL;
8582 
8583 	return next;
8584 }
8585 
8586 const char *bpf_object__name(const struct bpf_object *obj)
8587 {
8588 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8589 }
8590 
8591 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8592 {
8593 	return obj ? obj->kern_version : 0;
8594 }
8595 
8596 struct btf *bpf_object__btf(const struct bpf_object *obj)
8597 {
8598 	return obj ? obj->btf : NULL;
8599 }
8600 
8601 int bpf_object__btf_fd(const struct bpf_object *obj)
8602 {
8603 	return obj->btf ? btf__fd(obj->btf) : -1;
8604 }
8605 
8606 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8607 {
8608 	if (obj->loaded)
8609 		return libbpf_err(-EINVAL);
8610 
8611 	obj->kern_version = kern_version;
8612 
8613 	return 0;
8614 }
8615 
8616 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8617 			 bpf_object_clear_priv_t clear_priv)
8618 {
8619 	if (obj->priv && obj->clear_priv)
8620 		obj->clear_priv(obj, obj->priv);
8621 
8622 	obj->priv = priv;
8623 	obj->clear_priv = clear_priv;
8624 	return 0;
8625 }
8626 
8627 void *bpf_object__priv(const struct bpf_object *obj)
8628 {
8629 	return obj ? obj->priv : libbpf_err_ptr(-EINVAL);
8630 }
8631 
8632 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8633 {
8634 	struct bpf_gen *gen;
8635 
8636 	if (!opts)
8637 		return -EFAULT;
8638 	if (!OPTS_VALID(opts, gen_loader_opts))
8639 		return -EINVAL;
8640 	gen = calloc(sizeof(*gen), 1);
8641 	if (!gen)
8642 		return -ENOMEM;
8643 	gen->opts = opts;
8644 	obj->gen_loader = gen;
8645 	return 0;
8646 }
8647 
8648 static struct bpf_program *
8649 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8650 		    bool forward)
8651 {
8652 	size_t nr_programs = obj->nr_programs;
8653 	ssize_t idx;
8654 
8655 	if (!nr_programs)
8656 		return NULL;
8657 
8658 	if (!p)
8659 		/* Iter from the beginning */
8660 		return forward ? &obj->programs[0] :
8661 			&obj->programs[nr_programs - 1];
8662 
8663 	if (p->obj != obj) {
8664 		pr_warn("error: program handler doesn't match object\n");
8665 		return errno = EINVAL, NULL;
8666 	}
8667 
8668 	idx = (p - obj->programs) + (forward ? 1 : -1);
8669 	if (idx >= obj->nr_programs || idx < 0)
8670 		return NULL;
8671 	return &obj->programs[idx];
8672 }
8673 
8674 struct bpf_program *
8675 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8676 {
8677 	return bpf_object__next_program(obj, prev);
8678 }
8679 
8680 struct bpf_program *
8681 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8682 {
8683 	struct bpf_program *prog = prev;
8684 
8685 	do {
8686 		prog = __bpf_program__iter(prog, obj, true);
8687 	} while (prog && prog_is_subprog(obj, prog));
8688 
8689 	return prog;
8690 }
8691 
8692 struct bpf_program *
8693 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8694 {
8695 	return bpf_object__prev_program(obj, next);
8696 }
8697 
8698 struct bpf_program *
8699 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8700 {
8701 	struct bpf_program *prog = next;
8702 
8703 	do {
8704 		prog = __bpf_program__iter(prog, obj, false);
8705 	} while (prog && prog_is_subprog(obj, prog));
8706 
8707 	return prog;
8708 }
8709 
8710 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8711 			  bpf_program_clear_priv_t clear_priv)
8712 {
8713 	if (prog->priv && prog->clear_priv)
8714 		prog->clear_priv(prog, prog->priv);
8715 
8716 	prog->priv = priv;
8717 	prog->clear_priv = clear_priv;
8718 	return 0;
8719 }
8720 
8721 void *bpf_program__priv(const struct bpf_program *prog)
8722 {
8723 	return prog ? prog->priv : libbpf_err_ptr(-EINVAL);
8724 }
8725 
8726 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8727 {
8728 	prog->prog_ifindex = ifindex;
8729 }
8730 
8731 const char *bpf_program__name(const struct bpf_program *prog)
8732 {
8733 	return prog->name;
8734 }
8735 
8736 const char *bpf_program__section_name(const struct bpf_program *prog)
8737 {
8738 	return prog->sec_name;
8739 }
8740 
8741 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8742 {
8743 	const char *title;
8744 
8745 	title = prog->sec_name;
8746 	if (needs_copy) {
8747 		title = strdup(title);
8748 		if (!title) {
8749 			pr_warn("failed to strdup program title\n");
8750 			return libbpf_err_ptr(-ENOMEM);
8751 		}
8752 	}
8753 
8754 	return title;
8755 }
8756 
8757 bool bpf_program__autoload(const struct bpf_program *prog)
8758 {
8759 	return prog->autoload;
8760 }
8761 
8762 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8763 {
8764 	if (prog->obj->loaded)
8765 		return libbpf_err(-EINVAL);
8766 
8767 	prog->autoload = autoload;
8768 	return 0;
8769 }
8770 
8771 static int bpf_program_nth_fd(const struct bpf_program *prog, int n);
8772 
8773 int bpf_program__fd(const struct bpf_program *prog)
8774 {
8775 	return bpf_program_nth_fd(prog, 0);
8776 }
8777 
8778 size_t bpf_program__size(const struct bpf_program *prog)
8779 {
8780 	return prog->insns_cnt * BPF_INSN_SZ;
8781 }
8782 
8783 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8784 {
8785 	return prog->insns;
8786 }
8787 
8788 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8789 {
8790 	return prog->insns_cnt;
8791 }
8792 
8793 int bpf_program__set_insns(struct bpf_program *prog,
8794 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8795 {
8796 	struct bpf_insn *insns;
8797 
8798 	if (prog->obj->loaded)
8799 		return -EBUSY;
8800 
8801 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8802 	if (!insns) {
8803 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8804 		return -ENOMEM;
8805 	}
8806 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8807 
8808 	prog->insns = insns;
8809 	prog->insns_cnt = new_insn_cnt;
8810 	return 0;
8811 }
8812 
8813 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8814 			  bpf_program_prep_t prep)
8815 {
8816 	int *instances_fds;
8817 
8818 	if (nr_instances <= 0 || !prep)
8819 		return libbpf_err(-EINVAL);
8820 
8821 	if (prog->instances.nr > 0 || prog->instances.fds) {
8822 		pr_warn("Can't set pre-processor after loading\n");
8823 		return libbpf_err(-EINVAL);
8824 	}
8825 
8826 	instances_fds = malloc(sizeof(int) * nr_instances);
8827 	if (!instances_fds) {
8828 		pr_warn("alloc memory failed for fds\n");
8829 		return libbpf_err(-ENOMEM);
8830 	}
8831 
8832 	/* fill all fd with -1 */
8833 	memset(instances_fds, -1, sizeof(int) * nr_instances);
8834 
8835 	prog->instances.nr = nr_instances;
8836 	prog->instances.fds = instances_fds;
8837 	prog->preprocessor = prep;
8838 	return 0;
8839 }
8840 
8841 __attribute__((alias("bpf_program_nth_fd")))
8842 int bpf_program__nth_fd(const struct bpf_program *prog, int n);
8843 
8844 static int bpf_program_nth_fd(const struct bpf_program *prog, int n)
8845 {
8846 	int fd;
8847 
8848 	if (!prog)
8849 		return libbpf_err(-EINVAL);
8850 
8851 	if (n >= prog->instances.nr || n < 0) {
8852 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8853 			n, prog->name, prog->instances.nr);
8854 		return libbpf_err(-EINVAL);
8855 	}
8856 
8857 	fd = prog->instances.fds[n];
8858 	if (fd < 0) {
8859 		pr_warn("%dth instance of program '%s' is invalid\n",
8860 			n, prog->name);
8861 		return libbpf_err(-ENOENT);
8862 	}
8863 
8864 	return fd;
8865 }
8866 
8867 __alias(bpf_program__type)
8868 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8869 
8870 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8871 {
8872 	return prog->type;
8873 }
8874 
8875 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8876 {
8877 	if (prog->obj->loaded)
8878 		return libbpf_err(-EBUSY);
8879 
8880 	prog->type = type;
8881 	return 0;
8882 }
8883 
8884 static bool bpf_program__is_type(const struct bpf_program *prog,
8885 				 enum bpf_prog_type type)
8886 {
8887 	return prog ? (prog->type == type) : false;
8888 }
8889 
8890 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8891 int bpf_program__set_##NAME(struct bpf_program *prog)		\
8892 {								\
8893 	if (!prog)						\
8894 		return libbpf_err(-EINVAL);			\
8895 	return bpf_program__set_type(prog, TYPE);			\
8896 }								\
8897 								\
8898 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
8899 {								\
8900 	return bpf_program__is_type(prog, TYPE);		\
8901 }								\
8902 
8903 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8904 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8905 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8906 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8907 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8908 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8909 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8910 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8911 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8912 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8913 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8914 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8915 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8916 
8917 __alias(bpf_program__expected_attach_type)
8918 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8919 
8920 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8921 {
8922 	return prog->expected_attach_type;
8923 }
8924 
8925 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8926 					   enum bpf_attach_type type)
8927 {
8928 	if (prog->obj->loaded)
8929 		return libbpf_err(-EBUSY);
8930 
8931 	prog->expected_attach_type = type;
8932 	return 0;
8933 }
8934 
8935 __u32 bpf_program__flags(const struct bpf_program *prog)
8936 {
8937 	return prog->prog_flags;
8938 }
8939 
8940 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8941 {
8942 	if (prog->obj->loaded)
8943 		return libbpf_err(-EBUSY);
8944 
8945 	prog->prog_flags = flags;
8946 	return 0;
8947 }
8948 
8949 __u32 bpf_program__log_level(const struct bpf_program *prog)
8950 {
8951 	return prog->log_level;
8952 }
8953 
8954 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8955 {
8956 	if (prog->obj->loaded)
8957 		return libbpf_err(-EBUSY);
8958 
8959 	prog->log_level = log_level;
8960 	return 0;
8961 }
8962 
8963 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8964 {
8965 	*log_size = prog->log_size;
8966 	return prog->log_buf;
8967 }
8968 
8969 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8970 {
8971 	if (log_size && !log_buf)
8972 		return -EINVAL;
8973 	if (prog->log_size > UINT_MAX)
8974 		return -EINVAL;
8975 	if (prog->obj->loaded)
8976 		return -EBUSY;
8977 
8978 	prog->log_buf = log_buf;
8979 	prog->log_size = log_size;
8980 	return 0;
8981 }
8982 
8983 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8984 	.sec = (char *)sec_pfx,						    \
8985 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8986 	.expected_attach_type = atype,					    \
8987 	.cookie = (long)(flags),					    \
8988 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8989 	__VA_ARGS__							    \
8990 }
8991 
8992 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8993 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8994 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8995 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8996 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8997 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8998 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8999 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9000 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9001 
9002 static const struct bpf_sec_def section_defs[] = {
9003 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX),
9004 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9005 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9006 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9007 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9008 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9009 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9010 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9011 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9012 	SEC_DEF("usdt+",		KPROBE,	0, SEC_NONE, attach_usdt),
9013 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE),
9014 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED),
9015 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX),
9016 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9017 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9018 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9019 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9020 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9021 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9022 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9023 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9024 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9025 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9026 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9027 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9028 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9029 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9030 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9031 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9032 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9033 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9034 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9035 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9036 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9037 	SEC_DEF("xdp_devmap/",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED),
9038 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9039 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9040 	SEC_DEF("xdp_cpumap/",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED),
9041 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9042 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9043 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX),
9044 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX),
9045 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX),
9046 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX),
9047 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX),
9048 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9049 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9050 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
9051 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9052 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9053 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9054 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9055 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9056 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9057 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9058 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9059 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9060 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
9061 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9062 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9063 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
9064 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9065 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9066 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9067 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9068 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9069 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9070 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9071 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9072 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9073 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9074 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9075 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9076 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9077 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9078 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9079 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9080 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
9081 };
9082 
9083 static size_t custom_sec_def_cnt;
9084 static struct bpf_sec_def *custom_sec_defs;
9085 static struct bpf_sec_def custom_fallback_def;
9086 static bool has_custom_fallback_def;
9087 
9088 static int last_custom_sec_def_handler_id;
9089 
9090 int libbpf_register_prog_handler(const char *sec,
9091 				 enum bpf_prog_type prog_type,
9092 				 enum bpf_attach_type exp_attach_type,
9093 				 const struct libbpf_prog_handler_opts *opts)
9094 {
9095 	struct bpf_sec_def *sec_def;
9096 
9097 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9098 		return libbpf_err(-EINVAL);
9099 
9100 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9101 		return libbpf_err(-E2BIG);
9102 
9103 	if (sec) {
9104 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9105 					      sizeof(*sec_def));
9106 		if (!sec_def)
9107 			return libbpf_err(-ENOMEM);
9108 
9109 		custom_sec_defs = sec_def;
9110 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9111 	} else {
9112 		if (has_custom_fallback_def)
9113 			return libbpf_err(-EBUSY);
9114 
9115 		sec_def = &custom_fallback_def;
9116 	}
9117 
9118 	sec_def->sec = sec ? strdup(sec) : NULL;
9119 	if (sec && !sec_def->sec)
9120 		return libbpf_err(-ENOMEM);
9121 
9122 	sec_def->prog_type = prog_type;
9123 	sec_def->expected_attach_type = exp_attach_type;
9124 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9125 
9126 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9127 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9128 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9129 
9130 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9131 
9132 	if (sec)
9133 		custom_sec_def_cnt++;
9134 	else
9135 		has_custom_fallback_def = true;
9136 
9137 	return sec_def->handler_id;
9138 }
9139 
9140 int libbpf_unregister_prog_handler(int handler_id)
9141 {
9142 	struct bpf_sec_def *sec_defs;
9143 	int i;
9144 
9145 	if (handler_id <= 0)
9146 		return libbpf_err(-EINVAL);
9147 
9148 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9149 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9150 		has_custom_fallback_def = false;
9151 		return 0;
9152 	}
9153 
9154 	for (i = 0; i < custom_sec_def_cnt; i++) {
9155 		if (custom_sec_defs[i].handler_id == handler_id)
9156 			break;
9157 	}
9158 
9159 	if (i == custom_sec_def_cnt)
9160 		return libbpf_err(-ENOENT);
9161 
9162 	free(custom_sec_defs[i].sec);
9163 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9164 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9165 	custom_sec_def_cnt--;
9166 
9167 	/* try to shrink the array, but it's ok if we couldn't */
9168 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9169 	if (sec_defs)
9170 		custom_sec_defs = sec_defs;
9171 
9172 	return 0;
9173 }
9174 
9175 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name,
9176 			    bool allow_sloppy)
9177 {
9178 	size_t len = strlen(sec_def->sec);
9179 
9180 	/* "type/" always has to have proper SEC("type/extras") form */
9181 	if (sec_def->sec[len - 1] == '/') {
9182 		if (str_has_pfx(sec_name, sec_def->sec))
9183 			return true;
9184 		return false;
9185 	}
9186 
9187 	/* "type+" means it can be either exact SEC("type") or
9188 	 * well-formed SEC("type/extras") with proper '/' separator
9189 	 */
9190 	if (sec_def->sec[len - 1] == '+') {
9191 		len--;
9192 		/* not even a prefix */
9193 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9194 			return false;
9195 		/* exact match or has '/' separator */
9196 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9197 			return true;
9198 		return false;
9199 	}
9200 
9201 	/* SEC_SLOPPY_PFX definitions are allowed to be just prefix
9202 	 * matches, unless strict section name mode
9203 	 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the
9204 	 * match has to be exact.
9205 	 */
9206 	if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec))
9207 		return true;
9208 
9209 	/* Definitions not marked SEC_SLOPPY_PFX (e.g.,
9210 	 * SEC("syscall")) are exact matches in both modes.
