xref: /linux/tools/lib/bpf/libbpf.c (revision 4cde72fead4cebb5b6b2fe9425904c2064739184)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48 
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
86 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
87 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
88 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
89 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
90 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
91 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
92 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
93 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
94 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
95 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
96 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
97 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
98 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
99 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
100 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
101 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
102 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
103 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
104 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
105 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
106 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
107 	[BPF_LIRC_MODE2]		= "lirc_mode2",
108 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
109 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
110 	[BPF_TRACE_FENTRY]		= "trace_fentry",
111 	[BPF_TRACE_FEXIT]		= "trace_fexit",
112 	[BPF_MODIFY_RETURN]		= "modify_return",
113 	[BPF_LSM_MAC]			= "lsm_mac",
114 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
115 	[BPF_SK_LOOKUP]			= "sk_lookup",
116 	[BPF_TRACE_ITER]		= "trace_iter",
117 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
118 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
119 	[BPF_XDP]			= "xdp",
120 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
121 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
122 	[BPF_PERF_EVENT]		= "perf_event",
123 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
124 	[BPF_STRUCT_OPS]		= "struct_ops",
125 	[BPF_NETFILTER]			= "netfilter",
126 	[BPF_TCX_INGRESS]		= "tcx_ingress",
127 	[BPF_TCX_EGRESS]		= "tcx_egress",
128 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
129 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
130 	[BPF_NETKIT_PEER]		= "netkit_peer",
131 };
132 
133 static const char * const link_type_name[] = {
134 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
135 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
136 	[BPF_LINK_TYPE_TRACING]			= "tracing",
137 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
138 	[BPF_LINK_TYPE_ITER]			= "iter",
139 	[BPF_LINK_TYPE_NETNS]			= "netns",
140 	[BPF_LINK_TYPE_XDP]			= "xdp",
141 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
142 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
143 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
144 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
145 	[BPF_LINK_TYPE_TCX]			= "tcx",
146 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
147 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
148 };
149 
150 static const char * const map_type_name[] = {
151 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
152 	[BPF_MAP_TYPE_HASH]			= "hash",
153 	[BPF_MAP_TYPE_ARRAY]			= "array",
154 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
155 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
156 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
157 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
158 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
159 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
160 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
161 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
162 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
163 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
164 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
165 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
166 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
167 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
168 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
169 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
170 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
171 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
172 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
173 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
174 	[BPF_MAP_TYPE_QUEUE]			= "queue",
175 	[BPF_MAP_TYPE_STACK]			= "stack",
176 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
177 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
178 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
179 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
180 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
181 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
182 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
183 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
184 };
185 
186 static const char * const prog_type_name[] = {
187 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
188 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
189 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
190 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
191 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
192 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
193 	[BPF_PROG_TYPE_XDP]			= "xdp",
194 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
195 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
196 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
197 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
198 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
199 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
200 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
201 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
202 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
203 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
204 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
205 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
206 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
207 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
208 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
209 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
210 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
211 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
212 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
213 	[BPF_PROG_TYPE_TRACING]			= "tracing",
214 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
215 	[BPF_PROG_TYPE_EXT]			= "ext",
216 	[BPF_PROG_TYPE_LSM]			= "lsm",
217 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
218 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
219 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
220 };
221 
222 static int __base_pr(enum libbpf_print_level level, const char *format,
223 		     va_list args)
224 {
225 	if (level == LIBBPF_DEBUG)
226 		return 0;
227 
228 	return vfprintf(stderr, format, args);
229 }
230 
231 static libbpf_print_fn_t __libbpf_pr = __base_pr;
232 
233 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
234 {
235 	libbpf_print_fn_t old_print_fn;
236 
237 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
238 
239 	return old_print_fn;
240 }
241 
242 __printf(2, 3)
243 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
244 {
245 	va_list args;
246 	int old_errno;
247 	libbpf_print_fn_t print_fn;
248 
249 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
250 	if (!print_fn)
251 		return;
252 
253 	old_errno = errno;
254 
255 	va_start(args, format);
256 	__libbpf_pr(level, format, args);
257 	va_end(args);
258 
259 	errno = old_errno;
260 }
261 
262 static void pr_perm_msg(int err)
263 {
264 	struct rlimit limit;
265 	char buf[100];
266 
267 	if (err != -EPERM || geteuid() != 0)
268 		return;
269 
270 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
271 	if (err)
272 		return;
273 
274 	if (limit.rlim_cur == RLIM_INFINITY)
275 		return;
276 
277 	if (limit.rlim_cur < 1024)
278 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
279 	else if (limit.rlim_cur < 1024*1024)
280 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
281 	else
282 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
283 
284 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
285 		buf);
286 }
287 
288 #define STRERR_BUFSIZE  128
289 
290 /* Copied from tools/perf/util/util.h */
291 #ifndef zfree
292 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
293 #endif
294 
295 #ifndef zclose
296 # define zclose(fd) ({			\
297 	int ___err = 0;			\
298 	if ((fd) >= 0)			\
299 		___err = close((fd));	\
300 	fd = -1;			\
301 	___err; })
302 #endif
303 
304 static inline __u64 ptr_to_u64(const void *ptr)
305 {
306 	return (__u64) (unsigned long) ptr;
307 }
308 
309 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
310 {
311 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
312 	return 0;
313 }
314 
315 __u32 libbpf_major_version(void)
316 {
317 	return LIBBPF_MAJOR_VERSION;
318 }
319 
320 __u32 libbpf_minor_version(void)
321 {
322 	return LIBBPF_MINOR_VERSION;
323 }
324 
325 const char *libbpf_version_string(void)
326 {
327 #define __S(X) #X
328 #define _S(X) __S(X)
329 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
330 #undef _S
331 #undef __S
332 }
333 
334 enum reloc_type {
335 	RELO_LD64,
336 	RELO_CALL,
337 	RELO_DATA,
338 	RELO_EXTERN_LD64,
339 	RELO_EXTERN_CALL,
340 	RELO_SUBPROG_ADDR,
341 	RELO_CORE,
342 };
343 
344 struct reloc_desc {
345 	enum reloc_type type;
346 	int insn_idx;
347 	union {
348 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
349 		struct {
350 			int map_idx;
351 			int sym_off;
352 			int ext_idx;
353 		};
354 	};
355 };
356 
357 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
358 enum sec_def_flags {
359 	SEC_NONE = 0,
360 	/* expected_attach_type is optional, if kernel doesn't support that */
361 	SEC_EXP_ATTACH_OPT = 1,
362 	/* legacy, only used by libbpf_get_type_names() and
363 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
364 	 * This used to be associated with cgroup (and few other) BPF programs
365 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
366 	 * meaningless nowadays, though.
367 	 */
368 	SEC_ATTACHABLE = 2,
369 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
370 	/* attachment target is specified through BTF ID in either kernel or
371 	 * other BPF program's BTF object
372 	 */
373 	SEC_ATTACH_BTF = 4,
374 	/* BPF program type allows sleeping/blocking in kernel */
375 	SEC_SLEEPABLE = 8,
376 	/* BPF program support non-linear XDP buffer */
377 	SEC_XDP_FRAGS = 16,
378 	/* Setup proper attach type for usdt probes. */
379 	SEC_USDT = 32,
380 };
381 
382 struct bpf_sec_def {
383 	char *sec;
384 	enum bpf_prog_type prog_type;
385 	enum bpf_attach_type expected_attach_type;
386 	long cookie;
387 	int handler_id;
388 
389 	libbpf_prog_setup_fn_t prog_setup_fn;
390 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
391 	libbpf_prog_attach_fn_t prog_attach_fn;
392 };
393 
394 /*
395  * bpf_prog should be a better name but it has been used in
396  * linux/filter.h.
397  */
398 struct bpf_program {
399 	char *name;
400 	char *sec_name;
401 	size_t sec_idx;
402 	const struct bpf_sec_def *sec_def;
403 	/* this program's instruction offset (in number of instructions)
404 	 * within its containing ELF section
405 	 */
406 	size_t sec_insn_off;
407 	/* number of original instructions in ELF section belonging to this
408 	 * program, not taking into account subprogram instructions possible
409 	 * appended later during relocation
410 	 */
411 	size_t sec_insn_cnt;
412 	/* Offset (in number of instructions) of the start of instruction
413 	 * belonging to this BPF program  within its containing main BPF
414 	 * program. For the entry-point (main) BPF program, this is always
415 	 * zero. For a sub-program, this gets reset before each of main BPF
416 	 * programs are processed and relocated and is used to determined
417 	 * whether sub-program was already appended to the main program, and
418 	 * if yes, at which instruction offset.
419 	 */
420 	size_t sub_insn_off;
421 
422 	/* instructions that belong to BPF program; insns[0] is located at
423 	 * sec_insn_off instruction within its ELF section in ELF file, so
424 	 * when mapping ELF file instruction index to the local instruction,
425 	 * one needs to subtract sec_insn_off; and vice versa.
426 	 */
427 	struct bpf_insn *insns;
428 	/* actual number of instruction in this BPF program's image; for
429 	 * entry-point BPF programs this includes the size of main program
430 	 * itself plus all the used sub-programs, appended at the end
431 	 */
432 	size_t insns_cnt;
433 
434 	struct reloc_desc *reloc_desc;
435 	int nr_reloc;
436 
437 	/* BPF verifier log settings */
438 	char *log_buf;
439 	size_t log_size;
440 	__u32 log_level;
441 
442 	struct bpf_object *obj;
443 
444 	int fd;
445 	bool autoload;
446 	bool autoattach;
447 	bool sym_global;
448 	bool mark_btf_static;
449 	enum bpf_prog_type type;
450 	enum bpf_attach_type expected_attach_type;
451 	int exception_cb_idx;
452 
453 	int prog_ifindex;
454 	__u32 attach_btf_obj_fd;
455 	__u32 attach_btf_id;
456 	__u32 attach_prog_fd;
457 
458 	void *func_info;
459 	__u32 func_info_rec_size;
460 	__u32 func_info_cnt;
461 
462 	void *line_info;
463 	__u32 line_info_rec_size;
464 	__u32 line_info_cnt;
465 	__u32 prog_flags;
466 };
467 
468 struct bpf_struct_ops {
469 	const char *tname;
470 	const struct btf_type *type;
471 	struct bpf_program **progs;
472 	__u32 *kern_func_off;
473 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
474 	void *data;
475 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
476 	 *      btf_vmlinux's format.
477 	 * struct bpf_struct_ops_tcp_congestion_ops {
478 	 *	[... some other kernel fields ...]
479 	 *	struct tcp_congestion_ops data;
480 	 * }
481 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
482 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
483 	 * from "data".
484 	 */
485 	void *kern_vdata;
486 	__u32 type_id;
487 };
488 
489 #define DATA_SEC ".data"
490 #define BSS_SEC ".bss"
491 #define RODATA_SEC ".rodata"
492 #define KCONFIG_SEC ".kconfig"
493 #define KSYMS_SEC ".ksyms"
494 #define STRUCT_OPS_SEC ".struct_ops"
495 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
496 
497 enum libbpf_map_type {
498 	LIBBPF_MAP_UNSPEC,
499 	LIBBPF_MAP_DATA,
500 	LIBBPF_MAP_BSS,
501 	LIBBPF_MAP_RODATA,
502 	LIBBPF_MAP_KCONFIG,
503 };
504 
505 struct bpf_map_def {
506 	unsigned int type;
507 	unsigned int key_size;
508 	unsigned int value_size;
509 	unsigned int max_entries;
510 	unsigned int map_flags;
511 };
512 
513 struct bpf_map {
514 	struct bpf_object *obj;
515 	char *name;
516 	/* real_name is defined for special internal maps (.rodata*,
517 	 * .data*, .bss, .kconfig) and preserves their original ELF section
518 	 * name. This is important to be able to find corresponding BTF
519 	 * DATASEC information.
520 	 */
521 	char *real_name;
522 	int fd;
523 	int sec_idx;
524 	size_t sec_offset;
525 	int map_ifindex;
526 	int inner_map_fd;
527 	struct bpf_map_def def;
528 	__u32 numa_node;
529 	__u32 btf_var_idx;
530 	__u32 btf_key_type_id;
531 	__u32 btf_value_type_id;
532 	__u32 btf_vmlinux_value_type_id;
533 	enum libbpf_map_type libbpf_type;
534 	void *mmaped;
535 	struct bpf_struct_ops *st_ops;
536 	struct bpf_map *inner_map;
537 	void **init_slots;
538 	int init_slots_sz;
539 	char *pin_path;
540 	bool pinned;
541 	bool reused;
542 	bool autocreate;
543 	__u64 map_extra;
544 };
545 
546 enum extern_type {
547 	EXT_UNKNOWN,
548 	EXT_KCFG,
549 	EXT_KSYM,
550 };
551 
552 enum kcfg_type {
553 	KCFG_UNKNOWN,
554 	KCFG_CHAR,
555 	KCFG_BOOL,
556 	KCFG_INT,
557 	KCFG_TRISTATE,
558 	KCFG_CHAR_ARR,
559 };
560 
561 struct extern_desc {
562 	enum extern_type type;
563 	int sym_idx;
564 	int btf_id;
565 	int sec_btf_id;
566 	const char *name;
567 	char *essent_name;
568 	bool is_set;
569 	bool is_weak;
570 	union {
571 		struct {
572 			enum kcfg_type type;
573 			int sz;
574 			int align;
575 			int data_off;
576 			bool is_signed;
577 		} kcfg;
578 		struct {
579 			unsigned long long addr;
580 
581 			/* target btf_id of the corresponding kernel var. */
582 			int kernel_btf_obj_fd;
583 			int kernel_btf_id;
584 
585 			/* local btf_id of the ksym extern's type. */
586 			__u32 type_id;
587 			/* BTF fd index to be patched in for insn->off, this is
588 			 * 0 for vmlinux BTF, index in obj->fd_array for module
589 			 * BTF
590 			 */
591 			__s16 btf_fd_idx;
592 		} ksym;
593 	};
594 };
595 
596 struct module_btf {
597 	struct btf *btf;
598 	char *name;
599 	__u32 id;
600 	int fd;
601 	int fd_array_idx;
602 };
603 
604 enum sec_type {
605 	SEC_UNUSED = 0,
606 	SEC_RELO,
607 	SEC_BSS,
608 	SEC_DATA,
609 	SEC_RODATA,
610 };
611 
612 struct elf_sec_desc {
613 	enum sec_type sec_type;
614 	Elf64_Shdr *shdr;
615 	Elf_Data *data;
616 };
617 
618 struct elf_state {
619 	int fd;
620 	const void *obj_buf;
621 	size_t obj_buf_sz;
622 	Elf *elf;
623 	Elf64_Ehdr *ehdr;
624 	Elf_Data *symbols;
625 	Elf_Data *st_ops_data;
626 	Elf_Data *st_ops_link_data;
627 	size_t shstrndx; /* section index for section name strings */
628 	size_t strtabidx;
629 	struct elf_sec_desc *secs;
630 	size_t sec_cnt;
631 	int btf_maps_shndx;
632 	__u32 btf_maps_sec_btf_id;
633 	int text_shndx;
634 	int symbols_shndx;
635 	int st_ops_shndx;
636 	int st_ops_link_shndx;
637 };
638 
639 struct usdt_manager;
640 
641 struct bpf_object {
642 	char name[BPF_OBJ_NAME_LEN];
643 	char license[64];
644 	__u32 kern_version;
645 
646 	struct bpf_program *programs;
647 	size_t nr_programs;
648 	struct bpf_map *maps;
649 	size_t nr_maps;
650 	size_t maps_cap;
651 
652 	char *kconfig;
653 	struct extern_desc *externs;
654 	int nr_extern;
655 	int kconfig_map_idx;
656 
657 	bool loaded;
658 	bool has_subcalls;
659 	bool has_rodata;
660 
661 	struct bpf_gen *gen_loader;
662 
663 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
664 	struct elf_state efile;
665 
666 	struct btf *btf;
667 	struct btf_ext *btf_ext;
668 
669 	/* Parse and load BTF vmlinux if any of the programs in the object need
670 	 * it at load time.
671 	 */
672 	struct btf *btf_vmlinux;
673 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
674 	 * override for vmlinux BTF.
675 	 */
676 	char *btf_custom_path;
677 	/* vmlinux BTF override for CO-RE relocations */
678 	struct btf *btf_vmlinux_override;
679 	/* Lazily initialized kernel module BTFs */
680 	struct module_btf *btf_modules;
681 	bool btf_modules_loaded;
682 	size_t btf_module_cnt;
683 	size_t btf_module_cap;
684 
685 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
686 	char *log_buf;
687 	size_t log_size;
688 	__u32 log_level;
689 
690 	int *fd_array;
691 	size_t fd_array_cap;
692 	size_t fd_array_cnt;
693 
694 	struct usdt_manager *usdt_man;
695 
696 	char path[];
697 };
698 
699 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
700 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
701 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
702 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
703 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
705 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
706 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
707 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
708 
709 void bpf_program__unload(struct bpf_program *prog)
710 {
711 	if (!prog)
712 		return;
713 
714 	zclose(prog->fd);
715 
716 	zfree(&prog->func_info);
717 	zfree(&prog->line_info);
718 }
719 
720 static void bpf_program__exit(struct bpf_program *prog)
721 {
722 	if (!prog)
723 		return;
724 
725 	bpf_program__unload(prog);
726 	zfree(&prog->name);
727 	zfree(&prog->sec_name);
728 	zfree(&prog->insns);
729 	zfree(&prog->reloc_desc);
730 
731 	prog->nr_reloc = 0;
732 	prog->insns_cnt = 0;
733 	prog->sec_idx = -1;
734 }
735 
736 static bool insn_is_subprog_call(const struct bpf_insn *insn)
737 {
738 	return BPF_CLASS(insn->code) == BPF_JMP &&
739 	       BPF_OP(insn->code) == BPF_CALL &&
740 	       BPF_SRC(insn->code) == BPF_K &&
741 	       insn->src_reg == BPF_PSEUDO_CALL &&
742 	       insn->dst_reg == 0 &&
743 	       insn->off == 0;
744 }
745 
746 static bool is_call_insn(const struct bpf_insn *insn)
747 {
748 	return insn->code == (BPF_JMP | BPF_CALL);
749 }
750 
751 static bool insn_is_pseudo_func(struct bpf_insn *insn)
752 {
753 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
754 }
755 
756 static int
757 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
758 		      const char *name, size_t sec_idx, const char *sec_name,
759 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
760 {
761 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
762 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
763 			sec_name, name, sec_off, insn_data_sz);
764 		return -EINVAL;
765 	}
766 
767 	memset(prog, 0, sizeof(*prog));
768 	prog->obj = obj;
769 
770 	prog->sec_idx = sec_idx;
771 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
772 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
773 	/* insns_cnt can later be increased by appending used subprograms */
774 	prog->insns_cnt = prog->sec_insn_cnt;
775 
776 	prog->type = BPF_PROG_TYPE_UNSPEC;
777 	prog->fd = -1;
778 	prog->exception_cb_idx = -1;
779 
780 	/* libbpf's convention for SEC("?abc...") is that it's just like
781 	 * SEC("abc...") but the corresponding bpf_program starts out with
782 	 * autoload set to false.
783 	 */
784 	if (sec_name[0] == '?') {
785 		prog->autoload = false;
786 		/* from now on forget there was ? in section name */
787 		sec_name++;
788 	} else {
789 		prog->autoload = true;
790 	}
791 
792 	prog->autoattach = true;
793 
794 	/* inherit object's log_level */
795 	prog->log_level = obj->log_level;
796 
797 	prog->sec_name = strdup(sec_name);
798 	if (!prog->sec_name)
799 		goto errout;
800 
801 	prog->name = strdup(name);
802 	if (!prog->name)
803 		goto errout;
804 
805 	prog->insns = malloc(insn_data_sz);
806 	if (!prog->insns)
807 		goto errout;
808 	memcpy(prog->insns, insn_data, insn_data_sz);
809 
810 	return 0;
811 errout:
812 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
813 	bpf_program__exit(prog);
814 	return -ENOMEM;
815 }
816 
817 static int
818 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
819 			 const char *sec_name, int sec_idx)
820 {
821 	Elf_Data *symbols = obj->efile.symbols;
822 	struct bpf_program *prog, *progs;
823 	void *data = sec_data->d_buf;
824 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
825 	int nr_progs, err, i;
826 	const char *name;
827 	Elf64_Sym *sym;
828 
829 	progs = obj->programs;
830 	nr_progs = obj->nr_programs;
831 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
832 
833 	for (i = 0; i < nr_syms; i++) {
834 		sym = elf_sym_by_idx(obj, i);
835 
836 		if (sym->st_shndx != sec_idx)
837 			continue;
838 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
839 			continue;
840 
841 		prog_sz = sym->st_size;
842 		sec_off = sym->st_value;
843 
844 		name = elf_sym_str(obj, sym->st_name);
845 		if (!name) {
846 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
847 				sec_name, sec_off);
848 			return -LIBBPF_ERRNO__FORMAT;
849 		}
850 
851 		if (sec_off + prog_sz > sec_sz) {
852 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
853 				sec_name, sec_off);
854 			return -LIBBPF_ERRNO__FORMAT;
855 		}
856 
857 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
858 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
859 			return -ENOTSUP;
860 		}
861 
862 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
863 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
864 
865 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
866 		if (!progs) {
867 			/*
868 			 * In this case the original obj->programs
869 			 * is still valid, so don't need special treat for
870 			 * bpf_close_object().
871 			 */
872 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
873 				sec_name, name);
874 			return -ENOMEM;
875 		}
876 		obj->programs = progs;
877 
878 		prog = &progs[nr_progs];
879 
880 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
881 					    sec_off, data + sec_off, prog_sz);
882 		if (err)
883 			return err;
884 
885 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
886 			prog->sym_global = true;
887 
888 		/* if function is a global/weak symbol, but has restricted
889 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
890 		 * as static to enable more permissive BPF verification mode
891 		 * with more outside context available to BPF verifier
892 		 */
893 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
894 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
895 			prog->mark_btf_static = true;
896 
897 		nr_progs++;
898 		obj->nr_programs = nr_progs;
899 	}
900 
901 	return 0;
902 }
903 
904 static const struct btf_member *
905 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
906 {
907 	struct btf_member *m;
908 	int i;
909 
910 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
911 		if (btf_member_bit_offset(t, i) == bit_offset)
912 			return m;
913 	}
914 
915 	return NULL;
916 }
917 
918 static const struct btf_member *
919 find_member_by_name(const struct btf *btf, const struct btf_type *t,
920 		    const char *name)
921 {
922 	struct btf_member *m;
923 	int i;
924 
925 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
926 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
927 			return m;
928 	}
929 
930 	return NULL;
931 }
932 
933 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
934 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
935 				   const char *name, __u32 kind);
936 
937 static int
938 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
939 			   const struct btf_type **type, __u32 *type_id,
940 			   const struct btf_type **vtype, __u32 *vtype_id,
941 			   const struct btf_member **data_member)
942 {
943 	const struct btf_type *kern_type, *kern_vtype;
944 	const struct btf_member *kern_data_member;
945 	__s32 kern_vtype_id, kern_type_id;
946 	__u32 i;
947 
948 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
949 	if (kern_type_id < 0) {
950 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
951 			tname);
952 		return kern_type_id;
953 	}
954 	kern_type = btf__type_by_id(btf, kern_type_id);
955 
956 	/* Find the corresponding "map_value" type that will be used
957 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
958 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
959 	 * btf_vmlinux.
960 	 */
961 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
962 						tname, BTF_KIND_STRUCT);
963 	if (kern_vtype_id < 0) {
964 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
965 			STRUCT_OPS_VALUE_PREFIX, tname);
966 		return kern_vtype_id;
967 	}
968 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
969 
970 	/* Find "struct tcp_congestion_ops" from
971 	 * struct bpf_struct_ops_tcp_congestion_ops {
972 	 *	[ ... ]
973 	 *	struct tcp_congestion_ops data;
974 	 * }
975 	 */
976 	kern_data_member = btf_members(kern_vtype);
977 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
978 		if (kern_data_member->type == kern_type_id)
979 			break;
980 	}
981 	if (i == btf_vlen(kern_vtype)) {
982 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
983 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
984 		return -EINVAL;
985 	}
986 
987 	*type = kern_type;
988 	*type_id = kern_type_id;
989 	*vtype = kern_vtype;
990 	*vtype_id = kern_vtype_id;
991 	*data_member = kern_data_member;
992 
993 	return 0;
994 }
995 
996 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
997 {
998 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
999 }
1000 
1001 /* Init the map's fields that depend on kern_btf */
1002 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
1003 					 const struct btf *btf,
1004 					 const struct btf *kern_btf)
1005 {
1006 	const struct btf_member *member, *kern_member, *kern_data_member;
1007 	const struct btf_type *type, *kern_type, *kern_vtype;
1008 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1009 	struct bpf_struct_ops *st_ops;
1010 	void *data, *kern_data;
1011 	const char *tname;
1012 	int err;
1013 
1014 	st_ops = map->st_ops;
1015 	type = st_ops->type;
1016 	tname = st_ops->tname;
1017 	err = find_struct_ops_kern_types(kern_btf, tname,
1018 					 &kern_type, &kern_type_id,
1019 					 &kern_vtype, &kern_vtype_id,
1020 					 &kern_data_member);
1021 	if (err)
1022 		return err;
1023 
1024 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1025 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1026 
1027 	map->def.value_size = kern_vtype->size;
1028 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1029 
1030 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1031 	if (!st_ops->kern_vdata)
1032 		return -ENOMEM;
1033 
1034 	data = st_ops->data;
1035 	kern_data_off = kern_data_member->offset / 8;
1036 	kern_data = st_ops->kern_vdata + kern_data_off;
1037 
1038 	member = btf_members(type);
1039 	for (i = 0; i < btf_vlen(type); i++, member++) {
1040 		const struct btf_type *mtype, *kern_mtype;
1041 		__u32 mtype_id, kern_mtype_id;
1042 		void *mdata, *kern_mdata;
1043 		__s64 msize, kern_msize;
1044 		__u32 moff, kern_moff;
1045 		__u32 kern_member_idx;
1046 		const char *mname;
1047 
1048 		mname = btf__name_by_offset(btf, member->name_off);
1049 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1050 		if (!kern_member) {
1051 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1052 				map->name, mname);
1053 			return -ENOTSUP;
1054 		}
1055 
1056 		kern_member_idx = kern_member - btf_members(kern_type);
1057 		if (btf_member_bitfield_size(type, i) ||
1058 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1059 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1060 				map->name, mname);
1061 			return -ENOTSUP;
1062 		}
1063 
1064 		moff = member->offset / 8;
1065 		kern_moff = kern_member->offset / 8;
1066 
1067 		mdata = data + moff;
1068 		kern_mdata = kern_data + kern_moff;
1069 
1070 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1071 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1072 						    &kern_mtype_id);
1073 		if (BTF_INFO_KIND(mtype->info) !=
1074 		    BTF_INFO_KIND(kern_mtype->info)) {
1075 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1076 				map->name, mname, BTF_INFO_KIND(mtype->info),
1077 				BTF_INFO_KIND(kern_mtype->info));
1078 			return -ENOTSUP;
1079 		}
1080 
1081 		if (btf_is_ptr(mtype)) {
1082 			struct bpf_program *prog;
1083 
1084 			prog = st_ops->progs[i];
1085 			if (!prog)
1086 				continue;
1087 
1088 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1089 							    kern_mtype->type,
1090 							    &kern_mtype_id);
1091 
1092 			/* mtype->type must be a func_proto which was
1093 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1094 			 * so only check kern_mtype for func_proto here.
1095 			 */
1096 			if (!btf_is_func_proto(kern_mtype)) {
1097 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1098 					map->name, mname);
1099 				return -ENOTSUP;
1100 			}
1101 
1102 			prog->attach_btf_id = kern_type_id;
1103 			prog->expected_attach_type = kern_member_idx;
1104 
1105 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1106 
1107 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1108 				 map->name, mname, prog->name, moff,
1109 				 kern_moff);
1110 
1111 			continue;
1112 		}
1113 
1114 		msize = btf__resolve_size(btf, mtype_id);
1115 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1116 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1117 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1118 				map->name, mname, (ssize_t)msize,
1119 				(ssize_t)kern_msize);
1120 			return -ENOTSUP;
1121 		}
1122 
1123 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1124 			 map->name, mname, (unsigned int)msize,
1125 			 moff, kern_moff);
1126 		memcpy(kern_mdata, mdata, msize);
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1133 {
1134 	struct bpf_map *map;
1135 	size_t i;
1136 	int err;
1137 
1138 	for (i = 0; i < obj->nr_maps; i++) {
1139 		map = &obj->maps[i];
1140 
1141 		if (!bpf_map__is_struct_ops(map))
1142 			continue;
1143 
1144 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1145 						    obj->btf_vmlinux);
1146 		if (err)
1147 			return err;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1154 				int shndx, Elf_Data *data, __u32 map_flags)
1155 {
1156 	const struct btf_type *type, *datasec;
1157 	const struct btf_var_secinfo *vsi;
1158 	struct bpf_struct_ops *st_ops;
1159 	const char *tname, *var_name;
1160 	__s32 type_id, datasec_id;
1161 	const struct btf *btf;
1162 	struct bpf_map *map;
1163 	__u32 i;
1164 
1165 	if (shndx == -1)
1166 		return 0;
1167 
1168 	btf = obj->btf;
1169 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1170 					    BTF_KIND_DATASEC);
1171 	if (datasec_id < 0) {
1172 		pr_warn("struct_ops init: DATASEC %s not found\n",
1173 			sec_name);
1174 		return -EINVAL;
1175 	}
1176 
1177 	datasec = btf__type_by_id(btf, datasec_id);
1178 	vsi = btf_var_secinfos(datasec);
1179 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1180 		type = btf__type_by_id(obj->btf, vsi->type);
1181 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1182 
1183 		type_id = btf__resolve_type(obj->btf, vsi->type);
1184 		if (type_id < 0) {
1185 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1186 				vsi->type, sec_name);
1187 			return -EINVAL;
1188 		}
1189 
1190 		type = btf__type_by_id(obj->btf, type_id);
1191 		tname = btf__name_by_offset(obj->btf, type->name_off);
1192 		if (!tname[0]) {
1193 			pr_warn("struct_ops init: anonymous type is not supported\n");
1194 			return -ENOTSUP;
1195 		}
1196 		if (!btf_is_struct(type)) {
1197 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1198 			return -EINVAL;
1199 		}
1200 
1201 		map = bpf_object__add_map(obj);
1202 		if (IS_ERR(map))
1203 			return PTR_ERR(map);
1204 
1205 		map->sec_idx = shndx;
1206 		map->sec_offset = vsi->offset;
1207 		map->name = strdup(var_name);
1208 		if (!map->name)
1209 			return -ENOMEM;
1210 
1211 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1212 		map->def.key_size = sizeof(int);
1213 		map->def.value_size = type->size;
1214 		map->def.max_entries = 1;
1215 		map->def.map_flags = map_flags;
1216 
1217 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1218 		if (!map->st_ops)
1219 			return -ENOMEM;
1220 		st_ops = map->st_ops;
1221 		st_ops->data = malloc(type->size);
1222 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1223 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1224 					       sizeof(*st_ops->kern_func_off));
1225 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1226 			return -ENOMEM;
1227 
1228 		if (vsi->offset + type->size > data->d_size) {
1229 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1230 				var_name, sec_name);
1231 			return -EINVAL;
1232 		}
1233 
1234 		memcpy(st_ops->data,
1235 		       data->d_buf + vsi->offset,
1236 		       type->size);
1237 		st_ops->tname = tname;
1238 		st_ops->type = type;
1239 		st_ops->type_id = type_id;
1240 
1241 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1242 			 tname, type_id, var_name, vsi->offset);
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1249 {
1250 	int err;
1251 
1252 	err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1253 				   obj->efile.st_ops_data, 0);
1254 	err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1255 					  obj->efile.st_ops_link_shndx,
1256 					  obj->efile.st_ops_link_data,
1257 					  BPF_F_LINK);
1258 	return err;
1259 }
1260 
1261 static struct bpf_object *bpf_object__new(const char *path,
1262 					  const void *obj_buf,
1263 					  size_t obj_buf_sz,
1264 					  const char *obj_name)
1265 {
1266 	struct bpf_object *obj;
1267 	char *end;
1268 
1269 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1270 	if (!obj) {
1271 		pr_warn("alloc memory failed for %s\n", path);
1272 		return ERR_PTR(-ENOMEM);
1273 	}
1274 
1275 	strcpy(obj->path, path);
1276 	if (obj_name) {
1277 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1278 	} else {
1279 		/* Using basename() GNU version which doesn't modify arg. */
1280 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1281 		end = strchr(obj->name, '.');
1282 		if (end)
1283 			*end = 0;
1284 	}
1285 
1286 	obj->efile.fd = -1;
1287 	/*
1288 	 * Caller of this function should also call
1289 	 * bpf_object__elf_finish() after data collection to return
1290 	 * obj_buf to user. If not, we should duplicate the buffer to
1291 	 * avoid user freeing them before elf finish.
1292 	 */
1293 	obj->efile.obj_buf = obj_buf;
1294 	obj->efile.obj_buf_sz = obj_buf_sz;
1295 	obj->efile.btf_maps_shndx = -1;
1296 	obj->efile.st_ops_shndx = -1;
1297 	obj->efile.st_ops_link_shndx = -1;
1298 	obj->kconfig_map_idx = -1;
1299 
1300 	obj->kern_version = get_kernel_version();
1301 	obj->loaded = false;
1302 
1303 	return obj;
1304 }
1305 
1306 static void bpf_object__elf_finish(struct bpf_object *obj)
1307 {
1308 	if (!obj->efile.elf)
1309 		return;
1310 
1311 	elf_end(obj->efile.elf);
1312 	obj->efile.elf = NULL;
1313 	obj->efile.symbols = NULL;
1314 	obj->efile.st_ops_data = NULL;
1315 	obj->efile.st_ops_link_data = NULL;
1316 
1317 	zfree(&obj->efile.secs);
1318 	obj->efile.sec_cnt = 0;
1319 	zclose(obj->efile.fd);
1320 	obj->efile.obj_buf = NULL;
1321 	obj->efile.obj_buf_sz = 0;
1322 }
1323 
1324 static int bpf_object__elf_init(struct bpf_object *obj)
1325 {
1326 	Elf64_Ehdr *ehdr;
1327 	int err = 0;
1328 	Elf *elf;
1329 
1330 	if (obj->efile.elf) {
1331 		pr_warn("elf: init internal error\n");
1332 		return -LIBBPF_ERRNO__LIBELF;
1333 	}
1334 
1335 	if (obj->efile.obj_buf_sz > 0) {
1336 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1337 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1338 	} else {
1339 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1340 		if (obj->efile.fd < 0) {
1341 			char errmsg[STRERR_BUFSIZE], *cp;
1342 
1343 			err = -errno;
1344 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1345 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1346 			return err;
1347 		}
1348 
1349 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1350 	}
1351 
1352 	if (!elf) {
1353 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1354 		err = -LIBBPF_ERRNO__LIBELF;
1355 		goto errout;
1356 	}
1357 
1358 	obj->efile.elf = elf;
1359 
1360 	if (elf_kind(elf) != ELF_K_ELF) {
1361 		err = -LIBBPF_ERRNO__FORMAT;
1362 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1363 		goto errout;
1364 	}
1365 
1366 	if (gelf_getclass(elf) != ELFCLASS64) {
1367 		err = -LIBBPF_ERRNO__FORMAT;
1368 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1369 		goto errout;
1370 	}
1371 
1372 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1373 	if (!obj->efile.ehdr) {
1374 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1375 		err = -LIBBPF_ERRNO__FORMAT;
1376 		goto errout;
1377 	}
1378 
1379 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1380 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1381 			obj->path, elf_errmsg(-1));
1382 		err = -LIBBPF_ERRNO__FORMAT;
1383 		goto errout;
1384 	}
1385 
1386 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1387 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1388 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1389 			obj->path, elf_errmsg(-1));
1390 		err = -LIBBPF_ERRNO__FORMAT;
1391 		goto errout;
1392 	}
1393 
1394 	/* Old LLVM set e_machine to EM_NONE */
1395 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1396 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1397 		err = -LIBBPF_ERRNO__FORMAT;
1398 		goto errout;
1399 	}
1400 
1401 	return 0;
1402 errout:
1403 	bpf_object__elf_finish(obj);
1404 	return err;
1405 }
1406 
1407 static int bpf_object__check_endianness(struct bpf_object *obj)
1408 {
1409 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1410 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1411 		return 0;
1412 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1413 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1414 		return 0;
1415 #else
1416 # error "Unrecognized __BYTE_ORDER__"
1417 #endif
1418 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1419 	return -LIBBPF_ERRNO__ENDIAN;
1420 }
1421 
1422 static int
1423 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1424 {
1425 	if (!data) {
1426 		pr_warn("invalid license section in %s\n", obj->path);
1427 		return -LIBBPF_ERRNO__FORMAT;
1428 	}
1429 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1430 	 * go over allowed ELF data section buffer
1431 	 */
1432 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1433 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1434 	return 0;
1435 }
1436 
1437 static int
1438 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1439 {
1440 	__u32 kver;
1441 
1442 	if (!data || size != sizeof(kver)) {
1443 		pr_warn("invalid kver section in %s\n", obj->path);
1444 		return -LIBBPF_ERRNO__FORMAT;
1445 	}
1446 	memcpy(&kver, data, sizeof(kver));
1447 	obj->kern_version = kver;
1448 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1449 	return 0;
1450 }
1451 
1452 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1453 {
1454 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1455 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1456 		return true;
1457 	return false;
1458 }
1459 
1460 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1461 {
1462 	Elf_Data *data;
1463 	Elf_Scn *scn;
1464 
1465 	if (!name)
1466 		return -EINVAL;
1467 
1468 	scn = elf_sec_by_name(obj, name);
1469 	data = elf_sec_data(obj, scn);
1470 	if (data) {
1471 		*size = data->d_size;
1472 		return 0; /* found it */
1473 	}
1474 
1475 	return -ENOENT;
1476 }
1477 
1478 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1479 {
1480 	Elf_Data *symbols = obj->efile.symbols;
1481 	const char *sname;
1482 	size_t si;
1483 
1484 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1485 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1486 
1487 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1488 			continue;
1489 
1490 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1491 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1492 			continue;
1493 
1494 		sname = elf_sym_str(obj, sym->st_name);
1495 		if (!sname) {
1496 			pr_warn("failed to get sym name string for var %s\n", name);
1497 			return ERR_PTR(-EIO);
1498 		}
1499 		if (strcmp(name, sname) == 0)
1500 			return sym;
1501 	}
1502 
1503 	return ERR_PTR(-ENOENT);
1504 }
1505 
1506 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1507 {
1508 	struct bpf_map *map;
1509 	int err;
1510 
1511 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1512 				sizeof(*obj->maps), obj->nr_maps + 1);
1513 	if (err)
1514 		return ERR_PTR(err);
1515 
1516 	map = &obj->maps[obj->nr_maps++];
1517 	map->obj = obj;
1518 	map->fd = -1;
1519 	map->inner_map_fd = -1;
1520 	map->autocreate = true;
1521 
1522 	return map;
1523 }
1524 
1525 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1526 {
1527 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1528 	size_t map_sz;
1529 
1530 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1531 	map_sz = roundup(map_sz, page_sz);
1532 	return map_sz;
1533 }
1534 
1535 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1536 {
1537 	void *mmaped;
1538 
1539 	if (!map->mmaped)
1540 		return -EINVAL;
1541 
1542 	if (old_sz == new_sz)
1543 		return 0;
1544 
1545 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1546 	if (mmaped == MAP_FAILED)
1547 		return -errno;
1548 
1549 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1550 	munmap(map->mmaped, old_sz);
1551 	map->mmaped = mmaped;
1552 	return 0;
1553 }
1554 
1555 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1556 {
1557 	char map_name[BPF_OBJ_NAME_LEN], *p;
1558 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1559 
1560 	/* This is one of the more confusing parts of libbpf for various
1561 	 * reasons, some of which are historical. The original idea for naming
1562 	 * internal names was to include as much of BPF object name prefix as
1563 	 * possible, so that it can be distinguished from similar internal
1564 	 * maps of a different BPF object.
1565 	 * As an example, let's say we have bpf_object named 'my_object_name'
1566 	 * and internal map corresponding to '.rodata' ELF section. The final
1567 	 * map name advertised to user and to the kernel will be
1568 	 * 'my_objec.rodata', taking first 8 characters of object name and
1569 	 * entire 7 characters of '.rodata'.
1570 	 * Somewhat confusingly, if internal map ELF section name is shorter
1571 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1572 	 * for the suffix, even though we only have 4 actual characters, and
1573 	 * resulting map will be called 'my_objec.bss', not even using all 15
1574 	 * characters allowed by the kernel. Oh well, at least the truncated
1575 	 * object name is somewhat consistent in this case. But if the map
1576 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1577 	 * (8 chars) and thus will be left with only first 7 characters of the
1578 	 * object name ('my_obje'). Happy guessing, user, that the final map
1579 	 * name will be "my_obje.kconfig".
1580 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1581 	 * and .data.* data sections, it's possible that ELF section name is
1582 	 * longer than allowed 15 chars, so we now need to be careful to take
1583 	 * only up to 15 first characters of ELF name, taking no BPF object
1584 	 * name characters at all. So '.rodata.abracadabra' will result in
1585 	 * '.rodata.abracad' kernel and user-visible name.
1586 	 * We need to keep this convoluted logic intact for .data, .bss and
1587 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1588 	 * maps we use their ELF names as is, not prepending bpf_object name
1589 	 * in front. We still need to truncate them to 15 characters for the
1590 	 * kernel. Full name can be recovered for such maps by using DATASEC
1591 	 * BTF type associated with such map's value type, though.
1592 	 */
1593 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1594 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1595 
1596 	/* if there are two or more dots in map name, it's a custom dot map */
1597 	if (strchr(real_name + 1, '.') != NULL)
1598 		pfx_len = 0;
1599 	else
1600 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1601 
1602 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1603 		 sfx_len, real_name);
1604 
1605 	/* sanitise map name to characters allowed by kernel */
1606 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1607 		if (!isalnum(*p) && *p != '_' && *p != '.')
1608 			*p = '_';
1609 
1610 	return strdup(map_name);
1611 }
1612 
1613 static int
1614 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1615 
1616 /* Internal BPF map is mmap()'able only if at least one of corresponding
1617  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1618  * variable and it's not marked as __hidden (which turns it into, effectively,
1619  * a STATIC variable).
1620  */
1621 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1622 {
1623 	const struct btf_type *t, *vt;
1624 	struct btf_var_secinfo *vsi;
1625 	int i, n;
1626 
1627 	if (!map->btf_value_type_id)
1628 		return false;
1629 
1630 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1631 	if (!btf_is_datasec(t))
1632 		return false;
1633 
1634 	vsi = btf_var_secinfos(t);
1635 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1636 		vt = btf__type_by_id(obj->btf, vsi->type);
1637 		if (!btf_is_var(vt))
1638 			continue;
1639 
1640 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1641 			return true;
1642 	}
1643 
1644 	return false;
1645 }
1646 
1647 static int
1648 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1649 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1650 {
1651 	struct bpf_map_def *def;
1652 	struct bpf_map *map;
1653 	size_t mmap_sz;
1654 	int err;
1655 
1656 	map = bpf_object__add_map(obj);
1657 	if (IS_ERR(map))
1658 		return PTR_ERR(map);
1659 
1660 	map->libbpf_type = type;
1661 	map->sec_idx = sec_idx;
1662 	map->sec_offset = 0;
1663 	map->real_name = strdup(real_name);
1664 	map->name = internal_map_name(obj, real_name);
1665 	if (!map->real_name || !map->name) {
1666 		zfree(&map->real_name);
1667 		zfree(&map->name);
1668 		return -ENOMEM;
1669 	}
1670 
1671 	def = &map->def;
1672 	def->type = BPF_MAP_TYPE_ARRAY;
1673 	def->key_size = sizeof(int);
1674 	def->value_size = data_sz;
1675 	def->max_entries = 1;
1676 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1677 			 ? BPF_F_RDONLY_PROG : 0;
1678 
1679 	/* failures are fine because of maps like .rodata.str1.1 */
1680 	(void) map_fill_btf_type_info(obj, map);
1681 
1682 	if (map_is_mmapable(obj, map))
1683 		def->map_flags |= BPF_F_MMAPABLE;
1684 
1685 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1686 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1687 
1688 	mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1689 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1690 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1691 	if (map->mmaped == MAP_FAILED) {
1692 		err = -errno;
1693 		map->mmaped = NULL;
1694 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1695 			map->name, err);
1696 		zfree(&map->real_name);
1697 		zfree(&map->name);
1698 		return err;
1699 	}
1700 
1701 	if (data)
1702 		memcpy(map->mmaped, data, data_sz);
1703 
1704 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1705 	return 0;
1706 }
1707 
1708 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1709 {
1710 	struct elf_sec_desc *sec_desc;
1711 	const char *sec_name;
1712 	int err = 0, sec_idx;
1713 
1714 	/*
1715 	 * Populate obj->maps with libbpf internal maps.
1716 	 */
1717 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1718 		sec_desc = &obj->efile.secs[sec_idx];
1719 
1720 		/* Skip recognized sections with size 0. */
1721 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1722 			continue;
1723 
1724 		switch (sec_desc->sec_type) {
1725 		case SEC_DATA:
1726 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1727 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1728 							    sec_name, sec_idx,
1729 							    sec_desc->data->d_buf,
1730 							    sec_desc->data->d_size);
1731 			break;
1732 		case SEC_RODATA:
1733 			obj->has_rodata = true;
1734 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1735 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1736 							    sec_name, sec_idx,
1737 							    sec_desc->data->d_buf,
1738 							    sec_desc->data->d_size);
1739 			break;
1740 		case SEC_BSS:
1741 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1742 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1743 							    sec_name, sec_idx,
1744 							    NULL,
1745 							    sec_desc->data->d_size);
1746 			break;
1747 		default:
1748 			/* skip */
1749 			break;
1750 		}
1751 		if (err)
1752 			return err;
1753 	}
1754 	return 0;
1755 }
1756 
1757 
1758 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1759 					       const void *name)
1760 {
1761 	int i;
1762 
1763 	for (i = 0; i < obj->nr_extern; i++) {
1764 		if (strcmp(obj->externs[i].name, name) == 0)
1765 			return &obj->externs[i];
1766 	}
1767 	return NULL;
1768 }
1769 
1770 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1771 			      char value)
1772 {
1773 	switch (ext->kcfg.type) {
1774 	case KCFG_BOOL:
1775 		if (value == 'm') {
1776 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1777 				ext->name, value);
1778 			return -EINVAL;
1779 		}
1780 		*(bool *)ext_val = value == 'y' ? true : false;
1781 		break;
1782 	case KCFG_TRISTATE:
1783 		if (value == 'y')
1784 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1785 		else if (value == 'm')
1786 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1787 		else /* value == 'n' */
1788 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1789 		break;
1790 	case KCFG_CHAR:
1791 		*(char *)ext_val = value;
1792 		break;
1793 	case KCFG_UNKNOWN:
1794 	case KCFG_INT:
1795 	case KCFG_CHAR_ARR:
1796 	default:
1797 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1798 			ext->name, value);
1799 		return -EINVAL;
1800 	}
1801 	ext->is_set = true;
1802 	return 0;
1803 }
1804 
1805 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1806 			      const char *value)
1807 {
1808 	size_t len;
1809 
1810 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1811 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1812 			ext->name, value);
1813 		return -EINVAL;
1814 	}
1815 
1816 	len = strlen(value);
1817 	if (value[len - 1] != '"') {
1818 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1819 			ext->name, value);
1820 		return -EINVAL;
1821 	}
1822 
1823 	/* strip quotes */
1824 	len -= 2;
1825 	if (len >= ext->kcfg.sz) {
1826 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1827 			ext->name, value, len, ext->kcfg.sz - 1);
1828 		len = ext->kcfg.sz - 1;
1829 	}
1830 	memcpy(ext_val, value + 1, len);
1831 	ext_val[len] = '\0';
1832 	ext->is_set = true;
1833 	return 0;
1834 }
1835 
1836 static int parse_u64(const char *value, __u64 *res)
1837 {
1838 	char *value_end;
1839 	int err;
1840 
1841 	errno = 0;
1842 	*res = strtoull(value, &value_end, 0);
1843 	if (errno) {
1844 		err = -errno;
1845 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1846 		return err;
1847 	}
1848 	if (*value_end) {
1849 		pr_warn("failed to parse '%s' as integer completely\n", value);
1850 		return -EINVAL;
1851 	}
1852 	return 0;
1853 }
1854 
1855 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1856 {
1857 	int bit_sz = ext->kcfg.sz * 8;
1858 
1859 	if (ext->kcfg.sz == 8)
1860 		return true;
1861 
1862 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1863 	 * bytes size without any loss of information. If the target integer
1864 	 * is signed, we rely on the following limits of integer type of
1865 	 * Y bits and subsequent transformation:
1866 	 *
1867 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1868 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1869 	 *            0 <= X + 2^(Y-1) <  2^Y
1870 	 *
1871 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1872 	 *  zero.
