1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef EM_BPF 59 #define EM_BPF 247 60 #endif 61 62 #ifndef BPF_FS_MAGIC 63 #define BPF_FS_MAGIC 0xcafe4a11 64 #endif 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static const struct btf_type * 77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 78 79 static int __base_pr(enum libbpf_print_level level, const char *format, 80 va_list args) 81 { 82 if (level == LIBBPF_DEBUG) 83 return 0; 84 85 return vfprintf(stderr, format, args); 86 } 87 88 static libbpf_print_fn_t __libbpf_pr = __base_pr; 89 90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 91 { 92 libbpf_print_fn_t old_print_fn = __libbpf_pr; 93 94 __libbpf_pr = fn; 95 return old_print_fn; 96 } 97 98 __printf(2, 3) 99 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 100 { 101 va_list args; 102 103 if (!__libbpf_pr) 104 return; 105 106 va_start(args, format); 107 __libbpf_pr(level, format, args); 108 va_end(args); 109 } 110 111 static void pr_perm_msg(int err) 112 { 113 struct rlimit limit; 114 char buf[100]; 115 116 if (err != -EPERM || geteuid() != 0) 117 return; 118 119 err = getrlimit(RLIMIT_MEMLOCK, &limit); 120 if (err) 121 return; 122 123 if (limit.rlim_cur == RLIM_INFINITY) 124 return; 125 126 if (limit.rlim_cur < 1024) 127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 128 else if (limit.rlim_cur < 1024*1024) 129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 130 else 131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 132 133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 134 buf); 135 } 136 137 #define STRERR_BUFSIZE 128 138 139 /* Copied from tools/perf/util/util.h */ 140 #ifndef zfree 141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 142 #endif 143 144 #ifndef zclose 145 # define zclose(fd) ({ \ 146 int ___err = 0; \ 147 if ((fd) >= 0) \ 148 ___err = close((fd)); \ 149 fd = -1; \ 150 ___err; }) 151 #endif 152 153 static inline __u64 ptr_to_u64(const void *ptr) 154 { 155 return (__u64) (unsigned long) ptr; 156 } 157 158 enum kern_feature_id { 159 /* v4.14: kernel support for program & map names. */ 160 FEAT_PROG_NAME, 161 /* v5.2: kernel support for global data sections. */ 162 FEAT_GLOBAL_DATA, 163 /* BTF support */ 164 FEAT_BTF, 165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 166 FEAT_BTF_FUNC, 167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 168 FEAT_BTF_DATASEC, 169 /* BTF_FUNC_GLOBAL is supported */ 170 FEAT_BTF_GLOBAL_FUNC, 171 /* BPF_F_MMAPABLE is supported for arrays */ 172 FEAT_ARRAY_MMAP, 173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 174 FEAT_EXP_ATTACH_TYPE, 175 /* bpf_probe_read_{kernel,user}[_str] helpers */ 176 FEAT_PROBE_READ_KERN, 177 /* BPF_PROG_BIND_MAP is supported */ 178 FEAT_PROG_BIND_MAP, 179 __FEAT_CNT, 180 }; 181 182 static bool kernel_supports(enum kern_feature_id feat_id); 183 184 enum reloc_type { 185 RELO_LD64, 186 RELO_CALL, 187 RELO_DATA, 188 RELO_EXTERN, 189 }; 190 191 struct reloc_desc { 192 enum reloc_type type; 193 int insn_idx; 194 int map_idx; 195 int sym_off; 196 bool processed; 197 }; 198 199 struct bpf_sec_def; 200 201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 202 struct bpf_program *prog); 203 204 struct bpf_sec_def { 205 const char *sec; 206 size_t len; 207 enum bpf_prog_type prog_type; 208 enum bpf_attach_type expected_attach_type; 209 bool is_exp_attach_type_optional; 210 bool is_attachable; 211 bool is_attach_btf; 212 bool is_sleepable; 213 attach_fn_t attach_fn; 214 }; 215 216 /* 217 * bpf_prog should be a better name but it has been used in 218 * linux/filter.h. 219 */ 220 struct bpf_program { 221 const struct bpf_sec_def *sec_def; 222 char *sec_name; 223 size_t sec_idx; 224 /* this program's instruction offset (in number of instructions) 225 * within its containing ELF section 226 */ 227 size_t sec_insn_off; 228 /* number of original instructions in ELF section belonging to this 229 * program, not taking into account subprogram instructions possible 230 * appended later during relocation 231 */ 232 size_t sec_insn_cnt; 233 /* Offset (in number of instructions) of the start of instruction 234 * belonging to this BPF program within its containing main BPF 235 * program. For the entry-point (main) BPF program, this is always 236 * zero. For a sub-program, this gets reset before each of main BPF 237 * programs are processed and relocated and is used to determined 238 * whether sub-program was already appended to the main program, and 239 * if yes, at which instruction offset. 240 */ 241 size_t sub_insn_off; 242 243 char *name; 244 /* sec_name with / replaced by _; makes recursive pinning 245 * in bpf_object__pin_programs easier 246 */ 247 char *pin_name; 248 249 /* instructions that belong to BPF program; insns[0] is located at 250 * sec_insn_off instruction within its ELF section in ELF file, so 251 * when mapping ELF file instruction index to the local instruction, 252 * one needs to subtract sec_insn_off; and vice versa. 253 */ 254 struct bpf_insn *insns; 255 /* actual number of instruction in this BPF program's image; for 256 * entry-point BPF programs this includes the size of main program 257 * itself plus all the used sub-programs, appended at the end 258 */ 259 size_t insns_cnt; 260 261 struct reloc_desc *reloc_desc; 262 int nr_reloc; 263 int log_level; 264 265 struct { 266 int nr; 267 int *fds; 268 } instances; 269 bpf_program_prep_t preprocessor; 270 271 struct bpf_object *obj; 272 void *priv; 273 bpf_program_clear_priv_t clear_priv; 274 275 bool load; 276 enum bpf_prog_type type; 277 enum bpf_attach_type expected_attach_type; 278 int prog_ifindex; 279 __u32 attach_btf_id; 280 __u32 attach_prog_fd; 281 void *func_info; 282 __u32 func_info_rec_size; 283 __u32 func_info_cnt; 284 285 void *line_info; 286 __u32 line_info_rec_size; 287 __u32 line_info_cnt; 288 __u32 prog_flags; 289 }; 290 291 struct bpf_struct_ops { 292 const char *tname; 293 const struct btf_type *type; 294 struct bpf_program **progs; 295 __u32 *kern_func_off; 296 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 297 void *data; 298 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 299 * btf_vmlinux's format. 300 * struct bpf_struct_ops_tcp_congestion_ops { 301 * [... some other kernel fields ...] 302 * struct tcp_congestion_ops data; 303 * } 304 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 305 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 306 * from "data". 307 */ 308 void *kern_vdata; 309 __u32 type_id; 310 }; 311 312 #define DATA_SEC ".data" 313 #define BSS_SEC ".bss" 314 #define RODATA_SEC ".rodata" 315 #define KCONFIG_SEC ".kconfig" 316 #define KSYMS_SEC ".ksyms" 317 #define STRUCT_OPS_SEC ".struct_ops" 318 319 enum libbpf_map_type { 320 LIBBPF_MAP_UNSPEC, 321 LIBBPF_MAP_DATA, 322 LIBBPF_MAP_BSS, 323 LIBBPF_MAP_RODATA, 324 LIBBPF_MAP_KCONFIG, 325 }; 326 327 static const char * const libbpf_type_to_btf_name[] = { 328 [LIBBPF_MAP_DATA] = DATA_SEC, 329 [LIBBPF_MAP_BSS] = BSS_SEC, 330 [LIBBPF_MAP_RODATA] = RODATA_SEC, 331 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 332 }; 333 334 struct bpf_map { 335 char *name; 336 int fd; 337 int sec_idx; 338 size_t sec_offset; 339 int map_ifindex; 340 int inner_map_fd; 341 struct bpf_map_def def; 342 __u32 numa_node; 343 __u32 btf_var_idx; 344 __u32 btf_key_type_id; 345 __u32 btf_value_type_id; 346 __u32 btf_vmlinux_value_type_id; 347 void *priv; 348 bpf_map_clear_priv_t clear_priv; 349 enum libbpf_map_type libbpf_type; 350 void *mmaped; 351 struct bpf_struct_ops *st_ops; 352 struct bpf_map *inner_map; 353 void **init_slots; 354 int init_slots_sz; 355 char *pin_path; 356 bool pinned; 357 bool reused; 358 }; 359 360 enum extern_type { 361 EXT_UNKNOWN, 362 EXT_KCFG, 363 EXT_KSYM, 364 }; 365 366 enum kcfg_type { 367 KCFG_UNKNOWN, 368 KCFG_CHAR, 369 KCFG_BOOL, 370 KCFG_INT, 371 KCFG_TRISTATE, 372 KCFG_CHAR_ARR, 373 }; 374 375 struct extern_desc { 376 enum extern_type type; 377 int sym_idx; 378 int btf_id; 379 int sec_btf_id; 380 const char *name; 381 bool is_set; 382 bool is_weak; 383 union { 384 struct { 385 enum kcfg_type type; 386 int sz; 387 int align; 388 int data_off; 389 bool is_signed; 390 } kcfg; 391 struct { 392 unsigned long long addr; 393 394 /* target btf_id of the corresponding kernel var. */ 395 int vmlinux_btf_id; 396 397 /* local btf_id of the ksym extern's type. */ 398 __u32 type_id; 399 } ksym; 400 }; 401 }; 402 403 static LIST_HEAD(bpf_objects_list); 404 405 struct bpf_object { 406 char name[BPF_OBJ_NAME_LEN]; 407 char license[64]; 408 __u32 kern_version; 409 410 struct bpf_program *programs; 411 size_t nr_programs; 412 struct bpf_map *maps; 413 size_t nr_maps; 414 size_t maps_cap; 415 416 char *kconfig; 417 struct extern_desc *externs; 418 int nr_extern; 419 int kconfig_map_idx; 420 int rodata_map_idx; 421 422 bool loaded; 423 bool has_subcalls; 424 425 /* 426 * Information when doing elf related work. Only valid if fd 427 * is valid. 428 */ 429 struct { 430 int fd; 431 const void *obj_buf; 432 size_t obj_buf_sz; 433 Elf *elf; 434 GElf_Ehdr ehdr; 435 Elf_Data *symbols; 436 Elf_Data *data; 437 Elf_Data *rodata; 438 Elf_Data *bss; 439 Elf_Data *st_ops_data; 440 size_t shstrndx; /* section index for section name strings */ 441 size_t strtabidx; 442 struct { 443 GElf_Shdr shdr; 444 Elf_Data *data; 445 } *reloc_sects; 446 int nr_reloc_sects; 447 int maps_shndx; 448 int btf_maps_shndx; 449 __u32 btf_maps_sec_btf_id; 450 int text_shndx; 451 int symbols_shndx; 452 int data_shndx; 453 int rodata_shndx; 454 int bss_shndx; 455 int st_ops_shndx; 456 } efile; 457 /* 458 * All loaded bpf_object is linked in a list, which is 459 * hidden to caller. bpf_objects__<func> handlers deal with 460 * all objects. 461 */ 462 struct list_head list; 463 464 struct btf *btf; 465 /* Parse and load BTF vmlinux if any of the programs in the object need 466 * it at load time. 467 */ 468 struct btf *btf_vmlinux; 469 struct btf_ext *btf_ext; 470 471 void *priv; 472 bpf_object_clear_priv_t clear_priv; 473 474 char path[]; 475 }; 476 #define obj_elf_valid(o) ((o)->efile.elf) 477 478 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 479 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 480 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 481 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 482 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 483 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 484 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 485 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 486 size_t off, __u32 sym_type, GElf_Sym *sym); 487 488 void bpf_program__unload(struct bpf_program *prog) 489 { 490 int i; 491 492 if (!prog) 493 return; 494 495 /* 496 * If the object is opened but the program was never loaded, 497 * it is possible that prog->instances.nr == -1. 498 */ 499 if (prog->instances.nr > 0) { 500 for (i = 0; i < prog->instances.nr; i++) 501 zclose(prog->instances.fds[i]); 502 } else if (prog->instances.nr != -1) { 503 pr_warn("Internal error: instances.nr is %d\n", 504 prog->instances.nr); 505 } 506 507 prog->instances.nr = -1; 508 zfree(&prog->instances.fds); 509 510 zfree(&prog->func_info); 511 zfree(&prog->line_info); 512 } 513 514 static void bpf_program__exit(struct bpf_program *prog) 515 { 516 if (!prog) 517 return; 518 519 if (prog->clear_priv) 520 prog->clear_priv(prog, prog->priv); 521 522 prog->priv = NULL; 523 prog->clear_priv = NULL; 524 525 bpf_program__unload(prog); 526 zfree(&prog->name); 527 zfree(&prog->sec_name); 528 zfree(&prog->pin_name); 529 zfree(&prog->insns); 530 zfree(&prog->reloc_desc); 531 532 prog->nr_reloc = 0; 533 prog->insns_cnt = 0; 534 prog->sec_idx = -1; 535 } 536 537 static char *__bpf_program__pin_name(struct bpf_program *prog) 538 { 539 char *name, *p; 540 541 name = p = strdup(prog->sec_name); 542 while ((p = strchr(p, '/'))) 543 *p = '_'; 544 545 return name; 546 } 547 548 static bool insn_is_subprog_call(const struct bpf_insn *insn) 549 { 550 return BPF_CLASS(insn->code) == BPF_JMP && 551 BPF_OP(insn->code) == BPF_CALL && 552 BPF_SRC(insn->code) == BPF_K && 553 insn->src_reg == BPF_PSEUDO_CALL && 554 insn->dst_reg == 0 && 555 insn->off == 0; 556 } 557 558 static int 559 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 560 const char *name, size_t sec_idx, const char *sec_name, 561 size_t sec_off, void *insn_data, size_t insn_data_sz) 562 { 563 int i; 564 565 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 566 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 567 sec_name, name, sec_off, insn_data_sz); 568 return -EINVAL; 569 } 570 571 memset(prog, 0, sizeof(*prog)); 572 prog->obj = obj; 573 574 prog->sec_idx = sec_idx; 575 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 576 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 577 /* insns_cnt can later be increased by appending used subprograms */ 578 prog->insns_cnt = prog->sec_insn_cnt; 579 580 prog->type = BPF_PROG_TYPE_UNSPEC; 581 prog->load = true; 582 583 prog->instances.fds = NULL; 584 prog->instances.nr = -1; 585 586 prog->sec_name = strdup(sec_name); 587 if (!prog->sec_name) 588 goto errout; 589 590 prog->name = strdup(name); 591 if (!prog->name) 592 goto errout; 593 594 prog->pin_name = __bpf_program__pin_name(prog); 595 if (!prog->pin_name) 596 goto errout; 597 598 prog->insns = malloc(insn_data_sz); 599 if (!prog->insns) 600 goto errout; 601 memcpy(prog->insns, insn_data, insn_data_sz); 602 603 for (i = 0; i < prog->insns_cnt; i++) { 604 if (insn_is_subprog_call(&prog->insns[i])) { 605 obj->has_subcalls = true; 606 break; 607 } 608 } 609 610 return 0; 611 errout: 612 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 613 bpf_program__exit(prog); 614 return -ENOMEM; 615 } 616 617 static int 618 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 619 const char *sec_name, int sec_idx) 620 { 621 struct bpf_program *prog, *progs; 622 void *data = sec_data->d_buf; 623 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 624 int nr_progs, err; 625 const char *name; 626 GElf_Sym sym; 627 628 progs = obj->programs; 629 nr_progs = obj->nr_programs; 630 sec_off = 0; 631 632 while (sec_off < sec_sz) { 633 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 634 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 635 sec_name, sec_off); 636 return -LIBBPF_ERRNO__FORMAT; 637 } 638 639 prog_sz = sym.st_size; 640 641 name = elf_sym_str(obj, sym.st_name); 642 if (!name) { 643 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 644 sec_name, sec_off); 645 return -LIBBPF_ERRNO__FORMAT; 646 } 647 648 if (sec_off + prog_sz > sec_sz) { 649 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 650 sec_name, sec_off); 651 return -LIBBPF_ERRNO__FORMAT; 652 } 653 654 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 655 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 656 657 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 658 if (!progs) { 659 /* 660 * In this case the original obj->programs 661 * is still valid, so don't need special treat for 662 * bpf_close_object(). 663 */ 664 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 665 sec_name, name); 666 return -ENOMEM; 667 } 668 obj->programs = progs; 669 670 prog = &progs[nr_progs]; 671 672 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 673 sec_off, data + sec_off, prog_sz); 674 if (err) 675 return err; 676 677 nr_progs++; 678 obj->nr_programs = nr_progs; 679 680 sec_off += prog_sz; 681 } 682 683 return 0; 684 } 685 686 static __u32 get_kernel_version(void) 687 { 688 __u32 major, minor, patch; 689 struct utsname info; 690 691 uname(&info); 692 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 693 return 0; 694 return KERNEL_VERSION(major, minor, patch); 695 } 696 697 static const struct btf_member * 698 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 699 { 700 struct btf_member *m; 701 int i; 702 703 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 704 if (btf_member_bit_offset(t, i) == bit_offset) 705 return m; 706 } 707 708 return NULL; 709 } 710 711 static const struct btf_member * 712 find_member_by_name(const struct btf *btf, const struct btf_type *t, 713 const char *name) 714 { 715 struct btf_member *m; 716 int i; 717 718 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 719 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 720 return m; 721 } 722 723 return NULL; 724 } 725 726 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 727 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 728 const char *name, __u32 kind); 729 730 static int 731 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 732 const struct btf_type **type, __u32 *type_id, 733 const struct btf_type **vtype, __u32 *vtype_id, 734 const struct btf_member **data_member) 735 { 736 const struct btf_type *kern_type, *kern_vtype; 737 const struct btf_member *kern_data_member; 738 __s32 kern_vtype_id, kern_type_id; 739 __u32 i; 740 741 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 742 if (kern_type_id < 0) { 743 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 744 tname); 745 return kern_type_id; 746 } 747 kern_type = btf__type_by_id(btf, kern_type_id); 748 749 /* Find the corresponding "map_value" type that will be used 750 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 751 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 752 * btf_vmlinux. 753 */ 754 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 755 tname, BTF_KIND_STRUCT); 756 if (kern_vtype_id < 0) { 757 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 758 STRUCT_OPS_VALUE_PREFIX, tname); 759 return kern_vtype_id; 760 } 761 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 762 763 /* Find "struct tcp_congestion_ops" from 764 * struct bpf_struct_ops_tcp_congestion_ops { 765 * [ ... ] 766 * struct tcp_congestion_ops data; 767 * } 768 */ 769 kern_data_member = btf_members(kern_vtype); 770 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 771 if (kern_data_member->type == kern_type_id) 772 break; 773 } 774 if (i == btf_vlen(kern_vtype)) { 775 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 776 tname, STRUCT_OPS_VALUE_PREFIX, tname); 777 return -EINVAL; 778 } 779 780 *type = kern_type; 781 *type_id = kern_type_id; 782 *vtype = kern_vtype; 783 *vtype_id = kern_vtype_id; 784 *data_member = kern_data_member; 785 786 return 0; 787 } 788 789 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 790 { 791 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 792 } 793 794 /* Init the map's fields that depend on kern_btf */ 795 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 796 const struct btf *btf, 797 const struct btf *kern_btf) 798 { 799 const struct btf_member *member, *kern_member, *kern_data_member; 800 const struct btf_type *type, *kern_type, *kern_vtype; 801 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 802 struct bpf_struct_ops *st_ops; 803 void *data, *kern_data; 804 const char *tname; 805 int err; 806 807 st_ops = map->st_ops; 808 type = st_ops->type; 809 tname = st_ops->tname; 810 err = find_struct_ops_kern_types(kern_btf, tname, 811 &kern_type, &kern_type_id, 812 &kern_vtype, &kern_vtype_id, 813 &kern_data_member); 814 if (err) 815 return err; 816 817 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 818 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 819 820 map->def.value_size = kern_vtype->size; 821 map->btf_vmlinux_value_type_id = kern_vtype_id; 822 823 st_ops->kern_vdata = calloc(1, kern_vtype->size); 824 if (!st_ops->kern_vdata) 825 return -ENOMEM; 826 827 data = st_ops->data; 828 kern_data_off = kern_data_member->offset / 8; 829 kern_data = st_ops->kern_vdata + kern_data_off; 830 831 member = btf_members(type); 832 for (i = 0; i < btf_vlen(type); i++, member++) { 833 const struct btf_type *mtype, *kern_mtype; 834 __u32 mtype_id, kern_mtype_id; 835 void *mdata, *kern_mdata; 836 __s64 msize, kern_msize; 837 __u32 moff, kern_moff; 838 __u32 kern_member_idx; 839 const char *mname; 840 841 mname = btf__name_by_offset(btf, member->name_off); 842 kern_member = find_member_by_name(kern_btf, kern_type, mname); 843 if (!kern_member) { 844 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 845 map->name, mname); 846 return -ENOTSUP; 847 } 848 849 kern_member_idx = kern_member - btf_members(kern_type); 850 if (btf_member_bitfield_size(type, i) || 851 btf_member_bitfield_size(kern_type, kern_member_idx)) { 852 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 853 map->name, mname); 854 return -ENOTSUP; 855 } 856 857 moff = member->offset / 8; 858 kern_moff = kern_member->offset / 8; 859 860 mdata = data + moff; 861 kern_mdata = kern_data + kern_moff; 862 863 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 864 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 865 &kern_mtype_id); 866 if (BTF_INFO_KIND(mtype->info) != 867 BTF_INFO_KIND(kern_mtype->info)) { 868 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 869 map->name, mname, BTF_INFO_KIND(mtype->info), 870 BTF_INFO_KIND(kern_mtype->info)); 871 return -ENOTSUP; 872 } 873 874 if (btf_is_ptr(mtype)) { 875 struct bpf_program *prog; 876 877 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 878 kern_mtype = skip_mods_and_typedefs(kern_btf, 879 kern_mtype->type, 880 &kern_mtype_id); 881 if (!btf_is_func_proto(mtype) || 882 !btf_is_func_proto(kern_mtype)) { 883 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 884 map->name, mname); 885 return -ENOTSUP; 886 } 887 888 prog = st_ops->progs[i]; 889 if (!prog) { 890 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 891 map->name, mname); 892 continue; 893 } 894 895 prog->attach_btf_id = kern_type_id; 896 prog->expected_attach_type = kern_member_idx; 897 898 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 899 900 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 901 map->name, mname, prog->name, moff, 902 kern_moff); 903 904 continue; 905 } 906 907 msize = btf__resolve_size(btf, mtype_id); 908 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 909 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 910 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 911 map->name, mname, (ssize_t)msize, 912 (ssize_t)kern_msize); 913 return -ENOTSUP; 914 } 915 916 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 917 map->name, mname, (unsigned int)msize, 918 moff, kern_moff); 919 memcpy(kern_mdata, mdata, msize); 920 } 921 922 return 0; 923 } 924 925 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 926 { 927 struct bpf_map *map; 928 size_t i; 929 int err; 930 931 for (i = 0; i < obj->nr_maps; i++) { 932 map = &obj->maps[i]; 933 934 if (!bpf_map__is_struct_ops(map)) 935 continue; 936 937 err = bpf_map__init_kern_struct_ops(map, obj->btf, 938 obj->btf_vmlinux); 939 if (err) 940 return err; 941 } 942 943 return 0; 944 } 945 946 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 947 { 948 const struct btf_type *type, *datasec; 949 const struct btf_var_secinfo *vsi; 950 struct bpf_struct_ops *st_ops; 951 const char *tname, *var_name; 952 __s32 type_id, datasec_id; 953 const struct btf *btf; 954 struct bpf_map *map; 955 __u32 i; 956 957 if (obj->efile.st_ops_shndx == -1) 958 return 0; 959 960 btf = obj->btf; 961 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 962 BTF_KIND_DATASEC); 963 if (datasec_id < 0) { 964 pr_warn("struct_ops init: DATASEC %s not found\n", 965 STRUCT_OPS_SEC); 966 return -EINVAL; 967 } 968 969 datasec = btf__type_by_id(btf, datasec_id); 970 vsi = btf_var_secinfos(datasec); 971 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 972 type = btf__type_by_id(obj->btf, vsi->type); 973 var_name = btf__name_by_offset(obj->btf, type->name_off); 974 975 type_id = btf__resolve_type(obj->btf, vsi->type); 976 if (type_id < 0) { 977 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 978 vsi->type, STRUCT_OPS_SEC); 979 return -EINVAL; 980 } 981 982 type = btf__type_by_id(obj->btf, type_id); 983 tname = btf__name_by_offset(obj->btf, type->name_off); 984 if (!tname[0]) { 985 pr_warn("struct_ops init: anonymous type is not supported\n"); 986 return -ENOTSUP; 987 } 988 if (!btf_is_struct(type)) { 989 pr_warn("struct_ops init: %s is not a struct\n", tname); 990 return -EINVAL; 991 } 992 993 map = bpf_object__add_map(obj); 994 if (IS_ERR(map)) 995 return PTR_ERR(map); 996 997 map->sec_idx = obj->efile.st_ops_shndx; 998 map->sec_offset = vsi->offset; 999 map->name = strdup(var_name); 1000 if (!map->name) 1001 return -ENOMEM; 1002 1003 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1004 map->def.key_size = sizeof(int); 1005 map->def.value_size = type->size; 1006 map->def.max_entries = 1; 1007 1008 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1009 if (!map->st_ops) 1010 return -ENOMEM; 1011 st_ops = map->st_ops; 1012 st_ops->data = malloc(type->size); 1013 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1014 st_ops->kern_func_off = malloc(btf_vlen(type) * 1015 sizeof(*st_ops->kern_func_off)); 1016 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1017 return -ENOMEM; 1018 1019 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1020 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1021 var_name, STRUCT_OPS_SEC); 1022 return -EINVAL; 1023 } 1024 1025 memcpy(st_ops->data, 1026 obj->efile.st_ops_data->d_buf + vsi->offset, 1027 type->size); 1028 st_ops->tname = tname; 1029 st_ops->type = type; 1030 st_ops->type_id = type_id; 1031 1032 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1033 tname, type_id, var_name, vsi->offset); 1034 } 1035 1036 return 0; 1037 } 1038 1039 static struct bpf_object *bpf_object__new(const char *path, 1040 const void *obj_buf, 1041 size_t obj_buf_sz, 1042 const char *obj_name) 1043 { 1044 struct bpf_object *obj; 1045 char *end; 1046 1047 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1048 if (!obj) { 1049 pr_warn("alloc memory failed for %s\n", path); 1050 return ERR_PTR(-ENOMEM); 1051 } 1052 1053 strcpy(obj->path, path); 1054 if (obj_name) { 1055 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1056 obj->name[sizeof(obj->name) - 1] = 0; 1057 } else { 1058 /* Using basename() GNU version which doesn't modify arg. */ 1059 strncpy(obj->name, basename((void *)path), 1060 sizeof(obj->name) - 1); 1061 end = strchr(obj->name, '.'); 1062 if (end) 1063 *end = 0; 1064 } 1065 1066 obj->efile.fd = -1; 1067 /* 1068 * Caller of this function should also call 1069 * bpf_object__elf_finish() after data collection to return 1070 * obj_buf to user. If not, we should duplicate the buffer to 1071 * avoid user freeing them before elf finish. 1072 */ 1073 obj->efile.obj_buf = obj_buf; 1074 obj->efile.obj_buf_sz = obj_buf_sz; 1075 obj->efile.maps_shndx = -1; 1076 obj->efile.btf_maps_shndx = -1; 1077 obj->efile.data_shndx = -1; 1078 obj->efile.rodata_shndx = -1; 1079 obj->efile.bss_shndx = -1; 1080 obj->efile.st_ops_shndx = -1; 1081 obj->kconfig_map_idx = -1; 1082 obj->rodata_map_idx = -1; 1083 1084 obj->kern_version = get_kernel_version(); 1085 obj->loaded = false; 1086 1087 INIT_LIST_HEAD(&obj->list); 1088 list_add(&obj->list, &bpf_objects_list); 1089 return obj; 1090 } 1091 1092 static void bpf_object__elf_finish(struct bpf_object *obj) 1093 { 1094 if (!obj_elf_valid(obj)) 1095 return; 1096 1097 if (obj->efile.elf) { 1098 elf_end(obj->efile.elf); 1099 obj->efile.elf = NULL; 1100 } 1101 obj->efile.symbols = NULL; 1102 obj->efile.data = NULL; 1103 obj->efile.rodata = NULL; 1104 obj->efile.bss = NULL; 1105 obj->efile.st_ops_data = NULL; 1106 1107 zfree(&obj->efile.reloc_sects); 1108 obj->efile.nr_reloc_sects = 0; 1109 zclose(obj->efile.fd); 1110 obj->efile.obj_buf = NULL; 1111 obj->efile.obj_buf_sz = 0; 1112 } 1113 1114 /* if libelf is old and doesn't support mmap(), fall back to read() */ 1115 #ifndef ELF_C_READ_MMAP 1116 #define ELF_C_READ_MMAP ELF_C_READ 1117 #endif 1118 1119 static int bpf_object__elf_init(struct bpf_object *obj) 1120 { 1121 int err = 0; 1122 GElf_Ehdr *ep; 1123 1124 if (obj_elf_valid(obj)) { 1125 pr_warn("elf: init internal error\n"); 1126 return -LIBBPF_ERRNO__LIBELF; 1127 } 1128 1129 if (obj->efile.obj_buf_sz > 0) { 1130 /* 1131 * obj_buf should have been validated by 1132 * bpf_object__open_buffer(). 1133 */ 1134 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1135 obj->efile.obj_buf_sz); 1136 } else { 1137 obj->efile.fd = open(obj->path, O_RDONLY); 1138 if (obj->efile.fd < 0) { 1139 char errmsg[STRERR_BUFSIZE], *cp; 1140 1141 err = -errno; 1142 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1143 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1144 return err; 1145 } 1146 1147 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1148 } 1149 1150 if (!obj->efile.elf) { 1151 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1152 err = -LIBBPF_ERRNO__LIBELF; 1153 goto errout; 1154 } 1155 1156 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1157 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1158 err = -LIBBPF_ERRNO__FORMAT; 1159 goto errout; 1160 } 1161 ep = &obj->efile.ehdr; 1162 1163 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1164 pr_warn("elf: failed to get section names section index for %s: %s\n", 1165 obj->path, elf_errmsg(-1)); 1166 err = -LIBBPF_ERRNO__FORMAT; 1167 goto errout; 1168 } 1169 1170 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1171 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1172 pr_warn("elf: failed to get section names strings from %s: %s\n", 1173 obj->path, elf_errmsg(-1)); 1174 return -LIBBPF_ERRNO__FORMAT; 1175 } 1176 1177 /* Old LLVM set e_machine to EM_NONE */ 1178 if (ep->e_type != ET_REL || 1179 (ep->e_machine && ep->e_machine != EM_BPF)) { 1180 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1181 err = -LIBBPF_ERRNO__FORMAT; 1182 goto errout; 1183 } 1184 1185 return 0; 1186 errout: 1187 bpf_object__elf_finish(obj); 1188 return err; 1189 } 1190 1191 static int bpf_object__check_endianness(struct bpf_object *obj) 1192 { 1193 #if __BYTE_ORDER == __LITTLE_ENDIAN 1194 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1195 return 0; 1196 #elif __BYTE_ORDER == __BIG_ENDIAN 1197 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1198 return 0; 1199 #else 1200 # error "Unrecognized __BYTE_ORDER__" 1201 #endif 1202 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1203 return -LIBBPF_ERRNO__ENDIAN; 1204 } 1205 1206 static int 1207 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1208 { 1209 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1210 pr_debug("license of %s is %s\n", obj->path, obj->license); 1211 return 0; 1212 } 1213 1214 static int 1215 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1216 { 1217 __u32 kver; 1218 1219 if (size != sizeof(kver)) { 1220 pr_warn("invalid kver section in %s\n", obj->path); 1221 return -LIBBPF_ERRNO__FORMAT; 1222 } 1223 memcpy(&kver, data, sizeof(kver)); 1224 obj->kern_version = kver; 1225 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1226 return 0; 1227 } 1228 1229 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1230 { 1231 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1232 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1233 return true; 1234 return false; 1235 } 1236 1237 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1238 __u32 *size) 1239 { 1240 int ret = -ENOENT; 1241 1242 *size = 0; 1243 if (!name) { 1244 return -EINVAL; 1245 } else if (!strcmp(name, DATA_SEC)) { 1246 if (obj->efile.data) 1247 *size = obj->efile.data->d_size; 1248 } else if (!strcmp(name, BSS_SEC)) { 1249 if (obj->efile.bss) 1250 *size = obj->efile.bss->d_size; 1251 } else if (!strcmp(name, RODATA_SEC)) { 1252 if (obj->efile.rodata) 1253 *size = obj->efile.rodata->d_size; 1254 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1255 if (obj->efile.st_ops_data) 1256 *size = obj->efile.st_ops_data->d_size; 1257 } else { 1258 Elf_Scn *scn = elf_sec_by_name(obj, name); 1259 Elf_Data *data = elf_sec_data(obj, scn); 1260 1261 if (data) { 1262 ret = 0; /* found it */ 1263 *size = data->d_size; 1264 } 1265 } 1266 1267 return *size ? 0 : ret; 1268 } 1269 1270 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1271 __u32 *off) 1272 { 1273 Elf_Data *symbols = obj->efile.symbols; 1274 const char *sname; 1275 size_t si; 1276 1277 if (!name || !off) 1278 return -EINVAL; 1279 1280 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1281 GElf_Sym sym; 1282 1283 if (!gelf_getsym(symbols, si, &sym)) 1284 continue; 1285 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1286 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1287 continue; 1288 1289 sname = elf_sym_str(obj, sym.st_name); 1290 if (!sname) { 1291 pr_warn("failed to get sym name string for var %s\n", 1292 name); 1293 return -EIO; 1294 } 1295 if (strcmp(name, sname) == 0) { 1296 *off = sym.st_value; 1297 return 0; 1298 } 1299 } 1300 1301 return -ENOENT; 1302 } 1303 1304 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1305 { 1306 struct bpf_map *new_maps; 1307 size_t new_cap; 1308 int i; 1309 1310 if (obj->nr_maps < obj->maps_cap) 1311 return &obj->maps[obj->nr_maps++]; 1312 1313 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1314 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1315 if (!new_maps) { 1316 pr_warn("alloc maps for object failed\n"); 1317 return ERR_PTR(-ENOMEM); 1318 } 1319 1320 obj->maps_cap = new_cap; 1321 obj->maps = new_maps; 1322 1323 /* zero out new maps */ 1324 memset(obj->maps + obj->nr_maps, 0, 1325 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1326 /* 1327 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1328 * when failure (zclose won't close negative fd)). 1329 */ 1330 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1331 obj->maps[i].fd = -1; 1332 obj->maps[i].inner_map_fd = -1; 1333 } 1334 1335 return &obj->maps[obj->nr_maps++]; 1336 } 1337 1338 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1339 { 1340 long page_sz = sysconf(_SC_PAGE_SIZE); 1341 size_t map_sz; 1342 1343 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1344 map_sz = roundup(map_sz, page_sz); 1345 return map_sz; 1346 } 1347 1348 static char *internal_map_name(struct bpf_object *obj, 1349 enum libbpf_map_type type) 1350 { 1351 char map_name[BPF_OBJ_NAME_LEN], *p; 1352 const char *sfx = libbpf_type_to_btf_name[type]; 1353 int sfx_len = max((size_t)7, strlen(sfx)); 1354 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1355 strlen(obj->name)); 1356 1357 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1358 sfx_len, libbpf_type_to_btf_name[type]); 1359 1360 /* sanitise map name to characters allowed by kernel */ 1361 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1362 if (!isalnum(*p) && *p != '_' && *p != '.') 