9211 	 */
9212 	return strcmp(sec_name, sec_def->sec) == 0;
9213 }
9214 
9215 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9216 {
9217 	const struct bpf_sec_def *sec_def;
9218 	int i, n;
9219 	bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy;
9220 
9221 	n = custom_sec_def_cnt;
9222 	for (i = 0; i < n; i++) {
9223 		sec_def = &custom_sec_defs[i];
9224 		if (sec_def_matches(sec_def, sec_name, false))
9225 			return sec_def;
9226 	}
9227 
9228 	n = ARRAY_SIZE(section_defs);
9229 	for (i = 0; i < n; i++) {
9230 		sec_def = &section_defs[i];
9231 		allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict;
9232 		if (sec_def_matches(sec_def, sec_name, allow_sloppy))
9233 			return sec_def;
9234 	}
9235 
9236 	if (has_custom_fallback_def)
9237 		return &custom_fallback_def;
9238 
9239 	return NULL;
9240 }
9241 
9242 #define MAX_TYPE_NAME_SIZE 32
9243 
9244 static char *libbpf_get_type_names(bool attach_type)
9245 {
9246 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9247 	char *buf;
9248 
9249 	buf = malloc(len);
9250 	if (!buf)
9251 		return NULL;
9252 
9253 	buf[0] = '\0';
9254 	/* Forge string buf with all available names */
9255 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9256 		const struct bpf_sec_def *sec_def = &section_defs[i];
9257 
9258 		if (attach_type) {
9259 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9260 				continue;
9261 
9262 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9263 				continue;
9264 		}
9265 
9266 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9267 			free(buf);
9268 			return NULL;
9269 		}
9270 		strcat(buf, " ");
9271 		strcat(buf, section_defs[i].sec);
9272 	}
9273 
9274 	return buf;
9275 }
9276 
9277 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9278 			     enum bpf_attach_type *expected_attach_type)
9279 {
9280 	const struct bpf_sec_def *sec_def;
9281 	char *type_names;
9282 
9283 	if (!name)
9284 		return libbpf_err(-EINVAL);
9285 
9286 	sec_def = find_sec_def(name);
9287 	if (sec_def) {
9288 		*prog_type = sec_def->prog_type;
9289 		*expected_attach_type = sec_def->expected_attach_type;
9290 		return 0;
9291 	}
9292 
9293 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9294 	type_names = libbpf_get_type_names(false);
9295 	if (type_names != NULL) {
9296 		pr_debug("supported section(type) names are:%s\n", type_names);
9297 		free(type_names);
9298 	}
9299 
9300 	return libbpf_err(-ESRCH);
9301 }
9302 
9303 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9304 						     size_t offset)
9305 {
9306 	struct bpf_map *map;
9307 	size_t i;
9308 
9309 	for (i = 0; i < obj->nr_maps; i++) {
9310 		map = &obj->maps[i];
9311 		if (!bpf_map__is_struct_ops(map))
9312 			continue;
9313 		if (map->sec_offset <= offset &&
9314 		    offset - map->sec_offset < map->def.value_size)
9315 			return map;
9316 	}
9317 
9318 	return NULL;
9319 }
9320 
9321 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9322 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9323 					    Elf64_Shdr *shdr, Elf_Data *data)
9324 {
9325 	const struct btf_member *member;
9326 	struct bpf_struct_ops *st_ops;
9327 	struct bpf_program *prog;
9328 	unsigned int shdr_idx;
9329 	const struct btf *btf;
9330 	struct bpf_map *map;
9331 	unsigned int moff, insn_idx;
9332 	const char *name;
9333 	__u32 member_idx;
9334 	Elf64_Sym *sym;
9335 	Elf64_Rel *rel;
9336 	int i, nrels;
9337 
9338 	btf = obj->btf;
9339 	nrels = shdr->sh_size / shdr->sh_entsize;
9340 	for (i = 0; i < nrels; i++) {
9341 		rel = elf_rel_by_idx(data, i);
9342 		if (!rel) {
9343 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9344 			return -LIBBPF_ERRNO__FORMAT;
9345 		}
9346 
9347 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9348 		if (!sym) {
9349 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9350 				(size_t)ELF64_R_SYM(rel->r_info));
9351 			return -LIBBPF_ERRNO__FORMAT;
9352 		}
9353 
9354 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9355 		map = find_struct_ops_map_by_offset(obj, rel->r_offset);
9356 		if (!map) {
9357 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9358 				(size_t)rel->r_offset);
9359 			return -EINVAL;
9360 		}
9361 
9362 		moff = rel->r_offset - map->sec_offset;
9363 		shdr_idx = sym->st_shndx;
9364 		st_ops = map->st_ops;
9365 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9366 			 map->name,
9367 			 (long long)(rel->r_info >> 32),
9368 			 (long long)sym->st_value,
9369 			 shdr_idx, (size_t)rel->r_offset,
9370 			 map->sec_offset, sym->st_name, name);
9371 
9372 		if (shdr_idx >= SHN_LORESERVE) {
9373 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9374 				map->name, (size_t)rel->r_offset, shdr_idx);
9375 			return -LIBBPF_ERRNO__RELOC;
9376 		}
9377 		if (sym->st_value % BPF_INSN_SZ) {
9378 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9379 				map->name, (unsigned long long)sym->st_value);
9380 			return -LIBBPF_ERRNO__FORMAT;
9381 		}
9382 		insn_idx = sym->st_value / BPF_INSN_SZ;
9383 
9384 		member = find_member_by_offset(st_ops->type, moff * 8);
9385 		if (!member) {
9386 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9387 				map->name, moff);
9388 			return -EINVAL;
9389 		}
9390 		member_idx = member - btf_members(st_ops->type);
9391 		name = btf__name_by_offset(btf, member->name_off);
9392 
9393 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9394 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9395 				map->name, name);
9396 			return -EINVAL;
9397 		}
9398 
9399 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9400 		if (!prog) {
9401 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9402 				map->name, shdr_idx, name);
9403 			return -EINVAL;
9404 		}
9405 
9406 		/* prevent the use of BPF prog with invalid type */
9407 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9408 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9409 				map->name, prog->name);
9410 			return -EINVAL;
9411 		}
9412 
9413 		/* if we haven't yet processed this BPF program, record proper
9414 		 * attach_btf_id and member_idx
9415 		 */
9416 		if (!prog->attach_btf_id) {
9417 			prog->attach_btf_id = st_ops->type_id;
9418 			prog->expected_attach_type = member_idx;
9419 		}
9420 
9421 		/* struct_ops BPF prog can be re-used between multiple
9422 		 * .struct_ops as long as it's the same struct_ops struct
9423 		 * definition and the same function pointer field
9424 		 */
9425 		if (prog->attach_btf_id != st_ops->type_id ||
9426 		    prog->expected_attach_type != member_idx) {
9427 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9428 				map->name, prog->name, prog->sec_name, prog->type,
9429 				prog->attach_btf_id, prog->expected_attach_type, name);
9430 			return -EINVAL;
9431 		}
9432 
9433 		st_ops->progs[member_idx] = prog;
9434 	}
9435 
9436 	return 0;
9437 }
9438 
9439 #define BTF_TRACE_PREFIX "btf_trace_"
9440 #define BTF_LSM_PREFIX "bpf_lsm_"
9441 #define BTF_ITER_PREFIX "bpf_iter_"
9442 #define BTF_MAX_NAME_SIZE 128
9443 
9444 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9445 				const char **prefix, int *kind)
9446 {
9447 	switch (attach_type) {
9448 	case BPF_TRACE_RAW_TP:
9449 		*prefix = BTF_TRACE_PREFIX;
9450 		*kind = BTF_KIND_TYPEDEF;
9451 		break;
9452 	case BPF_LSM_MAC:
9453 		*prefix = BTF_LSM_PREFIX;
9454 		*kind = BTF_KIND_FUNC;
9455 		break;
9456 	case BPF_TRACE_ITER:
9457 		*prefix = BTF_ITER_PREFIX;
9458 		*kind = BTF_KIND_FUNC;
9459 		break;
9460 	default:
9461 		*prefix = "";
9462 		*kind = BTF_KIND_FUNC;
9463 	}
9464 }
9465 
9466 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9467 				   const char *name, __u32 kind)
9468 {
9469 	char btf_type_name[BTF_MAX_NAME_SIZE];
9470 	int ret;
9471 
9472 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9473 		       "%s%s", prefix, name);
9474 	/* snprintf returns the number of characters written excluding the
9475 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9476 	 * indicates truncation.
9477 	 */
9478 	if (ret < 0 || ret >= sizeof(btf_type_name))
9479 		return -ENAMETOOLONG;
9480 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9481 }
9482 
9483 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9484 				     enum bpf_attach_type attach_type)
9485 {
9486 	const char *prefix;
9487 	int kind;
9488 
9489 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9490 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9491 }
9492 
9493 int libbpf_find_vmlinux_btf_id(const char *name,
9494 			       enum bpf_attach_type attach_type)
9495 {
9496 	struct btf *btf;
9497 	int err;
9498 
9499 	btf = btf__load_vmlinux_btf();
9500 	err = libbpf_get_error(btf);
9501 	if (err) {
9502 		pr_warn("vmlinux BTF is not found\n");
9503 		return libbpf_err(err);
9504 	}
9505 
9506 	err = find_attach_btf_id(btf, name, attach_type);
9507 	if (err <= 0)
9508 		pr_warn("%s is not found in vmlinux BTF\n", name);
9509 
9510 	btf__free(btf);
9511 	return libbpf_err(err);
9512 }
9513 
9514 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9515 {
9516 	struct bpf_prog_info info = {};
9517 	__u32 info_len = sizeof(info);
9518 	struct btf *btf;
9519 	int err;
9520 
9521 	err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9522 	if (err) {
9523 		pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9524 			attach_prog_fd, err);
9525 		return err;
9526 	}
9527 
9528 	err = -EINVAL;
9529 	if (!info.btf_id) {
9530 		pr_warn("The target program doesn't have BTF\n");
9531 		goto out;
9532 	}
9533 	btf = btf__load_from_kernel_by_id(info.btf_id);
9534 	err = libbpf_get_error(btf);
9535 	if (err) {
9536 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9537 		goto out;
9538 	}
9539 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9540 	btf__free(btf);
9541 	if (err <= 0) {
9542 		pr_warn("%s is not found in prog's BTF\n", name);
9543 		goto out;
9544 	}
9545 out:
9546 	return err;
9547 }
9548 
9549 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9550 			      enum bpf_attach_type attach_type,
9551 			      int *btf_obj_fd, int *btf_type_id)
9552 {
9553 	int ret, i;
9554 
9555 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9556 	if (ret > 0) {
9557 		*btf_obj_fd = 0; /* vmlinux BTF */
9558 		*btf_type_id = ret;
9559 		return 0;
9560 	}
9561 	if (ret != -ENOENT)
9562 		return ret;
9563 
9564 	ret = load_module_btfs(obj);
9565 	if (ret)
9566 		return ret;
9567 
9568 	for (i = 0; i < obj->btf_module_cnt; i++) {
9569 		const struct module_btf *mod = &obj->btf_modules[i];
9570 
9571 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9572 		if (ret > 0) {
9573 			*btf_obj_fd = mod->fd;
9574 			*btf_type_id = ret;
9575 			return 0;
9576 		}
9577 		if (ret == -ENOENT)
9578 			continue;
9579 
9580 		return ret;
9581 	}
9582 
9583 	return -ESRCH;
9584 }
9585 
9586 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9587 				     int *btf_obj_fd, int *btf_type_id)
9588 {
9589 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9590 	__u32 attach_prog_fd = prog->attach_prog_fd;
9591 	int err = 0;
9592 
9593 	/* BPF program's BTF ID */
9594 	if (attach_prog_fd) {
9595 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9596 		if (err < 0) {
9597 			pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9598 				 attach_prog_fd, attach_name, err);
9599 			return err;
9600 		}
9601 		*btf_obj_fd = 0;
9602 		*btf_type_id = err;
9603 		return 0;
9604 	}
9605 
9606 	/* kernel/module BTF ID */
9607 	if (prog->obj->gen_loader) {
9608 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9609 		*btf_obj_fd = 0;
9610 		*btf_type_id = 1;
9611 	} else {
9612 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9613 	}
9614 	if (err) {
9615 		pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9616 		return err;
9617 	}
9618 	return 0;
9619 }
9620 
9621 int libbpf_attach_type_by_name(const char *name,
9622 			       enum bpf_attach_type *attach_type)
9623 {
9624 	char *type_names;
9625 	const struct bpf_sec_def *sec_def;
9626 
9627 	if (!name)
9628 		return libbpf_err(-EINVAL);
9629 
9630 	sec_def = find_sec_def(name);
9631 	if (!sec_def) {
9632 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9633 		type_names = libbpf_get_type_names(true);
9634 		if (type_names != NULL) {
9635 			pr_debug("attachable section(type) names are:%s\n", type_names);
9636 			free(type_names);
9637 		}
9638 
9639 		return libbpf_err(-EINVAL);
9640 	}
9641 
9642 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9643 		return libbpf_err(-EINVAL);
9644 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9645 		return libbpf_err(-EINVAL);
9646 
9647 	*attach_type = sec_def->expected_attach_type;
9648 	return 0;
9649 }
9650 
9651 int bpf_map__fd(const struct bpf_map *map)
9652 {
9653 	return map ? map->fd : libbpf_err(-EINVAL);
9654 }
9655 
9656 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9657 {
9658 	return map ? &map->def : libbpf_err_ptr(-EINVAL);
9659 }
9660 
9661 static bool map_uses_real_name(const struct bpf_map *map)
9662 {
9663 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9664 	 * their user-visible name differs from kernel-visible name. Users see
9665 	 * such map's corresponding ELF section name as a map name.
9666 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9667 	 * maps to know which name has to be returned to the user.