1873 	 */
1874 	if (ext->kcfg.is_signed)
1875 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1876 	else
1877 		return (v >> bit_sz) == 0;
1878 }
1879 
1880 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1881 			      __u64 value)
1882 {
1883 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1884 	    ext->kcfg.type != KCFG_BOOL) {
1885 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1886 			ext->name, (unsigned long long)value);
1887 		return -EINVAL;
1888 	}
1889 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1890 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1891 			ext->name, (unsigned long long)value);
1892 		return -EINVAL;
1893 
1894 	}
1895 	if (!is_kcfg_value_in_range(ext, value)) {
1896 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1897 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1898 		return -ERANGE;
1899 	}
1900 	switch (ext->kcfg.sz) {
1901 	case 1:
1902 		*(__u8 *)ext_val = value;
1903 		break;
1904 	case 2:
1905 		*(__u16 *)ext_val = value;
1906 		break;
1907 	case 4:
1908 		*(__u32 *)ext_val = value;
1909 		break;
1910 	case 8:
1911 		*(__u64 *)ext_val = value;
1912 		break;
1913 	default:
1914 		return -EINVAL;
1915 	}
1916 	ext->is_set = true;
1917 	return 0;
1918 }
1919 
1920 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1921 					    char *buf, void *data)
1922 {
1923 	struct extern_desc *ext;
1924 	char *sep, *value;
1925 	int len, err = 0;
1926 	void *ext_val;
1927 	__u64 num;
1928 
1929 	if (!str_has_pfx(buf, "CONFIG_"))
1930 		return 0;
1931 
1932 	sep = strchr(buf, '=');
1933 	if (!sep) {
1934 		pr_warn("failed to parse '%s': no separator\n", buf);
1935 		return -EINVAL;
1936 	}
1937 
1938 	/* Trim ending '\n' */
1939 	len = strlen(buf);
1940 	if (buf[len - 1] == '\n')
1941 		buf[len - 1] = '\0';
1942 	/* Split on '=' and ensure that a value is present. */
1943 	*sep = '\0';
1944 	if (!sep[1]) {
1945 		*sep = '=';
1946 		pr_warn("failed to parse '%s': no value\n", buf);
1947 		return -EINVAL;
1948 	}
1949 
1950 	ext = find_extern_by_name(obj, buf);
1951 	if (!ext || ext->is_set)
1952 		return 0;
1953 
1954 	ext_val = data + ext->kcfg.data_off;
1955 	value = sep + 1;
1956 
1957 	switch (*value) {
1958 	case 'y': case 'n': case 'm':
1959 		err = set_kcfg_value_tri(ext, ext_val, *value);
1960 		break;
1961 	case '"':
1962 		err = set_kcfg_value_str(ext, ext_val, value);
1963 		break;
1964 	default:
1965 		/* assume integer */
1966 		err = parse_u64(value, &num);
1967 		if (err) {
1968 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1969 			return err;
1970 		}
1971 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1972 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1973 			return -EINVAL;
1974 		}
1975 		err = set_kcfg_value_num(ext, ext_val, num);
1976 		break;
1977 	}
1978 	if (err)
1979 		return err;
1980 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1981 	return 0;
1982 }
1983 
1984 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1985 {
1986 	char buf[PATH_MAX];
1987 	struct utsname uts;
1988 	int len, err = 0;
1989 	gzFile file;
1990 
1991 	uname(&uts);
1992 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1993 	if (len < 0)
1994 		return -EINVAL;
1995 	else if (len >= PATH_MAX)
1996 		return -ENAMETOOLONG;
1997 
1998 	/* gzopen also accepts uncompressed files. */
1999 	file = gzopen(buf, "re");
2000 	if (!file)
2001 		file = gzopen("/proc/config.gz", "re");
2002 
2003 	if (!file) {
2004 		pr_warn("failed to open system Kconfig\n");
2005 		return -ENOENT;
2006 	}
2007 
2008 	while (gzgets(file, buf, sizeof(buf))) {
2009 		err = bpf_object__process_kconfig_line(obj, buf, data);
2010 		if (err) {
2011 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2012 				buf, err);
2013 			goto out;
2014 		}
2015 	}
2016 
2017 out:
2018 	gzclose(file);
2019 	return err;
2020 }
2021 
2022 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2023 					const char *config, void *data)
2024 {
2025 	char buf[PATH_MAX];
2026 	int err = 0;
2027 	FILE *file;
2028 
2029 	file = fmemopen((void *)config, strlen(config), "r");
2030 	if (!file) {
2031 		err = -errno;
2032 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2033 		return err;
2034 	}
2035 
2036 	while (fgets(buf, sizeof(buf), file)) {
2037 		err = bpf_object__process_kconfig_line(obj, buf, data);
2038 		if (err) {
2039 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2040 				buf, err);
2041 			break;
2042 		}
2043 	}
2044 
2045 	fclose(file);
2046 	return err;
2047 }
2048 
2049 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2050 {
2051 	struct extern_desc *last_ext = NULL, *ext;
2052 	size_t map_sz;
2053 	int i, err;
2054 
2055 	for (i = 0; i < obj->nr_extern; i++) {
2056 		ext = &obj->externs[i];
2057 		if (ext->type == EXT_KCFG)
2058 			last_ext = ext;
2059 	}
2060 
2061 	if (!last_ext)
2062 		return 0;
2063 
2064 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2065 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2066 					    ".kconfig", obj->efile.symbols_shndx,
2067 					    NULL, map_sz);
2068 	if (err)
2069 		return err;
2070 
2071 	obj->kconfig_map_idx = obj->nr_maps - 1;
2072 
2073 	return 0;
2074 }
2075 
2076 const struct btf_type *
2077 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2078 {
2079 	const struct btf_type *t = btf__type_by_id(btf, id);
2080 
2081 	if (res_id)
2082 		*res_id = id;
2083 
2084 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2085 		if (res_id)
2086 			*res_id = t->type;
2087 		t = btf__type_by_id(btf, t->type);
2088 	}
2089 
2090 	return t;
2091 }
2092 
2093 static const struct btf_type *
2094 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2095 {
2096 	const struct btf_type *t;
2097 
2098 	t = skip_mods_and_typedefs(btf, id, NULL);
2099 	if (!btf_is_ptr(t))
2100 		return NULL;
2101 
2102 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2103 
2104 	return btf_is_func_proto(t) ? t : NULL;
2105 }
2106 
2107 static const char *__btf_kind_str(__u16 kind)
2108 {
2109 	switch (kind) {
2110 	case BTF_KIND_UNKN: return "void";
2111 	case BTF_KIND_INT: return "int";
2112 	case BTF_KIND_PTR: return "ptr";
2113 	case BTF_KIND_ARRAY: return "array";
2114 	case BTF_KIND_STRUCT: return "struct";
2115 	case BTF_KIND_UNION: return "union";
2116 	case BTF_KIND_ENUM: return "enum";
2117 	case BTF_KIND_FWD: return "fwd";
2118 	case BTF_KIND_TYPEDEF: return "typedef";
2119 	case BTF_KIND_VOLATILE: return "volatile";
2120 	case BTF_KIND_CONST: return "const";
2121 	case BTF_KIND_RESTRICT: return "restrict";
2122 	case BTF_KIND_FUNC: return "func";
2123 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2124 	case BTF_KIND_VAR: return "var";
2125 	case BTF_KIND_DATASEC: return "datasec";
2126 	case BTF_KIND_FLOAT: return "float";
2127 	case BTF_KIND_DECL_TAG: return "decl_tag";
2128 	case BTF_KIND_TYPE_TAG: return "type_tag";
2129 	case BTF_KIND_ENUM64: return "enum64";
2130 	default: return "unknown";
2131 	}
2132 }
2133 
2134 const char *btf_kind_str(const struct btf_type *t)
2135 {
2136 	return __btf_kind_str(btf_kind(t));
2137 }
2138 
2139 /*
2140  * Fetch integer attribute of BTF map definition. Such attributes are
2141  * represented using a pointer to an array, in which dimensionality of array
2142  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2143  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2144  * type definition, while using only sizeof(void *) space in ELF data section.
2145  */
2146 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2147 			      const struct btf_member *m, __u32 *res)
2148 {
2149 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2150 	const char *name = btf__name_by_offset(btf, m->name_off);
2151 	const struct btf_array *arr_info;
2152 	const struct btf_type *arr_t;
2153 
2154 	if (!btf_is_ptr(t)) {
2155 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2156 			map_name, name, btf_kind_str(t));
2157 		return false;
2158 	}
2159 
2160 	arr_t = btf__type_by_id(btf, t->type);
2161 	if (!arr_t) {
2162 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2163 			map_name, name, t->type);
2164 		return false;
2165 	}
2166 	if (!btf_is_array(arr_t)) {
2167 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2168 			map_name, name, btf_kind_str(arr_t));
2169 		return false;
2170 	}
2171 	arr_info = btf_array(arr_t);
2172 	*res = arr_info->nelems;
2173 	return true;
2174 }
2175 
2176 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2177 {
2178 	int len;
2179 
2180 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2181 	if (len < 0)
2182 		return -EINVAL;
2183 	if (len >= buf_sz)
2184 		return -ENAMETOOLONG;
2185 
2186 	return 0;
2187 }
2188 
2189 static int build_map_pin_path(struct bpf_map *map, const char *path)
2190 {
2191 	char buf[PATH_MAX];
2192 	int err;
2193 
2194 	if (!path)
2195 		path = "/sys/fs/bpf";
2196 
2197 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2198 	if (err)
2199 		return err;
2200 
2201 	return bpf_map__set_pin_path(map, buf);
2202 }
2203 
2204 /* should match definition in bpf_helpers.h */
2205 enum libbpf_pin_type {
2206 	LIBBPF_PIN_NONE,
2207 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2208 	LIBBPF_PIN_BY_NAME,
2209 };
2210 
2211 int parse_btf_map_def(const char *map_name, struct btf *btf,
2212 		      const struct btf_type *def_t, bool strict,
2213 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2214 {
2215 	const struct btf_type *t;
2216 	const struct btf_member *m;
2217 	bool is_inner = inner_def == NULL;
2218 	int vlen, i;
2219 
2220 	vlen = btf_vlen(def_t);
2221 	m = btf_members(def_t);
2222 	for (i = 0; i < vlen; i++, m++) {
2223 		const char *name = btf__name_by_offset(btf, m->name_off);
2224 
2225 		if (!name) {
2226 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2227 			return -EINVAL;
2228 		}
2229 		if (strcmp(name, "type") == 0) {
2230 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2231 				return -EINVAL;
2232 			map_def->parts |= MAP_DEF_MAP_TYPE;
2233 		} else if (strcmp(name, "max_entries") == 0) {
2234 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2235 				return -EINVAL;
2236 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2237 		} else if (strcmp(name, "map_flags") == 0) {
2238 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2239 				return -EINVAL;
2240 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2241 		} else if (strcmp(name, "numa_node") == 0) {
2242 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2243 				return -EINVAL;
2244 			map_def->parts |= MAP_DEF_NUMA_NODE;
2245 		} else if (strcmp(name, "key_size") == 0) {
2246 			__u32 sz;
2247 
2248 			if (!get_map_field_int(map_name, btf, m, &sz))
2249 				return -EINVAL;
2250 			if (map_def->key_size && map_def->key_size != sz) {
2251 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2252 					map_name, map_def->key_size, sz);
2253 				return -EINVAL;
2254 			}
2255 			map_def->key_size = sz;
2256 			map_def->parts |= MAP_DEF_KEY_SIZE;
2257 		} else if (strcmp(name, "key") == 0) {
2258 			__s64 sz;
2259 
2260 			t = btf__type_by_id(btf, m->type);
2261 			if (!t) {
2262 				pr_warn("map '%s': key type [%d] not found.\n",
2263 					map_name, m->type);
2264 				return -EINVAL;
2265 			}
2266 			if (!btf_is_ptr(t)) {
2267 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2268 					map_name, btf_kind_str(t));
2269 				return -EINVAL;
2270 			}
2271 			sz = btf__resolve_size(btf, t->type);
2272 			if (sz < 0) {
2273 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2274 					map_name, t->type, (ssize_t)sz);
2275 				return sz;
2276 			}
2277 			if (map_def->key_size && map_def->key_size != sz) {
2278 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2279 					map_name, map_def->key_size, (ssize_t)sz);
2280 				return -EINVAL;
2281 			}
2282 			map_def->key_size = sz;
2283 			map_def->key_type_id = t->type;
2284 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2285 		} else if (strcmp(name, "value_size") == 0) {
2286 			__u32 sz;
2287 
2288 			if (!get_map_field_int(map_name, btf, m, &sz))
2289 				return -EINVAL;
2290 			if (map_def->value_size && map_def->value_size != sz) {
2291 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2292 					map_name, map_def->value_size, sz);
2293 				return -EINVAL;
2294 			}
2295 			map_def->value_size = sz;
2296 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2297 		} else if (strcmp(name, "value") == 0) {
2298 			__s64 sz;
2299 
2300 			t = btf__type_by_id(btf, m->type);
2301 			if (!t) {
2302 				pr_warn("map '%s': value type [%d] not found.\n",
2303 					map_name, m->type);
2304 				return -EINVAL;
2305 			}
2306 			if (!btf_is_ptr(t)) {
2307 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2308 					map_name, btf_kind_str(t));
2309 				return -EINVAL;
2310 			}
2311 			sz = btf__resolve_size(btf, t->type);
2312 			if (sz < 0) {
2313 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2314 					map_name, t->type, (ssize_t)sz);
2315 				return sz;
2316 			}
2317 			if (map_def->value_size && map_def->value_size != sz) {
2318 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2319 					map_name, map_def->value_size, (ssize_t)sz);
2320 				return -EINVAL;
2321 			}
2322 			map_def->value_size = sz;
2323 			map_def->value_type_id = t->type;
2324 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2325 		}
2326 		else if (strcmp(name, "values") == 0) {
2327 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2328 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2329 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2330 			char inner_map_name[128];
2331 			int err;
2332 
2333 			if (is_inner) {
2334 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2335 					map_name);
2336 				return -ENOTSUP;
2337 			}
2338 			if (i != vlen - 1) {
2339 				pr_warn("map '%s': '%s' member should be last.\n",
2340 					map_name, name);
2341 				return -EINVAL;
2342 			}
2343 			if (!is_map_in_map && !is_prog_array) {
2344 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2345 					map_name);
2346 				return -ENOTSUP;
2347 			}
2348 			if (map_def->value_size && map_def->value_size != 4) {
2349 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2350 					map_name, map_def->value_size);
2351 				return -EINVAL;
2352 			}
2353 			map_def->value_size = 4;
2354 			t = btf__type_by_id(btf, m->type);
2355 			if (!t) {
2356 				pr_warn("map '%s': %s type [%d] not found.\n",
2357 					map_name, desc, m->type);
2358 				return -EINVAL;
2359 			}
2360 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2361 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2362 					map_name, desc);
2363 				return -EINVAL;
2364 			}
2365 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2366 			if (!btf_is_ptr(t)) {
2367 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2368 					map_name, desc, btf_kind_str(t));
2369 				return -EINVAL;
2370 			}
2371 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2372 			if (is_prog_array) {
2373 				if (!btf_is_func_proto(t)) {
2374 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2375 						map_name, btf_kind_str(t));
2376 					return -EINVAL;
2377 				}
2378 				continue;
2379 			}
2380 			if (!btf_is_struct(t)) {
2381 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2382 					map_name, btf_kind_str(t));
2383 				return -EINVAL;
2384 			}
2385 
2386 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2387 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2388 			if (err)
2389 				return err;
2390 
2391 			map_def->parts |= MAP_DEF_INNER_MAP;
2392 		} else if (strcmp(name, "pinning") == 0) {
2393 			__u32 val;
2394 
2395 			if (is_inner) {
2396 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2397 				return -EINVAL;
2398 			}
2399 			if (!get_map_field_int(map_name, btf, m, &val))
2400 				return -EINVAL;
2401 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2402 				pr_warn("map '%s': invalid pinning value %u.\n",
2403 					map_name, val);
2404 				return -EINVAL;
2405 			}
2406 			map_def->pinning = val;
2407 			map_def->parts |= MAP_DEF_PINNING;
2408 		} else if (strcmp(name, "map_extra") == 0) {
2409 			__u32 map_extra;
2410 
2411 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2412 				return -EINVAL;
2413 			map_def->map_extra = map_extra;
2414 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2415 		} else {
2416 			if (strict) {
2417 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2418 				return -ENOTSUP;
2419 			}
2420 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2421 		}
2422 	}
2423 
2424 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2425 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2426 		return -EINVAL;
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 static size_t adjust_ringbuf_sz(size_t sz)
2433 {
2434 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2435 	__u32 mul;
2436 
2437 	/* if user forgot to set any size, make sure they see error */
2438 	if (sz == 0)
2439 		return 0;
2440 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2441 	 * a power-of-2 multiple of kernel's page size. If user diligently
2442 	 * satisified these conditions, pass the size through.
2443 	 */
2444 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2445 		return sz;
2446 
2447 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2448 	 * user-set size to satisfy both user size request and kernel
2449 	 * requirements and substitute correct max_entries for map creation.
2450 	 */
2451 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2452 		if (mul * page_sz > sz)
2453 			return mul * page_sz;
2454 	}
2455 
2456 	/* if it's impossible to satisfy the conditions (i.e., user size is
2457 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2458 	 * page_size) then just return original size and let kernel reject it
2459 	 */
2460 	return sz;
2461 }
2462 
2463 static bool map_is_ringbuf(const struct bpf_map *map)
2464 {
2465 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2466 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2467 }
2468 
2469 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2470 {
2471 	map->def.type = def->map_type;
2472 	map->def.key_size = def->key_size;
2473 	map->def.value_size = def->value_size;
2474 	map->def.max_entries = def->max_entries;
2475 	map->def.map_flags = def->map_flags;
2476 	map->map_extra = def->map_extra;
2477 
2478 	map->numa_node = def->numa_node;
2479 	map->btf_key_type_id = def->key_type_id;
2480 	map->btf_value_type_id = def->value_type_id;
2481 
2482 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2483 	if (map_is_ringbuf(map))
2484 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2485 
2486 	if (def->parts & MAP_DEF_MAP_TYPE)
2487 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2488 
2489 	if (def->parts & MAP_DEF_KEY_TYPE)
2490 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2491 			 map->name, def->key_type_id, def->key_size);
2492 	else if (def->parts & MAP_DEF_KEY_SIZE)
2493 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2494 
2495 	if (def->parts & MAP_DEF_VALUE_TYPE)
2496 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2497 			 map->name, def->value_type_id, def->value_size);
2498 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2499 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2500 
2501 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2502 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2503 	if (def->parts & MAP_DEF_MAP_FLAGS)
2504 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2505 	if (def->parts & MAP_DEF_MAP_EXTRA)
2506 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2507 			 (unsigned long long)def->map_extra);
2508 	if (def->parts & MAP_DEF_PINNING)
2509 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2510 	if (def->parts & MAP_DEF_NUMA_NODE)
2511 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2512 
2513 	if (def->parts & MAP_DEF_INNER_MAP)
2514 		pr_debug("map '%s': found inner map definition.\n", map->name);
2515 }
2516 
2517 static const char *btf_var_linkage_str(__u32 linkage)
2518 {
2519 	switch (linkage) {
2520 	case BTF_VAR_STATIC: return "static";
2521 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2522 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2523 	default: return "unknown";
2524 	}
2525 }
2526 
2527 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2528 					 const struct btf_type *sec,
2529 					 int var_idx, int sec_idx,
2530 					 const Elf_Data *data, bool strict,
2531 					 const char *pin_root_path)
2532 {
2533 	struct btf_map_def map_def = {}, inner_def = {};
2534 	const struct btf_type *var, *def;
2535 	const struct btf_var_secinfo *vi;
2536 	const struct btf_var *var_extra;
2537 	const char *map_name;
2538 	struct bpf_map *map;
2539 	int err;
2540 
2541 	vi = btf_var_secinfos(sec) + var_idx;
2542 	var = btf__type_by_id(obj->btf, vi->type);
2543 	var_extra = btf_var(var);
2544 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2545 
2546 	if (map_name == NULL || map_name[0] == '\0') {
2547 		pr_warn("map #%d: empty name.\n", var_idx);
2548 		return -EINVAL;
2549 	}
2550 	if ((__u64)vi->offset + vi->size > data->d_size) {
2551 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2552 		return -EINVAL;
2553 	}
2554 	if (!btf_is_var(var)) {
2555 		pr_warn("map '%s': unexpected var kind %s.\n",
2556 			map_name, btf_kind_str(var));
2557 		return -EINVAL;
2558 	}
2559 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2560 		pr_warn("map '%s': unsupported map linkage %s.\n",
2561 			map_name, btf_var_linkage_str(var_extra->linkage));
2562 		return -EOPNOTSUPP;
2563 	}
2564 
2565 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2566 	if (!btf_is_struct(def)) {
2567 		pr_warn("map '%s': unexpected def kind %s.\n",
2568 			map_name, btf_kind_str(var));
2569 		return -EINVAL;
2570 	}
2571 	if (def->size > vi->size) {
2572 		pr_warn("map '%s': invalid def size.\n", map_name);
2573 		return -EINVAL;
2574 	}
2575 
2576 	map = bpf_object__add_map(obj);
2577 	if (IS_ERR(map))
2578 		return PTR_ERR(map);
2579 	map->name = strdup(map_name);
2580 	if (!map->name) {
2581 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2582 		return -ENOMEM;
2583 	}
2584 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2585 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2586 	map->sec_idx = sec_idx;
2587 	map->sec_offset = vi->offset;
2588 	map->btf_var_idx = var_idx;
2589 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2590 		 map_name, map->sec_idx, map->sec_offset);
2591 
2592 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2593 	if (err)
2594 		return err;
2595 
2596 	fill_map_from_def(map, &map_def);
2597 
2598 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2599 		err = build_map_pin_path(map, pin_root_path);
2600 		if (err) {
2601 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2602 			return err;
2603 		}
2604 	}
2605 
2606 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2607 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2608 		if (!map->inner_map)
2609 			return -ENOMEM;
2610 		map->inner_map->fd = -1;
2611 		map->inner_map->sec_idx = sec_idx;
2612 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2613 		if (!map->inner_map->name)
2614 			return -ENOMEM;
2615 		sprintf(map->inner_map->name, "%s.inner", map_name);
2616 
2617 		fill_map_from_def(map->inner_map, &inner_def);
2618 	}
2619 
2620 	err = map_fill_btf_type_info(obj, map);
2621 	if (err)
2622 		return err;
2623 
2624 	return 0;
2625 }
2626 
2627 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2628 					  const char *pin_root_path)
2629 {
2630 	const struct btf_type *sec = NULL;
2631 	int nr_types, i, vlen, err;
2632 	const struct btf_type *t;
2633 	const char *name;
2634 	Elf_Data *data;
2635 	Elf_Scn *scn;
2636 
2637 	if (obj->efile.btf_maps_shndx < 0)
2638 		return 0;
2639 
2640 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2641 	data = elf_sec_data(obj, scn);
2642 	if (!scn || !data) {
2643 		pr_warn("elf: failed to get %s map definitions for %s\n",
2644 			MAPS_ELF_SEC, obj->path);
2645 		return -EINVAL;
2646 	}
2647 
2648 	nr_types = btf__type_cnt(obj->btf);
2649 	for (i = 1; i < nr_types; i++) {
2650 		t = btf__type_by_id(obj->btf, i);
2651 		if (!btf_is_datasec(t))
2652 			continue;
2653 		name = btf__name_by_offset(obj->btf, t->name_off);
2654 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2655 			sec = t;
2656 			obj->efile.btf_maps_sec_btf_id = i;
2657 			break;
2658 		}
2659 	}
2660 
2661 	if (!sec) {
2662 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2663 		return -ENOENT;
2664 	}
2665 
2666 	vlen = btf_vlen(sec);
2667 	for (i = 0; i < vlen; i++) {
2668 		err = bpf_object__init_user_btf_map(obj, sec, i,
2669 						    obj->efile.btf_maps_shndx,
2670 						    data, strict,
2671 						    pin_root_path);
2672 		if (err)
2673 			return err;
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 static int bpf_object__init_maps(struct bpf_object *obj,
2680 				 const struct bpf_object_open_opts *opts)
2681 {
2682 	const char *pin_root_path;
2683 	bool strict;
2684 	int err = 0;
2685 
2686 	strict = !OPTS_GET(opts, relaxed_maps, false);
2687 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2688 
2689 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2690 	err = err ?: bpf_object__init_global_data_maps(obj);
2691 	err = err ?: bpf_object__init_kconfig_map(obj);
2692 	err = err ?: bpf_object_init_struct_ops(obj);
2693 
2694 	return err;
2695 }
2696 
2697 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2698 {
2699 	Elf64_Shdr *sh;
2700 
2701 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2702 	if (!sh)
2703 		return false;
2704 
2705 	return sh->sh_flags & SHF_EXECINSTR;
2706 }
2707 
2708 static bool btf_needs_sanitization(struct bpf_object *obj)
2709 {
2710 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2711 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2712 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2713 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2714 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2715 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2716 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2717 
2718 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2719 	       !has_decl_tag || !has_type_tag || !has_enum64;
2720 }
2721 
2722 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2723 {
2724 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2725 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2726 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2727 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2728 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2729 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2730 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2731 	int enum64_placeholder_id = 0;
2732 	struct btf_type *t;
2733 	int i, j, vlen;
2734 
2735 	for (i = 1; i < btf__type_cnt(btf); i++) {
2736 		t = (struct btf_type *)btf__type_by_id(btf, i);
2737 
2738 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2739 			/* replace VAR/DECL_TAG with INT */
2740 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2741 			/*
2742 			 * using size = 1 is the safest choice, 4 will be too
2743 			 * big and cause kernel BTF validation failure if
2744 			 * original variable took less than 4 bytes
2745 			 */
2746 			t->size = 1;
2747 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2748 		} else if (!has_datasec && btf_is_datasec(t)) {
2749 			/* replace DATASEC with STRUCT */
2750 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2751 			struct btf_member *m = btf_members(t);
2752 			struct btf_type *vt;
2753 			char *name;
2754 
2755 			name = (char *)btf__name_by_offset(btf, t->name_off);
2756 			while (*name) {
2757 				if (*name == '.')
2758 					*name = '_';
2759 				name++;
2760 			}
2761 
2762 			vlen = btf_vlen(t);
2763 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2764 			for (j = 0; j < vlen; j++, v++, m++) {
2765 				/* order of field assignments is important */
2766 				m->offset = v->offset * 8;
2767 				m->type = v->type;
2768 				/* preserve variable name as member name */
2769 				vt = (void *)btf__type_by_id(btf, v->type);
2770 				m->name_off = vt->name_off;
2771 			}
2772 		} else if (!has_func && btf_is_func_proto(t)) {
2773 			/* replace FUNC_PROTO with ENUM */
2774 			vlen = btf_vlen(t);
2775 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2776 			t->size = sizeof(__u32); /* kernel enforced */
2777 		} else if (!has_func && btf_is_func(t)) {
2778 			/* replace FUNC with TYPEDEF */
2779 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2780 		} else if (!has_func_global && btf_is_func(t)) {
2781 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2782 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2783 		} else if (!has_float && btf_is_float(t)) {
2784 			/* replace FLOAT with an equally-sized empty STRUCT;
2785 			 * since C compilers do not accept e.g. "float" as a
2786 			 * valid struct name, make it anonymous
2787 			 */
2788 			t->name_off = 0;
2789 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2790 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2791 			/* replace TYPE_TAG with a CONST */
2792 			t->name_off = 0;
2793 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2794 		} else if (!has_enum64 && btf_is_enum(t)) {
2795 			/* clear the kflag */
2796 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2797 		} else if (!has_enum64 && btf_is_enum64(t)) {
2798 			/* replace ENUM64 with a union */
2799 			struct btf_member *m;
2800 
2801 			if (enum64_placeholder_id == 0) {
2802 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2803 				if (enum64_placeholder_id < 0)
2804 					return enum64_placeholder_id;
2805 
2806 				t = (struct btf_type *)btf__type_by_id(btf, i);
2807 			}
2808 
2809 			m = btf_members(t);
2810 			vlen = btf_vlen(t);
2811 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2812 			for (j = 0; j < vlen; j++, m++) {
2813 				m->type = enum64_placeholder_id;
2814 				m->offset = 0;
2815 			}
2816 		}
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 static bool libbpf_needs_btf(const struct bpf_object *obj)
2823 {
2824 	return obj->efile.btf_maps_shndx >= 0 ||
2825 	       obj->efile.st_ops_shndx >= 0 ||
2826 	       obj->efile.st_ops_link_shndx >= 0 ||
2827 	       obj->nr_extern > 0;
2828 }
2829 
2830 static bool kernel_needs_btf(const struct bpf_object *obj)
2831 {
2832 	return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2833 }
2834 
2835 static int bpf_object__init_btf(struct bpf_object *obj,
2836 				Elf_Data *btf_data,
2837 				Elf_Data *btf_ext_data)
2838 {
2839 	int err = -ENOENT;
2840 
2841 	if (btf_data) {
2842 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2843 		err = libbpf_get_error(obj->btf);
2844 		if (err) {
2845 			obj->btf = NULL;
2846 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2847 			goto out;
2848 		}
2849 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2850 		btf__set_pointer_size(obj->btf, 8);
2851 	}
2852 	if (btf_ext_data) {
2853 		struct btf_ext_info *ext_segs[3];
2854 		int seg_num, sec_num;
2855 
2856 		if (!obj->btf) {
2857 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2858 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2859 			goto out;
2860 		}
2861 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2862 		err = libbpf_get_error(obj->btf_ext);
2863 		if (err) {
2864 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2865 				BTF_EXT_ELF_SEC, err);
2866 			obj->btf_ext = NULL;
2867 			goto out;
2868 		}
2869 
2870 		/* setup .BTF.ext to ELF section mapping */
2871 		ext_segs[0] = &obj->btf_ext->func_info;
2872 		ext_segs[1] = &obj->btf_ext->line_info;
2873 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2874 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2875 			struct btf_ext_info *seg = ext_segs[seg_num];
2876 			const struct btf_ext_info_sec *sec;
2877 			const char *sec_name;
2878 			Elf_Scn *scn;
2879 
2880 			if (seg->sec_cnt == 0)
2881 				continue;
2882 
2883 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2884 			if (!seg->sec_idxs) {
2885 				err = -ENOMEM;
2886 				goto out;
2887 			}
2888 
2889 			sec_num = 0;
2890 			for_each_btf_ext_sec(seg, sec) {
2891 				/* preventively increment index to avoid doing
2892 				 * this before every continue below
2893 				 */
2894 				sec_num++;
2895 
2896 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2897 				if (str_is_empty(sec_name))
2898 					continue;
2899 				scn = elf_sec_by_name(obj, sec_name);
2900 				if (!scn)
2901 					continue;
2902 
2903 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2904 			}
2905 		}
2906 	}
2907 out:
2908 	if (err && libbpf_needs_btf(obj)) {
2909 		pr_warn("BTF is required, but is missing or corrupted.\n");
2910 		return err;
2911 	}
2912 	return 0;
2913 }
2914 
2915 static int compare_vsi_off(const void *_a, const void *_b)
2916 {
2917 	const struct btf_var_secinfo *a = _a;
2918 	const struct btf_var_secinfo *b = _b;
2919 
2920 	return a->offset - b->offset;
2921 }
2922 
2923 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2924 			     struct btf_type *t)
2925 {
2926 	__u32 size = 0, i, vars = btf_vlen(t);
2927 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2928 	struct btf_var_secinfo *vsi;
2929 	bool fixup_offsets = false;
2930 	int err;
2931 
2932 	if (!sec_name) {
2933 		pr_debug("No name found in string section for DATASEC kind.\n");
2934 		return -ENOENT;
2935 	}
2936 
2937 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2938 	 * variable offsets set at the previous step. Further, not every
2939 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2940 	 * all fixups altogether for such sections and go straight to sorting
2941 	 * VARs within their DATASEC.
2942 	 */
2943 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2944 		goto sort_vars;
2945 
2946 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2947 	 * fix this up. But BPF static linker already fixes this up and fills
2948 	 * all the sizes and offsets during static linking. So this step has
2949 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2950 	 * non-extern DATASEC, so the variable fixup loop below handles both
2951 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2952 	 * symbol matching just once.
2953 	 */
2954 	if (t->size == 0) {
2955 		err = find_elf_sec_sz(obj, sec_name, &size);
2956 		if (err || !size) {
2957 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2958 				 sec_name, size, err);
2959 			return -ENOENT;
2960 		}
2961 
2962 		t->size = size;
2963 		fixup_offsets = true;
2964 	}
2965 
2966 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2967 		const struct btf_type *t_var;
2968 		struct btf_var *var;
2969 		const char *var_name;
2970 		Elf64_Sym *sym;
2971 
2972 		t_var = btf__type_by_id(btf, vsi->type);
2973 		if (!t_var || !btf_is_var(t_var)) {
2974 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2975 			return -EINVAL;
2976 		}
2977 
2978 		var = btf_var(t_var);
2979 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2980 			continue;
2981 
2982 		var_name = btf__name_by_offset(btf, t_var->name_off);
2983 		if (!var_name) {
2984 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2985 				 sec_name, i);
2986 			return -ENOENT;
2987 		}
2988 
2989 		sym = find_elf_var_sym(obj, var_name);
2990 		if (IS_ERR(sym)) {
2991 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2992 				 sec_name, var_name);
2993 			return -ENOENT;
2994 		}
2995 
2996 		if (fixup_offsets)
2997 			vsi->offset = sym->st_value;
2998 
2999 		/* if variable is a global/weak symbol, but has restricted
3000 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3001 		 * as static. This follows similar logic for functions (BPF
3002 		 * subprogs) and influences libbpf's further decisions about
3003 		 * whether to make global data BPF array maps as
3004 		 * BPF_F_MMAPABLE.
3005 		 */
3006 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3007 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3008 			var->linkage = BTF_VAR_STATIC;
3009 	}
3010 
3011 sort_vars:
3012 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3013 	return 0;
3014 }
3015 
3016 static int bpf_object_fixup_btf(struct bpf_object *obj)
3017 {
3018 	int i, n, err = 0;
3019 
3020 	if (!obj->btf)
3021 		return 0;
3022 
3023 	n = btf__type_cnt(obj->btf);
3024 	for (i = 1; i < n; i++) {
3025 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3026 
3027 		/* Loader needs to fix up some of the things compiler
3028 		 * couldn't get its hands on while emitting BTF. This
3029 		 * is section size and global variable offset. We use
3030 		 * the info from the ELF itself for this purpose.
3031 		 */
3032 		if (btf_is_datasec(t)) {
3033 			err = btf_fixup_datasec(obj, obj->btf, t);
3034 			if (err)
3035 				return err;
3036 		}
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3043 {
3044 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3045 	    prog->type == BPF_PROG_TYPE_LSM)
3046 		return true;
3047 
3048 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3049 	 * also need vmlinux BTF
3050 	 */
3051 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3052 		return true;
3053 
3054 	return false;
3055 }
3056 
3057 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3058 {
3059 	return bpf_map__is_struct_ops(map);
3060 }
3061 
3062 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3063 {
3064 	struct bpf_program *prog;
3065 	struct bpf_map *map;
3066 	int i;
3067 
3068 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3069 	 * is not specified
3070 	 */
3071 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3072 		return true;
3073 
3074 	/* Support for typed ksyms needs kernel BTF */
3075 	for (i = 0; i < obj->nr_extern; i++) {
3076 		const struct extern_desc *ext;
3077 
3078 		ext = &obj->externs[i];
3079 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3080 			return true;
3081 	}
3082 
3083 	bpf_object__for_each_program(prog, obj) {
3084 		if (!prog->autoload)
3085 			continue;
3086 		if (prog_needs_vmlinux_btf(prog))
3087 			return true;
3088 	}
3089 
3090 	bpf_object__for_each_map(map, obj) {
3091 		if (map_needs_vmlinux_btf(map))
3092 			return true;
3093 	}
3094 
3095 	return false;
3096 }
3097 
3098 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3099 {
3100 	int err;
3101 
3102 	/* btf_vmlinux could be loaded earlier */
3103 	if (obj->btf_vmlinux || obj->gen_loader)
3104 		return 0;
3105 
3106 	if (!force && !obj_needs_vmlinux_btf(obj))
3107 		return 0;
3108 
3109 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3110 	err = libbpf_get_error(obj->btf_vmlinux);
3111 	if (err) {
3112 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3113 		obj->btf_vmlinux = NULL;
3114 		return err;
3115 	}
3116 	return 0;
3117 }
3118 
3119 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3120 {
3121 	struct btf *kern_btf = obj->btf;
3122 	bool btf_mandatory, sanitize;
3123 	int i, err = 0;
3124 
3125 	if (!obj->btf)
3126 		return 0;
3127 
3128 	if (!kernel_supports(obj, FEAT_BTF)) {
3129 		if (kernel_needs_btf(obj)) {
3130 			err = -EOPNOTSUPP;
3131 			goto report;
3132 		}
3133 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3134 		return 0;
3135 	}
3136 
3137 	/* Even though some subprogs are global/weak, user might prefer more
3138 	 * permissive BPF verification process that BPF verifier performs for
3139 	 * static functions, taking into account more context from the caller
3140 	 * functions. In such case, they need to mark such subprogs with
3141 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3142 	 * corresponding FUNC BTF type to be marked as static and trigger more
3143 	 * involved BPF verification process.
3144 	 */
3145 	for (i = 0; i < obj->nr_programs; i++) {
3146 		struct bpf_program *prog = &obj->programs[i];
3147 		struct btf_type *t;
3148 		const char *name;
3149 		int j, n;
3150 
3151 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3152 			continue;
3153 
3154 		n = btf__type_cnt(obj->btf);
3155 		for (j = 1; j < n; j++) {
3156 			t = btf_type_by_id(obj->btf, j);
3157 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3158 				continue;
3159 
3160 			name = btf__str_by_offset(obj->btf, t->name_off);
3161 			if (strcmp(name, prog->name) != 0)
3162 				continue;
3163 
3164 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3165 			break;
3166 		}
3167 	}
3168 
3169 	if (!kernel_supports(obj, FEAT_BTF_DECL_TAG))
3170 		goto skip_exception_cb;
3171 	for (i = 0; i < obj->nr_programs; i++) {
3172 		struct bpf_program *prog = &obj->programs[i];
3173 		int j, k, n;
3174 
3175 		if (prog_is_subprog(obj, prog))
3176 			continue;
3177 		n = btf__type_cnt(obj->btf);
3178 		for (j = 1; j < n; j++) {
3179 			const char *str = "exception_callback:", *name;
3180 			size_t len = strlen(str);
3181 			struct btf_type *t;
3182 
3183 			t = btf_type_by_id(obj->btf, j);
3184 			if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
3185 				continue;
3186 
3187 			name = btf__str_by_offset(obj->btf, t->name_off);
3188 			if (strncmp(name, str, len))
3189 				continue;
3190 
3191 			t = btf_type_by_id(obj->btf, t->type);
3192 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
3193 				pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
3194 					prog->name);
3195 				return -EINVAL;
3196 			}
3197 			if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)))
3198 				continue;
3199 			/* Multiple callbacks are specified for the same prog,
3200 			 * the verifier will eventually return an error for this
3201 			 * case, hence simply skip appending a subprog.
3202 			 */
3203 			if (prog->exception_cb_idx >= 0) {
3204 				prog->exception_cb_idx = -1;
3205 				break;
3206 			}
3207 
3208 			name += len;
3209 			if (str_is_empty(name)) {
3210 				pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
3211 					prog->name);
3212 				return -EINVAL;
3213 			}
3214 
3215 			for (k = 0; k < obj->nr_programs; k++) {
3216 				struct bpf_program *subprog = &obj->programs[k];
3217 
3218 				if (!prog_is_subprog(obj, subprog))
3219 					continue;
3220 				if (strcmp(name, subprog->name))
3221 					continue;
3222 				/* Enforce non-hidden, as from verifier point of
3223 				 * view it expects global functions, whereas the
3224 				 * mark_btf_static fixes up linkage as static.
3225 				 */
3226 				if (!subprog->sym_global || subprog->mark_btf_static) {
3227 					pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
3228 						prog->name, subprog->name);
3229 					return -EINVAL;
3230 				}
3231 				/* Let's see if we already saw a static exception callback with the same name */
3232 				if (prog->exception_cb_idx >= 0) {
3233 					pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
3234 					        prog->name, subprog->name);
3235 					return -EINVAL;
3236 				}
3237 				prog->exception_cb_idx = k;
3238 				break;
3239 			}
3240 
3241 			if (prog->exception_cb_idx >= 0)
3242 				continue;
3243 			pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
3244 			return -ENOENT;
3245 		}
3246 	}
3247 skip_exception_cb:
3248 
3249 	sanitize = btf_needs_sanitization(obj);
3250 	if (sanitize) {
3251 		const void *raw_data;
3252 		__u32 sz;
3253 
3254 		/* clone BTF to sanitize a copy and leave the original intact */
3255 		raw_data = btf__raw_data(obj->btf, &sz);
3256 		kern_btf = btf__new(raw_data, sz);
3257 		err = libbpf_get_error(kern_btf);
3258 		if (err)
3259 			return err;
3260 
3261 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3262 		btf__set_pointer_size(obj->btf, 8);
3263 		err = bpf_object__sanitize_btf(obj, kern_btf);
3264 		if (err)
3265 			return err;
3266 	}
3267 
3268 	if (obj->gen_loader) {
3269 		__u32 raw_size = 0;
3270 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3271 
3272 		if (!raw_data)
3273 			return -ENOMEM;
3274 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3275 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3276 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3277 		 */
3278 		btf__set_fd(kern_btf, 0);
3279 	} else {
3280 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3281 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3282 					   obj->log_level ? 1 : 0);
3283 	}
3284 	if (sanitize) {
3285 		if (!err) {
3286 			/* move fd to libbpf's BTF */
3287 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3288 			btf__set_fd(kern_btf, -1);
3289 		}
3290 		btf__free(kern_btf);
3291 	}
3292 report:
3293 	if (err) {
3294 		btf_mandatory = kernel_needs_btf(obj);
3295 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3296 			btf_mandatory ? "BTF is mandatory, can't proceed."
3297 				      : "BTF is optional, ignoring.");
3298 		if (!btf_mandatory)
3299 			err = 0;
3300 	}
3301 	return err;
3302 }
3303 
3304 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3305 {
3306 	const char *name;
3307 
3308 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3309 	if (!name) {
3310 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3311 			off, obj->path, elf_errmsg(-1));
3312 		return NULL;
3313 	}
3314 
3315 	return name;
3316 }
3317 
3318 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3319 {
3320 	const char *name;
3321 
3322 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3323 	if (!name) {
3324 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3325 			off, obj->path, elf_errmsg(-1));
3326 		return NULL;
3327 	}
3328 
3329 	return name;
3330 }
3331 
3332 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3333 {
3334 	Elf_Scn *scn;
3335 
3336 	scn = elf_getscn(obj->efile.elf, idx);
3337 	if (!scn) {
3338 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3339 			idx, obj->path, elf_errmsg(-1));
3340 		return NULL;
3341 	}
3342 	return scn;
3343 }
3344 
3345 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3346 {
3347 	Elf_Scn *scn = NULL;
3348 	Elf *elf = obj->efile.elf;
3349 	const char *sec_name;
3350 
3351 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3352 		sec_name = elf_sec_name(obj, scn);
3353 		if (!sec_name)
3354 			return NULL;
3355 
3356 		if (strcmp(sec_name, name) != 0)
3357 			continue;
3358 
3359 		return scn;
3360 	}
3361 	return NULL;
3362 }
3363 
3364 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3365 {
3366 	Elf64_Shdr *shdr;
3367 
3368 	if (!scn)
3369 		return NULL;
3370 
3371 	shdr = elf64_getshdr(scn);
3372 	if (!shdr) {
3373 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3374 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3375 		return NULL;
3376 	}
3377 
3378 	return shdr;
3379 }
3380 
3381 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3382 {
3383 	const char *name;
3384 	Elf64_Shdr *sh;
3385 
3386 	if (!scn)
3387 		return NULL;
3388 
3389 	sh = elf_sec_hdr(obj, scn);
3390 	if (!sh)
3391 		return NULL;
3392 
3393 	name = elf_sec_str(obj, sh->sh_name);
3394 	if (!name) {
3395 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3396 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3397 		return NULL;
3398 	}
3399 
3400 	return name;
3401 }
3402 
3403 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3404 {
3405 	Elf_Data *data;
3406 
3407 	if (!scn)
3408 		return NULL;
3409 
3410 	data = elf_getdata(scn, 0);
3411 	if (!data) {
3412 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3413 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3414 			obj->path, elf_errmsg(-1));
3415 		return NULL;
3416 	}
3417 
3418 	return data;
3419 }
3420 
3421 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3422 {
3423 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3424 		return NULL;
3425 
3426 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3427 }
3428 
3429 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3430 {
3431 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3432 		return NULL;
3433 
3434 	return (Elf64_Rel *)data->d_buf + idx;
3435 }
3436 
3437 static bool is_sec_name_dwarf(const char *name)
3438 {
3439 	/* approximation, but the actual list is too long */
3440 	return str_has_pfx(name, ".debug_");
3441 }
3442 
3443 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3444 {
3445 	/* no special handling of .strtab */
3446 	if (hdr->sh_type == SHT_STRTAB)
3447 		return true;
3448 
3449 	/* ignore .llvm_addrsig section as well */
3450 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3451 		return true;
3452 
3453 	/* no subprograms will lead to an empty .text section, ignore it */
3454 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3455 	    strcmp(name, ".text") == 0)
3456 		return true;
3457 
3458 	/* DWARF sections */
3459 	if (is_sec_name_dwarf(name))
3460 		return true;
3461 
3462 	if (str_has_pfx(name, ".rel")) {
3463 		name += sizeof(".rel") - 1;
3464 		/* DWARF section relocations */
3465 		if (is_sec_name_dwarf(name))
3466 			return true;
3467 
3468 		/* .BTF and .BTF.ext don't need relocations */
3469 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3470 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3471 			return true;
3472 	}
3473 
3474 	return false;
3475 }
3476 
3477 static int cmp_progs(const void *_a, const void *_b)
3478 {
3479 	const struct bpf_program *a = _a;
3480 	const struct bpf_program *b = _b;
3481 
3482 	if (a->sec_idx != b->sec_idx)
3483 		return a->sec_idx < b->sec_idx ? -1 : 1;
3484 
3485 	/* sec_insn_off can't be the same within the section */
3486 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3487 }
3488 
3489 static int bpf_object__elf_collect(struct bpf_object *obj)
3490 {
3491 	struct elf_sec_desc *sec_desc;
3492 	Elf *elf = obj->efile.elf;
3493 	Elf_Data *btf_ext_data = NULL;
3494 	Elf_Data *btf_data = NULL;
3495 	int idx = 0, err = 0;
3496 	const char *name;
3497 	Elf_Data *data;
3498 	Elf_Scn *scn;
3499 	Elf64_Shdr *sh;
3500 
3501 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3502 	 * section. Since section count retrieved by elf_getshdrnum() does
3503 	 * include sec #0, it is already the necessary size of an array to keep
3504 	 * all the sections.
