1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 90 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 91 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 92 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 93 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 94 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 95 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 96 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 97 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 98 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 99 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 100 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 101 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 102 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 103 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 104 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 105 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 106 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 107 [BPF_LIRC_MODE2] = "lirc_mode2", 108 [BPF_FLOW_DISSECTOR] = "flow_dissector", 109 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 110 [BPF_TRACE_FENTRY] = "trace_fentry", 111 [BPF_TRACE_FEXIT] = "trace_fexit", 112 [BPF_MODIFY_RETURN] = "modify_return", 113 [BPF_LSM_MAC] = "lsm_mac", 114 [BPF_LSM_CGROUP] = "lsm_cgroup", 115 [BPF_SK_LOOKUP] = "sk_lookup", 116 [BPF_TRACE_ITER] = "trace_iter", 117 [BPF_XDP_DEVMAP] = "xdp_devmap", 118 [BPF_XDP_CPUMAP] = "xdp_cpumap", 119 [BPF_XDP] = "xdp", 120 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 121 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 122 [BPF_PERF_EVENT] = "perf_event", 123 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 124 [BPF_STRUCT_OPS] = "struct_ops", 125 [BPF_NETFILTER] = "netfilter", 126 [BPF_TCX_INGRESS] = "tcx_ingress", 127 [BPF_TCX_EGRESS] = "tcx_egress", 128 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 129 [BPF_NETKIT_PRIMARY] = "netkit_primary", 130 [BPF_NETKIT_PEER] = "netkit_peer", 131 }; 132 133 static const char * const link_type_name[] = { 134 [BPF_LINK_TYPE_UNSPEC] = "unspec", 135 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 136 [BPF_LINK_TYPE_TRACING] = "tracing", 137 [BPF_LINK_TYPE_CGROUP] = "cgroup", 138 [BPF_LINK_TYPE_ITER] = "iter", 139 [BPF_LINK_TYPE_NETNS] = "netns", 140 [BPF_LINK_TYPE_XDP] = "xdp", 141 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 142 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 143 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 144 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 145 [BPF_LINK_TYPE_TCX] = "tcx", 146 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 147 [BPF_LINK_TYPE_NETKIT] = "netkit", 148 }; 149 150 static const char * const map_type_name[] = { 151 [BPF_MAP_TYPE_UNSPEC] = "unspec", 152 [BPF_MAP_TYPE_HASH] = "hash", 153 [BPF_MAP_TYPE_ARRAY] = "array", 154 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 155 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 156 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 157 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 158 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 159 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 160 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 161 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 162 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 163 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 164 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 165 [BPF_MAP_TYPE_DEVMAP] = "devmap", 166 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 167 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 168 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 169 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 170 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 171 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 172 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 173 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 174 [BPF_MAP_TYPE_QUEUE] = "queue", 175 [BPF_MAP_TYPE_STACK] = "stack", 176 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 177 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 178 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 179 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 180 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 181 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 182 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 183 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 184 }; 185 186 static const char * const prog_type_name[] = { 187 [BPF_PROG_TYPE_UNSPEC] = "unspec", 188 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 189 [BPF_PROG_TYPE_KPROBE] = "kprobe", 190 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 191 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 192 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 193 [BPF_PROG_TYPE_XDP] = "xdp", 194 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 195 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 196 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 197 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 198 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 199 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 200 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 201 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 202 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 203 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 204 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 205 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 206 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 207 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 208 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 209 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 210 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 211 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 212 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 213 [BPF_PROG_TYPE_TRACING] = "tracing", 214 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 215 [BPF_PROG_TYPE_EXT] = "ext", 216 [BPF_PROG_TYPE_LSM] = "lsm", 217 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 218 [BPF_PROG_TYPE_SYSCALL] = "syscall", 219 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 220 }; 221 222 static int __base_pr(enum libbpf_print_level level, const char *format, 223 va_list args) 224 { 225 if (level == LIBBPF_DEBUG) 226 return 0; 227 228 return vfprintf(stderr, format, args); 229 } 230 231 static libbpf_print_fn_t __libbpf_pr = __base_pr; 232 233 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 234 { 235 libbpf_print_fn_t old_print_fn; 236 237 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 238 239 return old_print_fn; 240 } 241 242 __printf(2, 3) 243 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 244 { 245 va_list args; 246 int old_errno; 247 libbpf_print_fn_t print_fn; 248 249 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 250 if (!print_fn) 251 return; 252 253 old_errno = errno; 254 255 va_start(args, format); 256 __libbpf_pr(level, format, args); 257 va_end(args); 258 259 errno = old_errno; 260 } 261 262 static void pr_perm_msg(int err) 263 { 264 struct rlimit limit; 265 char buf[100]; 266 267 if (err != -EPERM || geteuid() != 0) 268 return; 269 270 err = getrlimit(RLIMIT_MEMLOCK, &limit); 271 if (err) 272 return; 273 274 if (limit.rlim_cur == RLIM_INFINITY) 275 return; 276 277 if (limit.rlim_cur < 1024) 278 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 279 else if (limit.rlim_cur < 1024*1024) 280 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 281 else 282 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 283 284 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 285 buf); 286 } 287 288 #define STRERR_BUFSIZE 128 289 290 /* Copied from tools/perf/util/util.h */ 291 #ifndef zfree 292 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 293 #endif 294 295 #ifndef zclose 296 # define zclose(fd) ({ \ 297 int ___err = 0; \ 298 if ((fd) >= 0) \ 299 ___err = close((fd)); \ 300 fd = -1; \ 301 ___err; }) 302 #endif 303 304 static inline __u64 ptr_to_u64(const void *ptr) 305 { 306 return (__u64) (unsigned long) ptr; 307 } 308 309 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 310 { 311 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 312 return 0; 313 } 314 315 __u32 libbpf_major_version(void) 316 { 317 return LIBBPF_MAJOR_VERSION; 318 } 319 320 __u32 libbpf_minor_version(void) 321 { 322 return LIBBPF_MINOR_VERSION; 323 } 324 325 const char *libbpf_version_string(void) 326 { 327 #define __S(X) #X 328 #define _S(X) __S(X) 329 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 330 #undef _S 331 #undef __S 332 } 333 334 enum reloc_type { 335 RELO_LD64, 336 RELO_CALL, 337 RELO_DATA, 338 RELO_EXTERN_LD64, 339 RELO_EXTERN_CALL, 340 RELO_SUBPROG_ADDR, 341 RELO_CORE, 342 }; 343 344 struct reloc_desc { 345 enum reloc_type type; 346 int insn_idx; 347 union { 348 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 349 struct { 350 int map_idx; 351 int sym_off; 352 int ext_idx; 353 }; 354 }; 355 }; 356 357 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 358 enum sec_def_flags { 359 SEC_NONE = 0, 360 /* expected_attach_type is optional, if kernel doesn't support that */ 361 SEC_EXP_ATTACH_OPT = 1, 362 /* legacy, only used by libbpf_get_type_names() and 363 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 364 * This used to be associated with cgroup (and few other) BPF programs 365 * that were attachable through BPF_PROG_ATTACH command. Pretty 366 * meaningless nowadays, though. 367 */ 368 SEC_ATTACHABLE = 2, 369 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 370 /* attachment target is specified through BTF ID in either kernel or 371 * other BPF program's BTF object 372 */ 373 SEC_ATTACH_BTF = 4, 374 /* BPF program type allows sleeping/blocking in kernel */ 375 SEC_SLEEPABLE = 8, 376 /* BPF program support non-linear XDP buffer */ 377 SEC_XDP_FRAGS = 16, 378 /* Setup proper attach type for usdt probes. */ 379 SEC_USDT = 32, 380 }; 381 382 struct bpf_sec_def { 383 char *sec; 384 enum bpf_prog_type prog_type; 385 enum bpf_attach_type expected_attach_type; 386 long cookie; 387 int handler_id; 388 389 libbpf_prog_setup_fn_t prog_setup_fn; 390 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 391 libbpf_prog_attach_fn_t prog_attach_fn; 392 }; 393 394 /* 395 * bpf_prog should be a better name but it has been used in 396 * linux/filter.h. 397 */ 398 struct bpf_program { 399 char *name; 400 char *sec_name; 401 size_t sec_idx; 402 const struct bpf_sec_def *sec_def; 403 /* this program's instruction offset (in number of instructions) 404 * within its containing ELF section 405 */ 406 size_t sec_insn_off; 407 /* number of original instructions in ELF section belonging to this 408 * program, not taking into account subprogram instructions possible 409 * appended later during relocation 410 */ 411 size_t sec_insn_cnt; 412 /* Offset (in number of instructions) of the start of instruction 413 * belonging to this BPF program within its containing main BPF 414 * program. For the entry-point (main) BPF program, this is always 415 * zero. For a sub-program, this gets reset before each of main BPF 416 * programs are processed and relocated and is used to determined 417 * whether sub-program was already appended to the main program, and 418 * if yes, at which instruction offset. 419 */ 420 size_t sub_insn_off; 421 422 /* instructions that belong to BPF program; insns[0] is located at 423 * sec_insn_off instruction within its ELF section in ELF file, so 424 * when mapping ELF file instruction index to the local instruction, 425 * one needs to subtract sec_insn_off; and vice versa. 426 */ 427 struct bpf_insn *insns; 428 /* actual number of instruction in this BPF program's image; for 429 * entry-point BPF programs this includes the size of main program 430 * itself plus all the used sub-programs, appended at the end 431 */ 432 size_t insns_cnt; 433 434 struct reloc_desc *reloc_desc; 435 int nr_reloc; 436 437 /* BPF verifier log settings */ 438 char *log_buf; 439 size_t log_size; 440 __u32 log_level; 441 442 struct bpf_object *obj; 443 444 int fd; 445 bool autoload; 446 bool autoattach; 447 bool sym_global; 448 bool mark_btf_static; 449 enum bpf_prog_type type; 450 enum bpf_attach_type expected_attach_type; 451 int exception_cb_idx; 452 453 int prog_ifindex; 454 __u32 attach_btf_obj_fd; 455 __u32 attach_btf_id; 456 __u32 attach_prog_fd; 457 458 void *func_info; 459 __u32 func_info_rec_size; 460 __u32 func_info_cnt; 461 462 void *line_info; 463 __u32 line_info_rec_size; 464 __u32 line_info_cnt; 465 __u32 prog_flags; 466 }; 467 468 struct bpf_struct_ops { 469 const char *tname; 470 const struct btf_type *type; 471 struct bpf_program **progs; 472 __u32 *kern_func_off; 473 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 474 void *data; 475 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 476 * btf_vmlinux's format. 477 * struct bpf_struct_ops_tcp_congestion_ops { 478 * [... some other kernel fields ...] 479 * struct tcp_congestion_ops data; 480 * } 481 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 482 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 483 * from "data". 484 */ 485 void *kern_vdata; 486 __u32 type_id; 487 }; 488 489 #define DATA_SEC ".data" 490 #define BSS_SEC ".bss" 491 #define RODATA_SEC ".rodata" 492 #define KCONFIG_SEC ".kconfig" 493 #define KSYMS_SEC ".ksyms" 494 #define STRUCT_OPS_SEC ".struct_ops" 495 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 496 497 enum libbpf_map_type { 498 LIBBPF_MAP_UNSPEC, 499 LIBBPF_MAP_DATA, 500 LIBBPF_MAP_BSS, 501 LIBBPF_MAP_RODATA, 502 LIBBPF_MAP_KCONFIG, 503 }; 504 505 struct bpf_map_def { 506 unsigned int type; 507 unsigned int key_size; 508 unsigned int value_size; 509 unsigned int max_entries; 510 unsigned int map_flags; 511 }; 512 513 struct bpf_map { 514 struct bpf_object *obj; 515 char *name; 516 /* real_name is defined for special internal maps (.rodata*, 517 * .data*, .bss, .kconfig) and preserves their original ELF section 518 * name. This is important to be able to find corresponding BTF 519 * DATASEC information. 520 */ 521 char *real_name; 522 int fd; 523 int sec_idx; 524 size_t sec_offset; 525 int map_ifindex; 526 int inner_map_fd; 527 struct bpf_map_def def; 528 __u32 numa_node; 529 __u32 btf_var_idx; 530 __u32 btf_key_type_id; 531 __u32 btf_value_type_id; 532 __u32 btf_vmlinux_value_type_id; 533 enum libbpf_map_type libbpf_type; 534 void *mmaped; 535 struct bpf_struct_ops *st_ops; 536 struct bpf_map *inner_map; 537 void **init_slots; 538 int init_slots_sz; 539 char *pin_path; 540 bool pinned; 541 bool reused; 542 bool autocreate; 543 __u64 map_extra; 544 }; 545 546 enum extern_type { 547 EXT_UNKNOWN, 548 EXT_KCFG, 549 EXT_KSYM, 550 }; 551 552 enum kcfg_type { 553 KCFG_UNKNOWN, 554 KCFG_CHAR, 555 KCFG_BOOL, 556 KCFG_INT, 557 KCFG_TRISTATE, 558 KCFG_CHAR_ARR, 559 }; 560 561 struct extern_desc { 562 enum extern_type type; 563 int sym_idx; 564 int btf_id; 565 int sec_btf_id; 566 const char *name; 567 char *essent_name; 568 bool is_set; 569 bool is_weak; 570 union { 571 struct { 572 enum kcfg_type type; 573 int sz; 574 int align; 575 int data_off; 576 bool is_signed; 577 } kcfg; 578 struct { 579 unsigned long long addr; 580 581 /* target btf_id of the corresponding kernel var. */ 582 int kernel_btf_obj_fd; 583 int kernel_btf_id; 584 585 /* local btf_id of the ksym extern's type. */ 586 __u32 type_id; 587 /* BTF fd index to be patched in for insn->off, this is 588 * 0 for vmlinux BTF, index in obj->fd_array for module 589 * BTF 590 */ 591 __s16 btf_fd_idx; 592 } ksym; 593 }; 594 }; 595 596 struct module_btf { 597 struct btf *btf; 598 char *name; 599 __u32 id; 600 int fd; 601 int fd_array_idx; 602 }; 603 604 enum sec_type { 605 SEC_UNUSED = 0, 606 SEC_RELO, 607 SEC_BSS, 608 SEC_DATA, 609 SEC_RODATA, 610 }; 611 612 struct elf_sec_desc { 613 enum sec_type sec_type; 614 Elf64_Shdr *shdr; 615 Elf_Data *data; 616 }; 617 618 struct elf_state { 619 int fd; 620 const void *obj_buf; 621 size_t obj_buf_sz; 622 Elf *elf; 623 Elf64_Ehdr *ehdr; 624 Elf_Data *symbols; 625 Elf_Data *st_ops_data; 626 Elf_Data *st_ops_link_data; 627 size_t shstrndx; /* section index for section name strings */ 628 size_t strtabidx; 629 struct elf_sec_desc *secs; 630 size_t sec_cnt; 631 int btf_maps_shndx; 632 __u32 btf_maps_sec_btf_id; 633 int text_shndx; 634 int symbols_shndx; 635 int st_ops_shndx; 636 int st_ops_link_shndx; 637 }; 638 639 struct usdt_manager; 640 641 struct bpf_object { 642 char name[BPF_OBJ_NAME_LEN]; 643 char license[64]; 644 __u32 kern_version; 645 646 struct bpf_program *programs; 647 size_t nr_programs; 648 struct bpf_map *maps; 649 size_t nr_maps; 650 size_t maps_cap; 651 652 char *kconfig; 653 struct extern_desc *externs; 654 int nr_extern; 655 int kconfig_map_idx; 656 657 bool loaded; 658 bool has_subcalls; 659 bool has_rodata; 660 661 struct bpf_gen *gen_loader; 662 663 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 664 struct elf_state efile; 665 666 struct btf *btf; 667 struct btf_ext *btf_ext; 668 669 /* Parse and load BTF vmlinux if any of the programs in the object need 670 * it at load time. 671 */ 672 struct btf *btf_vmlinux; 673 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 674 * override for vmlinux BTF. 675 */ 676 char *btf_custom_path; 677 /* vmlinux BTF override for CO-RE relocations */ 678 struct btf *btf_vmlinux_override; 679 /* Lazily initialized kernel module BTFs */ 680 struct module_btf *btf_modules; 681 bool btf_modules_loaded; 682 size_t btf_module_cnt; 683 size_t btf_module_cap; 684 685 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 686 char *log_buf; 687 size_t log_size; 688 __u32 log_level; 689 690 int *fd_array; 691 size_t fd_array_cap; 692 size_t fd_array_cnt; 693 694 struct usdt_manager *usdt_man; 695 696 char path[]; 697 }; 698 699 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 700 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 701 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 702 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 703 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 705 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 706 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 707 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 708 709 void bpf_program__unload(struct bpf_program *prog) 710 { 711 if (!prog) 712 return; 713 714 zclose(prog->fd); 715 716 zfree(&prog->func_info); 717 zfree(&prog->line_info); 718 } 719 720 static void bpf_program__exit(struct bpf_program *prog) 721 { 722 if (!prog) 723 return; 724 725 bpf_program__unload(prog); 726 zfree(&prog->name); 727 zfree(&prog->sec_name); 728 zfree(&prog->insns); 729 zfree(&prog->reloc_desc); 730 731 prog->nr_reloc = 0; 732 prog->insns_cnt = 0; 733 prog->sec_idx = -1; 734 } 735 736 static bool insn_is_subprog_call(const struct bpf_insn *insn) 737 { 738 return BPF_CLASS(insn->code) == BPF_JMP && 739 BPF_OP(insn->code) == BPF_CALL && 740 BPF_SRC(insn->code) == BPF_K && 741 insn->src_reg == BPF_PSEUDO_CALL && 742 insn->dst_reg == 0 && 743 insn->off == 0; 744 } 745 746 static bool is_call_insn(const struct bpf_insn *insn) 747 { 748 return insn->code == (BPF_JMP | BPF_CALL); 749 } 750 751 static bool insn_is_pseudo_func(struct bpf_insn *insn) 752 { 753 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 754 } 755 756 static int 757 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 758 const char *name, size_t sec_idx, const char *sec_name, 759 size_t sec_off, void *insn_data, size_t insn_data_sz) 760 { 761 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 762 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 763 sec_name, name, sec_off, insn_data_sz); 764 return -EINVAL; 765 } 766 767 memset(prog, 0, sizeof(*prog)); 768 prog->obj = obj; 769 770 prog->sec_idx = sec_idx; 771 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 772 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 773 /* insns_cnt can later be increased by appending used subprograms */ 774 prog->insns_cnt = prog->sec_insn_cnt; 775 776 prog->type = BPF_PROG_TYPE_UNSPEC; 777 prog->fd = -1; 778 prog->exception_cb_idx = -1; 779 780 /* libbpf's convention for SEC("?abc...") is that it's just like 781 * SEC("abc...") but the corresponding bpf_program starts out with 782 * autoload set to false. 783 */ 784 if (sec_name[0] == '?') { 785 prog->autoload = false; 786 /* from now on forget there was ? in section name */ 787 sec_name++; 788 } else { 789 prog->autoload = true; 790 } 791 792 prog->autoattach = true; 793 794 /* inherit object's log_level */ 795 prog->log_level = obj->log_level; 796 797 prog->sec_name = strdup(sec_name); 798 if (!prog->sec_name) 799 goto errout; 800 801 prog->name = strdup(name); 802 if (!prog->name) 803 goto errout; 804 805 prog->insns = malloc(insn_data_sz); 806 if (!prog->insns) 807 goto errout; 808 memcpy(prog->insns, insn_data, insn_data_sz); 809 810 return 0; 811 errout: 812 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 813 bpf_program__exit(prog); 814 return -ENOMEM; 815 } 816 817 static int 818 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 819 const char *sec_name, int sec_idx) 820 { 821 Elf_Data *symbols = obj->efile.symbols; 822 struct bpf_program *prog, *progs; 823 void *data = sec_data->d_buf; 824 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 825 int nr_progs, err, i; 826 const char *name; 827 Elf64_Sym *sym; 828 829 progs = obj->programs; 830 nr_progs = obj->nr_programs; 831 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 832 833 for (i = 0; i < nr_syms; i++) { 834 sym = elf_sym_by_idx(obj, i); 835 836 if (sym->st_shndx != sec_idx) 837 continue; 838 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 839 continue; 840 841 prog_sz = sym->st_size; 842 sec_off = sym->st_value; 843 844 name = elf_sym_str(obj, sym->st_name); 845 if (!name) { 846 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 847 sec_name, sec_off); 848 return -LIBBPF_ERRNO__FORMAT; 849 } 850 851 if (sec_off + prog_sz > sec_sz) { 852 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 853 sec_name, sec_off); 854 return -LIBBPF_ERRNO__FORMAT; 855 } 856 857 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 858 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 859 return -ENOTSUP; 860 } 861 862 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 863 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 864 865 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 866 if (!progs) { 867 /* 868 * In this case the original obj->programs 869 * is still valid, so don't need special treat for 870 * bpf_close_object(). 871 */ 872 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 873 sec_name, name); 874 return -ENOMEM; 875 } 876 obj->programs = progs; 877 878 prog = &progs[nr_progs]; 879 880 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 881 sec_off, data + sec_off, prog_sz); 882 if (err) 883 return err; 884 885 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 886 prog->sym_global = true; 887 888 /* if function is a global/weak symbol, but has restricted 889 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 890 * as static to enable more permissive BPF verification mode 891 * with more outside context available to BPF verifier 892 */ 893 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 894 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 895 prog->mark_btf_static = true; 896 897 nr_progs++; 898 obj->nr_programs = nr_progs; 899 } 900 901 return 0; 902 } 903 904 static const struct btf_member * 905 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 906 { 907 struct btf_member *m; 908 int i; 909 910 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 911 if (btf_member_bit_offset(t, i) == bit_offset) 912 return m; 913 } 914 915 return NULL; 916 } 917 918 static const struct btf_member * 919 find_member_by_name(const struct btf *btf, const struct btf_type *t, 920 const char *name) 921 { 922 struct btf_member *m; 923 int i; 924 925 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 926 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 927 return m; 928 } 929 930 return NULL; 931 } 932 933 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 934 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 935 const char *name, __u32 kind); 936 937 static int 938 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 939 const struct btf_type **type, __u32 *type_id, 940 const struct btf_type **vtype, __u32 *vtype_id, 941 const struct btf_member **data_member) 942 { 943 const struct btf_type *kern_type, *kern_vtype; 944 const struct btf_member *kern_data_member; 945 __s32 kern_vtype_id, kern_type_id; 946 __u32 i; 947 948 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 949 if (kern_type_id < 0) { 950 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 951 tname); 952 return kern_type_id; 953 } 954 kern_type = btf__type_by_id(btf, kern_type_id); 955 956 /* Find the corresponding "map_value" type that will be used 957 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 958 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 959 * btf_vmlinux. 960 */ 961 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 962 tname, BTF_KIND_STRUCT); 963 if (kern_vtype_id < 0) { 964 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 965 STRUCT_OPS_VALUE_PREFIX, tname); 966 return kern_vtype_id; 967 } 968 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 969 970 /* Find "struct tcp_congestion_ops" from 971 * struct bpf_struct_ops_tcp_congestion_ops { 972 * [ ... ] 973 * struct tcp_congestion_ops data; 974 * } 975 */ 976 kern_data_member = btf_members(kern_vtype); 977 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 978 if (kern_data_member->type == kern_type_id) 979 break; 980 } 981 if (i == btf_vlen(kern_vtype)) { 982 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 983 tname, STRUCT_OPS_VALUE_PREFIX, tname); 984 return -EINVAL; 985 } 986 987 *type = kern_type; 988 *type_id = kern_type_id; 989 *vtype = kern_vtype; 990 *vtype_id = kern_vtype_id; 991 *data_member = kern_data_member; 992 993 return 0; 994 } 995 996 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 997 { 998 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 999 } 1000 1001 /* Init the map's fields that depend on kern_btf */ 1002 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1003 const struct btf *btf, 1004 const struct btf *kern_btf) 1005 { 1006 const struct btf_member *member, *kern_member, *kern_data_member; 1007 const struct btf_type *type, *kern_type, *kern_vtype; 1008 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1009 struct bpf_struct_ops *st_ops; 1010 void *data, *kern_data; 1011 const char *tname; 1012 int err; 1013 1014 st_ops = map->st_ops; 1015 type = st_ops->type; 1016 tname = st_ops->tname; 1017 err = find_struct_ops_kern_types(kern_btf, tname, 1018 &kern_type, &kern_type_id, 1019 &kern_vtype, &kern_vtype_id, 1020 &kern_data_member); 1021 if (err) 1022 return err; 1023 1024 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1025 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1026 1027 map->def.value_size = kern_vtype->size; 1028 map->btf_vmlinux_value_type_id = kern_vtype_id; 1029 1030 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1031 if (!st_ops->kern_vdata) 1032 return -ENOMEM; 1033 1034 data = st_ops->data; 1035 kern_data_off = kern_data_member->offset / 8; 1036 kern_data = st_ops->kern_vdata + kern_data_off; 1037 1038 member = btf_members(type); 1039 for (i = 0; i < btf_vlen(type); i++, member++) { 1040 const struct btf_type *mtype, *kern_mtype; 1041 __u32 mtype_id, kern_mtype_id; 1042 void *mdata, *kern_mdata; 1043 __s64 msize, kern_msize; 1044 __u32 moff, kern_moff; 1045 __u32 kern_member_idx; 1046 const char *mname; 1047 1048 mname = btf__name_by_offset(btf, member->name_off); 1049 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1050 if (!kern_member) { 1051 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1052 map->name, mname); 1053 return -ENOTSUP; 1054 } 1055 1056 kern_member_idx = kern_member - btf_members(kern_type); 1057 if (btf_member_bitfield_size(type, i) || 1058 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1059 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1060 map->name, mname); 1061 return -ENOTSUP; 1062 } 1063 1064 moff = member->offset / 8; 1065 kern_moff = kern_member->offset / 8; 1066 1067 mdata = data + moff; 1068 kern_mdata = kern_data + kern_moff; 1069 1070 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1071 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1072 &kern_mtype_id); 1073 if (BTF_INFO_KIND(mtype->info) != 1074 BTF_INFO_KIND(kern_mtype->info)) { 1075 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1076 map->name, mname, BTF_INFO_KIND(mtype->info), 1077 BTF_INFO_KIND(kern_mtype->info)); 1078 return -ENOTSUP; 1079 } 1080 1081 if (btf_is_ptr(mtype)) { 1082 struct bpf_program *prog; 1083 1084 prog = st_ops->progs[i]; 1085 if (!prog) 1086 continue; 1087 1088 kern_mtype = skip_mods_and_typedefs(kern_btf, 1089 kern_mtype->type, 1090 &kern_mtype_id); 1091 1092 /* mtype->type must be a func_proto which was 1093 * guaranteed in bpf_object__collect_st_ops_relos(), 1094 * so only check kern_mtype for func_proto here. 1095 */ 1096 if (!btf_is_func_proto(kern_mtype)) { 1097 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1098 map->name, mname); 1099 return -ENOTSUP; 1100 } 1101 1102 prog->attach_btf_id = kern_type_id; 1103 prog->expected_attach_type = kern_member_idx; 1104 1105 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1106 1107 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1108 map->name, mname, prog->name, moff, 1109 kern_moff); 1110 1111 continue; 1112 } 1113 1114 msize = btf__resolve_size(btf, mtype_id); 1115 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1116 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1117 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1118 map->name, mname, (ssize_t)msize, 1119 (ssize_t)kern_msize); 1120 return -ENOTSUP; 1121 } 1122 1123 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1124 map->name, mname, (unsigned int)msize, 1125 moff, kern_moff); 1126 memcpy(kern_mdata, mdata, msize); 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1133 { 1134 struct bpf_map *map; 1135 size_t i; 1136 int err; 1137 1138 for (i = 0; i < obj->nr_maps; i++) { 1139 map = &obj->maps[i]; 1140 1141 if (!bpf_map__is_struct_ops(map)) 1142 continue; 1143 1144 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1145 obj->btf_vmlinux); 1146 if (err) 1147 return err; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1154 int shndx, Elf_Data *data, __u32 map_flags) 1155 { 1156 const struct btf_type *type, *datasec; 1157 const struct btf_var_secinfo *vsi; 1158 struct bpf_struct_ops *st_ops; 1159 const char *tname, *var_name; 1160 __s32 type_id, datasec_id; 1161 const struct btf *btf; 1162 struct bpf_map *map; 1163 __u32 i; 1164 1165 if (shndx == -1) 1166 return 0; 1167 1168 btf = obj->btf; 1169 datasec_id = btf__find_by_name_kind(btf, sec_name, 1170 BTF_KIND_DATASEC); 1171 if (datasec_id < 0) { 1172 pr_warn("struct_ops init: DATASEC %s not found\n", 1173 sec_name); 1174 return -EINVAL; 1175 } 1176 1177 datasec = btf__type_by_id(btf, datasec_id); 1178 vsi = btf_var_secinfos(datasec); 1179 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1180 type = btf__type_by_id(obj->btf, vsi->type); 1181 var_name = btf__name_by_offset(obj->btf, type->name_off); 1182 1183 type_id = btf__resolve_type(obj->btf, vsi->type); 1184 if (type_id < 0) { 1185 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1186 vsi->type, sec_name); 1187 return -EINVAL; 1188 } 1189 1190 type = btf__type_by_id(obj->btf, type_id); 1191 tname = btf__name_by_offset(obj->btf, type->name_off); 1192 if (!tname[0]) { 1193 pr_warn("struct_ops init: anonymous type is not supported\n"); 1194 return -ENOTSUP; 1195 } 1196 if (!btf_is_struct(type)) { 1197 pr_warn("struct_ops init: %s is not a struct\n", tname); 1198 return -EINVAL; 1199 } 1200 1201 map = bpf_object__add_map(obj); 1202 if (IS_ERR(map)) 1203 return PTR_ERR(map); 1204 1205 map->sec_idx = shndx; 1206 map->sec_offset = vsi->offset; 1207 map->name = strdup(var_name); 1208 if (!map->name) 1209 return -ENOMEM; 1210 1211 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1212 map->def.key_size = sizeof(int); 1213 map->def.value_size = type->size; 1214 map->def.max_entries = 1; 1215 map->def.map_flags = map_flags; 1216 1217 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1218 if (!map->st_ops) 1219 return -ENOMEM; 1220 st_ops = map->st_ops; 1221 st_ops->data = malloc(type->size); 1222 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1223 st_ops->kern_func_off = malloc(btf_vlen(type) * 1224 sizeof(*st_ops->kern_func_off)); 1225 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1226 return -ENOMEM; 1227 1228 if (vsi->offset + type->size > data->d_size) { 1229 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1230 var_name, sec_name); 1231 return -EINVAL; 1232 } 1233 1234 memcpy(st_ops->data, 1235 data->d_buf + vsi->offset, 1236 type->size); 1237 st_ops->tname = tname; 1238 st_ops->type = type; 1239 st_ops->type_id = type_id; 1240 1241 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1242 tname, type_id, var_name, vsi->offset); 1243 } 1244 1245 return 0; 1246 } 1247 1248 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1249 { 1250 int err; 1251 1252 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1253 obj->efile.st_ops_data, 0); 1254 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1255 obj->efile.st_ops_link_shndx, 1256 obj->efile.st_ops_link_data, 1257 BPF_F_LINK); 1258 return err; 1259 } 1260 1261 static struct bpf_object *bpf_object__new(const char *path, 1262 const void *obj_buf, 1263 size_t obj_buf_sz, 1264 const char *obj_name) 1265 { 1266 struct bpf_object *obj; 1267 char *end; 1268 1269 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1270 if (!obj) { 1271 pr_warn("alloc memory failed for %s\n", path); 1272 return ERR_PTR(-ENOMEM); 1273 } 1274 1275 strcpy(obj->path, path); 1276 if (obj_name) { 1277 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1278 } else { 1279 /* Using basename() GNU version which doesn't modify arg. */ 1280 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1281 end = strchr(obj->name, '.'); 1282 if (end) 1283 *end = 0; 1284 } 1285 1286 obj->efile.fd = -1; 1287 /* 1288 * Caller of this function should also call 1289 * bpf_object__elf_finish() after data collection to return 1290 * obj_buf to user. If not, we should duplicate the buffer to 1291 * avoid user freeing them before elf finish. 1292 */ 1293 obj->efile.obj_buf = obj_buf; 1294 obj->efile.obj_buf_sz = obj_buf_sz; 1295 obj->efile.btf_maps_shndx = -1; 1296 obj->efile.st_ops_shndx = -1; 1297 obj->efile.st_ops_link_shndx = -1; 1298 obj->kconfig_map_idx = -1; 1299 1300 obj->kern_version = get_kernel_version(); 1301 obj->loaded = false; 1302 1303 return obj; 1304 } 1305 1306 static void bpf_object__elf_finish(struct bpf_object *obj) 1307 { 1308 if (!obj->efile.elf) 1309 return; 1310 1311 elf_end(obj->efile.elf); 1312 obj->efile.elf = NULL; 1313 obj->efile.symbols = NULL; 1314 obj->efile.st_ops_data = NULL; 1315 obj->efile.st_ops_link_data = NULL; 1316 1317 zfree(&obj->efile.secs); 1318 obj->efile.sec_cnt = 0; 1319 zclose(obj->efile.fd); 1320 obj->efile.obj_buf = NULL; 1321 obj->efile.obj_buf_sz = 0; 1322 } 1323 1324 static int bpf_object__elf_init(struct bpf_object *obj) 1325 { 1326 Elf64_Ehdr *ehdr; 1327 int err = 0; 1328 Elf *elf; 1329 1330 if (obj->efile.elf) { 1331 pr_warn("elf: init internal error\n"); 1332 return -LIBBPF_ERRNO__LIBELF; 1333 } 1334 1335 if (obj->efile.obj_buf_sz > 0) { 1336 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1337 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1338 } else { 1339 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1340 if (obj->efile.fd < 0) { 1341 char errmsg[STRERR_BUFSIZE], *cp; 1342 1343 err = -errno; 1344 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1345 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1346 return err; 1347 } 1348 1349 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1350 } 1351 1352 if (!elf) { 1353 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1354 err = -LIBBPF_ERRNO__LIBELF; 1355 goto errout; 1356 } 1357 1358 obj->efile.elf = elf; 1359 1360 if (elf_kind(elf) != ELF_K_ELF) { 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1363 goto errout; 1364 } 1365 1366 if (gelf_getclass(elf) != ELFCLASS64) { 1367 err = -LIBBPF_ERRNO__FORMAT; 1368 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1369 goto errout; 1370 } 1371 1372 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1373 if (!obj->efile.ehdr) { 1374 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1375 err = -LIBBPF_ERRNO__FORMAT; 1376 goto errout; 1377 } 1378 1379 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1380 pr_warn("elf: failed to get section names section index for %s: %s\n", 1381 obj->path, elf_errmsg(-1)); 1382 err = -LIBBPF_ERRNO__FORMAT; 1383 goto errout; 1384 } 1385 1386 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1387 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1388 pr_warn("elf: failed to get section names strings from %s: %s\n", 1389 obj->path, elf_errmsg(-1)); 1390 err = -LIBBPF_ERRNO__FORMAT; 1391 goto errout; 1392 } 1393 1394 /* Old LLVM set e_machine to EM_NONE */ 1395 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1396 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1397 err = -LIBBPF_ERRNO__FORMAT; 1398 goto errout; 1399 } 1400 1401 return 0; 1402 errout: 1403 bpf_object__elf_finish(obj); 1404 return err; 1405 } 1406 1407 static int bpf_object__check_endianness(struct bpf_object *obj) 1408 { 1409 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1410 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1411 return 0; 1412 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1413 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1414 return 0; 1415 #else 1416 # error "Unrecognized __BYTE_ORDER__" 1417 #endif 1418 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1419 return -LIBBPF_ERRNO__ENDIAN; 1420 } 1421 1422 static int 1423 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1424 { 1425 if (!data) { 1426 pr_warn("invalid license section in %s\n", obj->path); 1427 return -LIBBPF_ERRNO__FORMAT; 1428 } 1429 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1430 * go over allowed ELF data section buffer 1431 */ 1432 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1433 pr_debug("license of %s is %s\n", obj->path, obj->license); 1434 return 0; 1435 } 1436 1437 static int 1438 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1439 { 1440 __u32 kver; 1441 1442 if (!data || size != sizeof(kver)) { 1443 pr_warn("invalid kver section in %s\n", obj->path); 1444 return -LIBBPF_ERRNO__FORMAT; 1445 } 1446 memcpy(&kver, data, sizeof(kver)); 1447 obj->kern_version = kver; 1448 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1449 return 0; 1450 } 1451 1452 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1453 { 1454 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1455 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1456 return true; 1457 return false; 1458 } 1459 1460 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1461 { 1462 Elf_Data *data; 1463 Elf_Scn *scn; 1464 1465 if (!name) 1466 return -EINVAL; 1467 1468 scn = elf_sec_by_name(obj, name); 1469 data = elf_sec_data(obj, scn); 1470 if (data) { 1471 *size = data->d_size; 1472 return 0; /* found it */ 1473 } 1474 1475 return -ENOENT; 1476 } 1477 1478 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1479 { 1480 Elf_Data *symbols = obj->efile.symbols; 1481 const char *sname; 1482 size_t si; 1483 1484 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1485 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1486 1487 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1488 continue; 1489 1490 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1491 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1492 continue; 1493 1494 sname = elf_sym_str(obj, sym->st_name); 1495 if (!sname) { 1496 pr_warn("failed to get sym name string for var %s\n", name); 1497 return ERR_PTR(-EIO); 1498 } 1499 if (strcmp(name, sname) == 0) 1500 return sym; 1501 } 1502 1503 return ERR_PTR(-ENOENT); 1504 } 1505 1506 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1507 { 1508 struct bpf_map *map; 1509 int err; 1510 1511 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1512 sizeof(*obj->maps), obj->nr_maps + 1); 1513 if (err) 1514 return ERR_PTR(err); 1515 1516 map = &obj->maps[obj->nr_maps++]; 1517 map->obj = obj; 1518 map->fd = -1; 1519 map->inner_map_fd = -1; 1520 map->autocreate = true; 1521 1522 return map; 1523 } 1524 1525 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1526 { 1527 const long page_sz = sysconf(_SC_PAGE_SIZE); 1528 size_t map_sz; 1529 1530 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1531 map_sz = roundup(map_sz, page_sz); 1532 return map_sz; 1533 } 1534 1535 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1536 { 1537 void *mmaped; 1538 1539 if (!map->mmaped) 1540 return -EINVAL; 1541 1542 if (old_sz == new_sz) 1543 return 0; 1544 1545 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1546 if (mmaped == MAP_FAILED) 1547 return -errno; 1548 1549 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1550 munmap(map->mmaped, old_sz); 1551 map->mmaped = mmaped; 1552 return 0; 1553 } 1554 1555 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1556 { 1557 char map_name[BPF_OBJ_NAME_LEN], *p; 1558 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1559 1560 /* This is one of the more confusing parts of libbpf for various 1561 * reasons, some of which are historical. The original idea for naming 1562 * internal names was to include as much of BPF object name prefix as 1563 * possible, so that it can be distinguished from similar internal 1564 * maps of a different BPF object. 1565 * As an example, let's say we have bpf_object named 'my_object_name' 1566 * and internal map corresponding to '.rodata' ELF section. The final 1567 * map name advertised to user and to the kernel will be 1568 * 'my_objec.rodata', taking first 8 characters of object name and 1569 * entire 7 characters of '.rodata'. 1570 * Somewhat confusingly, if internal map ELF section name is shorter 1571 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1572 * for the suffix, even though we only have 4 actual characters, and 1573 * resulting map will be called 'my_objec.bss', not even using all 15 1574 * characters allowed by the kernel. Oh well, at least the truncated 1575 * object name is somewhat consistent in this case. But if the map 1576 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1577 * (8 chars) and thus will be left with only first 7 characters of the 1578 * object name ('my_obje'). Happy guessing, user, that the final map 1579 * name will be "my_obje.kconfig". 1580 * Now, with libbpf starting to support arbitrarily named .rodata.* 1581 * and .data.* data sections, it's possible that ELF section name is 1582 * longer than allowed 15 chars, so we now need to be careful to take 1583 * only up to 15 first characters of ELF name, taking no BPF object 1584 * name characters at all. So '.rodata.abracadabra' will result in 1585 * '.rodata.abracad' kernel and user-visible name. 1586 * We need to keep this convoluted logic intact for .data, .bss and 1587 * .rodata maps, but for new custom .data.custom and .rodata.custom 1588 * maps we use their ELF names as is, not prepending bpf_object name 1589 * in front. We still need to truncate them to 15 characters for the 1590 * kernel. Full name can be recovered for such maps by using DATASEC 1591 * BTF type associated with such map's value type, though. 1592 */ 1593 if (sfx_len >= BPF_OBJ_NAME_LEN) 1594 sfx_len = BPF_OBJ_NAME_LEN - 1; 1595 1596 /* if there are two or more dots in map name, it's a custom dot map */ 1597 if (strchr(real_name + 1, '.') != NULL) 1598 pfx_len = 0; 1599 else 1600 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1601 1602 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1603 sfx_len, real_name); 1604 1605 /* sanitise map name to characters allowed by kernel */ 1606 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1607 if (!isalnum(*p) && *p != '_' && *p != '.') 1608 *p = '_'; 1609 1610 return strdup(map_name); 1611 } 1612 1613 static int 1614 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1615 1616 /* Internal BPF map is mmap()'able only if at least one of corresponding 1617 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1618 * variable and it's not marked as __hidden (which turns it into, effectively, 1619 * a STATIC variable). 