1363 *p = '_'; 1364 1365 return strdup(map_name); 1366 } 1367 1368 static int 1369 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1370 int sec_idx, void *data, size_t data_sz) 1371 { 1372 struct bpf_map_def *def; 1373 struct bpf_map *map; 1374 int err; 1375 1376 map = bpf_object__add_map(obj); 1377 if (IS_ERR(map)) 1378 return PTR_ERR(map); 1379 1380 map->libbpf_type = type; 1381 map->sec_idx = sec_idx; 1382 map->sec_offset = 0; 1383 map->name = internal_map_name(obj, type); 1384 if (!map->name) { 1385 pr_warn("failed to alloc map name\n"); 1386 return -ENOMEM; 1387 } 1388 1389 def = &map->def; 1390 def->type = BPF_MAP_TYPE_ARRAY; 1391 def->key_size = sizeof(int); 1392 def->value_size = data_sz; 1393 def->max_entries = 1; 1394 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1395 ? BPF_F_RDONLY_PROG : 0; 1396 def->map_flags |= BPF_F_MMAPABLE; 1397 1398 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1399 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1400 1401 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1402 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1403 if (map->mmaped == MAP_FAILED) { 1404 err = -errno; 1405 map->mmaped = NULL; 1406 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1407 map->name, err); 1408 zfree(&map->name); 1409 return err; 1410 } 1411 1412 if (data) 1413 memcpy(map->mmaped, data, data_sz); 1414 1415 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1416 return 0; 1417 } 1418 1419 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1420 { 1421 int err; 1422 1423 /* 1424 * Populate obj->maps with libbpf internal maps. 1425 */ 1426 if (obj->efile.data_shndx >= 0) { 1427 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1428 obj->efile.data_shndx, 1429 obj->efile.data->d_buf, 1430 obj->efile.data->d_size); 1431 if (err) 1432 return err; 1433 } 1434 if (obj->efile.rodata_shndx >= 0) { 1435 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1436 obj->efile.rodata_shndx, 1437 obj->efile.rodata->d_buf, 1438 obj->efile.rodata->d_size); 1439 if (err) 1440 return err; 1441 1442 obj->rodata_map_idx = obj->nr_maps - 1; 1443 } 1444 if (obj->efile.bss_shndx >= 0) { 1445 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1446 obj->efile.bss_shndx, 1447 NULL, 1448 obj->efile.bss->d_size); 1449 if (err) 1450 return err; 1451 } 1452 return 0; 1453 } 1454 1455 1456 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1457 const void *name) 1458 { 1459 int i; 1460 1461 for (i = 0; i < obj->nr_extern; i++) { 1462 if (strcmp(obj->externs[i].name, name) == 0) 1463 return &obj->externs[i]; 1464 } 1465 return NULL; 1466 } 1467 1468 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1469 char value) 1470 { 1471 switch (ext->kcfg.type) { 1472 case KCFG_BOOL: 1473 if (value == 'm') { 1474 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1475 ext->name, value); 1476 return -EINVAL; 1477 } 1478 *(bool *)ext_val = value == 'y' ? true : false; 1479 break; 1480 case KCFG_TRISTATE: 1481 if (value == 'y') 1482 *(enum libbpf_tristate *)ext_val = TRI_YES; 1483 else if (value == 'm') 1484 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1485 else /* value == 'n' */ 1486 *(enum libbpf_tristate *)ext_val = TRI_NO; 1487 break; 1488 case KCFG_CHAR: 1489 *(char *)ext_val = value; 1490 break; 1491 case KCFG_UNKNOWN: 1492 case KCFG_INT: 1493 case KCFG_CHAR_ARR: 1494 default: 1495 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1496 ext->name, value); 1497 return -EINVAL; 1498 } 1499 ext->is_set = true; 1500 return 0; 1501 } 1502 1503 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1504 const char *value) 1505 { 1506 size_t len; 1507 1508 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1509 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1510 return -EINVAL; 1511 } 1512 1513 len = strlen(value); 1514 if (value[len - 1] != '"') { 1515 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1516 ext->name, value); 1517 return -EINVAL; 1518 } 1519 1520 /* strip quotes */ 1521 len -= 2; 1522 if (len >= ext->kcfg.sz) { 1523 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1524 ext->name, value, len, ext->kcfg.sz - 1); 1525 len = ext->kcfg.sz - 1; 1526 } 1527 memcpy(ext_val, value + 1, len); 1528 ext_val[len] = '\0'; 1529 ext->is_set = true; 1530 return 0; 1531 } 1532 1533 static int parse_u64(const char *value, __u64 *res) 1534 { 1535 char *value_end; 1536 int err; 1537 1538 errno = 0; 1539 *res = strtoull(value, &value_end, 0); 1540 if (errno) { 1541 err = -errno; 1542 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1543 return err; 1544 } 1545 if (*value_end) { 1546 pr_warn("failed to parse '%s' as integer completely\n", value); 1547 return -EINVAL; 1548 } 1549 return 0; 1550 } 1551 1552 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1553 { 1554 int bit_sz = ext->kcfg.sz * 8; 1555 1556 if (ext->kcfg.sz == 8) 1557 return true; 1558 1559 /* Validate that value stored in u64 fits in integer of `ext->sz` 1560 * bytes size without any loss of information. If the target integer 1561 * is signed, we rely on the following limits of integer type of 1562 * Y bits and subsequent transformation: 1563 * 1564 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1565 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1566 * 0 <= X + 2^(Y-1) < 2^Y 1567 * 1568 * For unsigned target integer, check that all the (64 - Y) bits are 1569 * zero. 1570 */ 1571 if (ext->kcfg.is_signed) 1572 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1573 else 1574 return (v >> bit_sz) == 0; 1575 } 1576 1577 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1578 __u64 value) 1579 { 1580 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1581 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1582 ext->name, (unsigned long long)value); 1583 return -EINVAL; 1584 } 1585 if (!is_kcfg_value_in_range(ext, value)) { 1586 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1587 ext->name, (unsigned long long)value, ext->kcfg.sz); 1588 return -ERANGE; 1589 } 1590 switch (ext->kcfg.sz) { 1591 case 1: *(__u8 *)ext_val = value; break; 1592 case 2: *(__u16 *)ext_val = value; break; 1593 case 4: *(__u32 *)ext_val = value; break; 1594 case 8: *(__u64 *)ext_val = value; break; 1595 default: 1596 return -EINVAL; 1597 } 1598 ext->is_set = true; 1599 return 0; 1600 } 1601 1602 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1603 char *buf, void *data) 1604 { 1605 struct extern_desc *ext; 1606 char *sep, *value; 1607 int len, err = 0; 1608 void *ext_val; 1609 __u64 num; 1610 1611 if (strncmp(buf, "CONFIG_", 7)) 1612 return 0; 1613 1614 sep = strchr(buf, '='); 1615 if (!sep) { 1616 pr_warn("failed to parse '%s': no separator\n", buf); 1617 return -EINVAL; 1618 } 1619 1620 /* Trim ending '\n' */ 1621 len = strlen(buf); 1622 if (buf[len - 1] == '\n') 1623 buf[len - 1] = '\0'; 1624 /* Split on '=' and ensure that a value is present. */ 1625 *sep = '\0'; 1626 if (!sep[1]) { 1627 *sep = '='; 1628 pr_warn("failed to parse '%s': no value\n", buf); 1629 return -EINVAL; 1630 } 1631 1632 ext = find_extern_by_name(obj, buf); 1633 if (!ext || ext->is_set) 1634 return 0; 1635 1636 ext_val = data + ext->kcfg.data_off; 1637 value = sep + 1; 1638 1639 switch (*value) { 1640 case 'y': case 'n': case 'm': 1641 err = set_kcfg_value_tri(ext, ext_val, *value); 1642 break; 1643 case '"': 1644 err = set_kcfg_value_str(ext, ext_val, value); 1645 break; 1646 default: 1647 /* assume integer */ 1648 err = parse_u64(value, &num); 1649 if (err) { 1650 pr_warn("extern (kcfg) %s=%s should be integer\n", 1651 ext->name, value); 1652 return err; 1653 } 1654 err = set_kcfg_value_num(ext, ext_val, num); 1655 break; 1656 } 1657 if (err) 1658 return err; 1659 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1660 return 0; 1661 } 1662 1663 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1664 { 1665 char buf[PATH_MAX]; 1666 struct utsname uts; 1667 int len, err = 0; 1668 gzFile file; 1669 1670 uname(&uts); 1671 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1672 if (len < 0) 1673 return -EINVAL; 1674 else if (len >= PATH_MAX) 1675 return -ENAMETOOLONG; 1676 1677 /* gzopen also accepts uncompressed files. */ 1678 file = gzopen(buf, "r"); 1679 if (!file) 1680 file = gzopen("/proc/config.gz", "r"); 1681 1682 if (!file) { 1683 pr_warn("failed to open system Kconfig\n"); 1684 return -ENOENT; 1685 } 1686 1687 while (gzgets(file, buf, sizeof(buf))) { 1688 err = bpf_object__process_kconfig_line(obj, buf, data); 1689 if (err) { 1690 pr_warn("error parsing system Kconfig line '%s': %d\n", 1691 buf, err); 1692 goto out; 1693 } 1694 } 1695 1696 out: 1697 gzclose(file); 1698 return err; 1699 } 1700 1701 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1702 const char *config, void *data) 1703 { 1704 char buf[PATH_MAX]; 1705 int err = 0; 1706 FILE *file; 1707 1708 file = fmemopen((void *)config, strlen(config), "r"); 1709 if (!file) { 1710 err = -errno; 1711 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1712 return err; 1713 } 1714 1715 while (fgets(buf, sizeof(buf), file)) { 1716 err = bpf_object__process_kconfig_line(obj, buf, data); 1717 if (err) { 1718 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1719 buf, err); 1720 break; 1721 } 1722 } 1723 1724 fclose(file); 1725 return err; 1726 } 1727 1728 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1729 { 1730 struct extern_desc *last_ext = NULL, *ext; 1731 size_t map_sz; 1732 int i, err; 1733 1734 for (i = 0; i < obj->nr_extern; i++) { 1735 ext = &obj->externs[i]; 1736 if (ext->type == EXT_KCFG) 1737 last_ext = ext; 1738 } 1739 1740 if (!last_ext) 1741 return 0; 1742 1743 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1744 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1745 obj->efile.symbols_shndx, 1746 NULL, map_sz); 1747 if (err) 1748 return err; 1749 1750 obj->kconfig_map_idx = obj->nr_maps - 1; 1751 1752 return 0; 1753 } 1754 1755 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1756 { 1757 Elf_Data *symbols = obj->efile.symbols; 1758 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1759 Elf_Data *data = NULL; 1760 Elf_Scn *scn; 1761 1762 if (obj->efile.maps_shndx < 0) 1763 return 0; 1764 1765 if (!symbols) 1766 return -EINVAL; 1767 1768 1769 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1770 data = elf_sec_data(obj, scn); 1771 if (!scn || !data) { 1772 pr_warn("elf: failed to get legacy map definitions for %s\n", 1773 obj->path); 1774 return -EINVAL; 1775 } 1776 1777 /* 1778 * Count number of maps. Each map has a name. 1779 * Array of maps is not supported: only the first element is 1780 * considered. 1781 * 1782 * TODO: Detect array of map and report error. 1783 */ 1784 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1785 for (i = 0; i < nr_syms; i++) { 1786 GElf_Sym sym; 1787 1788 if (!gelf_getsym(symbols, i, &sym)) 1789 continue; 1790 if (sym.st_shndx != obj->efile.maps_shndx) 1791 continue; 1792 nr_maps++; 1793 } 1794 /* Assume equally sized map definitions */ 1795 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1796 nr_maps, data->d_size, obj->path); 1797 1798 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1799 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1800 obj->path); 1801 return -EINVAL; 1802 } 1803 map_def_sz = data->d_size / nr_maps; 1804 1805 /* Fill obj->maps using data in "maps" section. */ 1806 for (i = 0; i < nr_syms; i++) { 1807 GElf_Sym sym; 1808 const char *map_name; 1809 struct bpf_map_def *def; 1810 struct bpf_map *map; 1811 1812 if (!gelf_getsym(symbols, i, &sym)) 1813 continue; 1814 if (sym.st_shndx != obj->efile.maps_shndx) 1815 continue; 1816 1817 map = bpf_object__add_map(obj); 1818 if (IS_ERR(map)) 1819 return PTR_ERR(map); 1820 1821 map_name = elf_sym_str(obj, sym.st_name); 1822 if (!map_name) { 1823 pr_warn("failed to get map #%d name sym string for obj %s\n", 1824 i, obj->path); 1825 return -LIBBPF_ERRNO__FORMAT; 1826 } 1827 1828 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1829 map->sec_idx = sym.st_shndx; 1830 map->sec_offset = sym.st_value; 1831 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1832 map_name, map->sec_idx, map->sec_offset); 1833 if (sym.st_value + map_def_sz > data->d_size) { 1834 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1835 obj->path, map_name); 1836 return -EINVAL; 1837 } 1838 1839 map->name = strdup(map_name); 1840 if (!map->name) { 1841 pr_warn("failed to alloc map name\n"); 1842 return -ENOMEM; 1843 } 1844 pr_debug("map %d is \"%s\"\n", i, map->name); 1845 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1846 /* 1847 * If the definition of the map in the object file fits in 1848 * bpf_map_def, copy it. Any extra fields in our version 1849 * of bpf_map_def will default to zero as a result of the 1850 * calloc above. 1851 */ 1852 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1853 memcpy(&map->def, def, map_def_sz); 1854 } else { 1855 /* 1856 * Here the map structure being read is bigger than what 1857 * we expect, truncate if the excess bits are all zero. 1858 * If they are not zero, reject this map as 1859 * incompatible. 1860 */ 1861 char *b; 1862 1863 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1864 b < ((char *)def) + map_def_sz; b++) { 1865 if (*b != 0) { 1866 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1867 obj->path, map_name); 1868 if (strict) 1869 return -EINVAL; 1870 } 1871 } 1872 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1873 } 1874 } 1875 return 0; 1876 } 1877 1878 static const struct btf_type * 1879 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1880 { 1881 const struct btf_type *t = btf__type_by_id(btf, id); 1882 1883 if (res_id) 1884 *res_id = id; 1885 1886 while (btf_is_mod(t) || btf_is_typedef(t)) { 1887 if (res_id) 1888 *res_id = t->type; 1889 t = btf__type_by_id(btf, t->type); 1890 } 1891 1892 return t; 1893 } 1894 1895 static const struct btf_type * 1896 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1897 { 1898 const struct btf_type *t; 1899 1900 t = skip_mods_and_typedefs(btf, id, NULL); 1901 if (!btf_is_ptr(t)) 1902 return NULL; 1903 1904 t = skip_mods_and_typedefs(btf, t->type, res_id); 1905 1906 return btf_is_func_proto(t) ? t : NULL; 1907 } 1908 1909 static const char *btf_kind_str(const struct btf_type *t) 1910 { 1911 switch (btf_kind(t)) { 1912 case BTF_KIND_UNKN: return "void"; 1913 case BTF_KIND_INT: return "int"; 1914 case BTF_KIND_PTR: return "ptr"; 1915 case BTF_KIND_ARRAY: return "array"; 1916 case BTF_KIND_STRUCT: return "struct"; 1917 case BTF_KIND_UNION: return "union"; 1918 case BTF_KIND_ENUM: return "enum"; 1919 case BTF_KIND_FWD: return "fwd"; 1920 case BTF_KIND_TYPEDEF: return "typedef"; 1921 case BTF_KIND_VOLATILE: return "volatile"; 1922 case BTF_KIND_CONST: return "const"; 1923 case BTF_KIND_RESTRICT: return "restrict"; 1924 case BTF_KIND_FUNC: return "func"; 1925 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1926 case BTF_KIND_VAR: return "var"; 1927 case BTF_KIND_DATASEC: return "datasec"; 1928 default: return "unknown"; 1929 } 1930 } 1931 1932 /* 1933 * Fetch integer attribute of BTF map definition. Such attributes are 1934 * represented using a pointer to an array, in which dimensionality of array 1935 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1936 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1937 * type definition, while using only sizeof(void *) space in ELF data section. 1938 */ 1939 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1940 const struct btf_member *m, __u32 *res) 1941 { 1942 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1943 const char *name = btf__name_by_offset(btf, m->name_off); 1944 const struct btf_array *arr_info; 1945 const struct btf_type *arr_t; 1946 1947 if (!btf_is_ptr(t)) { 1948 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1949 map_name, name, btf_kind_str(t)); 1950 return false; 1951 } 1952 1953 arr_t = btf__type_by_id(btf, t->type); 1954 if (!arr_t) { 1955 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1956 map_name, name, t->type); 1957 return false; 1958 } 1959 if (!btf_is_array(arr_t)) { 1960 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1961 map_name, name, btf_kind_str(arr_t)); 1962 return false; 1963 } 1964 arr_info = btf_array(arr_t); 1965 *res = arr_info->nelems; 1966 return true; 1967 } 1968 1969 static int build_map_pin_path(struct bpf_map *map, const char *path) 1970 { 1971 char buf[PATH_MAX]; 1972 int len; 1973 1974 if (!path) 1975 path = "/sys/fs/bpf"; 1976 1977 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1978 if (len < 0) 1979 return -EINVAL; 1980 else if (len >= PATH_MAX) 1981 return -ENAMETOOLONG; 1982 1983 return bpf_map__set_pin_path(map, buf); 1984 } 1985 1986 1987 static int parse_btf_map_def(struct bpf_object *obj, 1988 struct bpf_map *map, 1989 const struct btf_type *def, 1990 bool strict, bool is_inner, 1991 const char *pin_root_path) 1992 { 1993 const struct btf_type *t; 1994 const struct btf_member *m; 1995 int vlen, i; 1996 1997 vlen = btf_vlen(def); 1998 m = btf_members(def); 1999 for (i = 0; i < vlen; i++, m++) { 2000 const char *name = btf__name_by_offset(obj->btf, m->name_off); 2001 2002 if (!name) { 2003 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 2004 return -EINVAL; 2005 } 2006 if (strcmp(name, "type") == 0) { 2007 if (!get_map_field_int(map->name, obj->btf, m, 2008 &map->def.type)) 2009 return -EINVAL; 2010 pr_debug("map '%s': found type = %u.\n", 2011 map->name, map->def.type); 2012 } else if (strcmp(name, "max_entries") == 0) { 2013 if (!get_map_field_int(map->name, obj->btf, m, 2014 &map->def.max_entries)) 2015 return -EINVAL; 2016 pr_debug("map '%s': found max_entries = %u.\n", 2017 map->name, map->def.max_entries); 2018 } else if (strcmp(name, "map_flags") == 0) { 2019 if (!get_map_field_int(map->name, obj->btf, m, 2020 &map->def.map_flags)) 2021 return -EINVAL; 2022 pr_debug("map '%s': found map_flags = %u.\n", 2023 map->name, map->def.map_flags); 2024 } else if (strcmp(name, "numa_node") == 0) { 2025 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2026 return -EINVAL; 2027 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2028 } else if (strcmp(name, "key_size") == 0) { 2029 __u32 sz; 2030 2031 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2032 return -EINVAL; 2033 pr_debug("map '%s': found key_size = %u.\n", 2034 map->name, sz); 2035 if (map->def.key_size && map->def.key_size != sz) { 2036 pr_warn("map '%s': conflicting key size %u != %u.\n", 2037 map->name, map->def.key_size, sz); 2038 return -EINVAL; 2039 } 2040 map->def.key_size = sz; 2041 } else if (strcmp(name, "key") == 0) { 2042 __s64 sz; 2043 2044 t = btf__type_by_id(obj->btf, m->type); 2045 if (!t) { 2046 pr_warn("map '%s': key type [%d] not found.\n", 2047 map->name, m->type); 2048 return -EINVAL; 2049 } 2050 if (!btf_is_ptr(t)) { 2051 pr_warn("map '%s': key spec is not PTR: %s.\n", 2052 map->name, btf_kind_str(t)); 2053 return -EINVAL; 2054 } 2055 sz = btf__resolve_size(obj->btf, t->type); 2056 if (sz < 0) { 2057 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2058 map->name, t->type, (ssize_t)sz); 2059 return sz; 2060 } 2061 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2062 map->name, t->type, (ssize_t)sz); 2063 if (map->def.key_size && map->def.key_size != sz) { 2064 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2065 map->name, map->def.key_size, (ssize_t)sz); 2066 return -EINVAL; 2067 } 2068 map->def.key_size = sz; 2069 map->btf_key_type_id = t->type; 2070 } else if (strcmp(name, "value_size") == 0) { 2071 __u32 sz; 2072 2073 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2074 return -EINVAL; 2075 pr_debug("map '%s': found value_size = %u.\n", 2076 map->name, sz); 2077 if (map->def.value_size && map->def.value_size != sz) { 2078 pr_warn("map '%s': conflicting value size %u != %u.\n", 2079 map->name, map->def.value_size, sz); 2080 return -EINVAL; 2081 } 2082 map->def.value_size = sz; 2083 } else if (strcmp(name, "value") == 0) { 2084 __s64 sz; 2085 2086 t = btf__type_by_id(obj->btf, m->type); 2087 if (!t) { 2088 pr_warn("map '%s': value type [%d] not found.\n", 2089 map->name, m->type); 2090 return -EINVAL; 2091 } 2092 if (!btf_is_ptr(t)) { 2093 pr_warn("map '%s': value spec is not PTR: %s.\n", 2094 map->name, btf_kind_str(t)); 2095 return -EINVAL; 2096 } 2097 sz = btf__resolve_size(obj->btf, t->type); 2098 if (sz < 0) { 2099 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2100 map->name, t->type, (ssize_t)sz); 2101 return sz; 2102 } 2103 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2104 map->name, t->type, (ssize_t)sz); 2105 if (map->def.value_size && map->def.value_size != sz) { 2106 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2107 map->name, map->def.value_size, (ssize_t)sz); 2108 return -EINVAL; 2109 } 2110 map->def.value_size = sz; 2111 map->btf_value_type_id = t->type; 2112 } 2113 else if (strcmp(name, "values") == 0) { 2114 int err; 2115 2116 if (is_inner) { 2117 pr_warn("map '%s': multi-level inner maps not supported.\n", 2118 map->name); 2119 return -ENOTSUP; 2120 } 2121 if (i != vlen - 1) { 2122 pr_warn("map '%s': '%s' member should be last.\n", 2123 map->name, name); 2124 return -EINVAL; 2125 } 2126 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2127 pr_warn("map '%s': should be map-in-map.\n", 2128 map->name); 2129 return -ENOTSUP; 2130 } 2131 if (map->def.value_size && map->def.value_size != 4) { 2132 pr_warn("map '%s': conflicting value size %u != 4.\n", 2133 map->name, map->def.value_size); 2134 return -EINVAL; 2135 } 2136 map->def.value_size = 4; 2137 t = btf__type_by_id(obj->btf, m->type); 2138 if (!t) { 2139 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2140 map->name, m->type); 2141 return -EINVAL; 2142 } 2143 if (!btf_is_array(t) || btf_array(t)->nelems) { 2144 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2145 map->name); 2146 return -EINVAL; 2147 } 2148 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2149 NULL); 2150 if (!btf_is_ptr(t)) { 2151 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2152 map->name, btf_kind_str(t)); 2153 return -EINVAL; 2154 } 2155 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2156 if (!btf_is_struct(t)) { 2157 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2158 map->name, btf_kind_str(t)); 2159 return -EINVAL; 2160 } 2161 2162 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2163 if (!map->inner_map) 2164 return -ENOMEM; 2165 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2166 map->inner_map->name = malloc(strlen(map->name) + 2167 sizeof(".inner") + 1); 2168 if (!map->inner_map->name) 2169 return -ENOMEM; 2170 sprintf(map->inner_map->name, "%s.inner", map->name); 2171 2172 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2173 true /* is_inner */, NULL); 2174 if (err) 2175 return err; 2176 } else if (strcmp(name, "pinning") == 0) { 2177 __u32 val; 2178 int err; 2179 2180 if (is_inner) { 2181 pr_debug("map '%s': inner def can't be pinned.\n", 2182 map->name); 2183 return -EINVAL; 2184 } 2185 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2186 return -EINVAL; 2187 pr_debug("map '%s': found pinning = %u.\n", 2188 map->name, val); 2189 2190 if (val != LIBBPF_PIN_NONE && 2191 val != LIBBPF_PIN_BY_NAME) { 2192 pr_warn("map '%s': invalid pinning value %u.\n", 2193 map->name, val); 2194 return -EINVAL; 2195 } 2196 if (val == LIBBPF_PIN_BY_NAME) { 2197 err = build_map_pin_path(map, pin_root_path); 2198 if (err) { 2199 pr_warn("map '%s': couldn't build pin path.\n", 2200 map->name); 2201 return err; 2202 } 2203 } 2204 } else { 2205 if (strict) { 2206 pr_warn("map '%s': unknown field '%s'.\n", 2207 map->name, name); 2208 return -ENOTSUP; 2209 } 2210 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2211 map->name, name); 2212 } 2213 } 2214 2215 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2216 pr_warn("map '%s': map type isn't specified.\n", map->name); 2217 return -EINVAL; 2218 } 2219 2220 return 0; 2221 } 2222 2223 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2224 const struct btf_type *sec, 2225 int var_idx, int sec_idx, 2226 const Elf_Data *data, bool strict, 2227 const char *pin_root_path) 2228 { 2229 const struct btf_type *var, *def; 2230 const struct btf_var_secinfo *vi; 2231 const struct btf_var *var_extra; 2232 const char *map_name; 2233 struct bpf_map *map; 2234 2235 vi = btf_var_secinfos(sec) + var_idx; 2236 var = btf__type_by_id(obj->btf, vi->type); 2237 var_extra = btf_var(var); 2238 map_name = btf__name_by_offset(obj->btf, var->name_off); 2239 2240 if (map_name == NULL || map_name[0] == '\0') { 2241 pr_warn("map #%d: empty name.\n", var_idx); 2242 return -EINVAL; 2243 } 2244 if ((__u64)vi->offset + vi->size > data->d_size) { 2245 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2246 return -EINVAL; 2247 } 2248 if (!btf_is_var(var)) { 2249 pr_warn("map '%s': unexpected var kind %s.\n", 2250 map_name, btf_kind_str(var)); 2251 return -EINVAL; 2252 } 2253 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2254 var_extra->linkage != BTF_VAR_STATIC) { 2255 pr_warn("map '%s': unsupported var linkage %u.\n", 2256 map_name, var_extra->linkage); 2257 return -EOPNOTSUPP; 2258 } 2259 2260 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2261 if (!btf_is_struct(def)) { 2262 pr_warn("map '%s': unexpected def kind %s.\n", 2263 map_name, btf_kind_str(var)); 2264 return -EINVAL; 2265 } 2266 if (def->size > vi->size) { 2267 pr_warn("map '%s': invalid def size.\n", map_name); 2268 return -EINVAL; 2269 } 2270 2271 map = bpf_object__add_map(obj); 2272 if (IS_ERR(map)) 2273 return PTR_ERR(map); 2274 map->name = strdup(map_name); 2275 if (!map->name) { 2276 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2277 return -ENOMEM; 2278 } 2279 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2280 map->def.type = BPF_MAP_TYPE_UNSPEC; 2281 map->sec_idx = sec_idx; 2282 map->sec_offset = vi->offset; 2283 map->btf_var_idx = var_idx; 2284 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2285 map_name, map->sec_idx, map->sec_offset); 2286 2287 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2288 } 2289 2290 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2291 const char *pin_root_path) 2292 { 2293 const struct btf_type *sec = NULL; 2294 int nr_types, i, vlen, err; 2295 const struct btf_type *t; 2296 const char *name; 2297 Elf_Data *data; 2298 Elf_Scn *scn; 2299 2300 if (obj->efile.btf_maps_shndx < 0) 2301 return 0; 2302 2303 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2304 data = elf_sec_data(obj, scn); 2305 if (!scn || !data) { 2306 pr_warn("elf: failed to get %s map definitions for %s\n", 2307 MAPS_ELF_SEC, obj->path); 2308 return -EINVAL; 2309 } 2310 2311 nr_types = btf__get_nr_types(obj->btf); 2312 for (i = 1; i <= nr_types; i++) { 2313 t = btf__type_by_id(obj->btf, i); 2314 if (!btf_is_datasec(t)) 2315 continue; 2316 name = btf__name_by_offset(obj->btf, t->name_off); 2317 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2318 sec = t; 2319 obj->efile.btf_maps_sec_btf_id = i; 2320 break; 2321 } 2322 } 2323 2324 if (!sec) { 2325 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2326 return -ENOENT; 2327 } 2328 2329 vlen = btf_vlen(sec); 2330 for (i = 0; i < vlen; i++) { 2331 err = bpf_object__init_user_btf_map(obj, sec, i, 2332 obj->efile.btf_maps_shndx, 2333 data, strict, 2334 pin_root_path); 2335 if (err) 2336 return err; 2337 } 2338 2339 return 0; 2340 } 2341 2342 static int bpf_object__init_maps(struct bpf_object *obj, 2343 const struct bpf_object_open_opts *opts) 2344 { 2345 const char *pin_root_path; 2346 bool strict; 2347 int err; 2348 2349 strict = !OPTS_GET(opts, relaxed_maps, false); 2350 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2351 2352 err = bpf_object__init_user_maps(obj, strict); 2353 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2354 err = err ?: bpf_object__init_global_data_maps(obj); 2355 err = err ?: bpf_object__init_kconfig_map(obj); 2356 err = err ?: bpf_object__init_struct_ops_maps(obj); 2357 if (err) 2358 return err; 2359 2360 return 0; 2361 } 2362 2363 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2364 { 2365 GElf_Shdr sh; 2366 2367 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2368 return false; 2369 2370 return sh.sh_flags & SHF_EXECINSTR; 2371 } 2372 2373 static bool btf_needs_sanitization(struct bpf_object *obj) 2374 { 2375 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2376 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2377 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2378 2379 return !has_func || !has_datasec || !has_func_global; 2380 } 2381 2382 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2383 { 2384 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2385 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2386 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2387 struct btf_type *t; 2388 int i, j, vlen; 2389 2390 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2391 t = (struct btf_type *)btf__type_by_id(btf, i); 2392 2393 if (!has_datasec && btf_is_var(t)) { 2394 /* replace VAR with INT */ 2395 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2396 /* 2397 * using size = 1 is the safest choice, 4 will be too 2398 * big and cause kernel BTF validation failure if 2399 * original variable took less than 4 bytes 2400 */ 2401 t->size = 1; 2402 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2403 } else if (!has_datasec && btf_is_datasec(t)) { 2404 /* replace DATASEC with STRUCT */ 2405 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2406 struct btf_member *m = btf_members(t); 2407 struct btf_type *vt; 2408 char *name; 2409 2410 name = (char *)btf__name_by_offset(btf, t->name_off); 2411 while (*name) { 2412 if (*name == '.') 2413 *name = '_'; 2414 name++; 2415 } 2416 2417 vlen = btf_vlen(t); 2418 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2419 for (j = 0; j < vlen; j++, v++, m++) { 2420 /* order of field assignments is important */ 2421 m->offset = v->offset * 8; 2422 m->type = v->type; 2423 /* preserve variable name as member name */ 2424 vt = (void *)btf__type_by_id(btf, v->type); 2425 m->name_off = vt->name_off; 2426 } 2427 } else if (!has_func && btf_is_func_proto(t)) { 2428 /* replace FUNC_PROTO with ENUM */ 2429 vlen = btf_vlen(t); 2430 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2431 t->size = sizeof(__u32); /* kernel enforced */ 2432 } else if (!has_func && btf_is_func(t)) { 2433 /* replace FUNC with TYPEDEF */ 2434 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2435 } else if (!has_func_global && btf_is_func(t)) { 2436 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2437 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2438 } 2439 } 2440 } 2441 2442 static bool libbpf_needs_btf(const struct bpf_object *obj) 2443 { 2444 return obj->efile.btf_maps_shndx >= 0 || 2445 obj->efile.st_ops_shndx >= 0 || 2446 obj->nr_extern > 0; 2447 } 2448 2449 static bool kernel_needs_btf(const struct bpf_object *obj) 2450 { 2451 return obj->efile.st_ops_shndx >= 0; 2452 } 2453 2454 static int bpf_object__init_btf(struct bpf_object *obj, 2455 Elf_Data *btf_data, 2456 Elf_Data *btf_ext_data) 2457 { 2458 int err = -ENOENT; 2459 2460 if (btf_data) { 2461 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2462 if (IS_ERR(obj->btf)) { 2463 err = PTR_ERR(obj->btf); 2464 obj->btf = NULL; 2465 pr_warn("Error loading ELF section %s: %d.\n", 2466 BTF_ELF_SEC, err); 2467 goto out; 2468 } 2469 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2470 btf__set_pointer_size(obj->btf, 8); 2471 err = 0; 2472 } 2473 if (btf_ext_data) { 2474 if (!obj->btf) { 2475 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2476 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2477 goto out; 2478 } 2479 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2480 btf_ext_data->d_size); 2481 if (IS_ERR(obj->btf_ext)) { 2482 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2483 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2484 obj->btf_ext = NULL; 2485 goto out; 2486 } 2487 } 2488 out: 2489 if (err && libbpf_needs_btf(obj)) { 2490 pr_warn("BTF is required, but is missing or corrupted.\n"); 2491 return err; 2492 } 2493 return 0; 2494 } 2495 2496 static int bpf_object__finalize_btf(struct bpf_object *obj) 2497 { 2498 int err; 2499 2500 if (!obj->btf) 2501 return 0; 2502 2503 err = btf__finalize_data(obj, obj->btf); 2504 if (err) { 2505 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2506 return err; 2507 } 2508 2509 return 0; 2510 } 2511 2512 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2513 { 2514 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2515 prog->type == BPF_PROG_TYPE_LSM) 2516 return true; 2517 2518 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2519 * also need vmlinux BTF 2520 */ 2521 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2522 return true; 2523 2524 return false; 2525 } 2526 2527 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2528 { 2529 bool need_vmlinux_btf = false; 2530 struct bpf_program *prog; 2531 int i, err; 2532 2533 /* CO-RE relocations need kernel BTF */ 2534 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2535 need_vmlinux_btf = true; 2536 2537 /* Support for typed ksyms needs kernel BTF */ 2538 for (i = 0; i < obj->nr_extern; i++) { 2539 const struct extern_desc *ext; 2540 2541 ext = &obj->externs[i]; 2542 if (ext->type == EXT_KSYM && ext->ksym.type_id) { 2543 need_vmlinux_btf = true; 2544 break; 2545 } 2546 } 2547 2548 bpf_object__for_each_program(prog, obj) { 2549 if (!prog->load) 2550 continue; 2551 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2552 need_vmlinux_btf = true; 2553 break; 2554 } 2555 } 2556 2557 if (!need_vmlinux_btf) 2558 return 0; 2559 2560 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2561 if (IS_ERR(obj->btf_vmlinux)) { 2562 err = PTR_ERR(obj->btf_vmlinux); 2563 pr_warn("Error loading vmlinux BTF: %d\n", err); 2564 obj->btf_vmlinux = NULL; 2565 return err; 2566 } 2567 return 0; 2568 } 2569 2570 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2571 { 2572 struct btf *kern_btf = obj->btf; 2573 bool btf_mandatory, sanitize; 2574 int err = 0; 2575 2576 if (!obj->btf) 2577 return 0; 2578 2579 if (!kernel_supports(FEAT_BTF)) { 2580 if (kernel_needs_btf(obj)) { 2581 err = -EOPNOTSUPP; 2582 goto report; 2583 } 2584 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2585 return 0; 2586 } 2587 2588 sanitize = btf_needs_sanitization(obj); 2589 if (sanitize) { 2590 const void *raw_data; 2591 __u32 sz; 2592 2593 /* clone BTF to sanitize a copy and leave the original intact */ 2594 raw_data = btf__get_raw_data(obj->btf, &sz); 2595 kern_btf = btf__new(raw_data, sz); 2596 if (IS_ERR(kern_btf)) 2597 return PTR_ERR(kern_btf); 2598 2599 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2600 btf__set_pointer_size(obj->btf, 8); 2601 bpf_object__sanitize_btf(obj, kern_btf); 2602 } 2603 2604 err = btf__load(kern_btf); 2605 if (sanitize) { 2606 if (!err) { 2607 /* move fd to libbpf's BTF */ 2608 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2609 btf__set_fd(kern_btf, -1); 2610 } 2611 btf__free(kern_btf); 2612 } 2613 report: 2614 if (err) { 2615 btf_mandatory = kernel_needs_btf(obj); 2616 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2617 btf_mandatory ? "BTF is mandatory, can't proceed." 2618 : "BTF is optional, ignoring."); 2619 if (!btf_mandatory) 2620 err = 0; 2621 } 2622 return err; 2623 } 2624 2625 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2626 { 2627 const char *name; 2628 2629 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2630 if (!name) { 2631 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2632 off, obj->path, elf_errmsg(-1)); 2633 return NULL; 2634 } 2635 2636 return name; 2637 } 2638 2639 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2640 { 2641 const char *name; 2642 2643 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2644 if (!name) { 2645 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2646 off, obj->path, elf_errmsg(-1)); 2647 return NULL; 2648 } 2649 2650 return name; 2651 } 2652 2653 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2654 { 2655 Elf_Scn *scn; 2656 2657 scn = elf_getscn(obj->efile.elf, idx); 2658 if (!scn) { 2659 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2660 idx, obj->path, elf_errmsg(-1)); 2661 return NULL; 2662 } 2663 return scn; 2664 } 2665 2666 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2667 { 2668 Elf_Scn *scn = NULL; 2669 Elf *elf = obj->efile.elf; 2670 const char *sec_name; 2671 2672 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2673 sec_name = elf_sec_name(obj, scn); 2674 if (!sec_name) 2675 return NULL; 2676 2677 if (strcmp(sec_name, name) != 0) 2678 continue; 2679 2680 return scn; 2681 } 2682 return NULL; 2683 } 2684 2685 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2686 { 2687 if (!scn) 2688 return -EINVAL; 2689 2690 if (gelf_getshdr(scn, hdr) != hdr) { 2691 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2692 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2693 return -EINVAL; 2694 } 2695 2696 return 0; 2697 } 2698 2699 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2700 { 2701 const char *name; 2702 GElf_Shdr sh; 2703 2704 if (!scn) 2705 return NULL; 2706 2707 if (elf_sec_hdr(obj, scn, &sh)) 2708 return NULL; 2709 2710 name = elf_sec_str(obj, sh.sh_name); 2711 if (!name) { 2712 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2713 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2714 return NULL; 2715 } 2716 2717 return name; 2718 } 2719 2720 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2721 { 2722 Elf_Data *data; 2723 2724 if (!scn) 2725 return NULL; 2726 2727 data = elf_getdata(scn, 0); 2728 if (!data) { 2729 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2730 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2731 obj->path, elf_errmsg(-1)); 2732 return NULL; 2733 } 2734 2735 return data; 2736 } 2737 2738 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2739 size_t off, __u32 sym_type, GElf_Sym *sym) 2740 { 2741 Elf_Data *symbols = obj->efile.symbols; 2742 size_t n = symbols->d_size / sizeof(GElf_Sym); 2743 int i; 2744 2745 for (i = 0; i < n; i++) { 2746 if (!gelf_getsym(symbols, i, sym)) 2747 continue; 2748 if (sym->st_shndx != sec_idx || sym->st_value != off) 2749 continue; 2750 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2751 continue; 2752 return 0; 2753 } 2754 2755 return -ENOENT; 2756 } 2757 2758 static bool is_sec_name_dwarf(const char *name) 2759 { 2760 /* approximation, but the actual list is too long */ 2761 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2762 } 2763 2764 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2765 { 2766 /* no special handling of .strtab */ 2767 if (hdr->sh_type == SHT_STRTAB) 2768 return true; 2769 2770 /* ignore .llvm_addrsig section as well */ 2771 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */) 2772 return true; 2773 2774 /* no subprograms will lead to an empty .text section, ignore it */ 2775 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2776 strcmp(name, ".text") == 0) 2777 return true; 2778 2779 /* DWARF sections */ 2780 if (is_sec_name_dwarf(name)) 2781 return true; 2782 2783 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2784 name += sizeof(".rel") - 1; 2785 /* DWARF section relocations */ 2786 if (is_sec_name_dwarf(name)) 2787 return true; 2788 2789 /* .BTF and .BTF.ext don't need relocations */ 2790 if (strcmp(name, BTF_ELF_SEC) == 0 || 2791 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2792 return true; 2793 } 2794 2795 return false; 2796 } 2797 2798 static int cmp_progs(const void *_a, const void *_b) 2799 { 2800 const struct bpf_program *a = _a; 2801 const struct bpf_program *b = _b; 2802 2803 if (a->sec_idx != b->sec_idx) 2804 return a->sec_idx < b->sec_idx ? -1 : 1; 2805 2806 /* sec_insn_off can't be the same within the section */ 2807 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2808 } 2809 2810 static int bpf_object__elf_collect(struct bpf_object *obj) 2811 { 2812 Elf *elf = obj->efile.elf; 2813 Elf_Data *btf_ext_data = NULL; 2814 Elf_Data *btf_data = NULL; 2815 int idx = 0, err = 0; 2816 const char *name; 2817 Elf_Data *data; 2818 Elf_Scn *scn; 2819 GElf_Shdr sh; 2820 2821 /* a bunch of ELF parsing functionality depends on processing symbols, 2822 * so do the first pass and find the symbol table 2823 */ 2824 scn = NULL; 2825 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2826 if (elf_sec_hdr(obj, scn, &sh)) 2827 return -LIBBPF_ERRNO__FORMAT; 2828 2829 if (sh.sh_type == SHT_SYMTAB) { 2830 if (obj->efile.symbols) { 2831 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2832 return -LIBBPF_ERRNO__FORMAT; 2833 } 2834 2835 data = elf_sec_data(obj, scn); 2836 if (!data) 2837 return -LIBBPF_ERRNO__FORMAT; 2838 2839 obj->efile.symbols = data; 2840 obj->efile.symbols_shndx = elf_ndxscn(scn); 2841 obj->efile.strtabidx = sh.sh_link; 2842 } 2843 } 2844 2845 scn = NULL; 2846 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2847 idx++; 2848 2849 if (elf_sec_hdr(obj, scn, &sh)) 2850 return -LIBBPF_ERRNO__FORMAT; 2851 2852 name = elf_sec_str(obj, sh.sh_name); 2853 if (!name) 2854 return -LIBBPF_ERRNO__FORMAT; 2855 2856 if (ignore_elf_section(&sh, name)) 2857 continue; 2858 2859 data = elf_sec_data(obj, scn); 2860 if (!data) 2861 return -LIBBPF_ERRNO__FORMAT; 2862 2863 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2864 idx, name, (unsigned long)data->d_size, 2865 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2866 (int)sh.sh_type); 2867 2868 if (strcmp(name, "license") == 0) { 2869 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2870 if (err) 2871 return err; 2872 } else if (strcmp(name, "version") == 0) { 2873 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2874 if (err) 2875 return err; 2876 } else if (strcmp(name, "maps") == 0) { 2877 obj->efile.maps_shndx = idx; 2878 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2879 obj->efile.btf_maps_shndx = idx; 2880 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2881 btf_data = data; 2882 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2883 btf_ext_data = data; 2884 } else if (sh.sh_type == SHT_SYMTAB) { 2885 /* already processed during the first pass above */ 2886 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2887 if (sh.sh_flags & SHF_EXECINSTR) { 2888 if (strcmp(name, ".text") == 0) 2889 obj->efile.text_shndx = idx; 2890 err = bpf_object__add_programs(obj, data, name, idx); 2891 if (err) 2892 return err; 2893 } else if (strcmp(name, DATA_SEC) == 0) { 2894 obj->efile.data = data; 2895 obj->efile.data_shndx = idx; 2896 } else if (strcmp(name, RODATA_SEC) == 0) { 2897 obj->efile.rodata = data; 2898 obj->efile.rodata_shndx = idx; 2899 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2900 obj->efile.st_ops_data = data; 2901 obj->efile.st_ops_shndx = idx; 2902 } else { 2903 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2904 idx, name); 2905 } 2906 } else if (sh.sh_type == SHT_REL) { 2907 int nr_sects = obj->efile.nr_reloc_sects; 2908 void *sects = obj->efile.reloc_sects; 2909 int sec = sh.sh_info; /* points to other section */ 2910 2911 /* Only do relo for section with exec instructions */ 2912 if (!section_have_execinstr(obj, sec) && 2913 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2914 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2915 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2916 idx, name, sec, 2917 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2918 continue; 2919 } 2920 2921 sects = libbpf_reallocarray(sects, nr_sects + 1, 2922 sizeof(*obj->efile.reloc_sects)); 2923 if (!sects) 2924 return -ENOMEM; 2925 2926 obj->efile.reloc_sects = sects; 2927 obj->efile.nr_reloc_sects++; 2928 2929 obj->efile.reloc_sects[nr_sects].shdr = sh; 2930 obj->efile.reloc_sects[nr_sects].data = data; 2931 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2932 obj->efile.bss = data; 2933 obj->efile.bss_shndx = idx; 2934 } else { 2935 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2936 (size_t)sh.sh_size); 2937 } 2938 } 2939 2940 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2941 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2942 return -LIBBPF_ERRNO__FORMAT; 2943 } 2944 2945 /* sort BPF programs by section name and in-section instruction offset 2946 * for faster search */ 2947 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2948 2949 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2950 } 2951 2952 static bool sym_is_extern(const GElf_Sym *sym) 2953 { 2954 int bind = GELF_ST_BIND(sym->st_info); 2955 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2956 return sym->st_shndx == SHN_UNDEF && 2957 (bind == STB_GLOBAL || bind == STB_WEAK) && 2958 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2959 } 2960 2961 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2962 { 2963 const struct btf_type *t; 2964 const char *var_name; 2965 int i, n; 2966 2967 if (!btf) 2968 return -ESRCH; 2969 2970 n = btf__get_nr_types(btf); 2971 for (i = 1; i <= n; i++) { 2972 t = btf__type_by_id(btf, i); 2973 2974 if (!btf_is_var(t)) 2975 continue; 2976 2977 var_name = btf__name_by_offset(btf, t->name_off); 2978 if (strcmp(var_name, ext_name)) 2979 continue; 2980 2981 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2982 return -EINVAL; 2983 2984 return i; 2985 } 2986 2987 return -ENOENT; 2988 } 2989 2990 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 2991 const struct btf_var_secinfo *vs; 2992 const struct btf_type *t; 2993 int i, j, n; 2994 2995 if (!btf) 2996 return -ESRCH; 2997 2998 n = btf__get_nr_types(btf); 2999 for (i = 1; i <= n; i++) { 3000 t = btf__type_by_id(btf, i); 3001 3002 if (!btf_is_datasec(t)) 3003 continue; 3004 3005 vs = btf_var_secinfos(t); 3006 for (j = 0; j < btf_vlen(t); j++, vs++) { 3007 if (vs->type == ext_btf_id) 3008 return i; 3009 } 3010 } 3011 3012 return -ENOENT; 3013 } 3014 3015 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3016 bool *is_signed) 3017 { 3018 const struct btf_type *t; 3019 const char *name; 3020 3021 t = skip_mods_and_typedefs(btf, id, NULL); 3022 name = btf__name_by_offset(btf, t->name_off); 3023 3024 if (is_signed) 3025 *is_signed = false; 3026 switch (btf_kind(t)) { 3027 case BTF_KIND_INT: { 3028 int enc = btf_int_encoding(t); 3029 3030 if (enc & BTF_INT_BOOL) 3031 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3032 if (is_signed) 3033 *is_signed = enc & BTF_INT_SIGNED; 3034 if (t->size == 1) 3035 return KCFG_CHAR; 3036 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3037 return KCFG_UNKNOWN; 3038 return KCFG_INT; 3039 } 3040 case BTF_KIND_ENUM: 3041 if (t->size != 4) 3042 return KCFG_UNKNOWN; 3043 if (strcmp(name, "libbpf_tristate")) 3044 return KCFG_UNKNOWN; 3045 return KCFG_TRISTATE; 3046 case BTF_KIND_ARRAY: 3047 if (btf_array(t)->nelems == 0) 3048 return KCFG_UNKNOWN; 3049 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3050 return KCFG_UNKNOWN; 3051 return KCFG_CHAR_ARR; 3052 default: 3053 return KCFG_UNKNOWN; 3054 } 3055 } 3056 3057 static int cmp_externs(const void *_a, const void *_b) 3058 { 3059 const struct extern_desc *a = _a; 3060 const struct extern_desc *b = _b; 3061 3062 if (a->type != b->type) 3063 return a->type < b->type ? -1 : 1; 3064 3065 if (a->type == EXT_KCFG) { 3066 /* descending order by alignment requirements */ 3067 if (a->kcfg.align != b->kcfg.align) 3068 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3069 /* ascending order by size, within same alignment class */ 3070 if (a->kcfg.sz != b->kcfg.sz) 3071 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3072 } 3073 3074 /* resolve ties by name */ 3075 return strcmp(a->name, b->name); 3076 } 3077 3078 static int find_int_btf_id(const struct btf *btf) 3079 { 3080 const struct btf_type *t; 3081 int i, n; 3082 3083 n = btf__get_nr_types(btf); 3084 for (i = 1; i <= n; i++) { 3085 t = btf__type_by_id(btf, i); 3086 3087 if (btf_is_int(t) && btf_int_bits(t) == 32) 3088 return i; 3089 } 3090 3091 return 0; 3092 } 3093 3094 static int bpf_object__collect_externs(struct bpf_object *obj) 3095 { 3096 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3097 const struct btf_type *t; 3098 struct extern_desc *ext; 3099 int i, n, off; 3100 const char *ext_name, *sec_name; 3101 Elf_Scn *scn; 3102 GElf_Shdr sh; 3103 3104 if (!obj->efile.symbols) 3105 return 0; 3106 3107 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3108 if (elf_sec_hdr(obj, scn, &sh)) 3109 return -LIBBPF_ERRNO__FORMAT; 3110 3111 n = sh.sh_size / sh.sh_entsize; 3112 pr_debug("looking for externs among %d symbols...\n", n); 3113 3114 for (i = 0; i < n; i++) { 3115 GElf_Sym sym; 3116 3117 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3118 return -LIBBPF_ERRNO__FORMAT; 3119 if (!sym_is_extern(&sym)) 3120 continue; 3121 ext_name = elf_sym_str(obj, sym.st_name); 3122 if (!ext_name || !ext_name[0]) 3123 continue; 3124 3125 ext = obj->externs; 3126 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3127 if (!ext) 3128 return -ENOMEM; 3129 obj->externs = ext; 3130 ext = &ext[obj->nr_extern]; 3131 memset(ext, 0, sizeof(*ext)); 3132 obj->nr_extern++; 3133 3134 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3135 if (ext->btf_id <= 0) { 3136 pr_warn("failed to find BTF for extern '%s': %d\n", 3137 ext_name, ext->btf_id); 3138 return ext->btf_id; 3139 } 3140 t = btf__type_by_id(obj->btf, ext->btf_id); 3141 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3142 ext->sym_idx = i; 3143 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3144 3145 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3146 if (ext->sec_btf_id <= 0) { 3147 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3148 ext_name, ext->btf_id, ext->sec_btf_id); 3149 return ext->sec_btf_id; 3150 } 3151 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3152 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3153 3154 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3155 kcfg_sec = sec; 3156 ext->type = EXT_KCFG; 3157 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3158 if (ext->kcfg.sz <= 0) { 3159 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3160 ext_name, ext->kcfg.sz); 3161 return ext->kcfg.sz; 3162 } 3163 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3164 if (ext->kcfg.align <= 0) { 3165 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3166 ext_name, ext->kcfg.align); 3167 return -EINVAL; 3168 } 3169 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3170 &ext->kcfg.is_signed); 3171 if (ext->kcfg.type == KCFG_UNKNOWN) { 3172 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3173 return -ENOTSUP; 3174 } 3175 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3176 ksym_sec = sec; 3177 ext->type = EXT_KSYM; 3178 skip_mods_and_typedefs(obj->btf, t->type, 3179 &ext->ksym.type_id); 3180 } else { 3181 pr_warn("unrecognized extern section '%s'\n", sec_name); 3182 return -ENOTSUP; 3183 } 3184 } 3185 pr_debug("collected %d externs total\n", obj->nr_extern); 3186 3187 if (!obj->nr_extern) 3188 return 0; 3189 3190 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3191 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3192 3193 /* for .ksyms section, we need to turn all externs into allocated 3194 * variables in BTF to pass kernel verification; we do this by 3195 * pretending that each extern is a 8-byte variable 3196 */ 3197 if (ksym_sec) { 3198 /* find existing 4-byte integer type in BTF to use for fake 3199 * extern variables in DATASEC 3200 */ 3201 int int_btf_id = find_int_btf_id(obj->btf); 3202 3203 for (i = 0; i < obj->nr_extern; i++) { 3204 ext = &obj->externs[i]; 3205 if (ext->type != EXT_KSYM) 3206 continue; 3207 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3208 i, ext->sym_idx, ext->name); 3209 } 3210 3211 sec = ksym_sec; 3212 n = btf_vlen(sec); 3213 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3214 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3215 struct btf_type *vt; 3216 3217 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3218 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3219 ext = find_extern_by_name(obj, ext_name); 3220 if (!ext) { 3221 pr_warn("failed to find extern definition for BTF var '%s'\n", 3222 ext_name); 3223 return -ESRCH; 3224 } 3225 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3226 vt->type = int_btf_id; 3227 vs->offset = off; 3228 vs->size = sizeof(int); 3229 } 3230 sec->size = off; 3231 } 3232 3233 if (kcfg_sec) { 3234 sec = kcfg_sec; 3235 /* for kcfg externs calculate their offsets within a .kconfig map */ 3236 off = 0; 3237 for (i = 0; i < obj->nr_extern; i++) { 3238 ext = &obj->externs[i]; 3239 if (ext->type != EXT_KCFG) 3240 continue; 3241 3242 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3243 off = ext->kcfg.data_off + ext->kcfg.sz; 3244 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3245 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3246 } 3247 sec->size = off; 3248 n = btf_vlen(sec); 3249 for (i = 0; i < n; i++) { 3250 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3251 3252 t = btf__type_by_id(obj->btf, vs->type); 3253 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3254 ext = find_extern_by_name(obj, ext_name); 3255 if (!ext) { 3256 pr_warn("failed to find extern definition for BTF var '%s'\n", 3257 ext_name); 3258 return -ESRCH; 3259 } 3260 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3261 vs->offset = ext->kcfg.data_off; 3262 } 3263 } 3264 return 0; 3265 } 3266 3267 struct bpf_program * 3268 bpf_object__find_program_by_title(const struct bpf_object *obj, 3269 const char *title) 3270 { 3271 struct bpf_program *pos; 3272 3273 bpf_object__for_each_program(pos, obj) { 3274 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3275 return pos; 3276 } 3277 return NULL; 3278 } 3279 3280 static bool prog_is_subprog(const struct bpf_object *obj, 3281 const struct bpf_program *prog) 3282 { 3283 return prog->sec_idx == obj->efile.text_shndx && obj->has_subcalls; 3284 } 3285 3286 struct bpf_program * 3287 bpf_object__find_program_by_name(const struct bpf_object *obj, 3288 const char *name) 3289 { 3290 struct bpf_program *prog; 3291 3292 bpf_object__for_each_program(prog, obj) { 3293 if (prog_is_subprog(obj, prog)) 3294 continue; 3295 if (!strcmp(prog->name, name)) 3296 return prog; 3297 } 3298 return NULL; 3299 } 3300 3301 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3302 int shndx) 3303 { 3304 return shndx == obj->efile.data_shndx || 3305 shndx == obj->efile.bss_shndx || 3306 shndx == obj->efile.rodata_shndx; 3307 } 3308 3309 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3310 int shndx) 3311 { 3312 return shndx == obj->efile.maps_shndx || 3313 shndx == obj->efile.btf_maps_shndx; 3314 } 3315 3316 static enum libbpf_map_type 3317 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3318 { 3319 if (shndx == obj->efile.data_shndx) 3320 return LIBBPF_MAP_DATA; 3321 else if (shndx == obj->efile.bss_shndx) 3322 return LIBBPF_MAP_BSS; 3323 else if (shndx == obj->efile.rodata_shndx) 3324 return LIBBPF_MAP_RODATA; 3325 else if (shndx == obj->efile.symbols_shndx) 3326 return LIBBPF_MAP_KCONFIG; 3327 else 3328 return LIBBPF_MAP_UNSPEC; 3329 } 3330 3331 static int bpf_program__record_reloc(struct bpf_program *prog, 3332 struct reloc_desc *reloc_desc, 3333 __u32 insn_idx, const char *sym_name, 3334 const GElf_Sym *sym, const GElf_Rel *rel) 3335 { 3336 struct bpf_insn *insn = &prog->insns[insn_idx]; 3337 size_t map_idx, nr_maps = prog->obj->nr_maps; 3338 struct bpf_object *obj = prog->obj; 3339 __u32 shdr_idx = sym->st_shndx; 3340 enum libbpf_map_type type; 3341 const char *sym_sec_name; 3342 struct bpf_map *map; 3343 3344 reloc_desc->processed = false; 3345 3346 /* sub-program call relocation */ 3347 if (insn->code == (BPF_JMP | BPF_CALL)) { 3348 if (insn->src_reg != BPF_PSEUDO_CALL) { 3349 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3350 return -LIBBPF_ERRNO__RELOC; 3351 } 3352 /* text_shndx can be 0, if no default "main" program exists */ 3353 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3354 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3355 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3356 prog->name, sym_name, sym_sec_name); 3357 return -LIBBPF_ERRNO__RELOC; 3358 } 3359 if (sym->st_value % BPF_INSN_SZ) { 3360 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3361 prog->name, sym_name, (size_t)sym->st_value); 3362 return -LIBBPF_ERRNO__RELOC; 3363 } 3364 reloc_desc->type = RELO_CALL; 3365 reloc_desc->insn_idx = insn_idx; 3366 reloc_desc->sym_off = sym->st_value; 3367 return 0; 3368 } 3369 3370 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 3371 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3372 prog->name, sym_name, insn_idx, insn->code); 3373 return -LIBBPF_ERRNO__RELOC; 3374 } 3375 3376 if (sym_is_extern(sym)) { 3377 int sym_idx = GELF_R_SYM(rel->r_info); 3378 int i, n = obj->nr_extern; 3379 struct extern_desc *ext; 3380 3381 for (i = 0; i < n; i++) { 3382 ext = &obj->externs[i]; 3383 if (ext->sym_idx == sym_idx) 3384 break; 3385 } 3386 if (i >= n) { 3387 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3388 prog->name, sym_name, sym_idx); 3389 return -LIBBPF_ERRNO__RELOC; 3390 } 3391 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3392 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3393 reloc_desc->type = RELO_EXTERN; 3394 reloc_desc->insn_idx = insn_idx; 3395 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3396 return 0; 3397 } 3398 3399 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3400 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3401 prog->name, sym_name, shdr_idx); 3402 return -LIBBPF_ERRNO__RELOC; 3403 } 3404 3405 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3406 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3407 3408 /* generic map reference relocation */ 3409 if (type == LIBBPF_MAP_UNSPEC) { 3410 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3411 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3412 prog->name, sym_name, sym_sec_name); 3413 return -LIBBPF_ERRNO__RELOC; 3414 } 3415 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3416 map = &obj->maps[map_idx]; 3417 if (map->libbpf_type != type || 3418 map->sec_idx != sym->st_shndx || 3419 map->sec_offset != sym->st_value) 3420 continue; 3421 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3422 prog->name, map_idx, map->name, map->sec_idx, 3423 map->sec_offset, insn_idx); 3424 break; 3425 } 3426 if (map_idx >= nr_maps) { 3427 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3428 prog->name, sym_sec_name, (size_t)sym->st_value); 3429 return -LIBBPF_ERRNO__RELOC; 3430 } 3431 reloc_desc->type = RELO_LD64; 3432 reloc_desc->insn_idx = insn_idx; 3433 reloc_desc->map_idx = map_idx; 3434 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3435 return 0; 3436 } 3437 3438 /* global data map relocation */ 3439 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3440 pr_warn("prog '%s': bad data relo against section '%s'\n", 3441 prog->name, sym_sec_name); 3442 return -LIBBPF_ERRNO__RELOC; 3443 } 3444 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3445 map = &obj->maps[map_idx]; 3446 if (map->libbpf_type != type) 3447 continue; 3448 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3449 prog->name, map_idx, map->name, map->sec_idx, 3450 map->sec_offset, insn_idx); 3451 break; 3452 } 3453 if (map_idx >= nr_maps) { 3454 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3455 prog->name, sym_sec_name); 3456 return -LIBBPF_ERRNO__RELOC; 3457 } 3458 3459 reloc_desc->type = RELO_DATA; 3460 reloc_desc->insn_idx = insn_idx; 3461 reloc_desc->map_idx = map_idx; 3462 reloc_desc->sym_off = sym->st_value; 3463 return 0; 3464 } 3465 3466 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3467 { 3468 return insn_idx >= prog->sec_insn_off && 3469 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3470 } 3471 3472 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3473 size_t sec_idx, size_t insn_idx) 3474 { 3475 int l = 0, r = obj->nr_programs - 1, m; 3476 struct bpf_program *prog; 3477 3478 while (l < r) { 3479 m = l + (r - l + 1) / 2; 3480 prog = &obj->programs[m]; 3481 3482 if (prog->sec_idx < sec_idx || 3483 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3484 l = m; 3485 else 3486 r = m - 1; 3487 } 3488 /* matching program could be at index l, but it still might be the 3489 * wrong one, so we need to double check conditions for the last time 3490 */ 3491 prog = &obj->programs[l]; 3492 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3493 return prog; 3494 return NULL; 3495 } 3496 3497 static int 3498 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3499 { 3500 Elf_Data *symbols = obj->efile.symbols; 3501 const char *relo_sec_name, *sec_name; 3502 size_t sec_idx = shdr->sh_info; 3503 struct bpf_program *prog; 3504 struct reloc_desc *relos; 3505 int err, i, nrels; 3506 const char *sym_name; 3507 __u32 insn_idx; 3508 GElf_Sym sym; 3509 GElf_Rel rel; 3510 3511 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3512 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3513 if (!relo_sec_name || !sec_name) 3514 return -EINVAL; 3515 3516 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3517 relo_sec_name, sec_idx, sec_name); 3518 nrels = shdr->sh_size / shdr->sh_entsize; 3519 3520 for (i = 0; i < nrels; i++) { 3521 if (!gelf_getrel(data, i, &rel)) { 3522 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3523 return -LIBBPF_ERRNO__FORMAT; 3524 } 3525 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3526 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3527 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3528 return -LIBBPF_ERRNO__FORMAT; 3529 } 3530 if (rel.r_offset % BPF_INSN_SZ) { 3531 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3532 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3533 return -LIBBPF_ERRNO__FORMAT; 3534 } 3535 3536 insn_idx = rel.r_offset / BPF_INSN_SZ; 3537 /* relocations against static functions are recorded as 3538 * relocations against the section that contains a function; 3539 * in such case, symbol will be STT_SECTION and sym.st_name 3540 * will point to empty string (0), so fetch section name 3541 * instead 3542 */ 3543 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3544 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3545 else 3546 sym_name = elf_sym_str(obj, sym.st_name); 3547 sym_name = sym_name ?: "<?"; 3548 3549 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3550 relo_sec_name, i, insn_idx, sym_name); 3551 3552 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3553 if (!prog) { 3554 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3555 relo_sec_name, i, sec_name, insn_idx); 3556 return -LIBBPF_ERRNO__RELOC; 3557 } 3558 3559 relos = libbpf_reallocarray(prog->reloc_desc, 3560 prog->nr_reloc + 1, sizeof(*relos)); 3561 if (!relos) 3562 return -ENOMEM; 3563 prog->reloc_desc = relos; 3564 3565 /* adjust insn_idx to local BPF program frame of reference */ 3566 insn_idx -= prog->sec_insn_off; 3567 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3568 insn_idx, sym_name, &sym, &rel); 3569 if (err) 3570 return err; 3571 3572 prog->nr_reloc++; 3573 } 3574 return 0; 3575 } 3576 3577 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3578 { 3579 struct bpf_map_def *def = &map->def; 3580 __u32 key_type_id = 0, value_type_id = 0; 3581 int ret; 3582 3583 /* if it's BTF-defined map, we don't need to search for type IDs. 3584 * For struct_ops map, it does not need btf_key_type_id and 3585 * btf_value_type_id. 3586 */ 3587 if (map->sec_idx == obj->efile.btf_maps_shndx || 3588 bpf_map__is_struct_ops(map)) 3589 return 0; 3590 3591 if (!bpf_map__is_internal(map)) { 3592 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3593 def->value_size, &key_type_id, 3594 &value_type_id); 3595 } else { 3596 /* 3597 * LLVM annotates global data differently in BTF, that is, 3598 * only as '.data', '.bss' or '.rodata'. 3599 */ 3600 ret = btf__find_by_name(obj->btf, 3601 libbpf_type_to_btf_name[map->libbpf_type]); 3602 } 3603 if (ret < 0) 3604 return ret; 3605 3606 map->btf_key_type_id = key_type_id; 3607 map->btf_value_type_id = bpf_map__is_internal(map) ? 3608 ret : value_type_id; 3609 return 0; 3610 } 3611 3612 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3613 { 3614 struct bpf_map_info info = {}; 3615 __u32 len = sizeof(info); 3616 int new_fd, err; 3617 char *new_name; 3618 3619 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3620 if (err) 3621 return err; 3622 3623 new_name = strdup(info.name); 3624 if (!new_name) 3625 return -errno; 3626 3627 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3628 if (new_fd < 0) { 3629 err = -errno; 3630 goto err_free_new_name; 3631 } 3632 3633 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3634 if (new_fd < 0) { 3635 err = -errno; 3636 goto err_close_new_fd; 3637 } 3638 3639 err = zclose(map->fd); 3640 if (err) { 3641 err = -errno; 3642 goto err_close_new_fd; 3643 } 3644 free(map->name); 3645 3646 map->fd = new_fd; 3647 map->name = new_name; 3648 map->def.type = info.type; 3649 map->def.key_size = info.key_size; 3650 map->def.value_size = info.value_size; 3651 map->def.max_entries = info.max_entries; 3652 map->def.map_flags = info.map_flags; 3653 map->btf_key_type_id = info.btf_key_type_id; 3654 map->btf_value_type_id = info.btf_value_type_id; 3655 map->reused = true; 3656 3657 return 0; 3658 3659 err_close_new_fd: 3660 close(new_fd); 3661 err_free_new_name: 3662 free(new_name); 3663 return err; 3664 } 3665 3666 __u32 bpf_map__max_entries(const struct bpf_map *map) 3667 { 3668 return map->def.max_entries; 3669 } 3670 3671 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3672 { 3673 if (map->fd >= 0) 3674 return -EBUSY; 3675 map->def.max_entries = max_entries; 3676 return 0; 3677 } 3678 3679 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3680 { 3681 if (!map || !max_entries) 3682 return -EINVAL; 3683 3684 return bpf_map__set_max_entries(map, max_entries); 3685 } 3686 3687 static int 3688 bpf_object__probe_loading(struct bpf_object *obj) 3689 { 3690 struct bpf_load_program_attr attr; 3691 char *cp, errmsg[STRERR_BUFSIZE]; 3692 struct bpf_insn insns[] = { 3693 BPF_MOV64_IMM(BPF_REG_0, 0), 3694 BPF_EXIT_INSN(), 3695 }; 3696 int ret; 3697 3698 /* make sure basic loading works */ 3699 3700 memset(&attr, 0, sizeof(attr)); 3701 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3702 attr.insns = insns; 3703 attr.insns_cnt = ARRAY_SIZE(insns); 3704 attr.license = "GPL"; 3705 3706 ret = bpf_load_program_xattr(&attr, NULL, 0); 3707 if (ret < 0) { 3708 ret = errno; 3709 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3710 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3711 "program. Make sure your kernel supports BPF " 3712 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3713 "set to big enough value.\n", __func__, cp, ret); 3714 return -ret; 3715 } 3716 close(ret); 3717 3718 return 0; 3719 } 3720 3721 static int probe_fd(int fd) 3722 { 3723 if (fd >= 0) 3724 close(fd); 3725 return fd >= 0; 3726 } 3727 3728 static int probe_kern_prog_name(void) 3729 { 3730 struct bpf_load_program_attr attr; 3731 struct bpf_insn insns[] = { 3732 BPF_MOV64_IMM(BPF_REG_0, 0), 3733 BPF_EXIT_INSN(), 3734 }; 3735 int ret; 3736 3737 /* make sure loading with name works */ 3738 3739 memset(&attr, 0, sizeof(attr)); 3740 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3741 attr.insns = insns; 3742 attr.insns_cnt = ARRAY_SIZE(insns); 3743 attr.license = "GPL"; 3744 attr.name = "test"; 3745 ret = bpf_load_program_xattr(&attr, NULL, 0); 3746 return probe_fd(ret); 3747 } 3748 3749 static int probe_kern_global_data(void) 3750 { 3751 struct bpf_load_program_attr prg_attr; 3752 struct bpf_create_map_attr map_attr; 3753 char *cp, errmsg[STRERR_BUFSIZE]; 3754 struct bpf_insn insns[] = { 3755 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3756 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3757 BPF_MOV64_IMM(BPF_REG_0, 0), 3758 BPF_EXIT_INSN(), 3759 }; 3760 int ret, map; 3761 3762 memset(&map_attr, 0, sizeof(map_attr)); 3763 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3764 map_attr.key_size = sizeof(int); 3765 map_attr.value_size = 32; 3766 map_attr.max_entries = 1; 3767 3768 map = bpf_create_map_xattr(&map_attr); 3769 if (map < 0) { 3770 ret = -errno; 3771 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3772 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3773 __func__, cp, -ret); 3774 return ret; 3775 } 3776 3777 insns[0].imm = map; 3778 3779 memset(&prg_attr, 0, sizeof(prg_attr)); 3780 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3781 prg_attr.insns = insns; 3782 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3783 prg_attr.license = "GPL"; 3784 3785 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3786 close(map); 3787 return probe_fd(ret); 3788 } 3789 3790 static int probe_kern_btf(void) 3791 { 3792 static const char strs[] = "\0int"; 3793 __u32 types[] = { 3794 /* int */ 3795 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3796 }; 3797 3798 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3799 strs, sizeof(strs))); 3800 } 3801 3802 static int probe_kern_btf_func(void) 3803 { 3804 static const char strs[] = "\0int\0x\0a"; 3805 /* void x(int a) {} */ 3806 __u32 types[] = { 3807 /* int */ 3808 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3809 /* FUNC_PROTO */ /* [2] */ 3810 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3811 BTF_PARAM_ENC(7, 1), 3812 /* FUNC x */ /* [3] */ 3813 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3814 }; 3815 3816 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3817 strs, sizeof(strs))); 3818 } 3819 3820 static int probe_kern_btf_func_global(void) 3821 { 3822 static const char strs[] = "\0int\0x\0a"; 3823 /* static void x(int a) {} */ 3824 __u32 types[] = { 3825 /* int */ 3826 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3827 /* FUNC_PROTO */ /* [2] */ 3828 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3829 BTF_PARAM_ENC(7, 1), 3830 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3831 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3832 }; 3833 3834 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3835 strs, sizeof(strs))); 3836 } 3837 3838 static int probe_kern_btf_datasec(void) 3839 { 3840 static const char strs[] = "\0x\0.data"; 3841 /* static int a; */ 3842 __u32 types[] = { 3843 /* int */ 3844 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3845 /* VAR x */ /* [2] */ 3846 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3847 BTF_VAR_STATIC, 3848 /* DATASEC val */ /* [3] */ 3849 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3850 BTF_VAR_SECINFO_ENC(2, 0, 4), 3851 }; 3852 3853 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3854 strs, sizeof(strs))); 3855 } 3856 3857 static int probe_kern_array_mmap(void) 3858 { 3859 struct bpf_create_map_attr attr = { 3860 .map_type = BPF_MAP_TYPE_ARRAY, 3861 .map_flags = BPF_F_MMAPABLE, 3862 .key_size = sizeof(int), 3863 .value_size = sizeof(int), 3864 .max_entries = 1, 3865 }; 3866 3867 return probe_fd(bpf_create_map_xattr(&attr)); 3868 } 3869 3870 static int probe_kern_exp_attach_type(void) 3871 { 3872 struct bpf_load_program_attr attr; 3873 struct bpf_insn insns[] = { 3874 BPF_MOV64_IMM(BPF_REG_0, 0), 3875 BPF_EXIT_INSN(), 3876 }; 3877 3878 memset(&attr, 0, sizeof(attr)); 3879 /* use any valid combination of program type and (optional) 3880 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3881 * to see if kernel supports expected_attach_type field for 3882 * BPF_PROG_LOAD command 3883 */ 3884 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3885 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3886 attr.insns = insns; 3887 attr.insns_cnt = ARRAY_SIZE(insns); 3888 attr.license = "GPL"; 3889 3890 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3891 } 3892 3893 static int probe_kern_probe_read_kernel(void) 3894 { 3895 struct bpf_load_program_attr attr; 3896 struct bpf_insn insns[] = { 3897 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 3898 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 3899 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 3900 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 3901 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 3902 BPF_EXIT_INSN(), 3903 }; 3904 3905 memset(&attr, 0, sizeof(attr)); 3906 attr.prog_type = BPF_PROG_TYPE_KPROBE; 3907 attr.insns = insns; 3908 attr.insns_cnt = ARRAY_SIZE(insns); 3909 attr.license = "GPL"; 3910 3911 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3912 } 3913 3914 static int probe_prog_bind_map(void) 3915 { 3916 struct bpf_load_program_attr prg_attr; 3917 struct bpf_create_map_attr map_attr; 3918 char *cp, errmsg[STRERR_BUFSIZE]; 3919 struct bpf_insn insns[] = { 3920 BPF_MOV64_IMM(BPF_REG_0, 0), 3921 BPF_EXIT_INSN(), 3922 }; 3923 int ret, map, prog; 3924 3925 memset(&map_attr, 0, sizeof(map_attr)); 3926 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3927 map_attr.key_size = sizeof(int); 3928 map_attr.value_size = 32; 3929 map_attr.max_entries = 1; 3930 3931 map = bpf_create_map_xattr(&map_attr); 3932 if (map < 0) { 3933 ret = -errno; 3934 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3935 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3936 __func__, cp, -ret); 3937 return ret; 3938 } 3939 3940 memset(&prg_attr, 0, sizeof(prg_attr)); 3941 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3942 prg_attr.insns = insns; 3943 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3944 prg_attr.license = "GPL"; 3945 3946 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 3947 if (prog < 0) { 3948 close(map); 3949 return 0; 3950 } 3951 3952 ret = bpf_prog_bind_map(prog, map, NULL); 3953 3954 close(map); 3955 close(prog); 3956 3957 return ret >= 0; 3958 } 3959 3960 enum kern_feature_result { 3961 FEAT_UNKNOWN = 0, 3962 FEAT_SUPPORTED = 1, 3963 FEAT_MISSING = 2, 3964 }; 3965 3966 typedef int (*feature_probe_fn)(void); 3967 3968 static struct kern_feature_desc { 3969 const char *desc; 3970 feature_probe_fn probe; 3971 enum kern_feature_result res; 3972 } feature_probes[__FEAT_CNT] = { 3973 [FEAT_PROG_NAME] = { 3974 "BPF program name", probe_kern_prog_name, 3975 }, 3976 [FEAT_GLOBAL_DATA] = { 3977 "global variables", probe_kern_global_data, 3978 }, 3979 [FEAT_BTF] = { 3980 "minimal BTF", probe_kern_btf, 3981 }, 3982 [FEAT_BTF_FUNC] = { 3983 "BTF functions", probe_kern_btf_func, 3984 }, 3985 [FEAT_BTF_GLOBAL_FUNC] = { 3986 "BTF global function", probe_kern_btf_func_global, 3987 }, 3988 [FEAT_BTF_DATASEC] = { 3989 "BTF data section and variable", probe_kern_btf_datasec, 3990 }, 3991 [FEAT_ARRAY_MMAP] = { 3992 "ARRAY map mmap()", probe_kern_array_mmap, 3993 }, 3994 [FEAT_EXP_ATTACH_TYPE] = { 3995 "BPF_PROG_LOAD expected_attach_type attribute", 3996 probe_kern_exp_attach_type, 3997 }, 3998 [FEAT_PROBE_READ_KERN] = { 3999 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4000 }, 4001 [FEAT_PROG_BIND_MAP] = { 4002 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4003 } 4004 }; 4005 4006 static bool kernel_supports(enum kern_feature_id feat_id) 4007 { 4008 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4009 int ret; 4010 4011 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4012 ret = feat->probe(); 4013 if (ret > 0) { 4014 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4015 } else if (ret == 0) { 4016 WRITE_ONCE(feat->res, FEAT_MISSING); 4017 } else { 4018 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4019 WRITE_ONCE(feat->res, FEAT_MISSING); 4020 } 4021 } 4022 4023 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4024 } 4025 4026 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4027 { 4028 struct bpf_map_info map_info = {}; 4029 char msg[STRERR_BUFSIZE]; 4030 __u32 map_info_len; 4031 4032 map_info_len = sizeof(map_info); 4033 4034 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4035 pr_warn("failed to get map info for map FD %d: %s\n", 4036 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4037 return false; 4038 } 4039 4040 return (map_info.type == map->def.type && 4041 map_info.key_size == map->def.key_size && 4042 map_info.value_size == map->def.value_size && 4043 map_info.max_entries == map->def.max_entries && 4044 map_info.map_flags == map->def.map_flags); 4045 } 4046 4047 static int 4048 bpf_object__reuse_map(struct bpf_map *map) 4049 { 4050 char *cp, errmsg[STRERR_BUFSIZE]; 4051 int err, pin_fd; 4052 4053 pin_fd = bpf_obj_get(map->pin_path); 4054 if (pin_fd < 0) { 4055 err = -errno; 4056 if (err == -ENOENT) { 4057 pr_debug("found no pinned map to reuse at '%s'\n", 4058 map->pin_path); 4059 return 0; 4060 } 4061 4062 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4063 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4064 map->pin_path, cp); 4065 return err; 4066 } 4067 4068 if (!map_is_reuse_compat(map, pin_fd)) { 4069 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4070 map->pin_path); 4071 close(pin_fd); 4072 return -EINVAL; 4073 } 4074 4075 err = bpf_map__reuse_fd(map, pin_fd); 4076 if (err) { 4077 close(pin_fd); 4078 return err; 4079 } 4080 map->pinned = true; 4081 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4082 4083 return 0; 4084 } 4085 4086 static int 4087 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4088 { 4089 enum libbpf_map_type map_type = map->libbpf_type; 4090 char *cp, errmsg[STRERR_BUFSIZE]; 4091 int err, zero = 0; 4092 4093 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4094 if (err) { 4095 err = -errno; 4096 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4097 pr_warn("Error setting initial map(%s) contents: %s\n", 4098 map->name, cp); 4099 return err; 4100 } 4101 4102 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4103 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4104 err = bpf_map_freeze(map->fd); 4105 if (err) { 4106 err = -errno; 4107 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4108 pr_warn("Error freezing map(%s) as read-only: %s\n", 4109 map->name, cp); 4110 return err; 4111 } 4112 } 4113 return 0; 4114 } 4115 4116 static void bpf_map__destroy(struct bpf_map *map); 4117 4118 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4119 { 4120 struct bpf_create_map_attr create_attr; 4121 struct bpf_map_def *def = &map->def; 4122 4123 memset(&create_attr, 0, sizeof(create_attr)); 4124 4125 if (kernel_supports(FEAT_PROG_NAME)) 4126 create_attr.name = map->name; 4127 create_attr.map_ifindex = map->map_ifindex; 4128 create_attr.map_type = def->type; 4129 create_attr.map_flags = def->map_flags; 4130 create_attr.key_size = def->key_size; 4131 create_attr.value_size = def->value_size; 4132 create_attr.numa_node = map->numa_node; 4133 4134 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4135 int nr_cpus; 4136 4137 nr_cpus = libbpf_num_possible_cpus(); 4138 if (nr_cpus < 0) { 4139 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4140 map->name, nr_cpus); 4141 return nr_cpus; 4142 } 4143 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4144 create_attr.max_entries = nr_cpus; 4145 } else { 4146 create_attr.max_entries = def->max_entries; 4147 } 4148 4149 if (bpf_map__is_struct_ops(map)) 4150 create_attr.btf_vmlinux_value_type_id = 4151 map->btf_vmlinux_value_type_id; 4152 4153 create_attr.btf_fd = 0; 4154 create_attr.btf_key_type_id = 0; 4155 create_attr.btf_value_type_id = 0; 4156 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4157 create_attr.btf_fd = btf__fd(obj->btf); 4158 create_attr.btf_key_type_id = map->btf_key_type_id; 4159 create_attr.btf_value_type_id = map->btf_value_type_id; 4160 } 4161 4162 if (bpf_map_type__is_map_in_map(def->type)) { 4163 if (map->inner_map) { 4164 int err; 4165 4166 err = bpf_object__create_map(obj, map->inner_map); 4167 if (err) { 4168 pr_warn("map '%s': failed to create inner map: %d\n", 4169 map->name, err); 4170 return err; 4171 } 4172 map->inner_map_fd = bpf_map__fd(map->inner_map); 4173 } 4174 if (map->inner_map_fd >= 0) 4175 create_attr.inner_map_fd = map->inner_map_fd; 4176 } 4177 4178 map->fd = bpf_create_map_xattr(&create_attr); 4179 if (map->fd < 0 && (create_attr.btf_key_type_id || 4180 create_attr.btf_value_type_id)) { 4181 char *cp, errmsg[STRERR_BUFSIZE]; 4182 int err = -errno; 4183 4184 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4185 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4186 map->name, cp, err); 4187 create_attr.btf_fd = 0; 4188 create_attr.btf_key_type_id = 0; 4189 create_attr.btf_value_type_id = 0; 4190 map->btf_key_type_id = 0; 4191 map->btf_value_type_id = 0; 4192 map->fd = bpf_create_map_xattr(&create_attr); 4193 } 4194 4195 if (map->fd < 0) 4196 return -errno; 4197 4198 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4199 bpf_map__destroy(map->inner_map); 4200 zfree(&map->inner_map); 4201 } 4202 4203 return 0; 4204 } 4205 4206 static int init_map_slots(struct bpf_map *map) 4207 { 4208 const struct bpf_map *targ_map; 4209 unsigned int i; 4210 int fd, err; 4211 4212 for (i = 0; i < map->init_slots_sz; i++) { 4213 if (!map->init_slots[i]) 4214 continue; 4215 4216 targ_map = map->init_slots[i]; 4217 fd = bpf_map__fd(targ_map); 4218 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4219 if (err) { 4220 err = -errno; 4221 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4222 map->name, i, targ_map->name, 4223 fd, err); 4224 return err; 4225 } 4226 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4227 map->name, i, targ_map->name, fd); 4228 } 4229 4230 zfree(&map->init_slots); 4231 map->init_slots_sz = 0; 4232 4233 return 0; 4234 } 4235 4236 static int 4237 bpf_object__create_maps(struct bpf_object *obj) 4238 { 4239 struct bpf_map *map; 4240 char *cp, errmsg[STRERR_BUFSIZE]; 4241 unsigned int i, j; 4242 int err; 4243 4244 for (i = 0; i < obj->nr_maps; i++) { 4245 map = &obj->maps[i]; 4246 4247 if (map->pin_path) { 4248 err = bpf_object__reuse_map(map); 4249 if (err) { 4250 pr_warn("map '%s': error reusing pinned map\n", 4251 map->name); 4252 goto err_out; 4253 } 4254 } 4255 4256 if (map->fd >= 0) { 4257 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4258 map->name, map->fd); 4259 } else { 4260 err = bpf_object__create_map(obj, map); 4261 if (err) 4262 goto err_out; 4263 4264 pr_debug("map '%s': created successfully, fd=%d\n", 4265 map->name, map->fd); 4266 4267 if (bpf_map__is_internal(map)) { 4268 err = bpf_object__populate_internal_map(obj, map); 4269 if (err < 0) { 4270 zclose(map->fd); 4271 goto err_out; 4272 } 4273 } 4274 4275 if (map->init_slots_sz) { 4276 err = init_map_slots(map); 4277 if (err < 0) { 4278 zclose(map->fd); 4279 goto err_out; 4280 } 4281 } 4282 } 4283 4284 if (map->pin_path && !map->pinned) { 4285 err = bpf_map__pin(map, NULL); 4286 if (err) { 4287 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4288 map->name, map->pin_path, err); 4289 zclose(map->fd); 4290 goto err_out; 4291 } 4292 } 4293 } 4294 4295 return 0; 4296 4297 err_out: 4298 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4299 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4300 pr_perm_msg(err); 4301 for (j = 0; j < i; j++) 4302 zclose(obj->maps[j].fd); 4303 return err; 4304 } 4305 4306 #define BPF_CORE_SPEC_MAX_LEN 64 4307 4308 /* represents BPF CO-RE field or array element accessor */ 4309 struct bpf_core_accessor { 4310 __u32 type_id; /* struct/union type or array element type */ 4311 __u32 idx; /* field index or array index */ 4312 const char *name; /* field name or NULL for array accessor */ 4313 }; 4314 4315 struct bpf_core_spec { 4316 const struct btf *btf; 4317 /* high-level spec: named fields and array indices only */ 4318 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4319 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4320 __u32 root_type_id; 4321 /* CO-RE relocation kind */ 4322 enum bpf_core_relo_kind relo_kind; 4323 /* high-level spec length */ 4324 int len; 4325 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4326 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4327 /* raw spec length */ 4328 int raw_len; 4329 /* field bit offset represented by spec */ 4330 __u32 bit_offset; 4331 }; 4332 4333 static bool str_is_empty(const char *s) 4334 { 4335 return !s || !s[0]; 4336 } 4337 4338 static bool is_flex_arr(const struct btf *btf, 4339 const struct bpf_core_accessor *acc, 4340 const struct btf_array *arr) 4341 { 4342 const struct btf_type *t; 4343 4344 /* not a flexible array, if not inside a struct or has non-zero size */ 4345 if (!acc->name || arr->nelems > 0) 4346 return false; 4347 4348 /* has to be the last member of enclosing struct */ 4349 t = btf__type_by_id(btf, acc->type_id); 4350 return acc->idx == btf_vlen(t) - 1; 4351 } 4352 4353 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4354 { 4355 switch (kind) { 4356 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4357 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4358 case BPF_FIELD_EXISTS: return "field_exists"; 4359 case BPF_FIELD_SIGNED: return "signed"; 4360 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4361 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4362 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4363 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4364 case BPF_TYPE_EXISTS: return "type_exists"; 4365 case BPF_TYPE_SIZE: return "type_size"; 4366 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4367 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4368 default: return "unknown"; 4369 } 4370 } 4371 4372 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4373 { 4374 switch (kind) { 4375 case BPF_FIELD_BYTE_OFFSET: 4376 case BPF_FIELD_BYTE_SIZE: 4377 case BPF_FIELD_EXISTS: 4378 case BPF_FIELD_SIGNED: 4379 case BPF_FIELD_LSHIFT_U64: 4380 case BPF_FIELD_RSHIFT_U64: 4381 return true; 4382 default: 4383 return false; 4384 } 4385 } 4386 4387 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4388 { 4389 switch (kind) { 4390 case BPF_TYPE_ID_LOCAL: 4391 case BPF_TYPE_ID_TARGET: 4392 case BPF_TYPE_EXISTS: 4393 case BPF_TYPE_SIZE: 4394 return true; 4395 default: 4396 return false; 4397 } 4398 } 4399 4400 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4401 { 4402 switch (kind) { 4403 case BPF_ENUMVAL_EXISTS: 4404 case BPF_ENUMVAL_VALUE: 4405 return true; 4406 default: 4407 return false; 4408 } 4409 } 4410 4411 /* 4412 * Turn bpf_core_relo into a low- and high-level spec representation, 4413 * validating correctness along the way, as well as calculating resulting 4414 * field bit offset, specified by accessor string. Low-level spec captures 4415 * every single level of nestedness, including traversing anonymous 4416 * struct/union members. High-level one only captures semantically meaningful 4417 * "turning points": named fields and array indicies. 