3505 	 */
3506 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3507 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3508 			obj->path, elf_errmsg(-1));
3509 		return -LIBBPF_ERRNO__FORMAT;
3510 	}
3511 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3512 	if (!obj->efile.secs)
3513 		return -ENOMEM;
3514 
3515 	/* a bunch of ELF parsing functionality depends on processing symbols,
3516 	 * so do the first pass and find the symbol table
3517 	 */
3518 	scn = NULL;
3519 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3520 		sh = elf_sec_hdr(obj, scn);
3521 		if (!sh)
3522 			return -LIBBPF_ERRNO__FORMAT;
3523 
3524 		if (sh->sh_type == SHT_SYMTAB) {
3525 			if (obj->efile.symbols) {
3526 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3527 				return -LIBBPF_ERRNO__FORMAT;
3528 			}
3529 
3530 			data = elf_sec_data(obj, scn);
3531 			if (!data)
3532 				return -LIBBPF_ERRNO__FORMAT;
3533 
3534 			idx = elf_ndxscn(scn);
3535 
3536 			obj->efile.symbols = data;
3537 			obj->efile.symbols_shndx = idx;
3538 			obj->efile.strtabidx = sh->sh_link;
3539 		}
3540 	}
3541 
3542 	if (!obj->efile.symbols) {
3543 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3544 			obj->path);
3545 		return -ENOENT;
3546 	}
3547 
3548 	scn = NULL;
3549 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3550 		idx = elf_ndxscn(scn);
3551 		sec_desc = &obj->efile.secs[idx];
3552 
3553 		sh = elf_sec_hdr(obj, scn);
3554 		if (!sh)
3555 			return -LIBBPF_ERRNO__FORMAT;
3556 
3557 		name = elf_sec_str(obj, sh->sh_name);
3558 		if (!name)
3559 			return -LIBBPF_ERRNO__FORMAT;
3560 
3561 		if (ignore_elf_section(sh, name))
3562 			continue;
3563 
3564 		data = elf_sec_data(obj, scn);
3565 		if (!data)
3566 			return -LIBBPF_ERRNO__FORMAT;
3567 
3568 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3569 			 idx, name, (unsigned long)data->d_size,
3570 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3571 			 (int)sh->sh_type);
3572 
3573 		if (strcmp(name, "license") == 0) {
3574 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3575 			if (err)
3576 				return err;
3577 		} else if (strcmp(name, "version") == 0) {
3578 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3579 			if (err)
3580 				return err;
3581 		} else if (strcmp(name, "maps") == 0) {
3582 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3583 			return -ENOTSUP;
3584 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3585 			obj->efile.btf_maps_shndx = idx;
3586 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3587 			if (sh->sh_type != SHT_PROGBITS)
3588 				return -LIBBPF_ERRNO__FORMAT;
3589 			btf_data = data;
3590 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3591 			if (sh->sh_type != SHT_PROGBITS)
3592 				return -LIBBPF_ERRNO__FORMAT;
3593 			btf_ext_data = data;
3594 		} else if (sh->sh_type == SHT_SYMTAB) {
3595 			/* already processed during the first pass above */
3596 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3597 			if (sh->sh_flags & SHF_EXECINSTR) {
3598 				if (strcmp(name, ".text") == 0)
3599 					obj->efile.text_shndx = idx;
3600 				err = bpf_object__add_programs(obj, data, name, idx);
3601 				if (err)
3602 					return err;
3603 			} else if (strcmp(name, DATA_SEC) == 0 ||
3604 				   str_has_pfx(name, DATA_SEC ".")) {
3605 				sec_desc->sec_type = SEC_DATA;
3606 				sec_desc->shdr = sh;
3607 				sec_desc->data = data;
3608 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3609 				   str_has_pfx(name, RODATA_SEC ".")) {
3610 				sec_desc->sec_type = SEC_RODATA;
3611 				sec_desc->shdr = sh;
3612 				sec_desc->data = data;
3613 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3614 				obj->efile.st_ops_data = data;
3615 				obj->efile.st_ops_shndx = idx;
3616 			} else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3617 				obj->efile.st_ops_link_data = data;
3618 				obj->efile.st_ops_link_shndx = idx;
3619 			} else {
3620 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3621 					idx, name);
3622 			}
3623 		} else if (sh->sh_type == SHT_REL) {
3624 			int targ_sec_idx = sh->sh_info; /* points to other section */
3625 
3626 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3627 			    targ_sec_idx >= obj->efile.sec_cnt)
3628 				return -LIBBPF_ERRNO__FORMAT;
3629 
3630 			/* Only do relo for section with exec instructions */
3631 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3632 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3633 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3634 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3635 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3636 					idx, name, targ_sec_idx,
3637 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3638 				continue;
3639 			}
3640 
3641 			sec_desc->sec_type = SEC_RELO;
3642 			sec_desc->shdr = sh;
3643 			sec_desc->data = data;
3644 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3645 							 str_has_pfx(name, BSS_SEC "."))) {
3646 			sec_desc->sec_type = SEC_BSS;
3647 			sec_desc->shdr = sh;
3648 			sec_desc->data = data;
3649 		} else {
3650 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3651 				(size_t)sh->sh_size);
3652 		}
3653 	}
3654 
3655 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3656 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3657 		return -LIBBPF_ERRNO__FORMAT;
3658 	}
3659 
3660 	/* sort BPF programs by section name and in-section instruction offset
3661 	 * for faster search
3662 	 */
3663 	if (obj->nr_programs)
3664 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3665 
3666 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3667 }
3668 
3669 static bool sym_is_extern(const Elf64_Sym *sym)
3670 {
3671 	int bind = ELF64_ST_BIND(sym->st_info);
3672 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3673 	return sym->st_shndx == SHN_UNDEF &&
3674 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3675 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3676 }
3677 
3678 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3679 {
3680 	int bind = ELF64_ST_BIND(sym->st_info);
3681 	int type = ELF64_ST_TYPE(sym->st_info);
3682 
3683 	/* in .text section */
3684 	if (sym->st_shndx != text_shndx)
3685 		return false;
3686 
3687 	/* local function */
3688 	if (bind == STB_LOCAL && type == STT_SECTION)
3689 		return true;
3690 
3691 	/* global function */
3692 	return bind == STB_GLOBAL && type == STT_FUNC;
3693 }
3694 
3695 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3696 {
3697 	const struct btf_type *t;
3698 	const char *tname;
3699 	int i, n;
3700 
3701 	if (!btf)
3702 		return -ESRCH;
3703 
3704 	n = btf__type_cnt(btf);
3705 	for (i = 1; i < n; i++) {
3706 		t = btf__type_by_id(btf, i);
3707 
3708 		if (!btf_is_var(t) && !btf_is_func(t))
3709 			continue;
3710 
3711 		tname = btf__name_by_offset(btf, t->name_off);
3712 		if (strcmp(tname, ext_name))
3713 			continue;
3714 
3715 		if (btf_is_var(t) &&
3716 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3717 			return -EINVAL;
3718 
3719 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3720 			return -EINVAL;
3721 
3722 		return i;
3723 	}
3724 
3725 	return -ENOENT;
3726 }
3727 
3728 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3729 	const struct btf_var_secinfo *vs;
3730 	const struct btf_type *t;
3731 	int i, j, n;
3732 
3733 	if (!btf)
3734 		return -ESRCH;
3735 
3736 	n = btf__type_cnt(btf);
3737 	for (i = 1; i < n; i++) {
3738 		t = btf__type_by_id(btf, i);
3739 
3740 		if (!btf_is_datasec(t))
3741 			continue;
3742 
3743 		vs = btf_var_secinfos(t);
3744 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3745 			if (vs->type == ext_btf_id)
3746 				return i;
3747 		}
3748 	}
3749 
3750 	return -ENOENT;
3751 }
3752 
3753 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3754 				     bool *is_signed)
3755 {
3756 	const struct btf_type *t;
3757 	const char *name;
3758 
3759 	t = skip_mods_and_typedefs(btf, id, NULL);
3760 	name = btf__name_by_offset(btf, t->name_off);
3761 
3762 	if (is_signed)
3763 		*is_signed = false;
3764 	switch (btf_kind(t)) {
3765 	case BTF_KIND_INT: {
3766 		int enc = btf_int_encoding(t);
3767 
3768 		if (enc & BTF_INT_BOOL)
3769 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3770 		if (is_signed)
3771 			*is_signed = enc & BTF_INT_SIGNED;
3772 		if (t->size == 1)
3773 			return KCFG_CHAR;
3774 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3775 			return KCFG_UNKNOWN;
3776 		return KCFG_INT;
3777 	}
3778 	case BTF_KIND_ENUM:
3779 		if (t->size != 4)
3780 			return KCFG_UNKNOWN;
3781 		if (strcmp(name, "libbpf_tristate"))
3782 			return KCFG_UNKNOWN;
3783 		return KCFG_TRISTATE;
3784 	case BTF_KIND_ENUM64:
3785 		if (strcmp(name, "libbpf_tristate"))
3786 			return KCFG_UNKNOWN;
3787 		return KCFG_TRISTATE;
3788 	case BTF_KIND_ARRAY:
3789 		if (btf_array(t)->nelems == 0)
3790 			return KCFG_UNKNOWN;
3791 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3792 			return KCFG_UNKNOWN;
3793 		return KCFG_CHAR_ARR;
3794 	default:
3795 		return KCFG_UNKNOWN;
3796 	}
3797 }
3798 
3799 static int cmp_externs(const void *_a, const void *_b)
3800 {
3801 	const struct extern_desc *a = _a;
3802 	const struct extern_desc *b = _b;
3803 
3804 	if (a->type != b->type)
3805 		return a->type < b->type ? -1 : 1;
3806 
3807 	if (a->type == EXT_KCFG) {
3808 		/* descending order by alignment requirements */
3809 		if (a->kcfg.align != b->kcfg.align)
3810 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3811 		/* ascending order by size, within same alignment class */
3812 		if (a->kcfg.sz != b->kcfg.sz)
3813 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3814 	}
3815 
3816 	/* resolve ties by name */
3817 	return strcmp(a->name, b->name);
3818 }
3819 
3820 static int find_int_btf_id(const struct btf *btf)
3821 {
3822 	const struct btf_type *t;
3823 	int i, n;
3824 
3825 	n = btf__type_cnt(btf);
3826 	for (i = 1; i < n; i++) {
3827 		t = btf__type_by_id(btf, i);
3828 
3829 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3830 			return i;
3831 	}
3832 
3833 	return 0;
3834 }
3835 
3836 static int add_dummy_ksym_var(struct btf *btf)
3837 {
3838 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3839 	const struct btf_var_secinfo *vs;
3840 	const struct btf_type *sec;
3841 
3842 	if (!btf)
3843 		return 0;
3844 
3845 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3846 					    BTF_KIND_DATASEC);
3847 	if (sec_btf_id < 0)
3848 		return 0;
3849 
3850 	sec = btf__type_by_id(btf, sec_btf_id);
3851 	vs = btf_var_secinfos(sec);
3852 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3853 		const struct btf_type *vt;
3854 
3855 		vt = btf__type_by_id(btf, vs->type);
3856 		if (btf_is_func(vt))
3857 			break;
3858 	}
3859 
3860 	/* No func in ksyms sec.  No need to add dummy var. */
3861 	if (i == btf_vlen(sec))
3862 		return 0;
3863 
3864 	int_btf_id = find_int_btf_id(btf);
3865 	dummy_var_btf_id = btf__add_var(btf,
3866 					"dummy_ksym",
3867 					BTF_VAR_GLOBAL_ALLOCATED,
3868 					int_btf_id);
3869 	if (dummy_var_btf_id < 0)
3870 		pr_warn("cannot create a dummy_ksym var\n");
3871 
3872 	return dummy_var_btf_id;
3873 }
3874 
3875 static int bpf_object__collect_externs(struct bpf_object *obj)
3876 {
3877 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3878 	const struct btf_type *t;
3879 	struct extern_desc *ext;
3880 	int i, n, off, dummy_var_btf_id;
3881 	const char *ext_name, *sec_name;
3882 	size_t ext_essent_len;
3883 	Elf_Scn *scn;
3884 	Elf64_Shdr *sh;
3885 
3886 	if (!obj->efile.symbols)
3887 		return 0;
3888 
3889 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3890 	sh = elf_sec_hdr(obj, scn);
3891 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3892 		return -LIBBPF_ERRNO__FORMAT;
3893 
3894 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3895 	if (dummy_var_btf_id < 0)
3896 		return dummy_var_btf_id;
3897 
3898 	n = sh->sh_size / sh->sh_entsize;
3899 	pr_debug("looking for externs among %d symbols...\n", n);
3900 
3901 	for (i = 0; i < n; i++) {
3902 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3903 
3904 		if (!sym)
3905 			return -LIBBPF_ERRNO__FORMAT;
3906 		if (!sym_is_extern(sym))
3907 			continue;
3908 		ext_name = elf_sym_str(obj, sym->st_name);
3909 		if (!ext_name || !ext_name[0])
3910 			continue;
3911 
3912 		ext = obj->externs;
3913 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3914 		if (!ext)
3915 			return -ENOMEM;
3916 		obj->externs = ext;
3917 		ext = &ext[obj->nr_extern];
3918 		memset(ext, 0, sizeof(*ext));
3919 		obj->nr_extern++;
3920 
3921 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3922 		if (ext->btf_id <= 0) {
3923 			pr_warn("failed to find BTF for extern '%s': %d\n",
3924 				ext_name, ext->btf_id);
3925 			return ext->btf_id;
3926 		}
3927 		t = btf__type_by_id(obj->btf, ext->btf_id);
3928 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3929 		ext->sym_idx = i;
3930 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3931 
3932 		ext_essent_len = bpf_core_essential_name_len(ext->name);
3933 		ext->essent_name = NULL;
3934 		if (ext_essent_len != strlen(ext->name)) {
3935 			ext->essent_name = strndup(ext->name, ext_essent_len);
3936 			if (!ext->essent_name)
3937 				return -ENOMEM;
3938 		}
3939 
3940 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3941 		if (ext->sec_btf_id <= 0) {
3942 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3943 				ext_name, ext->btf_id, ext->sec_btf_id);
3944 			return ext->sec_btf_id;
3945 		}
3946 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3947 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3948 
3949 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3950 			if (btf_is_func(t)) {
3951 				pr_warn("extern function %s is unsupported under %s section\n",
3952 					ext->name, KCONFIG_SEC);
3953 				return -ENOTSUP;
3954 			}
3955 			kcfg_sec = sec;
3956 			ext->type = EXT_KCFG;
3957 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3958 			if (ext->kcfg.sz <= 0) {
3959 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3960 					ext_name, ext->kcfg.sz);
3961 				return ext->kcfg.sz;
3962 			}
3963 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3964 			if (ext->kcfg.align <= 0) {
3965 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3966 					ext_name, ext->kcfg.align);
3967 				return -EINVAL;
3968 			}
3969 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3970 							&ext->kcfg.is_signed);
3971 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3972 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3973 				return -ENOTSUP;
3974 			}
3975 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3976 			ksym_sec = sec;
3977 			ext->type = EXT_KSYM;
3978 			skip_mods_and_typedefs(obj->btf, t->type,
3979 					       &ext->ksym.type_id);
3980 		} else {
3981 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3982 			return -ENOTSUP;
3983 		}
3984 	}
3985 	pr_debug("collected %d externs total\n", obj->nr_extern);
3986 
3987 	if (!obj->nr_extern)
3988 		return 0;
3989 
3990 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3991 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3992 
3993 	/* for .ksyms section, we need to turn all externs into allocated
3994 	 * variables in BTF to pass kernel verification; we do this by
3995 	 * pretending that each extern is a 8-byte variable
3996 	 */
3997 	if (ksym_sec) {
3998 		/* find existing 4-byte integer type in BTF to use for fake
3999 		 * extern variables in DATASEC
4000 		 */
4001 		int int_btf_id = find_int_btf_id(obj->btf);
4002 		/* For extern function, a dummy_var added earlier
4003 		 * will be used to replace the vs->type and
4004 		 * its name string will be used to refill
4005 		 * the missing param's name.
4006 		 */
4007 		const struct btf_type *dummy_var;
4008 
4009 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4010 		for (i = 0; i < obj->nr_extern; i++) {
4011 			ext = &obj->externs[i];
4012 			if (ext->type != EXT_KSYM)
4013 				continue;
4014 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4015 				 i, ext->sym_idx, ext->name);
4016 		}
4017 
4018 		sec = ksym_sec;
4019 		n = btf_vlen(sec);
4020 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4021 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4022 			struct btf_type *vt;
4023 
4024 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4025 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4026 			ext = find_extern_by_name(obj, ext_name);
4027 			if (!ext) {
4028 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4029 					btf_kind_str(vt), ext_name);
4030 				return -ESRCH;
4031 			}
4032 			if (btf_is_func(vt)) {
4033 				const struct btf_type *func_proto;
4034 				struct btf_param *param;
4035 				int j;
4036 
4037 				func_proto = btf__type_by_id(obj->btf,
4038 							     vt->type);
4039 				param = btf_params(func_proto);
4040 				/* Reuse the dummy_var string if the
4041 				 * func proto does not have param name.
4042 				 */
4043 				for (j = 0; j < btf_vlen(func_proto); j++)
4044 					if (param[j].type && !param[j].name_off)
4045 						param[j].name_off =
4046 							dummy_var->name_off;
4047 				vs->type = dummy_var_btf_id;
4048 				vt->info &= ~0xffff;
4049 				vt->info |= BTF_FUNC_GLOBAL;
4050 			} else {
4051 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4052 				vt->type = int_btf_id;
4053 			}
4054 			vs->offset = off;
4055 			vs->size = sizeof(int);
4056 		}
4057 		sec->size = off;
4058 	}
4059 
4060 	if (kcfg_sec) {
4061 		sec = kcfg_sec;
4062 		/* for kcfg externs calculate their offsets within a .kconfig map */
4063 		off = 0;
4064 		for (i = 0; i < obj->nr_extern; i++) {
4065 			ext = &obj->externs[i];
4066 			if (ext->type != EXT_KCFG)
4067 				continue;
4068 
4069 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4070 			off = ext->kcfg.data_off + ext->kcfg.sz;
4071 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4072 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4073 		}
4074 		sec->size = off;
4075 		n = btf_vlen(sec);
4076 		for (i = 0; i < n; i++) {
4077 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4078 
4079 			t = btf__type_by_id(obj->btf, vs->type);
4080 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4081 			ext = find_extern_by_name(obj, ext_name);
4082 			if (!ext) {
4083 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4084 					ext_name);
4085 				return -ESRCH;
4086 			}
4087 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4088 			vs->offset = ext->kcfg.data_off;
4089 		}
4090 	}
4091 	return 0;
4092 }
4093 
4094 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4095 {
4096 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4097 }
4098 
4099 struct bpf_program *
4100 bpf_object__find_program_by_name(const struct bpf_object *obj,
4101 				 const char *name)
4102 {
4103 	struct bpf_program *prog;
4104 
4105 	bpf_object__for_each_program(prog, obj) {
4106 		if (prog_is_subprog(obj, prog))
4107 			continue;
4108 		if (!strcmp(prog->name, name))
4109 			return prog;
4110 	}
4111 	return errno = ENOENT, NULL;
4112 }
4113 
4114 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4115 				      int shndx)
4116 {
4117 	switch (obj->efile.secs[shndx].sec_type) {
4118 	case SEC_BSS:
4119 	case SEC_DATA:
4120 	case SEC_RODATA:
4121 		return true;
4122 	default:
4123 		return false;
4124 	}
4125 }
4126 
4127 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4128 				      int shndx)
4129 {
4130 	return shndx == obj->efile.btf_maps_shndx;
4131 }
4132 
4133 static enum libbpf_map_type
4134 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4135 {
4136 	if (shndx == obj->efile.symbols_shndx)
4137 		return LIBBPF_MAP_KCONFIG;
4138 
4139 	switch (obj->efile.secs[shndx].sec_type) {
4140 	case SEC_BSS:
4141 		return LIBBPF_MAP_BSS;
4142 	case SEC_DATA:
4143 		return LIBBPF_MAP_DATA;
4144 	case SEC_RODATA:
4145 		return LIBBPF_MAP_RODATA;
4146 	default:
4147 		return LIBBPF_MAP_UNSPEC;
4148 	}
4149 }
4150 
4151 static int bpf_program__record_reloc(struct bpf_program *prog,
4152 				     struct reloc_desc *reloc_desc,
4153 				     __u32 insn_idx, const char *sym_name,
4154 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4155 {
4156 	struct bpf_insn *insn = &prog->insns[insn_idx];
4157 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4158 	struct bpf_object *obj = prog->obj;
4159 	__u32 shdr_idx = sym->st_shndx;
4160 	enum libbpf_map_type type;
4161 	const char *sym_sec_name;
4162 	struct bpf_map *map;
4163 
4164 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4165 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4166 			prog->name, sym_name, insn_idx, insn->code);
4167 		return -LIBBPF_ERRNO__RELOC;
4168 	}
4169 
4170 	if (sym_is_extern(sym)) {
4171 		int sym_idx = ELF64_R_SYM(rel->r_info);
4172 		int i, n = obj->nr_extern;
4173 		struct extern_desc *ext;
4174 
4175 		for (i = 0; i < n; i++) {
4176 			ext = &obj->externs[i];
4177 			if (ext->sym_idx == sym_idx)
4178 				break;
4179 		}
4180 		if (i >= n) {
4181 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4182 				prog->name, sym_name, sym_idx);
4183 			return -LIBBPF_ERRNO__RELOC;
4184 		}
4185 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4186 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4187 		if (insn->code == (BPF_JMP | BPF_CALL))
4188 			reloc_desc->type = RELO_EXTERN_CALL;
4189 		else
4190 			reloc_desc->type = RELO_EXTERN_LD64;
4191 		reloc_desc->insn_idx = insn_idx;
4192 		reloc_desc->ext_idx = i;
4193 		return 0;
4194 	}
4195 
4196 	/* sub-program call relocation */
4197 	if (is_call_insn(insn)) {
4198 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4199 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4200 			return -LIBBPF_ERRNO__RELOC;
4201 		}
4202 		/* text_shndx can be 0, if no default "main" program exists */
4203 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4204 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4205 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4206 				prog->name, sym_name, sym_sec_name);
4207 			return -LIBBPF_ERRNO__RELOC;
4208 		}
4209 		if (sym->st_value % BPF_INSN_SZ) {
4210 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4211 				prog->name, sym_name, (size_t)sym->st_value);
4212 			return -LIBBPF_ERRNO__RELOC;
4213 		}
4214 		reloc_desc->type = RELO_CALL;
4215 		reloc_desc->insn_idx = insn_idx;
4216 		reloc_desc->sym_off = sym->st_value;
4217 		return 0;
4218 	}
4219 
4220 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4221 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4222 			prog->name, sym_name, shdr_idx);
4223 		return -LIBBPF_ERRNO__RELOC;
4224 	}
4225 
4226 	/* loading subprog addresses */
4227 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4228 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4229 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4230 		 */
4231 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4232 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4233 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4234 			return -LIBBPF_ERRNO__RELOC;
4235 		}
4236 
4237 		reloc_desc->type = RELO_SUBPROG_ADDR;
4238 		reloc_desc->insn_idx = insn_idx;
4239 		reloc_desc->sym_off = sym->st_value;
4240 		return 0;
4241 	}
4242 
4243 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4244 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4245 
4246 	/* generic map reference relocation */
4247 	if (type == LIBBPF_MAP_UNSPEC) {
4248 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4249 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4250 				prog->name, sym_name, sym_sec_name);
4251 			return -LIBBPF_ERRNO__RELOC;
4252 		}
4253 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4254 			map = &obj->maps[map_idx];
4255 			if (map->libbpf_type != type ||
4256 			    map->sec_idx != sym->st_shndx ||
4257 			    map->sec_offset != sym->st_value)
4258 				continue;
4259 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4260 				 prog->name, map_idx, map->name, map->sec_idx,
4261 				 map->sec_offset, insn_idx);
4262 			break;
4263 		}
4264 		if (map_idx >= nr_maps) {
4265 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4266 				prog->name, sym_sec_name, (size_t)sym->st_value);
4267 			return -LIBBPF_ERRNO__RELOC;
4268 		}
4269 		reloc_desc->type = RELO_LD64;
4270 		reloc_desc->insn_idx = insn_idx;
4271 		reloc_desc->map_idx = map_idx;
4272 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4273 		return 0;
4274 	}
4275 
4276 	/* global data map relocation */
4277 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4278 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4279 			prog->name, sym_sec_name);
4280 		return -LIBBPF_ERRNO__RELOC;
4281 	}
4282 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4283 		map = &obj->maps[map_idx];
4284 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4285 			continue;
4286 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4287 			 prog->name, map_idx, map->name, map->sec_idx,
4288 			 map->sec_offset, insn_idx);
4289 		break;
4290 	}
4291 	if (map_idx >= nr_maps) {
4292 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4293 			prog->name, sym_sec_name);
4294 		return -LIBBPF_ERRNO__RELOC;
4295 	}
4296 
4297 	reloc_desc->type = RELO_DATA;
4298 	reloc_desc->insn_idx = insn_idx;
4299 	reloc_desc->map_idx = map_idx;
4300 	reloc_desc->sym_off = sym->st_value;
4301 	return 0;
4302 }
4303 
4304 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4305 {
4306 	return insn_idx >= prog->sec_insn_off &&
4307 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4308 }
4309 
4310 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4311 						 size_t sec_idx, size_t insn_idx)
4312 {
4313 	int l = 0, r = obj->nr_programs - 1, m;
4314 	struct bpf_program *prog;
4315 
4316 	if (!obj->nr_programs)
4317 		return NULL;
4318 
4319 	while (l < r) {
4320 		m = l + (r - l + 1) / 2;
4321 		prog = &obj->programs[m];
4322 
4323 		if (prog->sec_idx < sec_idx ||
4324 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4325 			l = m;
4326 		else
4327 			r = m - 1;
4328 	}
4329 	/* matching program could be at index l, but it still might be the
4330 	 * wrong one, so we need to double check conditions for the last time
4331 	 */
4332 	prog = &obj->programs[l];
4333 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4334 		return prog;
4335 	return NULL;
4336 }
4337 
4338 static int
4339 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4340 {
4341 	const char *relo_sec_name, *sec_name;
4342 	size_t sec_idx = shdr->sh_info, sym_idx;
4343 	struct bpf_program *prog;
4344 	struct reloc_desc *relos;
4345 	int err, i, nrels;
4346 	const char *sym_name;
4347 	__u32 insn_idx;
4348 	Elf_Scn *scn;
4349 	Elf_Data *scn_data;
4350 	Elf64_Sym *sym;
4351 	Elf64_Rel *rel;
4352 
4353 	if (sec_idx >= obj->efile.sec_cnt)
4354 		return -EINVAL;
4355 
4356 	scn = elf_sec_by_idx(obj, sec_idx);
4357 	scn_data = elf_sec_data(obj, scn);
4358 
4359 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4360 	sec_name = elf_sec_name(obj, scn);
4361 	if (!relo_sec_name || !sec_name)
4362 		return -EINVAL;
4363 
4364 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4365 		 relo_sec_name, sec_idx, sec_name);
4366 	nrels = shdr->sh_size / shdr->sh_entsize;
4367 
4368 	for (i = 0; i < nrels; i++) {
4369 		rel = elf_rel_by_idx(data, i);
4370 		if (!rel) {
4371 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4372 			return -LIBBPF_ERRNO__FORMAT;
4373 		}
4374 
4375 		sym_idx = ELF64_R_SYM(rel->r_info);
4376 		sym = elf_sym_by_idx(obj, sym_idx);
4377 		if (!sym) {
4378 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4379 				relo_sec_name, sym_idx, i);
4380 			return -LIBBPF_ERRNO__FORMAT;
4381 		}
4382 
4383 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4384 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4385 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4386 			return -LIBBPF_ERRNO__FORMAT;
4387 		}
4388 
4389 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4390 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4391 				relo_sec_name, (size_t)rel->r_offset, i);
4392 			return -LIBBPF_ERRNO__FORMAT;
4393 		}
4394 
4395 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4396 		/* relocations against static functions are recorded as
4397 		 * relocations against the section that contains a function;
4398 		 * in such case, symbol will be STT_SECTION and sym.st_name
4399 		 * will point to empty string (0), so fetch section name
4400 		 * instead
4401 		 */
4402 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4403 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4404 		else
4405 			sym_name = elf_sym_str(obj, sym->st_name);
4406 		sym_name = sym_name ?: "<?";
4407 
4408 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4409 			 relo_sec_name, i, insn_idx, sym_name);
4410 
4411 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4412 		if (!prog) {
4413 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4414 				relo_sec_name, i, sec_name, insn_idx);
4415 			continue;
4416 		}
4417 
4418 		relos = libbpf_reallocarray(prog->reloc_desc,
4419 					    prog->nr_reloc + 1, sizeof(*relos));
4420 		if (!relos)
4421 			return -ENOMEM;
4422 		prog->reloc_desc = relos;
4423 
4424 		/* adjust insn_idx to local BPF program frame of reference */
4425 		insn_idx -= prog->sec_insn_off;
4426 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4427 						insn_idx, sym_name, sym, rel);
4428 		if (err)
4429 			return err;
4430 
4431 		prog->nr_reloc++;
4432 	}
4433 	return 0;
4434 }
4435 
4436 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4437 {
4438 	int id;
4439 
4440 	if (!obj->btf)
4441 		return -ENOENT;
4442 
4443 	/* if it's BTF-defined map, we don't need to search for type IDs.
4444 	 * For struct_ops map, it does not need btf_key_type_id and
4445 	 * btf_value_type_id.
4446 	 */
4447 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4448 		return 0;
4449 
4450 	/*
4451 	 * LLVM annotates global data differently in BTF, that is,
4452 	 * only as '.data', '.bss' or '.rodata'.
4453 	 */
4454 	if (!bpf_map__is_internal(map))
4455 		return -ENOENT;
4456 
4457 	id = btf__find_by_name(obj->btf, map->real_name);
4458 	if (id < 0)
4459 		return id;
4460 
4461 	map->btf_key_type_id = 0;
4462 	map->btf_value_type_id = id;
4463 	return 0;
4464 }
4465 
4466 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4467 {
4468 	char file[PATH_MAX], buff[4096];
4469 	FILE *fp;
4470 	__u32 val;
4471 	int err;
4472 
4473 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4474 	memset(info, 0, sizeof(*info));
4475 
4476 	fp = fopen(file, "re");
4477 	if (!fp) {
4478 		err = -errno;
4479 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4480 			err);
4481 		return err;
4482 	}
4483 
4484 	while (fgets(buff, sizeof(buff), fp)) {
4485 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4486 			info->type = val;
4487 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4488 			info->key_size = val;
4489 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4490 			info->value_size = val;
4491 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4492 			info->max_entries = val;
4493 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4494 			info->map_flags = val;
4495 	}
4496 
4497 	fclose(fp);
4498 
4499 	return 0;
4500 }
4501 
4502 bool bpf_map__autocreate(const struct bpf_map *map)
4503 {
4504 	return map->autocreate;
4505 }
4506 
4507 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4508 {
4509 	if (map->obj->loaded)
4510 		return libbpf_err(-EBUSY);
4511 
4512 	map->autocreate = autocreate;
4513 	return 0;
4514 }
4515 
4516 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4517 {
4518 	struct bpf_map_info info;
4519 	__u32 len = sizeof(info), name_len;
4520 	int new_fd, err;
4521 	char *new_name;
4522 
4523 	memset(&info, 0, len);
4524 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4525 	if (err && errno == EINVAL)
4526 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4527 	if (err)
4528 		return libbpf_err(err);
4529 
4530 	name_len = strlen(info.name);
4531 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4532 		new_name = strdup(map->name);
4533 	else
4534 		new_name = strdup(info.name);
4535 
4536 	if (!new_name)
4537 		return libbpf_err(-errno);
4538 
4539 	/*
4540 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4541 	 * This is similar to what we do in ensure_good_fd(), but without
4542 	 * closing original FD.
4543 	 */
4544 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4545 	if (new_fd < 0) {
4546 		err = -errno;
4547 		goto err_free_new_name;
4548 	}
4549 
4550 	err = zclose(map->fd);
4551 	if (err) {
4552 		err = -errno;
4553 		goto err_close_new_fd;
4554 	}
4555 	free(map->name);
4556 
4557 	map->fd = new_fd;
4558 	map->name = new_name;
4559 	map->def.type = info.type;
4560 	map->def.key_size = info.key_size;
4561 	map->def.value_size = info.value_size;
4562 	map->def.max_entries = info.max_entries;
4563 	map->def.map_flags = info.map_flags;
4564 	map->btf_key_type_id = info.btf_key_type_id;
4565 	map->btf_value_type_id = info.btf_value_type_id;
4566 	map->reused = true;
4567 	map->map_extra = info.map_extra;
4568 
4569 	return 0;
4570 
4571 err_close_new_fd:
4572 	close(new_fd);
4573 err_free_new_name:
4574 	free(new_name);
4575 	return libbpf_err(err);
4576 }
4577 
4578 __u32 bpf_map__max_entries(const struct bpf_map *map)
4579 {
4580 	return map->def.max_entries;
4581 }
4582 
4583 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4584 {
4585 	if (!bpf_map_type__is_map_in_map(map->def.type))
4586 		return errno = EINVAL, NULL;
4587 
4588 	return map->inner_map;
4589 }
4590 
4591 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4592 {
4593 	if (map->obj->loaded)
4594 		return libbpf_err(-EBUSY);
4595 
4596 	map->def.max_entries = max_entries;
4597 
4598 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4599 	if (map_is_ringbuf(map))
4600 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4601 
4602 	return 0;
4603 }
4604 
4605 static int
4606 bpf_object__probe_loading(struct bpf_object *obj)
4607 {
4608 	char *cp, errmsg[STRERR_BUFSIZE];
4609 	struct bpf_insn insns[] = {
4610 		BPF_MOV64_IMM(BPF_REG_0, 0),
4611 		BPF_EXIT_INSN(),
4612 	};
4613 	int ret, insn_cnt = ARRAY_SIZE(insns);
4614 
4615 	if (obj->gen_loader)
4616 		return 0;
4617 
4618 	ret = bump_rlimit_memlock();
4619 	if (ret)
4620 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4621 
4622 	/* make sure basic loading works */
4623 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4624 	if (ret < 0)
4625 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4626 	if (ret < 0) {
4627 		ret = errno;
4628 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4629 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4630 			"program. Make sure your kernel supports BPF "
4631 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4632 			"set to big enough value.\n", __func__, cp, ret);
4633 		return -ret;
4634 	}
4635 	close(ret);
4636 
4637 	return 0;
4638 }
4639 
4640 static int probe_fd(int fd)
4641 {
4642 	if (fd >= 0)
4643 		close(fd);
4644 	return fd >= 0;
4645 }
4646 
4647 static int probe_kern_prog_name(void)
4648 {
4649 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4650 	struct bpf_insn insns[] = {
4651 		BPF_MOV64_IMM(BPF_REG_0, 0),
4652 		BPF_EXIT_INSN(),
4653 	};
4654 	union bpf_attr attr;
4655 	int ret;
4656 
4657 	memset(&attr, 0, attr_sz);
4658 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4659 	attr.license = ptr_to_u64("GPL");
4660 	attr.insns = ptr_to_u64(insns);
4661 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4662 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4663 
4664 	/* make sure loading with name works */
4665 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4666 	return probe_fd(ret);
4667 }
4668 
4669 static int probe_kern_global_data(void)
4670 {
4671 	char *cp, errmsg[STRERR_BUFSIZE];
4672 	struct bpf_insn insns[] = {
4673 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4674 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4675 		BPF_MOV64_IMM(BPF_REG_0, 0),
4676 		BPF_EXIT_INSN(),
4677 	};
4678 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4679 
4680 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4681 	if (map < 0) {
4682 		ret = -errno;
4683 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4684 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4685 			__func__, cp, -ret);
4686 		return ret;
4687 	}
4688 
4689 	insns[0].imm = map;
4690 
4691 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4692 	close(map);
4693 	return probe_fd(ret);
4694 }
4695 
4696 static int probe_kern_btf(void)
4697 {
4698 	static const char strs[] = "\0int";
4699 	__u32 types[] = {
4700 		/* int */
4701 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4702 	};
4703 
4704 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4705 					     strs, sizeof(strs)));
4706 }
4707 
4708 static int probe_kern_btf_func(void)
4709 {
4710 	static const char strs[] = "\0int\0x\0a";
4711 	/* void x(int a) {} */
4712 	__u32 types[] = {
4713 		/* int */
4714 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4715 		/* FUNC_PROTO */                                /* [2] */
4716 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4717 		BTF_PARAM_ENC(7, 1),
4718 		/* FUNC x */                                    /* [3] */
4719 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4720 	};
4721 
4722 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4723 					     strs, sizeof(strs)));
4724 }
4725 
4726 static int probe_kern_btf_func_global(void)
4727 {
4728 	static const char strs[] = "\0int\0x\0a";
4729 	/* static void x(int a) {} */
4730 	__u32 types[] = {
4731 		/* int */
4732 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4733 		/* FUNC_PROTO */                                /* [2] */
4734 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4735 		BTF_PARAM_ENC(7, 1),
4736 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4737 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4738 	};
4739 
4740 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4741 					     strs, sizeof(strs)));
4742 }
4743 
4744 static int probe_kern_btf_datasec(void)
4745 {
4746 	static const char strs[] = "\0x\0.data";
4747 	/* static int a; */
4748 	__u32 types[] = {
4749 		/* int */
4750 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4751 		/* VAR x */                                     /* [2] */
4752 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4753 		BTF_VAR_STATIC,
4754 		/* DATASEC val */                               /* [3] */
4755 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4756 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4757 	};
4758 
4759 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4760 					     strs, sizeof(strs)));
4761 }
4762 
4763 static int probe_kern_btf_float(void)
4764 {
4765 	static const char strs[] = "\0float";
4766 	__u32 types[] = {
4767 		/* float */
4768 		BTF_TYPE_FLOAT_ENC(1, 4),
4769 	};
4770 
4771 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4772 					     strs, sizeof(strs)));
4773 }
4774 
4775 static int probe_kern_btf_decl_tag(void)
4776 {
4777 	static const char strs[] = "\0tag";
4778 	__u32 types[] = {
4779 		/* int */
4780 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4781 		/* VAR x */                                     /* [2] */
4782 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4783 		BTF_VAR_STATIC,
4784 		/* attr */
4785 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4786 	};
4787 
4788 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4789 					     strs, sizeof(strs)));
4790 }
4791 
4792 static int probe_kern_btf_type_tag(void)
4793 {
4794 	static const char strs[] = "\0tag";
4795 	__u32 types[] = {
4796 		/* int */
4797 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4798 		/* attr */
4799 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4800 		/* ptr */
4801 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4802 	};
4803 
4804 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4805 					     strs, sizeof(strs)));
4806 }
4807 
4808 static int probe_kern_array_mmap(void)
4809 {
4810 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4811 	int fd;
4812 
4813 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4814 	return probe_fd(fd);
4815 }
4816 
4817 static int probe_kern_exp_attach_type(void)
4818 {
4819 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4820 	struct bpf_insn insns[] = {
4821 		BPF_MOV64_IMM(BPF_REG_0, 0),
4822 		BPF_EXIT_INSN(),
4823 	};
4824 	int fd, insn_cnt = ARRAY_SIZE(insns);
4825 
4826 	/* use any valid combination of program type and (optional)
4827 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4828 	 * to see if kernel supports expected_attach_type field for
4829 	 * BPF_PROG_LOAD command
4830 	 */
4831 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4832 	return probe_fd(fd);
4833 }
4834 
4835 static int probe_kern_probe_read_kernel(void)
4836 {
4837 	struct bpf_insn insns[] = {
4838 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4839 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4840 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4841 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4842 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4843 		BPF_EXIT_INSN(),
4844 	};
4845 	int fd, insn_cnt = ARRAY_SIZE(insns);
4846 
4847 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4848 	return probe_fd(fd);
4849 }
4850 
4851 static int probe_prog_bind_map(void)
4852 {
4853 	char *cp, errmsg[STRERR_BUFSIZE];
4854 	struct bpf_insn insns[] = {
4855 		BPF_MOV64_IMM(BPF_REG_0, 0),
4856 		BPF_EXIT_INSN(),
4857 	};
4858 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4859 
4860 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4861 	if (map < 0) {
4862 		ret = -errno;
4863 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4864 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4865 			__func__, cp, -ret);
4866 		return ret;
4867 	}
4868 
4869 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4870 	if (prog < 0) {
4871 		close(map);
4872 		return 0;
4873 	}
4874 
4875 	ret = bpf_prog_bind_map(prog, map, NULL);
4876 
4877 	close(map);
4878 	close(prog);
4879 
4880 	return ret >= 0;
4881 }
4882 
4883 static int probe_module_btf(void)
4884 {
4885 	static const char strs[] = "\0int";
4886 	__u32 types[] = {
4887 		/* int */
4888 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4889 	};
4890 	struct bpf_btf_info info;
4891 	__u32 len = sizeof(info);
4892 	char name[16];
4893 	int fd, err;
4894 
4895 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4896 	if (fd < 0)
4897 		return 0; /* BTF not supported at all */
4898 
4899 	memset(&info, 0, sizeof(info));
4900 	info.name = ptr_to_u64(name);
4901 	info.name_len = sizeof(name);
4902 
4903 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4904 	 * kernel's module BTF support coincides with support for
4905 	 * name/name_len fields in struct bpf_btf_info.
4906 	 */
4907 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
4908 	close(fd);
4909 	return !err;
4910 }
4911 
4912 static int probe_perf_link(void)
4913 {
4914 	struct bpf_insn insns[] = {
4915 		BPF_MOV64_IMM(BPF_REG_0, 0),
4916 		BPF_EXIT_INSN(),
4917 	};
4918 	int prog_fd, link_fd, err;
4919 
4920 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4921 				insns, ARRAY_SIZE(insns), NULL);
4922 	if (prog_fd < 0)
4923 		return -errno;
4924 
4925 	/* use invalid perf_event FD to get EBADF, if link is supported;
4926 	 * otherwise EINVAL should be returned
4927 	 */
4928 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4929 	err = -errno; /* close() can clobber errno */
4930 
4931 	if (link_fd >= 0)
4932 		close(link_fd);
4933 	close(prog_fd);
4934 
4935 	return link_fd < 0 && err == -EBADF;
4936 }
4937 
4938 static int probe_uprobe_multi_link(void)
4939 {
4940 	LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4941 		.expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4942 	);
4943 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4944 	struct bpf_insn insns[] = {
4945 		BPF_MOV64_IMM(BPF_REG_0, 0),
4946 		BPF_EXIT_INSN(),
4947 	};
4948 	int prog_fd, link_fd, err;
4949 	unsigned long offset = 0;
4950 
4951 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4952 				insns, ARRAY_SIZE(insns), &load_opts);
4953 	if (prog_fd < 0)
4954 		return -errno;
4955 
4956 	/* Creating uprobe in '/' binary should fail with -EBADF. */
4957 	link_opts.uprobe_multi.path = "/";
4958 	link_opts.uprobe_multi.offsets = &offset;
4959 	link_opts.uprobe_multi.cnt = 1;
4960 
4961 	link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4962 	err = -errno; /* close() can clobber errno */
4963 
4964 	if (link_fd >= 0)
4965 		close(link_fd);
4966 	close(prog_fd);
4967 
4968 	return link_fd < 0 && err == -EBADF;
4969 }
4970 
4971 static int probe_kern_bpf_cookie(void)
4972 {
4973 	struct bpf_insn insns[] = {
4974 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4975 		BPF_EXIT_INSN(),
4976 	};
4977 	int ret, insn_cnt = ARRAY_SIZE(insns);
4978 
4979 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4980 	return probe_fd(ret);
4981 }
4982 
4983 static int probe_kern_btf_enum64(void)
4984 {
4985 	static const char strs[] = "\0enum64";
4986 	__u32 types[] = {
4987 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4988 	};
4989 
4990 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4991 					     strs, sizeof(strs)));
4992 }
4993 
4994 static int probe_kern_syscall_wrapper(void);
4995 
4996 enum kern_feature_result {
4997 	FEAT_UNKNOWN = 0,
4998 	FEAT_SUPPORTED = 1,
4999 	FEAT_MISSING = 2,
5000 };
5001 
5002 typedef int (*feature_probe_fn)(void);
5003 
5004 static struct kern_feature_desc {
5005 	const char *desc;
5006 	feature_probe_fn probe;
5007 	enum kern_feature_result res;
5008 } feature_probes[__FEAT_CNT] = {
5009 	[FEAT_PROG_NAME] = {
5010 		"BPF program name", probe_kern_prog_name,
5011 	},
5012 	[FEAT_GLOBAL_DATA] = {
5013 		"global variables", probe_kern_global_data,
5014 	},
5015 	[FEAT_BTF] = {
5016 		"minimal BTF", probe_kern_btf,
5017 	},
5018 	[FEAT_BTF_FUNC] = {
5019 		"BTF functions", probe_kern_btf_func,
5020 	},
5021 	[FEAT_BTF_GLOBAL_FUNC] = {
5022 		"BTF global function", probe_kern_btf_func_global,
5023 	},
5024 	[FEAT_BTF_DATASEC] = {
5025 		"BTF data section and variable", probe_kern_btf_datasec,
5026 	},
5027 	[FEAT_ARRAY_MMAP] = {
5028 		"ARRAY map mmap()", probe_kern_array_mmap,
5029 	},
5030 	[FEAT_EXP_ATTACH_TYPE] = {
5031 		"BPF_PROG_LOAD expected_attach_type attribute",
5032 		probe_kern_exp_attach_type,
5033 	},
5034 	[FEAT_PROBE_READ_KERN] = {
5035 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
5036 	},
5037 	[FEAT_PROG_BIND_MAP] = {
5038 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
5039 	},
5040 	[FEAT_MODULE_BTF] = {
5041 		"module BTF support", probe_module_btf,
5042 	},
5043 	[FEAT_BTF_FLOAT] = {
5044 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
5045 	},
5046 	[FEAT_PERF_LINK] = {
5047 		"BPF perf link support", probe_perf_link,
5048 	},
5049 	[FEAT_BTF_DECL_TAG] = {
5050 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
5051 	},
5052 	[FEAT_BTF_TYPE_TAG] = {
5053 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
5054 	},
5055 	[FEAT_MEMCG_ACCOUNT] = {
5056 		"memcg-based memory accounting", probe_memcg_account,
5057 	},
5058 	[FEAT_BPF_COOKIE] = {
5059 		"BPF cookie support", probe_kern_bpf_cookie,
5060 	},
5061 	[FEAT_BTF_ENUM64] = {
5062 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
5063 	},
5064 	[FEAT_SYSCALL_WRAPPER] = {
5065 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
5066 	},
5067 	[FEAT_UPROBE_MULTI_LINK] = {
5068 		"BPF multi-uprobe link support", probe_uprobe_multi_link,
5069 	},
5070 };
5071 
5072 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5073 {
5074 	struct kern_feature_desc *feat = &feature_probes[feat_id];
5075 	int ret;
5076 
5077 	if (obj && obj->gen_loader)
5078 		/* To generate loader program assume the latest kernel
5079 		 * to avoid doing extra prog_load, map_create syscalls.