1620 */ 1621 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1622 { 1623 const struct btf_type *t, *vt; 1624 struct btf_var_secinfo *vsi; 1625 int i, n; 1626 1627 if (!map->btf_value_type_id) 1628 return false; 1629 1630 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1631 if (!btf_is_datasec(t)) 1632 return false; 1633 1634 vsi = btf_var_secinfos(t); 1635 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1636 vt = btf__type_by_id(obj->btf, vsi->type); 1637 if (!btf_is_var(vt)) 1638 continue; 1639 1640 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1641 return true; 1642 } 1643 1644 return false; 1645 } 1646 1647 static int 1648 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1649 const char *real_name, int sec_idx, void *data, size_t data_sz) 1650 { 1651 struct bpf_map_def *def; 1652 struct bpf_map *map; 1653 size_t mmap_sz; 1654 int err; 1655 1656 map = bpf_object__add_map(obj); 1657 if (IS_ERR(map)) 1658 return PTR_ERR(map); 1659 1660 map->libbpf_type = type; 1661 map->sec_idx = sec_idx; 1662 map->sec_offset = 0; 1663 map->real_name = strdup(real_name); 1664 map->name = internal_map_name(obj, real_name); 1665 if (!map->real_name || !map->name) { 1666 zfree(&map->real_name); 1667 zfree(&map->name); 1668 return -ENOMEM; 1669 } 1670 1671 def = &map->def; 1672 def->type = BPF_MAP_TYPE_ARRAY; 1673 def->key_size = sizeof(int); 1674 def->value_size = data_sz; 1675 def->max_entries = 1; 1676 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1677 ? BPF_F_RDONLY_PROG : 0; 1678 1679 /* failures are fine because of maps like .rodata.str1.1 */ 1680 (void) map_fill_btf_type_info(obj, map); 1681 1682 if (map_is_mmapable(obj, map)) 1683 def->map_flags |= BPF_F_MMAPABLE; 1684 1685 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1686 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1687 1688 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1689 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1690 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1691 if (map->mmaped == MAP_FAILED) { 1692 err = -errno; 1693 map->mmaped = NULL; 1694 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1695 map->name, err); 1696 zfree(&map->real_name); 1697 zfree(&map->name); 1698 return err; 1699 } 1700 1701 if (data) 1702 memcpy(map->mmaped, data, data_sz); 1703 1704 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1705 return 0; 1706 } 1707 1708 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1709 { 1710 struct elf_sec_desc *sec_desc; 1711 const char *sec_name; 1712 int err = 0, sec_idx; 1713 1714 /* 1715 * Populate obj->maps with libbpf internal maps. 1716 */ 1717 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1718 sec_desc = &obj->efile.secs[sec_idx]; 1719 1720 /* Skip recognized sections with size 0. */ 1721 if (!sec_desc->data || sec_desc->data->d_size == 0) 1722 continue; 1723 1724 switch (sec_desc->sec_type) { 1725 case SEC_DATA: 1726 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1727 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1728 sec_name, sec_idx, 1729 sec_desc->data->d_buf, 1730 sec_desc->data->d_size); 1731 break; 1732 case SEC_RODATA: 1733 obj->has_rodata = true; 1734 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1735 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1736 sec_name, sec_idx, 1737 sec_desc->data->d_buf, 1738 sec_desc->data->d_size); 1739 break; 1740 case SEC_BSS: 1741 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1742 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1743 sec_name, sec_idx, 1744 NULL, 1745 sec_desc->data->d_size); 1746 break; 1747 default: 1748 /* skip */ 1749 break; 1750 } 1751 if (err) 1752 return err; 1753 } 1754 return 0; 1755 } 1756 1757 1758 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1759 const void *name) 1760 { 1761 int i; 1762 1763 for (i = 0; i < obj->nr_extern; i++) { 1764 if (strcmp(obj->externs[i].name, name) == 0) 1765 return &obj->externs[i]; 1766 } 1767 return NULL; 1768 } 1769 1770 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1771 char value) 1772 { 1773 switch (ext->kcfg.type) { 1774 case KCFG_BOOL: 1775 if (value == 'm') { 1776 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1777 ext->name, value); 1778 return -EINVAL; 1779 } 1780 *(bool *)ext_val = value == 'y' ? true : false; 1781 break; 1782 case KCFG_TRISTATE: 1783 if (value == 'y') 1784 *(enum libbpf_tristate *)ext_val = TRI_YES; 1785 else if (value == 'm') 1786 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1787 else /* value == 'n' */ 1788 *(enum libbpf_tristate *)ext_val = TRI_NO; 1789 break; 1790 case KCFG_CHAR: 1791 *(char *)ext_val = value; 1792 break; 1793 case KCFG_UNKNOWN: 1794 case KCFG_INT: 1795 case KCFG_CHAR_ARR: 1796 default: 1797 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1798 ext->name, value); 1799 return -EINVAL; 1800 } 1801 ext->is_set = true; 1802 return 0; 1803 } 1804 1805 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1806 const char *value) 1807 { 1808 size_t len; 1809 1810 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1811 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1812 ext->name, value); 1813 return -EINVAL; 1814 } 1815 1816 len = strlen(value); 1817 if (value[len - 1] != '"') { 1818 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1819 ext->name, value); 1820 return -EINVAL; 1821 } 1822 1823 /* strip quotes */ 1824 len -= 2; 1825 if (len >= ext->kcfg.sz) { 1826 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1827 ext->name, value, len, ext->kcfg.sz - 1); 1828 len = ext->kcfg.sz - 1; 1829 } 1830 memcpy(ext_val, value + 1, len); 1831 ext_val[len] = '\0'; 1832 ext->is_set = true; 1833 return 0; 1834 } 1835 1836 static int parse_u64(const char *value, __u64 *res) 1837 { 1838 char *value_end; 1839 int err; 1840 1841 errno = 0; 1842 *res = strtoull(value, &value_end, 0); 1843 if (errno) { 1844 err = -errno; 1845 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1846 return err; 1847 } 1848 if (*value_end) { 1849 pr_warn("failed to parse '%s' as integer completely\n", value); 1850 return -EINVAL; 1851 } 1852 return 0; 1853 } 1854 1855 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1856 { 1857 int bit_sz = ext->kcfg.sz * 8; 1858 1859 if (ext->kcfg.sz == 8) 1860 return true; 1861 1862 /* Validate that value stored in u64 fits in integer of `ext->sz` 1863 * bytes size without any loss of information. If the target integer 1864 * is signed, we rely on the following limits of integer type of 1865 * Y bits and subsequent transformation: 1866 * 1867 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1868 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1869 * 0 <= X + 2^(Y-1) < 2^Y 1870 * 1871 * For unsigned target integer, check that all the (64 - Y) bits are 1872 * zero. 1873 */ 1874 if (ext->kcfg.is_signed) 1875 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1876 else 1877 return (v >> bit_sz) == 0; 1878 } 1879 1880 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1881 __u64 value) 1882 { 1883 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1884 ext->kcfg.type != KCFG_BOOL) { 1885 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1886 ext->name, (unsigned long long)value); 1887 return -EINVAL; 1888 } 1889 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1890 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1891 ext->name, (unsigned long long)value); 1892 return -EINVAL; 1893 1894 } 1895 if (!is_kcfg_value_in_range(ext, value)) { 1896 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1897 ext->name, (unsigned long long)value, ext->kcfg.sz); 1898 return -ERANGE; 1899 } 1900 switch (ext->kcfg.sz) { 1901 case 1: 1902 *(__u8 *)ext_val = value; 1903 break; 1904 case 2: 1905 *(__u16 *)ext_val = value; 1906 break; 1907 case 4: 1908 *(__u32 *)ext_val = value; 1909 break; 1910 case 8: 1911 *(__u64 *)ext_val = value; 1912 break; 1913 default: 1914 return -EINVAL; 1915 } 1916 ext->is_set = true; 1917 return 0; 1918 } 1919 1920 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1921 char *buf, void *data) 1922 { 1923 struct extern_desc *ext; 1924 char *sep, *value; 1925 int len, err = 0; 1926 void *ext_val; 1927 __u64 num; 1928 1929 if (!str_has_pfx(buf, "CONFIG_")) 1930 return 0; 1931 1932 sep = strchr(buf, '='); 1933 if (!sep) { 1934 pr_warn("failed to parse '%s': no separator\n", buf); 1935 return -EINVAL; 1936 } 1937 1938 /* Trim ending '\n' */ 1939 len = strlen(buf); 1940 if (buf[len - 1] == '\n') 1941 buf[len - 1] = '\0'; 1942 /* Split on '=' and ensure that a value is present. */ 1943 *sep = '\0'; 1944 if (!sep[1]) { 1945 *sep = '='; 1946 pr_warn("failed to parse '%s': no value\n", buf); 1947 return -EINVAL; 1948 } 1949 1950 ext = find_extern_by_name(obj, buf); 1951 if (!ext || ext->is_set) 1952 return 0; 1953 1954 ext_val = data + ext->kcfg.data_off; 1955 value = sep + 1; 1956 1957 switch (*value) { 1958 case 'y': case 'n': case 'm': 1959 err = set_kcfg_value_tri(ext, ext_val, *value); 1960 break; 1961 case '"': 1962 err = set_kcfg_value_str(ext, ext_val, value); 1963 break; 1964 default: 1965 /* assume integer */ 1966 err = parse_u64(value, &num); 1967 if (err) { 1968 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1969 return err; 1970 } 1971 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1972 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1973 return -EINVAL; 1974 } 1975 err = set_kcfg_value_num(ext, ext_val, num); 1976 break; 1977 } 1978 if (err) 1979 return err; 1980 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1981 return 0; 1982 } 1983 1984 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1985 { 1986 char buf[PATH_MAX]; 1987 struct utsname uts; 1988 int len, err = 0; 1989 gzFile file; 1990 1991 uname(&uts); 1992 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1993 if (len < 0) 1994 return -EINVAL; 1995 else if (len >= PATH_MAX) 1996 return -ENAMETOOLONG; 1997 1998 /* gzopen also accepts uncompressed files. */ 1999 file = gzopen(buf, "re"); 2000 if (!file) 2001 file = gzopen("/proc/config.gz", "re"); 2002 2003 if (!file) { 2004 pr_warn("failed to open system Kconfig\n"); 2005 return -ENOENT; 2006 } 2007 2008 while (gzgets(file, buf, sizeof(buf))) { 2009 err = bpf_object__process_kconfig_line(obj, buf, data); 2010 if (err) { 2011 pr_warn("error parsing system Kconfig line '%s': %d\n", 2012 buf, err); 2013 goto out; 2014 } 2015 } 2016 2017 out: 2018 gzclose(file); 2019 return err; 2020 } 2021 2022 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2023 const char *config, void *data) 2024 { 2025 char buf[PATH_MAX]; 2026 int err = 0; 2027 FILE *file; 2028 2029 file = fmemopen((void *)config, strlen(config), "r"); 2030 if (!file) { 2031 err = -errno; 2032 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2033 return err; 2034 } 2035 2036 while (fgets(buf, sizeof(buf), file)) { 2037 err = bpf_object__process_kconfig_line(obj, buf, data); 2038 if (err) { 2039 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2040 buf, err); 2041 break; 2042 } 2043 } 2044 2045 fclose(file); 2046 return err; 2047 } 2048 2049 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2050 { 2051 struct extern_desc *last_ext = NULL, *ext; 2052 size_t map_sz; 2053 int i, err; 2054 2055 for (i = 0; i < obj->nr_extern; i++) { 2056 ext = &obj->externs[i]; 2057 if (ext->type == EXT_KCFG) 2058 last_ext = ext; 2059 } 2060 2061 if (!last_ext) 2062 return 0; 2063 2064 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2065 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2066 ".kconfig", obj->efile.symbols_shndx, 2067 NULL, map_sz); 2068 if (err) 2069 return err; 2070 2071 obj->kconfig_map_idx = obj->nr_maps - 1; 2072 2073 return 0; 2074 } 2075 2076 const struct btf_type * 2077 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2078 { 2079 const struct btf_type *t = btf__type_by_id(btf, id); 2080 2081 if (res_id) 2082 *res_id = id; 2083 2084 while (btf_is_mod(t) || btf_is_typedef(t)) { 2085 if (res_id) 2086 *res_id = t->type; 2087 t = btf__type_by_id(btf, t->type); 2088 } 2089 2090 return t; 2091 } 2092 2093 static const struct btf_type * 2094 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2095 { 2096 const struct btf_type *t; 2097 2098 t = skip_mods_and_typedefs(btf, id, NULL); 2099 if (!btf_is_ptr(t)) 2100 return NULL; 2101 2102 t = skip_mods_and_typedefs(btf, t->type, res_id); 2103 2104 return btf_is_func_proto(t) ? t : NULL; 2105 } 2106 2107 static const char *__btf_kind_str(__u16 kind) 2108 { 2109 switch (kind) { 2110 case BTF_KIND_UNKN: return "void"; 2111 case BTF_KIND_INT: return "int"; 2112 case BTF_KIND_PTR: return "ptr"; 2113 case BTF_KIND_ARRAY: return "array"; 2114 case BTF_KIND_STRUCT: return "struct"; 2115 case BTF_KIND_UNION: return "union"; 2116 case BTF_KIND_ENUM: return "enum"; 2117 case BTF_KIND_FWD: return "fwd"; 2118 case BTF_KIND_TYPEDEF: return "typedef"; 2119 case BTF_KIND_VOLATILE: return "volatile"; 2120 case BTF_KIND_CONST: return "const"; 2121 case BTF_KIND_RESTRICT: return "restrict"; 2122 case BTF_KIND_FUNC: return "func"; 2123 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2124 case BTF_KIND_VAR: return "var"; 2125 case BTF_KIND_DATASEC: return "datasec"; 2126 case BTF_KIND_FLOAT: return "float"; 2127 case BTF_KIND_DECL_TAG: return "decl_tag"; 2128 case BTF_KIND_TYPE_TAG: return "type_tag"; 2129 case BTF_KIND_ENUM64: return "enum64"; 2130 default: return "unknown"; 2131 } 2132 } 2133 2134 const char *btf_kind_str(const struct btf_type *t) 2135 { 2136 return __btf_kind_str(btf_kind(t)); 2137 } 2138 2139 /* 2140 * Fetch integer attribute of BTF map definition. Such attributes are 2141 * represented using a pointer to an array, in which dimensionality of array 2142 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2143 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2144 * type definition, while using only sizeof(void *) space in ELF data section. 2145 */ 2146 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2147 const struct btf_member *m, __u32 *res) 2148 { 2149 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2150 const char *name = btf__name_by_offset(btf, m->name_off); 2151 const struct btf_array *arr_info; 2152 const struct btf_type *arr_t; 2153 2154 if (!btf_is_ptr(t)) { 2155 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2156 map_name, name, btf_kind_str(t)); 2157 return false; 2158 } 2159 2160 arr_t = btf__type_by_id(btf, t->type); 2161 if (!arr_t) { 2162 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2163 map_name, name, t->type); 2164 return false; 2165 } 2166 if (!btf_is_array(arr_t)) { 2167 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2168 map_name, name, btf_kind_str(arr_t)); 2169 return false; 2170 } 2171 arr_info = btf_array(arr_t); 2172 *res = arr_info->nelems; 2173 return true; 2174 } 2175 2176 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2177 { 2178 int len; 2179 2180 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2181 if (len < 0) 2182 return -EINVAL; 2183 if (len >= buf_sz) 2184 return -ENAMETOOLONG; 2185 2186 return 0; 2187 } 2188 2189 static int build_map_pin_path(struct bpf_map *map, const char *path) 2190 { 2191 char buf[PATH_MAX]; 2192 int err; 2193 2194 if (!path) 2195 path = "/sys/fs/bpf"; 2196 2197 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2198 if (err) 2199 return err; 2200 2201 return bpf_map__set_pin_path(map, buf); 2202 } 2203 2204 /* should match definition in bpf_helpers.h */ 2205 enum libbpf_pin_type { 2206 LIBBPF_PIN_NONE, 2207 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2208 LIBBPF_PIN_BY_NAME, 2209 }; 2210 2211 int parse_btf_map_def(const char *map_name, struct btf *btf, 2212 const struct btf_type *def_t, bool strict, 2213 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2214 { 2215 const struct btf_type *t; 2216 const struct btf_member *m; 2217 bool is_inner = inner_def == NULL; 2218 int vlen, i; 2219 2220 vlen = btf_vlen(def_t); 2221 m = btf_members(def_t); 2222 for (i = 0; i < vlen; i++, m++) { 2223 const char *name = btf__name_by_offset(btf, m->name_off); 2224 2225 if (!name) { 2226 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2227 return -EINVAL; 2228 } 2229 if (strcmp(name, "type") == 0) { 2230 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2231 return -EINVAL; 2232 map_def->parts |= MAP_DEF_MAP_TYPE; 2233 } else if (strcmp(name, "max_entries") == 0) { 2234 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2235 return -EINVAL; 2236 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2237 } else if (strcmp(name, "map_flags") == 0) { 2238 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2239 return -EINVAL; 2240 map_def->parts |= MAP_DEF_MAP_FLAGS; 2241 } else if (strcmp(name, "numa_node") == 0) { 2242 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2243 return -EINVAL; 2244 map_def->parts |= MAP_DEF_NUMA_NODE; 2245 } else if (strcmp(name, "key_size") == 0) { 2246 __u32 sz; 2247 2248 if (!get_map_field_int(map_name, btf, m, &sz)) 2249 return -EINVAL; 2250 if (map_def->key_size && map_def->key_size != sz) { 2251 pr_warn("map '%s': conflicting key size %u != %u.\n", 2252 map_name, map_def->key_size, sz); 2253 return -EINVAL; 2254 } 2255 map_def->key_size = sz; 2256 map_def->parts |= MAP_DEF_KEY_SIZE; 2257 } else if (strcmp(name, "key") == 0) { 2258 __s64 sz; 2259 2260 t = btf__type_by_id(btf, m->type); 2261 if (!t) { 2262 pr_warn("map '%s': key type [%d] not found.\n", 2263 map_name, m->type); 2264 return -EINVAL; 2265 } 2266 if (!btf_is_ptr(t)) { 2267 pr_warn("map '%s': key spec is not PTR: %s.\n", 2268 map_name, btf_kind_str(t)); 2269 return -EINVAL; 2270 } 2271 sz = btf__resolve_size(btf, t->type); 2272 if (sz < 0) { 2273 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2274 map_name, t->type, (ssize_t)sz); 2275 return sz; 2276 } 2277 if (map_def->key_size && map_def->key_size != sz) { 2278 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2279 map_name, map_def->key_size, (ssize_t)sz); 2280 return -EINVAL; 2281 } 2282 map_def->key_size = sz; 2283 map_def->key_type_id = t->type; 2284 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2285 } else if (strcmp(name, "value_size") == 0) { 2286 __u32 sz; 2287 2288 if (!get_map_field_int(map_name, btf, m, &sz)) 2289 return -EINVAL; 2290 if (map_def->value_size && map_def->value_size != sz) { 2291 pr_warn("map '%s': conflicting value size %u != %u.\n", 2292 map_name, map_def->value_size, sz); 2293 return -EINVAL; 2294 } 2295 map_def->value_size = sz; 2296 map_def->parts |= MAP_DEF_VALUE_SIZE; 2297 } else if (strcmp(name, "value") == 0) { 2298 __s64 sz; 2299 2300 t = btf__type_by_id(btf, m->type); 2301 if (!t) { 2302 pr_warn("map '%s': value type [%d] not found.\n", 2303 map_name, m->type); 2304 return -EINVAL; 2305 } 2306 if (!btf_is_ptr(t)) { 2307 pr_warn("map '%s': value spec is not PTR: %s.\n", 2308 map_name, btf_kind_str(t)); 2309 return -EINVAL; 2310 } 2311 sz = btf__resolve_size(btf, t->type); 2312 if (sz < 0) { 2313 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2314 map_name, t->type, (ssize_t)sz); 2315 return sz; 2316 } 2317 if (map_def->value_size && map_def->value_size != sz) { 2318 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2319 map_name, map_def->value_size, (ssize_t)sz); 2320 return -EINVAL; 2321 } 2322 map_def->value_size = sz; 2323 map_def->value_type_id = t->type; 2324 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2325 } 2326 else if (strcmp(name, "values") == 0) { 2327 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2328 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2329 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2330 char inner_map_name[128]; 2331 int err; 2332 2333 if (is_inner) { 2334 pr_warn("map '%s': multi-level inner maps not supported.\n", 2335 map_name); 2336 return -ENOTSUP; 2337 } 2338 if (i != vlen - 1) { 2339 pr_warn("map '%s': '%s' member should be last.\n", 2340 map_name, name); 2341 return -EINVAL; 2342 } 2343 if (!is_map_in_map && !is_prog_array) { 2344 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2345 map_name); 2346 return -ENOTSUP; 2347 } 2348 if (map_def->value_size && map_def->value_size != 4) { 2349 pr_warn("map '%s': conflicting value size %u != 4.\n", 2350 map_name, map_def->value_size); 2351 return -EINVAL; 2352 } 2353 map_def->value_size = 4; 2354 t = btf__type_by_id(btf, m->type); 2355 if (!t) { 2356 pr_warn("map '%s': %s type [%d] not found.\n", 2357 map_name, desc, m->type); 2358 return -EINVAL; 2359 } 2360 if (!btf_is_array(t) || btf_array(t)->nelems) { 2361 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2362 map_name, desc); 2363 return -EINVAL; 2364 } 2365 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2366 if (!btf_is_ptr(t)) { 2367 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2368 map_name, desc, btf_kind_str(t)); 2369 return -EINVAL; 2370 } 2371 t = skip_mods_and_typedefs(btf, t->type, NULL); 2372 if (is_prog_array) { 2373 if (!btf_is_func_proto(t)) { 2374 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2375 map_name, btf_kind_str(t)); 2376 return -EINVAL; 2377 } 2378 continue; 2379 } 2380 if (!btf_is_struct(t)) { 2381 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2382 map_name, btf_kind_str(t)); 2383 return -EINVAL; 2384 } 2385 2386 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2387 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2388 if (err) 2389 return err; 2390 2391 map_def->parts |= MAP_DEF_INNER_MAP; 2392 } else if (strcmp(name, "pinning") == 0) { 2393 __u32 val; 2394 2395 if (is_inner) { 2396 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2397 return -EINVAL; 2398 } 2399 if (!get_map_field_int(map_name, btf, m, &val)) 2400 return -EINVAL; 2401 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2402 pr_warn("map '%s': invalid pinning value %u.\n", 2403 map_name, val); 2404 return -EINVAL; 2405 } 2406 map_def->pinning = val; 2407 map_def->parts |= MAP_DEF_PINNING; 2408 } else if (strcmp(name, "map_extra") == 0) { 2409 __u32 map_extra; 2410 2411 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2412 return -EINVAL; 2413 map_def->map_extra = map_extra; 2414 map_def->parts |= MAP_DEF_MAP_EXTRA; 2415 } else { 2416 if (strict) { 2417 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2418 return -ENOTSUP; 2419 } 2420 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2421 } 2422 } 2423 2424 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2425 pr_warn("map '%s': map type isn't specified.\n", map_name); 2426 return -EINVAL; 2427 } 2428 2429 return 0; 2430 } 2431 2432 static size_t adjust_ringbuf_sz(size_t sz) 2433 { 2434 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2435 __u32 mul; 2436 2437 /* if user forgot to set any size, make sure they see error */ 2438 if (sz == 0) 2439 return 0; 2440 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2441 * a power-of-2 multiple of kernel's page size. If user diligently 2442 * satisified these conditions, pass the size through. 2443 */ 2444 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2445 return sz; 2446 2447 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2448 * user-set size to satisfy both user size request and kernel 2449 * requirements and substitute correct max_entries for map creation. 2450 */ 2451 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2452 if (mul * page_sz > sz) 2453 return mul * page_sz; 2454 } 2455 2456 /* if it's impossible to satisfy the conditions (i.e., user size is 2457 * very close to UINT_MAX but is not a power-of-2 multiple of 2458 * page_size) then just return original size and let kernel reject it 2459 */ 2460 return sz; 2461 } 2462 2463 static bool map_is_ringbuf(const struct bpf_map *map) 2464 { 2465 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2466 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2467 } 2468 2469 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2470 { 2471 map->def.type = def->map_type; 2472 map->def.key_size = def->key_size; 2473 map->def.value_size = def->value_size; 2474 map->def.max_entries = def->max_entries; 2475 map->def.map_flags = def->map_flags; 2476 map->map_extra = def->map_extra; 2477 2478 map->numa_node = def->numa_node; 2479 map->btf_key_type_id = def->key_type_id; 2480 map->btf_value_type_id = def->value_type_id; 2481 2482 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2483 if (map_is_ringbuf(map)) 2484 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2485 2486 if (def->parts & MAP_DEF_MAP_TYPE) 2487 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2488 2489 if (def->parts & MAP_DEF_KEY_TYPE) 2490 pr_debug("map '%s': found key [%u], sz = %u.\n", 2491 map->name, def->key_type_id, def->key_size); 2492 else if (def->parts & MAP_DEF_KEY_SIZE) 2493 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2494 2495 if (def->parts & MAP_DEF_VALUE_TYPE) 2496 pr_debug("map '%s': found value [%u], sz = %u.\n", 2497 map->name, def->value_type_id, def->value_size); 2498 else if (def->parts & MAP_DEF_VALUE_SIZE) 2499 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2500 2501 if (def->parts & MAP_DEF_MAX_ENTRIES) 2502 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2503 if (def->parts & MAP_DEF_MAP_FLAGS) 2504 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2505 if (def->parts & MAP_DEF_MAP_EXTRA) 2506 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2507 (unsigned long long)def->map_extra); 2508 if (def->parts & MAP_DEF_PINNING) 2509 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2510 if (def->parts & MAP_DEF_NUMA_NODE) 2511 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2512 2513 if (def->parts & MAP_DEF_INNER_MAP) 2514 pr_debug("map '%s': found inner map definition.\n", map->name); 2515 } 2516 2517 static const char *btf_var_linkage_str(__u32 linkage) 2518 { 2519 switch (linkage) { 2520 case BTF_VAR_STATIC: return "static"; 2521 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2522 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2523 default: return "unknown"; 2524 } 2525 } 2526 2527 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2528 const struct btf_type *sec, 2529 int var_idx, int sec_idx, 2530 const Elf_Data *data, bool strict, 2531 const char *pin_root_path) 2532 { 2533 struct btf_map_def map_def = {}, inner_def = {}; 2534 const struct btf_type *var, *def; 2535 const struct btf_var_secinfo *vi; 2536 const struct btf_var *var_extra; 2537 const char *map_name; 2538 struct bpf_map *map; 2539 int err; 2540 2541 vi = btf_var_secinfos(sec) + var_idx; 2542 var = btf__type_by_id(obj->btf, vi->type); 2543 var_extra = btf_var(var); 2544 map_name = btf__name_by_offset(obj->btf, var->name_off); 2545 2546 if (map_name == NULL || map_name[0] == '\0') { 2547 pr_warn("map #%d: empty name.\n", var_idx); 2548 return -EINVAL; 2549 } 2550 if ((__u64)vi->offset + vi->size > data->d_size) { 2551 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2552 return -EINVAL; 2553 } 2554 if (!btf_is_var(var)) { 2555 pr_warn("map '%s': unexpected var kind %s.\n", 2556 map_name, btf_kind_str(var)); 2557 return -EINVAL; 2558 } 2559 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2560 pr_warn("map '%s': unsupported map linkage %s.\n", 2561 map_name, btf_var_linkage_str(var_extra->linkage)); 2562 return -EOPNOTSUPP; 2563 } 2564 2565 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2566 if (!btf_is_struct(def)) { 2567 pr_warn("map '%s': unexpected def kind %s.\n", 2568 map_name, btf_kind_str(var)); 2569 return -EINVAL; 2570 } 2571 if (def->size > vi->size) { 2572 pr_warn("map '%s': invalid def size.\n", map_name); 2573 return -EINVAL; 2574 } 2575 2576 map = bpf_object__add_map(obj); 2577 if (IS_ERR(map)) 2578 return PTR_ERR(map); 2579 map->name = strdup(map_name); 2580 if (!map->name) { 2581 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2582 return -ENOMEM; 2583 } 2584 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2585 map->def.type = BPF_MAP_TYPE_UNSPEC; 2586 map->sec_idx = sec_idx; 2587 map->sec_offset = vi->offset; 2588 map->btf_var_idx = var_idx; 2589 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2590 map_name, map->sec_idx, map->sec_offset); 2591 2592 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2593 if (err) 2594 return err; 2595 2596 fill_map_from_def(map, &map_def); 2597 2598 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2599 err = build_map_pin_path(map, pin_root_path); 2600 if (err) { 2601 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2602 return err; 2603 } 2604 } 2605 2606 if (map_def.parts & MAP_DEF_INNER_MAP) { 2607 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2608 if (!map->inner_map) 2609 return -ENOMEM; 2610 map->inner_map->fd = -1; 2611 map->inner_map->sec_idx = sec_idx; 2612 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2613 if (!map->inner_map->name) 2614 return -ENOMEM; 2615 sprintf(map->inner_map->name, "%s.inner", map_name); 2616 2617 fill_map_from_def(map->inner_map, &inner_def); 2618 } 2619 2620 err = map_fill_btf_type_info(obj, map); 2621 if (err) 2622 return err; 2623 2624 return 0; 2625 } 2626 2627 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2628 const char *pin_root_path) 2629 { 2630 const struct btf_type *sec = NULL; 2631 int nr_types, i, vlen, err; 2632 const struct btf_type *t; 2633 const char *name; 2634 Elf_Data *data; 2635 Elf_Scn *scn; 2636 2637 if (obj->efile.btf_maps_shndx < 0) 2638 return 0; 2639 2640 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2641 data = elf_sec_data(obj, scn); 2642 if (!scn || !data) { 2643 pr_warn("elf: failed to get %s map definitions for %s\n", 2644 MAPS_ELF_SEC, obj->path); 2645 return -EINVAL; 2646 } 2647 2648 nr_types = btf__type_cnt(obj->btf); 2649 for (i = 1; i < nr_types; i++) { 2650 t = btf__type_by_id(obj->btf, i); 2651 if (!btf_is_datasec(t)) 2652 continue; 2653 name = btf__name_by_offset(obj->btf, t->name_off); 2654 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2655 sec = t; 2656 obj->efile.btf_maps_sec_btf_id = i; 2657 break; 2658 } 2659 } 2660 2661 if (!sec) { 2662 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2663 return -ENOENT; 2664 } 2665 2666 vlen = btf_vlen(sec); 2667 for (i = 0; i < vlen; i++) { 2668 err = bpf_object__init_user_btf_map(obj, sec, i, 2669 obj->efile.btf_maps_shndx, 2670 data, strict, 2671 pin_root_path); 2672 if (err) 2673 return err; 2674 } 2675 2676 return 0; 2677 } 2678 2679 static int bpf_object__init_maps(struct bpf_object *obj, 2680 const struct bpf_object_open_opts *opts) 2681 { 2682 const char *pin_root_path; 2683 bool strict; 2684 int err = 0; 2685 2686 strict = !OPTS_GET(opts, relaxed_maps, false); 2687 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2688 2689 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2690 err = err ?: bpf_object__init_global_data_maps(obj); 2691 err = err ?: bpf_object__init_kconfig_map(obj); 2692 err = err ?: bpf_object_init_struct_ops(obj); 2693 2694 return err; 2695 } 2696 2697 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2698 { 2699 Elf64_Shdr *sh; 2700 2701 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2702 if (!sh) 2703 return false; 2704 2705 return sh->sh_flags & SHF_EXECINSTR; 2706 } 2707 2708 static bool btf_needs_sanitization(struct bpf_object *obj) 2709 { 2710 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2711 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2712 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2713 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2714 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2715 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2716 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2717 2718 return !has_func || !has_datasec || !has_func_global || !has_float || 2719 !has_decl_tag || !has_type_tag || !has_enum64; 2720 } 2721 2722 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2723 { 2724 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2725 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2726 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2727 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2728 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2729 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2730 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2731 int enum64_placeholder_id = 0; 2732 struct btf_type *t; 2733 int i, j, vlen; 2734 2735 for (i = 1; i < btf__type_cnt(btf); i++) { 2736 t = (struct btf_type *)btf__type_by_id(btf, i); 2737 2738 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2739 /* replace VAR/DECL_TAG with INT */ 2740 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2741 /* 2742 * using size = 1 is the safest choice, 4 will be too 2743 * big and cause kernel BTF validation failure if 2744 * original variable took less than 4 bytes 2745 */ 2746 t->size = 1; 2747 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2748 } else if (!has_datasec && btf_is_datasec(t)) { 2749 /* replace DATASEC with STRUCT */ 2750 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2751 struct btf_member *m = btf_members(t); 2752 struct btf_type *vt; 2753 char *name; 2754 2755 name = (char *)btf__name_by_offset(btf, t->name_off); 2756 while (*name) { 2757 if (*name == '.') 2758 *name = '_'; 2759 name++; 2760 } 2761 2762 vlen = btf_vlen(t); 2763 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2764 for (j = 0; j < vlen; j++, v++, m++) { 2765 /* order of field assignments is important */ 2766 m->offset = v->offset * 8; 2767 m->type = v->type; 2768 /* preserve variable name as member name */ 2769 vt = (void *)btf__type_by_id(btf, v->type); 2770 m->name_off = vt->name_off; 2771 } 2772 } else if (!has_func && btf_is_func_proto(t)) { 2773 /* replace FUNC_PROTO with ENUM */ 2774 vlen = btf_vlen(t); 2775 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2776 t->size = sizeof(__u32); /* kernel enforced */ 2777 } else if (!has_func && btf_is_func(t)) { 2778 /* replace FUNC with TYPEDEF */ 2779 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2780 } else if (!has_func_global && btf_is_func(t)) { 2781 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2782 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2783 } else if (!has_float && btf_is_float(t)) { 2784 /* replace FLOAT with an equally-sized empty STRUCT; 2785 * since C compilers do not accept e.g. "float" as a 2786 * valid struct name, make it anonymous 2787 */ 2788 t->name_off = 0; 2789 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2790 } else if (!has_type_tag && btf_is_type_tag(t)) { 2791 /* replace TYPE_TAG with a CONST */ 2792 t->name_off = 0; 2793 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2794 } else if (!has_enum64 && btf_is_enum(t)) { 2795 /* clear the kflag */ 2796 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2797 } else if (!has_enum64 && btf_is_enum64(t)) { 2798 /* replace ENUM64 with a union */ 2799 struct btf_member *m; 2800 2801 if (enum64_placeholder_id == 0) { 2802 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2803 if (enum64_placeholder_id < 0) 2804 return enum64_placeholder_id; 2805 2806 t = (struct btf_type *)btf__type_by_id(btf, i); 2807 } 2808 2809 m = btf_members(t); 2810 vlen = btf_vlen(t); 2811 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2812 for (j = 0; j < vlen; j++, m++) { 2813 m->type = enum64_placeholder_id; 2814 m->offset = 0; 2815 } 2816 } 2817 } 2818 2819 return 0; 2820 } 2821 2822 static bool libbpf_needs_btf(const struct bpf_object *obj) 2823 { 2824 return obj->efile.btf_maps_shndx >= 0 || 2825 obj->efile.st_ops_shndx >= 0 || 2826 obj->efile.st_ops_link_shndx >= 0 || 2827 obj->nr_extern > 0; 2828 } 2829 2830 static bool kernel_needs_btf(const struct bpf_object *obj) 2831 { 2832 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2833 } 2834 2835 static int bpf_object__init_btf(struct bpf_object *obj, 2836 Elf_Data *btf_data, 2837 Elf_Data *btf_ext_data) 2838 { 2839 int err = -ENOENT; 2840 2841 if (btf_data) { 2842 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2843 err = libbpf_get_error(obj->btf); 2844 if (err) { 2845 obj->btf = NULL; 2846 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2847 goto out; 2848 } 2849 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2850 btf__set_pointer_size(obj->btf, 8); 2851 } 2852 if (btf_ext_data) { 2853 struct btf_ext_info *ext_segs[3]; 2854 int seg_num, sec_num; 2855 2856 if (!obj->btf) { 2857 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2858 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2859 goto out; 2860 } 2861 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2862 err = libbpf_get_error(obj->btf_ext); 2863 if (err) { 2864 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2865 BTF_EXT_ELF_SEC, err); 2866 obj->btf_ext = NULL; 2867 goto out; 2868 } 2869 2870 /* setup .BTF.ext to ELF section mapping */ 2871 ext_segs[0] = &obj->btf_ext->func_info; 2872 ext_segs[1] = &obj->btf_ext->line_info; 2873 ext_segs[2] = &obj->btf_ext->core_relo_info; 2874 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2875 struct btf_ext_info *seg = ext_segs[seg_num]; 2876 const struct btf_ext_info_sec *sec; 2877 const char *sec_name; 2878 Elf_Scn *scn; 2879 2880 if (seg->sec_cnt == 0) 2881 continue; 2882 2883 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2884 if (!seg->sec_idxs) { 2885 err = -ENOMEM; 2886 goto out; 2887 } 2888 2889 sec_num = 0; 2890 for_each_btf_ext_sec(seg, sec) { 2891 /* preventively increment index to avoid doing 2892 * this before every continue below 2893 */ 2894 sec_num++; 2895 2896 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2897 if (str_is_empty(sec_name)) 2898 continue; 2899 scn = elf_sec_by_name(obj, sec_name); 2900 if (!scn) 2901 continue; 2902 2903 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2904 } 2905 } 2906 } 2907 out: 2908 if (err && libbpf_needs_btf(obj)) { 2909 pr_warn("BTF is required, but is missing or corrupted.\n"); 2910 return err; 2911 } 2912 return 0; 2913 } 2914 2915 static int compare_vsi_off(const void *_a, const void *_b) 2916 { 2917 const struct btf_var_secinfo *a = _a; 2918 const struct btf_var_secinfo *b = _b; 2919 2920 return a->offset - b->offset; 2921 } 2922 2923 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2924 struct btf_type *t) 2925 { 2926 __u32 size = 0, i, vars = btf_vlen(t); 2927 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2928 struct btf_var_secinfo *vsi; 2929 bool fixup_offsets = false; 2930 int err; 2931 2932 if (!sec_name) { 2933 pr_debug("No name found in string section for DATASEC kind.\n"); 2934 return -ENOENT; 2935 } 2936 2937 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2938 * variable offsets set at the previous step. Further, not every 2939 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2940 * all fixups altogether for such sections and go straight to sorting 2941 * VARs within their DATASEC. 2942 */ 2943 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2944 goto sort_vars; 2945 2946 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2947 * fix this up. But BPF static linker already fixes this up and fills 2948 * all the sizes and offsets during static linking. So this step has 2949 * to be optional. But the STV_HIDDEN handling is non-optional for any 2950 * non-extern DATASEC, so the variable fixup loop below handles both 2951 * functions at the same time, paying the cost of BTF VAR <-> ELF 2952 * symbol matching just once. 2953 */ 2954 if (t->size == 0) { 2955 err = find_elf_sec_sz(obj, sec_name, &size); 2956 if (err || !size) { 2957 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2958 sec_name, size, err); 2959 return -ENOENT; 2960 } 2961 2962 t->size = size; 2963 fixup_offsets = true; 2964 } 2965 2966 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2967 const struct btf_type *t_var; 2968 struct btf_var *var; 2969 const char *var_name; 2970 Elf64_Sym *sym; 2971 2972 t_var = btf__type_by_id(btf, vsi->type); 2973 if (!t_var || !btf_is_var(t_var)) { 2974 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2975 return -EINVAL; 2976 } 2977 2978 var = btf_var(t_var); 2979 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2980 continue; 2981 2982 var_name = btf__name_by_offset(btf, t_var->name_off); 2983 if (!var_name) { 2984 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2985 sec_name, i); 2986 return -ENOENT; 2987 } 2988 2989 sym = find_elf_var_sym(obj, var_name); 2990 if (IS_ERR(sym)) { 2991 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2992 sec_name, var_name); 2993 return -ENOENT; 2994 } 2995 2996 if (fixup_offsets) 2997 vsi->offset = sym->st_value; 2998 2999 /* if variable is a global/weak symbol, but has restricted 3000 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3001 * as static. This follows similar logic for functions (BPF 3002 * subprogs) and influences libbpf's further decisions about 3003 * whether to make global data BPF array maps as 3004 * BPF_F_MMAPABLE. 3005 */ 3006 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3007 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3008 var->linkage = BTF_VAR_STATIC; 3009 } 3010 3011 sort_vars: 3012 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3013 return 0; 3014 } 3015 3016 static int bpf_object_fixup_btf(struct bpf_object *obj) 3017 { 3018 int i, n, err = 0; 3019 3020 if (!obj->btf) 3021 return 0; 3022 3023 n = btf__type_cnt(obj->btf); 3024 for (i = 1; i < n; i++) { 3025 struct btf_type *t = btf_type_by_id(obj->btf, i); 3026 3027 /* Loader needs to fix up some of the things compiler 3028 * couldn't get its hands on while emitting BTF. This 3029 * is section size and global variable offset. We use 3030 * the info from the ELF itself for this purpose. 3031 */ 3032 if (btf_is_datasec(t)) { 3033 err = btf_fixup_datasec(obj, obj->btf, t); 3034 if (err) 3035 return err; 3036 } 3037 } 3038 3039 return 0; 3040 } 3041 3042 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3043 { 3044 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3045 prog->type == BPF_PROG_TYPE_LSM) 3046 return true; 3047 3048 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3049 * also need vmlinux BTF 3050 */ 3051 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3052 return true; 3053 3054 return false; 3055 } 3056 3057 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3058 { 3059 return bpf_map__is_struct_ops(map); 3060 } 3061 3062 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3063 { 3064 struct bpf_program *prog; 3065 struct bpf_map *map; 3066 int i; 3067 3068 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3069 * is not specified 3070 */ 3071 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3072 return true; 3073 3074 /* Support for typed ksyms needs kernel BTF */ 3075 for (i = 0; i < obj->nr_extern; i++) { 3076 const struct extern_desc *ext; 3077 3078 ext = &obj->externs[i]; 3079 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3080 return true; 3081 } 3082 3083 bpf_object__for_each_program(prog, obj) { 3084 if (!prog->autoload) 3085 continue; 3086 if (prog_needs_vmlinux_btf(prog)) 3087 return true; 3088 } 3089 3090 bpf_object__for_each_map(map, obj) { 3091 if (map_needs_vmlinux_btf(map)) 3092 return true; 3093 } 3094 3095 return false; 3096 } 3097 3098 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3099 { 3100 int err; 3101 3102 /* btf_vmlinux could be loaded earlier */ 3103 if (obj->btf_vmlinux || obj->gen_loader) 3104 return 0; 3105 3106 if (!force && !obj_needs_vmlinux_btf(obj)) 3107 return 0; 3108 3109 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3110 err = libbpf_get_error(obj->btf_vmlinux); 3111 if (err) { 3112 pr_warn("Error loading vmlinux BTF: %d\n", err); 3113 obj->btf_vmlinux = NULL; 3114 return err; 3115 } 3116 return 0; 3117 } 3118 3119 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3120 { 3121 struct btf *kern_btf = obj->btf; 3122 bool btf_mandatory, sanitize; 3123 int i, err = 0; 3124 3125 if (!obj->btf) 3126 return 0; 3127 3128 if (!kernel_supports(obj, FEAT_BTF)) { 3129 if (kernel_needs_btf(obj)) { 3130 err = -EOPNOTSUPP; 3131 goto report; 3132 } 3133 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3134 return 0; 3135 } 3136 3137 /* Even though some subprogs are global/weak, user might prefer more 3138 * permissive BPF verification process that BPF verifier performs for 3139 * static functions, taking into account more context from the caller 3140 * functions. In such case, they need to mark such subprogs with 3141 * __attribute__((visibility("hidden"))) and libbpf will adjust 3142 * corresponding FUNC BTF type to be marked as static and trigger more 3143 * involved BPF verification process. 3144 */ 3145 for (i = 0; i < obj->nr_programs; i++) { 3146 struct bpf_program *prog = &obj->programs[i]; 3147 struct btf_type *t; 3148 const char *name; 3149 int j, n; 3150 3151 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3152 continue; 3153 3154 n = btf__type_cnt(obj->btf); 3155 for (j = 1; j < n; j++) { 3156 t = btf_type_by_id(obj->btf, j); 3157 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3158 continue; 3159 3160 name = btf__str_by_offset(obj->btf, t->name_off); 3161 if (strcmp(name, prog->name) != 0) 3162 continue; 3163 3164 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3165 break; 3166 } 3167 } 3168 3169 if (!kernel_supports(obj, FEAT_BTF_DECL_TAG)) 3170 goto skip_exception_cb; 3171 for (i = 0; i < obj->nr_programs; i++) { 3172 struct bpf_program *prog = &obj->programs[i]; 3173 int j, k, n; 3174 3175 if (prog_is_subprog(obj, prog)) 3176 continue; 3177 n = btf__type_cnt(obj->btf); 3178 for (j = 1; j < n; j++) { 3179 const char *str = "exception_callback:", *name; 3180 size_t len = strlen(str); 3181 struct btf_type *t; 3182 3183 t = btf_type_by_id(obj->btf, j); 3184 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 3185 continue; 3186 3187 name = btf__str_by_offset(obj->btf, t->name_off); 3188 if (strncmp(name, str, len)) 3189 continue; 3190 3191 t = btf_type_by_id(obj->btf, t->type); 3192 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3193 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 3194 prog->name); 3195 return -EINVAL; 3196 } 3197 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off))) 3198 continue; 3199 /* Multiple callbacks are specified for the same prog, 3200 * the verifier will eventually return an error for this 3201 * case, hence simply skip appending a subprog. 3202 */ 3203 if (prog->exception_cb_idx >= 0) { 3204 prog->exception_cb_idx = -1; 3205 break; 3206 } 3207 3208 name += len; 3209 if (str_is_empty(name)) { 3210 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 3211 prog->name); 3212 return -EINVAL; 3213 } 3214 3215 for (k = 0; k < obj->nr_programs; k++) { 3216 struct bpf_program *subprog = &obj->programs[k]; 3217 3218 if (!prog_is_subprog(obj, subprog)) 3219 continue; 3220 if (strcmp(name, subprog->name)) 3221 continue; 3222 /* Enforce non-hidden, as from verifier point of 3223 * view it expects global functions, whereas the 3224 * mark_btf_static fixes up linkage as static. 3225 */ 3226 if (!subprog->sym_global || subprog->mark_btf_static) { 3227 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 3228 prog->name, subprog->name); 3229 return -EINVAL; 3230 } 3231 /* Let's see if we already saw a static exception callback with the same name */ 3232 if (prog->exception_cb_idx >= 0) { 3233 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 3234 prog->name, subprog->name); 3235 return -EINVAL; 3236 } 3237 prog->exception_cb_idx = k; 3238 break; 3239 } 3240 3241 if (prog->exception_cb_idx >= 0) 3242 continue; 3243 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 3244 return -ENOENT; 3245 } 3246 } 3247 skip_exception_cb: 3248 3249 sanitize = btf_needs_sanitization(obj); 3250 if (sanitize) { 3251 const void *raw_data; 3252 __u32 sz; 3253 3254 /* clone BTF to sanitize a copy and leave the original intact */ 3255 raw_data = btf__raw_data(obj->btf, &sz); 3256 kern_btf = btf__new(raw_data, sz); 3257 err = libbpf_get_error(kern_btf); 3258 if (err) 3259 return err; 3260 3261 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3262 btf__set_pointer_size(obj->btf, 8); 3263 err = bpf_object__sanitize_btf(obj, kern_btf); 3264 if (err) 3265 return err; 3266 } 3267 3268 if (obj->gen_loader) { 3269 __u32 raw_size = 0; 3270 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3271 3272 if (!raw_data) 3273 return -ENOMEM; 3274 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3275 /* Pretend to have valid FD to pass various fd >= 0 checks. 3276 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3277 */ 3278 btf__set_fd(kern_btf, 0); 3279 } else { 3280 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3281 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3282 obj->log_level ? 1 : 0); 3283 } 3284 if (sanitize) { 3285 if (!err) { 3286 /* move fd to libbpf's BTF */ 3287 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3288 btf__set_fd(kern_btf, -1); 3289 } 3290 btf__free(kern_btf); 3291 } 3292 report: 3293 if (err) { 3294 btf_mandatory = kernel_needs_btf(obj); 3295 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3296 btf_mandatory ? "BTF is mandatory, can't proceed." 