4418 * E.g., for this case: 4419 * 4420 * struct sample { 4421 * int __unimportant; 4422 * struct { 4423 * int __1; 4424 * int __2; 4425 * int a[7]; 4426 * }; 4427 * }; 4428 * 4429 * struct sample *s = ...; 4430 * 4431 * int x = &s->a[3]; // access string = '0:1:2:3' 4432 * 4433 * Low-level spec has 1:1 mapping with each element of access string (it's 4434 * just a parsed access string representation): [0, 1, 2, 3]. 4435 * 4436 * High-level spec will capture only 3 points: 4437 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4438 * - field 'a' access (corresponds to '2' in low-level spec); 4439 * - array element #3 access (corresponds to '3' in low-level spec). 4440 * 4441 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4442 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4443 * spec and raw_spec are kept empty. 4444 * 4445 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4446 * string to specify enumerator's value index that need to be relocated. 4447 */ 4448 static int bpf_core_parse_spec(const struct btf *btf, 4449 __u32 type_id, 4450 const char *spec_str, 4451 enum bpf_core_relo_kind relo_kind, 4452 struct bpf_core_spec *spec) 4453 { 4454 int access_idx, parsed_len, i; 4455 struct bpf_core_accessor *acc; 4456 const struct btf_type *t; 4457 const char *name; 4458 __u32 id; 4459 __s64 sz; 4460 4461 if (str_is_empty(spec_str) || *spec_str == ':') 4462 return -EINVAL; 4463 4464 memset(spec, 0, sizeof(*spec)); 4465 spec->btf = btf; 4466 spec->root_type_id = type_id; 4467 spec->relo_kind = relo_kind; 4468 4469 /* type-based relocations don't have a field access string */ 4470 if (core_relo_is_type_based(relo_kind)) { 4471 if (strcmp(spec_str, "0")) 4472 return -EINVAL; 4473 return 0; 4474 } 4475 4476 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4477 while (*spec_str) { 4478 if (*spec_str == ':') 4479 ++spec_str; 4480 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4481 return -EINVAL; 4482 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4483 return -E2BIG; 4484 spec_str += parsed_len; 4485 spec->raw_spec[spec->raw_len++] = access_idx; 4486 } 4487 4488 if (spec->raw_len == 0) 4489 return -EINVAL; 4490 4491 t = skip_mods_and_typedefs(btf, type_id, &id); 4492 if (!t) 4493 return -EINVAL; 4494 4495 access_idx = spec->raw_spec[0]; 4496 acc = &spec->spec[0]; 4497 acc->type_id = id; 4498 acc->idx = access_idx; 4499 spec->len++; 4500 4501 if (core_relo_is_enumval_based(relo_kind)) { 4502 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4503 return -EINVAL; 4504 4505 /* record enumerator name in a first accessor */ 4506 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4507 return 0; 4508 } 4509 4510 if (!core_relo_is_field_based(relo_kind)) 4511 return -EINVAL; 4512 4513 sz = btf__resolve_size(btf, id); 4514 if (sz < 0) 4515 return sz; 4516 spec->bit_offset = access_idx * sz * 8; 4517 4518 for (i = 1; i < spec->raw_len; i++) { 4519 t = skip_mods_and_typedefs(btf, id, &id); 4520 if (!t) 4521 return -EINVAL; 4522 4523 access_idx = spec->raw_spec[i]; 4524 acc = &spec->spec[spec->len]; 4525 4526 if (btf_is_composite(t)) { 4527 const struct btf_member *m; 4528 __u32 bit_offset; 4529 4530 if (access_idx >= btf_vlen(t)) 4531 return -EINVAL; 4532 4533 bit_offset = btf_member_bit_offset(t, access_idx); 4534 spec->bit_offset += bit_offset; 4535 4536 m = btf_members(t) + access_idx; 4537 if (m->name_off) { 4538 name = btf__name_by_offset(btf, m->name_off); 4539 if (str_is_empty(name)) 4540 return -EINVAL; 4541 4542 acc->type_id = id; 4543 acc->idx = access_idx; 4544 acc->name = name; 4545 spec->len++; 4546 } 4547 4548 id = m->type; 4549 } else if (btf_is_array(t)) { 4550 const struct btf_array *a = btf_array(t); 4551 bool flex; 4552 4553 t = skip_mods_and_typedefs(btf, a->type, &id); 4554 if (!t) 4555 return -EINVAL; 4556 4557 flex = is_flex_arr(btf, acc - 1, a); 4558 if (!flex && access_idx >= a->nelems) 4559 return -EINVAL; 4560 4561 spec->spec[spec->len].type_id = id; 4562 spec->spec[spec->len].idx = access_idx; 4563 spec->len++; 4564 4565 sz = btf__resolve_size(btf, id); 4566 if (sz < 0) 4567 return sz; 4568 spec->bit_offset += access_idx * sz * 8; 4569 } else { 4570 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4571 type_id, spec_str, i, id, btf_kind_str(t)); 4572 return -EINVAL; 4573 } 4574 } 4575 4576 return 0; 4577 } 4578 4579 static bool bpf_core_is_flavor_sep(const char *s) 4580 { 4581 /* check X___Y name pattern, where X and Y are not underscores */ 4582 return s[0] != '_' && /* X */ 4583 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4584 s[4] != '_'; /* Y */ 4585 } 4586 4587 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4588 * before last triple underscore. Struct name part after last triple 4589 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4590 */ 4591 static size_t bpf_core_essential_name_len(const char *name) 4592 { 4593 size_t n = strlen(name); 4594 int i; 4595 4596 for (i = n - 5; i >= 0; i--) { 4597 if (bpf_core_is_flavor_sep(name + i)) 4598 return i + 1; 4599 } 4600 return n; 4601 } 4602 4603 /* dynamically sized list of type IDs */ 4604 struct ids_vec { 4605 __u32 *data; 4606 int len; 4607 }; 4608 4609 static void bpf_core_free_cands(struct ids_vec *cand_ids) 4610 { 4611 free(cand_ids->data); 4612 free(cand_ids); 4613 } 4614 4615 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 4616 __u32 local_type_id, 4617 const struct btf *targ_btf) 4618 { 4619 size_t local_essent_len, targ_essent_len; 4620 const char *local_name, *targ_name; 4621 const struct btf_type *t, *local_t; 4622 struct ids_vec *cand_ids; 4623 __u32 *new_ids; 4624 int i, err, n; 4625 4626 local_t = btf__type_by_id(local_btf, local_type_id); 4627 if (!local_t) 4628 return ERR_PTR(-EINVAL); 4629 4630 local_name = btf__name_by_offset(local_btf, local_t->name_off); 4631 if (str_is_empty(local_name)) 4632 return ERR_PTR(-EINVAL); 4633 local_essent_len = bpf_core_essential_name_len(local_name); 4634 4635 cand_ids = calloc(1, sizeof(*cand_ids)); 4636 if (!cand_ids) 4637 return ERR_PTR(-ENOMEM); 4638 4639 n = btf__get_nr_types(targ_btf); 4640 for (i = 1; i <= n; i++) { 4641 t = btf__type_by_id(targ_btf, i); 4642 if (btf_kind(t) != btf_kind(local_t)) 4643 continue; 4644 4645 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4646 if (str_is_empty(targ_name)) 4647 continue; 4648 4649 targ_essent_len = bpf_core_essential_name_len(targ_name); 4650 if (targ_essent_len != local_essent_len) 4651 continue; 4652 4653 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 4654 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n", 4655 local_type_id, btf_kind_str(local_t), 4656 local_name, i, btf_kind_str(t), targ_name); 4657 new_ids = libbpf_reallocarray(cand_ids->data, 4658 cand_ids->len + 1, 4659 sizeof(*cand_ids->data)); 4660 if (!new_ids) { 4661 err = -ENOMEM; 4662 goto err_out; 4663 } 4664 cand_ids->data = new_ids; 4665 cand_ids->data[cand_ids->len++] = i; 4666 } 4667 } 4668 return cand_ids; 4669 err_out: 4670 bpf_core_free_cands(cand_ids); 4671 return ERR_PTR(err); 4672 } 4673 4674 /* Check two types for compatibility for the purpose of field access 4675 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 4676 * are relocating semantically compatible entities: 4677 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4678 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4679 * - any two PTRs are always compatible; 4680 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4681 * least one of enums should be anonymous; 4682 * - for ENUMs, check sizes, names are ignored; 4683 * - for INT, size and signedness are ignored; 4684 * - for ARRAY, dimensionality is ignored, element types are checked for 4685 * compatibility recursively; 4686 * - everything else shouldn't be ever a target of relocation. 4687 * These rules are not set in stone and probably will be adjusted as we get 4688 * more experience with using BPF CO-RE relocations. 4689 */ 4690 static int bpf_core_fields_are_compat(const struct btf *local_btf, 4691 __u32 local_id, 4692 const struct btf *targ_btf, 4693 __u32 targ_id) 4694 { 4695 const struct btf_type *local_type, *targ_type; 4696 4697 recur: 4698 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4699 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4700 if (!local_type || !targ_type) 4701 return -EINVAL; 4702 4703 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4704 return 1; 4705 if (btf_kind(local_type) != btf_kind(targ_type)) 4706 return 0; 4707 4708 switch (btf_kind(local_type)) { 4709 case BTF_KIND_PTR: 4710 return 1; 4711 case BTF_KIND_FWD: 4712 case BTF_KIND_ENUM: { 4713 const char *local_name, *targ_name; 4714 size_t local_len, targ_len; 4715 4716 local_name = btf__name_by_offset(local_btf, 4717 local_type->name_off); 4718 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4719 local_len = bpf_core_essential_name_len(local_name); 4720 targ_len = bpf_core_essential_name_len(targ_name); 4721 /* one of them is anonymous or both w/ same flavor-less names */ 4722 return local_len == 0 || targ_len == 0 || 4723 (local_len == targ_len && 4724 strncmp(local_name, targ_name, local_len) == 0); 4725 } 4726 case BTF_KIND_INT: 4727 /* just reject deprecated bitfield-like integers; all other 4728 * integers are by default compatible between each other 4729 */ 4730 return btf_int_offset(local_type) == 0 && 4731 btf_int_offset(targ_type) == 0; 4732 case BTF_KIND_ARRAY: 4733 local_id = btf_array(local_type)->type; 4734 targ_id = btf_array(targ_type)->type; 4735 goto recur; 4736 default: 4737 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 4738 btf_kind(local_type), local_id, targ_id); 4739 return 0; 4740 } 4741 } 4742 4743 /* 4744 * Given single high-level named field accessor in local type, find 4745 * corresponding high-level accessor for a target type. Along the way, 4746 * maintain low-level spec for target as well. Also keep updating target 4747 * bit offset. 4748 * 4749 * Searching is performed through recursive exhaustive enumeration of all 4750 * fields of a struct/union. If there are any anonymous (embedded) 4751 * structs/unions, they are recursively searched as well. If field with 4752 * desired name is found, check compatibility between local and target types, 4753 * before returning result. 4754 * 4755 * 1 is returned, if field is found. 4756 * 0 is returned if no compatible field is found. 4757 * <0 is returned on error. 4758 */ 4759 static int bpf_core_match_member(const struct btf *local_btf, 4760 const struct bpf_core_accessor *local_acc, 4761 const struct btf *targ_btf, 4762 __u32 targ_id, 4763 struct bpf_core_spec *spec, 4764 __u32 *next_targ_id) 4765 { 4766 const struct btf_type *local_type, *targ_type; 4767 const struct btf_member *local_member, *m; 4768 const char *local_name, *targ_name; 4769 __u32 local_id; 4770 int i, n, found; 4771 4772 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4773 if (!targ_type) 4774 return -EINVAL; 4775 if (!btf_is_composite(targ_type)) 4776 return 0; 4777 4778 local_id = local_acc->type_id; 4779 local_type = btf__type_by_id(local_btf, local_id); 4780 local_member = btf_members(local_type) + local_acc->idx; 4781 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4782 4783 n = btf_vlen(targ_type); 4784 m = btf_members(targ_type); 4785 for (i = 0; i < n; i++, m++) { 4786 __u32 bit_offset; 4787 4788 bit_offset = btf_member_bit_offset(targ_type, i); 4789 4790 /* too deep struct/union/array nesting */ 4791 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4792 return -E2BIG; 4793 4794 /* speculate this member will be the good one */ 4795 spec->bit_offset += bit_offset; 4796 spec->raw_spec[spec->raw_len++] = i; 4797 4798 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4799 if (str_is_empty(targ_name)) { 4800 /* embedded struct/union, we need to go deeper */ 4801 found = bpf_core_match_member(local_btf, local_acc, 4802 targ_btf, m->type, 4803 spec, next_targ_id); 4804 if (found) /* either found or error */ 4805 return found; 4806 } else if (strcmp(local_name, targ_name) == 0) { 4807 /* matching named field */ 4808 struct bpf_core_accessor *targ_acc; 4809 4810 targ_acc = &spec->spec[spec->len++]; 4811 targ_acc->type_id = targ_id; 4812 targ_acc->idx = i; 4813 targ_acc->name = targ_name; 4814 4815 *next_targ_id = m->type; 4816 found = bpf_core_fields_are_compat(local_btf, 4817 local_member->type, 4818 targ_btf, m->type); 4819 if (!found) 4820 spec->len--; /* pop accessor */ 4821 return found; 4822 } 4823 /* member turned out not to be what we looked for */ 4824 spec->bit_offset -= bit_offset; 4825 spec->raw_len--; 4826 } 4827 4828 return 0; 4829 } 4830 4831 /* Check local and target types for compatibility. This check is used for 4832 * type-based CO-RE relocations and follow slightly different rules than 4833 * field-based relocations. This function assumes that root types were already 4834 * checked for name match. Beyond that initial root-level name check, names 4835 * are completely ignored. Compatibility rules are as follows: 4836 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 4837 * kind should match for local and target types (i.e., STRUCT is not 4838 * compatible with UNION); 4839 * - for ENUMs, the size is ignored; 4840 * - for INT, size and signedness are ignored; 4841 * - for ARRAY, dimensionality is ignored, element types are checked for 4842 * compatibility recursively; 4843 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 4844 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 4845 * - FUNC_PROTOs are compatible if they have compatible signature: same 4846 * number of input args and compatible return and argument types. 4847 * These rules are not set in stone and probably will be adjusted as we get 4848 * more experience with using BPF CO-RE relocations. 4849 */ 4850 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 4851 const struct btf *targ_btf, __u32 targ_id) 4852 { 4853 const struct btf_type *local_type, *targ_type; 4854 int depth = 32; /* max recursion depth */ 4855 4856 /* caller made sure that names match (ignoring flavor suffix) */ 4857 local_type = btf__type_by_id(local_btf, local_id); 4858 targ_type = btf__type_by_id(targ_btf, targ_id); 4859 if (btf_kind(local_type) != btf_kind(targ_type)) 4860 return 0; 4861 4862 recur: 4863 depth--; 4864 if (depth < 0) 4865 return -EINVAL; 4866 4867 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4868 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4869 if (!local_type || !targ_type) 4870 return -EINVAL; 4871 4872 if (btf_kind(local_type) != btf_kind(targ_type)) 4873 return 0; 4874 4875 switch (btf_kind(local_type)) { 4876 case BTF_KIND_UNKN: 4877 case BTF_KIND_STRUCT: 4878 case BTF_KIND_UNION: 4879 case BTF_KIND_ENUM: 4880 case BTF_KIND_FWD: 4881 return 1; 4882 case BTF_KIND_INT: 4883 /* just reject deprecated bitfield-like integers; all other 4884 * integers are by default compatible between each other 4885 */ 4886 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 4887 case BTF_KIND_PTR: 4888 local_id = local_type->type; 4889 targ_id = targ_type->type; 4890 goto recur; 4891 case BTF_KIND_ARRAY: 4892 local_id = btf_array(local_type)->type; 4893 targ_id = btf_array(targ_type)->type; 4894 goto recur; 4895 case BTF_KIND_FUNC_PROTO: { 4896 struct btf_param *local_p = btf_params(local_type); 4897 struct btf_param *targ_p = btf_params(targ_type); 4898 __u16 local_vlen = btf_vlen(local_type); 4899 __u16 targ_vlen = btf_vlen(targ_type); 4900 int i, err; 4901 4902 if (local_vlen != targ_vlen) 4903 return 0; 4904 4905 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 4906 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 4907 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 4908 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 4909 if (err <= 0) 4910 return err; 4911 } 4912 4913 /* tail recurse for return type check */ 4914 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 4915 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 4916 goto recur; 4917 } 4918 default: 4919 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 4920 btf_kind_str(local_type), local_id, targ_id); 4921 return 0; 4922 } 4923 } 4924 4925 /* 4926 * Try to match local spec to a target type and, if successful, produce full 4927 * target spec (high-level, low-level + bit offset). 4928 */ 4929 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 4930 const struct btf *targ_btf, __u32 targ_id, 4931 struct bpf_core_spec *targ_spec) 4932 { 4933 const struct btf_type *targ_type; 4934 const struct bpf_core_accessor *local_acc; 4935 struct bpf_core_accessor *targ_acc; 4936 int i, sz, matched; 4937 4938 memset(targ_spec, 0, sizeof(*targ_spec)); 4939 targ_spec->btf = targ_btf; 4940 targ_spec->root_type_id = targ_id; 4941 targ_spec->relo_kind = local_spec->relo_kind; 4942 4943 if (core_relo_is_type_based(local_spec->relo_kind)) { 4944 return bpf_core_types_are_compat(local_spec->btf, 4945 local_spec->root_type_id, 4946 targ_btf, targ_id); 4947 } 4948 4949 local_acc = &local_spec->spec[0]; 4950 targ_acc = &targ_spec->spec[0]; 4951 4952 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 4953 size_t local_essent_len, targ_essent_len; 4954 const struct btf_enum *e; 4955 const char *targ_name; 4956 4957 /* has to resolve to an enum */ 4958 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 4959 if (!btf_is_enum(targ_type)) 4960 return 0; 4961 4962 local_essent_len = bpf_core_essential_name_len(local_acc->name); 4963 4964 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 4965 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 4966 targ_essent_len = bpf_core_essential_name_len(targ_name); 4967 if (targ_essent_len != local_essent_len) 4968 continue; 4969 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 4970 targ_acc->type_id = targ_id; 4971 targ_acc->idx = i; 4972 targ_acc->name = targ_name; 4973 targ_spec->len++; 4974 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 4975 targ_spec->raw_len++; 4976 return 1; 4977 } 4978 } 4979 return 0; 4980 } 4981 4982 if (!core_relo_is_field_based(local_spec->relo_kind)) 4983 return -EINVAL; 4984 4985 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 4986 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 4987 &targ_id); 4988 if (!targ_type) 4989 return -EINVAL; 4990 4991 if (local_acc->name) { 4992 matched = bpf_core_match_member(local_spec->btf, 4993 local_acc, 4994 targ_btf, targ_id, 4995 targ_spec, &targ_id); 4996 if (matched <= 0) 4997 return matched; 4998 } else { 4999 /* for i=0, targ_id is already treated as array element 5000 * type (because it's the original struct), for others 5001 * we should find array element type first 5002 */ 5003 if (i > 0) { 5004 const struct btf_array *a; 5005 bool flex; 5006 5007 if (!btf_is_array(targ_type)) 5008 return 0; 5009 5010 a = btf_array(targ_type); 5011 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5012 if (!flex && local_acc->idx >= a->nelems) 5013 return 0; 5014 if (!skip_mods_and_typedefs(targ_btf, a->type, 5015 &targ_id)) 5016 return -EINVAL; 5017 } 5018 5019 /* too deep struct/union/array nesting */ 5020 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5021 return -E2BIG; 5022 5023 targ_acc->type_id = targ_id; 5024 targ_acc->idx = local_acc->idx; 5025 targ_acc->name = NULL; 5026 targ_spec->len++; 5027 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5028 targ_spec->raw_len++; 5029 5030 sz = btf__resolve_size(targ_btf, targ_id); 5031 if (sz < 0) 5032 return sz; 5033 targ_spec->bit_offset += local_acc->idx * sz * 8; 5034 } 5035 } 5036 5037 return 1; 5038 } 5039 5040 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5041 const struct bpf_core_relo *relo, 5042 const struct bpf_core_spec *spec, 5043 __u32 *val, __u32 *field_sz, __u32 *type_id, 5044 bool *validate) 5045 { 5046 const struct bpf_core_accessor *acc; 5047 const struct btf_type *t; 5048 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5049 const struct btf_member *m; 5050 const struct btf_type *mt; 5051 bool bitfield; 5052 __s64 sz; 5053 5054 *field_sz = 0; 5055 5056 if (relo->kind == BPF_FIELD_EXISTS) { 5057 *val = spec ? 1 : 0; 5058 return 0; 5059 } 5060 5061 if (!spec) 5062 return -EUCLEAN; /* request instruction poisoning */ 5063 5064 acc = &spec->spec[spec->len - 1]; 5065 t = btf__type_by_id(spec->btf, acc->type_id); 5066 5067 /* a[n] accessor needs special handling */ 5068 if (!acc->name) { 5069 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5070 *val = spec->bit_offset / 8; 5071 /* remember field size for load/store mem size */ 5072 sz = btf__resolve_size(spec->btf, acc->type_id); 5073 if (sz < 0) 5074 return -EINVAL; 5075 *field_sz = sz; 5076 *type_id = acc->type_id; 5077 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5078 sz = btf__resolve_size(spec->btf, acc->type_id); 5079 if (sz < 0) 5080 return -EINVAL; 5081 *val = sz; 5082 } else { 5083 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5084 prog->name, relo->kind, relo->insn_off / 8); 5085 return -EINVAL; 5086 } 5087 if (validate) 5088 *validate = true; 5089 return 0; 5090 } 5091 5092 m = btf_members(t) + acc->idx; 5093 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5094 bit_off = spec->bit_offset; 5095 bit_sz = btf_member_bitfield_size(t, acc->idx); 5096 5097 bitfield = bit_sz > 0; 5098 if (bitfield) { 5099 byte_sz = mt->size; 5100 byte_off = bit_off / 8 / byte_sz * byte_sz; 5101 /* figure out smallest int size necessary for bitfield load */ 5102 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5103 if (byte_sz >= 8) { 5104 /* bitfield can't be read with 64-bit read */ 5105 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5106 prog->name, relo->kind, relo->insn_off / 8); 5107 return -E2BIG; 5108 } 5109 byte_sz *= 2; 5110 byte_off = bit_off / 8 / byte_sz * byte_sz; 5111 } 5112 } else { 5113 sz = btf__resolve_size(spec->btf, field_type_id); 5114 if (sz < 0) 5115 return -EINVAL; 5116 byte_sz = sz; 5117 byte_off = spec->bit_offset / 8; 5118 bit_sz = byte_sz * 8; 5119 } 5120 5121 /* for bitfields, all the relocatable aspects are ambiguous and we 5122 * might disagree with compiler, so turn off validation of expected 5123 * value, except for signedness 5124 */ 5125 if (validate) 5126 *validate = !bitfield; 5127 5128 switch (relo->kind) { 5129 case BPF_FIELD_BYTE_OFFSET: 5130 *val = byte_off; 5131 if (!bitfield) { 5132 *field_sz = byte_sz; 5133 *type_id = field_type_id; 5134 } 5135 break; 5136 case BPF_FIELD_BYTE_SIZE: 5137 *val = byte_sz; 5138 break; 5139 case BPF_FIELD_SIGNED: 5140 /* enums will be assumed unsigned */ 5141 *val = btf_is_enum(mt) || 5142 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5143 if (validate) 5144 *validate = true; /* signedness is never ambiguous */ 5145 break; 5146 case BPF_FIELD_LSHIFT_U64: 5147 #if __BYTE_ORDER == __LITTLE_ENDIAN 5148 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5149 #else 5150 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5151 #endif 5152 break; 5153 case BPF_FIELD_RSHIFT_U64: 5154 *val = 64 - bit_sz; 5155 if (validate) 5156 *validate = true; /* right shift is never ambiguous */ 5157 break; 5158 case BPF_FIELD_EXISTS: 5159 default: 5160 return -EOPNOTSUPP; 5161 } 5162 5163 return 0; 5164 } 5165 5166 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5167 const struct bpf_core_spec *spec, 5168 __u32 *val) 5169 { 5170 __s64 sz; 5171 5172 /* type-based relos return zero when target type is not found */ 5173 if (!spec) { 5174 *val = 0; 5175 return 0; 5176 } 5177 5178 switch (relo->kind) { 5179 case BPF_TYPE_ID_TARGET: 5180 *val = spec->root_type_id; 5181 break; 5182 case BPF_TYPE_EXISTS: 5183 *val = 1; 5184 break; 5185 case BPF_TYPE_SIZE: 5186 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5187 if (sz < 0) 5188 return -EINVAL; 5189 *val = sz; 5190 break; 5191 case BPF_TYPE_ID_LOCAL: 5192 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5193 default: 5194 return -EOPNOTSUPP; 5195 } 5196 5197 return 0; 5198 } 5199 5200 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5201 const struct bpf_core_spec *spec, 5202 __u32 *val) 5203 { 5204 const struct btf_type *t; 5205 const struct btf_enum *e; 5206 5207 switch (relo->kind) { 5208 case BPF_ENUMVAL_EXISTS: 5209 *val = spec ? 1 : 0; 5210 break; 5211 case BPF_ENUMVAL_VALUE: 5212 if (!spec) 5213 return -EUCLEAN; /* request instruction poisoning */ 5214 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5215 e = btf_enum(t) + spec->spec[0].idx; 5216 *val = e->val; 5217 break; 5218 default: 5219 return -EOPNOTSUPP; 5220 } 5221 5222 return 0; 5223 } 5224 5225 struct bpf_core_relo_res 5226 { 5227 /* expected value in the instruction, unless validate == false */ 5228 __u32 orig_val; 5229 /* new value that needs to be patched up to */ 5230 __u32 new_val; 5231 /* relocation unsuccessful, poison instruction, but don't fail load */ 5232 bool poison; 5233 /* some relocations can't be validated against orig_val */ 5234 bool validate; 5235 /* for field byte offset relocations or the forms: 5236 * *(T *)(rX + <off>) = rY 5237 * rX = *(T *)(rY + <off>), 5238 * we remember original and resolved field size to adjust direct 5239 * memory loads of pointers and integers; this is necessary for 32-bit 5240 * host kernel architectures, but also allows to automatically 5241 * relocate fields that were resized from, e.g., u32 to u64, etc. 5242 */ 5243 bool fail_memsz_adjust; 5244 __u32 orig_sz; 5245 __u32 orig_type_id; 5246 __u32 new_sz; 5247 __u32 new_type_id; 5248 }; 5249 5250 /* Calculate original and target relocation values, given local and target 5251 * specs and relocation kind. These values are calculated for each candidate. 5252 * If there are multiple candidates, resulting values should all be consistent 5253 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5254 * If instruction has to be poisoned, *poison will be set to true. 5255 */ 5256 static int bpf_core_calc_relo(const struct bpf_program *prog, 5257 const struct bpf_core_relo *relo, 5258 int relo_idx, 5259 const struct bpf_core_spec *local_spec, 5260 const struct bpf_core_spec *targ_spec, 5261 struct bpf_core_relo_res *res) 5262 { 5263 int err = -EOPNOTSUPP; 5264 5265 res->orig_val = 0; 5266 res->new_val = 0; 5267 res->poison = false; 5268 res->validate = true; 5269 res->fail_memsz_adjust = false; 5270 res->orig_sz = res->new_sz = 0; 5271 res->orig_type_id = res->new_type_id = 0; 5272 5273 if (core_relo_is_field_based(relo->kind)) { 5274 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5275 &res->orig_val, &res->orig_sz, 5276 &res->orig_type_id, &res->validate); 5277 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5278 &res->new_val, &res->new_sz, 5279 &res->new_type_id, NULL); 5280 if (err) 5281 goto done; 5282 /* Validate if it's safe to adjust load/store memory size. 5283 * Adjustments are performed only if original and new memory 5284 * sizes differ. 5285 */ 5286 res->fail_memsz_adjust = false; 5287 if (res->orig_sz != res->new_sz) { 5288 const struct btf_type *orig_t, *new_t; 5289 5290 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5291 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5292 5293 /* There are two use cases in which it's safe to 5294 * adjust load/store's mem size: 5295 * - reading a 32-bit kernel pointer, while on BPF 5296 * size pointers are always 64-bit; in this case 5297 * it's safe to "downsize" instruction size due to 5298 * pointer being treated as unsigned integer with 5299 * zero-extended upper 32-bits; 5300 * - reading unsigned integers, again due to 5301 * zero-extension is preserving the value correctly. 5302 * 5303 * In all other cases it's incorrect to attempt to 5304 * load/store field because read value will be 5305 * incorrect, so we poison relocated instruction. 5306 */ 5307 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5308 goto done; 5309 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5310 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5311 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5312 goto done; 5313 5314 /* mark as invalid mem size adjustment, but this will 5315 * only be checked for LDX/STX/ST insns 5316 */ 5317 res->fail_memsz_adjust = true; 5318 } 5319 } else if (core_relo_is_type_based(relo->kind)) { 5320 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5321 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5322 } else if (core_relo_is_enumval_based(relo->kind)) { 5323 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5324 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5325 } 5326 5327 done: 5328 if (err == -EUCLEAN) { 5329 /* EUCLEAN is used to signal instruction poisoning request */ 5330 res->poison = true; 5331 err = 0; 5332 } else if (err == -EOPNOTSUPP) { 5333 /* EOPNOTSUPP means unknown/unsupported relocation */ 5334 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5335 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5336 relo->kind, relo->insn_off / 8); 5337 } 5338 5339 return err; 5340 } 5341 5342 /* 5343 * Turn instruction for which CO_RE relocation failed into invalid one with 5344 * distinct signature. 5345 */ 5346 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5347 int insn_idx, struct bpf_insn *insn) 5348 { 5349 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5350 prog->name, relo_idx, insn_idx); 5351 insn->code = BPF_JMP | BPF_CALL; 5352 insn->dst_reg = 0; 5353 insn->src_reg = 0; 5354 insn->off = 0; 5355 /* if this instruction is reachable (not a dead code), 5356 * verifier will complain with the following message: 5357 * invalid func unknown#195896080 5358 */ 5359 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5360 } 5361 5362 static bool is_ldimm64(struct bpf_insn *insn) 5363 { 5364 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 5365 } 5366 5367 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5368 { 5369 switch (BPF_SIZE(insn->code)) { 5370 case BPF_DW: return 8; 5371 case BPF_W: return 4; 5372 case BPF_H: return 2; 5373 case BPF_B: return 1; 5374 default: return -1; 5375 } 5376 } 5377 5378 static int insn_bytes_to_bpf_size(__u32 sz) 5379 { 5380 switch (sz) { 5381 case 8: return BPF_DW; 5382 case 4: return BPF_W; 5383 case 2: return BPF_H; 5384 case 1: return BPF_B; 5385 default: return -1; 5386 } 5387 } 5388 5389 /* 5390 * Patch relocatable BPF instruction. 5391 * 5392 * Patched value is determined by relocation kind and target specification. 5393 * For existence relocations target spec will be NULL if field/type is not found. 5394 * Expected insn->imm value is determined using relocation kind and local 5395 * spec, and is checked before patching instruction. If actual insn->imm value 5396 * is wrong, bail out with error. 