5080 		 */
5081 		return true;
5082 
5083 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
5084 		ret = feat->probe();
5085 		if (ret > 0) {
5086 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
5087 		} else if (ret == 0) {
5088 			WRITE_ONCE(feat->res, FEAT_MISSING);
5089 		} else {
5090 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
5091 			WRITE_ONCE(feat->res, FEAT_MISSING);
5092 		}
5093 	}
5094 
5095 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
5096 }
5097 
5098 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5099 {
5100 	struct bpf_map_info map_info;
5101 	char msg[STRERR_BUFSIZE];
5102 	__u32 map_info_len = sizeof(map_info);
5103 	int err;
5104 
5105 	memset(&map_info, 0, map_info_len);
5106 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5107 	if (err && errno == EINVAL)
5108 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5109 	if (err) {
5110 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5111 			libbpf_strerror_r(errno, msg, sizeof(msg)));
5112 		return false;
5113 	}
5114 
5115 	return (map_info.type == map->def.type &&
5116 		map_info.key_size == map->def.key_size &&
5117 		map_info.value_size == map->def.value_size &&
5118 		map_info.max_entries == map->def.max_entries &&
5119 		map_info.map_flags == map->def.map_flags &&
5120 		map_info.map_extra == map->map_extra);
5121 }
5122 
5123 static int
5124 bpf_object__reuse_map(struct bpf_map *map)
5125 {
5126 	char *cp, errmsg[STRERR_BUFSIZE];
5127 	int err, pin_fd;
5128 
5129 	pin_fd = bpf_obj_get(map->pin_path);
5130 	if (pin_fd < 0) {
5131 		err = -errno;
5132 		if (err == -ENOENT) {
5133 			pr_debug("found no pinned map to reuse at '%s'\n",
5134 				 map->pin_path);
5135 			return 0;
5136 		}
5137 
5138 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5139 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5140 			map->pin_path, cp);
5141 		return err;
5142 	}
5143 
5144 	if (!map_is_reuse_compat(map, pin_fd)) {
5145 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5146 			map->pin_path);
5147 		close(pin_fd);
5148 		return -EINVAL;
5149 	}
5150 
5151 	err = bpf_map__reuse_fd(map, pin_fd);
5152 	close(pin_fd);
5153 	if (err)
5154 		return err;
5155 
5156 	map->pinned = true;
5157 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5158 
5159 	return 0;
5160 }
5161 
5162 static int
5163 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5164 {
5165 	enum libbpf_map_type map_type = map->libbpf_type;
5166 	char *cp, errmsg[STRERR_BUFSIZE];
5167 	int err, zero = 0;
5168 
5169 	if (obj->gen_loader) {
5170 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5171 					 map->mmaped, map->def.value_size);
5172 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5173 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5174 		return 0;
5175 	}
5176 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5177 	if (err) {
5178 		err = -errno;
5179 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5180 		pr_warn("Error setting initial map(%s) contents: %s\n",
5181 			map->name, cp);
5182 		return err;
5183 	}
5184 
5185 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5186 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5187 		err = bpf_map_freeze(map->fd);
5188 		if (err) {
5189 			err = -errno;
5190 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5191 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5192 				map->name, cp);
5193 			return err;
5194 		}
5195 	}
5196 	return 0;
5197 }
5198 
5199 static void bpf_map__destroy(struct bpf_map *map);
5200 
5201 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5202 {
5203 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5204 	struct bpf_map_def *def = &map->def;
5205 	const char *map_name = NULL;
5206 	int err = 0;
5207 
5208 	if (kernel_supports(obj, FEAT_PROG_NAME))
5209 		map_name = map->name;
5210 	create_attr.map_ifindex = map->map_ifindex;
5211 	create_attr.map_flags = def->map_flags;
5212 	create_attr.numa_node = map->numa_node;
5213 	create_attr.map_extra = map->map_extra;
5214 
5215 	if (bpf_map__is_struct_ops(map))
5216 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5217 
5218 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5219 		create_attr.btf_fd = btf__fd(obj->btf);
5220 		create_attr.btf_key_type_id = map->btf_key_type_id;
5221 		create_attr.btf_value_type_id = map->btf_value_type_id;
5222 	}
5223 
5224 	if (bpf_map_type__is_map_in_map(def->type)) {
5225 		if (map->inner_map) {
5226 			err = bpf_object__create_map(obj, map->inner_map, true);
5227 			if (err) {
5228 				pr_warn("map '%s': failed to create inner map: %d\n",
5229 					map->name, err);
5230 				return err;
5231 			}
5232 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5233 		}
5234 		if (map->inner_map_fd >= 0)
5235 			create_attr.inner_map_fd = map->inner_map_fd;
5236 	}
5237 
5238 	switch (def->type) {
5239 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5240 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5241 	case BPF_MAP_TYPE_STACK_TRACE:
5242 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5243 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5244 	case BPF_MAP_TYPE_DEVMAP:
5245 	case BPF_MAP_TYPE_DEVMAP_HASH:
5246 	case BPF_MAP_TYPE_CPUMAP:
5247 	case BPF_MAP_TYPE_XSKMAP:
5248 	case BPF_MAP_TYPE_SOCKMAP:
5249 	case BPF_MAP_TYPE_SOCKHASH:
5250 	case BPF_MAP_TYPE_QUEUE:
5251 	case BPF_MAP_TYPE_STACK:
5252 		create_attr.btf_fd = 0;
5253 		create_attr.btf_key_type_id = 0;
5254 		create_attr.btf_value_type_id = 0;
5255 		map->btf_key_type_id = 0;
5256 		map->btf_value_type_id = 0;
5257 	default:
5258 		break;
5259 	}
5260 
5261 	if (obj->gen_loader) {
5262 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5263 				    def->key_size, def->value_size, def->max_entries,
5264 				    &create_attr, is_inner ? -1 : map - obj->maps);
5265 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5266 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5267 		 */
5268 		map->fd = 0;
5269 	} else {
5270 		map->fd = bpf_map_create(def->type, map_name,
5271 					 def->key_size, def->value_size,
5272 					 def->max_entries, &create_attr);
5273 	}
5274 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5275 			    create_attr.btf_value_type_id)) {
5276 		char *cp, errmsg[STRERR_BUFSIZE];
5277 
5278 		err = -errno;
5279 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5280 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5281 			map->name, cp, err);
5282 		create_attr.btf_fd = 0;
5283 		create_attr.btf_key_type_id = 0;
5284 		create_attr.btf_value_type_id = 0;
5285 		map->btf_key_type_id = 0;
5286 		map->btf_value_type_id = 0;
5287 		map->fd = bpf_map_create(def->type, map_name,
5288 					 def->key_size, def->value_size,
5289 					 def->max_entries, &create_attr);
5290 	}
5291 
5292 	err = map->fd < 0 ? -errno : 0;
5293 
5294 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5295 		if (obj->gen_loader)
5296 			map->inner_map->fd = -1;
5297 		bpf_map__destroy(map->inner_map);
5298 		zfree(&map->inner_map);
5299 	}
5300 
5301 	return err;
5302 }
5303 
5304 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5305 {
5306 	const struct bpf_map *targ_map;
5307 	unsigned int i;
5308 	int fd, err = 0;
5309 
5310 	for (i = 0; i < map->init_slots_sz; i++) {
5311 		if (!map->init_slots[i])
5312 			continue;
5313 
5314 		targ_map = map->init_slots[i];
5315 		fd = bpf_map__fd(targ_map);
5316 
5317 		if (obj->gen_loader) {
5318 			bpf_gen__populate_outer_map(obj->gen_loader,
5319 						    map - obj->maps, i,
5320 						    targ_map - obj->maps);
5321 		} else {
5322 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5323 		}
5324 		if (err) {
5325 			err = -errno;
5326 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5327 				map->name, i, targ_map->name, fd, err);
5328 			return err;
5329 		}
5330 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5331 			 map->name, i, targ_map->name, fd);
5332 	}
5333 
5334 	zfree(&map->init_slots);
5335 	map->init_slots_sz = 0;
5336 
5337 	return 0;
5338 }
5339 
5340 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5341 {
5342 	const struct bpf_program *targ_prog;
5343 	unsigned int i;
5344 	int fd, err;
5345 
5346 	if (obj->gen_loader)
5347 		return -ENOTSUP;
5348 
5349 	for (i = 0; i < map->init_slots_sz; i++) {
5350 		if (!map->init_slots[i])
5351 			continue;
5352 
5353 		targ_prog = map->init_slots[i];
5354 		fd = bpf_program__fd(targ_prog);
5355 
5356 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5357 		if (err) {
5358 			err = -errno;
5359 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5360 				map->name, i, targ_prog->name, fd, err);
5361 			return err;
5362 		}
5363 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5364 			 map->name, i, targ_prog->name, fd);
5365 	}
5366 
5367 	zfree(&map->init_slots);
5368 	map->init_slots_sz = 0;
5369 
5370 	return 0;
5371 }
5372 
5373 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5374 {
5375 	struct bpf_map *map;
5376 	int i, err;
5377 
5378 	for (i = 0; i < obj->nr_maps; i++) {
5379 		map = &obj->maps[i];
5380 
5381 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5382 			continue;
5383 
5384 		err = init_prog_array_slots(obj, map);
5385 		if (err < 0) {
5386 			zclose(map->fd);
5387 			return err;
5388 		}
5389 	}
5390 	return 0;
5391 }
5392 
5393 static int map_set_def_max_entries(struct bpf_map *map)
5394 {
5395 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5396 		int nr_cpus;
5397 
5398 		nr_cpus = libbpf_num_possible_cpus();
5399 		if (nr_cpus < 0) {
5400 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5401 				map->name, nr_cpus);
5402 			return nr_cpus;
5403 		}
5404 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5405 		map->def.max_entries = nr_cpus;
5406 	}
5407 
5408 	return 0;
5409 }
5410 
5411 static int
5412 bpf_object__create_maps(struct bpf_object *obj)
5413 {
5414 	struct bpf_map *map;
5415 	char *cp, errmsg[STRERR_BUFSIZE];
5416 	unsigned int i, j;
5417 	int err;
5418 	bool retried;
5419 
5420 	for (i = 0; i < obj->nr_maps; i++) {
5421 		map = &obj->maps[i];
5422 
5423 		/* To support old kernels, we skip creating global data maps
5424 		 * (.rodata, .data, .kconfig, etc); later on, during program
5425 		 * loading, if we detect that at least one of the to-be-loaded
5426 		 * programs is referencing any global data map, we'll error
5427 		 * out with program name and relocation index logged.
5428 		 * This approach allows to accommodate Clang emitting
5429 		 * unnecessary .rodata.str1.1 sections for string literals,
5430 		 * but also it allows to have CO-RE applications that use
5431 		 * global variables in some of BPF programs, but not others.
5432 		 * If those global variable-using programs are not loaded at
5433 		 * runtime due to bpf_program__set_autoload(prog, false),
5434 		 * bpf_object loading will succeed just fine even on old
5435 		 * kernels.
5436 		 */
5437 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5438 			map->autocreate = false;
5439 
5440 		if (!map->autocreate) {
5441 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5442 			continue;
5443 		}
5444 
5445 		err = map_set_def_max_entries(map);
5446 		if (err)
5447 			goto err_out;
5448 
5449 		retried = false;
5450 retry:
5451 		if (map->pin_path) {
5452 			err = bpf_object__reuse_map(map);
5453 			if (err) {
5454 				pr_warn("map '%s': error reusing pinned map\n",
5455 					map->name);
5456 				goto err_out;
5457 			}
5458 			if (retried && map->fd < 0) {
5459 				pr_warn("map '%s': cannot find pinned map\n",
5460 					map->name);
5461 				err = -ENOENT;
5462 				goto err_out;
5463 			}
5464 		}
5465 
5466 		if (map->fd >= 0) {
5467 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5468 				 map->name, map->fd);
5469 		} else {
5470 			err = bpf_object__create_map(obj, map, false);
5471 			if (err)
5472 				goto err_out;
5473 
5474 			pr_debug("map '%s': created successfully, fd=%d\n",
5475 				 map->name, map->fd);
5476 
5477 			if (bpf_map__is_internal(map)) {
5478 				err = bpf_object__populate_internal_map(obj, map);
5479 				if (err < 0) {
5480 					zclose(map->fd);
5481 					goto err_out;
5482 				}
5483 			}
5484 
5485 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5486 				err = init_map_in_map_slots(obj, map);
5487 				if (err < 0) {
5488 					zclose(map->fd);
5489 					goto err_out;
5490 				}
5491 			}
5492 		}
5493 
5494 		if (map->pin_path && !map->pinned) {
5495 			err = bpf_map__pin(map, NULL);
5496 			if (err) {
5497 				zclose(map->fd);
5498 				if (!retried && err == -EEXIST) {
5499 					retried = true;
5500 					goto retry;
5501 				}
5502 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5503 					map->name, map->pin_path, err);
5504 				goto err_out;
5505 			}
5506 		}
5507 	}
5508 
5509 	return 0;
5510 
5511 err_out:
5512 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5513 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5514 	pr_perm_msg(err);
5515 	for (j = 0; j < i; j++)
5516 		zclose(obj->maps[j].fd);
5517 	return err;
5518 }
5519 
5520 static bool bpf_core_is_flavor_sep(const char *s)
5521 {
5522 	/* check X___Y name pattern, where X and Y are not underscores */
5523 	return s[0] != '_' &&				      /* X */
5524 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5525 	       s[4] != '_';				      /* Y */
5526 }
5527 
5528 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5529  * before last triple underscore. Struct name part after last triple
5530  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5531  */
5532 size_t bpf_core_essential_name_len(const char *name)
5533 {
5534 	size_t n = strlen(name);
5535 	int i;
5536 
5537 	for (i = n - 5; i >= 0; i--) {
5538 		if (bpf_core_is_flavor_sep(name + i))
5539 			return i + 1;
5540 	}
5541 	return n;
5542 }
5543 
5544 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5545 {
5546 	if (!cands)
5547 		return;
5548 
5549 	free(cands->cands);
5550 	free(cands);
5551 }
5552 
5553 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5554 		       size_t local_essent_len,
5555 		       const struct btf *targ_btf,
5556 		       const char *targ_btf_name,
5557 		       int targ_start_id,
5558 		       struct bpf_core_cand_list *cands)
5559 {
5560 	struct bpf_core_cand *new_cands, *cand;
5561 	const struct btf_type *t, *local_t;
5562 	const char *targ_name, *local_name;
5563 	size_t targ_essent_len;
5564 	int n, i;
5565 
5566 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5567 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5568 
5569 	n = btf__type_cnt(targ_btf);
5570 	for (i = targ_start_id; i < n; i++) {
5571 		t = btf__type_by_id(targ_btf, i);
5572 		if (!btf_kind_core_compat(t, local_t))
5573 			continue;
5574 
5575 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5576 		if (str_is_empty(targ_name))
5577 			continue;
5578 
5579 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5580 		if (targ_essent_len != local_essent_len)
5581 			continue;
5582 
5583 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5584 			continue;
5585 
5586 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5587 			 local_cand->id, btf_kind_str(local_t),
5588 			 local_name, i, btf_kind_str(t), targ_name,
5589 			 targ_btf_name);
5590 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5591 					      sizeof(*cands->cands));
5592 		if (!new_cands)
5593 			return -ENOMEM;
5594 
5595 		cand = &new_cands[cands->len];
5596 		cand->btf = targ_btf;
5597 		cand->id = i;
5598 
5599 		cands->cands = new_cands;
5600 		cands->len++;
5601 	}
5602 	return 0;
5603 }
5604 
5605 static int load_module_btfs(struct bpf_object *obj)
5606 {
5607 	struct bpf_btf_info info;
5608 	struct module_btf *mod_btf;
5609 	struct btf *btf;
5610 	char name[64];
5611 	__u32 id = 0, len;
5612 	int err, fd;
5613 
5614 	if (obj->btf_modules_loaded)
5615 		return 0;
5616 
5617 	if (obj->gen_loader)
5618 		return 0;
5619 
5620 	/* don't do this again, even if we find no module BTFs */
5621 	obj->btf_modules_loaded = true;
5622 
5623 	/* kernel too old to support module BTFs */
5624 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5625 		return 0;
5626 
5627 	while (true) {
5628 		err = bpf_btf_get_next_id(id, &id);
5629 		if (err && errno == ENOENT)
5630 			return 0;
5631 		if (err && errno == EPERM) {
5632 			pr_debug("skipping module BTFs loading, missing privileges\n");
5633 			return 0;
5634 		}
5635 		if (err) {
5636 			err = -errno;
5637 			pr_warn("failed to iterate BTF objects: %d\n", err);
5638 			return err;
5639 		}
5640 
5641 		fd = bpf_btf_get_fd_by_id(id);
5642 		if (fd < 0) {
5643 			if (errno == ENOENT)
5644 				continue; /* expected race: BTF was unloaded */
5645 			err = -errno;
5646 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5647 			return err;
5648 		}
5649 
5650 		len = sizeof(info);
5651 		memset(&info, 0, sizeof(info));
5652 		info.name = ptr_to_u64(name);
5653 		info.name_len = sizeof(name);
5654 
5655 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5656 		if (err) {
5657 			err = -errno;
5658 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5659 			goto err_out;
5660 		}
5661 
5662 		/* ignore non-module BTFs */
5663 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5664 			close(fd);
5665 			continue;
5666 		}
5667 
5668 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5669 		err = libbpf_get_error(btf);
5670 		if (err) {
5671 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5672 				name, id, err);
5673 			goto err_out;
5674 		}
5675 
5676 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5677 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5678 		if (err)
5679 			goto err_out;
5680 
5681 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5682 
5683 		mod_btf->btf = btf;
5684 		mod_btf->id = id;
5685 		mod_btf->fd = fd;
5686 		mod_btf->name = strdup(name);
5687 		if (!mod_btf->name) {
5688 			err = -ENOMEM;
5689 			goto err_out;
5690 		}
5691 		continue;
5692 
5693 err_out:
5694 		close(fd);
5695 		return err;
5696 	}
5697 
5698 	return 0;
5699 }
5700 
5701 static struct bpf_core_cand_list *
5702 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5703 {
5704 	struct bpf_core_cand local_cand = {};
5705 	struct bpf_core_cand_list *cands;
5706 	const struct btf *main_btf;
5707 	const struct btf_type *local_t;
5708 	const char *local_name;
5709 	size_t local_essent_len;
5710 	int err, i;
5711 
5712 	local_cand.btf = local_btf;
5713 	local_cand.id = local_type_id;
5714 	local_t = btf__type_by_id(local_btf, local_type_id);
5715 	if (!local_t)
5716 		return ERR_PTR(-EINVAL);
5717 
5718 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5719 	if (str_is_empty(local_name))
5720 		return ERR_PTR(-EINVAL);
5721 	local_essent_len = bpf_core_essential_name_len(local_name);
5722 
5723 	cands = calloc(1, sizeof(*cands));
5724 	if (!cands)
5725 		return ERR_PTR(-ENOMEM);
5726 
5727 	/* Attempt to find target candidates in vmlinux BTF first */
5728 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5729 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5730 	if (err)
5731 		goto err_out;
5732 
5733 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5734 	if (cands->len)
5735 		return cands;
5736 
5737 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5738 	if (obj->btf_vmlinux_override)
5739 		return cands;
5740 
5741 	/* now look through module BTFs, trying to still find candidates */
5742 	err = load_module_btfs(obj);
5743 	if (err)
5744 		goto err_out;
5745 
5746 	for (i = 0; i < obj->btf_module_cnt; i++) {
5747 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5748 					 obj->btf_modules[i].btf,
5749 					 obj->btf_modules[i].name,
5750 					 btf__type_cnt(obj->btf_vmlinux),
5751 					 cands);
5752 		if (err)
5753 			goto err_out;
5754 	}
5755 
5756 	return cands;
5757 err_out:
5758 	bpf_core_free_cands(cands);
5759 	return ERR_PTR(err);
5760 }
5761 
5762 /* Check local and target types for compatibility. This check is used for
5763  * type-based CO-RE relocations and follow slightly different rules than
5764  * field-based relocations. This function assumes that root types were already
5765  * checked for name match. Beyond that initial root-level name check, names
5766  * are completely ignored. Compatibility rules are as follows:
5767  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5768  *     kind should match for local and target types (i.e., STRUCT is not
5769  *     compatible with UNION);
5770  *   - for ENUMs, the size is ignored;
5771  *   - for INT, size and signedness are ignored;
5772  *   - for ARRAY, dimensionality is ignored, element types are checked for
5773  *     compatibility recursively;
5774  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5775  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5776  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5777  *     number of input args and compatible return and argument types.
5778  * These rules are not set in stone and probably will be adjusted as we get
5779  * more experience with using BPF CO-RE relocations.
5780  */
5781 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5782 			      const struct btf *targ_btf, __u32 targ_id)
5783 {
5784 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5785 }
5786 
5787 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5788 			 const struct btf *targ_btf, __u32 targ_id)
5789 {
5790 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5791 }
5792 
5793 static size_t bpf_core_hash_fn(const long key, void *ctx)
5794 {
5795 	return key;
5796 }
5797 
5798 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5799 {
5800 	return k1 == k2;
5801 }
5802 
5803 static int record_relo_core(struct bpf_program *prog,
5804 			    const struct bpf_core_relo *core_relo, int insn_idx)
5805 {
5806 	struct reloc_desc *relos, *relo;
5807 
5808 	relos = libbpf_reallocarray(prog->reloc_desc,
5809 				    prog->nr_reloc + 1, sizeof(*relos));
5810 	if (!relos)
5811 		return -ENOMEM;
5812 	relo = &relos[prog->nr_reloc];
5813 	relo->type = RELO_CORE;
5814 	relo->insn_idx = insn_idx;
5815 	relo->core_relo = core_relo;
5816 	prog->reloc_desc = relos;
5817 	prog->nr_reloc++;
5818 	return 0;
5819 }
5820 
5821 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5822 {
5823 	struct reloc_desc *relo;
5824 	int i;
5825 
5826 	for (i = 0; i < prog->nr_reloc; i++) {
5827 		relo = &prog->reloc_desc[i];
5828 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5829 			continue;
5830 
5831 		return relo->core_relo;
5832 	}
5833 
5834 	return NULL;
5835 }
5836 
5837 static int bpf_core_resolve_relo(struct bpf_program *prog,
5838 				 const struct bpf_core_relo *relo,
5839 				 int relo_idx,
5840 				 const struct btf *local_btf,
5841 				 struct hashmap *cand_cache,
5842 				 struct bpf_core_relo_res *targ_res)
5843 {
5844 	struct bpf_core_spec specs_scratch[3] = {};
5845 	struct bpf_core_cand_list *cands = NULL;
5846 	const char *prog_name = prog->name;
5847 	const struct btf_type *local_type;
5848 	const char *local_name;
5849 	__u32 local_id = relo->type_id;
5850 	int err;
5851 
5852 	local_type = btf__type_by_id(local_btf, local_id);
5853 	if (!local_type)
5854 		return -EINVAL;
5855 
5856 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5857 	if (!local_name)
5858 		return -EINVAL;
5859 
5860 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5861 	    !hashmap__find(cand_cache, local_id, &cands)) {
5862 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5863 		if (IS_ERR(cands)) {
5864 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5865 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5866 				local_name, PTR_ERR(cands));
5867 			return PTR_ERR(cands);
5868 		}
5869 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5870 		if (err) {
5871 			bpf_core_free_cands(cands);
5872 			return err;
5873 		}
5874 	}
5875 
5876 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5877 				       targ_res);
5878 }
5879 
5880 static int
5881 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5882 {
5883 	const struct btf_ext_info_sec *sec;
5884 	struct bpf_core_relo_res targ_res;
5885 	const struct bpf_core_relo *rec;
5886 	const struct btf_ext_info *seg;
5887 	struct hashmap_entry *entry;
5888 	struct hashmap *cand_cache = NULL;
5889 	struct bpf_program *prog;
5890 	struct bpf_insn *insn;
5891 	const char *sec_name;
5892 	int i, err = 0, insn_idx, sec_idx, sec_num;
5893 
5894 	if (obj->btf_ext->core_relo_info.len == 0)
5895 		return 0;
5896 
5897 	if (targ_btf_path) {
5898 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5899 		err = libbpf_get_error(obj->btf_vmlinux_override);
5900 		if (err) {
5901 			pr_warn("failed to parse target BTF: %d\n", err);
5902 			return err;
5903 		}
5904 	}
5905 
5906 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5907 	if (IS_ERR(cand_cache)) {
5908 		err = PTR_ERR(cand_cache);
5909 		goto out;
5910 	}
5911 
5912 	seg = &obj->btf_ext->core_relo_info;
5913 	sec_num = 0;
5914 	for_each_btf_ext_sec(seg, sec) {
5915 		sec_idx = seg->sec_idxs[sec_num];
5916 		sec_num++;
5917 
5918 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5919 		if (str_is_empty(sec_name)) {
5920 			err = -EINVAL;
5921 			goto out;
5922 		}
5923 
5924 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5925 
5926 		for_each_btf_ext_rec(seg, sec, i, rec) {
5927 			if (rec->insn_off % BPF_INSN_SZ)
5928 				return -EINVAL;
5929 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5930 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5931 			if (!prog) {
5932 				/* When __weak subprog is "overridden" by another instance
5933 				 * of the subprog from a different object file, linker still
5934 				 * appends all the .BTF.ext info that used to belong to that
5935 				 * eliminated subprogram.
5936 				 * This is similar to what x86-64 linker does for relocations.
5937 				 * So just ignore such relocations just like we ignore
5938 				 * subprog instructions when discovering subprograms.
5939 				 */
5940 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5941 					 sec_name, i, insn_idx);
5942 				continue;
5943 			}
5944 			/* no need to apply CO-RE relocation if the program is
5945 			 * not going to be loaded
5946 			 */
5947 			if (!prog->autoload)
5948 				continue;
5949 
5950 			/* adjust insn_idx from section frame of reference to the local
5951 			 * program's frame of reference; (sub-)program code is not yet
5952 			 * relocated, so it's enough to just subtract in-section offset
5953 			 */
5954 			insn_idx = insn_idx - prog->sec_insn_off;
5955 			if (insn_idx >= prog->insns_cnt)
5956 				return -EINVAL;
5957 			insn = &prog->insns[insn_idx];
5958 
5959 			err = record_relo_core(prog, rec, insn_idx);
5960 			if (err) {
5961 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5962 					prog->name, i, err);
5963 				goto out;
5964 			}
5965 
5966 			if (prog->obj->gen_loader)
5967 				continue;
5968 
5969 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5970 			if (err) {
5971 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5972 					prog->name, i, err);
5973 				goto out;
5974 			}
5975 
5976 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5977 			if (err) {
5978 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5979 					prog->name, i, insn_idx, err);
5980 				goto out;
5981 			}
5982 		}
5983 	}
5984 
5985 out:
5986 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5987 	btf__free(obj->btf_vmlinux_override);
5988 	obj->btf_vmlinux_override = NULL;
5989 
5990 	if (!IS_ERR_OR_NULL(cand_cache)) {
5991 		hashmap__for_each_entry(cand_cache, entry, i) {
5992 			bpf_core_free_cands(entry->pvalue);
5993 		}
5994 		hashmap__free(cand_cache);
5995 	}
5996 	return err;
5997 }
5998 
5999 /* base map load ldimm64 special constant, used also for log fixup logic */
6000 #define POISON_LDIMM64_MAP_BASE 2001000000
6001 #define POISON_LDIMM64_MAP_PFX "200100"
6002 
6003 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6004 			       int insn_idx, struct bpf_insn *insn,
6005 			       int map_idx, const struct bpf_map *map)
6006 {
6007 	int i;
6008 
6009 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6010 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
6011 
6012 	/* we turn single ldimm64 into two identical invalid calls */
6013 	for (i = 0; i < 2; i++) {
6014 		insn->code = BPF_JMP | BPF_CALL;
6015 		insn->dst_reg = 0;
6016 		insn->src_reg = 0;
6017 		insn->off = 0;
6018 		/* if this instruction is reachable (not a dead code),
6019 		 * verifier will complain with something like:
6020 		 * invalid func unknown#2001000123
6021 		 * where lower 123 is map index into obj->maps[] array
6022 		 */
6023 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6024 
6025 		insn++;
6026 	}
6027 }
6028 
6029 /* unresolved kfunc call special constant, used also for log fixup logic */
6030 #define POISON_CALL_KFUNC_BASE 2002000000
6031 #define POISON_CALL_KFUNC_PFX "2002"
6032 
6033 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6034 			      int insn_idx, struct bpf_insn *insn,
6035 			      int ext_idx, const struct extern_desc *ext)
6036 {
6037 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6038 		 prog->name, relo_idx, insn_idx, ext->name);
6039 
6040 	/* we turn kfunc call into invalid helper call with identifiable constant */
6041 	insn->code = BPF_JMP | BPF_CALL;
6042 	insn->dst_reg = 0;
6043 	insn->src_reg = 0;
6044 	insn->off = 0;
6045 	/* if this instruction is reachable (not a dead code),
6046 	 * verifier will complain with something like:
6047 	 * invalid func unknown#2001000123
6048 	 * where lower 123 is extern index into obj->externs[] array
6049 	 */
6050 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6051 }
6052 
6053 /* Relocate data references within program code:
6054  *  - map references;
6055  *  - global variable references;
6056  *  - extern references.
6057  */
6058 static int
6059 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6060 {
6061 	int i;
6062 
6063 	for (i = 0; i < prog->nr_reloc; i++) {
6064 		struct reloc_desc *relo = &prog->reloc_desc[i];
6065 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6066 		const struct bpf_map *map;
6067 		struct extern_desc *ext;
6068 
6069 		switch (relo->type) {
6070 		case RELO_LD64:
6071 			map = &obj->maps[relo->map_idx];
6072 			if (obj->gen_loader) {
6073 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6074 				insn[0].imm = relo->map_idx;
6075 			} else if (map->autocreate) {
6076 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6077 				insn[0].imm = map->fd;
6078 			} else {
6079 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6080 						   relo->map_idx, map);
6081 			}
6082 			break;
6083 		case RELO_DATA:
6084 			map = &obj->maps[relo->map_idx];
6085 			insn[1].imm = insn[0].imm + relo->sym_off;
6086 			if (obj->gen_loader) {
6087 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6088 				insn[0].imm = relo->map_idx;
6089 			} else if (map->autocreate) {
6090 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6091 				insn[0].imm = map->fd;
6092 			} else {
6093 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6094 						   relo->map_idx, map);
6095 			}
6096 			break;
6097 		case RELO_EXTERN_LD64:
6098 			ext = &obj->externs[relo->ext_idx];
6099 			if (ext->type == EXT_KCFG) {
6100 				if (obj->gen_loader) {
6101 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6102 					insn[0].imm = obj->kconfig_map_idx;
6103 				} else {
6104 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6105 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6106 				}
6107 				insn[1].imm = ext->kcfg.data_off;
6108 			} else /* EXT_KSYM */ {
6109 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6110 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6111 					insn[0].imm = ext->ksym.kernel_btf_id;
6112 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6113 				} else { /* typeless ksyms or unresolved typed ksyms */
6114 					insn[0].imm = (__u32)ext->ksym.addr;
6115 					insn[1].imm = ext->ksym.addr >> 32;
6116 				}
6117 			}
6118 			break;
6119 		case RELO_EXTERN_CALL:
6120 			ext = &obj->externs[relo->ext_idx];
6121 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6122 			if (ext->is_set) {
6123 				insn[0].imm = ext->ksym.kernel_btf_id;
6124 				insn[0].off = ext->ksym.btf_fd_idx;
6125 			} else { /* unresolved weak kfunc call */
6126 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6127 						  relo->ext_idx, ext);
6128 			}
6129 			break;
6130 		case RELO_SUBPROG_ADDR:
6131 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6132 				pr_warn("prog '%s': relo #%d: bad insn\n",
6133 					prog->name, i);
6134 				return -EINVAL;
6135 			}
6136 			/* handled already */
6137 			break;
6138 		case RELO_CALL:
6139 			/* handled already */
6140 			break;
6141 		case RELO_CORE:
6142 			/* will be handled by bpf_program_record_relos() */
6143 			break;
6144 		default:
6145 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6146 				prog->name, i, relo->type);
6147 			return -EINVAL;
6148 		}
6149 	}
6150 
6151 	return 0;
6152 }
6153 
6154 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6155 				    const struct bpf_program *prog,
6156 				    const struct btf_ext_info *ext_info,
6157 				    void **prog_info, __u32 *prog_rec_cnt,
6158 				    __u32 *prog_rec_sz)
6159 {
6160 	void *copy_start = NULL, *copy_end = NULL;
6161 	void *rec, *rec_end, *new_prog_info;
6162 	const struct btf_ext_info_sec *sec;
6163 	size_t old_sz, new_sz;
6164 	int i, sec_num, sec_idx, off_adj;
6165 
6166 	sec_num = 0;
6167 	for_each_btf_ext_sec(ext_info, sec) {
6168 		sec_idx = ext_info->sec_idxs[sec_num];
6169 		sec_num++;
6170 		if (prog->sec_idx != sec_idx)
6171 			continue;
6172 
6173 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6174 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6175 
6176 			if (insn_off < prog->sec_insn_off)
6177 				continue;
6178 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6179 				break;
6180 
6181 			if (!copy_start)
6182 				copy_start = rec;
6183 			copy_end = rec + ext_info->rec_size;
6184 		}
6185 
6186 		if (!copy_start)
6187 			return -ENOENT;
6188 
6189 		/* append func/line info of a given (sub-)program to the main
6190 		 * program func/line info
6191 		 */
6192 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6193 		new_sz = old_sz + (copy_end - copy_start);
6194 		new_prog_info = realloc(*prog_info, new_sz);
6195 		if (!new_prog_info)
6196 			return -ENOMEM;
6197 		*prog_info = new_prog_info;
6198 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6199 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6200 
6201 		/* Kernel instruction offsets are in units of 8-byte
6202 		 * instructions, while .BTF.ext instruction offsets generated
6203 		 * by Clang are in units of bytes. So convert Clang offsets
6204 		 * into kernel offsets and adjust offset according to program
6205 		 * relocated position.
6206 		 */
6207 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6208 		rec = new_prog_info + old_sz;
6209 		rec_end = new_prog_info + new_sz;
6210 		for (; rec < rec_end; rec += ext_info->rec_size) {
6211 			__u32 *insn_off = rec;
6212 
6213 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6214 		}
6215 		*prog_rec_sz = ext_info->rec_size;
6216 		return 0;
6217 	}
6218 
6219 	return -ENOENT;
6220 }
6221 
6222 static int
6223 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6224 			      struct bpf_program *main_prog,
6225 			      const struct bpf_program *prog)
6226 {
6227 	int err;
6228 
6229 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6230 	 * supprot func/line info
6231 	 */
6232 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6233 		return 0;
6234 
6235 	/* only attempt func info relocation if main program's func_info
6236 	 * relocation was successful
6237 	 */
6238 	if (main_prog != prog && !main_prog->func_info)
6239 		goto line_info;
6240 
6241 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6242 				       &main_prog->func_info,
6243 				       &main_prog->func_info_cnt,
6244 				       &main_prog->func_info_rec_size);
6245 	if (err) {
6246 		if (err != -ENOENT) {
6247 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6248 				prog->name, err);
6249 			return err;
6250 		}
6251 		if (main_prog->func_info) {
6252 			/*
6253 			 * Some info has already been found but has problem
6254 			 * in the last btf_ext reloc. Must have to error out.
6255 			 */
6256 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6257 			return err;
6258 		}
6259 		/* Have problem loading the very first info. Ignore the rest. */
6260 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6261 			prog->name);
6262 	}
6263 
6264 line_info:
6265 	/* don't relocate line info if main program's relocation failed */
6266 	if (main_prog != prog && !main_prog->line_info)
6267 		return 0;
6268 
6269 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6270 				       &main_prog->line_info,
6271 				       &main_prog->line_info_cnt,
6272 				       &main_prog->line_info_rec_size);
6273 	if (err) {
6274 		if (err != -ENOENT) {
6275 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6276 				prog->name, err);
6277 			return err;
6278 		}
6279 		if (main_prog->line_info) {
6280 			/*
6281 			 * Some info has already been found but has problem
6282 			 * in the last btf_ext reloc. Must have to error out.
6283 			 */
6284 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6285 			return err;
6286 		}
6287 		/* Have problem loading the very first info. Ignore the rest. */
6288 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6289 			prog->name);
6290 	}
6291 	return 0;
6292 }
6293 
6294 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6295 {
6296 	size_t insn_idx = *(const size_t *)key;
6297 	const struct reloc_desc *relo = elem;
6298 
6299 	if (insn_idx == relo->insn_idx)
6300 		return 0;
6301 	return insn_idx < relo->insn_idx ? -1 : 1;
6302 }
6303 
6304 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6305 {
6306 	if (!prog->nr_reloc)
6307 		return NULL;
6308 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6309 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6310 }
6311 
6312 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6313 {
6314 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6315 	struct reloc_desc *relos;
6316 	int i;
6317 
6318 	if (main_prog == subprog)
6319 		return 0;
6320 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6321 	/* if new count is zero, reallocarray can return a valid NULL result;
6322 	 * in this case the previous pointer will be freed, so we *have to*
6323 	 * reassign old pointer to the new value (even if it's NULL)
6324 	 */
6325 	if (!relos && new_cnt)
6326 		return -ENOMEM;
6327 	if (subprog->nr_reloc)
6328 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6329 		       sizeof(*relos) * subprog->nr_reloc);
6330 
6331 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6332 		relos[i].insn_idx += subprog->sub_insn_off;
6333 	/* After insn_idx adjustment the 'relos' array is still sorted
6334 	 * by insn_idx and doesn't break bsearch.
6335 	 */
6336 	main_prog->reloc_desc = relos;
6337 	main_prog->nr_reloc = new_cnt;
6338 	return 0;
6339 }
6340 
6341 static int
6342 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6343 				struct bpf_program *subprog)
6344 {
6345        struct bpf_insn *insns;
6346        size_t new_cnt;
6347        int err;
6348 
6349        subprog->sub_insn_off = main_prog->insns_cnt;
6350 
6351        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6352        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6353        if (!insns) {
6354                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6355                return -ENOMEM;
6356        }
6357        main_prog->insns = insns;
6358        main_prog->insns_cnt = new_cnt;
6359 
6360        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6361               subprog->insns_cnt * sizeof(*insns));
6362 
6363        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6364                 main_prog->name, subprog->insns_cnt, subprog->name);
6365 
6366        /* The subprog insns are now appended. Append its relos too. */
6367        err = append_subprog_relos(main_prog, subprog);
6368        if (err)
6369                return err;
6370        return 0;
6371 }
6372 
6373 static int
6374 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6375 		       struct bpf_program *prog)
6376 {
6377 	size_t sub_insn_idx, insn_idx;
6378 	struct bpf_program *subprog;
6379 	struct reloc_desc *relo;
6380 	struct bpf_insn *insn;
6381 	int err;
6382 
6383 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6384 	if (err)
6385 		return err;
6386 
6387 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6388 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6389 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6390 			continue;
6391 
6392 		relo = find_prog_insn_relo(prog, insn_idx);
6393 		if (relo && relo->type == RELO_EXTERN_CALL)
6394 			/* kfunc relocations will be handled later
6395 			 * in bpf_object__relocate_data()
6396 			 */
6397 			continue;
6398 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6399 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6400 				prog->name, insn_idx, relo->type);
6401 			return -LIBBPF_ERRNO__RELOC;
6402 		}
6403 		if (relo) {
6404 			/* sub-program instruction index is a combination of
6405 			 * an offset of a symbol pointed to by relocation and
6406 			 * call instruction's imm field; for global functions,
6407 			 * call always has imm = -1, but for static functions
6408 			 * relocation is against STT_SECTION and insn->imm
6409 			 * points to a start of a static function
6410 			 *
6411 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6412 			 * the byte offset in the corresponding section.
6413 			 */
6414 			if (relo->type == RELO_CALL)
6415 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6416 			else
6417 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6418 		} else if (insn_is_pseudo_func(insn)) {
6419 			/*
6420 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6421 			 * functions are in the same section, so it shouldn't reach here.
6422 			 */
6423 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6424 				prog->name, insn_idx);
6425 			return -LIBBPF_ERRNO__RELOC;
6426 		} else {
6427 			/* if subprogram call is to a static function within
6428 			 * the same ELF section, there won't be any relocation
6429 			 * emitted, but it also means there is no additional
6430 			 * offset necessary, insns->imm is relative to
6431 			 * instruction's original position within the section
6432 			 */
6433 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6434 		}
6435 
6436 		/* we enforce that sub-programs should be in .text section */
6437 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6438 		if (!subprog) {
6439 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6440 				prog->name);
6441 			return -LIBBPF_ERRNO__RELOC;
6442 		}
6443 
6444 		/* if it's the first call instruction calling into this
6445 		 * subprogram (meaning this subprog hasn't been processed
6446 		 * yet) within the context of current main program:
6447 		 *   - append it at the end of main program's instructions blog;
6448 		 *   - process is recursively, while current program is put on hold;
6449 		 *   - if that subprogram calls some other not yet processes
6450 		 *   subprogram, same thing will happen recursively until
6451 		 *   there are no more unprocesses subprograms left to append
6452 		 *   and relocate.
6453 		 */
6454 		if (subprog->sub_insn_off == 0) {
6455 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6456 			if (err)
6457 				return err;
6458 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6459 			if (err)
6460 				return err;
6461 		}
6462 
6463 		/* main_prog->insns memory could have been re-allocated, so
6464 		 * calculate pointer again
6465 		 */
6466 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6467 		/* calculate correct instruction position within current main
6468 		 * prog; each main prog can have a different set of
6469 		 * subprograms appended (potentially in different order as
6470 		 * well), so position of any subprog can be different for
6471 		 * different main programs
6472 		 */
6473 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6474 
6475 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6476 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6477 	}
6478 
6479 	return 0;
6480 }
6481 
6482 /*
6483  * Relocate sub-program calls.
6484  *
6485  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6486  * main prog) is processed separately. For each subprog (non-entry functions,
6487  * that can be called from either entry progs or other subprogs) gets their
6488  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6489  * hasn't been yet appended and relocated within current main prog. Once its
6490  * relocated, sub_insn_off will point at the position within current main prog
6491  * where given subprog was appended. This will further be used to relocate all
6492  * the call instructions jumping into this subprog.
6493  *
6494  * We start with main program and process all call instructions. If the call
6495  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6496  * is zero), subprog instructions are appended at the end of main program's
6497  * instruction array. Then main program is "put on hold" while we recursively
6498  * process newly appended subprogram. If that subprogram calls into another
6499  * subprogram that hasn't been appended, new subprogram is appended again to
6500  * the *main* prog's instructions (subprog's instructions are always left
6501  * untouched, as they need to be in unmodified state for subsequent main progs
6502  * and subprog instructions are always sent only as part of a main prog) and
6503  * the process continues recursively. Once all the subprogs called from a main
6504  * prog or any of its subprogs are appended (and relocated), all their
6505  * positions within finalized instructions array are known, so it's easy to
6506  * rewrite call instructions with correct relative offsets, corresponding to
6507  * desired target subprog.
6508  *
6509  * Its important to realize that some subprogs might not be called from some
6510  * main prog and any of its called/used subprogs. Those will keep their
6511  * subprog->sub_insn_off as zero at all times and won't be appended to current
6512  * main prog and won't be relocated within the context of current main prog.
6513  * They might still be used from other main progs later.
6514  *
6515  * Visually this process can be shown as below. Suppose we have two main
6516  * programs mainA and mainB and BPF object contains three subprogs: subA,
6517  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6518  * subC both call subB:
6519  *
6520  *        +--------+ +-------+
6521  *        |        v v       |
6522  *     +--+---+ +--+-+-+ +---+--+
6523  *     | subA | | subB | | subC |
6524  *     +--+---+ +------+ +---+--+
6525  *        ^                  ^
6526  *        |                  |
6527  *    +---+-------+   +------+----+
6528  *    |   mainA   |   |   mainB   |
6529  *    +-----------+   +-----------+
6530  *
6531  * We'll start relocating mainA, will find subA, append it and start
6532  * processing sub A recursively:
6533  *
6534  *    +-----------+------+
6535  *    |   mainA   | subA |
6536  *    +-----------+------+
6537  *
6538  * At this point we notice that subB is used from subA, so we append it and
6539  * relocate (there are no further subcalls from subB):
6540  *
6541  *    +-----------+------+------+
6542  *    |   mainA   | subA | subB |
6543  *    +-----------+------+------+
6544  *
6545  * At this point, we relocate subA calls, then go one level up and finish with
6546  * relocatin mainA calls. mainA is done.
6547  *
6548  * For mainB process is similar but results in different order. We start with
6549  * mainB and skip subA and subB, as mainB never calls them (at least
6550  * directly), but we see subC is needed, so we append and start processing it:
6551  *
6552  *    +-----------+------+
6553  *    |   mainB   | subC |
6554  *    +-----------+------+
6555  * Now we see subC needs subB, so we go back to it, append and relocate it:
6556  *
6557  *    +-----------+------+------+
6558  *    |   mainB   | subC | subB |
6559  *    +-----------+------+------+
6560  *
6561  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6562  */
6563 static int
6564 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6565 {
6566 	struct bpf_program *subprog;
6567 	int i, err;
6568 
6569 	/* mark all subprogs as not relocated (yet) within the context of
6570 	 * current main program
6571 	 */
6572 	for (i = 0; i < obj->nr_programs; i++) {
6573 		subprog = &obj->programs[i];
6574 		if (!prog_is_subprog(obj, subprog))
6575 			continue;
6576 
6577 		subprog->sub_insn_off = 0;
6578 	}
6579 
6580 	err = bpf_object__reloc_code(obj, prog, prog);
6581 	if (err)
6582 		return err;
6583 
6584 	return 0;
6585 }
6586 
6587 static void
6588 bpf_object__free_relocs(struct bpf_object *obj)
6589 {
6590 	struct bpf_program *prog;
6591 	int i;
6592 
6593 	/* free up relocation descriptors */
6594 	for (i = 0; i < obj->nr_programs; i++) {
6595 		prog = &obj->programs[i];
6596 		zfree(&prog->reloc_desc);
6597 		prog->nr_reloc = 0;
6598 	}
6599 }
6600 
6601 static int cmp_relocs(const void *_a, const void *_b)
6602 {
6603 	const struct reloc_desc *a = _a;
6604 	const struct reloc_desc *b = _b;
6605 
6606 	if (a->insn_idx != b->insn_idx)
6607 		return a->insn_idx < b->insn_idx ? -1 : 1;
6608 
6609 	/* no two relocations should have the same insn_idx, but ... */
6610 	if (a->type != b->type)
6611 		return a->type < b->type ? -1 : 1;
6612 
6613 	return 0;
6614 }
6615 
6616 static void bpf_object__sort_relos(struct bpf_object *obj)
6617 {
6618 	int i;
6619 
6620 	for (i = 0; i < obj->nr_programs; i++) {
6621 		struct bpf_program *p = &obj->programs[i];
6622 
6623 		if (!p->nr_reloc)
6624 			continue;
6625 
6626 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6627 	}
6628 }
6629 
6630 static int
6631 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6632 {
6633 	struct bpf_program *prog;
6634 	size_t i, j;
6635 	int err;
6636 
6637 	if (obj->btf_ext) {
6638 		err = bpf_object__relocate_core(obj, targ_btf_path);
6639 		if (err) {
6640 			pr_warn("failed to perform CO-RE relocations: %d\n",
6641 				err);
6642 			return err;
6643 		}
6644 		bpf_object__sort_relos(obj);
6645 	}
6646 
6647 	/* Before relocating calls pre-process relocations and mark
6648 	 * few ld_imm64 instructions that points to subprogs.