3297 : "BTF is optional, ignoring."); 3298 if (!btf_mandatory) 3299 err = 0; 3300 } 3301 return err; 3302 } 3303 3304 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3305 { 3306 const char *name; 3307 3308 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3309 if (!name) { 3310 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3311 off, obj->path, elf_errmsg(-1)); 3312 return NULL; 3313 } 3314 3315 return name; 3316 } 3317 3318 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3319 { 3320 const char *name; 3321 3322 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3323 if (!name) { 3324 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3325 off, obj->path, elf_errmsg(-1)); 3326 return NULL; 3327 } 3328 3329 return name; 3330 } 3331 3332 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3333 { 3334 Elf_Scn *scn; 3335 3336 scn = elf_getscn(obj->efile.elf, idx); 3337 if (!scn) { 3338 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3339 idx, obj->path, elf_errmsg(-1)); 3340 return NULL; 3341 } 3342 return scn; 3343 } 3344 3345 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3346 { 3347 Elf_Scn *scn = NULL; 3348 Elf *elf = obj->efile.elf; 3349 const char *sec_name; 3350 3351 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3352 sec_name = elf_sec_name(obj, scn); 3353 if (!sec_name) 3354 return NULL; 3355 3356 if (strcmp(sec_name, name) != 0) 3357 continue; 3358 3359 return scn; 3360 } 3361 return NULL; 3362 } 3363 3364 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3365 { 3366 Elf64_Shdr *shdr; 3367 3368 if (!scn) 3369 return NULL; 3370 3371 shdr = elf64_getshdr(scn); 3372 if (!shdr) { 3373 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3374 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3375 return NULL; 3376 } 3377 3378 return shdr; 3379 } 3380 3381 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3382 { 3383 const char *name; 3384 Elf64_Shdr *sh; 3385 3386 if (!scn) 3387 return NULL; 3388 3389 sh = elf_sec_hdr(obj, scn); 3390 if (!sh) 3391 return NULL; 3392 3393 name = elf_sec_str(obj, sh->sh_name); 3394 if (!name) { 3395 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3396 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3397 return NULL; 3398 } 3399 3400 return name; 3401 } 3402 3403 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3404 { 3405 Elf_Data *data; 3406 3407 if (!scn) 3408 return NULL; 3409 3410 data = elf_getdata(scn, 0); 3411 if (!data) { 3412 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3413 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3414 obj->path, elf_errmsg(-1)); 3415 return NULL; 3416 } 3417 3418 return data; 3419 } 3420 3421 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3422 { 3423 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3424 return NULL; 3425 3426 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3427 } 3428 3429 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3430 { 3431 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3432 return NULL; 3433 3434 return (Elf64_Rel *)data->d_buf + idx; 3435 } 3436 3437 static bool is_sec_name_dwarf(const char *name) 3438 { 3439 /* approximation, but the actual list is too long */ 3440 return str_has_pfx(name, ".debug_"); 3441 } 3442 3443 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3444 { 3445 /* no special handling of .strtab */ 3446 if (hdr->sh_type == SHT_STRTAB) 3447 return true; 3448 3449 /* ignore .llvm_addrsig section as well */ 3450 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3451 return true; 3452 3453 /* no subprograms will lead to an empty .text section, ignore it */ 3454 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3455 strcmp(name, ".text") == 0) 3456 return true; 3457 3458 /* DWARF sections */ 3459 if (is_sec_name_dwarf(name)) 3460 return true; 3461 3462 if (str_has_pfx(name, ".rel")) { 3463 name += sizeof(".rel") - 1; 3464 /* DWARF section relocations */ 3465 if (is_sec_name_dwarf(name)) 3466 return true; 3467 3468 /* .BTF and .BTF.ext don't need relocations */ 3469 if (strcmp(name, BTF_ELF_SEC) == 0 || 3470 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3471 return true; 3472 } 3473 3474 return false; 3475 } 3476 3477 static int cmp_progs(const void *_a, const void *_b) 3478 { 3479 const struct bpf_program *a = _a; 3480 const struct bpf_program *b = _b; 3481 3482 if (a->sec_idx != b->sec_idx) 3483 return a->sec_idx < b->sec_idx ? -1 : 1; 3484 3485 /* sec_insn_off can't be the same within the section */ 3486 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3487 } 3488 3489 static int bpf_object__elf_collect(struct bpf_object *obj) 3490 { 3491 struct elf_sec_desc *sec_desc; 3492 Elf *elf = obj->efile.elf; 3493 Elf_Data *btf_ext_data = NULL; 3494 Elf_Data *btf_data = NULL; 3495 int idx = 0, err = 0; 3496 const char *name; 3497 Elf_Data *data; 3498 Elf_Scn *scn; 3499 Elf64_Shdr *sh; 3500 3501 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3502 * section. Since section count retrieved by elf_getshdrnum() does 3503 * include sec #0, it is already the necessary size of an array to keep 3504 * all the sections. 3505 */ 3506 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3507 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3508 obj->path, elf_errmsg(-1)); 3509 return -LIBBPF_ERRNO__FORMAT; 3510 } 3511 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3512 if (!obj->efile.secs) 3513 return -ENOMEM; 3514 3515 /* a bunch of ELF parsing functionality depends on processing symbols, 3516 * so do the first pass and find the symbol table 3517 */ 3518 scn = NULL; 3519 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3520 sh = elf_sec_hdr(obj, scn); 3521 if (!sh) 3522 return -LIBBPF_ERRNO__FORMAT; 3523 3524 if (sh->sh_type == SHT_SYMTAB) { 3525 if (obj->efile.symbols) { 3526 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3527 return -LIBBPF_ERRNO__FORMAT; 3528 } 3529 3530 data = elf_sec_data(obj, scn); 3531 if (!data) 3532 return -LIBBPF_ERRNO__FORMAT; 3533 3534 idx = elf_ndxscn(scn); 3535 3536 obj->efile.symbols = data; 3537 obj->efile.symbols_shndx = idx; 3538 obj->efile.strtabidx = sh->sh_link; 3539 } 3540 } 3541 3542 if (!obj->efile.symbols) { 3543 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3544 obj->path); 3545 return -ENOENT; 3546 } 3547 3548 scn = NULL; 3549 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3550 idx = elf_ndxscn(scn); 3551 sec_desc = &obj->efile.secs[idx]; 3552 3553 sh = elf_sec_hdr(obj, scn); 3554 if (!sh) 3555 return -LIBBPF_ERRNO__FORMAT; 3556 3557 name = elf_sec_str(obj, sh->sh_name); 3558 if (!name) 3559 return -LIBBPF_ERRNO__FORMAT; 3560 3561 if (ignore_elf_section(sh, name)) 3562 continue; 3563 3564 data = elf_sec_data(obj, scn); 3565 if (!data) 3566 return -LIBBPF_ERRNO__FORMAT; 3567 3568 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3569 idx, name, (unsigned long)data->d_size, 3570 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3571 (int)sh->sh_type); 3572 3573 if (strcmp(name, "license") == 0) { 3574 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3575 if (err) 3576 return err; 3577 } else if (strcmp(name, "version") == 0) { 3578 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3579 if (err) 3580 return err; 3581 } else if (strcmp(name, "maps") == 0) { 3582 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3583 return -ENOTSUP; 3584 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3585 obj->efile.btf_maps_shndx = idx; 3586 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3587 if (sh->sh_type != SHT_PROGBITS) 3588 return -LIBBPF_ERRNO__FORMAT; 3589 btf_data = data; 3590 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3591 if (sh->sh_type != SHT_PROGBITS) 3592 return -LIBBPF_ERRNO__FORMAT; 3593 btf_ext_data = data; 3594 } else if (sh->sh_type == SHT_SYMTAB) { 3595 /* already processed during the first pass above */ 3596 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3597 if (sh->sh_flags & SHF_EXECINSTR) { 3598 if (strcmp(name, ".text") == 0) 3599 obj->efile.text_shndx = idx; 3600 err = bpf_object__add_programs(obj, data, name, idx); 3601 if (err) 3602 return err; 3603 } else if (strcmp(name, DATA_SEC) == 0 || 3604 str_has_pfx(name, DATA_SEC ".")) { 3605 sec_desc->sec_type = SEC_DATA; 3606 sec_desc->shdr = sh; 3607 sec_desc->data = data; 3608 } else if (strcmp(name, RODATA_SEC) == 0 || 3609 str_has_pfx(name, RODATA_SEC ".")) { 3610 sec_desc->sec_type = SEC_RODATA; 3611 sec_desc->shdr = sh; 3612 sec_desc->data = data; 3613 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3614 obj->efile.st_ops_data = data; 3615 obj->efile.st_ops_shndx = idx; 3616 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3617 obj->efile.st_ops_link_data = data; 3618 obj->efile.st_ops_link_shndx = idx; 3619 } else { 3620 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3621 idx, name); 3622 } 3623 } else if (sh->sh_type == SHT_REL) { 3624 int targ_sec_idx = sh->sh_info; /* points to other section */ 3625 3626 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3627 targ_sec_idx >= obj->efile.sec_cnt) 3628 return -LIBBPF_ERRNO__FORMAT; 3629 3630 /* Only do relo for section with exec instructions */ 3631 if (!section_have_execinstr(obj, targ_sec_idx) && 3632 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3633 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3634 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3635 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3636 idx, name, targ_sec_idx, 3637 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3638 continue; 3639 } 3640 3641 sec_desc->sec_type = SEC_RELO; 3642 sec_desc->shdr = sh; 3643 sec_desc->data = data; 3644 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3645 str_has_pfx(name, BSS_SEC "."))) { 3646 sec_desc->sec_type = SEC_BSS; 3647 sec_desc->shdr = sh; 3648 sec_desc->data = data; 3649 } else { 3650 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3651 (size_t)sh->sh_size); 3652 } 3653 } 3654 3655 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3656 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3657 return -LIBBPF_ERRNO__FORMAT; 3658 } 3659 3660 /* sort BPF programs by section name and in-section instruction offset 3661 * for faster search 3662 */ 3663 if (obj->nr_programs) 3664 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3665 3666 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3667 } 3668 3669 static bool sym_is_extern(const Elf64_Sym *sym) 3670 { 3671 int bind = ELF64_ST_BIND(sym->st_info); 3672 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3673 return sym->st_shndx == SHN_UNDEF && 3674 (bind == STB_GLOBAL || bind == STB_WEAK) && 3675 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3676 } 3677 3678 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3679 { 3680 int bind = ELF64_ST_BIND(sym->st_info); 3681 int type = ELF64_ST_TYPE(sym->st_info); 3682 3683 /* in .text section */ 3684 if (sym->st_shndx != text_shndx) 3685 return false; 3686 3687 /* local function */ 3688 if (bind == STB_LOCAL && type == STT_SECTION) 3689 return true; 3690 3691 /* global function */ 3692 return bind == STB_GLOBAL && type == STT_FUNC; 3693 } 3694 3695 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3696 { 3697 const struct btf_type *t; 3698 const char *tname; 3699 int i, n; 3700 3701 if (!btf) 3702 return -ESRCH; 3703 3704 n = btf__type_cnt(btf); 3705 for (i = 1; i < n; i++) { 3706 t = btf__type_by_id(btf, i); 3707 3708 if (!btf_is_var(t) && !btf_is_func(t)) 3709 continue; 3710 3711 tname = btf__name_by_offset(btf, t->name_off); 3712 if (strcmp(tname, ext_name)) 3713 continue; 3714 3715 if (btf_is_var(t) && 3716 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3717 return -EINVAL; 3718 3719 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3720 return -EINVAL; 3721 3722 return i; 3723 } 3724 3725 return -ENOENT; 3726 } 3727 3728 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3729 const struct btf_var_secinfo *vs; 3730 const struct btf_type *t; 3731 int i, j, n; 3732 3733 if (!btf) 3734 return -ESRCH; 3735 3736 n = btf__type_cnt(btf); 3737 for (i = 1; i < n; i++) { 3738 t = btf__type_by_id(btf, i); 3739 3740 if (!btf_is_datasec(t)) 3741 continue; 3742 3743 vs = btf_var_secinfos(t); 3744 for (j = 0; j < btf_vlen(t); j++, vs++) { 3745 if (vs->type == ext_btf_id) 3746 return i; 3747 } 3748 } 3749 3750 return -ENOENT; 3751 } 3752 3753 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3754 bool *is_signed) 3755 { 3756 const struct btf_type *t; 3757 const char *name; 3758 3759 t = skip_mods_and_typedefs(btf, id, NULL); 3760 name = btf__name_by_offset(btf, t->name_off); 3761 3762 if (is_signed) 3763 *is_signed = false; 3764 switch (btf_kind(t)) { 3765 case BTF_KIND_INT: { 3766 int enc = btf_int_encoding(t); 3767 3768 if (enc & BTF_INT_BOOL) 3769 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3770 if (is_signed) 3771 *is_signed = enc & BTF_INT_SIGNED; 3772 if (t->size == 1) 3773 return KCFG_CHAR; 3774 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3775 return KCFG_UNKNOWN; 3776 return KCFG_INT; 3777 } 3778 case BTF_KIND_ENUM: 3779 if (t->size != 4) 3780 return KCFG_UNKNOWN; 3781 if (strcmp(name, "libbpf_tristate")) 3782 return KCFG_UNKNOWN; 3783 return KCFG_TRISTATE; 3784 case BTF_KIND_ENUM64: 3785 if (strcmp(name, "libbpf_tristate")) 3786 return KCFG_UNKNOWN; 3787 return KCFG_TRISTATE; 3788 case BTF_KIND_ARRAY: 3789 if (btf_array(t)->nelems == 0) 3790 return KCFG_UNKNOWN; 3791 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3792 return KCFG_UNKNOWN; 3793 return KCFG_CHAR_ARR; 3794 default: 3795 return KCFG_UNKNOWN; 3796 } 3797 } 3798 3799 static int cmp_externs(const void *_a, const void *_b) 3800 { 3801 const struct extern_desc *a = _a; 3802 const struct extern_desc *b = _b; 3803 3804 if (a->type != b->type) 3805 return a->type < b->type ? -1 : 1; 3806 3807 if (a->type == EXT_KCFG) { 3808 /* descending order by alignment requirements */ 3809 if (a->kcfg.align != b->kcfg.align) 3810 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3811 /* ascending order by size, within same alignment class */ 3812 if (a->kcfg.sz != b->kcfg.sz) 3813 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3814 } 3815 3816 /* resolve ties by name */ 3817 return strcmp(a->name, b->name); 3818 } 3819 3820 static int find_int_btf_id(const struct btf *btf) 3821 { 3822 const struct btf_type *t; 3823 int i, n; 3824 3825 n = btf__type_cnt(btf); 3826 for (i = 1; i < n; i++) { 3827 t = btf__type_by_id(btf, i); 3828 3829 if (btf_is_int(t) && btf_int_bits(t) == 32) 3830 return i; 3831 } 3832 3833 return 0; 3834 } 3835 3836 static int add_dummy_ksym_var(struct btf *btf) 3837 { 3838 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3839 const struct btf_var_secinfo *vs; 3840 const struct btf_type *sec; 3841 3842 if (!btf) 3843 return 0; 3844 3845 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3846 BTF_KIND_DATASEC); 3847 if (sec_btf_id < 0) 3848 return 0; 3849 3850 sec = btf__type_by_id(btf, sec_btf_id); 3851 vs = btf_var_secinfos(sec); 3852 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3853 const struct btf_type *vt; 3854 3855 vt = btf__type_by_id(btf, vs->type); 3856 if (btf_is_func(vt)) 3857 break; 3858 } 3859 3860 /* No func in ksyms sec. No need to add dummy var. */ 3861 if (i == btf_vlen(sec)) 3862 return 0; 3863 3864 int_btf_id = find_int_btf_id(btf); 3865 dummy_var_btf_id = btf__add_var(btf, 3866 "dummy_ksym", 3867 BTF_VAR_GLOBAL_ALLOCATED, 3868 int_btf_id); 3869 if (dummy_var_btf_id < 0) 3870 pr_warn("cannot create a dummy_ksym var\n"); 3871 3872 return dummy_var_btf_id; 3873 } 3874 3875 static int bpf_object__collect_externs(struct bpf_object *obj) 3876 { 3877 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3878 const struct btf_type *t; 3879 struct extern_desc *ext; 3880 int i, n, off, dummy_var_btf_id; 3881 const char *ext_name, *sec_name; 3882 size_t ext_essent_len; 3883 Elf_Scn *scn; 3884 Elf64_Shdr *sh; 3885 3886 if (!obj->efile.symbols) 3887 return 0; 3888 3889 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3890 sh = elf_sec_hdr(obj, scn); 3891 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3892 return -LIBBPF_ERRNO__FORMAT; 3893 3894 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3895 if (dummy_var_btf_id < 0) 3896 return dummy_var_btf_id; 3897 3898 n = sh->sh_size / sh->sh_entsize; 3899 pr_debug("looking for externs among %d symbols...\n", n); 3900 3901 for (i = 0; i < n; i++) { 3902 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3903 3904 if (!sym) 3905 return -LIBBPF_ERRNO__FORMAT; 3906 if (!sym_is_extern(sym)) 3907 continue; 3908 ext_name = elf_sym_str(obj, sym->st_name); 3909 if (!ext_name || !ext_name[0]) 3910 continue; 3911 3912 ext = obj->externs; 3913 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3914 if (!ext) 3915 return -ENOMEM; 3916 obj->externs = ext; 3917 ext = &ext[obj->nr_extern]; 3918 memset(ext, 0, sizeof(*ext)); 3919 obj->nr_extern++; 3920 3921 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3922 if (ext->btf_id <= 0) { 3923 pr_warn("failed to find BTF for extern '%s': %d\n", 3924 ext_name, ext->btf_id); 3925 return ext->btf_id; 3926 } 3927 t = btf__type_by_id(obj->btf, ext->btf_id); 3928 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3929 ext->sym_idx = i; 3930 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3931 3932 ext_essent_len = bpf_core_essential_name_len(ext->name); 3933 ext->essent_name = NULL; 3934 if (ext_essent_len != strlen(ext->name)) { 3935 ext->essent_name = strndup(ext->name, ext_essent_len); 3936 if (!ext->essent_name) 3937 return -ENOMEM; 3938 } 3939 3940 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3941 if (ext->sec_btf_id <= 0) { 3942 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3943 ext_name, ext->btf_id, ext->sec_btf_id); 3944 return ext->sec_btf_id; 3945 } 3946 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3947 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3948 3949 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3950 if (btf_is_func(t)) { 3951 pr_warn("extern function %s is unsupported under %s section\n", 3952 ext->name, KCONFIG_SEC); 3953 return -ENOTSUP; 3954 } 3955 kcfg_sec = sec; 3956 ext->type = EXT_KCFG; 3957 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3958 if (ext->kcfg.sz <= 0) { 3959 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3960 ext_name, ext->kcfg.sz); 3961 return ext->kcfg.sz; 3962 } 3963 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3964 if (ext->kcfg.align <= 0) { 3965 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3966 ext_name, ext->kcfg.align); 3967 return -EINVAL; 3968 } 3969 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3970 &ext->kcfg.is_signed); 3971 if (ext->kcfg.type == KCFG_UNKNOWN) { 3972 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3973 return -ENOTSUP; 3974 } 3975 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3976 ksym_sec = sec; 3977 ext->type = EXT_KSYM; 3978 skip_mods_and_typedefs(obj->btf, t->type, 3979 &ext->ksym.type_id); 3980 } else { 3981 pr_warn("unrecognized extern section '%s'\n", sec_name); 3982 return -ENOTSUP; 3983 } 3984 } 3985 pr_debug("collected %d externs total\n", obj->nr_extern); 3986 3987 if (!obj->nr_extern) 3988 return 0; 3989 3990 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3991 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3992 3993 /* for .ksyms section, we need to turn all externs into allocated 3994 * variables in BTF to pass kernel verification; we do this by 3995 * pretending that each extern is a 8-byte variable 3996 */ 3997 if (ksym_sec) { 3998 /* find existing 4-byte integer type in BTF to use for fake 3999 * extern variables in DATASEC 4000 */ 4001 int int_btf_id = find_int_btf_id(obj->btf); 4002 /* For extern function, a dummy_var added earlier 4003 * will be used to replace the vs->type and 4004 * its name string will be used to refill 4005 * the missing param's name. 4006 */ 4007 const struct btf_type *dummy_var; 4008 4009 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4010 for (i = 0; i < obj->nr_extern; i++) { 4011 ext = &obj->externs[i]; 4012 if (ext->type != EXT_KSYM) 4013 continue; 4014 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4015 i, ext->sym_idx, ext->name); 4016 } 4017 4018 sec = ksym_sec; 4019 n = btf_vlen(sec); 4020 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4021 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4022 struct btf_type *vt; 4023 4024 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4025 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4026 ext = find_extern_by_name(obj, ext_name); 4027 if (!ext) { 4028 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4029 btf_kind_str(vt), ext_name); 4030 return -ESRCH; 4031 } 4032 if (btf_is_func(vt)) { 4033 const struct btf_type *func_proto; 4034 struct btf_param *param; 4035 int j; 4036 4037 func_proto = btf__type_by_id(obj->btf, 4038 vt->type); 4039 param = btf_params(func_proto); 4040 /* Reuse the dummy_var string if the 4041 * func proto does not have param name. 4042 */ 4043 for (j = 0; j < btf_vlen(func_proto); j++) 4044 if (param[j].type && !param[j].name_off) 4045 param[j].name_off = 4046 dummy_var->name_off; 4047 vs->type = dummy_var_btf_id; 4048 vt->info &= ~0xffff; 4049 vt->info |= BTF_FUNC_GLOBAL; 4050 } else { 4051 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4052 vt->type = int_btf_id; 4053 } 4054 vs->offset = off; 4055 vs->size = sizeof(int); 4056 } 4057 sec->size = off; 4058 } 4059 4060 if (kcfg_sec) { 4061 sec = kcfg_sec; 4062 /* for kcfg externs calculate their offsets within a .kconfig map */ 4063 off = 0; 4064 for (i = 0; i < obj->nr_extern; i++) { 4065 ext = &obj->externs[i]; 4066 if (ext->type != EXT_KCFG) 4067 continue; 4068 4069 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4070 off = ext->kcfg.data_off + ext->kcfg.sz; 4071 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4072 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4073 } 4074 sec->size = off; 4075 n = btf_vlen(sec); 4076 for (i = 0; i < n; i++) { 4077 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4078 4079 t = btf__type_by_id(obj->btf, vs->type); 4080 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4081 ext = find_extern_by_name(obj, ext_name); 4082 if (!ext) { 4083 pr_warn("failed to find extern definition for BTF var '%s'\n", 4084 ext_name); 4085 return -ESRCH; 4086 } 4087 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4088 vs->offset = ext->kcfg.data_off; 4089 } 4090 } 4091 return 0; 4092 } 4093 4094 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4095 { 4096 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4097 } 4098 4099 struct bpf_program * 4100 bpf_object__find_program_by_name(const struct bpf_object *obj, 4101 const char *name) 4102 { 4103 struct bpf_program *prog; 4104 4105 bpf_object__for_each_program(prog, obj) { 4106 if (prog_is_subprog(obj, prog)) 4107 continue; 4108 if (!strcmp(prog->name, name)) 4109 return prog; 4110 } 4111 return errno = ENOENT, NULL; 4112 } 4113 4114 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4115 int shndx) 4116 { 4117 switch (obj->efile.secs[shndx].sec_type) { 4118 case SEC_BSS: 4119 case SEC_DATA: 4120 case SEC_RODATA: 4121 return true; 4122 default: 4123 return false; 4124 } 4125 } 4126 4127 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4128 int shndx) 4129 { 4130 return shndx == obj->efile.btf_maps_shndx; 4131 } 4132 4133 static enum libbpf_map_type 4134 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4135 { 4136 if (shndx == obj->efile.symbols_shndx) 4137 return LIBBPF_MAP_KCONFIG; 4138 4139 switch (obj->efile.secs[shndx].sec_type) { 4140 case SEC_BSS: 4141 return LIBBPF_MAP_BSS; 4142 case SEC_DATA: 4143 return LIBBPF_MAP_DATA; 4144 case SEC_RODATA: 4145 return LIBBPF_MAP_RODATA; 4146 default: 4147 return LIBBPF_MAP_UNSPEC; 4148 } 4149 } 4150 4151 static int bpf_program__record_reloc(struct bpf_program *prog, 4152 struct reloc_desc *reloc_desc, 4153 __u32 insn_idx, const char *sym_name, 4154 const Elf64_Sym *sym, const Elf64_Rel *rel) 4155 { 4156 struct bpf_insn *insn = &prog->insns[insn_idx]; 4157 size_t map_idx, nr_maps = prog->obj->nr_maps; 4158 struct bpf_object *obj = prog->obj; 4159 __u32 shdr_idx = sym->st_shndx; 4160 enum libbpf_map_type type; 4161 const char *sym_sec_name; 4162 struct bpf_map *map; 4163 4164 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4165 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4166 prog->name, sym_name, insn_idx, insn->code); 4167 return -LIBBPF_ERRNO__RELOC; 4168 } 4169 4170 if (sym_is_extern(sym)) { 4171 int sym_idx = ELF64_R_SYM(rel->r_info); 4172 int i, n = obj->nr_extern; 4173 struct extern_desc *ext; 4174 4175 for (i = 0; i < n; i++) { 4176 ext = &obj->externs[i]; 4177 if (ext->sym_idx == sym_idx) 4178 break; 4179 } 4180 if (i >= n) { 4181 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4182 prog->name, sym_name, sym_idx); 4183 return -LIBBPF_ERRNO__RELOC; 4184 } 4185 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4186 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4187 if (insn->code == (BPF_JMP | BPF_CALL)) 4188 reloc_desc->type = RELO_EXTERN_CALL; 4189 else 4190 reloc_desc->type = RELO_EXTERN_LD64; 4191 reloc_desc->insn_idx = insn_idx; 4192 reloc_desc->ext_idx = i; 4193 return 0; 4194 } 4195 4196 /* sub-program call relocation */ 4197 if (is_call_insn(insn)) { 4198 if (insn->src_reg != BPF_PSEUDO_CALL) { 4199 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4200 return -LIBBPF_ERRNO__RELOC; 4201 } 4202 /* text_shndx can be 0, if no default "main" program exists */ 4203 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4204 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4205 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4206 prog->name, sym_name, sym_sec_name); 4207 return -LIBBPF_ERRNO__RELOC; 4208 } 4209 if (sym->st_value % BPF_INSN_SZ) { 4210 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4211 prog->name, sym_name, (size_t)sym->st_value); 4212 return -LIBBPF_ERRNO__RELOC; 4213 } 4214 reloc_desc->type = RELO_CALL; 4215 reloc_desc->insn_idx = insn_idx; 4216 reloc_desc->sym_off = sym->st_value; 4217 return 0; 4218 } 4219 4220 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4221 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4222 prog->name, sym_name, shdr_idx); 4223 return -LIBBPF_ERRNO__RELOC; 4224 } 4225 4226 /* loading subprog addresses */ 4227 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4228 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4229 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4230 */ 4231 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4232 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4233 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4234 return -LIBBPF_ERRNO__RELOC; 4235 } 4236 4237 reloc_desc->type = RELO_SUBPROG_ADDR; 4238 reloc_desc->insn_idx = insn_idx; 4239 reloc_desc->sym_off = sym->st_value; 4240 return 0; 4241 } 4242 4243 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4244 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4245 4246 /* generic map reference relocation */ 4247 if (type == LIBBPF_MAP_UNSPEC) { 4248 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4249 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4250 prog->name, sym_name, sym_sec_name); 4251 return -LIBBPF_ERRNO__RELOC; 4252 } 4253 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4254 map = &obj->maps[map_idx]; 4255 if (map->libbpf_type != type || 4256 map->sec_idx != sym->st_shndx || 4257 map->sec_offset != sym->st_value) 4258 continue; 4259 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4260 prog->name, map_idx, map->name, map->sec_idx, 4261 map->sec_offset, insn_idx); 4262 break; 4263 } 4264 if (map_idx >= nr_maps) { 4265 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4266 prog->name, sym_sec_name, (size_t)sym->st_value); 4267 return -LIBBPF_ERRNO__RELOC; 4268 } 4269 reloc_desc->type = RELO_LD64; 4270 reloc_desc->insn_idx = insn_idx; 4271 reloc_desc->map_idx = map_idx; 4272 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4273 return 0; 4274 } 4275 4276 /* global data map relocation */ 4277 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4278 pr_warn("prog '%s': bad data relo against section '%s'\n", 4279 prog->name, sym_sec_name); 4280 return -LIBBPF_ERRNO__RELOC; 4281 } 4282 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4283 map = &obj->maps[map_idx]; 4284 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4285 continue; 4286 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4287 prog->name, map_idx, map->name, map->sec_idx, 4288 map->sec_offset, insn_idx); 4289 break; 4290 } 4291 if (map_idx >= nr_maps) { 4292 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4293 prog->name, sym_sec_name); 4294 return -LIBBPF_ERRNO__RELOC; 4295 } 4296 4297 reloc_desc->type = RELO_DATA; 4298 reloc_desc->insn_idx = insn_idx; 4299 reloc_desc->map_idx = map_idx; 4300 reloc_desc->sym_off = sym->st_value; 4301 return 0; 4302 } 4303 4304 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4305 { 4306 return insn_idx >= prog->sec_insn_off && 4307 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4308 } 4309 4310 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4311 size_t sec_idx, size_t insn_idx) 4312 { 4313 int l = 0, r = obj->nr_programs - 1, m; 4314 struct bpf_program *prog; 4315 4316 if (!obj->nr_programs) 4317 return NULL; 4318 4319 while (l < r) { 4320 m = l + (r - l + 1) / 2; 4321 prog = &obj->programs[m]; 4322 4323 if (prog->sec_idx < sec_idx || 4324 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4325 l = m; 4326 else 4327 r = m - 1; 4328 } 4329 /* matching program could be at index l, but it still might be the 4330 * wrong one, so we need to double check conditions for the last time 4331 */ 4332 prog = &obj->programs[l]; 4333 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4334 return prog; 4335 return NULL; 4336 } 4337 4338 static int 4339 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4340 { 4341 const char *relo_sec_name, *sec_name; 4342 size_t sec_idx = shdr->sh_info, sym_idx; 4343 struct bpf_program *prog; 4344 struct reloc_desc *relos; 4345 int err, i, nrels; 4346 const char *sym_name; 4347 __u32 insn_idx; 4348 Elf_Scn *scn; 4349 Elf_Data *scn_data; 4350 Elf64_Sym *sym; 4351 Elf64_Rel *rel; 4352 4353 if (sec_idx >= obj->efile.sec_cnt) 4354 return -EINVAL; 4355 4356 scn = elf_sec_by_idx(obj, sec_idx); 4357 scn_data = elf_sec_data(obj, scn); 4358 4359 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4360 sec_name = elf_sec_name(obj, scn); 4361 if (!relo_sec_name || !sec_name) 4362 return -EINVAL; 4363 4364 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4365 relo_sec_name, sec_idx, sec_name); 4366 nrels = shdr->sh_size / shdr->sh_entsize; 4367 4368 for (i = 0; i < nrels; i++) { 4369 rel = elf_rel_by_idx(data, i); 4370 if (!rel) { 4371 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4372 return -LIBBPF_ERRNO__FORMAT; 4373 } 4374 4375 sym_idx = ELF64_R_SYM(rel->r_info); 4376 sym = elf_sym_by_idx(obj, sym_idx); 4377 if (!sym) { 4378 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4379 relo_sec_name, sym_idx, i); 4380 return -LIBBPF_ERRNO__FORMAT; 4381 } 4382 4383 if (sym->st_shndx >= obj->efile.sec_cnt) { 4384 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4385 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4386 return -LIBBPF_ERRNO__FORMAT; 4387 } 4388 4389 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4390 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4391 relo_sec_name, (size_t)rel->r_offset, i); 4392 return -LIBBPF_ERRNO__FORMAT; 4393 } 4394 4395 insn_idx = rel->r_offset / BPF_INSN_SZ; 4396 /* relocations against static functions are recorded as 4397 * relocations against the section that contains a function; 4398 * in such case, symbol will be STT_SECTION and sym.st_name 4399 * will point to empty string (0), so fetch section name 4400 * instead 4401 */ 4402 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4403 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4404 else 4405 sym_name = elf_sym_str(obj, sym->st_name); 4406 sym_name = sym_name ?: "<?"; 4407 4408 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4409 relo_sec_name, i, insn_idx, sym_name); 4410 4411 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4412 if (!prog) { 4413 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4414 relo_sec_name, i, sec_name, insn_idx); 4415 continue; 4416 } 4417 4418 relos = libbpf_reallocarray(prog->reloc_desc, 4419 prog->nr_reloc + 1, sizeof(*relos)); 4420 if (!relos) 4421 return -ENOMEM; 4422 prog->reloc_desc = relos; 4423 4424 /* adjust insn_idx to local BPF program frame of reference */ 4425 insn_idx -= prog->sec_insn_off; 4426 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4427 insn_idx, sym_name, sym, rel); 4428 if (err) 4429 return err; 4430 4431 prog->nr_reloc++; 4432 } 4433 return 0; 4434 } 4435 4436 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4437 { 4438 int id; 4439 4440 if (!obj->btf) 4441 return -ENOENT; 4442 4443 /* if it's BTF-defined map, we don't need to search for type IDs. 4444 * For struct_ops map, it does not need btf_key_type_id and 4445 * btf_value_type_id. 4446 */ 4447 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4448 return 0; 4449 4450 /* 4451 * LLVM annotates global data differently in BTF, that is, 4452 * only as '.data', '.bss' or '.rodata'. 4453 */ 4454 if (!bpf_map__is_internal(map)) 4455 return -ENOENT; 4456 4457 id = btf__find_by_name(obj->btf, map->real_name); 4458 if (id < 0) 4459 return id; 4460 4461 map->btf_key_type_id = 0; 4462 map->btf_value_type_id = id; 4463 return 0; 4464 } 4465 4466 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4467 { 4468 char file[PATH_MAX], buff[4096]; 4469 FILE *fp; 4470 __u32 val; 4471 int err; 4472 4473 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4474 memset(info, 0, sizeof(*info)); 4475 4476 fp = fopen(file, "re"); 4477 if (!fp) { 4478 err = -errno; 4479 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4480 err); 4481 return err; 4482 } 4483 4484 while (fgets(buff, sizeof(buff), fp)) { 4485 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4486 info->type = val; 4487 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4488 info->key_size = val; 4489 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4490 info->value_size = val; 4491 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4492 info->max_entries = val; 4493 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4494 info->map_flags = val; 4495 } 4496 4497 fclose(fp); 4498 4499 return 0; 4500 } 4501 4502 bool bpf_map__autocreate(const struct bpf_map *map) 4503 { 4504 return map->autocreate; 4505 } 4506 4507 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4508 { 4509 if (map->obj->loaded) 4510 return libbpf_err(-EBUSY); 4511 4512 map->autocreate = autocreate; 4513 return 0; 4514 } 4515 4516 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4517 { 4518 struct bpf_map_info info; 4519 __u32 len = sizeof(info), name_len; 4520 int new_fd, err; 4521 char *new_name; 4522 4523 memset(&info, 0, len); 4524 err = bpf_map_get_info_by_fd(fd, &info, &len); 4525 if (err && errno == EINVAL) 4526 err = bpf_get_map_info_from_fdinfo(fd, &info); 4527 if (err) 4528 return libbpf_err(err); 4529 4530 name_len = strlen(info.name); 4531 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4532 new_name = strdup(map->name); 4533 else 4534 new_name = strdup(info.name); 4535 4536 if (!new_name) 4537 return libbpf_err(-errno); 4538 4539 /* 4540 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4541 * This is similar to what we do in ensure_good_fd(), but without 4542 * closing original FD. 4543 */ 4544 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4545 if (new_fd < 0) { 4546 err = -errno; 4547 goto err_free_new_name; 4548 } 4549 4550 err = zclose(map->fd); 4551 if (err) { 4552 err = -errno; 4553 goto err_close_new_fd; 4554 } 4555 free(map->name); 4556 4557 map->fd = new_fd; 4558 map->name = new_name; 4559 map->def.type = info.type; 4560 map->def.key_size = info.key_size; 4561 map->def.value_size = info.value_size; 4562 map->def.max_entries = info.max_entries; 4563 map->def.map_flags = info.map_flags; 4564 map->btf_key_type_id = info.btf_key_type_id; 4565 map->btf_value_type_id = info.btf_value_type_id; 4566 map->reused = true; 4567 map->map_extra = info.map_extra; 4568 4569 return 0; 4570 4571 err_close_new_fd: 4572 close(new_fd); 4573 err_free_new_name: 4574 free(new_name); 4575 return libbpf_err(err); 4576 } 4577 4578 __u32 bpf_map__max_entries(const struct bpf_map *map) 4579 { 4580 return map->def.max_entries; 4581 } 4582 4583 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4584 { 4585 if (!bpf_map_type__is_map_in_map(map->def.type)) 4586 return errno = EINVAL, NULL; 4587 4588 return map->inner_map; 4589 } 4590 4591 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4592 { 4593 if (map->obj->loaded) 4594 return libbpf_err(-EBUSY); 4595 4596 map->def.max_entries = max_entries; 4597 4598 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4599 if (map_is_ringbuf(map)) 4600 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4601 4602 return 0; 4603 } 4604 4605 static int 4606 bpf_object__probe_loading(struct bpf_object *obj) 4607 { 4608 char *cp, errmsg[STRERR_BUFSIZE]; 4609 struct bpf_insn insns[] = { 4610 BPF_MOV64_IMM(BPF_REG_0, 0), 4611 BPF_EXIT_INSN(), 4612 }; 4613 int ret, insn_cnt = ARRAY_SIZE(insns); 4614 4615 if (obj->gen_loader) 4616 return 0; 4617 4618 ret = bump_rlimit_memlock(); 4619 if (ret) 4620 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4621 4622 /* make sure basic loading works */ 4623 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4624 if (ret < 0) 4625 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4626 if (ret < 0) { 4627 ret = errno; 4628 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4629 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4630 "program. Make sure your kernel supports BPF " 4631 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4632 "set to big enough value.\n", __func__, cp, ret); 4633 return -ret; 4634 } 4635 close(ret); 4636 4637 return 0; 4638 } 4639 4640 static int probe_fd(int fd) 4641 { 4642 if (fd >= 0) 4643 close(fd); 4644 return fd >= 0; 4645 } 4646 4647 static int probe_kern_prog_name(void) 4648 { 4649 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4650 struct bpf_insn insns[] = { 4651 BPF_MOV64_IMM(BPF_REG_0, 0), 4652 BPF_EXIT_INSN(), 4653 }; 4654 union bpf_attr attr; 4655 int ret; 4656 4657 memset(&attr, 0, attr_sz); 4658 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4659 attr.license = ptr_to_u64("GPL"); 4660 attr.insns = ptr_to_u64(insns); 4661 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4662 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4663 4664 /* make sure loading with name works */ 4665 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4666 return probe_fd(ret); 4667 } 4668 4669 static int probe_kern_global_data(void) 4670 { 4671 char *cp, errmsg[STRERR_BUFSIZE]; 4672 struct bpf_insn insns[] = { 4673 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4674 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4675 BPF_MOV64_IMM(BPF_REG_0, 0), 4676 BPF_EXIT_INSN(), 4677 }; 4678 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4679 4680 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4681 if (map < 0) { 4682 ret = -errno; 4683 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4684 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4685 __func__, cp, -ret); 4686 return ret; 4687 } 4688 4689 insns[0].imm = map; 4690 4691 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4692 close(map); 4693 return probe_fd(ret); 4694 } 4695 4696 static int probe_kern_btf(void) 4697 { 4698 static const char strs[] = "\0int"; 4699 __u32 types[] = { 4700 /* int */ 4701 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4702 }; 4703 4704 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4705 strs, sizeof(strs))); 4706 } 4707 4708 static int probe_kern_btf_func(void) 4709 { 4710 static const char strs[] = "\0int\0x\0a"; 4711 /* void x(int a) {} */ 4712 __u32 types[] = { 4713 /* int */ 4714 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4715 /* FUNC_PROTO */ /* [2] */ 4716 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4717 BTF_PARAM_ENC(7, 1), 4718 /* FUNC x */ /* [3] */ 4719 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4720 }; 4721 4722 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4723 strs, sizeof(strs))); 4724 } 4725 4726 static int probe_kern_btf_func_global(void) 4727 { 4728 static const char strs[] = "\0int\0x\0a"; 4729 /* static void x(int a) {} */ 4730 __u32 types[] = { 4731 /* int */ 4732 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4733 /* FUNC_PROTO */ /* [2] */ 4734 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4735 BTF_PARAM_ENC(7, 1), 4736 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4737 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4738 }; 4739 4740 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4741 strs, sizeof(strs))); 4742 } 4743 4744 static int probe_kern_btf_datasec(void) 4745 { 4746 static const char strs[] = "\0x\0.data"; 4747 /* static int a; */ 4748 __u32 types[] = { 4749 /* int */ 4750 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4751 /* VAR x */ /* [2] */ 4752 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4753 BTF_VAR_STATIC, 4754 /* DATASEC val */ /* [3] */ 4755 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4756 BTF_VAR_SECINFO_ENC(2, 0, 4), 4757 }; 4758 4759 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4760 strs, sizeof(strs))); 4761 } 4762 4763 static int probe_kern_btf_float(void) 4764 { 4765 static const char strs[] = "\0float"; 4766 __u32 types[] = { 4767 /* float */ 4768 BTF_TYPE_FLOAT_ENC(1, 4), 4769 }; 4770 4771 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4772 strs, sizeof(strs))); 4773 } 4774 4775 static int probe_kern_btf_decl_tag(void) 4776 { 4777 static const char strs[] = "\0tag"; 4778 __u32 types[] = { 4779 /* int */ 4780 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4781 /* VAR x */ /* [2] */ 4782 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4783 BTF_VAR_STATIC, 4784 /* attr */ 4785 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4786 }; 4787 4788 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4789 strs, sizeof(strs))); 4790 } 4791 4792 static int probe_kern_btf_type_tag(void) 4793 { 4794 static const char strs[] = "\0tag"; 4795 __u32 types[] = { 4796 /* int */ 4797 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4798 /* attr */ 4799 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4800 /* ptr */ 4801 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4802 }; 4803 4804 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4805 strs, sizeof(strs))); 4806 } 4807 4808 static int probe_kern_array_mmap(void) 4809 { 4810 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4811 int fd; 4812 4813 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4814 return probe_fd(fd); 4815 } 4816 4817 static int probe_kern_exp_attach_type(void) 4818 { 4819 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4820 struct bpf_insn insns[] = { 4821 BPF_MOV64_IMM(BPF_REG_0, 0), 4822 BPF_EXIT_INSN(), 4823 }; 4824 int fd, insn_cnt = ARRAY_SIZE(insns); 4825 4826 /* use any valid combination of program type and (optional) 4827 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4828 * to see if kernel supports expected_attach_type field for 4829 * BPF_PROG_LOAD command 4830 */ 4831 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4832 return probe_fd(fd); 4833 } 4834 4835 static int probe_kern_probe_read_kernel(void) 4836 { 4837 struct bpf_insn insns[] = { 4838 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4839 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4840 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4841 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4842 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4843 BPF_EXIT_INSN(), 4844 }; 4845 int fd, insn_cnt = ARRAY_SIZE(insns); 4846 4847 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4848 return probe_fd(fd); 4849 } 4850 4851 static int probe_prog_bind_map(void) 4852 { 4853 char *cp, errmsg[STRERR_BUFSIZE]; 4854 struct bpf_insn insns[] = { 4855 BPF_MOV64_IMM(BPF_REG_0, 0), 4856 BPF_EXIT_INSN(), 4857 }; 4858 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4859 4860 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4861 if (map < 0) { 4862 ret = -errno; 4863 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4864 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4865 __func__, cp, -ret); 4866 return ret; 4867 } 4868 4869 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4870 if (prog < 0) { 4871 close(map); 4872 return 0; 4873 } 4874 4875 ret = bpf_prog_bind_map(prog, map, NULL); 4876 4877 close(map); 4878 close(prog); 4879 4880 return ret >= 0; 4881 } 4882 4883 static int probe_module_btf(void) 4884 { 4885 static const char strs[] = "\0int"; 4886 __u32 types[] = { 4887 /* int */ 4888 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4889 }; 4890 struct bpf_btf_info info; 4891 __u32 len = sizeof(info); 4892 char name[16]; 4893 int fd, err; 4894 4895 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4896 if (fd < 0) 4897 return 0; /* BTF not supported at all */ 4898 4899 memset(&info, 0, sizeof(info)); 4900 info.name = ptr_to_u64(name); 4901 info.name_len = sizeof(name); 4902 4903 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4904 * kernel's module BTF support coincides with support for 4905 * name/name_len fields in struct bpf_btf_info. 4906 */ 4907 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4908 close(fd); 4909 return !err; 4910 } 4911 4912 static int probe_perf_link(void) 4913 { 4914 struct bpf_insn insns[] = { 4915 BPF_MOV64_IMM(BPF_REG_0, 0), 4916 BPF_EXIT_INSN(), 4917 }; 4918 int prog_fd, link_fd, err; 4919 4920 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4921 insns, ARRAY_SIZE(insns), NULL); 4922 if (prog_fd < 0) 4923 return -errno; 4924 4925 /* use invalid perf_event FD to get EBADF, if link is supported; 4926 * otherwise EINVAL should be returned 4927 */ 4928 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4929 err = -errno; /* close() can clobber errno */ 4930 4931 if (link_fd >= 0) 4932 close(link_fd); 4933 close(prog_fd); 4934 4935 return link_fd < 0 && err == -EBADF; 4936 } 4937 4938 static int probe_uprobe_multi_link(void) 4939 { 4940 LIBBPF_OPTS(bpf_prog_load_opts, load_opts, 4941 .expected_attach_type = BPF_TRACE_UPROBE_MULTI, 4942 ); 4943 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 4944 struct bpf_insn insns[] = { 4945 BPF_MOV64_IMM(BPF_REG_0, 0), 4946 BPF_EXIT_INSN(), 4947 }; 4948 int prog_fd, link_fd, err; 4949 unsigned long offset = 0; 4950 4951 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", 4952 insns, ARRAY_SIZE(insns), &load_opts); 4953 if (prog_fd < 0) 4954 return -errno; 4955 4956 /* Creating uprobe in '/' binary should fail with -EBADF. */ 4957 link_opts.uprobe_multi.path = "/"; 4958 link_opts.uprobe_multi.offsets = &offset; 4959 link_opts.uprobe_multi.cnt = 1; 4960 4961 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts); 4962 err = -errno; /* close() can clobber errno */ 4963 4964 if (link_fd >= 0) 4965 close(link_fd); 4966 close(prog_fd); 4967 4968 return link_fd < 0 && err == -EBADF; 4969 } 4970 4971 static int probe_kern_bpf_cookie(void) 4972 { 4973 struct bpf_insn insns[] = { 4974 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4975 BPF_EXIT_INSN(), 4976 }; 4977 int ret, insn_cnt = ARRAY_SIZE(insns); 4978 4979 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4980 return probe_fd(ret); 4981 } 4982 4983 static int probe_kern_btf_enum64(void) 4984 { 4985 static const char strs[] = "\0enum64"; 4986 __u32 types[] = { 4987 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4988 }; 4989 4990 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4991 strs, sizeof(strs))); 4992 } 4993 4994 static int probe_kern_syscall_wrapper(void); 4995 4996 enum kern_feature_result { 4997 FEAT_UNKNOWN = 0, 4998 FEAT_SUPPORTED = 1, 4999 FEAT_MISSING = 2, 5000 }; 5001 5002 typedef int (*feature_probe_fn)(void); 5003 5004 static struct kern_feature_desc { 5005 const char *desc; 5006 feature_probe_fn probe; 5007 enum kern_feature_result res; 5008 } feature_probes[__FEAT_CNT] = { 5009 [FEAT_PROG_NAME] = { 5010 "BPF program name", probe_kern_prog_name, 5011 }, 5012 [FEAT_GLOBAL_DATA] = { 5013 "global variables", probe_kern_global_data, 5014 }, 5015 [FEAT_BTF] = { 5016 "minimal BTF", probe_kern_btf, 5017 }, 5018 [FEAT_BTF_FUNC] = { 5019 "BTF functions", probe_kern_btf_func, 5020 }, 5021 [FEAT_BTF_GLOBAL_FUNC] = { 5022 "BTF global function", probe_kern_btf_func_global, 5023 }, 5024 [FEAT_BTF_DATASEC] = { 5025 "BTF data section and variable", probe_kern_btf_datasec, 5026 }, 5027 [FEAT_ARRAY_MMAP] = { 5028 "ARRAY map mmap()", probe_kern_array_mmap, 5029 }, 5030 [FEAT_EXP_ATTACH_TYPE] = { 5031 "BPF_PROG_LOAD expected_attach_type attribute", 5032 probe_kern_exp_attach_type, 5033 }, 5034 [FEAT_PROBE_READ_KERN] = { 5035 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 5036 }, 5037 [FEAT_PROG_BIND_MAP] = { 5038 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 5039 }, 5040 [FEAT_MODULE_BTF] = { 5041 "module BTF support", probe_module_btf, 5042 }, 5043 [FEAT_BTF_FLOAT] = { 5044 "BTF_KIND_FLOAT support", probe_kern_btf_float, 5045 }, 5046 [FEAT_PERF_LINK] = { 5047 "BPF perf link support", probe_perf_link, 5048 }, 5049 [FEAT_BTF_DECL_TAG] = { 5050 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 5051 }, 5052 [FEAT_BTF_TYPE_TAG] = { 5053 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 5054 }, 5055 [FEAT_MEMCG_ACCOUNT] = { 5056 "memcg-based memory accounting", probe_memcg_account, 5057 }, 5058 [FEAT_BPF_COOKIE] = { 5059 "BPF cookie support", probe_kern_bpf_cookie, 5060 }, 5061 [FEAT_BTF_ENUM64] = { 5062 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 5063 }, 5064 [FEAT_SYSCALL_WRAPPER] = { 5065 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 5066 }, 5067 [FEAT_UPROBE_MULTI_LINK] = { 5068 "BPF multi-uprobe link support", probe_uprobe_multi_link, 5069 }, 5070 }; 5071 5072 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5073 { 5074 struct kern_feature_desc *feat = &feature_probes[feat_id]; 5075 int ret; 5076 5077 if (obj && obj->gen_loader) 5078 /* To generate loader program assume the latest kernel 5079 * to avoid doing extra prog_load, map_create syscalls. 