9668 	 */
9669 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9670 		return true;
9671 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9672 		return true;
9673 	return false;
9674 }
9675 
9676 const char *bpf_map__name(const struct bpf_map *map)
9677 {
9678 	if (!map)
9679 		return NULL;
9680 
9681 	if (map_uses_real_name(map))
9682 		return map->real_name;
9683 
9684 	return map->name;
9685 }
9686 
9687 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9688 {
9689 	return map->def.type;
9690 }
9691 
9692 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9693 {
9694 	if (map->fd >= 0)
9695 		return libbpf_err(-EBUSY);
9696 	map->def.type = type;
9697 	return 0;
9698 }
9699 
9700 __u32 bpf_map__map_flags(const struct bpf_map *map)
9701 {
9702 	return map->def.map_flags;
9703 }
9704 
9705 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9706 {
9707 	if (map->fd >= 0)
9708 		return libbpf_err(-EBUSY);
9709 	map->def.map_flags = flags;
9710 	return 0;
9711 }
9712 
9713 __u64 bpf_map__map_extra(const struct bpf_map *map)
9714 {
9715 	return map->map_extra;
9716 }
9717 
9718 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9719 {
9720 	if (map->fd >= 0)
9721 		return libbpf_err(-EBUSY);
9722 	map->map_extra = map_extra;
9723 	return 0;
9724 }
9725 
9726 __u32 bpf_map__numa_node(const struct bpf_map *map)
9727 {
9728 	return map->numa_node;
9729 }
9730 
9731 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9732 {
9733 	if (map->fd >= 0)
9734 		return libbpf_err(-EBUSY);
9735 	map->numa_node = numa_node;
9736 	return 0;
9737 }
9738 
9739 __u32 bpf_map__key_size(const struct bpf_map *map)
9740 {
9741 	return map->def.key_size;
9742 }
9743 
9744 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9745 {
9746 	if (map->fd >= 0)
9747 		return libbpf_err(-EBUSY);
9748 	map->def.key_size = size;
9749 	return 0;
9750 }
9751 
9752 __u32 bpf_map__value_size(const struct bpf_map *map)
9753 {
9754 	return map->def.value_size;
9755 }
9756 
9757 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9758 {
9759 	if (map->fd >= 0)
9760 		return libbpf_err(-EBUSY);
9761 	map->def.value_size = size;
9762 	return 0;
9763 }
9764 
9765 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9766 {
9767 	return map ? map->btf_key_type_id : 0;
9768 }
9769 
9770 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9771 {
9772 	return map ? map->btf_value_type_id : 0;
9773 }
9774 
9775 int bpf_map__set_priv(struct bpf_map *map, void *priv,
9776 		     bpf_map_clear_priv_t clear_priv)
9777 {
9778 	if (!map)
9779 		return libbpf_err(-EINVAL);
9780 
9781 	if (map->priv) {
9782 		if (map->clear_priv)
9783 			map->clear_priv(map, map->priv);
9784 	}
9785 
9786 	map->priv = priv;
9787 	map->clear_priv = clear_priv;
9788 	return 0;
9789 }
9790 
9791 void *bpf_map__priv(const struct bpf_map *map)
9792 {
9793 	return map ? map->priv : libbpf_err_ptr(-EINVAL);
9794 }
9795 
9796 int bpf_map__set_initial_value(struct bpf_map *map,
9797 			       const void *data, size_t size)
9798 {
9799 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9800 	    size != map->def.value_size || map->fd >= 0)
9801 		return libbpf_err(-EINVAL);
9802 
9803 	memcpy(map->mmaped, data, size);
9804 	return 0;
9805 }
9806 
9807 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9808 {
9809 	if (!map->mmaped)
9810 		return NULL;
9811 	*psize = map->def.value_size;
9812 	return map->mmaped;
9813 }
9814 
9815 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9816 {
9817 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9818 }
9819 
9820 bool bpf_map__is_internal(const struct bpf_map *map)
9821 {
9822 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9823 }
9824 
9825 __u32 bpf_map__ifindex(const struct bpf_map *map)
9826 {
9827 	return map->map_ifindex;
9828 }
9829 
9830 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9831 {
9832 	if (map->fd >= 0)
9833 		return libbpf_err(-EBUSY);
9834 	map->map_ifindex = ifindex;
9835 	return 0;
9836 }
9837 
9838 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9839 {
9840 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9841 		pr_warn("error: unsupported map type\n");
9842 		return libbpf_err(-EINVAL);
9843 	}
9844 	if (map->inner_map_fd != -1) {
9845 		pr_warn("error: inner_map_fd already specified\n");
9846 		return libbpf_err(-EINVAL);
9847 	}
9848 	if (map->inner_map) {
9849 		bpf_map__destroy(map->inner_map);
9850 		zfree(&map->inner_map);
9851 	}
9852 	map->inner_map_fd = fd;
9853 	return 0;
9854 }
9855 
9856 static struct bpf_map *
9857 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9858 {
9859 	ssize_t idx;
9860 	struct bpf_map *s, *e;
9861 
9862 	if (!obj || !obj->maps)
9863 		return errno = EINVAL, NULL;
9864 
9865 	s = obj->maps;
9866 	e = obj->maps + obj->nr_maps;
9867 
9868 	if ((m < s) || (m >= e)) {
9869 		pr_warn("error in %s: map handler doesn't belong to object\n",
9870 			 __func__);
9871 		return errno = EINVAL, NULL;
9872 	}
9873 
9874 	idx = (m - obj->maps) + i;
9875 	if (idx >= obj->nr_maps || idx < 0)
9876 		return NULL;
9877 	return &obj->maps[idx];
9878 }
9879 
9880 struct bpf_map *
9881 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9882 {
9883 	return bpf_object__next_map(obj, prev);
9884 }
9885 
9886 struct bpf_map *
9887 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9888 {
9889 	if (prev == NULL)
9890 		return obj->maps;
9891 
9892 	return __bpf_map__iter(prev, obj, 1);
9893 }
9894 
9895 struct bpf_map *
9896 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9897 {
9898 	return bpf_object__prev_map(obj, next);
9899 }
9900 
9901 struct bpf_map *
9902 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9903 {
9904 	if (next == NULL) {
9905 		if (!obj->nr_maps)
9906 			return NULL;
9907 		return obj->maps + obj->nr_maps - 1;
9908 	}
9909 
9910 	return __bpf_map__iter(next, obj, -1);
9911 }
9912 
9913 struct bpf_map *
9914 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9915 {
9916 	struct bpf_map *pos;
9917 
9918 	bpf_object__for_each_map(pos, obj) {
9919 		/* if it's a special internal map name (which always starts
9920 		 * with dot) then check if that special name matches the
9921 		 * real map name (ELF section name)
9922 		 */
9923 		if (name[0] == '.') {
9924 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9925 				return pos;
9926 			continue;
9927 		}
9928 		/* otherwise map name has to be an exact match */
9929 		if (map_uses_real_name(pos)) {
9930 			if (strcmp(pos->real_name, name) == 0)
9931 				return pos;
9932 			continue;
9933 		}
9934 		if (strcmp(pos->name, name) == 0)
9935 			return pos;
9936 	}
9937 	return errno = ENOENT, NULL;
9938 }
9939 
9940 int
9941 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9942 {
9943 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9944 }
9945 
9946 struct bpf_map *
9947 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9948 {
9949 	return libbpf_err_ptr(-ENOTSUP);
9950 }
9951 
9952 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9953 			   size_t value_sz, bool check_value_sz)
9954 {
9955 	if (map->fd <= 0)
9956 		return -ENOENT;
9957 
9958 	if (map->def.key_size != key_sz) {
9959 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9960 			map->name, key_sz, map->def.key_size);
9961 		return -EINVAL;
9962 	}
9963 
9964 	if (!check_value_sz)
9965 		return 0;
9966 
9967 	switch (map->def.type) {
9968 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9969 	case BPF_MAP_TYPE_PERCPU_HASH:
9970 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9971 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9972 		int num_cpu = libbpf_num_possible_cpus();
9973 		size_t elem_sz = roundup(map->def.value_size, 8);
9974 
9975 		if (value_sz != num_cpu * elem_sz) {
9976 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9977 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9978 			return -EINVAL;
9979 		}
9980 		break;
9981 	}
9982 	default:
9983 		if (map->def.value_size != value_sz) {
9984 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9985 				map->name, value_sz, map->def.value_size);
9986 			return -EINVAL;
9987 		}
9988 		break;
9989 	}
9990 	return 0;
9991 }
9992 
9993 int bpf_map__lookup_elem(const struct bpf_map *map,
9994 			 const void *key, size_t key_sz,
9995 			 void *value, size_t value_sz, __u64 flags)
9996 {
9997 	int err;
9998 
9999 	err = validate_map_op(map, key_sz, value_sz, true);
10000 	if (err)
10001 		return libbpf_err(err);
10002 
10003 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10004 }
10005 
10006 int bpf_map__update_elem(const struct bpf_map *map,
10007 			 const void *key, size_t key_sz,
10008 			 const void *value, size_t value_sz, __u64 flags)
10009 {
10010 	int err;
10011 
10012 	err = validate_map_op(map, key_sz, value_sz, true);
10013 	if (err)
10014 		return libbpf_err(err);
10015 
10016 	return bpf_map_update_elem(map->fd, key, value, flags);
10017 }
10018 
10019 int bpf_map__delete_elem(const struct bpf_map *map,
10020 			 const void *key, size_t key_sz, __u64 flags)
10021 {
10022 	int err;
10023 
10024 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10025 	if (err)
10026 		return libbpf_err(err);
10027 
10028 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10029 }
10030 
10031 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10032 				    const void *key, size_t key_sz,
10033 				    void *value, size_t value_sz, __u64 flags)
10034 {
10035 	int err;
10036 
10037 	err = validate_map_op(map, key_sz, value_sz, true);
10038 	if (err)
10039 		return libbpf_err(err);
10040 
10041 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10042 }
10043 
10044 int bpf_map__get_next_key(const struct bpf_map *map,
10045 			  const void *cur_key, void *next_key, size_t key_sz)
10046 {
10047 	int err;
10048 
10049 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10050 	if (err)
10051 		return libbpf_err(err);
10052 
10053 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10054 }
10055 
10056 long libbpf_get_error(const void *ptr)
10057 {
10058 	if (!IS_ERR_OR_NULL(ptr))
10059 		return 0;
10060 
10061 	if (IS_ERR(ptr))
10062 		errno = -PTR_ERR(ptr);
10063 
10064 	/* If ptr == NULL, then errno should be already set by the failing
10065 	 * API, because libbpf never returns NULL on success and it now always
10066 	 * sets errno on error. So no extra errno handling for ptr == NULL
10067 	 * case.
10068 	 */
10069 	return -errno;
10070 }
10071 
10072 __attribute__((alias("bpf_prog_load_xattr2")))
10073 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
10074 			struct bpf_object **pobj, int *prog_fd);
10075 
10076 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr,
10077 				struct bpf_object **pobj, int *prog_fd)
10078 {
10079 	struct bpf_object_open_attr open_attr = {};
10080 	struct bpf_program *prog, *first_prog = NULL;
10081 	struct bpf_object *obj;
10082 	struct bpf_map *map;
10083 	int err;
10084 
10085 	if (!attr)
10086 		return libbpf_err(-EINVAL);
10087 	if (!attr->file)
10088 		return libbpf_err(-EINVAL);
10089 
10090 	open_attr.file = attr->file;
10091 	open_attr.prog_type = attr->prog_type;
10092 
10093 	obj = __bpf_object__open_xattr(&open_attr, 0);
10094 	err = libbpf_get_error(obj);
10095 	if (err)
10096 		return libbpf_err(-ENOENT);
10097 
10098 	bpf_object__for_each_program(prog, obj) {
10099 		enum bpf_attach_type attach_type = attr->expected_attach_type;
10100 		/*
10101 		 * to preserve backwards compatibility, bpf_prog_load treats
10102 		 * attr->prog_type, if specified, as an override to whatever
10103 		 * bpf_object__open guessed
10104 		 */
10105 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
10106 			prog->type = attr->prog_type;
10107 			prog->expected_attach_type = attach_type;
10108 		}
10109 		if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) {
10110 			/*
10111 			 * we haven't guessed from section name and user
10112 			 * didn't provide a fallback type, too bad...
10113 			 */
10114 			bpf_object__close(obj);
10115 			return libbpf_err(-EINVAL);
10116 		}
10117 
10118 		prog->prog_ifindex = attr->ifindex;
10119 		prog->log_level = attr->log_level;
10120 		prog->prog_flags |= attr->prog_flags;
10121 		if (!first_prog)
10122 			first_prog = prog;
10123 	}
10124 
10125 	bpf_object__for_each_map(map, obj) {
10126 		if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
10127 			map->map_ifindex = attr->ifindex;
10128 	}
10129 
10130 	if (!first_prog) {
10131 		pr_warn("object file doesn't contain bpf program\n");
10132 		bpf_object__close(obj);
10133 		return libbpf_err(-ENOENT);
10134 	}
10135 
10136 	err = bpf_object__load(obj);
10137 	if (err) {
10138 		bpf_object__close(obj);
10139 		return libbpf_err(err);
10140 	}
10141 
10142 	*pobj = obj;
10143 	*prog_fd = bpf_program__fd(first_prog);
10144 	return 0;
10145 }
10146 
10147 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1)
10148 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type,
10149 			     struct bpf_object **pobj, int *prog_fd)
10150 {
10151 	struct bpf_prog_load_attr attr;
10152 
10153 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
10154 	attr.file = file;
10155 	attr.prog_type = type;
10156 	attr.expected_attach_type = 0;
10157 
10158 	return bpf_prog_load_xattr2(&attr, pobj, prog_fd);
10159 }
10160 
10161 /* Replace link's underlying BPF program with the new one */
10162 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10163 {
10164 	int ret;
10165 
10166 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10167 	return libbpf_err_errno(ret);
10168 }
10169 
10170 /* Release "ownership" of underlying BPF resource (typically, BPF program
10171  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10172  * link, when destructed through bpf_link__destroy() call won't attempt to
10173  * detach/unregisted that BPF resource. This is useful in situations where,
10174  * say, attached BPF program has to outlive userspace program that attached it
10175  * in the system. Depending on type of BPF program, though, there might be
10176  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10177  * exit of userspace program doesn't trigger automatic detachment and clean up
10178  * inside the kernel.
10179  */
10180 void bpf_link__disconnect(struct bpf_link *link)
10181 {
10182 	link->disconnected = true;
10183 }
10184 
10185 int bpf_link__destroy(struct bpf_link *link)
10186 {
10187 	int err = 0;
10188 
10189 	if (IS_ERR_OR_NULL(link))
10190 		return 0;
10191 
10192 	if (!link->disconnected && link->detach)
10193 		err = link->detach(link);
10194 	if (link->pin_path)
10195 		free(link->pin_path);
10196 	if (link->dealloc)
10197 		link->dealloc(link);
10198 	else
10199 		free(link);
10200 
10201 	return libbpf_err(err);
10202 }
10203 
10204 int bpf_link__fd(const struct bpf_link *link)
10205 {
10206 	return link->fd;
10207 }
10208 
10209 const char *bpf_link__pin_path(const struct bpf_link *link)
10210 {
10211 	return link->pin_path;
10212 }
10213 
10214 static int bpf_link__detach_fd(struct bpf_link *link)
10215 {
10216 	return libbpf_err_errno(close(link->fd));
10217 }
10218 
10219 struct bpf_link *bpf_link__open(const char *path)
10220 {
10221 	struct bpf_link *link;
10222 	int fd;
10223 
10224 	fd = bpf_obj_get(path);
10225 	if (fd < 0) {
10226 		fd = -errno;
10227 		pr_warn("failed to open link at %s: %d\n", path, fd);
10228 		return libbpf_err_ptr(fd);
10229 	}
10230 
10231 	link = calloc(1, sizeof(*link));
10232 	if (!link) {
10233 		close(fd);
10234 		return libbpf_err_ptr(-ENOMEM);
10235 	}
10236 	link->detach = &bpf_link__detach_fd;
10237 	link->fd = fd;
10238 
10239 	link->pin_path = strdup(path);
10240 	if (!link->pin_path) {
10241 		bpf_link__destroy(link);
10242 		return libbpf_err_ptr(-ENOMEM);
10243 	}
10244 
10245 	return link;
10246 }
10247 
10248 int bpf_link__detach(struct bpf_link *link)
10249 {
10250 	return bpf_link_detach(link->fd) ? -errno : 0;
10251 }
10252 
10253 int bpf_link__pin(struct bpf_link *link, const char *path)
10254 {
10255 	int err;
10256 
10257 	if (link->pin_path)
10258 		return libbpf_err(-EBUSY);
10259 	err = make_parent_dir(path);
10260 	if (err)
10261 		return libbpf_err(err);
10262 	err = check_path(path);
10263 	if (err)
10264 		return libbpf_err(err);
10265 
10266 	link->pin_path = strdup(path);
10267 	if (!link->pin_path)
10268 		return libbpf_err(-ENOMEM);
10269 
10270 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10271 		err = -errno;
10272 		zfree(&link->pin_path);
10273 		return libbpf_err(err);
10274 	}
10275 
10276 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10277 	return 0;
10278 }
10279 
10280 int bpf_link__unpin(struct bpf_link *link)
10281 {
10282 	int err;
10283 
10284 	if (!link->pin_path)
10285 		return libbpf_err(-EINVAL);
10286 
10287 	err = unlink(link->pin_path);
10288 	if (err != 0)
10289 		return -errno;
10290 
10291 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10292 	zfree(&link->pin_path);
10293 	return 0;
10294 }
10295 
10296 struct bpf_link_perf {
10297 	struct bpf_link link;
10298 	int perf_event_fd;
10299 	/* legacy kprobe support: keep track of probe identifier and type */
10300 	char *legacy_probe_name;
10301 	bool legacy_is_kprobe;
10302 	bool legacy_is_retprobe;
10303 };
10304 
10305 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10306 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10307 
10308 static int bpf_link_perf_detach(struct bpf_link *link)
10309 {
10310 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10311 	int err = 0;
10312 
10313 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10314 		err = -errno;
10315 
10316 	if (perf_link->perf_event_fd != link->fd)
10317 		close(perf_link->perf_event_fd);
10318 	close(link->fd);
10319 
10320 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10321 	if (perf_link->legacy_probe_name) {
10322 		if (perf_link->legacy_is_kprobe) {
10323 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10324 							 perf_link->legacy_is_retprobe);
10325 		} else {
10326 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10327 							 perf_link->legacy_is_retprobe);
10328 		}
10329 	}
10330 
10331 	return err;
10332 }
10333 
10334 static void bpf_link_perf_dealloc(struct bpf_link *link)
10335 {
10336 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10337 
10338 	free(perf_link->legacy_probe_name);
10339 	free(perf_link);
10340 }
10341 
10342 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10343 						     const struct bpf_perf_event_opts *opts)
10344 {
10345 	char errmsg[STRERR_BUFSIZE];
10346 	struct bpf_link_perf *link;
10347 	int prog_fd, link_fd = -1, err;
10348 
10349 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10350 		return libbpf_err_ptr(-EINVAL);
10351 
10352 	if (pfd < 0) {
10353 		pr_warn("prog '%s': invalid perf event FD %d\n",
10354 			prog->name, pfd);
10355 		return libbpf_err_ptr(-EINVAL);
10356 	}
10357 	prog_fd = bpf_program__fd(prog);
10358 	if (prog_fd < 0) {
10359 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10360 			prog->name);
10361 		return libbpf_err_ptr(-EINVAL);
10362 	}
10363 
10364 	link = calloc(1, sizeof(*link));
10365 	if (!link)
10366 		return libbpf_err_ptr(-ENOMEM);
10367 	link->link.detach = &bpf_link_perf_detach;
10368 	link->link.dealloc = &bpf_link_perf_dealloc;
10369 	link->perf_event_fd = pfd;
10370 
10371 	if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
10372 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10373 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10374 
10375 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10376 		if (link_fd < 0) {
10377 			err = -errno;
10378 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10379 				prog->name, pfd,
10380 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10381 			goto err_out;
10382 		}
10383 		link->link.fd = link_fd;
10384 	} else {
10385 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10386 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10387 			err = -EOPNOTSUPP;
10388 			goto err_out;
10389 		}
10390 
10391 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10392 			err = -errno;
10393 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10394 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10395 			if (err == -EPROTO)
10396 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10397 					prog->name, pfd);
10398 			goto err_out;
10399 		}
10400 		link->link.fd = pfd;
10401 	}
10402 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10403 		err = -errno;
10404 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10405 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10406 		goto err_out;
10407 	}
10408 
10409 	return &link->link;
10410 err_out:
10411 	if (link_fd >= 0)
10412 		close(link_fd);
10413 	free(link);
10414 	return libbpf_err_ptr(err);
10415 }
10416 
10417 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10418 {
10419 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10420 }
10421 
10422 /*
10423  * this function is expected to parse integer in the range of [0, 2^31-1] from
10424  * given file using scanf format string fmt. If actual parsed value is
10425  * negative, the result might be indistinguishable from error
10426  */
10427 static int parse_uint_from_file(const char *file, const char *fmt)
10428 {
10429 	char buf[STRERR_BUFSIZE];
10430 	int err, ret;
10431 	FILE *f;
10432 
10433 	f = fopen(file, "r");
10434 	if (!f) {
10435 		err = -errno;
10436 		pr_debug("failed to open '%s': %s\n", file,
10437 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10438 		return err;
10439 	}
10440 	err = fscanf(f, fmt, &ret);
10441 	if (err != 1) {
10442 		err = err == EOF ? -EIO : -errno;
10443 		pr_debug("failed to parse '%s': %s\n", file,
10444 			libbpf_strerror_r(err, buf, sizeof(buf)));
10445 		fclose(f);
10446 		return err;
10447 	}
10448 	fclose(f);
10449 	return ret;
10450 }
10451 
10452 static int determine_kprobe_perf_type(void)
10453 {
10454 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10455 
10456 	return parse_uint_from_file(file, "%d\n");
10457 }
10458 
10459 static int determine_uprobe_perf_type(void)
10460 {
10461 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10462 
10463 	return parse_uint_from_file(file, "%d\n");
10464 }
10465 
10466 static int determine_kprobe_retprobe_bit(void)
10467 {
10468 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10469 
10470 	return parse_uint_from_file(file, "config:%d\n");
10471 }
10472 
10473 static int determine_uprobe_retprobe_bit(void)
10474 {
10475 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10476 
10477 	return parse_uint_from_file(file, "config:%d\n");
10478 }
10479 
10480 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10481 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10482 
10483 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10484 				 uint64_t offset, int pid, size_t ref_ctr_off)
10485 {
10486 	struct perf_event_attr attr = {};
10487 	char errmsg[STRERR_BUFSIZE];
10488 	int type, pfd, err;
10489 
10490 	if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10491 		return -EINVAL;
10492 
10493 	type = uprobe ? determine_uprobe_perf_type()
10494 		      : determine_kprobe_perf_type();
10495 	if (type < 0) {
10496 		pr_warn("failed to determine %s perf type: %s\n",
10497 			uprobe ? "uprobe" : "kprobe",
10498 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10499 		return type;
10500 	}
10501 	if (retprobe) {
10502 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10503 				 : determine_kprobe_retprobe_bit();
10504 
10505 		if (bit < 0) {
10506 			pr_warn("failed to determine %s retprobe bit: %s\n",
10507 				uprobe ? "uprobe" : "kprobe",
10508 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10509 			return bit;
10510 		}
10511 		attr.config |= 1 << bit;
10512 	}
10513 	attr.size = sizeof(attr);
10514 	attr.type = type;
10515 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10516 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10517 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10518 
10519 	/* pid filter is meaningful only for uprobes */
10520 	pfd = syscall(__NR_perf_event_open, &attr,
10521 		      pid < 0 ? -1 : pid /* pid */,
10522 		      pid == -1 ? 0 : -1 /* cpu */,
10523 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10524 	if (pfd < 0) {
10525 		err = -errno;
10526 		pr_warn("%s perf_event_open() failed: %s\n",
10527 			uprobe ? "uprobe" : "kprobe",
10528 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10529 		return err;
10530 	}
10531 	return pfd;
10532 }
10533 
10534 static int append_to_file(const char *file, const char *fmt, ...)