6649 	 * Otherwise bpf_object__reloc_code() later would have to consider
6650 	 * all ld_imm64 insns as relocation candidates. That would
6651 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6652 	 * would increase and most of them will fail to find a relo.
6653 	 */
6654 	for (i = 0; i < obj->nr_programs; i++) {
6655 		prog = &obj->programs[i];
6656 		for (j = 0; j < prog->nr_reloc; j++) {
6657 			struct reloc_desc *relo = &prog->reloc_desc[j];
6658 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6659 
6660 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6661 			if (relo->type == RELO_SUBPROG_ADDR)
6662 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6663 		}
6664 	}
6665 
6666 	/* relocate subprogram calls and append used subprograms to main
6667 	 * programs; each copy of subprogram code needs to be relocated
6668 	 * differently for each main program, because its code location might
6669 	 * have changed.
6670 	 * Append subprog relos to main programs to allow data relos to be
6671 	 * processed after text is completely relocated.
6672 	 */
6673 	for (i = 0; i < obj->nr_programs; i++) {
6674 		prog = &obj->programs[i];
6675 		/* sub-program's sub-calls are relocated within the context of
6676 		 * its main program only
6677 		 */
6678 		if (prog_is_subprog(obj, prog))
6679 			continue;
6680 		if (!prog->autoload)
6681 			continue;
6682 
6683 		err = bpf_object__relocate_calls(obj, prog);
6684 		if (err) {
6685 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6686 				prog->name, err);
6687 			return err;
6688 		}
6689 
6690 		/* Now, also append exception callback if it has not been done already. */
6691 		if (prog->exception_cb_idx >= 0) {
6692 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
6693 
6694 			/* Calling exception callback directly is disallowed, which the
6695 			 * verifier will reject later. In case it was processed already,
6696 			 * we can skip this step, otherwise for all other valid cases we
6697 			 * have to append exception callback now.
6698 			 */
6699 			if (subprog->sub_insn_off == 0) {
6700 				err = bpf_object__append_subprog_code(obj, prog, subprog);
6701 				if (err)
6702 					return err;
6703 				err = bpf_object__reloc_code(obj, prog, subprog);
6704 				if (err)
6705 					return err;
6706 			}
6707 		}
6708 	}
6709 	/* Process data relos for main programs */
6710 	for (i = 0; i < obj->nr_programs; i++) {
6711 		prog = &obj->programs[i];
6712 		if (prog_is_subprog(obj, prog))
6713 			continue;
6714 		if (!prog->autoload)
6715 			continue;
6716 		err = bpf_object__relocate_data(obj, prog);
6717 		if (err) {
6718 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6719 				prog->name, err);
6720 			return err;
6721 		}
6722 	}
6723 
6724 	return 0;
6725 }
6726 
6727 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6728 					    Elf64_Shdr *shdr, Elf_Data *data);
6729 
6730 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6731 					 Elf64_Shdr *shdr, Elf_Data *data)
6732 {
6733 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6734 	int i, j, nrels, new_sz;
6735 	const struct btf_var_secinfo *vi = NULL;
6736 	const struct btf_type *sec, *var, *def;
6737 	struct bpf_map *map = NULL, *targ_map = NULL;
6738 	struct bpf_program *targ_prog = NULL;
6739 	bool is_prog_array, is_map_in_map;
6740 	const struct btf_member *member;
6741 	const char *name, *mname, *type;
6742 	unsigned int moff;
6743 	Elf64_Sym *sym;
6744 	Elf64_Rel *rel;
6745 	void *tmp;
6746 
6747 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6748 		return -EINVAL;
6749 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6750 	if (!sec)
6751 		return -EINVAL;
6752 
6753 	nrels = shdr->sh_size / shdr->sh_entsize;
6754 	for (i = 0; i < nrels; i++) {
6755 		rel = elf_rel_by_idx(data, i);
6756 		if (!rel) {
6757 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6758 			return -LIBBPF_ERRNO__FORMAT;
6759 		}
6760 
6761 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6762 		if (!sym) {
6763 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6764 				i, (size_t)ELF64_R_SYM(rel->r_info));
6765 			return -LIBBPF_ERRNO__FORMAT;
6766 		}
6767 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6768 
6769 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6770 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6771 			 (size_t)rel->r_offset, sym->st_name, name);
6772 
6773 		for (j = 0; j < obj->nr_maps; j++) {
6774 			map = &obj->maps[j];
6775 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6776 				continue;
6777 
6778 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6779 			if (vi->offset <= rel->r_offset &&
6780 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6781 				break;
6782 		}
6783 		if (j == obj->nr_maps) {
6784 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6785 				i, name, (size_t)rel->r_offset);
6786 			return -EINVAL;
6787 		}
6788 
6789 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6790 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6791 		type = is_map_in_map ? "map" : "prog";
6792 		if (is_map_in_map) {
6793 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6794 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6795 					i, name);
6796 				return -LIBBPF_ERRNO__RELOC;
6797 			}
6798 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6799 			    map->def.key_size != sizeof(int)) {
6800 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6801 					i, map->name, sizeof(int));
6802 				return -EINVAL;
6803 			}
6804 			targ_map = bpf_object__find_map_by_name(obj, name);
6805 			if (!targ_map) {
6806 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6807 					i, name);
6808 				return -ESRCH;
6809 			}
6810 		} else if (is_prog_array) {
6811 			targ_prog = bpf_object__find_program_by_name(obj, name);
6812 			if (!targ_prog) {
6813 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6814 					i, name);
6815 				return -ESRCH;
6816 			}
6817 			if (targ_prog->sec_idx != sym->st_shndx ||
6818 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6819 			    prog_is_subprog(obj, targ_prog)) {
6820 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6821 					i, name);
6822 				return -LIBBPF_ERRNO__RELOC;
6823 			}
6824 		} else {
6825 			return -EINVAL;
6826 		}
6827 
6828 		var = btf__type_by_id(obj->btf, vi->type);
6829 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6830 		if (btf_vlen(def) == 0)
6831 			return -EINVAL;
6832 		member = btf_members(def) + btf_vlen(def) - 1;
6833 		mname = btf__name_by_offset(obj->btf, member->name_off);
6834 		if (strcmp(mname, "values"))
6835 			return -EINVAL;
6836 
6837 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6838 		if (rel->r_offset - vi->offset < moff)
6839 			return -EINVAL;
6840 
6841 		moff = rel->r_offset - vi->offset - moff;
6842 		/* here we use BPF pointer size, which is always 64 bit, as we
6843 		 * are parsing ELF that was built for BPF target
6844 		 */
6845 		if (moff % bpf_ptr_sz)
6846 			return -EINVAL;
6847 		moff /= bpf_ptr_sz;
6848 		if (moff >= map->init_slots_sz) {
6849 			new_sz = moff + 1;
6850 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6851 			if (!tmp)
6852 				return -ENOMEM;
6853 			map->init_slots = tmp;
6854 			memset(map->init_slots + map->init_slots_sz, 0,
6855 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6856 			map->init_slots_sz = new_sz;
6857 		}
6858 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6859 
6860 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6861 			 i, map->name, moff, type, name);
6862 	}
6863 
6864 	return 0;
6865 }
6866 
6867 static int bpf_object__collect_relos(struct bpf_object *obj)
6868 {
6869 	int i, err;
6870 
6871 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6872 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6873 		Elf64_Shdr *shdr;
6874 		Elf_Data *data;
6875 		int idx;
6876 
6877 		if (sec_desc->sec_type != SEC_RELO)
6878 			continue;
6879 
6880 		shdr = sec_desc->shdr;
6881 		data = sec_desc->data;
6882 		idx = shdr->sh_info;
6883 
6884 		if (shdr->sh_type != SHT_REL) {
6885 			pr_warn("internal error at %d\n", __LINE__);
6886 			return -LIBBPF_ERRNO__INTERNAL;
6887 		}
6888 
6889 		if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6890 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6891 		else if (idx == obj->efile.btf_maps_shndx)
6892 			err = bpf_object__collect_map_relos(obj, shdr, data);
6893 		else
6894 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6895 		if (err)
6896 			return err;
6897 	}
6898 
6899 	bpf_object__sort_relos(obj);
6900 	return 0;
6901 }
6902 
6903 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6904 {
6905 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6906 	    BPF_OP(insn->code) == BPF_CALL &&
6907 	    BPF_SRC(insn->code) == BPF_K &&
6908 	    insn->src_reg == 0 &&
6909 	    insn->dst_reg == 0) {
6910 		    *func_id = insn->imm;
6911 		    return true;
6912 	}
6913 	return false;
6914 }
6915 
6916 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6917 {
6918 	struct bpf_insn *insn = prog->insns;
6919 	enum bpf_func_id func_id;
6920 	int i;
6921 
6922 	if (obj->gen_loader)
6923 		return 0;
6924 
6925 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6926 		if (!insn_is_helper_call(insn, &func_id))
6927 			continue;
6928 
6929 		/* on kernels that don't yet support
6930 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6931 		 * to bpf_probe_read() which works well for old kernels
6932 		 */
6933 		switch (func_id) {
6934 		case BPF_FUNC_probe_read_kernel:
6935 		case BPF_FUNC_probe_read_user:
6936 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6937 				insn->imm = BPF_FUNC_probe_read;
6938 			break;
6939 		case BPF_FUNC_probe_read_kernel_str:
6940 		case BPF_FUNC_probe_read_user_str:
6941 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6942 				insn->imm = BPF_FUNC_probe_read_str;
6943 			break;
6944 		default:
6945 			break;
6946 		}
6947 	}
6948 	return 0;
6949 }
6950 
6951 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6952 				     int *btf_obj_fd, int *btf_type_id);
6953 
6954 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6955 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6956 				    struct bpf_prog_load_opts *opts, long cookie)
6957 {
6958 	enum sec_def_flags def = cookie;
6959 
6960 	/* old kernels might not support specifying expected_attach_type */
6961 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6962 		opts->expected_attach_type = 0;
6963 
6964 	if (def & SEC_SLEEPABLE)
6965 		opts->prog_flags |= BPF_F_SLEEPABLE;
6966 
6967 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6968 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6969 
6970 	/* special check for usdt to use uprobe_multi link */
6971 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
6972 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6973 
6974 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6975 		int btf_obj_fd = 0, btf_type_id = 0, err;
6976 		const char *attach_name;
6977 
6978 		attach_name = strchr(prog->sec_name, '/');
6979 		if (!attach_name) {
6980 			/* if BPF program is annotated with just SEC("fentry")
6981 			 * (or similar) without declaratively specifying
6982 			 * target, then it is expected that target will be
6983 			 * specified with bpf_program__set_attach_target() at
6984 			 * runtime before BPF object load step. If not, then
6985 			 * there is nothing to load into the kernel as BPF
6986 			 * verifier won't be able to validate BPF program
6987 			 * correctness anyways.
6988 			 */
6989 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6990 				prog->name);
6991 			return -EINVAL;
6992 		}
6993 		attach_name++; /* skip over / */
6994 
6995 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6996 		if (err)
6997 			return err;
6998 
6999 		/* cache resolved BTF FD and BTF type ID in the prog */
7000 		prog->attach_btf_obj_fd = btf_obj_fd;
7001 		prog->attach_btf_id = btf_type_id;
7002 
7003 		/* but by now libbpf common logic is not utilizing
7004 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7005 		 * this callback is called after opts were populated by
7006 		 * libbpf, so this callback has to update opts explicitly here
7007 		 */
7008 		opts->attach_btf_obj_fd = btf_obj_fd;
7009 		opts->attach_btf_id = btf_type_id;
7010 	}
7011 	return 0;
7012 }
7013 
7014 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7015 
7016 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7017 				struct bpf_insn *insns, int insns_cnt,
7018 				const char *license, __u32 kern_version, int *prog_fd)
7019 {
7020 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7021 	const char *prog_name = NULL;
7022 	char *cp, errmsg[STRERR_BUFSIZE];
7023 	size_t log_buf_size = 0;
7024 	char *log_buf = NULL, *tmp;
7025 	int btf_fd, ret, err;
7026 	bool own_log_buf = true;
7027 	__u32 log_level = prog->log_level;
7028 
7029 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7030 		/*
7031 		 * The program type must be set.  Most likely we couldn't find a proper
7032 		 * section definition at load time, and thus we didn't infer the type.
7033 		 */
7034 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7035 			prog->name, prog->sec_name);
7036 		return -EINVAL;
7037 	}
7038 
7039 	if (!insns || !insns_cnt)
7040 		return -EINVAL;
7041 
7042 	if (kernel_supports(obj, FEAT_PROG_NAME))
7043 		prog_name = prog->name;
7044 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7045 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7046 	load_attr.attach_btf_id = prog->attach_btf_id;
7047 	load_attr.kern_version = kern_version;
7048 	load_attr.prog_ifindex = prog->prog_ifindex;
7049 
7050 	/* specify func_info/line_info only if kernel supports them */
7051 	btf_fd = bpf_object__btf_fd(obj);
7052 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7053 		load_attr.prog_btf_fd = btf_fd;
7054 		load_attr.func_info = prog->func_info;
7055 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7056 		load_attr.func_info_cnt = prog->func_info_cnt;
7057 		load_attr.line_info = prog->line_info;
7058 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7059 		load_attr.line_info_cnt = prog->line_info_cnt;
7060 	}
7061 	load_attr.log_level = log_level;
7062 	load_attr.prog_flags = prog->prog_flags;
7063 	load_attr.fd_array = obj->fd_array;
7064 
7065 	/* adjust load_attr if sec_def provides custom preload callback */
7066 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7067 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7068 		if (err < 0) {
7069 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7070 				prog->name, err);
7071 			return err;
7072 		}
7073 		insns = prog->insns;
7074 		insns_cnt = prog->insns_cnt;
7075 	}
7076 
7077 	/* allow prog_prepare_load_fn to change expected_attach_type */
7078 	load_attr.expected_attach_type = prog->expected_attach_type;
7079 
7080 	if (obj->gen_loader) {
7081 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7082 				   license, insns, insns_cnt, &load_attr,
7083 				   prog - obj->programs);
7084 		*prog_fd = -1;
7085 		return 0;
7086 	}
7087 
7088 retry_load:
7089 	/* if log_level is zero, we don't request logs initially even if
7090 	 * custom log_buf is specified; if the program load fails, then we'll
7091 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7092 	 * our own and retry the load to get details on what failed
7093 	 */
7094 	if (log_level) {
7095 		if (prog->log_buf) {
7096 			log_buf = prog->log_buf;
7097 			log_buf_size = prog->log_size;
7098 			own_log_buf = false;
7099 		} else if (obj->log_buf) {
7100 			log_buf = obj->log_buf;
7101 			log_buf_size = obj->log_size;
7102 			own_log_buf = false;
7103 		} else {
7104 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7105 			tmp = realloc(log_buf, log_buf_size);
7106 			if (!tmp) {
7107 				ret = -ENOMEM;
7108 				goto out;
7109 			}
7110 			log_buf = tmp;
7111 			log_buf[0] = '\0';
7112 			own_log_buf = true;
7113 		}
7114 	}
7115 
7116 	load_attr.log_buf = log_buf;
7117 	load_attr.log_size = log_buf_size;
7118 	load_attr.log_level = log_level;
7119 
7120 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7121 	if (ret >= 0) {
7122 		if (log_level && own_log_buf) {
7123 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7124 				 prog->name, log_buf);
7125 		}
7126 
7127 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7128 			struct bpf_map *map;
7129 			int i;
7130 
7131 			for (i = 0; i < obj->nr_maps; i++) {
7132 				map = &prog->obj->maps[i];
7133 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7134 					continue;
7135 
7136 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7137 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7138 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7139 						prog->name, map->real_name, cp);
7140 					/* Don't fail hard if can't bind rodata. */
7141 				}
7142 			}
7143 		}
7144 
7145 		*prog_fd = ret;
7146 		ret = 0;
7147 		goto out;
7148 	}
7149 
7150 	if (log_level == 0) {
7151 		log_level = 1;
7152 		goto retry_load;
7153 	}
7154 	/* On ENOSPC, increase log buffer size and retry, unless custom
7155 	 * log_buf is specified.
7156 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7157 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7158 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7159 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7160 	 */
7161 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7162 		goto retry_load;
7163 
7164 	ret = -errno;
7165 
7166 	/* post-process verifier log to improve error descriptions */
7167 	fixup_verifier_log(prog, log_buf, log_buf_size);
7168 
7169 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7170 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7171 	pr_perm_msg(ret);
7172 
7173 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7174 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7175 			prog->name, log_buf);
7176 	}
7177 
7178 out:
7179 	if (own_log_buf)
7180 		free(log_buf);
7181 	return ret;
7182 }
7183 
7184 static char *find_prev_line(char *buf, char *cur)
7185 {
7186 	char *p;
7187 
7188 	if (cur == buf) /* end of a log buf */
7189 		return NULL;
7190 
7191 	p = cur - 1;
7192 	while (p - 1 >= buf && *(p - 1) != '\n')
7193 		p--;
7194 
7195 	return p;
7196 }
7197 
7198 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7199 		      char *orig, size_t orig_sz, const char *patch)
7200 {
7201 	/* size of the remaining log content to the right from the to-be-replaced part */
7202 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7203 	size_t patch_sz = strlen(patch);
7204 
7205 	if (patch_sz != orig_sz) {
7206 		/* If patch line(s) are longer than original piece of verifier log,
7207 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7208 		 * starting from after to-be-replaced part of the log.
7209 		 *
7210 		 * If patch line(s) are shorter than original piece of verifier log,
7211 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7212 		 * starting from after to-be-replaced part of the log
7213 		 *
7214 		 * We need to be careful about not overflowing available
7215 		 * buf_sz capacity. If that's the case, we'll truncate the end
7216 		 * of the original log, as necessary.
7217 		 */
7218 		if (patch_sz > orig_sz) {
7219 			if (orig + patch_sz >= buf + buf_sz) {
7220 				/* patch is big enough to cover remaining space completely */
7221 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7222 				rem_sz = 0;
7223 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7224 				/* patch causes part of remaining log to be truncated */
7225 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7226 			}
7227 		}
7228 		/* shift remaining log to the right by calculated amount */
7229 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7230 	}
7231 
7232 	memcpy(orig, patch, patch_sz);
7233 }
7234 
7235 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7236 				       char *buf, size_t buf_sz, size_t log_sz,
7237 				       char *line1, char *line2, char *line3)
7238 {
7239 	/* Expected log for failed and not properly guarded CO-RE relocation:
7240 	 * line1 -> 123: (85) call unknown#195896080
7241 	 * line2 -> invalid func unknown#195896080
7242 	 * line3 -> <anything else or end of buffer>
7243 	 *
7244 	 * "123" is the index of the instruction that was poisoned. We extract
7245 	 * instruction index to find corresponding CO-RE relocation and
7246 	 * replace this part of the log with more relevant information about
7247 	 * failed CO-RE relocation.
7248 	 */
7249 	const struct bpf_core_relo *relo;
7250 	struct bpf_core_spec spec;
7251 	char patch[512], spec_buf[256];
7252 	int insn_idx, err, spec_len;
7253 
7254 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7255 		return;
7256 
7257 	relo = find_relo_core(prog, insn_idx);
7258 	if (!relo)
7259 		return;
7260 
7261 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7262 	if (err)
7263 		return;
7264 
7265 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7266 	snprintf(patch, sizeof(patch),
7267 		 "%d: <invalid CO-RE relocation>\n"
7268 		 "failed to resolve CO-RE relocation %s%s\n",
7269 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7270 
7271 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7272 }
7273 
7274 static void fixup_log_missing_map_load(struct bpf_program *prog,
7275 				       char *buf, size_t buf_sz, size_t log_sz,
7276 				       char *line1, char *line2, char *line3)
7277 {
7278 	/* Expected log for failed and not properly guarded map reference:
7279 	 * line1 -> 123: (85) call unknown#2001000345
7280 	 * line2 -> invalid func unknown#2001000345
7281 	 * line3 -> <anything else or end of buffer>
7282 	 *
7283 	 * "123" is the index of the instruction that was poisoned.
7284 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7285 	 */
7286 	struct bpf_object *obj = prog->obj;
7287 	const struct bpf_map *map;
7288 	int insn_idx, map_idx;
7289 	char patch[128];
7290 
7291 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7292 		return;
7293 
7294 	map_idx -= POISON_LDIMM64_MAP_BASE;
7295 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7296 		return;
7297 	map = &obj->maps[map_idx];
7298 
7299 	snprintf(patch, sizeof(patch),
7300 		 "%d: <invalid BPF map reference>\n"
7301 		 "BPF map '%s' is referenced but wasn't created\n",
7302 		 insn_idx, map->name);
7303 
7304 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7305 }
7306 
7307 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7308 					 char *buf, size_t buf_sz, size_t log_sz,
7309 					 char *line1, char *line2, char *line3)
7310 {
7311 	/* Expected log for failed and not properly guarded kfunc call:
7312 	 * line1 -> 123: (85) call unknown#2002000345
7313 	 * line2 -> invalid func unknown#2002000345
7314 	 * line3 -> <anything else or end of buffer>
7315 	 *
7316 	 * "123" is the index of the instruction that was poisoned.
7317 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7318 	 */
7319 	struct bpf_object *obj = prog->obj;
7320 	const struct extern_desc *ext;
7321 	int insn_idx, ext_idx;
7322 	char patch[128];
7323 
7324 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7325 		return;
7326 
7327 	ext_idx -= POISON_CALL_KFUNC_BASE;
7328 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7329 		return;
7330 	ext = &obj->externs[ext_idx];
7331 
7332 	snprintf(patch, sizeof(patch),
7333 		 "%d: <invalid kfunc call>\n"
7334 		 "kfunc '%s' is referenced but wasn't resolved\n",
7335 		 insn_idx, ext->name);
7336 
7337 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7338 }
7339 
7340 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7341 {
7342 	/* look for familiar error patterns in last N lines of the log */
7343 	const size_t max_last_line_cnt = 10;
7344 	char *prev_line, *cur_line, *next_line;
7345 	size_t log_sz;
7346 	int i;
7347 
7348 	if (!buf)
7349 		return;
7350 
7351 	log_sz = strlen(buf) + 1;
7352 	next_line = buf + log_sz - 1;
7353 
7354 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7355 		cur_line = find_prev_line(buf, next_line);
7356 		if (!cur_line)
7357 			return;
7358 
7359 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7360 			prev_line = find_prev_line(buf, cur_line);
7361 			if (!prev_line)
7362 				continue;
7363 
7364 			/* failed CO-RE relocation case */
7365 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7366 						   prev_line, cur_line, next_line);
7367 			return;
7368 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7369 			prev_line = find_prev_line(buf, cur_line);
7370 			if (!prev_line)
7371 				continue;
7372 
7373 			/* reference to uncreated BPF map */
7374 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7375 						   prev_line, cur_line, next_line);
7376 			return;
7377 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7378 			prev_line = find_prev_line(buf, cur_line);
7379 			if (!prev_line)
7380 				continue;
7381 
7382 			/* reference to unresolved kfunc */
7383 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7384 						     prev_line, cur_line, next_line);
7385 			return;
7386 		}
7387 	}
7388 }
7389 
7390 static int bpf_program_record_relos(struct bpf_program *prog)
7391 {
7392 	struct bpf_object *obj = prog->obj;
7393 	int i;
7394 
7395 	for (i = 0; i < prog->nr_reloc; i++) {
7396 		struct reloc_desc *relo = &prog->reloc_desc[i];
7397 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7398 		int kind;
7399 
7400 		switch (relo->type) {
7401 		case RELO_EXTERN_LD64:
7402 			if (ext->type != EXT_KSYM)
7403 				continue;
7404 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7405 				BTF_KIND_VAR : BTF_KIND_FUNC;
7406 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7407 					       ext->is_weak, !ext->ksym.type_id,
7408 					       true, kind, relo->insn_idx);
7409 			break;
7410 		case RELO_EXTERN_CALL:
7411 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7412 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7413 					       relo->insn_idx);
7414 			break;
7415 		case RELO_CORE: {
7416 			struct bpf_core_relo cr = {
7417 				.insn_off = relo->insn_idx * 8,
7418 				.type_id = relo->core_relo->type_id,
7419 				.access_str_off = relo->core_relo->access_str_off,
7420 				.kind = relo->core_relo->kind,
7421 			};
7422 
7423 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7424 			break;
7425 		}
7426 		default:
7427 			continue;
7428 		}
7429 	}
7430 	return 0;
7431 }
7432 
7433 static int
7434 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7435 {
7436 	struct bpf_program *prog;
7437 	size_t i;
7438 	int err;
7439 
7440 	for (i = 0; i < obj->nr_programs; i++) {
7441 		prog = &obj->programs[i];
7442 		err = bpf_object__sanitize_prog(obj, prog);
7443 		if (err)
7444 			return err;
7445 	}
7446 
7447 	for (i = 0; i < obj->nr_programs; i++) {
7448 		prog = &obj->programs[i];
7449 		if (prog_is_subprog(obj, prog))
7450 			continue;
7451 		if (!prog->autoload) {
7452 			pr_debug("prog '%s': skipped loading\n", prog->name);
7453 			continue;
7454 		}
7455 		prog->log_level |= log_level;
7456 
7457 		if (obj->gen_loader)
7458 			bpf_program_record_relos(prog);
7459 
7460 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7461 					   obj->license, obj->kern_version, &prog->fd);
7462 		if (err) {
7463 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7464 			return err;
7465 		}
7466 	}
7467 
7468 	bpf_object__free_relocs(obj);
7469 	return 0;
7470 }
7471 
7472 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7473 
7474 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7475 {
7476 	struct bpf_program *prog;
7477 	int err;
7478 
7479 	bpf_object__for_each_program(prog, obj) {
7480 		prog->sec_def = find_sec_def(prog->sec_name);
7481 		if (!prog->sec_def) {
7482 			/* couldn't guess, but user might manually specify */
7483 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7484 				prog->name, prog->sec_name);
7485 			continue;
7486 		}
7487 
7488 		prog->type = prog->sec_def->prog_type;
7489 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7490 
7491 		/* sec_def can have custom callback which should be called
7492 		 * after bpf_program is initialized to adjust its properties
7493 		 */
7494 		if (prog->sec_def->prog_setup_fn) {
7495 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7496 			if (err < 0) {
7497 				pr_warn("prog '%s': failed to initialize: %d\n",
7498 					prog->name, err);
7499 				return err;
7500 			}
7501 		}
7502 	}
7503 
7504 	return 0;
7505 }
7506 
7507 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7508 					  const struct bpf_object_open_opts *opts)
7509 {
7510 	const char *obj_name, *kconfig, *btf_tmp_path;
7511 	struct bpf_object *obj;
7512 	char tmp_name[64];
7513 	int err;
7514 	char *log_buf;
7515 	size_t log_size;
7516 	__u32 log_level;
7517 
7518 	if (elf_version(EV_CURRENT) == EV_NONE) {
7519 		pr_warn("failed to init libelf for %s\n",
7520 			path ? : "(mem buf)");
7521 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7522 	}
7523 
7524 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7525 		return ERR_PTR(-EINVAL);
7526 
7527 	obj_name = OPTS_GET(opts, object_name, NULL);
7528 	if (obj_buf) {
7529 		if (!obj_name) {
7530 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7531 				 (unsigned long)obj_buf,
7532 				 (unsigned long)obj_buf_sz);
7533 			obj_name = tmp_name;
7534 		}
7535 		path = obj_name;
7536 		pr_debug("loading object '%s' from buffer\n", obj_name);
7537 	}
7538 
7539 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7540 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7541 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7542 	if (log_size > UINT_MAX)
7543 		return ERR_PTR(-EINVAL);
7544 	if (log_size && !log_buf)
7545 		return ERR_PTR(-EINVAL);
7546 
7547 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7548 	if (IS_ERR(obj))
7549 		return obj;
7550 
7551 	obj->log_buf = log_buf;
7552 	obj->log_size = log_size;
7553 	obj->log_level = log_level;
7554 
7555 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7556 	if (btf_tmp_path) {
7557 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7558 			err = -ENAMETOOLONG;
7559 			goto out;
7560 		}
7561 		obj->btf_custom_path = strdup(btf_tmp_path);
7562 		if (!obj->btf_custom_path) {
7563 			err = -ENOMEM;
7564 			goto out;
7565 		}
7566 	}
7567 
7568 	kconfig = OPTS_GET(opts, kconfig, NULL);
7569 	if (kconfig) {
7570 		obj->kconfig = strdup(kconfig);
7571 		if (!obj->kconfig) {
7572 			err = -ENOMEM;
7573 			goto out;
7574 		}
7575 	}
7576 
7577 	err = bpf_object__elf_init(obj);
7578 	err = err ? : bpf_object__check_endianness(obj);
7579 	err = err ? : bpf_object__elf_collect(obj);
7580 	err = err ? : bpf_object__collect_externs(obj);
7581 	err = err ? : bpf_object_fixup_btf(obj);
7582 	err = err ? : bpf_object__init_maps(obj, opts);
7583 	err = err ? : bpf_object_init_progs(obj, opts);
7584 	err = err ? : bpf_object__collect_relos(obj);
7585 	if (err)
7586 		goto out;
7587 
7588 	bpf_object__elf_finish(obj);
7589 
7590 	return obj;
7591 out:
7592 	bpf_object__close(obj);
7593 	return ERR_PTR(err);
7594 }
7595 
7596 struct bpf_object *
7597 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7598 {
7599 	if (!path)
7600 		return libbpf_err_ptr(-EINVAL);
7601 
7602 	pr_debug("loading %s\n", path);
7603 
7604 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7605 }
7606 
7607 struct bpf_object *bpf_object__open(const char *path)
7608 {
7609 	return bpf_object__open_file(path, NULL);
7610 }
7611 
7612 struct bpf_object *
7613 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7614 		     const struct bpf_object_open_opts *opts)
7615 {
7616 	if (!obj_buf || obj_buf_sz == 0)
7617 		return libbpf_err_ptr(-EINVAL);
7618 
7619 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7620 }
7621 
7622 static int bpf_object_unload(struct bpf_object *obj)
7623 {
7624 	size_t i;
7625 
7626 	if (!obj)
7627 		return libbpf_err(-EINVAL);
7628 
7629 	for (i = 0; i < obj->nr_maps; i++) {
7630 		zclose(obj->maps[i].fd);
7631 		if (obj->maps[i].st_ops)
7632 			zfree(&obj->maps[i].st_ops->kern_vdata);
7633 	}
7634 
7635 	for (i = 0; i < obj->nr_programs; i++)
7636 		bpf_program__unload(&obj->programs[i]);
7637 
7638 	return 0;
7639 }
7640 
7641 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7642 {
7643 	struct bpf_map *m;
7644 
7645 	bpf_object__for_each_map(m, obj) {
7646 		if (!bpf_map__is_internal(m))
7647 			continue;
7648 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7649 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7650 	}
7651 
7652 	return 0;
7653 }
7654 
7655 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7656 {
7657 	char sym_type, sym_name[500];
7658 	unsigned long long sym_addr;
7659 	int ret, err = 0;
7660 	FILE *f;
7661 
7662 	f = fopen("/proc/kallsyms", "re");
7663 	if (!f) {
7664 		err = -errno;
7665 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7666 		return err;
7667 	}
7668 
7669 	while (true) {
7670 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7671 			     &sym_addr, &sym_type, sym_name);
7672 		if (ret == EOF && feof(f))
7673 			break;
7674 		if (ret != 3) {
7675 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7676 			err = -EINVAL;
7677 			break;
7678 		}
7679 
7680 		err = cb(sym_addr, sym_type, sym_name, ctx);
7681 		if (err)
7682 			break;
7683 	}
7684 
7685 	fclose(f);
7686 	return err;
7687 }
7688 
7689 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7690 		       const char *sym_name, void *ctx)
7691 {
7692 	struct bpf_object *obj = ctx;
7693 	const struct btf_type *t;
7694 	struct extern_desc *ext;
7695 
7696 	ext = find_extern_by_name(obj, sym_name);
7697 	if (!ext || ext->type != EXT_KSYM)
7698 		return 0;
7699 
7700 	t = btf__type_by_id(obj->btf, ext->btf_id);
7701 	if (!btf_is_var(t))
7702 		return 0;
7703 
7704 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7705 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7706 			sym_name, ext->ksym.addr, sym_addr);
7707 		return -EINVAL;
7708 	}
7709 	if (!ext->is_set) {
7710 		ext->is_set = true;
7711 		ext->ksym.addr = sym_addr;
7712 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7713 	}
7714 	return 0;
7715 }
7716 
7717 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7718 {
7719 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7720 }
7721 
7722 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7723 			    __u16 kind, struct btf **res_btf,
7724 			    struct module_btf **res_mod_btf)
7725 {
7726 	struct module_btf *mod_btf;
7727 	struct btf *btf;
7728 	int i, id, err;
7729 
7730 	btf = obj->btf_vmlinux;
7731 	mod_btf = NULL;
7732 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7733 
7734 	if (id == -ENOENT) {
7735 		err = load_module_btfs(obj);
7736 		if (err)
7737 			return err;
7738 
7739 		for (i = 0; i < obj->btf_module_cnt; i++) {
7740 			/* we assume module_btf's BTF FD is always >0 */
7741 			mod_btf = &obj->btf_modules[i];
7742 			btf = mod_btf->btf;
7743 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7744 			if (id != -ENOENT)
7745 				break;
7746 		}
7747 	}
7748 	if (id <= 0)
7749 		return -ESRCH;
7750 
7751 	*res_btf = btf;
7752 	*res_mod_btf = mod_btf;
7753 	return id;
7754 }
7755 
7756 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7757 					       struct extern_desc *ext)
7758 {
7759 	const struct btf_type *targ_var, *targ_type;
7760 	__u32 targ_type_id, local_type_id;
7761 	struct module_btf *mod_btf = NULL;
7762 	const char *targ_var_name;
7763 	struct btf *btf = NULL;
7764 	int id, err;
7765 
7766 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7767 	if (id < 0) {
7768 		if (id == -ESRCH && ext->is_weak)
7769 			return 0;
7770 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7771 			ext->name);
7772 		return id;
7773 	}
7774 
7775 	/* find local type_id */
7776 	local_type_id = ext->ksym.type_id;
7777 
7778 	/* find target type_id */
7779 	targ_var = btf__type_by_id(btf, id);
7780 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7781 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7782 
7783 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7784 					btf, targ_type_id);
7785 	if (err <= 0) {
7786 		const struct btf_type *local_type;
7787 		const char *targ_name, *local_name;
7788 
7789 		local_type = btf__type_by_id(obj->btf, local_type_id);
7790 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7791 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7792 
7793 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7794 			ext->name, local_type_id,
7795 			btf_kind_str(local_type), local_name, targ_type_id,
7796 			btf_kind_str(targ_type), targ_name);
7797 		return -EINVAL;
7798 	}
7799 
7800 	ext->is_set = true;
7801 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7802 	ext->ksym.kernel_btf_id = id;
7803 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7804 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7805 
7806 	return 0;
7807 }
7808 
7809 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7810 						struct extern_desc *ext)
7811 {
7812 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7813 	struct module_btf *mod_btf = NULL;
7814 	const struct btf_type *kern_func;
7815 	struct btf *kern_btf = NULL;
7816 	int ret;
7817 
7818 	local_func_proto_id = ext->ksym.type_id;
7819 
7820 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
7821 				    &mod_btf);
7822 	if (kfunc_id < 0) {
7823 		if (kfunc_id == -ESRCH && ext->is_weak)
7824 			return 0;
7825 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7826 			ext->name);
7827 		return kfunc_id;
7828 	}
7829 
7830 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7831 	kfunc_proto_id = kern_func->type;
7832 
7833 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7834 					kern_btf, kfunc_proto_id);
7835 	if (ret <= 0) {
7836 		if (ext->is_weak)
7837 			return 0;
7838 
7839 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7840 			ext->name, local_func_proto_id,
7841 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7842 		return -EINVAL;
7843 	}
7844 
7845 	/* set index for module BTF fd in fd_array, if unset */
7846 	if (mod_btf && !mod_btf->fd_array_idx) {
7847 		/* insn->off is s16 */
7848 		if (obj->fd_array_cnt == INT16_MAX) {
7849 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7850 				ext->name, mod_btf->fd_array_idx);
7851 			return -E2BIG;
7852 		}
7853 		/* Cannot use index 0 for module BTF fd */
7854 		if (!obj->fd_array_cnt)
7855 			obj->fd_array_cnt = 1;
7856 
7857 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7858 					obj->fd_array_cnt + 1);
7859 		if (ret)
7860 			return ret;
7861 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7862 		/* we assume module BTF FD is always >0 */
7863 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7864 	}
7865 
7866 	ext->is_set = true;
7867 	ext->ksym.kernel_btf_id = kfunc_id;
7868 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7869 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7870 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7871 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7872 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7873 	 */
7874 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7875 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7876 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7877 
7878 	return 0;
7879 }
7880 
7881 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7882 {
7883 	const struct btf_type *t;
7884 	struct extern_desc *ext;
7885 	int i, err;
7886 
7887 	for (i = 0; i < obj->nr_extern; i++) {
7888 		ext = &obj->externs[i];
7889 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7890 			continue;
7891 
7892 		if (obj->gen_loader) {
7893 			ext->is_set = true;
7894 			ext->ksym.kernel_btf_obj_fd = 0;
7895 			ext->ksym.kernel_btf_id = 0;
7896 			continue;
7897 		}
7898 		t = btf__type_by_id(obj->btf, ext->btf_id);
7899 		if (btf_is_var(t))
7900 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7901 		else
7902 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7903 		if (err)
7904 			return err;
7905 	}
7906 	return 0;
7907 }
7908 
7909 static int bpf_object__resolve_externs(struct bpf_object *obj,
7910 				       const char *extra_kconfig)
7911 {
7912 	bool need_config = false, need_kallsyms = false;
7913 	bool need_vmlinux_btf = false;
7914 	struct extern_desc *ext;
7915 	void *kcfg_data = NULL;
7916 	int err, i;
7917 
7918 	if (obj->nr_extern == 0)
7919 		return 0;
7920 
7921 	if (obj->kconfig_map_idx >= 0)
7922 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7923 
7924 	for (i = 0; i < obj->nr_extern; i++) {
7925 		ext = &obj->externs[i];
7926 
7927 		if (ext->type == EXT_KSYM) {
7928 			if (ext->ksym.type_id)
7929 				need_vmlinux_btf = true;
7930 			else
7931 				need_kallsyms = true;
7932 			continue;
7933 		} else if (ext->type == EXT_KCFG) {
7934 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7935 			__u64 value = 0;
7936 
7937 			/* Kconfig externs need actual /proc/config.gz */
7938 			if (str_has_pfx(ext->name, "CONFIG_")) {
7939 				need_config = true;
7940 				continue;
7941 			}
7942 
7943 			/* Virtual kcfg externs are customly handled by libbpf */
7944 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7945 				value = get_kernel_version();
7946 				if (!value) {
7947 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7948 					return -EINVAL;
7949 				}
7950 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7951 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7952 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7953 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7954 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7955 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7956 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7957 				 * customly by libbpf (their values don't come from Kconfig).
7958 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7959 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7960 				 * externs.
7961 				 */
7962 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7963 				return -EINVAL;
7964 			}
7965 
7966 			err = set_kcfg_value_num(ext, ext_ptr, value);
7967 			if (err)
7968 				return err;
7969 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7970 				 ext->name, (long long)value);
7971 		} else {
7972 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7973 			return -EINVAL;
7974 		}
7975 	}
7976 	if (need_config && extra_kconfig) {
7977 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7978 		if (err)
7979 			return -EINVAL;
7980 		need_config = false;
7981 		for (i = 0; i < obj->nr_extern; i++) {
7982 			ext = &obj->externs[i];
7983 			if (ext->type == EXT_KCFG && !ext->is_set) {
7984 				need_config = true;
7985 				break;
7986 			}
7987 		}
7988 	}
7989 	if (need_config) {
7990 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7991 		if (err)
7992 			return -EINVAL;
7993 	}
7994 	if (need_kallsyms) {
7995 		err = bpf_object__read_kallsyms_file(obj);
7996 		if (err)
7997 			return -EINVAL;
7998 	}
7999 	if (need_vmlinux_btf) {
8000 		err = bpf_object__resolve_ksyms_btf_id(obj);
8001 		if (err)
8002 			return -EINVAL;
8003 	}
8004 	for (i = 0; i < obj->nr_extern; i++) {
8005 		ext = &obj->externs[i];
8006 
8007 		if (!ext->is_set && !ext->is_weak) {
8008 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8009 			return -ESRCH;
8010 		} else if (!ext->is_set) {
8011 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8012 				 ext->name);
8013 		}
8014 	}
8015 
8016 	return 0;
8017 }
8018 
8019 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8020 {
8021 	struct bpf_struct_ops *st_ops;
8022 	__u32 i;
8023 
8024 	st_ops = map->st_ops;
8025 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
8026 		struct bpf_program *prog = st_ops->progs[i];
8027 		void *kern_data;
8028 		int prog_fd;
8029 
8030 		if (!prog)
8031 			continue;
8032 
8033 		prog_fd = bpf_program__fd(prog);
8034 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8035 		*(unsigned long *)kern_data = prog_fd;
8036 	}
8037 }
8038 
8039 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8040 {
8041 	int i;
8042 
8043 	for (i = 0; i < obj->nr_maps; i++)
8044 		if (bpf_map__is_struct_ops(&obj->maps[i]))
8045 			bpf_map_prepare_vdata(&obj->maps[i]);
8046 
8047 	return 0;
8048 }
8049 
8050 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8051 {
8052 	int err, i;
8053 
8054 	if (!obj)
8055 		return libbpf_err(-EINVAL);
8056 
8057 	if (obj->loaded) {
8058 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8059 		return libbpf_err(-EINVAL);
8060 	}
8061 
8062 	if (obj->gen_loader)
8063 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8064 
8065 	err = bpf_object__probe_loading(obj);
8066 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8067 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8068 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8069 	err = err ? : bpf_object__sanitize_maps(obj);
8070 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8071 	err = err ? : bpf_object__create_maps(obj);
8072 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8073 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8074 	err = err ? : bpf_object_init_prog_arrays(obj);
8075 	err = err ? : bpf_object_prepare_struct_ops(obj);
8076 
8077 	if (obj->gen_loader) {
8078 		/* reset FDs */
8079 		if (obj->btf)
8080 			btf__set_fd(obj->btf, -1);
8081 		for (i = 0; i < obj->nr_maps; i++)
8082 			obj->maps[i].fd = -1;
8083 		if (!err)
8084 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8085 	}
8086 
8087 	/* clean up fd_array */
8088 	zfree(&obj->fd_array);
8089 
8090 	/* clean up module BTFs */
8091 	for (i = 0; i < obj->btf_module_cnt; i++) {
8092 		close(obj->btf_modules[i].fd);
8093 		btf__free(obj->btf_modules[i].btf);
8094 		free(obj->btf_modules[i].name);
8095 	}
8096 	free(obj->btf_modules);
8097 
8098 	/* clean up vmlinux BTF */
8099 	btf__free(obj->btf_vmlinux);
8100 	obj->btf_vmlinux = NULL;
8101 
8102 	obj->loaded = true; /* doesn't matter if successfully or not */
8103 
8104 	if (err)
8105 		goto out;
8106 
8107 	return 0;
8108 out:
8109 	/* unpin any maps that were auto-pinned during load */
8110 	for (i = 0; i < obj->nr_maps; i++)
8111 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8112 			bpf_map__unpin(&obj->maps[i], NULL);
8113 
8114 	bpf_object_unload(obj);
8115 	pr_warn("failed to load object '%s'\n", obj->path);
8116 	return libbpf_err(err);
8117 }
8118 
8119 int bpf_object__load(struct bpf_object *obj)
8120 {
8121 	return bpf_object_load(obj, 0, NULL);
8122 }
8123 
8124 static int make_parent_dir(const char *path)
8125 {
8126 	char *cp, errmsg[STRERR_BUFSIZE];
8127 	char *dname, *dir;
8128 	int err = 0;
8129 
8130 	dname = strdup(path);
8131 	if (dname == NULL)
8132 		return -ENOMEM;
8133 
8134 	dir = dirname(dname);
8135 	if (mkdir(dir, 0700) && errno != EEXIST)
8136 		err = -errno;
8137 
8138 	free(dname);
8139 	if (err) {
8140 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8141 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8142 	}
8143 	return err;
8144 }
8145 
8146 static int check_path(const char *path)
8147 {
8148 	char *cp, errmsg[STRERR_BUFSIZE];
8149 	struct statfs st_fs;
8150 	char *dname, *dir;
8151 	int err = 0;
8152 
8153 	if (path == NULL)
8154 		return -EINVAL;
8155 
8156 	dname = strdup(path);
8157 	if (dname == NULL)
8158 		return -ENOMEM;
8159 
8160 	dir = dirname(dname);
8161 	if (statfs(dir, &st_fs)) {
8162 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8163 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8164 		err = -errno;
8165 	}
8166 	free(dname);
8167 
8168 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8169 		pr_warn("specified path %s is not on BPF FS\n", path);
8170 		err = -EINVAL;
8171 	}
8172 
8173 	return err;
8174 }
8175 
8176 int bpf_program__pin(struct bpf_program *prog, const char *path)
8177 {
8178 	char *cp, errmsg[STRERR_BUFSIZE];
8179 	int err;
8180 
8181 	if (prog->fd < 0) {
8182 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8183 		return libbpf_err(-EINVAL);
8184 	}
8185 
8186 	err = make_parent_dir(path);
8187 	if (err)
8188 		return libbpf_err(err);
8189 
8190 	err = check_path(path);
8191 	if (err)
8192 		return libbpf_err(err);
8193 
8194 	if (bpf_obj_pin(prog->fd, path)) {
8195 		err = -errno;
8196 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8197 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8198 		return libbpf_err(err);
8199 	}
8200 
8201 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8202 	return 0;
8203 }
8204 
8205 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8206 {
8207 	int err;
8208 
8209 	if (prog->fd < 0) {
8210 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8211 		return libbpf_err(-EINVAL);
8212 	}
8213 
8214 	err = check_path(path);
8215 	if (err)
8216 		return libbpf_err(err);
8217 
8218 	err = unlink(path);
8219 	if (err)
8220 		return libbpf_err(-errno);
8221 
8222 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8223 	return 0;
8224 }
8225 
8226 int bpf_map__pin(struct bpf_map *map, const char *path)
8227 {
8228 	char *cp, errmsg[STRERR_BUFSIZE];
8229 	int err;
8230 
8231 	if (map == NULL) {
8232 		pr_warn("invalid map pointer\n");
8233 		return libbpf_err(-EINVAL);
8234 	}
8235 
8236 	if (map->pin_path) {
8237 		if (path && strcmp(path, map->pin_path)) {
8238 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8239 				bpf_map__name(map), map->pin_path, path);
8240 			return libbpf_err(-EINVAL);
8241 		} else if (map->pinned) {
8242 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8243 				 bpf_map__name(map), map->pin_path);
8244 			return 0;
8245 		}
8246 	} else {
8247 		if (!path) {
8248 			pr_warn("missing a path to pin map '%s' at\n",
8249 				bpf_map__name(map));
8250 			return libbpf_err(-EINVAL);
8251 		} else if (map->pinned) {
8252 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8253 			return libbpf_err(-EEXIST);
8254 		}
8255 
8256 		map->pin_path = strdup(path);
8257 		if (!map->pin_path) {
8258 			err = -errno;
8259 			goto out_err;
8260 		}
8261 	}
8262 
8263 	err = make_parent_dir(map->pin_path);
8264 	if (err)
8265 		return libbpf_err(err);
8266 
8267 	err = check_path(map->pin_path);
8268 	if (err)
8269 		return libbpf_err(err);
8270 
8271 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8272 		err = -errno;
8273 		goto out_err;
8274 	}
8275 
8276 	map->pinned = true;
8277 	pr_debug("pinned map '%s'\n", map->pin_path);
8278 
8279 	return 0;
8280 
8281 out_err:
8282 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8283 	pr_warn("failed to pin map: %s\n", cp);
8284 	return libbpf_err(err);
8285 }
8286 
8287 int bpf_map__unpin(struct bpf_map *map, const char *path)
8288 {
8289 	int err;
8290 
8291 	if (map == NULL) {
8292 		pr_warn("invalid map pointer\n");
8293 		return libbpf_err(-EINVAL);
8294 	}
8295 
8296 	if (map->pin_path) {
8297 		if (path && strcmp(path, map->pin_path)) {
8298 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8299 				bpf_map__name(map), map->pin_path, path);
8300 			return libbpf_err(-EINVAL);
8301 		}
8302 		path = map->pin_path;
8303 	} else if (!path) {
8304 		pr_warn("no path to unpin map '%s' from\n",
8305 			bpf_map__name(map));
8306 		return libbpf_err(-EINVAL);
8307 	}
8308 
8309 	err = check_path(path);
8310 	if (err)
8311 		return libbpf_err(err);
8312 
8313 	err = unlink(path);
8314 	if (err != 0)
8315 		return libbpf_err(-errno);
8316 
8317 	map->pinned = false;
8318 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8319 
8320 	return 0;
8321 }
8322 
8323 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8324 {
8325 	char *new = NULL;
8326 
8327 	if (path) {
8328 		new = strdup(path);
8329 		if (!new)
8330 			return libbpf_err(-errno);
8331 	}
8332 
8333 	free(map->pin_path);
8334 	map->pin_path = new;
8335 	return 0;
8336 }
8337 
8338 __alias(bpf_map__pin_path)
8339 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8340 
8341 const char *bpf_map__pin_path(const struct bpf_map *map)
8342 {
8343 	return map->pin_path;
8344 }
8345 
8346 bool bpf_map__is_pinned(const struct bpf_map *map)
8347 {
8348 	return map->pinned;
8349 }
8350 
8351 static void sanitize_pin_path(char *s)
8352 {
8353 	/* bpffs disallows periods in path names */
8354 	while (*s) {
8355 		if (*s == '.')