5080 */ 5081 return true; 5082 5083 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 5084 ret = feat->probe(); 5085 if (ret > 0) { 5086 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 5087 } else if (ret == 0) { 5088 WRITE_ONCE(feat->res, FEAT_MISSING); 5089 } else { 5090 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 5091 WRITE_ONCE(feat->res, FEAT_MISSING); 5092 } 5093 } 5094 5095 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 5096 } 5097 5098 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5099 { 5100 struct bpf_map_info map_info; 5101 char msg[STRERR_BUFSIZE]; 5102 __u32 map_info_len = sizeof(map_info); 5103 int err; 5104 5105 memset(&map_info, 0, map_info_len); 5106 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5107 if (err && errno == EINVAL) 5108 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5109 if (err) { 5110 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5111 libbpf_strerror_r(errno, msg, sizeof(msg))); 5112 return false; 5113 } 5114 5115 return (map_info.type == map->def.type && 5116 map_info.key_size == map->def.key_size && 5117 map_info.value_size == map->def.value_size && 5118 map_info.max_entries == map->def.max_entries && 5119 map_info.map_flags == map->def.map_flags && 5120 map_info.map_extra == map->map_extra); 5121 } 5122 5123 static int 5124 bpf_object__reuse_map(struct bpf_map *map) 5125 { 5126 char *cp, errmsg[STRERR_BUFSIZE]; 5127 int err, pin_fd; 5128 5129 pin_fd = bpf_obj_get(map->pin_path); 5130 if (pin_fd < 0) { 5131 err = -errno; 5132 if (err == -ENOENT) { 5133 pr_debug("found no pinned map to reuse at '%s'\n", 5134 map->pin_path); 5135 return 0; 5136 } 5137 5138 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5139 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5140 map->pin_path, cp); 5141 return err; 5142 } 5143 5144 if (!map_is_reuse_compat(map, pin_fd)) { 5145 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5146 map->pin_path); 5147 close(pin_fd); 5148 return -EINVAL; 5149 } 5150 5151 err = bpf_map__reuse_fd(map, pin_fd); 5152 close(pin_fd); 5153 if (err) 5154 return err; 5155 5156 map->pinned = true; 5157 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5158 5159 return 0; 5160 } 5161 5162 static int 5163 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5164 { 5165 enum libbpf_map_type map_type = map->libbpf_type; 5166 char *cp, errmsg[STRERR_BUFSIZE]; 5167 int err, zero = 0; 5168 5169 if (obj->gen_loader) { 5170 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5171 map->mmaped, map->def.value_size); 5172 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5173 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5174 return 0; 5175 } 5176 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5177 if (err) { 5178 err = -errno; 5179 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5180 pr_warn("Error setting initial map(%s) contents: %s\n", 5181 map->name, cp); 5182 return err; 5183 } 5184 5185 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5186 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5187 err = bpf_map_freeze(map->fd); 5188 if (err) { 5189 err = -errno; 5190 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5191 pr_warn("Error freezing map(%s) as read-only: %s\n", 5192 map->name, cp); 5193 return err; 5194 } 5195 } 5196 return 0; 5197 } 5198 5199 static void bpf_map__destroy(struct bpf_map *map); 5200 5201 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5202 { 5203 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5204 struct bpf_map_def *def = &map->def; 5205 const char *map_name = NULL; 5206 int err = 0; 5207 5208 if (kernel_supports(obj, FEAT_PROG_NAME)) 5209 map_name = map->name; 5210 create_attr.map_ifindex = map->map_ifindex; 5211 create_attr.map_flags = def->map_flags; 5212 create_attr.numa_node = map->numa_node; 5213 create_attr.map_extra = map->map_extra; 5214 5215 if (bpf_map__is_struct_ops(map)) 5216 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5217 5218 if (obj->btf && btf__fd(obj->btf) >= 0) { 5219 create_attr.btf_fd = btf__fd(obj->btf); 5220 create_attr.btf_key_type_id = map->btf_key_type_id; 5221 create_attr.btf_value_type_id = map->btf_value_type_id; 5222 } 5223 5224 if (bpf_map_type__is_map_in_map(def->type)) { 5225 if (map->inner_map) { 5226 err = bpf_object__create_map(obj, map->inner_map, true); 5227 if (err) { 5228 pr_warn("map '%s': failed to create inner map: %d\n", 5229 map->name, err); 5230 return err; 5231 } 5232 map->inner_map_fd = bpf_map__fd(map->inner_map); 5233 } 5234 if (map->inner_map_fd >= 0) 5235 create_attr.inner_map_fd = map->inner_map_fd; 5236 } 5237 5238 switch (def->type) { 5239 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5240 case BPF_MAP_TYPE_CGROUP_ARRAY: 5241 case BPF_MAP_TYPE_STACK_TRACE: 5242 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5243 case BPF_MAP_TYPE_HASH_OF_MAPS: 5244 case BPF_MAP_TYPE_DEVMAP: 5245 case BPF_MAP_TYPE_DEVMAP_HASH: 5246 case BPF_MAP_TYPE_CPUMAP: 5247 case BPF_MAP_TYPE_XSKMAP: 5248 case BPF_MAP_TYPE_SOCKMAP: 5249 case BPF_MAP_TYPE_SOCKHASH: 5250 case BPF_MAP_TYPE_QUEUE: 5251 case BPF_MAP_TYPE_STACK: 5252 create_attr.btf_fd = 0; 5253 create_attr.btf_key_type_id = 0; 5254 create_attr.btf_value_type_id = 0; 5255 map->btf_key_type_id = 0; 5256 map->btf_value_type_id = 0; 5257 default: 5258 break; 5259 } 5260 5261 if (obj->gen_loader) { 5262 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5263 def->key_size, def->value_size, def->max_entries, 5264 &create_attr, is_inner ? -1 : map - obj->maps); 5265 /* Pretend to have valid FD to pass various fd >= 0 checks. 5266 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5267 */ 5268 map->fd = 0; 5269 } else { 5270 map->fd = bpf_map_create(def->type, map_name, 5271 def->key_size, def->value_size, 5272 def->max_entries, &create_attr); 5273 } 5274 if (map->fd < 0 && (create_attr.btf_key_type_id || 5275 create_attr.btf_value_type_id)) { 5276 char *cp, errmsg[STRERR_BUFSIZE]; 5277 5278 err = -errno; 5279 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5280 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5281 map->name, cp, err); 5282 create_attr.btf_fd = 0; 5283 create_attr.btf_key_type_id = 0; 5284 create_attr.btf_value_type_id = 0; 5285 map->btf_key_type_id = 0; 5286 map->btf_value_type_id = 0; 5287 map->fd = bpf_map_create(def->type, map_name, 5288 def->key_size, def->value_size, 5289 def->max_entries, &create_attr); 5290 } 5291 5292 err = map->fd < 0 ? -errno : 0; 5293 5294 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5295 if (obj->gen_loader) 5296 map->inner_map->fd = -1; 5297 bpf_map__destroy(map->inner_map); 5298 zfree(&map->inner_map); 5299 } 5300 5301 return err; 5302 } 5303 5304 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5305 { 5306 const struct bpf_map *targ_map; 5307 unsigned int i; 5308 int fd, err = 0; 5309 5310 for (i = 0; i < map->init_slots_sz; i++) { 5311 if (!map->init_slots[i]) 5312 continue; 5313 5314 targ_map = map->init_slots[i]; 5315 fd = bpf_map__fd(targ_map); 5316 5317 if (obj->gen_loader) { 5318 bpf_gen__populate_outer_map(obj->gen_loader, 5319 map - obj->maps, i, 5320 targ_map - obj->maps); 5321 } else { 5322 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5323 } 5324 if (err) { 5325 err = -errno; 5326 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5327 map->name, i, targ_map->name, fd, err); 5328 return err; 5329 } 5330 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5331 map->name, i, targ_map->name, fd); 5332 } 5333 5334 zfree(&map->init_slots); 5335 map->init_slots_sz = 0; 5336 5337 return 0; 5338 } 5339 5340 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5341 { 5342 const struct bpf_program *targ_prog; 5343 unsigned int i; 5344 int fd, err; 5345 5346 if (obj->gen_loader) 5347 return -ENOTSUP; 5348 5349 for (i = 0; i < map->init_slots_sz; i++) { 5350 if (!map->init_slots[i]) 5351 continue; 5352 5353 targ_prog = map->init_slots[i]; 5354 fd = bpf_program__fd(targ_prog); 5355 5356 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5357 if (err) { 5358 err = -errno; 5359 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5360 map->name, i, targ_prog->name, fd, err); 5361 return err; 5362 } 5363 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5364 map->name, i, targ_prog->name, fd); 5365 } 5366 5367 zfree(&map->init_slots); 5368 map->init_slots_sz = 0; 5369 5370 return 0; 5371 } 5372 5373 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5374 { 5375 struct bpf_map *map; 5376 int i, err; 5377 5378 for (i = 0; i < obj->nr_maps; i++) { 5379 map = &obj->maps[i]; 5380 5381 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5382 continue; 5383 5384 err = init_prog_array_slots(obj, map); 5385 if (err < 0) { 5386 zclose(map->fd); 5387 return err; 5388 } 5389 } 5390 return 0; 5391 } 5392 5393 static int map_set_def_max_entries(struct bpf_map *map) 5394 { 5395 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5396 int nr_cpus; 5397 5398 nr_cpus = libbpf_num_possible_cpus(); 5399 if (nr_cpus < 0) { 5400 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5401 map->name, nr_cpus); 5402 return nr_cpus; 5403 } 5404 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5405 map->def.max_entries = nr_cpus; 5406 } 5407 5408 return 0; 5409 } 5410 5411 static int 5412 bpf_object__create_maps(struct bpf_object *obj) 5413 { 5414 struct bpf_map *map; 5415 char *cp, errmsg[STRERR_BUFSIZE]; 5416 unsigned int i, j; 5417 int err; 5418 bool retried; 5419 5420 for (i = 0; i < obj->nr_maps; i++) { 5421 map = &obj->maps[i]; 5422 5423 /* To support old kernels, we skip creating global data maps 5424 * (.rodata, .data, .kconfig, etc); later on, during program 5425 * loading, if we detect that at least one of the to-be-loaded 5426 * programs is referencing any global data map, we'll error 5427 * out with program name and relocation index logged. 5428 * This approach allows to accommodate Clang emitting 5429 * unnecessary .rodata.str1.1 sections for string literals, 5430 * but also it allows to have CO-RE applications that use 5431 * global variables in some of BPF programs, but not others. 5432 * If those global variable-using programs are not loaded at 5433 * runtime due to bpf_program__set_autoload(prog, false), 5434 * bpf_object loading will succeed just fine even on old 5435 * kernels. 5436 */ 5437 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5438 map->autocreate = false; 5439 5440 if (!map->autocreate) { 5441 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5442 continue; 5443 } 5444 5445 err = map_set_def_max_entries(map); 5446 if (err) 5447 goto err_out; 5448 5449 retried = false; 5450 retry: 5451 if (map->pin_path) { 5452 err = bpf_object__reuse_map(map); 5453 if (err) { 5454 pr_warn("map '%s': error reusing pinned map\n", 5455 map->name); 5456 goto err_out; 5457 } 5458 if (retried && map->fd < 0) { 5459 pr_warn("map '%s': cannot find pinned map\n", 5460 map->name); 5461 err = -ENOENT; 5462 goto err_out; 5463 } 5464 } 5465 5466 if (map->fd >= 0) { 5467 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5468 map->name, map->fd); 5469 } else { 5470 err = bpf_object__create_map(obj, map, false); 5471 if (err) 5472 goto err_out; 5473 5474 pr_debug("map '%s': created successfully, fd=%d\n", 5475 map->name, map->fd); 5476 5477 if (bpf_map__is_internal(map)) { 5478 err = bpf_object__populate_internal_map(obj, map); 5479 if (err < 0) { 5480 zclose(map->fd); 5481 goto err_out; 5482 } 5483 } 5484 5485 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5486 err = init_map_in_map_slots(obj, map); 5487 if (err < 0) { 5488 zclose(map->fd); 5489 goto err_out; 5490 } 5491 } 5492 } 5493 5494 if (map->pin_path && !map->pinned) { 5495 err = bpf_map__pin(map, NULL); 5496 if (err) { 5497 zclose(map->fd); 5498 if (!retried && err == -EEXIST) { 5499 retried = true; 5500 goto retry; 5501 } 5502 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5503 map->name, map->pin_path, err); 5504 goto err_out; 5505 } 5506 } 5507 } 5508 5509 return 0; 5510 5511 err_out: 5512 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5513 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5514 pr_perm_msg(err); 5515 for (j = 0; j < i; j++) 5516 zclose(obj->maps[j].fd); 5517 return err; 5518 } 5519 5520 static bool bpf_core_is_flavor_sep(const char *s) 5521 { 5522 /* check X___Y name pattern, where X and Y are not underscores */ 5523 return s[0] != '_' && /* X */ 5524 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5525 s[4] != '_'; /* Y */ 5526 } 5527 5528 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5529 * before last triple underscore. Struct name part after last triple 5530 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5531 */ 5532 size_t bpf_core_essential_name_len(const char *name) 5533 { 5534 size_t n = strlen(name); 5535 int i; 5536 5537 for (i = n - 5; i >= 0; i--) { 5538 if (bpf_core_is_flavor_sep(name + i)) 5539 return i + 1; 5540 } 5541 return n; 5542 } 5543 5544 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5545 { 5546 if (!cands) 5547 return; 5548 5549 free(cands->cands); 5550 free(cands); 5551 } 5552 5553 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5554 size_t local_essent_len, 5555 const struct btf *targ_btf, 5556 const char *targ_btf_name, 5557 int targ_start_id, 5558 struct bpf_core_cand_list *cands) 5559 { 5560 struct bpf_core_cand *new_cands, *cand; 5561 const struct btf_type *t, *local_t; 5562 const char *targ_name, *local_name; 5563 size_t targ_essent_len; 5564 int n, i; 5565 5566 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5567 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5568 5569 n = btf__type_cnt(targ_btf); 5570 for (i = targ_start_id; i < n; i++) { 5571 t = btf__type_by_id(targ_btf, i); 5572 if (!btf_kind_core_compat(t, local_t)) 5573 continue; 5574 5575 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5576 if (str_is_empty(targ_name)) 5577 continue; 5578 5579 targ_essent_len = bpf_core_essential_name_len(targ_name); 5580 if (targ_essent_len != local_essent_len) 5581 continue; 5582 5583 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5584 continue; 5585 5586 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5587 local_cand->id, btf_kind_str(local_t), 5588 local_name, i, btf_kind_str(t), targ_name, 5589 targ_btf_name); 5590 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5591 sizeof(*cands->cands)); 5592 if (!new_cands) 5593 return -ENOMEM; 5594 5595 cand = &new_cands[cands->len]; 5596 cand->btf = targ_btf; 5597 cand->id = i; 5598 5599 cands->cands = new_cands; 5600 cands->len++; 5601 } 5602 return 0; 5603 } 5604 5605 static int load_module_btfs(struct bpf_object *obj) 5606 { 5607 struct bpf_btf_info info; 5608 struct module_btf *mod_btf; 5609 struct btf *btf; 5610 char name[64]; 5611 __u32 id = 0, len; 5612 int err, fd; 5613 5614 if (obj->btf_modules_loaded) 5615 return 0; 5616 5617 if (obj->gen_loader) 5618 return 0; 5619 5620 /* don't do this again, even if we find no module BTFs */ 5621 obj->btf_modules_loaded = true; 5622 5623 /* kernel too old to support module BTFs */ 5624 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5625 return 0; 5626 5627 while (true) { 5628 err = bpf_btf_get_next_id(id, &id); 5629 if (err && errno == ENOENT) 5630 return 0; 5631 if (err && errno == EPERM) { 5632 pr_debug("skipping module BTFs loading, missing privileges\n"); 5633 return 0; 5634 } 5635 if (err) { 5636 err = -errno; 5637 pr_warn("failed to iterate BTF objects: %d\n", err); 5638 return err; 5639 } 5640 5641 fd = bpf_btf_get_fd_by_id(id); 5642 if (fd < 0) { 5643 if (errno == ENOENT) 5644 continue; /* expected race: BTF was unloaded */ 5645 err = -errno; 5646 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5647 return err; 5648 } 5649 5650 len = sizeof(info); 5651 memset(&info, 0, sizeof(info)); 5652 info.name = ptr_to_u64(name); 5653 info.name_len = sizeof(name); 5654 5655 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5656 if (err) { 5657 err = -errno; 5658 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5659 goto err_out; 5660 } 5661 5662 /* ignore non-module BTFs */ 5663 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5664 close(fd); 5665 continue; 5666 } 5667 5668 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5669 err = libbpf_get_error(btf); 5670 if (err) { 5671 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5672 name, id, err); 5673 goto err_out; 5674 } 5675 5676 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5677 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5678 if (err) 5679 goto err_out; 5680 5681 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5682 5683 mod_btf->btf = btf; 5684 mod_btf->id = id; 5685 mod_btf->fd = fd; 5686 mod_btf->name = strdup(name); 5687 if (!mod_btf->name) { 5688 err = -ENOMEM; 5689 goto err_out; 5690 } 5691 continue; 5692 5693 err_out: 5694 close(fd); 5695 return err; 5696 } 5697 5698 return 0; 5699 } 5700 5701 static struct bpf_core_cand_list * 5702 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5703 { 5704 struct bpf_core_cand local_cand = {}; 5705 struct bpf_core_cand_list *cands; 5706 const struct btf *main_btf; 5707 const struct btf_type *local_t; 5708 const char *local_name; 5709 size_t local_essent_len; 5710 int err, i; 5711 5712 local_cand.btf = local_btf; 5713 local_cand.id = local_type_id; 5714 local_t = btf__type_by_id(local_btf, local_type_id); 5715 if (!local_t) 5716 return ERR_PTR(-EINVAL); 5717 5718 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5719 if (str_is_empty(local_name)) 5720 return ERR_PTR(-EINVAL); 5721 local_essent_len = bpf_core_essential_name_len(local_name); 5722 5723 cands = calloc(1, sizeof(*cands)); 5724 if (!cands) 5725 return ERR_PTR(-ENOMEM); 5726 5727 /* Attempt to find target candidates in vmlinux BTF first */ 5728 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5729 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5730 if (err) 5731 goto err_out; 5732 5733 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5734 if (cands->len) 5735 return cands; 5736 5737 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5738 if (obj->btf_vmlinux_override) 5739 return cands; 5740 5741 /* now look through module BTFs, trying to still find candidates */ 5742 err = load_module_btfs(obj); 5743 if (err) 5744 goto err_out; 5745 5746 for (i = 0; i < obj->btf_module_cnt; i++) { 5747 err = bpf_core_add_cands(&local_cand, local_essent_len, 5748 obj->btf_modules[i].btf, 5749 obj->btf_modules[i].name, 5750 btf__type_cnt(obj->btf_vmlinux), 5751 cands); 5752 if (err) 5753 goto err_out; 5754 } 5755 5756 return cands; 5757 err_out: 5758 bpf_core_free_cands(cands); 5759 return ERR_PTR(err); 5760 } 5761 5762 /* Check local and target types for compatibility. This check is used for 5763 * type-based CO-RE relocations and follow slightly different rules than 5764 * field-based relocations. This function assumes that root types were already 5765 * checked for name match. Beyond that initial root-level name check, names 5766 * are completely ignored. Compatibility rules are as follows: 5767 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5768 * kind should match for local and target types (i.e., STRUCT is not 5769 * compatible with UNION); 5770 * - for ENUMs, the size is ignored; 5771 * - for INT, size and signedness are ignored; 5772 * - for ARRAY, dimensionality is ignored, element types are checked for 5773 * compatibility recursively; 5774 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5775 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5776 * - FUNC_PROTOs are compatible if they have compatible signature: same 5777 * number of input args and compatible return and argument types. 5778 * These rules are not set in stone and probably will be adjusted as we get 5779 * more experience with using BPF CO-RE relocations. 5780 */ 5781 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5782 const struct btf *targ_btf, __u32 targ_id) 5783 { 5784 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5785 } 5786 5787 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5788 const struct btf *targ_btf, __u32 targ_id) 5789 { 5790 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5791 } 5792 5793 static size_t bpf_core_hash_fn(const long key, void *ctx) 5794 { 5795 return key; 5796 } 5797 5798 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5799 { 5800 return k1 == k2; 5801 } 5802 5803 static int record_relo_core(struct bpf_program *prog, 5804 const struct bpf_core_relo *core_relo, int insn_idx) 5805 { 5806 struct reloc_desc *relos, *relo; 5807 5808 relos = libbpf_reallocarray(prog->reloc_desc, 5809 prog->nr_reloc + 1, sizeof(*relos)); 5810 if (!relos) 5811 return -ENOMEM; 5812 relo = &relos[prog->nr_reloc]; 5813 relo->type = RELO_CORE; 5814 relo->insn_idx = insn_idx; 5815 relo->core_relo = core_relo; 5816 prog->reloc_desc = relos; 5817 prog->nr_reloc++; 5818 return 0; 5819 } 5820 5821 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5822 { 5823 struct reloc_desc *relo; 5824 int i; 5825 5826 for (i = 0; i < prog->nr_reloc; i++) { 5827 relo = &prog->reloc_desc[i]; 5828 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5829 continue; 5830 5831 return relo->core_relo; 5832 } 5833 5834 return NULL; 5835 } 5836 5837 static int bpf_core_resolve_relo(struct bpf_program *prog, 5838 const struct bpf_core_relo *relo, 5839 int relo_idx, 5840 const struct btf *local_btf, 5841 struct hashmap *cand_cache, 5842 struct bpf_core_relo_res *targ_res) 5843 { 5844 struct bpf_core_spec specs_scratch[3] = {}; 5845 struct bpf_core_cand_list *cands = NULL; 5846 const char *prog_name = prog->name; 5847 const struct btf_type *local_type; 5848 const char *local_name; 5849 __u32 local_id = relo->type_id; 5850 int err; 5851 5852 local_type = btf__type_by_id(local_btf, local_id); 5853 if (!local_type) 5854 return -EINVAL; 5855 5856 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5857 if (!local_name) 5858 return -EINVAL; 5859 5860 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5861 !hashmap__find(cand_cache, local_id, &cands)) { 5862 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5863 if (IS_ERR(cands)) { 5864 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5865 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5866 local_name, PTR_ERR(cands)); 5867 return PTR_ERR(cands); 5868 } 5869 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5870 if (err) { 5871 bpf_core_free_cands(cands); 5872 return err; 5873 } 5874 } 5875 5876 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5877 targ_res); 5878 } 5879 5880 static int 5881 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5882 { 5883 const struct btf_ext_info_sec *sec; 5884 struct bpf_core_relo_res targ_res; 5885 const struct bpf_core_relo *rec; 5886 const struct btf_ext_info *seg; 5887 struct hashmap_entry *entry; 5888 struct hashmap *cand_cache = NULL; 5889 struct bpf_program *prog; 5890 struct bpf_insn *insn; 5891 const char *sec_name; 5892 int i, err = 0, insn_idx, sec_idx, sec_num; 5893 5894 if (obj->btf_ext->core_relo_info.len == 0) 5895 return 0; 5896 5897 if (targ_btf_path) { 5898 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5899 err = libbpf_get_error(obj->btf_vmlinux_override); 5900 if (err) { 5901 pr_warn("failed to parse target BTF: %d\n", err); 5902 return err; 5903 } 5904 } 5905 5906 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5907 if (IS_ERR(cand_cache)) { 5908 err = PTR_ERR(cand_cache); 5909 goto out; 5910 } 5911 5912 seg = &obj->btf_ext->core_relo_info; 5913 sec_num = 0; 5914 for_each_btf_ext_sec(seg, sec) { 5915 sec_idx = seg->sec_idxs[sec_num]; 5916 sec_num++; 5917 5918 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5919 if (str_is_empty(sec_name)) { 5920 err = -EINVAL; 5921 goto out; 5922 } 5923 5924 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5925 5926 for_each_btf_ext_rec(seg, sec, i, rec) { 5927 if (rec->insn_off % BPF_INSN_SZ) 5928 return -EINVAL; 5929 insn_idx = rec->insn_off / BPF_INSN_SZ; 5930 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5931 if (!prog) { 5932 /* When __weak subprog is "overridden" by another instance 5933 * of the subprog from a different object file, linker still 5934 * appends all the .BTF.ext info that used to belong to that 5935 * eliminated subprogram. 5936 * This is similar to what x86-64 linker does for relocations. 5937 * So just ignore such relocations just like we ignore 5938 * subprog instructions when discovering subprograms. 5939 */ 5940 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5941 sec_name, i, insn_idx); 5942 continue; 5943 } 5944 /* no need to apply CO-RE relocation if the program is 5945 * not going to be loaded 5946 */ 5947 if (!prog->autoload) 5948 continue; 5949 5950 /* adjust insn_idx from section frame of reference to the local 5951 * program's frame of reference; (sub-)program code is not yet 5952 * relocated, so it's enough to just subtract in-section offset 5953 */ 5954 insn_idx = insn_idx - prog->sec_insn_off; 5955 if (insn_idx >= prog->insns_cnt) 5956 return -EINVAL; 5957 insn = &prog->insns[insn_idx]; 5958 5959 err = record_relo_core(prog, rec, insn_idx); 5960 if (err) { 5961 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5962 prog->name, i, err); 5963 goto out; 5964 } 5965 5966 if (prog->obj->gen_loader) 5967 continue; 5968 5969 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5970 if (err) { 5971 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5972 prog->name, i, err); 5973 goto out; 5974 } 5975 5976 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5977 if (err) { 5978 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5979 prog->name, i, insn_idx, err); 5980 goto out; 5981 } 5982 } 5983 } 5984 5985 out: 5986 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5987 btf__free(obj->btf_vmlinux_override); 5988 obj->btf_vmlinux_override = NULL; 5989 5990 if (!IS_ERR_OR_NULL(cand_cache)) { 5991 hashmap__for_each_entry(cand_cache, entry, i) { 5992 bpf_core_free_cands(entry->pvalue); 5993 } 5994 hashmap__free(cand_cache); 5995 } 5996 return err; 5997 } 5998 5999 /* base map load ldimm64 special constant, used also for log fixup logic */ 6000 #define POISON_LDIMM64_MAP_BASE 2001000000 6001 #define POISON_LDIMM64_MAP_PFX "200100" 6002 6003 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6004 int insn_idx, struct bpf_insn *insn, 6005 int map_idx, const struct bpf_map *map) 6006 { 6007 int i; 6008 6009 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6010 prog->name, relo_idx, insn_idx, map_idx, map->name); 6011 6012 /* we turn single ldimm64 into two identical invalid calls */ 6013 for (i = 0; i < 2; i++) { 6014 insn->code = BPF_JMP | BPF_CALL; 6015 insn->dst_reg = 0; 6016 insn->src_reg = 0; 6017 insn->off = 0; 6018 /* if this instruction is reachable (not a dead code), 6019 * verifier will complain with something like: 6020 * invalid func unknown#2001000123 6021 * where lower 123 is map index into obj->maps[] array 6022 */ 6023 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6024 6025 insn++; 6026 } 6027 } 6028 6029 /* unresolved kfunc call special constant, used also for log fixup logic */ 6030 #define POISON_CALL_KFUNC_BASE 2002000000 6031 #define POISON_CALL_KFUNC_PFX "2002" 6032 6033 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6034 int insn_idx, struct bpf_insn *insn, 6035 int ext_idx, const struct extern_desc *ext) 6036 { 6037 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6038 prog->name, relo_idx, insn_idx, ext->name); 6039 6040 /* we turn kfunc call into invalid helper call with identifiable constant */ 6041 insn->code = BPF_JMP | BPF_CALL; 6042 insn->dst_reg = 0; 6043 insn->src_reg = 0; 6044 insn->off = 0; 6045 /* if this instruction is reachable (not a dead code), 6046 * verifier will complain with something like: 6047 * invalid func unknown#2001000123 6048 * where lower 123 is extern index into obj->externs[] array 6049 */ 6050 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6051 } 6052 6053 /* Relocate data references within program code: 6054 * - map references; 6055 * - global variable references; 6056 * - extern references. 6057 */ 6058 static int 6059 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6060 { 6061 int i; 6062 6063 for (i = 0; i < prog->nr_reloc; i++) { 6064 struct reloc_desc *relo = &prog->reloc_desc[i]; 6065 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6066 const struct bpf_map *map; 6067 struct extern_desc *ext; 6068 6069 switch (relo->type) { 6070 case RELO_LD64: 6071 map = &obj->maps[relo->map_idx]; 6072 if (obj->gen_loader) { 6073 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6074 insn[0].imm = relo->map_idx; 6075 } else if (map->autocreate) { 6076 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6077 insn[0].imm = map->fd; 6078 } else { 6079 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6080 relo->map_idx, map); 6081 } 6082 break; 6083 case RELO_DATA: 6084 map = &obj->maps[relo->map_idx]; 6085 insn[1].imm = insn[0].imm + relo->sym_off; 6086 if (obj->gen_loader) { 6087 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6088 insn[0].imm = relo->map_idx; 6089 } else if (map->autocreate) { 6090 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6091 insn[0].imm = map->fd; 6092 } else { 6093 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6094 relo->map_idx, map); 6095 } 6096 break; 6097 case RELO_EXTERN_LD64: 6098 ext = &obj->externs[relo->ext_idx]; 6099 if (ext->type == EXT_KCFG) { 6100 if (obj->gen_loader) { 6101 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6102 insn[0].imm = obj->kconfig_map_idx; 6103 } else { 6104 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6105 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6106 } 6107 insn[1].imm = ext->kcfg.data_off; 6108 } else /* EXT_KSYM */ { 6109 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6110 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6111 insn[0].imm = ext->ksym.kernel_btf_id; 6112 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6113 } else { /* typeless ksyms or unresolved typed ksyms */ 6114 insn[0].imm = (__u32)ext->ksym.addr; 6115 insn[1].imm = ext->ksym.addr >> 32; 6116 } 6117 } 6118 break; 6119 case RELO_EXTERN_CALL: 6120 ext = &obj->externs[relo->ext_idx]; 6121 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6122 if (ext->is_set) { 6123 insn[0].imm = ext->ksym.kernel_btf_id; 6124 insn[0].off = ext->ksym.btf_fd_idx; 6125 } else { /* unresolved weak kfunc call */ 6126 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6127 relo->ext_idx, ext); 6128 } 6129 break; 6130 case RELO_SUBPROG_ADDR: 6131 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6132 pr_warn("prog '%s': relo #%d: bad insn\n", 6133 prog->name, i); 6134 return -EINVAL; 6135 } 6136 /* handled already */ 6137 break; 6138 case RELO_CALL: 6139 /* handled already */ 6140 break; 6141 case RELO_CORE: 6142 /* will be handled by bpf_program_record_relos() */ 6143 break; 6144 default: 6145 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6146 prog->name, i, relo->type); 6147 return -EINVAL; 6148 } 6149 } 6150 6151 return 0; 6152 } 6153 6154 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6155 const struct bpf_program *prog, 6156 const struct btf_ext_info *ext_info, 6157 void **prog_info, __u32 *prog_rec_cnt, 6158 __u32 *prog_rec_sz) 6159 { 6160 void *copy_start = NULL, *copy_end = NULL; 6161 void *rec, *rec_end, *new_prog_info; 6162 const struct btf_ext_info_sec *sec; 6163 size_t old_sz, new_sz; 6164 int i, sec_num, sec_idx, off_adj; 6165 6166 sec_num = 0; 6167 for_each_btf_ext_sec(ext_info, sec) { 6168 sec_idx = ext_info->sec_idxs[sec_num]; 6169 sec_num++; 6170 if (prog->sec_idx != sec_idx) 6171 continue; 6172 6173 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6174 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6175 6176 if (insn_off < prog->sec_insn_off) 6177 continue; 6178 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6179 break; 6180 6181 if (!copy_start) 6182 copy_start = rec; 6183 copy_end = rec + ext_info->rec_size; 6184 } 6185 6186 if (!copy_start) 6187 return -ENOENT; 6188 6189 /* append func/line info of a given (sub-)program to the main 6190 * program func/line info 6191 */ 6192 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6193 new_sz = old_sz + (copy_end - copy_start); 6194 new_prog_info = realloc(*prog_info, new_sz); 6195 if (!new_prog_info) 6196 return -ENOMEM; 6197 *prog_info = new_prog_info; 6198 *prog_rec_cnt = new_sz / ext_info->rec_size; 6199 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6200 6201 /* Kernel instruction offsets are in units of 8-byte 6202 * instructions, while .BTF.ext instruction offsets generated 6203 * by Clang are in units of bytes. So convert Clang offsets 6204 * into kernel offsets and adjust offset according to program 6205 * relocated position. 6206 */ 6207 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6208 rec = new_prog_info + old_sz; 6209 rec_end = new_prog_info + new_sz; 6210 for (; rec < rec_end; rec += ext_info->rec_size) { 6211 __u32 *insn_off = rec; 6212 6213 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6214 } 6215 *prog_rec_sz = ext_info->rec_size; 6216 return 0; 6217 } 6218 6219 return -ENOENT; 6220 } 6221 6222 static int 6223 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6224 struct bpf_program *main_prog, 6225 const struct bpf_program *prog) 6226 { 6227 int err; 6228 6229 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6230 * supprot func/line info 6231 */ 6232 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6233 return 0; 6234 6235 /* only attempt func info relocation if main program's func_info 6236 * relocation was successful 6237 */ 6238 if (main_prog != prog && !main_prog->func_info) 6239 goto line_info; 6240 6241 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6242 &main_prog->func_info, 6243 &main_prog->func_info_cnt, 6244 &main_prog->func_info_rec_size); 6245 if (err) { 6246 if (err != -ENOENT) { 6247 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6248 prog->name, err); 6249 return err; 6250 } 6251 if (main_prog->func_info) { 6252 /* 6253 * Some info has already been found but has problem 6254 * in the last btf_ext reloc. Must have to error out. 6255 */ 6256 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6257 return err; 6258 } 6259 /* Have problem loading the very first info. Ignore the rest. */ 6260 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6261 prog->name); 6262 } 6263 6264 line_info: 6265 /* don't relocate line info if main program's relocation failed */ 6266 if (main_prog != prog && !main_prog->line_info) 6267 return 0; 6268 6269 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6270 &main_prog->line_info, 6271 &main_prog->line_info_cnt, 6272 &main_prog->line_info_rec_size); 6273 if (err) { 6274 if (err != -ENOENT) { 6275 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6276 prog->name, err); 6277 return err; 6278 } 6279 if (main_prog->line_info) { 6280 /* 6281 * Some info has already been found but has problem 6282 * in the last btf_ext reloc. Must have to error out. 6283 */ 6284 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6285 return err; 6286 } 6287 /* Have problem loading the very first info. Ignore the rest. */ 6288 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6289 prog->name); 6290 } 6291 return 0; 6292 } 6293 6294 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6295 { 6296 size_t insn_idx = *(const size_t *)key; 6297 const struct reloc_desc *relo = elem; 6298 6299 if (insn_idx == relo->insn_idx) 6300 return 0; 6301 return insn_idx < relo->insn_idx ? -1 : 1; 6302 } 6303 6304 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6305 { 6306 if (!prog->nr_reloc) 6307 return NULL; 6308 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6309 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6310 } 6311 6312 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6313 { 6314 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6315 struct reloc_desc *relos; 6316 int i; 6317 6318 if (main_prog == subprog) 6319 return 0; 6320 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6321 /* if new count is zero, reallocarray can return a valid NULL result; 6322 * in this case the previous pointer will be freed, so we *have to* 6323 * reassign old pointer to the new value (even if it's NULL) 6324 */ 6325 if (!relos && new_cnt) 6326 return -ENOMEM; 6327 if (subprog->nr_reloc) 6328 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6329 sizeof(*relos) * subprog->nr_reloc); 6330 6331 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6332 relos[i].insn_idx += subprog->sub_insn_off; 6333 /* After insn_idx adjustment the 'relos' array is still sorted 6334 * by insn_idx and doesn't break bsearch. 6335 */ 6336 main_prog->reloc_desc = relos; 6337 main_prog->nr_reloc = new_cnt; 6338 return 0; 6339 } 6340 6341 static int 6342 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6343 struct bpf_program *subprog) 6344 { 6345 struct bpf_insn *insns; 6346 size_t new_cnt; 6347 int err; 6348 6349 subprog->sub_insn_off = main_prog->insns_cnt; 6350 6351 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6352 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6353 if (!insns) { 6354 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6355 return -ENOMEM; 6356 } 6357 main_prog->insns = insns; 6358 main_prog->insns_cnt = new_cnt; 6359 6360 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6361 subprog->insns_cnt * sizeof(*insns)); 6362 6363 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6364 main_prog->name, subprog->insns_cnt, subprog->name); 6365 6366 /* The subprog insns are now appended. Append its relos too. */ 6367 err = append_subprog_relos(main_prog, subprog); 6368 if (err) 6369 return err; 6370 return 0; 6371 } 6372 6373 static int 6374 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6375 struct bpf_program *prog) 6376 { 6377 size_t sub_insn_idx, insn_idx; 6378 struct bpf_program *subprog; 6379 struct reloc_desc *relo; 6380 struct bpf_insn *insn; 6381 int err; 6382 6383 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6384 if (err) 6385 return err; 6386 6387 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6388 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6389 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6390 continue; 6391 6392 relo = find_prog_insn_relo(prog, insn_idx); 6393 if (relo && relo->type == RELO_EXTERN_CALL) 6394 /* kfunc relocations will be handled later 6395 * in bpf_object__relocate_data() 6396 */ 6397 continue; 6398 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6399 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6400 prog->name, insn_idx, relo->type); 6401 return -LIBBPF_ERRNO__RELOC; 6402 } 6403 if (relo) { 6404 /* sub-program instruction index is a combination of 6405 * an offset of a symbol pointed to by relocation and 6406 * call instruction's imm field; for global functions, 6407 * call always has imm = -1, but for static functions 6408 * relocation is against STT_SECTION and insn->imm 6409 * points to a start of a static function 6410 * 6411 * for subprog addr relocation, the relo->sym_off + insn->imm is 6412 * the byte offset in the corresponding section. 6413 */ 6414 if (relo->type == RELO_CALL) 6415 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6416 else 6417 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6418 } else if (insn_is_pseudo_func(insn)) { 6419 /* 6420 * RELO_SUBPROG_ADDR relo is always emitted even if both 6421 * functions are in the same section, so it shouldn't reach here. 6422 */ 6423 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6424 prog->name, insn_idx); 6425 return -LIBBPF_ERRNO__RELOC; 6426 } else { 6427 /* if subprogram call is to a static function within 6428 * the same ELF section, there won't be any relocation 6429 * emitted, but it also means there is no additional 6430 * offset necessary, insns->imm is relative to 6431 * instruction's original position within the section 6432 */ 6433 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6434 } 6435 6436 /* we enforce that sub-programs should be in .text section */ 6437 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6438 if (!subprog) { 6439 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6440 prog->name); 6441 return -LIBBPF_ERRNO__RELOC; 6442 } 6443 6444 /* if it's the first call instruction calling into this 6445 * subprogram (meaning this subprog hasn't been processed 6446 * yet) within the context of current main program: 6447 * - append it at the end of main program's instructions blog; 6448 * - process is recursively, while current program is put on hold; 6449 * - if that subprogram calls some other not yet processes 6450 * subprogram, same thing will happen recursively until 6451 * there are no more unprocesses subprograms left to append 6452 * and relocate. 6453 */ 6454 if (subprog->sub_insn_off == 0) { 6455 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6456 if (err) 6457 return err; 6458 err = bpf_object__reloc_code(obj, main_prog, subprog); 6459 if (err) 6460 return err; 6461 } 6462 6463 /* main_prog->insns memory could have been re-allocated, so 6464 * calculate pointer again 6465 */ 6466 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6467 /* calculate correct instruction position within current main 6468 * prog; each main prog can have a different set of 6469 * subprograms appended (potentially in different order as 6470 * well), so position of any subprog can be different for 6471 * different main programs 6472 */ 6473 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6474 6475 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6476 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6477 } 6478 6479 return 0; 6480 } 6481 6482 /* 6483 * Relocate sub-program calls. 6484 * 6485 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6486 * main prog) is processed separately. For each subprog (non-entry functions, 6487 * that can be called from either entry progs or other subprogs) gets their 6488 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6489 * hasn't been yet appended and relocated within current main prog. Once its 6490 * relocated, sub_insn_off will point at the position within current main prog 6491 * where given subprog was appended. This will further be used to relocate all 6492 * the call instructions jumping into this subprog. 6493 * 6494 * We start with main program and process all call instructions. If the call 6495 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6496 * is zero), subprog instructions are appended at the end of main program's 6497 * instruction array. Then main program is "put on hold" while we recursively 6498 * process newly appended subprogram. If that subprogram calls into another 6499 * subprogram that hasn't been appended, new subprogram is appended again to 6500 * the *main* prog's instructions (subprog's instructions are always left 6501 * untouched, as they need to be in unmodified state for subsequent main progs 6502 * and subprog instructions are always sent only as part of a main prog) and 6503 * the process continues recursively. Once all the subprogs called from a main 6504 * prog or any of its subprogs are appended (and relocated), all their 6505 * positions within finalized instructions array are known, so it's easy to 6506 * rewrite call instructions with correct relative offsets, corresponding to 6507 * desired target subprog. 6508 * 6509 * Its important to realize that some subprogs might not be called from some 6510 * main prog and any of its called/used subprogs. Those will keep their 6511 * subprog->sub_insn_off as zero at all times and won't be appended to current 6512 * main prog and won't be relocated within the context of current main prog. 6513 * They might still be used from other main progs later. 6514 * 6515 * Visually this process can be shown as below. Suppose we have two main 6516 * programs mainA and mainB and BPF object contains three subprogs: subA, 6517 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6518 * subC both call subB: 6519 * 6520 * +--------+ +-------+ 6521 * | v v | 6522 * +--+---+ +--+-+-+ +---+--+ 6523 * | subA | | subB | | subC | 6524 * +--+---+ +------+ +---+--+ 6525 * ^ ^ 6526 * | | 6527 * +---+-------+ +------+----+ 6528 * | mainA | | mainB | 6529 * +-----------+ +-----------+ 6530 * 6531 * We'll start relocating mainA, will find subA, append it and start 6532 * processing sub A recursively: 6533 * 6534 * +-----------+------+ 6535 * | mainA | subA | 6536 * +-----------+------+ 6537 * 6538 * At this point we notice that subB is used from subA, so we append it and 6539 * relocate (there are no further subcalls from subB): 6540 * 6541 * +-----------+------+------+ 6542 * | mainA | subA | subB | 6543 * +-----------+------+------+ 6544 * 6545 * At this point, we relocate subA calls, then go one level up and finish with 6546 * relocatin mainA calls. mainA is done. 6547 * 6548 * For mainB process is similar but results in different order. We start with 6549 * mainB and skip subA and subB, as mainB never calls them (at least 6550 * directly), but we see subC is needed, so we append and start processing it: 6551 * 6552 * +-----------+------+ 6553 * | mainB | subC | 6554 * +-----------+------+ 6555 * Now we see subC needs subB, so we go back to it, append and relocate it: 6556 * 6557 * +-----------+------+------+ 6558 * | mainB | subC | subB | 6559 * +-----------+------+------+ 6560 * 6561 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6562 */ 6563 static int 6564 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6565 { 6566 struct bpf_program *subprog; 6567 int i, err; 6568 6569 /* mark all subprogs as not relocated (yet) within the context of 6570 * current main program 6571 */ 6572 for (i = 0; i < obj->nr_programs; i++) { 6573 subprog = &obj->programs[i]; 6574 if (!prog_is_subprog(obj, subprog)) 6575 continue; 6576 6577 subprog->sub_insn_off = 0; 6578 } 6579 6580 err = bpf_object__reloc_code(obj, prog, prog); 6581 if (err) 6582 return err; 6583 6584 return 0; 6585 } 6586 6587 static void 6588 bpf_object__free_relocs(struct bpf_object *obj) 6589 { 6590 struct bpf_program *prog; 6591 int i; 6592 6593 /* free up relocation descriptors */ 6594 for (i = 0; i < obj->nr_programs; i++) { 6595 prog = &obj->programs[i]; 6596 zfree(&prog->reloc_desc); 6597 prog->nr_reloc = 0; 6598 } 6599 } 6600 6601 static int cmp_relocs(const void *_a, const void *_b) 6602 { 6603 const struct reloc_desc *a = _a; 6604 const struct reloc_desc *b = _b; 6605 6606 if (a->insn_idx != b->insn_idx) 6607 return a->insn_idx < b->insn_idx ? -1 : 1; 6608 6609 /* no two relocations should have the same insn_idx, but ... */ 6610 if (a->type != b->type) 6611 return a->type < b->type ? -1 : 1; 6612 6613 return 0; 6614 } 6615 6616 static void bpf_object__sort_relos(struct bpf_object *obj) 6617 { 6618 int i; 6619 6620 for (i = 0; i < obj->nr_programs; i++) { 6621 struct bpf_program *p = &obj->programs[i]; 6622 6623 if (!p->nr_reloc) 6624 continue; 6625 6626 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6627 } 6628 } 6629 6630 static int 6631 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6632 { 6633 struct bpf_program *prog; 6634 size_t i, j; 6635 int err; 6636 6637 if (obj->btf_ext) { 6638 err = bpf_object__relocate_core(obj, targ_btf_path); 6639 if (err) { 6640 pr_warn("failed to perform CO-RE relocations: %d\n", 6641 err); 6642 return err; 6643 } 6644 bpf_object__sort_relos(obj); 6645 } 6646 6647 /* Before relocating calls pre-process relocations and mark 6648 * few ld_imm64 instructions that points to subprogs. 6649 * Otherwise bpf_object__reloc_code() later would have to consider 6650 * all ld_imm64 insns as relocation candidates. That would 6651 * reduce relocation speed, since amount of find_prog_insn_relo() 6652 * would increase and most of them will fail to find a relo. 6653 */ 6654 for (i = 0; i < obj->nr_programs; i++) { 6655 prog = &obj->programs[i]; 6656 for (j = 0; j < prog->nr_reloc; j++) { 6657 struct reloc_desc *relo = &prog->reloc_desc[j]; 6658 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6659 6660 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6661 if (relo->type == RELO_SUBPROG_ADDR) 6662 insn[0].src_reg = BPF_PSEUDO_FUNC; 6663 } 6664 } 6665 6666 /* relocate subprogram calls and append used subprograms to main 6667 * programs; each copy of subprogram code needs to be relocated 6668 * differently for each main program, because its code location might 6669 * have changed. 