5397 * 5398 * Currently supported classes of BPF instruction are: 5399 * 1. rX = <imm> (assignment with immediate operand); 5400 * 2. rX += <imm> (arithmetic operations with immediate operand); 5401 * 3. rX = <imm64> (load with 64-bit immediate value); 5402 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5403 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5404 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5405 */ 5406 static int bpf_core_patch_insn(struct bpf_program *prog, 5407 const struct bpf_core_relo *relo, 5408 int relo_idx, 5409 const struct bpf_core_relo_res *res) 5410 { 5411 __u32 orig_val, new_val; 5412 struct bpf_insn *insn; 5413 int insn_idx; 5414 __u8 class; 5415 5416 if (relo->insn_off % BPF_INSN_SZ) 5417 return -EINVAL; 5418 insn_idx = relo->insn_off / BPF_INSN_SZ; 5419 /* adjust insn_idx from section frame of reference to the local 5420 * program's frame of reference; (sub-)program code is not yet 5421 * relocated, so it's enough to just subtract in-section offset 5422 */ 5423 insn_idx = insn_idx - prog->sec_insn_off; 5424 insn = &prog->insns[insn_idx]; 5425 class = BPF_CLASS(insn->code); 5426 5427 if (res->poison) { 5428 poison: 5429 /* poison second part of ldimm64 to avoid confusing error from 5430 * verifier about "unknown opcode 00" 5431 */ 5432 if (is_ldimm64(insn)) 5433 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5434 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5435 return 0; 5436 } 5437 5438 orig_val = res->orig_val; 5439 new_val = res->new_val; 5440 5441 switch (class) { 5442 case BPF_ALU: 5443 case BPF_ALU64: 5444 if (BPF_SRC(insn->code) != BPF_K) 5445 return -EINVAL; 5446 if (res->validate && insn->imm != orig_val) { 5447 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5448 prog->name, relo_idx, 5449 insn_idx, insn->imm, orig_val, new_val); 5450 return -EINVAL; 5451 } 5452 orig_val = insn->imm; 5453 insn->imm = new_val; 5454 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5455 prog->name, relo_idx, insn_idx, 5456 orig_val, new_val); 5457 break; 5458 case BPF_LDX: 5459 case BPF_ST: 5460 case BPF_STX: 5461 if (res->validate && insn->off != orig_val) { 5462 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5463 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5464 return -EINVAL; 5465 } 5466 if (new_val > SHRT_MAX) { 5467 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5468 prog->name, relo_idx, insn_idx, new_val); 5469 return -ERANGE; 5470 } 5471 if (res->fail_memsz_adjust) { 5472 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5473 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5474 prog->name, relo_idx, insn_idx); 5475 goto poison; 5476 } 5477 5478 orig_val = insn->off; 5479 insn->off = new_val; 5480 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5481 prog->name, relo_idx, insn_idx, orig_val, new_val); 5482 5483 if (res->new_sz != res->orig_sz) { 5484 int insn_bytes_sz, insn_bpf_sz; 5485 5486 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5487 if (insn_bytes_sz != res->orig_sz) { 5488 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5489 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5490 return -EINVAL; 5491 } 5492 5493 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5494 if (insn_bpf_sz < 0) { 5495 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5496 prog->name, relo_idx, insn_idx, res->new_sz); 5497 return -EINVAL; 5498 } 5499 5500 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5501 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5502 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5503 } 5504 break; 5505 case BPF_LD: { 5506 __u64 imm; 5507 5508 if (!is_ldimm64(insn) || 5509 insn[0].src_reg != 0 || insn[0].off != 0 || 5510 insn_idx + 1 >= prog->insns_cnt || 5511 insn[1].code != 0 || insn[1].dst_reg != 0 || 5512 insn[1].src_reg != 0 || insn[1].off != 0) { 5513 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5514 prog->name, relo_idx, insn_idx); 5515 return -EINVAL; 5516 } 5517 5518 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5519 if (res->validate && imm != orig_val) { 5520 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5521 prog->name, relo_idx, 5522 insn_idx, (unsigned long long)imm, 5523 orig_val, new_val); 5524 return -EINVAL; 5525 } 5526 5527 insn[0].imm = new_val; 5528 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5529 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5530 prog->name, relo_idx, insn_idx, 5531 (unsigned long long)imm, new_val); 5532 break; 5533 } 5534 default: 5535 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5536 prog->name, relo_idx, insn_idx, insn->code, 5537 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5538 return -EINVAL; 5539 } 5540 5541 return 0; 5542 } 5543 5544 /* Output spec definition in the format: 5545 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5546 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5547 */ 5548 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5549 { 5550 const struct btf_type *t; 5551 const struct btf_enum *e; 5552 const char *s; 5553 __u32 type_id; 5554 int i; 5555 5556 type_id = spec->root_type_id; 5557 t = btf__type_by_id(spec->btf, type_id); 5558 s = btf__name_by_offset(spec->btf, t->name_off); 5559 5560 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5561 5562 if (core_relo_is_type_based(spec->relo_kind)) 5563 return; 5564 5565 if (core_relo_is_enumval_based(spec->relo_kind)) { 5566 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5567 e = btf_enum(t) + spec->raw_spec[0]; 5568 s = btf__name_by_offset(spec->btf, e->name_off); 5569 5570 libbpf_print(level, "::%s = %u", s, e->val); 5571 return; 5572 } 5573 5574 if (core_relo_is_field_based(spec->relo_kind)) { 5575 for (i = 0; i < spec->len; i++) { 5576 if (spec->spec[i].name) 5577 libbpf_print(level, ".%s", spec->spec[i].name); 5578 else if (i > 0 || spec->spec[i].idx > 0) 5579 libbpf_print(level, "[%u]", spec->spec[i].idx); 5580 } 5581 5582 libbpf_print(level, " ("); 5583 for (i = 0; i < spec->raw_len; i++) 5584 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5585 5586 if (spec->bit_offset % 8) 5587 libbpf_print(level, " @ offset %u.%u)", 5588 spec->bit_offset / 8, spec->bit_offset % 8); 5589 else 5590 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5591 return; 5592 } 5593 } 5594 5595 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5596 { 5597 return (size_t)key; 5598 } 5599 5600 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5601 { 5602 return k1 == k2; 5603 } 5604 5605 static void *u32_as_hash_key(__u32 x) 5606 { 5607 return (void *)(uintptr_t)x; 5608 } 5609 5610 /* 5611 * CO-RE relocate single instruction. 5612 * 5613 * The outline and important points of the algorithm: 5614 * 1. For given local type, find corresponding candidate target types. 5615 * Candidate type is a type with the same "essential" name, ignoring 5616 * everything after last triple underscore (___). E.g., `sample`, 5617 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5618 * for each other. Names with triple underscore are referred to as 5619 * "flavors" and are useful, among other things, to allow to 5620 * specify/support incompatible variations of the same kernel struct, which 5621 * might differ between different kernel versions and/or build 5622 * configurations. 5623 * 5624 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5625 * converter, when deduplicated BTF of a kernel still contains more than 5626 * one different types with the same name. In that case, ___2, ___3, etc 5627 * are appended starting from second name conflict. But start flavors are 5628 * also useful to be defined "locally", in BPF program, to extract same 5629 * data from incompatible changes between different kernel 5630 * versions/configurations. For instance, to handle field renames between 5631 * kernel versions, one can use two flavors of the struct name with the 5632 * same common name and use conditional relocations to extract that field, 5633 * depending on target kernel version. 5634 * 2. For each candidate type, try to match local specification to this 5635 * candidate target type. Matching involves finding corresponding 5636 * high-level spec accessors, meaning that all named fields should match, 5637 * as well as all array accesses should be within the actual bounds. Also, 5638 * types should be compatible (see bpf_core_fields_are_compat for details). 5639 * 3. It is supported and expected that there might be multiple flavors 5640 * matching the spec. As long as all the specs resolve to the same set of 5641 * offsets across all candidates, there is no error. If there is any 5642 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 5643 * imprefection of BTF deduplication, which can cause slight duplication of 5644 * the same BTF type, if some directly or indirectly referenced (by 5645 * pointer) type gets resolved to different actual types in different 5646 * object files. If such situation occurs, deduplicated BTF will end up 5647 * with two (or more) structurally identical types, which differ only in 5648 * types they refer to through pointer. This should be OK in most cases and 5649 * is not an error. 5650 * 4. Candidate types search is performed by linearly scanning through all 5651 * types in target BTF. It is anticipated that this is overall more 5652 * efficient memory-wise and not significantly worse (if not better) 5653 * CPU-wise compared to prebuilding a map from all local type names to 5654 * a list of candidate type names. It's also sped up by caching resolved 5655 * list of matching candidates per each local "root" type ID, that has at 5656 * least one bpf_core_relo associated with it. This list is shared 5657 * between multiple relocations for the same type ID and is updated as some 5658 * of the candidates are pruned due to structural incompatibility. 5659 */ 5660 static int bpf_core_apply_relo(struct bpf_program *prog, 5661 const struct bpf_core_relo *relo, 5662 int relo_idx, 5663 const struct btf *local_btf, 5664 const struct btf *targ_btf, 5665 struct hashmap *cand_cache) 5666 { 5667 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 5668 const void *type_key = u32_as_hash_key(relo->type_id); 5669 struct bpf_core_relo_res cand_res, targ_res; 5670 const struct btf_type *local_type; 5671 const char *local_name; 5672 struct ids_vec *cand_ids; 5673 __u32 local_id, cand_id; 5674 const char *spec_str; 5675 int i, j, err; 5676 5677 local_id = relo->type_id; 5678 local_type = btf__type_by_id(local_btf, local_id); 5679 if (!local_type) 5680 return -EINVAL; 5681 5682 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5683 if (!local_name) 5684 return -EINVAL; 5685 5686 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5687 if (str_is_empty(spec_str)) 5688 return -EINVAL; 5689 5690 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 5691 if (err) { 5692 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 5693 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5694 str_is_empty(local_name) ? "<anon>" : local_name, 5695 spec_str, err); 5696 return -EINVAL; 5697 } 5698 5699 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 5700 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5701 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 5702 libbpf_print(LIBBPF_DEBUG, "\n"); 5703 5704 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 5705 if (relo->kind == BPF_TYPE_ID_LOCAL) { 5706 targ_res.validate = true; 5707 targ_res.poison = false; 5708 targ_res.orig_val = local_spec.root_type_id; 5709 targ_res.new_val = local_spec.root_type_id; 5710 goto patch_insn; 5711 } 5712 5713 /* libbpf doesn't support candidate search for anonymous types */ 5714 if (str_is_empty(spec_str)) { 5715 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 5716 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5717 return -EOPNOTSUPP; 5718 } 5719 5720 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 5721 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 5722 if (IS_ERR(cand_ids)) { 5723 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld", 5724 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5725 local_name, PTR_ERR(cand_ids)); 5726 return PTR_ERR(cand_ids); 5727 } 5728 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 5729 if (err) { 5730 bpf_core_free_cands(cand_ids); 5731 return err; 5732 } 5733 } 5734 5735 for (i = 0, j = 0; i < cand_ids->len; i++) { 5736 cand_id = cand_ids->data[i]; 5737 err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec); 5738 if (err < 0) { 5739 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 5740 prog->name, relo_idx, i); 5741 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 5742 libbpf_print(LIBBPF_WARN, ": %d\n", err); 5743 return err; 5744 } 5745 5746 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 5747 relo_idx, err == 0 ? "non-matching" : "matching", i); 5748 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 5749 libbpf_print(LIBBPF_DEBUG, "\n"); 5750 5751 if (err == 0) 5752 continue; 5753 5754 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 5755 if (err) 5756 return err; 5757 5758 if (j == 0) { 5759 targ_res = cand_res; 5760 targ_spec = cand_spec; 5761 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 5762 /* if there are many field relo candidates, they 5763 * should all resolve to the same bit offset 5764 */ 5765 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 5766 prog->name, relo_idx, cand_spec.bit_offset, 5767 targ_spec.bit_offset); 5768 return -EINVAL; 5769 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 5770 /* all candidates should result in the same relocation 5771 * decision and value, otherwise it's dangerous to 5772 * proceed due to ambiguity 5773 */ 5774 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 5775 prog->name, relo_idx, 5776 cand_res.poison ? "failure" : "success", cand_res.new_val, 5777 targ_res.poison ? "failure" : "success", targ_res.new_val); 5778 return -EINVAL; 5779 } 5780 5781 cand_ids->data[j++] = cand_spec.root_type_id; 5782 } 5783 5784 /* 5785 * For BPF_FIELD_EXISTS relo or when used BPF program has field 5786 * existence checks or kernel version/config checks, it's expected 5787 * that we might not find any candidates. In this case, if field 5788 * wasn't found in any candidate, the list of candidates shouldn't 5789 * change at all, we'll just handle relocating appropriately, 5790 * depending on relo's kind. 5791 */ 5792 if (j > 0) 5793 cand_ids->len = j; 5794 5795 /* 5796 * If no candidates were found, it might be both a programmer error, 5797 * as well as expected case, depending whether instruction w/ 5798 * relocation is guarded in some way that makes it unreachable (dead 5799 * code) if relocation can't be resolved. This is handled in 5800 * bpf_core_patch_insn() uniformly by replacing that instruction with 5801 * BPF helper call insn (using invalid helper ID). If that instruction 5802 * is indeed unreachable, then it will be ignored and eliminated by 5803 * verifier. If it was an error, then verifier will complain and point 5804 * to a specific instruction number in its log. 5805 */ 5806 if (j == 0) { 5807 pr_debug("prog '%s': relo #%d: no matching targets found\n", 5808 prog->name, relo_idx); 5809 5810 /* calculate single target relo result explicitly */ 5811 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 5812 if (err) 5813 return err; 5814 } 5815 5816 patch_insn: 5817 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 5818 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 5819 if (err) { 5820 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 5821 prog->name, relo_idx, relo->insn_off, err); 5822 return -EINVAL; 5823 } 5824 5825 return 0; 5826 } 5827 5828 static int 5829 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5830 { 5831 const struct btf_ext_info_sec *sec; 5832 const struct bpf_core_relo *rec; 5833 const struct btf_ext_info *seg; 5834 struct hashmap_entry *entry; 5835 struct hashmap *cand_cache = NULL; 5836 struct bpf_program *prog; 5837 struct btf *targ_btf; 5838 const char *sec_name; 5839 int i, err = 0, insn_idx, sec_idx; 5840 5841 if (obj->btf_ext->core_relo_info.len == 0) 5842 return 0; 5843 5844 if (targ_btf_path) 5845 targ_btf = btf__parse(targ_btf_path, NULL); 5846 else 5847 targ_btf = obj->btf_vmlinux; 5848 if (IS_ERR_OR_NULL(targ_btf)) { 5849 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 5850 return PTR_ERR(targ_btf); 5851 } 5852 5853 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5854 if (IS_ERR(cand_cache)) { 5855 err = PTR_ERR(cand_cache); 5856 goto out; 5857 } 5858 5859 seg = &obj->btf_ext->core_relo_info; 5860 for_each_btf_ext_sec(seg, sec) { 5861 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5862 if (str_is_empty(sec_name)) { 5863 err = -EINVAL; 5864 goto out; 5865 } 5866 /* bpf_object's ELF is gone by now so it's not easy to find 5867 * section index by section name, but we can find *any* 5868 * bpf_program within desired section name and use it's 5869 * prog->sec_idx to do a proper search by section index and 5870 * instruction offset 5871 */ 5872 prog = NULL; 5873 for (i = 0; i < obj->nr_programs; i++) { 5874 prog = &obj->programs[i]; 5875 if (strcmp(prog->sec_name, sec_name) == 0) 5876 break; 5877 } 5878 if (!prog) { 5879 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5880 return -ENOENT; 5881 } 5882 sec_idx = prog->sec_idx; 5883 5884 pr_debug("sec '%s': found %d CO-RE relocations\n", 5885 sec_name, sec->num_info); 5886 5887 for_each_btf_ext_rec(seg, sec, i, rec) { 5888 insn_idx = rec->insn_off / BPF_INSN_SZ; 5889 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5890 if (!prog) { 5891 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5892 sec_name, insn_idx, i); 5893 err = -EINVAL; 5894 goto out; 5895 } 5896 /* no need to apply CO-RE relocation if the program is 5897 * not going to be loaded 5898 */ 5899 if (!prog->load) 5900 continue; 5901 5902 err = bpf_core_apply_relo(prog, rec, i, obj->btf, 5903 targ_btf, cand_cache); 5904 if (err) { 5905 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5906 prog->name, i, err); 5907 goto out; 5908 } 5909 } 5910 } 5911 5912 out: 5913 /* obj->btf_vmlinux is freed at the end of object load phase */ 5914 if (targ_btf != obj->btf_vmlinux) 5915 btf__free(targ_btf); 5916 if (!IS_ERR_OR_NULL(cand_cache)) { 5917 hashmap__for_each_entry(cand_cache, entry, i) { 5918 bpf_core_free_cands(entry->value); 5919 } 5920 hashmap__free(cand_cache); 5921 } 5922 return err; 5923 } 5924 5925 /* Relocate data references within program code: 5926 * - map references; 5927 * - global variable references; 5928 * - extern references. 5929 */ 5930 static int 5931 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5932 { 5933 int i; 5934 5935 for (i = 0; i < prog->nr_reloc; i++) { 5936 struct reloc_desc *relo = &prog->reloc_desc[i]; 5937 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5938 struct extern_desc *ext; 5939 5940 switch (relo->type) { 5941 case RELO_LD64: 5942 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5943 insn[0].imm = obj->maps[relo->map_idx].fd; 5944 relo->processed = true; 5945 break; 5946 case RELO_DATA: 5947 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5948 insn[1].imm = insn[0].imm + relo->sym_off; 5949 insn[0].imm = obj->maps[relo->map_idx].fd; 5950 relo->processed = true; 5951 break; 5952 case RELO_EXTERN: 5953 ext = &obj->externs[relo->sym_off]; 5954 if (ext->type == EXT_KCFG) { 5955 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5956 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5957 insn[1].imm = ext->kcfg.data_off; 5958 } else /* EXT_KSYM */ { 5959 if (ext->ksym.type_id) { /* typed ksyms */ 5960 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5961 insn[0].imm = ext->ksym.vmlinux_btf_id; 5962 } else { /* typeless ksyms */ 5963 insn[0].imm = (__u32)ext->ksym.addr; 5964 insn[1].imm = ext->ksym.addr >> 32; 5965 } 5966 } 5967 relo->processed = true; 5968 break; 5969 case RELO_CALL: 5970 /* will be handled as a follow up pass */ 5971 break; 5972 default: 5973 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5974 prog->name, i, relo->type); 5975 return -EINVAL; 5976 } 5977 } 5978 5979 return 0; 5980 } 5981 5982 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5983 const struct bpf_program *prog, 5984 const struct btf_ext_info *ext_info, 5985 void **prog_info, __u32 *prog_rec_cnt, 5986 __u32 *prog_rec_sz) 5987 { 5988 void *copy_start = NULL, *copy_end = NULL; 5989 void *rec, *rec_end, *new_prog_info; 5990 const struct btf_ext_info_sec *sec; 5991 size_t old_sz, new_sz; 5992 const char *sec_name; 5993 int i, off_adj; 5994 5995 for_each_btf_ext_sec(ext_info, sec) { 5996 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5997 if (!sec_name) 5998 return -EINVAL; 5999 if (strcmp(sec_name, prog->sec_name) != 0) 6000 continue; 6001 6002 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6003 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6004 6005 if (insn_off < prog->sec_insn_off) 6006 continue; 6007 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6008 break; 6009 6010 if (!copy_start) 6011 copy_start = rec; 6012 copy_end = rec + ext_info->rec_size; 6013 } 6014 6015 if (!copy_start) 6016 return -ENOENT; 6017 6018 /* append func/line info of a given (sub-)program to the main 6019 * program func/line info 6020 */ 6021 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6022 new_sz = old_sz + (copy_end - copy_start); 6023 new_prog_info = realloc(*prog_info, new_sz); 6024 if (!new_prog_info) 6025 return -ENOMEM; 6026 *prog_info = new_prog_info; 6027 *prog_rec_cnt = new_sz / ext_info->rec_size; 6028 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6029 6030 /* Kernel instruction offsets are in units of 8-byte 6031 * instructions, while .BTF.ext instruction offsets generated 6032 * by Clang are in units of bytes. So convert Clang offsets 6033 * into kernel offsets and adjust offset according to program 6034 * relocated position. 6035 */ 6036 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6037 rec = new_prog_info + old_sz; 6038 rec_end = new_prog_info + new_sz; 6039 for (; rec < rec_end; rec += ext_info->rec_size) { 6040 __u32 *insn_off = rec; 6041 6042 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6043 } 6044 *prog_rec_sz = ext_info->rec_size; 6045 return 0; 6046 } 6047 6048 return -ENOENT; 6049 } 6050 6051 static int 6052 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6053 struct bpf_program *main_prog, 6054 const struct bpf_program *prog) 6055 { 6056 int err; 6057 6058 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6059 * supprot func/line info 6060 */ 6061 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6062 return 0; 6063 6064 /* only attempt func info relocation if main program's func_info 6065 * relocation was successful 6066 */ 6067 if (main_prog != prog && !main_prog->func_info) 6068 goto line_info; 6069 6070 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6071 &main_prog->func_info, 6072 &main_prog->func_info_cnt, 6073 &main_prog->func_info_rec_size); 6074 if (err) { 6075 if (err != -ENOENT) { 6076 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6077 prog->name, err); 6078 return err; 6079 } 6080 if (main_prog->func_info) { 6081 /* 6082 * Some info has already been found but has problem 6083 * in the last btf_ext reloc. Must have to error out. 6084 */ 6085 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6086 return err; 6087 } 6088 /* Have problem loading the very first info. Ignore the rest. */ 6089 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6090 prog->name); 6091 } 6092 6093 line_info: 6094 /* don't relocate line info if main program's relocation failed */ 6095 if (main_prog != prog && !main_prog->line_info) 6096 return 0; 6097 6098 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6099 &main_prog->line_info, 6100 &main_prog->line_info_cnt, 6101 &main_prog->line_info_rec_size); 6102 if (err) { 6103 if (err != -ENOENT) { 6104 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6105 prog->name, err); 6106 return err; 6107 } 6108 if (main_prog->line_info) { 6109 /* 6110 * Some info has already been found but has problem 6111 * in the last btf_ext reloc. Must have to error out. 6112 */ 6113 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6114 return err; 6115 } 6116 /* Have problem loading the very first info. Ignore the rest. */ 6117 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6118 prog->name); 6119 } 6120 return 0; 6121 } 6122 6123 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6124 { 6125 size_t insn_idx = *(const size_t *)key; 6126 const struct reloc_desc *relo = elem; 6127 6128 if (insn_idx == relo->insn_idx) 6129 return 0; 6130 return insn_idx < relo->insn_idx ? -1 : 1; 6131 } 6132 6133 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6134 { 6135 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6136 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6137 } 6138 6139 static int 6140 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6141 struct bpf_program *prog) 6142 { 6143 size_t sub_insn_idx, insn_idx, new_cnt; 6144 struct bpf_program *subprog; 6145 struct bpf_insn *insns, *insn; 6146 struct reloc_desc *relo; 6147 int err; 6148 6149 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6150 if (err) 6151 return err; 6152 6153 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6154 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6155 if (!insn_is_subprog_call(insn)) 6156 continue; 6157 6158 relo = find_prog_insn_relo(prog, insn_idx); 6159 if (relo && relo->type != RELO_CALL) { 6160 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6161 prog->name, insn_idx, relo->type); 6162 return -LIBBPF_ERRNO__RELOC; 6163 } 6164 if (relo) { 6165 /* sub-program instruction index is a combination of 6166 * an offset of a symbol pointed to by relocation and 6167 * call instruction's imm field; for global functions, 6168 * call always has imm = -1, but for static functions 6169 * relocation is against STT_SECTION and insn->imm 6170 * points to a start of a static function 6171 */ 6172 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6173 } else { 6174 /* if subprogram call is to a static function within 6175 * the same ELF section, there won't be any relocation 6176 * emitted, but it also means there is no additional 6177 * offset necessary, insns->imm is relative to 6178 * instruction's original position within the section 6179 */ 6180 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6181 } 6182 6183 /* we enforce that sub-programs should be in .text section */ 6184 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6185 if (!subprog) { 6186 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6187 prog->name); 6188 return -LIBBPF_ERRNO__RELOC; 6189 } 6190 6191 /* if it's the first call instruction calling into this 6192 * subprogram (meaning this subprog hasn't been processed 6193 * yet) within the context of current main program: 6194 * - append it at the end of main program's instructions blog; 6195 * - process is recursively, while current program is put on hold; 6196 * - if that subprogram calls some other not yet processes 6197 * subprogram, same thing will happen recursively until 6198 * there are no more unprocesses subprograms left to append 6199 * and relocate. 6200 */ 6201 if (subprog->sub_insn_off == 0) { 6202 subprog->sub_insn_off = main_prog->insns_cnt; 6203 6204 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6205 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6206 if (!insns) { 6207 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6208 return -ENOMEM; 6209 } 6210 main_prog->insns = insns; 6211 main_prog->insns_cnt = new_cnt; 6212 6213 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6214 subprog->insns_cnt * sizeof(*insns)); 6215 6216 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6217 main_prog->name, subprog->insns_cnt, subprog->name); 6218 6219 err = bpf_object__reloc_code(obj, main_prog, subprog); 6220 if (err) 6221 return err; 6222 } 6223 6224 /* main_prog->insns memory could have been re-allocated, so 6225 * calculate pointer again 6226 */ 6227 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6228 /* calculate correct instruction position within current main 6229 * prog; each main prog can have a different set of 6230 * subprograms appended (potentially in different order as 6231 * well), so position of any subprog can be different for 6232 * different main programs */ 6233 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6234 6235 if (relo) 6236 relo->processed = true; 6237 6238 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6239 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6240 } 6241 6242 return 0; 6243 } 6244 6245 /* 6246 * Relocate sub-program calls. 6247 * 6248 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6249 * main prog) is processed separately. For each subprog (non-entry functions, 6250 * that can be called from either entry progs or other subprogs) gets their 6251 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6252 * hasn't been yet appended and relocated within current main prog. Once its 6253 * relocated, sub_insn_off will point at the position within current main prog 6254 * where given subprog was appended. This will further be used to relocate all 6255 * the call instructions jumping into this subprog. 6256 * 6257 * We start with main program and process all call instructions. If the call 6258 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6259 * is zero), subprog instructions are appended at the end of main program's 6260 * instruction array. Then main program is "put on hold" while we recursively 6261 * process newly appended subprogram. If that subprogram calls into another 6262 * subprogram that hasn't been appended, new subprogram is appended again to 6263 * the *main* prog's instructions (subprog's instructions are always left 6264 * untouched, as they need to be in unmodified state for subsequent main progs 6265 * and subprog instructions are always sent only as part of a main prog) and 6266 * the process continues recursively. Once all the subprogs called from a main 6267 * prog or any of its subprogs are appended (and relocated), all their 6268 * positions within finalized instructions array are known, so it's easy to 6269 * rewrite call instructions with correct relative offsets, corresponding to 6270 * desired target subprog. 6271 * 6272 * Its important to realize that some subprogs might not be called from some 6273 * main prog and any of its called/used subprogs. Those will keep their 6274 * subprog->sub_insn_off as zero at all times and won't be appended to current 6275 * main prog and won't be relocated within the context of current main prog. 6276 * They might still be used from other main progs later. 6277 * 6278 * Visually this process can be shown as below. Suppose we have two main 6279 * programs mainA and mainB and BPF object contains three subprogs: subA, 6280 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6281 * subC both call subB: 6282 * 6283 * +--------+ +-------+ 6284 * | v v | 6285 * +--+---+ +--+-+-+ +---+--+ 6286 * | subA | | subB | | subC | 6287 * +--+---+ +------+ +---+--+ 6288 * ^ ^ 6289 * | | 6290 * +---+-------+ +------+----+ 6291 * | mainA | | mainB | 6292 * +-----------+ +-----------+ 6293 * 6294 * We'll start relocating mainA, will find subA, append it and start 6295 * processing sub A recursively: 6296 * 6297 * +-----------+------+ 6298 * | mainA | subA | 6299 * +-----------+------+ 6300 * 6301 * At this point we notice that subB is used from subA, so we append it and 6302 * relocate (there are no further subcalls from subB): 6303 * 6304 * +-----------+------+------+ 6305 * | mainA | subA | subB | 6306 * +-----------+------+------+ 6307 * 6308 * At this point, we relocate subA calls, then go one level up and finish with 6309 * relocatin mainA calls. mainA is done. 6310 * 6311 * For mainB process is similar but results in different order. We start with 6312 * mainB and skip subA and subB, as mainB never calls them (at least 6313 * directly), but we see subC is needed, so we append and start processing it: 6314 * 6315 * +-----------+------+ 6316 * | mainB | subC | 6317 * +-----------+------+ 6318 * Now we see subC needs subB, so we go back to it, append and relocate it: 6319 * 6320 * +-----------+------+------+ 6321 * | mainB | subC | subB | 6322 * +-----------+------+------+ 6323 * 6324 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6325 */ 6326 static int 6327 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6328 { 6329 struct bpf_program *subprog; 6330 int i, j, err; 6331 6332 /* mark all subprogs as not relocated (yet) within the context of 6333 * current main program 6334 */ 6335 for (i = 0; i < obj->nr_programs; i++) { 6336 subprog = &obj->programs[i]; 6337 if (!prog_is_subprog(obj, subprog)) 6338 continue; 6339 6340 subprog->sub_insn_off = 0; 6341 for (j = 0; j < subprog->nr_reloc; j++) 6342 if (subprog->reloc_desc[j].type == RELO_CALL) 6343 subprog->reloc_desc[j].processed = false; 6344 } 6345 6346 err = bpf_object__reloc_code(obj, prog, prog); 6347 if (err) 6348 return err; 6349 6350 6351 return 0; 6352 } 6353 6354 static int 6355 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6356 { 6357 struct bpf_program *prog; 6358 size_t i; 6359 int err; 6360 6361 if (obj->btf_ext) { 6362 err = bpf_object__relocate_core(obj, targ_btf_path); 6363 if (err) { 6364 pr_warn("failed to perform CO-RE relocations: %d\n", 6365 err); 6366 return err; 6367 } 6368 } 6369 /* relocate data references first for all programs and sub-programs, 6370 * as they don't change relative to code locations, so subsequent 6371 * subprogram processing won't need to re-calculate any of them 6372 */ 6373 for (i = 0; i < obj->nr_programs; i++) { 6374 prog = &obj->programs[i]; 6375 err = bpf_object__relocate_data(obj, prog); 6376 if (err) { 6377 pr_warn("prog '%s': failed to relocate data references: %d\n", 6378 prog->name, err); 6379 return err; 6380 } 6381 } 6382 /* now relocate subprogram calls and append used subprograms to main 6383 * programs; each copy of subprogram code needs to be relocated 6384 * differently for each main program, because its code location might 6385 * have changed 6386 */ 6387 for (i = 0; i < obj->nr_programs; i++) { 6388 prog = &obj->programs[i]; 6389 /* sub-program's sub-calls are relocated within the context of 6390 * its main program only 6391 */ 6392 if (prog_is_subprog(obj, prog)) 6393 continue; 6394 6395 err = bpf_object__relocate_calls(obj, prog); 6396 if (err) { 6397 pr_warn("prog '%s': failed to relocate calls: %d\n", 6398 prog->name, err); 6399 return err; 6400 } 6401 } 6402 /* free up relocation descriptors */ 6403 for (i = 0; i < obj->nr_programs; i++) { 6404 prog = &obj->programs[i]; 6405 zfree(&prog->reloc_desc); 6406 prog->nr_reloc = 0; 6407 } 6408 return 0; 6409 } 6410 6411 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6412 GElf_Shdr *shdr, Elf_Data *data); 6413 6414 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6415 GElf_Shdr *shdr, Elf_Data *data) 6416 { 6417 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6418 int i, j, nrels, new_sz; 6419 const struct btf_var_secinfo *vi = NULL; 6420 const struct btf_type *sec, *var, *def; 6421 struct bpf_map *map = NULL, *targ_map; 6422 const struct btf_member *member; 6423 const char *name, *mname; 6424 Elf_Data *symbols; 6425 unsigned int moff; 6426 GElf_Sym sym; 6427 GElf_Rel rel; 6428 void *tmp; 6429 6430 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6431 return -EINVAL; 6432 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6433 if (!sec) 6434 return -EINVAL; 6435 6436 symbols = obj->efile.symbols; 6437 nrels = shdr->sh_size / shdr->sh_entsize; 6438 for (i = 0; i < nrels; i++) { 6439 if (!gelf_getrel(data, i, &rel)) { 6440 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6441 return -LIBBPF_ERRNO__FORMAT; 6442 } 6443 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6444 pr_warn(".maps relo #%d: symbol %zx not found\n", 6445 i, (size_t)GELF_R_SYM(rel.r_info)); 6446 return -LIBBPF_ERRNO__FORMAT; 6447 } 6448 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6449 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6450 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6451 i, name); 6452 return -LIBBPF_ERRNO__RELOC; 6453 } 6454 6455 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6456 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6457 (size_t)rel.r_offset, sym.st_name, name); 6458 6459 for (j = 0; j < obj->nr_maps; j++) { 6460 map = &obj->maps[j]; 6461 if (map->sec_idx != obj->efile.btf_maps_shndx) 6462 continue; 6463 6464 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6465 if (vi->offset <= rel.r_offset && 6466 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6467 break; 6468 } 6469 if (j == obj->nr_maps) { 6470 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6471 i, name, (size_t)rel.r_offset); 6472 return -EINVAL; 6473 } 6474 6475 if (!bpf_map_type__is_map_in_map(map->def.type)) 6476 return -EINVAL; 6477 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6478 map->def.key_size != sizeof(int)) { 6479 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6480 i, map->name, sizeof(int)); 6481 return -EINVAL; 6482 } 6483 6484 targ_map = bpf_object__find_map_by_name(obj, name); 6485 if (!targ_map) 6486 return -ESRCH; 6487 6488 var = btf__type_by_id(obj->btf, vi->type); 6489 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6490 if (btf_vlen(def) == 0) 6491 return -EINVAL; 6492 member = btf_members(def) + btf_vlen(def) - 1; 6493 mname = btf__name_by_offset(obj->btf, member->name_off); 6494 if (strcmp(mname, "values")) 6495 return -EINVAL; 6496 6497 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6498 if (rel.r_offset - vi->offset < moff) 6499 return -EINVAL; 6500 6501 moff = rel.r_offset - vi->offset - moff; 6502 /* here we use BPF pointer size, which is always 64 bit, as we 6503 * are parsing ELF that was built for BPF target 6504 */ 6505 if (moff % bpf_ptr_sz) 6506 return -EINVAL; 6507 moff /= bpf_ptr_sz; 6508 if (moff >= map->init_slots_sz) { 6509 new_sz = moff + 1; 6510 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6511 if (!tmp) 6512 return -ENOMEM; 6513 map->init_slots = tmp; 6514 memset(map->init_slots + map->init_slots_sz, 0, 6515 (new_sz - map->init_slots_sz) * host_ptr_sz); 6516 map->init_slots_sz = new_sz; 6517 } 6518 map->init_slots[moff] = targ_map; 6519 6520 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6521 i, map->name, moff, name); 6522 } 6523 6524 return 0; 6525 } 6526 6527 static int cmp_relocs(const void *_a, const void *_b) 6528 { 6529 const struct reloc_desc *a = _a; 6530 const struct reloc_desc *b = _b; 6531 6532 if (a->insn_idx != b->insn_idx) 6533 return a->insn_idx < b->insn_idx ? -1 : 1; 6534 6535 /* no two relocations should have the same insn_idx, but ... */ 6536 if (a->type != b->type) 6537 return a->type < b->type ? -1 : 1; 6538 6539 return 0; 6540 } 6541 6542 static int bpf_object__collect_relos(struct bpf_object *obj) 6543 { 6544 int i, err; 6545 6546 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6547 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6548 Elf_Data *data = obj->efile.reloc_sects[i].data; 6549 int idx = shdr->sh_info; 6550 6551 if (shdr->sh_type != SHT_REL) { 6552 pr_warn("internal error at %d\n", __LINE__); 6553 return -LIBBPF_ERRNO__INTERNAL; 6554 } 6555 6556 if (idx == obj->efile.st_ops_shndx) 6557 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6558 else if (idx == obj->efile.btf_maps_shndx) 6559 err = bpf_object__collect_map_relos(obj, shdr, data); 6560 else 6561 err = bpf_object__collect_prog_relos(obj, shdr, data); 6562 if (err) 6563 return err; 6564 } 6565 6566 for (i = 0; i < obj->nr_programs; i++) { 6567 struct bpf_program *p = &obj->programs[i]; 6568 6569 if (!p->nr_reloc) 6570 continue; 6571 6572 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6573 } 6574 return 0; 6575 } 6576 6577 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6578 { 6579 if (BPF_CLASS(insn->code) == BPF_JMP && 6580 BPF_OP(insn->code) == BPF_CALL && 6581 BPF_SRC(insn->code) == BPF_K && 6582 insn->src_reg == 0 && 6583 insn->dst_reg == 0) { 6584 *func_id = insn->imm; 6585 return true; 6586 } 6587 return false; 6588 } 6589 6590 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6591 { 6592 struct bpf_insn *insn = prog->insns; 6593 enum bpf_func_id func_id; 6594 int i; 6595 6596 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6597 if (!insn_is_helper_call(insn, &func_id)) 6598 continue; 6599 6600 /* on kernels that don't yet support 6601 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6602 * to bpf_probe_read() which works well for old