8356 			*s = '_';
8357 		s++;
8358 	}
8359 }
8360 
8361 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8362 {
8363 	struct bpf_map *map;
8364 	int err;
8365 
8366 	if (!obj)
8367 		return libbpf_err(-ENOENT);
8368 
8369 	if (!obj->loaded) {
8370 		pr_warn("object not yet loaded; load it first\n");
8371 		return libbpf_err(-ENOENT);
8372 	}
8373 
8374 	bpf_object__for_each_map(map, obj) {
8375 		char *pin_path = NULL;
8376 		char buf[PATH_MAX];
8377 
8378 		if (!map->autocreate)
8379 			continue;
8380 
8381 		if (path) {
8382 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8383 			if (err)
8384 				goto err_unpin_maps;
8385 			sanitize_pin_path(buf);
8386 			pin_path = buf;
8387 		} else if (!map->pin_path) {
8388 			continue;
8389 		}
8390 
8391 		err = bpf_map__pin(map, pin_path);
8392 		if (err)
8393 			goto err_unpin_maps;
8394 	}
8395 
8396 	return 0;
8397 
8398 err_unpin_maps:
8399 	while ((map = bpf_object__prev_map(obj, map))) {
8400 		if (!map->pin_path)
8401 			continue;
8402 
8403 		bpf_map__unpin(map, NULL);
8404 	}
8405 
8406 	return libbpf_err(err);
8407 }
8408 
8409 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8410 {
8411 	struct bpf_map *map;
8412 	int err;
8413 
8414 	if (!obj)
8415 		return libbpf_err(-ENOENT);
8416 
8417 	bpf_object__for_each_map(map, obj) {
8418 		char *pin_path = NULL;
8419 		char buf[PATH_MAX];
8420 
8421 		if (path) {
8422 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8423 			if (err)
8424 				return libbpf_err(err);
8425 			sanitize_pin_path(buf);
8426 			pin_path = buf;
8427 		} else if (!map->pin_path) {
8428 			continue;
8429 		}
8430 
8431 		err = bpf_map__unpin(map, pin_path);
8432 		if (err)
8433 			return libbpf_err(err);
8434 	}
8435 
8436 	return 0;
8437 }
8438 
8439 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8440 {
8441 	struct bpf_program *prog;
8442 	char buf[PATH_MAX];
8443 	int err;
8444 
8445 	if (!obj)
8446 		return libbpf_err(-ENOENT);
8447 
8448 	if (!obj->loaded) {
8449 		pr_warn("object not yet loaded; load it first\n");
8450 		return libbpf_err(-ENOENT);
8451 	}
8452 
8453 	bpf_object__for_each_program(prog, obj) {
8454 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8455 		if (err)
8456 			goto err_unpin_programs;
8457 
8458 		err = bpf_program__pin(prog, buf);
8459 		if (err)
8460 			goto err_unpin_programs;
8461 	}
8462 
8463 	return 0;
8464 
8465 err_unpin_programs:
8466 	while ((prog = bpf_object__prev_program(obj, prog))) {
8467 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8468 			continue;
8469 
8470 		bpf_program__unpin(prog, buf);
8471 	}
8472 
8473 	return libbpf_err(err);
8474 }
8475 
8476 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8477 {
8478 	struct bpf_program *prog;
8479 	int err;
8480 
8481 	if (!obj)
8482 		return libbpf_err(-ENOENT);
8483 
8484 	bpf_object__for_each_program(prog, obj) {
8485 		char buf[PATH_MAX];
8486 
8487 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8488 		if (err)
8489 			return libbpf_err(err);
8490 
8491 		err = bpf_program__unpin(prog, buf);
8492 		if (err)
8493 			return libbpf_err(err);
8494 	}
8495 
8496 	return 0;
8497 }
8498 
8499 int bpf_object__pin(struct bpf_object *obj, const char *path)
8500 {
8501 	int err;
8502 
8503 	err = bpf_object__pin_maps(obj, path);
8504 	if (err)
8505 		return libbpf_err(err);
8506 
8507 	err = bpf_object__pin_programs(obj, path);
8508 	if (err) {
8509 		bpf_object__unpin_maps(obj, path);
8510 		return libbpf_err(err);
8511 	}
8512 
8513 	return 0;
8514 }
8515 
8516 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8517 {
8518 	int err;
8519 
8520 	err = bpf_object__unpin_programs(obj, path);
8521 	if (err)
8522 		return libbpf_err(err);
8523 
8524 	err = bpf_object__unpin_maps(obj, path);
8525 	if (err)
8526 		return libbpf_err(err);
8527 
8528 	return 0;
8529 }
8530 
8531 static void bpf_map__destroy(struct bpf_map *map)
8532 {
8533 	if (map->inner_map) {
8534 		bpf_map__destroy(map->inner_map);
8535 		zfree(&map->inner_map);
8536 	}
8537 
8538 	zfree(&map->init_slots);
8539 	map->init_slots_sz = 0;
8540 
8541 	if (map->mmaped) {
8542 		size_t mmap_sz;
8543 
8544 		mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8545 		munmap(map->mmaped, mmap_sz);
8546 		map->mmaped = NULL;
8547 	}
8548 
8549 	if (map->st_ops) {
8550 		zfree(&map->st_ops->data);
8551 		zfree(&map->st_ops->progs);
8552 		zfree(&map->st_ops->kern_func_off);
8553 		zfree(&map->st_ops);
8554 	}
8555 
8556 	zfree(&map->name);
8557 	zfree(&map->real_name);
8558 	zfree(&map->pin_path);
8559 
8560 	if (map->fd >= 0)
8561 		zclose(map->fd);
8562 }
8563 
8564 void bpf_object__close(struct bpf_object *obj)
8565 {
8566 	size_t i;
8567 
8568 	if (IS_ERR_OR_NULL(obj))
8569 		return;
8570 
8571 	usdt_manager_free(obj->usdt_man);
8572 	obj->usdt_man = NULL;
8573 
8574 	bpf_gen__free(obj->gen_loader);
8575 	bpf_object__elf_finish(obj);
8576 	bpf_object_unload(obj);
8577 	btf__free(obj->btf);
8578 	btf__free(obj->btf_vmlinux);
8579 	btf_ext__free(obj->btf_ext);
8580 
8581 	for (i = 0; i < obj->nr_maps; i++)
8582 		bpf_map__destroy(&obj->maps[i]);
8583 
8584 	zfree(&obj->btf_custom_path);
8585 	zfree(&obj->kconfig);
8586 
8587 	for (i = 0; i < obj->nr_extern; i++)
8588 		zfree(&obj->externs[i].essent_name);
8589 
8590 	zfree(&obj->externs);
8591 	obj->nr_extern = 0;
8592 
8593 	zfree(&obj->maps);
8594 	obj->nr_maps = 0;
8595 
8596 	if (obj->programs && obj->nr_programs) {
8597 		for (i = 0; i < obj->nr_programs; i++)
8598 			bpf_program__exit(&obj->programs[i]);
8599 	}
8600 	zfree(&obj->programs);
8601 
8602 	free(obj);
8603 }
8604 
8605 const char *bpf_object__name(const struct bpf_object *obj)
8606 {
8607 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8608 }
8609 
8610 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8611 {
8612 	return obj ? obj->kern_version : 0;
8613 }
8614 
8615 struct btf *bpf_object__btf(const struct bpf_object *obj)
8616 {
8617 	return obj ? obj->btf : NULL;
8618 }
8619 
8620 int bpf_object__btf_fd(const struct bpf_object *obj)
8621 {
8622 	return obj->btf ? btf__fd(obj->btf) : -1;
8623 }
8624 
8625 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8626 {
8627 	if (obj->loaded)
8628 		return libbpf_err(-EINVAL);
8629 
8630 	obj->kern_version = kern_version;
8631 
8632 	return 0;
8633 }
8634 
8635 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8636 {
8637 	struct bpf_gen *gen;
8638 
8639 	if (!opts)
8640 		return -EFAULT;
8641 	if (!OPTS_VALID(opts, gen_loader_opts))
8642 		return -EINVAL;
8643 	gen = calloc(sizeof(*gen), 1);
8644 	if (!gen)
8645 		return -ENOMEM;
8646 	gen->opts = opts;
8647 	obj->gen_loader = gen;
8648 	return 0;
8649 }
8650 
8651 static struct bpf_program *
8652 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8653 		    bool forward)
8654 {
8655 	size_t nr_programs = obj->nr_programs;
8656 	ssize_t idx;
8657 
8658 	if (!nr_programs)
8659 		return NULL;
8660 
8661 	if (!p)
8662 		/* Iter from the beginning */
8663 		return forward ? &obj->programs[0] :
8664 			&obj->programs[nr_programs - 1];
8665 
8666 	if (p->obj != obj) {
8667 		pr_warn("error: program handler doesn't match object\n");
8668 		return errno = EINVAL, NULL;
8669 	}
8670 
8671 	idx = (p - obj->programs) + (forward ? 1 : -1);
8672 	if (idx >= obj->nr_programs || idx < 0)
8673 		return NULL;
8674 	return &obj->programs[idx];
8675 }
8676 
8677 struct bpf_program *
8678 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8679 {
8680 	struct bpf_program *prog = prev;
8681 
8682 	do {
8683 		prog = __bpf_program__iter(prog, obj, true);
8684 	} while (prog && prog_is_subprog(obj, prog));
8685 
8686 	return prog;
8687 }
8688 
8689 struct bpf_program *
8690 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8691 {
8692 	struct bpf_program *prog = next;
8693 
8694 	do {
8695 		prog = __bpf_program__iter(prog, obj, false);
8696 	} while (prog && prog_is_subprog(obj, prog));
8697 
8698 	return prog;
8699 }
8700 
8701 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8702 {
8703 	prog->prog_ifindex = ifindex;
8704 }
8705 
8706 const char *bpf_program__name(const struct bpf_program *prog)
8707 {
8708 	return prog->name;
8709 }
8710 
8711 const char *bpf_program__section_name(const struct bpf_program *prog)
8712 {
8713 	return prog->sec_name;
8714 }
8715 
8716 bool bpf_program__autoload(const struct bpf_program *prog)
8717 {
8718 	return prog->autoload;
8719 }
8720 
8721 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8722 {
8723 	if (prog->obj->loaded)
8724 		return libbpf_err(-EINVAL);
8725 
8726 	prog->autoload = autoload;
8727 	return 0;
8728 }
8729 
8730 bool bpf_program__autoattach(const struct bpf_program *prog)
8731 {
8732 	return prog->autoattach;
8733 }
8734 
8735 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8736 {
8737 	prog->autoattach = autoattach;
8738 }
8739 
8740 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8741 {
8742 	return prog->insns;
8743 }
8744 
8745 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8746 {
8747 	return prog->insns_cnt;
8748 }
8749 
8750 int bpf_program__set_insns(struct bpf_program *prog,
8751 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8752 {
8753 	struct bpf_insn *insns;
8754 
8755 	if (prog->obj->loaded)
8756 		return -EBUSY;
8757 
8758 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8759 	/* NULL is a valid return from reallocarray if the new count is zero */
8760 	if (!insns && new_insn_cnt) {
8761 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8762 		return -ENOMEM;
8763 	}
8764 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8765 
8766 	prog->insns = insns;
8767 	prog->insns_cnt = new_insn_cnt;
8768 	return 0;
8769 }
8770 
8771 int bpf_program__fd(const struct bpf_program *prog)
8772 {
8773 	if (!prog)
8774 		return libbpf_err(-EINVAL);
8775 
8776 	if (prog->fd < 0)
8777 		return libbpf_err(-ENOENT);
8778 
8779 	return prog->fd;
8780 }
8781 
8782 __alias(bpf_program__type)
8783 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8784 
8785 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8786 {
8787 	return prog->type;
8788 }
8789 
8790 static size_t custom_sec_def_cnt;
8791 static struct bpf_sec_def *custom_sec_defs;
8792 static struct bpf_sec_def custom_fallback_def;
8793 static bool has_custom_fallback_def;
8794 static int last_custom_sec_def_handler_id;
8795 
8796 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8797 {
8798 	if (prog->obj->loaded)
8799 		return libbpf_err(-EBUSY);
8800 
8801 	/* if type is not changed, do nothing */
8802 	if (prog->type == type)
8803 		return 0;
8804 
8805 	prog->type = type;
8806 
8807 	/* If a program type was changed, we need to reset associated SEC()
8808 	 * handler, as it will be invalid now. The only exception is a generic
8809 	 * fallback handler, which by definition is program type-agnostic and
8810 	 * is a catch-all custom handler, optionally set by the application,
8811 	 * so should be able to handle any type of BPF program.
8812 	 */
8813 	if (prog->sec_def != &custom_fallback_def)
8814 		prog->sec_def = NULL;
8815 	return 0;
8816 }
8817 
8818 __alias(bpf_program__expected_attach_type)
8819 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8820 
8821 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8822 {
8823 	return prog->expected_attach_type;
8824 }
8825 
8826 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8827 					   enum bpf_attach_type type)
8828 {
8829 	if (prog->obj->loaded)
8830 		return libbpf_err(-EBUSY);
8831 
8832 	prog->expected_attach_type = type;
8833 	return 0;
8834 }
8835 
8836 __u32 bpf_program__flags(const struct bpf_program *prog)
8837 {
8838 	return prog->prog_flags;
8839 }
8840 
8841 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8842 {
8843 	if (prog->obj->loaded)
8844 		return libbpf_err(-EBUSY);
8845 
8846 	prog->prog_flags = flags;
8847 	return 0;
8848 }
8849 
8850 __u32 bpf_program__log_level(const struct bpf_program *prog)
8851 {
8852 	return prog->log_level;
8853 }
8854 
8855 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8856 {
8857 	if (prog->obj->loaded)
8858 		return libbpf_err(-EBUSY);
8859 
8860 	prog->log_level = log_level;
8861 	return 0;
8862 }
8863 
8864 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8865 {
8866 	*log_size = prog->log_size;
8867 	return prog->log_buf;
8868 }
8869 
8870 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8871 {
8872 	if (log_size && !log_buf)
8873 		return -EINVAL;
8874 	if (prog->log_size > UINT_MAX)
8875 		return -EINVAL;
8876 	if (prog->obj->loaded)
8877 		return -EBUSY;
8878 
8879 	prog->log_buf = log_buf;
8880 	prog->log_size = log_size;
8881 	return 0;
8882 }
8883 
8884 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8885 	.sec = (char *)sec_pfx,						    \
8886 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8887 	.expected_attach_type = atype,					    \
8888 	.cookie = (long)(flags),					    \
8889 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8890 	__VA_ARGS__							    \
8891 }
8892 
8893 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8894 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8895 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8896 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8897 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8898 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8899 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8900 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8901 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8902 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8903 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8904 
8905 static const struct bpf_sec_def section_defs[] = {
8906 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8907 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8908 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8909 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8910 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8911 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8912 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8913 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8914 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8915 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8916 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8917 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8918 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8919 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8920 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8921 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8922 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8923 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
8924 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
8925 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
8926 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
8927 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
8928 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
8929 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8930 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8931 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8932 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
8933 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
8934 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8935 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8936 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8937 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8938 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8939 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8940 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8941 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8942 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8943 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8944 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8945 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8946 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8947 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8948 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8949 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8950 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8951 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8952 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8953 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8954 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8955 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8956 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8957 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8958 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8959 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8960 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8961 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8962 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8963 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8964 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8965 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8966 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8967 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8968 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8969 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8970 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8971 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8972 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8973 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8974 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8975 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8976 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8977 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8978 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8979 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8980 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8981 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8982 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8983 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8984 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
8985 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8986 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8987 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
8988 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8989 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8990 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
8991 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8992 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8993 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
8994 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8995 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8996 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
8997 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8998 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8999 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9000 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9001 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9002 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9003 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9004 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9005 };
9006 
9007 int libbpf_register_prog_handler(const char *sec,
9008 				 enum bpf_prog_type prog_type,
9009 				 enum bpf_attach_type exp_attach_type,
9010 				 const struct libbpf_prog_handler_opts *opts)
9011 {
9012 	struct bpf_sec_def *sec_def;
9013 
9014 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9015 		return libbpf_err(-EINVAL);
9016 
9017 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9018 		return libbpf_err(-E2BIG);
9019 
9020 	if (sec) {
9021 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9022 					      sizeof(*sec_def));
9023 		if (!sec_def)
9024 			return libbpf_err(-ENOMEM);
9025 
9026 		custom_sec_defs = sec_def;
9027 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9028 	} else {
9029 		if (has_custom_fallback_def)
9030 			return libbpf_err(-EBUSY);
9031 
9032 		sec_def = &custom_fallback_def;
9033 	}
9034 
9035 	sec_def->sec = sec ? strdup(sec) : NULL;
9036 	if (sec && !sec_def->sec)
9037 		return libbpf_err(-ENOMEM);
9038 
9039 	sec_def->prog_type = prog_type;
9040 	sec_def->expected_attach_type = exp_attach_type;
9041 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9042 
9043 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9044 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9045 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9046 
9047 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9048 
9049 	if (sec)
9050 		custom_sec_def_cnt++;
9051 	else
9052 		has_custom_fallback_def = true;
9053 
9054 	return sec_def->handler_id;
9055 }
9056 
9057 int libbpf_unregister_prog_handler(int handler_id)
9058 {
9059 	struct bpf_sec_def *sec_defs;
9060 	int i;
9061 
9062 	if (handler_id <= 0)
9063 		return libbpf_err(-EINVAL);
9064 
9065 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9066 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9067 		has_custom_fallback_def = false;
9068 		return 0;
9069 	}
9070 
9071 	for (i = 0; i < custom_sec_def_cnt; i++) {
9072 		if (custom_sec_defs[i].handler_id == handler_id)
9073 			break;
9074 	}
9075 
9076 	if (i == custom_sec_def_cnt)
9077 		return libbpf_err(-ENOENT);
9078 
9079 	free(custom_sec_defs[i].sec);
9080 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9081 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9082 	custom_sec_def_cnt--;
9083 
9084 	/* try to shrink the array, but it's ok if we couldn't */
9085 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9086 	/* if new count is zero, reallocarray can return a valid NULL result;
9087 	 * in this case the previous pointer will be freed, so we *have to*
9088 	 * reassign old pointer to the new value (even if it's NULL)
9089 	 */
9090 	if (sec_defs || custom_sec_def_cnt == 0)
9091 		custom_sec_defs = sec_defs;
9092 
9093 	return 0;
9094 }
9095 
9096 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9097 {
9098 	size_t len = strlen(sec_def->sec);
9099 
9100 	/* "type/" always has to have proper SEC("type/extras") form */
9101 	if (sec_def->sec[len - 1] == '/') {
9102 		if (str_has_pfx(sec_name, sec_def->sec))
9103 			return true;
9104 		return false;
9105 	}
9106 
9107 	/* "type+" means it can be either exact SEC("type") or
9108 	 * well-formed SEC("type/extras") with proper '/' separator
9109 	 */
9110 	if (sec_def->sec[len - 1] == '+') {
9111 		len--;
9112 		/* not even a prefix */
9113 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9114 			return false;
9115 		/* exact match or has '/' separator */
9116 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9117 			return true;
9118 		return false;
9119 	}
9120 
9121 	return strcmp(sec_name, sec_def->sec) == 0;
9122 }
9123 
9124 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9125 {
9126 	const struct bpf_sec_def *sec_def;
9127 	int i, n;
9128 
9129 	n = custom_sec_def_cnt;
9130 	for (i = 0; i < n; i++) {
9131 		sec_def = &custom_sec_defs[i];
9132 		if (sec_def_matches(sec_def, sec_name))
9133 			return sec_def;
9134 	}
9135 
9136 	n = ARRAY_SIZE(section_defs);
9137 	for (i = 0; i < n; i++) {
9138 		sec_def = &section_defs[i];
9139 		if (sec_def_matches(sec_def, sec_name))
9140 			return sec_def;
9141 	}
9142 
9143 	if (has_custom_fallback_def)
9144 		return &custom_fallback_def;
9145 
9146 	return NULL;
9147 }
9148 
9149 #define MAX_TYPE_NAME_SIZE 32
9150 
9151 static char *libbpf_get_type_names(bool attach_type)
9152 {
9153 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9154 	char *buf;
9155 
9156 	buf = malloc(len);
9157 	if (!buf)
9158 		return NULL;
9159 
9160 	buf[0] = '\0';
9161 	/* Forge string buf with all available names */
9162 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9163 		const struct bpf_sec_def *sec_def = &section_defs[i];
9164 
9165 		if (attach_type) {
9166 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9167 				continue;
9168 
9169 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9170 				continue;
9171 		}
9172 
9173 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9174 			free(buf);
9175 			return NULL;
9176 		}
9177 		strcat(buf, " ");
9178 		strcat(buf, section_defs[i].sec);
9179 	}
9180 
9181 	return buf;
9182 }
9183 
9184 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9185 			     enum bpf_attach_type *expected_attach_type)
9186 {
9187 	const struct bpf_sec_def *sec_def;
9188 	char *type_names;
9189 
9190 	if (!name)
9191 		return libbpf_err(-EINVAL);
9192 
9193 	sec_def = find_sec_def(name);
9194 	if (sec_def) {
9195 		*prog_type = sec_def->prog_type;
9196 		*expected_attach_type = sec_def->expected_attach_type;
9197 		return 0;
9198 	}
9199 
9200 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9201 	type_names = libbpf_get_type_names(false);
9202 	if (type_names != NULL) {
9203 		pr_debug("supported section(type) names are:%s\n", type_names);
9204 		free(type_names);
9205 	}
9206 
9207 	return libbpf_err(-ESRCH);
9208 }
9209 
9210 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9211 {
9212 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9213 		return NULL;
9214 
9215 	return attach_type_name[t];
9216 }
9217 
9218 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9219 {
9220 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9221 		return NULL;
9222 
9223 	return link_type_name[t];
9224 }
9225 
9226 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9227 {
9228 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9229 		return NULL;
9230 
9231 	return map_type_name[t];
9232 }
9233 
9234 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9235 {
9236 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9237 		return NULL;
9238 
9239 	return prog_type_name[t];
9240 }
9241 
9242 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9243 						     int sec_idx,
9244 						     size_t offset)
9245 {
9246 	struct bpf_map *map;
9247 	size_t i;
9248 
9249 	for (i = 0; i < obj->nr_maps; i++) {
9250 		map = &obj->maps[i];
9251 		if (!bpf_map__is_struct_ops(map))
9252 			continue;
9253 		if (map->sec_idx == sec_idx &&
9254 		    map->sec_offset <= offset &&
9255 		    offset - map->sec_offset < map->def.value_size)
9256 			return map;
9257 	}
9258 
9259 	return NULL;
9260 }
9261 
9262 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9263 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9264 					    Elf64_Shdr *shdr, Elf_Data *data)
9265 {
9266 	const struct btf_member *member;
9267 	struct bpf_struct_ops *st_ops;
9268 	struct bpf_program *prog;
9269 	unsigned int shdr_idx;
9270 	const struct btf *btf;
9271 	struct bpf_map *map;
9272 	unsigned int moff, insn_idx;
9273 	const char *name;
9274 	__u32 member_idx;
9275 	Elf64_Sym *sym;
9276 	Elf64_Rel *rel;
9277 	int i, nrels;
9278 
9279 	btf = obj->btf;
9280 	nrels = shdr->sh_size / shdr->sh_entsize;
9281 	for (i = 0; i < nrels; i++) {
9282 		rel = elf_rel_by_idx(data, i);
9283 		if (!rel) {
9284 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9285 			return -LIBBPF_ERRNO__FORMAT;
9286 		}
9287 
9288 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9289 		if (!sym) {
9290 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9291 				(size_t)ELF64_R_SYM(rel->r_info));
9292 			return -LIBBPF_ERRNO__FORMAT;
9293 		}
9294 
9295 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9296 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9297 		if (!map) {
9298 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9299 				(size_t)rel->r_offset);
9300 			return -EINVAL;
9301 		}
9302 
9303 		moff = rel->r_offset - map->sec_offset;
9304 		shdr_idx = sym->st_shndx;
9305 		st_ops = map->st_ops;
9306 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9307 			 map->name,
9308 			 (long long)(rel->r_info >> 32),
9309 			 (long long)sym->st_value,
9310 			 shdr_idx, (size_t)rel->r_offset,
9311 			 map->sec_offset, sym->st_name, name);
9312 
9313 		if (shdr_idx >= SHN_LORESERVE) {
9314 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9315 				map->name, (size_t)rel->r_offset, shdr_idx);
9316 			return -LIBBPF_ERRNO__RELOC;
9317 		}
9318 		if (sym->st_value % BPF_INSN_SZ) {
9319 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9320 				map->name, (unsigned long long)sym->st_value);
9321 			return -LIBBPF_ERRNO__FORMAT;
9322 		}
9323 		insn_idx = sym->st_value / BPF_INSN_SZ;
9324 
9325 		member = find_member_by_offset(st_ops->type, moff * 8);
9326 		if (!member) {
9327 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9328 				map->name, moff);
9329 			return -EINVAL;
9330 		}
9331 		member_idx = member - btf_members(st_ops->type);
9332 		name = btf__name_by_offset(btf, member->name_off);
9333 
9334 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9335 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9336 				map->name, name);
9337 			return -EINVAL;
9338 		}
9339 
9340 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9341 		if (!prog) {
9342 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9343 				map->name, shdr_idx, name);
9344 			return -EINVAL;
9345 		}
9346 
9347 		/* prevent the use of BPF prog with invalid type */
9348 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9349 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9350 				map->name, prog->name);
9351 			return -EINVAL;
9352 		}
9353 
9354 		/* if we haven't yet processed this BPF program, record proper
9355 		 * attach_btf_id and member_idx
9356 		 */
9357 		if (!prog->attach_btf_id) {
9358 			prog->attach_btf_id = st_ops->type_id;
9359 			prog->expected_attach_type = member_idx;
9360 		}
9361 
9362 		/* struct_ops BPF prog can be re-used between multiple
9363 		 * .struct_ops & .struct_ops.link as long as it's the
9364 		 * same struct_ops struct definition and the same
9365 		 * function pointer field
9366 		 */
9367 		if (prog->attach_btf_id != st_ops->type_id ||
9368 		    prog->expected_attach_type != member_idx) {
9369 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9370 				map->name, prog->name, prog->sec_name, prog->type,
9371 				prog->attach_btf_id, prog->expected_attach_type, name);
9372 			return -EINVAL;
9373 		}
9374 
9375 		st_ops->progs[member_idx] = prog;
9376 	}
9377 
9378 	return 0;
9379 }
9380 
9381 #define BTF_TRACE_PREFIX "btf_trace_"
9382 #define BTF_LSM_PREFIX "bpf_lsm_"
9383 #define BTF_ITER_PREFIX "bpf_iter_"
9384 #define BTF_MAX_NAME_SIZE 128
9385 
9386 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9387 				const char **prefix, int *kind)
9388 {
9389 	switch (attach_type) {
9390 	case BPF_TRACE_RAW_TP:
9391 		*prefix = BTF_TRACE_PREFIX;
9392 		*kind = BTF_KIND_TYPEDEF;
9393 		break;
9394 	case BPF_LSM_MAC:
9395 	case BPF_LSM_CGROUP:
9396 		*prefix = BTF_LSM_PREFIX;
9397 		*kind = BTF_KIND_FUNC;
9398 		break;
9399 	case BPF_TRACE_ITER:
9400 		*prefix = BTF_ITER_PREFIX;
9401 		*kind = BTF_KIND_FUNC;
9402 		break;
9403 	default:
9404 		*prefix = "";
9405 		*kind = BTF_KIND_FUNC;
9406 	}
9407 }
9408 
9409 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9410 				   const char *name, __u32 kind)
9411 {
9412 	char btf_type_name[BTF_MAX_NAME_SIZE];
9413 	int ret;
9414 
9415 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9416 		       "%s%s", prefix, name);
9417 	/* snprintf returns the number of characters written excluding the
9418 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9419 	 * indicates truncation.
9420 	 */
9421 	if (ret < 0 || ret >= sizeof(btf_type_name))
9422 		return -ENAMETOOLONG;
9423 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9424 }
9425 
9426 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9427 				     enum bpf_attach_type attach_type)
9428 {
9429 	const char *prefix;
9430 	int kind;
9431 
9432 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9433 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9434 }
9435 
9436 int libbpf_find_vmlinux_btf_id(const char *name,
9437 			       enum bpf_attach_type attach_type)
9438 {
9439 	struct btf *btf;
9440 	int err;
9441 
9442 	btf = btf__load_vmlinux_btf();
9443 	err = libbpf_get_error(btf);
9444 	if (err) {
9445 		pr_warn("vmlinux BTF is not found\n");
9446 		return libbpf_err(err);
9447 	}
9448 
9449 	err = find_attach_btf_id(btf, name, attach_type);
9450 	if (err <= 0)
9451 		pr_warn("%s is not found in vmlinux BTF\n", name);
9452 
9453 	btf__free(btf);
9454 	return libbpf_err(err);
9455 }
9456 
9457 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9458 {
9459 	struct bpf_prog_info info;
9460 	__u32 info_len = sizeof(info);
9461 	struct btf *btf;
9462 	int err;
9463 
9464 	memset(&info, 0, info_len);
9465 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9466 	if (err) {
9467 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9468 			attach_prog_fd, err);
9469 		return err;
9470 	}
9471 
9472 	err = -EINVAL;
9473 	if (!info.btf_id) {
9474 		pr_warn("The target program doesn't have BTF\n");
9475 		goto out;
9476 	}
9477 	btf = btf__load_from_kernel_by_id(info.btf_id);
9478 	err = libbpf_get_error(btf);
9479 	if (err) {
9480 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9481 		goto out;
9482 	}
9483 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9484 	btf__free(btf);
9485 	if (err <= 0) {
9486 		pr_warn("%s is not found in prog's BTF\n", name);
9487 		goto out;
9488 	}
9489 out:
9490 	return err;
9491 }
9492 
9493 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9494 			      enum bpf_attach_type attach_type,
9495 			      int *btf_obj_fd, int *btf_type_id)
9496 {
9497 	int ret, i;
9498 
9499 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9500 	if (ret > 0) {
9501 		*btf_obj_fd = 0; /* vmlinux BTF */
9502 		*btf_type_id = ret;
9503 		return 0;
9504 	}
9505 	if (ret != -ENOENT)
9506 		return ret;
9507 
9508 	ret = load_module_btfs(obj);
9509 	if (ret)
9510 		return ret;
9511 
9512 	for (i = 0; i < obj->btf_module_cnt; i++) {
9513 		const struct module_btf *mod = &obj->btf_modules[i];
9514 
9515 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9516 		if (ret > 0) {
9517 			*btf_obj_fd = mod->fd;
9518 			*btf_type_id = ret;
9519 			return 0;
9520 		}
9521 		if (ret == -ENOENT)
9522 			continue;
9523 
9524 		return ret;
9525 	}
9526 
9527 	return -ESRCH;
9528 }
9529 
9530 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9531 				     int *btf_obj_fd, int *btf_type_id)
9532 {
9533 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9534 	__u32 attach_prog_fd = prog->attach_prog_fd;
9535 	int err = 0;
9536 
9537 	/* BPF program's BTF ID */
9538 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9539 		if (!attach_prog_fd) {
9540 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9541 			return -EINVAL;
9542 		}
9543 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9544 		if (err < 0) {
9545 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9546 				 prog->name, attach_prog_fd, attach_name, err);
9547 			return err;
9548 		}
9549 		*btf_obj_fd = 0;
9550 		*btf_type_id = err;
9551 		return 0;
9552 	}
9553 
9554 	/* kernel/module BTF ID */
9555 	if (prog->obj->gen_loader) {
9556 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9557 		*btf_obj_fd = 0;
9558 		*btf_type_id = 1;
9559 	} else {
9560 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9561 	}
9562 	if (err) {
9563 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9564 			prog->name, attach_name, err);
9565 		return err;
9566 	}
9567 	return 0;
9568 }
9569 
9570 int libbpf_attach_type_by_name(const char *name,
9571 			       enum bpf_attach_type *attach_type)
9572 {
9573 	char *type_names;
9574 	const struct bpf_sec_def *sec_def;
9575 
9576 	if (!name)
9577 		return libbpf_err(-EINVAL);
9578 
9579 	sec_def = find_sec_def(name);
9580 	if (!sec_def) {
9581 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9582 		type_names = libbpf_get_type_names(true);
9583 		if (type_names != NULL) {
9584 			pr_debug("attachable section(type) names are:%s\n", type_names);
9585 			free(type_names);
9586 		}
9587 
9588 		return libbpf_err(-EINVAL);
9589 	}
9590 
9591 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9592 		return libbpf_err(-EINVAL);
9593 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9594 		return libbpf_err(-EINVAL);
9595 
9596 	*attach_type = sec_def->expected_attach_type;
9597 	return 0;
9598 }
9599 
9600 int bpf_map__fd(const struct bpf_map *map)
9601 {
9602 	return map ? map->fd : libbpf_err(-EINVAL);
9603 }
9604 
9605 static bool map_uses_real_name(const struct bpf_map *map)
9606 {
9607 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9608 	 * their user-visible name differs from kernel-visible name. Users see
9609 	 * such map's corresponding ELF section name as a map name.
9610 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9611 	 * maps to know which name has to be returned to the user.
9612 	 */
9613 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9614 		return true;
9615 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9616 		return true;
9617 	return false;
9618 }
9619 
9620 const char *bpf_map__name(const struct bpf_map *map)
9621 {
9622 	if (!map)
9623 		return NULL;
9624 
9625 	if (map_uses_real_name(map))
9626 		return map->real_name;
9627 
9628 	return map->name;
9629 }
9630 
9631 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9632 {
9633 	return map->def.type;
9634 }
9635 
9636 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9637 {
9638 	if (map->fd >= 0)
9639 		return libbpf_err(-EBUSY);
9640 	map->def.type = type;
9641 	return 0;
9642 }
9643 
9644 __u32 bpf_map__map_flags(const struct bpf_map *map)
9645 {
9646 	return map->def.map_flags;
9647 }
9648 
9649 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9650 {
9651 	if (map->fd >= 0)
9652 		return libbpf_err(-EBUSY);
9653 	map->def.map_flags = flags;
9654 	return 0;
9655 }
9656 
9657 __u64 bpf_map__map_extra(const struct bpf_map *map)
9658 {
9659 	return map->map_extra;
9660 }
9661 
9662 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9663 {
9664 	if (map->fd >= 0)
9665 		return libbpf_err(-EBUSY);
9666 	map->map_extra = map_extra;
9667 	return 0;
9668 }
9669 
9670 __u32 bpf_map__numa_node(const struct bpf_map *map)
9671 {
9672 	return map->numa_node;
9673 }
9674 
9675 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9676 {
9677 	if (map->fd >= 0)
9678 		return libbpf_err(-EBUSY);
9679 	map->numa_node = numa_node;
9680 	return 0;
9681 }
9682 
9683 __u32 bpf_map__key_size(const struct bpf_map *map)
9684 {
9685 	return map->def.key_size;
9686 }
9687 
9688 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9689 {
9690 	if (map->fd >= 0)
9691 		return libbpf_err(-EBUSY);
9692 	map->def.key_size = size;
9693 	return 0;
9694 }
9695 
9696 __u32 bpf_map__value_size(const struct bpf_map *map)
9697 {
9698 	return map->def.value_size;
9699 }
9700 
9701 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9702 {
9703 	struct btf *btf;
9704 	struct btf_type *datasec_type, *var_type;
9705 	struct btf_var_secinfo *var;
9706 	const struct btf_type *array_type;
9707 	const struct btf_array *array;
9708 	int vlen, element_sz, new_array_id;
9709 	__u32 nr_elements;
9710 
9711 	/* check btf existence */
9712 	btf = bpf_object__btf(map->obj);
9713 	if (!btf)
9714 		return -ENOENT;
9715 
9716 	/* verify map is datasec */
9717 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9718 	if (!btf_is_datasec(datasec_type)) {
9719 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9720 			bpf_map__name(map));
9721 		return -EINVAL;
9722 	}
9723 
9724 	/* verify datasec has at least one var */
9725 	vlen = btf_vlen(datasec_type);
9726 	if (vlen == 0) {
9727 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9728 			bpf_map__name(map));
9729 		return -EINVAL;
9730 	}
9731 
9732 	/* verify last var in the datasec is an array */
9733 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9734 	var_type = btf_type_by_id(btf, var->type);
9735 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9736 	if (!btf_is_array(array_type)) {
9737 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
9738 			bpf_map__name(map));
9739 		return -EINVAL;
9740 	}
9741 
9742 	/* verify request size aligns with array */
9743 	array = btf_array(array_type);
9744 	element_sz = btf__resolve_size(btf, array->type);
9745 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9746 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9747 			bpf_map__name(map), element_sz, size);
9748 		return -EINVAL;
9749 	}
9750 
9751 	/* create a new array based on the existing array, but with new length */
9752 	nr_elements = (size - var->offset) / element_sz;
9753 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9754 	if (new_array_id < 0)
9755 		return new_array_id;
9756 
9757 	/* adding a new btf type invalidates existing pointers to btf objects,
9758 	 * so refresh pointers before proceeding
9759 	 */
9760 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9761 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9762 	var_type = btf_type_by_id(btf, var->type);
9763 
9764 	/* finally update btf info */
9765 	datasec_type->size = size;
9766 	var->size = size - var->offset;
9767 	var_type->type = new_array_id;
9768 
9769 	return 0;
9770 }
9771 
9772 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9773 {
9774 	if (map->fd >= 0)
9775 		return libbpf_err(-EBUSY);
9776 
9777 	if (map->mmaped) {
9778 		int err;
9779 		size_t mmap_old_sz, mmap_new_sz;
9780 
9781 		mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9782 		mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9783 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9784 		if (err) {
9785 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9786 				bpf_map__name(map), err);
9787 			return err;
9788 		}
9789 		err = map_btf_datasec_resize(map, size);
9790 		if (err && err != -ENOENT) {
9791 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9792 				bpf_map__name(map), err);
9793 			map->btf_value_type_id = 0;
9794 			map->btf_key_type_id = 0;
9795 		}
9796 	}
9797 
9798 	map->def.value_size = size;
9799 	return 0;
9800 }
9801 
9802 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9803 {
9804 	return map ? map->btf_key_type_id : 0;
9805 }
9806 
9807 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9808 {
9809 	return map ? map->btf_value_type_id : 0;
9810 }
9811 
9812 int bpf_map__set_initial_value(struct bpf_map *map,
9813 			       const void *data, size_t size)
9814 {
9815 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9816 	    size != map->def.value_size || map->fd >= 0)
9817 		return libbpf_err(-EINVAL);
9818 
9819 	memcpy(map->mmaped, data, size);
9820 	return 0;
9821 }
9822 
9823 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9824 {
9825 	if (!map->mmaped)
9826 		return NULL;
9827 	*psize = map->def.value_size;
9828 	return map->mmaped;
9829 }
9830 
9831 bool bpf_map__is_internal(const struct bpf_map *map)
9832 {
9833 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9834 }
9835 
9836 __u32 bpf_map__ifindex(const struct bpf_map *map)
9837 {
9838 	return map->map_ifindex;
9839 }
9840 
9841 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9842 {
9843 	if (map->fd >= 0)
9844 		return libbpf_err(-EBUSY);
9845 	map->map_ifindex = ifindex;
9846 	return 0;
9847 }
9848 
9849 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9850 {
9851 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9852 		pr_warn("error: unsupported map type\n");
9853 		return libbpf_err(-EINVAL);
9854 	}
9855 	if (map->inner_map_fd != -1) {
9856 		pr_warn("error: inner_map_fd already specified\n");
9857 		return libbpf_err(-EINVAL);
9858 	}
9859 	if (map->inner_map) {
9860 		bpf_map__destroy(map->inner_map);
9861 		zfree(&map->inner_map);
9862 	}
9863 	map->inner_map_fd = fd;
9864 	return 0;
9865 }
9866 
9867 static struct bpf_map *
9868 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9869 {
9870 	ssize_t idx;
9871 	struct bpf_map *s, *e;
9872 
9873 	if (!obj || !obj->maps)
9874 		return errno = EINVAL, NULL;
9875 
9876 	s = obj->maps;
9877 	e = obj->maps + obj->nr_maps;
9878 
9879 	if ((m < s) || (m >= e)) {
9880 		pr_warn("error in %s: map handler doesn't belong to object\n",
9881 			 __func__);
9882 		return errno = EINVAL, NULL;
9883 	}
9884 
9885 	idx = (m - obj->maps) + i;
9886 	if (idx >= obj->nr_maps || idx < 0)
9887 		return NULL;
9888 	return &obj->maps[idx];
9889 }
9890 
9891 struct bpf_map *
9892 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9893 {
9894 	if (prev == NULL)
9895 		return obj->maps;
9896 
9897 	return __bpf_map__iter(prev, obj, 1);
9898 }
9899 
9900 struct bpf_map *
9901 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9902 {
9903 	if (next == NULL) {
9904 		if (!obj->nr_maps)
9905 			return NULL;
9906 		return obj->maps + obj->nr_maps - 1;
9907 	}
9908 
9909 	return __bpf_map__iter(next, obj, -1);
9910 }
9911 
9912 struct bpf_map *
9913 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9914 {
9915 	struct bpf_map *pos;
9916 
9917 	bpf_object__for_each_map(pos, obj) {
9918 		/* if it's a special internal map name (which always starts
9919 		 * with dot) then check if that special name matches the
9920 		 * real map name (ELF section name)
9921 		 */
9922 		if (name[0] == '.') {
9923 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9924 				return pos;
9925 			continue;
9926 		}
9927 		/* otherwise map name has to be an exact match */
9928 		if (map_uses_real_name(pos)) {
9929 			if (strcmp(pos->real_name, name) == 0)
9930 				return pos;
9931 			continue;
9932 		}
9933 		if (strcmp(pos->name, name) == 0)
9934 			return pos;
9935 	}
9936 	return errno = ENOENT, NULL;
9937 }
9938 
9939 int
9940 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9941 {
9942 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9943 }
9944 
9945 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9946 			   size_t value_sz, bool check_value_sz)
9947 {
9948 	if (map->fd <= 0)
9949 		return -ENOENT;
9950 
9951 	if (map->def.key_size != key_sz) {
9952 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9953 			map->name, key_sz, map->def.key_size);
9954 		return -EINVAL;
9955 	}
9956 
9957 	if (!check_value_sz)
9958 		return 0;
9959 
9960 	switch (map->def.type) {
9961 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9962 	case BPF_MAP_TYPE_PERCPU_HASH:
9963 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9964 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9965 		int num_cpu = libbpf_num_possible_cpus();
9966 		size_t elem_sz = roundup(map->def.value_size, 8);
9967 
9968 		if (value_sz != num_cpu * elem_sz) {
9969 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9970 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9971 			return -EINVAL;
9972 		}
9973 		break;
9974 	}
9975 	default:
9976 		if (map->def.value_size != value_sz) {
9977 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9978 				map->name, value_sz, map->def.value_size);
9979 			return -EINVAL;
9980 		}
9981 		break;
9982 	}
9983 	return 0;
9984 }
9985 
9986 int bpf_map__lookup_elem(const struct bpf_map *map,
9987 			 const void *key, size_t key_sz,
9988 			 void *value, size_t value_sz, __u64 flags)
9989 {
9990 	int err;
9991 
9992 	err = validate_map_op(map, key_sz, value_sz, true);
9993 	if (err)
9994 		return libbpf_err(err);
9995 
9996 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9997 }
9998 
9999 int bpf_map__update_elem(const struct bpf_map *map,
10000 			 const void *key, size_t key_sz,
10001 			 const void *value, size_t value_sz, __u64 flags)
10002 {
10003 	int err;
10004 
10005 	err = validate_map_op(map, key_sz, value_sz, true);
10006 	if (err)
10007 		return libbpf_err(err);
10008 
10009 	return bpf_map_update_elem(map->fd, key, value, flags);
10010 }
10011 
10012 int bpf_map__delete_elem(const struct bpf_map *map,
10013 			 const void *key, size_t key_sz, __u64 flags)
10014 {
10015 	int err;
10016 
10017 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10018 	if (err)
10019 		return libbpf_err(err);
10020 
10021 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10022 }
10023 
10024 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10025 				    const void *key, size_t key_sz,
10026 				    void *value, size_t value_sz, __u64 flags)
10027 {
10028 	int err;
10029 
10030 	err = validate_map_op(map, key_sz, value_sz, true);
10031 	if (err)
10032 		return libbpf_err(err);
10033 
10034 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10035 }
10036 
10037 int bpf_map__get_next_key(const struct bpf_map *map,
10038 			  const void *cur_key, void *next_key, size_t key_sz)
10039 {
10040 	int err;
10041 
10042 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10043 	if (err)
10044 		return libbpf_err(err);
10045 
10046 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10047 }
10048 
10049 long libbpf_get_error(const void *ptr)
10050 {
10051 	if (!IS_ERR_OR_NULL(ptr))
10052 		return 0;
10053 
10054 	if (IS_ERR(ptr))
10055 		errno = -PTR_ERR(ptr);
10056 
10057 	/* If ptr == NULL, then errno should be already set by the failing
10058 	 * API, because libbpf never returns NULL on success and it now always
10059 	 * sets errno on error. So no extra errno handling for ptr == NULL
10060 	 * case.