6670 * Append subprog relos to main programs to allow data relos to be 6671 * processed after text is completely relocated. 6672 */ 6673 for (i = 0; i < obj->nr_programs; i++) { 6674 prog = &obj->programs[i]; 6675 /* sub-program's sub-calls are relocated within the context of 6676 * its main program only 6677 */ 6678 if (prog_is_subprog(obj, prog)) 6679 continue; 6680 if (!prog->autoload) 6681 continue; 6682 6683 err = bpf_object__relocate_calls(obj, prog); 6684 if (err) { 6685 pr_warn("prog '%s': failed to relocate calls: %d\n", 6686 prog->name, err); 6687 return err; 6688 } 6689 6690 /* Now, also append exception callback if it has not been done already. */ 6691 if (prog->exception_cb_idx >= 0) { 6692 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 6693 6694 /* Calling exception callback directly is disallowed, which the 6695 * verifier will reject later. In case it was processed already, 6696 * we can skip this step, otherwise for all other valid cases we 6697 * have to append exception callback now. 6698 */ 6699 if (subprog->sub_insn_off == 0) { 6700 err = bpf_object__append_subprog_code(obj, prog, subprog); 6701 if (err) 6702 return err; 6703 err = bpf_object__reloc_code(obj, prog, subprog); 6704 if (err) 6705 return err; 6706 } 6707 } 6708 } 6709 /* Process data relos for main programs */ 6710 for (i = 0; i < obj->nr_programs; i++) { 6711 prog = &obj->programs[i]; 6712 if (prog_is_subprog(obj, prog)) 6713 continue; 6714 if (!prog->autoload) 6715 continue; 6716 err = bpf_object__relocate_data(obj, prog); 6717 if (err) { 6718 pr_warn("prog '%s': failed to relocate data references: %d\n", 6719 prog->name, err); 6720 return err; 6721 } 6722 } 6723 6724 return 0; 6725 } 6726 6727 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6728 Elf64_Shdr *shdr, Elf_Data *data); 6729 6730 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6731 Elf64_Shdr *shdr, Elf_Data *data) 6732 { 6733 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6734 int i, j, nrels, new_sz; 6735 const struct btf_var_secinfo *vi = NULL; 6736 const struct btf_type *sec, *var, *def; 6737 struct bpf_map *map = NULL, *targ_map = NULL; 6738 struct bpf_program *targ_prog = NULL; 6739 bool is_prog_array, is_map_in_map; 6740 const struct btf_member *member; 6741 const char *name, *mname, *type; 6742 unsigned int moff; 6743 Elf64_Sym *sym; 6744 Elf64_Rel *rel; 6745 void *tmp; 6746 6747 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6748 return -EINVAL; 6749 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6750 if (!sec) 6751 return -EINVAL; 6752 6753 nrels = shdr->sh_size / shdr->sh_entsize; 6754 for (i = 0; i < nrels; i++) { 6755 rel = elf_rel_by_idx(data, i); 6756 if (!rel) { 6757 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6758 return -LIBBPF_ERRNO__FORMAT; 6759 } 6760 6761 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6762 if (!sym) { 6763 pr_warn(".maps relo #%d: symbol %zx not found\n", 6764 i, (size_t)ELF64_R_SYM(rel->r_info)); 6765 return -LIBBPF_ERRNO__FORMAT; 6766 } 6767 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6768 6769 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6770 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6771 (size_t)rel->r_offset, sym->st_name, name); 6772 6773 for (j = 0; j < obj->nr_maps; j++) { 6774 map = &obj->maps[j]; 6775 if (map->sec_idx != obj->efile.btf_maps_shndx) 6776 continue; 6777 6778 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6779 if (vi->offset <= rel->r_offset && 6780 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6781 break; 6782 } 6783 if (j == obj->nr_maps) { 6784 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6785 i, name, (size_t)rel->r_offset); 6786 return -EINVAL; 6787 } 6788 6789 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6790 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6791 type = is_map_in_map ? "map" : "prog"; 6792 if (is_map_in_map) { 6793 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6794 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6795 i, name); 6796 return -LIBBPF_ERRNO__RELOC; 6797 } 6798 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6799 map->def.key_size != sizeof(int)) { 6800 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6801 i, map->name, sizeof(int)); 6802 return -EINVAL; 6803 } 6804 targ_map = bpf_object__find_map_by_name(obj, name); 6805 if (!targ_map) { 6806 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6807 i, name); 6808 return -ESRCH; 6809 } 6810 } else if (is_prog_array) { 6811 targ_prog = bpf_object__find_program_by_name(obj, name); 6812 if (!targ_prog) { 6813 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6814 i, name); 6815 return -ESRCH; 6816 } 6817 if (targ_prog->sec_idx != sym->st_shndx || 6818 targ_prog->sec_insn_off * 8 != sym->st_value || 6819 prog_is_subprog(obj, targ_prog)) { 6820 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6821 i, name); 6822 return -LIBBPF_ERRNO__RELOC; 6823 } 6824 } else { 6825 return -EINVAL; 6826 } 6827 6828 var = btf__type_by_id(obj->btf, vi->type); 6829 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6830 if (btf_vlen(def) == 0) 6831 return -EINVAL; 6832 member = btf_members(def) + btf_vlen(def) - 1; 6833 mname = btf__name_by_offset(obj->btf, member->name_off); 6834 if (strcmp(mname, "values")) 6835 return -EINVAL; 6836 6837 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6838 if (rel->r_offset - vi->offset < moff) 6839 return -EINVAL; 6840 6841 moff = rel->r_offset - vi->offset - moff; 6842 /* here we use BPF pointer size, which is always 64 bit, as we 6843 * are parsing ELF that was built for BPF target 6844 */ 6845 if (moff % bpf_ptr_sz) 6846 return -EINVAL; 6847 moff /= bpf_ptr_sz; 6848 if (moff >= map->init_slots_sz) { 6849 new_sz = moff + 1; 6850 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6851 if (!tmp) 6852 return -ENOMEM; 6853 map->init_slots = tmp; 6854 memset(map->init_slots + map->init_slots_sz, 0, 6855 (new_sz - map->init_slots_sz) * host_ptr_sz); 6856 map->init_slots_sz = new_sz; 6857 } 6858 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6859 6860 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6861 i, map->name, moff, type, name); 6862 } 6863 6864 return 0; 6865 } 6866 6867 static int bpf_object__collect_relos(struct bpf_object *obj) 6868 { 6869 int i, err; 6870 6871 for (i = 0; i < obj->efile.sec_cnt; i++) { 6872 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6873 Elf64_Shdr *shdr; 6874 Elf_Data *data; 6875 int idx; 6876 6877 if (sec_desc->sec_type != SEC_RELO) 6878 continue; 6879 6880 shdr = sec_desc->shdr; 6881 data = sec_desc->data; 6882 idx = shdr->sh_info; 6883 6884 if (shdr->sh_type != SHT_REL) { 6885 pr_warn("internal error at %d\n", __LINE__); 6886 return -LIBBPF_ERRNO__INTERNAL; 6887 } 6888 6889 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6890 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6891 else if (idx == obj->efile.btf_maps_shndx) 6892 err = bpf_object__collect_map_relos(obj, shdr, data); 6893 else 6894 err = bpf_object__collect_prog_relos(obj, shdr, data); 6895 if (err) 6896 return err; 6897 } 6898 6899 bpf_object__sort_relos(obj); 6900 return 0; 6901 } 6902 6903 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6904 { 6905 if (BPF_CLASS(insn->code) == BPF_JMP && 6906 BPF_OP(insn->code) == BPF_CALL && 6907 BPF_SRC(insn->code) == BPF_K && 6908 insn->src_reg == 0 && 6909 insn->dst_reg == 0) { 6910 *func_id = insn->imm; 6911 return true; 6912 } 6913 return false; 6914 } 6915 6916 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6917 { 6918 struct bpf_insn *insn = prog->insns; 6919 enum bpf_func_id func_id; 6920 int i; 6921 6922 if (obj->gen_loader) 6923 return 0; 6924 6925 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6926 if (!insn_is_helper_call(insn, &func_id)) 6927 continue; 6928 6929 /* on kernels that don't yet support 6930 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6931 * to bpf_probe_read() which works well for old kernels 6932 */ 6933 switch (func_id) { 6934 case BPF_FUNC_probe_read_kernel: 6935 case BPF_FUNC_probe_read_user: 6936 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6937 insn->imm = BPF_FUNC_probe_read; 6938 break; 6939 case BPF_FUNC_probe_read_kernel_str: 6940 case BPF_FUNC_probe_read_user_str: 6941 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6942 insn->imm = BPF_FUNC_probe_read_str; 6943 break; 6944 default: 6945 break; 6946 } 6947 } 6948 return 0; 6949 } 6950 6951 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6952 int *btf_obj_fd, int *btf_type_id); 6953 6954 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6955 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6956 struct bpf_prog_load_opts *opts, long cookie) 6957 { 6958 enum sec_def_flags def = cookie; 6959 6960 /* old kernels might not support specifying expected_attach_type */ 6961 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6962 opts->expected_attach_type = 0; 6963 6964 if (def & SEC_SLEEPABLE) 6965 opts->prog_flags |= BPF_F_SLEEPABLE; 6966 6967 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6968 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6969 6970 /* special check for usdt to use uprobe_multi link */ 6971 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 6972 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 6973 6974 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6975 int btf_obj_fd = 0, btf_type_id = 0, err; 6976 const char *attach_name; 6977 6978 attach_name = strchr(prog->sec_name, '/'); 6979 if (!attach_name) { 6980 /* if BPF program is annotated with just SEC("fentry") 6981 * (or similar) without declaratively specifying 6982 * target, then it is expected that target will be 6983 * specified with bpf_program__set_attach_target() at 6984 * runtime before BPF object load step. If not, then 6985 * there is nothing to load into the kernel as BPF 6986 * verifier won't be able to validate BPF program 6987 * correctness anyways. 6988 */ 6989 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6990 prog->name); 6991 return -EINVAL; 6992 } 6993 attach_name++; /* skip over / */ 6994 6995 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6996 if (err) 6997 return err; 6998 6999 /* cache resolved BTF FD and BTF type ID in the prog */ 7000 prog->attach_btf_obj_fd = btf_obj_fd; 7001 prog->attach_btf_id = btf_type_id; 7002 7003 /* but by now libbpf common logic is not utilizing 7004 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7005 * this callback is called after opts were populated by 7006 * libbpf, so this callback has to update opts explicitly here 7007 */ 7008 opts->attach_btf_obj_fd = btf_obj_fd; 7009 opts->attach_btf_id = btf_type_id; 7010 } 7011 return 0; 7012 } 7013 7014 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7015 7016 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7017 struct bpf_insn *insns, int insns_cnt, 7018 const char *license, __u32 kern_version, int *prog_fd) 7019 { 7020 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7021 const char *prog_name = NULL; 7022 char *cp, errmsg[STRERR_BUFSIZE]; 7023 size_t log_buf_size = 0; 7024 char *log_buf = NULL, *tmp; 7025 int btf_fd, ret, err; 7026 bool own_log_buf = true; 7027 __u32 log_level = prog->log_level; 7028 7029 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7030 /* 7031 * The program type must be set. Most likely we couldn't find a proper 7032 * section definition at load time, and thus we didn't infer the type. 7033 */ 7034 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7035 prog->name, prog->sec_name); 7036 return -EINVAL; 7037 } 7038 7039 if (!insns || !insns_cnt) 7040 return -EINVAL; 7041 7042 if (kernel_supports(obj, FEAT_PROG_NAME)) 7043 prog_name = prog->name; 7044 load_attr.attach_prog_fd = prog->attach_prog_fd; 7045 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7046 load_attr.attach_btf_id = prog->attach_btf_id; 7047 load_attr.kern_version = kern_version; 7048 load_attr.prog_ifindex = prog->prog_ifindex; 7049 7050 /* specify func_info/line_info only if kernel supports them */ 7051 btf_fd = bpf_object__btf_fd(obj); 7052 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7053 load_attr.prog_btf_fd = btf_fd; 7054 load_attr.func_info = prog->func_info; 7055 load_attr.func_info_rec_size = prog->func_info_rec_size; 7056 load_attr.func_info_cnt = prog->func_info_cnt; 7057 load_attr.line_info = prog->line_info; 7058 load_attr.line_info_rec_size = prog->line_info_rec_size; 7059 load_attr.line_info_cnt = prog->line_info_cnt; 7060 } 7061 load_attr.log_level = log_level; 7062 load_attr.prog_flags = prog->prog_flags; 7063 load_attr.fd_array = obj->fd_array; 7064 7065 /* adjust load_attr if sec_def provides custom preload callback */ 7066 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7067 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7068 if (err < 0) { 7069 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7070 prog->name, err); 7071 return err; 7072 } 7073 insns = prog->insns; 7074 insns_cnt = prog->insns_cnt; 7075 } 7076 7077 /* allow prog_prepare_load_fn to change expected_attach_type */ 7078 load_attr.expected_attach_type = prog->expected_attach_type; 7079 7080 if (obj->gen_loader) { 7081 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7082 license, insns, insns_cnt, &load_attr, 7083 prog - obj->programs); 7084 *prog_fd = -1; 7085 return 0; 7086 } 7087 7088 retry_load: 7089 /* if log_level is zero, we don't request logs initially even if 7090 * custom log_buf is specified; if the program load fails, then we'll 7091 * bump log_level to 1 and use either custom log_buf or we'll allocate 7092 * our own and retry the load to get details on what failed 7093 */ 7094 if (log_level) { 7095 if (prog->log_buf) { 7096 log_buf = prog->log_buf; 7097 log_buf_size = prog->log_size; 7098 own_log_buf = false; 7099 } else if (obj->log_buf) { 7100 log_buf = obj->log_buf; 7101 log_buf_size = obj->log_size; 7102 own_log_buf = false; 7103 } else { 7104 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7105 tmp = realloc(log_buf, log_buf_size); 7106 if (!tmp) { 7107 ret = -ENOMEM; 7108 goto out; 7109 } 7110 log_buf = tmp; 7111 log_buf[0] = '\0'; 7112 own_log_buf = true; 7113 } 7114 } 7115 7116 load_attr.log_buf = log_buf; 7117 load_attr.log_size = log_buf_size; 7118 load_attr.log_level = log_level; 7119 7120 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7121 if (ret >= 0) { 7122 if (log_level && own_log_buf) { 7123 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7124 prog->name, log_buf); 7125 } 7126 7127 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7128 struct bpf_map *map; 7129 int i; 7130 7131 for (i = 0; i < obj->nr_maps; i++) { 7132 map = &prog->obj->maps[i]; 7133 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7134 continue; 7135 7136 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 7137 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7138 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7139 prog->name, map->real_name, cp); 7140 /* Don't fail hard if can't bind rodata. */ 7141 } 7142 } 7143 } 7144 7145 *prog_fd = ret; 7146 ret = 0; 7147 goto out; 7148 } 7149 7150 if (log_level == 0) { 7151 log_level = 1; 7152 goto retry_load; 7153 } 7154 /* On ENOSPC, increase log buffer size and retry, unless custom 7155 * log_buf is specified. 7156 * Be careful to not overflow u32, though. Kernel's log buf size limit 7157 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7158 * multiply by 2 unless we are sure we'll fit within 32 bits. 7159 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7160 */ 7161 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7162 goto retry_load; 7163 7164 ret = -errno; 7165 7166 /* post-process verifier log to improve error descriptions */ 7167 fixup_verifier_log(prog, log_buf, log_buf_size); 7168 7169 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7170 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7171 pr_perm_msg(ret); 7172 7173 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7174 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7175 prog->name, log_buf); 7176 } 7177 7178 out: 7179 if (own_log_buf) 7180 free(log_buf); 7181 return ret; 7182 } 7183 7184 static char *find_prev_line(char *buf, char *cur) 7185 { 7186 char *p; 7187 7188 if (cur == buf) /* end of a log buf */ 7189 return NULL; 7190 7191 p = cur - 1; 7192 while (p - 1 >= buf && *(p - 1) != '\n') 7193 p--; 7194 7195 return p; 7196 } 7197 7198 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7199 char *orig, size_t orig_sz, const char *patch) 7200 { 7201 /* size of the remaining log content to the right from the to-be-replaced part */ 7202 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7203 size_t patch_sz = strlen(patch); 7204 7205 if (patch_sz != orig_sz) { 7206 /* If patch line(s) are longer than original piece of verifier log, 7207 * shift log contents by (patch_sz - orig_sz) bytes to the right 7208 * starting from after to-be-replaced part of the log. 7209 * 7210 * If patch line(s) are shorter than original piece of verifier log, 7211 * shift log contents by (orig_sz - patch_sz) bytes to the left 7212 * starting from after to-be-replaced part of the log 7213 * 7214 * We need to be careful about not overflowing available 7215 * buf_sz capacity. If that's the case, we'll truncate the end 7216 * of the original log, as necessary. 7217 */ 7218 if (patch_sz > orig_sz) { 7219 if (orig + patch_sz >= buf + buf_sz) { 7220 /* patch is big enough to cover remaining space completely */ 7221 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7222 rem_sz = 0; 7223 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7224 /* patch causes part of remaining log to be truncated */ 7225 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7226 } 7227 } 7228 /* shift remaining log to the right by calculated amount */ 7229 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7230 } 7231 7232 memcpy(orig, patch, patch_sz); 7233 } 7234 7235 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7236 char *buf, size_t buf_sz, size_t log_sz, 7237 char *line1, char *line2, char *line3) 7238 { 7239 /* Expected log for failed and not properly guarded CO-RE relocation: 7240 * line1 -> 123: (85) call unknown#195896080 7241 * line2 -> invalid func unknown#195896080 7242 * line3 -> <anything else or end of buffer> 7243 * 7244 * "123" is the index of the instruction that was poisoned. We extract 7245 * instruction index to find corresponding CO-RE relocation and 7246 * replace this part of the log with more relevant information about 7247 * failed CO-RE relocation. 7248 */ 7249 const struct bpf_core_relo *relo; 7250 struct bpf_core_spec spec; 7251 char patch[512], spec_buf[256]; 7252 int insn_idx, err, spec_len; 7253 7254 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7255 return; 7256 7257 relo = find_relo_core(prog, insn_idx); 7258 if (!relo) 7259 return; 7260 7261 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7262 if (err) 7263 return; 7264 7265 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7266 snprintf(patch, sizeof(patch), 7267 "%d: <invalid CO-RE relocation>\n" 7268 "failed to resolve CO-RE relocation %s%s\n", 7269 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7270 7271 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7272 } 7273 7274 static void fixup_log_missing_map_load(struct bpf_program *prog, 7275 char *buf, size_t buf_sz, size_t log_sz, 7276 char *line1, char *line2, char *line3) 7277 { 7278 /* Expected log for failed and not properly guarded map reference: 7279 * line1 -> 123: (85) call unknown#2001000345 7280 * line2 -> invalid func unknown#2001000345 7281 * line3 -> <anything else or end of buffer> 7282 * 7283 * "123" is the index of the instruction that was poisoned. 7284 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7285 */ 7286 struct bpf_object *obj = prog->obj; 7287 const struct bpf_map *map; 7288 int insn_idx, map_idx; 7289 char patch[128]; 7290 7291 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7292 return; 7293 7294 map_idx -= POISON_LDIMM64_MAP_BASE; 7295 if (map_idx < 0 || map_idx >= obj->nr_maps) 7296 return; 7297 map = &obj->maps[map_idx]; 7298 7299 snprintf(patch, sizeof(patch), 7300 "%d: <invalid BPF map reference>\n" 7301 "BPF map '%s' is referenced but wasn't created\n", 7302 insn_idx, map->name); 7303 7304 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7305 } 7306 7307 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7308 char *buf, size_t buf_sz, size_t log_sz, 7309 char *line1, char *line2, char *line3) 7310 { 7311 /* Expected log for failed and not properly guarded kfunc call: 7312 * line1 -> 123: (85) call unknown#2002000345 7313 * line2 -> invalid func unknown#2002000345 7314 * line3 -> <anything else or end of buffer> 7315 * 7316 * "123" is the index of the instruction that was poisoned. 7317 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7318 */ 7319 struct bpf_object *obj = prog->obj; 7320 const struct extern_desc *ext; 7321 int insn_idx, ext_idx; 7322 char patch[128]; 7323 7324 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7325 return; 7326 7327 ext_idx -= POISON_CALL_KFUNC_BASE; 7328 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7329 return; 7330 ext = &obj->externs[ext_idx]; 7331 7332 snprintf(patch, sizeof(patch), 7333 "%d: <invalid kfunc call>\n" 7334 "kfunc '%s' is referenced but wasn't resolved\n", 7335 insn_idx, ext->name); 7336 7337 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7338 } 7339 7340 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7341 { 7342 /* look for familiar error patterns in last N lines of the log */ 7343 const size_t max_last_line_cnt = 10; 7344 char *prev_line, *cur_line, *next_line; 7345 size_t log_sz; 7346 int i; 7347 7348 if (!buf) 7349 return; 7350 7351 log_sz = strlen(buf) + 1; 7352 next_line = buf + log_sz - 1; 7353 7354 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7355 cur_line = find_prev_line(buf, next_line); 7356 if (!cur_line) 7357 return; 7358 7359 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7360 prev_line = find_prev_line(buf, cur_line); 7361 if (!prev_line) 7362 continue; 7363 7364 /* failed CO-RE relocation case */ 7365 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7366 prev_line, cur_line, next_line); 7367 return; 7368 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7369 prev_line = find_prev_line(buf, cur_line); 7370 if (!prev_line) 7371 continue; 7372 7373 /* reference to uncreated BPF map */ 7374 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7375 prev_line, cur_line, next_line); 7376 return; 7377 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7378 prev_line = find_prev_line(buf, cur_line); 7379 if (!prev_line) 7380 continue; 7381 7382 /* reference to unresolved kfunc */ 7383 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7384 prev_line, cur_line, next_line); 7385 return; 7386 } 7387 } 7388 } 7389 7390 static int bpf_program_record_relos(struct bpf_program *prog) 7391 { 7392 struct bpf_object *obj = prog->obj; 7393 int i; 7394 7395 for (i = 0; i < prog->nr_reloc; i++) { 7396 struct reloc_desc *relo = &prog->reloc_desc[i]; 7397 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7398 int kind; 7399 7400 switch (relo->type) { 7401 case RELO_EXTERN_LD64: 7402 if (ext->type != EXT_KSYM) 7403 continue; 7404 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7405 BTF_KIND_VAR : BTF_KIND_FUNC; 7406 bpf_gen__record_extern(obj->gen_loader, ext->name, 7407 ext->is_weak, !ext->ksym.type_id, 7408 true, kind, relo->insn_idx); 7409 break; 7410 case RELO_EXTERN_CALL: 7411 bpf_gen__record_extern(obj->gen_loader, ext->name, 7412 ext->is_weak, false, false, BTF_KIND_FUNC, 7413 relo->insn_idx); 7414 break; 7415 case RELO_CORE: { 7416 struct bpf_core_relo cr = { 7417 .insn_off = relo->insn_idx * 8, 7418 .type_id = relo->core_relo->type_id, 7419 .access_str_off = relo->core_relo->access_str_off, 7420 .kind = relo->core_relo->kind, 7421 }; 7422 7423 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7424 break; 7425 } 7426 default: 7427 continue; 7428 } 7429 } 7430 return 0; 7431 } 7432 7433 static int 7434 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7435 { 7436 struct bpf_program *prog; 7437 size_t i; 7438 int err; 7439 7440 for (i = 0; i < obj->nr_programs; i++) { 7441 prog = &obj->programs[i]; 7442 err = bpf_object__sanitize_prog(obj, prog); 7443 if (err) 7444 return err; 7445 } 7446 7447 for (i = 0; i < obj->nr_programs; i++) { 7448 prog = &obj->programs[i]; 7449 if (prog_is_subprog(obj, prog)) 7450 continue; 7451 if (!prog->autoload) { 7452 pr_debug("prog '%s': skipped loading\n", prog->name); 7453 continue; 7454 } 7455 prog->log_level |= log_level; 7456 7457 if (obj->gen_loader) 7458 bpf_program_record_relos(prog); 7459 7460 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7461 obj->license, obj->kern_version, &prog->fd); 7462 if (err) { 7463 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7464 return err; 7465 } 7466 } 7467 7468 bpf_object__free_relocs(obj); 7469 return 0; 7470 } 7471 7472 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7473 7474 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7475 { 7476 struct bpf_program *prog; 7477 int err; 7478 7479 bpf_object__for_each_program(prog, obj) { 7480 prog->sec_def = find_sec_def(prog->sec_name); 7481 if (!prog->sec_def) { 7482 /* couldn't guess, but user might manually specify */ 7483 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7484 prog->name, prog->sec_name); 7485 continue; 7486 } 7487 7488 prog->type = prog->sec_def->prog_type; 7489 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7490 7491 /* sec_def can have custom callback which should be called 7492 * after bpf_program is initialized to adjust its properties 7493 */ 7494 if (prog->sec_def->prog_setup_fn) { 7495 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7496 if (err < 0) { 7497 pr_warn("prog '%s': failed to initialize: %d\n", 7498 prog->name, err); 7499 return err; 7500 } 7501 } 7502 } 7503 7504 return 0; 7505 } 7506 7507 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7508 const struct bpf_object_open_opts *opts) 7509 { 7510 const char *obj_name, *kconfig, *btf_tmp_path; 7511 struct bpf_object *obj; 7512 char tmp_name[64]; 7513 int err; 7514 char *log_buf; 7515 size_t log_size; 7516 __u32 log_level; 7517 7518 if (elf_version(EV_CURRENT) == EV_NONE) { 7519 pr_warn("failed to init libelf for %s\n", 7520 path ? : "(mem buf)"); 7521 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7522 } 7523 7524 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7525 return ERR_PTR(-EINVAL); 7526 7527 obj_name = OPTS_GET(opts, object_name, NULL); 7528 if (obj_buf) { 7529 if (!obj_name) { 7530 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7531 (unsigned long)obj_buf, 7532 (unsigned long)obj_buf_sz); 7533 obj_name = tmp_name; 7534 } 7535 path = obj_name; 7536 pr_debug("loading object '%s' from buffer\n", obj_name); 7537 } 7538 7539 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7540 log_size = OPTS_GET(opts, kernel_log_size, 0); 7541 log_level = OPTS_GET(opts, kernel_log_level, 0); 7542 if (log_size > UINT_MAX) 7543 return ERR_PTR(-EINVAL); 7544 if (log_size && !log_buf) 7545 return ERR_PTR(-EINVAL); 7546 7547 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7548 if (IS_ERR(obj)) 7549 return obj; 7550 7551 obj->log_buf = log_buf; 7552 obj->log_size = log_size; 7553 obj->log_level = log_level; 7554 7555 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7556 if (btf_tmp_path) { 7557 if (strlen(btf_tmp_path) >= PATH_MAX) { 7558 err = -ENAMETOOLONG; 7559 goto out; 7560 } 7561 obj->btf_custom_path = strdup(btf_tmp_path); 7562 if (!obj->btf_custom_path) { 7563 err = -ENOMEM; 7564 goto out; 7565 } 7566 } 7567 7568 kconfig = OPTS_GET(opts, kconfig, NULL); 7569 if (kconfig) { 7570 obj->kconfig = strdup(kconfig); 7571 if (!obj->kconfig) { 7572 err = -ENOMEM; 7573 goto out; 7574 } 7575 } 7576 7577 err = bpf_object__elf_init(obj); 7578 err = err ? : bpf_object__check_endianness(obj); 7579 err = err ? : bpf_object__elf_collect(obj); 7580 err = err ? : bpf_object__collect_externs(obj); 7581 err = err ? : bpf_object_fixup_btf(obj); 7582 err = err ? : bpf_object__init_maps(obj, opts); 7583 err = err ? : bpf_object_init_progs(obj, opts); 7584 err = err ? : bpf_object__collect_relos(obj); 7585 if (err) 7586 goto out; 7587 7588 bpf_object__elf_finish(obj); 7589 7590 return obj; 7591 out: 7592 bpf_object__close(obj); 7593 return ERR_PTR(err); 7594 } 7595 7596 struct bpf_object * 7597 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7598 { 7599 if (!path) 7600 return libbpf_err_ptr(-EINVAL); 7601 7602 pr_debug("loading %s\n", path); 7603 7604 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7605 } 7606 7607 struct bpf_object *bpf_object__open(const char *path) 7608 { 7609 return bpf_object__open_file(path, NULL); 7610 } 7611 7612 struct bpf_object * 7613 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7614 const struct bpf_object_open_opts *opts) 7615 { 7616 if (!obj_buf || obj_buf_sz == 0) 7617 return libbpf_err_ptr(-EINVAL); 7618 7619 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7620 } 7621 7622 static int bpf_object_unload(struct bpf_object *obj) 7623 { 7624 size_t i; 7625 7626 if (!obj) 7627 return libbpf_err(-EINVAL); 7628 7629 for (i = 0; i < obj->nr_maps; i++) { 7630 zclose(obj->maps[i].fd); 7631 if (obj->maps[i].st_ops) 7632 zfree(&obj->maps[i].st_ops->kern_vdata); 7633 } 7634 7635 for (i = 0; i < obj->nr_programs; i++) 7636 bpf_program__unload(&obj->programs[i]); 7637 7638 return 0; 7639 } 7640 7641 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7642 { 7643 struct bpf_map *m; 7644 7645 bpf_object__for_each_map(m, obj) { 7646 if (!bpf_map__is_internal(m)) 7647 continue; 7648 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7649 m->def.map_flags &= ~BPF_F_MMAPABLE; 7650 } 7651 7652 return 0; 7653 } 7654 7655 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7656 { 7657 char sym_type, sym_name[500]; 7658 unsigned long long sym_addr; 7659 int ret, err = 0; 7660 FILE *f; 7661 7662 f = fopen("/proc/kallsyms", "re"); 7663 if (!f) { 7664 err = -errno; 7665 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7666 return err; 7667 } 7668 7669 while (true) { 7670 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7671 &sym_addr, &sym_type, sym_name); 7672 if (ret == EOF && feof(f)) 7673 break; 7674 if (ret != 3) { 7675 pr_warn("failed to read kallsyms entry: %d\n", ret); 7676 err = -EINVAL; 7677 break; 7678 } 7679 7680 err = cb(sym_addr, sym_type, sym_name, ctx); 7681 if (err) 7682 break; 7683 } 7684 7685 fclose(f); 7686 return err; 7687 } 7688 7689 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7690 const char *sym_name, void *ctx) 7691 { 7692 struct bpf_object *obj = ctx; 7693 const struct btf_type *t; 7694 struct extern_desc *ext; 7695 7696 ext = find_extern_by_name(obj, sym_name); 7697 if (!ext || ext->type != EXT_KSYM) 7698 return 0; 7699 7700 t = btf__type_by_id(obj->btf, ext->btf_id); 7701 if (!btf_is_var(t)) 7702 return 0; 7703 7704 if (ext->is_set && ext->ksym.addr != sym_addr) { 7705 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7706 sym_name, ext->ksym.addr, sym_addr); 7707 return -EINVAL; 7708 } 7709 if (!ext->is_set) { 7710 ext->is_set = true; 7711 ext->ksym.addr = sym_addr; 7712 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7713 } 7714 return 0; 7715 } 7716 7717 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7718 { 7719 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7720 } 7721 7722 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7723 __u16 kind, struct btf **res_btf, 7724 struct module_btf **res_mod_btf) 7725 { 7726 struct module_btf *mod_btf; 7727 struct btf *btf; 7728 int i, id, err; 7729 7730 btf = obj->btf_vmlinux; 7731 mod_btf = NULL; 7732 id = btf__find_by_name_kind(btf, ksym_name, kind); 7733 7734 if (id == -ENOENT) { 7735 err = load_module_btfs(obj); 7736 if (err) 7737 return err; 7738 7739 for (i = 0; i < obj->btf_module_cnt; i++) { 7740 /* we assume module_btf's BTF FD is always >0 */ 7741 mod_btf = &obj->btf_modules[i]; 7742 btf = mod_btf->btf; 7743 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7744 if (id != -ENOENT) 7745 break; 7746 } 7747 } 7748 if (id <= 0) 7749 return -ESRCH; 7750 7751 *res_btf = btf; 7752 *res_mod_btf = mod_btf; 7753 return id; 7754 } 7755 7756 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7757 struct extern_desc *ext) 7758 { 7759 const struct btf_type *targ_var, *targ_type; 7760 __u32 targ_type_id, local_type_id; 7761 struct module_btf *mod_btf = NULL; 7762 const char *targ_var_name; 7763 struct btf *btf = NULL; 7764 int id, err; 7765 7766 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7767 if (id < 0) { 7768 if (id == -ESRCH && ext->is_weak) 7769 return 0; 7770 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7771 ext->name); 7772 return id; 7773 } 7774 7775 /* find local type_id */ 7776 local_type_id = ext->ksym.type_id; 7777 7778 /* find target type_id */ 7779 targ_var = btf__type_by_id(btf, id); 7780 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7781 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7782 7783 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7784 btf, targ_type_id); 7785 if (err <= 0) { 7786 const struct btf_type *local_type; 7787 const char *targ_name, *local_name; 7788 7789 local_type = btf__type_by_id(obj->btf, local_type_id); 7790 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7791 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7792 7793 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7794 ext->name, local_type_id, 7795 btf_kind_str(local_type), local_name, targ_type_id, 7796 btf_kind_str(targ_type), targ_name); 7797 return -EINVAL; 7798 } 7799 7800 ext->is_set = true; 7801 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7802 ext->ksym.kernel_btf_id = id; 7803 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7804 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7805 7806 return 0; 7807 } 7808 7809 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7810 struct extern_desc *ext) 7811 { 7812 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7813 struct module_btf *mod_btf = NULL; 7814 const struct btf_type *kern_func; 7815 struct btf *kern_btf = NULL; 7816 int ret; 7817 7818 local_func_proto_id = ext->ksym.type_id; 7819 7820 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 7821 &mod_btf); 7822 if (kfunc_id < 0) { 7823 if (kfunc_id == -ESRCH && ext->is_weak) 7824 return 0; 7825 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7826 ext->name); 7827 return kfunc_id; 7828 } 7829 7830 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7831 kfunc_proto_id = kern_func->type; 7832 7833 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7834 kern_btf, kfunc_proto_id); 7835 if (ret <= 0) { 7836 if (ext->is_weak) 7837 return 0; 7838 7839 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7840 ext->name, local_func_proto_id, 7841 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7842 return -EINVAL; 7843 } 7844 7845 /* set index for module BTF fd in fd_array, if unset */ 7846 if (mod_btf && !mod_btf->fd_array_idx) { 7847 /* insn->off is s16 */ 7848 if (obj->fd_array_cnt == INT16_MAX) { 7849 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7850 ext->name, mod_btf->fd_array_idx); 7851 return -E2BIG; 7852 } 7853 /* Cannot use index 0 for module BTF fd */ 7854 if (!obj->fd_array_cnt) 7855 obj->fd_array_cnt = 1; 7856 7857 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7858 obj->fd_array_cnt + 1); 7859 if (ret) 7860 return ret; 7861 mod_btf->fd_array_idx = obj->fd_array_cnt; 7862 /* we assume module BTF FD is always >0 */ 7863 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7864 } 7865 7866 ext->is_set = true; 7867 ext->ksym.kernel_btf_id = kfunc_id; 7868 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7869 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7870 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7871 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7872 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7873 */ 7874 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7875 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7876 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7877 7878 return 0; 7879 } 7880 7881 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7882 { 7883 const struct btf_type *t; 7884 struct extern_desc *ext; 7885 int i, err; 7886 7887 for (i = 0; i < obj->nr_extern; i++) { 7888 ext = &obj->externs[i]; 7889 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7890 continue; 7891 7892 if (obj->gen_loader) { 7893 ext->is_set = true; 7894 ext->ksym.kernel_btf_obj_fd = 0; 7895 ext->ksym.kernel_btf_id = 0; 7896 continue; 7897 } 7898 t = btf__type_by_id(obj->btf, ext->btf_id); 7899 if (btf_is_var(t)) 7900 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7901 else 7902 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7903 if (err) 7904 return err; 7905 } 7906 return 0; 7907 } 7908 7909 static int bpf_object__resolve_externs(struct bpf_object *obj, 7910 const char *extra_kconfig) 7911 { 7912 bool need_config = false, need_kallsyms = false; 7913 bool need_vmlinux_btf = false; 7914 struct extern_desc *ext; 7915 void *kcfg_data = NULL; 7916 int err, i; 7917 7918 if (obj->nr_extern == 0) 7919 return 0; 7920 7921 if (obj->kconfig_map_idx >= 0) 7922 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7923 7924 for (i = 0; i < obj->nr_extern; i++) { 7925 ext = &obj->externs[i]; 7926 7927 if (ext->type == EXT_KSYM) { 7928 if (ext->ksym.type_id) 7929 need_vmlinux_btf = true; 7930 else 7931 need_kallsyms = true; 7932 continue; 7933 } else if (ext->type == EXT_KCFG) { 7934 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7935 __u64 value = 0; 7936 7937 /* Kconfig externs need actual /proc/config.gz */ 7938 if (str_has_pfx(ext->name, "CONFIG_")) { 7939 need_config = true; 7940 continue; 7941 } 7942 7943 /* Virtual kcfg externs are customly handled by libbpf */ 7944 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7945 value = get_kernel_version(); 7946 if (!value) { 7947 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7948 return -EINVAL; 7949 } 7950 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7951 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7952 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7953 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7954 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7955 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7956 * __kconfig externs, where LINUX_ ones are virtual and filled out 7957 * customly by libbpf (their values don't come from Kconfig). 7958 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7959 * __weak, it defaults to zero value, just like for CONFIG_xxx 7960 * externs. 7961 */ 7962 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7963 return -EINVAL; 7964 } 7965 7966 err = set_kcfg_value_num(ext, ext_ptr, value); 7967 if (err) 7968 return err; 7969 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7970 ext->name, (long long)value); 7971 } else { 7972 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7973 return -EINVAL; 7974 } 7975 } 7976 if (need_config && extra_kconfig) { 7977 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7978 if (err) 7979 return -EINVAL; 7980 need_config = false; 7981 for (i = 0; i < obj->nr_extern; i++) { 7982 ext = &obj->externs[i]; 7983 if (ext->type == EXT_KCFG && !ext->is_set) { 7984 need_config = true; 7985 break; 7986 } 7987 } 7988 } 7989 if (need_config) { 7990 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7991 if (err) 7992 return -EINVAL; 7993 } 7994 if (need_kallsyms) { 7995 err = bpf_object__read_kallsyms_file(obj); 7996 if (err) 7997 return -EINVAL; 7998 } 7999 if (need_vmlinux_btf) { 8000 err = bpf_object__resolve_ksyms_btf_id(obj); 8001 if (err) 8002 return -EINVAL; 8003 } 8004 for (i = 0; i < obj->nr_extern; i++) { 8005 ext = &obj->externs[i]; 8006 8007 if (!ext->is_set && !ext->is_weak) { 8008 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8009 return -ESRCH; 8010 } else if (!ext->is_set) { 8011 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8012 ext->name); 8013 } 8014 } 8015 8016 return 0; 8017 } 8018 8019 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8020 { 8021 struct bpf_struct_ops *st_ops; 8022 __u32 i; 8023 8024 st_ops = map->st_ops; 8025 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8026 struct bpf_program *prog = st_ops->progs[i]; 8027 void *kern_data; 8028 int prog_fd; 8029 8030 if (!prog) 8031 continue; 8032 8033 prog_fd = bpf_program__fd(prog); 8034 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8035 *(unsigned long *)kern_data = prog_fd; 8036 } 8037 } 8038 8039 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8040 { 8041 int i; 8042 8043 for (i = 0; i < obj->nr_maps; i++) 8044 if (bpf_map__is_struct_ops(&obj->maps[i])) 8045 bpf_map_prepare_vdata(&obj->maps[i]); 8046 8047 return 0; 8048 } 8049 8050 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8051 { 8052 int err, i; 8053 8054 if (!obj) 8055 return libbpf_err(-EINVAL); 8056 8057 if (obj->loaded) { 8058 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8059 return libbpf_err(-EINVAL); 8060 } 8061 8062 if (obj->gen_loader) 8063 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8064 8065 err = bpf_object__probe_loading(obj); 8066 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8067 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8068 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8069 err = err ? : bpf_object__sanitize_maps(obj); 8070 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8071 err = err ? : bpf_object__create_maps(obj); 8072 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8073 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8074 err = err ? : bpf_object_init_prog_arrays(obj); 8075 err = err ? : bpf_object_prepare_struct_ops(obj); 8076 8077 if (obj->gen_loader) { 8078 /* reset FDs */ 8079 if (obj->btf) 8080 btf__set_fd(obj->btf, -1); 8081 for (i = 0; i < obj->nr_maps; i++) 8082 obj->maps[i].fd = -1; 8083 if (!err) 8084 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8085 } 8086 8087 /* clean up fd_array */ 8088 zfree(&obj->fd_array); 8089 8090 /* clean up module BTFs */ 8091 for (i = 0; i < obj->btf_module_cnt; i++) { 8092 close(obj->btf_modules[i].fd); 8093 btf__free(obj->btf_modules[i].btf); 8094 free(obj->btf_modules[i].name); 8095 } 8096 free(obj->btf_modules); 8097 8098 /* clean up vmlinux BTF */ 8099 btf__free(obj->btf_vmlinux); 8100 obj->btf_vmlinux = NULL; 8101 8102 obj->loaded = true; /* doesn't matter if successfully or not */ 8103 8104 if (err) 8105 goto out; 8106 8107 return 0; 8108 out: 8109 /* unpin any maps that were auto-pinned during load */ 8110 for (i = 0; i < obj->nr_maps; i++) 8111 if (obj->maps[i].pinned && !obj->maps[i].reused) 8112 bpf_map__unpin(&obj->maps[i], NULL); 8113 8114 bpf_object_unload(obj); 8115 pr_warn("failed to load object '%s'\n", obj->path); 8116 return libbpf_err(err); 8117 } 8118 8119 int bpf_object__load(struct bpf_object *obj) 8120 { 8121 return bpf_object_load(obj, 0, NULL); 8122 } 8123 8124 static int make_parent_dir(const char *path) 8125 { 8126 char *cp, errmsg[STRERR_BUFSIZE]; 8127 char *dname, *dir; 8128 int err = 0; 8129 8130 dname = strdup(path); 8131 if (dname == NULL) 8132 return -ENOMEM; 8133 8134 dir = dirname(dname); 8135 if (mkdir(dir, 0700) && errno != EEXIST) 8136 err = -errno; 8137 8138 free(dname); 8139 if (err) { 8140 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8141 pr_warn("failed to mkdir %s: %s\n", path, cp); 8142 } 8143 return err; 8144 } 8145 8146 static int check_path(const char *path) 8147 { 8148 char *cp, errmsg[STRERR_BUFSIZE]; 8149 struct statfs st_fs; 8150 char *dname, *dir; 8151 int err = 0; 8152 8153 if (path == NULL) 8154 return -EINVAL; 8155 8156 dname = strdup(path); 8157 if (dname == NULL) 8158 return -ENOMEM; 8159 8160 dir = dirname(dname); 8161 if (statfs(dir, &st_fs)) { 8162 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8163 pr_warn("failed to statfs %s: %s\n", dir, cp); 8164 err = -errno; 8165 } 8166 free(dname); 8167 8168 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8169 pr_warn("specified path %s is not on BPF FS\n", path); 8170 err = -EINVAL; 8171 } 8172 8173 return err; 8174 } 8175 8176 int bpf_program__pin(struct bpf_program *prog, const char *path) 8177 { 8178 char *cp, errmsg[STRERR_BUFSIZE]; 8179 int err; 8180 8181 if (prog->fd < 0) { 8182 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8183 return libbpf_err(-EINVAL); 8184 } 8185 8186 err = make_parent_dir(path); 8187 if (err) 8188 return libbpf_err(err); 8189 8190 err = check_path(path); 8191 if (err) 8192 return libbpf_err(err); 8193 8194 if (bpf_obj_pin(prog->fd, path)) { 8195 err = -errno; 8196 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8197 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8198 return libbpf_err(err); 8199 } 8200 8201 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8202 return 0; 8203 } 8204 8205 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8206 { 8207 int err; 8208 8209 if (prog->fd < 0) { 8210 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8211 return libbpf_err(-EINVAL); 8212 } 8213 8214 err = check_path(path); 8215 if (err) 8216 return libbpf_err(err); 8217 8218 err = unlink(path); 8219 if (err) 8220 return libbpf_err(-errno); 8221 8222 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8223 return 0; 8224 } 8225 8226 int bpf_map__pin(struct bpf_map *map, const char *path) 8227 { 8228 char *cp, errmsg[STRERR_BUFSIZE]; 8229 int err; 8230 8231 if (map == NULL) { 8232 pr_warn("invalid map pointer\n"); 8233 return libbpf_err(-EINVAL); 8234 } 8235 8236 if (map->pin_path) { 8237 if (path && strcmp(path, map->pin_path)) { 8238 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8239 bpf_map__name(map), map->pin_path, path); 8240 return libbpf_err(-EINVAL); 8241 } else if (map->pinned) { 8242 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8243 bpf_map__name(map), map->pin_path); 8244 return 0; 8245 } 8246 } else { 8247 if (!path) { 8248 pr_warn("missing a path to pin map '%s' at\n", 8249 bpf_map__name(map)); 8250 return libbpf_err(-EINVAL); 8251 } else if (map->pinned) { 8252 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8253 return libbpf_err(-EEXIST); 8254 } 8255 8256 map->pin_path = strdup(path); 8257 if (!map->pin_path) { 8258 err = -errno; 8259 goto out_err; 8260 } 8261 } 8262 8263 err = make_parent_dir(map->pin_path); 8264 if (err) 8265 return libbpf_err(err); 8266 8267 err = check_path(map->pin_path); 8268 if (err) 8269 return libbpf_err(err); 8270 8271 if (bpf_obj_pin(map->fd, map->pin_path)) { 8272 err = -errno; 8273 goto out_err; 8274 } 8275 8276 map->pinned = true; 8277 pr_debug("pinned map '%s'\n", map->pin_path); 8278 8279 return 0; 8280 8281 out_err: 8282 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8283 pr_warn("failed to pin map: %s\n", cp); 8284 return libbpf_err(err); 8285 } 8286 8287 int bpf_map__unpin(struct bpf_map *map, const char *path) 8288 { 8289 int err; 8290 8291 if (map == NULL) { 8292 pr_warn("invalid map pointer\n"); 8293 return libbpf_err(-EINVAL); 8294 } 8295 8296 if (map->pin_path) { 8297 if (path && strcmp(path, map->pin_path)) { 8298 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8299 bpf_map__name(map), map->pin_path, path); 8300 return libbpf_err(-EINVAL); 8301 } 8302 path = map->pin_path; 8303 } else if (!path) { 8304 pr_warn("no path to unpin map '%s' from\n", 8305 bpf_map__name(map)); 8306 return libbpf_err(-EINVAL); 8307 } 8308 8309 err = check_path(path); 8310 if (err) 8311 return libbpf_err(err); 8312 8313 err = unlink(path); 8314 if (err != 0) 8315 return libbpf_err(-errno); 8316 8317 map->pinned = false; 8318 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8319 8320 return 0; 8321 } 8322 8323 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8324 { 8325 char *new = NULL; 8326 8327 if (path) { 8328 new = strdup(path); 8329 if (!new) 8330 return libbpf_err(-errno); 8331 } 8332 8333 free(map->pin_path); 8334 map->pin_path = new; 8335 return 0; 8336 } 8337 8338 __alias(bpf_map__pin_path) 8339 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8340 8341 const char *bpf_map__pin_path(const struct bpf_map *map) 8342 { 8343 return map->pin_path; 8344 } 8345 8346 bool bpf_map__is_pinned(const struct bpf_map *map) 8347 { 8348 return map->pinned; 8349 } 8350 8351 static void sanitize_pin_path(char *s) 8352 { 8353 /* bpffs disallows periods in path names */ 8354 while (*s) { 8355 if (*s == '.') 