10535 {
10536 	int fd, n, err = 0;
10537 	va_list ap;
10538 
10539 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10540 	if (fd < 0)
10541 		return -errno;
10542 
10543 	va_start(ap, fmt);
10544 	n = vdprintf(fd, fmt, ap);
10545 	va_end(ap);
10546 
10547 	if (n < 0)
10548 		err = -errno;
10549 
10550 	close(fd);
10551 	return err;
10552 }
10553 
10554 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10555 					 const char *kfunc_name, size_t offset)
10556 {
10557 	static int index = 0;
10558 
10559 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10560 		 __sync_fetch_and_add(&index, 1));
10561 }
10562 
10563 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10564 				   const char *kfunc_name, size_t offset)
10565 {
10566 	const char *file = "/sys/kernel/debug/tracing/kprobe_events";
10567 
10568 	return append_to_file(file, "%c:%s/%s %s+0x%zx",
10569 			      retprobe ? 'r' : 'p',
10570 			      retprobe ? "kretprobes" : "kprobes",
10571 			      probe_name, kfunc_name, offset);
10572 }
10573 
10574 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10575 {
10576 	const char *file = "/sys/kernel/debug/tracing/kprobe_events";
10577 
10578 	return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name);
10579 }
10580 
10581 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10582 {
10583 	char file[256];
10584 
10585 	snprintf(file, sizeof(file),
10586 		 "/sys/kernel/debug/tracing/events/%s/%s/id",
10587 		 retprobe ? "kretprobes" : "kprobes", probe_name);
10588 
10589 	return parse_uint_from_file(file, "%d\n");
10590 }
10591 
10592 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10593 					 const char *kfunc_name, size_t offset, int pid)
10594 {
10595 	struct perf_event_attr attr = {};
10596 	char errmsg[STRERR_BUFSIZE];
10597 	int type, pfd, err;
10598 
10599 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10600 	if (err < 0) {
10601 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10602 			kfunc_name, offset,
10603 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10604 		return err;
10605 	}
10606 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10607 	if (type < 0) {
10608 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10609 			kfunc_name, offset,
10610 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10611 		return type;
10612 	}
10613 	attr.size = sizeof(attr);
10614 	attr.config = type;
10615 	attr.type = PERF_TYPE_TRACEPOINT;
10616 
10617 	pfd = syscall(__NR_perf_event_open, &attr,
10618 		      pid < 0 ? -1 : pid, /* pid */
10619 		      pid == -1 ? 0 : -1, /* cpu */
10620 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10621 	if (pfd < 0) {
10622 		err = -errno;
10623 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10624 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10625 		return err;
10626 	}
10627 	return pfd;
10628 }
10629 
10630 struct bpf_link *
10631 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10632 				const char *func_name,
10633 				const struct bpf_kprobe_opts *opts)
10634 {
10635 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10636 	char errmsg[STRERR_BUFSIZE];
10637 	char *legacy_probe = NULL;
10638 	struct bpf_link *link;
10639 	size_t offset;
10640 	bool retprobe, legacy;
10641 	int pfd, err;
10642 
10643 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10644 		return libbpf_err_ptr(-EINVAL);
10645 
10646 	retprobe = OPTS_GET(opts, retprobe, false);
10647 	offset = OPTS_GET(opts, offset, 0);
10648 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10649 
10650 	legacy = determine_kprobe_perf_type() < 0;
10651 	if (!legacy) {
10652 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10653 					    func_name, offset,
10654 					    -1 /* pid */, 0 /* ref_ctr_off */);
10655 	} else {
10656 		char probe_name[256];
10657 
10658 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10659 					     func_name, offset);
10660 
10661 		legacy_probe = strdup(probe_name);
10662 		if (!legacy_probe)
10663 			return libbpf_err_ptr(-ENOMEM);
10664 
10665 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10666 						    offset, -1 /* pid */);
10667 	}
10668 	if (pfd < 0) {
10669 		err = -errno;
10670 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10671 			prog->name, retprobe ? "kretprobe" : "kprobe",
10672 			func_name, offset,
10673 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10674 		goto err_out;
10675 	}
10676 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10677 	err = libbpf_get_error(link);
10678 	if (err) {
10679 		close(pfd);
10680 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10681 			prog->name, retprobe ? "kretprobe" : "kprobe",
10682 			func_name, offset,
10683 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10684 		goto err_out;
10685 	}
10686 	if (legacy) {
10687 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10688 
10689 		perf_link->legacy_probe_name = legacy_probe;
10690 		perf_link->legacy_is_kprobe = true;
10691 		perf_link->legacy_is_retprobe = retprobe;
10692 	}
10693 
10694 	return link;
10695 err_out:
10696 	free(legacy_probe);
10697 	return libbpf_err_ptr(err);
10698 }
10699 
10700 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10701 					    bool retprobe,
10702 					    const char *func_name)
10703 {
10704 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10705 		.retprobe = retprobe,
10706 	);
10707 
10708 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10709 }
10710 
10711 /* Adapted from perf/util/string.c */
10712 static bool glob_match(const char *str, const char *pat)
10713 {
10714 	while (*str && *pat && *pat != '*') {
10715 		if (*pat == '?') {      /* Matches any single character */
10716 			str++;
10717 			pat++;
10718 			continue;
10719 		}
10720 		if (*str != *pat)
10721 			return false;
10722 		str++;
10723 		pat++;
10724 	}
10725 	/* Check wild card */
10726 	if (*pat == '*') {
10727 		while (*pat == '*')
10728 			pat++;
10729 		if (!*pat) /* Tail wild card matches all */
10730 			return true;
10731 		while (*str)
10732 			if (glob_match(str++, pat))
10733 				return true;
10734 	}
10735 	return !*str && !*pat;
10736 }
10737 
10738 struct kprobe_multi_resolve {
10739 	const char *pattern;
10740 	unsigned long *addrs;
10741 	size_t cap;
10742 	size_t cnt;
10743 };
10744 
10745 static int
10746 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10747 			const char *sym_name, void *ctx)
10748 {
10749 	struct kprobe_multi_resolve *res = ctx;
10750 	int err;
10751 
10752 	if (!glob_match(sym_name, res->pattern))
10753 		return 0;
10754 
10755 	err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10756 				res->cnt + 1);
10757 	if (err)
10758 		return err;
10759 
10760 	res->addrs[res->cnt++] = (unsigned long) sym_addr;
10761 	return 0;
10762 }
10763 
10764 struct bpf_link *
10765 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10766 				      const char *pattern,
10767 				      const struct bpf_kprobe_multi_opts *opts)
10768 {
10769 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10770 	struct kprobe_multi_resolve res = {
10771 		.pattern = pattern,
10772 	};
10773 	struct bpf_link *link = NULL;
10774 	char errmsg[STRERR_BUFSIZE];
10775 	const unsigned long *addrs;
10776 	int err, link_fd, prog_fd;
10777 	const __u64 *cookies;
10778 	const char **syms;
10779 	bool retprobe;
10780 	size_t cnt;
10781 
10782 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10783 		return libbpf_err_ptr(-EINVAL);
10784 
10785 	syms    = OPTS_GET(opts, syms, false);
10786 	addrs   = OPTS_GET(opts, addrs, false);
10787 	cnt     = OPTS_GET(opts, cnt, false);
10788 	cookies = OPTS_GET(opts, cookies, false);
10789 
10790 	if (!pattern && !addrs && !syms)
10791 		return libbpf_err_ptr(-EINVAL);
10792 	if (pattern && (addrs || syms || cookies || cnt))
10793 		return libbpf_err_ptr(-EINVAL);
10794 	if (!pattern && !cnt)
10795 		return libbpf_err_ptr(-EINVAL);
10796 	if (addrs && syms)
10797 		return libbpf_err_ptr(-EINVAL);
10798 
10799 	if (pattern) {
10800 		err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10801 		if (err)
10802 			goto error;
10803 		if (!res.cnt) {
10804 			err = -ENOENT;
10805 			goto error;
10806 		}
10807 		addrs = res.addrs;
10808 		cnt = res.cnt;
10809 	}
10810 
10811 	retprobe = OPTS_GET(opts, retprobe, false);
10812 
10813 	lopts.kprobe_multi.syms = syms;
10814 	lopts.kprobe_multi.addrs = addrs;
10815 	lopts.kprobe_multi.cookies = cookies;
10816 	lopts.kprobe_multi.cnt = cnt;
10817 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10818 
10819 	link = calloc(1, sizeof(*link));
10820 	if (!link) {
10821 		err = -ENOMEM;
10822 		goto error;
10823 	}
10824 	link->detach = &bpf_link__detach_fd;
10825 
10826 	prog_fd = bpf_program__fd(prog);
10827 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10828 	if (link_fd < 0) {
10829 		err = -errno;
10830 		pr_warn("prog '%s': failed to attach: %s\n",
10831 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10832 		goto error;
10833 	}
10834 	link->fd = link_fd;
10835 	free(res.addrs);
10836 	return link;
10837 
10838 error:
10839 	free(link);
10840 	free(res.addrs);
10841 	return libbpf_err_ptr(err);
10842 }
10843 
10844 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10845 {
10846 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10847 	unsigned long offset = 0;
10848 	const char *func_name;
10849 	char *func;
10850 	int n;
10851 
10852 	*link = NULL;
10853 
10854 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10855 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10856 		return 0;
10857 
10858 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10859 	if (opts.retprobe)
10860 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10861 	else
10862 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10863 
10864 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10865 	if (n < 1) {
10866 		pr_warn("kprobe name is invalid: %s\n", func_name);
10867 		return -EINVAL;
10868 	}
10869 	if (opts.retprobe && offset != 0) {
10870 		free(func);
10871 		pr_warn("kretprobes do not support offset specification\n");
10872 		return -EINVAL;
10873 	}
10874 
10875 	opts.offset = offset;
10876 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10877 	free(func);
10878 	return libbpf_get_error(*link);
10879 }
10880 
10881 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10882 {
10883 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10884 	const char *spec;
10885 	char *pattern;
10886 	int n;
10887 
10888 	*link = NULL;
10889 
10890 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10891 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10892 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10893 		return 0;
10894 
10895 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10896 	if (opts.retprobe)
10897 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10898 	else
10899 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10900 
10901 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10902 	if (n < 1) {
10903 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10904 		return -EINVAL;
10905 	}
10906 
10907 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10908 	free(pattern);
10909 	return libbpf_get_error(*link);
10910 }
10911 
10912 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10913 					 const char *binary_path, uint64_t offset)
10914 {
10915 	int i;
10916 
10917 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10918 
10919 	/* sanitize binary_path in the probe name */
10920 	for (i = 0; buf[i]; i++) {
10921 		if (!isalnum(buf[i]))
10922 			buf[i] = '_';
10923 	}
10924 }
10925 
10926 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10927 					  const char *binary_path, size_t offset)
10928 {
10929 	const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10930 
10931 	return append_to_file(file, "%c:%s/%s %s:0x%zx",
10932 			      retprobe ? 'r' : 'p',
10933 			      retprobe ? "uretprobes" : "uprobes",
10934 			      probe_name, binary_path, offset);
10935 }
10936 
10937 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10938 {
10939 	const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10940 
10941 	return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name);
10942 }
10943 
10944 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10945 {
10946 	char file[512];
10947 
10948 	snprintf(file, sizeof(file),
10949 		 "/sys/kernel/debug/tracing/events/%s/%s/id",
10950 		 retprobe ? "uretprobes" : "uprobes", probe_name);
10951 
10952 	return parse_uint_from_file(file, "%d\n");
10953 }
10954 
10955 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10956 					 const char *binary_path, size_t offset, int pid)
10957 {
10958 	struct perf_event_attr attr;
10959 	int type, pfd, err;
10960 
10961 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10962 	if (err < 0) {
10963 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10964 			binary_path, (size_t)offset, err);
10965 		return err;
10966 	}
10967 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10968 	if (type < 0) {
10969 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10970 			binary_path, offset, err);
10971 		return type;
10972 	}
10973 
10974 	memset(&attr, 0, sizeof(attr));
10975 	attr.size = sizeof(attr);
10976 	attr.config = type;
10977 	attr.type = PERF_TYPE_TRACEPOINT;
10978 
10979 	pfd = syscall(__NR_perf_event_open, &attr,
10980 		      pid < 0 ? -1 : pid, /* pid */
10981 		      pid == -1 ? 0 : -1, /* cpu */
10982 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10983 	if (pfd < 0) {
10984 		err = -errno;
10985 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10986 		return err;
10987 	}
10988 	return pfd;
10989 }
10990 
10991 /* uprobes deal in relative offsets; subtract the base address associated with
10992  * the mapped binary.  See Documentation/trace/uprobetracer.rst for more
10993  * details.