10061 	 */
10062 	return -errno;
10063 }
10064 
10065 /* Replace link's underlying BPF program with the new one */
10066 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10067 {
10068 	int ret;
10069 
10070 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10071 	return libbpf_err_errno(ret);
10072 }
10073 
10074 /* Release "ownership" of underlying BPF resource (typically, BPF program
10075  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10076  * link, when destructed through bpf_link__destroy() call won't attempt to
10077  * detach/unregisted that BPF resource. This is useful in situations where,
10078  * say, attached BPF program has to outlive userspace program that attached it
10079  * in the system. Depending on type of BPF program, though, there might be
10080  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10081  * exit of userspace program doesn't trigger automatic detachment and clean up
10082  * inside the kernel.
10083  */
10084 void bpf_link__disconnect(struct bpf_link *link)
10085 {
10086 	link->disconnected = true;
10087 }
10088 
10089 int bpf_link__destroy(struct bpf_link *link)
10090 {
10091 	int err = 0;
10092 
10093 	if (IS_ERR_OR_NULL(link))
10094 		return 0;
10095 
10096 	if (!link->disconnected && link->detach)
10097 		err = link->detach(link);
10098 	if (link->pin_path)
10099 		free(link->pin_path);
10100 	if (link->dealloc)
10101 		link->dealloc(link);
10102 	else
10103 		free(link);
10104 
10105 	return libbpf_err(err);
10106 }
10107 
10108 int bpf_link__fd(const struct bpf_link *link)
10109 {
10110 	return link->fd;
10111 }
10112 
10113 const char *bpf_link__pin_path(const struct bpf_link *link)
10114 {
10115 	return link->pin_path;
10116 }
10117 
10118 static int bpf_link__detach_fd(struct bpf_link *link)
10119 {
10120 	return libbpf_err_errno(close(link->fd));
10121 }
10122 
10123 struct bpf_link *bpf_link__open(const char *path)
10124 {
10125 	struct bpf_link *link;
10126 	int fd;
10127 
10128 	fd = bpf_obj_get(path);
10129 	if (fd < 0) {
10130 		fd = -errno;
10131 		pr_warn("failed to open link at %s: %d\n", path, fd);
10132 		return libbpf_err_ptr(fd);
10133 	}
10134 
10135 	link = calloc(1, sizeof(*link));
10136 	if (!link) {
10137 		close(fd);
10138 		return libbpf_err_ptr(-ENOMEM);
10139 	}
10140 	link->detach = &bpf_link__detach_fd;
10141 	link->fd = fd;
10142 
10143 	link->pin_path = strdup(path);
10144 	if (!link->pin_path) {
10145 		bpf_link__destroy(link);
10146 		return libbpf_err_ptr(-ENOMEM);
10147 	}
10148 
10149 	return link;
10150 }
10151 
10152 int bpf_link__detach(struct bpf_link *link)
10153 {
10154 	return bpf_link_detach(link->fd) ? -errno : 0;
10155 }
10156 
10157 int bpf_link__pin(struct bpf_link *link, const char *path)
10158 {
10159 	int err;
10160 
10161 	if (link->pin_path)
10162 		return libbpf_err(-EBUSY);
10163 	err = make_parent_dir(path);
10164 	if (err)
10165 		return libbpf_err(err);
10166 	err = check_path(path);
10167 	if (err)
10168 		return libbpf_err(err);
10169 
10170 	link->pin_path = strdup(path);
10171 	if (!link->pin_path)
10172 		return libbpf_err(-ENOMEM);
10173 
10174 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10175 		err = -errno;
10176 		zfree(&link->pin_path);
10177 		return libbpf_err(err);
10178 	}
10179 
10180 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10181 	return 0;
10182 }
10183 
10184 int bpf_link__unpin(struct bpf_link *link)
10185 {
10186 	int err;
10187 
10188 	if (!link->pin_path)
10189 		return libbpf_err(-EINVAL);
10190 
10191 	err = unlink(link->pin_path);
10192 	if (err != 0)
10193 		return -errno;
10194 
10195 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10196 	zfree(&link->pin_path);
10197 	return 0;
10198 }
10199 
10200 struct bpf_link_perf {
10201 	struct bpf_link link;
10202 	int perf_event_fd;
10203 	/* legacy kprobe support: keep track of probe identifier and type */
10204 	char *legacy_probe_name;
10205 	bool legacy_is_kprobe;
10206 	bool legacy_is_retprobe;
10207 };
10208 
10209 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10210 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10211 
10212 static int bpf_link_perf_detach(struct bpf_link *link)
10213 {
10214 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10215 	int err = 0;
10216 
10217 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10218 		err = -errno;
10219 
10220 	if (perf_link->perf_event_fd != link->fd)
10221 		close(perf_link->perf_event_fd);
10222 	close(link->fd);
10223 
10224 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10225 	if (perf_link->legacy_probe_name) {
10226 		if (perf_link->legacy_is_kprobe) {
10227 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10228 							 perf_link->legacy_is_retprobe);
10229 		} else {
10230 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10231 							 perf_link->legacy_is_retprobe);
10232 		}
10233 	}
10234 
10235 	return err;
10236 }
10237 
10238 static void bpf_link_perf_dealloc(struct bpf_link *link)
10239 {
10240 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10241 
10242 	free(perf_link->legacy_probe_name);
10243 	free(perf_link);
10244 }
10245 
10246 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10247 						     const struct bpf_perf_event_opts *opts)
10248 {
10249 	char errmsg[STRERR_BUFSIZE];
10250 	struct bpf_link_perf *link;
10251 	int prog_fd, link_fd = -1, err;
10252 	bool force_ioctl_attach;
10253 
10254 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10255 		return libbpf_err_ptr(-EINVAL);
10256 
10257 	if (pfd < 0) {
10258 		pr_warn("prog '%s': invalid perf event FD %d\n",
10259 			prog->name, pfd);
10260 		return libbpf_err_ptr(-EINVAL);
10261 	}
10262 	prog_fd = bpf_program__fd(prog);
10263 	if (prog_fd < 0) {
10264 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10265 			prog->name);
10266 		return libbpf_err_ptr(-EINVAL);
10267 	}
10268 
10269 	link = calloc(1, sizeof(*link));
10270 	if (!link)
10271 		return libbpf_err_ptr(-ENOMEM);
10272 	link->link.detach = &bpf_link_perf_detach;
10273 	link->link.dealloc = &bpf_link_perf_dealloc;
10274 	link->perf_event_fd = pfd;
10275 
10276 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10277 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10278 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10279 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10280 
10281 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10282 		if (link_fd < 0) {
10283 			err = -errno;
10284 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10285 				prog->name, pfd,
10286 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10287 			goto err_out;
10288 		}
10289 		link->link.fd = link_fd;
10290 	} else {
10291 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10292 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10293 			err = -EOPNOTSUPP;
10294 			goto err_out;
10295 		}
10296 
10297 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10298 			err = -errno;
10299 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10300 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10301 			if (err == -EPROTO)
10302 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10303 					prog->name, pfd);
10304 			goto err_out;
10305 		}
10306 		link->link.fd = pfd;
10307 	}
10308 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10309 		err = -errno;
10310 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10311 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10312 		goto err_out;
10313 	}
10314 
10315 	return &link->link;
10316 err_out:
10317 	if (link_fd >= 0)
10318 		close(link_fd);
10319 	free(link);
10320 	return libbpf_err_ptr(err);
10321 }
10322 
10323 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10324 {
10325 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10326 }
10327 
10328 /*
10329  * this function is expected to parse integer in the range of [0, 2^31-1] from
10330  * given file using scanf format string fmt. If actual parsed value is
10331  * negative, the result might be indistinguishable from error
10332  */
10333 static int parse_uint_from_file(const char *file, const char *fmt)
10334 {
10335 	char buf[STRERR_BUFSIZE];
10336 	int err, ret;
10337 	FILE *f;
10338 
10339 	f = fopen(file, "re");
10340 	if (!f) {
10341 		err = -errno;
10342 		pr_debug("failed to open '%s': %s\n", file,
10343 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10344 		return err;
10345 	}
10346 	err = fscanf(f, fmt, &ret);
10347 	if (err != 1) {
10348 		err = err == EOF ? -EIO : -errno;
10349 		pr_debug("failed to parse '%s': %s\n", file,
10350 			libbpf_strerror_r(err, buf, sizeof(buf)));
10351 		fclose(f);
10352 		return err;
10353 	}
10354 	fclose(f);
10355 	return ret;
10356 }
10357 
10358 static int determine_kprobe_perf_type(void)
10359 {
10360 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10361 
10362 	return parse_uint_from_file(file, "%d\n");
10363 }
10364 
10365 static int determine_uprobe_perf_type(void)
10366 {
10367 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10368 
10369 	return parse_uint_from_file(file, "%d\n");
10370 }
10371 
10372 static int determine_kprobe_retprobe_bit(void)
10373 {
10374 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10375 
10376 	return parse_uint_from_file(file, "config:%d\n");
10377 }
10378 
10379 static int determine_uprobe_retprobe_bit(void)
10380 {
10381 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10382 
10383 	return parse_uint_from_file(file, "config:%d\n");
10384 }
10385 
10386 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10387 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10388 
10389 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10390 				 uint64_t offset, int pid, size_t ref_ctr_off)
10391 {
10392 	const size_t attr_sz = sizeof(struct perf_event_attr);
10393 	struct perf_event_attr attr;
10394 	char errmsg[STRERR_BUFSIZE];
10395 	int type, pfd;
10396 
10397 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10398 		return -EINVAL;
10399 
10400 	memset(&attr, 0, attr_sz);
10401 
10402 	type = uprobe ? determine_uprobe_perf_type()
10403 		      : determine_kprobe_perf_type();
10404 	if (type < 0) {
10405 		pr_warn("failed to determine %s perf type: %s\n",
10406 			uprobe ? "uprobe" : "kprobe",
10407 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10408 		return type;
10409 	}
10410 	if (retprobe) {
10411 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10412 				 : determine_kprobe_retprobe_bit();
10413 
10414 		if (bit < 0) {
10415 			pr_warn("failed to determine %s retprobe bit: %s\n",
10416 				uprobe ? "uprobe" : "kprobe",
10417 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10418 			return bit;
10419 		}
10420 		attr.config |= 1 << bit;
10421 	}
10422 	attr.size = attr_sz;
10423 	attr.type = type;
10424 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10425 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10426 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10427 
10428 	/* pid filter is meaningful only for uprobes */
10429 	pfd = syscall(__NR_perf_event_open, &attr,
10430 		      pid < 0 ? -1 : pid /* pid */,
10431 		      pid == -1 ? 0 : -1 /* cpu */,
10432 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10433 	return pfd >= 0 ? pfd : -errno;
10434 }
10435 
10436 static int append_to_file(const char *file, const char *fmt, ...)
10437 {
10438 	int fd, n, err = 0;
10439 	va_list ap;
10440 	char buf[1024];
10441 
10442 	va_start(ap, fmt);
10443 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10444 	va_end(ap);
10445 
10446 	if (n < 0 || n >= sizeof(buf))
10447 		return -EINVAL;
10448 
10449 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10450 	if (fd < 0)
10451 		return -errno;
10452 
10453 	if (write(fd, buf, n) < 0)
10454 		err = -errno;
10455 
10456 	close(fd);
10457 	return err;
10458 }
10459 
10460 #define DEBUGFS "/sys/kernel/debug/tracing"
10461 #define TRACEFS "/sys/kernel/tracing"
10462 
10463 static bool use_debugfs(void)
10464 {
10465 	static int has_debugfs = -1;
10466 
10467 	if (has_debugfs < 0)
10468 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10469 
10470 	return has_debugfs == 1;
10471 }
10472 
10473 static const char *tracefs_path(void)
10474 {
10475 	return use_debugfs() ? DEBUGFS : TRACEFS;
10476 }
10477 
10478 static const char *tracefs_kprobe_events(void)
10479 {
10480 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10481 }
10482 
10483 static const char *tracefs_uprobe_events(void)
10484 {
10485 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10486 }
10487 
10488 static const char *tracefs_available_filter_functions(void)
10489 {
10490 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10491 			     : TRACEFS"/available_filter_functions";
10492 }
10493 
10494 static const char *tracefs_available_filter_functions_addrs(void)
10495 {
10496 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10497 			     : TRACEFS"/available_filter_functions_addrs";
10498 }
10499 
10500 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10501 					 const char *kfunc_name, size_t offset)
10502 {
10503 	static int index = 0;
10504 	int i;
10505 
10506 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10507 		 __sync_fetch_and_add(&index, 1));
10508 
10509 	/* sanitize binary_path in the probe name */
10510 	for (i = 0; buf[i]; i++) {
10511 		if (!isalnum(buf[i]))
10512 			buf[i] = '_';
10513 	}
10514 }
10515 
10516 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10517 				   const char *kfunc_name, size_t offset)
10518 {
10519 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10520 			      retprobe ? 'r' : 'p',
10521 			      retprobe ? "kretprobes" : "kprobes",
10522 			      probe_name, kfunc_name, offset);
10523 }
10524 
10525 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10526 {
10527 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10528 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10529 }
10530 
10531 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10532 {
10533 	char file[256];
10534 
10535 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10536 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10537 
10538 	return parse_uint_from_file(file, "%d\n");
10539 }
10540 
10541 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10542 					 const char *kfunc_name, size_t offset, int pid)
10543 {
10544 	const size_t attr_sz = sizeof(struct perf_event_attr);
10545 	struct perf_event_attr attr;
10546 	char errmsg[STRERR_BUFSIZE];
10547 	int type, pfd, err;
10548 
10549 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10550 	if (err < 0) {
10551 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10552 			kfunc_name, offset,
10553 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10554 		return err;
10555 	}
10556 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10557 	if (type < 0) {
10558 		err = type;
10559 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10560 			kfunc_name, offset,
10561 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10562 		goto err_clean_legacy;
10563 	}
10564 
10565 	memset(&attr, 0, attr_sz);
10566 	attr.size = attr_sz;
10567 	attr.config = type;
10568 	attr.type = PERF_TYPE_TRACEPOINT;
10569 
10570 	pfd = syscall(__NR_perf_event_open, &attr,
10571 		      pid < 0 ? -1 : pid, /* pid */
10572 		      pid == -1 ? 0 : -1, /* cpu */
10573 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10574 	if (pfd < 0) {
10575 		err = -errno;
10576 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10577 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10578 		goto err_clean_legacy;
10579 	}
10580 	return pfd;
10581 
10582 err_clean_legacy:
10583 	/* Clear the newly added legacy kprobe_event */
10584 	remove_kprobe_event_legacy(probe_name, retprobe);
10585 	return err;
10586 }
10587 
10588 static const char *arch_specific_syscall_pfx(void)
10589 {
10590 #if defined(__x86_64__)
10591 	return "x64";
10592 #elif defined(__i386__)
10593 	return "ia32";
10594 #elif defined(__s390x__)
10595 	return "s390x";
10596 #elif defined(__s390__)
10597 	return "s390";
10598 #elif defined(__arm__)
10599 	return "arm";
10600 #elif defined(__aarch64__)
10601 	return "arm64";
10602 #elif defined(__mips__)
10603 	return "mips";
10604 #elif defined(__riscv)
10605 	return "riscv";
10606 #elif defined(__powerpc__)
10607 	return "powerpc";
10608 #elif defined(__powerpc64__)
10609 	return "powerpc64";
10610 #else
10611 	return NULL;
10612 #endif
10613 }
10614 
10615 static int probe_kern_syscall_wrapper(void)
10616 {
10617 	char syscall_name[64];
10618 	const char *ksys_pfx;
10619 
10620 	ksys_pfx = arch_specific_syscall_pfx();
10621 	if (!ksys_pfx)
10622 		return 0;
10623 
10624 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10625 
10626 	if (determine_kprobe_perf_type() >= 0) {
10627 		int pfd;
10628 
10629 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10630 		if (pfd >= 0)
10631 			close(pfd);
10632 
10633 		return pfd >= 0 ? 1 : 0;
10634 	} else { /* legacy mode */
10635 		char probe_name[128];
10636 
10637 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10638 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10639 			return 0;
10640 
10641 		(void)remove_kprobe_event_legacy(probe_name, false);
10642 		return 1;
10643 	}
10644 }
10645 
10646 struct bpf_link *
10647 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10648 				const char *func_name,
10649 				const struct bpf_kprobe_opts *opts)
10650 {
10651 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10652 	enum probe_attach_mode attach_mode;
10653 	char errmsg[STRERR_BUFSIZE];
10654 	char *legacy_probe = NULL;
10655 	struct bpf_link *link;
10656 	size_t offset;
10657 	bool retprobe, legacy;
10658 	int pfd, err;
10659 
10660 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10661 		return libbpf_err_ptr(-EINVAL);
10662 
10663 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10664 	retprobe = OPTS_GET(opts, retprobe, false);
10665 	offset = OPTS_GET(opts, offset, 0);
10666 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10667 
10668 	legacy = determine_kprobe_perf_type() < 0;
10669 	switch (attach_mode) {
10670 	case PROBE_ATTACH_MODE_LEGACY:
10671 		legacy = true;
10672 		pe_opts.force_ioctl_attach = true;
10673 		break;
10674 	case PROBE_ATTACH_MODE_PERF:
10675 		if (legacy)
10676 			return libbpf_err_ptr(-ENOTSUP);
10677 		pe_opts.force_ioctl_attach = true;
10678 		break;
10679 	case PROBE_ATTACH_MODE_LINK:
10680 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10681 			return libbpf_err_ptr(-ENOTSUP);
10682 		break;
10683 	case PROBE_ATTACH_MODE_DEFAULT:
10684 		break;
10685 	default:
10686 		return libbpf_err_ptr(-EINVAL);
10687 	}
10688 
10689 	if (!legacy) {
10690 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10691 					    func_name, offset,
10692 					    -1 /* pid */, 0 /* ref_ctr_off */);
10693 	} else {
10694 		char probe_name[256];
10695 
10696 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10697 					     func_name, offset);
10698 
10699 		legacy_probe = strdup(probe_name);
10700 		if (!legacy_probe)
10701 			return libbpf_err_ptr(-ENOMEM);
10702 
10703 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10704 						    offset, -1 /* pid */);
10705 	}
10706 	if (pfd < 0) {
10707 		err = -errno;
10708 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10709 			prog->name, retprobe ? "kretprobe" : "kprobe",
10710 			func_name, offset,
10711 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10712 		goto err_out;
10713 	}
10714 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10715 	err = libbpf_get_error(link);
10716 	if (err) {
10717 		close(pfd);
10718 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10719 			prog->name, retprobe ? "kretprobe" : "kprobe",
10720 			func_name, offset,
10721 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10722 		goto err_clean_legacy;
10723 	}
10724 	if (legacy) {
10725 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10726 
10727 		perf_link->legacy_probe_name = legacy_probe;
10728 		perf_link->legacy_is_kprobe = true;
10729 		perf_link->legacy_is_retprobe = retprobe;
10730 	}
10731 
10732 	return link;
10733 
10734 err_clean_legacy:
10735 	if (legacy)
10736 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10737 err_out:
10738 	free(legacy_probe);
10739 	return libbpf_err_ptr(err);
10740 }
10741 
10742 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10743 					    bool retprobe,
10744 					    const char *func_name)
10745 {
10746 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10747 		.retprobe = retprobe,
10748 	);
10749 
10750 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10751 }
10752 
10753 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10754 					      const char *syscall_name,
10755 					      const struct bpf_ksyscall_opts *opts)
10756 {
10757 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10758 	char func_name[128];
10759 
10760 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10761 		return libbpf_err_ptr(-EINVAL);
10762 
10763 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10764 		/* arch_specific_syscall_pfx() should never return NULL here
10765 		 * because it is guarded by kernel_supports(). However, since
10766 		 * compiler does not know that we have an explicit conditional
10767 		 * as well.
10768 		 */
10769 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10770 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10771 	} else {
10772 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10773 	}
10774 
10775 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10776 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10777 
10778 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10779 }
10780 
10781 /* Adapted from perf/util/string.c */
10782 bool glob_match(const char *str, const char *pat)
10783 {
10784 	while (*str && *pat && *pat != '*') {
10785 		if (*pat == '?') {      /* Matches any single character */
10786 			str++;
10787 			pat++;
10788 			continue;
10789 		}
10790 		if (*str != *pat)
10791 			return false;
10792 		str++;
10793 		pat++;
10794 	}
10795 	/* Check wild card */
10796 	if (*pat == '*') {
10797 		while (*pat == '*')
10798 			pat++;
10799 		if (!*pat) /* Tail wild card matches all */
10800 			return true;
10801 		while (*str)
10802 			if (glob_match(str++, pat))
10803 				return true;
10804 	}
10805 	return !*str && !*pat;
10806 }
10807 
10808 struct kprobe_multi_resolve {
10809 	const char *pattern;
10810 	unsigned long *addrs;
10811 	size_t cap;
10812 	size_t cnt;
10813 };
10814 
10815 struct avail_kallsyms_data {
10816 	char **syms;
10817 	size_t cnt;
10818 	struct kprobe_multi_resolve *res;
10819 };
10820 
10821 static int avail_func_cmp(const void *a, const void *b)
10822 {
10823 	return strcmp(*(const char **)a, *(const char **)b);
10824 }
10825 
10826 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
10827 			     const char *sym_name, void *ctx)
10828 {
10829 	struct avail_kallsyms_data *data = ctx;
10830 	struct kprobe_multi_resolve *res = data->res;
10831 	int err;
10832 
10833 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
10834 		return 0;
10835 
10836 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
10837 	if (err)
10838 		return err;
10839 
10840 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
10841 	return 0;
10842 }
10843 
10844 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
10845 {
10846 	const char *available_functions_file = tracefs_available_filter_functions();
10847 	struct avail_kallsyms_data data;
10848 	char sym_name[500];
10849 	FILE *f;
10850 	int err = 0, ret, i;
10851 	char **syms = NULL;
10852 	size_t cap = 0, cnt = 0;
10853 
10854 	f = fopen(available_functions_file, "re");
10855 	if (!f) {
10856 		err = -errno;
10857 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
10858 		return err;
10859 	}
10860 
10861 	while (true) {
10862 		char *name;
10863 
10864 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
10865 		if (ret == EOF && feof(f))
10866 			break;
10867 
10868 		if (ret != 1) {
10869 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
10870 			err = -EINVAL;
10871 			goto cleanup;
10872 		}
10873 
10874 		if (!glob_match(sym_name, res->pattern))
10875 			continue;
10876 
10877 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
10878 		if (err)
10879 			goto cleanup;
10880 
10881 		name = strdup(sym_name);
10882 		if (!name) {
10883 			err = -errno;
10884 			goto cleanup;
10885 		}
10886 
10887 		syms[cnt++] = name;
10888 	}
10889 
10890 	/* no entries found, bail out */
10891 	if (cnt == 0) {
10892 		err = -ENOENT;
10893 		goto cleanup;
10894 	}
10895 
10896 	/* sort available functions */
10897 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
10898 
10899 	data.syms = syms;
10900 	data.res = res;
10901 	data.cnt = cnt;
10902 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
10903 
10904 	if (res->cnt == 0)
10905 		err = -ENOENT;
10906 
10907 cleanup:
10908 	for (i = 0; i < cnt; i++)
10909 		free((char *)syms[i]);
10910 	free(syms);
10911 
10912 	fclose(f);
10913 	return err;
10914 }
10915 
10916 static bool has_available_filter_functions_addrs(void)
10917 {
10918 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
10919 }
10920 
10921 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
10922 {
10923 	const char *available_path = tracefs_available_filter_functions_addrs();
10924 	char sym_name[500];
10925 	FILE *f;
10926 	int ret, err = 0;
10927 	unsigned long long sym_addr;
10928 
10929 	f = fopen(available_path, "re");
10930 	if (!f) {
10931 		err = -errno;
10932 		pr_warn("failed to open %s: %d\n", available_path, err);
10933 		return err;
10934 	}
10935 
10936 	while (true) {
10937 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
10938 		if (ret == EOF && feof(f))
10939 			break;
10940 
10941 		if (ret != 2) {
10942 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
10943 				ret);
10944 			err = -EINVAL;
10945 			goto cleanup;
10946 		}
10947 
10948 		if (!glob_match(sym_name, res->pattern))
10949 			continue;
10950 
10951 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
10952 					sizeof(*res->addrs), res->cnt + 1);
10953 		if (err)
10954 			goto cleanup;
10955 
10956 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
10957 	}
10958 
10959 	if (res->cnt == 0)
10960 		err = -ENOENT;
10961 
10962 cleanup:
10963 	fclose(f);
10964 	return err;
10965 }
10966 
10967 struct bpf_link *
10968 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10969 				      const char *pattern,
10970 				      const struct bpf_kprobe_multi_opts *opts)
10971 {
10972 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10973 	struct kprobe_multi_resolve res = {
10974 		.pattern = pattern,
10975 	};
10976 	struct bpf_link *link = NULL;
10977 	char errmsg[STRERR_BUFSIZE];
10978 	const unsigned long *addrs;
10979 	int err, link_fd, prog_fd;
10980 	const __u64 *cookies;
10981 	const char **syms;
10982 	bool retprobe;
10983 	size_t cnt;
10984 
10985 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10986 		return libbpf_err_ptr(-EINVAL);
10987 
10988 	syms    = OPTS_GET(opts, syms, false);
10989 	addrs   = OPTS_GET(opts, addrs, false);
10990 	cnt     = OPTS_GET(opts, cnt, false);
10991 	cookies = OPTS_GET(opts, cookies, false);
10992 
10993 	if (!pattern && !addrs && !syms)
10994 		return libbpf_err_ptr(-EINVAL);
10995 	if (pattern && (addrs || syms || cookies || cnt))
10996 		return libbpf_err_ptr(-EINVAL);
10997 	if (!pattern && !cnt)
10998 		return libbpf_err_ptr(-EINVAL);
10999 	if (addrs && syms)
11000 		return libbpf_err_ptr(-EINVAL);
11001 
11002 	if (pattern) {
11003 		if (has_available_filter_functions_addrs())
11004 			err = libbpf_available_kprobes_parse(&res);
11005 		else
11006 			err = libbpf_available_kallsyms_parse(&res);
11007 		if (err)
11008 			goto error;
11009 		addrs = res.addrs;
11010 		cnt = res.cnt;
11011 	}
11012 
11013 	retprobe = OPTS_GET(opts, retprobe, false);
11014 
11015 	lopts.kprobe_multi.syms = syms;
11016 	lopts.kprobe_multi.addrs = addrs;
11017 	lopts.kprobe_multi.cookies = cookies;
11018 	lopts.kprobe_multi.cnt = cnt;
11019 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11020 
11021 	link = calloc(1, sizeof(*link));
11022 	if (!link) {
11023 		err = -ENOMEM;
11024 		goto error;
11025 	}
11026 	link->detach = &bpf_link__detach_fd;
11027 
11028 	prog_fd = bpf_program__fd(prog);
11029 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11030 	if (link_fd < 0) {
11031 		err = -errno;
11032 		pr_warn("prog '%s': failed to attach: %s\n",
11033 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11034 		goto error;
11035 	}
11036 	link->fd = link_fd;
11037 	free(res.addrs);
11038 	return link;
11039 
11040 error:
11041 	free(link);
11042 	free(res.addrs);
11043 	return libbpf_err_ptr(err);
11044 }
11045 
11046 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11047 {
11048 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11049 	unsigned long offset = 0;
11050 	const char *func_name;
11051 	char *func;
11052 	int n;
11053 
11054 	*link = NULL;
11055 
11056 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11057 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11058 		return 0;
11059 
11060 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11061 	if (opts.retprobe)
11062 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11063 	else
11064 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11065 
11066 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11067 	if (n < 1) {
11068 		pr_warn("kprobe name is invalid: %s\n", func_name);
11069 		return -EINVAL;
11070 	}
11071 	if (opts.retprobe && offset != 0) {
11072 		free(func);
11073 		pr_warn("kretprobes do not support offset specification\n");
11074 		return -EINVAL;
11075 	}
11076 
11077 	opts.offset = offset;
11078 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11079 	free(func);
11080 	return libbpf_get_error(*link);
11081 }
11082 
11083 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11084 {
11085 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11086 	const char *syscall_name;
11087 
11088 	*link = NULL;
11089 
11090 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11091 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11092 		return 0;
11093 
11094 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11095 	if (opts.retprobe)
11096 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11097 	else
11098 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11099 
11100 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11101 	return *link ? 0 : -errno;
11102 }
11103 
11104 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11105 {
11106 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11107 	const char *spec;
11108 	char *pattern;
11109 	int n;
11110 
11111 	*link = NULL;
11112 
11113 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11114 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11115 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11116 		return 0;
11117 
11118 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11119 	if (opts.retprobe)
11120 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11121 	else
11122 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11123 
11124 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11125 	if (n < 1) {
11126 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11127 		return -EINVAL;
11128 	}
11129 
11130 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11131 	free(pattern);
11132 	return libbpf_get_error(*link);
11133 }
11134 
11135 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11136 {
11137 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11138 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11139 	int n, ret = -EINVAL;
11140 
11141 	*link = NULL;
11142 
11143 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11144 		   &probe_type, &binary_path, &func_name);
11145 	switch (n) {
11146 	case 1:
11147 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11148 		ret = 0;
11149 		break;
11150 	case 3:
11151 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11152 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11153 		ret = libbpf_get_error(*link);
11154 		break;
11155 	default:
11156 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11157 			prog->sec_name);
11158 		break;
11159 	}
11160 	free(probe_type);
11161 	free(binary_path);
11162 	free(func_name);
11163 	return ret;
11164 }
11165 
11166 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11167 					 const char *binary_path, uint64_t offset)
11168 {
11169 	int i;
11170 
11171 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11172 
11173 	/* sanitize binary_path in the probe name */
11174 	for (i = 0; buf[i]; i++) {
11175 		if (!isalnum(buf[i]))
11176 			buf[i] = '_';
11177 	}
11178 }
11179 
11180 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11181 					  const char *binary_path, size_t offset)
11182 {
11183 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11184 			      retprobe ? 'r' : 'p',
11185 			      retprobe ? "uretprobes" : "uprobes",
11186 			      probe_name, binary_path, offset);
11187 }
11188 
11189 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11190 {
11191 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11192 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11193 }
11194 
11195 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11196 {
11197 	char file[512];
11198 
11199 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11200 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11201 
11202 	return parse_uint_from_file(file, "%d\n");
11203 }
11204 
11205 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11206 					 const char *binary_path, size_t offset, int pid)
11207 {
11208 	const size_t attr_sz = sizeof(struct perf_event_attr);
11209 	struct perf_event_attr attr;
11210 	int type, pfd, err;
11211 
11212 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11213 	if (err < 0) {
11214 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11215 			binary_path, (size_t)offset, err);
11216 		return err;
11217 	}
11218 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11219 	if (type < 0) {
11220 		err = type;
11221 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11222 			binary_path, offset, err);
11223 		goto err_clean_legacy;
11224 	}
11225 
11226 	memset(&attr, 0, attr_sz);
11227 	attr.size = attr_sz;
11228 	attr.config = type;
11229 	attr.type = PERF_TYPE_TRACEPOINT;
11230 
11231 	pfd = syscall(__NR_perf_event_open, &attr,
11232 		      pid < 0 ? -1 : pid, /* pid */
11233 		      pid == -1 ? 0 : -1, /* cpu */
11234 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11235 	if (pfd < 0) {
11236 		err = -errno;
11237 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11238 		goto err_clean_legacy;
11239 	}
11240 	return pfd;
11241 
11242 err_clean_legacy:
11243 	/* Clear the newly added legacy uprobe_event */
11244 	remove_uprobe_event_legacy(probe_name, retprobe);
11245 	return err;
11246 }
11247 
11248 /* Find offset of function name in archive specified by path. Currently
11249  * supported are .zip files that do not compress their contents, as used on
11250  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11251  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11252  * library functions.
11253  *
11254  * An overview of the APK format specifically provided here:
11255  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11256  */
11257 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11258 					      const char *func_name)
11259 {
11260 	struct zip_archive *archive;
11261 	struct zip_entry entry;
11262 	long ret;
11263 	Elf *elf;
11264 
11265 	archive = zip_archive_open(archive_path);
11266 	if (IS_ERR(archive)) {
11267 		ret = PTR_ERR(archive);
11268 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11269 		return ret;
11270 	}
11271 
11272 	ret = zip_archive_find_entry(archive, file_name, &entry);
11273 	if (ret) {
11274 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11275 			archive_path, ret);
11276 		goto out;
11277 	}
11278 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11279 		 (unsigned long)entry.data_offset);
11280 
11281 	if (entry.compression) {
11282 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11283 			archive_path);
11284 		ret = -LIBBPF_ERRNO__FORMAT;
11285 		goto out;
11286 	}
11287 
11288 	elf = elf_memory((void *)entry.data, entry.data_length);
11289 	if (!elf) {
11290 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11291 			elf_errmsg(-1));
11292 		ret = -LIBBPF_ERRNO__LIBELF;
11293 		goto out;
11294 	}
11295 
11296 	ret = elf_find_func_offset(elf, file_name, func_name);
11297 	if (ret > 0) {
11298 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11299 			 func_name, file_name, archive_path, entry.data_offset, ret,
11300 			 ret + entry.data_offset);
11301 		ret += entry.data_offset;
11302 	}
11303 	elf_end(elf);
11304 
11305 out:
11306 	zip_archive_close(archive);
11307 	return ret;
11308 }
11309 
11310 static const char *arch_specific_lib_paths(void)
11311 {
11312 	/*
11313 	 * Based on https://packages.debian.org/sid/libc6.
11314 	 *
11315 	 * Assume that the traced program is built for the same architecture
11316 	 * as libbpf, which should cover the vast majority of cases.
11317 	 */
11318 #if defined(__x86_64__)
11319 	return "/lib/x86_64-linux-gnu";
11320 #elif defined(__i386__)
11321 	return "/lib/i386-linux-gnu";
11322 #elif defined(__s390x__)
11323 	return "/lib/s390x-linux-gnu";
11324 #elif defined(__s390__)
11325 	return "/lib/s390-linux-gnu";
11326 #elif defined(__arm__) && defined(__SOFTFP__)
11327 	return "/lib/arm-linux-gnueabi";
11328 #elif defined(__arm__) && !defined(__SOFTFP__)
11329 	return "/lib/arm-linux-gnueabihf";
11330 #elif defined(__aarch64__)
11331 	return "/lib/aarch64-linux-gnu";
11332 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11333 	return "/lib/mips64el-linux-gnuabi64";
11334 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11335 	return "/lib/mipsel-linux-gnu";
11336 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11337 	return "/lib/powerpc64le-linux-gnu";
11338 #elif defined(__sparc__) && defined(__arch64__)
11339 	return "/lib/sparc64-linux-gnu";
11340 #elif defined(__riscv) && __riscv_xlen == 64
11341 	return "/lib/riscv64-linux-gnu";
11342 #else
11343 	return NULL;
11344 #endif
11345 }
11346 
11347 /* Get full path to program/shared library. */
11348 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11349 {
11350 	const char *search_paths[3] = {};
11351 	int i, perm;
11352 
11353 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11354 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11355 		search_paths[1] = "/usr/lib64:/usr/lib";
11356 		search_paths[2] = arch_specific_lib_paths();
11357 		perm = R_OK;
11358 	} else {
11359 		search_paths[0] = getenv("PATH");
11360 		search_paths[1] = "/usr/bin:/usr/sbin";
11361 		perm = R_OK | X_OK;
11362 	}
11363 
11364 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11365 		const char *s;
11366 
11367 		if (!search_paths[i])
11368 			continue;
11369 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11370 			char *next_path;
11371 			int seg_len;
11372 
11373 			if (s[0] == ':')
11374 				s++;
11375 			next_path = strchr(s, ':');
11376 			seg_len = next_path ? next_path - s : strlen(s);
11377 			if (!seg_len)
11378 				continue;
11379 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11380 			/* ensure it has required permissions */
11381 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11382 				continue;
11383 			pr_debug("resolved '%s' to '%s'\n", file, result);
11384 			return 0;
11385 		}
11386 	}
11387 	return -ENOENT;
11388 }
11389 
11390 struct bpf_link *
11391 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11392 				 pid_t pid,
11393 				 const char *path,
11394 				 const char *func_pattern,
11395 				 const struct bpf_uprobe_multi_opts *opts)
11396 {
11397 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11398 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11399 	unsigned long *resolved_offsets = NULL;
11400 	int err = 0, link_fd, prog_fd;
11401 	struct bpf_link *link = NULL;
11402 	char errmsg[STRERR_BUFSIZE];
11403 	char full_path[PATH_MAX];
11404 	const __u64 *cookies;
11405 	const char **syms;
11406 	size_t cnt;
11407 
11408 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11409 		return libbpf_err_ptr(-EINVAL);
11410 
11411 	syms = OPTS_GET(opts, syms, NULL);
11412 	offsets = OPTS_GET(opts, offsets, NULL);
11413 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11414 	cookies = OPTS_GET(opts, cookies, NULL);
11415 	cnt = OPTS_GET(opts, cnt, 0);
11416 
11417 	/*
11418 	 * User can specify 2 mutually exclusive set of inputs:
11419 	 *
11420 	 * 1) use only path/func_pattern/pid arguments
11421 	 *
11422 	 * 2) use path/pid with allowed combinations of:
11423 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11424 	 *
11425 	 *    - syms and offsets are mutually exclusive
11426 	 *    - ref_ctr_offsets and cookies are optional
11427 	 *
11428 	 * Any other usage results in error.
11429 	 */
11430 
11431 	if (!path)
11432 		return libbpf_err_ptr(-EINVAL);
11433 	if (!func_pattern && cnt == 0)
11434 		return libbpf_err_ptr(-EINVAL);
11435 
11436 	if (func_pattern) {
11437 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11438 			return libbpf_err_ptr(-EINVAL);
11439 	} else {
11440 		if (!!syms == !!offsets)
11441 			return libbpf_err_ptr(-EINVAL);
11442 	}
11443 
11444 	if (func_pattern) {
11445 		if (!strchr(path, '/')) {
11446 			err = resolve_full_path(path, full_path, sizeof(full_path));
11447 			if (err) {
11448 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11449 					prog->name, path, err);
11450 				return libbpf_err_ptr(err);
11451 			}
11452 			path = full_path;
11453 		}
11454 
11455 		err = elf_resolve_pattern_offsets(path, func_pattern,
11456 						  &resolved_offsets, &cnt);
11457 		if (err < 0)
11458 			return libbpf_err_ptr(err);
11459 		offsets = resolved_offsets;
11460 	} else if (syms) {
11461 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
11462 		if (err < 0)
11463 			return libbpf_err_ptr(err);
11464 		offsets = resolved_offsets;
11465 	}
11466 
11467 	lopts.uprobe_multi.path = path;
11468 	lopts.uprobe_multi.offsets = offsets;
11469 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11470 	lopts.uprobe_multi.cookies = cookies;
11471 	lopts.uprobe_multi.cnt = cnt;
11472 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11473 
11474 	if (pid == 0)
11475 		pid = getpid();
11476 	if (pid > 0)
11477 		lopts.uprobe_multi.pid = pid;
11478 
11479 	link = calloc(1, sizeof(*link));
11480 	if (!link) {
11481 		err = -ENOMEM;
11482 		goto error;
11483 	}
11484 	link->detach = &bpf_link__detach_fd;
11485 
11486 	prog_fd = bpf_program__fd(prog);
11487 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11488 	if (link_fd < 0) {
11489 		err = -errno;
11490 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11491 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11492 		goto error;
11493 	}
11494 	link->fd = link_fd;
11495 	free(resolved_offsets);
11496 	return link;
11497 
11498 error:
11499 	free(resolved_offsets);
11500 	free(link);
11501 	return libbpf_err_ptr(err);
11502 }
11503 
11504 LIBBPF_API struct bpf_link *
11505 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11506 				const char *binary_path, size_t func_offset,
11507 				const struct bpf_uprobe_opts *opts)
11508 {
11509 	const char *archive_path = NULL, *archive_sep = NULL;
11510 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11511 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11512 	enum probe_attach_mode attach_mode;
11513 	char full_path[PATH_MAX];
11514 	struct bpf_link *link;
11515 	size_t ref_ctr_off;
11516 	int pfd, err;
11517 	bool retprobe, legacy;
11518 	const char *func_name;
11519 
11520 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11521 		return libbpf_err_ptr(-EINVAL);
11522 
11523 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11524 	retprobe = OPTS_GET(opts, retprobe, false);
11525 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11526 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11527 
11528 	if (!binary_path)
11529 		return libbpf_err_ptr(-EINVAL);
11530 
11531 	/* Check if "binary_path" refers to an archive. */
11532 	archive_sep = strstr(binary_path, "!/");
11533 	if (archive_sep) {
11534 		full_path[0] = '\0';
11535 		libbpf_strlcpy(full_path, binary_path,
11536 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11537 		archive_path = full_path;
11538 		binary_path = archive_sep + 2;
11539 	} else if (!strchr(binary_path, '/')) {
11540 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11541 		if (err) {
11542 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11543 				prog->name, binary_path, err);
11544 			return libbpf_err_ptr(err);
11545 		}
11546 		binary_path = full_path;
11547 	}
11548 	func_name = OPTS_GET(opts, func_name, NULL);
11549 	if (func_name) {
11550 		long sym_off;
11551 
11552 		if (archive_path) {
11553 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11554 								    func_name);
11555 			binary_path = archive_path;
11556 		} else {
11557 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11558 		}
11559 		if (sym_off < 0)
11560 			return libbpf_err_ptr(sym_off);
11561 		func_offset += sym_off;
11562 	}
11563 
11564 	legacy = determine_uprobe_perf_type() < 0;
11565 	switch (attach_mode) {
11566 	case PROBE_ATTACH_MODE_LEGACY:
11567 		legacy = true;
11568 		pe_opts.force_ioctl_attach = true;
11569 		break;
11570 	case PROBE_ATTACH_MODE_PERF:
11571 		if (legacy)
11572 			return libbpf_err_ptr(-ENOTSUP);
11573 		pe_opts.force_ioctl_attach = true;
11574 		break;
11575 	case PROBE_ATTACH_MODE_LINK:
11576 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11577 			return libbpf_err_ptr(-ENOTSUP);
11578 		break;
11579 	case PROBE_ATTACH_MODE_DEFAULT:
11580 		break;
11581 	default:
11582 		return libbpf_err_ptr(-EINVAL);
11583 	}
11584 
11585 	if (!legacy) {
11586 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11587 					    func_offset, pid, ref_ctr_off);
11588 	} else {
11589 		char probe_name[PATH_MAX + 64];
11590 
11591 		if (ref_ctr_off)
11592 			return libbpf_err_ptr(-EINVAL);
11593 
11594 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11595 					     binary_path, func_offset);
11596 
11597 		legacy_probe = strdup(probe_name);
11598 		if (!legacy_probe)
11599 			return libbpf_err_ptr(-ENOMEM);
11600 
11601 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11602 						    binary_path, func_offset, pid);
11603 	}
11604 	if (pfd < 0) {
11605 		err = -errno;
11606 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11607 			prog->name, retprobe ? "uretprobe" : "uprobe",
11608 			binary_path, func_offset,
11609 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11610 		goto err_out;
11611 	}
11612 
11613 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11614 	err = libbpf_get_error(link);
11615 	if (err) {
11616 		close(pfd);
11617 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11618 			prog->name, retprobe ? "uretprobe" : "uprobe",
11619 			binary_path, func_offset,
11620 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11621 		goto err_clean_legacy;
11622 	}
11623 	if (legacy) {
11624 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11625 
11626 		perf_link->legacy_probe_name = legacy_probe;
11627 		perf_link->legacy_is_kprobe = false;
11628 		perf_link->legacy_is_retprobe = retprobe;
11629 	}
11630 	return link;
11631 
11632 err_clean_legacy:
11633 	if (legacy)
11634 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11635 err_out:
11636 	free(legacy_probe);
11637 	return libbpf_err_ptr(err);
11638 }
11639 
11640 /* Format of u[ret]probe section definition supporting auto-attach:
11641  * u[ret]probe/binary:function[+offset]
11642  *
11643  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11644  * full binary path via bpf_program__attach_uprobe_opts.
11645  *
11646  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11647  * specified (and auto-attach is not possible) or the above format is specified for
11648  * auto-attach.
11649  */
11650 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11651 {
11652 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11653 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
11654 	int n, c, ret = -EINVAL;
11655 	long offset = 0;
11656 
11657 	*link = NULL;
11658 
11659 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11660 		   &probe_type, &binary_path, &func_name);
11661 	switch (n) {
11662 	case 1:
11663 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11664 		ret = 0;
11665 		break;
11666 	case 2:
11667 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11668 			prog->name, prog->sec_name);
11669 		break;
11670 	case 3:
11671 		/* check if user specifies `+offset`, if yes, this should be
11672 		 * the last part of the string, make sure sscanf read to EOL
11673 		 */
11674 		func_off = strrchr(func_name, '+');
11675 		if (func_off) {
11676 			n = sscanf(func_off, "+%li%n", &offset, &c);
11677 			if (n == 1 && *(func_off + c) == '\0')
11678 				func_off[0] = '\0';
11679 			else
11680 				offset = 0;
11681 		}
11682 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11683 				strcmp(probe_type, "uretprobe.s") == 0;
11684 		if (opts.retprobe && offset != 0) {
11685 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
11686 				prog->name);
11687 			break;
11688 		}
11689 		opts.func_name = func_name;
11690 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11691 		ret = libbpf_get_error(*link);
11692 		break;
11693 	default:
11694 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11695 			prog->sec_name);
11696 		break;
11697 	}
11698 	free(probe_type);
11699 	free(binary_path);
11700 	free(func_name);
11701 
11702 	return ret;
11703 }
11704 
11705 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11706 					    bool retprobe, pid_t pid,
11707 					    const char *binary_path,
11708 					    size_t func_offset)
11709 {
11710 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11711 
11712 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11713 }
11714 
11715 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11716 					  pid_t pid, const char *binary_path,
11717 					  const char *usdt_provider, const char *usdt_name,
11718 					  const struct bpf_usdt_opts *opts)
11719 {
11720 	char resolved_path[512];
11721 	struct bpf_object *obj = prog->obj;
11722 	struct bpf_link *link;
11723 	__u64 usdt_cookie;
11724 	int err;
11725 
11726 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11727 		return libbpf_err_ptr(-EINVAL);
11728 
11729 	if (bpf_program__fd(prog) < 0) {
11730 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11731 			prog->name);
11732 		return libbpf_err_ptr(-EINVAL);
11733 	}
11734 
11735 	if (!binary_path)
11736 		return libbpf_err_ptr(-EINVAL);
11737 
11738 	if (!strchr(binary_path, '/')) {
11739 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11740 		if (err) {
11741 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11742 				prog->name, binary_path, err);
11743 			return libbpf_err_ptr(err);
11744 		}
11745 		binary_path = resolved_path;
11746 	}
11747 
11748 	/* USDT manager is instantiated lazily on first USDT attach. It will
11749 	 * be destroyed together with BPF object in bpf_object__close().