8356 *s = '_'; 8357 s++; 8358 } 8359 } 8360 8361 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8362 { 8363 struct bpf_map *map; 8364 int err; 8365 8366 if (!obj) 8367 return libbpf_err(-ENOENT); 8368 8369 if (!obj->loaded) { 8370 pr_warn("object not yet loaded; load it first\n"); 8371 return libbpf_err(-ENOENT); 8372 } 8373 8374 bpf_object__for_each_map(map, obj) { 8375 char *pin_path = NULL; 8376 char buf[PATH_MAX]; 8377 8378 if (!map->autocreate) 8379 continue; 8380 8381 if (path) { 8382 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8383 if (err) 8384 goto err_unpin_maps; 8385 sanitize_pin_path(buf); 8386 pin_path = buf; 8387 } else if (!map->pin_path) { 8388 continue; 8389 } 8390 8391 err = bpf_map__pin(map, pin_path); 8392 if (err) 8393 goto err_unpin_maps; 8394 } 8395 8396 return 0; 8397 8398 err_unpin_maps: 8399 while ((map = bpf_object__prev_map(obj, map))) { 8400 if (!map->pin_path) 8401 continue; 8402 8403 bpf_map__unpin(map, NULL); 8404 } 8405 8406 return libbpf_err(err); 8407 } 8408 8409 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8410 { 8411 struct bpf_map *map; 8412 int err; 8413 8414 if (!obj) 8415 return libbpf_err(-ENOENT); 8416 8417 bpf_object__for_each_map(map, obj) { 8418 char *pin_path = NULL; 8419 char buf[PATH_MAX]; 8420 8421 if (path) { 8422 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8423 if (err) 8424 return libbpf_err(err); 8425 sanitize_pin_path(buf); 8426 pin_path = buf; 8427 } else if (!map->pin_path) { 8428 continue; 8429 } 8430 8431 err = bpf_map__unpin(map, pin_path); 8432 if (err) 8433 return libbpf_err(err); 8434 } 8435 8436 return 0; 8437 } 8438 8439 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8440 { 8441 struct bpf_program *prog; 8442 char buf[PATH_MAX]; 8443 int err; 8444 8445 if (!obj) 8446 return libbpf_err(-ENOENT); 8447 8448 if (!obj->loaded) { 8449 pr_warn("object not yet loaded; load it first\n"); 8450 return libbpf_err(-ENOENT); 8451 } 8452 8453 bpf_object__for_each_program(prog, obj) { 8454 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8455 if (err) 8456 goto err_unpin_programs; 8457 8458 err = bpf_program__pin(prog, buf); 8459 if (err) 8460 goto err_unpin_programs; 8461 } 8462 8463 return 0; 8464 8465 err_unpin_programs: 8466 while ((prog = bpf_object__prev_program(obj, prog))) { 8467 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8468 continue; 8469 8470 bpf_program__unpin(prog, buf); 8471 } 8472 8473 return libbpf_err(err); 8474 } 8475 8476 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8477 { 8478 struct bpf_program *prog; 8479 int err; 8480 8481 if (!obj) 8482 return libbpf_err(-ENOENT); 8483 8484 bpf_object__for_each_program(prog, obj) { 8485 char buf[PATH_MAX]; 8486 8487 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8488 if (err) 8489 return libbpf_err(err); 8490 8491 err = bpf_program__unpin(prog, buf); 8492 if (err) 8493 return libbpf_err(err); 8494 } 8495 8496 return 0; 8497 } 8498 8499 int bpf_object__pin(struct bpf_object *obj, const char *path) 8500 { 8501 int err; 8502 8503 err = bpf_object__pin_maps(obj, path); 8504 if (err) 8505 return libbpf_err(err); 8506 8507 err = bpf_object__pin_programs(obj, path); 8508 if (err) { 8509 bpf_object__unpin_maps(obj, path); 8510 return libbpf_err(err); 8511 } 8512 8513 return 0; 8514 } 8515 8516 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8517 { 8518 int err; 8519 8520 err = bpf_object__unpin_programs(obj, path); 8521 if (err) 8522 return libbpf_err(err); 8523 8524 err = bpf_object__unpin_maps(obj, path); 8525 if (err) 8526 return libbpf_err(err); 8527 8528 return 0; 8529 } 8530 8531 static void bpf_map__destroy(struct bpf_map *map) 8532 { 8533 if (map->inner_map) { 8534 bpf_map__destroy(map->inner_map); 8535 zfree(&map->inner_map); 8536 } 8537 8538 zfree(&map->init_slots); 8539 map->init_slots_sz = 0; 8540 8541 if (map->mmaped) { 8542 size_t mmap_sz; 8543 8544 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8545 munmap(map->mmaped, mmap_sz); 8546 map->mmaped = NULL; 8547 } 8548 8549 if (map->st_ops) { 8550 zfree(&map->st_ops->data); 8551 zfree(&map->st_ops->progs); 8552 zfree(&map->st_ops->kern_func_off); 8553 zfree(&map->st_ops); 8554 } 8555 8556 zfree(&map->name); 8557 zfree(&map->real_name); 8558 zfree(&map->pin_path); 8559 8560 if (map->fd >= 0) 8561 zclose(map->fd); 8562 } 8563 8564 void bpf_object__close(struct bpf_object *obj) 8565 { 8566 size_t i; 8567 8568 if (IS_ERR_OR_NULL(obj)) 8569 return; 8570 8571 usdt_manager_free(obj->usdt_man); 8572 obj->usdt_man = NULL; 8573 8574 bpf_gen__free(obj->gen_loader); 8575 bpf_object__elf_finish(obj); 8576 bpf_object_unload(obj); 8577 btf__free(obj->btf); 8578 btf__free(obj->btf_vmlinux); 8579 btf_ext__free(obj->btf_ext); 8580 8581 for (i = 0; i < obj->nr_maps; i++) 8582 bpf_map__destroy(&obj->maps[i]); 8583 8584 zfree(&obj->btf_custom_path); 8585 zfree(&obj->kconfig); 8586 8587 for (i = 0; i < obj->nr_extern; i++) 8588 zfree(&obj->externs[i].essent_name); 8589 8590 zfree(&obj->externs); 8591 obj->nr_extern = 0; 8592 8593 zfree(&obj->maps); 8594 obj->nr_maps = 0; 8595 8596 if (obj->programs && obj->nr_programs) { 8597 for (i = 0; i < obj->nr_programs; i++) 8598 bpf_program__exit(&obj->programs[i]); 8599 } 8600 zfree(&obj->programs); 8601 8602 free(obj); 8603 } 8604 8605 const char *bpf_object__name(const struct bpf_object *obj) 8606 { 8607 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8608 } 8609 8610 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8611 { 8612 return obj ? obj->kern_version : 0; 8613 } 8614 8615 struct btf *bpf_object__btf(const struct bpf_object *obj) 8616 { 8617 return obj ? obj->btf : NULL; 8618 } 8619 8620 int bpf_object__btf_fd(const struct bpf_object *obj) 8621 { 8622 return obj->btf ? btf__fd(obj->btf) : -1; 8623 } 8624 8625 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8626 { 8627 if (obj->loaded) 8628 return libbpf_err(-EINVAL); 8629 8630 obj->kern_version = kern_version; 8631 8632 return 0; 8633 } 8634 8635 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8636 { 8637 struct bpf_gen *gen; 8638 8639 if (!opts) 8640 return -EFAULT; 8641 if (!OPTS_VALID(opts, gen_loader_opts)) 8642 return -EINVAL; 8643 gen = calloc(sizeof(*gen), 1); 8644 if (!gen) 8645 return -ENOMEM; 8646 gen->opts = opts; 8647 obj->gen_loader = gen; 8648 return 0; 8649 } 8650 8651 static struct bpf_program * 8652 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8653 bool forward) 8654 { 8655 size_t nr_programs = obj->nr_programs; 8656 ssize_t idx; 8657 8658 if (!nr_programs) 8659 return NULL; 8660 8661 if (!p) 8662 /* Iter from the beginning */ 8663 return forward ? &obj->programs[0] : 8664 &obj->programs[nr_programs - 1]; 8665 8666 if (p->obj != obj) { 8667 pr_warn("error: program handler doesn't match object\n"); 8668 return errno = EINVAL, NULL; 8669 } 8670 8671 idx = (p - obj->programs) + (forward ? 1 : -1); 8672 if (idx >= obj->nr_programs || idx < 0) 8673 return NULL; 8674 return &obj->programs[idx]; 8675 } 8676 8677 struct bpf_program * 8678 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8679 { 8680 struct bpf_program *prog = prev; 8681 8682 do { 8683 prog = __bpf_program__iter(prog, obj, true); 8684 } while (prog && prog_is_subprog(obj, prog)); 8685 8686 return prog; 8687 } 8688 8689 struct bpf_program * 8690 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8691 { 8692 struct bpf_program *prog = next; 8693 8694 do { 8695 prog = __bpf_program__iter(prog, obj, false); 8696 } while (prog && prog_is_subprog(obj, prog)); 8697 8698 return prog; 8699 } 8700 8701 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8702 { 8703 prog->prog_ifindex = ifindex; 8704 } 8705 8706 const char *bpf_program__name(const struct bpf_program *prog) 8707 { 8708 return prog->name; 8709 } 8710 8711 const char *bpf_program__section_name(const struct bpf_program *prog) 8712 { 8713 return prog->sec_name; 8714 } 8715 8716 bool bpf_program__autoload(const struct bpf_program *prog) 8717 { 8718 return prog->autoload; 8719 } 8720 8721 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8722 { 8723 if (prog->obj->loaded) 8724 return libbpf_err(-EINVAL); 8725 8726 prog->autoload = autoload; 8727 return 0; 8728 } 8729 8730 bool bpf_program__autoattach(const struct bpf_program *prog) 8731 { 8732 return prog->autoattach; 8733 } 8734 8735 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8736 { 8737 prog->autoattach = autoattach; 8738 } 8739 8740 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8741 { 8742 return prog->insns; 8743 } 8744 8745 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8746 { 8747 return prog->insns_cnt; 8748 } 8749 8750 int bpf_program__set_insns(struct bpf_program *prog, 8751 struct bpf_insn *new_insns, size_t new_insn_cnt) 8752 { 8753 struct bpf_insn *insns; 8754 8755 if (prog->obj->loaded) 8756 return -EBUSY; 8757 8758 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8759 /* NULL is a valid return from reallocarray if the new count is zero */ 8760 if (!insns && new_insn_cnt) { 8761 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8762 return -ENOMEM; 8763 } 8764 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8765 8766 prog->insns = insns; 8767 prog->insns_cnt = new_insn_cnt; 8768 return 0; 8769 } 8770 8771 int bpf_program__fd(const struct bpf_program *prog) 8772 { 8773 if (!prog) 8774 return libbpf_err(-EINVAL); 8775 8776 if (prog->fd < 0) 8777 return libbpf_err(-ENOENT); 8778 8779 return prog->fd; 8780 } 8781 8782 __alias(bpf_program__type) 8783 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8784 8785 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8786 { 8787 return prog->type; 8788 } 8789 8790 static size_t custom_sec_def_cnt; 8791 static struct bpf_sec_def *custom_sec_defs; 8792 static struct bpf_sec_def custom_fallback_def; 8793 static bool has_custom_fallback_def; 8794 static int last_custom_sec_def_handler_id; 8795 8796 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8797 { 8798 if (prog->obj->loaded) 8799 return libbpf_err(-EBUSY); 8800 8801 /* if type is not changed, do nothing */ 8802 if (prog->type == type) 8803 return 0; 8804 8805 prog->type = type; 8806 8807 /* If a program type was changed, we need to reset associated SEC() 8808 * handler, as it will be invalid now. The only exception is a generic 8809 * fallback handler, which by definition is program type-agnostic and 8810 * is a catch-all custom handler, optionally set by the application, 8811 * so should be able to handle any type of BPF program. 8812 */ 8813 if (prog->sec_def != &custom_fallback_def) 8814 prog->sec_def = NULL; 8815 return 0; 8816 } 8817 8818 __alias(bpf_program__expected_attach_type) 8819 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8820 8821 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8822 { 8823 return prog->expected_attach_type; 8824 } 8825 8826 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8827 enum bpf_attach_type type) 8828 { 8829 if (prog->obj->loaded) 8830 return libbpf_err(-EBUSY); 8831 8832 prog->expected_attach_type = type; 8833 return 0; 8834 } 8835 8836 __u32 bpf_program__flags(const struct bpf_program *prog) 8837 { 8838 return prog->prog_flags; 8839 } 8840 8841 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8842 { 8843 if (prog->obj->loaded) 8844 return libbpf_err(-EBUSY); 8845 8846 prog->prog_flags = flags; 8847 return 0; 8848 } 8849 8850 __u32 bpf_program__log_level(const struct bpf_program *prog) 8851 { 8852 return prog->log_level; 8853 } 8854 8855 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8856 { 8857 if (prog->obj->loaded) 8858 return libbpf_err(-EBUSY); 8859 8860 prog->log_level = log_level; 8861 return 0; 8862 } 8863 8864 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8865 { 8866 *log_size = prog->log_size; 8867 return prog->log_buf; 8868 } 8869 8870 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8871 { 8872 if (log_size && !log_buf) 8873 return -EINVAL; 8874 if (prog->log_size > UINT_MAX) 8875 return -EINVAL; 8876 if (prog->obj->loaded) 8877 return -EBUSY; 8878 8879 prog->log_buf = log_buf; 8880 prog->log_size = log_size; 8881 return 0; 8882 } 8883 8884 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8885 .sec = (char *)sec_pfx, \ 8886 .prog_type = BPF_PROG_TYPE_##ptype, \ 8887 .expected_attach_type = atype, \ 8888 .cookie = (long)(flags), \ 8889 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8890 __VA_ARGS__ \ 8891 } 8892 8893 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8894 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8895 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8896 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8897 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8898 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8899 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8900 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8901 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8902 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8903 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8904 8905 static const struct bpf_sec_def section_defs[] = { 8906 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8907 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8908 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8909 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8910 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8911 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8912 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8913 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8914 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8915 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8916 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8917 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8918 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8919 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8920 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8921 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8922 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8923 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 8924 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 8925 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 8926 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 8927 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 8928 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 8929 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8930 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8931 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8932 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 8933 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 8934 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8935 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8936 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8937 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8938 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8939 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8940 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8941 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8942 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8943 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8944 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8945 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8946 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8947 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8948 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8949 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8950 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8951 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8952 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8953 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8954 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8955 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8956 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8957 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8958 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8959 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8960 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8961 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8962 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8963 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8964 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8965 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8966 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8967 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8968 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8969 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8970 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8971 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8972 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8973 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8974 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8975 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8976 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8977 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8978 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8979 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8980 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8981 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8982 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8983 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8984 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 8985 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8986 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8987 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 8988 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8989 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8990 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 8991 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8992 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8993 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 8994 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8995 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8996 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 8997 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8998 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8999 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9000 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9001 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9002 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9003 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9004 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9005 }; 9006 9007 int libbpf_register_prog_handler(const char *sec, 9008 enum bpf_prog_type prog_type, 9009 enum bpf_attach_type exp_attach_type, 9010 const struct libbpf_prog_handler_opts *opts) 9011 { 9012 struct bpf_sec_def *sec_def; 9013 9014 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9015 return libbpf_err(-EINVAL); 9016 9017 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9018 return libbpf_err(-E2BIG); 9019 9020 if (sec) { 9021 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9022 sizeof(*sec_def)); 9023 if (!sec_def) 9024 return libbpf_err(-ENOMEM); 9025 9026 custom_sec_defs = sec_def; 9027 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9028 } else { 9029 if (has_custom_fallback_def) 9030 return libbpf_err(-EBUSY); 9031 9032 sec_def = &custom_fallback_def; 9033 } 9034 9035 sec_def->sec = sec ? strdup(sec) : NULL; 9036 if (sec && !sec_def->sec) 9037 return libbpf_err(-ENOMEM); 9038 9039 sec_def->prog_type = prog_type; 9040 sec_def->expected_attach_type = exp_attach_type; 9041 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9042 9043 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9044 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9045 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9046 9047 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9048 9049 if (sec) 9050 custom_sec_def_cnt++; 9051 else 9052 has_custom_fallback_def = true; 9053 9054 return sec_def->handler_id; 9055 } 9056 9057 int libbpf_unregister_prog_handler(int handler_id) 9058 { 9059 struct bpf_sec_def *sec_defs; 9060 int i; 9061 9062 if (handler_id <= 0) 9063 return libbpf_err(-EINVAL); 9064 9065 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9066 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9067 has_custom_fallback_def = false; 9068 return 0; 9069 } 9070 9071 for (i = 0; i < custom_sec_def_cnt; i++) { 9072 if (custom_sec_defs[i].handler_id == handler_id) 9073 break; 9074 } 9075 9076 if (i == custom_sec_def_cnt) 9077 return libbpf_err(-ENOENT); 9078 9079 free(custom_sec_defs[i].sec); 9080 for (i = i + 1; i < custom_sec_def_cnt; i++) 9081 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9082 custom_sec_def_cnt--; 9083 9084 /* try to shrink the array, but it's ok if we couldn't */ 9085 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9086 /* if new count is zero, reallocarray can return a valid NULL result; 9087 * in this case the previous pointer will be freed, so we *have to* 9088 * reassign old pointer to the new value (even if it's NULL) 9089 */ 9090 if (sec_defs || custom_sec_def_cnt == 0) 9091 custom_sec_defs = sec_defs; 9092 9093 return 0; 9094 } 9095 9096 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9097 { 9098 size_t len = strlen(sec_def->sec); 9099 9100 /* "type/" always has to have proper SEC("type/extras") form */ 9101 if (sec_def->sec[len - 1] == '/') { 9102 if (str_has_pfx(sec_name, sec_def->sec)) 9103 return true; 9104 return false; 9105 } 9106 9107 /* "type+" means it can be either exact SEC("type") or 9108 * well-formed SEC("type/extras") with proper '/' separator 9109 */ 9110 if (sec_def->sec[len - 1] == '+') { 9111 len--; 9112 /* not even a prefix */ 9113 if (strncmp(sec_name, sec_def->sec, len) != 0) 9114 return false; 9115 /* exact match or has '/' separator */ 9116 if (sec_name[len] == '\0' || sec_name[len] == '/') 9117 return true; 9118 return false; 9119 } 9120 9121 return strcmp(sec_name, sec_def->sec) == 0; 9122 } 9123 9124 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9125 { 9126 const struct bpf_sec_def *sec_def; 9127 int i, n; 9128 9129 n = custom_sec_def_cnt; 9130 for (i = 0; i < n; i++) { 9131 sec_def = &custom_sec_defs[i]; 9132 if (sec_def_matches(sec_def, sec_name)) 9133 return sec_def; 9134 } 9135 9136 n = ARRAY_SIZE(section_defs); 9137 for (i = 0; i < n; i++) { 9138 sec_def = §ion_defs[i]; 9139 if (sec_def_matches(sec_def, sec_name)) 9140 return sec_def; 9141 } 9142 9143 if (has_custom_fallback_def) 9144 return &custom_fallback_def; 9145 9146 return NULL; 9147 } 9148 9149 #define MAX_TYPE_NAME_SIZE 32 9150 9151 static char *libbpf_get_type_names(bool attach_type) 9152 { 9153 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9154 char *buf; 9155 9156 buf = malloc(len); 9157 if (!buf) 9158 return NULL; 9159 9160 buf[0] = '\0'; 9161 /* Forge string buf with all available names */ 9162 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9163 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9164 9165 if (attach_type) { 9166 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9167 continue; 9168 9169 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9170 continue; 9171 } 9172 9173 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9174 free(buf); 9175 return NULL; 9176 } 9177 strcat(buf, " "); 9178 strcat(buf, section_defs[i].sec); 9179 } 9180 9181 return buf; 9182 } 9183 9184 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9185 enum bpf_attach_type *expected_attach_type) 9186 { 9187 const struct bpf_sec_def *sec_def; 9188 char *type_names; 9189 9190 if (!name) 9191 return libbpf_err(-EINVAL); 9192 9193 sec_def = find_sec_def(name); 9194 if (sec_def) { 9195 *prog_type = sec_def->prog_type; 9196 *expected_attach_type = sec_def->expected_attach_type; 9197 return 0; 9198 } 9199 9200 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9201 type_names = libbpf_get_type_names(false); 9202 if (type_names != NULL) { 9203 pr_debug("supported section(type) names are:%s\n", type_names); 9204 free(type_names); 9205 } 9206 9207 return libbpf_err(-ESRCH); 9208 } 9209 9210 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9211 { 9212 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9213 return NULL; 9214 9215 return attach_type_name[t]; 9216 } 9217 9218 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9219 { 9220 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9221 return NULL; 9222 9223 return link_type_name[t]; 9224 } 9225 9226 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9227 { 9228 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9229 return NULL; 9230 9231 return map_type_name[t]; 9232 } 9233 9234 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9235 { 9236 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9237 return NULL; 9238 9239 return prog_type_name[t]; 9240 } 9241 9242 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9243 int sec_idx, 9244 size_t offset) 9245 { 9246 struct bpf_map *map; 9247 size_t i; 9248 9249 for (i = 0; i < obj->nr_maps; i++) { 9250 map = &obj->maps[i]; 9251 if (!bpf_map__is_struct_ops(map)) 9252 continue; 9253 if (map->sec_idx == sec_idx && 9254 map->sec_offset <= offset && 9255 offset - map->sec_offset < map->def.value_size) 9256 return map; 9257 } 9258 9259 return NULL; 9260 } 9261 9262 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9263 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9264 Elf64_Shdr *shdr, Elf_Data *data) 9265 { 9266 const struct btf_member *member; 9267 struct bpf_struct_ops *st_ops; 9268 struct bpf_program *prog; 9269 unsigned int shdr_idx; 9270 const struct btf *btf; 9271 struct bpf_map *map; 9272 unsigned int moff, insn_idx; 9273 const char *name; 9274 __u32 member_idx; 9275 Elf64_Sym *sym; 9276 Elf64_Rel *rel; 9277 int i, nrels; 9278 9279 btf = obj->btf; 9280 nrels = shdr->sh_size / shdr->sh_entsize; 9281 for (i = 0; i < nrels; i++) { 9282 rel = elf_rel_by_idx(data, i); 9283 if (!rel) { 9284 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9285 return -LIBBPF_ERRNO__FORMAT; 9286 } 9287 9288 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9289 if (!sym) { 9290 pr_warn("struct_ops reloc: symbol %zx not found\n", 9291 (size_t)ELF64_R_SYM(rel->r_info)); 9292 return -LIBBPF_ERRNO__FORMAT; 9293 } 9294 9295 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9296 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9297 if (!map) { 9298 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9299 (size_t)rel->r_offset); 9300 return -EINVAL; 9301 } 9302 9303 moff = rel->r_offset - map->sec_offset; 9304 shdr_idx = sym->st_shndx; 9305 st_ops = map->st_ops; 9306 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9307 map->name, 9308 (long long)(rel->r_info >> 32), 9309 (long long)sym->st_value, 9310 shdr_idx, (size_t)rel->r_offset, 9311 map->sec_offset, sym->st_name, name); 9312 9313 if (shdr_idx >= SHN_LORESERVE) { 9314 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9315 map->name, (size_t)rel->r_offset, shdr_idx); 9316 return -LIBBPF_ERRNO__RELOC; 9317 } 9318 if (sym->st_value % BPF_INSN_SZ) { 9319 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9320 map->name, (unsigned long long)sym->st_value); 9321 return -LIBBPF_ERRNO__FORMAT; 9322 } 9323 insn_idx = sym->st_value / BPF_INSN_SZ; 9324 9325 member = find_member_by_offset(st_ops->type, moff * 8); 9326 if (!member) { 9327 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9328 map->name, moff); 9329 return -EINVAL; 9330 } 9331 member_idx = member - btf_members(st_ops->type); 9332 name = btf__name_by_offset(btf, member->name_off); 9333 9334 if (!resolve_func_ptr(btf, member->type, NULL)) { 9335 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9336 map->name, name); 9337 return -EINVAL; 9338 } 9339 9340 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9341 if (!prog) { 9342 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9343 map->name, shdr_idx, name); 9344 return -EINVAL; 9345 } 9346 9347 /* prevent the use of BPF prog with invalid type */ 9348 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9349 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9350 map->name, prog->name); 9351 return -EINVAL; 9352 } 9353 9354 /* if we haven't yet processed this BPF program, record proper 9355 * attach_btf_id and member_idx 9356 */ 9357 if (!prog->attach_btf_id) { 9358 prog->attach_btf_id = st_ops->type_id; 9359 prog->expected_attach_type = member_idx; 9360 } 9361 9362 /* struct_ops BPF prog can be re-used between multiple 9363 * .struct_ops & .struct_ops.link as long as it's the 9364 * same struct_ops struct definition and the same 9365 * function pointer field 9366 */ 9367 if (prog->attach_btf_id != st_ops->type_id || 9368 prog->expected_attach_type != member_idx) { 9369 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9370 map->name, prog->name, prog->sec_name, prog->type, 9371 prog->attach_btf_id, prog->expected_attach_type, name); 9372 return -EINVAL; 9373 } 9374 9375 st_ops->progs[member_idx] = prog; 9376 } 9377 9378 return 0; 9379 } 9380 9381 #define BTF_TRACE_PREFIX "btf_trace_" 9382 #define BTF_LSM_PREFIX "bpf_lsm_" 9383 #define BTF_ITER_PREFIX "bpf_iter_" 9384 #define BTF_MAX_NAME_SIZE 128 9385 9386 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9387 const char **prefix, int *kind) 9388 { 9389 switch (attach_type) { 9390 case BPF_TRACE_RAW_TP: 9391 *prefix = BTF_TRACE_PREFIX; 9392 *kind = BTF_KIND_TYPEDEF; 9393 break; 9394 case BPF_LSM_MAC: 9395 case BPF_LSM_CGROUP: 9396 *prefix = BTF_LSM_PREFIX; 9397 *kind = BTF_KIND_FUNC; 9398 break; 9399 case BPF_TRACE_ITER: 9400 *prefix = BTF_ITER_PREFIX; 9401 *kind = BTF_KIND_FUNC; 9402 break; 9403 default: 9404 *prefix = ""; 9405 *kind = BTF_KIND_FUNC; 9406 } 9407 } 9408 9409 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9410 const char *name, __u32 kind) 9411 { 9412 char btf_type_name[BTF_MAX_NAME_SIZE]; 9413 int ret; 9414 9415 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9416 "%s%s", prefix, name); 9417 /* snprintf returns the number of characters written excluding the 9418 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9419 * indicates truncation. 9420 */ 9421 if (ret < 0 || ret >= sizeof(btf_type_name)) 9422 return -ENAMETOOLONG; 9423 return btf__find_by_name_kind(btf, btf_type_name, kind); 9424 } 9425 9426 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9427 enum bpf_attach_type attach_type) 9428 { 9429 const char *prefix; 9430 int kind; 9431 9432 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9433 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9434 } 9435 9436 int libbpf_find_vmlinux_btf_id(const char *name, 9437 enum bpf_attach_type attach_type) 9438 { 9439 struct btf *btf; 9440 int err; 9441 9442 btf = btf__load_vmlinux_btf(); 9443 err = libbpf_get_error(btf); 9444 if (err) { 9445 pr_warn("vmlinux BTF is not found\n"); 9446 return libbpf_err(err); 9447 } 9448 9449 err = find_attach_btf_id(btf, name, attach_type); 9450 if (err <= 0) 9451 pr_warn("%s is not found in vmlinux BTF\n", name); 9452 9453 btf__free(btf); 9454 return libbpf_err(err); 9455 } 9456 9457 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9458 { 9459 struct bpf_prog_info info; 9460 __u32 info_len = sizeof(info); 9461 struct btf *btf; 9462 int err; 9463 9464 memset(&info, 0, info_len); 9465 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9466 if (err) { 9467 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9468 attach_prog_fd, err); 9469 return err; 9470 } 9471 9472 err = -EINVAL; 9473 if (!info.btf_id) { 9474 pr_warn("The target program doesn't have BTF\n"); 9475 goto out; 9476 } 9477 btf = btf__load_from_kernel_by_id(info.btf_id); 9478 err = libbpf_get_error(btf); 9479 if (err) { 9480 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9481 goto out; 9482 } 9483 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9484 btf__free(btf); 9485 if (err <= 0) { 9486 pr_warn("%s is not found in prog's BTF\n", name); 9487 goto out; 9488 } 9489 out: 9490 return err; 9491 } 9492 9493 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9494 enum bpf_attach_type attach_type, 9495 int *btf_obj_fd, int *btf_type_id) 9496 { 9497 int ret, i; 9498 9499 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9500 if (ret > 0) { 9501 *btf_obj_fd = 0; /* vmlinux BTF */ 9502 *btf_type_id = ret; 9503 return 0; 9504 } 9505 if (ret != -ENOENT) 9506 return ret; 9507 9508 ret = load_module_btfs(obj); 9509 if (ret) 9510 return ret; 9511 9512 for (i = 0; i < obj->btf_module_cnt; i++) { 9513 const struct module_btf *mod = &obj->btf_modules[i]; 9514 9515 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9516 if (ret > 0) { 9517 *btf_obj_fd = mod->fd; 9518 *btf_type_id = ret; 9519 return 0; 9520 } 9521 if (ret == -ENOENT) 9522 continue; 9523 9524 return ret; 9525 } 9526 9527 return -ESRCH; 9528 } 9529 9530 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9531 int *btf_obj_fd, int *btf_type_id) 9532 { 9533 enum bpf_attach_type attach_type = prog->expected_attach_type; 9534 __u32 attach_prog_fd = prog->attach_prog_fd; 9535 int err = 0; 9536 9537 /* BPF program's BTF ID */ 9538 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9539 if (!attach_prog_fd) { 9540 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9541 return -EINVAL; 9542 } 9543 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9544 if (err < 0) { 9545 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9546 prog->name, attach_prog_fd, attach_name, err); 9547 return err; 9548 } 9549 *btf_obj_fd = 0; 9550 *btf_type_id = err; 9551 return 0; 9552 } 9553 9554 /* kernel/module BTF ID */ 9555 if (prog->obj->gen_loader) { 9556 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9557 *btf_obj_fd = 0; 9558 *btf_type_id = 1; 9559 } else { 9560 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9561 } 9562 if (err) { 9563 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9564 prog->name, attach_name, err); 9565 return err; 9566 } 9567 return 0; 9568 } 9569 9570 int libbpf_attach_type_by_name(const char *name, 9571 enum bpf_attach_type *attach_type) 9572 { 9573 char *type_names; 9574 const struct bpf_sec_def *sec_def; 9575 9576 if (!name) 9577 return libbpf_err(-EINVAL); 9578 9579 sec_def = find_sec_def(name); 9580 if (!sec_def) { 9581 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9582 type_names = libbpf_get_type_names(true); 9583 if (type_names != NULL) { 9584 pr_debug("attachable section(type) names are:%s\n", type_names); 9585 free(type_names); 9586 } 9587 9588 return libbpf_err(-EINVAL); 9589 } 9590 9591 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9592 return libbpf_err(-EINVAL); 9593 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9594 return libbpf_err(-EINVAL); 9595 9596 *attach_type = sec_def->expected_attach_type; 9597 return 0; 9598 } 9599 9600 int bpf_map__fd(const struct bpf_map *map) 9601 { 9602 return map ? map->fd : libbpf_err(-EINVAL); 9603 } 9604 9605 static bool map_uses_real_name(const struct bpf_map *map) 9606 { 9607 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9608 * their user-visible name differs from kernel-visible name. Users see 9609 * such map's corresponding ELF section name as a map name. 9610 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9611 * maps to know which name has to be returned to the user. 9612 */ 9613 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9614 return true; 9615 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9616 return true; 9617 return false; 9618 } 9619 9620 const char *bpf_map__name(const struct bpf_map *map) 9621 { 9622 if (!map) 9623 return NULL; 9624 9625 if (map_uses_real_name(map)) 9626 return map->real_name; 9627 9628 return map->name; 9629 } 9630 9631 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9632 { 9633 return map->def.type; 9634 } 9635 9636 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9637 { 9638 if (map->fd >= 0) 9639 return libbpf_err(-EBUSY); 9640 map->def.type = type; 9641 return 0; 9642 } 9643 9644 __u32 bpf_map__map_flags(const struct bpf_map *map) 9645 { 9646 return map->def.map_flags; 9647 } 9648 9649 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9650 { 9651 if (map->fd >= 0) 9652 return libbpf_err(-EBUSY); 9653 map->def.map_flags = flags; 9654 return 0; 9655 } 9656 9657 __u64 bpf_map__map_extra(const struct bpf_map *map) 9658 { 9659 return map->map_extra; 9660 } 9661 9662 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9663 { 9664 if (map->fd >= 0) 9665 return libbpf_err(-EBUSY); 9666 map->map_extra = map_extra; 9667 return 0; 9668 } 9669 9670 __u32 bpf_map__numa_node(const struct bpf_map *map) 9671 { 9672 return map->numa_node; 9673 } 9674 9675 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9676 { 9677 if (map->fd >= 0) 9678 return libbpf_err(-EBUSY); 9679 map->numa_node = numa_node; 9680 return 0; 9681 } 9682 9683 __u32 bpf_map__key_size(const struct bpf_map *map) 9684 { 9685 return map->def.key_size; 9686 } 9687 9688 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9689 { 9690 if (map->fd >= 0) 9691 return libbpf_err(-EBUSY); 9692 map->def.key_size = size; 9693 return 0; 9694 } 9695 9696 __u32 bpf_map__value_size(const struct bpf_map *map) 9697 { 9698 return map->def.value_size; 9699 } 9700 9701 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9702 { 9703 struct btf *btf; 9704 struct btf_type *datasec_type, *var_type; 9705 struct btf_var_secinfo *var; 9706 const struct btf_type *array_type; 9707 const struct btf_array *array; 9708 int vlen, element_sz, new_array_id; 9709 __u32 nr_elements; 9710 9711 /* check btf existence */ 9712 btf = bpf_object__btf(map->obj); 9713 if (!btf) 9714 return -ENOENT; 9715 9716 /* verify map is datasec */ 9717 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9718 if (!btf_is_datasec(datasec_type)) { 9719 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9720 bpf_map__name(map)); 9721 return -EINVAL; 9722 } 9723 9724 /* verify datasec has at least one var */ 9725 vlen = btf_vlen(datasec_type); 9726 if (vlen == 0) { 9727 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9728 bpf_map__name(map)); 9729 return -EINVAL; 9730 } 9731 9732 /* verify last var in the datasec is an array */ 9733 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9734 var_type = btf_type_by_id(btf, var->type); 9735 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9736 if (!btf_is_array(array_type)) { 9737 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9738 bpf_map__name(map)); 9739 return -EINVAL; 9740 } 9741 9742 /* verify request size aligns with array */ 9743 array = btf_array(array_type); 9744 element_sz = btf__resolve_size(btf, array->type); 9745 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9746 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9747 bpf_map__name(map), element_sz, size); 9748 return -EINVAL; 9749 } 9750 9751 /* create a new array based on the existing array, but with new length */ 9752 nr_elements = (size - var->offset) / element_sz; 9753 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9754 if (new_array_id < 0) 9755 return new_array_id; 9756 9757 /* adding a new btf type invalidates existing pointers to btf objects, 9758 * so refresh pointers before proceeding 9759 */ 9760 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9761 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9762 var_type = btf_type_by_id(btf, var->type); 9763 9764 /* finally update btf info */ 9765 datasec_type->size = size; 9766 var->size = size - var->offset; 9767 var_type->type = new_array_id; 9768 9769 return 0; 9770 } 9771 9772 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9773 { 9774 if (map->fd >= 0) 9775 return libbpf_err(-EBUSY); 9776 9777 if (map->mmaped) { 9778 int err; 9779 size_t mmap_old_sz, mmap_new_sz; 9780 9781 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9782 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9783 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9784 if (err) { 9785 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9786 bpf_map__name(map), err); 9787 return err; 9788 } 9789 err = map_btf_datasec_resize(map, size); 9790 if (err && err != -ENOENT) { 9791 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9792 bpf_map__name(map), err); 9793 map->btf_value_type_id = 0; 9794 map->btf_key_type_id = 0; 9795 } 9796 } 9797 9798 map->def.value_size = size; 9799 return 0; 9800 } 9801 9802 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9803 { 9804 return map ? map->btf_key_type_id : 0; 9805 } 9806 9807 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9808 { 9809 return map ? map->btf_value_type_id : 0; 9810 } 9811 9812 int bpf_map__set_initial_value(struct bpf_map *map, 9813 const void *data, size_t size) 9814 { 9815 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9816 size != map->def.value_size || map->fd >= 0) 9817 return libbpf_err(-EINVAL); 9818 9819 memcpy(map->mmaped, data, size); 9820 return 0; 9821 } 9822 9823 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9824 { 9825 if (!map->mmaped) 9826 return NULL; 9827 *psize = map->def.value_size; 9828 return map->mmaped; 9829 } 9830 9831 bool bpf_map__is_internal(const struct bpf_map *map) 9832 { 9833 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9834 } 9835 9836 __u32 bpf_map__ifindex(const struct bpf_map *map) 9837 { 9838 return map->map_ifindex; 9839 } 9840 9841 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9842 { 9843 if (map->fd >= 0) 9844 return libbpf_err(-EBUSY); 9845 map->map_ifindex = ifindex; 9846 return 0; 9847 } 9848 9849 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9850 { 9851 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9852 pr_warn("error: unsupported map type\n"); 9853 return libbpf_err(-EINVAL); 9854 } 9855 if (map->inner_map_fd != -1) { 9856 pr_warn("error: inner_map_fd already specified\n"); 9857 return libbpf_err(-EINVAL); 9858 } 9859 if (map->inner_map) { 9860 bpf_map__destroy(map->inner_map); 9861 zfree(&map->inner_map); 9862 } 9863 map->inner_map_fd = fd; 9864 return 0; 9865 } 9866 9867 static struct bpf_map * 9868 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9869 { 9870 ssize_t idx; 9871 struct bpf_map *s, *e; 9872 9873 if (!obj || !obj->maps) 9874 return errno = EINVAL, NULL; 9875 9876 s = obj->maps; 9877 e = obj->maps + obj->nr_maps; 9878 9879 if ((m < s) || (m >= e)) { 9880 pr_warn("error in %s: map handler doesn't belong to object\n", 9881 __func__); 9882 return errno = EINVAL, NULL; 9883 } 9884 9885 idx = (m - obj->maps) + i; 9886 if (idx >= obj->nr_maps || idx < 0) 9887 return NULL; 9888 return &obj->maps[idx]; 9889 } 9890 9891 struct bpf_map * 9892 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9893 { 9894 if (prev == NULL) 9895 return obj->maps; 9896 9897 return __bpf_map__iter(prev, obj, 1); 9898 } 9899 9900 struct bpf_map * 9901 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9902 { 9903 if (next == NULL) { 9904 if (!obj->nr_maps) 9905 return NULL; 9906 return obj->maps + obj->nr_maps - 1; 9907 } 9908 9909 return __bpf_map__iter(next, obj, -1); 9910 } 9911 9912 struct bpf_map * 9913 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9914 { 9915 struct bpf_map *pos; 9916 9917 bpf_object__for_each_map(pos, obj) { 9918 /* if it's a special internal map name (which always starts 9919 * with dot) then check if that special name matches the 9920 * real map name (ELF section name) 9921 */ 9922 if (name[0] == '.') { 9923 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9924 return pos; 9925 continue; 9926 } 9927 /* otherwise map name has to be an exact match */ 9928 if (map_uses_real_name(pos)) { 9929 if (strcmp(pos->real_name, name) == 0) 9930 return pos; 9931 continue; 9932 } 9933 if (strcmp(pos->name, name) == 0) 9934 return pos; 9935 } 9936 return errno = ENOENT, NULL; 9937 } 9938 9939 int 9940 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9941 { 9942 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9943 } 9944 9945 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9946 size_t value_sz, bool check_value_sz) 9947 { 9948 if (map->fd <= 0) 9949 return -ENOENT; 9950 9951 if (map->def.key_size != key_sz) { 9952 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9953 map->name, key_sz, map->def.key_size); 9954 return -EINVAL; 9955 } 9956 9957 if (!check_value_sz) 9958 return 0; 9959 9960 switch (map->def.type) { 9961 case BPF_MAP_TYPE_PERCPU_ARRAY: 9962 case BPF_MAP_TYPE_PERCPU_HASH: 9963 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9964 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9965 int num_cpu = libbpf_num_possible_cpus(); 9966 size_t elem_sz = roundup(map->def.value_size, 8); 9967 9968 if (value_sz != num_cpu * elem_sz) { 9969 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9970 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9971 return -EINVAL; 9972 } 9973 break; 9974 } 9975 default: 9976 if (map->def.value_size != value_sz) { 9977 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9978 map->name, value_sz, map->def.value_size); 9979 return -EINVAL; 9980 } 9981 break; 9982 } 9983 return 0; 9984 } 9985 9986 int bpf_map__lookup_elem(const struct bpf_map *map, 9987 const void *key, size_t key_sz, 9988 void *value, size_t value_sz, __u64 flags) 9989 { 9990 int err; 9991 9992 err = validate_map_op(map, key_sz, value_sz, true); 9993 if (err) 9994 return libbpf_err(err); 9995 9996 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9997 } 9998 9999 int bpf_map__update_elem(const struct bpf_map *map, 10000 const void *key, size_t key_sz, 10001 const void *value, size_t value_sz, __u64 flags) 10002 { 10003 int err; 10004 10005 err = validate_map_op(map, key_sz, value_sz, true); 10006 if (err) 10007 return libbpf_err(err); 10008 10009 return bpf_map_update_elem(map->fd, key, value, flags); 10010 } 10011 10012 int bpf_map__delete_elem(const struct bpf_map *map, 10013 const void *key, size_t key_sz, __u64 flags) 10014 { 10015 int err; 10016 10017 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10018 if (err) 10019 return libbpf_err(err); 10020 10021 return bpf_map_delete_elem_flags(map->fd, key, flags); 10022 } 10023 10024 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10025 const void *key, size_t key_sz, 10026 void *value, size_t value_sz, __u64 flags) 10027 { 10028 int err; 10029 10030 err = validate_map_op(map, key_sz, value_sz, true); 10031 if (err) 10032 return libbpf_err(err); 10033 10034 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10035 } 10036 10037 int bpf_map__get_next_key(const struct bpf_map *map, 10038 const void *cur_key, void *next_key, size_t key_sz) 10039 { 10040 int err; 10041 10042 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10043 if (err) 10044 return libbpf_err(err); 10045 10046 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10047 } 10048 10049 long libbpf_get_error(const void *ptr) 10050 { 10051 if (!IS_ERR_OR_NULL(ptr)) 10052 return 0; 10053 10054 if (IS_ERR(ptr)) 10055 errno = -PTR_ERR(ptr); 10056 10057 /* If ptr == NULL, then errno should be already set by the failing 10058 * API, because libbpf never returns NULL on success and it now always 10059 * sets errno on error. So no extra errno handling for ptr == NULL 10060 * case. 10061 */ 10062 return -errno; 10063 } 10064 10065 /* Replace link's underlying BPF program with the new one */ 10066 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10067 { 10068 int ret; 10069 10070 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10071 return libbpf_err_errno(ret); 10072 } 10073 10074 /* Release "ownership" of underlying BPF resource (typically, BPF program 10075 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10076 * link, when destructed through bpf_link__destroy() call won't attempt to 10077 * detach/unregisted that BPF resource. This is useful in situations where, 10078 * say, attached BPF program has to outlive userspace program that attached it 10079 * in the system. Depending on type of BPF program, though, there might be 10080 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10081 * exit of userspace program doesn't trigger automatic detachment and clean up 10082 * inside the kernel. 