kernels 6603 */ 6604 switch (func_id) { 6605 case BPF_FUNC_probe_read_kernel: 6606 case BPF_FUNC_probe_read_user: 6607 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6608 insn->imm = BPF_FUNC_probe_read; 6609 break; 6610 case BPF_FUNC_probe_read_kernel_str: 6611 case BPF_FUNC_probe_read_user_str: 6612 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6613 insn->imm = BPF_FUNC_probe_read_str; 6614 break; 6615 default: 6616 break; 6617 } 6618 } 6619 return 0; 6620 } 6621 6622 static int 6623 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6624 char *license, __u32 kern_version, int *pfd) 6625 { 6626 struct bpf_load_program_attr load_attr; 6627 char *cp, errmsg[STRERR_BUFSIZE]; 6628 size_t log_buf_size = 0; 6629 char *log_buf = NULL; 6630 int btf_fd, ret; 6631 6632 if (!insns || !insns_cnt) 6633 return -EINVAL; 6634 6635 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 6636 load_attr.prog_type = prog->type; 6637 /* old kernels might not support specifying expected_attach_type */ 6638 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 6639 prog->sec_def->is_exp_attach_type_optional) 6640 load_attr.expected_attach_type = 0; 6641 else 6642 load_attr.expected_attach_type = prog->expected_attach_type; 6643 if (kernel_supports(FEAT_PROG_NAME)) 6644 load_attr.name = prog->name; 6645 load_attr.insns = insns; 6646 load_attr.insns_cnt = insns_cnt; 6647 load_attr.license = license; 6648 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 6649 prog->type == BPF_PROG_TYPE_LSM) { 6650 load_attr.attach_btf_id = prog->attach_btf_id; 6651 } else if (prog->type == BPF_PROG_TYPE_TRACING || 6652 prog->type == BPF_PROG_TYPE_EXT) { 6653 load_attr.attach_prog_fd = prog->attach_prog_fd; 6654 load_attr.attach_btf_id = prog->attach_btf_id; 6655 } else { 6656 load_attr.kern_version = kern_version; 6657 load_attr.prog_ifindex = prog->prog_ifindex; 6658 } 6659 /* specify func_info/line_info only if kernel supports them */ 6660 btf_fd = bpf_object__btf_fd(prog->obj); 6661 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 6662 load_attr.prog_btf_fd = btf_fd; 6663 load_attr.func_info = prog->func_info; 6664 load_attr.func_info_rec_size = prog->func_info_rec_size; 6665 load_attr.func_info_cnt = prog->func_info_cnt; 6666 load_attr.line_info = prog->line_info; 6667 load_attr.line_info_rec_size = prog->line_info_rec_size; 6668 load_attr.line_info_cnt = prog->line_info_cnt; 6669 } 6670 load_attr.log_level = prog->log_level; 6671 load_attr.prog_flags = prog->prog_flags; 6672 6673 retry_load: 6674 if (log_buf_size) { 6675 log_buf = malloc(log_buf_size); 6676 if (!log_buf) 6677 return -ENOMEM; 6678 6679 *log_buf = 0; 6680 } 6681 6682 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 6683 6684 if (ret >= 0) { 6685 if (log_buf && load_attr.log_level) 6686 pr_debug("verifier log:\n%s", log_buf); 6687 6688 if (prog->obj->rodata_map_idx >= 0 && 6689 kernel_supports(FEAT_PROG_BIND_MAP)) { 6690 struct bpf_map *rodata_map = 6691 &prog->obj->maps[prog->obj->rodata_map_idx]; 6692 6693 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 6694 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6695 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6696 prog->name, cp); 6697 /* Don't fail hard if can't bind rodata. */ 6698 } 6699 } 6700 6701 *pfd = ret; 6702 ret = 0; 6703 goto out; 6704 } 6705 6706 if (!log_buf || errno == ENOSPC) { 6707 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6708 log_buf_size << 1); 6709 6710 free(log_buf); 6711 goto retry_load; 6712 } 6713 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6714 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6715 pr_warn("load bpf program failed: %s\n", cp); 6716 pr_perm_msg(ret); 6717 6718 if (log_buf && log_buf[0] != '\0') { 6719 ret = -LIBBPF_ERRNO__VERIFY; 6720 pr_warn("-- BEGIN DUMP LOG ---\n"); 6721 pr_warn("\n%s\n", log_buf); 6722 pr_warn("-- END LOG --\n"); 6723 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 6724 pr_warn("Program too large (%zu insns), at most %d insns\n", 6725 load_attr.insns_cnt, BPF_MAXINSNS); 6726 ret = -LIBBPF_ERRNO__PROG2BIG; 6727 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6728 /* Wrong program type? */ 6729 int fd; 6730 6731 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6732 load_attr.expected_attach_type = 0; 6733 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 6734 if (fd >= 0) { 6735 close(fd); 6736 ret = -LIBBPF_ERRNO__PROGTYPE; 6737 goto out; 6738 } 6739 } 6740 6741 out: 6742 free(log_buf); 6743 return ret; 6744 } 6745 6746 static int libbpf_find_attach_btf_id(struct bpf_program *prog); 6747 6748 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6749 { 6750 int err = 0, fd, i, btf_id; 6751 6752 if (prog->obj->loaded) { 6753 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6754 return -EINVAL; 6755 } 6756 6757 if ((prog->type == BPF_PROG_TYPE_TRACING || 6758 prog->type == BPF_PROG_TYPE_LSM || 6759 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6760 btf_id = libbpf_find_attach_btf_id(prog); 6761 if (btf_id <= 0) 6762 return btf_id; 6763 prog->attach_btf_id = btf_id; 6764 } 6765 6766 if (prog->instances.nr < 0 || !prog->instances.fds) { 6767 if (prog->preprocessor) { 6768 pr_warn("Internal error: can't load program '%s'\n", 6769 prog->name); 6770 return -LIBBPF_ERRNO__INTERNAL; 6771 } 6772 6773 prog->instances.fds = malloc(sizeof(int)); 6774 if (!prog->instances.fds) { 6775 pr_warn("Not enough memory for BPF fds\n"); 6776 return -ENOMEM; 6777 } 6778 prog->instances.nr = 1; 6779 prog->instances.fds[0] = -1; 6780 } 6781 6782 if (!prog->preprocessor) { 6783 if (prog->instances.nr != 1) { 6784 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6785 prog->name, prog->instances.nr); 6786 } 6787 err = load_program(prog, prog->insns, prog->insns_cnt, 6788 license, kern_ver, &fd); 6789 if (!err) 6790 prog->instances.fds[0] = fd; 6791 goto out; 6792 } 6793 6794 for (i = 0; i < prog->instances.nr; i++) { 6795 struct bpf_prog_prep_result result; 6796 bpf_program_prep_t preprocessor = prog->preprocessor; 6797 6798 memset(&result, 0, sizeof(result)); 6799 err = preprocessor(prog, i, prog->insns, 6800 prog->insns_cnt, &result); 6801 if (err) { 6802 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6803 i, prog->name); 6804 goto out; 6805 } 6806 6807 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6808 pr_debug("Skip loading the %dth instance of program '%s'\n", 6809 i, prog->name); 6810 prog->instances.fds[i] = -1; 6811 if (result.pfd) 6812 *result.pfd = -1; 6813 continue; 6814 } 6815 6816 err = load_program(prog, result.new_insn_ptr, 6817 result.new_insn_cnt, license, kern_ver, &fd); 6818 if (err) { 6819 pr_warn("Loading the %dth instance of program '%s' failed\n", 6820 i, prog->name); 6821 goto out; 6822 } 6823 6824 if (result.pfd) 6825 *result.pfd = fd; 6826 prog->instances.fds[i] = fd; 6827 } 6828 out: 6829 if (err) 6830 pr_warn("failed to load program '%s'\n", prog->name); 6831 zfree(&prog->insns); 6832 prog->insns_cnt = 0; 6833 return err; 6834 } 6835 6836 static int 6837 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6838 { 6839 struct bpf_program *prog; 6840 size_t i; 6841 int err; 6842 6843 for (i = 0; i < obj->nr_programs; i++) { 6844 prog = &obj->programs[i]; 6845 err = bpf_object__sanitize_prog(obj, prog); 6846 if (err) 6847 return err; 6848 } 6849 6850 for (i = 0; i < obj->nr_programs; i++) { 6851 prog = &obj->programs[i]; 6852 if (prog_is_subprog(obj, prog)) 6853 continue; 6854 if (!prog->load) { 6855 pr_debug("prog '%s': skipped loading\n", prog->name); 6856 continue; 6857 } 6858 prog->log_level |= log_level; 6859 err = bpf_program__load(prog, obj->license, obj->kern_version); 6860 if (err) 6861 return err; 6862 } 6863 return 0; 6864 } 6865 6866 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6867 6868 static struct bpf_object * 6869 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6870 const struct bpf_object_open_opts *opts) 6871 { 6872 const char *obj_name, *kconfig; 6873 struct bpf_program *prog; 6874 struct bpf_object *obj; 6875 char tmp_name[64]; 6876 int err; 6877 6878 if (elf_version(EV_CURRENT) == EV_NONE) { 6879 pr_warn("failed to init libelf for %s\n", 6880 path ? : "(mem buf)"); 6881 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6882 } 6883 6884 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6885 return ERR_PTR(-EINVAL); 6886 6887 obj_name = OPTS_GET(opts, object_name, NULL); 6888 if (obj_buf) { 6889 if (!obj_name) { 6890 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6891 (unsigned long)obj_buf, 6892 (unsigned long)obj_buf_sz); 6893 obj_name = tmp_name; 6894 } 6895 path = obj_name; 6896 pr_debug("loading object '%s' from buffer\n", obj_name); 6897 } 6898 6899 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 6900 if (IS_ERR(obj)) 6901 return obj; 6902 6903 kconfig = OPTS_GET(opts, kconfig, NULL); 6904 if (kconfig) { 6905 obj->kconfig = strdup(kconfig); 6906 if (!obj->kconfig) 6907 return ERR_PTR(-ENOMEM); 6908 } 6909 6910 err = bpf_object__elf_init(obj); 6911 err = err ? : bpf_object__check_endianness(obj); 6912 err = err ? : bpf_object__elf_collect(obj); 6913 err = err ? : bpf_object__collect_externs(obj); 6914 err = err ? : bpf_object__finalize_btf(obj); 6915 err = err ? : bpf_object__init_maps(obj, opts); 6916 err = err ? : bpf_object__collect_relos(obj); 6917 if (err) 6918 goto out; 6919 bpf_object__elf_finish(obj); 6920 6921 bpf_object__for_each_program(prog, obj) { 6922 prog->sec_def = find_sec_def(prog->sec_name); 6923 if (!prog->sec_def) 6924 /* couldn't guess, but user might manually specify */ 6925 continue; 6926 6927 if (prog->sec_def->is_sleepable) 6928 prog->prog_flags |= BPF_F_SLEEPABLE; 6929 bpf_program__set_type(prog, prog->sec_def->prog_type); 6930 bpf_program__set_expected_attach_type(prog, 6931 prog->sec_def->expected_attach_type); 6932 6933 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6934 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6935 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6936 } 6937 6938 return obj; 6939 out: 6940 bpf_object__close(obj); 6941 return ERR_PTR(err); 6942 } 6943 6944 static struct bpf_object * 6945 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 6946 { 6947 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6948 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 6949 ); 6950 6951 /* param validation */ 6952 if (!attr->file) 6953 return NULL; 6954 6955 pr_debug("loading %s\n", attr->file); 6956 return __bpf_object__open(attr->file, NULL, 0, &opts); 6957 } 6958 6959 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 6960 { 6961 return __bpf_object__open_xattr(attr, 0); 6962 } 6963 6964 struct bpf_object *bpf_object__open(const char *path) 6965 { 6966 struct bpf_object_open_attr attr = { 6967 .file = path, 6968 .prog_type = BPF_PROG_TYPE_UNSPEC, 6969 }; 6970 6971 return bpf_object__open_xattr(&attr); 6972 } 6973 6974 struct bpf_object * 6975 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 6976 { 6977 if (!path) 6978 return ERR_PTR(-EINVAL); 6979 6980 pr_debug("loading %s\n", path); 6981 6982 return __bpf_object__open(path, NULL, 0, opts); 6983 } 6984 6985 struct bpf_object * 6986 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 6987 const struct bpf_object_open_opts *opts) 6988 { 6989 if (!obj_buf || obj_buf_sz == 0) 6990 return ERR_PTR(-EINVAL); 6991 6992 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 6993 } 6994 6995 struct bpf_object * 6996 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 6997 const char *name) 6998 { 6999 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7000 .object_name = name, 7001 /* wrong default, but backwards-compatible */ 7002 .relaxed_maps = true, 7003 ); 7004 7005 /* returning NULL is wrong, but backwards-compatible */ 7006 if (!obj_buf || obj_buf_sz == 0) 7007 return NULL; 7008 7009 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7010 } 7011 7012 int bpf_object__unload(struct bpf_object *obj) 7013 { 7014 size_t i; 7015 7016 if (!obj) 7017 return -EINVAL; 7018 7019 for (i = 0; i < obj->nr_maps; i++) { 7020 zclose(obj->maps[i].fd); 7021 if (obj->maps[i].st_ops) 7022 zfree(&obj->maps[i].st_ops->kern_vdata); 7023 } 7024 7025 for (i = 0; i < obj->nr_programs; i++) 7026 bpf_program__unload(&obj->programs[i]); 7027 7028 return 0; 7029 } 7030 7031 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7032 { 7033 struct bpf_map *m; 7034 7035 bpf_object__for_each_map(m, obj) { 7036 if (!bpf_map__is_internal(m)) 7037 continue; 7038 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7039 pr_warn("kernel doesn't support global data\n"); 7040 return -ENOTSUP; 7041 } 7042 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7043 m->def.map_flags ^= BPF_F_MMAPABLE; 7044 } 7045 7046 return 0; 7047 } 7048 7049 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7050 { 7051 char sym_type, sym_name[500]; 7052 unsigned long long sym_addr; 7053 struct extern_desc *ext; 7054 int ret, err = 0; 7055 FILE *f; 7056 7057 f = fopen("/proc/kallsyms", "r"); 7058 if (!f) { 7059 err = -errno; 7060 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7061 return err; 7062 } 7063 7064 while (true) { 7065 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7066 &sym_addr, &sym_type, sym_name); 7067 if (ret == EOF && feof(f)) 7068 break; 7069 if (ret != 3) { 7070 pr_warn("failed to read kallsyms entry: %d\n", ret); 7071 err = -EINVAL; 7072 goto out; 7073 } 7074 7075 ext = find_extern_by_name(obj, sym_name); 7076 if (!ext || ext->type != EXT_KSYM) 7077 continue; 7078 7079 if (ext->is_set && ext->ksym.addr != sym_addr) { 7080 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7081 sym_name, ext->ksym.addr, sym_addr); 7082 err = -EINVAL; 7083 goto out; 7084 } 7085 if (!ext->is_set) { 7086 ext->is_set = true; 7087 ext->ksym.addr = sym_addr; 7088 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7089 } 7090 } 7091 7092 out: 7093 fclose(f); 7094 return err; 7095 } 7096 7097 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7098 { 7099 struct extern_desc *ext; 7100 int i, id; 7101 7102 for (i = 0; i < obj->nr_extern; i++) { 7103 const struct btf_type *targ_var, *targ_type; 7104 __u32 targ_type_id, local_type_id; 7105 const char *targ_var_name; 7106 int ret; 7107 7108 ext = &obj->externs[i]; 7109 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7110 continue; 7111 7112 id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name, 7113 BTF_KIND_VAR); 7114 if (id <= 0) { 7115 pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n", 7116 ext->name); 7117 return -ESRCH; 7118 } 7119 7120 /* find local type_id */ 7121 local_type_id = ext->ksym.type_id; 7122 7123 /* find target type_id */ 7124 targ_var = btf__type_by_id(obj->btf_vmlinux, id); 7125 targ_var_name = btf__name_by_offset(obj->btf_vmlinux, 7126 targ_var->name_off); 7127 targ_type = skip_mods_and_typedefs(obj->btf_vmlinux, 7128 targ_var->type, 7129 &targ_type_id); 7130 7131 ret = bpf_core_types_are_compat(obj->btf, local_type_id, 7132 obj->btf_vmlinux, targ_type_id); 7133 if (ret <= 0) { 7134 const struct btf_type *local_type; 7135 const char *targ_name, *local_name; 7136 7137 local_type = btf__type_by_id(obj->btf, local_type_id); 7138 local_name = btf__name_by_offset(obj->btf, 7139 local_type->name_off); 7140 targ_name = btf__name_by_offset(obj->btf_vmlinux, 7141 targ_type->name_off); 7142 7143 pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7144 ext->name, local_type_id, 7145 btf_kind_str(local_type), local_name, targ_type_id, 7146 btf_kind_str(targ_type), targ_name); 7147 return -EINVAL; 7148 } 7149 7150 ext->is_set = true; 7151 ext->ksym.vmlinux_btf_id = id; 7152 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n", 7153 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7154 } 7155 return 0; 7156 } 7157 7158 static int bpf_object__resolve_externs(struct bpf_object *obj, 7159 const char *extra_kconfig) 7160 { 7161 bool need_config = false, need_kallsyms = false; 7162 bool need_vmlinux_btf = false; 7163 struct extern_desc *ext; 7164 void *kcfg_data = NULL; 7165 int err, i; 7166 7167 if (obj->nr_extern == 0) 7168 return 0; 7169 7170 if (obj->kconfig_map_idx >= 0) 7171 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7172 7173 for (i = 0; i < obj->nr_extern; i++) { 7174 ext = &obj->externs[i]; 7175 7176 if (ext->type == EXT_KCFG && 7177 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7178 void *ext_val = kcfg_data + ext->kcfg.data_off; 7179 __u32 kver = get_kernel_version(); 7180 7181 if (!kver) { 7182 pr_warn("failed to get kernel version\n"); 7183 return -EINVAL; 7184 } 7185 err = set_kcfg_value_num(ext, ext_val, kver); 7186 if (err) 7187 return err; 7188 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7189 } else if (ext->type == EXT_KCFG && 7190 strncmp(ext->name, "CONFIG_", 7) == 0) { 7191 need_config = true; 7192 } else if (ext->type == EXT_KSYM) { 7193 if (ext->ksym.type_id) 7194 need_vmlinux_btf = true; 7195 else 7196 need_kallsyms = true; 7197 } else { 7198 pr_warn("unrecognized extern '%s'\n", ext->name); 7199 return -EINVAL; 7200 } 7201 } 7202 if (need_config && extra_kconfig) { 7203 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7204 if (err) 7205 return -EINVAL; 7206 need_config = false; 7207 for (i = 0; i < obj->nr_extern; i++) { 7208 ext = &obj->externs[i]; 7209 if (ext->type == EXT_KCFG && !ext->is_set) { 7210 need_config = true; 7211 break; 7212 } 7213 } 7214 } 7215 if (need_config) { 7216 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7217 if (err) 7218 return -EINVAL; 7219 } 7220 if (need_kallsyms) { 7221 err = bpf_object__read_kallsyms_file(obj); 7222 if (err) 7223 return -EINVAL; 7224 } 7225 if (need_vmlinux_btf) { 7226 err = bpf_object__resolve_ksyms_btf_id(obj); 7227 if (err) 7228 return -EINVAL; 7229 } 7230 for (i = 0; i < obj->nr_extern; i++) { 7231 ext = &obj->externs[i]; 7232 7233 if (!ext->is_set && !ext->is_weak) { 7234 pr_warn("extern %s (strong) not resolved\n", ext->name); 7235 return -ESRCH; 7236 } else if (!ext->is_set) { 7237 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7238 ext->name); 7239 } 7240 } 7241 7242 return 0; 7243 } 7244 7245 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7246 { 7247 struct bpf_object *obj; 7248 int err, i; 7249 7250 if (!attr) 7251 return -EINVAL; 7252 obj = attr->obj; 7253 if (!obj) 7254 return -EINVAL; 7255 7256 if (obj->loaded) { 7257 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7258 return -EINVAL; 7259 } 7260 7261 err = bpf_object__probe_loading(obj); 7262 err = err ? : bpf_object__load_vmlinux_btf(obj); 7263 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7264 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7265 err = err ? : bpf_object__sanitize_maps(obj); 7266 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7267 err = err ? : bpf_object__create_maps(obj); 7268 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7269 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7270 7271 btf__free(obj->btf_vmlinux); 7272 obj->btf_vmlinux = NULL; 7273 7274 obj->loaded = true; /* doesn't matter if successfully or not */ 7275 7276 if (err) 7277 goto out; 7278 7279 return 0; 7280 out: 7281 /* unpin any maps that were auto-pinned during load */ 7282 for (i = 0; i < obj->nr_maps; i++) 7283 if (obj->maps[i].pinned && !obj->maps[i].reused) 7284 bpf_map__unpin(&obj->maps[i], NULL); 7285 7286 bpf_object__unload(obj); 7287 pr_warn("failed to load object '%s'\n", obj->path); 7288 return err; 7289 } 7290 7291 int bpf_object__load(struct bpf_object *obj) 7292 { 7293 struct bpf_object_load_attr attr = { 7294 .obj = obj, 7295 }; 7296 7297 return bpf_object__load_xattr(&attr); 7298 } 7299 7300 static int make_parent_dir(const char *path) 7301 { 7302 char *cp, errmsg[STRERR_BUFSIZE]; 7303 char *dname, *dir; 7304 int err = 0; 7305 7306 dname = strdup(path); 7307 if (dname == NULL) 7308 return -ENOMEM; 7309 7310 dir = dirname(dname); 7311 if (mkdir(dir, 0700) && errno != EEXIST) 7312 err = -errno; 7313 7314 free(dname); 7315 if (err) { 7316 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7317 pr_warn("failed to mkdir %s: %s\n", path, cp); 7318 } 7319 return err; 7320 } 7321 7322 static int check_path(const char *path) 7323 { 7324 char *cp, errmsg[STRERR_BUFSIZE]; 7325 struct statfs st_fs; 7326 char *dname, *dir; 7327 int err = 0; 7328 7329 if (path == NULL) 7330 return -EINVAL; 7331 7332 dname = strdup(path); 7333 if (dname == NULL) 7334 return -ENOMEM; 7335 7336 dir = dirname(dname); 7337 if (statfs(dir, &st_fs)) { 7338 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7339 pr_warn("failed to statfs %s: %s\n", dir, cp); 7340 err = -errno; 7341 } 7342 free(dname); 7343 7344 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7345 pr_warn("specified path %s is not on BPF FS\n", path); 7346 err = -EINVAL; 7347 } 7348 7349 return err; 7350 } 7351 7352 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7353 int instance) 7354 { 7355 char *cp, errmsg[STRERR_BUFSIZE]; 7356 int err; 7357 7358 err = make_parent_dir(path); 7359 if (err) 7360 return err; 7361 7362 err = check_path(path); 7363 if (err) 7364 return err; 7365 7366 if (prog == NULL) { 7367 pr_warn("invalid program pointer\n"); 7368 return -EINVAL; 7369 } 7370 7371 if (instance < 0 || instance >= prog->instances.nr) { 7372 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7373 instance, prog->name, prog->instances.nr); 7374 return -EINVAL; 7375 } 7376 7377 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7378 err = -errno; 7379 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7380 pr_warn("failed to pin program: %s\n", cp); 7381 return err; 7382 } 7383 pr_debug("pinned program '%s'\n", path); 7384 7385 return 0; 7386 } 7387 7388 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7389 int instance) 7390 { 7391 int err; 7392 7393 err = check_path(path); 7394 if (err) 7395 return err; 7396 7397 if (prog == NULL) { 7398 pr_warn("invalid program pointer\n"); 7399 return -EINVAL; 7400 } 7401 7402 if (instance < 0 || instance >= prog->instances.nr) { 7403 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7404 instance, prog->name, prog->instances.nr); 7405 return -EINVAL; 7406 } 7407 7408 err = unlink(path); 7409 if (err != 0) 7410 return -errno; 7411 pr_debug("unpinned program '%s'\n", path); 7412 7413 return 0; 7414 } 7415 7416 int bpf_program__pin(struct bpf_program *prog, const char *path) 7417 { 7418 int i, err; 7419 7420 err = make_parent_dir(path); 7421 if (err) 7422 return err; 7423 7424 err = check_path(path); 7425 if (err) 7426 return err; 7427 7428 if (prog == NULL) { 7429 pr_warn("invalid program pointer\n"); 7430 return -EINVAL; 7431 } 7432 7433 if (prog->instances.nr <= 0) { 7434 pr_warn("no instances of prog %s to pin\n", prog->name); 7435 return -EINVAL; 7436 } 7437 7438 if (prog->instances.nr == 1) { 7439 /* don't create subdirs when pinning single instance */ 7440 return bpf_program__pin_instance(prog, path, 0); 7441 } 7442 7443 for (i = 0; i < prog->instances.nr; i++) { 7444 char buf[PATH_MAX]; 7445 int len; 7446 7447 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7448 if (len < 0) { 7449 err = -EINVAL; 7450 goto err_unpin; 7451 } else if (len >= PATH_MAX) { 7452 err = -ENAMETOOLONG; 7453 goto err_unpin; 7454 } 7455 7456 err = bpf_program__pin_instance(prog, buf, i); 7457 if (err) 7458 goto err_unpin; 7459 } 7460 7461 return 0; 7462 7463 err_unpin: 7464 for (i = i - 1; i >= 0; i--) { 7465 char buf[PATH_MAX]; 7466 int len; 7467 7468 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7469 if (len < 0) 7470 continue; 7471 else if (len >= PATH_MAX) 7472 continue; 7473 7474 bpf_program__unpin_instance(prog, buf, i); 7475 } 7476 7477 rmdir(path); 7478 7479 return err; 7480 } 7481 7482 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7483 { 7484 int i, err; 7485 7486 err = check_path(path); 7487 if (err) 7488 return err; 7489 7490 if (prog == NULL) { 7491 pr_warn("invalid program pointer\n"); 7492 return -EINVAL; 7493 } 7494 7495 if (prog->instances.nr <= 0) { 7496 pr_warn("no instances of prog %s to pin\n", prog->name); 7497 return -EINVAL; 7498 } 7499 7500 if (prog->instances.nr == 1) { 7501 /* don't create subdirs when pinning single instance */ 7502 return bpf_program__unpin_instance(prog, path, 0); 7503 } 7504 7505 for (i = 0; i < prog->instances.nr; i++) { 7506 char buf[PATH_MAX]; 7507 int len; 7508 7509 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7510 if (len < 0) 7511 return -EINVAL; 7512 else if (len >= PATH_MAX) 7513 return -ENAMETOOLONG; 7514 7515 err = bpf_program__unpin_instance(prog, buf, i); 7516 if (err) 7517 return err; 7518 } 7519 7520 err = rmdir(path); 7521 if (err) 7522 return -errno; 7523 7524 return 0; 7525 } 7526 7527 int bpf_map__pin(struct bpf_map *map, const char *path) 7528 { 7529 char *cp, errmsg[STRERR_BUFSIZE]; 7530 int err; 7531 7532 if (map == NULL) { 7533 pr_warn("invalid map pointer\n"); 7534 return -EINVAL; 7535 } 7536 7537 if (map->pin_path) { 7538 if (path && strcmp(path, map->pin_path)) { 7539 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7540 bpf_map__name(map), map->pin_path, path); 7541 return -EINVAL; 7542 } else if (map->pinned) { 7543 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7544 bpf_map__name(map), map->pin_path); 7545 return 0; 7546 } 7547 } else { 7548 if (!path) { 7549 pr_warn("missing a path to pin map '%s' at\n", 7550 bpf_map__name(map)); 7551 return -EINVAL; 7552 } else if (map->pinned) { 7553 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7554 return -EEXIST; 7555 } 7556 7557 map->pin_path = strdup(path); 7558 if (!map->pin_path) { 7559 err = -errno; 7560 goto out_err; 7561 } 7562 } 7563 7564 err = make_parent_dir(map->pin_path); 7565 if (err) 7566 return err; 7567 7568 err = check_path(map->pin_path); 7569 if (err) 7570 return err; 7571 7572 if (bpf_obj_pin(map->fd, map->pin_path)) { 7573 err = -errno; 7574 goto out_err; 7575 } 7576 7577 map->pinned = true; 7578 pr_debug("pinned map '%s'\n", map->pin_path); 7579 7580 return 0; 7581 7582 out_err: 7583 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7584 pr_warn("failed to pin map: %s\n", cp); 7585 return err; 7586 } 7587 7588 int bpf_map__unpin(struct bpf_map *map, const char *path) 7589 { 7590 int err; 7591 7592 if (map == NULL) { 7593 pr_warn("invalid map pointer\n"); 7594 return -EINVAL; 7595 } 7596 7597 if (map->pin_path) { 7598 if (path && strcmp(path, map->pin_path)) { 7599 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7600 bpf_map__name(map), map->pin_path, path); 7601 return -EINVAL; 7602 } 7603 path = map->pin_path; 7604 } else if (!path) { 7605 pr_warn("no path to unpin map '%s' from\n", 7606 bpf_map__name(map)); 7607 return -EINVAL; 7608 } 7609 7610 err = check_path(path); 7611 if (err) 7612 return err; 7613 7614 err = unlink(path); 7615 if (err != 0) 7616 return -errno; 7617 7618 map->pinned = false; 7619 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7620 7621 return 0; 7622 } 7623 7624 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7625 { 7626 char *new = NULL; 7627 7628 if (path) { 7629 new = strdup(path); 7630 if (!new) 7631 return -errno; 7632 } 7633 7634 free(map->pin_path); 7635 map->pin_path = new; 7636 return 0; 7637 } 7638 7639 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7640 { 7641 return map->pin_path; 7642 } 7643 7644 bool bpf_map__is_pinned(const struct bpf_map *map) 7645 { 7646 return map->pinned; 7647 } 7648 7649 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7650 { 7651 struct bpf_map *map; 7652 int err; 7653 7654 if (!obj) 7655 return -ENOENT; 7656 7657 if (!obj->loaded) { 7658 pr_warn("object not yet loaded; load it first\n"); 7659 return -ENOENT; 7660 } 7661 7662 bpf_object__for_each_map(map, obj) { 7663 char *pin_path = NULL; 7664 char buf[PATH_MAX]; 7665 7666 if (path) { 7667 int len; 7668 7669 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7670 bpf_map__name(map)); 7671 if (len < 0) { 7672 err = -EINVAL; 7673 goto err_unpin_maps; 7674 } else if (len >= PATH_MAX) { 7675 err = -ENAMETOOLONG; 7676 goto err_unpin_maps; 7677 } 7678 pin_path = buf; 7679 } else if (!map->pin_path) { 7680 continue; 7681 } 7682 7683 err = bpf_map__pin(map, pin_path); 7684 if (err) 7685 goto err_unpin_maps; 7686 } 7687 7688 return 0; 7689 7690 err_unpin_maps: 7691 while ((map = bpf_map__prev(map, obj))) { 7692 if (!map->pin_path) 7693 continue; 7694 7695 bpf_map__unpin(map, NULL); 7696 } 7697 7698 return err; 7699 } 7700 7701 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7702 { 7703 struct bpf_map *map; 7704 int err; 7705 7706 if (!obj) 7707 return -ENOENT; 7708 7709 bpf_object__for_each_map(map, obj) { 7710 char *pin_path = NULL; 7711 char buf[PATH_MAX]; 7712 7713 if (path) { 7714 int len; 7715 7716 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7717 bpf_map__name(map)); 7718 if (len < 0) 7719 return -EINVAL; 7720 else if (len >= PATH_MAX) 7721 return -ENAMETOOLONG; 7722 pin_path = buf; 7723 } else if (!map->pin_path) { 7724 continue; 7725 } 7726 7727 err = bpf_map__unpin(map, pin_path); 7728 if (err) 7729 return err; 7730 } 7731 7732 return 0; 7733 } 7734 7735 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7736 { 7737 struct bpf_program *prog; 7738 int err; 7739 7740 if (!obj) 7741 return -ENOENT; 7742 7743 if (!obj->loaded) { 7744 pr_warn("object not yet loaded; load it first\n"); 7745 return -ENOENT; 7746 } 7747 7748 bpf_object__for_each_program(prog, obj) { 7749 char buf[PATH_MAX]; 7750 int len; 7751 7752 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7753 prog->pin_name); 7754 if (len < 0) { 7755 err = -EINVAL; 7756 goto err_unpin_programs; 7757 } else if (len >= PATH_MAX) { 7758 err = -ENAMETOOLONG; 7759 goto err_unpin_programs; 7760 } 7761 7762 err = bpf_program__pin(prog, buf); 7763 if (err) 7764 goto err_unpin_programs; 7765 } 7766 7767 return 0; 7768 7769 err_unpin_programs: 7770 while ((prog = bpf_program__prev(prog, obj))) { 7771 char buf[PATH_MAX]; 7772 int len; 7773 7774 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7775 prog->pin_name); 7776 if (len < 0) 7777 continue; 7778 else if (len >= PATH_MAX) 7779 continue; 7780 7781 bpf_program__unpin(prog, buf); 7782 } 7783 7784 return err; 7785 } 7786 7787 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 7788 { 7789 struct bpf_program *prog; 7790 int err; 7791 7792 if (!obj) 7793 return -ENOENT; 7794 7795 bpf_object__for_each_program(prog, obj) { 7796 char buf[PATH_MAX]; 7797 int len; 7798 7799 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7800 prog->pin_name); 7801 if (len < 0) 7802 return -EINVAL; 7803 else if (len >= PATH_MAX) 7804 return -ENAMETOOLONG; 7805 7806 err = bpf_program__unpin(prog, buf); 7807 if (err) 7808 return err; 7809 } 7810 7811 return 0; 7812 } 7813 7814 int bpf_object__pin(struct bpf_object *obj, const char *path) 7815 { 7816 int err; 7817 7818 err = bpf_object__pin_maps(obj, path); 7819 if (err) 7820 return err; 7821 7822 err = bpf_object__pin_programs(obj, path); 7823 if (err) { 7824 bpf_object__unpin_maps(obj, path); 7825 return err; 7826 } 7827 7828 return 0; 7829 } 7830 7831 static void bpf_map__destroy(struct bpf_map *map) 7832 { 7833 if (map->clear_priv) 7834 map->clear_priv(map, map->priv); 7835 map->priv = NULL; 7836 map->clear_priv = NULL; 7837 7838 if (map->inner_map) { 7839 bpf_map__destroy(map->inner_map); 7840 zfree(&map->inner_map); 7841 } 7842 7843 zfree(&map->init_slots); 7844 map->init_slots_sz = 0; 7845 7846 if (map->mmaped) { 7847 munmap(map->mmaped, bpf_map_mmap_sz(map)); 7848 map->mmaped = NULL; 7849 } 7850 7851 if (map->st_ops) { 7852 zfree(&map->st_ops->data); 7853 zfree(&map->st_ops->progs); 7854 zfree(&map->st_ops->kern_func_off); 7855 zfree(&map->st_ops); 7856 } 7857 7858 zfree(&map->name); 7859 zfree(&map->pin_path); 7860 7861 if (map->fd >= 0) 7862 zclose(map->fd); 7863 } 7864 7865 void bpf_object__close(struct bpf_object *obj) 7866 { 7867 size_t i; 7868 7869 if (IS_ERR_OR_NULL(obj)) 7870 return; 7871 7872 if (obj->clear_priv) 7873 obj->clear_priv(obj, obj->priv); 7874 7875 bpf_object__elf_finish(obj); 7876 bpf_object__unload(obj); 7877 btf__free(obj->btf); 7878 btf_ext__free(obj->btf_ext); 7879 7880 for (i = 0; i < obj->nr_maps; i++) 7881 bpf_map__destroy(&obj->maps[i]); 7882 7883 zfree(&obj->kconfig); 7884 zfree(&obj->externs); 7885 obj->nr_extern = 0; 7886 7887 zfree(&obj->maps); 7888 obj->nr_maps = 0; 7889 7890 if (obj->programs && obj->nr_programs) { 7891 for (i = 0; i < obj->nr_programs; i++) 7892 bpf_program__exit(&obj->programs[i]); 7893 } 7894 zfree(&obj->programs); 7895 7896 list_del(&obj->list); 7897 free(obj); 7898 } 7899 7900 struct bpf_object * 7901 bpf_object__next(struct bpf_object *prev) 7902 { 7903 struct bpf_object *next; 7904 7905 if (!prev) 7906 next = list_first_entry(&bpf_objects_list, 7907 struct bpf_object, 7908 list); 7909 else 7910 next = list_next_entry(prev, list); 7911 7912 /* Empty list is noticed here so don't need checking on entry. */ 7913 if (&next->list == &bpf_objects_list) 7914 return NULL; 7915 7916 return next; 7917 } 7918 7919 const char *bpf_object__name(const struct bpf_object *obj) 7920 { 7921 return obj ? obj->name : ERR_PTR(-EINVAL); 7922 } 7923 7924 unsigned int bpf_object__kversion(const struct bpf_object *obj) 7925 { 7926 return obj ? obj->kern_version : 0; 7927 } 7928 7929 struct btf *bpf_object__btf(const struct bpf_object *obj) 7930 { 7931 return obj ? obj->btf : NULL; 7932 } 7933 7934 int bpf_object__btf_fd(const struct bpf_object *obj) 7935 { 7936 return obj->btf ? btf__fd(obj->btf) : -1; 7937 } 7938 7939 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 7940 bpf_object_clear_priv_t clear_priv) 7941 { 7942 if (obj->priv && obj->clear_priv) 7943 obj->clear_priv(obj, obj->priv); 7944 7945 obj->priv = priv; 7946 obj->clear_priv = clear_priv; 7947 return 0; 7948 } 7949 7950 void *bpf_object__priv(const struct bpf_object *obj) 7951 { 7952 return obj ? obj->priv : ERR_PTR(-EINVAL); 7953 } 7954 7955 static struct bpf_program * 7956 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 7957 bool forward) 7958 { 7959 size_t nr_programs = obj->nr_programs; 7960 ssize_t idx; 7961 7962 if (!nr_programs) 7963 return NULL; 7964 7965 if (!p) 7966 /* Iter from the beginning */ 7967 return forward ? &obj->programs[0] : 7968 &obj->programs[nr_programs - 1]; 7969 7970 if (p->obj != obj) { 7971 pr_warn("error: program handler doesn't match object\n"); 7972 return NULL; 7973 } 7974 7975 idx = (p - obj->programs) + (forward ? 1 : -1); 7976 if (idx >= obj->nr_programs || idx < 0) 7977 return NULL; 7978 return &obj->programs[idx]; 7979 } 7980 7981 struct bpf_program * 7982 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 7983 { 7984 struct bpf_program *prog = prev; 7985 7986 do { 7987 prog = __bpf_program__iter(prog, obj, true); 7988 } while (prog && prog_is_subprog(obj, prog)); 7989 7990 return prog; 7991 } 7992 7993 struct bpf_program * 7994 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 7995 { 7996 struct bpf_program *prog = next; 7997 7998 do { 7999 prog = __bpf_program__iter(prog, obj, false); 8000 } while (prog && prog_is_subprog(obj, prog)); 8001 8002 return prog; 8003 } 8004 8005 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8006 bpf_program_clear_priv_t clear_priv) 8007 { 8008 if (prog->priv && prog->clear_priv) 8009 prog->clear_priv(prog, prog->priv); 8010 8011 prog->priv = priv; 8012 prog->clear_priv = clear_priv; 8013 return 0; 8014 } 8015 8016 void *bpf_program__priv(const struct bpf_program *prog) 8017 { 8018 return prog ? prog->priv : ERR_PTR(-EINVAL); 8019 } 8020 8021 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8022 { 8023 prog->prog_ifindex = ifindex; 8024 } 8025 8026 const char *bpf_program__name(const struct bpf_program *prog) 8027 { 8028 return prog->name; 8029 } 8030 8031 const char *bpf_program__section_name(const struct bpf_program *prog) 8032 { 8033 return prog->sec_name; 8034 } 8035 8036 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8037 { 8038 const char *title; 8039 8040 title = prog->sec_name; 8041 if (needs_copy) { 8042 title = strdup(title); 8043 if (!title) { 8044 pr_warn("failed to strdup program title\n"); 8045 return ERR_PTR(-ENOMEM); 8046 } 8047 } 8048 8049 return title; 8050 } 8051 8052 bool bpf_program__autoload(const struct bpf_program *prog) 8053 { 8054 return prog->load; 8055 } 8056 8057 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8058 { 8059 if (prog->obj->loaded) 8060 return -EINVAL; 8061 8062 prog->load = autoload; 8063 return 0; 8064 } 8065 8066 int bpf_program__fd(const struct bpf_program *prog) 8067 { 8068 return bpf_program__nth_fd(prog, 0); 8069 } 8070 8071 size_t bpf_program__size(const struct bpf_program *prog) 8072 { 8073 return prog->insns_cnt * BPF_INSN_SZ; 8074 } 8075 8076 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8077 bpf_program_prep_t prep) 8078 { 8079 int *instances_fds; 8080 8081 if (nr_instances <= 0 || !prep) 8082 return -EINVAL; 8083 8084 if (prog->instances.nr > 0 || prog->instances.fds) { 8085 pr_warn("Can't set pre-processor after loading\n"); 8086 return -EINVAL; 8087 } 8088 8089 instances_fds = malloc(sizeof(int) * nr_instances); 8090 if (!instances_fds) { 8091 pr_warn("alloc memory failed for fds\n"); 8092 return -ENOMEM; 8093 } 8094 8095 /* fill all fd with -1 */ 8096 memset(instances_fds, -1, sizeof(int) * nr_instances); 8097 8098 prog->instances.nr = nr_instances; 8099 prog->instances.fds = instances_fds; 8100 prog->preprocessor = prep; 8101 return 0; 8102 } 8103 8104 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8105 { 8106 int fd; 8107 8108 if (!prog) 8109 return -EINVAL; 8110 8111 if (n >= prog->instances.nr || n < 0) { 8112 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8113 n, prog->name, prog->instances.nr); 8114 return -EINVAL; 8115 } 8116 8117 fd = prog->instances.fds[n]; 8118 if (fd < 0) { 8119 pr_warn("%dth instance of program '%s' is invalid\n", 8120 n, prog->name); 8121 return -ENOENT; 8122 } 8123 8124 return fd; 8125 } 8126 8127 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 8128 { 8129 return prog->type; 8130 } 8131 8132 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8133 { 8134 prog->type = type; 8135 } 8136 8137 static bool bpf_program__is_type(const struct bpf_program *prog, 8138 enum bpf_prog_type type) 8139 { 8140 return prog ? (prog->type == type) : false; 8141 } 8142 8143 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8144 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8145 { \ 8146 if (!prog) \ 8147 return -EINVAL; \ 8148 bpf_program__set_type(prog, TYPE); \ 8149 return 0; \ 8150 } \ 8151 \ 8152 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8153 { \ 8154 return bpf_program__is_type(prog, TYPE); \ 8155 } \ 8156 8157 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8158 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8159 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8160 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8161 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8162 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8163 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8164 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8165 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8166 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8167 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8168 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8169 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8170 8171 enum bpf_attach_type 8172 bpf_program__get_expected_attach_type(struct bpf_program *prog) 8173 { 8174 return prog->expected_attach_type; 8175 } 8176 8177 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8178 enum bpf_attach_type type) 8179 { 8180 prog->expected_attach_type = type; 8181 } 8182 8183 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8184 attachable, attach_btf) \ 8185 { \ 8186 .sec = string, \ 8187 .len = sizeof(string) - 1, \ 8188 .prog_type = ptype, \ 8189 .expected_attach_type = eatype, \ 8190 .is_exp_attach_type_optional = eatype_optional, \ 8191 .is_attachable = attachable, \ 8192 .is_attach_btf = attach_btf, \ 8193 } 8194 8195 /* Programs that can NOT be attached. */ 8196 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8197 8198 /* Programs that can be attached. */ 8199 #define BPF_APROG_SEC(string, ptype, atype) \ 8200 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8201 8202 /* Programs that must specify expected attach type at load time. */ 8203 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 8204 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8205 8206 /* Programs that use BTF to identify attach point */ 8207 #define BPF_PROG_BTF(string, ptype, eatype) \ 8208 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8209 8210 /* Programs that can be attached but attach type can't be identified by section 8211 * name. Kept for backward compatibility. 