10994  */
10995 static long elf_find_relative_offset(const char *filename, Elf *elf, long addr)
10996 {
10997 	size_t n;
10998 	int i;
10999 
11000 	if (elf_getphdrnum(elf, &n)) {
11001 		pr_warn("elf: failed to find program headers for '%s': %s\n", filename,
11002 			elf_errmsg(-1));
11003 		return -ENOENT;
11004 	}
11005 
11006 	for (i = 0; i < n; i++) {
11007 		int seg_start, seg_end, seg_offset;
11008 		GElf_Phdr phdr;
11009 
11010 		if (!gelf_getphdr(elf, i, &phdr)) {
11011 			pr_warn("elf: failed to get program header %d from '%s': %s\n", i, filename,
11012 				elf_errmsg(-1));
11013 			return -ENOENT;
11014 		}
11015 		if (phdr.p_type != PT_LOAD || !(phdr.p_flags & PF_X))
11016 			continue;
11017 
11018 		seg_start = phdr.p_vaddr;
11019 		seg_end = seg_start + phdr.p_memsz;
11020 		seg_offset = phdr.p_offset;
11021 		if (addr >= seg_start && addr < seg_end)
11022 			return addr - seg_start + seg_offset;
11023 	}
11024 	pr_warn("elf: failed to find prog header containing 0x%lx in '%s'\n", addr, filename);
11025 	return -ENOENT;
11026 }
11027 
11028 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
11029 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
11030 {
11031 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
11032 		GElf_Shdr sh;
11033 
11034 		if (!gelf_getshdr(scn, &sh))
11035 			continue;
11036 		if (sh.sh_type == sh_type)
11037 			return scn;
11038 	}
11039 	return NULL;
11040 }
11041 
11042 /* Find offset of function name in object specified by path.  "name" matches
11043  * symbol name or name@@LIB for library functions.
11044  */
11045 static long elf_find_func_offset(const char *binary_path, const char *name)
11046 {
11047 	int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
11048 	bool is_shared_lib, is_name_qualified;
11049 	char errmsg[STRERR_BUFSIZE];
11050 	long ret = -ENOENT;
11051 	size_t name_len;
11052 	GElf_Ehdr ehdr;
11053 	Elf *elf;
11054 
11055 	fd = open(binary_path, O_RDONLY | O_CLOEXEC);
11056 	if (fd < 0) {
11057 		ret = -errno;
11058 		pr_warn("failed to open %s: %s\n", binary_path,
11059 			libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
11060 		return ret;
11061 	}
11062 	elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
11063 	if (!elf) {
11064 		pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
11065 		close(fd);
11066 		return -LIBBPF_ERRNO__FORMAT;
11067 	}
11068 	if (!gelf_getehdr(elf, &ehdr)) {
11069 		pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
11070 		ret = -LIBBPF_ERRNO__FORMAT;
11071 		goto out;
11072 	}
11073 	/* for shared lib case, we do not need to calculate relative offset */
11074 	is_shared_lib = ehdr.e_type == ET_DYN;
11075 
11076 	name_len = strlen(name);
11077 	/* Does name specify "@@LIB"? */
11078 	is_name_qualified = strstr(name, "@@") != NULL;
11079 
11080 	/* Search SHT_DYNSYM, SHT_SYMTAB for symbol.  This search order is used because if
11081 	 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
11082 	 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
11083 	 * reported as a warning/error.
11084 	 */
11085 	for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
11086 		size_t nr_syms, strtabidx, idx;
11087 		Elf_Data *symbols = NULL;
11088 		Elf_Scn *scn = NULL;
11089 		int last_bind = -1;
11090 		const char *sname;
11091 		GElf_Shdr sh;
11092 
11093 		scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
11094 		if (!scn) {
11095 			pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
11096 				 binary_path);
11097 			continue;
11098 		}
11099 		if (!gelf_getshdr(scn, &sh))
11100 			continue;
11101 		strtabidx = sh.sh_link;
11102 		symbols = elf_getdata(scn, 0);
11103 		if (!symbols) {
11104 			pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
11105 				binary_path, elf_errmsg(-1));
11106 			ret = -LIBBPF_ERRNO__FORMAT;
11107 			goto out;
11108 		}
11109 		nr_syms = symbols->d_size / sh.sh_entsize;
11110 
11111 		for (idx = 0; idx < nr_syms; idx++) {
11112 			int curr_bind;
11113 			GElf_Sym sym;
11114 
11115 			if (!gelf_getsym(symbols, idx, &sym))
11116 				continue;
11117 
11118 			if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
11119 				continue;
11120 
11121 			sname = elf_strptr(elf, strtabidx, sym.st_name);
11122 			if (!sname)
11123 				continue;
11124 
11125 			curr_bind = GELF_ST_BIND(sym.st_info);
11126 
11127 			/* User can specify func, func@@LIB or func@@LIB_VERSION. */
11128 			if (strncmp(sname, name, name_len) != 0)
11129 				continue;
11130 			/* ...but we don't want a search for "foo" to match 'foo2" also, so any
11131 			 * additional characters in sname should be of the form "@@LIB".
11132 			 */
11133 			if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
11134 				continue;
11135 
11136 			if (ret >= 0) {
11137 				/* handle multiple matches */
11138 				if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
11139 					/* Only accept one non-weak bind. */
11140 					pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
11141 						sname, name, binary_path);
11142 					ret = -LIBBPF_ERRNO__FORMAT;
11143 					goto out;
11144 				} else if (curr_bind == STB_WEAK) {
11145 					/* already have a non-weak bind, and
11146 					 * this is a weak bind, so ignore.
11147 					 */
11148 					continue;
11149 				}
11150 			}
11151 			ret = sym.st_value;
11152 			last_bind = curr_bind;
11153 		}
11154 		/* For binaries that are not shared libraries, we need relative offset */
11155 		if (ret > 0 && !is_shared_lib)
11156 			ret = elf_find_relative_offset(binary_path, elf, ret);
11157 		if (ret > 0)
11158 			break;
11159 	}
11160 
11161 	if (ret > 0) {
11162 		pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
11163 			 ret);
11164 	} else {
11165 		if (ret == 0) {
11166 			pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
11167 				is_shared_lib ? "should not be 0 in a shared library" :
11168 						"try using shared library path instead");
11169 			ret = -ENOENT;
11170 		} else {
11171 			pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
11172 		}
11173 	}
11174 out:
11175 	elf_end(elf);
11176 	close(fd);
11177 	return ret;
11178 }
11179 
11180 static const char *arch_specific_lib_paths(void)
11181 {
11182 	/*
11183 	 * Based on https://packages.debian.org/sid/libc6.
11184 	 *
11185 	 * Assume that the traced program is built for the same architecture
11186 	 * as libbpf, which should cover the vast majority of cases.
11187 	 */
11188 #if defined(__x86_64__)
11189 	return "/lib/x86_64-linux-gnu";
11190 #elif defined(__i386__)
11191 	return "/lib/i386-linux-gnu";
11192 #elif defined(__s390x__)
11193 	return "/lib/s390x-linux-gnu";
11194 #elif defined(__s390__)
11195 	return "/lib/s390-linux-gnu";
11196 #elif defined(__arm__) && defined(__SOFTFP__)
11197 	return "/lib/arm-linux-gnueabi";
11198 #elif defined(__arm__) && !defined(__SOFTFP__)
11199 	return "/lib/arm-linux-gnueabihf";
11200 #elif defined(__aarch64__)
11201 	return "/lib/aarch64-linux-gnu";
11202 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11203 	return "/lib/mips64el-linux-gnuabi64";
11204 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11205 	return "/lib/mipsel-linux-gnu";
11206 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11207 	return "/lib/powerpc64le-linux-gnu";
11208 #elif defined(__sparc__) && defined(__arch64__)
11209 	return "/lib/sparc64-linux-gnu";
11210 #elif defined(__riscv) && __riscv_xlen == 64
11211 	return "/lib/riscv64-linux-gnu";
11212 #else
11213 	return NULL;
11214 #endif
11215 }
11216 
11217 /* Get full path to program/shared library. */
11218 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11219 {
11220 	const char *search_paths[3] = {};
11221 	int i;
11222 
11223 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11224 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11225 		search_paths[1] = "/usr/lib64:/usr/lib";
11226 		search_paths[2] = arch_specific_lib_paths();
11227 	} else {
11228 		search_paths[0] = getenv("PATH");
11229 		search_paths[1] = "/usr/bin:/usr/sbin";
11230 	}
11231 
11232 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11233 		const char *s;
11234 
11235 		if (!search_paths[i])
11236 			continue;
11237 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11238 			char *next_path;
11239 			int seg_len;
11240 
11241 			if (s[0] == ':')
11242 				s++;
11243 			next_path = strchr(s, ':');
11244 			seg_len = next_path ? next_path - s : strlen(s);
11245 			if (!seg_len)
11246 				continue;
11247 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11248 			/* ensure it is an executable file/link */
11249 			if (access(result, R_OK | X_OK) < 0)
11250 				continue;
11251 			pr_debug("resolved '%s' to '%s'\n", file, result);
11252 			return 0;
11253 		}
11254 	}
11255 	return -ENOENT;
11256 }
11257 
11258 LIBBPF_API struct bpf_link *
11259 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11260 				const char *binary_path, size_t func_offset,
11261 				const struct bpf_uprobe_opts *opts)
11262 {
11263 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11264 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11265 	char full_binary_path[PATH_MAX];
11266 	struct bpf_link *link;
11267 	size_t ref_ctr_off;
11268 	int pfd, err;
11269 	bool retprobe, legacy;
11270 	const char *func_name;
11271 
11272 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11273 		return libbpf_err_ptr(-EINVAL);
11274 
11275 	retprobe = OPTS_GET(opts, retprobe, false);
11276 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11277 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11278 
11279 	if (binary_path && !strchr(binary_path, '/')) {
11280 		err = resolve_full_path(binary_path, full_binary_path,
11281 					sizeof(full_binary_path));
11282 		if (err) {
11283 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11284 				prog->name, binary_path, err);
11285 			return libbpf_err_ptr(err);
11286 		}
11287 		binary_path = full_binary_path;
11288 	}
11289 	func_name = OPTS_GET(opts, func_name, NULL);
11290 	if (func_name) {
11291 		long sym_off;
11292 
11293 		if (!binary_path) {
11294 			pr_warn("prog '%s': name-based attach requires binary_path\n",
11295 				prog->name);
11296 			return libbpf_err_ptr(-EINVAL);
11297 		}
11298 		sym_off = elf_find_func_offset(binary_path, func_name);
11299 		if (sym_off < 0)
11300 			return libbpf_err_ptr(sym_off);
11301 		func_offset += sym_off;
11302 	}
11303 
11304 	legacy = determine_uprobe_perf_type() < 0;
11305 	if (!legacy) {
11306 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11307 					    func_offset, pid, ref_ctr_off);
11308 	} else {
11309 		char probe_name[PATH_MAX + 64];
11310 
11311 		if (ref_ctr_off)
11312 			return libbpf_err_ptr(-EINVAL);
11313 
11314 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11315 					     binary_path, func_offset);
11316 
11317 		legacy_probe = strdup(probe_name);
11318 		if (!legacy_probe)
11319 			return libbpf_err_ptr(-ENOMEM);
11320 
11321 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11322 						    binary_path, func_offset, pid);
11323 	}
11324 	if (pfd < 0) {
11325 		err = -errno;
11326 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11327 			prog->name, retprobe ? "uretprobe" : "uprobe",
11328 			binary_path, func_offset,
11329 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11330 		goto err_out;
11331 	}
11332 
11333 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11334 	err = libbpf_get_error(link);
11335 	if (err) {
11336 		close(pfd);
11337 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11338 			prog->name, retprobe ? "uretprobe" : "uprobe",
11339 			binary_path, func_offset,
11340 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11341 		goto err_out;
11342 	}
11343 	if (legacy) {
11344 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11345 
11346 		perf_link->legacy_probe_name = legacy_probe;
11347 		perf_link->legacy_is_kprobe = false;
11348 		perf_link->legacy_is_retprobe = retprobe;
11349 	}
11350 	return link;
11351 err_out:
11352 	free(legacy_probe);
11353 	return libbpf_err_ptr(err);
11354 
11355 }
11356 
11357 /* Format of u[ret]probe section definition supporting auto-attach:
11358  * u[ret]probe/binary:function[+offset]
11359  *
11360  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11361  * full binary path via bpf_program__attach_uprobe_opts.
11362  *
11363  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11364  * specified (and auto-attach is not possible) or the above format is specified for
11365  * auto-attach.
11366  */
11367 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11368 {
11369 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11370 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11371 	int n, ret = -EINVAL;
11372 	long offset = 0;
11373 
11374 	*link = NULL;
11375 
11376 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11377 		   &probe_type, &binary_path, &func_name, &offset);
11378 	switch (n) {
11379 	case 1:
11380 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11381 		ret = 0;
11382 		break;
11383 	case 2:
11384 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11385 			prog->name, prog->sec_name);
11386 		break;
11387 	case 3:
11388 	case 4:
11389 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0;
11390 		if (opts.retprobe && offset != 0) {
11391 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
11392 				prog->name);
11393 			break;
11394 		}
11395 		opts.func_name = func_name;
11396 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11397 		ret = libbpf_get_error(*link);
11398 		break;
11399 	default:
11400 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11401 			prog->sec_name);
11402 		break;
11403 	}
11404 	free(probe_type);
11405 	free(binary_path);
11406 	free(func_name);
11407 
11408 	return ret;
11409 }
11410 
11411 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11412 					    bool retprobe, pid_t pid,
11413 					    const char *binary_path,
11414 					    size_t func_offset)
11415 {
11416 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11417 
11418 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11419 }
11420 
11421 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11422 					  pid_t pid, const char *binary_path,
11423 					  const char *usdt_provider, const char *usdt_name,
11424 					  const struct bpf_usdt_opts *opts)
11425 {
11426 	char resolved_path[512];
11427 	struct bpf_object *obj = prog->obj;
11428 	struct bpf_link *link;
11429 	__u64 usdt_cookie;
11430 	int err;
11431 
11432 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11433 		return libbpf_err_ptr(-EINVAL);
11434 
11435 	if (bpf_program__fd(prog) < 0) {
11436 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11437 			prog->name);
11438 		return libbpf_err_ptr(-EINVAL);
11439 	}
11440 
11441 	if (!strchr(binary_path, '/')) {
11442 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11443 		if (err) {
11444 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11445 				prog->name, binary_path, err);
11446 			return libbpf_err_ptr(err);
11447 		}
11448 		binary_path = resolved_path;
11449 	}
11450 
11451 	/* USDT manager is instantiated lazily on first USDT attach. It will
11452 	 * be destroyed together with BPF object in bpf_object__close().