10083 */ 10084 void bpf_link__disconnect(struct bpf_link *link) 10085 { 10086 link->disconnected = true; 10087 } 10088 10089 int bpf_link__destroy(struct bpf_link *link) 10090 { 10091 int err = 0; 10092 10093 if (IS_ERR_OR_NULL(link)) 10094 return 0; 10095 10096 if (!link->disconnected && link->detach) 10097 err = link->detach(link); 10098 if (link->pin_path) 10099 free(link->pin_path); 10100 if (link->dealloc) 10101 link->dealloc(link); 10102 else 10103 free(link); 10104 10105 return libbpf_err(err); 10106 } 10107 10108 int bpf_link__fd(const struct bpf_link *link) 10109 { 10110 return link->fd; 10111 } 10112 10113 const char *bpf_link__pin_path(const struct bpf_link *link) 10114 { 10115 return link->pin_path; 10116 } 10117 10118 static int bpf_link__detach_fd(struct bpf_link *link) 10119 { 10120 return libbpf_err_errno(close(link->fd)); 10121 } 10122 10123 struct bpf_link *bpf_link__open(const char *path) 10124 { 10125 struct bpf_link *link; 10126 int fd; 10127 10128 fd = bpf_obj_get(path); 10129 if (fd < 0) { 10130 fd = -errno; 10131 pr_warn("failed to open link at %s: %d\n", path, fd); 10132 return libbpf_err_ptr(fd); 10133 } 10134 10135 link = calloc(1, sizeof(*link)); 10136 if (!link) { 10137 close(fd); 10138 return libbpf_err_ptr(-ENOMEM); 10139 } 10140 link->detach = &bpf_link__detach_fd; 10141 link->fd = fd; 10142 10143 link->pin_path = strdup(path); 10144 if (!link->pin_path) { 10145 bpf_link__destroy(link); 10146 return libbpf_err_ptr(-ENOMEM); 10147 } 10148 10149 return link; 10150 } 10151 10152 int bpf_link__detach(struct bpf_link *link) 10153 { 10154 return bpf_link_detach(link->fd) ? -errno : 0; 10155 } 10156 10157 int bpf_link__pin(struct bpf_link *link, const char *path) 10158 { 10159 int err; 10160 10161 if (link->pin_path) 10162 return libbpf_err(-EBUSY); 10163 err = make_parent_dir(path); 10164 if (err) 10165 return libbpf_err(err); 10166 err = check_path(path); 10167 if (err) 10168 return libbpf_err(err); 10169 10170 link->pin_path = strdup(path); 10171 if (!link->pin_path) 10172 return libbpf_err(-ENOMEM); 10173 10174 if (bpf_obj_pin(link->fd, link->pin_path)) { 10175 err = -errno; 10176 zfree(&link->pin_path); 10177 return libbpf_err(err); 10178 } 10179 10180 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10181 return 0; 10182 } 10183 10184 int bpf_link__unpin(struct bpf_link *link) 10185 { 10186 int err; 10187 10188 if (!link->pin_path) 10189 return libbpf_err(-EINVAL); 10190 10191 err = unlink(link->pin_path); 10192 if (err != 0) 10193 return -errno; 10194 10195 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10196 zfree(&link->pin_path); 10197 return 0; 10198 } 10199 10200 struct bpf_link_perf { 10201 struct bpf_link link; 10202 int perf_event_fd; 10203 /* legacy kprobe support: keep track of probe identifier and type */ 10204 char *legacy_probe_name; 10205 bool legacy_is_kprobe; 10206 bool legacy_is_retprobe; 10207 }; 10208 10209 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10210 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10211 10212 static int bpf_link_perf_detach(struct bpf_link *link) 10213 { 10214 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10215 int err = 0; 10216 10217 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10218 err = -errno; 10219 10220 if (perf_link->perf_event_fd != link->fd) 10221 close(perf_link->perf_event_fd); 10222 close(link->fd); 10223 10224 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10225 if (perf_link->legacy_probe_name) { 10226 if (perf_link->legacy_is_kprobe) { 10227 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10228 perf_link->legacy_is_retprobe); 10229 } else { 10230 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10231 perf_link->legacy_is_retprobe); 10232 } 10233 } 10234 10235 return err; 10236 } 10237 10238 static void bpf_link_perf_dealloc(struct bpf_link *link) 10239 { 10240 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10241 10242 free(perf_link->legacy_probe_name); 10243 free(perf_link); 10244 } 10245 10246 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10247 const struct bpf_perf_event_opts *opts) 10248 { 10249 char errmsg[STRERR_BUFSIZE]; 10250 struct bpf_link_perf *link; 10251 int prog_fd, link_fd = -1, err; 10252 bool force_ioctl_attach; 10253 10254 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10255 return libbpf_err_ptr(-EINVAL); 10256 10257 if (pfd < 0) { 10258 pr_warn("prog '%s': invalid perf event FD %d\n", 10259 prog->name, pfd); 10260 return libbpf_err_ptr(-EINVAL); 10261 } 10262 prog_fd = bpf_program__fd(prog); 10263 if (prog_fd < 0) { 10264 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10265 prog->name); 10266 return libbpf_err_ptr(-EINVAL); 10267 } 10268 10269 link = calloc(1, sizeof(*link)); 10270 if (!link) 10271 return libbpf_err_ptr(-ENOMEM); 10272 link->link.detach = &bpf_link_perf_detach; 10273 link->link.dealloc = &bpf_link_perf_dealloc; 10274 link->perf_event_fd = pfd; 10275 10276 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10277 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10278 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10279 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10280 10281 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10282 if (link_fd < 0) { 10283 err = -errno; 10284 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10285 prog->name, pfd, 10286 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10287 goto err_out; 10288 } 10289 link->link.fd = link_fd; 10290 } else { 10291 if (OPTS_GET(opts, bpf_cookie, 0)) { 10292 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10293 err = -EOPNOTSUPP; 10294 goto err_out; 10295 } 10296 10297 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10298 err = -errno; 10299 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10300 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10301 if (err == -EPROTO) 10302 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10303 prog->name, pfd); 10304 goto err_out; 10305 } 10306 link->link.fd = pfd; 10307 } 10308 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10309 err = -errno; 10310 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10311 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10312 goto err_out; 10313 } 10314 10315 return &link->link; 10316 err_out: 10317 if (link_fd >= 0) 10318 close(link_fd); 10319 free(link); 10320 return libbpf_err_ptr(err); 10321 } 10322 10323 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10324 { 10325 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10326 } 10327 10328 /* 10329 * this function is expected to parse integer in the range of [0, 2^31-1] from 10330 * given file using scanf format string fmt. If actual parsed value is 10331 * negative, the result might be indistinguishable from error 10332 */ 10333 static int parse_uint_from_file(const char *file, const char *fmt) 10334 { 10335 char buf[STRERR_BUFSIZE]; 10336 int err, ret; 10337 FILE *f; 10338 10339 f = fopen(file, "re"); 10340 if (!f) { 10341 err = -errno; 10342 pr_debug("failed to open '%s': %s\n", file, 10343 libbpf_strerror_r(err, buf, sizeof(buf))); 10344 return err; 10345 } 10346 err = fscanf(f, fmt, &ret); 10347 if (err != 1) { 10348 err = err == EOF ? -EIO : -errno; 10349 pr_debug("failed to parse '%s': %s\n", file, 10350 libbpf_strerror_r(err, buf, sizeof(buf))); 10351 fclose(f); 10352 return err; 10353 } 10354 fclose(f); 10355 return ret; 10356 } 10357 10358 static int determine_kprobe_perf_type(void) 10359 { 10360 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10361 10362 return parse_uint_from_file(file, "%d\n"); 10363 } 10364 10365 static int determine_uprobe_perf_type(void) 10366 { 10367 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10368 10369 return parse_uint_from_file(file, "%d\n"); 10370 } 10371 10372 static int determine_kprobe_retprobe_bit(void) 10373 { 10374 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10375 10376 return parse_uint_from_file(file, "config:%d\n"); 10377 } 10378 10379 static int determine_uprobe_retprobe_bit(void) 10380 { 10381 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10382 10383 return parse_uint_from_file(file, "config:%d\n"); 10384 } 10385 10386 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10387 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10388 10389 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10390 uint64_t offset, int pid, size_t ref_ctr_off) 10391 { 10392 const size_t attr_sz = sizeof(struct perf_event_attr); 10393 struct perf_event_attr attr; 10394 char errmsg[STRERR_BUFSIZE]; 10395 int type, pfd; 10396 10397 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10398 return -EINVAL; 10399 10400 memset(&attr, 0, attr_sz); 10401 10402 type = uprobe ? determine_uprobe_perf_type() 10403 : determine_kprobe_perf_type(); 10404 if (type < 0) { 10405 pr_warn("failed to determine %s perf type: %s\n", 10406 uprobe ? "uprobe" : "kprobe", 10407 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10408 return type; 10409 } 10410 if (retprobe) { 10411 int bit = uprobe ? determine_uprobe_retprobe_bit() 10412 : determine_kprobe_retprobe_bit(); 10413 10414 if (bit < 0) { 10415 pr_warn("failed to determine %s retprobe bit: %s\n", 10416 uprobe ? "uprobe" : "kprobe", 10417 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10418 return bit; 10419 } 10420 attr.config |= 1 << bit; 10421 } 10422 attr.size = attr_sz; 10423 attr.type = type; 10424 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10425 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10426 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10427 10428 /* pid filter is meaningful only for uprobes */ 10429 pfd = syscall(__NR_perf_event_open, &attr, 10430 pid < 0 ? -1 : pid /* pid */, 10431 pid == -1 ? 0 : -1 /* cpu */, 10432 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10433 return pfd >= 0 ? pfd : -errno; 10434 } 10435 10436 static int append_to_file(const char *file, const char *fmt, ...) 10437 { 10438 int fd, n, err = 0; 10439 va_list ap; 10440 char buf[1024]; 10441 10442 va_start(ap, fmt); 10443 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10444 va_end(ap); 10445 10446 if (n < 0 || n >= sizeof(buf)) 10447 return -EINVAL; 10448 10449 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10450 if (fd < 0) 10451 return -errno; 10452 10453 if (write(fd, buf, n) < 0) 10454 err = -errno; 10455 10456 close(fd); 10457 return err; 10458 } 10459 10460 #define DEBUGFS "/sys/kernel/debug/tracing" 10461 #define TRACEFS "/sys/kernel/tracing" 10462 10463 static bool use_debugfs(void) 10464 { 10465 static int has_debugfs = -1; 10466 10467 if (has_debugfs < 0) 10468 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10469 10470 return has_debugfs == 1; 10471 } 10472 10473 static const char *tracefs_path(void) 10474 { 10475 return use_debugfs() ? DEBUGFS : TRACEFS; 10476 } 10477 10478 static const char *tracefs_kprobe_events(void) 10479 { 10480 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10481 } 10482 10483 static const char *tracefs_uprobe_events(void) 10484 { 10485 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10486 } 10487 10488 static const char *tracefs_available_filter_functions(void) 10489 { 10490 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10491 : TRACEFS"/available_filter_functions"; 10492 } 10493 10494 static const char *tracefs_available_filter_functions_addrs(void) 10495 { 10496 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10497 : TRACEFS"/available_filter_functions_addrs"; 10498 } 10499 10500 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10501 const char *kfunc_name, size_t offset) 10502 { 10503 static int index = 0; 10504 int i; 10505 10506 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10507 __sync_fetch_and_add(&index, 1)); 10508 10509 /* sanitize binary_path in the probe name */ 10510 for (i = 0; buf[i]; i++) { 10511 if (!isalnum(buf[i])) 10512 buf[i] = '_'; 10513 } 10514 } 10515 10516 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10517 const char *kfunc_name, size_t offset) 10518 { 10519 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10520 retprobe ? 'r' : 'p', 10521 retprobe ? "kretprobes" : "kprobes", 10522 probe_name, kfunc_name, offset); 10523 } 10524 10525 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10526 { 10527 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10528 retprobe ? "kretprobes" : "kprobes", probe_name); 10529 } 10530 10531 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10532 { 10533 char file[256]; 10534 10535 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10536 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10537 10538 return parse_uint_from_file(file, "%d\n"); 10539 } 10540 10541 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10542 const char *kfunc_name, size_t offset, int pid) 10543 { 10544 const size_t attr_sz = sizeof(struct perf_event_attr); 10545 struct perf_event_attr attr; 10546 char errmsg[STRERR_BUFSIZE]; 10547 int type, pfd, err; 10548 10549 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10550 if (err < 0) { 10551 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10552 kfunc_name, offset, 10553 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10554 return err; 10555 } 10556 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10557 if (type < 0) { 10558 err = type; 10559 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10560 kfunc_name, offset, 10561 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10562 goto err_clean_legacy; 10563 } 10564 10565 memset(&attr, 0, attr_sz); 10566 attr.size = attr_sz; 10567 attr.config = type; 10568 attr.type = PERF_TYPE_TRACEPOINT; 10569 10570 pfd = syscall(__NR_perf_event_open, &attr, 10571 pid < 0 ? -1 : pid, /* pid */ 10572 pid == -1 ? 0 : -1, /* cpu */ 10573 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10574 if (pfd < 0) { 10575 err = -errno; 10576 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10577 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10578 goto err_clean_legacy; 10579 } 10580 return pfd; 10581 10582 err_clean_legacy: 10583 /* Clear the newly added legacy kprobe_event */ 10584 remove_kprobe_event_legacy(probe_name, retprobe); 10585 return err; 10586 } 10587 10588 static const char *arch_specific_syscall_pfx(void) 10589 { 10590 #if defined(__x86_64__) 10591 return "x64"; 10592 #elif defined(__i386__) 10593 return "ia32"; 10594 #elif defined(__s390x__) 10595 return "s390x"; 10596 #elif defined(__s390__) 10597 return "s390"; 10598 #elif defined(__arm__) 10599 return "arm"; 10600 #elif defined(__aarch64__) 10601 return "arm64"; 10602 #elif defined(__mips__) 10603 return "mips"; 10604 #elif defined(__riscv) 10605 return "riscv"; 10606 #elif defined(__powerpc__) 10607 return "powerpc"; 10608 #elif defined(__powerpc64__) 10609 return "powerpc64"; 10610 #else 10611 return NULL; 10612 #endif 10613 } 10614 10615 static int probe_kern_syscall_wrapper(void) 10616 { 10617 char syscall_name[64]; 10618 const char *ksys_pfx; 10619 10620 ksys_pfx = arch_specific_syscall_pfx(); 10621 if (!ksys_pfx) 10622 return 0; 10623 10624 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10625 10626 if (determine_kprobe_perf_type() >= 0) { 10627 int pfd; 10628 10629 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10630 if (pfd >= 0) 10631 close(pfd); 10632 10633 return pfd >= 0 ? 1 : 0; 10634 } else { /* legacy mode */ 10635 char probe_name[128]; 10636 10637 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10638 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10639 return 0; 10640 10641 (void)remove_kprobe_event_legacy(probe_name, false); 10642 return 1; 10643 } 10644 } 10645 10646 struct bpf_link * 10647 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10648 const char *func_name, 10649 const struct bpf_kprobe_opts *opts) 10650 { 10651 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10652 enum probe_attach_mode attach_mode; 10653 char errmsg[STRERR_BUFSIZE]; 10654 char *legacy_probe = NULL; 10655 struct bpf_link *link; 10656 size_t offset; 10657 bool retprobe, legacy; 10658 int pfd, err; 10659 10660 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10661 return libbpf_err_ptr(-EINVAL); 10662 10663 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10664 retprobe = OPTS_GET(opts, retprobe, false); 10665 offset = OPTS_GET(opts, offset, 0); 10666 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10667 10668 legacy = determine_kprobe_perf_type() < 0; 10669 switch (attach_mode) { 10670 case PROBE_ATTACH_MODE_LEGACY: 10671 legacy = true; 10672 pe_opts.force_ioctl_attach = true; 10673 break; 10674 case PROBE_ATTACH_MODE_PERF: 10675 if (legacy) 10676 return libbpf_err_ptr(-ENOTSUP); 10677 pe_opts.force_ioctl_attach = true; 10678 break; 10679 case PROBE_ATTACH_MODE_LINK: 10680 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10681 return libbpf_err_ptr(-ENOTSUP); 10682 break; 10683 case PROBE_ATTACH_MODE_DEFAULT: 10684 break; 10685 default: 10686 return libbpf_err_ptr(-EINVAL); 10687 } 10688 10689 if (!legacy) { 10690 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10691 func_name, offset, 10692 -1 /* pid */, 0 /* ref_ctr_off */); 10693 } else { 10694 char probe_name[256]; 10695 10696 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10697 func_name, offset); 10698 10699 legacy_probe = strdup(probe_name); 10700 if (!legacy_probe) 10701 return libbpf_err_ptr(-ENOMEM); 10702 10703 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10704 offset, -1 /* pid */); 10705 } 10706 if (pfd < 0) { 10707 err = -errno; 10708 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10709 prog->name, retprobe ? "kretprobe" : "kprobe", 10710 func_name, offset, 10711 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10712 goto err_out; 10713 } 10714 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10715 err = libbpf_get_error(link); 10716 if (err) { 10717 close(pfd); 10718 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10719 prog->name, retprobe ? "kretprobe" : "kprobe", 10720 func_name, offset, 10721 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10722 goto err_clean_legacy; 10723 } 10724 if (legacy) { 10725 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10726 10727 perf_link->legacy_probe_name = legacy_probe; 10728 perf_link->legacy_is_kprobe = true; 10729 perf_link->legacy_is_retprobe = retprobe; 10730 } 10731 10732 return link; 10733 10734 err_clean_legacy: 10735 if (legacy) 10736 remove_kprobe_event_legacy(legacy_probe, retprobe); 10737 err_out: 10738 free(legacy_probe); 10739 return libbpf_err_ptr(err); 10740 } 10741 10742 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10743 bool retprobe, 10744 const char *func_name) 10745 { 10746 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10747 .retprobe = retprobe, 10748 ); 10749 10750 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10751 } 10752 10753 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10754 const char *syscall_name, 10755 const struct bpf_ksyscall_opts *opts) 10756 { 10757 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10758 char func_name[128]; 10759 10760 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10761 return libbpf_err_ptr(-EINVAL); 10762 10763 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10764 /* arch_specific_syscall_pfx() should never return NULL here 10765 * because it is guarded by kernel_supports(). However, since 10766 * compiler does not know that we have an explicit conditional 10767 * as well. 10768 */ 10769 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10770 arch_specific_syscall_pfx() ? : "", syscall_name); 10771 } else { 10772 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10773 } 10774 10775 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10776 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10777 10778 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10779 } 10780 10781 /* Adapted from perf/util/string.c */ 10782 bool glob_match(const char *str, const char *pat) 10783 { 10784 while (*str && *pat && *pat != '*') { 10785 if (*pat == '?') { /* Matches any single character */ 10786 str++; 10787 pat++; 10788 continue; 10789 } 10790 if (*str != *pat) 10791 return false; 10792 str++; 10793 pat++; 10794 } 10795 /* Check wild card */ 10796 if (*pat == '*') { 10797 while (*pat == '*') 10798 pat++; 10799 if (!*pat) /* Tail wild card matches all */ 10800 return true; 10801 while (*str) 10802 if (glob_match(str++, pat)) 10803 return true; 10804 } 10805 return !*str && !*pat; 10806 } 10807 10808 struct kprobe_multi_resolve { 10809 const char *pattern; 10810 unsigned long *addrs; 10811 size_t cap; 10812 size_t cnt; 10813 }; 10814 10815 struct avail_kallsyms_data { 10816 char **syms; 10817 size_t cnt; 10818 struct kprobe_multi_resolve *res; 10819 }; 10820 10821 static int avail_func_cmp(const void *a, const void *b) 10822 { 10823 return strcmp(*(const char **)a, *(const char **)b); 10824 } 10825 10826 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 10827 const char *sym_name, void *ctx) 10828 { 10829 struct avail_kallsyms_data *data = ctx; 10830 struct kprobe_multi_resolve *res = data->res; 10831 int err; 10832 10833 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 10834 return 0; 10835 10836 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 10837 if (err) 10838 return err; 10839 10840 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10841 return 0; 10842 } 10843 10844 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 10845 { 10846 const char *available_functions_file = tracefs_available_filter_functions(); 10847 struct avail_kallsyms_data data; 10848 char sym_name[500]; 10849 FILE *f; 10850 int err = 0, ret, i; 10851 char **syms = NULL; 10852 size_t cap = 0, cnt = 0; 10853 10854 f = fopen(available_functions_file, "re"); 10855 if (!f) { 10856 err = -errno; 10857 pr_warn("failed to open %s: %d\n", available_functions_file, err); 10858 return err; 10859 } 10860 10861 while (true) { 10862 char *name; 10863 10864 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 10865 if (ret == EOF && feof(f)) 10866 break; 10867 10868 if (ret != 1) { 10869 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 10870 err = -EINVAL; 10871 goto cleanup; 10872 } 10873 10874 if (!glob_match(sym_name, res->pattern)) 10875 continue; 10876 10877 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 10878 if (err) 10879 goto cleanup; 10880 10881 name = strdup(sym_name); 10882 if (!name) { 10883 err = -errno; 10884 goto cleanup; 10885 } 10886 10887 syms[cnt++] = name; 10888 } 10889 10890 /* no entries found, bail out */ 10891 if (cnt == 0) { 10892 err = -ENOENT; 10893 goto cleanup; 10894 } 10895 10896 /* sort available functions */ 10897 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 10898 10899 data.syms = syms; 10900 data.res = res; 10901 data.cnt = cnt; 10902 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 10903 10904 if (res->cnt == 0) 10905 err = -ENOENT; 10906 10907 cleanup: 10908 for (i = 0; i < cnt; i++) 10909 free((char *)syms[i]); 10910 free(syms); 10911 10912 fclose(f); 10913 return err; 10914 } 10915 10916 static bool has_available_filter_functions_addrs(void) 10917 { 10918 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 10919 } 10920 10921 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 10922 { 10923 const char *available_path = tracefs_available_filter_functions_addrs(); 10924 char sym_name[500]; 10925 FILE *f; 10926 int ret, err = 0; 10927 unsigned long long sym_addr; 10928 10929 f = fopen(available_path, "re"); 10930 if (!f) { 10931 err = -errno; 10932 pr_warn("failed to open %s: %d\n", available_path, err); 10933 return err; 10934 } 10935 10936 while (true) { 10937 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 10938 if (ret == EOF && feof(f)) 10939 break; 10940 10941 if (ret != 2) { 10942 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 10943 ret); 10944 err = -EINVAL; 10945 goto cleanup; 10946 } 10947 10948 if (!glob_match(sym_name, res->pattern)) 10949 continue; 10950 10951 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 10952 sizeof(*res->addrs), res->cnt + 1); 10953 if (err) 10954 goto cleanup; 10955 10956 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10957 } 10958 10959 if (res->cnt == 0) 10960 err = -ENOENT; 10961 10962 cleanup: 10963 fclose(f); 10964 return err; 10965 } 10966 10967 struct bpf_link * 10968 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10969 const char *pattern, 10970 const struct bpf_kprobe_multi_opts *opts) 10971 { 10972 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10973 struct kprobe_multi_resolve res = { 10974 .pattern = pattern, 10975 }; 10976 struct bpf_link *link = NULL; 10977 char errmsg[STRERR_BUFSIZE]; 10978 const unsigned long *addrs; 10979 int err, link_fd, prog_fd; 10980 const __u64 *cookies; 10981 const char **syms; 10982 bool retprobe; 10983 size_t cnt; 10984 10985 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10986 return libbpf_err_ptr(-EINVAL); 10987 10988 syms = OPTS_GET(opts, syms, false); 10989 addrs = OPTS_GET(opts, addrs, false); 10990 cnt = OPTS_GET(opts, cnt, false); 10991 cookies = OPTS_GET(opts, cookies, false); 10992 10993 if (!pattern && !addrs && !syms) 10994 return libbpf_err_ptr(-EINVAL); 10995 if (pattern && (addrs || syms || cookies || cnt)) 10996 return libbpf_err_ptr(-EINVAL); 10997 if (!pattern && !cnt) 10998 return libbpf_err_ptr(-EINVAL); 10999 if (addrs && syms) 11000 return libbpf_err_ptr(-EINVAL); 11001 11002 if (pattern) { 11003 if (has_available_filter_functions_addrs()) 11004 err = libbpf_available_kprobes_parse(&res); 11005 else 11006 err = libbpf_available_kallsyms_parse(&res); 11007 if (err) 11008 goto error; 11009 addrs = res.addrs; 11010 cnt = res.cnt; 11011 } 11012 11013 retprobe = OPTS_GET(opts, retprobe, false); 11014 11015 lopts.kprobe_multi.syms = syms; 11016 lopts.kprobe_multi.addrs = addrs; 11017 lopts.kprobe_multi.cookies = cookies; 11018 lopts.kprobe_multi.cnt = cnt; 11019 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11020 11021 link = calloc(1, sizeof(*link)); 11022 if (!link) { 11023 err = -ENOMEM; 11024 goto error; 11025 } 11026 link->detach = &bpf_link__detach_fd; 11027 11028 prog_fd = bpf_program__fd(prog); 11029 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11030 if (link_fd < 0) { 11031 err = -errno; 11032 pr_warn("prog '%s': failed to attach: %s\n", 11033 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11034 goto error; 11035 } 11036 link->fd = link_fd; 11037 free(res.addrs); 11038 return link; 11039 11040 error: 11041 free(link); 11042 free(res.addrs); 11043 return libbpf_err_ptr(err); 11044 } 11045 11046 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11047 { 11048 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11049 unsigned long offset = 0; 11050 const char *func_name; 11051 char *func; 11052 int n; 11053 11054 *link = NULL; 11055 11056 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11057 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11058 return 0; 11059 11060 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11061 if (opts.retprobe) 11062 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11063 else 11064 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11065 11066 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11067 if (n < 1) { 11068 pr_warn("kprobe name is invalid: %s\n", func_name); 11069 return -EINVAL; 11070 } 11071 if (opts.retprobe && offset != 0) { 11072 free(func); 11073 pr_warn("kretprobes do not support offset specification\n"); 11074 return -EINVAL; 11075 } 11076 11077 opts.offset = offset; 11078 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11079 free(func); 11080 return libbpf_get_error(*link); 11081 } 11082 11083 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11084 { 11085 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11086 const char *syscall_name; 11087 11088 *link = NULL; 11089 11090 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11091 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11092 return 0; 11093 11094 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11095 if (opts.retprobe) 11096 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11097 else 11098 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11099 11100 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11101 return *link ? 0 : -errno; 11102 } 11103 11104 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11105 { 11106 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11107 const char *spec; 11108 char *pattern; 11109 int n; 11110 11111 *link = NULL; 11112 11113 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11114 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11115 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11116 return 0; 11117 11118 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11119 if (opts.retprobe) 11120 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11121 else 11122 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11123 11124 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11125 if (n < 1) { 11126 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11127 return -EINVAL; 11128 } 11129 11130 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11131 free(pattern); 11132 return libbpf_get_error(*link); 11133 } 11134 11135 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11136 { 11137 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11138 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11139 int n, ret = -EINVAL; 11140 11141 *link = NULL; 11142 11143 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11144 &probe_type, &binary_path, &func_name); 11145 switch (n) { 11146 case 1: 11147 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11148 ret = 0; 11149 break; 11150 case 3: 11151 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11152 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11153 ret = libbpf_get_error(*link); 11154 break; 11155 default: 11156 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11157 prog->sec_name); 11158 break; 11159 } 11160 free(probe_type); 11161 free(binary_path); 11162 free(func_name); 11163 return ret; 11164 } 11165 11166 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11167 const char *binary_path, uint64_t offset) 11168 { 11169 int i; 11170 11171 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11172 11173 /* sanitize binary_path in the probe name */ 11174 for (i = 0; buf[i]; i++) { 11175 if (!isalnum(buf[i])) 11176 buf[i] = '_'; 11177 } 11178 } 11179 11180 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11181 const char *binary_path, size_t offset) 11182 { 11183 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11184 retprobe ? 'r' : 'p', 11185 retprobe ? "uretprobes" : "uprobes", 11186 probe_name, binary_path, offset); 11187 } 11188 11189 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11190 { 11191 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11192 retprobe ? "uretprobes" : "uprobes", probe_name); 11193 } 11194 11195 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11196 { 11197 char file[512]; 11198 11199 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11200 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11201 11202 return parse_uint_from_file(file, "%d\n"); 11203 } 11204 11205 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11206 const char *binary_path, size_t offset, int pid) 11207 { 11208 const size_t attr_sz = sizeof(struct perf_event_attr); 11209 struct perf_event_attr attr; 11210 int type, pfd, err; 11211 11212 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11213 if (err < 0) { 11214 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11215 binary_path, (size_t)offset, err); 11216 return err; 11217 } 11218 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11219 if (type < 0) { 11220 err = type; 11221 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11222 binary_path, offset, err); 11223 goto err_clean_legacy; 11224 } 11225 11226 memset(&attr, 0, attr_sz); 11227 attr.size = attr_sz; 11228 attr.config = type; 11229 attr.type = PERF_TYPE_TRACEPOINT; 11230 11231 pfd = syscall(__NR_perf_event_open, &attr, 11232 pid < 0 ? -1 : pid, /* pid */ 11233 pid == -1 ? 0 : -1, /* cpu */ 11234 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11235 if (pfd < 0) { 11236 err = -errno; 11237 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11238 goto err_clean_legacy; 11239 } 11240 return pfd; 11241 11242 err_clean_legacy: 11243 /* Clear the newly added legacy uprobe_event */ 11244 remove_uprobe_event_legacy(probe_name, retprobe); 11245 return err; 11246 } 11247 11248 /* Find offset of function name in archive specified by path. Currently 11249 * supported are .zip files that do not compress their contents, as used on 11250 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11251 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11252 * library functions. 11253 * 11254 * An overview of the APK format specifically provided here: 11255 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11256 */ 11257 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11258 const char *func_name) 11259 { 11260 struct zip_archive *archive; 11261 struct zip_entry entry; 11262 long ret; 11263 Elf *elf; 11264 11265 archive = zip_archive_open(archive_path); 11266 if (IS_ERR(archive)) { 11267 ret = PTR_ERR(archive); 11268 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11269 return ret; 11270 } 11271 11272 ret = zip_archive_find_entry(archive, file_name, &entry); 11273 if (ret) { 11274 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11275 archive_path, ret); 11276 goto out; 11277 } 11278 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11279 (unsigned long)entry.data_offset); 11280 11281 if (entry.compression) { 11282 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11283 archive_path); 11284 ret = -LIBBPF_ERRNO__FORMAT; 11285 goto out; 11286 } 11287 11288 elf = elf_memory((void *)entry.data, entry.data_length); 11289 if (!elf) { 11290 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11291 elf_errmsg(-1)); 11292 ret = -LIBBPF_ERRNO__LIBELF; 11293 goto out; 11294 } 11295 11296 ret = elf_find_func_offset(elf, file_name, func_name); 11297 if (ret > 0) { 11298 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11299 func_name, file_name, archive_path, entry.data_offset, ret, 11300 ret + entry.data_offset); 11301 ret += entry.data_offset; 11302 } 11303 elf_end(elf); 11304 11305 out: 11306 zip_archive_close(archive); 11307 return ret; 11308 } 11309 11310 static const char *arch_specific_lib_paths(void) 11311 { 11312 /* 11313 * Based on https://packages.debian.org/sid/libc6. 11314 * 11315 * Assume that the traced program is built for the same architecture 11316 * as libbpf, which should cover the vast majority of cases. 11317 */ 11318 #if defined(__x86_64__) 11319 return "/lib/x86_64-linux-gnu"; 11320 #elif defined(__i386__) 11321 return "/lib/i386-linux-gnu"; 11322 #elif defined(__s390x__) 11323 return "/lib/s390x-linux-gnu"; 11324 #elif defined(__s390__) 11325 return "/lib/s390-linux-gnu"; 11326 #elif defined(__arm__) && defined(__SOFTFP__) 11327 return "/lib/arm-linux-gnueabi"; 11328 #elif defined(__arm__) && !defined(__SOFTFP__) 11329 return "/lib/arm-linux-gnueabihf"; 11330 #elif defined(__aarch64__) 11331 return "/lib/aarch64-linux-gnu"; 11332 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11333 return "/lib/mips64el-linux-gnuabi64"; 11334 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11335 return "/lib/mipsel-linux-gnu"; 11336 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11337 return "/lib/powerpc64le-linux-gnu"; 11338 #elif defined(__sparc__) && defined(__arch64__) 11339 return "/lib/sparc64-linux-gnu"; 11340 #elif defined(__riscv) && __riscv_xlen == 64 11341 return "/lib/riscv64-linux-gnu"; 11342 #else 11343 return NULL; 11344 #endif 11345 } 11346 11347 /* Get full path to program/shared library. */ 11348 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11349 { 11350 const char *search_paths[3] = {}; 11351 int i, perm; 11352 11353 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11354 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11355 search_paths[1] = "/usr/lib64:/usr/lib"; 11356 search_paths[2] = arch_specific_lib_paths(); 11357 perm = R_OK; 11358 } else { 11359 search_paths[0] = getenv("PATH"); 11360 search_paths[1] = "/usr/bin:/usr/sbin"; 11361 perm = R_OK | X_OK; 11362 } 11363 11364 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11365 const char *s; 11366 11367 if (!search_paths[i]) 11368 continue; 11369 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11370 char *next_path; 11371 int seg_len; 11372 11373 if (s[0] == ':') 11374 s++; 11375 next_path = strchr(s, ':'); 11376 seg_len = next_path ? next_path - s : strlen(s); 11377 if (!seg_len) 11378 continue; 11379 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11380 /* ensure it has required permissions */ 11381 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11382 continue; 11383 pr_debug("resolved '%s' to '%s'\n", file, result); 11384 return 0; 11385 } 11386 } 11387 return -ENOENT; 11388 } 11389 11390 struct bpf_link * 11391 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11392 pid_t pid, 11393 const char *path, 11394 const char *func_pattern, 11395 const struct bpf_uprobe_multi_opts *opts) 11396 { 11397 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11398 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11399 unsigned long *resolved_offsets = NULL; 11400 int err = 0, link_fd, prog_fd; 11401 struct bpf_link *link = NULL; 11402 char errmsg[STRERR_BUFSIZE]; 11403 char full_path[PATH_MAX]; 11404 const __u64 *cookies; 11405 const char **syms; 11406 size_t cnt; 11407 11408 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11409 return libbpf_err_ptr(-EINVAL); 11410 11411 syms = OPTS_GET(opts, syms, NULL); 11412 offsets = OPTS_GET(opts, offsets, NULL); 11413 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11414 cookies = OPTS_GET(opts, cookies, NULL); 11415 cnt = OPTS_GET(opts, cnt, 0); 11416 11417 /* 11418 * User can specify 2 mutually exclusive set of inputs: 11419 * 11420 * 1) use only path/func_pattern/pid arguments 11421 * 11422 * 2) use path/pid with allowed combinations of: 11423 * syms/offsets/ref_ctr_offsets/cookies/cnt 11424 * 11425 * - syms and offsets are mutually exclusive 11426 * - ref_ctr_offsets and cookies are optional 11427 * 11428 * Any other usage results in error. 11429 */ 11430 11431 if (!path) 11432 return libbpf_err_ptr(-EINVAL); 11433 if (!func_pattern && cnt == 0) 11434 return libbpf_err_ptr(-EINVAL); 11435 11436 if (func_pattern) { 11437 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11438 return libbpf_err_ptr(-EINVAL); 11439 } else { 11440 if (!!syms == !!offsets) 11441 return libbpf_err_ptr(-EINVAL); 11442 } 11443 11444 if (func_pattern) { 11445 if (!strchr(path, '/')) { 11446 err = resolve_full_path(path, full_path, sizeof(full_path)); 11447 if (err) { 11448 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11449 prog->name, path, err); 11450 return libbpf_err_ptr(err); 11451 } 11452 path = full_path; 11453 } 11454 11455 err = elf_resolve_pattern_offsets(path, func_pattern, 11456 &resolved_offsets, &cnt); 11457 if (err < 0) 11458 return libbpf_err_ptr(err); 11459 offsets = resolved_offsets; 11460 } else if (syms) { 11461 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 11462 if (err < 0) 11463 return libbpf_err_ptr(err); 11464 offsets = resolved_offsets; 11465 } 11466 11467 lopts.uprobe_multi.path = path; 11468 lopts.uprobe_multi.offsets = offsets; 11469 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11470 lopts.uprobe_multi.cookies = cookies; 11471 lopts.uprobe_multi.cnt = cnt; 11472 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11473 11474 if (pid == 0) 11475 pid = getpid(); 11476 if (pid > 0) 11477 lopts.uprobe_multi.pid = pid; 11478 11479 link = calloc(1, sizeof(*link)); 11480 if (!link) { 11481 err = -ENOMEM; 11482 goto error; 11483 } 11484 link->detach = &bpf_link__detach_fd; 11485 11486 prog_fd = bpf_program__fd(prog); 11487 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11488 if (link_fd < 0) { 11489 err = -errno; 11490 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11491 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11492 goto error; 11493 } 11494 link->fd = link_fd; 11495 free(resolved_offsets); 11496 return link; 11497 11498 error: 11499 free(resolved_offsets); 11500 free(link); 11501 return libbpf_err_ptr(err); 11502 } 11503 11504 LIBBPF_API struct bpf_link * 11505 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11506 const char *binary_path, size_t func_offset, 11507 const struct bpf_uprobe_opts *opts) 11508 { 11509 const char *archive_path = NULL, *archive_sep = NULL; 11510 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11511 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11512 enum probe_attach_mode attach_mode; 11513 char full_path[PATH_MAX]; 11514 struct bpf_link *link; 11515 size_t ref_ctr_off; 11516 int pfd, err; 11517 bool retprobe, legacy; 11518 const char *func_name; 11519 11520 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11521 return libbpf_err_ptr(-EINVAL); 11522 11523 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11524 retprobe = OPTS_GET(opts, retprobe, false); 11525 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11526 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11527 11528 if (!binary_path) 11529 return libbpf_err_ptr(-EINVAL); 11530 11531 /* Check if "binary_path" refers to an archive. */ 11532 archive_sep = strstr(binary_path, "!/"); 11533 if (archive_sep) { 11534 full_path[0] = '\0'; 11535 libbpf_strlcpy(full_path, binary_path, 11536 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11537 archive_path = full_path; 11538 binary_path = archive_sep + 2; 11539 } else if (!strchr(binary_path, '/')) { 11540 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11541 if (err) { 11542 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11543 prog->name, binary_path, err); 11544 return libbpf_err_ptr(err); 11545 } 11546 binary_path = full_path; 11547 } 11548 func_name = OPTS_GET(opts, func_name, NULL); 11549 if (func_name) { 11550 long sym_off; 11551 11552 if (archive_path) { 11553 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11554 func_name); 11555 binary_path = archive_path; 11556 } else { 11557 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11558 } 11559 if (sym_off < 0) 11560 return libbpf_err_ptr(sym_off); 11561 func_offset += sym_off; 11562 } 11563 11564 legacy = determine_uprobe_perf_type() < 0; 11565 switch (attach_mode) { 11566 case PROBE_ATTACH_MODE_LEGACY: 11567 legacy = true; 11568 pe_opts.force_ioctl_attach = true; 11569 break; 11570 case PROBE_ATTACH_MODE_PERF: 11571 if (legacy) 11572 return libbpf_err_ptr(-ENOTSUP); 11573 pe_opts.force_ioctl_attach = true; 11574 break; 11575 case PROBE_ATTACH_MODE_LINK: 11576 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11577 return libbpf_err_ptr(-ENOTSUP); 11578 break; 11579 case PROBE_ATTACH_MODE_DEFAULT: 11580 break; 11581 default: 11582 return libbpf_err_ptr(-EINVAL); 11583 } 11584 11585 if (!legacy) { 11586 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11587 func_offset, pid, ref_ctr_off); 11588 } else { 11589 char probe_name[PATH_MAX + 64]; 11590 11591 if (ref_ctr_off) 11592 return libbpf_err_ptr(-EINVAL); 11593 11594 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11595 binary_path, func_offset); 11596 11597 legacy_probe = strdup(probe_name); 11598 if (!legacy_probe) 11599 return libbpf_err_ptr(-ENOMEM); 11600 11601 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11602 binary_path, func_offset, pid); 11603 } 11604 if (pfd < 0) { 11605 err = -errno; 11606 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11607 prog->name, retprobe ? "uretprobe" : "uprobe", 11608 binary_path, func_offset, 11609 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11610 goto err_out; 11611 } 11612 11613 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11614 err = libbpf_get_error(link); 11615 if (err) { 11616 close(pfd); 11617 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11618 prog->name, retprobe ? "uretprobe" : "uprobe", 11619 binary_path, func_offset, 11620 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11621 goto err_clean_legacy; 11622 } 11623 if (legacy) { 11624 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11625 11626 perf_link->legacy_probe_name = legacy_probe; 11627 perf_link->legacy_is_kprobe = false; 11628 perf_link->legacy_is_retprobe = retprobe; 11629 } 11630 return link; 11631 11632 err_clean_legacy: 11633 if (legacy) 11634 remove_uprobe_event_legacy(legacy_probe, retprobe); 11635 err_out: 11636 free(legacy_probe); 11637 return libbpf_err_ptr(err); 11638 } 11639 11640 /* Format of u[ret]probe section definition supporting auto-attach: 11641 * u[ret]probe/binary:function[+offset] 11642 * 11643 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11644 * full binary path via bpf_program__attach_uprobe_opts. 11645 * 11646 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11647 * specified (and auto-attach is not possible) or the above format is specified for 11648 * auto-attach. 11649 */ 11650 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11651 { 11652 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11653 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 11654 int n, c, ret = -EINVAL; 11655 long offset = 0; 11656 11657 *link = NULL; 11658 11659 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11660 &probe_type, &binary_path, &func_name); 11661 switch (n) { 11662 case 1: 11663 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11664 ret = 0; 11665 break; 11666 case 2: 11667 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11668 prog->name, prog->sec_name); 11669 break; 11670 case 3: 11671 /* check if user specifies `+offset`, if yes, this should be 11672 * the last part of the string, make sure sscanf read to EOL 11673 */ 11674 func_off = strrchr(func_name, '+'); 11675 if (func_off) { 11676 n = sscanf(func_off, "+%li%n", &offset, &c); 11677 if (n == 1 && *(func_off + c) == '\0') 11678 func_off[0] = '\0'; 11679 else 11680 offset = 0; 11681 } 11682 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11683 strcmp(probe_type, "uretprobe.s") == 0; 11684 if (opts.retprobe && offset != 0) { 11685 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11686 prog->name); 11687 break; 11688 } 11689 opts.func_name = func_name; 11690 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11691 ret = libbpf_get_error(*link); 11692 break; 11693 default: 11694 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11695 prog->sec_name); 11696 break; 11697 } 11698 free(probe_type); 11699 free(binary_path); 11700 free(func_name); 11701 11702 return ret; 11703 } 11704 11705 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11706 bool retprobe, pid_t pid, 11707 const char *binary_path, 11708 size_t func_offset) 11709 { 11710 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11711 11712 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11713 } 11714 11715 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11716 pid_t pid, const char *binary_path, 11717 const char *usdt_provider, const char *usdt_name, 11718 const struct bpf_usdt_opts *opts) 11719 { 11720 char resolved_path[512]; 11721 struct bpf_object *obj = prog->obj; 11722 struct bpf_link *link; 11723 __u64 usdt_cookie; 11724 int err; 11725 11726 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11727 return libbpf_err_ptr(-EINVAL); 11728 11729 if (bpf_program__fd(prog) < 0) { 11730 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11731 prog->name); 11732 return libbpf_err_ptr(-EINVAL); 11733 } 11734 11735 if (!binary_path) 11736 return libbpf_err_ptr(-EINVAL); 11737 11738 if (!strchr(binary_path, '/')) { 11739 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11740 if (err) { 11741 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11742 prog->name, binary_path, err); 11743 return libbpf_err_ptr(err); 11744 } 11745 binary_path = resolved_path; 11746 } 11747 11748 /* USDT manager is instantiated lazily on first USDT attach. It will 11749 * be destroyed together with BPF object in bpf_object__close(). 