8212 */ 8213 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8214 8215 #define SEC_DEF(sec_pfx, ptype, ...) { \ 8216 .sec = sec_pfx, \ 8217 .len = sizeof(sec_pfx) - 1, \ 8218 .prog_type = BPF_PROG_TYPE_##ptype, \ 8219 __VA_ARGS__ \ 8220 } 8221 8222 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8223 struct bpf_program *prog); 8224 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8225 struct bpf_program *prog); 8226 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8227 struct bpf_program *prog); 8228 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8229 struct bpf_program *prog); 8230 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8231 struct bpf_program *prog); 8232 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8233 struct bpf_program *prog); 8234 8235 static const struct bpf_sec_def section_defs[] = { 8236 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8237 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8238 SEC_DEF("kprobe/", KPROBE, 8239 .attach_fn = attach_kprobe), 8240 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8241 SEC_DEF("kretprobe/", KPROBE, 8242 .attach_fn = attach_kprobe), 8243 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8244 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8245 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8246 SEC_DEF("tracepoint/", TRACEPOINT, 8247 .attach_fn = attach_tp), 8248 SEC_DEF("tp/", TRACEPOINT, 8249 .attach_fn = attach_tp), 8250 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8251 .attach_fn = attach_raw_tp), 8252 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8253 .attach_fn = attach_raw_tp), 8254 SEC_DEF("tp_btf/", TRACING, 8255 .expected_attach_type = BPF_TRACE_RAW_TP, 8256 .is_attach_btf = true, 8257 .attach_fn = attach_trace), 8258 SEC_DEF("fentry/", TRACING, 8259 .expected_attach_type = BPF_TRACE_FENTRY, 8260 .is_attach_btf = true, 8261 .attach_fn = attach_trace), 8262 SEC_DEF("fmod_ret/", TRACING, 8263 .expected_attach_type = BPF_MODIFY_RETURN, 8264 .is_attach_btf = true, 8265 .attach_fn = attach_trace), 8266 SEC_DEF("fexit/", TRACING, 8267 .expected_attach_type = BPF_TRACE_FEXIT, 8268 .is_attach_btf = true, 8269 .attach_fn = attach_trace), 8270 SEC_DEF("fentry.s/", TRACING, 8271 .expected_attach_type = BPF_TRACE_FENTRY, 8272 .is_attach_btf = true, 8273 .is_sleepable = true, 8274 .attach_fn = attach_trace), 8275 SEC_DEF("fmod_ret.s/", TRACING, 8276 .expected_attach_type = BPF_MODIFY_RETURN, 8277 .is_attach_btf = true, 8278 .is_sleepable = true, 8279 .attach_fn = attach_trace), 8280 SEC_DEF("fexit.s/", TRACING, 8281 .expected_attach_type = BPF_TRACE_FEXIT, 8282 .is_attach_btf = true, 8283 .is_sleepable = true, 8284 .attach_fn = attach_trace), 8285 SEC_DEF("freplace/", EXT, 8286 .is_attach_btf = true, 8287 .attach_fn = attach_trace), 8288 SEC_DEF("lsm/", LSM, 8289 .is_attach_btf = true, 8290 .expected_attach_type = BPF_LSM_MAC, 8291 .attach_fn = attach_lsm), 8292 SEC_DEF("lsm.s/", LSM, 8293 .is_attach_btf = true, 8294 .is_sleepable = true, 8295 .expected_attach_type = BPF_LSM_MAC, 8296 .attach_fn = attach_lsm), 8297 SEC_DEF("iter/", TRACING, 8298 .expected_attach_type = BPF_TRACE_ITER, 8299 .is_attach_btf = true, 8300 .attach_fn = attach_iter), 8301 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8302 BPF_XDP_DEVMAP), 8303 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8304 BPF_XDP_CPUMAP), 8305 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8306 BPF_XDP), 8307 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8308 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8309 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8310 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8311 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8312 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8313 BPF_CGROUP_INET_INGRESS), 8314 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8315 BPF_CGROUP_INET_EGRESS), 8316 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8317 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8318 BPF_CGROUP_INET_SOCK_CREATE), 8319 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8320 BPF_CGROUP_INET_SOCK_RELEASE), 8321 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8322 BPF_CGROUP_INET_SOCK_CREATE), 8323 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8324 BPF_CGROUP_INET4_POST_BIND), 8325 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8326 BPF_CGROUP_INET6_POST_BIND), 8327 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8328 BPF_CGROUP_DEVICE), 8329 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8330 BPF_CGROUP_SOCK_OPS), 8331 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8332 BPF_SK_SKB_STREAM_PARSER), 8333 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8334 BPF_SK_SKB_STREAM_VERDICT), 8335 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8336 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8337 BPF_SK_MSG_VERDICT), 8338 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8339 BPF_LIRC_MODE2), 8340 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8341 BPF_FLOW_DISSECTOR), 8342 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8343 BPF_CGROUP_INET4_BIND), 8344 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8345 BPF_CGROUP_INET6_BIND), 8346 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8347 BPF_CGROUP_INET4_CONNECT), 8348 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8349 BPF_CGROUP_INET6_CONNECT), 8350 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8351 BPF_CGROUP_UDP4_SENDMSG), 8352 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8353 BPF_CGROUP_UDP6_SENDMSG), 8354 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8355 BPF_CGROUP_UDP4_RECVMSG), 8356 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8357 BPF_CGROUP_UDP6_RECVMSG), 8358 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8359 BPF_CGROUP_INET4_GETPEERNAME), 8360 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8361 BPF_CGROUP_INET6_GETPEERNAME), 8362 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8363 BPF_CGROUP_INET4_GETSOCKNAME), 8364 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8365 BPF_CGROUP_INET6_GETSOCKNAME), 8366 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8367 BPF_CGROUP_SYSCTL), 8368 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8369 BPF_CGROUP_GETSOCKOPT), 8370 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8371 BPF_CGROUP_SETSOCKOPT), 8372 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8373 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8374 BPF_SK_LOOKUP), 8375 }; 8376 8377 #undef BPF_PROG_SEC_IMPL 8378 #undef BPF_PROG_SEC 8379 #undef BPF_APROG_SEC 8380 #undef BPF_EAPROG_SEC 8381 #undef BPF_APROG_COMPAT 8382 #undef SEC_DEF 8383 8384 #define MAX_TYPE_NAME_SIZE 32 8385 8386 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8387 { 8388 int i, n = ARRAY_SIZE(section_defs); 8389 8390 for (i = 0; i < n; i++) { 8391 if (strncmp(sec_name, 8392 section_defs[i].sec, section_defs[i].len)) 8393 continue; 8394 return §ion_defs[i]; 8395 } 8396 return NULL; 8397 } 8398 8399 static char *libbpf_get_type_names(bool attach_type) 8400 { 8401 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8402 char *buf; 8403 8404 buf = malloc(len); 8405 if (!buf) 8406 return NULL; 8407 8408 buf[0] = '\0'; 8409 /* Forge string buf with all available names */ 8410 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8411 if (attach_type && !section_defs[i].is_attachable) 8412 continue; 8413 8414 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8415 free(buf); 8416 return NULL; 8417 } 8418 strcat(buf, " "); 8419 strcat(buf, section_defs[i].sec); 8420 } 8421 8422 return buf; 8423 } 8424 8425 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8426 enum bpf_attach_type *expected_attach_type) 8427 { 8428 const struct bpf_sec_def *sec_def; 8429 char *type_names; 8430 8431 if (!name) 8432 return -EINVAL; 8433 8434 sec_def = find_sec_def(name); 8435 if (sec_def) { 8436 *prog_type = sec_def->prog_type; 8437 *expected_attach_type = sec_def->expected_attach_type; 8438 return 0; 8439 } 8440 8441 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8442 type_names = libbpf_get_type_names(false); 8443 if (type_names != NULL) { 8444 pr_debug("supported section(type) names are:%s\n", type_names); 8445 free(type_names); 8446 } 8447 8448 return -ESRCH; 8449 } 8450 8451 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8452 size_t offset) 8453 { 8454 struct bpf_map *map; 8455 size_t i; 8456 8457 for (i = 0; i < obj->nr_maps; i++) { 8458 map = &obj->maps[i]; 8459 if (!bpf_map__is_struct_ops(map)) 8460 continue; 8461 if (map->sec_offset <= offset && 8462 offset - map->sec_offset < map->def.value_size) 8463 return map; 8464 } 8465 8466 return NULL; 8467 } 8468 8469 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8470 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8471 GElf_Shdr *shdr, Elf_Data *data) 8472 { 8473 const struct btf_member *member; 8474 struct bpf_struct_ops *st_ops; 8475 struct bpf_program *prog; 8476 unsigned int shdr_idx; 8477 const struct btf *btf; 8478 struct bpf_map *map; 8479 Elf_Data *symbols; 8480 unsigned int moff, insn_idx; 8481 const char *name; 8482 __u32 member_idx; 8483 GElf_Sym sym; 8484 GElf_Rel rel; 8485 int i, nrels; 8486 8487 symbols = obj->efile.symbols; 8488 btf = obj->btf; 8489 nrels = shdr->sh_size / shdr->sh_entsize; 8490 for (i = 0; i < nrels; i++) { 8491 if (!gelf_getrel(data, i, &rel)) { 8492 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8493 return -LIBBPF_ERRNO__FORMAT; 8494 } 8495 8496 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8497 pr_warn("struct_ops reloc: symbol %zx not found\n", 8498 (size_t)GELF_R_SYM(rel.r_info)); 8499 return -LIBBPF_ERRNO__FORMAT; 8500 } 8501 8502 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8503 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8504 if (!map) { 8505 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8506 (size_t)rel.r_offset); 8507 return -EINVAL; 8508 } 8509 8510 moff = rel.r_offset - map->sec_offset; 8511 shdr_idx = sym.st_shndx; 8512 st_ops = map->st_ops; 8513 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8514 map->name, 8515 (long long)(rel.r_info >> 32), 8516 (long long)sym.st_value, 8517 shdr_idx, (size_t)rel.r_offset, 8518 map->sec_offset, sym.st_name, name); 8519 8520 if (shdr_idx >= SHN_LORESERVE) { 8521 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8522 map->name, (size_t)rel.r_offset, shdr_idx); 8523 return -LIBBPF_ERRNO__RELOC; 8524 } 8525 if (sym.st_value % BPF_INSN_SZ) { 8526 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8527 map->name, (unsigned long long)sym.st_value); 8528 return -LIBBPF_ERRNO__FORMAT; 8529 } 8530 insn_idx = sym.st_value / BPF_INSN_SZ; 8531 8532 member = find_member_by_offset(st_ops->type, moff * 8); 8533 if (!member) { 8534 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8535 map->name, moff); 8536 return -EINVAL; 8537 } 8538 member_idx = member - btf_members(st_ops->type); 8539 name = btf__name_by_offset(btf, member->name_off); 8540 8541 if (!resolve_func_ptr(btf, member->type, NULL)) { 8542 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8543 map->name, name); 8544 return -EINVAL; 8545 } 8546 8547 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8548 if (!prog) { 8549 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8550 map->name, shdr_idx, name); 8551 return -EINVAL; 8552 } 8553 8554 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 8555 const struct bpf_sec_def *sec_def; 8556 8557 sec_def = find_sec_def(prog->sec_name); 8558 if (sec_def && 8559 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 8560 /* for pr_warn */ 8561 prog->type = sec_def->prog_type; 8562 goto invalid_prog; 8563 } 8564 8565 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 8566 prog->attach_btf_id = st_ops->type_id; 8567 prog->expected_attach_type = member_idx; 8568 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 8569 prog->attach_btf_id != st_ops->type_id || 8570 prog->expected_attach_type != member_idx) { 8571 goto invalid_prog; 8572 } 8573 st_ops->progs[member_idx] = prog; 8574 } 8575 8576 return 0; 8577 8578 invalid_prog: 8579 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8580 map->name, prog->name, prog->sec_name, prog->type, 8581 prog->attach_btf_id, prog->expected_attach_type, name); 8582 return -EINVAL; 8583 } 8584 8585 #define BTF_TRACE_PREFIX "btf_trace_" 8586 #define BTF_LSM_PREFIX "bpf_lsm_" 8587 #define BTF_ITER_PREFIX "bpf_iter_" 8588 #define BTF_MAX_NAME_SIZE 128 8589 8590 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8591 const char *name, __u32 kind) 8592 { 8593 char btf_type_name[BTF_MAX_NAME_SIZE]; 8594 int ret; 8595 8596 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8597 "%s%s", prefix, name); 8598 /* snprintf returns the number of characters written excluding the 8599 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8600 * indicates truncation. 8601 */ 8602 if (ret < 0 || ret >= sizeof(btf_type_name)) 8603 return -ENAMETOOLONG; 8604 return btf__find_by_name_kind(btf, btf_type_name, kind); 8605 } 8606 8607 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name, 8608 enum bpf_attach_type attach_type) 8609 { 8610 int err; 8611 8612 if (attach_type == BPF_TRACE_RAW_TP) 8613 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 8614 BTF_KIND_TYPEDEF); 8615 else if (attach_type == BPF_LSM_MAC) 8616 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 8617 BTF_KIND_FUNC); 8618 else if (attach_type == BPF_TRACE_ITER) 8619 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 8620 BTF_KIND_FUNC); 8621 else 8622 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8623 8624 if (err <= 0) 8625 pr_warn("%s is not found in vmlinux BTF\n", name); 8626 8627 return err; 8628 } 8629 8630 int libbpf_find_vmlinux_btf_id(const char *name, 8631 enum bpf_attach_type attach_type) 8632 { 8633 struct btf *btf; 8634 int err; 8635 8636 btf = libbpf_find_kernel_btf(); 8637 if (IS_ERR(btf)) { 8638 pr_warn("vmlinux BTF is not found\n"); 8639 return -EINVAL; 8640 } 8641 8642 err = __find_vmlinux_btf_id(btf, name, attach_type); 8643 btf__free(btf); 8644 return err; 8645 } 8646 8647 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8648 { 8649 struct bpf_prog_info_linear *info_linear; 8650 struct bpf_prog_info *info; 8651 struct btf *btf = NULL; 8652 int err = -EINVAL; 8653 8654 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8655 if (IS_ERR_OR_NULL(info_linear)) { 8656 pr_warn("failed get_prog_info_linear for FD %d\n", 8657 attach_prog_fd); 8658 return -EINVAL; 8659 } 8660 info = &info_linear->info; 8661 if (!info->btf_id) { 8662 pr_warn("The target program doesn't have BTF\n"); 8663 goto out; 8664 } 8665 if (btf__get_from_id(info->btf_id, &btf)) { 8666 pr_warn("Failed to get BTF of the program\n"); 8667 goto out; 8668 } 8669 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8670 btf__free(btf); 8671 if (err <= 0) { 8672 pr_warn("%s is not found in prog's BTF\n", name); 8673 goto out; 8674 } 8675 out: 8676 free(info_linear); 8677 return err; 8678 } 8679 8680 static int libbpf_find_attach_btf_id(struct bpf_program *prog) 8681 { 8682 enum bpf_attach_type attach_type = prog->expected_attach_type; 8683 __u32 attach_prog_fd = prog->attach_prog_fd; 8684 const char *name = prog->sec_name; 8685 int i, err; 8686 8687 if (!name) 8688 return -EINVAL; 8689 8690 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8691 if (!section_defs[i].is_attach_btf) 8692 continue; 8693 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8694 continue; 8695 if (attach_prog_fd) 8696 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 8697 attach_prog_fd); 8698 else 8699 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 8700 name + section_defs[i].len, 8701 attach_type); 8702 return err; 8703 } 8704 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 8705 return -ESRCH; 8706 } 8707 8708 int libbpf_attach_type_by_name(const char *name, 8709 enum bpf_attach_type *attach_type) 8710 { 8711 char *type_names; 8712 int i; 8713 8714 if (!name) 8715 return -EINVAL; 8716 8717 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8718 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8719 continue; 8720 if (!section_defs[i].is_attachable) 8721 return -EINVAL; 8722 *attach_type = section_defs[i].expected_attach_type; 8723 return 0; 8724 } 8725 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 8726 type_names = libbpf_get_type_names(true); 8727 if (type_names != NULL) { 8728 pr_debug("attachable section(type) names are:%s\n", type_names); 8729 free(type_names); 8730 } 8731 8732 return -EINVAL; 8733 } 8734 8735 int bpf_map__fd(const struct bpf_map *map) 8736 { 8737 return map ? map->fd : -EINVAL; 8738 } 8739 8740 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 8741 { 8742 return map ? &map->def : ERR_PTR(-EINVAL); 8743 } 8744 8745 const char *bpf_map__name(const struct bpf_map *map) 8746 { 8747 return map ? map->name : NULL; 8748 } 8749 8750 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 8751 { 8752 return map->def.type; 8753 } 8754 8755 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 8756 { 8757 if (map->fd >= 0) 8758 return -EBUSY; 8759 map->def.type = type; 8760 return 0; 8761 } 8762 8763 __u32 bpf_map__map_flags(const struct bpf_map *map) 8764 { 8765 return map->def.map_flags; 8766 } 8767 8768 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 8769 { 8770 if (map->fd >= 0) 8771 return -EBUSY; 8772 map->def.map_flags = flags; 8773 return 0; 8774 } 8775 8776 __u32 bpf_map__numa_node(const struct bpf_map *map) 8777 { 8778 return map->numa_node; 8779 } 8780 8781 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 8782 { 8783 if (map->fd >= 0) 8784 return -EBUSY; 8785 map->numa_node = numa_node; 8786 return 0; 8787 } 8788 8789 __u32 bpf_map__key_size(const struct bpf_map *map) 8790 { 8791 return map->def.key_size; 8792 } 8793 8794 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 8795 { 8796 if (map->fd >= 0) 8797 return -EBUSY; 8798 map->def.key_size = size; 8799 return 0; 8800 } 8801 8802 __u32 bpf_map__value_size(const struct bpf_map *map) 8803 { 8804 return map->def.value_size; 8805 } 8806 8807 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 8808 { 8809 if (map->fd >= 0) 8810 return -EBUSY; 8811 map->def.value_size = size; 8812 return 0; 8813 } 8814 8815 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 8816 { 8817 return map ? map->btf_key_type_id : 0; 8818 } 8819 8820 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 8821 { 8822 return map ? map->btf_value_type_id : 0; 8823 } 8824 8825 int bpf_map__set_priv(struct bpf_map *map, void *priv, 8826 bpf_map_clear_priv_t clear_priv) 8827 { 8828 if (!map) 8829 return -EINVAL; 8830 8831 if (map->priv) { 8832 if (map->clear_priv) 8833 map->clear_priv(map, map->priv); 8834 } 8835 8836 map->priv = priv; 8837 map->clear_priv = clear_priv; 8838 return 0; 8839 } 8840 8841 void *bpf_map__priv(const struct bpf_map *map) 8842 { 8843 return map ? map->priv : ERR_PTR(-EINVAL); 8844 } 8845 8846 int bpf_map__set_initial_value(struct bpf_map *map, 8847 const void *data, size_t size) 8848 { 8849 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 8850 size != map->def.value_size || map->fd >= 0) 8851 return -EINVAL; 8852 8853 memcpy(map->mmaped, data, size); 8854 return 0; 8855 } 8856 8857 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 8858 { 8859 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 8860 } 8861 8862 bool bpf_map__is_internal(const struct bpf_map *map) 8863 { 8864 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 8865 } 8866 8867 __u32 bpf_map__ifindex(const struct bpf_map *map) 8868 { 8869 return map->map_ifindex; 8870 } 8871 8872 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 8873 { 8874 if (map->fd >= 0) 8875 return -EBUSY; 8876 map->map_ifindex = ifindex; 8877 return 0; 8878 } 8879 8880 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 8881 { 8882 if (!bpf_map_type__is_map_in_map(map->def.type)) { 8883 pr_warn("error: unsupported map type\n"); 8884 return -EINVAL; 8885 } 8886 if (map->inner_map_fd != -1) { 8887 pr_warn("error: inner_map_fd already specified\n"); 8888 return -EINVAL; 8889 } 8890 map->inner_map_fd = fd; 8891 return 0; 8892 } 8893 8894 static struct bpf_map * 8895 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 8896 { 8897 ssize_t idx; 8898 struct bpf_map *s, *e; 8899 8900 if (!obj || !obj->maps) 8901 return NULL; 8902 8903 s = obj->maps; 8904 e = obj->maps + obj->nr_maps; 8905 8906 if ((m < s) || (m >= e)) { 8907 pr_warn("error in %s: map handler doesn't belong to object\n", 8908 __func__); 8909 return NULL; 8910 } 8911 8912 idx = (m - obj->maps) + i; 8913 if (idx >= obj->nr_maps || idx < 0) 8914 return NULL; 8915 return &obj->maps[idx]; 8916 } 8917 8918 struct bpf_map * 8919 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 8920 { 8921 if (prev == NULL) 8922 return obj->maps; 8923 8924 return __bpf_map__iter(prev, obj, 1); 8925 } 8926 8927 struct bpf_map * 8928 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 8929 { 8930 if (next == NULL) { 8931 if (!obj->nr_maps) 8932 return NULL; 8933 return obj->maps + obj->nr_maps - 1; 8934 } 8935 8936 return __bpf_map__iter(next, obj, -1); 8937 } 8938 8939 struct bpf_map * 8940 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 8941 { 8942 struct bpf_map *pos; 8943 8944 bpf_object__for_each_map(pos, obj) { 8945 if (pos->name && !strcmp(pos->name, name)) 8946 return pos; 8947 } 8948 return NULL; 8949 } 8950 8951 int 8952 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 8953 { 8954 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 8955 } 8956 8957 struct bpf_map * 8958 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 8959 { 8960 return ERR_PTR(-ENOTSUP); 8961 } 8962 8963 long libbpf_get_error(const void *ptr) 8964 { 8965 return PTR_ERR_OR_ZERO(ptr); 8966 } 8967 8968 int bpf_prog_load(const char *file, enum bpf_prog_type type, 8969 struct bpf_object **pobj, int *prog_fd) 8970 { 8971 struct bpf_prog_load_attr attr; 8972 8973 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 8974 attr.file = file; 8975 attr.prog_type = type; 8976 attr.expected_attach_type = 0; 8977 8978 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 8979 } 8980 8981 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 8982 struct bpf_object **pobj, int *prog_fd) 8983 { 8984 struct bpf_object_open_attr open_attr = {}; 8985 struct bpf_program *prog, *first_prog = NULL; 8986 struct bpf_object *obj; 8987 struct bpf_map *map; 8988 int err; 8989 8990 if (!attr) 8991 return -EINVAL; 8992 if (!attr->file) 8993 return -EINVAL; 8994 8995 open_attr.file = attr->file; 8996 open_attr.prog_type = attr->prog_type; 8997 8998 obj = bpf_object__open_xattr(&open_attr); 8999 if (IS_ERR_OR_NULL(obj)) 9000 return -ENOENT; 9001 9002 bpf_object__for_each_program(prog, obj) { 9003 enum bpf_attach_type attach_type = attr->expected_attach_type; 9004 /* 9005 * to preserve backwards compatibility, bpf_prog_load treats 9006 * attr->prog_type, if specified, as an override to whatever 9007 * bpf_object__open guessed 9008 */ 9009 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9010 bpf_program__set_type(prog, attr->prog_type); 9011 bpf_program__set_expected_attach_type(prog, 9012 attach_type); 9013 } 9014 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9015 /* 9016 * we haven't guessed from section name and user 9017 * didn't provide a fallback type, too bad... 9018 */ 9019 bpf_object__close(obj); 9020 return -EINVAL; 9021 } 9022 9023 prog->prog_ifindex = attr->ifindex; 9024 prog->log_level = attr->log_level; 9025 prog->prog_flags |= attr->prog_flags; 9026 if (!first_prog) 9027 first_prog = prog; 9028 } 9029 9030 bpf_object__for_each_map(map, obj) { 9031 if (!bpf_map__is_offload_neutral(map)) 9032 map->map_ifindex = attr->ifindex; 9033 } 9034 9035 if (!first_prog) { 9036 pr_warn("object file doesn't contain bpf program\n"); 9037 bpf_object__close(obj); 9038 return -ENOENT; 9039 } 9040 9041 err = bpf_object__load(obj); 9042 if (err) { 9043 bpf_object__close(obj); 9044 return err; 9045 } 9046 9047 *pobj = obj; 9048 *prog_fd = bpf_program__fd(first_prog); 9049 return 0; 9050 } 9051 9052 struct bpf_link { 9053 int (*detach)(struct bpf_link *link); 9054 int (*destroy)(struct bpf_link *link); 9055 char *pin_path; /* NULL, if not pinned */ 9056 int fd; /* hook FD, -1 if not applicable */ 9057 bool disconnected; 9058 }; 9059 9060 /* Replace link's underlying BPF program with the new one */ 9061 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9062 { 9063 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9064 } 9065 9066 /* Release "ownership" of underlying BPF resource (typically, BPF program 9067 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9068 * link, when destructed through bpf_link__destroy() call won't attempt to 9069 * detach/unregisted that BPF resource. This is useful in situations where, 9070 * say, attached BPF program has to outlive userspace program that attached it 9071 * in the system. Depending on type of BPF program, though, there might be 9072 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9073 * exit of userspace program doesn't trigger automatic detachment and clean up 9074 * inside the kernel. 9075 */ 9076 void bpf_link__disconnect(struct bpf_link *link) 9077 { 9078 link->disconnected = true; 9079 } 9080 9081 int bpf_link__destroy(struct bpf_link *link) 9082 { 9083 int err = 0; 9084 9085 if (IS_ERR_OR_NULL(link)) 9086 return 0; 9087 9088 if (!link->disconnected && link->detach) 9089 err = link->detach(link); 9090 if (link->destroy) 9091 link->destroy(link); 9092 if (link->pin_path) 9093 free(link->pin_path); 9094 free(link); 9095 9096 return err; 9097 } 9098 9099 int bpf_link__fd(const struct bpf_link *link) 9100 { 9101 return link->fd; 9102 } 9103 9104 const char *bpf_link__pin_path(const struct bpf_link *link) 9105 { 9106 return link->pin_path; 9107 } 9108 9109 static int bpf_link__detach_fd(struct bpf_link *link) 9110 { 9111 return close(link->fd); 9112 } 9113 9114 struct bpf_link *bpf_link__open(const char *path) 9115 { 9116 struct bpf_link *link; 9117 int fd; 9118 9119 fd = bpf_obj_get(path); 9120 if (fd < 0) { 9121 fd = -errno; 9122 pr_warn("failed to open link at %s: %d\n", path, fd); 9123 return ERR_PTR(fd); 9124 } 9125 9126 link = calloc(1, sizeof(*link)); 9127 if (!link) { 9128 close(fd); 9129 return ERR_PTR(-ENOMEM); 9130 } 9131 link->detach = &bpf_link__detach_fd; 9132 link->fd = fd; 9133 9134 link->pin_path = strdup(path); 9135 if (!link->pin_path) { 9136 bpf_link__destroy(link); 9137 return ERR_PTR(-ENOMEM); 9138 } 9139 9140 return link; 9141 } 9142 9143 int bpf_link__detach(struct bpf_link *link) 9144 { 9145 return bpf_link_detach(link->fd) ? -errno : 0; 9146 } 9147 9148 int bpf_link__pin(struct bpf_link *link, const char *path) 9149 { 9150 int err; 9151 9152 if (link->pin_path) 9153 return -EBUSY; 9154 err = make_parent_dir(path); 9155 if (err) 9156 return err; 9157 err = check_path(path); 9158 if (err) 9159 return err; 9160 9161 link->pin_path = strdup(path); 9162 if (!link->pin_path) 9163 return -ENOMEM; 9164 9165 if (bpf_obj_pin(link->fd, link->pin_path)) { 9166 err = -errno; 9167 zfree(&link->pin_path); 9168 return err; 9169 } 9170 9171 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9172 return 0; 9173 } 9174 9175 int bpf_link__unpin(struct bpf_link *link) 9176 { 9177 int err; 9178 9179 if (!link->pin_path) 9180 return -EINVAL; 9181 9182 err = unlink(link->pin_path); 9183 if (err != 0) 9184 return -errno; 9185 9186 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9187 zfree(&link->pin_path); 9188 return 0; 9189 } 9190 9191 static int bpf_link__detach_perf_event(struct bpf_link *link) 9192 { 9193 int err; 9194 9195 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9196 if (err) 9197 err = -errno; 9198 9199 close(link->fd); 9200 return err; 9201 } 9202 9203 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9204 int pfd) 9205 { 9206 char errmsg[STRERR_BUFSIZE]; 9207 struct bpf_link *link; 9208 int prog_fd, err; 9209 9210 if (pfd < 0) { 9211 pr_warn("prog '%s': invalid perf event FD %d\n", 9212 prog->name, pfd); 9213 return ERR_PTR(-EINVAL); 9214 } 9215 prog_fd = bpf_program__fd(prog); 9216 if (prog_fd < 0) { 9217 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9218 prog->name); 9219 return ERR_PTR(-EINVAL); 9220 } 9221 9222 link = calloc(1, sizeof(*link)); 9223 if (!link) 9224 return ERR_PTR(-ENOMEM); 9225 link->detach = &bpf_link__detach_perf_event; 9226 link->fd = pfd; 9227 9228 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9229 err = -errno; 9230 free(link); 9231 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9232 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9233 if (err == -EPROTO) 9234 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9235 prog->name, pfd); 9236 return ERR_PTR(err); 9237 } 9238 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9239 err = -errno; 9240 free(link); 9241 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9242 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9243 return ERR_PTR(err); 9244 } 9245 return link; 9246 } 9247 9248 /* 9249 * this function is expected to parse integer in the range of [0, 2^31-1] from 9250 * given file using scanf format string fmt. If actual parsed value is 9251 * negative, the result might be indistinguishable from error 9252 */ 9253 static int parse_uint_from_file(const char *file, const char *fmt) 9254 { 9255 char buf[STRERR_BUFSIZE]; 9256 int err, ret; 9257 FILE *f; 9258 9259 f = fopen(file, "r"); 9260 if (!f) { 9261 err = -errno; 9262 pr_debug("failed to open '%s': %s\n", file, 9263 libbpf_strerror_r(err, buf, sizeof(buf))); 9264 return err; 9265 } 9266 err = fscanf(f, fmt, &ret); 9267 if (err != 1) { 9268 err = err == EOF ? -EIO : -errno; 9269 pr_debug("failed to parse '%s': %s\n", file, 9270 libbpf_strerror_r(err, buf, sizeof(buf))); 9271 fclose(f); 9272 return err; 9273 } 9274 fclose(f); 9275 return ret; 9276 } 9277 9278 static int determine_kprobe_perf_type(void) 9279 { 9280 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9281 9282 return parse_uint_from_file(file, "%d\n"); 9283 } 9284 9285 static int determine_uprobe_perf_type(void) 9286 { 9287 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9288 9289 return parse_uint_from_file(file, "%d\n"); 9290 } 9291 9292 static int determine_kprobe_retprobe_bit(void) 9293 { 9294 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9295 9296 return parse_uint_from_file(file, "config:%d\n"); 9297 } 9298 9299 static int determine_uprobe_retprobe_bit(void) 9300 { 9301 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9302 9303 return parse_uint_from_file(file, "config:%d\n"); 9304 } 9305 9306 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9307 uint64_t offset, int pid) 9308 { 9309 struct perf_event_attr attr = {}; 9310 char errmsg[STRERR_BUFSIZE]; 9311 int type, pfd, err; 9312 9313 type = uprobe ? determine_uprobe_perf_type() 9314 : determine_kprobe_perf_type(); 9315 if (type < 0) { 9316 pr_warn("failed to determine %s perf type: %s\n", 9317 uprobe ? "uprobe" : "kprobe", 9318 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9319 return type; 9320 } 9321 if (retprobe) { 9322 int bit = uprobe ? determine_uprobe_retprobe_bit() 9323 : determine_kprobe_retprobe_bit(); 9324 9325 if (bit < 0) { 9326 pr_warn("failed to determine %s retprobe bit: %s\n", 9327 uprobe ? "uprobe" : "kprobe", 9328 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9329 return bit; 9330 } 9331 attr.config |= 1 << bit; 9332 } 9333 attr.size = sizeof(attr); 9334 attr.type = type; 9335 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9336 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9337 9338 /* pid filter is meaningful only for uprobes */ 9339 pfd = syscall(__NR_perf_event_open, &attr, 9340 pid < 0 ? -1 : pid /* pid */, 9341 pid == -1 ? 