11453 	 */
11454 	if (IS_ERR(obj->usdt_man))
11455 		return libbpf_ptr(obj->usdt_man);
11456 	if (!obj->usdt_man) {
11457 		obj->usdt_man = usdt_manager_new(obj);
11458 		if (IS_ERR(obj->usdt_man))
11459 			return libbpf_ptr(obj->usdt_man);
11460 	}
11461 
11462 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11463 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11464 				        usdt_provider, usdt_name, usdt_cookie);
11465 	err = libbpf_get_error(link);
11466 	if (err)
11467 		return libbpf_err_ptr(err);
11468 	return link;
11469 }
11470 
11471 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11472 {
11473 	char *path = NULL, *provider = NULL, *name = NULL;
11474 	const char *sec_name;
11475 	int n, err;
11476 
11477 	sec_name = bpf_program__section_name(prog);
11478 	if (strcmp(sec_name, "usdt") == 0) {
11479 		/* no auto-attach for just SEC("usdt") */
11480 		*link = NULL;
11481 		return 0;
11482 	}
11483 
11484 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11485 	if (n != 3) {
11486 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11487 			sec_name);
11488 		err = -EINVAL;
11489 	} else {
11490 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11491 						 provider, name, NULL);
11492 		err = libbpf_get_error(*link);
11493 	}
11494 	free(path);
11495 	free(provider);
11496 	free(name);
11497 	return err;
11498 }
11499 
11500 static int determine_tracepoint_id(const char *tp_category,
11501 				   const char *tp_name)
11502 {
11503 	char file[PATH_MAX];
11504 	int ret;
11505 
11506 	ret = snprintf(file, sizeof(file),
11507 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
11508 		       tp_category, tp_name);
11509 	if (ret < 0)
11510 		return -errno;
11511 	if (ret >= sizeof(file)) {
11512 		pr_debug("tracepoint %s/%s path is too long\n",
11513 			 tp_category, tp_name);
11514 		return -E2BIG;
11515 	}
11516 	return parse_uint_from_file(file, "%d\n");
11517 }
11518 
11519 static int perf_event_open_tracepoint(const char *tp_category,
11520 				      const char *tp_name)
11521 {
11522 	struct perf_event_attr attr = {};
11523 	char errmsg[STRERR_BUFSIZE];
11524 	int tp_id, pfd, err;
11525 
11526 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11527 	if (tp_id < 0) {
11528 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11529 			tp_category, tp_name,
11530 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11531 		return tp_id;
11532 	}
11533 
11534 	attr.type = PERF_TYPE_TRACEPOINT;
11535 	attr.size = sizeof(attr);
11536 	attr.config = tp_id;
11537 
11538 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11539 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11540 	if (pfd < 0) {
11541 		err = -errno;
11542 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11543 			tp_category, tp_name,
11544 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11545 		return err;
11546 	}
11547 	return pfd;
11548 }
11549 
11550 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11551 						     const char *tp_category,
11552 						     const char *tp_name,
11553 						     const struct bpf_tracepoint_opts *opts)
11554 {
11555 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11556 	char errmsg[STRERR_BUFSIZE];
11557 	struct bpf_link *link;
11558 	int pfd, err;
11559 
11560 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11561 		return libbpf_err_ptr(-EINVAL);
11562 
11563 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11564 
11565 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11566 	if (pfd < 0) {
11567 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11568 			prog->name, tp_category, tp_name,
11569 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11570 		return libbpf_err_ptr(pfd);
11571 	}
11572 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11573 	err = libbpf_get_error(link);
11574 	if (err) {
11575 		close(pfd);
11576 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11577 			prog->name, tp_category, tp_name,
11578 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11579 		return libbpf_err_ptr(err);
11580 	}
11581 	return link;
11582 }
11583 
11584 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11585 						const char *tp_category,
11586 						const char *tp_name)
11587 {
11588 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11589 }
11590 
11591 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11592 {
11593 	char *sec_name, *tp_cat, *tp_name;
11594 
11595 	*link = NULL;
11596 
11597 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11598 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11599 		return 0;
11600 
11601 	sec_name = strdup(prog->sec_name);
11602 	if (!sec_name)
11603 		return -ENOMEM;
11604 
11605 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11606 	if (str_has_pfx(prog->sec_name, "tp/"))
11607 		tp_cat = sec_name + sizeof("tp/") - 1;
11608 	else
11609 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11610 	tp_name = strchr(tp_cat, '/');
11611 	if (!tp_name) {
11612 		free(sec_name);
11613 		return -EINVAL;
11614 	}
11615 	*tp_name = '\0';
11616 	tp_name++;
11617 
11618 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11619 	free(sec_name);
11620 	return libbpf_get_error(*link);
11621 }
11622 
11623 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11624 						    const char *tp_name)
11625 {
11626 	char errmsg[STRERR_BUFSIZE];
11627 	struct bpf_link *link;
11628 	int prog_fd, pfd;
11629 
11630 	prog_fd = bpf_program__fd(prog);
11631 	if (prog_fd < 0) {
11632 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11633 		return libbpf_err_ptr(-EINVAL);
11634 	}
11635 
11636 	link = calloc(1, sizeof(*link));
11637 	if (!link)
11638 		return libbpf_err_ptr(-ENOMEM);
11639 	link->detach = &bpf_link__detach_fd;
11640 
11641 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11642 	if (pfd < 0) {
11643 		pfd = -errno;
11644 		free(link);
11645 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11646 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11647 		return libbpf_err_ptr(pfd);
11648 	}
11649 	link->fd = pfd;
11650 	return link;
11651 }
11652 
11653 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11654 {
11655 	static const char *const prefixes[] = {
11656 		"raw_tp",
11657 		"raw_tracepoint",
11658 		"raw_tp.w",
11659 		"raw_tracepoint.w",
11660 	};
11661 	size_t i;
11662 	const char *tp_name = NULL;
11663 
11664 	*link = NULL;
11665 
11666 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11667 		size_t pfx_len;
11668 
11669 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11670 			continue;
11671 
11672 		pfx_len = strlen(prefixes[i]);
11673 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11674 		if (prog->sec_name[pfx_len] == '\0')
11675 			return 0;
11676 
11677 		if (prog->sec_name[pfx_len] != '/')
11678 			continue;
11679 
11680 		tp_name = prog->sec_name + pfx_len + 1;
11681 		break;
11682 	}
11683 
11684 	if (!tp_name) {
11685 		pr_warn("prog '%s': invalid section name '%s'\n",
11686 			prog->name, prog->sec_name);
11687 		return -EINVAL;
11688 	}
11689 
11690 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11691 	return libbpf_get_error(link);
11692 }
11693 
11694 /* Common logic for all BPF program types that attach to a btf_id */
11695 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11696 						   const struct bpf_trace_opts *opts)
11697 {
11698 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11699 	char errmsg[STRERR_BUFSIZE];
11700 	struct bpf_link *link;
11701 	int prog_fd, pfd;
11702 
11703 	if (!OPTS_VALID(opts, bpf_trace_opts))
11704 		return libbpf_err_ptr(-EINVAL);
11705 
11706 	prog_fd = bpf_program__fd(prog);
11707 	if (prog_fd < 0) {
11708 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11709 		return libbpf_err_ptr(-EINVAL);
11710 	}
11711 
11712 	link = calloc(1, sizeof(*link));
11713 	if (!link)
11714 		return libbpf_err_ptr(-ENOMEM);
11715 	link->detach = &bpf_link__detach_fd;
11716 
11717 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11718 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11719 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11720 	if (pfd < 0) {
11721 		pfd = -errno;
11722 		free(link);
11723 		pr_warn("prog '%s': failed to attach: %s\n",
11724 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11725 		return libbpf_err_ptr(pfd);
11726 	}
11727 	link->fd = pfd;
11728 	return link;
11729 }
11730 
11731 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11732 {
11733 	return bpf_program__attach_btf_id(prog, NULL);
11734 }
11735 
11736 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11737 						const struct bpf_trace_opts *opts)
11738 {
11739 	return bpf_program__attach_btf_id(prog, opts);
11740 }
11741 
11742 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11743 {
11744 	return bpf_program__attach_btf_id(prog, NULL);
11745 }
11746 
11747 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11748 {
11749 	*link = bpf_program__attach_trace(prog);
11750 	return libbpf_get_error(*link);
11751 }
11752 
11753 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11754 {
11755 	*link = bpf_program__attach_lsm(prog);
11756 	return libbpf_get_error(*link);
11757 }
11758 
11759 static struct bpf_link *
11760 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11761 		       const char *target_name)
11762 {
11763 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11764 			    .target_btf_id = btf_id);
11765 	enum bpf_attach_type attach_type;
11766 	char errmsg[STRERR_BUFSIZE];
11767 	struct bpf_link *link;
11768 	int prog_fd, link_fd;
11769 
11770 	prog_fd = bpf_program__fd(prog);
11771 	if (prog_fd < 0) {
11772 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11773 		return libbpf_err_ptr(-EINVAL);
11774 	}
11775 
11776 	link = calloc(1, sizeof(*link));
11777 	if (!link)
11778 		return libbpf_err_ptr(-ENOMEM);
11779 	link->detach = &bpf_link__detach_fd;
11780 
11781 	attach_type = bpf_program__expected_attach_type(prog);
11782 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11783 	if (link_fd < 0) {
11784 		link_fd = -errno;
11785 		free(link);
11786 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11787 			prog->name, target_name,
11788 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11789 		return libbpf_err_ptr(link_fd);
11790 	}
11791 	link->fd = link_fd;
11792 	return link;
11793 }
11794 
11795 struct bpf_link *
11796 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11797 {
11798 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11799 }
11800 
11801 struct bpf_link *
11802 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11803 {
11804 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11805 }
11806 
11807 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11808 {
11809 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11810 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11811 }
11812 
11813 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11814 					      int target_fd,
11815 					      const char *attach_func_name)
11816 {
11817 	int btf_id;
11818 
11819 	if (!!target_fd != !!attach_func_name) {
11820 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11821 			prog->name);
11822 		return libbpf_err_ptr(-EINVAL);
11823 	}
11824 
11825 	if (prog->type != BPF_PROG_TYPE_EXT) {
11826 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11827 			prog->name);
11828 		return libbpf_err_ptr(-EINVAL);
11829 	}
11830 
11831 	if (target_fd) {
11832 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11833 		if (btf_id < 0)
11834 			return libbpf_err_ptr(btf_id);
11835 
11836 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11837 	} else {
11838 		/* no target, so use raw_tracepoint_open for compatibility
11839 		 * with old kernels
11840 		 */
11841 		return bpf_program__attach_trace(prog);
11842 	}
11843 }
11844 
11845 struct bpf_link *
11846 bpf_program__attach_iter(const struct bpf_program *prog,
11847 			 const struct bpf_iter_attach_opts *opts)
11848 {
11849 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11850 	char errmsg[STRERR_BUFSIZE];
11851 	struct bpf_link *link;
11852 	int prog_fd, link_fd;
11853 	__u32 target_fd = 0;
11854 
11855 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11856 		return libbpf_err_ptr(-EINVAL);
11857 
11858 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11859 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11860 
11861 	prog_fd = bpf_program__fd(prog);
11862 	if (prog_fd < 0) {
11863 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11864 		return libbpf_err_ptr(-EINVAL);
11865 	}
11866 
11867 	link = calloc(1, sizeof(*link));
11868 	if (!link)
11869 		return libbpf_err_ptr(-ENOMEM);
11870 	link->detach = &bpf_link__detach_fd;
11871 
11872 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11873 				  &link_create_opts);
11874 	if (link_fd < 0) {
11875 		link_fd = -errno;
11876 		free(link);
11877 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
11878 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11879 		return libbpf_err_ptr(link_fd);
11880 	}
11881 	link->fd = link_fd;
11882 	return link;
11883 }
11884 
11885 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11886 {
11887 	*link = bpf_program__attach_iter(prog, NULL);
11888 	return libbpf_get_error(*link);
11889 }
11890 
11891 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11892 {
11893 	struct bpf_link *link = NULL;
11894 	int err;
11895 
11896 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11897 		return libbpf_err_ptr(-EOPNOTSUPP);
11898 
11899 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11900 	if (err)
11901 		return libbpf_err_ptr(err);
11902 
11903 	/* When calling bpf_program__attach() explicitly, auto-attach support
11904 	 * is expected to work, so NULL returned link is considered an error.
11905 	 * This is different for skeleton's attach, see comment in
11906 	 * bpf_object__attach_skeleton().
11907 	 */
11908 	if (!link)
11909 		return libbpf_err_ptr(-EOPNOTSUPP);
11910 
11911 	return link;
11912 }
11913 
11914 static int bpf_link__detach_struct_ops(struct bpf_link *link)
11915 {
11916 	__u32 zero = 0;
11917 
11918 	if (bpf_map_delete_elem(link->fd, &zero))
11919 		return -errno;
11920 
11921 	return 0;
11922 }
11923 
11924 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11925 {
11926 	struct bpf_struct_ops *st_ops;
11927 	struct bpf_link *link;
11928 	__u32 i, zero = 0;
11929 	int err;
11930 
11931 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11932 		return libbpf_err_ptr(-EINVAL);
11933 
11934 	link = calloc(1, sizeof(*link));
11935 	if (!link)
11936 		return libbpf_err_ptr(-EINVAL);
11937 
11938 	st_ops = map->st_ops;
11939 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
11940 		struct bpf_program *prog = st_ops->progs[i];
11941 		void *kern_data;
11942 		int prog_fd;
11943 
11944 		if (!prog)
11945 			continue;
11946 
11947 		prog_fd = bpf_program__fd(prog);
11948 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11949 		*(unsigned long *)kern_data = prog_fd;
11950 	}
11951 
11952 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11953 	if (err) {
11954 		err = -errno;
11955 		free(link);
11956 		return libbpf_err_ptr(err);
11957 	}
11958 
11959 	link->detach = bpf_link__detach_struct_ops;
11960 	link->fd = map->fd;
11961 
11962 	return link;
11963 }
11964 
11965 static enum bpf_perf_event_ret
11966 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11967 		       void **copy_mem, size_t *copy_size,
11968 		       bpf_perf_event_print_t fn, void *private_data)
11969 {
11970 	struct perf_event_mmap_page *header = mmap_mem;
11971 	__u64 data_head = ring_buffer_read_head(header);
11972 	__u64 data_tail = header->data_tail;
11973 	void *base = ((__u8 *)header) + page_size;
11974 	int ret = LIBBPF_PERF_EVENT_CONT;
11975 	struct perf_event_header *ehdr;
11976 	size_t ehdr_size;
11977 
11978 	while (data_head != data_tail) {
11979 		ehdr = base + (data_tail & (mmap_size - 1));
11980 		ehdr_size = ehdr->size;
11981 
11982 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11983 			void *copy_start = ehdr;
11984 			size_t len_first = base + mmap_size - copy_start;
11985 			size_t len_secnd = ehdr_size - len_first;
11986 
11987 			if (*copy_size < ehdr_size) {
11988 				free(*copy_mem);
11989 				*copy_mem = malloc(ehdr_size);
11990 				if (!*copy_mem) {
11991 					*copy_size = 0;
11992 					ret = LIBBPF_PERF_EVENT_ERROR;
11993 					break;
11994 				}
11995 				*copy_size = ehdr_size;
11996 			}
11997 
11998 			memcpy(*copy_mem, copy_start, len_first);
11999 			memcpy(*copy_mem + len_first, base, len_secnd);
12000 			ehdr = *copy_mem;
12001 		}
12002 
12003 		ret = fn(ehdr, private_data);
12004 		data_tail += ehdr_size;
12005 		if (ret != LIBBPF_PERF_EVENT_CONT)
12006 			break;
12007 	}
12008 
12009 	ring_buffer_write_tail(header, data_tail);
12010 	return libbpf_err(ret);
12011 }
12012 
12013 __attribute__((alias("perf_event_read_simple")))
12014 enum bpf_perf_event_ret
12015 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12016 			   void **copy_mem, size_t *copy_size,
12017 			   bpf_perf_event_print_t fn, void *private_data);
12018 
12019 struct perf_buffer;
12020 
12021 struct perf_buffer_params {
12022 	struct perf_event_attr *attr;
12023 	/* if event_cb is specified, it takes precendence */
12024 	perf_buffer_event_fn event_cb;
12025 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12026 	perf_buffer_sample_fn sample_cb;
12027 	perf_buffer_lost_fn lost_cb;
12028 	void *ctx;
12029 	int cpu_cnt;
12030 	int *cpus;
12031 	int *map_keys;
12032 };
12033 
12034 struct perf_cpu_buf {
12035 	struct perf_buffer *pb;
12036 	void *base; /* mmap()'ed memory */
12037 	void *buf; /* for reconstructing segmented data */
12038 	size_t buf_size;
12039 	int fd;