11750 */ 11751 if (IS_ERR(obj->usdt_man)) 11752 return libbpf_ptr(obj->usdt_man); 11753 if (!obj->usdt_man) { 11754 obj->usdt_man = usdt_manager_new(obj); 11755 if (IS_ERR(obj->usdt_man)) 11756 return libbpf_ptr(obj->usdt_man); 11757 } 11758 11759 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11760 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11761 usdt_provider, usdt_name, usdt_cookie); 11762 err = libbpf_get_error(link); 11763 if (err) 11764 return libbpf_err_ptr(err); 11765 return link; 11766 } 11767 11768 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11769 { 11770 char *path = NULL, *provider = NULL, *name = NULL; 11771 const char *sec_name; 11772 int n, err; 11773 11774 sec_name = bpf_program__section_name(prog); 11775 if (strcmp(sec_name, "usdt") == 0) { 11776 /* no auto-attach for just SEC("usdt") */ 11777 *link = NULL; 11778 return 0; 11779 } 11780 11781 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11782 if (n != 3) { 11783 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11784 sec_name); 11785 err = -EINVAL; 11786 } else { 11787 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11788 provider, name, NULL); 11789 err = libbpf_get_error(*link); 11790 } 11791 free(path); 11792 free(provider); 11793 free(name); 11794 return err; 11795 } 11796 11797 static int determine_tracepoint_id(const char *tp_category, 11798 const char *tp_name) 11799 { 11800 char file[PATH_MAX]; 11801 int ret; 11802 11803 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11804 tracefs_path(), tp_category, tp_name); 11805 if (ret < 0) 11806 return -errno; 11807 if (ret >= sizeof(file)) { 11808 pr_debug("tracepoint %s/%s path is too long\n", 11809 tp_category, tp_name); 11810 return -E2BIG; 11811 } 11812 return parse_uint_from_file(file, "%d\n"); 11813 } 11814 11815 static int perf_event_open_tracepoint(const char *tp_category, 11816 const char *tp_name) 11817 { 11818 const size_t attr_sz = sizeof(struct perf_event_attr); 11819 struct perf_event_attr attr; 11820 char errmsg[STRERR_BUFSIZE]; 11821 int tp_id, pfd, err; 11822 11823 tp_id = determine_tracepoint_id(tp_category, tp_name); 11824 if (tp_id < 0) { 11825 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11826 tp_category, tp_name, 11827 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11828 return tp_id; 11829 } 11830 11831 memset(&attr, 0, attr_sz); 11832 attr.type = PERF_TYPE_TRACEPOINT; 11833 attr.size = attr_sz; 11834 attr.config = tp_id; 11835 11836 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11837 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11838 if (pfd < 0) { 11839 err = -errno; 11840 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11841 tp_category, tp_name, 11842 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11843 return err; 11844 } 11845 return pfd; 11846 } 11847 11848 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11849 const char *tp_category, 11850 const char *tp_name, 11851 const struct bpf_tracepoint_opts *opts) 11852 { 11853 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11854 char errmsg[STRERR_BUFSIZE]; 11855 struct bpf_link *link; 11856 int pfd, err; 11857 11858 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11859 return libbpf_err_ptr(-EINVAL); 11860 11861 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11862 11863 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11864 if (pfd < 0) { 11865 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11866 prog->name, tp_category, tp_name, 11867 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11868 return libbpf_err_ptr(pfd); 11869 } 11870 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11871 err = libbpf_get_error(link); 11872 if (err) { 11873 close(pfd); 11874 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11875 prog->name, tp_category, tp_name, 11876 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11877 return libbpf_err_ptr(err); 11878 } 11879 return link; 11880 } 11881 11882 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11883 const char *tp_category, 11884 const char *tp_name) 11885 { 11886 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11887 } 11888 11889 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11890 { 11891 char *sec_name, *tp_cat, *tp_name; 11892 11893 *link = NULL; 11894 11895 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11896 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11897 return 0; 11898 11899 sec_name = strdup(prog->sec_name); 11900 if (!sec_name) 11901 return -ENOMEM; 11902 11903 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11904 if (str_has_pfx(prog->sec_name, "tp/")) 11905 tp_cat = sec_name + sizeof("tp/") - 1; 11906 else 11907 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11908 tp_name = strchr(tp_cat, '/'); 11909 if (!tp_name) { 11910 free(sec_name); 11911 return -EINVAL; 11912 } 11913 *tp_name = '\0'; 11914 tp_name++; 11915 11916 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11917 free(sec_name); 11918 return libbpf_get_error(*link); 11919 } 11920 11921 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11922 const char *tp_name) 11923 { 11924 char errmsg[STRERR_BUFSIZE]; 11925 struct bpf_link *link; 11926 int prog_fd, pfd; 11927 11928 prog_fd = bpf_program__fd(prog); 11929 if (prog_fd < 0) { 11930 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11931 return libbpf_err_ptr(-EINVAL); 11932 } 11933 11934 link = calloc(1, sizeof(*link)); 11935 if (!link) 11936 return libbpf_err_ptr(-ENOMEM); 11937 link->detach = &bpf_link__detach_fd; 11938 11939 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11940 if (pfd < 0) { 11941 pfd = -errno; 11942 free(link); 11943 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11944 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11945 return libbpf_err_ptr(pfd); 11946 } 11947 link->fd = pfd; 11948 return link; 11949 } 11950 11951 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11952 { 11953 static const char *const prefixes[] = { 11954 "raw_tp", 11955 "raw_tracepoint", 11956 "raw_tp.w", 11957 "raw_tracepoint.w", 11958 }; 11959 size_t i; 11960 const char *tp_name = NULL; 11961 11962 *link = NULL; 11963 11964 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11965 size_t pfx_len; 11966 11967 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11968 continue; 11969 11970 pfx_len = strlen(prefixes[i]); 11971 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11972 if (prog->sec_name[pfx_len] == '\0') 11973 return 0; 11974 11975 if (prog->sec_name[pfx_len] != '/') 11976 continue; 11977 11978 tp_name = prog->sec_name + pfx_len + 1; 11979 break; 11980 } 11981 11982 if (!tp_name) { 11983 pr_warn("prog '%s': invalid section name '%s'\n", 11984 prog->name, prog->sec_name); 11985 return -EINVAL; 11986 } 11987 11988 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11989 return libbpf_get_error(*link); 11990 } 11991 11992 /* Common logic for all BPF program types that attach to a btf_id */ 11993 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11994 const struct bpf_trace_opts *opts) 11995 { 11996 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11997 char errmsg[STRERR_BUFSIZE]; 11998 struct bpf_link *link; 11999 int prog_fd, pfd; 12000 12001 if (!OPTS_VALID(opts, bpf_trace_opts)) 12002 return libbpf_err_ptr(-EINVAL); 12003 12004 prog_fd = bpf_program__fd(prog); 12005 if (prog_fd < 0) { 12006 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12007 return libbpf_err_ptr(-EINVAL); 12008 } 12009 12010 link = calloc(1, sizeof(*link)); 12011 if (!link) 12012 return libbpf_err_ptr(-ENOMEM); 12013 link->detach = &bpf_link__detach_fd; 12014 12015 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12016 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12017 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12018 if (pfd < 0) { 12019 pfd = -errno; 12020 free(link); 12021 pr_warn("prog '%s': failed to attach: %s\n", 12022 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12023 return libbpf_err_ptr(pfd); 12024 } 12025 link->fd = pfd; 12026 return link; 12027 } 12028 12029 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12030 { 12031 return bpf_program__attach_btf_id(prog, NULL); 12032 } 12033 12034 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12035 const struct bpf_trace_opts *opts) 12036 { 12037 return bpf_program__attach_btf_id(prog, opts); 12038 } 12039 12040 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12041 { 12042 return bpf_program__attach_btf_id(prog, NULL); 12043 } 12044 12045 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12046 { 12047 *link = bpf_program__attach_trace(prog); 12048 return libbpf_get_error(*link); 12049 } 12050 12051 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12052 { 12053 *link = bpf_program__attach_lsm(prog); 12054 return libbpf_get_error(*link); 12055 } 12056 12057 static struct bpf_link * 12058 bpf_program_attach_fd(const struct bpf_program *prog, 12059 int target_fd, const char *target_name, 12060 const struct bpf_link_create_opts *opts) 12061 { 12062 enum bpf_attach_type attach_type; 12063 char errmsg[STRERR_BUFSIZE]; 12064 struct bpf_link *link; 12065 int prog_fd, link_fd; 12066 12067 prog_fd = bpf_program__fd(prog); 12068 if (prog_fd < 0) { 12069 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12070 return libbpf_err_ptr(-EINVAL); 12071 } 12072 12073 link = calloc(1, sizeof(*link)); 12074 if (!link) 12075 return libbpf_err_ptr(-ENOMEM); 12076 link->detach = &bpf_link__detach_fd; 12077 12078 attach_type = bpf_program__expected_attach_type(prog); 12079 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12080 if (link_fd < 0) { 12081 link_fd = -errno; 12082 free(link); 12083 pr_warn("prog '%s': failed to attach to %s: %s\n", 12084 prog->name, target_name, 12085 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12086 return libbpf_err_ptr(link_fd); 12087 } 12088 link->fd = link_fd; 12089 return link; 12090 } 12091 12092 struct bpf_link * 12093 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12094 { 12095 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12096 } 12097 12098 struct bpf_link * 12099 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12100 { 12101 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12102 } 12103 12104 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12105 { 12106 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12107 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12108 } 12109 12110 struct bpf_link * 12111 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12112 const struct bpf_tcx_opts *opts) 12113 { 12114 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12115 __u32 relative_id; 12116 int relative_fd; 12117 12118 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12119 return libbpf_err_ptr(-EINVAL); 12120 12121 relative_id = OPTS_GET(opts, relative_id, 0); 12122 relative_fd = OPTS_GET(opts, relative_fd, 0); 12123 12124 /* validate we don't have unexpected combinations of non-zero fields */ 12125 if (!ifindex) { 12126 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12127 prog->name); 12128 return libbpf_err_ptr(-EINVAL); 12129 } 12130 if (relative_fd && relative_id) { 12131 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12132 prog->name); 12133 return libbpf_err_ptr(-EINVAL); 12134 } 12135 12136 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12137 link_create_opts.tcx.relative_fd = relative_fd; 12138 link_create_opts.tcx.relative_id = relative_id; 12139 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12140 12141 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12142 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12143 } 12144 12145 struct bpf_link * 12146 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12147 const struct bpf_netkit_opts *opts) 12148 { 12149 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12150 __u32 relative_id; 12151 int relative_fd; 12152 12153 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12154 return libbpf_err_ptr(-EINVAL); 12155 12156 relative_id = OPTS_GET(opts, relative_id, 0); 12157 relative_fd = OPTS_GET(opts, relative_fd, 0); 12158 12159 /* validate we don't have unexpected combinations of non-zero fields */ 12160 if (!ifindex) { 12161 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12162 prog->name); 12163 return libbpf_err_ptr(-EINVAL); 12164 } 12165 if (relative_fd && relative_id) { 12166 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12167 prog->name); 12168 return libbpf_err_ptr(-EINVAL); 12169 } 12170 12171 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12172 link_create_opts.netkit.relative_fd = relative_fd; 12173 link_create_opts.netkit.relative_id = relative_id; 12174 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12175 12176 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12177 } 12178 12179 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12180 int target_fd, 12181 const char *attach_func_name) 12182 { 12183 int btf_id; 12184 12185 if (!!target_fd != !!attach_func_name) { 12186 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12187 prog->name); 12188 return libbpf_err_ptr(-EINVAL); 12189 } 12190 12191 if (prog->type != BPF_PROG_TYPE_EXT) { 12192 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12193 prog->name); 12194 return libbpf_err_ptr(-EINVAL); 12195 } 12196 12197 if (target_fd) { 12198 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12199 12200 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12201 if (btf_id < 0) 12202 return libbpf_err_ptr(btf_id); 12203 12204 target_opts.target_btf_id = btf_id; 12205 12206 return bpf_program_attach_fd(prog, target_fd, "freplace", 12207 &target_opts); 12208 } else { 12209 /* no target, so use raw_tracepoint_open for compatibility 12210 * with old kernels 12211 */ 12212 return bpf_program__attach_trace(prog); 12213 } 12214 } 12215 12216 struct bpf_link * 12217 bpf_program__attach_iter(const struct bpf_program *prog, 12218 const struct bpf_iter_attach_opts *opts) 12219 { 12220 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12221 char errmsg[STRERR_BUFSIZE]; 12222 struct bpf_link *link; 12223 int prog_fd, link_fd; 12224 __u32 target_fd = 0; 12225 12226 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12227 return libbpf_err_ptr(-EINVAL); 12228 12229 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12230 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12231 12232 prog_fd = bpf_program__fd(prog); 12233 if (prog_fd < 0) { 12234 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12235 return libbpf_err_ptr(-EINVAL); 12236 } 12237 12238 link = calloc(1, sizeof(*link)); 12239 if (!link) 12240 return libbpf_err_ptr(-ENOMEM); 12241 link->detach = &bpf_link__detach_fd; 12242 12243 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12244 &link_create_opts); 12245 if (link_fd < 0) { 12246 link_fd = -errno; 12247 free(link); 12248 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12249 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12250 return libbpf_err_ptr(link_fd); 12251 } 12252 link->fd = link_fd; 12253 return link; 12254 } 12255 12256 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12257 { 12258 *link = bpf_program__attach_iter(prog, NULL); 12259 return libbpf_get_error(*link); 12260 } 12261 12262 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12263 const struct bpf_netfilter_opts *opts) 12264 { 12265 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12266 struct bpf_link *link; 12267 int prog_fd, link_fd; 12268 12269 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12270 return libbpf_err_ptr(-EINVAL); 12271 12272 prog_fd = bpf_program__fd(prog); 12273 if (prog_fd < 0) { 12274 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12275 return libbpf_err_ptr(-EINVAL); 12276 } 12277 12278 link = calloc(1, sizeof(*link)); 12279 if (!link) 12280 return libbpf_err_ptr(-ENOMEM); 12281 12282 link->detach = &bpf_link__detach_fd; 12283 12284 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12285 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12286 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12287 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12288 12289 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12290 if (link_fd < 0) { 12291 char errmsg[STRERR_BUFSIZE]; 12292 12293 link_fd = -errno; 12294 free(link); 12295 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12296 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12297 return libbpf_err_ptr(link_fd); 12298 } 12299 link->fd = link_fd; 12300 12301 return link; 12302 } 12303 12304 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12305 { 12306 struct bpf_link *link = NULL; 12307 int err; 12308 12309 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12310 return libbpf_err_ptr(-EOPNOTSUPP); 12311 12312 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12313 if (err) 12314 return libbpf_err_ptr(err); 12315 12316 /* When calling bpf_program__attach() explicitly, auto-attach support 12317 * is expected to work, so NULL returned link is considered an error. 12318 * This is different for skeleton's attach, see comment in 12319 * bpf_object__attach_skeleton(). 12320 */ 12321 if (!link) 12322 return libbpf_err_ptr(-EOPNOTSUPP); 12323 12324 return link; 12325 } 12326 12327 struct bpf_link_struct_ops { 12328 struct bpf_link link; 12329 int map_fd; 12330 }; 12331 12332 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12333 { 12334 struct bpf_link_struct_ops *st_link; 12335 __u32 zero = 0; 12336 12337 st_link = container_of(link, struct bpf_link_struct_ops, link); 12338 12339 if (st_link->map_fd < 0) 12340 /* w/o a real link */ 12341 return bpf_map_delete_elem(link->fd, &zero); 12342 12343 return close(link->fd); 12344 } 12345 12346 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12347 { 12348 struct bpf_link_struct_ops *link; 12349 __u32 zero = 0; 12350 int err, fd; 12351 12352 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12353 return libbpf_err_ptr(-EINVAL); 12354 12355 link = calloc(1, sizeof(*link)); 12356 if (!link) 12357 return libbpf_err_ptr(-EINVAL); 12358 12359 /* kern_vdata should be prepared during the loading phase. */ 12360 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12361 /* It can be EBUSY if the map has been used to create or 12362 * update a link before. We don't allow updating the value of 12363 * a struct_ops once it is set. That ensures that the value 12364 * never changed. So, it is safe to skip EBUSY. 12365 */ 12366 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12367 free(link); 12368 return libbpf_err_ptr(err); 12369 } 12370 12371 link->link.detach = bpf_link__detach_struct_ops; 12372 12373 if (!(map->def.map_flags & BPF_F_LINK)) { 12374 /* w/o a real link */ 12375 link->link.fd = map->fd; 12376 link->map_fd = -1; 12377 return &link->link; 12378 } 12379 12380 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12381 if (fd < 0) { 12382 free(link); 12383 return libbpf_err_ptr(fd); 12384 } 12385 12386 link->link.fd = fd; 12387 link->map_fd = map->fd; 12388 12389 return &link->link; 12390 } 12391 12392 /* 12393 * Swap the back struct_ops of a link with a new struct_ops map. 12394 */ 12395 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12396 { 12397 struct bpf_link_struct_ops *st_ops_link; 12398 __u32 zero = 0; 12399 int err; 12400 12401 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 12402 return -EINVAL; 12403 12404 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12405 /* Ensure the type of a link is correct */ 12406 if (st_ops_link->map_fd < 0) 12407 return -EINVAL; 12408 12409 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12410 /* It can be EBUSY if the map has been used to create or 12411 * update a link before. We don't allow updating the value of 12412 * a struct_ops once it is set. That ensures that the value 12413 * never changed. So, it is safe to skip EBUSY. 12414 */ 12415 if (err && err != -EBUSY) 12416 return err; 12417 12418 err = bpf_link_update(link->fd, map->fd, NULL); 12419 if (err < 0) 12420 return err; 12421 12422 st_ops_link->map_fd = map->fd; 12423 12424 return 0; 12425 } 12426 12427 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12428 void *private_data); 12429 12430 static enum bpf_perf_event_ret 12431 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12432 void **copy_mem, size_t *copy_size, 12433 bpf_perf_event_print_t fn, void *private_data) 12434 { 12435 struct perf_event_mmap_page *header = mmap_mem; 12436 __u64 data_head = ring_buffer_read_head(header); 12437 __u64 data_tail = header->data_tail; 12438 void *base = ((__u8 *)header) + page_size; 12439 int ret = LIBBPF_PERF_EVENT_CONT; 12440 struct perf_event_header *ehdr; 12441 size_t ehdr_size; 12442 12443 while (data_head != data_tail) { 12444 ehdr = base + (data_tail & (mmap_size - 1)); 12445 ehdr_size = ehdr->size; 12446 12447 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12448 void *copy_start = ehdr; 12449 size_t len_first = base + mmap_size - copy_start; 12450 size_t len_secnd = ehdr_size - len_first; 12451 12452 if (*copy_size < ehdr_size) { 12453 free(*copy_mem); 12454 *copy_mem = malloc(ehdr_size); 12455 if (!*copy_mem) { 12456 *copy_size = 0; 12457 ret = LIBBPF_PERF_EVENT_ERROR; 12458 break; 12459 } 12460 *copy_size = ehdr_size; 12461 } 12462 12463 memcpy(*copy_mem, copy_start, len_first); 12464 memcpy(*copy_mem + len_first, base, len_secnd); 12465 ehdr = *copy_mem; 12466 } 12467 12468 ret = fn(ehdr, private_data); 12469 data_tail += ehdr_size; 12470 if (ret != LIBBPF_PERF_EVENT_CONT) 12471 break; 12472 } 12473 12474 ring_buffer_write_tail(header, data_tail); 12475 return libbpf_err(ret); 12476 } 12477 12478 struct perf_buffer; 12479 12480 struct perf_buffer_params { 12481 struct perf_event_attr *attr; 12482 /* if event_cb is specified, it takes precendence */ 12483 perf_buffer_event_fn event_cb; 12484 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12485 perf_buffer_sample_fn sample_cb; 12486 perf_buffer_lost_fn lost_cb; 12487 void *ctx; 12488 int cpu_cnt; 12489 int *cpus; 12490 int *map_keys; 12491 }; 12492 12493 struct perf_cpu_buf { 12494 struct perf_buffer *pb; 12495 void *base; /* mmap()'ed memory */ 12496 void *buf; /* for reconstructing segmented data */ 12497 size_t buf_size; 12498 int fd; 12499 int cpu; 12500 int map_key; 12501 }; 12502 12503 struct perf_buffer { 12504 perf_buffer_event_fn event_cb; 12505 perf_buffer_sample_fn sample_cb; 12506 perf_buffer_lost_fn lost_cb; 12507 void *ctx; /* passed into callbacks */ 12508 12509 size_t page_size; 12510 size_t mmap_size; 12511 struct perf_cpu_buf **cpu_bufs; 12512 struct epoll_event *events; 12513 int cpu_cnt; /* number of allocated CPU buffers */ 12514 int epoll_fd; /* perf event FD */ 12515 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12516 }; 12517 12518 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12519 struct perf_cpu_buf *cpu_buf) 12520 { 12521 if (!cpu_buf) 12522 return; 12523 if (cpu_buf->base && 12524 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12525 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12526 if (cpu_buf->fd >= 0) { 12527 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12528 close(cpu_buf->fd); 12529 } 12530 free(cpu_buf->buf); 12531 free(cpu_buf); 12532 } 12533 12534 void perf_buffer__free(struct perf_buffer *pb) 12535 { 12536 int i; 12537 12538 if (IS_ERR_OR_NULL(pb)) 12539 return; 12540 if (pb->cpu_bufs) { 12541 for (i = 0; i < pb->cpu_cnt; i++) { 12542 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12543 12544 if (!cpu_buf) 12545 continue; 12546 12547 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12548 perf_buffer__free_cpu_buf(pb, cpu_buf); 12549 } 12550 free(pb->cpu_bufs); 12551 } 12552 if (pb->epoll_fd >= 0) 12553 close(pb->epoll_fd); 12554 free(pb->events); 12555 free(pb); 12556 } 12557 12558 static struct perf_cpu_buf * 12559 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12560 int cpu, int map_key) 12561 { 12562 struct perf_cpu_buf *cpu_buf; 12563 char msg[STRERR_BUFSIZE]; 12564 int err; 12565 12566 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12567 if (!cpu_buf) 12568 return ERR_PTR(-ENOMEM); 12569 12570 cpu_buf->pb = pb; 12571 cpu_buf->cpu = cpu; 12572 cpu_buf->map_key = map_key; 12573 12574 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12575 -1, PERF_FLAG_FD_CLOEXEC); 12576 if (cpu_buf->fd < 0) { 12577 err = -errno; 12578 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12579 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12580 goto error; 12581 } 12582 12583 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12584 PROT_READ | PROT_WRITE, MAP_SHARED, 12585 cpu_buf->fd, 0); 12586 if (cpu_buf->base == MAP_FAILED) { 12587 cpu_buf->base = NULL; 12588 err = -errno; 12589 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12590 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12591 goto error; 12592 } 12593 12594 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12595 err = -errno; 12596 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12597 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12598 goto error; 12599 } 12600 12601 return cpu_buf; 12602 12603 error: 12604 perf_buffer__free_cpu_buf(pb, cpu_buf); 12605 return (struct perf_cpu_buf *)ERR_PTR(err); 12606 } 12607 12608 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12609 struct perf_buffer_params *p); 12610 12611 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12612 perf_buffer_sample_fn sample_cb, 12613 perf_buffer_lost_fn lost_cb, 12614 void *ctx, 12615 const struct perf_buffer_opts *opts) 12616 { 12617 const size_t attr_sz = sizeof(struct perf_event_attr); 12618 struct perf_buffer_params p = {}; 12619 struct perf_event_attr attr; 12620 __u32 sample_period; 12621 12622 if (!OPTS_VALID(opts, perf_buffer_opts)) 12623 return libbpf_err_ptr(-EINVAL); 12624 12625 sample_period = OPTS_GET(opts, sample_period, 1); 12626 if (!sample_period) 12627 sample_period = 1; 12628 12629 memset(&attr, 0, attr_sz); 12630 attr.size = attr_sz; 12631 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12632 attr.type = PERF_TYPE_SOFTWARE; 12633 attr.sample_type = PERF_SAMPLE_RAW; 12634 attr.sample_period = sample_period; 12635 attr.wakeup_events = sample_period; 12636 12637 p.attr = &attr; 12638 p.sample_cb = sample_cb; 12639 p.lost_cb = lost_cb; 12640 p.ctx = ctx; 12641 12642 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12643 } 12644 12645 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12646 struct perf_event_attr *attr, 12647 perf_buffer_event_fn event_cb, void *ctx, 12648 const struct perf_buffer_raw_opts *opts) 12649 { 12650 struct perf_buffer_params p = {}; 12651 12652 if (!attr) 12653 return libbpf_err_ptr(-EINVAL); 12654 12655 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12656 return libbpf_err_ptr(-EINVAL); 12657 12658 p.attr = attr; 12659 p.event_cb = event_cb; 12660 p.ctx = ctx; 12661 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12662 p.cpus = OPTS_GET(opts, cpus, NULL); 12663 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12664 12665 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12666 } 12667 12668 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12669 struct perf_buffer_params *p) 12670 { 12671 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12672 struct bpf_map_info map; 12673 char msg[STRERR_BUFSIZE]; 12674 struct perf_buffer *pb; 12675 bool *online = NULL; 12676 __u32 map_info_len; 12677 int err, i, j, n; 12678 12679 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12680 pr_warn("page count should be power of two, but is %zu\n", 12681 page_cnt); 12682 return ERR_PTR(-EINVAL); 12683 } 12684 12685 /* best-effort sanity checks */ 12686 memset(&map, 0, sizeof(map)); 12687 map_info_len = sizeof(map); 12688 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12689 if (err) { 12690 err = -errno; 12691 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12692 * -EBADFD, -EFAULT, or -E2BIG on real error 12693 */ 12694 if (err != -EINVAL) { 12695 pr_warn("failed to get map info for map FD %d: %s\n", 12696 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12697 return ERR_PTR(err); 12698 } 12699 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12700 map_fd); 12701 } else { 12702 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12703 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12704 map.name); 12705 return ERR_PTR(-EINVAL); 12706 } 12707 } 12708 12709 pb = calloc(1, sizeof(*pb)); 12710 if (!pb) 12711 return ERR_PTR(-ENOMEM); 12712 12713 pb->event_cb = p->event_cb; 12714 pb->sample_cb = p->sample_cb; 12715 pb->lost_cb = p->lost_cb; 12716 pb->ctx = p->ctx; 12717 12718 pb->page_size = getpagesize(); 12719 pb->mmap_size = pb->page_size * page_cnt; 12720 pb->map_fd = map_fd; 12721 12722 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12723 if (pb->epoll_fd < 0) { 12724 err = -errno; 12725 pr_warn("failed to create epoll instance: %s\n", 12726 libbpf_strerror_r(err, msg, sizeof(msg))); 12727 goto error; 12728 } 12729 12730 if (p->cpu_cnt > 0) { 12731 pb->cpu_cnt = p->cpu_cnt; 12732 } else { 12733 pb->cpu_cnt = libbpf_num_possible_cpus(); 12734 if (pb->cpu_cnt < 0) { 12735 err = pb->cpu_cnt; 12736 goto error; 12737 } 12738 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12739 pb->cpu_cnt = map.max_entries; 12740 } 12741 12742 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12743 if (!pb->events) { 12744 err = -ENOMEM; 12745 pr_warn("failed to allocate events: out of memory\n"); 12746 goto error; 12747 } 12748 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12749 if (!pb->cpu_bufs) { 12750 err = -ENOMEM; 12751 pr_warn("failed to allocate buffers: out of memory\n"); 12752 goto error; 12753 } 12754 12755 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12756 if (err) { 12757 pr_warn("failed to get online CPU mask: %d\n", err); 12758 goto error; 12759 } 12760 12761 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12762 struct perf_cpu_buf *cpu_buf; 12763 int cpu, map_key; 12764 12765 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12766 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12767 12768 /* in case user didn't explicitly requested particular CPUs to 12769 * be attached to, skip offline/not present CPUs 12770 */ 12771 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12772 continue; 12773 12774 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12775 if (IS_ERR(cpu_buf)) { 12776 err = PTR_ERR(cpu_buf); 12777 goto error; 12778 } 12779 12780 pb->cpu_bufs[j] = cpu_buf; 12781 12782 err = bpf_map_update_elem(pb->map_fd, &map_key, 12783 &cpu_buf->fd, 0); 12784 if (err) { 12785 err = -errno; 12786 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12787 cpu, map_key, cpu_buf->fd, 12788 libbpf_strerror_r(err, msg, sizeof(msg))); 12789 goto error; 12790 } 12791 12792 pb->events[j].events = EPOLLIN; 12793 pb->events[j].data.ptr = cpu_buf; 12794 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12795 &pb->events[j]) < 0) { 12796 err = -errno; 12797 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12798 cpu, cpu_buf->fd, 12799 libbpf_strerror_r(err, msg, sizeof(msg))); 12800 goto error; 12801 } 12802 j++; 12803 } 12804 pb->cpu_cnt = j; 12805 free(online); 12806 12807 return pb; 12808 12809 error: 12810 free(online); 12811 if (pb) 12812 perf_buffer__free(pb); 12813 return ERR_PTR(err); 12814 } 12815 12816 struct perf_sample_raw { 12817 struct perf_event_header header; 12818 uint32_t size; 12819 char data[]; 12820 }; 12821 12822 struct perf_sample_lost { 12823 struct perf_event_header header; 12824 uint64_t id; 12825 uint64_t lost; 12826 uint64_t sample_id; 12827 }; 12828 12829 static enum bpf_perf_event_ret 12830 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12831 { 12832 struct perf_cpu_buf *cpu_buf = ctx; 12833 struct perf_buffer *pb = cpu_buf->pb; 12834 void *data = e; 12835 12836 /* user wants full control over parsing perf event */ 12837 if (pb->event_cb) 12838 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12839 12840 switch (e->type) { 12841 case PERF_RECORD_SAMPLE: { 12842 struct perf_sample_raw *s = data; 12843 12844 if (pb->sample_cb) 12845 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12846 break; 12847 } 12848 case PERF_RECORD_LOST: { 12849 struct perf_sample_lost *s = data; 12850 12851 if (pb->lost_cb) 12852 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12853 break; 12854 } 12855 default: 12856 pr_warn("unknown perf sample type %d\n", e->type); 12857 return LIBBPF_PERF_EVENT_ERROR; 12858 } 12859 return LIBBPF_PERF_EVENT_CONT; 12860 } 12861 12862 static int perf_buffer__process_records(struct perf_buffer *pb, 12863 struct perf_cpu_buf *cpu_buf) 12864 { 12865 enum bpf_perf_event_ret ret; 12866 12867 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12868 pb->page_size, &cpu_buf->buf, 12869 &cpu_buf->buf_size, 12870 perf_buffer__process_record, cpu_buf); 12871 if (ret != LIBBPF_PERF_EVENT_CONT) 12872 return ret; 12873 return 0; 12874 } 12875 12876 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12877 { 12878 return pb->epoll_fd; 12879 } 12880 12881 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12882 { 12883 int i, cnt, err; 12884 12885 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12886 if (cnt < 0) 12887 return -errno; 12888 12889 for (i = 0; i < cnt; i++) { 12890 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12891 12892 err = perf_buffer__process_records(pb, cpu_buf); 12893 if (err) { 12894 pr_warn("error while processing records: %d\n", err); 12895 return libbpf_err(err); 12896 } 12897 } 12898 return cnt; 12899 } 12900 12901 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12902 * manager. 12903 */ 12904 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12905 { 12906 return pb->cpu_cnt; 12907 } 12908 12909 /* 12910 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12911 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12912 * select()/poll()/epoll() Linux syscalls. 12913 */ 12914 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12915 { 12916 struct perf_cpu_buf *cpu_buf; 12917 12918 if (buf_idx >= pb->cpu_cnt) 12919 return libbpf_err(-EINVAL); 12920 12921 cpu_buf = pb->cpu_bufs[buf_idx]; 12922 if (!cpu_buf) 12923 return libbpf_err(-ENOENT); 12924 12925 return cpu_buf->fd; 12926 } 12927 12928 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12929 { 12930 struct perf_cpu_buf *cpu_buf; 12931 12932 if (buf_idx >= pb->cpu_cnt) 12933 return libbpf_err(-EINVAL); 12934 12935 cpu_buf = pb->cpu_bufs[buf_idx]; 12936 if (!cpu_buf) 12937 return libbpf_err(-ENOENT); 12938 12939 *buf = cpu_buf->base; 12940 *buf_size = pb->mmap_size; 12941 return 0; 12942 } 12943 12944 /* 12945 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12946 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12947 * consume, do nothing and return success. 12948 * Returns: 12949 * - 0 on success; 12950 * - <0 on failure. 12951 */ 12952 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12953 { 12954 struct perf_cpu_buf *cpu_buf; 12955 12956 if (buf_idx >= pb->cpu_cnt) 12957 return libbpf_err(-EINVAL); 12958 12959 cpu_buf = pb->cpu_bufs[buf_idx]; 12960 if (!cpu_buf) 12961 return libbpf_err(-ENOENT); 12962 12963 return perf_buffer__process_records(pb, cpu_buf); 12964 } 12965 12966 int perf_buffer__consume(struct perf_buffer *pb) 12967 { 12968 int i, err; 12969 12970 for (i = 0; i < pb->cpu_cnt; i++) { 12971 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12972 12973 if (!cpu_buf) 12974 continue; 12975 12976 err = perf_buffer__process_records(pb, cpu_buf); 12977 if (err) { 12978 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12979 return libbpf_err(err); 12980 } 12981 } 12982 return 0; 12983 } 12984 12985 int bpf_program__set_attach_target(struct bpf_program *prog, 12986 int attach_prog_fd, 12987 const char *attach_func_name) 12988 { 12989 int btf_obj_fd = 0, btf_id = 0, err; 12990 12991 if (!prog || attach_prog_fd < 0) 12992 return libbpf_err(-EINVAL); 12993 12994 if (prog->obj->loaded) 12995 return libbpf_err(-EINVAL); 12996 12997 if (attach_prog_fd && !attach_func_name) { 12998 /* remember attach_prog_fd and let bpf_program__load() find 12999 * BTF ID during the program load 13000 */ 13001 prog->attach_prog_fd = attach_prog_fd; 13002 return 0; 13003 } 13004 13005 if (attach_prog_fd) { 13006 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13007 attach_prog_fd); 13008 if (btf_id < 0) 13009 return libbpf_err(btf_id); 13010 } else { 13011 if (!attach_func_name) 13012 return libbpf_err(-EINVAL); 13013 13014 /* load btf_vmlinux, if not yet */ 13015 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13016 if (err) 13017 return libbpf_err(err); 13018 err = find_kernel_btf_id(prog->obj, attach_func_name, 13019 prog->expected_attach_type, 13020 &btf_obj_fd, &btf_id); 13021 if (err) 13022 return libbpf_err(err); 13023 } 13024 13025 prog->attach_btf_id = btf_id; 13026 prog->attach_btf_obj_fd = btf_obj_fd; 13027 prog->attach_prog_fd = attach_prog_fd; 13028 return 0; 13029 } 13030 13031 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13032 { 13033 int err = 0, n, len, start, end = -1; 13034 bool *tmp; 13035 13036 *mask = NULL; 13037 *mask_sz = 0; 13038 13039 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13040 while (*s) { 13041 if (*s == ',' || *s == '\n') { 13042 s++; 13043 continue; 13044 } 13045 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13046 if (n <= 0 || n > 2) { 13047 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13048 err = -EINVAL; 13049 goto cleanup; 13050 } else if (n == 1) { 13051 end = start; 13052 } 13053 if (start < 0 || start > end) { 13054 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13055 start, end, s); 13056 err = -EINVAL; 13057 goto cleanup; 13058 } 13059 tmp = realloc(*mask, end + 1); 13060 if (!tmp) { 13061 err = -ENOMEM; 13062 goto cleanup; 13063 } 13064 *mask = tmp; 13065 memset(tmp + *mask_sz, 0, start - *mask_sz); 13066 memset(tmp + start, 1, end - start + 1); 13067 *mask_sz = end + 1; 13068 s += len; 13069 } 13070 if (!*mask_sz) { 13071 pr_warn("Empty CPU range\n"); 13072 return -EINVAL; 13073 } 13074 return 0; 13075 cleanup: 13076 free(*mask); 13077 *mask = NULL; 13078 return err; 13079 } 13080 13081 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13082 { 13083 int fd, err = 0, len; 13084 char buf[128]; 13085 13086 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13087 if (fd < 0) { 13088 err = -errno; 13089 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13090 return err; 13091 } 13092 len = read(fd, buf, sizeof(buf)); 13093 close(fd); 13094 if (len <= 0) { 13095 err = len ? -errno : -EINVAL; 13096 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13097 return err; 13098 } 13099 if (len >= sizeof(buf)) { 13100 pr_warn("CPU mask is too big in file %s\n", fcpu); 13101 return -E2BIG; 13102 } 13103 buf[len] = '\0'; 13104 13105 return parse_cpu_mask_str(buf, mask, mask_sz); 13106 } 13107 13108 int libbpf_num_possible_cpus(void) 13109 { 13110 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13111 static int cpus; 13112 int err, n, i, tmp_cpus; 13113 bool *mask; 13114 13115 tmp_cpus = READ_ONCE(cpus); 13116 if (tmp_cpus > 0) 13117 return tmp_cpus; 13118 13119 err = parse_cpu_mask_file(fcpu, &mask, &n); 13120 if (err) 13121 return libbpf_err(err); 13122 13123 tmp_cpus = 0; 13124 for (i = 0; i < n; i++) { 13125 if (mask[i]) 13126 tmp_cpus++; 13127 } 13128 free(mask); 13129 13130 WRITE_ONCE(cpus, tmp_cpus); 13131 return tmp_cpus; 13132 } 13133 13134 static int populate_skeleton_maps(const struct bpf_object *obj, 13135 struct bpf_map_skeleton *maps, 13136 size_t map_cnt) 13137 { 13138 int i; 13139 13140 for (i = 0; i < map_cnt; i++) { 13141 struct bpf_map **map = maps[i].map; 13142 const char *name = maps[i].name; 13143 void **mmaped = maps[i].mmaped; 13144 13145 *map = bpf_object__find_map_by_name(obj, name); 13146 if (!*map) { 13147 pr_warn("failed to find skeleton map '%s'\n", name); 13148 return -ESRCH; 13149 } 13150 13151 /* externs shouldn't be pre-setup from user code */ 13152 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13153 *mmaped = (*map)->mmaped; 13154 } 13155 return 0; 13156 } 13157 13158 static int populate_skeleton_progs(const struct bpf_object *obj, 13159 struct bpf_prog_skeleton *progs, 13160 size_t prog_cnt) 13161 { 13162 int i; 13163 13164 for (i = 0; i < prog_cnt; i++) { 13165 struct bpf_program **prog = progs[i].prog; 13166 const char *name = progs[i].name; 13167 13168 *prog = bpf_object__find_program_by_name(obj, name); 13169 if (!*prog) { 13170 pr_warn("failed to find skeleton program '%s'\n", name); 13171 return -ESRCH; 13172 } 13173 } 13174 return 0; 13175 } 13176 13177 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13178 const struct bpf_object_open_opts *opts) 13179 { 13180 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13181 .object_name = s->name, 13182 ); 13183 struct bpf_object *obj; 13184 int err; 13185 13186 /* Attempt to preserve opts->object_name, unless overriden by user 13187 * explicitly. Overwriting object name for skeletons is discouraged, 13188 * as it breaks global data maps, because they contain object name 13189 * prefix as their own map name prefix. When skeleton is generated, 13190 * bpftool is making an assumption that this name will stay the same. 13191 */ 13192 if (opts) { 13193 memcpy(&skel_opts, opts, sizeof(*opts)); 13194 if (!opts->object_name) 13195 skel_opts.object_name = s->name; 13196 } 13197 13198 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13199 err = libbpf_get_error(obj); 13200 if (err) { 13201 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13202 s->name, err); 13203 return libbpf_err(err); 13204 } 13205 13206 *s->obj = obj; 13207 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13208 if (err) { 13209 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13210 return libbpf_err(err); 13211 } 13212 13213 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13214 if (err) { 13215 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13216 return libbpf_err(err); 13217 } 13218 13219 return 0; 13220 } 13221 13222 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13223 { 13224 int err, len, var_idx, i; 13225 const char *var_name; 13226 const struct bpf_map *map; 13227 struct btf *btf; 13228 __u32 map_type_id; 13229 const struct btf_type *map_type, *var_type; 13230 const struct bpf_var_skeleton *var_skel; 13231 struct btf_var_secinfo *var; 13232 13233 if (!s->obj) 13234 return libbpf_err(-EINVAL); 13235 13236 btf = bpf_object__btf(s->obj); 13237 if (!btf) { 13238 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13239 bpf_object__name(s->obj)); 13240 return libbpf_err(-errno); 13241 } 13242 13243 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13244 if (err) { 13245 pr_warn("failed to populate subskeleton maps: %d\n", err); 13246 return libbpf_err(err); 13247 } 13248 13249 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13250 if (err) { 13251 pr_warn("failed to populate subskeleton maps: %d\n", err); 13252 return libbpf_err(err); 13253 } 13254 13255 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13256 var_skel = &s->vars[var_idx]; 13257 map = *var_skel->map; 13258 map_type_id = bpf_map__btf_value_type_id(map); 13259 map_type = btf__type_by_id(btf, map_type_id); 13260 13261 if (!btf_is_datasec(map_type)) { 13262 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13263 bpf_map__name(map), 13264 __btf_kind_str(btf_kind(map_type))); 13265 return libbpf_err(-EINVAL); 13266 } 13267 13268 len = btf_vlen(map_type); 13269 var = btf_var_secinfos(map_type); 13270 for (i = 0; i < len; i++, var++) { 13271 var_type = btf__type_by_id(btf, var->type); 13272 var_name = btf__name_by_offset(btf, var_type->name_off); 13273 if (strcmp(var_name, var_skel->name) == 0) { 13274 *var_skel->addr = map->mmaped + var->offset; 13275 break; 13276 } 13277 } 13278 } 13279 return 0; 13280 } 13281 13282 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13283 { 13284 if (!s) 13285 return; 13286 free(s->maps); 13287 free(s->progs); 13288 free(s->vars); 13289 free(s); 13290 } 13291 13292 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13293 { 13294 int i, err; 13295 13296 err = bpf_object__load(*s->obj); 13297 if (err) { 13298 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13299 return libbpf_err(err); 13300 } 13301 13302 for (i = 0; i < s->map_cnt; i++) { 13303 struct bpf_map *map = *s->maps[i].map; 13304 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13305 int prot, map_fd = bpf_map__fd(map); 13306 void **mmaped = s->maps[i].mmaped; 13307 13308 if (!mmaped) 13309 continue; 13310 13311 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13312 *mmaped = NULL; 13313 continue; 13314 } 13315 13316 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13317 prot = PROT_READ; 13318 else 13319 prot = PROT_READ | PROT_WRITE; 13320 13321 /* Remap anonymous mmap()-ed "map initialization image" as 13322 * a BPF map-backed mmap()-ed memory, but preserving the same 13323 * memory address. This will cause kernel to change process' 13324 * page table to point to a different piece of kernel memory, 13325 * but from userspace point of view memory address (and its 13326 * contents, being identical at this point) will stay the 13327 * same. This mapping will be released by bpf_object__close() 13328 * as per normal clean up procedure, so we don't need to worry 13329 * about it from skeleton's clean up perspective. 13330 */ 13331 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13332 if (*mmaped == MAP_FAILED) { 13333 err = -errno; 13334 *mmaped = NULL; 13335 pr_warn("failed to re-mmap() map '%s': %d\n", 13336 bpf_map__name(map), err); 13337 return libbpf_err(err); 13338 } 13339 } 13340 13341 return 0; 13342 } 13343 13344 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13345 { 13346 int i, err; 13347 13348 for (i = 0; i < s->prog_cnt; i++) { 13349 struct bpf_program *prog = *s->progs[i].prog; 13350 struct bpf_link **link = s->progs[i].link; 13351 13352 if (!prog->autoload || !prog->autoattach) 13353 continue; 13354 13355 /* auto-attaching not supported for this program */ 13356 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13357 continue; 13358 13359 /* if user already set the link manually, don't attempt auto-attach */ 13360 if (*link) 13361 continue; 13362 13363 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13364 if (err) { 13365 pr_warn("prog '%s': failed to auto-attach: %d\n", 13366 bpf_program__name(prog), err); 13367 return libbpf_err(err); 13368 } 13369 13370 /* It's possible that for some SEC() definitions auto-attach 13371 * is supported in some cases (e.g., if definition completely 13372 * specifies target information), but is not in other cases. 13373 * SEC("uprobe") is one such case. If user specified target 13374 * binary and function name, such BPF program can be 13375 * auto-attached. But if not, it shouldn't trigger skeleton's 13376 * attach to fail. It should just be skipped. 13377 * attach_fn signals such case with returning 0 (no error) and 13378 * setting link to NULL. 13379 */ 13380 } 13381 13382 return 0; 13383 } 13384 13385 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13386 { 13387 int i; 13388 13389 for (i = 0; i < s->prog_cnt; i++) { 13390 struct bpf_link **link = s->progs[i].link; 13391 13392 bpf_link__destroy(*link); 13393 *link = NULL; 13394 } 13395 } 13396 13397 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13398 { 13399 if (!s) 13400 return; 13401 13402 if (s->progs) 13403 bpf_object__detach_skeleton(s); 13404 if (s->obj) 13405 bpf_object__close(*s->obj); 13406 free(s->maps); 13407 free(s->progs); 13408 free(s); 13409 } 13410