11750 	 */
11751 	if (IS_ERR(obj->usdt_man))
11752 		return libbpf_ptr(obj->usdt_man);
11753 	if (!obj->usdt_man) {
11754 		obj->usdt_man = usdt_manager_new(obj);
11755 		if (IS_ERR(obj->usdt_man))
11756 			return libbpf_ptr(obj->usdt_man);
11757 	}
11758 
11759 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11760 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11761 					usdt_provider, usdt_name, usdt_cookie);
11762 	err = libbpf_get_error(link);
11763 	if (err)
11764 		return libbpf_err_ptr(err);
11765 	return link;
11766 }
11767 
11768 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11769 {
11770 	char *path = NULL, *provider = NULL, *name = NULL;
11771 	const char *sec_name;
11772 	int n, err;
11773 
11774 	sec_name = bpf_program__section_name(prog);
11775 	if (strcmp(sec_name, "usdt") == 0) {
11776 		/* no auto-attach for just SEC("usdt") */
11777 		*link = NULL;
11778 		return 0;
11779 	}
11780 
11781 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11782 	if (n != 3) {
11783 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11784 			sec_name);
11785 		err = -EINVAL;
11786 	} else {
11787 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11788 						 provider, name, NULL);
11789 		err = libbpf_get_error(*link);
11790 	}
11791 	free(path);
11792 	free(provider);
11793 	free(name);
11794 	return err;
11795 }
11796 
11797 static int determine_tracepoint_id(const char *tp_category,
11798 				   const char *tp_name)
11799 {
11800 	char file[PATH_MAX];
11801 	int ret;
11802 
11803 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11804 		       tracefs_path(), tp_category, tp_name);
11805 	if (ret < 0)
11806 		return -errno;
11807 	if (ret >= sizeof(file)) {
11808 		pr_debug("tracepoint %s/%s path is too long\n",
11809 			 tp_category, tp_name);
11810 		return -E2BIG;
11811 	}
11812 	return parse_uint_from_file(file, "%d\n");
11813 }
11814 
11815 static int perf_event_open_tracepoint(const char *tp_category,
11816 				      const char *tp_name)
11817 {
11818 	const size_t attr_sz = sizeof(struct perf_event_attr);
11819 	struct perf_event_attr attr;
11820 	char errmsg[STRERR_BUFSIZE];
11821 	int tp_id, pfd, err;
11822 
11823 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11824 	if (tp_id < 0) {
11825 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11826 			tp_category, tp_name,
11827 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11828 		return tp_id;
11829 	}
11830 
11831 	memset(&attr, 0, attr_sz);
11832 	attr.type = PERF_TYPE_TRACEPOINT;
11833 	attr.size = attr_sz;
11834 	attr.config = tp_id;
11835 
11836 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11837 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11838 	if (pfd < 0) {
11839 		err = -errno;
11840 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11841 			tp_category, tp_name,
11842 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11843 		return err;
11844 	}
11845 	return pfd;
11846 }
11847 
11848 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11849 						     const char *tp_category,
11850 						     const char *tp_name,
11851 						     const struct bpf_tracepoint_opts *opts)
11852 {
11853 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11854 	char errmsg[STRERR_BUFSIZE];
11855 	struct bpf_link *link;
11856 	int pfd, err;
11857 
11858 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11859 		return libbpf_err_ptr(-EINVAL);
11860 
11861 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11862 
11863 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11864 	if (pfd < 0) {
11865 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11866 			prog->name, tp_category, tp_name,
11867 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11868 		return libbpf_err_ptr(pfd);
11869 	}
11870 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11871 	err = libbpf_get_error(link);
11872 	if (err) {
11873 		close(pfd);
11874 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11875 			prog->name, tp_category, tp_name,
11876 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11877 		return libbpf_err_ptr(err);
11878 	}
11879 	return link;
11880 }
11881 
11882 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11883 						const char *tp_category,
11884 						const char *tp_name)
11885 {
11886 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11887 }
11888 
11889 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11890 {
11891 	char *sec_name, *tp_cat, *tp_name;
11892 
11893 	*link = NULL;
11894 
11895 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11896 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11897 		return 0;
11898 
11899 	sec_name = strdup(prog->sec_name);
11900 	if (!sec_name)
11901 		return -ENOMEM;
11902 
11903 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11904 	if (str_has_pfx(prog->sec_name, "tp/"))
11905 		tp_cat = sec_name + sizeof("tp/") - 1;
11906 	else
11907 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11908 	tp_name = strchr(tp_cat, '/');
11909 	if (!tp_name) {
11910 		free(sec_name);
11911 		return -EINVAL;
11912 	}
11913 	*tp_name = '\0';
11914 	tp_name++;
11915 
11916 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11917 	free(sec_name);
11918 	return libbpf_get_error(*link);
11919 }
11920 
11921 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11922 						    const char *tp_name)
11923 {
11924 	char errmsg[STRERR_BUFSIZE];
11925 	struct bpf_link *link;
11926 	int prog_fd, pfd;
11927 
11928 	prog_fd = bpf_program__fd(prog);
11929 	if (prog_fd < 0) {
11930 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11931 		return libbpf_err_ptr(-EINVAL);
11932 	}
11933 
11934 	link = calloc(1, sizeof(*link));
11935 	if (!link)
11936 		return libbpf_err_ptr(-ENOMEM);
11937 	link->detach = &bpf_link__detach_fd;
11938 
11939 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11940 	if (pfd < 0) {
11941 		pfd = -errno;
11942 		free(link);
11943 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11944 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11945 		return libbpf_err_ptr(pfd);
11946 	}
11947 	link->fd = pfd;
11948 	return link;
11949 }
11950 
11951 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11952 {
11953 	static const char *const prefixes[] = {
11954 		"raw_tp",
11955 		"raw_tracepoint",
11956 		"raw_tp.w",
11957 		"raw_tracepoint.w",
11958 	};
11959 	size_t i;
11960 	const char *tp_name = NULL;
11961 
11962 	*link = NULL;
11963 
11964 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11965 		size_t pfx_len;
11966 
11967 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11968 			continue;
11969 
11970 		pfx_len = strlen(prefixes[i]);
11971 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11972 		if (prog->sec_name[pfx_len] == '\0')
11973 			return 0;
11974 
11975 		if (prog->sec_name[pfx_len] != '/')
11976 			continue;
11977 
11978 		tp_name = prog->sec_name + pfx_len + 1;
11979 		break;
11980 	}
11981 
11982 	if (!tp_name) {
11983 		pr_warn("prog '%s': invalid section name '%s'\n",
11984 			prog->name, prog->sec_name);
11985 		return -EINVAL;
11986 	}
11987 
11988 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11989 	return libbpf_get_error(*link);
11990 }
11991 
11992 /* Common logic for all BPF program types that attach to a btf_id */
11993 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11994 						   const struct bpf_trace_opts *opts)
11995 {
11996 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11997 	char errmsg[STRERR_BUFSIZE];
11998 	struct bpf_link *link;
11999 	int prog_fd, pfd;
12000 
12001 	if (!OPTS_VALID(opts, bpf_trace_opts))
12002 		return libbpf_err_ptr(-EINVAL);
12003 
12004 	prog_fd = bpf_program__fd(prog);
12005 	if (prog_fd < 0) {
12006 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12007 		return libbpf_err_ptr(-EINVAL);
12008 	}
12009 
12010 	link = calloc(1, sizeof(*link));
12011 	if (!link)
12012 		return libbpf_err_ptr(-ENOMEM);
12013 	link->detach = &bpf_link__detach_fd;
12014 
12015 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12016 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12017 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12018 	if (pfd < 0) {
12019 		pfd = -errno;
12020 		free(link);
12021 		pr_warn("prog '%s': failed to attach: %s\n",
12022 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12023 		return libbpf_err_ptr(pfd);
12024 	}
12025 	link->fd = pfd;
12026 	return link;
12027 }
12028 
12029 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12030 {
12031 	return bpf_program__attach_btf_id(prog, NULL);
12032 }
12033 
12034 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12035 						const struct bpf_trace_opts *opts)
12036 {
12037 	return bpf_program__attach_btf_id(prog, opts);
12038 }
12039 
12040 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12041 {
12042 	return bpf_program__attach_btf_id(prog, NULL);
12043 }
12044 
12045 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12046 {
12047 	*link = bpf_program__attach_trace(prog);
12048 	return libbpf_get_error(*link);
12049 }
12050 
12051 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12052 {
12053 	*link = bpf_program__attach_lsm(prog);
12054 	return libbpf_get_error(*link);
12055 }
12056 
12057 static struct bpf_link *
12058 bpf_program_attach_fd(const struct bpf_program *prog,
12059 		      int target_fd, const char *target_name,
12060 		      const struct bpf_link_create_opts *opts)
12061 {
12062 	enum bpf_attach_type attach_type;
12063 	char errmsg[STRERR_BUFSIZE];
12064 	struct bpf_link *link;
12065 	int prog_fd, link_fd;
12066 
12067 	prog_fd = bpf_program__fd(prog);
12068 	if (prog_fd < 0) {
12069 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12070 		return libbpf_err_ptr(-EINVAL);
12071 	}
12072 
12073 	link = calloc(1, sizeof(*link));
12074 	if (!link)
12075 		return libbpf_err_ptr(-ENOMEM);
12076 	link->detach = &bpf_link__detach_fd;
12077 
12078 	attach_type = bpf_program__expected_attach_type(prog);
12079 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12080 	if (link_fd < 0) {
12081 		link_fd = -errno;
12082 		free(link);
12083 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12084 			prog->name, target_name,
12085 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12086 		return libbpf_err_ptr(link_fd);
12087 	}
12088 	link->fd = link_fd;
12089 	return link;
12090 }
12091 
12092 struct bpf_link *
12093 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12094 {
12095 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12096 }
12097 
12098 struct bpf_link *
12099 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12100 {
12101 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12102 }
12103 
12104 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12105 {
12106 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12107 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12108 }
12109 
12110 struct bpf_link *
12111 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12112 			const struct bpf_tcx_opts *opts)
12113 {
12114 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12115 	__u32 relative_id;
12116 	int relative_fd;
12117 
12118 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12119 		return libbpf_err_ptr(-EINVAL);
12120 
12121 	relative_id = OPTS_GET(opts, relative_id, 0);
12122 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12123 
12124 	/* validate we don't have unexpected combinations of non-zero fields */
12125 	if (!ifindex) {
12126 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12127 			prog->name);
12128 		return libbpf_err_ptr(-EINVAL);
12129 	}
12130 	if (relative_fd && relative_id) {
12131 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12132 			prog->name);
12133 		return libbpf_err_ptr(-EINVAL);
12134 	}
12135 
12136 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12137 	link_create_opts.tcx.relative_fd = relative_fd;
12138 	link_create_opts.tcx.relative_id = relative_id;
12139 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12140 
12141 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12142 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12143 }
12144 
12145 struct bpf_link *
12146 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12147 			   const struct bpf_netkit_opts *opts)
12148 {
12149 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12150 	__u32 relative_id;
12151 	int relative_fd;
12152 
12153 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12154 		return libbpf_err_ptr(-EINVAL);
12155 
12156 	relative_id = OPTS_GET(opts, relative_id, 0);
12157 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12158 
12159 	/* validate we don't have unexpected combinations of non-zero fields */
12160 	if (!ifindex) {
12161 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12162 			prog->name);
12163 		return libbpf_err_ptr(-EINVAL);
12164 	}
12165 	if (relative_fd && relative_id) {
12166 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12167 			prog->name);
12168 		return libbpf_err_ptr(-EINVAL);
12169 	}
12170 
12171 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12172 	link_create_opts.netkit.relative_fd = relative_fd;
12173 	link_create_opts.netkit.relative_id = relative_id;
12174 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12175 
12176 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12177 }
12178 
12179 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12180 					      int target_fd,
12181 					      const char *attach_func_name)
12182 {
12183 	int btf_id;
12184 
12185 	if (!!target_fd != !!attach_func_name) {
12186 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12187 			prog->name);
12188 		return libbpf_err_ptr(-EINVAL);
12189 	}
12190 
12191 	if (prog->type != BPF_PROG_TYPE_EXT) {
12192 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12193 			prog->name);
12194 		return libbpf_err_ptr(-EINVAL);
12195 	}
12196 
12197 	if (target_fd) {
12198 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12199 
12200 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12201 		if (btf_id < 0)
12202 			return libbpf_err_ptr(btf_id);
12203 
12204 		target_opts.target_btf_id = btf_id;
12205 
12206 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12207 					     &target_opts);
12208 	} else {
12209 		/* no target, so use raw_tracepoint_open for compatibility
12210 		 * with old kernels
12211 		 */
12212 		return bpf_program__attach_trace(prog);
12213 	}
12214 }
12215 
12216 struct bpf_link *
12217 bpf_program__attach_iter(const struct bpf_program *prog,
12218 			 const struct bpf_iter_attach_opts *opts)
12219 {
12220 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12221 	char errmsg[STRERR_BUFSIZE];
12222 	struct bpf_link *link;
12223 	int prog_fd, link_fd;
12224 	__u32 target_fd = 0;
12225 
12226 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12227 		return libbpf_err_ptr(-EINVAL);
12228 
12229 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12230 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12231 
12232 	prog_fd = bpf_program__fd(prog);
12233 	if (prog_fd < 0) {
12234 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12235 		return libbpf_err_ptr(-EINVAL);
12236 	}
12237 
12238 	link = calloc(1, sizeof(*link));
12239 	if (!link)
12240 		return libbpf_err_ptr(-ENOMEM);
12241 	link->detach = &bpf_link__detach_fd;
12242 
12243 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12244 				  &link_create_opts);
12245 	if (link_fd < 0) {
12246 		link_fd = -errno;
12247 		free(link);
12248 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12249 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12250 		return libbpf_err_ptr(link_fd);
12251 	}
12252 	link->fd = link_fd;
12253 	return link;
12254 }
12255 
12256 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12257 {
12258 	*link = bpf_program__attach_iter(prog, NULL);
12259 	return libbpf_get_error(*link);
12260 }
12261 
12262 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12263 					       const struct bpf_netfilter_opts *opts)
12264 {
12265 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12266 	struct bpf_link *link;
12267 	int prog_fd, link_fd;
12268 
12269 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12270 		return libbpf_err_ptr(-EINVAL);
12271 
12272 	prog_fd = bpf_program__fd(prog);
12273 	if (prog_fd < 0) {
12274 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12275 		return libbpf_err_ptr(-EINVAL);
12276 	}
12277 
12278 	link = calloc(1, sizeof(*link));
12279 	if (!link)
12280 		return libbpf_err_ptr(-ENOMEM);
12281 
12282 	link->detach = &bpf_link__detach_fd;
12283 
12284 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12285 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12286 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12287 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12288 
12289 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12290 	if (link_fd < 0) {
12291 		char errmsg[STRERR_BUFSIZE];
12292 
12293 		link_fd = -errno;
12294 		free(link);
12295 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12296 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12297 		return libbpf_err_ptr(link_fd);
12298 	}
12299 	link->fd = link_fd;
12300 
12301 	return link;
12302 }
12303 
12304 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12305 {
12306 	struct bpf_link *link = NULL;
12307 	int err;
12308 
12309 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12310 		return libbpf_err_ptr(-EOPNOTSUPP);
12311 
12312 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12313 	if (err)
12314 		return libbpf_err_ptr(err);
12315 
12316 	/* When calling bpf_program__attach() explicitly, auto-attach support
12317 	 * is expected to work, so NULL returned link is considered an error.
12318 	 * This is different for skeleton's attach, see comment in
12319 	 * bpf_object__attach_skeleton().
12320 	 */
12321 	if (!link)
12322 		return libbpf_err_ptr(-EOPNOTSUPP);
12323 
12324 	return link;
12325 }
12326 
12327 struct bpf_link_struct_ops {
12328 	struct bpf_link link;
12329 	int map_fd;
12330 };
12331 
12332 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12333 {
12334 	struct bpf_link_struct_ops *st_link;
12335 	__u32 zero = 0;
12336 
12337 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12338 
12339 	if (st_link->map_fd < 0)
12340 		/* w/o a real link */
12341 		return bpf_map_delete_elem(link->fd, &zero);
12342 
12343 	return close(link->fd);
12344 }
12345 
12346 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12347 {
12348 	struct bpf_link_struct_ops *link;
12349 	__u32 zero = 0;
12350 	int err, fd;
12351 
12352 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12353 		return libbpf_err_ptr(-EINVAL);
12354 
12355 	link = calloc(1, sizeof(*link));
12356 	if (!link)
12357 		return libbpf_err_ptr(-EINVAL);
12358 
12359 	/* kern_vdata should be prepared during the loading phase. */
12360 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12361 	/* It can be EBUSY if the map has been used to create or
12362 	 * update a link before.  We don't allow updating the value of
12363 	 * a struct_ops once it is set.  That ensures that the value
12364 	 * never changed.  So, it is safe to skip EBUSY.
12365 	 */
12366 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12367 		free(link);
12368 		return libbpf_err_ptr(err);
12369 	}
12370 
12371 	link->link.detach = bpf_link__detach_struct_ops;
12372 
12373 	if (!(map->def.map_flags & BPF_F_LINK)) {
12374 		/* w/o a real link */
12375 		link->link.fd = map->fd;
12376 		link->map_fd = -1;
12377 		return &link->link;
12378 	}
12379 
12380 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12381 	if (fd < 0) {
12382 		free(link);
12383 		return libbpf_err_ptr(fd);
12384 	}
12385 
12386 	link->link.fd = fd;
12387 	link->map_fd = map->fd;
12388 
12389 	return &link->link;
12390 }
12391 
12392 /*
12393  * Swap the back struct_ops of a link with a new struct_ops map.
12394  */
12395 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12396 {
12397 	struct bpf_link_struct_ops *st_ops_link;
12398 	__u32 zero = 0;
12399 	int err;
12400 
12401 	if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12402 		return -EINVAL;
12403 
12404 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12405 	/* Ensure the type of a link is correct */
12406 	if (st_ops_link->map_fd < 0)
12407 		return -EINVAL;
12408 
12409 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12410 	/* It can be EBUSY if the map has been used to create or
12411 	 * update a link before.  We don't allow updating the value of
12412 	 * a struct_ops once it is set.  That ensures that the value
12413 	 * never changed.  So, it is safe to skip EBUSY.
12414 	 */
12415 	if (err && err != -EBUSY)
12416 		return err;
12417 
12418 	err = bpf_link_update(link->fd, map->fd, NULL);
12419 	if (err < 0)
12420 		return err;
12421 
12422 	st_ops_link->map_fd = map->fd;
12423 
12424 	return 0;
12425 }
12426 
12427 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12428 							  void *private_data);
12429 
12430 static enum bpf_perf_event_ret
12431 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12432 		       void **copy_mem, size_t *copy_size,
12433 		       bpf_perf_event_print_t fn, void *private_data)
12434 {
12435 	struct perf_event_mmap_page *header = mmap_mem;
12436 	__u64 data_head = ring_buffer_read_head(header);
12437 	__u64 data_tail = header->data_tail;
12438 	void *base = ((__u8 *)header) + page_size;
12439 	int ret = LIBBPF_PERF_EVENT_CONT;
12440 	struct perf_event_header *ehdr;
12441 	size_t ehdr_size;
12442 
12443 	while (data_head != data_tail) {
12444 		ehdr = base + (data_tail & (mmap_size - 1));
12445 		ehdr_size = ehdr->size;
12446 
12447 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12448 			void *copy_start = ehdr;
12449 			size_t len_first = base + mmap_size - copy_start;
12450 			size_t len_secnd = ehdr_size - len_first;
12451 
12452 			if (*copy_size < ehdr_size) {
12453 				free(*copy_mem);
12454 				*copy_mem = malloc(ehdr_size);
12455 				if (!*copy_mem) {
12456 					*copy_size = 0;
12457 					ret = LIBBPF_PERF_EVENT_ERROR;
12458 					break;
12459 				}
12460 				*copy_size = ehdr_size;
12461 			}
12462 
12463 			memcpy(*copy_mem, copy_start, len_first);
12464 			memcpy(*copy_mem + len_first, base, len_secnd);
12465 			ehdr = *copy_mem;
12466 		}
12467 
12468 		ret = fn(ehdr, private_data);
12469 		data_tail += ehdr_size;
12470 		if (ret != LIBBPF_PERF_EVENT_CONT)
12471 			break;
12472 	}
12473 
12474 	ring_buffer_write_tail(header, data_tail);
12475 	return libbpf_err(ret);
12476 }
12477 
12478 struct perf_buffer;
12479 
12480 struct perf_buffer_params {
12481 	struct perf_event_attr *attr;
12482 	/* if event_cb is specified, it takes precendence */
12483 	perf_buffer_event_fn event_cb;
12484 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12485 	perf_buffer_sample_fn sample_cb;
12486 	perf_buffer_lost_fn lost_cb;
12487 	void *ctx;
12488 	int cpu_cnt;
12489 	int *cpus;
12490 	int *map_keys;
12491 };
12492 
12493 struct perf_cpu_buf {
12494 	struct perf_buffer *pb;
12495 	void *base; /* mmap()'ed memory */
12496 	void *buf; /* for reconstructing segmented data */
12497 	size_t buf_size;
12498 	int fd;
12499 	int cpu;
12500 	int map_key;
12501 };
12502 
12503 struct perf_buffer {
12504 	perf_buffer_event_fn event_cb;
12505 	perf_buffer_sample_fn sample_cb;
12506 	perf_buffer_lost_fn lost_cb;
12507 	void *ctx; /* passed into callbacks */
12508 
12509 	size_t page_size;
12510 	size_t mmap_size;
12511 	struct perf_cpu_buf **cpu_bufs;
12512 	struct epoll_event *events;
12513 	int cpu_cnt; /* number of allocated CPU buffers */
12514 	int epoll_fd; /* perf event FD */
12515 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12516 };
12517 
12518 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12519 				      struct perf_cpu_buf *cpu_buf)
12520 {
12521 	if (!cpu_buf)
12522 		return;
12523 	if (cpu_buf->base &&
12524 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12525 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12526 	if (cpu_buf->fd >= 0) {
12527 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12528 		close(cpu_buf->fd);
12529 	}
12530 	free(cpu_buf->buf);
12531 	free(cpu_buf);
12532 }
12533 
12534 void perf_buffer__free(struct perf_buffer *pb)
12535 {
12536 	int i;
12537 
12538 	if (IS_ERR_OR_NULL(pb))
12539 		return;
12540 	if (pb->cpu_bufs) {
12541 		for (i = 0; i < pb->cpu_cnt; i++) {
12542 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12543 
12544 			if (!cpu_buf)
12545 				continue;
12546 
12547 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12548 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12549 		}
12550 		free(pb->cpu_bufs);
12551 	}
12552 	if (pb->epoll_fd >= 0)
12553 		close(pb->epoll_fd);
12554 	free(pb->events);
12555 	free(pb);
12556 }
12557 
12558 static struct perf_cpu_buf *
12559 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12560 			  int cpu, int map_key)
12561 {
12562 	struct perf_cpu_buf *cpu_buf;
12563 	char msg[STRERR_BUFSIZE];
12564 	int err;
12565 
12566 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12567 	if (!cpu_buf)
12568 		return ERR_PTR(-ENOMEM);
12569 
12570 	cpu_buf->pb = pb;
12571 	cpu_buf->cpu = cpu;
12572 	cpu_buf->map_key = map_key;
12573 
12574 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12575 			      -1, PERF_FLAG_FD_CLOEXEC);
12576 	if (cpu_buf->fd < 0) {
12577 		err = -errno;
12578 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12579 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12580 		goto error;
12581 	}
12582 
12583 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12584 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12585 			     cpu_buf->fd, 0);
12586 	if (cpu_buf->base == MAP_FAILED) {
12587 		cpu_buf->base = NULL;
12588 		err = -errno;
12589 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12590 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12591 		goto error;
12592 	}
12593 
12594 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12595 		err = -errno;
12596 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12597 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12598 		goto error;
12599 	}
12600 
12601 	return cpu_buf;
12602 
12603 error:
12604 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12605 	return (struct perf_cpu_buf *)ERR_PTR(err);
12606 }
12607 
12608 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12609 					      struct perf_buffer_params *p);
12610 
12611 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12612 				     perf_buffer_sample_fn sample_cb,
12613 				     perf_buffer_lost_fn lost_cb,
12614 				     void *ctx,
12615 				     const struct perf_buffer_opts *opts)
12616 {
12617 	const size_t attr_sz = sizeof(struct perf_event_attr);
12618 	struct perf_buffer_params p = {};
12619 	struct perf_event_attr attr;
12620 	__u32 sample_period;
12621 
12622 	if (!OPTS_VALID(opts, perf_buffer_opts))
12623 		return libbpf_err_ptr(-EINVAL);
12624 
12625 	sample_period = OPTS_GET(opts, sample_period, 1);
12626 	if (!sample_period)
12627 		sample_period = 1;
12628 
12629 	memset(&attr, 0, attr_sz);
12630 	attr.size = attr_sz;
12631 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12632 	attr.type = PERF_TYPE_SOFTWARE;
12633 	attr.sample_type = PERF_SAMPLE_RAW;
12634 	attr.sample_period = sample_period;
12635 	attr.wakeup_events = sample_period;
12636 
12637 	p.attr = &attr;
12638 	p.sample_cb = sample_cb;
12639 	p.lost_cb = lost_cb;
12640 	p.ctx = ctx;
12641 
12642 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12643 }
12644 
12645 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12646 					 struct perf_event_attr *attr,
12647 					 perf_buffer_event_fn event_cb, void *ctx,
12648 					 const struct perf_buffer_raw_opts *opts)
12649 {
12650 	struct perf_buffer_params p = {};
12651 
12652 	if (!attr)
12653 		return libbpf_err_ptr(-EINVAL);
12654 
12655 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12656 		return libbpf_err_ptr(-EINVAL);
12657 
12658 	p.attr = attr;
12659 	p.event_cb = event_cb;
12660 	p.ctx = ctx;
12661 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12662 	p.cpus = OPTS_GET(opts, cpus, NULL);
12663 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
12664 
12665 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12666 }
12667 
12668 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12669 					      struct perf_buffer_params *p)
12670 {
12671 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
12672 	struct bpf_map_info map;
12673 	char msg[STRERR_BUFSIZE];
12674 	struct perf_buffer *pb;
12675 	bool *online = NULL;
12676 	__u32 map_info_len;
12677 	int err, i, j, n;
12678 
12679 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12680 		pr_warn("page count should be power of two, but is %zu\n",
12681 			page_cnt);
12682 		return ERR_PTR(-EINVAL);
12683 	}
12684 
12685 	/* best-effort sanity checks */
12686 	memset(&map, 0, sizeof(map));
12687 	map_info_len = sizeof(map);
12688 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12689 	if (err) {
12690 		err = -errno;
12691 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12692 		 * -EBADFD, -EFAULT, or -E2BIG on real error
12693 		 */
12694 		if (err != -EINVAL) {
12695 			pr_warn("failed to get map info for map FD %d: %s\n",
12696 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12697 			return ERR_PTR(err);
12698 		}
12699 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12700 			 map_fd);
12701 	} else {
12702 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12703 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12704 				map.name);
12705 			return ERR_PTR(-EINVAL);
12706 		}
12707 	}
12708 
12709 	pb = calloc(1, sizeof(*pb));
12710 	if (!pb)
12711 		return ERR_PTR(-ENOMEM);
12712 
12713 	pb->event_cb = p->event_cb;
12714 	pb->sample_cb = p->sample_cb;
12715 	pb->lost_cb = p->lost_cb;
12716 	pb->ctx = p->ctx;
12717 
12718 	pb->page_size = getpagesize();
12719 	pb->mmap_size = pb->page_size * page_cnt;
12720 	pb->map_fd = map_fd;
12721 
12722 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12723 	if (pb->epoll_fd < 0) {
12724 		err = -errno;
12725 		pr_warn("failed to create epoll instance: %s\n",
12726 			libbpf_strerror_r(err, msg, sizeof(msg)));
12727 		goto error;
12728 	}
12729 
12730 	if (p->cpu_cnt > 0) {
12731 		pb->cpu_cnt = p->cpu_cnt;
12732 	} else {
12733 		pb->cpu_cnt = libbpf_num_possible_cpus();
12734 		if (pb->cpu_cnt < 0) {
12735 			err = pb->cpu_cnt;
12736 			goto error;
12737 		}
12738 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
12739 			pb->cpu_cnt = map.max_entries;
12740 	}
12741 
12742 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12743 	if (!pb->events) {
12744 		err = -ENOMEM;
12745 		pr_warn("failed to allocate events: out of memory\n");
12746 		goto error;
12747 	}
12748 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12749 	if (!pb->cpu_bufs) {
12750 		err = -ENOMEM;
12751 		pr_warn("failed to allocate buffers: out of memory\n");
12752 		goto error;
12753 	}
12754 
12755 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12756 	if (err) {
12757 		pr_warn("failed to get online CPU mask: %d\n", err);
12758 		goto error;
12759 	}
12760 
12761 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12762 		struct perf_cpu_buf *cpu_buf;
12763 		int cpu, map_key;
12764 
12765 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12766 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12767 
12768 		/* in case user didn't explicitly requested particular CPUs to
12769 		 * be attached to, skip offline/not present CPUs
12770 		 */
12771 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12772 			continue;
12773 
12774 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12775 		if (IS_ERR(cpu_buf)) {
12776 			err = PTR_ERR(cpu_buf);
12777 			goto error;
12778 		}
12779 
12780 		pb->cpu_bufs[j] = cpu_buf;
12781 
12782 		err = bpf_map_update_elem(pb->map_fd, &map_key,
12783 					  &cpu_buf->fd, 0);
12784 		if (err) {
12785 			err = -errno;
12786 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12787 				cpu, map_key, cpu_buf->fd,
12788 				libbpf_strerror_r(err, msg, sizeof(msg)));
12789 			goto error;
12790 		}
12791 
12792 		pb->events[j].events = EPOLLIN;
12793 		pb->events[j].data.ptr = cpu_buf;
12794 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12795 			      &pb->events[j]) < 0) {
12796 			err = -errno;
12797 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12798 				cpu, cpu_buf->fd,
12799 				libbpf_strerror_r(err, msg, sizeof(msg)));
12800 			goto error;
12801 		}
12802 		j++;
12803 	}
12804 	pb->cpu_cnt = j;
12805 	free(online);
12806 
12807 	return pb;
12808 
12809 error:
12810 	free(online);
12811 	if (pb)
12812 		perf_buffer__free(pb);
12813 	return ERR_PTR(err);
12814 }
12815 
12816 struct perf_sample_raw {
12817 	struct perf_event_header header;
12818 	uint32_t size;
12819 	char data[];
12820 };
12821 
12822 struct perf_sample_lost {
12823 	struct perf_event_header header;
12824 	uint64_t id;
12825 	uint64_t lost;
12826 	uint64_t sample_id;
12827 };
12828 
12829 static enum bpf_perf_event_ret
12830 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12831 {
12832 	struct perf_cpu_buf *cpu_buf = ctx;
12833 	struct perf_buffer *pb = cpu_buf->pb;
12834 	void *data = e;
12835 
12836 	/* user wants full control over parsing perf event */
12837 	if (pb->event_cb)
12838 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12839 
12840 	switch (e->type) {
12841 	case PERF_RECORD_SAMPLE: {
12842 		struct perf_sample_raw *s = data;
12843 
12844 		if (pb->sample_cb)
12845 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12846 		break;
12847 	}
12848 	case PERF_RECORD_LOST: {
12849 		struct perf_sample_lost *s = data;
12850 
12851 		if (pb->lost_cb)
12852 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12853 		break;
12854 	}
12855 	default:
12856 		pr_warn("unknown perf sample type %d\n", e->type);
12857 		return LIBBPF_PERF_EVENT_ERROR;
12858 	}
12859 	return LIBBPF_PERF_EVENT_CONT;
12860 }
12861 
12862 static int perf_buffer__process_records(struct perf_buffer *pb,
12863 					struct perf_cpu_buf *cpu_buf)
12864 {
12865 	enum bpf_perf_event_ret ret;
12866 
12867 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12868 				     pb->page_size, &cpu_buf->buf,
12869 				     &cpu_buf->buf_size,
12870 				     perf_buffer__process_record, cpu_buf);
12871 	if (ret != LIBBPF_PERF_EVENT_CONT)
12872 		return ret;
12873 	return 0;
12874 }
12875 
12876 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12877 {
12878 	return pb->epoll_fd;
12879 }
12880 
12881 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12882 {
12883 	int i, cnt, err;
12884 
12885 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12886 	if (cnt < 0)
12887 		return -errno;
12888 
12889 	for (i = 0; i < cnt; i++) {
12890 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12891 
12892 		err = perf_buffer__process_records(pb, cpu_buf);
12893 		if (err) {
12894 			pr_warn("error while processing records: %d\n", err);
12895 			return libbpf_err(err);
12896 		}
12897 	}
12898 	return cnt;
12899 }
12900 
12901 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12902  * manager.
12903  */
12904 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12905 {
12906 	return pb->cpu_cnt;
12907 }
12908 
12909 /*
12910  * Return perf_event FD of a ring buffer in *buf_idx* slot of
12911  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12912  * select()/poll()/epoll() Linux syscalls.
12913  */
12914 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12915 {
12916 	struct perf_cpu_buf *cpu_buf;
12917 
12918 	if (buf_idx >= pb->cpu_cnt)
12919 		return libbpf_err(-EINVAL);
12920 
12921 	cpu_buf = pb->cpu_bufs[buf_idx];
12922 	if (!cpu_buf)
12923 		return libbpf_err(-ENOENT);
12924 
12925 	return cpu_buf->fd;
12926 }
12927 
12928 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12929 {
12930 	struct perf_cpu_buf *cpu_buf;
12931 
12932 	if (buf_idx >= pb->cpu_cnt)
12933 		return libbpf_err(-EINVAL);
12934 
12935 	cpu_buf = pb->cpu_bufs[buf_idx];
12936 	if (!cpu_buf)
12937 		return libbpf_err(-ENOENT);
12938 
12939 	*buf = cpu_buf->base;
12940 	*buf_size = pb->mmap_size;
12941 	return 0;
12942 }
12943 
12944 /*
12945  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12946  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12947  * consume, do nothing and return success.
12948  * Returns:
12949  *   - 0 on success;
12950  *   - <0 on failure.
12951  */
12952 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12953 {
12954 	struct perf_cpu_buf *cpu_buf;
12955 
12956 	if (buf_idx >= pb->cpu_cnt)
12957 		return libbpf_err(-EINVAL);
12958 
12959 	cpu_buf = pb->cpu_bufs[buf_idx];
12960 	if (!cpu_buf)
12961 		return libbpf_err(-ENOENT);
12962 
12963 	return perf_buffer__process_records(pb, cpu_buf);
12964 }
12965 
12966 int perf_buffer__consume(struct perf_buffer *pb)
12967 {
12968 	int i, err;
12969 
12970 	for (i = 0; i < pb->cpu_cnt; i++) {
12971 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12972 
12973 		if (!cpu_buf)
12974 			continue;
12975 
12976 		err = perf_buffer__process_records(pb, cpu_buf);
12977 		if (err) {
12978 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12979 			return libbpf_err(err);
12980 		}
12981 	}
12982 	return 0;
12983 }
12984 
12985 int bpf_program__set_attach_target(struct bpf_program *prog,
12986 				   int attach_prog_fd,
12987 				   const char *attach_func_name)
12988 {
12989 	int btf_obj_fd = 0, btf_id = 0, err;
12990 
12991 	if (!prog || attach_prog_fd < 0)
12992 		return libbpf_err(-EINVAL);
12993 
12994 	if (prog->obj->loaded)
12995 		return libbpf_err(-EINVAL);
12996 
12997 	if (attach_prog_fd && !attach_func_name) {
12998 		/* remember attach_prog_fd and let bpf_program__load() find
12999 		 * BTF ID during the program load
13000 		 */
13001 		prog->attach_prog_fd = attach_prog_fd;
13002 		return 0;
13003 	}
13004 
13005 	if (attach_prog_fd) {
13006 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
13007 						 attach_prog_fd);
13008 		if (btf_id < 0)
13009 			return libbpf_err(btf_id);
13010 	} else {
13011 		if (!attach_func_name)
13012 			return libbpf_err(-EINVAL);
13013 
13014 		/* load btf_vmlinux, if not yet */
13015 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13016 		if (err)
13017 			return libbpf_err(err);
13018 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13019 					 prog->expected_attach_type,
13020 					 &btf_obj_fd, &btf_id);
13021 		if (err)
13022 			return libbpf_err(err);
13023 	}
13024 
13025 	prog->attach_btf_id = btf_id;
13026 	prog->attach_btf_obj_fd = btf_obj_fd;
13027 	prog->attach_prog_fd = attach_prog_fd;
13028 	return 0;
13029 }
13030 
13031 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13032 {
13033 	int err = 0, n, len, start, end = -1;
13034 	bool *tmp;
13035 
13036 	*mask = NULL;
13037 	*mask_sz = 0;
13038 
13039 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13040 	while (*s) {
13041 		if (*s == ',' || *s == '\n') {
13042 			s++;
13043 			continue;
13044 		}
13045 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13046 		if (n <= 0 || n > 2) {
13047 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13048 			err = -EINVAL;
13049 			goto cleanup;
13050 		} else if (n == 1) {
13051 			end = start;
13052 		}
13053 		if (start < 0 || start > end) {
13054 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13055 				start, end, s);
13056 			err = -EINVAL;
13057 			goto cleanup;
13058 		}
13059 		tmp = realloc(*mask, end + 1);
13060 		if (!tmp) {
13061 			err = -ENOMEM;
13062 			goto cleanup;
13063 		}
13064 		*mask = tmp;
13065 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13066 		memset(tmp + start, 1, end - start + 1);
13067 		*mask_sz = end + 1;
13068 		s += len;
13069 	}
13070 	if (!*mask_sz) {
13071 		pr_warn("Empty CPU range\n");
13072 		return -EINVAL;
13073 	}
13074 	return 0;
13075 cleanup:
13076 	free(*mask);
13077 	*mask = NULL;
13078 	return err;
13079 }
13080 
13081 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13082 {
13083 	int fd, err = 0, len;
13084 	char buf[128];
13085 
13086 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13087 	if (fd < 0) {
13088 		err = -errno;
13089 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13090 		return err;
13091 	}
13092 	len = read(fd, buf, sizeof(buf));
13093 	close(fd);
13094 	if (len <= 0) {
13095 		err = len ? -errno : -EINVAL;
13096 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13097 		return err;
13098 	}
13099 	if (len >= sizeof(buf)) {
13100 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13101 		return -E2BIG;
13102 	}
13103 	buf[len] = '\0';
13104 
13105 	return parse_cpu_mask_str(buf, mask, mask_sz);
13106 }
13107 
13108 int libbpf_num_possible_cpus(void)
13109 {
13110 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13111 	static int cpus;
13112 	int err, n, i, tmp_cpus;
13113 	bool *mask;
13114 
13115 	tmp_cpus = READ_ONCE(cpus);
13116 	if (tmp_cpus > 0)
13117 		return tmp_cpus;
13118 
13119 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13120 	if (err)
13121 		return libbpf_err(err);
13122 
13123 	tmp_cpus = 0;
13124 	for (i = 0; i < n; i++) {
13125 		if (mask[i])
13126 			tmp_cpus++;
13127 	}
13128 	free(mask);
13129 
13130 	WRITE_ONCE(cpus, tmp_cpus);
13131 	return tmp_cpus;
13132 }
13133 
13134 static int populate_skeleton_maps(const struct bpf_object *obj,
13135 				  struct bpf_map_skeleton *maps,
13136 				  size_t map_cnt)
13137 {
13138 	int i;
13139 
13140 	for (i = 0; i < map_cnt; i++) {
13141 		struct bpf_map **map = maps[i].map;
13142 		const char *name = maps[i].name;
13143 		void **mmaped = maps[i].mmaped;
13144 
13145 		*map = bpf_object__find_map_by_name(obj, name);
13146 		if (!*map) {
13147 			pr_warn("failed to find skeleton map '%s'\n", name);
13148 			return -ESRCH;
13149 		}
13150 
13151 		/* externs shouldn't be pre-setup from user code */
13152 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13153 			*mmaped = (*map)->mmaped;
13154 	}
13155 	return 0;
13156 }
13157 
13158 static int populate_skeleton_progs(const struct bpf_object *obj,
13159 				   struct bpf_prog_skeleton *progs,
13160 				   size_t prog_cnt)
13161 {
13162 	int i;
13163 
13164 	for (i = 0; i < prog_cnt; i++) {
13165 		struct bpf_program **prog = progs[i].prog;
13166 		const char *name = progs[i].name;
13167 
13168 		*prog = bpf_object__find_program_by_name(obj, name);
13169 		if (!*prog) {
13170 			pr_warn("failed to find skeleton program '%s'\n", name);
13171 			return -ESRCH;
13172 		}
13173 	}
13174 	return 0;
13175 }
13176 
13177 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13178 			      const struct bpf_object_open_opts *opts)
13179 {
13180 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13181 		.object_name = s->name,
13182 	);
13183 	struct bpf_object *obj;
13184 	int err;
13185 
13186 	/* Attempt to preserve opts->object_name, unless overriden by user
13187 	 * explicitly. Overwriting object name for skeletons is discouraged,
13188 	 * as it breaks global data maps, because they contain object name
13189 	 * prefix as their own map name prefix. When skeleton is generated,
13190 	 * bpftool is making an assumption that this name will stay the same.
13191 	 */
13192 	if (opts) {
13193 		memcpy(&skel_opts, opts, sizeof(*opts));
13194 		if (!opts->object_name)
13195 			skel_opts.object_name = s->name;
13196 	}
13197 
13198 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13199 	err = libbpf_get_error(obj);
13200 	if (err) {
13201 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13202 			s->name, err);
13203 		return libbpf_err(err);
13204 	}
13205 
13206 	*s->obj = obj;
13207 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13208 	if (err) {
13209 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13210 		return libbpf_err(err);
13211 	}
13212 
13213 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13214 	if (err) {
13215 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13216 		return libbpf_err(err);
13217 	}
13218 
13219 	return 0;
13220 }
13221 
13222 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13223 {
13224 	int err, len, var_idx, i;
13225 	const char *var_name;
13226 	const struct bpf_map *map;
13227 	struct btf *btf;
13228 	__u32 map_type_id;
13229 	const struct btf_type *map_type, *var_type;
13230 	const struct bpf_var_skeleton *var_skel;
13231 	struct btf_var_secinfo *var;
13232 
13233 	if (!s->obj)
13234 		return libbpf_err(-EINVAL);
13235 
13236 	btf = bpf_object__btf(s->obj);
13237 	if (!btf) {
13238 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13239 			bpf_object__name(s->obj));
13240 		return libbpf_err(-errno);
13241 	}
13242 
13243 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13244 	if (err) {
13245 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13246 		return libbpf_err(err);
13247 	}
13248 
13249 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13250 	if (err) {
13251 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13252 		return libbpf_err(err);
13253 	}
13254 
13255 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13256 		var_skel = &s->vars[var_idx];
13257 		map = *var_skel->map;
13258 		map_type_id = bpf_map__btf_value_type_id(map);
13259 		map_type = btf__type_by_id(btf, map_type_id);
13260 
13261 		if (!btf_is_datasec(map_type)) {
13262 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13263 				bpf_map__name(map),
13264 				__btf_kind_str(btf_kind(map_type)));
13265 			return libbpf_err(-EINVAL);
13266 		}
13267 
13268 		len = btf_vlen(map_type);
13269 		var = btf_var_secinfos(map_type);
13270 		for (i = 0; i < len; i++, var++) {
13271 			var_type = btf__type_by_id(btf, var->type);
13272 			var_name = btf__name_by_offset(btf, var_type->name_off);
13273 			if (strcmp(var_name, var_skel->name) == 0) {
13274 				*var_skel->addr = map->mmaped + var->offset;
13275 				break;
13276 			}
13277 		}
13278 	}
13279 	return 0;
13280 }
13281 
13282 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13283 {
13284 	if (!s)
13285 		return;
13286 	free(s->maps);
13287 	free(s->progs);
13288 	free(s->vars);
13289 	free(s);
13290 }
13291 
13292 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13293 {
13294 	int i, err;
13295 
13296 	err = bpf_object__load(*s->obj);
13297 	if (err) {
13298 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13299 		return libbpf_err(err);
13300 	}
13301 
13302 	for (i = 0; i < s->map_cnt; i++) {
13303 		struct bpf_map *map = *s->maps[i].map;
13304 		size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13305 		int prot, map_fd = bpf_map__fd(map);
13306 		void **mmaped = s->maps[i].mmaped;
13307 
13308 		if (!mmaped)
13309 			continue;
13310 
13311 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13312 			*mmaped = NULL;
13313 			continue;
13314 		}
13315 
13316 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13317 			prot = PROT_READ;
13318 		else
13319 			prot = PROT_READ | PROT_WRITE;
13320 
13321 		/* Remap anonymous mmap()-ed "map initialization image" as
13322 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13323 		 * memory address. This will cause kernel to change process'
13324 		 * page table to point to a different piece of kernel memory,
13325 		 * but from userspace point of view memory address (and its
13326 		 * contents, being identical at this point) will stay the
13327 		 * same. This mapping will be released by bpf_object__close()
13328 		 * as per normal clean up procedure, so we don't need to worry
13329 		 * about it from skeleton's clean up perspective.
13330 		 */
13331 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13332 		if (*mmaped == MAP_FAILED) {
13333 			err = -errno;
13334 			*mmaped = NULL;
13335 			pr_warn("failed to re-mmap() map '%s': %d\n",
13336 				 bpf_map__name(map), err);
13337 			return libbpf_err(err);
13338 		}
13339 	}
13340 
13341 	return 0;
13342 }
13343 
13344 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13345 {
13346 	int i, err;
13347 
13348 	for (i = 0; i < s->prog_cnt; i++) {
13349 		struct bpf_program *prog = *s->progs[i].prog;
13350 		struct bpf_link **link = s->progs[i].link;
13351 
13352 		if (!prog->autoload || !prog->autoattach)
13353 			continue;
13354 
13355 		/* auto-attaching not supported for this program */
13356 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13357 			continue;
13358 
13359 		/* if user already set the link manually, don't attempt auto-attach */
13360 		if (*link)
13361 			continue;
13362 
13363 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13364 		if (err) {
13365 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13366 				bpf_program__name(prog), err);
13367 			return libbpf_err(err);
13368 		}
13369 
13370 		/* It's possible that for some SEC() definitions auto-attach
13371 		 * is supported in some cases (e.g., if definition completely
13372 		 * specifies target information), but is not in other cases.
13373 		 * SEC("uprobe") is one such case. If user specified target
13374 		 * binary and function name, such BPF program can be
13375 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13376 		 * attach to fail. It should just be skipped.
13377 		 * attach_fn signals such case with returning 0 (no error) and
13378 		 * setting link to NULL.
13379 		 */
13380 	}
13381 
13382 	return 0;
13383 }
13384 
13385 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13386 {
13387 	int i;
13388 
13389 	for (i = 0; i < s->prog_cnt; i++) {
13390 		struct bpf_link **link = s->progs[i].link;
13391 
13392 		bpf_link__destroy(*link);
13393 		*link = NULL;
13394 	}
13395 }
13396 
13397 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13398 {
13399 	if (!s)
13400 		return;
13401 
13402 	if (s->progs)
13403 		bpf_object__detach_skeleton(s);
13404 	if (s->obj)
13405 		bpf_object__close(*s->obj);
13406 	free(s->maps);
13407 	free(s->progs);
13408 	free(s);
13409 }
13410