12040 	int cpu;
12041 	int map_key;
12042 };
12043 
12044 struct perf_buffer {
12045 	perf_buffer_event_fn event_cb;
12046 	perf_buffer_sample_fn sample_cb;
12047 	perf_buffer_lost_fn lost_cb;
12048 	void *ctx; /* passed into callbacks */
12049 
12050 	size_t page_size;
12051 	size_t mmap_size;
12052 	struct perf_cpu_buf **cpu_bufs;
12053 	struct epoll_event *events;
12054 	int cpu_cnt; /* number of allocated CPU buffers */
12055 	int epoll_fd; /* perf event FD */
12056 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12057 };
12058 
12059 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12060 				      struct perf_cpu_buf *cpu_buf)
12061 {
12062 	if (!cpu_buf)
12063 		return;
12064 	if (cpu_buf->base &&
12065 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12066 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12067 	if (cpu_buf->fd >= 0) {
12068 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12069 		close(cpu_buf->fd);
12070 	}
12071 	free(cpu_buf->buf);
12072 	free(cpu_buf);
12073 }
12074 
12075 void perf_buffer__free(struct perf_buffer *pb)
12076 {
12077 	int i;
12078 
12079 	if (IS_ERR_OR_NULL(pb))
12080 		return;
12081 	if (pb->cpu_bufs) {
12082 		for (i = 0; i < pb->cpu_cnt; i++) {
12083 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12084 
12085 			if (!cpu_buf)
12086 				continue;
12087 
12088 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12089 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12090 		}
12091 		free(pb->cpu_bufs);
12092 	}
12093 	if (pb->epoll_fd >= 0)
12094 		close(pb->epoll_fd);
12095 	free(pb->events);
12096 	free(pb);
12097 }
12098 
12099 static struct perf_cpu_buf *
12100 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12101 			  int cpu, int map_key)
12102 {
12103 	struct perf_cpu_buf *cpu_buf;
12104 	char msg[STRERR_BUFSIZE];
12105 	int err;
12106 
12107 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12108 	if (!cpu_buf)
12109 		return ERR_PTR(-ENOMEM);
12110 
12111 	cpu_buf->pb = pb;
12112 	cpu_buf->cpu = cpu;
12113 	cpu_buf->map_key = map_key;
12114 
12115 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12116 			      -1, PERF_FLAG_FD_CLOEXEC);
12117 	if (cpu_buf->fd < 0) {
12118 		err = -errno;
12119 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12120 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12121 		goto error;
12122 	}
12123 
12124 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12125 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12126 			     cpu_buf->fd, 0);
12127 	if (cpu_buf->base == MAP_FAILED) {
12128 		cpu_buf->base = NULL;
12129 		err = -errno;
12130 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12131 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12132 		goto error;
12133 	}
12134 
12135 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12136 		err = -errno;
12137 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12138 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12139 		goto error;
12140 	}
12141 
12142 	return cpu_buf;
12143 
12144 error:
12145 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12146 	return (struct perf_cpu_buf *)ERR_PTR(err);
12147 }
12148 
12149 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12150 					      struct perf_buffer_params *p);
12151 
12152 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0)
12153 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt,
12154 					    perf_buffer_sample_fn sample_cb,
12155 					    perf_buffer_lost_fn lost_cb,
12156 					    void *ctx,
12157 					    const struct perf_buffer_opts *opts)
12158 {
12159 	struct perf_buffer_params p = {};
12160 	struct perf_event_attr attr = {};
12161 
12162 	if (!OPTS_VALID(opts, perf_buffer_opts))
12163 		return libbpf_err_ptr(-EINVAL);
12164 
12165 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12166 	attr.type = PERF_TYPE_SOFTWARE;
12167 	attr.sample_type = PERF_SAMPLE_RAW;
12168 	attr.sample_period = 1;
12169 	attr.wakeup_events = 1;
12170 
12171 	p.attr = &attr;
12172 	p.sample_cb = sample_cb;
12173 	p.lost_cb = lost_cb;
12174 	p.ctx = ctx;
12175 
12176 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12177 }
12178 
12179 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4)
12180 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt,
12181 						const struct perf_buffer_opts *opts)
12182 {
12183 	return perf_buffer__new_v0_6_0(map_fd, page_cnt,
12184 				       opts ? opts->sample_cb : NULL,
12185 				       opts ? opts->lost_cb : NULL,
12186 				       opts ? opts->ctx : NULL,
12187 				       NULL);
12188 }
12189 
12190 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0)
12191 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt,
12192 						struct perf_event_attr *attr,
12193 						perf_buffer_event_fn event_cb, void *ctx,
12194 						const struct perf_buffer_raw_opts *opts)
12195 {
12196 	struct perf_buffer_params p = {};
12197 
12198 	if (!attr)
12199 		return libbpf_err_ptr(-EINVAL);
12200 
12201 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12202 		return libbpf_err_ptr(-EINVAL);
12203 
12204 	p.attr = attr;
12205 	p.event_cb = event_cb;
12206 	p.ctx = ctx;
12207 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12208 	p.cpus = OPTS_GET(opts, cpus, NULL);
12209 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
12210 
12211 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12212 }
12213 
12214 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4)
12215 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt,
12216 						    const struct perf_buffer_raw_opts *opts)
12217 {
12218 	LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts,
12219 		.cpu_cnt = opts->cpu_cnt,
12220 		.cpus = opts->cpus,
12221 		.map_keys = opts->map_keys,
12222 	);
12223 
12224 	return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr,
12225 					   opts->event_cb, opts->ctx, &inner_opts);
12226 }
12227 
12228 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12229 					      struct perf_buffer_params *p)
12230 {
12231 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
12232 	struct bpf_map_info map;
12233 	char msg[STRERR_BUFSIZE];
12234 	struct perf_buffer *pb;
12235 	bool *online = NULL;
12236 	__u32 map_info_len;
12237 	int err, i, j, n;
12238 
12239 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12240 		pr_warn("page count should be power of two, but is %zu\n",
12241 			page_cnt);
12242 		return ERR_PTR(-EINVAL);
12243 	}
12244 
12245 	/* best-effort sanity checks */
12246 	memset(&map, 0, sizeof(map));
12247 	map_info_len = sizeof(map);
12248 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
12249 	if (err) {
12250 		err = -errno;
12251 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12252 		 * -EBADFD, -EFAULT, or -E2BIG on real error
12253 		 */
12254 		if (err != -EINVAL) {
12255 			pr_warn("failed to get map info for map FD %d: %s\n",
12256 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12257 			return ERR_PTR(err);
12258 		}
12259 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12260 			 map_fd);
12261 	} else {
12262 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12263 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12264 				map.name);
12265 			return ERR_PTR(-EINVAL);
12266 		}
12267 	}
12268 
12269 	pb = calloc(1, sizeof(*pb));
12270 	if (!pb)
12271 		return ERR_PTR(-ENOMEM);
12272 
12273 	pb->event_cb = p->event_cb;
12274 	pb->sample_cb = p->sample_cb;
12275 	pb->lost_cb = p->lost_cb;
12276 	pb->ctx = p->ctx;
12277 
12278 	pb->page_size = getpagesize();
12279 	pb->mmap_size = pb->page_size * page_cnt;
12280 	pb->map_fd = map_fd;
12281 
12282 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12283 	if (pb->epoll_fd < 0) {
12284 		err = -errno;
12285 		pr_warn("failed to create epoll instance: %s\n",
12286 			libbpf_strerror_r(err, msg, sizeof(msg)));
12287 		goto error;
12288 	}
12289 
12290 	if (p->cpu_cnt > 0) {
12291 		pb->cpu_cnt = p->cpu_cnt;
12292 	} else {
12293 		pb->cpu_cnt = libbpf_num_possible_cpus();
12294 		if (pb->cpu_cnt < 0) {
12295 			err = pb->cpu_cnt;
12296 			goto error;
12297 		}
12298 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
12299 			pb->cpu_cnt = map.max_entries;
12300 	}
12301 
12302 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12303 	if (!pb->events) {
12304 		err = -ENOMEM;
12305 		pr_warn("failed to allocate events: out of memory\n");
12306 		goto error;
12307 	}
12308 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12309 	if (!pb->cpu_bufs) {
12310 		err = -ENOMEM;
12311 		pr_warn("failed to allocate buffers: out of memory\n");
12312 		goto error;
12313 	}
12314 
12315 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12316 	if (err) {
12317 		pr_warn("failed to get online CPU mask: %d\n", err);
12318 		goto error;
12319 	}
12320 
12321 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12322 		struct perf_cpu_buf *cpu_buf;
12323 		int cpu, map_key;
12324 
12325 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12326 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12327 
12328 		/* in case user didn't explicitly requested particular CPUs to
12329 		 * be attached to, skip offline/not present CPUs
12330 		 */
12331 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12332 			continue;
12333 
12334 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12335 		if (IS_ERR(cpu_buf)) {
12336 			err = PTR_ERR(cpu_buf);
12337 			goto error;
12338 		}
12339 
12340 		pb->cpu_bufs[j] = cpu_buf;
12341 
12342 		err = bpf_map_update_elem(pb->map_fd, &map_key,
12343 					  &cpu_buf->fd, 0);
12344 		if (err) {
12345 			err = -errno;
12346 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12347 				cpu, map_key, cpu_buf->fd,
12348 				libbpf_strerror_r(err, msg, sizeof(msg)));
12349 			goto error;
12350 		}
12351 
12352 		pb->events[j].events = EPOLLIN;
12353 		pb->events[j].data.ptr = cpu_buf;
12354 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12355 			      &pb->events[j]) < 0) {
12356 			err = -errno;
12357 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12358 				cpu, cpu_buf->fd,
12359 				libbpf_strerror_r(err, msg, sizeof(msg)));
12360 			goto error;
12361 		}
12362 		j++;
12363 	}
12364 	pb->cpu_cnt = j;
12365 	free(online);
12366 
12367 	return pb;
12368 
12369 error:
12370 	free(online);
12371 	if (pb)
12372 		perf_buffer__free(pb);
12373 	return ERR_PTR(err);
12374 }
12375 
12376 struct perf_sample_raw {
12377 	struct perf_event_header header;
12378 	uint32_t size;
12379 	char data[];
12380 };
12381 
12382 struct perf_sample_lost {
12383 	struct perf_event_header header;
12384 	uint64_t id;
12385 	uint64_t lost;
12386 	uint64_t sample_id;
12387 };
12388 
12389 static enum bpf_perf_event_ret
12390 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12391 {
12392 	struct perf_cpu_buf *cpu_buf = ctx;
12393 	struct perf_buffer *pb = cpu_buf->pb;
12394 	void *data = e;
12395 
12396 	/* user wants full control over parsing perf event */
12397 	if (pb->event_cb)
12398 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12399 
12400 	switch (e->type) {
12401 	case PERF_RECORD_SAMPLE: {
12402 		struct perf_sample_raw *s = data;
12403 
12404 		if (pb->sample_cb)
12405 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12406 		break;
12407 	}
12408 	case PERF_RECORD_LOST: {
12409 		struct perf_sample_lost *s = data;
12410 
12411 		if (pb->lost_cb)
12412 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12413 		break;
12414 	}
12415 	default:
12416 		pr_warn("unknown perf sample type %d\n", e->type);
12417 		return LIBBPF_PERF_EVENT_ERROR;
12418 	}
12419 	return LIBBPF_PERF_EVENT_CONT;
12420 }
12421 
12422 static int perf_buffer__process_records(struct perf_buffer *pb,
12423 					struct perf_cpu_buf *cpu_buf)
12424 {
12425 	enum bpf_perf_event_ret ret;
12426 
12427 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12428 				     pb->page_size, &cpu_buf->buf,
12429 				     &cpu_buf->buf_size,
12430 				     perf_buffer__process_record, cpu_buf);
12431 	if (ret != LIBBPF_PERF_EVENT_CONT)
12432 		return ret;
12433 	return 0;
12434 }
12435 
12436 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12437 {
12438 	return pb->epoll_fd;
12439 }
12440 
12441 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12442 {
12443 	int i, cnt, err;
12444 
12445 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12446 	if (cnt < 0)
12447 		return -errno;
12448 
12449 	for (i = 0; i < cnt; i++) {
12450 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12451 
12452 		err = perf_buffer__process_records(pb, cpu_buf);
12453 		if (err) {
12454 			pr_warn("error while processing records: %d\n", err);
12455 			return libbpf_err(err);
12456 		}
12457 	}
12458 	return cnt;
12459 }
12460 
12461 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12462  * manager.
12463  */
12464 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12465 {
12466 	return pb->cpu_cnt;
12467 }
12468 
12469 /*
12470  * Return perf_event FD of a ring buffer in *buf_idx* slot of
12471  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12472  * select()/poll()/epoll() Linux syscalls.
12473  */
12474 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12475 {
12476 	struct perf_cpu_buf *cpu_buf;
12477 
12478 	if (buf_idx >= pb->cpu_cnt)
12479 		return libbpf_err(-EINVAL);
12480 
12481 	cpu_buf = pb->cpu_bufs[buf_idx];
12482 	if (!cpu_buf)
12483 		return libbpf_err(-ENOENT);
12484 
12485 	return cpu_buf->fd;
12486 }
12487 
12488 /*
12489  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12490  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12491  * consume, do nothing and return success.
12492  * Returns:
12493  *   - 0 on success;
12494  *   - <0 on failure.
12495  */
12496 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12497 {
12498 	struct perf_cpu_buf *cpu_buf;
12499 
12500 	if (buf_idx >= pb->cpu_cnt)
12501 		return libbpf_err(-EINVAL);
12502 
12503 	cpu_buf = pb->cpu_bufs[buf_idx];
12504 	if (!cpu_buf)
12505 		return libbpf_err(-ENOENT);
12506 
12507 	return perf_buffer__process_records(pb, cpu_buf);
12508 }
12509 
12510 int perf_buffer__consume(struct perf_buffer *pb)
12511 {
12512 	int i, err;
12513 
12514 	for (i = 0; i < pb->cpu_cnt; i++) {
12515 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12516 
12517 		if (!cpu_buf)
12518 			continue;
12519 
12520 		err = perf_buffer__process_records(pb, cpu_buf);
12521 		if (err) {
12522 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12523 			return libbpf_err(err);
12524 		}
12525 	}
12526 	return 0;
12527 }
12528 
12529 struct bpf_prog_info_array_desc {
12530 	int	array_offset;	/* e.g. offset of jited_prog_insns */
12531 	int	count_offset;	/* e.g. offset of jited_prog_len */
12532 	int	size_offset;	/* > 0: offset of rec size,
12533 				 * < 0: fix size of -size_offset
12534 				 */
12535 };
12536 
12537 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
12538 	[BPF_PROG_INFO_JITED_INSNS] = {
12539 		offsetof(struct bpf_prog_info, jited_prog_insns),
12540 		offsetof(struct bpf_prog_info, jited_prog_len),
12541 		-1,
12542 	},
12543 	[BPF_PROG_INFO_XLATED_INSNS] = {
12544 		offsetof(struct bpf_prog_info, xlated_prog_insns),
12545 		offsetof(struct bpf_prog_info, xlated_prog_len),
12546 		-1,
12547 	},
12548 	[BPF_PROG_INFO_MAP_IDS] = {
12549 		offsetof(struct bpf_prog_info, map_ids),
12550 		offsetof(struct bpf_prog_info, nr_map_ids),
12551 		-(int)sizeof(__u32),
12552 	},
12553 	[BPF_PROG_INFO_JITED_KSYMS] = {
12554 		offsetof(struct bpf_prog_info, jited_ksyms),
12555 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
12556 		-(int)sizeof(__u64),
12557 	},
12558 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
12559 		offsetof(struct bpf_prog_info, jited_func_lens),
12560 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
12561 		-(int)sizeof(__u32),
12562 	},
12563 	[BPF_PROG_INFO_FUNC_INFO] = {
12564 		offsetof(struct bpf_prog_info, func_info),
12565 		offsetof(struct bpf_prog_info, nr_func_info),
12566 		offsetof(struct bpf_prog_info, func_info_rec_size),
12567 	},
12568 	[BPF_PROG_INFO_LINE_INFO] = {
12569 		offsetof(struct bpf_prog_info, line_info),
12570 		offsetof(struct bpf_prog_info, nr_line_info),
12571 		offsetof(struct bpf_prog_info, line_info_rec_size),
12572 	},
12573 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
12574 		offsetof(struct bpf_prog_info, jited_line_info),
12575 		offsetof(struct bpf_prog_info, nr_jited_line_info),
12576 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
12577 	},
12578 	[BPF_PROG_INFO_PROG_TAGS] = {
12579 		offsetof(struct bpf_prog_info, prog_tags),
12580 		offsetof(struct bpf_prog_info, nr_prog_tags),
12581 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
12582 	},
12583 
12584 };
12585 
12586 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
12587 					   int offset)
12588 {
12589 	__u32 *array = (__u32 *)info;
12590 
12591 	if (offset >= 0)
12592 		return array[offset / sizeof(__u32)];
12593 	return -(int)offset;
12594 }
12595 
12596 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
12597 					   int offset)
12598 {
12599 	__u64 *array = (__u64 *)info;
12600 
12601 	if (offset >= 0)
12602 		return array[offset / sizeof(__u64)];
12603 	return -(int)offset;
12604 }
12605 
12606 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
12607 					 __u32 val)
12608 {
12609 	__u32 *array = (__u32 *)info;
12610 
12611 	if (offset >= 0)
12612 		array[offset / sizeof(__u32)] = val;
12613 }
12614 
12615 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
12616 					 __u64 val)
12617 {
12618 	__u64 *array = (__u64 *)info;
12619 
12620 	if (offset >= 0)
12621 		array[offset / sizeof(__u64)] = val;
12622 }
12623 
12624 struct bpf_prog_info_linear *
12625 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