0 : -1 /* cpu */, 9342 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9343 if (pfd < 0) { 9344 err = -errno; 9345 pr_warn("%s perf_event_open() failed: %s\n", 9346 uprobe ? "uprobe" : "kprobe", 9347 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9348 return err; 9349 } 9350 return pfd; 9351 } 9352 9353 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9354 bool retprobe, 9355 const char *func_name) 9356 { 9357 char errmsg[STRERR_BUFSIZE]; 9358 struct bpf_link *link; 9359 int pfd, err; 9360 9361 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9362 0 /* offset */, -1 /* pid */); 9363 if (pfd < 0) { 9364 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9365 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9366 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9367 return ERR_PTR(pfd); 9368 } 9369 link = bpf_program__attach_perf_event(prog, pfd); 9370 if (IS_ERR(link)) { 9371 close(pfd); 9372 err = PTR_ERR(link); 9373 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9374 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9375 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9376 return link; 9377 } 9378 return link; 9379 } 9380 9381 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9382 struct bpf_program *prog) 9383 { 9384 const char *func_name; 9385 bool retprobe; 9386 9387 func_name = prog->sec_name + sec->len; 9388 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9389 9390 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9391 } 9392 9393 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9394 bool retprobe, pid_t pid, 9395 const char *binary_path, 9396 size_t func_offset) 9397 { 9398 char errmsg[STRERR_BUFSIZE]; 9399 struct bpf_link *link; 9400 int pfd, err; 9401 9402 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9403 binary_path, func_offset, pid); 9404 if (pfd < 0) { 9405 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9406 prog->name, retprobe ? "uretprobe" : "uprobe", 9407 binary_path, func_offset, 9408 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9409 return ERR_PTR(pfd); 9410 } 9411 link = bpf_program__attach_perf_event(prog, pfd); 9412 if (IS_ERR(link)) { 9413 close(pfd); 9414 err = PTR_ERR(link); 9415 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9416 prog->name, retprobe ? "uretprobe" : "uprobe", 9417 binary_path, func_offset, 9418 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9419 return link; 9420 } 9421 return link; 9422 } 9423 9424 static int determine_tracepoint_id(const char *tp_category, 9425 const char *tp_name) 9426 { 9427 char file[PATH_MAX]; 9428 int ret; 9429 9430 ret = snprintf(file, sizeof(file), 9431 "/sys/kernel/debug/tracing/events/%s/%s/id", 9432 tp_category, tp_name); 9433 if (ret < 0) 9434 return -errno; 9435 if (ret >= sizeof(file)) { 9436 pr_debug("tracepoint %s/%s path is too long\n", 9437 tp_category, tp_name); 9438 return -E2BIG; 9439 } 9440 return parse_uint_from_file(file, "%d\n"); 9441 } 9442 9443 static int perf_event_open_tracepoint(const char *tp_category, 9444 const char *tp_name) 9445 { 9446 struct perf_event_attr attr = {}; 9447 char errmsg[STRERR_BUFSIZE]; 9448 int tp_id, pfd, err; 9449 9450 tp_id = determine_tracepoint_id(tp_category, tp_name); 9451 if (tp_id < 0) { 9452 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9453 tp_category, tp_name, 9454 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9455 return tp_id; 9456 } 9457 9458 attr.type = PERF_TYPE_TRACEPOINT; 9459 attr.size = sizeof(attr); 9460 attr.config = tp_id; 9461 9462 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9463 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9464 if (pfd < 0) { 9465 err = -errno; 9466 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9467 tp_category, tp_name, 9468 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9469 return err; 9470 } 9471 return pfd; 9472 } 9473 9474 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 9475 const char *tp_category, 9476 const char *tp_name) 9477 { 9478 char errmsg[STRERR_BUFSIZE]; 9479 struct bpf_link *link; 9480 int pfd, err; 9481 9482 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9483 if (pfd < 0) { 9484 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9485 prog->name, tp_category, tp_name, 9486 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9487 return ERR_PTR(pfd); 9488 } 9489 link = bpf_program__attach_perf_event(prog, pfd); 9490 if (IS_ERR(link)) { 9491 close(pfd); 9492 err = PTR_ERR(link); 9493 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9494 prog->name, tp_category, tp_name, 9495 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9496 return link; 9497 } 9498 return link; 9499 } 9500 9501 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9502 struct bpf_program *prog) 9503 { 9504 char *sec_name, *tp_cat, *tp_name; 9505 struct bpf_link *link; 9506 9507 sec_name = strdup(prog->sec_name); 9508 if (!sec_name) 9509 return ERR_PTR(-ENOMEM); 9510 9511 /* extract "tp/<category>/<name>" */ 9512 tp_cat = sec_name + sec->len; 9513 tp_name = strchr(tp_cat, '/'); 9514 if (!tp_name) { 9515 link = ERR_PTR(-EINVAL); 9516 goto out; 9517 } 9518 *tp_name = '\0'; 9519 tp_name++; 9520 9521 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9522 out: 9523 free(sec_name); 9524 return link; 9525 } 9526 9527 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 9528 const char *tp_name) 9529 { 9530 char errmsg[STRERR_BUFSIZE]; 9531 struct bpf_link *link; 9532 int prog_fd, pfd; 9533 9534 prog_fd = bpf_program__fd(prog); 9535 if (prog_fd < 0) { 9536 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9537 return ERR_PTR(-EINVAL); 9538 } 9539 9540 link = calloc(1, sizeof(*link)); 9541 if (!link) 9542 return ERR_PTR(-ENOMEM); 9543 link->detach = &bpf_link__detach_fd; 9544 9545 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9546 if (pfd < 0) { 9547 pfd = -errno; 9548 free(link); 9549 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9550 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9551 return ERR_PTR(pfd); 9552 } 9553 link->fd = pfd; 9554 return link; 9555 } 9556 9557 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9558 struct bpf_program *prog) 9559 { 9560 const char *tp_name = prog->sec_name + sec->len; 9561 9562 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9563 } 9564 9565 /* Common logic for all BPF program types that attach to a btf_id */ 9566 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 9567 { 9568 char errmsg[STRERR_BUFSIZE]; 9569 struct bpf_link *link; 9570 int prog_fd, pfd; 9571 9572 prog_fd = bpf_program__fd(prog); 9573 if (prog_fd < 0) { 9574 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9575 return ERR_PTR(-EINVAL); 9576 } 9577 9578 link = calloc(1, sizeof(*link)); 9579 if (!link) 9580 return ERR_PTR(-ENOMEM); 9581 link->detach = &bpf_link__detach_fd; 9582 9583 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9584 if (pfd < 0) { 9585 pfd = -errno; 9586 free(link); 9587 pr_warn("prog '%s': failed to attach: %s\n", 9588 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9589 return ERR_PTR(pfd); 9590 } 9591 link->fd = pfd; 9592 return (struct bpf_link *)link; 9593 } 9594 9595 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 9596 { 9597 return bpf_program__attach_btf_id(prog); 9598 } 9599 9600 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 9601 { 9602 return bpf_program__attach_btf_id(prog); 9603 } 9604 9605 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9606 struct bpf_program *prog) 9607 { 9608 return bpf_program__attach_trace(prog); 9609 } 9610 9611 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9612 struct bpf_program *prog) 9613 { 9614 return bpf_program__attach_lsm(prog); 9615 } 9616 9617 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9618 struct bpf_program *prog) 9619 { 9620 return bpf_program__attach_iter(prog, NULL); 9621 } 9622 9623 static struct bpf_link * 9624 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 9625 const char *target_name) 9626 { 9627 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 9628 .target_btf_id = btf_id); 9629 enum bpf_attach_type attach_type; 9630 char errmsg[STRERR_BUFSIZE]; 9631 struct bpf_link *link; 9632 int prog_fd, link_fd; 9633 9634 prog_fd = bpf_program__fd(prog); 9635 if (prog_fd < 0) { 9636 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9637 return ERR_PTR(-EINVAL); 9638 } 9639 9640 link = calloc(1, sizeof(*link)); 9641 if (!link) 9642 return ERR_PTR(-ENOMEM); 9643 link->detach = &bpf_link__detach_fd; 9644 9645 attach_type = bpf_program__get_expected_attach_type(prog); 9646 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 9647 if (link_fd < 0) { 9648 link_fd = -errno; 9649 free(link); 9650 pr_warn("prog '%s': failed to attach to %s: %s\n", 9651 prog->name, target_name, 9652 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9653 return ERR_PTR(link_fd); 9654 } 9655 link->fd = link_fd; 9656 return link; 9657 } 9658 9659 struct bpf_link * 9660 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 9661 { 9662 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 9663 } 9664 9665 struct bpf_link * 9666 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 9667 { 9668 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 9669 } 9670 9671 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 9672 { 9673 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 9674 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 9675 } 9676 9677 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 9678 int target_fd, 9679 const char *attach_func_name) 9680 { 9681 int btf_id; 9682 9683 if (!!target_fd != !!attach_func_name) { 9684 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 9685 prog->name); 9686 return ERR_PTR(-EINVAL); 9687 } 9688 9689 if (prog->type != BPF_PROG_TYPE_EXT) { 9690 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 9691 prog->name); 9692 return ERR_PTR(-EINVAL); 9693 } 9694 9695 if (target_fd) { 9696 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 9697 if (btf_id < 0) 9698 return ERR_PTR(btf_id); 9699 9700 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 9701 } else { 9702 /* no target, so use raw_tracepoint_open for compatibility 9703 * with old kernels 9704 */ 9705 return bpf_program__attach_trace(prog); 9706 } 9707 } 9708 9709 struct bpf_link * 9710 bpf_program__attach_iter(struct bpf_program *prog, 9711 const struct bpf_iter_attach_opts *opts) 9712 { 9713 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 9714 char errmsg[STRERR_BUFSIZE]; 9715 struct bpf_link *link; 9716 int prog_fd, link_fd; 9717 __u32 target_fd = 0; 9718 9719 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 9720 return ERR_PTR(-EINVAL); 9721 9722 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 9723 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 9724 9725 prog_fd = bpf_program__fd(prog); 9726 if (prog_fd < 0) { 9727 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9728 return ERR_PTR(-EINVAL); 9729 } 9730 9731 link = calloc(1, sizeof(*link)); 9732 if (!link) 9733 return ERR_PTR(-ENOMEM); 9734 link->detach = &bpf_link__detach_fd; 9735 9736 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 9737 &link_create_opts); 9738 if (link_fd < 0) { 9739 link_fd = -errno; 9740 free(link); 9741 pr_warn("prog '%s': failed to attach to iterator: %s\n", 9742 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9743 return ERR_PTR(link_fd); 9744 } 9745 link->fd = link_fd; 9746 return link; 9747 } 9748 9749 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 9750 { 9751 const struct bpf_sec_def *sec_def; 9752 9753 sec_def = find_sec_def(prog->sec_name); 9754 if (!sec_def || !sec_def->attach_fn) 9755 return ERR_PTR(-ESRCH); 9756 9757 return sec_def->attach_fn(sec_def, prog); 9758 } 9759 9760 static int bpf_link__detach_struct_ops(struct bpf_link *link) 9761 { 9762 __u32 zero = 0; 9763 9764 if (bpf_map_delete_elem(link->fd, &zero)) 9765 return -errno; 9766 9767 return 0; 9768 } 9769 9770 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 9771 { 9772 struct bpf_struct_ops *st_ops; 9773 struct bpf_link *link; 9774 __u32 i, zero = 0; 9775 int err; 9776 9777 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 9778 return ERR_PTR(-EINVAL); 9779 9780 link = calloc(1, sizeof(*link)); 9781 if (!link) 9782 return ERR_PTR(-EINVAL); 9783 9784 st_ops = map->st_ops; 9785 for (i = 0; i < btf_vlen(st_ops->type); i++) { 9786 struct bpf_program *prog = st_ops->progs[i]; 9787 void *kern_data; 9788 int prog_fd; 9789 9790 if (!prog) 9791 continue; 9792 9793 prog_fd = bpf_program__fd(prog); 9794 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 9795 *(unsigned long *)kern_data = prog_fd; 9796 } 9797 9798 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 9799 if (err) { 9800 err = -errno; 9801 free(link); 9802 return ERR_PTR(err); 9803 } 9804 9805 link->detach = bpf_link__detach_struct_ops; 9806 link->fd = map->fd; 9807 9808 return link; 9809 } 9810 9811 enum bpf_perf_event_ret 9812 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 9813 void **copy_mem, size_t *copy_size, 9814 bpf_perf_event_print_t fn, void *private_data) 9815 { 9816 struct perf_event_mmap_page *header = mmap_mem; 9817 __u64 data_head = ring_buffer_read_head(header); 9818 __u64 data_tail = header->data_tail; 9819 void *base = ((__u8 *)header) + page_size; 9820 int ret = LIBBPF_PERF_EVENT_CONT; 9821 struct perf_event_header *ehdr; 9822 size_t ehdr_size; 9823 9824 while (data_head != data_tail) { 9825 ehdr = base + (data_tail & (mmap_size - 1)); 9826 ehdr_size = ehdr->size; 9827 9828 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 9829 void *copy_start = ehdr; 9830 size_t len_first = base + mmap_size - copy_start; 9831 size_t len_secnd = ehdr_size - len_first; 9832 9833 if (*copy_size < ehdr_size) { 9834 free(*copy_mem); 9835 *copy_mem = malloc(ehdr_size); 9836 if (!*copy_mem) { 9837 *copy_size = 0; 9838 ret = LIBBPF_PERF_EVENT_ERROR; 9839 break; 9840 } 9841 *copy_size = ehdr_size; 9842 } 9843 9844 memcpy(*copy_mem, copy_start, len_first); 9845 memcpy(*copy_mem + len_first, base, len_secnd); 9846 ehdr = *copy_mem; 9847 } 9848 9849 ret = fn(ehdr, private_data); 9850 data_tail += ehdr_size; 9851 if (ret != LIBBPF_PERF_EVENT_CONT) 9852 break; 9853 } 9854 9855 ring_buffer_write_tail(header, data_tail); 9856 return ret; 9857 } 9858 9859 struct perf_buffer; 9860 9861 struct perf_buffer_params { 9862 struct perf_event_attr *attr; 9863 /* if event_cb is specified, it takes precendence */ 9864 perf_buffer_event_fn event_cb; 9865 /* sample_cb and lost_cb are higher-level common-case callbacks */ 9866 perf_buffer_sample_fn sample_cb; 9867 perf_buffer_lost_fn lost_cb; 9868 void *ctx; 9869 int cpu_cnt; 9870 int *cpus; 9871 int *map_keys; 9872 }; 9873 9874 struct perf_cpu_buf { 9875 struct perf_buffer *pb; 9876 void *base; /* mmap()'ed memory */ 9877 void *buf; /* for reconstructing segmented data */ 9878 size_t buf_size; 9879 int fd; 9880 int cpu; 9881 int map_key; 9882 }; 9883 9884 struct perf_buffer { 9885 perf_buffer_event_fn event_cb; 9886 perf_buffer_sample_fn sample_cb; 9887 perf_buffer_lost_fn lost_cb; 9888 void *ctx; /* passed into callbacks */ 9889 9890 size_t page_size; 9891 size_t mmap_size; 9892 struct perf_cpu_buf **cpu_bufs; 9893 struct epoll_event *events; 9894 int cpu_cnt; /* number of allocated CPU buffers */ 9895 int epoll_fd; /* perf event FD */ 9896 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 9897 }; 9898 9899 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 9900 struct perf_cpu_buf *cpu_buf) 9901 { 9902 if (!cpu_buf) 9903 return; 9904 if (cpu_buf->base && 9905 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 9906 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 9907 if (cpu_buf->fd >= 0) { 9908 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 9909 close(cpu_buf->fd); 9910 } 9911 free(cpu_buf->buf); 9912 free(cpu_buf); 9913 } 9914 9915 void perf_buffer__free(struct perf_buffer *pb) 9916 { 9917 int i; 9918 9919 if (IS_ERR_OR_NULL(pb)) 9920 return; 9921 if (pb->cpu_bufs) { 9922 for (i = 0; i < pb->cpu_cnt; i++) { 9923 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 9924 9925 if (!cpu_buf) 9926 continue; 9927 9928 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 9929 perf_buffer__free_cpu_buf(pb, cpu_buf); 9930 } 9931 free(pb->cpu_bufs); 9932 } 9933 if (pb->epoll_fd >= 0) 9934 close(pb->epoll_fd); 9935 free(pb->events); 9936 free(pb); 9937 } 9938 9939 static struct perf_cpu_buf * 9940 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 9941 int cpu, int map_key) 9942 { 9943 struct perf_cpu_buf *cpu_buf; 9944 char msg[STRERR_BUFSIZE]; 9945 int err; 9946 9947 cpu_buf = calloc(1, sizeof(*cpu_buf)); 9948 if (!cpu_buf) 9949 return ERR_PTR(-ENOMEM); 9950 9951 cpu_buf->pb = pb; 9952 cpu_buf->cpu = cpu; 9953 cpu_buf->map_key = map_key; 9954 9955 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 9956 -1, PERF_FLAG_FD_CLOEXEC); 9957 if (cpu_buf->fd < 0) { 9958 err = -errno; 9959 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 9960 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9961 goto error; 9962 } 9963 9964 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 9965 PROT_READ | PROT_WRITE, MAP_SHARED, 9966 cpu_buf->fd, 0); 9967 if (cpu_buf->base == MAP_FAILED) { 9968 cpu_buf->base = NULL; 9969 err = -errno; 9970 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 9971 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9972 goto error; 9973 } 9974 9975 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9976 err = -errno; 9977 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 9978 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 9979 goto error; 9980 } 9981 9982 return cpu_buf; 9983 9984 error: 9985 perf_buffer__free_cpu_buf(pb, cpu_buf); 9986 return (struct perf_cpu_buf *)ERR_PTR(err); 9987 } 9988 9989 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 9990 struct perf_buffer_params *p); 9991 9992 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 9993 const struct perf_buffer_opts *opts) 9994 { 9995 struct perf_buffer_params p = {}; 9996 struct perf_event_attr attr = { 0, }; 9997 9998 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 9999 attr.type = PERF_TYPE_SOFTWARE; 10000 attr.sample_type = PERF_SAMPLE_RAW; 10001 attr.sample_period = 1; 10002 attr.wakeup_events = 1; 10003 10004 p.attr = &attr; 10005 p.sample_cb = opts ? opts->sample_cb : NULL; 10006 p.lost_cb = opts ? opts->lost_cb : NULL; 10007 p.ctx = opts ? opts->ctx : NULL; 10008 10009 return __perf_buffer__new(map_fd, page_cnt, &p); 10010 } 10011 10012 struct perf_buffer * 10013 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10014 const struct perf_buffer_raw_opts *opts) 10015 { 10016 struct perf_buffer_params p = {}; 10017 10018 p.attr = opts->attr; 10019 p.event_cb = opts->event_cb; 10020 p.ctx = opts->ctx; 10021 p.cpu_cnt = opts->cpu_cnt; 10022 p.cpus = opts->cpus; 10023 p.map_keys = opts->map_keys; 10024 10025 return __perf_buffer__new(map_fd, page_cnt, &p); 10026 } 10027 10028 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10029 struct perf_buffer_params *p) 10030 { 10031 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10032 struct bpf_map_info map; 10033 char msg[STRERR_BUFSIZE]; 10034 struct perf_buffer *pb; 10035 bool *online = NULL; 10036 __u32 map_info_len; 10037 int err, i, j, n; 10038 10039 if (page_cnt & (page_cnt - 1)) { 10040 pr_warn("page count should be power of two, but is %zu\n", 10041 page_cnt); 10042 return ERR_PTR(-EINVAL); 10043 } 10044 10045 /* best-effort sanity checks */ 10046 memset(&map, 0, sizeof(map)); 10047 map_info_len = sizeof(map); 10048 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10049 if (err) { 10050 err = -errno; 10051 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10052 * -EBADFD, -EFAULT, or -E2BIG on real error 10053 */ 10054 if (err != -EINVAL) { 10055 pr_warn("failed to get map info for map FD %d: %s\n", 10056 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10057 return ERR_PTR(err); 10058 } 10059 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10060 map_fd); 10061 } else { 10062 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10063 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10064 map.name); 10065 return ERR_PTR(-EINVAL); 10066 } 10067 } 10068 10069 pb = calloc(1, sizeof(*pb)); 10070 if (!pb) 10071 return ERR_PTR(-ENOMEM); 10072 10073 pb->event_cb = p->event_cb; 10074 pb->sample_cb = p->sample_cb; 10075 pb->lost_cb = p->lost_cb; 10076 pb->ctx = p->ctx; 10077 10078 pb->page_size = getpagesize(); 10079 pb->mmap_size = pb->page_size * page_cnt; 10080 pb->map_fd = map_fd; 10081 10082 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10083 if (pb->epoll_fd < 0) { 10084 err = -errno; 10085 pr_warn("failed to create epoll instance: %s\n", 10086 libbpf_strerror_r(err, msg, sizeof(msg))); 10087 goto error; 10088 } 10089 10090 if (p->cpu_cnt > 0) { 10091 pb->cpu_cnt = p->cpu_cnt; 10092 } else { 10093 pb->cpu_cnt = libbpf_num_possible_cpus(); 10094 if (pb->cpu_cnt < 0) { 10095 err = pb->cpu_cnt; 10096 goto error; 10097 } 10098 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10099 pb->cpu_cnt = map.max_entries; 10100 } 10101 10102 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10103 if (!pb->events) { 10104 err = -ENOMEM; 10105 pr_warn("failed to allocate events: out of memory\n"); 10106 goto error; 10107 } 10108 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10109 if (!pb->cpu_bufs) { 10110 err = -ENOMEM; 10111 pr_warn("failed to allocate buffers: out of memory\n"); 10112 goto error; 10113 } 10114 10115 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10116 if (err) { 10117 pr_warn("failed to get online CPU mask: %d\n", err); 10118 goto error; 10119 } 10120 10121 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10122 struct perf_cpu_buf *cpu_buf; 10123 int cpu, map_key; 10124 10125 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10126 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10127 10128 /* in case user didn't explicitly requested particular CPUs to 10129 * be attached to, skip offline/not present CPUs 10130 */ 10131 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10132 continue; 10133 10134 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10135 if (IS_ERR(cpu_buf)) { 10136 err = PTR_ERR(cpu_buf); 10137 goto error; 10138 } 10139 10140 pb->cpu_bufs[j] = cpu_buf; 10141 10142 err = bpf_map_update_elem(pb->map_fd, &map_key, 10143 &cpu_buf->fd, 0); 10144 if (err) { 10145 err = -errno; 10146 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10147 cpu, map_key, cpu_buf->fd, 10148 libbpf_strerror_r(err, msg, sizeof(msg))); 10149 goto error; 10150 } 10151 10152 pb->events[j].events = EPOLLIN; 10153 pb->events[j].data.ptr = cpu_buf; 10154 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10155 &pb->events[j]) < 0) { 10156 err = -errno; 10157 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10158 cpu, cpu_buf->fd, 10159 libbpf_strerror_r(err, msg, sizeof(msg))); 10160 goto error; 10161 } 10162 j++; 10163 } 10164 pb->cpu_cnt = j; 10165 free(online); 10166 10167 return pb; 10168 10169 error: 10170 free(online); 10171 if (pb) 10172 perf_buffer__free(pb); 10173 return ERR_PTR(err); 10174 } 10175 10176 struct perf_sample_raw { 10177 struct perf_event_header header; 10178 uint32_t size; 10179 char data[]; 10180 }; 10181 10182 struct perf_sample_lost { 10183 struct perf_event_header header; 10184 uint64_t id; 10185 uint64_t lost; 10186 uint64_t sample_id; 10187 }; 10188 10189 static enum bpf_perf_event_ret 10190 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10191 { 10192 struct perf_cpu_buf *cpu_buf = ctx; 10193 struct perf_buffer *pb = cpu_buf->pb; 10194 void *data = e; 10195 10196 /* user wants full control over parsing perf event */ 10197 if (pb->event_cb) 10198 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10199 10200 switch (e->type) { 10201 case PERF_RECORD_SAMPLE: { 10202 struct perf_sample_raw *s = data; 10203 10204 if (pb->sample_cb) 10205 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10206 break; 10207 } 10208 case PERF_RECORD_LOST: { 10209 struct perf_sample_lost *s = data; 10210 10211 if (pb->lost_cb) 10212 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10213 break; 10214 } 10215 default: 10216 pr_warn("unknown perf sample type %d\n", e->type); 10217 return LIBBPF_PERF_EVENT_ERROR; 10218 } 10219 return LIBBPF_PERF_EVENT_CONT; 10220 } 10221 10222 static int perf_buffer__process_records(struct perf_buffer *pb, 10223 struct perf_cpu_buf *cpu_buf) 10224 { 10225 enum bpf_perf_event_ret ret; 10226 10227 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10228 pb->page_size, &cpu_buf->buf, 10229 &cpu_buf->buf_size, 10230 perf_buffer__process_record, cpu_buf); 10231 if (ret != LIBBPF_PERF_EVENT_CONT) 10232 return ret; 10233 return 0; 10234 } 10235 10236 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10237 { 10238 return pb->epoll_fd; 10239 } 10240 10241 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10242 { 10243 int i, cnt, err; 10244 10245 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10246 for (i = 0; i < cnt; i++) { 10247 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10248 10249 err = perf_buffer__process_records(pb, cpu_buf); 10250 if (err) { 10251 pr_warn("error while processing records: %d\n", err); 10252 return err; 10253 } 10254 } 10255 return cnt < 0 ? -errno : cnt; 10256 } 10257 10258 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10259 * manager. 10260 */ 10261 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10262 { 10263 return pb->cpu_cnt; 10264 } 10265 10266 /* 10267 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10268 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10269 * select()/poll()/epoll() Linux syscalls. 10270 */ 10271 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10272 { 10273 struct perf_cpu_buf *cpu_buf; 10274 10275 if (buf_idx >= pb->cpu_cnt) 10276 return -EINVAL; 10277 10278 cpu_buf = pb->cpu_bufs[buf_idx]; 10279 if (!cpu_buf) 10280 return -ENOENT; 10281 10282 return cpu_buf->fd; 10283 } 10284 10285 /* 10286 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10287 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10288 * consume, do nothing and return success. 10289 * Returns: 10290 * - 0 on success; 10291 * - <0 on failure. 10292 */ 10293 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10294 { 10295 struct perf_cpu_buf *cpu_buf; 10296 10297 if (buf_idx >= pb->cpu_cnt) 10298 return -EINVAL; 10299 10300 cpu_buf = pb->cpu_bufs[buf_idx]; 10301 if (!cpu_buf) 10302 return -ENOENT; 10303 10304 return perf_buffer__process_records(pb, cpu_buf); 10305 } 10306 10307 int perf_buffer__consume(struct perf_buffer *pb) 10308 { 10309 int i, err; 10310 10311 for (i = 0; i < pb->cpu_cnt; i++) { 10312 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10313 10314 if (!cpu_buf) 10315 continue; 10316 10317 err = perf_buffer__process_records(pb, cpu_buf); 10318 if (err) { 10319 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10320 return err; 10321 } 10322 } 10323 return 0; 10324 } 10325 10326 struct bpf_prog_info_array_desc { 10327 int array_offset; /* e.g. offset of jited_prog_insns */ 10328 int count_offset; /* e.g. offset of jited_prog_len */ 10329 int size_offset; /* > 0: offset of rec size, 10330 * < 0: fix size of -size_offset 10331 */ 10332 }; 10333 10334 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10335 [BPF_PROG_INFO_JITED_INSNS] = { 10336 offsetof(struct bpf_prog_info, jited_prog_insns), 10337 offsetof(struct bpf_prog_info, jited_prog_len), 10338 -1, 10339 }, 10340 [BPF_PROG_INFO_XLATED_INSNS] = { 10341 offsetof(struct bpf_prog_info, xlated_prog_insns), 10342 offsetof(struct bpf_prog_info, xlated_prog_len), 10343 -1, 10344 }, 10345 [BPF_PROG_INFO_MAP_IDS] = { 10346 offsetof(struct bpf_prog_info, map_ids), 10347 offsetof(struct bpf_prog_info, nr_map_ids), 10348 -(int)sizeof(__u32), 10349 }, 10350 [BPF_PROG_INFO_JITED_KSYMS] = { 10351 offsetof(struct bpf_prog_info, jited_ksyms), 10352 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10353 -(int)sizeof(__u64), 10354 }, 10355 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10356 offsetof(struct bpf_prog_info, jited_func_lens), 10357 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10358 -(int)sizeof(__u32), 10359 }, 10360 [BPF_PROG_INFO_FUNC_INFO] = { 10361 offsetof(struct bpf_prog_info, func_info), 10362 offsetof(struct bpf_prog_info, nr_func_info), 10363 offsetof(struct bpf_prog_info, func_info_rec_size), 10364 }, 10365 [BPF_PROG_INFO_LINE_INFO] = { 10366 offsetof(struct bpf_prog_info, line_info), 10367 offsetof(struct bpf_prog_info, nr_line_info), 10368 offsetof(struct bpf_prog_info, line_info_rec_size), 10369 }, 10370 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10371 offsetof(struct bpf_prog_info, jited_line_info), 10372 offsetof(struct bpf_prog_info, nr_jited_line_info), 10373 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10374 }, 10375 [BPF_PROG_INFO_PROG_TAGS] = { 10376 offsetof(struct bpf_prog_info, prog_tags), 10377 offsetof(struct bpf_prog_info, nr_prog_tags), 10378 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10379 }, 10380 10381 }; 10382 10383 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10384 int offset) 10385 { 10386 __u32 *array = (__u32 *)info; 10387 10388 if (offset >= 0) 10389 return array[offset / sizeof(__u32)]; 10390 return -(int)offset; 10391 } 10392 10393 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10394 int offset) 10395 { 10396 __u64 *array = (__u64 *)info; 10397 10398 if (offset >= 0) 10399 return array[offset / sizeof(__u64)]; 10400 return -(int)offset; 10401 } 10402 10403 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10404 __u32 val) 10405 { 10406 __u32 *array = (__u32 *)info; 10407 10408 if (offset >= 0) 10409 array[offset / sizeof(__u32)] = val; 10410 } 10411 10412 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10413 __u64 val) 10414 { 10415 __u64 *array = (__u64 *)info; 10416 10417 if (offset >= 0) 10418 array[offset / sizeof(__u64)] = val; 10419 } 10420 10421 struct bpf_prog_info_linear * 10422 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10423 { 10424 struct bpf_prog_info_linear *info_linear; 10425 struct bpf_prog_info info = {}; 10426 __u32 info_len = sizeof(info); 10427 __u32 data_len = 0; 10428 int i, err; 10429 void *ptr; 10430 10431 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10432 return ERR_PTR(-EINVAL); 10433 10434 /* step 1: get array dimensions */ 10435 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10436 if (err) { 10437 pr_debug("can't get prog info: %s", strerror(errno)); 10438 return ERR_PTR(-EFAULT); 10439 } 10440 10441 /* step 2: calculate total size of all arrays */ 10442 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10443 bool include_array = (arrays & (1UL << i)) > 0; 10444 struct bpf_prog_info_array_desc *desc; 10445 __u32 count, size; 10446 10447 desc = bpf_prog_info_array_desc + i; 10448 10449 /* kernel is too old to support this field */ 10450 if (info_len < desc->array_offset + sizeof(__u32) || 10451 info_len < desc->count_offset + sizeof(__u32) || 10452 (desc->size_offset > 0 && info_len < desc->size_offset)) 10453 include_array = false; 10454 10455 if (!include_array) { 10456 arrays &= ~(1UL << i); /* clear the bit */ 10457 continue; 10458 } 10459 10460 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10461 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10462 10463 data_len += count * size; 10464 } 10465 10466 /* step 3: allocate continuous memory */ 10467 data_len = roundup(data_len, sizeof(__u64)); 10468 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10469 if (!info_linear) 10470 return ERR_PTR(-ENOMEM); 10471 10472 /* step 4: fill data to info_linear->info */ 10473 info_linear->arrays = arrays; 10474 memset(&info_linear->info, 0, sizeof(info)); 10475 ptr = info_linear->data; 10476 10477 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10478 struct bpf_prog_info_array_desc *desc; 10479 __u32 count, size; 10480 10481 if ((arrays & (1UL << i)) == 0) 10482 continue; 10483 10484 desc = bpf_prog_info_array_desc + i; 10485 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10486 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10487 bpf_prog_info_set_offset_u32(&info_linear->info, 10488 desc->count_offset, count); 10489 bpf_prog_info_set_offset_u32(&info_linear->info, 10490 desc->size_offset, size); 10491 bpf_prog_info_set_offset_u64(&info_linear->info, 10492 desc->array_offset, 10493 ptr_to_u64(ptr)); 10494 ptr += count * size; 10495 } 10496 10497 /* step 5: call syscall again to get required arrays */ 10498 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10499 if (err) { 10500 pr_debug("can't get prog info: %s", strerror(errno)); 10501 free(info_linear); 10502 return ERR_PTR(-EFAULT); 10503 } 10504 10505 /* step 6: verify the data */ 10506 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10507 struct bpf_prog_info_array_desc *desc; 10508 __u32 v1, v2; 10509 10510 if ((arrays & (1UL << i)) == 0) 10511 continue; 10512 10513 desc = bpf_prog_info_array_desc + i; 10514 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10515 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10516 desc->count_offset); 10517 if (v1 != v2) 10518 pr_warn("%s: mismatch in element count\n", __func__); 10519 10520 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10521 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10522 desc->size_offset); 10523 if (v1 != v2) 10524 pr_warn("%s: mismatch in rec size\n", __func__); 10525 } 10526 10527 /* step 7: update info_len and data_len */ 10528 info_linear->info_len = sizeof(struct bpf_prog_info); 10529 info_linear->data_len = data_len; 10530 10531 return info_linear; 10532 } 10533 10534 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10535 { 10536 int i; 10537 10538 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10539 struct bpf_prog_info_array_desc *desc; 10540 __u64 addr, offs; 10541 10542 if ((info_linear->arrays & (1UL << i)) == 0) 10543 continue; 10544 10545 desc = bpf_prog_info_array_desc + i; 10546 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10547 desc->array_offset); 10548 offs = addr - ptr_to_u64(info_linear->data); 10549 bpf_prog_info_set_offset_u64(&info_linear->info, 10550 desc->array_offset, offs); 10551 } 10552 } 10553 10554 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10555 { 10556 int i; 10557 10558 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10559 struct bpf_prog_info_array_desc *desc; 10560 __u64 addr, offs; 10561 10562 if ((info_linear->arrays & (1UL << i)) == 0) 10563 continue; 10564 10565 desc = bpf_prog_info_array_desc + i; 10566 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10567 desc->array_offset); 10568 addr = offs + ptr_to_u64(info_linear->data); 10569 bpf_prog_info_set_offset_u64(&info_linear->info, 10570 desc->array_offset, addr); 10571 } 10572 } 10573 10574 int bpf_program__set_attach_target(struct bpf_program *prog, 10575 int attach_prog_fd, 10576 const char *attach_func_name) 10577 { 10578 int btf_id; 10579 10580 if (!prog || attach_prog_fd < 0 || !attach_func_name) 10581 return -EINVAL; 10582 10583 if (attach_prog_fd) 10584 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10585 attach_prog_fd); 10586 else 10587 btf_id = libbpf_find_vmlinux_btf_id(attach_func_name, 10588 prog->expected_attach_type); 10589 10590 if (btf_id < 0) 10591 return btf_id; 10592 10593 prog->attach_btf_id = btf_id; 10594 prog->attach_prog_fd = attach_prog_fd; 10595 return 0; 10596 } 10597 10598 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 10599 { 10600 int err = 0, n, len, start, end = -1; 10601 bool *tmp; 10602 10603 *mask = NULL; 10604 *mask_sz = 0; 10605 10606 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 10607 while (*s) { 10608 if (*s == ',' || *s == '\n') { 10609 s++; 10610 continue; 10611 } 10612 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 10613 if (n <= 0 || n > 2) { 10614 pr_warn("Failed to get CPU range %s: %d\n", s, n); 10615 err = -EINVAL; 10616 goto cleanup; 10617 } else if (n == 1) { 10618 end = start; 10619 } 10620 if (start < 0 || start > end) { 10621 pr_warn("Invalid CPU range [%d,%d] in %s\n", 10622 start, end, s); 10623 err = -EINVAL; 10624 goto cleanup; 10625 } 10626 tmp = realloc(*mask, end + 1); 10627 if (!tmp) { 10628 err = -ENOMEM; 10629 goto cleanup; 10630 } 10631 *mask = tmp; 10632 memset(tmp + *mask_sz, 0, start - *mask_sz); 10633 memset(tmp + start, 1, end - start + 1); 10634 *mask_sz = end + 1; 10635 s += len; 10636 } 10637 if (!*mask_sz) { 10638 pr_warn("Empty CPU range\n"); 10639 return -EINVAL; 10640 } 10641 return 0; 10642 cleanup: 10643 free(*mask); 10644 *mask = NULL; 10645 return err; 10646 } 10647 10648 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 10649 { 10650 int fd, err = 0, len; 10651 char buf[128]; 10652 10653 fd = open(fcpu, O_RDONLY); 10654 if (fd < 0) { 10655 err = -errno; 10656 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 10657 return err; 10658 } 10659 len = read(fd, buf, sizeof(buf)); 10660 close(fd); 10661 if (len <= 0) { 10662 err = len ? -errno : -EINVAL; 10663 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 10664 return err; 10665 } 10666 if (len >= sizeof(buf)) { 10667 pr_warn("CPU mask is too big in file %s\n", fcpu); 10668 return -E2BIG; 10669 } 10670 buf[len] = '\0'; 10671 10672 return parse_cpu_mask_str(buf, mask, mask_sz); 10673 } 10674 10675 int libbpf_num_possible_cpus(void) 10676 { 10677 static const char *fcpu = "/sys/devices/system/cpu/possible"; 10678 static int cpus; 10679 int err, n, i, tmp_cpus; 10680 bool *mask; 10681 10682 tmp_cpus = READ_ONCE(cpus); 10683 if (tmp_cpus > 0) 10684 return tmp_cpus; 10685 10686 err = parse_cpu_mask_file(fcpu, &mask, &n); 10687 if (err) 10688 return err; 10689 10690 tmp_cpus = 0; 10691 for (i = 0; i < n; i++) { 10692 if (mask[i]) 10693 tmp_cpus++; 10694 } 10695 free(mask); 10696 10697 WRITE_ONCE(cpus, tmp_cpus); 10698 return tmp_cpus; 10699 } 10700 10701 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 10702 const struct bpf_object_open_opts *opts) 10703 { 10704 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 10705 .object_name = s->name, 10706 ); 10707 struct bpf_object *obj; 10708 int i; 10709 10710 /* Attempt to preserve opts->object_name, unless overriden by user 10711 * explicitly. Overwriting object name for skeletons is discouraged, 10712 * as it breaks global data maps, because they contain object name 10713 * prefix as their own map name prefix. When skeleton is generated, 10714 * bpftool is making an assumption that this name will stay the same. 10715 */ 10716 if (opts) { 10717 memcpy(&skel_opts, opts, sizeof(*opts)); 10718 if (!opts->object_name) 10719 skel_opts.object_name = s->name; 10720 } 10721 10722 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 10723 if (IS_ERR(obj)) { 10724 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 10725 s->name, PTR_ERR(obj)); 10726 return PTR_ERR(obj); 10727 } 10728 10729 *s->obj = obj; 10730 10731 for (i = 0; i < s->map_cnt; i++) { 10732 struct bpf_map **map = s->maps[i].map; 10733 const char *name = s->maps[i].name; 10734 void **mmaped = s->maps[i].mmaped; 10735 10736 *map = bpf_object__find_map_by_name(obj, name); 10737 if (!*map) { 10738 pr_warn("failed to find skeleton map '%s'\n", name); 10739 return -ESRCH; 10740 } 10741 10742 /* externs shouldn't be pre-setup from user code */ 10743 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 10744 *mmaped = (*map)->mmaped; 10745 } 10746 10747 for (i = 0; i < s->prog_cnt; i++) { 10748 struct bpf_program **prog = s->progs[i].prog; 10749 const char *name = s->progs[i].name; 10750 10751 *prog = bpf_object__find_program_by_name(obj, name); 10752 if (!*prog) { 10753 pr_warn("failed to find skeleton program '%s'\n", name); 10754 return -ESRCH; 10755 } 10756 } 10757 10758 return 0; 10759 } 10760 10761 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 10762 { 10763 int i, err; 10764 10765 err = bpf_object__load(*s->obj); 10766 if (err) { 10767 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 10768 return err; 10769 } 10770 10771 for (i = 0; i < s->map_cnt; i++) { 10772 struct bpf_map *map = *s->maps[i].map; 10773 size_t mmap_sz = bpf_map_mmap_sz(map); 10774 int prot, map_fd = bpf_map__fd(map); 10775 void **mmaped = s->maps[i].mmaped; 10776 10777 if (!mmaped) 10778 continue; 10779 10780 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 10781 *mmaped = NULL; 10782 continue; 10783 } 10784 10785 if (map->def.map_flags & BPF_F_RDONLY_PROG) 10786 prot = PROT_READ; 10787 else 10788 prot = PROT_READ | PROT_WRITE; 10789 10790 /* Remap anonymous mmap()-ed "map initialization image" as 10791 * a BPF map-backed mmap()-ed memory, but preserving the same 10792 * memory address. This will cause kernel to change process' 10793 * page table to point to a different piece of kernel memory, 10794 * but from userspace point of view memory address (and its 10795 * contents, being identical at this point) will stay the 10796 * same. This mapping will be released by bpf_object__close() 10797 * as per normal clean up procedure, so we don't need to worry 10798 * about it from skeleton's clean up perspective. 10799 */ 10800 *mmaped = mmap(map->mmaped, mmap_sz, prot, 10801 MAP_SHARED | MAP_FIXED, map_fd, 0); 10802 if (*mmaped == MAP_FAILED) { 10803 err = -errno; 10804 *mmaped = NULL; 10805 pr_warn("failed to re-mmap() map '%s': %d\n", 10806 bpf_map__name(map), err); 10807 return err; 10808 } 10809 } 10810 10811 return 0; 10812 } 10813 10814 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 10815 { 10816 int i; 10817 10818 for (i = 0; i < s->prog_cnt; i++) { 10819 struct bpf_program *prog = *s->progs[i].prog; 10820 struct bpf_link **link = s->progs[i].link; 10821 const struct bpf_sec_def *sec_def; 10822 10823 if (!prog->load) 10824 continue; 10825 10826 sec_def = find_sec_def(prog->sec_name); 10827 if (!sec_def || !sec_def->attach_fn) 10828 continue; 10829 10830 *link = sec_def->attach_fn(sec_def, prog); 10831 if (IS_ERR(*link)) { 10832 pr_warn("failed to auto-attach program '%s': %ld\n", 10833 bpf_program__name(prog), PTR_ERR(*link)); 10834 return PTR_ERR(*link); 10835 } 10836 } 10837 10838 return 0; 10839 } 10840 10841 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 10842 { 10843 int i; 10844 10845 for (i = 0; i < s->prog_cnt; i++) { 10846 struct bpf_link **link = s->progs[i].link; 10847 10848 bpf_link__destroy(*link); 10849 *link = NULL; 10850 } 10851 } 10852 10853 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 10854 { 10855 if (s->progs) 10856 bpf_object__detach_skeleton(s); 10857 if (s->obj) 10858 bpf_object__close(*s->obj); 10859 free(s->maps); 10860 free(s->progs); 10861 free(s); 10862 } 10863