12626 {
12627 	struct bpf_prog_info_linear *info_linear;
12628 	struct bpf_prog_info info = {};
12629 	__u32 info_len = sizeof(info);
12630 	__u32 data_len = 0;
12631 	int i, err;
12632 	void *ptr;
12633 
12634 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
12635 		return libbpf_err_ptr(-EINVAL);
12636 
12637 	/* step 1: get array dimensions */
12638 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
12639 	if (err) {
12640 		pr_debug("can't get prog info: %s", strerror(errno));
12641 		return libbpf_err_ptr(-EFAULT);
12642 	}
12643 
12644 	/* step 2: calculate total size of all arrays */
12645 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12646 		bool include_array = (arrays & (1UL << i)) > 0;
12647 		struct bpf_prog_info_array_desc *desc;
12648 		__u32 count, size;
12649 
12650 		desc = bpf_prog_info_array_desc + i;
12651 
12652 		/* kernel is too old to support this field */
12653 		if (info_len < desc->array_offset + sizeof(__u32) ||
12654 		    info_len < desc->count_offset + sizeof(__u32) ||
12655 		    (desc->size_offset > 0 && info_len < desc->size_offset))
12656 			include_array = false;
12657 
12658 		if (!include_array) {
12659 			arrays &= ~(1UL << i);	/* clear the bit */
12660 			continue;
12661 		}
12662 
12663 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
12664 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
12665 
12666 		data_len += count * size;
12667 	}
12668 
12669 	/* step 3: allocate continuous memory */
12670 	data_len = roundup(data_len, sizeof(__u64));
12671 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
12672 	if (!info_linear)
12673 		return libbpf_err_ptr(-ENOMEM);
12674 
12675 	/* step 4: fill data to info_linear->info */
12676 	info_linear->arrays = arrays;
12677 	memset(&info_linear->info, 0, sizeof(info));
12678 	ptr = info_linear->data;
12679 
12680 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12681 		struct bpf_prog_info_array_desc *desc;
12682 		__u32 count, size;
12683 
12684 		if ((arrays & (1UL << i)) == 0)
12685 			continue;
12686 
12687 		desc  = bpf_prog_info_array_desc + i;
12688 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
12689 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
12690 		bpf_prog_info_set_offset_u32(&info_linear->info,
12691 					     desc->count_offset, count);
12692 		bpf_prog_info_set_offset_u32(&info_linear->info,
12693 					     desc->size_offset, size);
12694 		bpf_prog_info_set_offset_u64(&info_linear->info,
12695 					     desc->array_offset,
12696 					     ptr_to_u64(ptr));
12697 		ptr += count * size;
12698 	}
12699 
12700 	/* step 5: call syscall again to get required arrays */
12701 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
12702 	if (err) {
12703 		pr_debug("can't get prog info: %s", strerror(errno));
12704 		free(info_linear);
12705 		return libbpf_err_ptr(-EFAULT);
12706 	}
12707 
12708 	/* step 6: verify the data */
12709 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12710 		struct bpf_prog_info_array_desc *desc;
12711 		__u32 v1, v2;
12712 
12713 		if ((arrays & (1UL << i)) == 0)
12714 			continue;
12715 
12716 		desc = bpf_prog_info_array_desc + i;
12717 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
12718 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
12719 						   desc->count_offset);
12720 		if (v1 != v2)
12721 			pr_warn("%s: mismatch in element count\n", __func__);
12722 
12723 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
12724 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
12725 						   desc->size_offset);
12726 		if (v1 != v2)
12727 			pr_warn("%s: mismatch in rec size\n", __func__);
12728 	}
12729 
12730 	/* step 7: update info_len and data_len */
12731 	info_linear->info_len = sizeof(struct bpf_prog_info);
12732 	info_linear->data_len = data_len;
12733 
12734 	return info_linear;
12735 }
12736 
12737 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
12738 {
12739 	int i;
12740 
12741 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12742 		struct bpf_prog_info_array_desc *desc;
12743 		__u64 addr, offs;
12744 
12745 		if ((info_linear->arrays & (1UL << i)) == 0)
12746 			continue;
12747 
12748 		desc = bpf_prog_info_array_desc + i;
12749 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
12750 						     desc->array_offset);
12751 		offs = addr - ptr_to_u64(info_linear->data);
12752 		bpf_prog_info_set_offset_u64(&info_linear->info,
12753 					     desc->array_offset, offs);
12754 	}
12755 }
12756 
12757 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
12758 {
12759 	int i;
12760 
12761 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
12762 		struct bpf_prog_info_array_desc *desc;
12763 		__u64 addr, offs;
12764 
12765 		if ((info_linear->arrays & (1UL << i)) == 0)
12766 			continue;
12767 
12768 		desc = bpf_prog_info_array_desc + i;
12769 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
12770 						     desc->array_offset);
12771 		addr = offs + ptr_to_u64(info_linear->data);
12772 		bpf_prog_info_set_offset_u64(&info_linear->info,
12773 					     desc->array_offset, addr);
12774 	}
12775 }
12776 
12777 int bpf_program__set_attach_target(struct bpf_program *prog,
12778 				   int attach_prog_fd,
12779 				   const char *attach_func_name)
12780 {
12781 	int btf_obj_fd = 0, btf_id = 0, err;
12782 
12783 	if (!prog || attach_prog_fd < 0)
12784 		return libbpf_err(-EINVAL);
12785 
12786 	if (prog->obj->loaded)
12787 		return libbpf_err(-EINVAL);
12788 
12789 	if (attach_prog_fd && !attach_func_name) {
12790 		/* remember attach_prog_fd and let bpf_program__load() find
12791 		 * BTF ID during the program load
12792 		 */
12793 		prog->attach_prog_fd = attach_prog_fd;
12794 		return 0;
12795 	}
12796 
12797 	if (attach_prog_fd) {
12798 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12799 						 attach_prog_fd);
12800 		if (btf_id < 0)
12801 			return libbpf_err(btf_id);
12802 	} else {
12803 		if (!attach_func_name)
12804 			return libbpf_err(-EINVAL);
12805 
12806 		/* load btf_vmlinux, if not yet */
12807 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
12808 		if (err)
12809 			return libbpf_err(err);
12810 		err = find_kernel_btf_id(prog->obj, attach_func_name,
12811 					 prog->expected_attach_type,
12812 					 &btf_obj_fd, &btf_id);
12813 		if (err)
12814 			return libbpf_err(err);
12815 	}
12816 
12817 	prog->attach_btf_id = btf_id;
12818 	prog->attach_btf_obj_fd = btf_obj_fd;
12819 	prog->attach_prog_fd = attach_prog_fd;
12820 	return 0;
12821 }
12822 
12823 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12824 {
12825 	int err = 0, n, len, start, end = -1;
12826 	bool *tmp;
12827 
12828 	*mask = NULL;
12829 	*mask_sz = 0;
12830 
12831 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12832 	while (*s) {
12833 		if (*s == ',' || *s == '\n') {
12834 			s++;
12835 			continue;
12836 		}
12837 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12838 		if (n <= 0 || n > 2) {
12839 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12840 			err = -EINVAL;
12841 			goto cleanup;
12842 		} else if (n == 1) {
12843 			end = start;
12844 		}
12845 		if (start < 0 || start > end) {
12846 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12847 				start, end, s);
12848 			err = -EINVAL;
12849 			goto cleanup;
12850 		}
12851 		tmp = realloc(*mask, end + 1);
12852 		if (!tmp) {
12853 			err = -ENOMEM;
12854 			goto cleanup;
12855 		}
12856 		*mask = tmp;
12857 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12858 		memset(tmp + start, 1, end - start + 1);
12859 		*mask_sz = end + 1;
12860 		s += len;
12861 	}
12862 	if (!*mask_sz) {
12863 		pr_warn("Empty CPU range\n");
12864 		return -EINVAL;
12865 	}
12866 	return 0;
12867 cleanup:
12868 	free(*mask);
12869 	*mask = NULL;
12870 	return err;
12871 }
12872 
12873 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12874 {
12875 	int fd, err = 0, len;
12876 	char buf[128];
12877 
12878 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12879 	if (fd < 0) {
12880 		err = -errno;
12881 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12882 		return err;
12883 	}
12884 	len = read(fd, buf, sizeof(buf));
12885 	close(fd);
12886 	if (len <= 0) {
12887 		err = len ? -errno : -EINVAL;
12888 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12889 		return err;
12890 	}
12891 	if (len >= sizeof(buf)) {
12892 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12893 		return -E2BIG;
12894 	}
12895 	buf[len] = '\0';
12896 
12897 	return parse_cpu_mask_str(buf, mask, mask_sz);
12898 }
12899 
12900 int libbpf_num_possible_cpus(void)
12901 {
12902 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12903 	static int cpus;
12904 	int err, n, i, tmp_cpus;
12905 	bool *mask;
12906 
12907 	tmp_cpus = READ_ONCE(cpus);
12908 	if (tmp_cpus > 0)
12909 		return tmp_cpus;
12910 
12911 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12912 	if (err)
12913 		return libbpf_err(err);
12914 
12915 	tmp_cpus = 0;
12916 	for (i = 0; i < n; i++) {
12917 		if (mask[i])
12918 			tmp_cpus++;
12919 	}
12920 	free(mask);
12921 
12922 	WRITE_ONCE(cpus, tmp_cpus);
12923 	return tmp_cpus;
12924 }
12925 
12926 static int populate_skeleton_maps(const struct bpf_object *obj,
12927 				  struct bpf_map_skeleton *maps,
12928 				  size_t map_cnt)
12929 {
12930 	int i;
12931 
12932 	for (i = 0; i < map_cnt; i++) {
12933 		struct bpf_map **map = maps[i].map;
12934 		const char *name = maps[i].name;
12935 		void **mmaped = maps[i].mmaped;
12936 
12937 		*map = bpf_object__find_map_by_name(obj, name);
12938 		if (!*map) {
12939 			pr_warn("failed to find skeleton map '%s'\n", name);
12940 			return -ESRCH;
12941 		}
12942 
12943 		/* externs shouldn't be pre-setup from user code */
12944 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12945 			*mmaped = (*map)->mmaped;
12946 	}
12947 	return 0;
12948 }
12949 
12950 static int populate_skeleton_progs(const struct bpf_object *obj,
12951 				   struct bpf_prog_skeleton *progs,
12952 				   size_t prog_cnt)
12953 {
12954 	int i;
12955 
12956 	for (i = 0; i < prog_cnt; i++) {
12957 		struct bpf_program **prog = progs[i].prog;
12958 		const char *name = progs[i].name;
12959 
12960 		*prog = bpf_object__find_program_by_name(obj, name);
12961 		if (!*prog) {
12962 			pr_warn("failed to find skeleton program '%s'\n", name);
12963 			return -ESRCH;
12964 		}
12965 	}
12966 	return 0;
12967 }
12968 
12969 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12970 			      const struct bpf_object_open_opts *opts)
12971 {
12972 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12973 		.object_name = s->name,
12974 	);
12975 	struct bpf_object *obj;
12976 	int err;
12977 
12978 	/* Attempt to preserve opts->object_name, unless overriden by user
12979 	 * explicitly. Overwriting object name for skeletons is discouraged,
12980 	 * as it breaks global data maps, because they contain object name
12981 	 * prefix as their own map name prefix. When skeleton is generated,
12982 	 * bpftool is making an assumption that this name will stay the same.
12983 	 */
12984 	if (opts) {
12985 		memcpy(&skel_opts, opts, sizeof(*opts));
12986 		if (!opts->object_name)
12987 			skel_opts.object_name = s->name;
12988 	}
12989 
12990 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12991 	err = libbpf_get_error(obj);
12992 	if (err) {
12993 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12994 			s->name, err);
12995 		return libbpf_err(err);
12996 	}
12997 
12998 	*s->obj = obj;
12999 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13000 	if (err) {
13001 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13002 		return libbpf_err(err);
13003 	}
13004 
13005 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13006 	if (err) {
13007 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13008 		return libbpf_err(err);
13009 	}
13010 
13011 	return 0;
13012 }
13013 
13014 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13015 {
13016 	int err, len, var_idx, i;
13017 	const char *var_name;
13018 	const struct bpf_map *map;
13019 	struct btf *btf;
13020 	__u32 map_type_id;
13021 	const struct btf_type *map_type, *var_type;
13022 	const struct bpf_var_skeleton *var_skel;
13023 	struct btf_var_secinfo *var;
13024 
13025 	if (!s->obj)
13026 		return libbpf_err(-EINVAL);
13027 
13028 	btf = bpf_object__btf(s->obj);
13029 	if (!btf) {
13030 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13031 		        bpf_object__name(s->obj));
13032 		return libbpf_err(-errno);
13033 	}
13034 
13035 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13036 	if (err) {
13037 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13038 		return libbpf_err(err);
13039 	}
13040 
13041 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13042 	if (err) {
13043 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13044 		return libbpf_err(err);
13045 	}
13046 
13047 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13048 		var_skel = &s->vars[var_idx];
13049 		map = *var_skel->map;
13050 		map_type_id = bpf_map__btf_value_type_id(map);
13051 		map_type = btf__type_by_id(btf, map_type_id);
13052 
13053 		if (!btf_is_datasec(map_type)) {
13054 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13055 				bpf_map__name(map),
13056 				__btf_kind_str(btf_kind(map_type)));
13057 			return libbpf_err(-EINVAL);
13058 		}
13059 
13060 		len = btf_vlen(map_type);
13061 		var = btf_var_secinfos(map_type);
13062 		for (i = 0; i < len; i++, var++) {
13063 			var_type = btf__type_by_id(btf, var->type);
13064 			var_name = btf__name_by_offset(btf, var_type->name_off);
13065 			if (strcmp(var_name, var_skel->name) == 0) {
13066 				*var_skel->addr = map->mmaped + var->offset;
13067 				break;
13068 			}
13069 		}
13070 	}
13071 	return 0;
13072 }
13073 
13074 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13075 {
13076 	if (!s)
13077 		return;
13078 	free(s->maps);
13079 	free(s->progs);
13080 	free(s->vars);
13081 	free(s);
13082 }
13083 
13084 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13085 {
13086 	int i, err;
13087 
13088 	err = bpf_object__load(*s->obj);
13089 	if (err) {
13090 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13091 		return libbpf_err(err);
13092 	}
13093 
13094 	for (i = 0; i < s->map_cnt; i++) {
13095 		struct bpf_map *map = *s->maps[i].map;
13096 		size_t mmap_sz = bpf_map_mmap_sz(map);
13097 		int prot, map_fd = bpf_map__fd(map);
13098 		void **mmaped = s->maps[i].mmaped;
13099 
13100 		if (!mmaped)
13101 			continue;
13102 
13103 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13104 			*mmaped = NULL;
13105 			continue;
13106 		}
13107 
13108 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13109 			prot = PROT_READ;
13110 		else
13111 			prot = PROT_READ | PROT_WRITE;
13112 
13113 		/* Remap anonymous mmap()-ed "map initialization image" as
13114 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13115 		 * memory address. This will cause kernel to change process'
13116 		 * page table to point to a different piece of kernel memory,
13117 		 * but from userspace point of view memory address (and its
13118 		 * contents, being identical at this point) will stay the
13119 		 * same. This mapping will be released by bpf_object__close()
13120 		 * as per normal clean up procedure, so we don't need to worry
13121 		 * about it from skeleton's clean up perspective.
13122 		 */
13123 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
13124 				MAP_SHARED | MAP_FIXED, map_fd, 0);
13125 		if (*mmaped == MAP_FAILED) {
13126 			err = -errno;
13127 			*mmaped = NULL;
13128 			pr_warn("failed to re-mmap() map '%s': %d\n",
13129 				 bpf_map__name(map), err);
13130 			return libbpf_err(err);
13131 		}
13132 	}
13133 
13134 	return 0;
13135 }
13136 
13137 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13138 {
13139 	int i, err;
13140 
13141 	for (i = 0; i < s->prog_cnt; i++) {
13142 		struct bpf_program *prog = *s->progs[i].prog;
13143 		struct bpf_link **link = s->progs[i].link;
13144 
13145 		if (!prog->autoload)
13146 			continue;
13147 
13148 		/* auto-attaching not supported for this program */
13149 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13150 			continue;
13151 
13152 		/* if user already set the link manually, don't attempt auto-attach */
13153 		if (*link)
13154 			continue;
13155 
13156 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13157 		if (err) {
13158 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13159 				bpf_program__name(prog), err);
13160 			return libbpf_err(err);
13161 		}
13162 
13163 		/* It's possible that for some SEC() definitions auto-attach
13164 		 * is supported in some cases (e.g., if definition completely
13165 		 * specifies target information), but is not in other cases.
13166 		 * SEC("uprobe") is one such case. If user specified target
13167 		 * binary and function name, such BPF program can be
13168 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13169 		 * attach to fail. It should just be skipped.
13170 		 * attach_fn signals such case with returning 0 (no error) and
13171 		 * setting link to NULL.
13172 		 */
13173 	}
13174 
13175 	return 0;
13176 }
13177 
13178 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13179 {
13180 	int i;
13181 
13182 	for (i = 0; i < s->prog_cnt; i++) {
13183 		struct bpf_link **link = s->progs[i].link;
13184 
13185 		bpf_link__destroy(*link);
13186 		*link = NULL;
13187 	}
13188 }
13189 
13190 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13191 {
13192 	if (!s)
13193 		return;
13194 
13195 	if (s->progs)
13196 		bpf_object__detach_skeleton(s);
13197 	if (s->obj)
13198 		bpf_object__close(*s->obj);
13199 	free(s->maps);
13200 	free(s->progs);
13201 	free(s);
13202 }
13203